'a' oo,

% hea
BEA WebLogic Enterprise

Creating CORBA C++
Server Applications

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.

DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,

OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Creating CORBA C++ Server Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What YOU NeeA t0 KNOWccoiiiiiiiiiiii e e e e e e X
E-UOCS WED St ..ot e e e e e e e e e e e e e e e e ee e e e e e eee e e e aetee e aeareees X
HOW t0 Print the DOCUMENT........ooiiiiiii e e e e e e e e e e aa e X
Related INfOrmation............oooiiii e Xi
CONtACT US ... e e Xi
Documentation CONVENTIONSuuuiiiiieii e ieeei e e et e e e areaeaeans Xii

1. Server Application Concepts
The Entities You Create to Build a WebLogic Enterprise Server Application. 1-2
The Implementation of the CORBA Objects for Your Server Application1-2
How Interface Definitions Establish the Operations

0N 8 CORBA ODJEC ...ttt 1-3
How You Implement the Operations on a CORBA Object................ 1-4
How Client Applications Access and Manipulate Your Application’s
CORBA ODJECES ..ottt 1-4
How You Instantiate a CORBA Object at Run Timec.cceees 1-7
The Server ODJECT.......coo i 1-8
Process for Developing WebLogic Enterprise Server Applications 1-9
Generating Object REfErenCeS.oeviiiiiiiiiie e 1-9
How Client Applications Find Your Server Application’s Factories 1-10
Creating an Active Object Reference.........ccccccvveiiiniiinie e 1-10
Managing OBJECt STALEccoiiiiiiiiiiiie e 1-10
ADOUL ODJECE STALE ...oii ittt 1-11
Object Activation POIICIEScuuieiiiiiiiiiei e 1-12
Application-controlled Deactivation............ccccoovveeeeenieieieniie e 1-14
Reading and Writing an Object’'s Datacccceveriiiieiie e 1-15

Creating CORBA C++ Server Applications iii

iv

Available Mechanisms for Reading and Writing an Object’s Durable

SHATE ..ot 1-1
Reading State at Object ACtVALIONcc.eeviiiiiiiiiiie e, 1-1¢
Reading State Within Individual Operations on an Object............... 1-19
Stateless Objects and Durable State.........cccooeveiiiiiiiiii e, 1-2
Stateful Objects and Durable State............cccceeiiiiiieiniiie e, 1-2
Your Responsibilities for Object Deactivationcccccovveeeennenn. 1-22
AvoIding UNNEcesSary /Ocoeviiiiiiiieiiiiiee e 1-22
Sample Activation Walkthroughcccceiiiiiniiie e, 1-22

USING DESIGN PAMEINSeoiiiiiiiiiiiiiit et 1-2
Process-Entity Design Pattern...........cccceeviiieeiniiiiieee e 1-2
List-Enumerator Design Pattern............coooveeeiiniieiee e 1-2/

2. Steps for Creating a WebLogic Enterprise Server Application

Summary of the WebLogic Enterprise Server Application Development

PIOCESS e 2
Step 1: Compile the OMG IDL File for the Server Application 2-3
UsSiNg the IDL COMPIIET ...ttt 2-5
Generating the Skeleton and Implementation Files............c.ccccovivieennnnen. 2-
Generating Tie ClaSSEScoiuuiiiii ittt 2
Step 2: Write the Methods That Implement Each Interface’s Operations......... 2-
The Implementation File Generated by the IDL Compiler............cccovveeee. 2-7
IMplementing @ FACLOIY........coiiuiiiiiiieiee e 2-
Step 3: Create the Server ODJECT........ocuiiii i 2
Initializing the Server Applicationcoceeiiiiiiini e 2-10
Writing the Code That Creates and Registers a Factoryc.c.oceeeeennns 2-1
CreatiNng SEIVANTS........coiiiiiiiai ettt e e 2-]
Releasing the Server AppliCationccoovviiiiiiiiie e 2-1.
Step 4: Define the In-memory Behavior of Objects..........ccccevviiiiiiiiiniiiecens 2-1¢
Specifying Object Activation and Transaction Policies in the ICF File ..2-15
Step 5: Compile and Link the Server Application............cccccoviiiviiniiiee e, 2-1¢8
Step 6: Deploy the Server ApPliCationoooveiiiiiiiiee e 2-1
Development and Debugging TIPS ...ccooviviieiiiiiiieie e 2-2
Use of CORBA and M3 Exceptions and the User LOg............cccueeeeennenn. 2-21
Client Application View of EXCEPLIONScceeviiiiiiiiiiiiiiiiie i, 2-21

Creating CORBA C++ Server Applications

Server Application View of EXCEPLIONS.........ceeeeiiiiiiiiiiiiee e 2-21

Detecting Error Conditions in the Callback Methods..............ccccceeeeenn. 2-26
Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-27
Caveat for State Handling in Tobj_ServantBase::deactivate_object()..... 2-28
SEVANE POOING ...viiiiiiiie it e 2-29
How Servant POOING WOIKS..........ocuiiiiiii e 2-29
How You Implement Servant POOIINGccooiiiiiniiiieinie e 2-30
Delegation-based Interface Implementation...............cccoiieiniiie e 2-31
About Tie Classes in the WebLogic Enterprise Systemcccccovveeeenne 2-31
When t0 USE TIie CIaSSES.....uuiiiiiiiiiiiiiiit ettt ettt 2-33
How to Create Tie Classes in a WebLogic Enterprise Application.......... 2-34

3. Designing and Implementing a Basic WebLogic Enterprise

Server Application
How the Basic University Sample Application WOorksccccccovviiiiiiininnenn. 3-2
The Basic University Sample Application OMG IDLcccoovcvveeennnnee. 3-2
APPHCALION STAFTUD ...veiieiiieee et 3-4
Browsing COUISE SYNOPSEScceiiurriiiiaiierteasaiiieeeassitteeesate e s anneaeeessanaeee s 3-4
Browsing Course DetailS..........cooiiuiiiiiiiiiiii e 3-7
Design Considerations for the University Server Application.............c..ccco...... 3-7
Design Considerations for Generating Object References.............cccocuuee... 3-8
Design Considerations for Managing Object State............ccccccovvieeeenen 3-10
The RegistrarFactory ObJECt...........cooiiiiiiiiiiiiie e 3-10
The Registrar ODJECEviiiiiiiiie e 3-10
The CourseSynopsisEnumerator Objectccccceveviiiiiiiiieineenennnns 3-10
Basic University Sample Application ICF File..........cccccoviiiiirinennn. 3-11
Design Considerations for Handling Durable State Information............. 3-12
The Registrar ODJECEviiiiiii e 3-12
The CourseSynopsisEnumerator Objectccccceveviiiiiiiiinineenennns 3-13
Using the University Database..........c.ccueeveiiiiiiie i 3-14
How the Basic Sample Application Applies Design Patterns.................. 3-15
Process-Entity Design Pattern..........ooooeveiiiiiiee i 3-15
List-Enumerator Design Pattern..........ccccvvviiieieieniiieee e 3-15
Additional Performance Efficiencies Built into the WebLogic
ENLErpriSe SYSEMociiiiiiiiiiiie it 3-17

Creating CORBA C++ Server Applications %

Vi

Preactivating an Object with Stateccceeiiiiinii e 3-1
How You Preactivate an Object with State...........ccccoe i, 3-18
Usage Notes for Preactivated ObJectS..........cccvviiieiiiiiiiiiiniiiececis 3-1

4. Security and WebLogic Enterprise Server Applications

Overview of Security and WebLogic Enterprise Server Applications.............. 4-1
Design Considerations for the University Server Applicationcccocee... 4-2
How the Security University Sample Application Works............cccccoevueee. 4-3
Design Considerations for Returning Student Details to the Client
Y Y o] o] o 11T o PSR 4-E

5. Integrating Transactions into a WebLogic Enterprise Server

Application
Overview of Transactions in the WebLogic Enterprise System............cccccouee. 5-2
Designing and Implementing Transactions in a WebLogic Enterprise Server
APPICALION .o 5-:
How the Transactions University Sample Application Works................... 5-6
Transactional Model Used by the Transactions University Sample
APPIICALION .t 5-7
Object State Considerations for the University Server Application........... 5-8
Object Policies Defined for the Registrar Object...........ccccceeveiiieernnne 5-8
Object Policies Defined for the RegistrarFactory Object.................... 5-9
Using an XA Resource Manager in the Transactions Sample

APPICALION ... 5-9
Configuration Requirements for the Transactions Sample Application...5-10
Integrating Transactions in a WebLogic Enterprise Client and Server

APPIICALION ..ot e e 5-1(
Making an Object Automatically Transactional.............ccccccccceieeeeeniinnns 5-11
Enabling an Object to Participate in a Transactioncccccceevevvevenennn. 5-12
Preventing an Object from Being Invoked While a Transaction
IS SCOPEA ...t e 5-1
Excluding an Object from an Ongoing Transaction..............ccceccvveeeennne. 5-14
ASSIGNING POJICIES ...ttt 5-1
Opening an XA ReSOUICE MaNAGETccuueeeiiieiiiiiieieeeeee e rtieeieereeeaaeans 5-1
Closing an XA ReSOUIrce ManaQercccuiiuuiiiiiiiiiieeeeniiiiee e nieieee e 5-1!
Transactions and Object State Management............ccovveririiiiiie e 5-

Creating CORBA C++ Server Applications

Delegating Object State Management to an XA Resource Manager 5-16
Waiting Until Transaction Work Is Complete Before Writing

t0 the DAtabaSEeeeeiiiiiiii e 5-16
Notes on Using Transactions in the WebLogic Enterprise System................ 5-18
User-defined EXCEPLIONSccoiiiiiiiiiiiiie ittt e 5-20
Defining the EXCEPLON.........uiiiiiii e 5-21
Throwing the EXCEPLONocuviiiiiei e 5-21

6. Wrapping a BEA Tuxedo Service in an Object
Overview of Wrapping a BEA TuXedo ServiCecccccuuvieeeriiieeiiiiiie e 6-2
Designing the Object That Wraps the BEA Tuxedo Service...........c......... 6-3
Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls 6-4
Implementing the Operations That Send Messages to and

from the BEA TUXEUO SEIVICEciiiiiiiiieeiiiii et 6-6
] 1 [o3 (o - RS U 6-7
Design Considerations for the Wrapper Sample Applicationcccocuueee. 6-8
How the Wrapper University Sample Application Works................ 6-10
Interface Definitions for the Billing Server Application 6-11
Additional Design Considerations for the Wrapper Sample
Y Y o] o] o= 11T o RSO RPERURR 6-11

7. Scaling a WebLogic Enterprise Server Application
Overview of the Scalability Features Available in the WebLogic Enterprise

)Y A1 (= 1 [PPSR 7-2
Scaling a WebLogic Enterprise Server Application...........ccoccveeiiiiiieiniiiennenn. 7-3
OMG IDL Changes for the Production Sample Application 7-4
Replicating Server Processes and Server GroUpPSceeeerevieeciniveeeeeeeeeenss 7-4
Replicated Server PrOCESSES........cuviiiiiiie ettt e 7-5
Replicated SErver GrOUPScccoiurrieeriiiiier et e ettt eeeseinree e 7-7
Configuring Replicated Server Processes and Groupsc.c.c.coceee 7-9
Scaling the Application Via Object State Management.............cccccceeen.... 7-11
Factory-based ROULINGcoouuiiiiiiiii e 7-13
How Factory-based Routing WOrkS...........ccooiiiiiiiniiinin e 7-14
Configuring for Factory-based Routing in the UBBCONFIG file ... 7-15
Implementing Factory-based Routing in a Factory..............ccceeenen. 7-17
What Happens at RUN TIMEoooiiiiiiiiiiee e 7-18

Creating CORBA C++ Server Applications vii

viii

Additional Design Considerations for the Registrar and Teller Objects.. 7-19

Instantiating the Registrar and Teller Objects.........ccccceeveiiiiiiiiennen. 7-2C
Ensuring That Student Registration Occurs in the Correct Server

LT (0] 3] o T PP PP PTPPPRTP 7-2!

Ensuring That the Teller Object is Instantiated in the Correct Server
LT (0] 0] o PP PP PP PTPPPPTR 7-2
How the Production Server Application Can Be Scaled Further 7-23
Choosing Between Stateless and Stateful ObjJectsccccovieiiiiiieninen, 7-
When You Want Stateless ODJECtS........c.uevvviiiiiieiiiie e 7-2
When You Want Stateful ODJECEScccuuuieiriiiii e 7-2¢

Index

Creating CORBA C++ Server Applications

About This Document

This document describes how programmers can implement key features in the BEA
WebLogic Enterprise™ (WLE) product to design and implement scalable,
high-performance, C++ server applications that run in a WebLogic Enterprise domain.
The C++ examples shown in this book are based on the sample applications described
in the Guide to the University Sample Applications

This document covers the following topics:

m Chapter 1, “Server Application Concepts,” presents a number of basic concepts
about creating WebLogic Enterprise server applications and describes the two
primary programming entities you create for a WebLogic Enterprise server
application.

m Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application,” lists
and describes the basic steps you follow to create a WebLogic Enterprise server
application.

m Chapter 3, “Designing and Implementing a Basic WebLogic Enterprise Server
Application,” explains the fundamental concepts and processes involved with
designing and implementing a basic WebLogic Enterprise server application,
based on the Basic University sample application.

m Chapter 4, “Security and WebLogic Enterprise Server Applications,” explains
the role of a WebLogic Enterprise server application in implementing a security
model for a WebLogic Enterprise domain.

m Chapter 5, “Integrating Transactions into a WebLogic Enterprise Server
Application,” describes how the WebLogic Enterprise system supports
transactions in a WebLogic Enterprise domain and how you can implement
transactions into your server applications.

Creating CORBA C++ Server Applications i

m Chapter 6, “Wrapping a BEA Tuxedo Service in an Object,” describes how to
integrate a BEA Tuxedo application into a WebLogic Enterprise server
application.

m Chapter 7, “Scaling a WebLogic Enterprise Server Application,” describes the
key scalability features that you can build into your WebLogic Enterprise
applications to make them highly scalable, including replicated server processes
and groups, factory-based routing, and object state management.

What You Need to Know

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes your are knowledgeable
with the BEA Tuxedo® system, CORBA, and C++ programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document

X Creating CORBA C++ Server Applications

How to Print the Document

(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dtttp://www.adobe.coim

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see th&ebLogic Enterprise Bibliograptig the WebLogic Enterprise
online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.conif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORTvatw.bea.comYou can also

contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

Creating CORBA C++ Server Applications xi

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples

#include <iostream.h> void main () the pointer psz
chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example
void commit ()

monospace
italic
text

Identifies variables in code.
Example
String expr

Xil Creating CORBA C++ Server Applications

Documentation Conventions

Convention Item
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Creating CORBA C++ Server Applications Xxiii

Xiv Creating CORBA C++ Server Applications

CHAPTER

1 Server Application
Concepts

This topic includes the following sections:

m The Entities You Create to Build a WebLogic Enterprise Server Application:
¢ The Implementation of the CORBA Objects for Your Server Application
e The Server Object

m Process for Developing WebLogic Enterprise Server Applications:
e Generating Object References
e Managing Object State
¢ Reading and Writing an Object’s Data

e Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building
WebLogic Enterprise server applications that take advantage of various WebLogic
Enterprise software features. For background information about WebL ogic Enterprise
server applications and how they work, sgetting Started

Creating CORBA C++ Server Applications 1-1

1 Server Application Concepts

The Entities You Create to Build a WebLogic
Enterprise Server Application

To build a WebLogic Enterprise server application, you create the following two
entities:

m The implementation of the CORBA objects that execute your server
application’s business logic

m The Server object, which implements the operations that initialize and release
the server application and instantiate the CORBA objects needed to satisfy client
requests

There are also a number of files that you work with that are generated by the IDL
compiler and that you build into a WebLogic Enterprise server application. These files
are listed and described in Chapter 2, “Steps for Creating a WebLogic Enterprise
Server Application.”

The sections that follow provide introductory information about these entities. For
complete details about how to generate these components, see Chapter 2, “Steps fo
Creating a WebLogic Enterprise Server Application.”

The Implementation of the CORBA Objects for Your
Server Application

1-2

Having a clear understanding of what CORBA objects are, and how they are defined
implemented, instantiated, and managed is critical for the person who is designing o
creating a WebLogic Enterprise server application.

The CORBA objects for which you have defined interfaces in the Object Management
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your WebLogic Enterprise server applications. All client application requests
involve invoking an operation on a CORBA object. The code you write that
implements the operations defined for an interface is called an object implementation
For example, in C++, the object implementation is a C++ class.

Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

This topic includes the following sections:

m How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

m How you implement the operations on a CORBA object

m How client applications access and manipulate your application's CORBA
objects

m How you instantiate a CORBA object with code and data at run time in response
to a client request

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’s interface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA objects is that an object’s interface definition
is separate from its implementation. The definition for the interface establishes how the
operations on the interface must be implemented, including what the valid parameters
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for a given interface, the server application is
bound to do the following:

m Implement the operations defined for that interface
m Always use the parameters defined with each operation

How the server application implements the operations may change over time. This is
acceptable behavior aslong as the server application continues to meet the requirement
of implementing the defined interface and using the defined parameters. In this way,
the client stub is always a reliable proxy for the object implementation on the server
machine. This underscores one of the key architectural strengths of CORBA -- that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the object implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that a client request for an operation on an
object can be routed to the code in the server application that can satisfy the request.

Creating CORBA C++ Server Applications 1-3

1 Server Application Concepts

Once the system designer has specified the interfaces of the business objects in the
application, the programmer’s job is to implement those interfaces. This book explains
how.

For more information about OMG IDL, ségreating Client Applications

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For C++, this code consists of a
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file. The file containing the set of objectimplementations for
your application is known as an implementation file. The WebLogic Enterprise system
provides an IDL compiler, which compiles your application’s OMG IDL file to
produce several files, one being an implementation file, shown in the following figure.

OMG IDLFile [———>(IDL Compiler J——> |mp|en?:(ialrétat|on

The generated implementation file contains method templates, method declarations,
object constructors and destructors, and other data that you can use as a starting pla
for writing your application’s object implementations. For example, in C++, the
generated implementation file contains signatures for each interface’s methods. You
enter the business logic for each method in this file, and then provide this file as input
to the command that builds the executable server application file.

How Client Applications Access and Manipulate Your Application’s CORBA

Objects

Client applications access and manipulate the CORBA objects managed by the serv
application viaobject referencet® those objects. Client applications invoke operations
(that is, requests) on an object reference. These requests are sent as messages to t
server application, which invokes the appropriate operations on CORBA objects. The
fact that these requests are sent to the server application and invoked in the server
application is completely transparent to the client; client applications appear simply to
be making invocations on the client stub.

1-4 Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in a way that is appropriate for
your application.

Typically, object references to CORBA objects are created in the WebLogic Enterprise
system byfactories A factory is any CORBA object that returns, as one of its
operations, a reference to another CORBA object. You implement your application’s
factories the same way that you implement other CORBA objects defined for your
application. You can make your factories widely known to the WebLogic Enterprise
domain, and to clients connected to the WebLogic Enterprise domain, by registering
them with the FactoryFinder. Registering a factory is an operation typically performed
by the Server object, which is described in the section “The Server Object” on

page 1-8. For more information about designing factories, see the section “Generating
Object References” on page 1-9.

The Content of an Object Reference

From the client application’s perspective, an object reference is opaque; it is like a
black box that client applications use without having to know what is inside. However,
object references contain all the information needed for the WebLogic Enterprise
system to locate a specific object instance and to locate any state data thatis associated
with that object.

An object reference contains the following information:

m The interface name

This is the Interface Repository ID of the object’ OMG IDL interface.
m The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
a key that the server machine can use to locate the object’s data.

m Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes a request using that object reference. Generating
a nondefault group ID is part of a key WebL ogic Enterprise feature called
factory-based routing, which is described in the section “Factory-based Routing”
on page 7-13.

Creating CORBA C++ Server Applications 1-5

1 Server Application Concepts

Note: The combination of the three items in the preceding list uniquely identifies the
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously active in two different groups, if those two groups both
contain the same object implementation. If you need to guarantee that only one
object instance of a given interface name and OID is available at any one time
in your domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 7-13.

The Lifetime of an Object Reference

Object references created by server applications running in a WebLogic Enterprise
domain typically have a usable lifespan that extends beyond the life of the server
process that creates them. WebLogic Enterprise object references can be used by clie
applications regardless of whether the server processes that originally created them a
still running. In this way, object references are not tied to a specific server process.

An object reference created with tme::create_active_object_reference()

operation is valid only for the lifetime of the server process in which it was created.
For more information, see the section “Preactivating an Object with State” on
page 3-17.

Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragment
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();

ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

1-6 Creating CORBA C++ Server Applications

The Entities You Create to Build a WebLogic Enterprise Server Application

How You Instantiate a CORBA Object at Run Time

When a server application receives a request for an object that is not mapped in the
server machine’s memory (that is, the object is not active), the TP Framework invokes
the Server::create_servant() operation. The

Server::create_servant() operation is implemented in the Server object, which,

as mentioned in the section “The Implementation of the CORBA Objects for Your
Server Application” on page 1-2, is a component of a WebLogic Enterprise server
application that you create.

TheServer::create_servant() operation causes an instance of the CORBA object
implementation to be mapped into the server machine’s memory. This instance of the
object’s implementation is called the objec$srvant Formally speaking, a servant is

an instance of the C++ class that implements an interface defined in the application’s
OMG IDL file. The servant is generated via the Crew statement that you write in

the Server::create_servant() operation.

After the object’s servant has been created, the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on the servant. The
Tobj_ServantBase::activate_object() operation is a virtual operation that is
defined on th&obj_ServantBase base class, from which all object implementation
classes inherit. The TP Framework invokes the

Tobj_ServantBase::activate_object() operation to tie the servant to an object
ID (OID). (Conversely, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation on an object, the servant’s

association with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORBA
object is activated, you can have that data read by defining and implementing the
Tobj_ServantBase::activate_object() operation on the object. The
Tobj_ServantBase::activate_object() operation can contain the specific read
operations required to bring an object’s durable state into memory. (There are
circumstances in which you may prefer instead to have an object’s disk data read into
memory by one or more separate operations on the object that you may have coded in
the implementation file. For more information, see the section “Reading and Writing
an Object’s Data” on page 1-15.) After the invocation of the
Tobj_ServantBase::activate_object() operation is complete, the object is said

to be active.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

Creating CORBA C++ Server Applications 1-7

1 Server Application Concepts

Servant Pooling

WebLogic Enterprise 4.2 provides a new feature cadled/ant pooling Servant

pooling gives your WebLogic Enterprise server application the opportunity to keep a
servantin memory after the servant’s association with a specific OID has been broken
When a client request that can be satisified with a pooled servant arrives, the TP
Framework bypasses the@::create_servant operation and creates a link between
the pooled servant and the OID provided in the client request.

