
Creating CORBA C++

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Server Applications

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating CORBA C++ Server Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

.....x

.......x

.....x

.... xi

.... xi

... xii

-2

-2

1-3

-4

1-4

-7

.. 1-8

1-9

.. 1-9

0

-10

1-10

1-11

-12

-14

-15
Contents

About This Document
What You Need to Know ...

e-docs Web Site ..

How to Print the Document..

Related Information...

Contact Us! ..

Documentation Conventions ...

1. Server Application Concepts
The Entities You Create to Build a WebLogic Enterprise Server Application. 1

The Implementation of the CORBA Objects for Your Server Application1

How Interface Definitions Establish the Operations
on a CORBA Object ..

How You Implement the Operations on a CORBA Object 1

How Client Applications Access and Manipulate Your Application’s
CORBA Objects ..

How You Instantiate a CORBA Object at Run Time 1

The Server Object...

Process for Developing WebLogic Enterprise Server Applications

Generating Object References..

How Client Applications Find Your Server Application’s Factories 1-1

Creating an Active Object Reference.. 1

Managing Object State ...

About Object State ..

Object Activation Policies .. 1

Application-controlled Deactivation... 1

Reading and Writing an Object’s Data .. 1
Creating CORBA C++ Server Applications iii

1-16

-19

-19

.1-20

1-21

22

-22

-22

1-23

1-23

-24

... 2-2

-3

2-5

. 2-6

... 2-6

. 2-7

2-7

. 2-8

... 2-9

-10

2-11

. 2-12

2-13

-15

15

-18

2-19

2-20

-21

21
Available Mechanisms for Reading and Writing an Object’s Durable
State..

Reading State at Object Activation ... 1

Reading State Within Individual Operations on an Object 1

Stateless Objects and Durable State ...

Stateful Objects and Durable State..

Your Responsibilities for Object Deactivation1-

Avoiding Unnecessary I/O .. 1

Sample Activation Walkthrough...1

Using Design Patterns ..

Process-Entity Design Pattern...

List-Enumerator Design Pattern.. 1

2. Steps for Creating a WebLogic Enterprise Server Application
Summary of the WebLogic Enterprise Server Application Development

Process...

Step 1: Compile the OMG IDL File for the Server Application 2

Using the IDL Compiler...

Generating the Skeleton and Implementation Files...................................

Generating Tie Classes ..

Step 2: Write the Methods That Implement Each Interface’s Operations........

The Implementation File Generated by the IDL Compiler

Implementing a Factory...

Step 3: Create the Server Object...

Initializing the Server Application ... 2

Writing the Code That Creates and Registers a Factory

Creating Servants...

Releasing the Server Application ...

Step 4: Define the In-memory Behavior of Objects .. 2

Specifying Object Activation and Transaction Policies in the ICF File .. 2-

Step 5: Compile and Link the Server Application...2

Step 6: Deploy the Server Application ..

Development and Debugging Tips ..

Use of CORBA and M3 Exceptions and the User Log 2

Client Application View of Exceptions .. 2-
iv Creating CORBA C++ Server Applications

21

-26

7

-28

. 2-29

-29

-30

2-31

-31

2-33

-34

3-2

-2

. 3-4

.. 3-4

. 3-7

3-7

.. 3-8

3-10

-10

3-10

3-10

11

-12

3-12

3-13

-14

-15

3-15

-15

3-17
Server Application View of Exceptions.. 2-

Detecting Error Conditions in the Callback Methods 2

Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-2

Caveat for State Handling in Tobj_ServantBase::deactivate_object()..... 2

Servant Pooling ..

How Servant Pooling Works.. 2

How You Implement Servant Pooling ... 2

Delegation-based Interface Implementation..

About Tie Classes in the WebLogic Enterprise System 2

When to Use Tie Classes..

How to Create Tie Classes in a WebLogic Enterprise Application 2

3. Designing and Implementing a Basic WebLogic Enterprise
Server Application

How the Basic University Sample Application Works

The Basic University Sample Application OMG IDL 3

Application Startup ...

Browsing Course Synopses..

Browsing Course Details...

Design Considerations for the University Server Application

Design Considerations for Generating Object References.......................

Design Considerations for Managing Object State

The RegistrarFactory Object ... 3

The Registrar Object ...

The CourseSynopsisEnumerator Object ...

Basic University Sample Application ICF File................................. 3-

Design Considerations for Handling Durable State Information 3

The Registrar Object ...

The CourseSynopsisEnumerator Object ...

Using the University Database.. 3

How the Basic Sample Application Applies Design Patterns.................. 3

Process-Entity Design Pattern...

List-Enumerator Design Pattern.. 3

Additional Performance Efficiencies Built into the WebLogic
Enterprise System ...
Creating CORBA C++ Server Applications v

3-17

-18

3-18

4-1

4-2

-3

4-5

. 5-2

. 5-4

-6

5-7

5-8

5-8

5-9

5-9

-10

5-10

-11

-12

5-13

-14

5-15

5-15

5-15

. 5-16
Preactivating an Object with State ...

How You Preactivate an Object with State....................................... 3

Usage Notes for Preactivated Objects...

4. Security and WebLogic Enterprise Server Applications
Overview of Security and WebLogic Enterprise Server Applications..............

Design Considerations for the University Server Application

How the Security University Sample Application Works.......................... 4

Design Considerations for Returning Student Details to the Client
Application ..

5. Integrating Transactions into a WebLogic Enterprise Server
Application

Overview of Transactions in the WebLogic Enterprise System.......................

Designing and Implementing Transactions in a WebLogic Enterprise Server
Application ..

How the Transactions University Sample Application Works................... 5

Transactional Model Used by the Transactions University Sample
Application ..

Object State Considerations for the University Server Application...........

Object Policies Defined for the Registrar Object................................

Object Policies Defined for the RegistrarFactory Object....................

Using an XA Resource Manager in the Transactions Sample
Application...

Configuration Requirements for the Transactions Sample Application... 5

Integrating Transactions in a WebLogic Enterprise Client and Server
Application ...

Making an Object Automatically Transactional....................................... 5

Enabling an Object to Participate in a Transaction 5

Preventing an Object from Being Invoked While a Transaction
Is Scoped ...

Excluding an Object from an Ongoing Transaction.................................5

Assigning Policies ..

Opening an XA Resource Manager..

Closing an XA Resource Manager ...

Transactions and Object State Management...
vi Creating CORBA C++ Server Applications

5-16

5-16

5-18

5-20

-21

-21

6-2

6-3

-4

6-6

.. 6-7

. 6-8

10

1

-11

.. 7-2

7-3

-4

... 7-4

... 7-5

. 7-7

. 7-9

-11

7-13

-14

5

-17

7-18
Delegating Object State Management to an XA Resource Manager

Waiting Until Transaction Work Is Complete Before Writing
to the Database ..

Notes on Using Transactions in the WebLogic Enterprise System.................

User-defined Exceptions ...

Defining the Exception... 5

Throwing the Exception ... 5

6. Wrapping a BEA Tuxedo Service in an Object
Overview of Wrapping a BEA Tuxedo Service ..

Designing the Object That Wraps the BEA Tuxedo Service

Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls 6

Implementing the Operations That Send Messages to and
from the BEA Tuxedo Service..

Restrictions...

Design Considerations for the Wrapper Sample Application

How the Wrapper University Sample Application Works................ 6-

Interface Definitions for the Billing Server Application 6-1

Additional Design Considerations for the Wrapper Sample
Application... 6

7. Scaling a WebLogic Enterprise Server Application
Overview of the Scalability Features Available in the WebLogic Enterprise

System ..

Scaling a WebLogic Enterprise Server Application..

OMG IDL Changes for the Production Sample Application 7

Replicating Server Processes and Server Groups

Replicated Server Processes...

Replicated Server Groups ..

Configuring Replicated Server Processes and Groups

Scaling the Application Via Object State Management........................... 7

Factory-based Routing ...

How Factory-based Routing Works.. 7

Configuring for Factory-based Routing in the UBBCONFIG file ... 7-1

Implementing Factory-based Routing in a Factory........................... 7

What Happens at Run Time ..
Creating CORBA C++ Server Applications vii

-19

-20

-21

-23

-23

. 7-24

7-25

-26
Additional Design Considerations for the Registrar and Teller Objects.. 7

Instantiating the Registrar and Teller Objects................................... 7

Ensuring That Student Registration Occurs in the Correct Server
Group ...7

Ensuring That the Teller Object is Instantiated in the Correct Server
Group ...7

How the Production Server Application Can Be Scaled Further 7

Choosing Between Stateless and Stateful Objects ...

When You Want Stateless Objects...

When You Want Stateful Objects ..7

Index
viii Creating CORBA C++ Server Applications

EA

ain.
ribed

ts

s
er

y

About This Document

This document describes how programmers can implement key features in the B
WebLogic Enterprise™ (WLE) product to design and implement scalable,
high-performance, C++ server applications that run in a WebLogic Enterprise dom
The C++ examples shown in this book are based on the sample applications desc
in theGuide to the University Sample Applications.

This document covers the following topics:

� Chapter 1, “Server Application Concepts,” presents a number of basic concep
about creating WebLogic Enterprise server applications and describes the two
primary programming entities you create for a WebLogic Enterprise server
application.

� Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application,” list
and describes the basic steps you follow to create a WebLogic Enterprise serv
application.

� Chapter 3, “Designing and Implementing a Basic WebLogic Enterprise Server
Application,” explains the fundamental concepts and processes involved with
designing and implementing a basic WebLogic Enterprise server application,
based on the Basic University sample application.

� Chapter 4, “Security and WebLogic Enterprise Server Applications,” explains
the role of a WebLogic Enterprise server application in implementing a securit
model for a WebLogic Enterprise domain.

� Chapter 5, “Integrating Transactions into a WebLogic Enterprise Server
Application,” describes how the WebLogic Enterprise system supports
transactions in a WebLogic Enterprise domain and how you can implement
transactions into your server applications.
Creating CORBA C++ Server Applications ix

es

,
ble

at

ing

on
ent
� Chapter 6, “Wrapping a BEA Tuxedo Service in an Object,” describes how to
integrate a BEA Tuxedo application into a WebLogic Enterprise server
application.

� Chapter 7, “Scaling a WebLogic Enterprise Server Application,” describes the
key scalability features that you can build into your WebLogic Enterprise
applications to make them highly scalable, including replicated server process
and groups, factory-based routing, and object state management.

What You Need to Know

This document is intended for programmers who are interested in creating secure
scalable, transaction-based server applications. It assumes your are knowledgea
with the BEA Tuxedo® system, CORBA, and C++ programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by us
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentati
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
x Creating CORBA C++ Server Applications

How to Print the Document

rise
you

om

do,
a

s.

ate

the

u

mer

ion:
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free fr
the Adobe Web site athttp://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxe
distributed object computing, transaction processing, C++ programming, and Jav
programming, see theWebLogic Enterprise Bibliographyin the WebLogic Enterprise
online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail atdocsupport@bea.comif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and upd
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if yo
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT atwww.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informat

� Your name, e-mail address, phone number, and fax number

� Your company name and company address
Creating CORBA C++ Server Applications xi

d
s.

d.
� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures an
their members, data types, directories, and filenames and their extension
Monospace text also indicates text that you must enter from the keyboar

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
xii Creating CORBA C++ Server Applications

Documentation Conventions

n

.

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other informatio

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line
The vertical ellipsis itself should never be typed.

Convention Item
Creating CORBA C++ Server Applications xiii

xiv Creating CORBA C++ Server Applications

CHAPTER

ic
rise
1 Server Application
Concepts

This topic includes the following sections:

� The Entities You Create to Build a WebLogic Enterprise Server Application:

� The Implementation of the CORBA Objects for Your Server Application

� The Server Object

� Process for Developing WebLogic Enterprise Server Applications:

� Generating Object References

� Managing Object State

� Reading and Writing an Object’s Data

� Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building
WebLogic Enterprise server applications that take advantage of various WebLog
Enterprise software features. For background information about WebLogic Enterp
server applications and how they work, seeGetting Started.
Creating CORBA C++ Server Applications 1-1

1 Server Application Concepts

ient

iles

s for

ed,
g or

ent
ata

tion.
The Entities You Create to Build a WebLogic
Enterprise Server Application

To build a WebLogic Enterprise server application, you create the following two
entities:

� The implementation of the CORBA objects that execute your server
application’s business logic

� The Server object, which implements the operations that initialize and release
the server application and instantiate the CORBA objects needed to satisfy cl
requests

There are also a number of files that you work with that are generated by the IDL
compiler and that you build into a WebLogic Enterprise server application. These f
are listed and described in Chapter 2, “Steps for Creating a WebLogic Enterprise
Server Application.”

The sections that follow provide introductory information about these entities. For
complete details about how to generate these components, see Chapter 2, “Step
Creating a WebLogic Enterprise Server Application.”

The Implementation of the CORBA Objects for Your
Server Application

Having a clear understanding of what CORBA objects are, and how they are defin
implemented, instantiated, and managed is critical for the person who is designin
creating a WebLogic Enterprise server application.

The CORBA objects for which you have defined interfaces in the Object Managem
Group Interface Definition Language (OMG IDL) contain the business logic and d
for your WebLogic Enterprise server applications. All client application requests
involve invoking an operation on a CORBA object. The code you write that
implements the operations defined for an interface is called an object implementa
For example, in C++, the object implementation is a C++ class.
1-2 Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

ed

se

A
on
the
ters

ver

is is
ment
ay,
er
you
ring
tion

and
n an
est.
This topic includes the following sections:

� How OMG IDL interface definitions establish the operations that can be invok
on a CORBA object

� How you implement the operations on a CORBA object

� How client applications access and manipulate your application’s CORBA
objects

� How you instantiate a CORBA object with code and data at run time in respon
to a client request

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’s interface identifies the operations that can be performed on it.
distinguishing characteristic of CORBA objects is that an object’s interface definiti
is separate from its implementation. The definition for the interface establishes how
operations on the interface must be implemented, including what the valid parame
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/ser
contract for an application. That is, for a given interface, the server application is
bound to do the following:

� Implement the operations defined for that interface

� Always use the parameters defined with each operation

How the server application implements the operations may change over time. Th
acceptable behavior as long as the server application continues to meet the require
of implementing the defined interface and using the defined parameters. In this w
the client stub is always a reliable proxy for the object implementation on the serv
machine. This underscores one of the key architectural strengths of CORBA -- that
can change how a server application implements an object over time without requi
the client application to be modified or even to be aware that the object implementa
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB
the Portable Object Adapter (POA), ensure that a client request for an operation o
object can be routed to the code in the server application that can satisfy the requ
Creating CORBA C++ Server Applications 1-3

1 Server Application Concepts

the
ins

of a

r
em

re.

ns,
place

ou
put

erver
s
to the
The
er
y to
Once the system designer has specified the interfaces of the business objects in
application, the programmer’s job is to implement those interfaces. This book expla
how.

For more information about OMG IDL, seeCreating Client Applications.

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For C++, this code consists
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file. The file containing the set of object implementations fo
your application is known as an implementation file. The WebLogic Enterprise syst
provides an IDL compiler, which compiles your application’s OMG IDL file to
produce several files, one being an implementation file, shown in the following figu

The generated implementation file contains method templates, method declaratio
object constructors and destructors, and other data that you can use as a starting
for writing your application’s object implementations. For example, in C++, the
generated implementation file contains signatures for each interface’s methods. Y
enter the business logic for each method in this file, and then provide this file as in
to the command that builds the executable server application file.

How Client Applications Access and Manipulate Your Application’s CORBA
Objects

Client applications access and manipulate the CORBA objects managed by the s
application viaobject referencesto those objects. Client applications invoke operation
(that is, requests) on an object reference. These requests are sent as messages
server application, which invokes the appropriate operations on CORBA objects.
fact that these requests are sent to the server application and invoked in the serv
application is completely transparent to the client; client applications appear simpl
be making invocations on the client stub.

IDL CompilerOMG IDL File
Implementation

File
1-4 Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

nd
or

rise

n’s
r
se
ing
ed

ting

a
er,

ciated

es

d
ting

g”
Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references a
return them to the client applications that need them in a way that is appropriate f
your application.

Typically, object references to CORBA objects are created in the WebLogic Enterp
system byfactories. A factory is any CORBA object that returns, as one of its
operations, a reference to another CORBA object. You implement your applicatio
factories the same way that you implement other CORBA objects defined for you
application. You can make your factories widely known to the WebLogic Enterpri
domain, and to clients connected to the WebLogic Enterprise domain, by register
them with the FactoryFinder. Registering a factory is an operation typically perform
by the Server object, which is described in the section “The Server Object” on
page 1-8. For more information about designing factories, see the section “Genera
Object References” on page 1-9.

The Content of an Object Reference

From the client application’s perspective, an object reference is opaque; it is like
black box that client applications use without having to know what is inside. Howev
object references contain all the information needed for the WebLogic Enterprise
system to locate a specific object instance and to locate any state data that is asso
with that object.

An object reference contains the following information:

� The interface name

This is the Interface Repository ID of the object’ OMG IDL interface.

� The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includ
a key that the server machine can use to locate the object’s data.

� Group ID

The group ID identifies the server group to which the object reference is route
when a client application makes a request using that object reference. Genera
a nondefault group ID is part of a key WebLogic Enterprise feature called
factory-based routing, which is described in the section “Factory-based Routin
on page 7-13.
Creating CORBA C++ Server Applications 1-5

1 Server Application Concepts

he
o

one
ime
th a
ain
at if
e

se

client
m are
s.

.

nt

the
Note: The combination of the three items in the preceding list uniquely identifies t
CORBA object. It is possible for an object with a given interface and OID t
be simultaneously active in two different groups, if those two groups both
contain the same object implementation. If you need to guarantee that only
object instance of a given interface name and OID is available at any one t
in your domain, either: use factory-based routing to ensure that objects wi
particular OID are always routed to the same group, or configure your dom
so that a given object implementation is in only one group. This assures th
multiple clients have an object reference containing a given interface nam
and OID, the reference is always routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 7-13.

The Lifetime of an Object Reference

Object references created by server applications running in a WebLogic Enterpri
domain typically have a usable lifespan that extends beyond the life of the server
process that creates them. WebLogic Enterprise object references can be used by
applications regardless of whether the server processes that originally created the
still running. In this way, object references are not tied to a specific server proces

An object reference created with theTP::create_active_object_reference()

operation is valid only for the lifetime of the server process in which it was created
For more information, see the section “Preactivating an Object with State” on
page 3-17.

Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragme
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);
1-6 Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

the
kes

,

r

ct
f the

on’s

t

A

into
ed in
ng

tive
How You Instantiate a CORBA Object at Run Time

When a server application receives a request for an object that is not mapped in
server machine’s memory (that is, the object is not active), the TP Framework invo
theServer::create_servant() operation. The
Server::create_servant() operation is implemented in the Server object, which
as mentioned in the section “The Implementation of the CORBA Objects for Your
Server Application” on page 1-2, is a component of a WebLogic Enterprise serve
application that you create.

TheServer::create_servant() operation causes an instance of the CORBA obje
implementation to be mapped into the server machine’s memory. This instance o
object’s implementation is called the object’sservant. Formally speaking, a servant is
an instance of the C++ class that implements an interface defined in the applicati
OMG IDL file. The servant is generated via the C++new statement that you write in
theServer::create_servant() operation.

After the object’s servant has been created, the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on the servant. The
Tobj_ServantBase::activate_object() operation is a virtual operation that is
defined on theTobj_ServantBase base class, from which all object implementation
classes inherit. The TP Framework invokes the
Tobj_ServantBase::activate_object() operation to tie the servant to an objec
ID (OID). (Conversely, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation on an object, the servant’s
association with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORB
object is activated, you can have that data read by defining and implementing the
Tobj_ServantBase::activate_object() operation on the object. The
Tobj_ServantBase::activate_object() operation can contain the specific read
operations required to bring an object’s durable state into memory. (There are
circumstances in which you may prefer instead to have an object’s disk data read
memory by one or more separate operations on the object that you may have cod
the implementation file. For more information, see the section “Reading and Writi
an Object’s Data” on page 1-15.) After the invocation of the
Tobj_ServantBase::activate_object() operation is complete, the object is said
to be active.

This collection of the object’s implementation and data compose the run-time, ac
instance of the CORBA object.
Creating CORBA C++ Server Applications 1-7

1 Server Application Concepts

p a
en.

s for
nt

ogic
ute

e
es

r
tion
A

Servant Pooling

WebLogic Enterprise 4.2 provides a new feature calledservant pooling. Servant
pooling gives your WebLogic Enterprise server application the opportunity to kee
servant in memory after the servant’s association with a specific OID has been brok
When a client request that can be satisified with a pooled servant arrives, the TP
Framework bypasses theTP::create_servant operation and creates a link between
the pooled servant and the OID provided in the client request.

Servant pooling thus provides the WebLogic Enterprise server application with a
means to minimize the costs of reinstantiating a servant each time a request arrive
an object that can be satisified by that servant. For more information about serva
pooling and how to use it, see the section “Servant Pooling” on page 2-29.

The Server Object

The Server object is the other programming code entity that you create for a WebL
Enterprise server application. The Server object implements operations that exec
the following tasks:

� Performing basic server application initialization operations, which may includ
registering factories managed by the server application and allocating resourc
needed by the server application. If the server application is transactional, the
Server object also implements the code that opens an XA resource manager.

� Instantiating the CORBA objects needed to satisfy client requests.

� Performing server process shutdown and cleanup procedures when the serve
application has finished servicing requests. For example, if the server applica
is transactional, the Server object also implements the code that closes the X
resource manager.

You create the Server object from scratch, using a common text editor. You then
provide the Server object as input into the server application build command,
buildobjserver . For more information about creating the Server object, see
Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application.”
1-8 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

s,
rise

r;
tal
s.

cute

ific
the
Process for Developing WebLogic Enterprise
Server Applications

This section presents important background information about the following topic
which have a major influence on how you design and implement WebLogic Enterp
server applications:

� Generating Object References

� Managing Object State

� Reading and Writing an Object’s Data

� Using Design Patterns

It is not essential that you read these topics before proceeding to the next chapte
however, this information is located here because it applies broadly to fundamen
design and implementation issues for all WebLogic Enterprise server application

Generating Object References

One of the most basic functions of a WebLogic Enterprise server application is
providing client applications with object references to the objects they need to exe
their business logic. WebLogic Enterprise client applications typically get object
references to the initial CORBA objects they use from the following two sources:

� The Bootstrap object

� Factories managed in the WebLogic Enterprise domain

Client applications use the Bootstrap object to resolve initial references to a spec
set of objects in the WebLogic Enterprise domain, such as the FactoryFinder and
SecurityCurrent objects. The Bootstrap object is described inGetting Startedand
Creating Client Applications.

Factories, however, are designed, implemented and registered by you, and they
provide the means by which client applications get references to objects in the
WebLogic Enterprise server application, particularly the initial server application
Creating CORBA C++ Server Applications 1-9

1 Server Application Concepts

e to

ng

by
e

of
e

ns

y
nces
tive

iated
with

ific
” on

t and
you
object. At its simplest, a factory is a CORBA object that returns an object referenc
another CORBA object. The client application typically invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. Planni
and implementing your factories carefully is an important task when developing
WebLogic Enterprise server applications.

How Client Applications Find Your Server Application’s Factories

Client applications are able to locate via the FactoryFinder the factories managed
your server application. When you develop the Server object, you typically includ
code that registers with the FactoryFinder any factories managed by the server
application. It is via this registration operation that the FactoryFinder keeps track
your server application’s factories and can provide object references to them to th
client applications that request them. We recommend that you use factories and
register them with the FactoryFinder; this model makes it simple for client applicatio
to find the objects in your WebLogic Enterprise server application.

Creating an Active Object Reference

WebLogic Enterprise 4.2 provides a new feature that gives an alternate means b
which your server application can generate object references. Active object refere
are not typically created by factories as described in the previous section, and ac
object references are meant for preactivating objects with state. The next section
discusses object state in more detail.

Whereas an object associated with a conventional object reference is not instant
until a client application makes an invocation on the object, the object associated
an active object reference is created and activated at the time the active object
reference is created. Active object references are especially convenient for spec
purposes, such as iterator objects. The section “Preactivating an Object with State
page 3-17 provides more information about active object references.