Servant pooling thus provides the WebLogic Enterprise server application with a
means to minimize the costs of reinstantiating a servant each time a request arrives fc
an object that can be satisified by that servant. For more information about servant
pooling and how to use it, see the section “Servant Pooling” on page 2-29.

The Server Object

The Server object is the other programming code entity that you create for a WebLogic
Enterprise server application. The Server object implements operations that execute
the following tasks:

m Performing basic server application initialization operations, which may include
registering factories managed by the server application and allocating resources
needed by the server application. If the server application is transactional, the
Server object also implements the code that opens an XA resource manager.

m Instantiating the CORBA objects needed to satisfy client requests.

m Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
is transactional, the Server object also implements the code that closes the XA
resource manager.

You create the Server object from scratch, using a common text editor. You then
provide the Server object as input into the server application build command,
buildobjserver . For more information about creating the Server object, see
Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application.”

1-8 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Process for Developing WebLogic Enterprise
Server Applications

This section presents important background information about the following topics,
which have a major influence on how you design and implement WebL ogic Enterprise
server applications:

m Generating Object References

m Managing Object State

m Reading and Writing an Object’s Data
m Using Design Patterns

It is not essential that you read these topics before proceeding to the next chapter;
however, this information is located here because it applies broadly to fundamental
design and implementation issues for all WebLogic Enterprise server applications.

Generating Object References

One of the most basic functions of a WebLogic Enterprise server application is
providing client applications with object references to the objects they need to execute
their business logic. WebLogic Enterprise client applications typically get object
references to the initial CORBA objects they use from the following two sources:

m The Bootstrap object
m Factories managed in the WebLogic Enterprise domain

Client applications use the Bootstrap object to resolve initial references to a specific
set of objects in the WebLogic Enterprise domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object is describéskitting Startecand

Creating Client Applications

Factories, however, are designed, implemented and registered by you, and they
provide the means by which client applications get references to objects in the
WebLogic Enterprise server application, particularly the initial server application

Creating CORBA C++ Server Applications 1-9

1 Server Application Concepts

object. At its simplest, a factory is a CORBA object that returns an object reference to
another CORBA object. The client application typically invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. Planning
and implementing your factories carefully is an important task when developing
WebLogic Enterprise server applications.

How Client Applications Find Your Server Application’s Factories

Client applications are able to locate via the FactoryFinder the factories managed by
your server application. When you develop the Server object, you typically include
code that registers with the FactoryFinder any factories managed by the server
application. It is via this registration operation that the FactoryFinder keeps track of
your server application’s factories and can provide object references to them to the
client applications that request them. We recommend that you use factories and
register them with the FactoryFinder; this model makes it simple for client applications
to find the objects in your WebLogic Enterprise server application.

Creating an Active Object Reference

WebLogic Enterprise 4.2 provides a new feature that gives an alternate means by
which your server application can generate object references. Active object reference
are not typically created by factories as described in the previous section, and active
object references are meant for preactivating objects with state. The next section
discusses object state in more detail.

Whereas an object associated with a conventional object reference is not instantiate
until a client application makes an invocation on the object, the object associated witf
an active object reference is created and activated at the time the active object
reference is created. Active object references are especially convenient for specific
purposes, such as iterator objects. The section “Preactivating an Object with State” o
page 3-17 provides more information about active object references.

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput an
response time. The majority of high-throughput applications, such as applications yot

1-10 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

run in a WebLogic Enterprise domain, tend to be stateless, meaning that the system
flushes state information from memory after a service or an operation has been
fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, it is difficult to manage state in these server applications in a way that scales
and performs well. The WebLogic Enterprise software provides an easy way to
manage state and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a WebLogic Enterprise server
application help the server application function well in an environment that includes
hundreds or thousands of client applications, multiple machines, replicated server
processes, and a proportionately greater number of objects and client invocations on
those objects.

About Object State

In a WebL ogic Enterprise domainbject stateefers specifically to the process state
of an object across client invocations on it. The WebLogic Enterprise software uses the
following definitions of stateless and stateful objects:

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocation
is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.

Stateful The object remains activated between invocations on it, and its
state is maintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

m The server process in which the object exists is stopped or is
shut down

m The transaction in which the object is participating is either
committed or rolled back

m The object invokes th&P::deactivateEnable()
operation on itself.

Each of these events is discussed in more detail in this section.

Creating CORBA C++ Server Applications 1-11

1 Server Application Concepts

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent data in memory that is required to maintain context (state) between
operation invocations on those objects. Thus, subsequentinvocations on such a statet
object always go to the same servant. Conversely, invocations on a stateless object c:
be directed by the WebLogic Enterprise system to any available server process that ce
activate the object.

State management also involves how long an object remains active, which has
important implications on server performance and the use of machine resources. Th
duration of an active object is determineddiyject activation policieghat you assign

to an object’s interface, described in the section that follows.

Object state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available fol
additional requests, and the object appears to be maintained continuously in memor
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durabl
storage, if applicable, before they are deactivated. Objects must also restore their sta
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-15.

Object Activation Policies

1-12

The WebLogic Enterprise software provides three object activation policies that you
can assign to an object’s interface to determine how long an object remains in memor
after it has been invoked by a client request. These policies determine whether the
object to which they apply is generally stateless or stateful.

The three policies are listed and described in the following table.

Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Policy

Description

Method

Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called anethod-bound object.

Themethod activation policy is associated with stateless
objects. This activation policy is the default.

Transaction

Causes the object to be activated when an operation is invoked
onit. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called atransaction-bound object.

For more information about object behavior within the scope of
a transaction, and general guidelines about using this policy,
see Chapter 5, “Integrating Transactions into a WebLogic
Enterprise Server Application.”

Thetransaction activation policy is associated with
stateful objects for a limited time and under specific
circumstances.

Process

Causes the object to be activated when an operation is invoked
on it, and to be deactivated only under the following
circumstances:

m The server process that manages this object is shut down.

m An operation on this object invokes the
TP::deactivateEnable() operation, which causes
this object to be deactivated. (This is part of a key
WebLogic Enterprise feature called application-controlled
deactivation, which is described in the section
“Application-controlled Deactivation” on page 1-14.

An object with this activation policy is called@ocess-bound
object.Theprocess activation policy is associated with
stateful objects.

Creating CORBA C++ Server Applications 1-13

1 Server Application Concepts

You determine what events cause an object to be deactivated by assigning object
activation policies. For more information about how you assign object activation
policies to an object’s interface, see the section “Step 4: Define the In-memory
Behavior of Objects” on page 2-15.

Application-controlled Deactivation

1-14

The WebLogic Enterprise software also provides a feature called
application-controlled deactivatigrwhich provides a means for an application to
deactivate an object during run time. The WebLogic Enterprise software provides the
TP::deactivateEnable() operation, which a process-bound object can invoke on
itself. When invoked, th@P::deactivateEnable() operation causes the object in
which it exists to be deactivated upon completion of the current client invocation on
that object. An object can invoke this operation only on itself; you cannot invoke this
operation on any object but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want an
object to remain in memory for the duration of a limited number of client invocations

on it, and you want the client application to be able to tell the object that the client is

finished with the object. At this point, the object takes itself out of memory.

Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated as a
result of a client invocation on it, and it remains in memory after the initial client
invocation on it is completed. You can then deactivate the object without having to
shut down the server process in which the object exists.

An alternative to application-controlled deactivation is to scope a transaction to
maintain a conversation between a client application and an object; however,
transactions are inherently more costly, and transactions are generally inappropriate i
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involves writing data to disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the

Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

TP::deactivateEnable() operation. Otherwise, the object remains idle in
memory indefinitely. (Note that this can be a risk if the client application
crashes before theP::deactivateEnable() operation is invoked.
Transactions, on the other hand, implement a time-out mechanism to prevent
the situation in which the object remains idle for an indefinite period. This may
be another consideration when choosing between the two conversational
models.)

You implement application-controlled deactivation in an object using the following
procedure:

1. Inthe implementation file, insert an invocation to tre:deactivateEnable()
operation at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. Inthe Implementation Configuration File (ICF file), assign pihecess
activation policy to the interface that contains the operation that invokes the
TP::deactivateEnable() operation.

3. Build and deploy your application as described in the sections “Step 5: Compile
and Link the Server Application” on page 2-18 and “Step 6: Deploy the Server
Application” on page 2-19.

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have data that is
in external storage. This externally stored data may be regarded pergistenbor
durablestate of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server
application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s data is stored or initialized while the object is
active.

Creating CORBA C++ Server Applications 1-15

1 Server Application Concepts

The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice how to read and write object sta
under specific circumstances. The specific topics presented include:

The available mechanisms for reading and writing an object’s durable state
Reading state at object activation

Reading state within individual operations on an object

Stateless objects and durable state

Stateful objects and durable state

Your responsibilities for object deactivation

Avoiding unnecessary 1/O

How you choose to read and write durable state invariably depends on the specific
requirements of your client/server application, especially with regard to how the data
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager is
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

1-16

Table 1-1 and Table 1-2 describe the available mechanisms for reading and writing al
object’s durable state.

Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Table 1-1 Available Mechanisms for Reading an Object’s Durable State

Mechanism

Description

Tobj_ServantBase::
activate_object()

After the TP Framework creates the servant for an object, the
TP Framework invokes the
Tobj_ServantBase::activate_object() operation

on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-7, this
operation is defined on thEobj_ServantBase base class,
from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the
Tobj_ServantBase::activate_object() operation

on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operation
that reads some or all of an object’s durable state into memory.
Therefore, the

Tobj_ServantBase::activate_object() operation
provides your server application with its first opportunity to
read an object’s durable state into memory.

Note that if an object’s OID contains a database key, the
Tobj_ServantBase::activate_object() operation
provides the only means the object has to extract that key from
the OID.

For more information about implementing the
Tobj_ServantBase::activate_object() operation,
see “Step 2: Write the Methods That Implement Each
Interface’s Operations” on page 2-7. For an example of
implementing the

Tobj_ServantBase::activate_object() operation,
see Chapter 3, “Designing and Implementing a Basic
WebLogic Enterprise Server Application.”

Operations on the object

You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.

Creating CORBA C++ Server Applications 1-17

1 Server Application Concepts

Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Mechanism Description

Tobj_ServantBase:: When an object is being deactivated by the TP Framework, the

deactivate_object() TP Framework invokes this operation on the object as the final
step of object deactivation. As with the
Tobj_ServantBase::activate_object() operation,

the Tobj_ServantBase::deactivate_object()

operation is defined on thEobj_ServantBase class. You
implement thedeactivate_object() operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

The Tobj_ServantBase::deactivate_object()

operation provides the final opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any data in memory, or allocates memory
for any purpose, you implement the
Tobj_ServantBase::deactivate_object()

operation so your object has a final opportunity to flush that
data from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object As you may have individual operations on the objects that read
durable state from disk, you may also have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in the
Tobj_ServantBase::deactivate_object()

operation.

For transaction-bound objects, however, writing durable state
in the Tobj_ServantBase::deactivate_object()

operation provides a number of object management
efficiencies that may make sense for your transactional server
applications.

1-18 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Note: If you use theTobj_ServantBase::deactivate_object() operation to
write any durable state to disk, any errors that occur while writing to disk are
not reported to the client application. Therefore, the only circumstances under
which you should write data to disk in this operation is when: the object is
transaction-bound (that is, it has thansaction ~ activation policy assigned
to it), or you scope the disk write operations within a transaction by invoking
the TransactionCurrent object. Any errors encountered while writing to disk
during a transaction can be reported back to the client application. For more
information about using theobj_ServantBase::deactivate_object()
operation to write object state to disk, see the section “Caveat for State
Handling in Tobj_ServantBase::deactivate_object()” on page 2-28.

Reading State at Object Activation

Using theTobj_ServantBase::activate_object() operation on an object to read
durable state may be appropriate when either of the following conditions exist:

m Object data is always used or updated in all the object’s operations.
m All the object’s data is capable of being read in one operation.

The advantages of using thebj_ServantBase::activate_object() operation
to read durable state include:

m You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

m None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in a way that is independent
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outside
the Tobj_ServantBase::activate_object() operation. Cases where this

approach may be appropriate include the following:

m Object state is made up of discrete data elements that require multiple operations
to read or write.

m Objects do not always use or update state data at object activation.

Creating CORBA C++ Server Applications 1-19

1 Server Application Concepts

For example, consider an object that represents a customer’s investment portfolio. Th
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-purpose
Tobj_ServantBase::activate_object() operation that automatically reads in the
entire investment portfolio each time the object is invoked.

Stateless Objects and Durable State

1-20

In the case of stateless objects -- that is, objects defined witin¢lted activation
policy -- you must ensure the following:

m That any durable state needed by the request is brought into memory by the time
the operation’s business logic starts executing.

m That any changes to the durable state are written out by the end of the
invocation.

The TP Framework invokes thebj_ServantBase::activate_object()

operation on an object at activation. If an object has an OID that contains a key to the
object’s durable state on disk, tiiebj_ServantBase::activate_object()

operation provides the only opportunity the object has to retrieve that key from the
OID.

If you have a stateless object that you want to be able to participate in a transaction, w
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a stateless object that
is always transactional -- that is, a transaction is always scoped when this object is
invoked -- you have the option to handle the database write operations in the
Tobj_ServantBase::deactivate_object() operation, because you have a

reliable mechanism in the XA resource manager to commit or roll back database write
operations accurately.

Note: Even if your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
same time. In this case, you may want to consider a concurrency managemer
technique, the easiest of which is transactions. For more information about
transactions and transactional objects, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”

Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Servant Pooling and Stateless Objects

Servant pooling is a particularly useful feature for stateless objects. When your
WebLogic Enterprise server application pools servants, you can significantly reduce
the costs of instantiating an object each time a client invokes it. As mentioned in the
section “Servant Pooling” on page 1-8, a pooled servant remains in memory after a
client invocation onitis complete. If you have an application in which a given object
is likely to be invoked repeatedly, pooling the servant means that only the object’s
data, and not its methods, needs to be read into and out of memory for each client
invocation. If the cost associated with reading an object’s methods into memory is
high, servant pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servant
Pooling” on page 2-29.

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point where it
is needed. This may introduce the following optimizations:

m Inthe case of process-bound objects, you avoid the situation in which an object
allocates a large amount of memory over a long period.

m Inthe case of transaction-bound objects, you can postpone writing durable state
until the Tobj_ServantBase::deactivate_object() operation is invoked,
when the transaction outcome is known.

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: For objects that are involved in a transaction, we do not support having those
objects write data to external storage that is not managed by an XA resource
manager.

For more information about objects and transactions, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”

Servant Pooling and Stateful Objects

Servant pooling does not make sense in the case of process-bound objects; however,
depending on your application design, servant pooling may provide a performance
improvement for transaction-bound objects.

Creating CORBA C++ Server Applications 1-21

1 Server Application Concepts

Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the
Tobj_ServantBase::deactivate_object() operation as means to write an

object’s durable state to disk. You should also implement this operation on an object
as a means to flush any remaining object data from memory so that the object’s serval
can be used to activate another instance of that object. You should not assume that
invocation to an object’'3obj_ServantBase::deactivate_object() operation

also results in an invocation of that object’s destructor.

Avoiding Unnecessary 1/0

Be careful not to introduce inefficiencies into the application by doing unnecessary 1/0
in objects. Situations to be aware of include the following:

If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Design
these objects so that they handle state only in the operations that need it; in such
cases, you may not want to have all of the object’s durable state read in at object
activation.

If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

Reading only the state that is common to all the operations in the
Tobj_ServantBase::activate_object() operation. Defer the reading of
additional state to only the operations that require it.

Writing out only the state that has changed. You can do this by managing
flags that indicate the data that was changed during an activation, or by
comparing before and after data images.

A general optimization is to initialize dirtyState flag on activation and to
write data in theTobj_ServantBase::deactivate_object() operation

only if the flag has been changed while the object was active. (Note that this
works only if you can be assured that the object is always activated in the
same server process.)

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activatec
seeGetting Started

1-22 Creating CORBA C++ Server Applications

Process for Developing WebLogic Enterprise Server Applications

Using Design Patterns

Itis important to structure the business logic of your application around a well-formed
design. The WebLogic Enterprise software provides a set of design patterns to address
this need. A design pattern is simply a structured solution to a specific design problem.
The value of a design pattern lies in its ability to be expressed in a form you can reuse
and apply to other design problems.

The WebLogic Enterprise design patterns are structured solutions to enterprise-class
application design problems. You can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practices in
WebL ogic Enterprise client and server applications. They are an important and integral
part of designing WebLogic Enterprise client and server applications, and the chapters
in this book show examples of using these design patterns to implement the University
sample applications.

Process-Entity Design Pattern

The Process-Entity design pattern applies to a large segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight pattern in
Object-Oriented Design PatternGamma et al., and as the Model-View-Controller in
other publications.

In this pattern, the client application creates a long-lived process object that the client
application interacts with to make requests. For example, in the University sample
applications, this object might be the registrar that handles course browsing operations
on behalf of the client application. The courses themselves are database entities and are
not made visible to the client application.

The advantages of the Process-Entity design pattern include:

m You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBAt datatypes
to simulate objects.

m Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of objects

Creating CORBA C++ Server Applications 1-23

1 Server Application Concepts

that would need to be handled could overwhelm the machine’s resources quickly
in a large-scale deployment.

m Because they are not exposed to the client application, database entities need nc
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individual
who serves as the registrar at a university can handle a large course database fo
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapter 3,
“Designing and Implementing a Basic WebLogic Enterprise Server Application.” For
complete details on the Process-Entity design patternTseknical Articles

List-Enumerator Design Pattern

1-24

The List-Enumerator design pattern also applies to a large segment of enterprise-cla:
client/server applications. The List-Enumerator design pattern leverages a key
WebLogic Enterprise feature, application-controlled object deactivation, to handle a
cache of data that is stored and tracked in memory during several client invocations,
and then to flush the data from memory when the data is no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapter 3,
“Designing and Implementing a Basic WebLogic Enterprise Server Application.”

Object preactivation, which is an especially useful tool for implementing the
List-Enumerator design, is described in the section “Preactivating an Object with
State” on page 3-17.

Creating CORBA C++ Server Applications

CHAPTER

2

Steps for Creating a

WebLogic Enterprise
Server Application

This chapter describes the basic steps involved in creating a WebLogic Enterprise
server application. The steps shown in this chapter are not definitive; there may be
other steps you may need to take for your particular server application, and you may
want to change the order in which you follow some of these steps. However, the
development process for every WebLogic Enterprise server application has each of
these steps in common.

This topic includes the following sections:

m Summary of the WebLogic Enterprise Server Application Development Process
m Development and Debugging Tips

m Servant Pooling

m Delegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the development tools
and commands used throughout this book. Your particular deployment environment
might use additional software developmenttools, so the tools and commands listed and
described in this chapter are also not definitive.

Creating CORBA C++ Server Applications 2-1

2 Steps for Creating a WebLogic Enterprise Server Application

The chapter uses examples from the Basic University sample application, which is
provided with the WebLogic Enterprise software. For complete details about the Basic
University sample application, see tBaiide to the University Sample Applications

For complete information about the tools and commands used throughout this book,
see the&Commands, System Processes, and MIB Reference

Summary of the WebLogic Enterprise Server
Application Development Process

2-2

The basic steps to create a server application are:

Step 1: Compile the OMG IDL File for the Server Application

Step 2: Write the Methods That Implement Each Interface’s Operations
Step 3: Create the Server Object

Step 4: Define the In-memory Behavior of Objects

Step 5: Compile and Link the Server Application

Step 6: Deploy the Server Application

The WebLogic Enterprise software also provides the following development tools and
commands:

Tool Description
IDL compiler Compiles your application’s OMG IDL file.
genicf Generates an Implementation Configuration File (ICF file),

which you can revise to specify nondefault object activation
and transaction policies.

buildobjserver Creates the executable image of your WebLogic Enterprise
server application.

tmloadcf Creates th@UXCONFIGile, a binary file for the WebLogic
Enterprise domain that specifies the configuration of your
server application.

Creating CORBA C++ Server Applications

Step 1: Compile the OMG IDL File for the Server Application

Tool Description

tmadmin Among other things, creates a log of transactional activities,
which is used in some of the sample applications.

Step 1: Compile the OMG IDL File for the
Server Application

The basic structure of the client and server portions of the application that runs in the
WebLogic Enterprise domain are determined by statements in the application’s OMG
IDL file. When you compile your application’s OMG IDL file, the IDL compiler
generates some or all of the files shown in the following diagram, depending upon
which options you specify in thiel command. The shaded components are the
generated files that you modify to create a server application.

Creating CORBA C++ Server Applications 2-3

2 Steps for Creating a WebLogic Enterprise Server Application

IDL Compiler

Client Stub File

N
Client Stub

Header File
.

N
Skeleton File
-

S
Skeleton

Header File
-

Implementation
File

Implementation
Header File

The files produced by the IDL compiler are described in Table 2-1.

Table 2-1 Files Produced by the IDL Compiler

File Default Name Description

Client stub file application ~ _c.cpp Contains generated code for sending a request.

Client stub header file application _c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application ~ _s.cpp Contains skeletons for each interface specified in the OMG
IDL file. The skeleton maps client requests to the appropriate
operation in the server application during run time.

Skeleton header file application _s.h Contains the skeleton class definitions.

2-4 Creating CORBA C++ Server Applications

Step 1: Compile the OMG IDL File for the Server Application

File Default Name Description

Implementation file application _i.cpp Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation application _i.h Contains the initial class definitions for each interface
header file specified in the OMG IDL file.

Using the IDL Compiler

To generate the files listed in Table 2-1, enter the following command:
idl [options] idl-filename [icf-filename]
Intheidl command syntax:

m options represents one or more command-line options to the IDL compiler. The
command-line options are described in @@mmands, System Processes, and
MIB Referencelf you want to generate implementation files, you need to
specify thei option.

m idl-filename represents the name of your application’'s OMG IDL file.

m icf-filename is an optional parameter that represents the name of your
application’s Implementation Configuration File (ICF file), which you use to
specify object activation policies or to limit the number of interfaces for which
you want skeleton and implementation files generated. Using the ICF file is
described in the section “Step 4: Define the In-memory Behavior of Objects” on
page 2-15.

The C++ IDL compiler implementation of pragmas has changed in WebLogic
Enterprise 5.1 to support CORBA 2.3 functionality and may affect your IDL files. The
CORBA 2.3 functionality changes the scope that the pragma prefix definitions can
affect. Pragmas do not affect definitions contained within included IDL files, nor do
pragma prefix definitions made within included IDL files affect objects outside the
included file.

The C++ IDL compiler has been modified to correct the handling of pragma prefixes.
This change can effect the repository ID of objects, resulting in failures for some
operations, such as_aarrow .

Creating CORBA C++ Server Applications 2-5

2 Steps for Creating a WebLogic Enterprise Server Application

To prevent such failures:

m If you reload your IDL into the repository, you must also regenerate the client
stubs and server skeletons of the application.

m If you regenerate any client stub or server skeleton, you must regenerate all stub:
and skeletons of the application, and you must reload the IDL into the Interface
Repository.

For more information about the IDL compiler, including details onithe command,
see th€ommands, System Processes, and MIB Reference

Generating the Skeleton and Implementation Files

The following command line generates client stub, skeleton, and initial
implementation files, along with skeleton and implementation header files, for the
OMG IDL file univb.idl

idl -i univb.idl

For more information about theél command, see tfgommands, System Processes,
and MIB Referencd-or more information about generating these files for the
WebLogic Enterprise University sample applications, seexhile to the University
Sample Applications

Note: If you plan to specify nondefault object activation or transaction policies, or if
you plan to limit the number of interfaces for which you want skeleton and
implementation files generated, you need to generate and modify an
Implementation Configuration File (ICF) and pass the ICF file to the IDL
compiler. For more information, see “Specifying Object Activation and
Transaction Policies in the ICF File” on page 2-15.

Generating Tie Classes

2-6

The IDL compiler also provides th& command-line option, which you can use for
generating tie class templates for your interfaces. For more information about
implementing tie classes in a WebLogic Enterprise application, see the section
“Delegation-based Interface Implementation” on page 2-31.

Creating CORBA C++ Server Applications

Step 2: Write the Methods That Implement Each Interface’s Operations

Step 2: Write the Methods That Implement
Each Interface’s Operations

As the server application programmer, your task is to write the methods that implement
the operations for each interface you have defined in your application’s OMG IDL file.

The implementation file contains:
m Method declarations for each operation specified in the OMG IDL file

m Your application’s business logic, include files, and other data you want the
application to use

m Constructors and destructors for each interface implementation (implementing
these is optional)

m Optionally, theTobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations

Within the Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() operations, you write code that
performs any particular steps related to activating or deactivating an object. This
includes reading and writing the object’s durable state from and to disk,
respectively. If you implement these operations in your object, you must also
edit the implementation header file and add the definitions for these operations
in each implementation that uses them.

The Implementation File Generated by the IDL Compiler

Although you can create your server application’s implementation file entirely by
hand, the IDL compiler generates an implementation file that you can use as a starting
place for writing your implementation file. The implementation file generated by the
IDL compiler contains signatures for the methods that implement each of the
operations defined for your application’s interfaces.

Creating CORBA C++ Server Applications 2-7

2 Steps for Creating a WebLogic Enterprise Server Application

You typically generate this implementation file only once, usingtheption with the
command that invokes the IDL compiler. As you iteratively refine your application’s
interfaces, and modify the operations for those interfaces, including operation
signatures, you add all the required changes to the implementation file to reflect those
changes.

Implementing a Factory

2-8

As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-4, you need to create factories so that client
applications can easily locate the objects managed by your server application. A
factory is like any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering a factory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-11.

The primary function of a factory is to create object references, which it does by

invoking theTP::create_object_reference() operation. The
TP::create_object_reference() operation requires the following input
parameters:

m The Interface Repository ID of the object's OMG IDL interface
m The object ID (OID) in string format
m Optionally, routing criteria

For example, in the Basic University sample application,RhgistrarFactory
interface specifies only one operation, as follows:

University::Registrar_ptr RegistrarFactory_i::find_registrar()

Thefind_registrar() operation on th&egistrarFactory object contains the
following invocation to therP::create_object_reference() operation to create a
reference to ®egistrar object:

CORBA::Object_var v_reg_oref =
TP::create_object_reference(
University::_tc_Registrar->id(),
object_id,
CORBA::NVlist::_nil()
)i

In the previous code example, notice the following:

Creating CORBA C++ Server Applications

Step 3: Create the Server Object

m The following parameter specifies tiRegistrar ~ object’s Interface Repository
ID by extracting it from its typecode:

University::_tc_Registrar->id()

m The following parameter specifies that no routing criteria are used, with the
result that an object reference created forRkgistrar object is routed to the
same group as thRegistrarFactory object that created the object reference:

CORBA::NVlist::_nil()

For information about specifying routing criteria that affect the group to which
object references are routed, see Chapter 7, “Scaling a WebLogic Enterprise
Server Application.”

Step 3: Create the Server Object

Implementing the Server object is not like implementing other language objects. The
header class for the Server object has already been created, and the Server object class
has already been instantiated for you. Creating the Server object involves
implementing a specific set of methods in the prepackaged Server object class. The
methods you implement are described in this section.

To create the Server object, create a new file using a common text editor and
implement the following operations:

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokes this
operation as the last step in the server application initialization process.
Within this operation, you perform a number of initialization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-10.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing
servant, the TP Framework invokes this operation, passing the Interface
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “Creating Servants” on page 2-12.

Creating CORBA C++ Server Applications 2-9

2 Steps for Creating a WebLogic Enterprise Server Application

Operation

Description

Server::release(); The TP Framework invokes this operation when the server application is

being shut down. This operation includes code to unregister any object
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “Releasing the Server Application” on page 2-13.

There is only one instance of the Server object in any server application. If your servel
application is managing multiple CORBA object implementations, the
Server::initialize() , Server::create_servant() , andServer::release()

operations you write must include code that applies to all those implementations.

The code that you write for most of these tasks involves interaction with the TP
Framework. The sections that follow explain the code required for each of these Serve
object operations and shows sample code from the Basic University sample
application.

Initializing the Server Application

The first operation that you implement in your Server object is the operation that
initializes the server application. This operation is invoked when the WebLogic
Enterprise system starts the server application. The TP Framework invokes the
following operation in the Server object during the startup sequence of the server
application:

CORBA::Boolean Server::initialize(int argc, char** argv)

Any command-line options specified in ti@OPTparameter for your specific server
application in thesERVERSection of the WebLogic Enterprise domaiyBBCONFIG
file are passed to thgerver::initialize() operation aargc andargv . For more
information about passing arguments to the server applicatiod@énistration
Guide For examples of passing arguments to the server application, s€eaiithe to
the University Sample Applications

Within the Server:initialize() operation, you include code that does the
following, if applicable:

m Creates and registers factories

2-10 Creating CORBA C++ Server Applications

Step 3: Create the Server Object

m Allocates any machine resources
m Initializes any global variables needed by the server application
m Opens the databases used by the server application

m Opens the XA resource manager

Writing the Code That Creates and Registers a Factory

If your server application manages a factory that you want client applications to be able
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which is invoked typically as the final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, you do
the following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory” on page 2-8. In this step, you include an invocation to
the TP::create_object_reference() operation, specifying the Interface
Repository ID of the factory’s OMG IDL interface.The following example
creates an object reference, represented by the vasabléact ref , to the
RegistrarFactory factory:
University::RegistrarFactory s_v_fact_ref =
TP::create_object_reference(
University::_tc_RegistrarFactory->id(),
object_id,
CORBA::NVList::_nil()
)i

2. Register the factory with the WebLogic Enterprise domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

TP:register_factory (CORBA::Object_ptr factory_or,
const char* factory_id);

Creating CORBA C++ Server Applications 2-11

2 Steps for Creating a WebLogic Enterprise Server Application

TheTP:register_factory() operation registers the server application’s
factories with the FactoryFinder object. This operation requires the following
input parameters:

e The object reference for the factory, created in step 1 above.

e A string identifier, based on the factory object’s interface typecode, used to
identify the Interface Repository ID of the factory’s OMG IDL interface.

The following example registers tiRegistrarFactory factory with the
WebLogic Enterprise domain:

TP::register_factory(s_v_fact_ref.in(),
University::_tc_RegistrarFactory->id());

Notice the parametesniversity::_tc_RegistrarFactory->id() . This'is
the same parameter specified in tfRe:create_object_reference()

operation. This parameter extracts the Interface Repository ID of the object’s
OMG IDL interface from its typecode.

Creating Servants

2-12

After the server application initialization process is complete, the server application is
ready to begin processing client requests. If a request arrives for an operation on a
CORBA object for which there is no servant available in memory, the TP Framework
invokes the following operation in the Server object:

Tobj_Servant Server::create_servant(const char* interfaceName)

TheServer::create_servant() operation contains code that instantiates a servant
for the object required by the client request. For example, in C++, this code includes &
new statement on the interface class for the object.

TheServer::create_servant() operation does not associate the servant with an
OID. The association of a servant with an OID takes place when the TP Framework
invokes theTobj_ServantBase::activate_object() operation on the servant,
which completes the instantiation of the object. (You cannot associate an OID with an
object in the object’s constructor.) Likewise, the disassociation of a servant with an
OID takes place when the TP Framework invokesdéstivate_object()

operation on the servant.

Creating CORBA C++ Server Applications

Step 3: Create the Server Object

This behavior of a servant in the WebL ogic Enterprise system makes it possible, after
an object has been deactivated, for the TP Framework to make a servant available for
another object instantiation. Therefore, do not assume that an invocation of an object’s
Tobj_ServantBase::deactivate_object() operation results in an invocation of

that object’s destructor. If you use the servant pooling feature in your server
application, you can implement the::application_responsibility()

operation in an object'Sobj_ServantBase::deactivate_object() operation to

pass a pointer to the servant to a servant pool for later reuse. Servant pooling is
discussed in the section “Servant Pooling” on page 2-29.

TheServer::create_servant() operation requires a single input argument. The
argument specifies a character string containing the Interface Repository ID of the
OMG IDL interface of the object for which you are creating a servant.

Inthe code you write for this operation, you specify the Interface Repository IDs of the
OMG IDL interfaces for the objects managed by your server application. During run
time, theServer::create_servant() operation returns the servant needed for the
object specified by the request.

The following code implements tt&erver::create_servant() operation in the
University server application from the Basic University sample application:

Tobj_Servant Server::create_servant(const char* intf_repos_id)

if (Istremp(intf_repos_id, University::_tc_RegistrarFactory->id())) {
return new RegistrarFactory_i();

if (Istremp(intf_repos_id, University::_tc_Registrar->id())) {
return new Registrar_i();

if (Istremp(intf_repos_id, University::_tc_CourseSynopsisEnumerator->id())) {
return new CourseSynopsisEnumerator_i();

return 0; // unknown interface

Releasing the Server Application

When the WebLogic Enterprise system administrator entergitéteitdown
command, the TP Framework invokes the following operation in the Server object of
each running server application in the WebLogic Enterprise domain:

Creating CORBA C++ Server Applications 2-13

2 Steps for Creating a WebLogic Enterprise Server Application

void Server::release()

Within theServer::release() operation, you may perform any application-specific
cleanup tasks that are specific to the server application, such as:

m Unregistering object factories managed by the server application
m Deallocating resources

m Closing any databases

m Closing an XA resource manager

Once a server application receives a request to shut down, the server application cal
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process
contains aninvocation in itGerver::release() operation to the first server process.

During server shutdown, you may want to include the following invocation to
unregister each of the server application’s factories:

TP::unregister_factory (CORBA::Object_ptr factory_or,
const char* factory_id)

The invocation of theTP::unregister_factory() operation should be one of the
first actions in theserver::release() implementation. The

TP:unregister_factory() operation unregisters the server application’s factories.
This operation requires the following input arguments:

m The object reference for the factory.

m A string identifier, based on the factory object’s interface typecode, used to
identify Interface Repository ID of the object's OMG IDL interface.

The following example unregisters tRegistrarFactory factory used in the Basic
sample application:

TP::unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());

2-14

In the preceding code example, notice the use of the global vasabléact_ref
This variable was set in thgerver::initialize() operation that registered the
RegistrarFactory object, which is used again here.

Notice also the parametenivB::_tc_RegistrarFactory->id() . This is also the
same as the interface name used to register the factory.

Creating CORBA C++ Server Applications

Step 4: Define the In-memory Behavior of Objects

Step 4: Define the In-memory Behavior of
Objects

As stated in the section “Managing Object State” on page 1-10, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify object activation and transaction policies in the ICF file, and you
implement application-controlled deactivation via tfre:deactivateEnable()

operation. This section explains how you implement both mechanisms, using the Basic
University sample application as an example.

The sections that follow describe the following:
m How to specify object activation and transaction policies in the ICF file

m How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in
the ICF File

The WebLogic Enterprise software supports the following activation policies,
described in “Object Activation Policies” on page 1-12:

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the objectto be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

Creating CORBA C++ Server Applications 2-15

2 Steps for Creating a WebLogic Enterprise Server Application

Activation Policy Description

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:

m The process in which the server application exists is shut
down.

m The object has invoked thEP::deactivateEnable()
operation on itself.

The WebLogic Enterprise software also supports the following transaction policies,
described in Chapter 5, “Integrating Transactions into a WebLogic Enterprise Server
Application™:

Transaction Policy Description

always When an operation on this object is invoked, this policy causes the
TP Framework to begin a transaction for this object, if there is not
already an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

optional When an operation on this object is invoked, this policy causes the
TP Framework to include this object in a transaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined for
this object.

This is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.

ignore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

To assign these policies to the objects in your application:

2-16 Creating CORBA C++ Server Applications

Step 4: Define the In-memory Behavior of Objects

1. Generate the ICF file by entering thenicf command, specifying your
application’s OMG IDL file as input, as in the following example:

genicf university.idl

The preceding command generates thedilsersity.icf

2. Edit the ICF file and specify the activation policies for each of your application’s
interfaces. The following example shows the ICF file generated for the Basic
University sample application. Notice that the default object activation policy is
method , and that the default transaction activation policgpgonal

module POA_UniversityB
{

implementation CourseSynopsisEnumerator_i

{

activation_policy (method);
transaction_policy (optional);
implements (UniversityB::CourseSynopsisEnumerator);

h
module POA_UniversityB
{

implementation Registrar_i

{

activation_policy (method);
transaction_policy (optional);
implements (UniversityB::Registrar);

h
module POA_UniversityB
{

implementation RegistrarFactory_i

{

activation_policy (method);
transaction_policy (optional);
implements (UniversityB::RegistrarFactory);

h
3. If you want to limit the number of interfaces for which you want skeleton and
implementation files generated, you can remove from the ICF file the
implementation blocks that implement those interfaces. Using the preceding ICF
code as an example, to prevent skeleton and implementation files from being
generated for th&egistrarFactory interface, remove the following lines:

implementation RegistrarFactory i

{

Creating CORBA C++ Server Applications 2-17

2 Steps for Creating a WebLogic Enterprise Server Application

activation_policy (method);
transaction_policy (optional);
implements (UniversityB::RegistrarFactory);

4. Pass the ICF file to the IDL compiler to generate the skeleton and
implementation files that correspond to the specified policies. For more
information, see the section “Generating the Skeleton and Implementation Files”
on page 2-6.

Step 5: Compile and Link the Server
Application

After you have finished writing the code for the Server object and the object
implementations, you compile and link the server application.

You use thebuildobjserver command to compile and link WebLogic Enterprise
server applications. Thauildobjserver command has the following format:

buildobjserver [-o0 servername | [options]
In the buildobjserver command syntax:

m -0 servername represents the name of the server application to be generated
by this command.

m options represents the command-line options tothilobjserver
command.

For complete information about compiling and linking the University sample
applications, see thBuide to the University Sample Applicatiof®r complete details
about thevuildobjserver command, se€ommands, System Processes, and
Reference

2-18 Creating CORBA C++ Server Applications

Step 6: Deploy the Server Application

Notes: If you are running the WebLogic Enterprise 5.1 software on IBM AIX 4.3.3

systems, you need to recompile your WebLogic Enterprise applications using
the-brtt compiler option.

If you plan to use WebLogic Enterprise applications that were built with the
Solaris C++ 4.2 compiler, you must install the compatibility version of the
WebLogic Enterprise software for Solaris.

If you plan to use WebLogic Enterprise applications that were built with the
Solaris C++ 5.0 compiler, you can install either the standard version or the
compatibility version of the WebLogic Enterprise software for Solaris. Your
decision should be made based on future compatibility requirements. See the
Installation Guidefor more information.

Step 6: Deploy the Server Application

You or the system administrator deploy the WebLogic Enterprise server application by
using the procedure summarized in this section. For complete details on building and
deploying the University sample applications, seeGuide to the University Sample
Applications

To deploy the server application:

1.

Place the server application executable file in an appropriate directory on a
machine that is part of the intended WebLogic Enterprise domain.

Create the application’s configuration file, also known astBBCONFIdile, in a
common text editor.

Set the following environment variables on the machine from which you are
booting the WebLogic Enterprise server application:

e TUXCONFIGwhich needs to match exactly tmi&/XCONFIGentry in the

UBBCONFIdile. This variable represents the location or path of the
application’sUBBCONFIdile.

e APPDIR, which represents the directory in which the application’s executable

file exists.

Creating CORBA C++ Server Applications 2-19

2 Steps for Creating a WebLogic Enterprise Server Application

4. Set theTUXDIR environment variable on all machines that are running in the
WebLogic Enterprise domain or that are connected to the WebLogic Enterprise
domain. This environment variable points to the location where the WebLogic
Enterprise software is installed.

5. Enter the following command to create theéXCONFIGile:
tmloadcf -y application- ubbconfig -file

The command-line argumenpplication- ubbconfig -file represents the
name of your application’sBBCONFIdile. Note that you may need to remove
any old TUXCONFIdiles to execute this command.

6. Enter the following command to start the WebLogic Enterprise server
application:
tmboot -y
You can reboot a server application without reloading UlB8CONFIdile.

For complete details about configuring the University sample applications, see the

Guide to the University Sample Applicatiof®r complete details on creating the
UBBCONFIdile for WebLogic Enterprise applications, see théministration Guide

Development and Debugging Tips

2-20

This topic includes the following sections:

m Use of CORBA and M3 exceptions and the user log

m Detecting error conditions in the callback methods

m Common pitfalls of OMG IDL interface versioning and modification

m Caveat for state handling in th®bj_ServantBase::deactivate_object()
operation

Creating CORBA C++ Server Applications

Development and Debugging Tips

Use of CORBA and M3 Exceptions and the User Log

This topic includes the following sections:
m The client application view of exceptions

m The server application view of exceptions

Client Application View of Exceptions

When a client application invokes an operation on a CORBA object, an exception may
be returned as a result of the invocation. The only valid exceptions that can be returned
to a client application are the following:

m Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

m Exceptions that are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

The WebLogic Enterprise system works to ensure that these CORBA-defined
restrictions are not violated, which is described in the section “Server Application
View of Exceptions” on page 2-21.

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the WebLogic Enterprise system supplements such exceptions
with descriptive messages in the user log, which serves as an aid in detecting and
debugging error conditions. These cases are described in the following section.

Server Application View of Exceptions

This topic includes the following sections:

m Exceptions raised by the WebLogic Enterprise system that can be caught by
application code

m The M3 system’s handling of exceptions raised by application code during the
invocation of operations on CORBA objects

Creating CORBA C++ Server Applications 2-21

2 Steps for Creating a WebLogic Enterprise Server Application

Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by Application Code

The WebLogic Enterprise system may return the following types of exceptions to an
application when operations on the TP object are invoked:

m CORBA-defined system exceptions

m CORBAUserExceptions defined in the fileTobjS_c.h . The OMG IDL for
the exceptions defined in this file is the following:

interface TobjS {
exception AlreadyRegistered { };
exception ActivateObjectFailed { string reason; };
exception ApplicationProblem { };
exception CannotProceed { };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception lllegalinterface { };
exception lllegalOperation { };
exception InitializeFailed { string reason; };
exception InvalidDomain { };
exception Invalidinterface { };
exception InvalidName { };
exception InvalidObject { };
exception InvalidObjectld { };
exception InvalidServant { };
exception NilObject { string reason; };
exception NoSuchElement { };
exception NotFound { };
exception OrbProblem { };
exception OutOfMemory { };
exception OverFlow { };
exception RegistrarNotAvailable { };
exception ReleaseFailed { string reason; };
exception TpfProblem { };
exception Unknowninterface { };

}

The M3 System’s Handling of Exceptions Raised by Application Code During the Invocation of
Operations on CORBA Objects

2-22

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

m In theServer::create_servant ,
Tobj_ServantBase::activate_object() , and
Tobj_ServantBase::deactivate_object() callback methods.

Creating CORBA C++ Server Applications

Development and Debugging Tips

m In the implementation code for the invoked operation.

Itis possible for the server application to raise any of the following types of exceptions:
m A CORBA-defined system exception

m A CORBA user-defined exception defined in OMG IDL

m A CORBA user-defined exception defined in the filebjS_c.h . The following
exceptions are intended to be used in server applications to help the WebLogic
Enterprise system send messages to the user log, which can help with
troubleshooting:

interface TobjS {
exception ActivateObjectFailed { string reason; };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception InitializeFailed { string reason; };
exception ReleaseFailed { string reason; };

}

m Any other C++ exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the WebLogic Enterprise system. When these exceptions are
caught, one of the following occurs:

m The exception is returned to the client application without alteration.

m The exception is converted to a standard CORBA exception, which is then
returned to the client application.

m The exception is converted to a standard CORBA exception, and the following
actions occur:

e The exception is returned to the client application

¢ One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the WebLogic Enterprise system.

The following sections show how the M3 system handles exceptions raised by the
server application during the course of a client invocation on a CORBA object.

Creating CORBA C++ Server Applications 2-23

2 Steps for Creating a WebLogic Enterprise Server Application

2-24

Exceptions raised in theServer::create_servant() operation
If any exception is raised in th&erver::create_servant() operation, then:
m TheCORBA:OBJECT_NOT_EXISTexception is returned to the client application.

m If the exception raised iSobjS::CreateServantFailed , then a message is
sent to the user log. If a reason string is supplied in the constructor for the
exception, then the reason string is also written as part of the message.

m Neither theTobj_ServantBase::activate_object() or
Tobj_ServantBase::deactivate_object() operations are invoked. The
operation requested by the client is not invoked.

Exceptions raised in theTobj_ServantBase::activate_object() operation

If any exception is raised in thHEobj_ServantBase::activate_object()
operation, then:

m TheCORBA:OBJECT_NOT_EXISTexception is returned to the client application.

m If the exception raised iSobjS::ActivateObjectFailed , @a message is sent to
the user log. If a reason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

m Neither the operation requested by the client nor the
Tobj_ServantBase::deactivate_object() operation is invoked.

Exceptions Raised in Operation Implementations

The WebLogic Enterprise system requires operation implementations to throw either
CORBA system exceptions, or user-defined exceptions defined in OMG IDL that are
known to the client application. If these types of exceptions are thrown by operation
implementations, then the WebLogic Enterprise system returns them to the client
application, unless one of the following conditions exists:

m The object has thelways transaction policy, and the WebLogic Enterprise
system automatically started a transaction when the object was invoked. In this
case, the transaction is automatically rolled back by the WebLogic Enterprise
system. Because the client application is unaware of the transaction, the
WebLogic Enterprise system then raises t@RBA::OBJ_ADAPTERCORBA
system exception, and not t@®RBA:: TRANSACTION_ROLLEDBAC&xception,
which would have been the case had the client initiated the transaction.