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughpu
response time. The majority of high-throughput applications, such as applications
1-10 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

em

les

es
r
s on

the

n
y

te

s

run in a WebLogic Enterprise domain, tend to be stateless, meaning that the syst
flushes state information from memory after a service or an operation has been
fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, it is difficult to manage state in these server applications in a way that sca
and performs well. The WebLogic Enterprise software provides an easy way to
manage state and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a WebLogic Enterprise server
application help the server application function well in an environment that includ
hundreds or thousands of client applications, multiple machines, replicated serve
processes, and a proportionately greater number of objects and client invocation
those objects.

About Object State

In a WebLogic Enterprise domain,object staterefers specifically to the process state
of an object across client invocations on it. The WebLogic Enterprise software uses
following definitions of stateless and stateful objects:

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocatio
is complete; that is, the object’s state is not maintained in memor
after the invocation is complete.

Stateful The object remains activated between invocations on it, and its
state is maintained in memory across those invocations. The sta
remains in memory until a specific event occurs, such as:

� The server process in which the object exists is stopped or i
shut down

� The transaction in which the object is participating is either
committed or rolled back

� The object invokes theTP::deactivateEnable()
operation on itself.

Each of these events is discussed in more detail in this section.
Creating CORBA C++ Server Applications 1-11

1 Server Application Concepts

ateful
ct can
t can

The

a

for
ory

rable
state

ou
ory

e

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent data in memory that is required to maintain context (state) between
operation invocations on those objects. Thus, subsequent invocations on such a st
object always go to the same servant. Conversely, invocations on a stateless obje
be directed by the WebLogic Enterprise system to any available server process tha
activate the object.

State management also involves how long an object remains active, which has
important implications on server performance and the use of machine resources.
duration of an active object is determined byobject activation policiesthat you assign
to an object’s interface, described in the section that follows.

Object state is transparent to the client application. Client applications implement
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available
additional requests, and the object appears to be maintained continuously in mem
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to du
storage, if applicable, before they are deactivated. Objects must also restore their
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-15.

Object Activation Policies

The WebLogic Enterprise software provides three object activation policies that y
can assign to an object’s interface to determine how long an object remains in mem
after it has been invoked by a client request. These policies determine whether th
object to which they apply is generally stateless or stateful.

The three policies are listed and described in the following table.
1-12 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

t

d
,

f

d

.

Policy Description

Method Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the objec
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called amethod-bound object.

Themethod activation policy is associated with stateless
objects. This activation policy is the default.

Transaction Causes the object to be activated when an operation is invoke
on it. If the object is activated within the scope of a transaction
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called atransaction-bound object.

For more information about object behavior within the scope o
a transaction, and general guidelines about using this policy,
see Chapter 5, “Integrating Transactions into a WebLogic
Enterprise Server Application.”

The transaction activation policy is associated with
stateful objects for a limited time and under specific
circumstances.

Process Causes the object to be activated when an operation is invoke
on it, and to be deactivated only under the following
circumstances:

� The server process that manages this object is shut down

� An operation on this object invokes the
TP::deactivateEnable() operation, which causes
this object to be deactivated. (This is part of a key
WebLogic Enterprise feature called application-controlled
deactivation, which is described in the section
“Application-controlled Deactivation” on page 1-14.

An object with this activation policy is called aprocess-bound
object.Theprocess activation policy is associated with
stateful objects.
Creating CORBA C++ Server Applications 1-13

1 Server Application Concepts

t

the
n

n
is

an
ns
is

ry
a

o

te in

iting
s

the

al
You determine what events cause an object to be deactivated by assigning objec
activation policies. For more information about how you assign object activation
policies to an object’s interface, see the section “Step 4: Define the In-memory
Behavior of Objects” on page 2-15.

Application-controlled Deactivation

The WebLogic Enterprise software also provides a feature called
application-controlled deactivation, which provides a means for an application to
deactivate an object during run time. The WebLogic Enterprise software provides
TP::deactivateEnable() operation, which a process-bound object can invoke o
itself. When invoked, theTP::deactivateEnable() operation causes the object in
which it exists to be deactivated upon completion of the current client invocation o
that object. An object can invoke this operation only on itself; you cannot invoke th
operation on any object but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want
object to remain in memory for the duration of a limited number of client invocatio
on it, and you want the client application to be able to tell the object that the client
finished with the object. At this point, the object takes itself out of memory.

Application-controlled deactivation, therefore, allows an object to remain in memo
in much the same way that a process-bound object can: the object is activated as
result of a client invocation on it, and it remains in memory after the initial client
invocation on it is completed. You can then deactivate the object without having t
shut down the server process in which the object exists.

An alternative to application-controlled deactivation is to scope a transaction to
maintain a conversation between a client application and an object; however,
transactions are inherently more costly, and transactions are generally inappropria
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk wr
operations involved. If the conversation involves read-only operations, or involve
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involves writing data to disk during or at the end of
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversation
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
1-14 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

ent
ay

ses

ile

at is

te
.

if an
u
you
is
TP::deactivateEnable() operation. Otherwise, the object remains idle in
memory indefinitely. (Note that this can be a risk if the client application
crashes before theTP::deactivateEnable() operation is invoked.
Transactions, on the other hand, implement a time-out mechanism to prev
the situation in which the object remains idle for an indefinite period. This m
be another consideration when choosing between the two conversational
models.)

You implement application-controlled deactivation in an object using the following
procedure:

1. In the implementation file, insert an invocation to theTP::deactivateEnable()

operation at the appropriate location within the operation of the interface that u
application-controlled deactivation.

2. In the Implementation Configuration File (ICF file), assign theprocess

activation policy to the interface that contains the operation that invokes the
TP::deactivateEnable() operation.

3. Build and deploy your application as described in the sections “Step 5: Comp
and Link the Server Application” on page 2-18 and “Step 6: Deploy the Server
Application” on page 2-19.

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have data th
in external storage. This externally stored data may be regarded as thepersistentor
durablestate of the object. You must address durable state handling at appropria
points in the object implementation for object state management to work correctly

Because of the wide variety of requirements you may have for your client/server
application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general,
object’s durable state is modified as a result of one or more client invocations, yo
must make sure that durable state is saved before the object is deactivated, and
should plan carefully how the object’s data is stored or initialized while the object
active.
Creating CORBA C++ Server Applications 1-15

1 Server Application Concepts

state

ic
ata

s

g an
The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice how to read and write object
under specific circumstances. The specific topics presented include:

� The available mechanisms for reading and writing an object’s durable state

� Reading state at object activation

� Reading state within individual operations on an object

� Stateless objects and durable state

� Stateful objects and durable state

� Your responsibilities for object deactivation

� Avoiding unnecessary I/O

How you choose to read and write durable state invariably depends on the specif
requirements of your client/server application, especially with regard to how the d
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager i
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the available mechanisms for reading and writin
object’s durable state.
1-16 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

n
.

Table 1-1 Available Mechanisms for Reading an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
activate_object()

After the TP Framework creates the servant for an object, the
TP Framework invokes the
Tobj_ServantBase::activate_object() operation
on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-7, this
operation is defined on theTobj_ServantBase base class,
from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the
Tobj_ServantBase::activate_object() operation
on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operatio
that reads some or all of an object’s durable state into memory
Therefore, the
Tobj_ServantBase::activate_object() operation
provides your server application with its first opportunity to
read an object’s durable state into memory.

Note that if an object’s OID contains a database key, the
Tobj_ServantBase::activate_object() operation
provides the only means the object has to extract that key from
the OID.

For more information about implementing the
Tobj_ServantBase::activate_object() operation,
see “Step 2: Write the Methods That Implement Each
Interface’s Operations” on page 2-7. For an example of
implementing the
Tobj_ServantBase::activate_object() operation,
see Chapter 3, “Designing and Implementing a Basic
WebLogic Enterprise Server Application.”

Operations on the object You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.
Creating CORBA C++ Server Applications 1-17

1 Server Application Concepts

e
l

ad

u

r

Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Mechanism Description

Tobj_ServantBase::
deactivate_object()

When an object is being deactivated by the TP Framework, th
TP Framework invokes this operation on the object as the fina
step of object deactivation. As with the
Tobj_ServantBase::activate_object() operation,
theTobj_ServantBase::deactivate_object()
operation is defined on theTobj_ServantBase class. You
implement thedeactivate_object() operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

TheTobj_ServantBase::deactivate_object()
operation provides the final opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any data in memory, or allocates memory
for any purpose, you implement the
Tobj_ServantBase::deactivate_object()
operation so your object has a final opportunity to flush that
data from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object As you may have individual operations on the objects that re
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, yo
typically perform database write operations within these
operations and not in the
Tobj_ServantBase::deactivate_object()
operation.

For transaction-bound objects, however, writing durable state
in theTobj_ServantBase::deactivate_object()
operation provides a number of object management
efficiencies that may make sense for your transactional serve
applications.
1-18 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

re
der

g
k
re

of

of
ent

h
tside

ions
Note: If you use theTobj_ServantBase::deactivate_object() operation to
write any durable state to disk, any errors that occur while writing to disk a
not reported to the client application. Therefore, the only circumstances un
which you should write data to disk in this operation is when: the object is
transaction-bound (that is, it has thetransaction activation policy assigned
to it), or you scope the disk write operations within a transaction by invokin
the TransactionCurrent object. Any errors encountered while writing to dis
during a transaction can be reported back to the client application. For mo
information about using theTobj_ServantBase::deactivate_object()

operation to write object state to disk, see the section “Caveat for State
Handling in Tobj_ServantBase::deactivate_object()” on page 2-28.

Reading State at Object Activation

Using theTobj_ServantBase::activate_object() operation on an object to read
durable state may be appropriate when either of the following conditions exist:

� Object data is always used or updated in all the object’s operations.

� All the object’s data is capable of being read in one operation.

The advantages of using theTobj_ServantBase::activate_object() operation
to read durable state include:

� You write code to read data only once, instead of duplicating the code in each
the operations that use that data.

� None of the operations that use an object’s data need to perform any reading
that data. In this sense, you can write the operations in a way that is independ
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in eac
operation that needs that data. That is, you handle the reading of durable state ou
theTobj_ServantBase::activate_object() operation. Cases where this
approach may be appropriate include the following:

� Object state is made up of discrete data elements that require multiple operat
to read or write.

� Objects do not always use or update state data at object activation.
Creating CORBA C++ Server Applications 1-19

1 Server Application Concepts

. The

ime

the

e

, we
one
hat
is

rite

e
the
ent

t

For example, consider an object that represents a customer’s investment portfolio
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-purpose
Tobj_ServantBase::activate_object() operation that automatically reads in the
entire investment portfolio each time the object is invoked.

Stateless Objects and Durable State

In the case of stateless objects -- that is, objects defined with themethod activation
policy -- you must ensure the following:

� That any durable state needed by the request is brought into memory by the t
the operation’s business logic starts executing.

� That any changes to the durable state are written out by the end of the
invocation.

The TP Framework invokes theTobj_ServantBase::activate_object()

operation on an object at activation. If an object has an OID that contains a key to
object’s durable state on disk, theTobj_ServantBase::activate_object()

operation provides the only opportunity the object has to retrieve that key from th
OID.

If you have a stateless object that you want to be able to participate in a transaction
generally recommend that if the object writes any durable state to disk that it be d
within individual methods on the object. However, if you have a stateless object t
is always transactional -- that is, a transaction is always scoped when this object
invoked -- you have the option to handle the database write operations in the
Tobj_ServantBase::deactivate_object() operation, because you have a
reliable mechanism in the XA resource manager to commit or roll back database w
operations accurately.

Note: Even if your object is method-bound, you may have to take into account th
possibility that two server processes are accessing the same disk data at
same time. In this case, you may want to consider a concurrency managem
technique, the easiest of which is transactions. For more information abou
transactions and transactional objects, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”
1-20 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

ce
the
a
ct

s
t

is

t

re it

ct

te

to

ose
rce

ever,
e

Servant Pooling and Stateless Objects

Servant pooling is a particularly useful feature for stateless objects. When your
WebLogic Enterprise server application pools servants, you can significantly redu
the costs of instantiating an object each time a client invokes it. As mentioned in
section “Servant Pooling” on page 1-8, a pooled servant remains in memory after
client invocation on it is complete. If you have an application in which a given obje
is likely to be invoked repeatedly, pooling the servant means that only the object’
data, and not its methods, needs to be read into and out of memory for each clien
invocation. If the cost associated with reading an object’s methods into memory
high, servant pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servan
Pooling” on page 2-29.

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point whe
is needed. This may introduce the following optimizations:

� In the case of process-bound objects, you avoid the situation in which an obje
allocates a large amount of memory over a long period.

� In the case of transaction-bound objects, you can postpone writing durable sta
until theTobj_ServantBase::deactivate_object() operation is invoked,
when the transaction outcome is known.

In general, transaction-bound objects must depend on the XA resource manager
handle all database write or rollback operations automatically.

Note: For objects that are involved in a transaction, we do not support having th
objects write data to external storage that is not managed by an XA resou
manager.

For more information about objects and transactions, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”

Servant Pooling and Stateful Objects

Servant pooling does not make sense in the case of process-bound objects; how
depending on your application design, servant pooling may provide a performanc
improvement for transaction-bound objects.
Creating CORBA C++ Server Applications 1-21

1 Server Application Concepts

ject
rvant
at an

I/O

ign
uch
ect

g:

is

ted,
Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the
Tobj_ServantBase::deactivate_object() operation as means to write an
object’s durable state to disk. You should also implement this operation on an ob
as a means to flush any remaining object data from memory so that the object’s se
can be used to activate another instance of that object. You should not assume th
invocation to an object’sTobj_ServantBase::deactivate_object() operation
also results in an invocation of that object’s destructor.

Avoiding Unnecessary I/O

Be careful not to introduce inefficiencies into the application by doing unnecessary
in objects. Situations to be aware of include the following:

� If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Des
these objects so that they handle state only in the operations that need it; in s
cases, you may not want to have all of the object’s durable state read in at obj
activation.

� If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the followin

� Reading only the state that is common to all the operations in the
Tobj_ServantBase::activate_object() operation. Defer the reading of
additional state to only the operations that require it.

� Writing out only the state that has changed. You can do this by managing
flags that indicate the data that was changed during an activation, or by
comparing before and after data images.

A general optimization is to initialize adirtyState flag on activation and to
write data in theTobj_ServantBase::deactivate_object() operation
only if the flag has been changed while the object was active. (Note that th
works only if you can be assured that the object is always activated in the
same server process.)

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activa
seeGetting Started.
1-22 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

ed
dress
lem.
use

lass

in
gral
ters

rsity

n in

lient
e
tions
nd are

cts
Using Design Patterns

It is important to structure the business logic of your application around a well-form
design. The WebLogic Enterprise software provides a set of design patterns to ad
this need. A design pattern is simply a structured solution to a specific design prob
The value of a design pattern lies in its ability to be expressed in a form you can re
and apply to other design problems.

The WebLogic Enterprise design patterns are structured solutions to enterprise-c
application design problems. You can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practices
WebLogic Enterprise client and server applications. They are an important and inte
part of designing WebLogic Enterprise client and server applications, and the chap
in this book show examples of using these design patterns to implement the Unive
sample applications.

Process-Entity Design Pattern

The Process-Entity design pattern applies to a large segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight patter
Object-Oriented Design Patterns, Gamma et al., and as the Model-View-Controller in
other publications.

In this pattern, the client application creates a long-lived process object that the c
application interacts with to make requests. For example, in the University sampl
applications, this object might be the registrar that handles course browsing opera
on behalf of the client application. The courses themselves are database entities a
not made visible to the client application.

The advantages of the Process-Entity design pattern include:

� You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBAstruct datatypes
to simulate objects.

� Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of obje
Creating CORBA C++ Server Applications 1-23

1 Server Application Concepts

kly

not

f

al
for

r 3,
or

class

e a
ns,

r 3,
that would need to be handled could overwhelm the machine’s resources quic
in a large-scale deployment.

� Because they are not exposed to the client application, database entities need
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle o
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individu
who serves as the registrar at a university can handle a large course database
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapte
“Designing and Implementing a Basic WebLogic Enterprise Server Application.” F
complete details on the Process-Entity design pattern, seeTechnical Articles.

List-Enumerator Design Pattern

The List-Enumerator design pattern also applies to a large segment of enterprise-
client/server applications. The List-Enumerator design pattern leverages a key
WebLogic Enterprise feature, application-controlled object deactivation, to handl
cache of data that is stored and tracked in memory during several client invocatio
and then to flush the data from memory when the data is no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapte
“Designing and Implementing a Basic WebLogic Enterprise Server Application.”

Object preactivation, which is an especially useful tool for implementing the
List-Enumerator design, is described in the section “Preactivating an Object with
State” on page 3-17.
1-24 Creating CORBA C++ Server Applications

CHAPTER

e
e
ay

of

ss

tools
ent

and
2 Steps for Creating a
WebLogic Enterprise
Server Application

This chapter describes the basic steps involved in creating a WebLogic Enterpris
server application. The steps shown in this chapter are not definitive; there may b
other steps you may need to take for your particular server application, and you m
want to change the order in which you follow some of these steps. However, the
development process for every WebLogic Enterprise server application has each
these steps in common.

This topic includes the following sections:

� Summary of the WebLogic Enterprise Server Application Development Proce

� Development and Debugging Tips

� Servant Pooling

� Delegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the development
and commands used throughout this book. Your particular deployment environm
might use additional software development tools, so the tools and commands listed
described in this chapter are also not definitive.
Creating CORBA C++ Server Applications 2-1

2 Steps for Creating a WebLogic Enterprise Server Application

is
asic

ok,

and
The chapter uses examples from the Basic University sample application, which
provided with the WebLogic Enterprise software. For complete details about the B
University sample application, see theGuide to the University Sample Applications.
For complete information about the tools and commands used throughout this bo
see theCommands, System Processes, and MIB Reference.

Summary of the WebLogic Enterprise Server
Application Development Process

The basic steps to create a server application are:

Step 1: Compile the OMG IDL File for the Server Application
Step 2: Write the Methods That Implement Each Interface’s Operations
Step 3: Create the Server Object
Step 4: Define the In-memory Behavior of Objects
Step 5: Compile and Link the Server Application
Step 6: Deploy the Server Application

The WebLogic Enterprise software also provides the following development tools
commands:

Tool Description

IDL compiler Compiles your application’s OMG IDL file.

genicf Generates an Implementation Configuration File (ICF file),
which you can revise to specify nondefault object activation
and transaction policies.

buildobjserver Creates the executable image of your WebLogic Enterprise
server application.

tmloadcf Creates theTUXCONFIGfile, a binary file for the WebLogic
Enterprise domain that specifies the configuration of your
server application.
2-2 Creating CORBA C++ Server Applications

Step 1: Compile the OMG IDL File for the Server Application

the
MG

n

Step 1: Compile the OMG IDL File for the
Server Application

The basic structure of the client and server portions of the application that runs in
WebLogic Enterprise domain are determined by statements in the application’s O
IDL file. When you compile your application’s OMG IDL file, the IDL compiler
generates some or all of the files shown in the following diagram, depending upo
which options you specify in theidl command. The shaded components are the
generated files that you modify to create a server application.

tmadmin Among other things, creates a log of transactional activities,
which is used in some of the sample applications.

Tool Description
Creating CORBA C++ Server Applications 2-3

2 Steps for Creating a WebLogic Enterprise Server Application
The files produced by the IDL compiler are described in Table 2-1.

Table 2-1 Files Produced by the IDL Compiler

IDL Compiler

Implementation
File

Skeleton File

Client Stub
Header File

Skeleton
Header File

Implementation
Header File

Client Stub File

File Default Name Description

Client stub file application _c.cpp Contains generated code for sending a request.

Client stub header file application _c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application _s.cpp Contains skeletons for each interface specified in the OMG
IDL file. The skeleton maps client requests to the appropriate
operation in the server application during run time.

Skeleton header file application _s.h Contains the skeleton class definitions.
2-4 Creating CORBA C++ Server Applications

Step 1: Compile the OMG IDL File for the Server Application

he

n

e
n
o

es.
Using the IDL Compiler

To generate the files listed in Table 2-1, enter the following command:

idl [options] idl-filename [icf-filename]

In the idl command syntax:

� options represents one or more command-line options to the IDL compiler. T
command-line options are described in theCommands, System Processes, and
MIB Reference. If you want to generate implementation files, you need to
specify the-i option.

� idl-filename represents the name of your application’s OMG IDL file.

� icf-filename is an optional parameter that represents the name of your
application’s Implementation Configuration File (ICF file), which you use to
specify object activation policies or to limit the number of interfaces for which
you want skeleton and implementation files generated. Using the ICF file is
described in the section “Step 4: Define the In-memory Behavior of Objects” o
page 2-15.

The C++ IDL compiler implementation of pragmas has changed in WebLogic
Enterprise 5.1 to support CORBA 2.3 functionality and may affect your IDL files. Th
CORBA 2.3 functionality changes the scope that the pragma prefix definitions ca
affect. Pragmas do not affect definitions contained within included IDL files, nor d
pragma prefix definitions made within included IDL files affect objects outside the
included file.

The C++ IDL compiler has been modified to correct the handling of pragma prefix
This change can effect the repository ID of objects, resulting in failures for some
operations, such as a_narrow .

Implementation file application _i.cpp Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation
header file

application _i.h Contains the initial class definitions for each interface
specified in the OMG IDL file.

File Default Name Description
Creating CORBA C++ Server Applications 2-5

2 Steps for Creating a WebLogic Enterprise Server Application

tubs
e

,

if
To prevent such failures:

� If you reload your IDL into the repository, you must also regenerate the client
stubs and server skeletons of the application.

� If you regenerate any client stub or server skeleton, you must regenerate all s
and skeletons of the application, and you must reload the IDL into the Interfac
Repository.

For more information about the IDL compiler, including details on theidl command,
see theCommands, System Processes, and MIB Reference.

Generating the Skeleton and Implementation Files

The following command line generates client stub, skeleton, and initial
implementation files, along with skeleton and implementation header files, for the
OMG IDL file univb.idl :

idl -i univb.idl

For more information about theidl command, see theCommands, System Processes
and MIB Reference. For more information about generating these files for the
WebLogic Enterprise University sample applications, see theGuide to the University
Sample Applications.

Note: If you plan to specify nondefault object activation or transaction policies, or
you plan to limit the number of interfaces for which you want skeleton and
implementation files generated, you need to generate and modify an
Implementation Configuration File (ICF) and pass the ICF file to the IDL
compiler. For more information, see “Specifying Object Activation and
Transaction Policies in the ICF File” on page 2-15.

Generating Tie Classes

The IDL compiler also provides the-T command-line option, which you can use for
generating tie class templates for your interfaces. For more information about
implementing tie classes in a WebLogic Enterprise application, see the section
“Delegation-based Interface Implementation” on page 2-31.
2-6 Creating CORBA C++ Server Applications

Step 2: Write the Methods That Implement Each Interface’s Operations

ent
le.

his

s

rting
e

Step 2: Write the Methods That Implement
Each Interface’s Operations

As the server application programmer, your task is to write the methods that implem
the operations for each interface you have defined in your application’s OMG IDL fi

The implementation file contains:

� Method declarations for each operation specified in the OMG IDL file

� Your application’s business logic, include files, and other data you want the
application to use

� Constructors and destructors for each interface implementation (implementing
these is optional)

� Optionally, theTobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations

Within theTobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations, you write code that
performs any particular steps related to activating or deactivating an object. T
includes reading and writing the object’s durable state from and to disk,
respectively. If you implement these operations in your object, you must also
edit the implementation header file and add the definitions for these operation
in each implementation that uses them.

The Implementation File Generated by the IDL Compiler

Although you can create your server application’s implementation file entirely by
hand, the IDL compiler generates an implementation file that you can use as a sta
place for writing your implementation file. The implementation file generated by th
IDL compiler contains signatures for the methods that implement each of the
operations defined for your application’s interfaces.
Creating CORBA C++ Server Applications 2-7

2 Steps for Creating a WebLogic Enterprise Server Application

’s

ose

ur
ient

t
the
You typically generate this implementation file only once, using the-i option with the
command that invokes the IDL compiler. As you iteratively refine your application
interfaces, and modify the operations for those interfaces, including operation
signatures, you add all the required changes to the implementation file to reflect th
changes.

Implementing a Factory

As mentioned in the section “How Client Applications Access and Manipulate Yo
Application’s CORBA Objects” on page 1-4, you need to create factories so that cl
applications can easily locate the objects managed by your server application. A
factory is like any other CORBA object that you implement, with the exception tha
you register it with the FactoryFinder object. Registering a factory is described in
section “Writing the Code That Creates and Registers a Factory” on page 2-11.

The primary function of a factory is to create object references, which it does by
invoking theTP::create_object_reference() operation. The
TP::create_object_reference() operation requires the following input
parameters:

� The Interface Repository ID of the object’s OMG IDL interface

� The object ID (OID) in string format

� Optionally, routing criteria

For example, in the Basic University sample application, theRegistrarFactory

interface specifies only one operation, as follows:

University::Registrar_ptr RegistrarFactory_i::find_registrar()

The find_registrar() operation on theRegistrarFactory object contains the
following invocation to theTP::create_object_reference() operation to create a
reference to aRegistrar object:

CORBA::Object_var v_reg_oref =
TP::create_object_reference(

University::_tc_Registrar->id(),
object_id,
CORBA::NVlist::_nil()

);

In the previous code example, notice the following:
2-8 Creating CORBA C++ Server Applications

Step 3: Create the Server Object

he
t class

he

.

ce
� The following parameter specifies theRegistrar object’s Interface Repository
ID by extracting it from its typecode:

University::_tc_Registrar->id()

� The following parameter specifies that no routing criteria are used, with the
result that an object reference created for theRegistrar object is routed to the
same group as theRegistrarFactory object that created the object reference:

CORBA::NVlist::_nil()

For information about specifying routing criteria that affect the group to which
object references are routed, see Chapter 7, “Scaling a WebLogic Enterprise
Server Application.”

Step 3: Create the Server Object

Implementing the Server object is not like implementing other language objects. T
header class for the Server object has already been created, and the Server objec
has already been instantiated for you. Creating the Server object involves
implementing a specific set of methods in the prepackaged Server object class. T
methods you implement are described in this section.

To create the Server object, create a new file using a common text editor and
implement the following operations:

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokes this
operation as the last step in the server application initialization process
Within this operation, you perform a number of initialization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-10.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing
servant, the TP Framework invokes this operation, passing the Interfa
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “Creating Servants” on page 2-12.
Creating CORBA C++ Server Applications 2-9

2 Steps for Creating a WebLogic Enterprise Server Application

rver

rver

is
t

There is only one instance of the Server object in any server application. If your se
application is managing multiple CORBA object implementations, the
Server::initialize() , Server::create_servant() , andServer::release()

operations you write must include code that applies to all those implementations.

The code that you write for most of these tasks involves interaction with the TP
Framework. The sections that follow explain the code required for each of these Se
object operations and shows sample code from the Basic University sample
application.

Initializing the Server Application

The first operation that you implement in your Server object is the operation that
initializes the server application. This operation is invoked when the WebLogic
Enterprise system starts the server application. The TP Framework invokes the
following operation in the Server object during the startup sequence of the server
application:

CORBA::Boolean Server::initialize(int argc, char** argv)

Any command-line options specified in theCLOPTparameter for your specific server
application in theSERVERSsection of the WebLogic Enterprise domain’sUBBCONFIG

file are passed to theServer::initialize() operation asargc andargv . For more
information about passing arguments to the server application, seeAdministration
Guide. For examples of passing arguments to the server application, see theGuide to
the University Sample Applications.

Within theServer::initialize() operation, you include code that does the
following, if applicable:

� Creates and registers factories

Server::release(); The TP Framework invokes this operation when the server application
being shut down. This operation includes code to unregister any objec
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “Releasing the Server Application” on page 2-13.

Operation Description
2-10 Creating CORBA C++ Server Applications

Step 3: Create the Server Object

able

u do

to
� Allocates any machine resources

� Initializes any global variables needed by the server application

� Opens the databases used by the server application

� Opens the XA resource manager

Writing the Code That Creates and Registers a Factory

If your server application manages a factory that you want client applications to be
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which is invoked typically as the final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, yo
the following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory” on page 2-8. In this step, you include an invocation
theTP::create_object_reference() operation, specifying the Interface
Repository ID of the factory’s OMG IDL interface.The following example
creates an object reference, represented by the variables_v_fact_ref , to the
RegistrarFactory factory:

University::RegistrarFactory s_v_fact_ref =
TP::create_object_reference(

University::_tc_RegistrarFactory->id(),
object_id,
CORBA::NVList::_nil()

);

2. Register the factory with the WebLogic Enterprise domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

TP::register_factory (CORBA::Object_ptr factory_or,
const char* factory_id);
Creating CORBA C++ Server Applications 2-11

2 Steps for Creating a WebLogic Enterprise Server Application

n is
a
rk

nt
es a

n
rk

an
n

TheTP::register_factory() operation registers the server application’s
factories with the FactoryFinder object. This operation requires the following
input parameters:

� The object reference for the factory, created in step 1 above.

� A string identifier, based on the factory object’s interface typecode, used to
identify the Interface Repository ID of the factory’s OMG IDL interface.

The following example registers theRegistrarFactory factory with the
WebLogic Enterprise domain:

TP::register_factory(s_v_fact_ref.in(),
University::_tc_RegistrarFactory->id());

Notice the parameterUniversity::_tc_RegistrarFactory->id() . This is
the same parameter specified in theTP::create_object_reference()

operation. This parameter extracts the Interface Repository ID of the object’s
OMG IDL interface from its typecode.

Creating Servants

After the server application initialization process is complete, the server applicatio
ready to begin processing client requests. If a request arrives for an operation on
CORBA object for which there is no servant available in memory, the TP Framewo
invokes the following operation in the Server object:

Tobj_Servant Server::create_servant(const char* interfaceName)

TheServer::create_servant() operation contains code that instantiates a serva
for the object required by the client request. For example, in C++, this code includ
new statement on the interface class for the object.

TheServer::create_servant() operation does not associate the servant with a
OID. The association of a servant with an OID takes place when the TP Framewo
invokes theTobj_ServantBase::activate_object() operation on the servant,
which completes the instantiation of the object. (You cannot associate an OID with
object in the object’s constructor.) Likewise, the disassociation of a servant with a
OID takes place when the TP Framework invokes thedeactivate_object()

operation on the servant.
2-12 Creating CORBA C++ Server Applications

Step 3: Create the Server Object

fter
le for
ect’s

e

the
un

t of
This behavior of a servant in the WebLogic Enterprise system makes it possible, a
an object has been deactivated, for the TP Framework to make a servant availab
another object instantiation. Therefore, do not assume that an invocation of an obj
Tobj_ServantBase::deactivate_object() operation results in an invocation of
that object’s destructor. If you use the servant pooling feature in your server
application, you can implement theTP::application_responsibility()

operation in an object’sTobj_ServantBase::deactivate_object() operation to
pass a pointer to the servant to a servant pool for later reuse. Servant pooling is
discussed in the section “Servant Pooling” on page 2-29.

TheServer::create_servant() operation requires a single input argument. The
argument specifies a character string containing the Interface Repository ID of th
OMG IDL interface of the object for which you are creating a servant.

In the code you write for this operation, you specify the Interface Repository IDs of
OMG IDL interfaces for the objects managed by your server application. During r
time, theServer::create_servant() operation returns the servant needed for the
object specified by the request.

The following code implements theServer::create_servant() operation in the
University server application from the Basic University sample application:

Tobj_Servant Server::create_servant(const char* intf_repos_id)
{

if (!strcmp(intf_repos_id, University::_tc_RegistrarFactory->id())) {
return new RegistrarFactory_i();

}
if (!strcmp(intf_repos_id, University::_tc_Registrar->id())) {

return new Registrar_i();
}
if (!strcmp(intf_repos_id, University::_tc_CourseSynopsisEnumerator->id())) {

return new CourseSynopsisEnumerator_i();
}
return 0; // unknown interface

}

Releasing the Server Application

When the WebLogic Enterprise system administrator enters thetmshutdown

command, the TP Framework invokes the following operation in the Server objec
each running server application in the WebLogic Enterprise domain:
Creating CORBA C++ Server Applications 2-13

2 Steps for Creating a WebLogic Enterprise Server Application

can
e
e
ss
.

s.
void Server::release()

Within theServer::release() operation, you may perform any application-specific
cleanup tasks that are specific to the server application, such as:

� Unregistering object factories managed by the server application

� Deallocating resources

� Closing any databases

� Closing an XA resource manager

Once a server application receives a request to shut down, the server application
no longer receive requests from other remote objects. This has implications on th
order in which server applications should be shut down, which is an administrativ
task. For example, do not shut down one server process if a second server proce
contains an invocation in itsServer::release() operation to the first server process

During server shutdown, you may want to include the following invocation to
unregister each of the server application’s factories:

TP::unregister_factory (CORBA::Object_ptr factory_or,
const char* factory_id)

The invocation of theTP::unregister_factory() operation should be one of the
first actions in theServer::release() implementation. The
TP::unregister_factory() operation unregisters the server application’s factorie
This operation requires the following input arguments:

� The object reference for the factory.

� A string identifier, based on the factory object’s interface typecode, used to
identify Interface Repository ID of the object’s OMG IDL interface.

The following example unregisters theRegistrarFactory factory used in the Basic
sample application:

TP::unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());

In the preceding code example, notice the use of the global variables_v_fact_ref .
This variable was set in theServer::initialize() operation that registered the
RegistrarFactory object, which is used again here.

Notice also the parameterUnivB::_tc_RegistrarFactory->id() . This is also the
same as the interface name used to register the factory.
2-14 Creating CORBA C++ Server Applications

Step 4: Define the In-memory Behavior of Objects

at

asic

n

r

Step 4: Define the In-memory Behavior of
Objects

As stated in the section “Managing Object State” on page 1-10, you determine wh
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify object activation and transaction policies in the ICF file, and you
implement application-controlled deactivation via theTP::deactivateEnable()

operation. This section explains how you implement both mechanisms, using the B
University sample application as an example.

The sections that follow describe the following:

� How to specify object activation and transaction policies in the ICF file

� How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in
the ICF File

The WebLogic Enterprise software supports the following activation policies,
described in “Object Activation Policies” on page 1-12:

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked o
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed o
rolled back.
Creating CORBA C++ Server Applications 2-15

2 Steps for Creating a WebLogic Enterprise Server Application

s,
ver

n

e
t

if

e

r

n

The WebLogic Enterprise software also supports the following transaction policie
described in Chapter 5, “Integrating Transactions into a WebLogic Enterprise Ser
Application”:

To assign these policies to the objects in your application:

process Causes the object to be activated when an operation is invoked o
it, and to be deactivated only when one of the following occurs:

� The process in which the server application exists is shut
down.

� The object has invoked theTP::deactivateEnable()
operation on itself.

Transaction Policy Description

always When an operation on this object is invoked, this policy causes th
TP Framework to begin a transaction for this object, if there is no
already an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction
the operation raises an exception.

optional When an operation on this object is invoked, this policy causes th
TP Framework to include this object in a transaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined fo
this object.

This is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.

ignore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operatio
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

Activation Policy Description
2-16 Creating CORBA C++ Server Applications

Step 4: Define the In-memory Behavior of Objects

’s

s

ICF
1. Generate the ICF file by entering thegenicf command, specifying your
application’s OMG IDL file as input, as in the following example:

genicf university.idl

The preceding command generates the fileuniversity.icf .

2. Edit the ICF file and specify the activation policies for each of your application
interfaces. The following example shows the ICF file generated for the Basic
University sample application. Notice that the default object activation policy i
method , and that the default transaction activation policy isoptional .

module POA_UniversityB
{
implementation CourseSynopsisEnumerator_i

{
activation_policy (method);
transaction_policy (optional);
implements (UniversityB::CourseSynopsisEnumerator);
};

};
module POA_UniversityB

{
implementation Registrar_i

{
activation_policy (method);
transaction_policy (optional);
implements (UniversityB::Registrar);
};

};
module POA_UniversityB

{
implementation RegistrarFactory_i

{
activation_policy (method);
transaction_policy (optional);
implements (UniversityB::RegistrarFactory);
};

};

3. If you want to limit the number of interfaces for which you want skeleton and
implementation files generated, you can remove from the ICF file the
implementation blocks that implement those interfaces. Using the preceding
code as an example, to prevent skeleton and implementation files from being
generated for theRegistrarFactory interface, remove the following lines:

implementation RegistrarFactory_i
{

Creating CORBA C++ Server Applications 2-17

2 Steps for Creating a WebLogic Enterprise Server Application

es”
activation_policy (method);
transaction_policy (optional);
implements (UniversityB::RegistrarFactory);
};

4. Pass the ICF file to the IDL compiler to generate the skeleton and
implementation files that correspond to the specified policies. For more
information, see the section “Generating the Skeleton and Implementation Fil
on page 2-6.

Step 5: Compile and Link the Server
Application

After you have finished writing the code for the Server object and the object
implementations, you compile and link the server application.

You use thebuildobjserver command to compile and link WebLogic Enterprise
server applications. Thebuildobjserver command has the following format:

buildobjserver [-o servername] [options]

In thebuildobjserver command syntax:

� -o servername represents the name of the server application to be generated
by this command.

� options represents the command-line options to thebuildobjserver

command.

For complete information about compiling and linking the University sample
applications, see theGuide to the University Sample Applications. For complete details
about thebuildobjserver command, seeCommands, System Processes, and
Reference
2-18 Creating CORBA C++ Server Applications

Step 6: Deploy the Server Application

ing

e

e

r
the

by
and

le
Notes: If you are running the WebLogic Enterprise 5.1 software on IBM AIX 4.3.3
systems, you need to recompile your WebLogic Enterprise applications us
the -brtl compiler option.

If you plan to use WebLogic Enterprise applications that were built with th
Solaris C++ 4.2 compiler, you must install the compatibility version of the
WebLogic Enterprise software for Solaris.

If you plan to use WebLogic Enterprise applications that were built with th
Solaris C++ 5.0 compiler, you can install either the standard version or the
compatibility version of the WebLogic Enterprise software for Solaris. You
decision should be made based on future compatibility requirements. See
Installation Guidefor more information.

Step 6: Deploy the Server Application

You or the system administrator deploy the WebLogic Enterprise server application
using the procedure summarized in this section. For complete details on building
deploying the University sample applications, see theGuide to the University Sample
Applications.

To deploy the server application:

1. Place the server application executable file in an appropriate directory on a
machine that is part of the intended WebLogic Enterprise domain.

2. Create the application’s configuration file, also known as theUBBCONFIGfile, in a
common text editor.

3. Set the following environment variables on the machine from which you are
booting the WebLogic Enterprise server application:

� TUXCONFIG, which needs to match exactly theTUXCONFIGentry in the
UBBCONFIGfile. This variable represents the location or path of the
application’sUBBCONFIGfile.

� APPDIR, which represents the directory in which the application’s executab
file exists.
Creating CORBA C++ Server Applications 2-19

2 Steps for Creating a WebLogic Enterprise Server Application

e

e

4. Set theTUXDIR environment variable on all machines that are running in the
WebLogic Enterprise domain or that are connected to the WebLogic Enterpris
domain. This environment variable points to the location where the WebLogic
Enterprise software is installed.

5. Enter the following command to create theTUXCONFIGfile:

tmloadcf -y application- ubbconfig -file

The command-line argumentapplication- ubbconfig -file represents the
name of your application’sUBBCONFIGfile. Note that you may need to remove
any oldTUXCONFIGfiles to execute this command.

6. Enter the following command to start the WebLogic Enterprise server
application:

tmboot -y

You can reboot a server application without reloading theUBBCONFIGfile.

For complete details about configuring the University sample applications, see th
Guide to the University Sample Applications. For complete details on creating the
UBBCONFIGfile for WebLogic Enterprise applications, see theAdministration Guide.

Development and Debugging Tips

This topic includes the following sections:

� Use of CORBA and M3 exceptions and the user log

� Detecting error conditions in the callback methods

� Common pitfalls of OMG IDL interface versioning and modification

� Caveat for state handling in theTobj_ServantBase::deactivate_object()

operation
2-20 Creating CORBA C++ Server Applications

Development and Debugging Tips

ay
rned

a

s.
ns

d

Use of CORBA and M3 Exceptions and the User Log

This topic includes the following sections:

� The client application view of exceptions

� The server application view of exceptions

Client Application View of Exceptions

When a client application invokes an operation on a CORBA object, an exception m
be returned as a result of the invocation. The only valid exceptions that can be retu
to a client application are the following:

� Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

� Exceptions that are defined in OMG IDL and known to the client application vi
either its stub or the Interface Repository

The WebLogic Enterprise system works to ensure that these CORBA-defined
restrictions are not violated, which is described in the section “Server Application
View of Exceptions” on page 2-21.

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguou
Whenever possible, the WebLogic Enterprise system supplements such exceptio
with descriptive messages in the user log, which serves as an aid in detecting an
debugging error conditions. These cases are described in the following section.

Server Application View of Exceptions

This topic includes the following sections:

� Exceptions raised by the WebLogic Enterprise system that can be caught by
application code

� The M3 system’s handling of exceptions raised by application code during the
invocation of operations on CORBA objects
Creating CORBA C++ Server Applications 2-21

2 Steps for Creating a WebLogic Enterprise Server Application

an
Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by Application Code

The WebLogic Enterprise system may return the following types of exceptions to
application when operations on the TP object are invoked:

� CORBA-defined system exceptions

� CORBA UserExceptions defined in the fileTobjS_c.h . The OMG IDL for
the exceptions defined in this file is the following:

interface TobjS {
exception AlreadyRegistered { };
exception ActivateObjectFailed { string reason; };
exception ApplicationProblem { };
exception CannotProceed { };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception IllegalInterface { };
exception IllegalOperation { };
exception InitializeFailed { string reason; };
exception InvalidDomain { };
exception InvalidInterface { };
exception InvalidName { };
exception InvalidObject { };
exception InvalidObjectId { };
exception InvalidServant { };
exception NilObject { string reason; };
exception NoSuchElement { };
exception NotFound { };
exception OrbProblem { };
exception OutOfMemory { };
exception OverFlow { };
exception RegistrarNotAvailable { };
exception ReleaseFailed { string reason; };
exception TpfProblem { };
exception UnknownInterface { };

}

The M3 System’s Handling of Exceptions Raised by Application Code During the Invocation of
Operations on CORBA Objects

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

� In theServer::create_servant ,
Tobj_ServantBase::activate_object() , and
Tobj_ServantBase::deactivate_object() callback methods.
2-22 Creating CORBA C++ Server Applications

Development and Debugging Tips

ns:

ic

s are

are

e

� In the implementation code for the invoked operation.

It is possible for the server application to raise any of the following types of exceptio

� A CORBA-defined system exception

� A CORBA user-defined exception defined in OMG IDL

� A CORBA user-defined exception defined in the fileTobjS_c.h . The following
exceptions are intended to be used in server applications to help the WebLog
Enterprise system send messages to the user log, which can help with
troubleshooting:

interface TobjS {
exception ActivateObjectFailed { string reason; };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception InitializeFailed { string reason; };
exception ReleaseFailed { string reason; };

}

� Any other C++ exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the WebLogic Enterprise system. When these exception
caught, one of the following occurs:

� The exception is returned to the client application without alteration.

� The exception is converted to a standard CORBA exception, which is then
returned to the client application.

� The exception is converted to a standard CORBA exception, and the following
actions occur:

� The exception is returned to the client application

� One or more messages containing descriptive information about the error
sent to the user log. The descriptive information may originate from either
the server application code or from the WebLogic Enterprise system.

The following sections show how the M3 system handles exceptions raised by th
server application during the course of a client invocation on a CORBA object.
Creating CORBA C++ Server Applications 2-23

2 Steps for Creating a WebLogic Enterprise Server Application

ther
are
on
t

is
Exceptions raised in theServer::create_servant() operation

If any exception is raised in theServer::create_servant() operation, then:

� TheCORBA::OBJECT_NOT_EXISTexception is returned to the client application.

� If the exception raised isTobjS::CreateServantFailed , then a message is
sent to the user log. If a reason string is supplied in the constructor for the
exception, then the reason string is also written as part of the message.

� Neither theTobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object() operations are invoked. The
operation requested by the client is not invoked.

Exceptions raised in theTobj_ServantBase::activate_object() operation

If any exception is raised in theTobj_ServantBase::activate_object()

operation, then:

� TheCORBA::OBJECT_NOT_EXISTexception is returned to the client application.

� If the exception raised isTobjS::ActivateObjectFailed , a message is sent to
the user log. If a reason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

� Neither the operation requested by the client nor the
Tobj_ServantBase::deactivate_object() operation is invoked.

Exceptions Raised in Operation Implementations

The WebLogic Enterprise system requires operation implementations to throw ei
CORBA system exceptions, or user-defined exceptions defined in OMG IDL that
known to the client application. If these types of exceptions are thrown by operati
implementations, then the WebLogic Enterprise system returns them to the clien
application, unless one of the following conditions exists:

� The object has thealways transaction policy, and the WebLogic Enterprise
system automatically started a transaction when the object was invoked. In th
case, the transaction is automatically rolled back by the WebLogic Enterprise
system. Because the client application is unaware of the transaction, the
WebLogic Enterprise system then raises theCORBA::OBJ_ADAPTERCORBA
system exception, and not theCORBA:: TRANSACTION_ROLLEDBACKexception,
which would have been the case had the client initiated the transaction.
2-24 Creating CORBA C++ Server Applications

Development and Debugging Tips

g

in

tain

s

n,
� The exception is defined in the fileTobjS_c.h . In this case, the exception is
converted to theCORBA::BAD_OPERATIONexception and is returned to the client
application. In addition, the following message is sent to the user log:

"WARN: Application didn't catch TobjS exception. TP Framework
throwing CORBA::BAD_OPERATION."

If the exception isTobjS::IllegalOperation , the following supplementary
message is written to warn the developer of a possible coding error in the
application:

"WARN: Application called TP::deactivateEnable() illegally and
didn't catch TobjS exception."

This can occur if theTP::deactivateEnable() operation is invoked inside an
object that has thetransaction activation policy. (Application-controlled
deactivation is not supported for transaction-bound objects)

� The WebLogic Enterprise system raised an internal system exception followin
the client invocation. In this case, theCORBA::INTERNAL exception is returned
to the client. This usually indicates serious system problems with the process
which the object is active.

As defined by the CORBA standard, a reply sent back to the client can either con
result values from the operation implementation, or an exception thrown in the
operation implementation, but not both. In the first case -- that is, if the reply statu
value isNO_EXCEPTION-- the reply contains the operation's return value and any
inout or out argument values. Otherwise -- that is, if the reply status value is
USER_EXCEPTIONor SYSTEM_EXCEPTION-- all the reply contains is the encoding of
the exception.

Exceptions Raised in theTobj_ServantBase::deactivate_object()

Operation

If any exception is raised in theTobj_ServantBase::deactivate_object()

operation, the following occurs:

� The exception is not returned to the client application.

� If the exception raised isTobjS::DectivateObjectFailed , a message is sent
to the user log. If a reason string is supplied in the constructor for the exceptio
the reason string is also written as part of the message.

� A message is sent to the user log for exceptions other than the
TobjS::DeactivateObjectFailed exception, indicating the type of exception
caught by the WebLogic Enterprise system.
Creating CORBA C++ Server Applications 2-25

2 Steps for Creating a WebLogic Enterprise Server Application

nt

the

ow

P
the

al
CORBA Marshal Exception Raised When Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragme
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

Detecting Error Conditions in the Callback Methods

The WebLogic Enterprise system provides a set of predefined exceptions that all
you to specify message strings that the TP Framework writes to the user log if
application code gets an error in any of the following callback methods:

� Tobj_ServantBase::activate_object()

� Tobj_ServantBase::deactivate_object()

� Server::create_servant()

� Server::initialize()

� Server::release()

You can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the T
Framework writes these messages to the user log only. They are not returned to
client application.

You specify these messages with the following exceptions, which have an option
reason string:

Exception Callback Methods that Can Raise This
Exception

ActivateObjectFailed Tobj_ServantBase::activate_object()
2-26 Creating CORBA C++ Server Applications

Development and Debugging Tips

the

d. If

the

nt
e to
To send a message string to the user log, specify the string in the exception, as in
following example:

throw CreateServantFailed("Unknown interface");

Note that when you throw these exceptions, the reason string parameter is require
you do not want to specify a string with one of these exceptions, you must use the
double quote characters, as in the following example:

throw ActivateObjectFailed("");

Common Pitfalls of OMG IDL Interface Versioning and
Modification

The Server object's implementation of theServer::create_servant() operation
instantiates an object based on its interface ID. It is crucial that this interface ID is
same as the one supplied in the factory when the factory invokes the
TP::create_object_reference() operation. If the interface IDs do not match, the
Server::create_servant() operation usually raises an exception or returns a
NULL servant. The WebLogic Enterprise system then returns a
CORBA::OBJECT_NOT_EXISTexception to the client application.(The WebLogic
Enterprise system does not perform any validation of interface IDs in the
TP::create_object_reference() operation.)