Creating CORBA C++ Server Applications

Development and Debugging Tips

m The exception is defined in the filobjS_c.h . In this case, the exception is
converted to th€ORBA::BAD_OPERATIONexception and is returned to the client
application. In addition, the following message is sent to the user log:

"WARN: Application didn't catch TobjS exception. TP Framework
throwing CORBA::BAD_OPERATION."

If the exception isTobjS::lllegalOperation , the following supplementary
message is written to warn the developer of a possible coding error in the
application:

"WARN: Application called TP::deactivateEnable() illegally and
didn't catch TobjS exception.”

This can occur if thaP::deactivateEnable() operation is invoked inside an
object that has theansaction ~ activation policy. (Application-controlled
deactivation is not supported for transaction-bound objects)

m The WebLogic Enterprise system raised an internal system exception following
the client invocation. In this case, t®RBA: INTERNAL exception is returned
to the client. This usually indicates serious system problems with the process in
which the object is active.

As defined by the CORBA standard, a reply sent back to the client can either contain
result values from the operation implementation, or an exception thrown in the
operation implementation, but not both. In the first case -- that is, if the reply status
value iSNO_EXCEPTION- the reply contains the operation's return value and any

inout orout argument values. Otherwise -- that is, if the reply status value is
USER_EXCEPTIONYI SYSTEM_EXCEPTION all the reply contains is the encoding of

the exception.

Exceptions Raised in theTobj_ServantBase::deactivate_object()
Operation

If any exception is raised in thHeobj_ServantBase::deactivate_object()
operation, the following occurs:

m The exception is not returned to the client application.

m If the exception raised i%objS::DectivateObjectFailed , a message is sent
to the user log. If a reason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

m A message is sent to the user log for exceptions other than the
TobjS::DeactivateObjectFailed exception, indicating the type of exception
caught by the WebLogic Enterprise system.

Creating CORBA C++ Server Applications 2-25

2 Steps for Creating a WebLogic Enterprise Server Application

CORBA Marshal Exception Raised When Passing Object Instances

The WebLogic Enterprise ORB cannot marshal an object instance as an object
reference. For example, passing a factory reference in the following code fragment
generates a CORBA Marshal exception in the WebLogic Enterprise system:

connection::setFactory(this);

To pass an object instance, you should create a proxy object reference and pass the
proxy instead, as in the following example:

CORBA::Object myRef = TP::get_object_reference();
ResultSetFactory factoryRef = ResultSetFactoryHelper::_narrow(myRef);
connection::setFactoryRef(factoryRef);

Detecting Error Conditions in the Callback Methods

The WebLogic Enterprise system provides a set of predefined exceptions that allow
you to specify message strings that the TP Framework writes to the user log if
application code gets an error in any of the following callback methods:

m Tobj_ServantBase::activate_object()

® Tobj_ServantBase::deactivate_object()
m Server:create_servant()

m Server:initialize()

B Server:release()

You can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

You specify these messages with the following exceptions, which have an optional
reason string:

Exception Callback Methods that Can Raise This
Exception
ActivateObjectFailed Tobj_ServantBase::activate_object()

2-26 Creating CORBA C++ Server Applications

Development and Debugging Tips

Exception Callback Methods that Can Raise This
Exception

DeactivateObjectFailed Tobj_ServantBase::deactivate_object()

CreateServantFailed Server::create_servant()
InitializeFailed Server::initialize()
ReleaseFailed Server::release()

To send a message string to the user log, specify the string in the exception, as in the
following example:

throw CreateServantFailed("Unknown interface");

Note that when you throw these exceptions, the reason string parameter is required. If
you do not want to specify a string with one of these exceptions, you must use the
double quote characters, as in the following example:

throw ActivateObjectFailed(™);

Common Pitfalls of OMG IDL Interface Versioning and
Modification

The Server object's implementation of th&ver::create_servant() operation
instantiates an object based on its interface ID. It is crucial that this interface ID is the
same as the one supplied in the factory when the factory invokes the
TP::create_object_reference() operation. If the interface IDs do not match, the
Server::create_servant() operation usually raises an exception or returns a
NULL servant. The WebLogic Enterprise system then returns a
CORBA::OBJECT_NOT_EXISTexception to the client application.(The WebLogic
Enterprise system does not perform any validation of interface IDs in the
TP::create_object_reference() operation.)

Itis possible for this condition to arise if, during the course of development, different
versions of the interface are being developed or many modifications are being made to
IDL file. Even if you typically specify string constants for interface IDs in OMG IDL

Creating CORBA C++ Server Applications 2-27

2 Steps for Creating a WebLogic Enterprise Server Application

and use these in the factory and Bever::create_servant() operation, it is
possible for a mismatch to occur if the object implementation and factory are in
different executables. This potential problem may be difficult to diagnose.

You may want to consider the following defensive programming strategies during
development to avoid this potential problem. This code should be included only in
debugging versions of your application, because it introduces performance
inefficiencies that may be unacceptable in the production versions of your software.

m Immediately before factory invokes the::create_object_reference()
operation, include code that checks the Interface Repository to see if the requirec
interface exists. (Make sure that all the application OMG IDL is up-to-date and
loaded into the Interface Repository). Should this check fail to find the interface
ID, you can assume that there is a mismatch.

m Following the invocation of th&P::create_object_reference() operation
in your factories, include code that “pings” the object. That is, the code invokes
any operation on the object (typically an operation that does not do anything). If
this invocation raises theORBA::OBJECT_NOT_EXISTexception, an interface
ID mismatch exists. Note that “pinging” an object causes the object to be
activated, with the overhead associated with the activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate_object()

2-28

TheTobj_ServantBase::deactivate_object() operation is invoked when the
activation boundary for an object is reached. You may, optionally, write durable state
to disk in the implementation of this operation. It is important to understand that
exceptions raised in this operation are not returned to the client application. The clien
application will be unaware of any error conditions raised in this operation unless the
objectis participating in a transaction. Therefore, in cases where it is important that the
client application know whether the writing of state via this operation is successful, we
recommend that transactions be used.

If you decide to use th&obj_ServantBase::deactivate_object() operation for
writing state, and the client application needs to know the outcome of the write
operations, we recommend that you do the following:

Creating CORBA C++ Server Applications

Servant Pooling

m Ensure that each operation that affects object state is invoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either thethod or transaction activation policies, and
is possible with therocess activation policy if theTP::deactivateEnable()
operation is invoked within the transaction boundary.

m If an error occurs during the writing of object state, invoke the
COSTransactions::Current::rollback_only() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one of
the following exceptions:

e If the client application initiated the transaction, the client application
receives theCORBA:: TRANSACTION_ROLLEDBAGEXception.

e If the WebLogic Enterprise system initiated the transaction, the client
application receives theORBA::OBJ_ADAPTERexception.

If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than via the
Tobj_ServantBase::deactivate_object() operation. This way, if an error

occurs, the operation can raise an exception that is returned to the client application.

Servant Pooling

As mentioned in the section “Servant Pooling and Stateless Objects” on page 1-21,
servant pooling provides a means to reduce the cost of object instantiation for
method-bound or transaction-bound objects.

How Servant Pooling Works

Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj_ServantBase::deactivate_object() operation), the TP Framework

deletes the object’s servant; however, when servant pooling is used, the TP Framework
doesnotdelete the servant at object deactivation. Instead, the server application
maintains a pointer to the servant in a pool. When a subsequent client request arrives

Creating CORBA C++ Server Applications 2-29

2 Steps for Creating a WebLogic Enterprise Server Application

that can be satisfied by a servant in that pool, the server application reuses the serva
and assigns a new object ID. When a servant is reused from a pool, the TP Framewol
does not create a new servant.

How You Implement Servant Pooling

2-30

You implement servant pooling by doing the following:

1.

In theServer::initialize() operation on the Server object, write the code that
sets up the servant pool. The pool consists of a set of pointers to one or more
servants, and the code for the pool specifies how many servants for a given class
are to be maintained in the pool.

In the pooled servant®obj_ServantBase::deactive_object() operation,

you implement tha@ P::application_responsibility() operation. Inthe
implementation of th@P::application_responsibility() operation, you
provide code that places a pointer to the servant into the servant pool at the time
that the TP Framework invokes the

Tobj_ServantBase::deactivate_object() operation.

In the Server object’'s implementation of therver::create_servant()
operation, write code that does the following when a client request arrives:

a. Checks the pool to see if there is a servant that can satisfy the request.

b. If a servant does not exist, create a servant and invoke the
Tobj_ServantBase::activate_object() operation on it.

c. Ifaservant exists, invoke thbj_ServantBase::activate_object()
operation on it, assigning the object ID contained in the client request.

For information about th&P::application_responsibility() operation, see the
C++ Programming Reference

Creating CORBA C++ Server Applications

Delegation-based Interface Implementation

Delegation-based Interface Implementation

There are two primary ways in which an object can be implemented in a WebLogic
Enterprise application: by inheritance, or by delegation. When an object inherits from
the POA skeleton class, and is thus a CORBA object, that object is said to be
implemented bynheritance

However, there may be instances in which you want to use a C++ object in a WebLogic
Enterprise application in which inheriting from the POA skeleton class is difficult or
impractical. For example, you might have a C++ object that would require a major
rewrite to inherit from the POA skeleton class. You can bring this non-CORBA object
into a WebLogic Enterprise application by creatintjeaclassfor the object. The tie

class inherits from the POA skeleton class, and the tie class contains one or more
operations that delegate to the legacy class for the implementation of those operations.
The legacy class is thereby implemented in the WebLogic Enterprise application by
delegation

About Tie Classes in the WebLogic Enterprise System

To create a delegation-based interface implementation, us& ttemmand-line
option of the IDL compiler to generate tie class templates for each interface defined in
the OMG IDL file.

Using tie classes in a WebLogic Enterprise application also affects how you implement
the Server::create_servant() operation in the Server object. The following
sections explain the use of tie classes in WebLogic Enterprise in more detail, and also
explains how to implement th&erver::create_servant() operation to instantiate
those classes.

In WebLogic Enterprise, the tie class is the servant, and, therefore, serves basically as
a wrapper object for the legacy class.

The following figure shows the inheritance characteristics of the inteacsunt ,
which serves as a wrapper for a legacy object. The legacy object contains the
implementation of the operatiam1. The tie class delegatepl to the legacy class.

Creating CORBA C++ Server Applications 2-31

2 Steps for Creating a WebLogic Enterprise Server Application

OMG IDL
Interface
Account

IDL Compiler

Skeleton for Skeleton Header for
Account Account

C++ Template Class
Account_tie
(Generated Using -T)

5

Implementation of Account_tie:
opl(_ptr val);

Delegates op1 to
legacy class,
passing val .

Tie classes are transparent to the client application. To the client application, the tie
class appears to be a complete implementation of the object that the client applicatiol

invokes. The tie class delegates all operations to the legacy class, which you provide
In addition, the tie class contains the following:

m Constructor and destructor code, which handles startup and shutdown procedure
for the tie class and the legacy class

2-32 Creating CORBA C++ Server Applications

Delegation-based Interface Implementation

m Housekeeping code, which implements operations such as accessors

When to Use Tie Classes

Tie classes are not unique to WebLogic Enterprise, and they are not the only way to
implement delegation in a WebLogic Enterprise application. However, the WebLogic
Enterprise convenience features for tie classes can greatly reduce the amount of coding
you need to do for the basic constructor, destructor, and housekeeping operations for
those tie classes.

Using tie classes might be recommended in one of the following situations:

= You want to implement an object in a WebLogic Enterprise application in which
inheriting from the POA skeleton class is difficult or impractical.

m All the invocations on a legacy class instance can be accomplished from a single
servant.

m You are using a legacy class in your WebLogic Enterprise application, and you
want to tie the lifetime of an instance of that legacy class to a servant class.

m Delegation is the only purpose of a particular servant; therefore, nearly all the
code in that servant is dedicated to legacy object startup, shutdown, access, and
delegation.

Tie classes araotrecommended when:

m The operations on an object instance delegate to more than one legacy object
instance.

m Delegation is only a part of the purpose of an object.

Creating CORBA C++ Server Applications 2-33

2 Steps for Creating a WebLogic Enterprise Server Application

How to Create Tie Classes in a WebLogic Enterprise

Application

Account * Account_ptr
AccountFactoryServant

2-34

To create tie classes in an application in a WebLogic Enterprise domain:

1. Create the interface definition for the tie class in an OMG IDL file, as you would

for any object in your application.

. Compile the OMG IDL file using ther option.

The IDL compiler generates a C++ template class, which takes the name of the
skeleton, with the stringtie appended to it. The IDL compiler adds this
template class to the skeleton header file.

Note that the IDL compiler doasot generate the implementation file for the tie
class; you need to create this file by hand, as described in the next step.

. Create an implementation file for the tie class. The implementation file contains

the code that delegates its operations to the legacy class.

In the Server object'Server::create_servant() operation, write the code
that instantiates the legacy object.

In the following example, the servant for tie cla®SA_Account_tie is created,
and the legacy cladsgacyAccount is instantiated.

new LegacyAccount();
new POA_Account_tie<LegacyAccount> (Account_ptr)

Note: When compiling tie classes with the Digital C++ V6.0 compiler for Tru64

UNIX, you must include thenoimplicit_include option in the definition
of the CFLAGSor CPPFLAGSenvironment variables used by the
buildobjserver command. This option prevents the Digital C++ compiler
from automatically including the server skeleton definition file.¢pp)
everywhere the server skeleton header fikeH() is included, which is
necessary to avoid multiply-defined symbol errors. See the publichisimg
DIGITAL C++ for Digital UNIX Systemdor additional information about
using class templates, such as the tie classes, with Digital C++.

Creating CORBA C++ Server Applications

CHAPTER

3

Designing and
Implementing a Basic

WebLogic Enterprise
Server Application

This chapter describes how to design and implement a WebLogic Enterprise server
application, using the Basic University sample application as an example. The content
of this chapter assumes that the design of the application to be implemented is
complete and is expressed in OMG IDL. This chapter focuses on design and
implementation choices that are oriented to the server application.

This topic includes the following sections:

m How the Basic University Sample Application Works, which helps provide
context to the design and implementation considerations

m Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

e Design Considerations for Generating Object References

e Design Considerations for Managing Object State

e Design Considerations for Handling Durable State Information
e How the Basic Sample Application Applies Design Patterns

¢ Additional Performance Efficiencies Built into the WebLogic Enterprise
System

Creating CORBA C++ Server Applications 3-1

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

Preactivating an Object with State

How the Basic University Sample
Application Works

The Basic University sample application provides the student with the ability to
browse course information from a central University database. Using the Basic sampl
application, the student can do the following:

m Browse course synopses from the database by specifying a search string. The
server application then returns synopses for all courses that have a title,
professor, or description containing the search string. (A course synopsis
returned to the client application includes only the course number and title.)

m View detailed information about specific courses. The detailed information
available for a specified course includes the following, in addition to synopsis
information:

Cost

Number of credits

Class schedule

Number of seats

Number of registered students
Professor

Description

The Basic University Sample Application OMG IDL

In its OMG IDL file, the Basic University sample application defines the following
interfaces:

3-2 Creating CORBA C++ Server Applications

How the Basic University Sample Application Works

Interface Description Operations

RegistrarFactory Creates object references to the find_registrar()
Registrar object

Registrar Obtains course information from the get_courses_synopsis()
database get_courses_details()

CourseSynopsisEnumerator Fetches synopses of courses that mataet_next_n()

the search criteria from the database angestroy()
reads them into memory

The Basic University sample application is shown in Figure 3-1.

Figure 3-1 Basic University Sample Application

University Server Application

RegistrarFactory Registrar
CourseSynopsis
. Enumerator
Client umerato
Application
—
Course
Database

For the purposes of explaining what happens when the Basic University sample
application runs, the following separate groups of events are described:

Creating CORBA C++ Server Applications 3-3

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

Application startup -- when the server application is booted and the client
application gets an object reference to Hegjistrar object

Browsing course synopses -- when the client application sends a request to view
course synopses

Browsing course details -- when the client application sends a request to view
details on a specific list of courses

Application Startup

The following sequence shows a typical set of events that take place when the Basic
client and server applications are started and the client application obtains an object
reference to th®egistrar object:

1.

The Basic client and server applications are started, and the client application
obtains a reference to thegistrarFactory object from the FactoryFinder.

Using the reference to thregistrarFactory object, the client application
invokes theiind_registrar() operation on th&egistrarFactory object.

TheRegistrarFactory object is not in memory (because no previous request
for that object has arrived in the server process), so the TP Framework invokes
the Server::create_servant() operation in the Server object to instantiate it.

Once instantiated, thRegistrarFactory object’sfind_registrar()
operation is invoked. ThBegistrarFactory object creates thRegistrar
object reference and returns it to the client application.

Browsing Course Synopses

3-4

The following sequence traces the events that may occur when the student browses
list of course synopses:

1.

Using the object reference to tRegistrar object, the client application invokes
theget_courses_synopsis() operation, specifying:

e A search string to be used for retrieving course synopses from the database.

Creating CORBA C++ Server Applications

How the Basic University Sample Application Works

e Aninteger, represented by the variablenber_to_get , which specifies the
size of the synopsis list to be returned.

2. TheRegistrar object is not in memory (because no previous request for that
object has arrived in the server process), so the TP Framework invokes the
Server::create_servant() operation, which is implemented in the Server
object. This causes thegistrar ~ object to be instantiated in the server
machine’s memory.

3. TheRegistrar object receives the client request and creates an object reference
to the CourseSynopsisEnumerator object. TheCourseSynopsisEnumerator
object is invoked by the Registrar object to fetch the course synopses from the
database.

To create the object referenceurseSynopsisEnumerator object, the
Registrar object does the following:

a. Generates a unique ID for tm@urseSynopsisEnumerator object.

b. Generates an object ID for tlt®urseSynopsisEnumerator object that is a
concatenation of the unique ID generated in the preceding step and the search
string specified by the client.

c. Gets thecourseSynopsisEnumerator object’s Interface Repository ID from
the interface typecode.

d. Invokes theTP::create_object_reference() operation. This operation
creates an object reference to ttwirseSynopsisEnumerator object needed
for the initial client request.

4. Using the object reference created in the preceding stepetiistrar object
invokes theget_next_n() operation on th&€ourseSynopsisEnumerator
object, passing the list size. The list size is represented by the parameter
number_to_get , described in step 1.

5. The TP Framework invokes tiServer::.create_servant() operation on the
Server object to instantiate tl@@urseSynopsisEnumerator object.

Creating CORBA C++ Server Applications 3-5

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

3-6

6.

10.

11.

The TP Framework invokes thetivate_object() operation on the
CourseSynopsisEnumerator object. This operation does the following two
things:

e Extracts the search criteria from its OID.

e Using the search criteria, fetches matching course synopses from the
database and reads them into the server machine’s memory.

TheCourseSynopsisEnumerator object returns the following information to
theRegistrar object:

e A course synopsis list, specified in the return valis@irseSynopsisList
which is asequence containing the first list of course synopses.

¢ The number of matching course synopses that have not yet been returned,
specified by the parameteumber_remaining.

TheRegistrar object returns th€ourseSynopsisEnumerator object
reference to the client application, and also returns the following information
obtained from that object:

e The initial course synopsis list
e Thenumber_remaining variable

(If the number_remaining variable is 0, theRegistrar ~ object invokes the
destroy() operation on th&€ourseSynopsisEnumerator object and returns a
nil reference to the client application.)

The client application sends directly to theurseSynopsisEnumerator object
its next request to get the next batch of matching synopses.

TheCourseSynopsisEnumerator object satisfies the client request, also
returning the updatesumber_remaining variable.

When the client application is done with theurseSynopsisEnumerator
object, the client application invokes thestroy() operation on the
CourseSynopsisEnumerator object. This causes the
CourseSynopsisEnumerator object to invoke thaP::deactivateEnable()
operation.

Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

12. The TP Framework invokes tleactivate_object() operation on the

CourseSynopsisEnumerator object. This causes the list of course synopses
maintained by th&€ourseSynopsisEnumerator object to be erased from the
server computer’s memory so that theurseSynopsisEnumerator object’s
servant can be reused for another client request.

Browsing Course Details

The following sequence shows a typical set of events that take place when the client
application browses course details:

1.

The student enters the course numbers for the courses about which he or she is
interested in viewing details.

The client application invokes thyet_course_details() operation on the
Registrar object, passing the list of course numbers.

TheRegistrar object searches the database for matches on the course numbers,
and then returns a list containing full details for each of the specified courses.

The list is contained in theourseDetailsList variable, which is a sequence

of struct s containing full course details.

Design Considerations for the University
Server Application

The Basic University sample application contains the University server application,
which deals with several fundamental WebLogic Enterprise server application design
issues. This section addresses the following topics:

Design Considerations for Generating Object References
Design Considerations for Managing Object State
Design Considerations for Handling Durable State Information

How the Basic Sample Application Applies Design Patterns

Creating CORBA C++ Server Applications 3-7

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

This section also addresses the following two topics:

m Additional Performance Efficiencies Built into the WebLogic Enterprise System

m Preactivating an Object with State

Design Considerations for Generating Object References

The Basic client application needs references to the following objects, which are
managed by the University server application:

m TheRegistrarFactory

m TheRegistrar

m TheCourseSynopsisEnumerator

object

object

The following table shows how these references are generated and returned.

Object

How the Object Reference is
Generated and Returned

RegistrarFactory

The object reference for tHeegistrarFactory

object is generated in the Server object, which registers
the RegistrarFactory object with the

FactoryFinder. The client application then obtains a
reference to th&egistrarFactory object from the
FactoryFinder.

There is only ondegistrarFactory objectin the
Basic University server application process.

Registrar

The object reference for tHeegistrar ~ object is
generated by thRegistrarFactory object and is
returned when the client application invokes the
find_registrar() operation. The object reference
created for th&egistrar object is always the same;
this object reference does not contain a unique OID.

There is only ondRegistrar ~ object in the Basic
University server application process.

3-8 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

Object How the Object Reference is
Generated and Returned

CourseSynopsisEnumerator The object reference for the
CourseSynopsisEnumerator object is generated
by theRegistrar object when the client application
invokes theget_courses_synopsis() operation.
In this way, theRegistrar ~ object is the factory for
the CourseSynopsisEnumerator object. The
design and use of the
CourseSynopsisEnumerator object is described
later in this chapter.

There can be any number of
CourseSynopsisEnumerator objects in the Basic
University server application process.

Note the following about how the University server application generates object
references:

m The Server object registers tRegistrarFactory object with the
FactoryFinder. This the recommended way to ensure that client applications can
locate the factories they need to obtain references to the basic objects in the
application.

m The object reference to thRegistrar object is created by the
RegistrarFactory object. This shows a very common and basic way to return
object references to the client application; namely, that there is a factory
dedicated to creating and returning references to the primary object that is
required by the client application to execute business logic.

m The object reference to th®urseSynopsisEnumerator object is created
outside a registered factory. In the University sample applications, this is a good
design because of the way tbeurseSynopsisEnumerator object is meant to
be used; namely, its existence is specific to a particular client application
operation. TheCourseSynopsisEnumerator object returns a specific list and
results that are not related to the results from other queries.

m Because th®egistrar object creates, in one of its operations, an object
reference to another object, tRegistrar ~ object is a factory. However, the
Registrar ~ object is not registered as a factory with the FactoryFinder;
therefore, client applications cannot get a reference t®Rtyestrar object
from the FactoryFinder.