It is possible for this condition to arise if, during the course of development, differe
versions of the interface are being developed or many modifications are being mad
IDL file. Even if you typically specify string constants for interface IDs in OMG IDL

DeactivateObjectFailed Tobj_ServantBase::deactivate_object()

CreateServantFailed Server::create_servant()

InitializeFailed Server::initialize()

ReleaseFailed Server::release()

Exception Callback Methods that Can Raise This
Exception
Creating CORBA C++ Server Applications 2-27

2 Steps for Creating a WebLogic Enterprise Server Application

re.

ired

e

s
If

ate

lient
the
t the
we
and use these in the factory and theServer::create_servant() operation, it is
possible for a mismatch to occur if the object implementation and factory are in
different executables. This potential problem may be difficult to diagnose.

You may want to consider the following defensive programming strategies during
development to avoid this potential problem. This code should be included only in
debugging versions of your application, because it introduces performance
inefficiencies that may be unacceptable in the production versions of your softwa

� Immediately before factory invokes theTP::create_object_reference()

operation, include code that checks the Interface Repository to see if the requ
interface exists. (Make sure that all the application OMG IDL is up-to-date and
loaded into the Interface Repository). Should this check fail to find the interfac
ID, you can assume that there is a mismatch.

� Following the invocation of theTP::create_object_reference() operation
in your factories, include code that “pings” the object. That is, the code invoke
any operation on the object (typically an operation that does not do anything).
this invocation raises theCORBA::OBJECT_NOT_EXISTexception, an interface
ID mismatch exists. Note that “pinging” an object causes the object to be
activated, with the overhead associated with the activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate_object()

TheTobj_ServantBase::deactivate_object() operation is invoked when the
activation boundary for an object is reached. You may, optionally, write durable st
to disk in the implementation of this operation. It is important to understand that
exceptions raised in this operation are not returned to the client application. The c
application will be unaware of any error conditions raised in this operation unless
object is participating in a transaction. Therefore, in cases where it is important tha
client application know whether the writing of state via this operation is successful,
recommend that transactions be used.

If you decide to use theTobj_ServantBase::deactivate_object() operation for
writing state, and the client application needs to know the outcome of the write
operations, we recommend that you do the following:
2-28 Creating CORBA C++ Server Applications

Servant Pooling

is

of

cope

ion.

21,

work

rives
� Ensure that each operation that affects object state is invoked within a
transaction, and that deactivation occurs within the transaction boundaries. Th
can be done by using either themethod or transaction activation policies, and
is possible with theprocess activation policy if theTP::deactivateEnable()

operation is invoked within the transaction boundary.

� If an error occurs during the writing of object state, invoke the
COSTransactions::Current::rollback_only() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one
the following exceptions:

� If the client application initiated the transaction, the client application
receives theCORBA::TRANSACTION_ROLLEDBACKexception.

� If the WebLogic Enterprise system initiated the transaction, the client
application receives theCORBA::OBJ_ADAPTERexception.

If transactions are not used, we recommend that you write object state within the s
of individual operations on the object, rather than via the
Tobj_ServantBase::deactivate_object() operation. This way, if an error
occurs, the operation can raise an exception that is returned to the client applicat

Servant Pooling

As mentioned in the section “Servant Pooling and Stateless Objects” on page 1-
servant pooling provides a means to reduce the cost of object instantiation for
method-bound or transaction-bound objects.

How Servant Pooling Works

Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation), the TP Framework
deletes the object’s servant; however, when servant pooling is used, the TP Frame
doesnot delete the servant at object deactivation. Instead, the server application
maintains a pointer to the servant in a pool. When a subsequent client request ar
Creating CORBA C++ Server Applications 2-29

2 Steps for Creating a WebLogic Enterprise Server Application

rvant
work

t

lass

me
that can be satisfied by a servant in that pool, the server application reuses the se
and assigns a new object ID. When a servant is reused from a pool, the TP Frame
does not create a new servant.

How You Implement Servant Pooling

You implement servant pooling by doing the following:

1. In theServer::initialize() operation on the Server object, write the code tha
sets up the servant pool. The pool consists of a set of pointers to one or more
servants, and the code for the pool specifies how many servants for a given c
are to be maintained in the pool.

2. In the pooled servant’sTobj_ServantBase::deactive_object() operation,
you implement theTP::application_responsibility() operation. In the
implementation of theTP::application_responsibility() operation, you
provide code that places a pointer to the servant into the servant pool at the ti
that the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation.

3. In the Server object’s implementation of theServer::create_servant()

operation, write code that does the following when a client request arrives:

a. Checks the pool to see if there is a servant that can satisfy the request.

b. If a servant does not exist, create a servant and invoke the
Tobj_ServantBase::activate_object() operation on it.

c. If a servant exists, invoke theTobj_ServantBase::activate_object()

operation on it, assigning the object ID contained in the client request.

For information about theTP::application_responsibility() operation, see the
C++ Programming Reference.
2-30 Creating CORBA C++ Server Applications

Delegation-based Interface Implementation

ic
om

ogic
r
r
ct

e
ions.
by

d in

ent

also

lly as
Delegation-based Interface Implementation

There are two primary ways in which an object can be implemented in a WebLog
Enterprise application: by inheritance, or by delegation. When an object inherits fr
the POA skeleton class, and is thus a CORBA object, that object is said to be
implemented byinheritance.

However, there may be instances in which you want to use a C++ object in a WebL
Enterprise application in which inheriting from the POA skeleton class is difficult o
impractical. For example, you might have a C++ object that would require a majo
rewrite to inherit from the POA skeleton class. You can bring this non-CORBA obje
into a WebLogic Enterprise application by creating atie classfor the object. The tie
class inherits from the POA skeleton class, and the tie class contains one or mor
operations that delegate to the legacy class for the implementation of those operat
The legacy class is thereby implemented in the WebLogic Enterprise application
delegation.

About Tie Classes in the WebLogic Enterprise System

To create a delegation-based interface implementation, use the-T command-line
option of the IDL compiler to generate tie class templates for each interface define
the OMG IDL file.

Using tie classes in a WebLogic Enterprise application also affects how you implem
theServer::create_servant() operation in the Server object. The following
sections explain the use of tie classes in WebLogic Enterprise in more detail, and
explains how to implement theServer::create_servant() operation to instantiate
those classes.

In WebLogic Enterprise, the tie class is the servant, and, therefore, serves basica
a wrapper object for the legacy class.

The following figure shows the inheritance characteristics of the interfaceAccount ,
which serves as a wrapper for a legacy object. The legacy object contains the
implementation of the operationop1 . The tie class delegatesop1 to the legacy class.
Creating CORBA C++ Server Applications 2-31

2 Steps for Creating a WebLogic Enterprise Server Application

tie
tion

vide.

ures
Tie classes are transparent to the client application. To the client application, the
class appears to be a complete implementation of the object that the client applica
invokes. The tie class delegates all operations to the legacy class, which you pro
In addition, the tie class contains the following:

� Constructor and destructor code, which handles startup and shutdown proced
for the tie class and the legacy class

OMG IDL
Interface
Account

IDL Compiler

Skeleton for
Account

Skeleton Header for
Account

C++ Template Class
Account_tie

(Generated Using -T)

Implementation of Account_tie:
op1(_ptr val);

Delegates op1 to
legacy class,
passing val .
2-32 Creating CORBA C++ Server Applications

Delegation-based Interface Implementation

to
gic
oding
s for

h

gle

nd

t

� Housekeeping code, which implements operations such as accessors

When to Use Tie Classes

Tie classes are not unique to WebLogic Enterprise, and they are not the only way
implement delegation in a WebLogic Enterprise application. However, the WebLo
Enterprise convenience features for tie classes can greatly reduce the amount of c
you need to do for the basic constructor, destructor, and housekeeping operation
those tie classes.

Using tie classes might be recommended in one of the following situations:

� You want to implement an object in a WebLogic Enterprise application in whic
inheriting from the POA skeleton class is difficult or impractical.

� All the invocations on a legacy class instance can be accomplished from a sin
servant.

� You are using a legacy class in your WebLogic Enterprise application, and you
want to tie the lifetime of an instance of that legacy class to a servant class.

� Delegation is the only purpose of a particular servant; therefore, nearly all the
code in that servant is dedicated to legacy object startup, shutdown, access, a
delegation.

Tie classes arenot recommended when:

� The operations on an object instance delegate to more than one legacy objec
instance.

� Delegation is only a part of the purpose of an object.
Creating CORBA C++ Server Applications 2-33

2 Steps for Creating a WebLogic Enterprise Server Application

ld

e

ns
How to Create Tie Classes in a WebLogic Enterprise
Application

To create tie classes in an application in a WebLogic Enterprise domain:

1. Create the interface definition for the tie class in an OMG IDL file, as you wou
for any object in your application.

2. Compile the OMG IDL file using the-T option.

The IDL compiler generates a C++ template class, which takes the name of th
skeleton, with the string_tie appended to it. The IDL compiler adds this
template class to the skeleton header file.

Note that the IDL compiler doesnot generate the implementation file for the tie
class; you need to create this file by hand, as described in the next step.

3. Create an implementation file for the tie class. The implementation file contai
the code that delegates its operations to the legacy class.

4. In the Server object’sServer::create_servant() operation, write the code
that instantiates the legacy object.

In the following example, the servant for tie classPOA_Account_tie is created,
and the legacy classLegacyAccount is instantiated.

Account * Account_ptr = new LegacyAccount();
AccountFactoryServant = new POA_Account_tie<LegacyAccount> (Account_ptr)

Note: When compiling tie classes with the Digital C++ V6.0 compiler for Tru64
UNIX, you must include the-noimplicit_include option in the definition
of theCFLAGSor CPPFLAGSenvironment variables used by the
buildobjserver command. This option prevents the Digital C++ compiler
from automatically including the server skeleton definition file (_s.cpp)
everywhere the server skeleton header file (_s.h) is included, which is
necessary to avoid multiply-defined symbol errors. See the publicationUsing
DIGITAL C++ for Digital UNIX Systemsfor additional information about
using class templates, such as the tie classes, with Digital C++.
2-34 Creating CORBA C++ Server Applications

CHAPTER

er
tent
3 Designing and
Implementing a Basic
WebLogic Enterprise
Server Application

This chapter describes how to design and implement a WebLogic Enterprise serv
application, using the Basic University sample application as an example. The con
of this chapter assumes that the design of the application to be implemented is
complete and is expressed in OMG IDL. This chapter focuses on design and
implementation choices that are oriented to the server application.

This topic includes the following sections:

� How the Basic University Sample Application Works, which helps provide
context to the design and implementation considerations

� Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

� Design Considerations for Generating Object References

� Design Considerations for Managing Object State

� Design Considerations for Handling Durable State Information

� How the Basic Sample Application Applies Design Patterns

� Additional Performance Efficiencies Built into the WebLogic Enterprise
System
Creating CORBA C++ Server Applications 3-1

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

ple

e

� Preactivating an Object with State

How the Basic University Sample
Application Works

The Basic University sample application provides the student with the ability to
browse course information from a central University database. Using the Basic sam
application, the student can do the following:

� Browse course synopses from the database by specifying a search string. Th
server application then returns synopses for all courses that have a title,
professor, or description containing the search string. (A course synopsis
returned to the client application includes only the course number and title.)

� View detailed information about specific courses. The detailed information
available for a specified course includes the following, in addition to synopsis
information:

� Cost

� Number of credits

� Class schedule

� Number of seats

� Number of registered students

� Professor

� Description

The Basic University Sample Application OMG IDL

In its OMG IDL file, the Basic University sample application defines the following
interfaces:
3-2 Creating CORBA C++ Server Applications

How the Basic University Sample Application Works
The Basic University sample application is shown in Figure 3-1.

Figure 3-1 Basic University Sample Application

For the purposes of explaining what happens when the Basic University sample
application runs, the following separate groups of events are described:

Interface Description Operations

RegistrarFactory Creates object references to the
Registrar object

find_registrar()

Registrar Obtains course information from the
database

get_courses_synopsis()

get_courses_details()

CourseSynopsisEnumerator Fetches synopses of courses that match
the search criteria from the database and
reads them into memory

get_next_n()

destroy()

Client
Application

RegistrarFactory Registrar

CourseSynopsis
Enumerator

Course
Database

University Server Application
Creating CORBA C++ Server Applications 3-3

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

iew

asic
ject

s
.

ses a

e.
� Application startup -- when the server application is booted and the client
application gets an object reference to theRegistrar object

� Browsing course synopses -- when the client application sends a request to v
course synopses

� Browsing course details -- when the client application sends a request to view
details on a specific list of courses

Application Startup

The following sequence shows a typical set of events that take place when the B
client and server applications are started and the client application obtains an ob
reference to theRegistrar object:

1. The Basic client and server applications are started, and the client application
obtains a reference to theRegistrarFactory object from the FactoryFinder.

2. Using the reference to theRegistrarFactory object, the client application
invokes thefind_registrar() operation on theRegistrarFactory object.

3. TheRegistrarFactory object is not in memory (because no previous request
for that object has arrived in the server process), so the TP Framework invoke
theServer::create_servant() operation in the Server object to instantiate it

4. Once instantiated, theRegistrarFactory object’sfind_registrar()

operation is invoked. TheRegistrarFactory object creates theRegistrar

object reference and returns it to the client application.

Browsing Course Synopses

The following sequence traces the events that may occur when the student brow
list of course synopses:

1. Using the object reference to theRegistrar object, the client application invokes
theget_courses_synopsis() operation, specifying:

� A search string to be used for retrieving course synopses from the databas
3-4 Creating CORBA C++ Server Applications

How the Basic University Sample Application Works

nce

arch
� An integer, represented by the variablenumber_to_get , which specifies the
size of the synopsis list to be returned.

2. TheRegistrar object is not in memory (because no previous request for that
object has arrived in the server process), so the TP Framework invokes the
Server::create_servant() operation, which is implemented in the Server
object. This causes theRegistrar object to be instantiated in the server
machine’s memory.

3. TheRegistrar object receives the client request and creates an object refere
to theCourseSynopsisEnumerator object. TheCourseSynopsisEnumerator

object is invoked by the Registrar object to fetch the course synopses from the
database.

To create the object referenceCourseSynopsisEnumerator object, the
Registrar object does the following:

a. Generates a unique ID for theCourseSynopsisEnumerator object.

b. Generates an object ID for theCourseSynopsisEnumerator object that is a
concatenation of the unique ID generated in the preceding step and the se
string specified by the client.

c. Gets theCourseSynopsisEnumerator object’s Interface Repository ID from
the interface typecode.

d. Invokes theTP::create_object_reference() operation. This operation
creates an object reference to theCourseSynopsisEnumerator object needed
for the initial client request.

4. Using the object reference created in the preceding step, theRegistrar object
invokes theget_next_n() operation on theCourseSynopsisEnumerator

object, passing the list size. The list size is represented by the parameter
number_to_get , described in step 1.

5. The TP Framework invokes theServer::create_servant() operation on the
Server object to instantiate theCourseSynopsisEnumerator object.
Creating CORBA C++ Server Applications 3-5

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

,

6. The TP Framework invokes theactivate_object() operation on the
CourseSynopsisEnumerator object. This operation does the following two
things:

� Extracts the search criteria from its OID.

� Using the search criteria, fetches matching course synopses from the
database and reads them into the server machine’s memory.

7. TheCourseSynopsisEnumerator object returns the following information to
theRegistrar object:

� A course synopsis list, specified in the return valueCourseSynopsisList ,
which is asequence containing the first list of course synopses.

� The number of matching course synopses that have not yet been returned
specified by the parameternumber_remaining.

8. TheRegistrar object returns theCourseSynopsisEnumerator object
reference to the client application, and also returns the following information
obtained from that object:

� The initial course synopsis list

� Thenumber_remaining variable

(If the number_remaining variable is 0, theRegistrar object invokes the
destroy() operation on theCourseSynopsisEnumerator object and returns a
nil reference to the client application.)

9. The client application sends directly to theCourseSynopsisEnumerator object
its next request to get the next batch of matching synopses.

10. TheCourseSynopsisEnumerator object satisfies the client request, also
returning the updatednumber_remaining variable.

11. When the client application is done with theCourseSynopsisEnumerator

object, the client application invokes thedestroy() operation on the
CourseSynopsisEnumerator object. This causes the
CourseSynopsisEnumerator object to invoke theTP::deactivateEnable()

operation.
3-6 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

ient

is

ers,

n,
sign
12. The TP Framework invokes thedeactivate_object() operation on the
CourseSynopsisEnumerator object. This causes the list of course synopses
maintained by theCourseSynopsisEnumerator object to be erased from the
server computer’s memory so that theCourseSynopsisEnumerator object’s
servant can be reused for another client request.

Browsing Course Details

The following sequence shows a typical set of events that take place when the cl
application browses course details:

1. The student enters the course numbers for the courses about which he or she
interested in viewing details.

2. The client application invokes theget_course_details() operation on the
Registrar object, passing the list of course numbers.

3. TheRegistrar object searches the database for matches on the course numb
and then returns a list containing full details for each of the specified courses.
The list is contained in theCourseDetailsList variable, which is a sequence
of struct s containing full course details.

Design Considerations for the University
Server Application

The Basic University sample application contains the University server applicatio
which deals with several fundamental WebLogic Enterprise server application de
issues. This section addresses the following topics:

� Design Considerations for Generating Object References

� Design Considerations for Managing Object State

� Design Considerations for Handling Durable State Information

� How the Basic Sample Application Applies Design Patterns
Creating CORBA C++ Server Applications 3-7

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

s

This section also addresses the following two topics:

� Additional Performance Efficiencies Built into the WebLogic Enterprise System

� Preactivating an Object with State

Design Considerations for Generating Object References

The Basic client application needs references to the following objects, which are
managed by the University server application:

� TheRegistrarFactory object

� TheRegistrar object

� TheCourseSynopsisEnumerator object

The following table shows how these references are generated and returned.

Object How the Object Reference is
Generated and Returned

RegistrarFactory The object reference for theRegistrarFactory
object is generated in the Server object, which register
theRegistrarFactory object with the
FactoryFinder. The client application then obtains a
reference to theRegistrarFactory object from the
FactoryFinder.

There is only oneRegistrarFactory object in the
Basic University server application process.

Registrar The object reference for theRegistrar object is
generated by theRegistrarFactory object and is
returned when the client application invokes the
find_registrar() operation. The object reference
created for theRegistrar object is always the same;
this object reference does not contain a unique OID.

There is only oneRegistrar object in the Basic
University server application process.
3-8 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

an

od
Note the following about how the University server application generates object
references:

� The Server object registers theRegistrarFactory object with the
FactoryFinder. This the recommended way to ensure that client applications c
locate the factories they need to obtain references to the basic objects in the
application.

� The object reference to theRegistrar object is created by the
RegistrarFactory object. This shows a very common and basic way to return
object references to the client application; namely, that there is a factory
dedicated to creating and returning references to the primary object that is
required by the client application to execute business logic.

� The object reference to theCourseSynopsisEnumerator object is created
outside a registered factory. In the University sample applications, this is a go
design because of the way theCourseSynopsisEnumerator object is meant to
be used; namely, its existence is specific to a particular client application
operation. TheCourseSynopsisEnumerator object returns a specific list and
results that are not related to the results from other queries.

� Because theRegistrar object creates, in one of its operations, an object
reference to another object, theRegistrar object is a factory. However, the
Registrar object is not registered as a factory with the FactoryFinder;
therefore, client applications cannot get a reference to theRegistrar object
from the FactoryFinder.

CourseSynopsisEnumerator The object reference for the
CourseSynopsisEnumerator object is generated
by theRegistrar object when the client application
invokes theget_courses_synopsis() operation.
In this way, theRegistrar object is the factory for
theCourseSynopsisEnumerator object. The
design and use of the
CourseSynopsisEnumerator object is described
later in this chapter.

There can be any number of
CourseSynopsisEnumerator objects in the Basic
University server application process.

Object How the Object Reference is
Generated and Returned
Creating CORBA C++ Server Applications 3-9

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

ment
for

t

he

nt.

lso,
s

dle
Design Considerations for Managing Object State

Each of the three objects in the Basic sample application has its own state manage
requirements. This section discusses the object state management requirements
each.

The RegistrarFactory Object

TheRegistrarFactory object does not need to be unique for any particular clien
request. It makes sense to keep this object in memory and avoid the expense of
activating and deactivating this object for each client invocation on it. Therefore, t
RegistrarFactory object has theprocess activation policy.

The Registrar Object

The Basic sample application is meant to be deployed in a small-scale environme
TheRegistrar object has many qualities similar to theRegistrarFactory object;
namely, this object does not need to be unique for any particular client request. A
it makes sense to avoid the expense of continually activating and deactivating thi
object for each invocation on it. Therefore, in the Basic sample application, the
Registrar object has theprocess activation policy.

The CourseSynopsisEnumerator Object

The fundamental design problem for the University server application is how to han
a list of course synopses that is potentially too big to be returned to the client
application in a single response. Therefore, the solution centers on the following:

� To begin a conversation between the client application and an object that can
fetch the course synopses from the University database.

� To have the object return an initial batch of synopses to the client application.

� To keep the remainder of the course synopses in memory so that the client
application can retrieve them one batch at a time.

� To have the client application terminate the conversation when finished, thus
freeing machine resources.
3-10 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

the
To

ment

d

The University server application has theCourseSynopsisEnumerator object,
which implements this solution. Although this object returns an initial batch of
synopses when it is first invoked, this object retains an in-memory context so that
client application can get the remainder of the synopses in subsequent requests.
retain an in-memory context, theCourseSynopsisEnumerator object must be
stateful; that is, this object stays in memory between client invocations on it.

When the client is finished with theCourseSynopsisEnumerator object, this object
needs a way to be flushed from memory. Therefore, the appropriate state manage
decision for theCourseSynopsisEnumerator object is to assign it theprocess

activation policy and to implement the WebLogic Enterprise application-controlle
deactivation feature.

Application-controlled deactivation is implemented in thedestroy() operation on
that object.

The following code example shows thedestroy() operation on the
CourseSynopsisEnumerator object:

void CourseSynopsisEnumerator_i::destroy()
{

// when the client calls "destroy" on the enumerator,
// then this object needs to be "destructed".
// do this by telling the TP framework that we're
// done with this object.

TP::deactivateEnable();
}

Basic University Sample Application ICF File

The following code example shows the ICF file for the Basic sample application:

module POA_UniversityB
{

implementation CourseSynopsisEnumerator_i
{

activation_policy (process);
transaction_policy (optional);
implements (UniversityB::CourseSynopsisEnumerator);

};
implementation Registrar_i
{

activation_policy (process);
transaction_policy (optional);
Creating CORBA C++ Server Applications 3-11

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

g
cts

few

tails
bject
oid
te.
implements (UniversityB::Registrar);
};
implementation RegistrarFactory_i
{

activation_policy (process);
transaction_policy (optional);
implements (UniversityB::RegistrarFactory);

};
};

Design Considerations for Handling Durable State
Information

Handling durable state information refers specifically to reading durable state
information from disk at some point during or after the object activation, and writin
it, if necessary, at some point before or during deactivation. The following two obje
in the Basic sample application handle durable state information:

� TheRegistrar object

� TheCourseSynopsisEnumerator object

The following two sections describe the design considerations for how these two
objects handle durable state information.

The Registrar Object

One of the operations on theRegistrar object returns detailed course information to
the client application. In a typical scenario, a student who has browsed dozens of
course synopses may be interested in viewing detailed information on perhaps as
as two or three courses at one time.

To implement this usage scenario efficiently, theRegistrar object is defined to have
theget_course_details() operation. This operation accepts an input parameter
that specifies a list of course numbers. This operation then retrieves full course de
from the database and returns the details to the client application. Because the o
in which this operation is implemented is process-bound, this operation should av
keeping any state data in memory after an invocation on that operation is comple
3-12 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

nt

ient.
is

ct

tate

:

in

s

TheRegistrar object does not keep any durable state in memory. When the clie
application invokes theget_course_details() operation, this object simply fetches
the relevant course information from the University database and sends it to the cl
This object does not keep any course data in memory. No durable state handling
done via theactivate_object() or deactivate_object() operations on this
object.

The CourseSynopsisEnumerator Object

TheCourseSynopsisEnumerator object handles course synopses, which this obje
retrieves from the University database. The design considerations, with regard to
handling state, involve how to read state from disk. This object does not write any s
to disk.

There are three important aspects of how theCourseSynopsisEnumerator object
works that influence the design choices for how this object reads its durable state

� The OID for this object contains the search criteria provided in the initial client
request for synopses. The search criteria work as a key to the database: this
object extracts information from the database based on search criteria stored
the OID.

� All the operations on this object use the course synopses that this object read
into memory.

� This object must flush course synopses from memory when it is deactivated.

Given these three aspects, it makes sense for this object to:

� Read its durable state information when activated; namely, via the
activate_object() operation on this object.

� Flush the course synopses from memory when deactivated; namely, via the
deactivate_object() operation.

Therefore, when theCourseSynopsisEnumerator object is activated, the
activate_object() operation on this object does the following:

1. Extracts the search criteria from its OID

2. Retrieves from the database course synopses that match the search criteria
Creating CORBA C++ Server Applications 3-13

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

the

at

ake
in

e

ee
Note: If you implement theTobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object() operations on an object,
remember to edit the implementation header file (that is, the
application _i.h file) and add the definitions for those operations to the
class definition template for the object’s interface.

Using the University Database

Note the following about the way in which the University sample applications use
University database:

� All of the University sample applications access the University database to
manipulate course and student information. Typically this is a large part of the
code you write in the implementation files. To make the University sample
implementation files simpler, and to help you focus on WebLogic Enterprise
features instead of database code, the samples have wrapped all the code th
reads and writes to the database within a set of classes. The filesamplesdb.h in
theutils directory contains the definitions of these classes. These classes m
all the necessary SQL calls to read and write the course and student records
the University database.

Note: The BEA Tuxedo Teller Application in the Wrapper and Production sampl
applications accesses the account information in the University database
directly and does not use thesamplesdb.h file.

For more information on the files you build into the Basic server application, s
theGuide to the University Sample Applications.

� TheCourseSynopsisEnumerator object uses a database cursor to find
matching course synopses from the University database. Because database
cursors cannot span transactions, theactivate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCourseSynopsisEnumerator object. For more information about
how the University sample applications use transactions, see Chapter 5,
“Integrating Transactions into a WebLogic Enterprise Server Application.”
3-14 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

le

sign
ndles
as

the

ined

tterns

a
lient
ta in
How the Basic Sample Application Applies Design
Patterns

The Basic sample application uses the following design patterns:

� Process-Entity

� List-Enumerator

This section describes why these two patterns are appropriate for the Basic samp
application and how this application implements them.

Process-Entity Design Pattern

As mentioned in the section “Process-Entity Design Pattern” on page 1-23, this de
pattern is appropriate in situations where you can have one process object that ha
data entities needed by the client application. The data entities are encapsulated
CORBA struct s that are manipulated by the process object and not by the client
application.

Adapting the Process-Entity design pattern to the Basic sample application allows
application to avoid implementing fine-grained objects. For example, theRegistrar

object is an efficient alternative to a similarly numerous set of course objects. The
processing burden of managing a single, coarse-grainedRegistrar object is small
relative to the potential overhead of managing hundreds or thousands of fine-gra
course objects.

For complete details about the Process-Entity design pattern, see the Design Pa
technical article.

List-Enumerator Design Pattern

This design pattern is appropriate in situations where an object has generated an
internal list of data that is potentially too large to return to the client application in
single response. Therefore, the object must return an initial batch of data to the c
application in one response, and have the ability to return the remainder of the da
subsequent responses.
Creating CORBA C++ Server Applications 3-15

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

ata
atch.
ory

s

of

ach

n the
A list-enumerator object must also simultaneously keep track of how much of the d
has already been returned so that the object can return the correct subsequent b
List-enumerator objects are always stateful (that is, they remain active and in mem
between client invocations on them) and the server application has the ability to
deactivate them when they are no longer needed.

The list-enumerator design pattern is an excellent choice for the
CourseSynopsisEnumerator object, and implementing this design pattern provide
the following benefits:

� The University server application has a means to return potentially large lists
course synopses in a way that client applications can handle; namely, in
manageable chunks.

� EachCourseSynopsisEnumerator object is unique, and its content is
determined by the request that caused this object to be created. (In addition, e
CourseSynopsisEnumerator object ID is also unique.) When the client
invokes theget_courses_synopsis() operation on theRegistrar object, the
Registrar object returns the following:

� An initial list of synopses.

� An object reference to aCourseSynopsisEnumerator object that can return
the remainder of the synopses.

Therefore, all subsequent invocations go to the correct
CourseSynopsisEnumerator object. This is critical in the situation where the
server process has multiple active instances of the
CourseSynopsisEnumerator class.

Because theget_courses_synopsis() operation returns a unique
CourseSynopsisEnumerator object reference, client requests never collide;
that is, a client request never mistakenly goes to the wrong
CourseSynopsisEnumerator object.

Although theRegistrar object has theget_courses_synopsis() operation on it,
the knowledge of the database query and the synopsis list is embedded entirely i
CourseSynopsisEnumerator object. In this situation, theRegistrar object serves
only as a means for the client to get the following:

� The initial list of synopses.

� A reference to aCourseSynopsisEnumerator object that can return the
remainder of the synopses.
3-16 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

ata
bled.

r

ce

bjects.

n
be

tion

y

Additional Performance Efficiencies Built into the
WebLogic Enterprise System

The WebLogic Enterprise system implements a performance efficiency in which d
marshaling between two objects in the same server process is automatically disa
This efficiency exists if the following circumstances exist:

� An object reference routes to the same group as the one containing the serve
process in which the object reference was created.

� An object in that server process invokes an operation using that object referen
that causes an object to be instantiated in the same process.

An example of this is when theRegistrar object creates an object reference to the
CourseSynopsisEnumerator object and causes that object to be instantiated. No
data marshaling takes place in the requests and responses between those two o

Preactivating an Object with State

WebLogic Enterprise 4.2 provides a new feature that you can use to preactivate a
object with state before a client application invokes that object. This feature can
particularly useful for creating iterator objects, such as the
CourseSynopsisEnumerator object in the University samples.

Preactivating an object with state centers around using the
TP::create_active_object_reference() operation. Typically, objects are not
created in a WebLogic Enterprise server application until a client issues an invoca
on that object. However, by preactivating an object and using the
TP::create_active_object_reference() operation to pass a reference to that
object back to the client, your client application can invoke an object that is alread
active and populated with state.
Creating CORBA C++ Server Applications 3-17

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

ode

rned

okes

to

in
r

in
ns

ash
t to
. Its
How You Preactivate an Object with State

The process for using the preactivation feature of WebLogic Enterprise is to write c
in the server application that:

1. Includes an invocation of the C++new statement to create an object.

2. Sets the object’s state.

3. Invokes theTP::create_active_object_reference() operation to obtain a
reference for the newly created object. This object reference can then be retu
to the client application.

Thus, the preactivated object is created in such a way that the TP Framework inv
neither theServer::create_servant() nor the
Tobj_ServantBase::activate_object() operations for that object.

Usage Notes for Preactivated Objects

Note the following when using the preactivation feature:

� Preactivated objects must have theprocess activation policy. Therefore, these
objects can be deactivated only at the end of the process or by an invocation
theTP::deactivateEnable() operation on those objects.

� The object reference created by the
TP::create_active_object_reference() operation istransient. This is
because a preactivated object should exist only for the lifetime of the process
which it was created, and this object should not be reactivated again in anothe
server process.

If a client application invokes on a transient object reference after the process
which the object reference was created is shut down, the TP Framework retur
the following exception:

CORBA::OBJECT_NOT_EXIST

� For objects that are preactivated, the state usually cannot be recovered if a cr
occurs. However, this is acceptable because such objects are typically mean
be used within the context of a specific series of operations, and then deleted
state has no meaning outside that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the
3-18 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

r

TobjS::ActivateObjectFailed exception to the implementation of the
Tobj_ServantBase::activate_object() operation to the object meant for
preactivation. Then, if a client attempts to invoke such an object after a serve
crash, in which case the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on that object, the TP
Framework returns the following exception to the client application:

CORBA::OBJECT_NOT_EXIST

� Use preactivation sparingly because, as with all process-bound objects,
preactivation preallocates scarce resources.
Creating CORBA C++ Server Applications 3-19

3 Designing and Implementing a Basic WebLogic Enterprise Server Application
3-20 Creating CORBA C++ Server Applications

CHAPTER

g the

sity

.
tor

ogic
4 Security and WebLogic
Enterprise Server
Applications

This chapter discusses security and WebLogic Enterprise server applications, usin
Security University sample application as an example. The Security sample
application implements a security model that requires student users of the Univer
sample application to be authenticated as part of the application login process.

This topic includes the following sections:

� Overview of Security and WebLogic Enterprise Server Applications

� Design Considerations for the University Server Application

Overview of Security and WebLogic
Enterprise Server Applications

Generally, WebLogic Enterprise server applications have little to do with security
Security in the WebLogic Enterprise domain is specified by the system administra
in theUBBCONFIGfile, and client applications are responsible for logging on, or
authenticating, to the domain. None of the security models supported in the WebL
Enterprise system make any requirements on server applications running in the
WebLogic Enterprise domain.
Creating CORBA C++ Server Applications 4-1

4 Security and WebLogic Enterprise Server Applications

odel
ons

tion
fy,

c

ers
le

the
f the

on
is

rity
However, there may be occasions when implementing or enhancing a security m
in your WebLogic Enterprise application involves adding objects, or adding operati
to existing objects, that are managed by the server application.

This chapter shows how the University server application is enhanced to add the no
of a student, which is incorporated into the client application as a means to identi
and log in, users of the client application.

For information about how client applications are authenticated into the WebLogi
Enterprise domain, seeCreating CORBA Client Applications. For information about
implementing a security model in the WebLogic Enterprise domain, see the
Administration Guide.

Design Considerations for the University
Server Application

The design rationale for the Security University sample application is to require us
of the client application to log on before they can do anything. The Security samp
application, therefore, needs to define the notion of a user.

To log on to the application, the client application needs to provide the following to
security service in the WebLogic Enterprise domain (note that the student user o
application provides only the user name and application password):

� Client name

� Username

� An application password

The Security sample application adds an operation,get_student_details() , to the
Registrar object. This operation enables the client application to obtain informati
about each student user from the University database after the client application
logged on to the WebLogic Enterprise domain.

Note: Theget_student_details() operation has nothing to do with
implementing a security model in the WebLogic Enterprise domain. The
addition of this operation is only a supplemental feature added to the Secu
4-2 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

rity
er

t on
h is

ntain
g

sample application. For details about the security model added to the Secu
sample application, and how client applications log on to the Security serv
application, seeCreating CORBA Client Applications.

The sections that follow explain:

� How the Security University sample application works

� Design considerations for returning student details to the client application

How the Security University Sample Application Works

To implement the Security sample application, the client application adds a logon
dialog with the student end user. This dialog uses the local SecurityCurrent objec
the client machine to invoke operations on the PrincipalAuthenticator object, whic
part of logging on to access the WebLogic Enterprise domain. After the user
authentication process, the client application invokes theget_student_details()

operation on theRegistrar object to obtain information about each student user.

The University database used in the Security sample application is updated to co
student information in addition to course information, and is shown in the followin
figure:

Course
Information

Student
Information

M3 University Database
Creating CORBA C++ Server Applications 4-3

4 Security and WebLogic Enterprise Server Applications

of
The

ing

he

el

d

t

t.
Theget_student_details() operation accesses the student information portion
the database to obtain student information needed by the client logon operation.
following figure shows the primary objects involved in the Security sample
application:

A typical usage scenario of the Security sample application may include the follow
sequence of events:

1. The client application obtains a reference to the SecurityCurrent object from t
Bootstrap object.

2. The client application invokes the SecurityCurrent object to determine the lev
of security that is required by the WebLogic Enterprise domain.

3. The client application queries the student user for a student ID and the require
passwords.

4. The client application authenticates the student by obtaining information abou
the student from the Authentication Service.

5. If the authentication process is successful, the client application logs on to the
WebLogic Enterprise domain.

6. The client application invokes theget_student_details() operation on the
Registrar object, passing a student ID, to obtain information about the studen

Client
Application

RegistrarFactory

Registrar

get_student_details()

Database

University Server Application

Student Info

Course Info

SecurityCurrent
Object
4-4 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

s

er.

ent,

ion

sed
with
deal
7. TheRegistrar object scans the database for student information that matche
the student ID in the client request.

8. If there is a match between the student ID provided in the client application
request and the student information in the database, theRegistrar object returns
thestruct StudentDetails to the client application. (If the student enters an
ID that does not match the information in the database, theRegistrar object
returns a CORBA exception to the client application.)

9. If the Registrar object returnsStudentDetails to the client application, the
client application displays a personalized welcome message to the student us

Design Considerations for Returning Student Details to
the Client Application

The client application needs to provide a means by which to log a user on to the
WebLogic Enterprise system so that the user can continue to use the University
application. To do this, the client application needs an identity for the user. In the
Security sample application, this identity is the student ID.

All that is required of the University server application is to return data about a stud
based on the student ID, so that the client application can complete the user
authentication process. Therefore, the OMG IDL for the Security sample applicat
adds the definition of theget_student_details() operation to theRegistrar

object. The primary design consideration for the University server application is ba
on the operational scenario described earlier; namely, that one student interacts
one client application at one time, so there is no need for the server application to
with a sizable batch of data to implement theget_student_details() operation.

Theget_student_details() operation has the following OMG IDL definition:

struct StudentDetails
{

StudentId student_id;
string name;
CourseDetailsList registered_courses;

};
Creating CORBA C++ Server Applications 4-5

4 Security and WebLogic Enterprise Server Applications
4-6 Creating CORBA C++ Server Applications

CHAPTER

rver
The
for a

le
it

onal
ular.
5 Integrating
Transactions into a
WebLogic Enterprise
Server Application

This chapter describes how to integrate transactions into a WebLogic Enterprise se
application, using the Transactions University sample application as an example.
Transactions sample application encapsulates the process of a student registering
set of courses. The Transactions sample application does not show all the possib
ways to integrate transactions into a WebLogic Enterprise server application, but
does show two models of transactional behavior, showing the impact of transacti
behavior on the application in general and on the durable state of objects in partic

This topic includes the following sections:

� Overview of Transactions in the WebLogic Enterprise System

� Designing and Implementing Transactions in a WebLogic Enterprise Server
Application

� Integrating Transactions in a WebLogic Enterprise Client and Server
Application. This section describes:

� Making an Object Automatically Transactional

� Enabling an Object to Participate in a Transaction

� Preventing an Object from Being Invoked While a Transaction Is Scoped
Creating CORBA C++ Server Applications 5-1

5 Integrating Transactions into a WebLogic Enterprise Server Application

ns
the

lled

that

on
one of

ist.

to
ce,
� Excluding an Object from an Ongoing Transaction

� Assigning Policies

� Opening an XA Resource Manager

� Closing an XA Resource Manager

� Transactions and Object State Management

� Notes on Using Transactions in the WebLogic Enterprise System

� User-defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactio
sample application introduces a user-defined exception, which can be returned to
client application and that potentially causes a client-initiated transaction to be ro
back.

Overview of Transactions in the WebLogic
Enterprise System

The WebLogic Enterprise system provides transactions as a means to guarantee
database transactions are completed accurately and that they take on all theACID
properties (atomicity, consistency, isolation, and durability) of a high-performance
transaction. That is, you have a requirement to perform multiple write operations
durable storage, and you must be guaranteed that the operations succeed; if any
the operations fails, the entire set of operations is rolled back.

Transactions typically are appropriate in the situations described in the following l
Each situation encapsulates a transactional model supported by the WebLogic
Enterprise system.

� The client application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs
arrange for a journey to a distant location; for example, from Strasbourg, Fran
5-2 Creating CORBA C++ Server Applications

Overview of Transactions in the WebLogic Enterprise System

to

l

h

he

r of

r
e

to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cance
all the flight reservations made so far. For example, if the client application
cannot book a flight from Los Angeles to Honolulu on a given date, the client
application needs to cancel the flight reservations made up to that point.

� The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

� Data is cached in memory or written to a database during or after each
successive invocation.

� Data is written to a database at the end of the conversation.

� The client needs the object to maintain an in-memory context between eac
invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

� At the end of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of t
conversation.

For example, consider an internet-based online shopping application. The use
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing all the items he or she
wants to buy, the user clicks on a button to make the purchase, where the use
may enter credit card information. If the credit card check fails (for example, th
user cannot provide valid credit card information) the shopping application
needs a way to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

� Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:
Creating CORBA C++ Server Applications 5-3

5 Integrating Transactions into a WebLogic Enterprise Server Application

ds

n as
n
. For

10.

f a
ation

e

y

n

� Invoking the debit method on one account

� Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application nee
a way to roll back the previous debit invocation.

Designing and Implementing Transactions
in a WebLogic Enterprise Server Application

This section explains how to design and implement transactions in a WebLogic
Enterprise server application using the Transactions University sample applicatio
an example. This section also describes how the Transactions sample applicatio
works, and discusses the design considerations for implementing transactions in it
additional general information about transactions, see the section “Integrating
Transactions in a WebLogic Enterprise Client and Server Application” on page 5-

The Transactions sample application uses transactions to encapsulate the task o
student registering for a set of courses. The transactional model used in this applic
is a combination of the conversational model and the model in which a single
invocation makes multiple individual operations on a database, as described in th
preceding section.

The Transactions sample application builds on the Security sample application b
adding the following capabilities:

� Students can submit a list of courses for which they want to register. (Each
course is represented by a number.)

� For each course in the list, the University server application checks the
following:

� Whether the course is in the University database

� Whether the student is already registered for the course

� Whether the student exceeds the maximum number of credits he or she ca
take
5-4 Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

ered

en
es
on.

er
on

t

be

ver

tes

or
� If the course passes the checks in the preceding list, the University server
application registers the student for the course.

� If the server application cannot register the student for a course because the
course does not exist in the database or because the student is already regist
for the course, the server application returns to the client application a list of
courses for which the registration process failed. The client application can th
choose whether to commit the transaction to register the student for the cours
for which the registration process succeeds, or to roll back the entire transacti

� If a course registration fails because the student exceeds the maximum numb
of credits he or she can take, the server application returns a CORBA excepti
to the client application that provides a brief message explaining why the
registration for the course was not successful. (The server application does no
mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can
rolled back:

� Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the ser
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

� Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application genera
a CORBA exception and returns it to the client. The decision to roll back the
transaction also lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register f
a course that would exceed the maximum number of courses for which the
student can register, the server application returns theTooManyCredits

exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

The sections that follow explain:

� How the Transactions University Sample Application Works

� Transactional Model Used by the Transactions University Sample Application
Creating CORBA C++ Server Applications 5-5

5 Integrating Transactions into a WebLogic Enterprise Server Application

ion

m

for
� Object State Considerations for the University Server Application

� Configuration Requirements for the Transactions Sample Application

How the Transactions University Sample Application
Works

To implement the student registration process, the Transactions sample applicat
does the following:

� The client application obtains a reference to the TransactionCurrent object fro
the Bootstrap object.

� When the student submits the list of courses for which he or she wants to
register, the client application:

a. Begins a transaction by invoking theCurrent::begin() operation on the
TransactionCurrent object

b. Invokes theregister_for_courses() operation on theRegistrar object,
passing a list of courses

� The register_for_courses() operation on theRegistrar object processes
the registration request by executing a loop that does the following iteratively
each course in the list:

a. Checks to see how many credits the student is already registered for

b. Adds the course to the list of courses for which the student is registered

TheRegistrar object checks for the following potential problems, which
prevent the transaction from being committed:

� The student is already registered for the course.

� A course in the list does not exist.

� The student exceeds the maximum credits allowed.

� As defined in the application’s OMG IDL, theregister_for_courses()

operation returns a parameter to the client application,NotRegisteredList ,
which contains a list of the courses for which the registration failed.
5-6 Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

e

n

urse
the

el of
ions

d
ful.

led
If the NotRegisteredList value is empty, the client application commits the
transaction.

If the NotRegisteredList value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If th
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client applicatio
rolls back the transaction.

� If the registration for a course has failed because the student exceeds the
maximum number of credits he or she can take, theRegistrar object returns a
TooManyCredits exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle co
registrations in groups, as opposed to one at a time. This design helps to minimize
number of remote invocations on theRegistrar object.

In implementing this design, the Transactions sample application shows one mod
the use of transactions, which were described in the section “Overview of Transact
in the WebLogic Enterprise System” on page 5-2. The model is as follows:

� The client begins a transaction by invoking thebegin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on theRegistrar object.

TheRegistrar object registers the student for the courses for which it can, an
then returns a list of courses for which the registration process was unsuccess
The client application can choose to commit the transaction or roll it back. The
transaction encapsulates this conversation between the client and the server
application.

� The register_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rol
back.
Creating CORBA C++ Server Applications 5-7

5 Integrating Transactions into a WebLogic Enterprise Server Application

ct

tored

ign

this

er
e in a
lback
for

se
By
lied

e

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needs to consider the implications on obje
state, particularly in the event of a rollback. In cases where there is a rollback, the
server application must ensure that all affected objects have their durable state res
to the proper state.

Because theRegistrar object is being used for database transactions, a good des
choice for this object is to make it transactional; that is, assign thealways transaction
policy to this object’s interface. If a transaction has not already been scoped when
object is invoked, the WebLogic Enterprise system will start a transaction
automatically.

By making theRegistrar object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the serv
application uses an XA resource manager, and since the object is guaranteed to b
transaction when the object writes to a database, the object does not have any rol
or commit responsibilities because the XA resource manager takes responsibility
these database operations on behalf of the object.

TheRegistrarFactory object, however, can be excluded from transactions becau
this object does not manage data that is used during the course of a transaction.
excluding this object from transactions, you minimize the processing overhead imp
by transactions.

Object Policies Defined for the Registrar Object

To make theRegistrar object transactional, the ICF file specifies thealways

transaction policy for theRegistrar interface. Therefore, in the Transaction sampl
application, the ICF file specifies the following object policies for theRegistrar

interface:

Activation Policy Transaction Policy

process always
5-8 Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

ver

ng:

t

ms

of
Object Policies Defined for the RegistrarFactory Object

To exclude theRegistrarFactory object from transactions, the ICF file specifies the
ignore transaction policy for theRegistrar interface. Therefore, in the Transaction
sample application, the ICF file specifies the following object policies for the
RegistrarFactory interface:

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle7 Transaction Manager Ser
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the followi

� Some XA resource managers (for example, Oracle7) require that all database
operations be scoped within a transaction. This means that the
CourseSynopsisEnumerator object needs to be scoped within a transaction
because this object reads from a database.

� When a transaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. Tha
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design proble
associated with handling object state data in the event of a rollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task
implementing a server application.

Activation Policy Transaction Policy

process ignore
Creating CORBA C++ Server Applications 5-9

5 Integrating Transactions into a WebLogic Enterprise Server Application

MS).
he

s

y

and

at
ct

m

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle7 transaction manager server (T
To use the Oracle7 database, you must include specific Oracle-provided files in t
server application build process.

For details about building, configuring, and running the Transactions sample
application, see theGuide to the University Sample Applications. That online
document also contains theUBBCONFIGfiles for each sample application and explain
the entries in that file.

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

The WebLogic Enterprise system supports transactions in the following ways:

� The client or the server application can begin and end transactions explicitly b
using calls on the TransactionCurrent object. For information about the
TransactionCurrent object, seeCreating CORBA Client ApplicationsandUsing
Transactions.

� You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA resource
manager and database when you want to delegate all the transaction commit
rollback responsibilities to that resource manager.

� Objects involved in a transaction can force a transaction to be rolled back. Th
is, after an object has been invoked within the scope of a transaction, the obje
can invoke therollback_only() operation on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction fro
being committed. An object may need to mark a transaction for rollback if an
5-10 Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

r

e
r

te
ects

ate

a
eady

e

entity, typically a database, is otherwise at risk of being updated with corrupt o
inaccurate data.

� Objects involved in a transaction can be kept in memory from the time they ar
first invoked until the moment when the transaction is ready to be committed o
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the WebLogic Enterprise system immediately before the
resource managers prepare to commit the transaction. (In this sense, polling
means invoking the object’sTobj_ServantBase::deactivate_object()

operation and passing a reason value.)