Creating CORBA C++ Server Applications 3-9

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

Design Considerations for Managing Object State

Each of the three objects in the Basic sample application has its own state manageme
requirements. This section discusses the object state management requirements for
each.

The RegistrarFactory Object

TheRegistrarFactory object does not need to be unique for any particular client
request. It makes sense to keep this object in memory and avoid the expense of
activating and deactivating this object for each client invocation on it. Therefore, the
RegistrarFactory object has therocess activation policy.

The Registrar Object

The Basic sample application is meant to be deployed in a small-scale environment.
TheRegistrar object has many qualities similar to tRegistrarFactory object;
namely, this object does not need to be unique for any particular client request. Also
it makes sense to avoid the expense of continually activating and deactivating this
object for each invocation on it. Therefore, in the Basic sample application, the
Registrar object has th@rocess activation policy.

The CourseSynopsisEnumerator Object

The fundamental design problem for the University server application is how to handle
a list of course synopses that is potentially too big to be returned to the client
application in a single response. Therefore, the solution centers on the following:

m To begin a conversation between the client application and an object that can
fetch the course synopses from the University database.

m To have the object return an initial batch of synopses to the client application.

m To keep the remainder of the course synopses in memory so that the client
application can retrieve them one batch at a time.

m To have the client application terminate the conversation when finished, thus
freeing machine resources.

3-10 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

The University server application has t@eurseSynopsisEnumerator object,

which implements this solution. Although this object returns an initial batch of
synopses when it is first invoked, this object retains an in-memory context so that the
client application can get the remainder of the synopses in subsequent requests. To
retain an in-memory context, ti@urseSynopsisEnumerator object must be

stateful; that is, this object stays in memory between client invocations on it.

When the client is finished with theourseSynopsisEnumerator object, this object

needs a way to be flushed from memory. Therefore, the appropriate state management
decision for theCourseSynopsisEnumerator object is to assign it thprocess

activation policy and to implement the WebLogic Enterprise application-controlled
deactivation feature.

Application-controlled deactivation is implemented in thatroy() operation on
that object.

The following code example shows thestroy() operation on the
CourseSynopsisEnumerator object:

void CourseSynopsisEnumerator_i::destroy()

{
/I when the client calls "destroy" on the enumerator,
/I then this object needs to be "destructed".
/I do this by telling the TP framework that we're
/I done with this object.
TP::deactivateEnable();
}

Basic University Sample Application ICF File

The following code example shows the ICF file for the Basic sample application:

module POA_UniversityB

{

implementation CourseSynopsisEnumerator_i
activation_policy (process);
transaction_policy (optional);
implements (' UniversityB::CourseSynopsisEnumerator);

implementation Registrar_i

activation_policy (process);
transaction_policy (optional);

Creating CORBA C++ Server Applications 3-11

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

implements (' UniversityB::Registrar);
I3
implementation RegistrarFactory_i
{
activation_policy (process);
transaction_policy (optional);
implements (' UniversityB::RegistrarFactory);
¥

Design Considerations for Handling Durable State
Information

Handling durable state information refers specifically to reading durable state
information from disk at some point during or after the object activation, and writing
it, if necessary, at some point before or during deactivation. The following two objects
in the Basic sample application handle durable state information:

m TheRegistrar object
m TheCourseSynopsisEnumerator object

The following two sections describe the design considerations for how these two
objects handle durable state information.

The Registrar Object

One of the operations on tiRegistrar ~ object returns detailed course information to
the client application. In a typical scenario, a student who has browsed dozens of
course synopses may be interested in viewing detailed information on perhaps as fe\
as two or three courses at one time.

To implement this usage scenario efficiently, theistrar object is defined to have
theget_course_details() operation. This operation accepts an input parameter
that specifies a list of course numbers. This operation then retrieves full course detaiil
from the database and returns the details to the client application. Because the objec
in which this operation is implemented is process-bound, this operation should avoid
keeping any state data in memory after an invocation on that operation is complete.

3-12 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

TheRegistrar object does not keep any durable state in memory. When the client
application invokes thget_course_details() operation, this object simply fetches

the relevant course information from the University database and sends it to the client.
This object does not keep any course data in memory. No durable state handling is
done via theactivate_object() or deactivate_object() operations on this

object.

The CourseSynopsisEnumerator Object

TheCourseSynopsisEnumerator ~ object handles course synopses, which this object
retrieves from the University database. The design considerations, with regard to
handling state, involve how to read state from disk. This object does not write any state
to disk.

There are three important aspects of how@berseSynopsisEnumerator object
works that influence the design choices for how this object reads its durable state:

m The OID for this object contains the search criteria provided in the initial client
request for synopses. The search criteria work as a key to the database: this
object extracts information from the database based on search criteria stored in
the OID.

m All the operations on this object use the course synopses that this object reads
into memory.

m This object must flush course synopses from memory when it is deactivated.
Given these three aspects, it makes sense for this object to:

m Read its durable state information when activated; namely, via the
activate_object() operation on this object.

m Flush the course synopses from memory when deactivated; namely, via the
deactivate_object() operation.

Therefore, when th€ourseSynopsisEnumerator object is activated, the
activate_object() operation on this object does the following:

1. Extracts the search criteria from its OID

2. Retrieves from the database course synopses that match the search criteria

Creating CORBA C++ Server Applications 3-13

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

Note: If you implement theTobj_ServantBase::activate_object() or

Tobj_ServantBase::deactivate_object() operations on an object,
remember to edit the implementation header file (that is, the

application ~ _i.h file) and add the definitions for those operations to the
class definition template for the object’s interface.

Using the University Database

3-14

Note the following about the way in which the University sample applications use the
University database:

m All of the University sample applications access the University database to

manipulate course and student information. Typically this is a large part of the
code you write in the implementation files. To make the University sample
implementation files simpler, and to help you focus on WebLogic Enterprise
features instead of database code, the samples have wrapped all the code that
reads and writes to the database within a set of classes. Thardigesdb.h in
theutils directory contains the definitions of these classes. These classes make
all the necessary SQL calls to read and write the course and student records in
the University database.

Note: The BEA Tuxedo Teller Application in the Wrapper and Production sample

applications accesses the account information in the University database
directly and does not use tamplesdb.h file.

For more information on the files you build into the Basic server application, see
the Guide to the University Sample Applications

The CourseSynopsisEnumerator object uses a database cursor to find
matching course synopses from the University database. Because database
cursors cannot span transactions, dhévate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCourseSynopsisEnumerator object. For more information about
how the University sample applications use transactions, see Chapter 5,
“Integrating Transactions into a WebLogic Enterprise Server Application.”

Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

How the Basic Sample Application Applies Design
Patterns

The Basic sample application uses the following design patterns:
m Process-Entity
m List-Enumerator

This section describes why these two patterns are appropriate for the Basic sample
application and how this application implements them.

Process-Entity Design Pattern

As mentioned in the section “Process-Entity Design Pattern” on page 1-23, this design
pattern is appropriate in situations where you can have one process object that handles
data entities needed by the client application. The data entities are encapsulated as
CORBA struct s that are manipulated by the process object and not by the client
application.

Adapting the Process-Entity design pattern to the Basic sample application allows the
application to avoid implementing fine-grained objects. For exampleRéhtrar

object is an efficient alternative to a similarly numerous set of course objects. The
processing burden of managing a single, coarse-grakegdtrar object is small
relative to the potential overhead of managing hundreds or thousands of fine-grained
course objects.

For complete details about the Process-Entity design pattern, see the Design Patterns
technical article.

List-Enumerator Design Pattern

This design pattern is appropriate in situations where an object has generated an
internal list of data that is potentially too large to return to the client application in a
single response. Therefore, the object must return an initial batch of data to the client
application in one response, and have the ability to return the remainder of the data in
subsequent responses.

Creating CORBA C++ Server Applications 3-15

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

3-16

A list-enumerator object must also simultaneously keep track of how much of the data
has already been returned so that the object can return the correct subsequent batct
List-enumerator objects are always stateful (that is, they remain active and in memon
between client invocations on them) and the server application has the ability to
deactivate them when they are no longer needed.

The list-enumerator design pattern is an excellent choice for the
CourseSynopsisEnumerator object, and implementing this design pattern provides
the following benefits:

m The University server application has a means to return potentially large lists of
course synopses in a way that client applications can handle; namely, in
manageable chunks.

m EachCourseSynopsisEnumerator object is unique, and its content is
determined by the request that caused this object to be created. (In addition, eac
CourseSynopsisEnumerator object ID is also unique.) When the client
invokes theget_courses_synopsis() operation on th®egistrar object, the
Registrar object returns the following:

e An initial list of synopses.

e An object reference to @ourseSynopsisEnumerator object that can return
the remainder of the synopses.

Therefore, all subsequent invocations go to the correct
CourseSynopsisEnumerator object. This is critical in the situation where the
server process has multiple active instances of the
CourseSynopsisEnumerator class.

Because theget_courses_synopsis() operation returns a unique
CourseSynopsisEnumerator object reference, client requests never collide;
that is, a client request never mistakenly goes to the wrong
CourseSynopsisEnumerator object.

Although theRegistrar object has th@et_courses_synopsis() operation on it,

the knowledge of the database query and the synopsis list is embedded entirely in th
CourseSynopsisEnumerator object. In this situation, thRegistrar ~ object serves

only as a means for the client to get the following:

m The initial list of synopses.

m A reference to &ourseSynopsisEnumerator object that can return the
remainder of the synopses.

Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

Additional Performance Efficiencies Built into the
WebLogic Enterprise System

The WebLogic Enterprise system implements a performance efficiency in which data
marshaling between two objects in the same server process is automatically disabled.
This efficiency exists if the following circumstances exist:

m An object reference routes to the same group as the one containing the server
process in which the object reference was created.

m An objectin that server process invokes an operation using that object reference
that causes an object to be instantiated in the same process.

An example of this is when theegistrar ~ object creates an object reference to the
CourseSynopsisEnumerator object and causes that object to be instantiated. No
data marshaling takes place in the requests and responses between those two objects.

Preactivating an Object with State

WebLogic Enterprise 4.2 provides a new feature that you can use to preactivate an
object with state before a client application invokes that object. This feature can be
particularly useful for creating iterator objects, such as the
CourseSynopsisEnumerator object in the University samples.

Preactivating an object with state centers around using the
TP::create_active_object_reference() operation. Typically, objects are not
created in a WebLogic Enterprise server application until a client issues an invocation
on that object. However, by preactivating an object and using the
TP::create_active_object_reference() operation to pass a reference to that
object back to the client, your client application can invoke an object that is already
active and populated with state.

Creating CORBA C++ Server Applications 3-17

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

How You Preactivate an Object with State

The process for using the preactivation feature of WebLogic Enterprise is to write code
in the server application that:

1. Includes an invocation of the C-+new statement to create an object.
2. Sets the object’s state.

3. Invokes therP::create_active_object_reference() operation to obtain a
reference for the newly created object. This object reference can then be returne
to the client application.

Thus, the preactivated object is created in such a way that the TP Framework invoke
neither theServer::create_servant() nor the
Tobj_ServantBase::activate_object() operations for that object.

Usage Notes for Preactivated Objects

3-18

Note the following when using the preactivation feature:

m Preactivated objects must have thhecess activation policy. Therefore, these
objects can be deactivated only at the end of the process or by an invocation to
the TP::deactivateEnable() operation on those objects.

m The object reference created by the
TP::create_active_object_reference() operation igransient This is
because a preactivated object should exist only for the lifetime of the process in
which it was created, and this object should not be reactivated again in another
Server process.

If a client application invokes on a transient object reference after the process in
which the object reference was created is shut down, the TP Framework returns
the following exception:

CORBA::OBJECT_NOT_EXIST

m For objects that are preactivated, the state usually cannot be recovered if a crash
occurs. However, this is acceptable because such objects are typically meant to
be used within the context of a specific series of operations, and then deleted. Its
state has no meaning outside that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the

Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

TobjS::ActivateObjectFailed exception to the implementation of the
Tobj_ServantBase::activate_object() operation to the object meant for
preactivation. Then, if a client attempts to invoke such an object after a server
crash, in which case the TP Framework invokes the
Tobj_ServantBase::activate_object() operation on that object, the TP
Framework returns the following exception to the client application:

CORBA::OBJECT_NOT_EXIST

Use preactivation sparingly because, as with all process-bound objects,
preactivation preallocates scarce resources.

Creating CORBA C++ Server Applications 3-19

3 Designing and Implementing a Basic WebLogic Enterprise Server Application

3-20 Creating CORBA C++ Server Applications

CHAPTER

4 Security and WebLogic

Enterprise Server
Applications

This chapter discusses security and WebLogic Enterprise server applications, using the
Security University sample application as an example. The Security sample
application implements a security model that requires student users of the University
sample application to be authenticated as part of the application login process.

This topic includes the following sections:
m Overview of Security and WebLogic Enterprise Server Applications

m Design Considerations for the University Server Application

Overview of Security and WebLogic
Enterprise Server Applications

Generally, WebLogic Enterprise server applications have little to do with security.
Security in the WebLogic Enterprise domain is specified by the system administrator
in the UBBCONFIdile, and client applications are responsible for logging on, or
authenticating, to the domain. None of the security models supported in the WebLogic
Enterprise system make any requirements on server applications running in the
WebLogic Enterprise domain.

Creating CORBA C++ Server Applications 4-1

4 Security and WebLogic Enterprise Server Applications

However, there may be occasions when implementing or enhancing a security mode
in your WebLogic Enterprise application involves adding objects, or adding operations
to existing objects, that are managed by the server application.

This chapter shows how the University server application is enhanced to add the notiol
of a student, which is incorporated into the client application as a means to identify,
and log in, users of the client application.

For information about how client applications are authenticated into the WebLogic
Enterprise domain, se@reating CORBA Client Application&or information about
implementing a security model in the WebLogic Enterprise domain, see the
Administration Guide

Design Considerations for the University
Server Application

4-2

The design rationale for the Security University sample application is to require users
of the client application to log on before they can do anything. The Security sample
application, therefore, needs to define the notion of a user.

Tolog onto the application, the client application needs to provide the following to the
security service in the WebLogic Enterprise domain (note that the student user of the
application provides only the user name and application password):

m Client name
m Username
m An application password

The Security sample application adds an operatienstudent_details() ,to the
Registrar object. This operation enables the client application to obtain information
about each student user from the University database after the client application is
logged on to the WebLogic Enterprise domain.

Note: Theget_student_details() operation has nothing to do with
implementing a security model in the WebLogic Enterprise domain. The
addition of this operation is only a supplemental feature added to the Security

Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

sample application. For details about the security model added to the Security
sample application, and how client applications log on to the Security server
application, se€reating CORBA Client Applications

The sections that follow explain:
m How the Security University sample application works

m Design considerations for returning student details to the client application

How the Security University Sample Application Works

To implement the Security sample application, the client application adds a logon
dialog with the student end user. This dialog uses the local SecurityCurrent object on
the client machine to invoke operations on the PrincipalAuthenticator object, which is
part of logging on to access the WebLogic Enterprise domain. After the user
authentication process, the client application invokesythestudent_details()

operation on th®egistrar object to obtain information about each student user.

The University database used in the Security sample application is updated to contain
student information in addition to course information, and is shown in the following

figure:

M3 University Database

Student
Information

Course
Information

\/

Creating CORBA C++ Server Applications 4-3

4 Security and WebLogic Enterprise Server Applications

Theget_student_details() operation accesses the student information portion of
the database to obtain student information needed by the client logon operation. The
following figure shows the primary objects involved in the Security sample
application:

University Server Application

Registrar

RegistrarFactory get_student_details()

/

Client
Application

Database

Student Info

SecurityCurrent
Object

A typical usage scenario of the Security sample application may include the following
sequence of events:

1. The client application obtains a reference to the SecurityCurrent object from the
Bootstrap object.

2. The client application invokes the SecurityCurrent object to determine the level
of security that is required by the WebLogic Enterprise domain.

3. The client application queries the student user for a student ID and the required
passwords.

4. The client application authenticates the student by obtaining information about
the student from the Authentication Service.

5. If the authentication process is successful, the client application logs on to the
WebLogic Enterprise domain.

6. The client application invokes thyet_student_details() operation on the
Registrar object, passing a student ID, to obtain information about the student.

4-4 Creating CORBA C++ Server Applications

Design Considerations for the University Server Application

7. TheRegistrar object scans the database for student information that matches
the student ID in the client request.

8. Ifthere is a match between the student ID provided in the client application
request and the student information in the databas&dbistrar object returns
thestruct StudentDetails to the client application. (If the student enters an
ID that does not match the information in the databaseRtustrar object
returns a CORBA exception to the client application.)

9. IftheRegistrar object returnstudentDetails to the client application, the
client application displays a personalized welcome message to the student user.

Design Considerations for Returning Student Details to
the Client Application

The client application needs to provide a means by which to log a user on to the

WebLogic Enterprise system so that the user can continue to use the University

application. To do this, the client application needs an identity for the user. In the
Security sample application, this identity is the student ID.

All thatis required of the University server application is to return data about a student,
based on the student ID, so that the client application can complete the user
authentication process. Therefore, the OMG IDL for the Security sample application
adds the definition of thget_student_details() operation to th&egistrar

object. The primary design consideration for the University server application is based
on the operational scenario described earlier; namely, that one student interacts with
one client application at one time, so there is no need for the server application to deal
with a sizable batch of data to implement th#_student_details() operation.

Theget_student_details() operation has the following OMG IDL definition:

struct StudentDetails

{
Studentld student _id;

string name,
CourseDetailsList registered_courses;

Creating CORBA C++ Server Applications 4-5

4 Security and WebLogic Enterprise Server Applications

4-6 Creating CORBA C++ Server Applications

CHAPTER

5

Integrating

Transactions into a
WebLogic Enterprise
Server Application

This chapter describes how to integrate transactions into a WebLogic Enterprise server
application, using the Transactions University sample application as an example. The
Transactions sample application encapsulates the process of a student registering for a
set of courses. The Transactions sample application does not show all the possible
ways to integrate transactions into a WebLogic Enterprise server application, but it
does show two models of transactional behavior, showing the impact of transactional
behavior on the application in general and on the durable state of objects in particular.

This topic includes the following sections:
m Overview of Transactions in the WebLogic Enterprise System

m Designing and Implementing Transactions in a WebLogic Enterprise Server
Application

m Integrating Transactions in a WebLogic Enterprise Client and Server
Application. This section describes:

e Making an Object Automatically Transactional
e Enabling an Object to Participate in a Transaction

e Preventing an Object from Being Invoked While a Transaction Is Scoped

Creating CORBA C++ Server Applications 5-1

5

Integrating Transactions into a WebLogic Enterprise Server Application

e Excluding an Object from an Ongoing Transaction

e Assigning Policies

e Opening an XA Resource Manager

e Closing an XA Resource Manager
m Transactions and Object State Management
m Notes on Using Transactions in the WebLogic Enterprise System
m User-defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactions
sample application introduces a user-defined exception, which can be returned to the
client application and that potentially causes a client-initiated transaction to be rolled
back.

Overview of Transactions in the WebLogic
Enterprise System

5-2

The WebLogic Enterprise system provides transactions as a means to guarantee the
database transactions are completed accurately and that they take orA&lithe
properties (atomicity, consistency, isolation, and durability) of a high-performance
transaction. That is, you have a requirement to perform multiple write operations on
durable storage, and you must be guaranteed that the operations succeed; if any one
the operations fails, the entire set of operations is rolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsulates a transactional model supported by the WebLogic
Enterprise system.

m The client application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,

Creating CORBA C++ Server Applications

Overview of Transactions in the WebLogic Enterprise System

to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made so far. For example, if the client application
cannot book a flight from Los Angeles to Honolulu on a given date, the client
application needs to cancel the flight reservations made up to that point.

The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

e Data is cached in memory or written to a database during or after each
successive invocation.

e Data is written to a database at the end of the conversation.

e The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

e Atthe end of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an internet-based online shopping application. The user of
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing all the items he or she
wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information) the shopping application

needs a way to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

Creating CORBA C++ Server Applications 5-3

5

Integrating Transactions into a WebLogic Enterprise Server Application

e Invoking the debit method on one account
e Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

Designing and Implementing Transactions
in a WebLogic Enterprise Server Application

5-4

This section explains how to design and implement transactions in a WebLogic
Enterprise server application using the Transactions University sample application a
an example. This section also describes how the Transactions sample application
works, and discusses the design considerations for implementing transactions in it. Fc
additional general information about transactions, see the section “Integrating
Transactions in a WebLogic Enterprise Client and Server Application” on page 5-10.

The Transactions sample application uses transactions to encapsulate the task of a
student registering for a set of courses. The transactional model used in this applicatio
is a combination of the conversational model and the model in which a single
invocation makes multiple individual operations on a database, as described in the
preceding section.

The Transactions sample application builds on the Security sample application by
adding the following capabilities:

m Students can submit a list of courses for which they want to register. (Each
course is represented by a number.)

m For each course in the list, the University server application checks the
following:

e Whether the course is in the University database
¢ Whether the student is already registered for the course

¢ Whether the student exceeds the maximum number of credits he or she can
take

Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

If the course passes the checks in the preceding list, the University server
application registers the student for the course.

If the server application cannot register the student for a course because the
course does not exist in the database or because the student is already registered
for the course, the server application returns to the client application a list of
courses for which the registration process failed. The client application can then
choose whether to commit the transaction to register the student for the courses
for which the registration process succeeds, or to roll back the entire transaction.

If a course registration fails because the student exceeds the maximum number
of credits he or she can take, the server application returns a CORBA exception
to the client application that provides a brief message explaining why the
registration for the course was not successful. (The server application does not
mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can be
rolled back:

Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client. The decision to roll back the
transaction also lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returng to®anyCredits

exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

The sections that follow explain:

How the Transactions University Sample Application Works

Transactional Model Used by the Transactions University Sample Application

Creating CORBA C++ Server Applications 5-5

5

Integrating Transactions into a WebLogic Enterprise Server Application

m Object State Considerations for the University Server Application

m Configuration Requirements for the Transactions Sample Application

How the Transactions University Sample Application

Works

5-6

To implement the student registration process, the Transactions sample application
does the following:

m The client application obtains a reference to the TransactionCurrent object from

the Bootstrap object.

When the student submits the list of courses for which he or she wants to
register, the client application:

a. Begins a transaction by invoking tberrent::begin() operation on the
TransactionCurrent object

b. Invokes theegister_for_courses() operation on theegistrar object,
passing a list of courses

Theregister_for_courses() operation on th®egistrar object processes
the registration request by executing a loop that does the following iteratively for
each course in the list:

a. Checks to see how many credits the student is already registered for

b. Adds the course to the list of courses for which the student is registered

TheRegistrar object checks for the following potential problems, which
prevent the transaction from being committed:

e The student is already registered for the course.
e A course in the list does not exist.

e The student exceeds the maximum credits allowed.

As defined in the application’s OMG IDL, thegister_for_courses()
operation returns a parameter to the client applicattotRegisteredList ,
which contains a list of the courses for which the registration failed.

Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

If the NotRegisteredList value is empty, the client application commits the
transaction.

If the NotRegisteredList value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

m If the registration for a course has failed because the student exceeds the
maximum number of credits he or she can take Rbgistrar ~ object returns a
TooManyCredits ~ exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at a time. This design helps to minimize the
number of remote invocations on tRegistrar ~ object.

In implementing this design, the Transactions sample application shows one model of
the use of transactions, which were described in the section “Overview of Transactions
in the WebLogic Enterprise System” on page 5-2. The model is as follows:

m The client begins a transaction by invoking thegin() operation on the
TransactionCurrent object, followed by making an invocation to the
register_for_courses() operation on th®egistrar object.

TheRegistrar object registers the student for the courses for which it can, and
then returns a list of courses for which the registration process was unsuccessful.
The client application can choose to commit the transaction or roll it back. The
transaction encapsulates this conversation between the client and the server

application.

m Theregister_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.

Creating CORBA C++ Server Applications 5-7

5

Integrating Transactions into a WebLogic Enterprise Server Application

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needs to consider the implications on object
state, particularly in the event of a rollback. In cases where there is a rollback, the
server application must ensure that all affected objects have their durable state restore
to the proper state.

Because thkegistrar ~ objectis being used for database transactions, a good design
choice for this object is to make it transactional; that is, assigaltteys transaction
policy to this object’s interface. If a transaction has not already been scoped when thi:
object is invoked, the WebLogic Enterprise system will start a transaction
automatically.

By making theRegistrar ~ object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA resource manager, and since the object is guaranteed to be in
transaction when the object writes to a database, the object does not have any rollbac
or commit responsibilities because the XA resource manager takes responsibility for
these database operations on behalf of the object.

TheRegistrarFactory object, however, can be excluded from transactions because
this object does not manage data that is used during the course of a transaction. By
excluding this object from transactions, you minimize the processing overhead implied
by transactions.

Object Policies Defined for the Registrar Object

5-8

To make theregistrar object transactional, the ICF file specifies tieays
transaction policy for th@egistrar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies for Begistrar
interface:

Activation Policy Transaction Policy

process always

Creating CORBA C++ Server Applications

Designing and Implementing Transactions in a WebLogic Enterprise Server Applica-

Object Policies Defined for the RegistrarFactory Object

To exclude theRegistrarFactory object from transactions, the ICF file specifies the
ignore transaction policy for th@egistrar interface. Therefore, in the Transaction
sample application, the ICF file specifies the following object policies for the

RegistrarFactory interface:
Activation Policy Transaction Policy
process ignore

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle7 Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

m Some XA resource managers (for example, Oracle7) require that all database
operations be scoped within a transaction. This means that the
CourseSynopsisEnumerator object needs to be scoped within a transaction
because this object reads from a database.

m When a transaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of a rollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Creating CORBA C++ Server Applications 5-9

5

Integrating Transactions into a WebLogic Enterprise Server Application

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracle7 transaction manager server (TMS
To use the Oracle7 database, you must include specific Oracle-provided files in the
server application build process.

For details about building, configuring, and running the Transactions sample
application, see th&uide to the University Sample Applicatio$at online
document also contains tluBBCONFIdiles for each sample application and explains
the entries in that file.

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

5-10

The WebLogic Enterprise system supports transactions in the following ways:

m The client or the server application can begin and end transactions explicitly by

using calls on the TransactionCurrent object. For information about the
TransactionCurrent object, s€zeating CORBA Client ApplicatiorendUsing
Transactions

You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.

You use transactional policies on objects in conjunction with an XA resource
manager and database when you want to delegate all the transaction commit anc
rollback responsibilities to that resource manager.

Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke theollback_only() operation on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark a transaction for rollback if an

Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

m Objects involved in a transaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the WebLogic Enterprise system immediately before the
resource managers prepare to commit the transaction. (In this sense, polling
means invoking the object’Bobj_ServantBase::deactivate_object()
operation and passing a reason value.)

When an object is polled, the object may veto the current transaction by
invoking therollback_only() operation on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all objects
implementing that interface.

Note: Ifaserver application manages an object that you wantto be able to participate
in a transaction, the Server object for that application must invoke the
TP::open_xa_rm() andTP::close_xa_rm() operations. For more
information about database connections, see “Opening an XA Resource
Manager” on page 5-15.

Making an Object Automatically Transactional

The WebLogic Enterprise system providesdlways transactional policy, which you

can define on an object’s interface to have the WebLogic Enterprise system start a
transaction automatically when that object is invoked and a transaction has not already
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither the
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.

Creating CORBA C++ Server Applications 5-11

5

Integrating Transactions into a WebLogic Enterprise Server Application

Assigning thealways transactional policy to an object’s interface is appropriate when:

m The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

® You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the Implementation Configuration File (ICF file):

Activation Policy Transaction Policy
process , method, or always
transaction

Note: Database cursors cannot span transactions. The
CourseSynopsisEnumerator object in the WebLogic Enterprise University
sample applications uses a database cursor to find matching course synopse
from the University database. Because database cursors cannot span
transactions, thectivate_object() operation on the
CourseSynopsisEnumerator object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCourseSynopsisEnumerator object.

Enabling an Object to Participate in a Transaction

5-12

If you want an object to be able to be invoked within the scope of a transaction, you
can assign theptional transaction policies to that object’s interface. Tdpéonal
transaction policy may be appropriate for an object that does not perform any databas
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when specified in the ICF file for that object’s
interface, to make an object optionally transactional:

Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Activation Policy Transaction Policy

process , method , or optional
transaction

If the object does perform database write operations, and you want the object to be able
to participate in a transaction, assigning #iveays transactional policy is generally a
better choice. However, if you prefer, you can usedpional policy and

encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the WebLogic Enterprise system require
that any object participating in a transaction scope their database read
operations, in addition to write operations, within a transaction. (However,
you can still scope your own transactions.) For example, using the Oracle7
TMS with the WebLogic Enterprise system has this requirement. When
choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from a transaction. If such an
object is invoked during a transaction, the object returns an exception, which may
cause the transaction to be rolled back. The WebLogic Enterprise system provides the
never transaction policy, which you can assign to an object’s interface to specifically
prevent that object from being invoked within the course of a transaction, even if the
current transaction is suspended.

Creating CORBA C++ Server Applications 5-13

5

Integrating Transactions into a WebLogic Enterprise Server Application

This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back; for example, for an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or method never

Excluding an Object from an Ongoing Transaction

5-14

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction. |
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system providegritve

transaction policy for this purpose.

Theignore transaction policy may be appropriate for an object such as a factory that
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or method ignore

Creating CORBA C++ Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Assigning Policies

For information about how to create an ICF file and specify policies on objects, see the
section “Step 4: Define the In-memory Behavior of Objects” on page 2-15.

Opening an XA Resource Manager

If an object’s interface has theways oroptional transaction policy, you must

invoke theTP::open_xa_rm() operation in theserver::initialize() operation

in the Server object. The resource manager is opened using the information provided
in the OPENINFOparameter, which is in theROUPSection of theJBBCONFIdile.

Note that the default version of tigerver::initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction -- the object typically has thgtional transaction policy -- you still need
to include an invocation to theP::open_xa_rm() operation. In that invocation,
specify theNULL resource manager.

Closing an XA Resource Manager

If your Server object’'Server::initialize() operation opens an XA resource
manager, you must include the following invocation in Seever::release()
operation:

TP::close_xa_rm();

Creating CORBA C++ Server Applications 5-15

O Integrating Transactions into a WebLogic Enterprise Server Application

Transactions and Object State Management

If you need transactions in your WebLogic Enterprise client and server application,
you can integrate transactions with object state management in a few different ways
In general, the WebLogic Enterprise system can automatically scope the transaction
for the duration of an operation invocation without requiring you to make any changes
to your application’s logic or the way in which the object writes durable state to disk.

The following sections address some key points regarding transactions an object sta
management.

Delegating Object State Management to an XA Resource

Manager

Using an XA resource manager, such as Oracle7, which is used in the WebLogic
Enterprise University sample applications, generally simplifies the design problems
associated with handling object state data in the event of a rollback. Transactional
objects can always delegate the commit and rollback responsibilities to the XA
resource manager, which greatly eases the task of implementing a server applicatiot
This means that process- or method-bound objects involved in a transaction can writ
to a database during transactions, and can depend on the resource manager to undo :
data written to the database in the event of a transaction rollback.

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transaction activation policy is a good choice for objects that maintain state in
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assignttiesaction ~ activation policy to

an object, the object:

m Is brought into memory when it is first invoked within the scope of a transaction

m Remains in memory until the transaction is either committed or rolled back

5-16 Creating CORBA C++ Server Applications

Transactions and Object State Management

When the transaction work is complete, the WebLogic Enterprise system invokes each
transaction-bound object™®bj_ServantBase::deactivate_object() operation,
passing aeason code that can be eith®R_TRANS_COMMITTINGr

DR_TRANS_ABORTf the variable iDR_TRANS_COMMITTINGhe object can invoke its
database write operations. If the variablBiis TRANS_ABORThe object skips its write
operations.

Assigning thetransaction activation policy to an object may be appropriate in the
following situations:

m You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

m You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the WebLogic Enterprise system passes the reBs0ITRANS_COMMITTING
the object can, if necessary, invoke théback_only() operation on the
TransactionCurrent object. Note that if you do make an invocation to the
rollback_only() operation from within the
Tobj_ServantBase::deactivate_object() operation, the
Tobj_ServantBase::deactivate_object() operation is not invoked again.

m You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

transaction always or optional

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside theTobj_ServantBase::deactivate_object() operation.
The only valid invocations transaction-bound objects can make inside the
Tobj_ServantBase::deactivate_object() operation are write
operations to the database.

Creating CORBA C++ Server Applications 5-17

O Integrating Transactions into a WebLogic Enterprise Server Application

Also, if you have an object that is involved in a transaction, the Server object
that manages that object must include invocations to open and close,
respectively, the XA resource manager, even if the object does not write any
datato disk. (If you have a transactional object that does not write data to disk,
you specify theNULL resource manager.) For more information about opening
and closing an XA resource manager, see the sections “Opening an XA
Resource Manager” on page 5-15 and “Closing an XA Resource Manager” on
page 5-15.

Notes on Using Transactions in the WebLogic
Enterprise System

Note the following about integrating transactions into your WebLogic Enterprise
client/server applications:

m The following transactions are not permitted in the WebLogic Enterprise system:
e Nested transactions

You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.)

e Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

m The object that starts a transaction is the only entity that can end the transaction.
(In a strict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

m Objects can be involved with only one transaction at one time. The WebLogic
Enterprise system does not support concurrent transactions.

5-18 Creating CORBA C++ Server Applications

Notes on Using Transactions in the WebLogic Enterprise System

The WebLogic Enterprise system does not queue requests to objects that are
currently involved in a transaction. If a nontransactional client application
attempts to invoke an operation on an object that is currently in a transaction, the
client application receives the following error message:

CORBA::OBJ_ADAPTER

If a client that is in a transaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receives the
following error message:

CORBA:INVALID_TRANSACTION

For transaction-bound objects, you might consider doing all state handling in the
Tobj_ServantBase::deactivate_object() operation. This makes it easier

for the object to handle its state properly, since the outcome of the transaction is
known at the time that th®obj_ServantBase::deactivate_object()

operation is invoked.

For method-bound objects that have several operations, but only a few that affect
the object’s durable state, you may want to consider the following:

e Assign theoptional transaction policy.

e Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with thealways transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application, note
the following:

If an exception is raised inside an operation on that object, the client application
receives aroBJ_ADAPTERexception. In this situation, the WebLogic Enterprise
system automatically rolls back the transaction. However, the client application
is completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.

Creating CORBA C++ Server Applications 5-19

5

Integrating Transactions into a WebLogic Enterprise Server Application

m If the client application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only a transaction rollback exception but not the CORBA
exception.

In the WebLogic Enterprise version 4.2 software, no workaround exists for this
situation. We recommend that applications perform as much data validation as
possible before starting a transaction.

m Note the following restriction on a transactional object that has the
TP::deactivateEnable method:

If the TP::deactivateEnable method is invoked during a transaction, the
object is deactivated/hen the transaction endslowever, if any methods are
invoked on the object between the time that tiRedeactivateEnable

method is called and the time that the transaction is committed, the object is
never deactivated.

User-defined Exceptions

5-20

The Transactions sample application includes an instance of a user-defined exceptiol
TooManyCredits . This exception is thrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the
maximum number of courses for which he or she can register. When the client
application catches this exception, the client application rolls back the transaction tha
registers a student for a course. This section explains how you can define and
implement user-defined exceptions in your WebLogic Enterprise client/server
application, using th&@ooManyCredits ~exception as an example.

Including a user-defined exception in a WebLogic Enterprise client/server application
involves the following steps:

1. Inyour OMG IDL file, define the exception and specify the operations that can use
it.

2. Inthe implementation file, include code that throws the exception.

3. Inthe client application source file, include code that catches and handles the
exception.

Creating CORBA C++ Server Applications

User-defined Exceptions

The sections that follow explain and give examples of the first two steps.

Defining the Exception

In the OMG IDL file for your client/server application:

1. Define the exception and define the data sent with the exception. For example, the
TooManyCredits ~exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for theTooManyCredits ~ exception contains the following OMG IDL
statements:

exception TooManyCredits

{
b

2. Inthe definition of the operations that throw the exception, include the exception.
The following example shows the OMG IDL statements for the

unsigned short maximum_credits;

register_for_courses() operation on th®egistrar interface:
NotRegisteredList register_for_courses(

in Studentld student,

in CourseNumberList courses
) raises (

TooManyCredits

)

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following example.

it (..
UniversityZ::TooManyCredits e;

e.maximum_credits = 18;
throw e;

Creating CORBA C++ Server Applications 5-21

O Integrating Transactions into a WebLogic Enterprise Server Application

5-22 Creating CORBA C++ Server Applications

CHAPTER

6 Wrapping a BEA

Tuxedo Service in an
Object

This chapter presents an overview of one way in which you can call a BEA Tuxedo
service from within an object managed by a WebLogic Enterprise server application,
using the Wrapper sample application as an example.

This topic includes the following sections:

m Overview of Wrapping a BEA Tuxedo Service. This section describes:
e Designing the Object That Wraps the BEA Tuxedo Service
e Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls

¢ Implementing the Operations That Send Messages to and from the BEA
Tuxedo Service

m Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates a set of billing operations to a BEA Tuxedo
teller application, which contains a set of services that perform basic billing
procedures. The approach in this chapter shows one technique for incorporating a BEA
Tuxedo application into a WebLogic Enterprise domain.

The examples shown in this chapter demonstrate a one-to-one relationship between
operations on an object and calls to specific services within a BEA Tuxedo server
application. In a sense, the calls to the BEA Tuxedo services are wrapped as operations
on a CORBA object; thus, the object delegates its work to the BEA Tuxedo

Creating CORBA C++ Server Applications 6-1

6 Wrapping a BEA Tuxedo Service in an Object

application. If you have a set of BEA Tuxedo services that you want to use in a
WebLogic Enterprise server application, the technique shown in this chapter may work
for you.

This chapter does not provide any details about BEA Tuxedo applications. For
information about how to build and configure BEA Tuxedo applications, and for
information about how they work, see the BEA Tuxedo information set, which is
included on the WebLogic Enterprise Online Documentation CD.

Overview of Wrapping a BEA Tuxedo Service

6-2

The process described in this chapter for wrapping a set of BEA Tuxedo services
encompasses the following steps:

1. Designing the object that structures a set of tasks that are oriented to BEA Tuxed
as operations on that object.

2. Creating the message buffer used by the BEA Tuxedo services. You use this
message buffer to send and receive messages to and from the BEA Tuxedo
services. You can allocate the buffer in the object’s constructor in the
application’s implementation file.

3. Implementing on the object the operations that send and receive messages to ar
from the BEA Tuxedo services. This step also includes choosing the
implementation for how the BEA Tuxedo services are called.

The following figure shows a high-level view of the relationship among the client
application, the CORBA object managed by the WebLogic Enterprise server
application, and the BEA Tuxedo application that implements the services called from
the CORBA object.

Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

M3 Server Application BEA TUXEDO Teller
Application

Client Application CORBA Object 4 OP1Senice
operat?onl(); operationl()

332233%83 {tpcall (op1());] A OP2 Service
operation2()

{tpcall (0p20); _ « OP3 Service
operation3()

tpeall (op30; —— |

Designing the Object That Wraps the BEA Tuxedo Service

The first step described in this chapter is designing the object that wraps the calls to the
BEA Tuxedo application. For example, the goal for the Wrapper sample application is
to add billing capability to the student registration process, which can be done by
delegating a set of billing operations to an existing BEA Tuxedo teller application.

The BEA Tuxedo teller application used by the Wrapper sample application contains
the following services:

m CURRBALANCE Obtains the current balance of a given account

m CREDIT -- Credits an account by a given dollar amount

m DEBIT -- Debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG IDL
file that defines a new interfac&egller , which has the following operations:

m get_balance()
m credit()

Creating CORBA C++ Server Applications 6-3

6 Wrapping a BEA Tuxedo Service in an Object

m debit()

Each of these operations on theller object maps one-to-one to calls on the services
in the BEA Tuxedo teller application.

A typical usage scenario of thieeller object may be the following:

1. The client application invokes thegister_for_courses() operation on the
Registrar object, which requires a student ID.

2. As part of the registration process, tRegistrar ~ object invokes the
get_balance() operation on th@eller object, passing an account number.

3. Theget_balance() operation on tha@eller object puts the account number
into a message buffer and sends the buffer to the BEA Tuxedo teller application’s
CURRBALANCE service.

4. The BEA Tuxedo teller application receives the message buffer, extracts its
contents, and makes the appropriate call todbeRBALANCEervice.

5. The CURRBALANCEervice obtains from the University database the current
balance of the account and gives it to the BEA Tuxedo teller application.

6. The BEA Tuxedo teller application inserts the current balance into a message
buffer and returns it to th&eller object.

7. TheTeller object extracts the current balance amount from the message buffer
and returns the current balance to Hegistrar object.

For more design information about theller object and the Wrapper sample
application, see the section “Design Considerations for the Wrapper Sample
Application” on page 6-8.

Creating the Buffer in Which to Encapsulate BEA Tuxedo
Service Calls

6-4

The next step described in this chapter is creating the buffer within which messages ar
sent between the object and the BEA Tuxedo service. There are a number of buffer
types that may be used by various BEA Tuxedo applications, and the examples usec
in this chapter are based on the FML buffer type. For more information about buffer
types in the BEA Tuxedo system, see the BEA Tuxedo information set.

Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

In your application implementation file, you need to allocate the chosen buffer type.
You can allocate the buffer in the object’s constructor, because the buffer you allocate
does not need to be unique to any partictlgter object instance. This allocation
operation typically includes specifying the buffer type, passing any flags appropriate
for the procedure call to the BEA Tuxedo service, and specifying a buffer size.

You also need to add to your implementation’s header file the definition of the variable
that represents the buffer.

The following code example shows the constructor for the Wrapper application’s
Teller object that allocates the BEA Tuxedo buffer,tuxbuf :

Teller_ix:Teller_i() :
m_tuxbuf((FBFR32*)tpalloc("FML32", ™, 1000))
{

if (m_tuxbuf == 0) {
throw CORBA::INTERNAL();
}

}

Note the following about the line that allocates the FML buffer:

Code Description
tpalloc Allocates the buffer.
"FML32" Specifies the FML buffer type.

Typically enclose any flags passed to the BEA Tuxedo service. In
this example, no flags are passed.

1000 Specifies the buffer size in bytes.

The object’s implementation file should also deallocate the buffer in the destructor, as
in the following statement from the Wrapper application implementation file:

tpfree((char*)m_tuxbuf);

Creating CORBA C++ Server Applications 6-5

6 Wrapping a BEA Tuxedo Service in an Object

Implementing the Operations That Send Messages to
and from the BEA Tuxedo Service

The next step is implementing the operations on the object that wraps calls to the BE/
Tuxedo application. In this step, you choose the implementation of how the BEA
Tuxedo services are called from the object. The Wrapper sample application uses th
tpcall implementation.

An operation on an object that wraps a BEA Tuxedo service typically includes
statements that do the following:

m Fill the message buffer with the data that you want to send to the BEA Tuxedo
service.

m Call the BEA Tuxedo service. The following arguments are included in the call:

a. The BEA Tuxedo service that you want to invoke

b. The message buffer to be sent to the BEA Tuxedo service

c. The message buffer to be returned from the BEA Tuxedo service

d. The size of the buffer in which the BEA Tuxedo service response is to be placec
m Extract the response from the BEA Tuxedo service
m Return the results to the client application

The following example shows the implementation ofgbe balance() ~ operationin
the Wrapper applicatiomeller ~object. This operation retrieves the balance of a
specific account, and the BEA Tuxedo service being calletUBRBALANCE

CORBA::Double Teller_i::get_balance(BillingW::AccountNumber account)
{

/I "marshal" the "in" parameters (account number)

Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);

long size = Fsizeof32(tuxbuf);

/I Call the CURRBALANCE Tuxedo service

if (tpcall"CURRBALANCE", (char*)tuxbuf, O,

(char**)&tuxbuf, &size, 0)) {
throw CORBA::PERSIST_STORE();

/I "unmarshal" the "out" parameters (current balance)

CORBA::Double currbal;
Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);

6-6 Creating CORBA C++ Server Applications

Overview of Wrapping a BEA Tuxedo Service

return currbal;

In this code example, note the following:

The following statement fills the message buffar tuxbuf , with the student account
number. For information about FML, see tAREA Tuxedo Reference Manu8kction
3FML, FML pages.

Fchg32(m_tuxbuf, ACCOUNT_NO, 0, (char*)&account, 0);

The following statement calls tt@URRBALANCBEA Tuxedo service, via thcall
implementation, passing the message buffer. This statement also specifies where the
BEA Tuxedo service response is to be placed, which in this example is also the same
buffer as the one in which the request was sent.

if (tpcall"CURRBALANCE", (char*)tuxbuf, 0,
(char**)&tuxbuf, &size, 0)) {
throw CORBA::PERSIST_STORE();

}

The following statement extracts the balance from the returned BEA Tuxedo message
buffer:

Fget32(m_tuxbuf, CURR_BALANCE, 0, (char*)&currbal, 0);

The last line in theyet_balance() operation returns the results to the client
application:

return currbal;

Restrictions

Note the following restrictions regarding how you can incorporate BEA Tuxedo
services within a WebLogic Enterprise domain:

® You may not combine object implementations and BEA Tuxedo services within
the same server application. The BEA Tuxedo services may only exist within a
separate BEA Tuxedo server application in the same domain as the WebLogic
Enterprise server application.