When an object is polled, the object may veto the current transaction by
invoking therollback_only() operation on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. No
that these policies apply to an interface and, therefore, to all operations on all obj
implementing that interface.

Note: If a server application manages an object that you want to be able to particip
in a transaction, the Server object for that application must invoke the
TP::open_xa_rm() andTP::close_xa_rm() operations. For more
information about database connections, see “Opening an XA Resource
Manager” on page 5-15.

Making an Object Automatically Transactional

The WebLogic Enterprise system provides thealways transactional policy, which you
can define on an object’s interface to have the WebLogic Enterprise system start
transaction automatically when that object is invoked and a transaction has not alr
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither th
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.
Creating CORBA C++ Server Applications 5-11

5 Integrating Transactions into a WebLogic Enterprise Server Application

n:

ack

es

pses

to
not

ou

base
Assigning thealways transactional policy to an object’s interface is appropriate whe

� The object writes to a database and you want all the database commit or rollb
responsibilities delegated to an XA resource manager whenever this object is
invoked.

� You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following polici
to that object’s interface in the Implementation Configuration File (ICF file):

Note: Database cursors cannot span transactions. The
CourseSynopsisEnumerator object in the WebLogic Enterprise University
sample applications uses a database cursor to find matching course syno
from the University database. Because database cursors cannot span
transactions, theactivate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses in
memory. Note that the cursor is managed by an iterator class and is thus
visible to theCourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction

If you want an object to be able to be invoked within the scope of a transaction, y
can assign theoptional transaction policies to that object’s interface. Theoptional

transaction policy may be appropriate for an object that does not perform any data
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when specified in the ICF file for that object’s
interface, to make an object optionally transactional:

Activation Policy Transaction Policy

process , method , or
transaction

always
5-12 Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

able

ject.
te

uire

,
7

are

n

s the
lly

the
If the object does perform database write operations, and you want the object to be
to participate in a transaction, assigning thealways transactional policy is generally a
better choice. However, if you prefer, you can use theoptional policy and
encapsulate any write operations within invocations on the TransactionCurrent ob
That is, within your operations that write data, scope a transaction around the wri
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the WebLogic Enterprise system req
that any object participating in a transaction scope their database read
operations, in addition to write operations, within a transaction. (However
you can still scope your own transactions.) For example, using the Oracle
TMS with the WebLogic Enterprise system has this requirement. When
choosing the transaction policies to assign to your objects, make sure you
familiar with the requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from a transaction. If such a
object is invoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The WebLogic Enterprise system provide
never transaction policy, which you can assign to an object’s interface to specifica
prevent that object from being invoked within the course of a transaction, even if
current transaction is suspended.

Activation Policy Transaction Policy

process , method , or
transaction

optional
Creating CORBA C++ Server Applications 5-13

5 Integrating Transactions into a WebLogic Enterprise Server Application

at
ot

s

ck.

n. If

hat
the
ion.
n

ing
This transaction policy is appropriate for objects that write durable state to disk th
cannot be rolled back; for example, for an object that writes data to a disk that is n
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of it
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled ba

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the ICF file:

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transactio
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system provides theignore

transaction policy for this purpose.

The ignore transaction policy may be appropriate for an object such as a factory t
typically does not write data to disk. By excluding the factory from the transaction,
factory can be available to other client invocations during the course of a transact
In addition, using this policy can introduce an efficiency into your server applicatio
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the follow
policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or method never

Activation Policy Transaction Policy

process or method ignore
5-14 Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

the

ided
Assigning Policies

For information about how to create an ICF file and specify policies on objects, see
section “Step 4: Define the In-memory Behavior of Objects” on page 2-15.

Opening an XA Resource Manager

If an object’s interface has thealways or optional transaction policy, you must
invoke theTP::open_xa_rm() operation in theServer::initialize() operation
in the Server object. The resource manager is opened using the information prov
in theOPENINFOparameter, which is in theGROUPSsection of theUBBCONFIGfile.
Note that the default version of theServer::initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction -- the object typically has theoptional transaction policy -- you still need
to include an invocation to theTP::open_xa_rm() operation. In that invocation,
specify theNULL resource manager.

Closing an XA Resource Manager

If your Server object’sServer::initialize() operation opens an XA resource
manager, you must include the following invocation in theServer::release()

operation:

TP::close_xa_rm();
Creating CORBA C++ Server Applications 5-15

5 Integrating Transactions into a WebLogic Enterprise Server Application

n,
ays.
tion
ges
k.

state

s
l

tion.
rite

do any

in

n

Transactions and Object State Management

If you need transactions in your WebLogic Enterprise client and server applicatio
you can integrate transactions with object state management in a few different w
In general, the WebLogic Enterprise system can automatically scope the transac
for the duration of an operation invocation without requiring you to make any chan
to your application’s logic or the way in which the object writes durable state to dis

The following sections address some key points regarding transactions an object
management.

Delegating Object State Management to an XA Resource
Manager

Using an XA resource manager, such as Oracle7, which is used in the WebLogic
Enterprise University sample applications, generally simplifies the design problem
associated with handling object state data in the event of a rollback. Transactiona
objects can always delegate the commit and rollback responsibilities to the XA
resource manager, which greatly eases the task of implementing a server applica
This means that process- or method-bound objects involved in a transaction can w
to a database during transactions, and can depend on the resource manager to un
data written to the database in the event of a transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transaction activation policy is a good choice for objects that maintain state
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thetransaction activation policy to
an object, the object:

� Is brought into memory when it is first invoked within the scope of a transactio

� Remains in memory until the transaction is either committed or rolled back
5-16 Creating CORBA C++ Server Applications

Transactions and Object State Management

ach

t

g
:

cts
When the transaction work is complete, the WebLogic Enterprise system invokes e
transaction-bound object’sTobj_ServantBase::deactivate_object() operation,
passing areason code that can be eitherDR_TRANS_COMMITTINGor
DR_TRANS_ABORT. If the variable isDR_TRANS_COMMITTING, the object can invoke its
database write operations. If the variable isDR_TRANS_ABORT, the object skips its write
operations.

Assigning thetransaction activation policy to an object may be appropriate in the
following situations:

� You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

� You want to provide the object with the ability to veto a transaction that is abou
to be committed.

If the WebLogic Enterprise system passes the reasonDR_TRANS_COMMITTING,
the object can, if necessary, invoke therollback_only() operation on the
TransactionCurrent object. Note that if you do make an invocation to the
rollback_only() operation from within the
Tobj_ServantBase::deactivate_object() operation, the
Tobj_ServantBase::deactivate_object() operation is not invoked again.

� You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writin
to a database, assign the following policies to that object’s interface in the ICF file

Note: Transaction-bound objects cannot start a transaction or invoke other obje
from inside theTobj_ServantBase::deactivate_object() operation.
The only valid invocations transaction-bound objects can make inside the
Tobj_ServantBase::deactivate_object() operation are write
operations to the database.

Activation Policy Transaction Policy

transaction always or optional
Creating CORBA C++ Server Applications 5-17

5 Integrating Transactions into a WebLogic Enterprise Server Application

ect

ny
isk,
g

on

m:

ve.

n

on.
or

le
.

Also, if you have an object that is involved in a transaction, the Server obj
that manages that object must include invocations to open and close,
respectively, the XA resource manager, even if the object does not write a
data to disk. (If you have a transactional object that does not write data to d
you specify theNULLresource manager.) For more information about openin
and closing an XA resource manager, see the sections “Opening an XA
Resource Manager” on page 5-15 and “Closing an XA Resource Manager”
page 5-15.

Notes on Using Transactions in the WebLogic
Enterprise System

Note the following about integrating transactions into your WebLogic Enterprise
client/server applications:

� The following transactions are not permitted in the WebLogic Enterprise syste

� Nested transactions

You cannot start a new transaction if an existing transaction is already acti
(You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that ca
subsequently resume the transaction.)

� Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

� The object that starts a transaction is the only entity that can end the transacti
(In a strict sense, the object can be the client application, the TP Framework,
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction (and whi
the transaction is suspended, the object can start and end other transactions)
However, you cannot end a transaction in an object unless you began the
transaction there.

� Objects can be involved with only one transaction at one time. The WebLogic
Enterprise system does not support concurrent transactions.
5-18 Creating CORBA C++ Server Applications

Notes on Using Transactions in the WebLogic Enterprise System

the

he

is

fect

t to
h

ote

n

n

� The WebLogic Enterprise system does not queue requests to objects that are
currently involved in a transaction. If a nontransactional client application
attempts to invoke an operation on an object that is currently in a transaction,
client application receives the following error message:

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receives the
following error message:

CORBA::INVALID_TRANSACTION

� For transaction-bound objects, you might consider doing all state handling in t
Tobj_ServantBase::deactivate_object() operation. This makes it easier
for the object to handle its state properly, since the outcome of the transaction
known at the time that theTobj_ServantBase::deactivate_object()

operation is invoked.

� For method-bound objects that have several operations, but only a few that af
the object’s durable state, you may want to consider the following:

� Assign theoptional transaction policy.

� Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

� Transaction rollbacks are asynchronous. Therefore, it is possible for an objec
be invoked while its transactional context is still active. If you try to invoke suc
an object, you receive an exception.

� If an object with thealways transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application, n
the following:

If an exception is raised inside an operation on that object, the client applicatio
receives anOBJ_ADAPTERexception. In this situation, the WebLogic Enterprise
system automatically rolls back the transaction. However, the client applicatio
is completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.
Creating CORBA C++ Server Applications 5-19

5 Integrating Transactions into a WebLogic Enterprise Server Application

s

s

tion,
nt
the

that

tion

se
� If the client application initiates a transaction, and the server application mark
the transaction for a rollback and returns a CORBA exception, the client
application receives only a transaction rollback exception but not the CORBA
exception.

In the WebLogic Enterprise version 4.2 software, no workaround exists for this
situation. We recommend that applications perform as much data validation a
possible before starting a transaction.

� Note the following restriction on a transactional object that has the
TP::deactivateEnable method:

If the TP::deactivateEnable method is invoked during a transaction, the
object is deactivatedwhen the transaction ends. However, if any methods are
invoked on the object between the time that theTP::deactivateEnable

method is called and the time that the transaction is committed, the object is
never deactivated.

User-defined Exceptions

The Transactions sample application includes an instance of a user-defined excep
TooManyCredits . This exception is thrown by the server application when the clie
application tries to register a student for a course, and the student has exceeded
maximum number of courses for which he or she can register. When the client
application catches this exception, the client application rolls back the transaction
registers a student for a course. This section explains how you can define and
implement user-defined exceptions in your WebLogic Enterprise client/server
application, using theTooManyCredits exception as an example.

Including a user-defined exception in a WebLogic Enterprise client/server applica
involves the following steps:

1. In your OMG IDL file, define the exception and specify the operations that can u
it.

2. In the implementation file, include code that throws the exception.

3. In the client application source file, include code that catches and handles the
exception.
5-20 Creating CORBA C++ Server Applications

User-defined Exceptions

, the

on.

t

The sections that follow explain and give examples of the first two steps.

Defining the Exception

In the OMG IDL file for your client/server application:

1. Define the exception and define the data sent with the exception. For example
TooManyCredits exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for theTooManyCredits exception contains the following OMG IDL
statements:

exception TooManyCredits
{

unsigned short maximum_credits;
};

2. In the definition of the operations that throw the exception, include the excepti
The following example shows the OMG IDL statements for the
register_for_courses() operation on theRegistrar interface:

NotRegisteredList register_for_courses(
in StudentId student,
in CourseNumberList courses

) raises (
TooManyCredits

);

Throwing the Exception

In the implementation of the operation that uses the exception, write the code tha
throws the exception, as in the following example.

if (...) {
UniversityZ::TooManyCredits e;
e.maximum_credits = 18;
throw e;
Creating CORBA C++ Server Applications 5-21

5 Integrating Transactions into a WebLogic Enterprise Server Application
5-22 Creating CORBA C++ Server Applications

CHAPTER

o
ion,

edo

BEA

een
r
tions
6 Wrapping a BEA
Tuxedo Service in an
Object

This chapter presents an overview of one way in which you can call a BEA Tuxed
service from within an object managed by a WebLogic Enterprise server applicat
using the Wrapper sample application as an example.

This topic includes the following sections:

� Overview of Wrapping a BEA Tuxedo Service. This section describes:

� Designing the Object That Wraps the BEA Tuxedo Service

� Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls

� Implementing the Operations That Send Messages to and from the BEA
Tuxedo Service

� Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates a set of billing operations to a BEA Tux
teller application, which contains a set of services that perform basic billing
procedures. The approach in this chapter shows one technique for incorporating a
Tuxedo application into a WebLogic Enterprise domain.

The examples shown in this chapter demonstrate a one-to-one relationship betw
operations on an object and calls to specific services within a BEA Tuxedo serve
application. In a sense, the calls to the BEA Tuxedo services are wrapped as opera
on a CORBA object; thus, the object delegates its work to the BEA Tuxedo
Creating CORBA C++ Server Applications 6-1

6 Wrapping a BEA Tuxedo Service in an Object

ork

edo

and

rom
application. If you have a set of BEA Tuxedo services that you want to use in a
WebLogic Enterprise server application, the technique shown in this chapter may w
for you.

This chapter does not provide any details about BEA Tuxedo applications. For
information about how to build and configure BEA Tuxedo applications, and for
information about how they work, see the BEA Tuxedo information set, which is
included on the WebLogic Enterprise Online Documentation CD.

Overview of Wrapping a BEA Tuxedo Service

The process described in this chapter for wrapping a set of BEA Tuxedo services
encompasses the following steps:

1. Designing the object that structures a set of tasks that are oriented to BEA Tux
as operations on that object.

2. Creating the message buffer used by the BEA Tuxedo services. You use this
message buffer to send and receive messages to and from the BEA Tuxedo
services. You can allocate the buffer in the object’s constructor in the
application’s implementation file.

3. Implementing on the object the operations that send and receive messages to
from the BEA Tuxedo services. This step also includes choosing the
implementation for how the BEA Tuxedo services are called.

The following figure shows a high-level view of the relationship among the client
application, the CORBA object managed by the WebLogic Enterprise server
application, and the BEA Tuxedo application that implements the services called f
the CORBA object.
6-2 Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

o the
n is

.

ins

IDL
Designing the Object That Wraps the BEA Tuxedo Service

The first step described in this chapter is designing the object that wraps the calls t
BEA Tuxedo application. For example, the goal for the Wrapper sample applicatio
to add billing capability to the student registration process, which can be done by
delegating a set of billing operations to an existing BEA Tuxedo teller application

The BEA Tuxedo teller application used by the Wrapper sample application conta
the following services:

� CURRBALANCE-- Obtains the current balance of a given account

� CREDIT -- Credits an account by a given dollar amount

� DEBIT -- Debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG
file that defines a new interface,Teller , which has the following operations:

� get_balance()

� credit()

Client Application

operation1();
operation1();
operation3();

M3 Server Application BEA TUXEDO Teller
Application

CORBA Object

operation1()
{

tpcall (op1());
}

operation2()
{

tpcall (op2());
}

operation3()
{

tpcall (op3());
}

OP1 Service

OP3 Service

OP2 Service
Creating CORBA C++ Server Applications 6-3

6 Wrapping a BEA Tuxedo Service in an Object

s

n’s

fer

s are
fer
sed

fer
� debit()

Each of these operations on theTeller object maps one-to-one to calls on the service
in the BEA Tuxedo teller application.

A typical usage scenario of theTeller object may be the following:

1. The client application invokes theregister_for_courses() operation on the
Registrar object, which requires a student ID.

2. As part of the registration process, theRegistrar object invokes the
get_balance() operation on theTeller object, passing an account number.

3. Theget_balance() operation on theTeller object puts the account number
into a message buffer and sends the buffer to the BEA Tuxedo teller applicatio
CURRBALANCE service.

4. The BEA Tuxedo teller application receives the message buffer, extracts its
contents, and makes the appropriate call to theCURRBALANCEservice.

5. The CURRBALANCEservice obtains from the University database the current
balance of the account and gives it to the BEA Tuxedo teller application.

6. The BEA Tuxedo teller application inserts the current balance into a message
buffer and returns it to theTeller object.

7. TheTeller object extracts the current balance amount from the message buf
and returns the current balance to theRegistrar object.

For more design information about theTeller object and the Wrapper sample
application, see the section “Design Considerations for the Wrapper Sample
Application” on page 6-8.

Creating the Buffer in Which to Encapsulate BEA Tuxedo
Service Calls

The next step described in this chapter is creating the buffer within which message
sent between the object and the BEA Tuxedo service. There are a number of buf
types that may be used by various BEA Tuxedo applications, and the examples u
in this chapter are based on the FML buffer type. For more information about buf
types in the BEA Tuxedo system, see the BEA Tuxedo information set.
6-4 Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

e.
cate

ate

ble

, as

n

In your application implementation file, you need to allocate the chosen buffer typ
You can allocate the buffer in the object’s constructor, because the buffer you allo
does not need to be unique to any particularTeller object instance. This allocation
operation typically includes specifying the buffer type, passing any flags appropri
for the procedure call to the BEA Tuxedo service, and specifying a buffer size.

You also need to add to your implementation’s header file the definition of the varia
that represents the buffer.

The following code example shows the constructor for the Wrapper application’s
Teller object that allocates the BEA Tuxedo buffer,m_tuxbuf :

Teller_i::Teller_i() :
m_tuxbuf((FBFR32*)tpalloc("FML32", "", 1000))

{
if (m_tuxbuf == 0) {

throw CORBA::INTERNAL();
}

}

Note the following about the line that allocates the FML buffer:

The object’s implementation file should also deallocate the buffer in the destructor
in the following statement from the Wrapper application implementation file:

tpfree((char*)m_tuxbuf);

Code Description

tpalloc Allocates the buffer.

"FML32" Specifies the FML buffer type.

"" Typically enclose any flags passed to the BEA Tuxedo service. I
this example, no flags are passed.

1000 Specifies the buffer size in bytes.
Creating CORBA C++ Server Applications 6-5

6 Wrapping a BEA Tuxedo Service in an Object

EA

s the

l:

ced
Implementing the Operations That Send Messages to
and from the BEA Tuxedo Service

The next step is implementing the operations on the object that wraps calls to the B
Tuxedo application. In this step, you choose the implementation of how the BEA
Tuxedo services are called from the object. The Wrapper sample application use
tpcall implementation.

An operation on an object that wraps a BEA Tuxedo service typically includes
statements that do the following:

� Fill the message buffer with the data that you want to send to the BEA Tuxedo
service.

� Call the BEA Tuxedo service. The following arguments are included in the cal

a. The BEA Tuxedo service that you want to invoke

b. The message buffer to be sent to the BEA Tuxedo service

c. The message buffer to be returned from the BEA Tuxedo service

d. The size of the buffer in which the BEA Tuxedo service response is to be pla

� Extract the response from the BEA Tuxedo service

� Return the results to the client application

The following example shows the implementation of theget_balance() operation in
the Wrapper applicationTeller object. This operation retrieves the balance of a
specific account, and the BEA Tuxedo service being called isCURRBALANCE.

CORBA::Double Teller_i::get_balance(BillingW::AccountNumber account)
{

// "marshal" the "in" parameters (account number)
Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
long size = Fsizeof32(tuxbuf);
// Call the CURRBALANCE Tuxedo service
if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,

(char**)&tuxbuf, &size, 0)) {
throw CORBA::PERSIST_STORE();

}
// "unmarshal" the "out" parameters (current balance)
CORBA::Double currbal;
Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);
6-6 Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

e the
ame

age

n

return currbal;
}

In this code example, note the following:

The following statement fills the message buffer,m_tuxbuf , with the student account
number. For information about FML, see theBEA Tuxedo Reference Manual: Section
3FML, FML pages.

Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);

The following statement calls theCURRBALANCEBEA Tuxedo service, via thetpcall

implementation, passing the message buffer. This statement also specifies wher
BEA Tuxedo service response is to be placed, which in this example is also the s
buffer as the one in which the request was sent.

if (tpcall("CURRBALANCE", (char*)tuxbuf, 0,
(char**)&tuxbuf, &size, 0)) {

throw CORBA::PERSIST_STORE();
}

The following statement extracts the balance from the returned BEA Tuxedo mess
buffer:

Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);

The last line in theget_balance() operation returns the results to the client
application:

return currbal;

Restrictions

Note the following restrictions regarding how you can incorporate BEA Tuxedo
services within a WebLogic Enterprise domain:

� You may not combine object implementations and BEA Tuxedo services withi
the same server application. The BEA Tuxedo services may only exist within a
separate BEA Tuxedo server application in the same domain as the WebLogic
Enterprise server application.

� You may not include thetpreturn() or tpforward() BEA Tuxedo
implementations within an object that calls a BEA Tuxedo service.
Creating CORBA C++ Server Applications 6-7

6 Wrapping a BEA Tuxedo Service in an Object

n the
he

me

e

Design Considerations for the Wrapper
Sample Application

The basic design considerations for the Wrapper sample application are based o
scenario that is described in this section. When a student registers for a course, t
Registrar object performs, as part of its registration process, invocations to the
Teller object, which charges the student’s account for the course.

This section describes the design for the Wrapper sample application, which
incorporates an additional server application, Billing, into the configuration.
Therefore, the Wrapper sample application consists of the following four server
applications:

� University, which has theRegistrarFactory , Registrar , and
CourseSynopsisEnumerator objects

� Billing, which has theTellerFactory andTeller objects

� BEA Tuxedo Teller Application, which has theCURRBALANCE, CREDIT, and
DEBIT services

� The Oracle7 Transaction Manager Server (TMS)

In addition, theUBBCONFIGfile for the Wrapper sample application specifies the
following groups:

� ORA_GRP, which contains the University server application, the BEA Tuxedo
Teller application, and the Oracle7 TMS. Since these three processes are
involved in transactions on the University database, they must all be in the sa
group, along with the database itself.

� APP_GRP, which contains the Billing server application. This application does
not need to be in ORA_GRP, because this application does not interact with th
University database.

The configuration of the WebLogic Enterprise domain in the Wrapper sample
application is shown in the following figure.
6-8 Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

are
Incorporating a BEA Tuxedo application into the University sample applications
makes sense from the standpoint of using the Process-Entity design pattern. BEA
Tuxedo applications generally implement the Process-Entity design pattern, which
also used in the University sample applications.

The University database is updated to include a new table containing account
information for each student. Therefore, when services in the BEA Tuxedo Teller
Application process billing data, they perform transactions using the University
database.

University Server BEA TUXEDO Teller
Application

CURRBALANCE
Service

CREDIT Service

DEBIT Service

CourseSynopsisEnumerator
Object

Registrar Object

RegistrarFactory Object

Billing Server

Teller Object

TellerFactory Object

Database

ORA_GRP APP_GRP

Oracle7
Transaction

Manager Server
Student Info

Account Info

Course Info
Creating CORBA C++ Server Applications 6-9

6 Wrapping a BEA Tuxedo Service in an Object

:

tifies

n
ls

o,
ect
How the Wrapper University Sample Application Works

A typical usage scenario in the Wrapper sample application encompasses the
following sequence of events:

1. After the student logon procedure, the client application invokes the
get_student_details() operation on theRegistrar object. Included in the
implementation of theget_student_details() operation is code that retrieves

� The student’s account number from the student table in the database

� The student’s balance from the account table in the database, which is
obtained by invoking theget_balance() operation on theTeller object

2. The student browses courses, as with the Basic sample application, and iden
a list of courses for which he or she wants to register.

3. The client application sends a request to theRegistrar object, as with the
Transactions sample application scenario, to invoke the
register_for_courses() operation. The request continues to include only a
list of course numbers and a student ID.

4. While registering the student for the list of courses, the
register_for_courses() operation invokes:

� Theget_balance() operation on theTeller object, to make sure that the
student does not have a delinquent account

� Thedebit() operation on theTeller object, which is managed by the
Billing server application to bill for courses

5. Theget_balance() anddebit() operations on theTeller object each send a
request to the BEA Tuxedo Teller application. Encapsulated in the request is a
FML buffer containing the appropriate calls, including the account number cal
to, respectively, theCURRBALANCEandDEBIT services in the BEA Tuxedo Teller
application.

6. TheCURRBALANCEandDEBIT services perform the appropriate database calls t
respectively, obtain the current balance and debit the student’s account to refl
the charges for the courses for which he or she has registered.