® You may notinclude thepreturn() or tpforward() BEA Tuxedo
implementations within an object that calls a BEA Tuxedo service.

Creating CORBA C++ Server Applications 6-7

6 Wrapping a BEA Tuxedo Service in an Object

Design Considerations for the Wrapper
Sample Application

6-8

The basic design considerations for the Wrapper sample application are based on th
scenario that is described in this section. When a student registers for a course, the
Registrar object performs, as part of its registration process, invocations to the
Teller object, which charges the student’s account for the course.

This section describes the design for the Wrapper sample application, which
incorporates an additional server application, Billing, into the configuration.
Therefore, the Wrapper sample application consists of the following four server
applications:

m University, which has th@egistrarFactory , Registrar , and
CourseSynopsisEnumerator objects

m Billing, which has theTellerFactory andTeller objects

m BEA Tuxedo Teller Application, which has tt@JRRBALANGECREDIT, and
DEBIT services

m The Oracle7 Transaction Manager Server (TMS)

In addition, theuBBCONFIdile for the Wrapper sample application specifies the
following groups:

m ORA_GRP, which contains the University server application, the BEA Tuxedo
Teller application, and the Oracle7 TMS. Since these three processes are
involved in transactions on the University database, they must all be in the same
group, along with the database itself.

m APP_GRP, which contains the Billing server application. This application does
not need to be in ORA_GRP, because this application does not interact with the
University database.

The configuration of the WebLogic Enterprise domain in the Wrapper sample
application is shown in the following figure.

Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

____________________________________ 1 r__________________'|
ORA _GRP APP_GRP
University Server BEA TUXEDO Teller Biling Server
Application
RegistrarFactory Object CURRBALANCE TellerFactory Object
Service
Registrar Object DEBIT Service Teller Object
CREDIT Service

CourseSynopsisEnumerator
Object

Oracle7
Transaction
Manager Server

Database
Student Info

Course Info

Account Info

Incorporating a BEA Tuxedo application into the University sample applications
makes sense from the standpoint of using the Process-Entity design pattern. BEA
Tuxedo applications generally implement the Process-Entity design pattern, which are
also used in the University sample applications.

The University database is updated to include a new table containing account
information for each student. Therefore, when services in the BEA Tuxedo Teller
Application process billing data, they perform transactions using the University
database.

Creating CORBA C++ Server Applications 6-9

6 Wrapping a BEA Tuxedo Service in an Object

How the Wrapper University Sample Application Works

6-10

A typical usage scenario in the Wrapper sample application encompasses the
following sequence of events:

1. After the student logon procedure, the client application invokes the
get_student_details() operation on th®egistrar ~ object. Included in the
implementation of thget_student_details() operation is code that retrieves:

e The student’s account number from the student table in the database

e The student’s balance from the account table in the database, which is
obtained by invoking theet_balance() =~ operation on th&eller object

2. The student browses courses, as with the Basic sample application, and identifie:
a list of courses for which he or she wants to register.

3. The client application sends a request toRhkgistrar object, as with the
Transactions sample application scenario, to invoke the
register_for_courses() operation. The request continues to include only a
list of course numbers and a student ID.

4. While registering the student for the list of courses, the
register_for_courses() operation invokes:

e Theget _balance() operation on tha@eller object, to make sure that the
student does not have a delinquent account

e Thedebit() operation onth@eller object, which is managed by the
Billing server application to bill for courses

5. Theget_balance() anddebit() operations on th&eller object each send a
request to the BEA Tuxedo Teller application. Encapsulated in the request is an
FML buffer containing the appropriate calls, including the account number calls
to, respectively, th€ URRBALANCENADEBIT services in the BEA Tuxedo Teller
application.

6. TheCURRBALANCE&NADEBIT services perform the appropriate database calls to,
respectively, obtain the current balance and debit the student’s account to reflect
the charges for the courses for which he or she has registered.

If the student has a delinquent account, Begistrar ~ object returns the
DelinquentAccount exception to the client application. The client application
then rolls back the transaction.

Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

If the debit() operation fails, th@eller object invokes the

rollback_only() operation on the TransactionCurrent object. Because the

Teller andRegistrar objects are scoped within the same transaction, this
rollback affects the entire registration process and thus prevents the situation
where there is an inconsistent database (showing, for example, that the student is
registered for the course, but the student’s account balance has not been debited
for the course).

7. If no exceptions have been raised, Hgistrar object registers the student for
the desired courses.

Interface Definitions for the Billing Server Application

The following interface definitions are defined for the Billing server application:

m TheTellerFactory object, whose only operation f@d_teller() . The
find_teller() operation works exactly the same as ting_registrar()
operation in the University serv®egistrarFactory object.

m TheTeller object, which, as mentioned earlier, implements the following
operations:
e debit()
e credit()

e current_balance()

Like theRegistrar object, theTeller object has no state data and does not
have a unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application

The following additional considerations influence the design of the Wrapper sample
application:

m TheRegistrar object needs a way to send requests totiier object to
handle billing operations.

m The University server application and the BEA Tuxedo Teller Application need
access to the same database. Therefore, for course registration transactions to
work properly, both server applications need to be in the same server group as
the Oracle7 TMS and the University database.

Creating CORBA C++ Server Applications 6-11

6 Wrapping a BEA Tuxedo Service in an Object

Both of these considerations have implications ontBBCONFIdile for the Wrapper
sample application. The following sections discuss these and other additional desigr
considerations in detail.

Sending Requests to the Teller Object

Up until now, all the objects in the University server application have been defined in
the same server process. Therefore, for one object to send a request to another obje
is fairly straightforward, and is summarized in the following steps, using the

Registrar ~ andCourseSynopsisEnumerator objects as an example:

1. TheRegistrar object creates an object reference to the
CourseSynopsisEnumerator object.

2. Using the newly created object reference,Rgistrar object sends the request
to the CourseSynopsisEnumerator object.

3. If the CourseSynopsisEnumerator object is not in memory, the TP Framework
invokes theServer::create_servant() operation on the Server object to
instantiate theCourseSynopsisEnumerator object.

However, now thatthere are two server processes running, and an object in one proce
needs to send a request to an object managed by the second process, the procedur:
not quite so straightforward. For example, the notion of getting an object reference tc
an object in another server process has important implications. For one, the second
server process has to be running when the request is made. Also, the factory for the
object in the other server process must be available.

The Wrapper sample application addresses this by incorporating the following
configuration and design elements:

m The University server application gets the object reference to the
TellerFactory object in the University Server object’s
Server::initialize() operation. The University server application then
caches thé&ellerFactory object reference. This introduces a performance
optimization because, otherwise, tRegistrar object would need to do the
following each time it needs TellerFactory object:

e Invoke theresolve_initial_references() operation on the Bootstrap
object to get the FactoryFinder object

e Invoke thefind_one_factory by id() operation on the FactoryFinder
object to obtain a reference torallerFactory object.

6-12 Creating CORBA C++ Server Applications

Design Considerations for the Wrapper Sample Application

m The Billing server process is started before the University server process is
started. When thBegistrar ~ object subsequently invokes tfiellerFactory
object, theRegistrar object uses the object reference acquired by the
Server::initialize() operation (described in the preceding list item). You
specify in theUBBCONFIdile the order in which server processes are started.

m To handle billing during the course registration process, the
register_for_courses() andget_student_details() operations on the
Registrar object are modified to include code that invokes operations on the
Teller object.

Exception Handling

The Wrapper sample application is designed to handle the situation in which the
amount owed by the student exceeds the maximum allowed. If the student tries to
register for a course when he or she owes more than is permitted by University, the
Registrar ~ object generates a user-defireelinquentAccount exception. When

this exception is returned to the client application, the client application rolls back the
transaction. For information about how to implement user-defined exceptions, see the
section “User-defined Exceptions” on page 5-20.

Setting Transaction Policies on the Interfaces in the Wrapper Sample Application

Another consideration that affects the performance of the Wrapper sample application
is setting the appropriate transaction policies for the interfaces of the objects in that
application. Theregistrar , CourseSynopsisEnumerator ~ , andTeller objects are
configured with thealways transaction policy. Th®egistrarFactory and

TellerFactory objects are configured with thignore transaction policy, which
prevents the transactional context from being propagated to these objects, which do not
need to be included in transactions.

Configuring the University and Billing Server Applications

As mentioned earlier, the Billing server application is configured in a group separate
from the group containing the University database and the University, BEA Tuxedo
Teller, and Oracle7 transaction manager server (TMS) applications.

However, since the Billing server application participates in the transactions that
register students for courses, the Billing server application must include invocations to
theTP::open_xa_rm() andTP:close_xa_rm() operations in the Server object.

Creating CORBA C++ Server Applications 6-13

6 Wrapping a BEA Tuxedo Service in an Object

6-14

This is a requirement for any server application that manages an object thatis include:
in any transaction. If that object does not perform any read or write operations on a
database, you can specify tReLL resource manager in the following locations:

m In the appropriate group definition in tiuBBCONFIdile

®m In an argument to theuildobjserver command when you build the server
application

For information about building, configuring, and running the Wrapper sample
application, see th&uide to the University Sample Applications

Creating CORBA C++ Server Applications

CHAPTER

7

Scaling a WebLogic

Enterprise Server
Application

This chapter shows how you can take advantage of several key scalability features of
the WebLogic Enterprise system to make a WebLogic Enterprise server application
highly scalable, using the Production University sample application as an example.
The Production sample application uses these scalability features to achieve the
following goals:

m To add a parallel processing capability, enabling the WebLogic Enterprise
domain to process multiple client requests simultaneously

m To spread the processing load on the server applications in the Production
sample application across multiple machines

This topic includes the following sections:

m Overview of the Scalability Features Available in the WebLogic Enterprise
System

m Scaling a WebLogic Enterprise Server Application. This section describes:
e Replicating Server Processes and Server Groups
e Scaling the Application Via Object State Management
e Factory-based Routing

m How the Production Server Application Can Be Scaled Further

m Choosing Between Stateless and Stateful Objects

Creating CORBA C++ Server Applications 7-1

[Scaling a WebLogic Enterprise Server Application

Overview of the Scalability Features
Available in the WebLogic Enterprise System

7-2

Supporting highly scalable applications is one of the strengths of the WebLogic
Enterprise system. Many applications may perform well in an environment
characterized by 1 to 10 server processes, and 10 to 100 client applications. Howeve
in an enterprise environment, applications need to support:

m Hundreds of server processes
m Tens of thousands of client applications
m Millions of objects

Deploying an application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The WebLogic
Enterprise system supports such large-scale deployments in several ways, three of
which are described in this chapter as follows:

m Replicated server processes and server groups
m Object state management
m Factory-based routing

Other features provided in the WebLogic Enterprise system to make an application
highly scalable include the 1IOP Listener/Handler, which is summarizeéskitiing
Startedand fully described in thédministration Guide See als&caling,

Distributing, and Tuning Applications

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

Scaling a WebLogic Enterprise Server
Application

This section explains how to scale an application to meet a significantly greater
processing capability, using the Production sample application as an example. The
basic design goal for the Production sample application is to greatly scale up the
number of client applications it can accommodate by doing the following:

Processing in parallel and on one machine client requests on multiple objects
that implement the same interface.

Directing requests on behalf of some students to one machine, and other students
to other machines.

Adding more machines across which to spread the processing load.

To accommodate these design goals, the Production sample application does the
following:

Replicates the University, Billing, and BEA Tuxedo Teller Application server
processes within the groups in which they are configured.

Replicates the groups described above on an additional machine.

Implements a stateless object model to scale up the number of client requests the
server process can manage simultaneously.

Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability:

e RegistrarFactory
e Registrar

e TellerFactory

e Teller

Implements factory-based routing to direct client requests on behalf of some
students to one machine, and other students to another machine.

Creating CORBA C++ Server Applications 7-3

[Scaling a WebLogic Enterprise Server Application

Note: To make the Production sample application easy for you to use, this
application is configured on the WebLogic Enterprise software kit to run on
one machine, using one database. The examples shown in this chapter,
however, show running this application on two machines using two databases

The design of the Production sample application is set up so that it can be
configured to run on several machines and to use multiple databases. Changin
the configuration to multiple machines and databases involves modifying the
UBBCONFIdile and partitioning the databases, and is described in “How the
Production Server Application Can Be Scaled Further” on page 7-23.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets its scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Production
sample application.

OMG IDL Changes for the Production Sample Application

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() andfind_teller() operations on, respectively, the
RegistrarFactory andTellerFactory objects. These two operations are modified

to require, respectively, a student ID and account number, which is needed to
implement factory-based routing. See the section “Factory-based Routing” on

page 7-13 to read about how the Production sample application implements and use
factory-based routing.

Replicating Server Processes and Server Groups

7-4

The WebLogic Enterprise system offers a wide variety of choices for how you may
configure your server applications, such as:

m One machine with one server process that implements one interface
m One machine with multiple server processes implementing one interface

m One machine with multiple server processes implementing multiple interfaces,
with or without factory-based routing

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

m Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing

In summary:

m To add more parallel processing capability to your client/server application,
replicate your server processes.

m To add more machines to your deployment environment, add more groups and
implement factory-based routing.

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the WebLogic Enterprise system.

Replicated Server Processes

When you replicate the server processes in your application:

m You obtain a means to balance the load of incoming requests on that server
application. As requests arrive in the WebLogic Enterprise domain for the server
group, the WebLogic Enterprise system routes the request to the least busy
server process within that group.

m You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

m You obtain a useful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects
instantiated by your server application generally have unique IDs. This way, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

Figure 7-1 shows the following:

m The University server application, BEA Tuxedo Teller Application, and Oracle?
TMS server processes are replicated within the ORA_GRP group.

Creating CORBA C++ Server Applications 7-5

[Scaling a WebLogic Enterprise Server Application

m The Billing server process is replicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.

Figure 7-1 Replicated Server Groups in the Production Sample

—_——_——— e ——— e — — — —

ORA GRP \

RegistrarFactory

University Server — \

Production Machine

APP_GRP

Billing Server —

TellerFactory

Registrar \

CourseSynopsys \
Enumerator \
\

|
|
|
|
|
|
|
|
|
|
|
|
|
| ‘ \ T T T T T T T T T T T T T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Teller

‘ \

BEA TUXEDO
Teller Application
debit()
credit()
current_balance()

< >

Database

Oracle7 \
Transaction \
Manager Server

When a request arrives for either of these groups, the WebLogic Enterprise domain ha
several server processes available that can process the request, and the WebLogic
Enterprise domain can choose the server process that is least busy.

In Figure 7-1, note the following:

7-6 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

m Atany time, there may be no more than one instance oRtugstrarFactory ,
Registrar , TellerFactory , or Teller objects within a given server process.

m There may be any number GburseSynopsisEnumerator objects in any
University server process.

Replicated Server Groups

The notion of server groups is specific to the WebLogic Enterprise system and adds
value to a CORBA implementation; server groups are an important part of the
scalability features of the WebLogic Enterprise system. Basically, to add more
machines to a deployment, you need to add more groups.

Figure 7-2 shows the Production sample application groups replicated on another

machine, as specified in the applicatio’BBCONFIdile, as ORA_GRP2 and
APP_GRP2.

Creating CORBA C++ Server Applications 7-7

[Scaling a WebLogic Enterprise Server Application

7-8

Figure 7-2 Replicating Server Groups Across Machines

Production Machine 1

ORA GRP1

University
Server

APP_GRP1

Billing Server

Database 1

BEA TUXEDO
Teller
Application

Oracle7
Transaction
Manager Server

—_————— e e — o,

Production Machine 2

ORA_GRP2

University
Server

APP_GRP2

Billing Server

Database 2

BEA TUXEDO
Teller
Application

~———

Oracle7
Transaction
Manager Server

—_————— e —

In Figure 7-2, the only difference between the content of the groups on Production
Machines 1 and 2 is the database. The database for Production Machine 1 contains
student and account information for a subset of students. The database for Productic
Machine 2 contains student and account information for a different subset of students
(The course information table in both databases is identical.) Note that the student
information in a given database may be completely unrelated to the account
information in the same database.

The way in which server groups are configured, where they run, and the ways in whick
they are replicated is specified in tbk@BCONFIdile. When you replicate a server
group, you can do the following:

m Have a means to spread processing load for a given application or set of

applications across additional machines.

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

m Use factory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

m When a client request arrives in the WebLogic Enterprise domain, the WebLogic
Enterprise system checks the group ID specified in the object reference.

m The WebLogic Enterprise domain sends the request to the least busy server
process within the group to which the request is routed that can process the
request.

The section “Factory-based Routing” on page 7-13 shows how the Production sample
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

To configure replicated server processes and groups in your WebLogic Enterprise
domain:

1. Bring your application'yBBCONFIJile into a text editor, such as WordPad.

2. IntheGROUPSection, specify the names of the groups you want to configure.

3. IntheSERVERSsection, enter the following information for the server process
you want to replicate:

A server application name.

The GROURarameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multiple
groups, specify the server process once for each group.

The SRVID parameter, which specifies a numeric identifier, giving the server
process a unique identity.

TheMIN parameter, which specifies the number of instances of the server
process to start when the application is booted.

TheMAXparameter, which specifies the maximum number of server
processes that can be running at any one time.

Thus theMIN andMAXparameters determine the degree to which a given server
application can process requests on a given object in parallel. During run time,
the system administrator can examine resource bottlenecks and start additional

Creating CORBA C++ Server Applications 7-9

[Scaling a WebLogic Enterprise Server Application

server processes, if necessary. In this sense, the application is designed so that
the system administrator can scale it.

The following example shows lines from tiEROUP&NASERVERSsections of the
UBBCONFIdile for the Production sample application.

*GROUPS

APP_GRP1
LMID = SITE1
GRPNO =2
TMSNAME = TMS

APP_GRP2
LMID = SITE1
GRPNO =3
TMSNAME = TMS

ORA_GRP1
LMID = SITE1
GRPNO =4
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ™
TMSNAME = "TMS_ORA"

ORA_GRP2
LMID = SITE1
GRPNO =5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ™
TMSNAME = "TMS_ORA"

*SERVERS

By default, activate 2 instances of each server
and allow the administrator to activate up to 5
instances of each server
DEFAULT:
MIN
MAX
tellp_server
SRVGRP =
SRVID =1
RESTART = N
tellp_server
SRVGRP =
SRVID =1
RESTART = N
billp_server
SRVGRP =
SRVID =1
RESTART = N
billp_server

2
5

ORA_GRP1
0
ORA_GRP2
0

APP_GRP1
0

7-10 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

SRVGRP = APP_GRP2
SRVID =10
RESTART = N
univp_server
SRVGRP = ORA_GRP1
SRVID = 20
RESTART = N
univp_server
SRVGRP = ORA_GRP2
SRVID = 20
RESTART = N

Scaling the Application Via Object State Management

As stated in Chapter 1, “Server Application Concepts,” object state management is a
fundamentally important concern of large-scale client/server systems because it is
critically important that such systems achieve optimized throughput and response
time. This section explains how you can use object state management to increase the
scalability of the objects managed by a WebL ogic Enterprise server application, using
theRegistrar andTeller objects in the Production sample applications as an
example.

The following table summarizes how you can use the object state management models
supported in the WebLogic Enterprise system to achieve major gains in scalability in
your WebLogic Enterprise applications.

Creating CORBA C++ Server Applications 7-11

[Scaling a WebLogic Enterprise Server Application

7-12

State Model How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)

To achieve scalability gains, thRegistrar andTeller objects are configured in the
Production server application to have thethod activation policy. Thenethod
activation policy assigned to these two objects results in the following behavior
changes:

m Whenever these objects are invoked, they are instantiated by the WebLogic
Enterprise domain in the appropriate server group.

m After the invocation is complete, the WebLogic Enterprise domain deactivates
these objects.

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

With the Basic through the Wrapper sample applicationsRigistrar ~ object was
process-bound. All client requests on that object invariably went to the same object
instance in the machine’s memory. The Basic sample application design may be
adequate for a small-scale deployment. However, as client application demands
increase, client requests on tRegistrar object eventually become queued, and
response time drops.

However, when th®egistrar andTeller objects are stateless, and the server
processes that manage these objects are replicated, these objects can be made available
to process client requests on them in parallel. The only constraint on the number of
simultaneous client requests that these objects can handle is the number of server
processes that are available that can instantiate these objects. These stateless objects,
thereby, make for more efficient use of machine resources and reduced client response
time.

Most importantly, so that the WebLogic Enterprise system can instantiate copies of the
Registrar ~andTeller objects in each of the replicated server processes, each copy
of these objects must be unigue. To make each instance of these objects unique, the
factories for those objects must assign unique object IDs to them. This, and other
design considerations on these two objects, are described in the section “Additional
Design Considerations for the Registrar and Teller Objects” on page 7-19.

Factory-based Routing

Factory-based routing is a powerful feature that provides a means to send a client
request to a specific server group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

You can use factory-based routing to expand upon the variety of load-balancing and
scalability capabilities in the WebLogic Enterprise system. In the case of the
Production sample application, you can use factory-based routing to send requests to
register one subset of students to one machine, and requests for another subset of
students to another machine. As you add machines to ramp up your application’s
processing capability, the WebLogic Enterprise system makes it easy to modify the
factory-based routing in your application to add more machines.

Creating CORBA C++ Server Applications 7-13

[Scaling a WebLogic Enterprise Server Application

The chief benefit of factory-based routing is that it provides a simple means to scale
up an application, and invocations on a given interface in particular, across a growing
deployment environment. Spreading the deployment of an application across
additional machines is strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the Production
sample application, which uses factory-based routing in the following way:

m Client application requests to tiRegistrar object are routed based on the
student ID. That is, requests on behalf of one subset of students go to one group;
and requests on behalf of another subset of students go to another group.

m Regquests to th&eller object are routed based on the account number. That is,
billing requests on behalf of one subset of accounts go to one group; and
requests on behalf of another subset of accounts go to another group.

How Factory-based Routing Works

Your factories implement factory-based routing by changing the way they create
object references. All object references contain a group ID, and by default the group
ID is the same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteria that determines the group ID. Then when client applications send an invocatior
using such an object reference, the WebLogic Enterprise system routes the request
the group ID specified in the object reference. This section focuses on how the groug
ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:
m Data in theNTERFACESandROUTINGsections of the&/BBCONFIdile.
m Groups, machines, and databases configured ivHBCONFIdile.

m How the factory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discus:
configuring for factory-based routing in thiéBBCONFIdile, and implementing
factory-based routing in the factory.