If the student has a delinquent account, theRegistrar object returns the
DelinquentAccount exception to the client application. The client application
then rolls back the transaction.
6-10 Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

nt is
ited

le

to
s

If the debit() operation fails, theTeller object invokes the
rollback_only() operation on the TransactionCurrent object. Because the
Teller andRegistrar objects are scoped within the same transaction, this
rollback affects the entire registration process and thus prevents the situation
where there is an inconsistent database (showing, for example, that the stude
registered for the course, but the student’s account balance has not been deb
for the course).

7. If no exceptions have been raised, theRegistrar object registers the student for
the desired courses.

Interface Definitions for the Billing Server Application

The following interface definitions are defined for the Billing server application:

� TheTellerFactory object, whose only operation isfind_teller() . The
find_teller() operation works exactly the same as thefind_registrar()

operation in the University serverRegistrarFactory object.

� TheTeller object, which, as mentioned earlier, implements the following
operations:

� debit()

� credit()

� current_balance()

Like theRegistrar object, theTeller object has no state data and does not
have a unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application

The following additional considerations influence the design of the Wrapper samp
application:

� TheRegistrar object needs a way to send requests to theTeller object to
handle billing operations.

� The University server application and the BEA Tuxedo Teller Application need
access to the same database. Therefore, for course registration transactions
work properly, both server applications need to be in the same server group a
the Oracle7 TMS and the University database.
Creating CORBA C++ Server Applications 6-11

6 Wrapping a BEA Tuxedo Service in an Object

sign

in
bject

ocess
dure is
e to
nd
the
Both of these considerations have implications on theUBBCONFIGfile for the Wrapper
sample application. The following sections discuss these and other additional de
considerations in detail.

Sending Requests to the Teller Object

Up until now, all the objects in the University server application have been defined
the same server process. Therefore, for one object to send a request to another o
is fairly straightforward, and is summarized in the following steps, using the
Registrar andCourseSynopsisEnumerator objects as an example:

1. TheRegistrar object creates an object reference to the
CourseSynopsisEnumerator object.

2. Using the newly created object reference, theRegistrar object sends the request
to theCourseSynopsisEnumerator object.

3. If the CourseSynopsisEnumerator object is not in memory, the TP Framework
invokes theServer::create_servant() operation on the Server object to
instantiate theCourseSynopsisEnumerator object.

However, now that there are two server processes running, and an object in one pr
needs to send a request to an object managed by the second process, the proce
not quite so straightforward. For example, the notion of getting an object referenc
an object in another server process has important implications. For one, the seco
server process has to be running when the request is made. Also, the factory for
object in the other server process must be available.

The Wrapper sample application addresses this by incorporating the following
configuration and design elements:

� The University server application gets the object reference to the
TellerFactory object in the University Server object’s
Server::initialize() operation. The University server application then
caches theTellerFactory object reference. This introduces a performance
optimization because, otherwise, theRegistrar object would need to do the
following each time it needs aTellerFactory object:

� Invoke theresolve_initial_references() operation on the Bootstrap
object to get the FactoryFinder object

� Invoke thefind_one_factory_by_id() operation on the FactoryFinder
object to obtain a reference to aTellerFactory object.
6-12 Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

o
he

the
the

tion
at

o not

ate
o

s to
� The Billing server process is started before the University server process is
started. When theRegistrar object subsequently invokes theTellerFactory

object, theRegistrar object uses the object reference acquired by the
Server::initialize() operation (described in the preceding list item). You
specify in theUBBCONFIGfile the order in which server processes are started.

� To handle billing during the course registration process, the
register_for_courses() andget_student_details() operations on the
Registrar object are modified to include code that invokes operations on the
Teller object.

Exception Handling

The Wrapper sample application is designed to handle the situation in which the
amount owed by the student exceeds the maximum allowed. If the student tries t
register for a course when he or she owes more than is permitted by University, t
Registrar object generates a user-definedDelinquentAccount exception. When
this exception is returned to the client application, the client application rolls back
transaction. For information about how to implement user-defined exceptions, see
section “User-defined Exceptions” on page 5-20.

Setting Transaction Policies on the Interfaces in the Wrapper Sample Application

Another consideration that affects the performance of the Wrapper sample applica
is setting the appropriate transaction policies for the interfaces of the objects in th
application. TheRegistrar , CourseSynopsisEnumerator , andTeller objects are
configured with thealways transaction policy. TheRegistrarFactory and
TellerFactory objects are configured with theignore transaction policy, which
prevents the transactional context from being propagated to these objects, which d
need to be included in transactions.

Configuring the University and Billing Server Applications

As mentioned earlier, the Billing server application is configured in a group separ
from the group containing the University database and the University, BEA Tuxed
Teller, and Oracle7 transaction manager server (TMS) applications.

However, since the Billing server application participates in the transactions that
register students for courses, the Billing server application must include invocation
theTP::open_xa_rm() andTP::close_xa_rm() operations in the Server object.
Creating CORBA C++ Server Applications 6-13

6 Wrapping a BEA Tuxedo Service in an Object

ded
a

This is a requirement for any server application that manages an object that is inclu
in any transaction. If that object does not perform any read or write operations on
database, you can specify theNULL resource manager in the following locations:

� In the appropriate group definition in theUBBCONFIGfile

� In an argument to thebuildobjserver command when you build the server
application

For information about building, configuring, and running the Wrapper sample
application, see theGuide to the University Sample Applications.
6-14 Creating CORBA C++ Server Applications

CHAPTER

s of
on
le.
7 Scaling a WebLogic
Enterprise Server
Application

This chapter shows how you can take advantage of several key scalability feature
the WebLogic Enterprise system to make a WebLogic Enterprise server applicati
highly scalable, using the Production University sample application as an examp
The Production sample application uses these scalability features to achieve the
following goals:

� To add a parallel processing capability, enabling the WebLogic Enterprise
domain to process multiple client requests simultaneously

� To spread the processing load on the server applications in the Production
sample application across multiple machines

This topic includes the following sections:

� Overview of the Scalability Features Available in the WebLogic Enterprise
System

� Scaling a WebLogic Enterprise Server Application. This section describes:

� Replicating Server Processes and Server Groups

� Scaling the Application Via Object State Management

� Factory-based Routing

� How the Production Server Application Can Be Scaled Further

� Choosing Between Stateless and Stateful Objects
Creating CORBA C++ Server Applications 7-1

7 Scaling a WebLogic Enterprise Server Application

ever,

of

n

Overview of the Scalability Features
Available in the WebLogic Enterprise System

Supporting highly scalable applications is one of the strengths of the WebLogic
Enterprise system. Many applications may perform well in an environment
characterized by 1 to 10 server processes, and 10 to 100 client applications. How
in an enterprise environment, applications need to support:

� Hundreds of server processes

� Tens of thousands of client applications

� Millions of objects

Deploying an application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The WebLogic
Enterprise system supports such large-scale deployments in several ways, three
which are described in this chapter as follows:

� Replicated server processes and server groups

� Object state management

� Factory-based routing

Other features provided in the WebLogic Enterprise system to make an applicatio
highly scalable include the IIOP Listener/Handler, which is summarized inGetting
Startedand fully described in theAdministration Guide. See alsoScaling,
Distributing, and Tuning Applications.
7-2 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

he

ents

e

the

es
,

Scaling a WebLogic Enterprise Server
Application

This section explains how to scale an application to meet a significantly greater
processing capability, using the Production sample application as an example. T
basic design goal for the Production sample application is to greatly scale up the
number of client applications it can accommodate by doing the following:

� Processing in parallel and on one machine client requests on multiple objects
that implement the same interface.

� Directing requests on behalf of some students to one machine, and other stud
to other machines.

� Adding more machines across which to spread the processing load.

To accommodate these design goals, the Production sample application does th
following:

� Replicates the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured.

� Replicates the groups described above on an additional machine.

� Implements a stateless object model to scale up the number of client requests
server process can manage simultaneously.

� Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This mak
these objects available on a per-client-application (and not per-process) basis
thereby accommodating a parallel-processing capability:

� RegistrarFactory

� Registrar

� TellerFactory

� Teller

� Implements factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.
Creating CORBA C++ Server Applications 7-3

7 Scaling a WebLogic Enterprise Server Application

n

ses.

ging
the
e

he

uses

y

,

Note: To make the Production sample application easy for you to use, this
application is configured on the WebLogic Enterprise software kit to run o
one machine, using one database. The examples shown in this chapter,
however, show running this application on two machines using two databa

The design of the Production sample application is set up so that it can be
configured to run on several machines and to use multiple databases. Chan
the configuration to multiple machines and databases involves modifying
UBBCONFIGfile and partitioning the databases, and is described in “How th
Production Server Application Can Be Scaled Further” on page 7-23.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets its scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Production
sample application.

OMG IDL Changes for the Production Sample Application

The only OMG IDL changes for the Production sample application are limited to t
find_registrar() andfind_teller() operations on, respectively, the
RegistrarFactory andTellerFactory objects. These two operations are modified
to require, respectively, a student ID and account number, which is needed to
implement factory-based routing. See the section “Factory-based Routing” on
page 7-13 to read about how the Production sample application implements and
factory-based routing.

Replicating Server Processes and Server Groups

The WebLogic Enterprise system offers a wide variety of choices for how you ma
configure your server applications, such as:

� One machine with one server process that implements one interface

� One machine with multiple server processes implementing one interface

� One machine with multiple server processes implementing multiple interfaces
with or without factory-based routing
7-4 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

d

er

es

cts
nt
the

for an
� Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing

In summary:

� To add more parallel processing capability to your client/server application,
replicate your server processes.

� To add more machines to your deployment environment, add more groups an
implement factory-based routing.

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the WebLogic Enterprise system.

Replicated Server Processes

When you replicate the server processes in your application:

� You obtain a means to balance the load of incoming requests on that server
application. As requests arrive in the WebLogic Enterprise domain for the serv
group, the WebLogic Enterprise system routes the request to the least busy
server process within that group.

� You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

� You obtain a useful failover protection in the event that one of the server imag
stops.

To achieve the full benefit of replicated server processes, make sure that the obje
instantiated by your server application generally have unique IDs. This way, a clie
invocation on an object can cause the object to be instantiated on demand, within
bounds of the number of server processes that are available, and not queued up
already active object.

Figure 7-1 shows the following:

� The University server application, BEA Tuxedo Teller Application, and Oracle7
TMS server processes are replicated within the ORA_GRP group.
Creating CORBA C++ Server Applications 7-5

7 Scaling a WebLogic Enterprise Server Application

has
gic
� The Billing server process is replicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.

Figure 7-1 Replicated Server Groups in the Production Sample

When a request arrives for either of these groups, the WebLogic Enterprise domain
several server processes available that can process the request, and the WebLo
Enterprise domain can choose the server process that is least busy.

In Figure 7-1, note the following:

Database

RegistrarFactory

Registrar

TellerFactory

Teller

BEA TUXEDO
Teller Application

debit()
credit()
current_balance()

University Server Billing Server

Production Machine

CourseSynopsys
Enumerator

ORA_GRP APP_GRP

Oracle7
Transaction

Manager Server
7-6 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

ds

r

� At any time, there may be no more than one instance of theRegistrarFactory ,
Registrar , TellerFactory , or Teller objects within a given server process.

� There may be any number ofCourseSynopsisEnumerator objects in any
University server process.

Replicated Server Groups

The notion of server groups is specific to the WebLogic Enterprise system and ad
value to a CORBA implementation; server groups are an important part of the
scalability features of the WebLogic Enterprise system. Basically, to add more
machines to a deployment, you need to add more groups.

Figure 7-2 shows the Production sample application groups replicated on anothe
machine, as specified in the application’sUBBCONFIGfile, as ORA_GRP2 and
APP_GRP2.
Creating CORBA C++ Server Applications 7-7

7 Scaling a WebLogic Enterprise Server Application

n
ins
ction
nts.
t

hich
Figure 7-2 Replicating Server Groups Across Machines

In Figure 7-2, the only difference between the content of the groups on Productio
Machines 1 and 2 is the database. The database for Production Machine 1 conta
student and account information for a subset of students. The database for Produ
Machine 2 contains student and account information for a different subset of stude
(The course information table in both databases is identical.) Note that the studen
information in a given database may be completely unrelated to the account
information in the same database.

The way in which server groups are configured, where they run, and the ways in w
they are replicated is specified in theUBBCONFIGfile. When you replicate a server
group, you can do the following:

� Have a means to spread processing load for a given application or set of
applications across additional machines.

Production Machine 1

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 1

APP_GRP1ORA_GRP1

Production Machine 2

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 2

APP_GRP2ORA_GRP2

Oracle7
Transaction

Manager Server

Oracle7
Transaction

Manager Server
7-8 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

one
ne.

ic

ple
d

e

tiple

r

r
,
al
� Use factory-based routing to send one set of requests on a given interface to
machine, and another set of requests on the same interface to another machi

The effect of having multiple server groups includes the following:

� When a client request arrives in the WebLogic Enterprise domain, the WebLog
Enterprise system checks the group ID specified in the object reference.

� The WebLogic Enterprise domain sends the request to the least busy server
process within the group to which the request is routed that can process the
request.

The section “Factory-based Routing” on page 7-13 shows how the Production sam
application uses factory-based routing to spread the application’s processing loa
across multiple machines.

Configuring Replicated Server Processes and Groups

To configure replicated server processes and groups in your WebLogic Enterpris
domain:

1. Bring your application’sUBBCONFIGfile into a text editor, such as WordPad.

2. In theGROUPSsection, specify the names of the groups you want to configure.

3. In theSERVERSsection, enter the following information for the server process
you want to replicate:

� A server application name.

� TheGROUPparameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across mul
groups, specify the server process once for each group.

� TheSRVID parameter, which specifies a numeric identifier, giving the serve
process a unique identity.

� TheMIN parameter, which specifies the number of instances of the server
process to start when the application is booted.

� TheMAXparameter, which specifies the maximum number of server
processes that can be running at any one time.

Thus theMIN andMAXparameters determine the degree to which a given serve
application can process requests on a given object in parallel. During run time
the system administrator can examine resource bottlenecks and start addition
Creating CORBA C++ Server Applications 7-9

7 Scaling a WebLogic Enterprise Server Application

at
server processes, if necessary. In this sense, the application is designed so th
the system administrator can scale it.

The following example shows lines from theGROUPSandSERVERSsections of the
UBBCONFIGfile for the Production sample application.

*GROUPS
APP_GRP1

LMID = SITE1
GRPNO = 2
TMSNAME = TMS

APP_GRP2
LMID = SITE1
GRPNO = 3
TMSNAME = TMS

ORA_GRP1
LMID = SITE1
GRPNO = 4
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

ORA_GRP2
LMID = SITE1
GRPNO = 5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

*SERVERS
By default, activate 2 instances of each server
and allow the administrator to activate up to 5
instances of each server
DEFAULT:

MIN = 2
MAX = 5

tellp_server
SRVGRP = ORA_GRP1
SRVID = 10
RESTART = N

tellp_server
SRVGRP = ORA_GRP2
SRVID = 10
RESTART = N

billp_server
SRVGRP = APP_GRP1
SRVID = 10
RESTART = N

billp_server
7-10 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

is a
is

e the
sing

dels
y in
SRVGRP = APP_GRP2
SRVID = 10
RESTART = N

univp_server
SRVGRP = ORA_GRP1
SRVID = 20
RESTART = N

univp_server
SRVGRP = ORA_GRP2
SRVID = 20
RESTART = N

Scaling the Application Via Object State Management

As stated in Chapter 1, “Server Application Concepts,” object state management
fundamentally important concern of large-scale client/server systems because it
critically important that such systems achieve optimized throughput and response
time. This section explains how you can use object state management to increas
scalability of the objects managed by a WebLogic Enterprise server application, u
theRegistrar andTeller objects in the Production sample applications as an
example.

The following table summarizes how you can use the object state management mo
supported in the WebLogic Enterprise system to achieve major gains in scalabilit
your WebLogic Enterprise applications.
Creating CORBA C++ Server Applications 7-11

7 Scaling a WebLogic Enterprise Server Application

ly

ta

del

first

e

ed
To achieve scalability gains, theRegistrar andTeller objects are configured in the
Production server application to have themethod activation policy. Themethod

activation policy assigned to these two objects results in the following behavior
changes:

� Whenever these objects are invoked, they are instantiated by the WebLogic
Enterprise domain in the appropriate server group.

� After the invocation is complete, the WebLogic Enterprise domain deactivates
these objects.

State Model How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory on
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state da
for that object is flushed from memory.

You can use method-bound objects to create a stateless server mo
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not b
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be consider
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)
7-12 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

ct

ailable
of
r

bjects,
onse

f the
opy
, the

nal

t
hat
an

.

nd

ts to
of

he
With the Basic through the Wrapper sample applications, theRegistrar object was
process-bound. All client requests on that object invariably went to the same obje
instance in the machine’s memory. The Basic sample application design may be
adequate for a small-scale deployment. However, as client application demands
increase, client requests on theRegistrar object eventually become queued, and
response time drops.

However, when theRegistrar andTeller objects are stateless, and the server
processes that manage these objects are replicated, these objects can be made av
to process client requests on them in parallel. The only constraint on the number
simultaneous client requests that these objects can handle is the number of serve
processes that are available that can instantiate these objects. These stateless o
thereby, make for more efficient use of machine resources and reduced client resp
time.

Most importantly, so that the WebLogic Enterprise system can instantiate copies o
Registrar andTeller objects in each of the replicated server processes, each c
of these objects must be unique. To make each instance of these objects unique
factories for those objects must assign unique object IDs to them. This, and other
design considerations on these two objects, are described in the section “Additio
Design Considerations for the Registrar and Teller Objects” on page 7-19.

Factory-based Routing

Factory-based routing is a powerful feature that provides a means to send a clien
request to a specific server group. Using factory-based routing, you can spread t
processing load for a given application across multiple machines, because you c
determine the group, and thus the machine, in which a given object is instantiated

You can use factory-based routing to expand upon the variety of load-balancing a
scalability capabilities in the WebLogic Enterprise system. In the case of the
Production sample application, you can use factory-based routing to send reques
register one subset of students to one machine, and requests for another subset
students to another machine. As you add machines to ramp up your application’s
processing capability, the WebLogic Enterprise system makes it easy to modify t
factory-based routing in your application to add more machines.
Creating CORBA C++ Server Applications 7-13

7 Scaling a WebLogic Enterprise Server Application

ale
ing

our

ion

up;

,

up

g
tion

est to
oup

y

uss
The chief benefit of factory-based routing is that it provides a simple means to sc
up an application, and invocations on a given interface in particular, across a grow
deployment environment. Spreading the deployment of an application across
additional machines is strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in y
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the Product
sample application, which uses factory-based routing in the following way:

� Client application requests to theRegistrar object are routed based on the
student ID. That is, requests on behalf of one subset of students go to one gro
and requests on behalf of another subset of students go to another group.

� Requests to theTeller object are routed based on the account number. That is
billing requests on behalf of one subset of accounts go to one group; and
requests on behalf of another subset of accounts go to another group.

How Factory-based Routing Works

Your factories implement factory-based routing by changing the way they create
object references. All object references contain a group ID, and by default the gro
ID is the same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routin
criteria that determines the group ID. Then when client applications send an invoca
using such an object reference, the WebLogic Enterprise system routes the requ
the group ID specified in the object reference. This section focuses on how the gr
ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:

� Data in theINTERFACESandROUTINGsections of theUBBCONFIGfile.

� Groups, machines, and databases configured in theUBBCONFIGfile.

� How the factory specifies routing criteria. The interface definition for the factor
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections disc
configuring for factory-based routing in theUBBCONFIGfile, and implementing
factory-based routing in the factory.
7-14 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

ing

inds
an

e

he
Configuring for Factory-based Routing in the UBBCONFIG file

For each interface for which requests are routed, you need to establish the follow
information in theUBBCONFIGfile:

� Details about the data in the routing criteria

� For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, theUBBCONFIGfile needs to specify the
following data in theINTERFACESandROUTINGsections, and also in how groups and
machines are identified:

1. TheINTERFACESsection lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what k
of criteria the interface routes on. This section specifies the routing criteria via
identifier, FACTORYROUTING, as in the following example:

INTERFACES
"IDL:beasys.com/UniversityP/Registrar:1.0"

FACTORYROUTING = STU_ID
"IDL:beasys.com/BillingP/Teller:1.0"

FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two
interfaces in the Production sample in which factory-based routing is used. Th
FACTORYROUTINGidentifier specifies the names of the routing values, which are
STU_ID andACT_NUM, respectively.

2. TheROUTINGsection specifies the following data for each routing value:

� TheTYPEparameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined toFACTORY.

� TheFIELD parameter, which specifies the name that the factory inserts in t
routing value. In the Production sample, the field parameters are
student_id andaccount_number , respectively.

� TheFIELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample, the field types forstudent_id and
account_number arelong .

� TheRANGESparameter, which specifies the values that are routed to each
group.
Creating CORBA C++ Server Applications 7-15

7 Scaling a WebLogic Enterprise Server Application

e

P1,

n

The following example shows theROUTINGsection of theUBBCONFIGfile used
in the Production sample application:

ROUTING
STU_ID

FIELD = "student_id"
TYPE = FACTORY
FIELDTYPE = LONG
RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

ACT_NUM
FIELD = "account_number"
TYPE = FACTORY
FIELDTYPE = LONG
RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows thatRegistrar object references for students
with IDs in one range are routed to one server group, andRegistrar object
references for students with IDs in another range are routed to another group.
Likewise,Teller object references for accounts in one range are routed to on
server group, andTeller object references for accounts in another range are
routed to another group.

3. The groups specified by theRANGESidentifier in theROUTINGsection of the
UBBCONFIGfile need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GR
and ORA_GRP2. These groups need to be configured, and the machines on
which they run need to be identified.

The following example shows theGROUPSsection of the Production sample
UBBCONFIGfile, in which the ORA_GRP1 and ORA_GRP2 groups are
configured. Notice how the names in theGROUPSsection match the group names
specified in theROUTINGsection; this is critical for factory-based routing to
work correctly. Furthermore, any change in the way groups are configured in a
application must be reflected in theROUTINGsection. (Note that the Production
sample packaged with the WebLogic Enterprise software is configured to run
entirely on one machine. However, you can easily configure this application to
run on multiple machines.)

*GROUPS
APP_GRP1

LMID = SITE1
GRPNO = 2
TMSNAME = TMS

APP_GRP2
LMID = SITE1
GRPNO = 3
7-16 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

d

TMSNAME = TMS
ORA_GRP1

LMID = SITE1
GRPNO = 4
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

ORA_GRP2
LMID = SITE1
GRPNO = 5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing by the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has
the following C++ binding:

CORBA::Object_ptr TP::create_object_reference (
const char* interfaceName,
const PortableServer::oid &stroid,
CORBA::NVlist_ptr criteria);

The third parameter to this operation,criteria , specifies a list of named values to be
used for factory-based routing. Therefore, the work of implementing factory-base
routing in a factory is in building theNVlist .

As stated previously, theRegistrarFactory object in the Production sample
application specifies the valueSTU_ID. This value must match exactly the following
in theUBBCONFIGfile:

� The routing name, type, and allowable values specified by theFACTORYROUTING

identifier in theINTERFACESsection.

� The routing criteria name, field, and field type specified in theROUTINGsection.

TheRegistrarFactory object inserts the student ID into theNVlist using the
following code:

// put the student id (which is the routing criteria)
// into a CORBA NVList:
CORBA::NVList_var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA::Any any;
Creating CORBA C++ Server Applications 7-17

7 Scaling a WebLogic Enterprise Server Application

sly
ect

our

ain
at if
e

on

nt
any <<= (CORBA::Long)student;
v_criteria->add_value("student_id", any, 0);

TheRegistrarFactory object has the following invocation to the
TP::create_object_reference() operation, passing theNVlist created in the
preceding code example:

// create the registrar object reference using
// the routing criteria :
CORBA::Object_var v_reg_oref =

TP::create_object_reference(
UniversityP::_tc_Registrar->id(),
object_id,
v_criteria.in()

);

The Production sample application also uses factory-based routing in the
TellerFactory object to determine the group in whichTeller objects should be
instantiated based on an account number.

Note: It is possible for an object with a given interface and OID to be simultaneou
active in two different groups, if those two groups both contain the same obj
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of a given interface name and OID is available at any one time in y
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your dom
so that a given object implementation is in only one group. This assures th
multiple clients have an object reference containing a given interface nam
and OID, the reference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criteri
in the TP::create_object_reference() operation, and set up the
UBBCONFIGfile appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the WebLogic Enterprise
system generates an object reference. The following example shows how the clie
application gets an object reference to aRegistrar object when factory-based routing
is implemented:

1. The client application invokes theRegistrarFactory object, requesting a
reference to aRegistrar object. Included in the request is a student ID.
7-18 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

with

e.

he
p

hat

r

uld

in
s.
2. TheRegistrarFactory inserts the student ID into anNVlist , which is used as
the routing criteria.

3. TheRegistrarFactory invokes theTP::create_object_reference()

operation, passing theRegistrar interface name, a unique OID, and the
NVlist .

4. The WebLogic Enterprise system compares the contents of the routing tables
the value in theNVlist to determine a group ID.

5. The WebLogic Enterprise system inserts the group ID into the object referenc

When the client application subsequently does an invocation on an object using t
object reference, the WebLogic Enterprise system routes the request to the grou
specified in the object reference.

Note: Be careful how you implement factory-based routing if you use the
process-entity design pattern. The object can service only those entities t
are contained in the group’s database.

Additional Design Considerations for the Registrar and
Teller Objects

The principal considerations that influence the design of theRegistrar andTeller

objects include:

� How to ensure that theRegistrar andTeller objects work properly for the
Production deployment environment; namely, across multiple replicated serve
processes and multiple groups. Given that the University and Billing server
processes are replicated, the design must consider how these two objects sho
be instantiated.

� How to ensure that client requests for registration and billing operations for a
given student go to the correct server group, given that the two server groups
the Production WebLogic Enterprise domain each deal with different database

The primary implications of these considerations are that these objects must:

� Have unique object IDs (OIDs)

� Be method-bound; that is, have themethod activation policy assigned to them
Creating CORBA C++ Server Applications 7-19

7 Scaling a WebLogic Enterprise Server Application

etail.

e it

n

e
e

a

e.

hen
The remainder of this section discusses these considerations and implications in d

Instantiating the Registrar and Teller Objects

In University server applications prior to the Production sample application, the
run-time behavior of theRegistrar andTeller objects was fairly simple:

� Each object was process-bound, meaning that each was activated the first tim
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

� Since there was only one server group running in the WebLogic Enterprise
domain, and only one University and Billing server process in the group, all
client requests were directed to the same objects. As multiple client requests
arrived in the WebLogic Enterprise domain, these objects each processed one
client request at one time.

� Because there was only one instance of each object in the server processes i
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, since the University and Billing server processes are now replicated, th
WebLogic Enterprise domain must have a means to differentiate between multipl
instances of theRegistrar andTeller objects. That is, if there are two University
server processes running in a group, the WebLogic Enterprise domain must have
means to distinguish between, say, theRegistrar object running in the first
University server process and theRegistrar object running in the second University
server process.

The way to provide the WebLogic Enterprise domain with the ability to distinguish
among multiple instances of these objects is to make each object instance uniqu

To make eachRegistrar andTeller object unique, the factories for those objects
must change the way in which they make object references to them. For example, w
theRegistrarFactory object in the Basic sample application created an object
reference to theRegistrar object, theTP::create_object_reference()

operation specified an OID that consisted only of the stringregistrar . However, in
the Production sample application, the sameTP::create_object_reference()

operation uses a generated unique OID instead.
7-20 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

ated
with
s this

cts
ical

ur
u

ses.
tem

se
ent

the

or

rlier,
A consequence of giving eachRegistrar andTeller object a unique OID is that
there may be multiple instances of these objects running simultaneously in the
WebLogic Enterprise domain. This characteristic is typical of the stateless object
model, and is an example of how the WebLogic Enterprise domain can be highly
scalable and at the same time offer high performance.

And last, since uniqueRegistrar andTeller objects need to be brought into
memory for each client request on them, it is critical that these objects be deactiv
when the invocations on them are completed so that any object state associated
them does not remain idle in memory. The Production server application addresse
issue by assigning themethod activation policy to these two objects in the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group

The chief scalability advantage of having replicated server groups is to be able to
distribute processing across multiple machines. However, if your application intera
with a database, which is the case with the University sample applications, it is crit
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in yo
deployment. If your server application is distributed across multiple machines, yo
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databa
However, this application can easily be configured to accommodate more. The sys
administrator can decide how many.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information is identical. Having
identical course information in both databases is not a problem because the cour
information is read-only for the purposes of course registration. However, the stud
and account information is read-write. If multiple databases were also to contain
identical data for students and accounts (that is, the database is not partitioned),
application would need to deal with the overhead of synchronizing the updates to
student and account information across all the databases each time any student
account information were to change.

The Production sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. As mentioned ea
factory-based routing is implemented in theRegistrarFactory object by the way in
which references toRegistrar objects are created.
Creating CORBA C++ Server Applications 7-21

7 Scaling a WebLogic Enterprise Server Application

that

dent.

.

e

he
oes

ine

the
For example, when the client application sends a request to theRegistrarFactory

object to get an object reference to aRegistrar object, the client application includes
a student ID in that request. The client application must use the object reference
theRegistrarFactory object returns to make all subsequent invocations on a
Registrar object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes theget_student_details() operation on the
Registrar object, the client application can be assured that theRegistrar object is
active in the server group associated with the database containing data for that stu
To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes thefind_registrar() operation on the
RegistrarFactory object. Included in this invocation is the student ID 1000003

2. The WebLogic Enterprise domain routes the client request to any
RegistrarFactory object.

3. TheRegistrarFactory object uses the student ID to create an object referenc
to aRegistrar object in ORA_GRP1, based on the routing information in the
UBBCONFIGfile, and returns that object reference to the client application.

4. The client application invokes theregister_for_courses() operation on the
Registrar object.

5. The WebLogic Enterprise domain receives the client request and routes it to t
server group specified in the object reference. In this case, the client request g
to the University server process in ORA_GRP1, which is on Production Mach
1.

6. The University server process instantiates aRegistrar object and sends the
client invocation to it.

TheRegistrarFactory object from the preceding scenario returns to the client
application a unique reference to aRegistrar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing
student data for students with IDs in the range 100001 to 100005. Therefore, when
client application sends subsequent requests to thisRegistrar object on behalf of a
given student, theRegistrar object interacts with the correct database.
7-22 Creating CORBA C++ Server Applications

How the Production Server Application Can Be Scaled Further

on

the
erly.

s
s to

le as
t and

ant
ay

r an
e

Ensuring That the Teller Object is Instantiated in the Correct Server Group

When theRegistrar object needs aTeller object, theRegistrar object invokes the
TellerFactory object, using theTellerFactory object reference cached in the
University Server object, as described in “Sending Requests to the Teller Object”
page 6-12.

However, because factory-based routing is used in theTellerFactory object, the
Registrar object passes the student’s account number when theRegistrar object
requests a reference to aTeller object. This way, theTellerFactory object creates
a reference to aTeller object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that
system administrator configures the server groups and the databases prop
In particular, the system administrator must make sure that a match exist
between the routing criteria specified in the routing tables and the database
which requests using those criteria are routed. Using the Production samp
an example, the database in a given group must contain the correct studen
account information for the requests that are routed to that group.

How the Production Server Application Can
Be Scaled Further

In the future, the system administrator of the Production sample application may w
to add capacity to the WebLogic Enterprise domain. For example, the University m
eventually have a large increase in the student population, or the Production
application may be scaled up to accommodate the course registration process fo
entire state university system encompassing several campuses. This can be don
without modifying or rebuilding the application.
Creating CORBA C++ Server Applications 7-23

7 Scaling a WebLogic Enterprise Server Application

city:

l

un

r,

are
tion
t up

st the

--
able
ense
ase
e

The system administrator has the following tools available to continually add capa

� Replicating the Production sample application server groups across additiona
machines.

Doing this requires modifying theUBBCONFIGfile to specify the additional
groups, what server processes run in those groups, and what machines they r
on.

� Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapte
the system administrator can modify the routing rules in theUBBCONFIGfile to
partition the application further among the new groups added to the WebLogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in theUBBCONFIGfile.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you
using factory-based routing. For example, if the Production sample applica
is spread across six machines, the database on each machine must be se
appropriately and in accordance with the routing tables in theUBBCONFIGfile.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing stateless objects again
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive
because, for example, the object’s data takes up a great deal of space, or the dur
state is located on a disk very remote to the servant that activates it -- it may make s
to keep the object stateful, even if the object is idle during a conversation. In the c
where the cost to keep an object active is expensive in terms of machine resourc
usage, it may make sense to make such an object stateless.
7-24 Creating CORBA C++ Server Applications

Choosing Between Stateless and Stateful Objects

on,
us

other
ay

er
less
less

.

e

ject

e

e

By managing object state in a way that’s efficient and appropriate for your applicati
you can maximize your application’s ability to support large numbers of simultaneo
client applications that use large numbers of objects. You generally do this by
assigning themethod activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to
object instances. However, your specific application characteristics and needs m
vary.

When You Want Stateless Objects

Stateless objects generally provide good performance and optimal usage of serv
resources, because server resources are never used when objects are idle. State
objects are generally a good approach to implementing server applications. State
objects are particularly appropriate in the following situations:

� The client application typically waits for user input between invocations on the
object.

� The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data

� The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from th
client application.

Note the following characteristics about an application that employs a stateless ob
model:

� Information about and associated with an invocation is not maintained after th
server application has finished executing a client request.

� An incoming client request is sent to the first available server process: after th
request has been satisfied, the application state vanishes and the server
application is available for another client application request.

� Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.
Creating CORBA C++ Server Applications 7-25

7 Scaling a WebLogic Enterprise Server Application

t

is

uch
the

s.

ects

n.
ent
r of

ted

not
tter

n.
� The WebLogic Enterprise domain may direct successive requests on an objec
from a given client application to a different server process.

� The overall system performance of a machine that is running stateless objects
usually enhanced.

When You Want Stateful Objects

A stateful object, once activated, remains in memory until a specific event occurs, s
as the process in which the object exists is shut down, or the transaction in which
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

� When an object is used very frequently by a large number of client application
This is the case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active obj
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in a transactio
Any object that is involved in a transaction cannot be invoked by another cli
application or object. Process objects meant to be used by a large numbe
client applications can create problems if they are involved in transactions
frequently or for long durations.

� When a client application must invoke successive operations on an object to
complete a transaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactiva
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may
be appropriate for transactions. You can trade holding server resources for be
response time.

Note the following behavior with stateful objects:

� State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duratio
7-26 Creating CORBA C++ Server Applications

Choosing Between Stateless and Stateful Objects

ons,
n

ces,
bject

in

.

� Even though data is sent and received between the client and server applicati
the server process maintains additional context or application state informatio
in memory.

� In cases where one or more stateful objects are using a lot of machine resour
server performance for tasks and processes not associated with the stateful o
may be worse than with a stateless server model.

For example, if an object has a lock on a database and is caching a lot of data
memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction
Creating CORBA C++ Server Applications 7-27

7 Scaling a WebLogic Enterprise Server Application
7-28 Creating CORBA C++ Server Applications

Index

A
ACID properties 5-2
activate_object() operation

and exceptions 2-22
and preactivated objects 3-18
example 3-13

activation policies
method 7-11
process 3-10
transaction 5-16

allocating FML32 buffers 6-4
always transaction policy 5-11

example 6-13
application_responsibility() operation 2-30
application-controlled deactivation

example 3-10
overview 1-14

AUTOTRANS
see transactional objects

B
BAD_OPERATION 2-22
Basic University sample

design considerations 3-7
handling durable state in 3-12
ICF file 3-11
managing object state 3-10
OMG IDL for 3-2
summary 3-2
use of design patterns in 3-15

BEA TUXEDO server applications
designing an object that has calls to 6-3
using in a WLE domain 6-2

BEA TUXEDO service
calling from a WLE application 6-3
choosing buffer type for 6-4

Billing server application
in University samples 6-11

C
callback methods

detecting error conditions in 2-26
client applications

how they access objects 1-4
client stub 1-3
client/server contract 1-3
close_xa_rm() operation 5-15
closing an XA resource manager 5-15
compiling OMG IDL 2-3
conversations

implementing transactionally 5-2
CORBA objects

See objects
create_active_object_reference() operation

3-17
create_object_reference() operation

example 2-8
specifying routing criteria 7-17

create_servant() operation
and exceptions 2-22
Creating CORBA C++ Server Applications I-1

and OBJECT_NOT_EXIST 2-27
creating object references 2-11
creating server applications

summary 2-2
cursors

database 5-11
customer support contact information xi

D
data

reading and writing for an object 1-15
data marshaling

disabling 3-17
database cursors 5-11
databases

opening and closing 2-12
data-dependent routing

See factory-based routing
deactivate_object() operation

and exceptions 2-22
and servant pooling 2-29
and transactions 5-16
handling state in 2-28
restrictions on using 2-28

deactivateEnable() operation 3-10
and preactivated objects 3-18
example of 3-10
overview 1-14

debugging tips 2-20
design patterns

List-Enumerator 1-23
List-Enumerator (example) 3-15
Process-Entity 1-23
Process-Entity (example) 3-15
used in University samples 3-15

development process
summary 2-2

Digital C++ compiler
using with tie classes 2-34

documentation, where to find it x

DR_TRANS_ABORT 5-16
DR_TRANS_COMMITTING 5-16
durable objects 1-15
durable state handling

example 3-12

E
exceptions

ActivateObjectFailed 2-22
AlreadyRegistered 2-22
and client applications 2-21
and create_servant 2-22
and server applications 2-21
BAD_OPERATION 2-22
CannotProceed 2-22
CORBA 2-21
CreateServantFailed 2-22
DeactivateObjectFailed 2-22
how to write user-defined 5-20
IllegalInterface 2-22
in activate_object() 2-22
in deactivate_object() 2-22
InitializeFailed 2-22
INVALID_TRANSACTION 5-18
InvalidDomain 2-22
InvalidInterface 2-22
InvalidName 2-22
InvalidObject 2-22
InvalidObjectID 2-22
InvalidServant 2-22
NilObject 2-22
NoSuchElement 2-22
OBJ_ADAPTER 5-18
OBJECT_NOT_EXIST 2-22
OrbProblem 2-22
OutOfMemory 2-22
OverFlow 2-22
RegistrarNotAvailable 2-22
ReleaseFailed 2-22
TpfProblem 2-22
I-2 Creating CORBA C++ Server Applications

-

UnknownInterface 2-22
UserExceptions 2-22

F
factories

advantages of 1-10
and factory-based routing 7-17
and object references 1-4
example 3-8
how clients obtain 1-10
overview 1-9
registering 2-11

factory-based routing
and UBBCONFIG file 7-15
how it works 7-14
implementing in a factory 7-17
summary 7-13

FML 6-4
FML32 buffers

allocating 6-4

G
generating object references 1-9
groups

configuring server 7-7
creating 7-7
routing requests to specific 7-14

I
ICF file 2-7

assigning transaction policies in 5-15
IDL

See OMG IDL
idl command 2-3
IDL compiler 1-4

generating tie classes 2-6
using 2-5

ignore transaction policy 5-14

IIOP Listener/Handler 7-2
implementation

object, See object implementations
Implementation Configuration File (ICF file)

See ICF file
instantiating objects 1-7
Interface Repository 1-3
Interface Repository identifier 1-5
interfaces

defining 1-3
delegating implementation of 2-31
limiting compilation of 2-7
validating 2-27

INVALID_TRANSACTION exception 5-18

L
legacy objects

integrating into WLE 2-31
Listener/Handler

IIOP 7-2
List-Enumerator design pattern 1-24
List-Enumerator design pattern (example) 3

15

M
method templates 1-4
method-bound objects 1-12

N
nested transactions 5-18
never transaction policy 5-13
new

C++ statement 1-7
NULL resource manager 5-16

O
OBJ_ADAPTER exception 5-18
object factories
Creating CORBA C++ Server Applications I-3

5

See factories
Object ID

See OID
object implementations

delegated 2-31
overview 1-2
See also objects 1-2

object references
about 1-4
contents of 1-5
creating 2-11
generating 1-9
generating (example) 3-8
lifespan of 1-6

object state
and the WLE system 1-10

object state management
and scalability 7-11
and transactions 5-8
delegating to an XA resource manager 5-

16
managing in Basic sample 3-10

OBJECT_NOT_EXIST 2-22
and OMG IDL mismatches 2-27

objects
activating 1-19
bypassing in a transaction 5-14
choose stateful 7-26
choosing stateless 7-25
constructors 1-4
deactivating 1-19
deactivating process 1-14
destructors 1-4
excluding from a transaction 5-13
implementing an interface for 1-4
including optionally in a transaction 5-

12
instantiating 1-7
legacy 2-31
making always transactional 5-11
making always transactional (example)

6-13
managing 1-10
method-bound 1-12
polling in a transaction 5-16
pooling servants for 2-29
process-bound 1-12
reading and writing state data 1-15
setting activation policies for 1-11
transaction-bound 1-12
transient 3-18

OID 3-8
OMG IDL

defining an object with 1-3
defining operations with 1-3
for the Basic University sample 3-2
for Wrapper University sample 6-11
in Production University sample 7-4
versioning mismatch 2-27

open_xa_rm() operation 5-15
opening an XA resource manager 5-15
optional transaction policy 5-12
Oracle7 5-9

P
persistent objects 1-15
pooling

servant 2-29
printing product documentation x
process-bound objects

transaction-bound objects 1-12
Process-Entity design pattern 1-23
Process-Entity design pattern (example) 3-1
Production University sample

OMG IDL for 7-4
UBBCONFIG file 7-9

R
recursive transactions 5-18
Registrar object
I-4 Creating CORBA C++ Server Applications

n-
policies on in Transactions University
sample 5-8

RegistrarFactory object 3-8
related information xi
replicating server processes 7-4
resource manager

closing an XA 5-15
delegating object state management to 5-

16
NULL 5-16
opening XA 5-15

routing
factory-based, See factory-based routing

routing criteria
specifying in a factory 7-17

S
samplesdb.h 3-14
scaling an application 7-4

summary features for 7-2
SECURITY

parameter in UBBCONFIG file 4-2
security and WLE server applications 4-1
security models

implementing in server applications 4-2
Security University sample

design of 4-2
OMG IDL for 4-5
overview 4-3

SecurityCurrent object 4-3
servants

creating 2-12
overview 1-7
pooling 2-29

server applications
configuring in groups 7-7
developing 1-9
replicating in a group 7-4
scaling 7-4

server groups

configuring 7-7
server processes

replicating 7-4
server skeleton

See skeletons
skeletons

limiting compilation of 2-7
overview 1-3

state data
preactivating an object with 3-17
reading and writing 1-15

stateful objects
criteria for choosing 7-26
definition 1-10
See also process-bound and transactio

bound objects 1-10
stateless objects

criteria for choosing 7-25
definition 1-10
See also method-bound objects 1-10

support
technical xi

T
tie classes

compiling with Digital C++ compiler 2-
34

generating 2-6
See also delegation-based interface

implementation
TMS 5-9

configuring 5-9
Oracle7 5-9
requirements for 5-9

TobjS_c.h 2-22
tpcall() 6-6
tpforward() 6-7
tpreturn() 6-7
transaction activation policy 5-16
Transaction Manager Server
Creating CORBA C++ Server Applications I-5

5-
See TMS
transaction policies

always 5-11
always (example) 6-13
assigning in ICF file 5-15
ignore 5-14
never 5-13
optional 5-12

transactional objects
defining 5-11

transactions
and conversations 5-2
and object state management 5-16
implementing in a WLE server

application 5-4
nested 5-18
overview of 5-2
recursive 5-18

Transactions University sample
configuring 5-10
how it works 5-6
object state management 5-8
overview 5-4

transient objects 3-18
TUXEDO

See BEA TUXEDO

U
UBBCONFIG file

and factory-based routing 7-15
in Production University sample 7-9
overview 2-19
SECURITY parameter 4-2

user-defined exceptions 5-20

V
vetoing a transaction 5-16

W
WLE server applications

and security 4-1
and transactions 5-4

Wrapper University sample
configuring 6-13
design summary 6-8
how it works 6-10

wrapping a TUXEDO service
as an object 6-3

X
XA resource manager

closing 5-15
delegating object state management to

16
opening 5-15
using in Transactions University sample

5-9
I-6 Creating CORBA C++ Server Applications

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Server Application Concepts
	The Entities You Create to Build a WebLogic Enterprise Server Application
	The Implementation of the CORBA Objects for Your Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects
	The Content of an Object Reference
	The Lifetime of an Object Reference
	Passing Object Instances

	How You Instantiate a CORBA Object at Run Time
	Servant Pooling

	The Server Object

	Process for Developing WebLogic Enterprise Server Applications
	Generating Object References
	How Client Applications Find Your Server Application’s Factories
	Creating an Active Object Reference

	Managing Object State
	About Object State
	Object Activation Policies
	Application-controlled Deactivation

	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Servant Pooling and Stateless Objects

	Stateful Objects and Durable State
	Servant Pooling and Stateful Objects

	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	2 Steps for Creating a WebLogic Enterprise Server Application
	Summary of the WebLogic Enterprise Server Application Development Process
	Step 1: Compile the OMG IDL File for the Server Application
	Using the IDL Compiler
	Generating the Skeleton and Implementation Files
	Generating Tie Classes

	Step 2: Write the Methods That Implement Each Interface’s Operations
	The Implementation File Generated by the IDL Compiler
	Implementing a Factory

	Step 3: Create the Server Object
	Initializing the Server Application
	Writing the Code That Creates and Registers a Factory
	Creating Servants
	Releasing the Server Application

	Step 4: Define the In-memory Behavior of Objects
	Specifying Object Activation and Transaction Policies in the ICF File

	Step 5: Compile and Link the Server Application
	Step 6: Deploy the Server Application
	Development and Debugging Tips
	Use of CORBA and M3 Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions
	Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by Application Code
	The M3 System’s Handling of Exceptions Raised by Application Code During the Invocation of Operat...

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in Tobj_ServantBase::deactivate_object()

	Servant Pooling
	How Servant Pooling Works
	How You Implement Servant Pooling

	Delegation-based Interface Implementation
	About Tie Classes in the WebLogic Enterprise System
	When to Use Tie Classes
	How to Create Tie Classes in a WebLogic Enterprise Application

	3 Designing and Implementing a Basic WebLogic Enterprise Server Application
	How the Basic University Sample Application Works
	The Basic University Sample Application OMG IDL
	Application Startup
	Browsing Course Synopses
	Browsing Course Details

	Design Considerations for the University Server Application
	Design Considerations for Generating Object References
	Design Considerations for Managing Object State
	The RegistrarFactory Object
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Basic University Sample Application ICF File

	Design Considerations for Handling Durable State Information
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Using the University Database

	How the Basic Sample Application Applies Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	Additional Performance Efficiencies Built into the WebLogic Enterprise System
	Preactivating an Object with State
	How You Preactivate an Object with State
	Usage Notes for Preactivated Objects

	4 Security and WebLogic Enterprise Server Applications
	Overview of Security and WebLogic Enterprise Server Applications
	Design Considerations for the University Server Application
	How the Security University Sample Application Works
	Design Considerations for Returning Student Details to the Client Application

	5 Integrating Transactions into a WebLogic Enterprise Server Application
	Overview of Transactions in the WebLogic Enterprise System
	Designing and Implementing Transactions in a WebLogic Enterprise Server Application
	How the Transactions University Sample Application Works
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the WebLogic Enterprise System
	User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	6 Wrapping a BEA Tuxedo Service in an Object
	Overview of Wrapping a BEA Tuxedo Service
	Designing the Object That Wraps the BEA Tuxedo Service
	Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls
	Implementing the Operations That Send Messages to and from the BEA Tuxedo Service
	Restrictions

	Design Considerations for the Wrapper Sample Application
	How the Wrapper University Sample Application Works
	Interface Definitions for the Billing Server Application
	Additional Design Considerations for the Wrapper Sample Application
	Sending Requests to the Teller Object
	Exception Handling
	Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
	Configuring the University and Billing Server Applications

	7 Scaling a WebLogic Enterprise Server Application
	Overview of the Scalability Features Available in the WebLogic Enterprise System
	Scaling a WebLogic Enterprise Server Application
	OMG IDL Changes for the Production Sample Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG file
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations for the Registrar and Teller Objects
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object is Instantiated in the Correct Server Group

	How the Production Server Application Can Be Scaled Further
	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects

	Index