7-14 Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

Configuring for Factory-based Routing in the UBBCONFIG file

For each interface for which requests are routed, you need to establish the following
information in theUBBCONFIdile:

m Details about the data in the routing criteria
m For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, th8BCONFIdile needs to specify the
following data in theNTERFACESandROUTINGsections, and also in how groups and
machines are identified:

1. TheINTERFACESsection lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteria the interface routes on. This section specifies the routing criteria via an
identifier, FACTORYROUTINGsS in the following example:

INTERFACES
"IDL:beasys.com/UniversityP/Registrar:1.0"
FACTORYROUTING = STU_ID
"IDL:beasys.com/BillingP/Teller:1.0"
FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two
interfaces in the Production sample in which factory-based routing is used. The
FACTORYROUTIN@entifier specifies the names of the routing values, which are
STU_ID andACT_NUMrespectively.

2. TheROUTINGsection specifies the following data for each routing value:

e TheTYPEparameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined tACTORY.

e TheFIELD parameter, which specifies the name that the factory inserts in the
routing value. In the Production sample, the field parameters are
student_id andaccount_number , respectively.

e TheFIELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample, the field typesdaient_id and
account_number arelong .

e TheRANGE$arameter, which specifies the values that are routed to each
group.

Creating CORBA C++ Server Applications 7-15

[Scaling a WebLogic Enterprise Server Application

ROUTING

ACT_NUM

7-16

FIELDTYPE

FIELDTYPE

The following example shows tHROUTINGsection of theUBBCONFIdile used
in the Production sample application:

= "student_id"

FACTORY

LONG

= "100001-100005:0RA_GRP1,100006-100010:0RA_GRP2"

= "account_number"

FACTORY

LONG

= "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows tigistrar ~ object references for students

with IDs in one range are routed to one server group,Reyistrar object
references for students with IDs in another range are routed to another group.
Likewise,Teller object references for accounts in one range are routed to one
server group, andleller object references for accounts in another range are
routed to another group.

. The groups specified by tirANGESdentifier in theROUTINGsection of the

UBBCONFIdile need to be identified and configured. For example, the

Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1
and ORA_GRP2. These groups need to be configured, and the machines on
which they run need to be identified.

The following example shows theROUPSection of the Production sample
UBBCONFIdile, in which the ORA_GRP1 and ORA_GRP2 groups are
configured. Notice how the names in tB®ROUPSection match the group names
specified in theROUTINGsection; this is critical for factory-based routing to

work correctly. Furthermore, any change in the way groups are configured in an
application must be reflected in tlROUTINGsection. (Note that the Production
sample packaged with the WebL ogic Enterprise software is configured to run
entirely on one machine. However, you can easily configure this application to
run on multiple machines.)

*GROUPS

APP_GRP1
LMID = SITE1
GRPNO =2
TMSNAME = TMS

APP_GRP2
LMID = SITE1
GRPNO =3

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

TMSNAME = TMS
ORA_GRP1
LMID = SITE1
GRPNO =4
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ™
TMSNAME = "TMS_ORA"
ORA_GRP2
LMID = SITE1
GRPNO =5
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/..."
CLOSEINFO = ™
TMSNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing by the way the invocation to the
TP::create_object_reference() operation is implemented. This operation has
the following C++ binding:

CORBA::Object_ptr TP::create_object_reference (
const char* interfaceName,
const PortableServer::oid &stroid,
CORBA::NVlist_ptr criteria);

The third parameter to this operatianteria , specifies a list of named values to be
used for factory-based routing. Therefore, the work of implementing factory-based
routing in a factory is in building th&iviist

As stated previously, thRegistrarFactory object in the Production sample
application specifies the vall&ru_ID. This value must match exactly the following
in the UBBCONFIdile:

m The routing name, type, and allowable values specified b #GTORYROUTING
identifier in theINTERFACESsection.

m The routing criteria name, field, and field type specified in H®UTINGsection.

TheRegistrarFactory object inserts the student ID into thelist using the
following code:

/I put the student id (which is the routing criteria)
/I into a CORBA NVList:

CORBA::NVList_var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA:Any any;

Creating CORBA C++ Server Applications 7-17

[Scaling a WebLogic Enterprise Server Application

any <<= (CORBA:Long)student;
v_criteria->add_value("student_id", any, 0);

The RegistrarFactory object has the following invocation to the
TP::create_object_reference() operation, passing thevlist created in the
preceding code example:

/I create the registrar object reference using
/I the routing criteria :
CORBA::Object_var v_reg_oref =
TP::create_object_reference(
UniversityP::_tc_Registrar->id(),
object_id,
v_criteria.in()

)

The Production sample application also uses factory-based routing in the
TellerFactory object to determine the group in whidkller objects should be
instantiated based on an account number.

Note: Itis possible for an object with a given interface and OID to be simultaneously
active in two different groups, if those two groups both contain the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of a given interface name and OID is available at any one time in your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation is in only one group. This assures that if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion
in the TP::create_object_reference() operation, and set up the
UBBCONFIdile appropriately.

What Happens at Run Time

7-18

When you implement factory-based routing in a factory, the WebLogic Enterprise
system generates an object reference. The following example shows how the client
application gets an object reference ®Registrar object when factory-based routing

is implemented:

1. The client application invokes thregistrarFactory object, requesting a
reference to ®egistrar object. Included in the request is a student ID.

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

5.

TheRegistrarFactory inserts the student ID into avlist , which is used as
the routing criteria.

TheRegistrarFactory invokes theTP::create_object_reference()
operation, passing thRegistrar interface name, a unique OID, and the
NVlist

The WebLogic Enterprise system compares the contents of the routing tables with
the value in thenviist to determine a group ID.

The WebLogic Enterprise system inserts the group ID into the object reference.

When the client application subsequently does an invocation on an object using the
object reference, the WebLogic Enterprise system routes the request to the group
specified in the object reference.

Note: Be careful how you implement factory-based routing if you use the

process-entity design pattern. The object can service only those entities that
are contained in the group’s database.

Additional Design Considerations for the Registrar and
Teller Objects

The principal considerations that influence the design oR#agstrar ~ andTeller
objects include:

How to ensure that thRegistrar ~ andTeller objects work properly for the
Production deployment environment; namely, across multiple replicated server
processes and multiple groups. Given that the University and Billing server
processes are replicated, the design must consider how these two objects should
be instantiated.

How to ensure that client requests for registration and billing operations for a
given student go to the correct server group, given that the two server groups in
the Production WebLogic Enterprise domain each deal with different databases.

The primary implications of these considerations are that these objects must:

Have unique object IDs (OIDs)

Be method-bound; that is, have timethod activation policy assigned to them

Creating CORBA C++ Server Applications 7-19

[Scaling a WebLogic Enterprise Server Application

The remainder of this section discusses these considerations and implications in deta

Instantiating the Registrar and Teller Objects

7-20

In University server applications prior to the Production sample application, the
run-time behavior of th®egistrar ~andTeller objects was fairly simple:

m Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server process in which it ran
was shut down.

m Since there was only one server group running in the WebLogic Enterprise
domain, and only one University and Billing server process in the group, all
client requests were directed to the same objects. As multiple client requests
arrived in the WebLogic Enterprise domain, these objects each processed one
client request at one time.

m Because there was only one instance of each object in the server processes in
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, since the University and Billing server processes are now replicated, the
WebLogic Enterprise domain must have a means to differentiate between multiple
instances of th@egistrar andTeller objects. That is, if there are two University
server processes running in a group, the WebLogic Enterprise domain must have a
means to distinguish between, say, Hwgistrar object running in the first

University server process and tRegistrar ~ object running in the second University
server process.

The way to provide the WebLogic Enterprise domain with the ability to distinguish
among multiple instances of these objects is to make each object instance unique.

To make eaclRegistrar andTeller object unique, the factories for those objects
must change the way in which they make object references to them. For example, whe
the RegistrarFactory object in the Basic sample application created an object
reference to th@egistrar object, theTP::create_object_reference()

operation specified an OID that consisted only of the strégistrar . However, in

the Production sample application, the sarRecreate_object_reference()

operation uses a generated unique OID instead.

Creating CORBA C++ Server Applications

Scaling a WebLogic Enterprise Server Application

A consequence of giving eactegistrar andTeller object a unique OID is that
there may be multiple instances of these objects running simultaneously in the
WebLogic Enterprise domain. This characteristic is typical of the stateless object
model, and is an example of how the WebLogic Enterprise domain can be highly
scalable and at the same time offer high performance.

And last, since uniquBegistrar andTeller objects need to be brought into

memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remain idle in memory. The Production server application addresses this
issue by assigning theethod activation policy to these two objects in the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group

The chief scalability advantage of having replicated server groups is to be able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the University sample applications, it is critical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, this application can easily be configured to accommodate more. The system
administrator can decide how many.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information is identical. Having
identical course information in both databases is not a problem because the course
information is read-only for the purposes of course registration. However, the student
and account information is read-write. If multiple databases were also to contain
identical data for students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updates to
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing is implemented in tRegistrarFactory object by the way in

which references tRegistrar objects are created.

Creating CORBA C++ Server Applications 7-21

[Scaling a WebLogic Enterprise Server Application

7-22

For example, when the client application sends a request tedgistrarFactory

object to get an object reference tRegistrar object, the client application includes

a student ID in that request. The client application must use the object reference that
the RegistrarFactory object returns to make all subsequent invocations on a
Registrar ~ object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes thet_student_details() operation on the
Registrar object, the client application can be assured thaRtdagstrar ~ object is
active in the server group associated with the database containing data for that studer
To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes ttied_registrar() operation on the
RegistrarFactory object. Included in this invocation is the student ID 1000003.

2. The WebLogic Enterprise domain routes the client request to any
RegistrarFactory object.

3. TheRegistrarFactory object uses the student ID to create an object reference
to aRegistrar object in ORA_GRP1, based on the routing information in the
UBBCONFIdile, and returns that object reference to the client application.

4. The client application invokes thegister_for_courses() operation on the
Registrar object.

5. The WebLogic Enterprise domain receives the client request and routes it to the
server group specified in the object reference. In this case, the client request goe
to the University server process in ORA_GRP1, which is on Production Machine
1.

6. The University server process instantiaté®gistrar object and sends the
client invocation to it.

The RegistrarFactory object from the preceding scenario returns to the client
application a unique reference tdragistrar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing
student data for students with IDs in the range 100001 to 100005. Therefore, when th
client application sends subsequent requests tRéstrar object on behalf of a
given student, thkegistrar ~ object interacts with the correct database.

Creating CORBA C++ Server Applications

How the Production Server Application Can Be Scaled Further

Ensuring That the Teller Object is Instantiated in the Correct Server Group

When theRegistrar object needs @eller object, theregistrar objectinvokes the
TellerFactory object, using th&ellerFactory object reference cached in the
University Server object, as described in “Sending Requests to the Teller Object” on
page 6-12.

However, because factory-based routing is used irm¢herFactory object, the
Registrar object passes the student’s account number wheRdbitrar object
requests a reference taaller object. This way, thaellerFactory object creates
areference to @eller object in the group that has the correct database.

Note: Forthe Production sample application to work properly, it is essential that the
system administrator configures the server groups and the databases properly.
In particular, the system administrator must make sure that a match exists
between the routing criteria specified in the routing tables and the databases to
which requests using those criteria are routed. Using the Production sample as
an example, the database in a given group must contain the correct student and
account information for the requests that are routed to that group.

How the Production Server Application Can
Be Scaled Further

In the future, the system administrator of the Production sample application may want
to add capacity to the WebLogic Enterprise domain. For example, the University may
eventually have a large increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for an
entire state university system encompassing several campuses. This can be done
without modifying or rebuilding the application.

Creating CORBA C++ Server Applications 7-23

[Scaling a WebLogic Enterprise Server Application

The system administrator has the following tools available to continually add capacity

m Replicating the Production sample application server groups across additional
machines.

Doing this requires modifying theBBCONFIdile to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

m Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapter,
the system administrator can modify the routing rules inuBBCONFIdile to
partition the application further among the new groups added to the WebLogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in theUBBCONFIdile.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Production sample application
is spread across six machines, the database on each machine must be set u|
appropriately and in accordance with the routing tables inuBCONFIdile.

Choosing Between Stateless and Stateful
Objects

7-24

In general, you need to balance the costs of implementing stateless objects against t
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive --
because, for example, the object’s data takes up a great deal of space, or the durabl
state is located on a disk very remote to the servant that activates it -- it may make sens
to keep the object stateful, even if the object is idle during a conversation. In the case
where the cost to keep an object active is expensive in terms of machine resource
usage, it may make sense to make such an object stateless.

Creating CORBA C++ Server Applications

Choosing Between Stateless and Stateful Objects

By managing object state in a way that’s efficient and appropriate for your application,
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. You generally do this by
assigning thenethod activation policy to these objects, which has the effect of
deactivating idle object instances so that machine resources can be allocated to other
object instances. However, your specific application characteristics and needs may
vary.

When You Want Stateless Objects

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

m The client application typically waits for user input between invocations on the
object.

m The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

m The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a stateless object
model:

m Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

m Anincoming client request is sent to the first available server process: after the
request has been satisfied, the application state vanishes and the server
application is available for another client application request.

m Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

Creating CORBA C++ Server Applications 7-25

Scaling a WebLogic Enterprise Server Application

The WebLogic Enterprise domain may direct successive requests on an object
from a given client application to a different server process.

The overall system performance of a machine that is running stateless objects is
usually enhanced.

When You Want Stateful Objects

7-26

A stateful object, once activated, remains in memory until a specific event occurs, suct
as the process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

When an object is used very frequently by a large number of client applications.
This is the case for long-lived, well-known objects like factories. When the

server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active object
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in a transaction.

Any object that is involved in a transaction cannot be invoked by another client
application or object. Process objects meant to be used by a large number of
client applications can create problems if they are involved in transactions
frequently or for long durations.

When a client application must invoke successive operations on an object to
complete a transaction, and the client application is not idle while waiting for

user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

Creating CORBA C++ Server Applications

Choosing Between Stateless and Stateful Objects

m Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

m In cases where one or more stateful objects are using a lot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a stateless server model.

For example, if an object has a lock on a database and is caching a lot of data in
memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of a transaction.

Creating CORBA C++ Server Applications 7-27

[Scaling a WebLogic Enterprise Server Application

7-28 Creating CORBA C++ Server Applications

Index

A

ACID properties 5-2
activate_object() operation
and exceptions 2-22
and preactivated objects 3-18
example 3-13
activation policies
method 7-11
process 3-10
transaction 5-16
allocating FML32 buffers 6-4
always transaction policy 5-11
example 6-13
application_responsibility() operation 2-30
application-controlled deactivation
example 3-10
overview 1-14
AUTOTRANS
see transactional objects

BAD_OPERATION 2-22

Basic University sample
design considerations 3-7
handling durable state in 3-12
ICF file 3-11
managing object state 3-10
OMG IDL for 3-2
summary 3-2
use of design patterns in 3-15

BEA TUXEDO server applications
designing an object that has calls to 6-3
using in a WLE domain 6-2

BEA TUXEDO service
calling from a WLE application 6-3
choosing buffer type for 6-4

Billing server application
in University samples 6-11

C

callback methods

detecting error conditions in 2-26
client applications

how they access objects 1-4
client stub 1-3
client/server contract 1-3
close_xa_rm() operation 5-15
closing an XA resource manager 5-15
compiling OMG IDL 2-3
conversations

implementing transactionally 5-2
CORBA objects

See objects
create_active_object_reference() operation

3-17

create_object_reference() operation

example 2-8

specifying routing criteria 7-17
create_servant() operation

and exceptions 2-22

Creating CORBA C++ Server Applications |I-1

and OBJECT_NOT_EXIST 2-27
creating object references 2-11
creating server applications

summary 2-2
cursors

database 5-11
customer support contact information xi

D

data
reading and writing for an object 1-15
data marshaling
disabling 3-17
database cursors 5-11
databases
opening and closing 2-12
data-dependent routing
See factory-based routing
deactivate_object() operation
and exceptions 2-22
and servant pooling 2-29
and transactions 5-16
handling state in 2-28
restrictions on using 2-28
deactivateEnable() operation 3-10
and preactivated objects 3-18
example of 3-10
overview 1-14
debugging tips 2-20
design patterns
List-Enumerator 1-23
List-Enumerator (example) 3-15
Process-Entity 1-23
Process-Entity (example) 3-15
used in University samples 3-15
development process
summary 2-2
Digital C++ compiler
using with tie classes 2-34
documentation, where to find it x

[-2 Creating CORBA C++ Server Applications

DR_TRANS_ABORT 5-16
DR_TRANS_COMMITTING 5-16
durable objects 1-15
durable state handling

example 3-12

E

exceptions
ActivateObjectFailed 2-22
AlreadyRegistered 2-22
and client applications 2-21
and create_servant 2-22
and server applications 2-21
BAD_OPERATION 2-22
CannotProceed 2-22
CORBA 2-21
CreateServantFailed 2-22
DeactivateObjectFailed 2-22
how to write user-defined 5-20
lllegalinterface 2-22
in activate_object() 2-22
in deactivate_object() 2-22
InitializeFailed 2-22
INVALID _TRANSACTION 5-18
InvalidDomain 2-22
Invalidinterface 2-22
InvalidName 2-22
InvalidObject 2-22
InvalidObjectID 2-22
InvalidServant 2-22
NilObject 2-22
NoSuchElement 2-22
OBJ_ADAPTER 5-18
OBJECT_NOT_EXIST 2-22
OrbProblem 2-22
OutOfMemory 2-22
OverFlow 2-22
RegistrarNotAvailable 2-22
ReleaseFailed 2-22
TpfProblem 2-22

UnknownlInterface 2-22
UserExceptions 2-22

F

factories
advantages of 1-10
and factory-based routing 7-17
and object references 1-4
example 3-8
how clients obtain 1-10
overview 1-9
registering 2-11

factory-based routing
and UBBCONFIG file 7-15
how it works 7-14
implementing in a factory 7-17
summary 7-13

FML 6-4

FML32 buffers
allocating 6-4

G

generating object references 1-9
groups

configuring server 7-7

creating 7-7

routing requests to specific 7-14

ICF file 2-7
assigning transaction policies in 5-15
IDL
See OMG IDL
idl command 2-3
IDL compiler 1-4
generating tie classes 2-6
using 2-5
ignore transaction policy 5-14

[IOP Listener/Handler 7-2
implementation
object, See object implementations
Implementation Configuration File (ICF file)
See ICF file
instantiating objects 1-7
Interface Repository 1-3
Interface Repository identifier 1-5
interfaces
defining 1-3
delegating implementation of 2-31
limiting compilation of 2-7
validating 2-27
INVALID_TRANSACTION exception 5-18

L
legacy objects

integrating into WLE 2-31
Listener/Handler

IIOP 7-2
List-Enumerator design pattern 1-24
List-Enumerator design pattern (example) 3-

15

M

method templates 1-4
method-bound objects 1-12

N

nested transactions 5-18
never transaction policy 5-13
new

C++ statement 1-7
NULL resource manager 5-16

0

OBJ_ADAPTER exception 5-18
object factories

Creating CORBA C++ Server Applications -3

See factories
Object ID
See OID
object implementations
delegated 2-31
overview 1-2
See also objects 1-2
object references
about 1-4
contents of 1-5
creating 2-11
generating 1-9
generating (example) 3-8
lifespan of 1-6
object state
and the WLE system 1-10
object state management
and scalability 7-11
and transactions 5-8
delegating to an XA resource manager 5-
16
managing in Basic sample 3-10
OBJECT_NOT_EXIST 2-22
and OMG IDL mismatches 2-27
objects
activating 1-19
bypassing in a transaction 5-14
choose stateful 7-26
choosing stateless 7-25
constructors 1-4
deactivating 1-19
deactivating process 1-14
destructors 1-4
excluding from a transaction 5-13
implementing an interface for 1-4
including optionally in a transaction 5-
12
instantiating 1-7
legacy 2-31
making always transactional 5-11
making always transactional (example)

I-4 Creating CORBA C++ Server Applications

6-13
managing 1-10
method-bound 1-12
polling in a transaction 5-16
pooling servants for 2-29
process-bound 1-12
reading and writing state data 1-15
setting activation policies for 1-11
transaction-bound 1-12
transient 3-18
OID 3-8
OMG IDL
defining an object with 1-3
defining operations with 1-3
for the Basic University sample 3-2
for Wrapper University sample 6-11
in Production University sample 7-4
versioning mismatch 2-27
open_xa_rm() operation 5-15
opening an XA resource manager 5-15
optional transaction policy 5-12
Oracle7 5-9

P

persistent objects 1-15
pooling
servant 2-29
printing product documentation x
process-bound objects
transaction-bound objects 1-12
Process-Entity design pattern 1-23
Process-Entity design pattern (example) 3-15
Production University sample
OMG IDL for 7-4
UBBCONFIG file 7-9

R

recursive transactions 5-18
Registrar object

policies on in Transactions University
sample 5-8
RegistrarFactory object 3-8
related information xi
replicating server processes 7-4
resource manager
closing an XA 5-15
delegating object state management to 5-
16
NULL 5-16
opening XA 5-15
routing
factory-based, See factory-based routing
routing criteria
specifying in a factory 7-17

S

samplesdb.h 3-14
scaling an application 7-4

summary features for 7-2
SECURITY

parameter in UBBCONFIG file 4-2
security and WLE server applications 4-1
security models

implementing in server applications 4-2
Security University sample

design of 4-2

OMG IDL for 4-5

overview 4-3
SecurityCurrent object 4-3
servants

creating 2-12

overview 1-7

pooling 2-29
server applications

configuring in groups 7-7

developing 1-9

replicating in a group 7-4

scaling 7-4
server groups

configuring 7-7
server processes
replicating 7-4
server skeleton
See skeletons
skeletons
limiting compilation of 2-7
overview 1-3
state data
preactivating an object with 3-17
reading and writing 1-15
stateful objects
criteria for choosing 7-26
definition 1-10
See also process-bound and transaction-
bound objects 1-10
stateless objects
criteria for choosing 7-25
definition 1-10
See also method-bound objects 1-10
support
technical xi

T

tie classes
compiling with Digital C++ compiler 2-
34
generating 2-6
See also delegation-based interface
implementation
TMS 5-9
configuring 5-9
Oracle7 5-9
requirements for 5-9
TobjS_c.h 2-22
tpcall() 6-6
tpforward() 6-7
tpreturn() 6-7
transaction activation policy 5-16
Transaction Manager Server

Creating CORBA C++ Server Applications |I-5

See TMS

transaction policies
always 5-11
always (example) 6-13
assigning in ICF file 5-15
ignore 5-14
never 5-13
optional 5-12

transactional objects
defining 5-11

transactions
and conversations 5-2
and object state management 5-16
implementing in a WLE server

application 5-4

nested 5-18
overview of 5-2
recursive 5-18

Transactions University sample
configuring 5-10
how it works 5-6
object state management 5-8
overview 5-4

transient objects 3-18

TUXEDO
See BEA TUXEDO

U

UBBCONFIG file
and factory-based routing 7-15
in Production University sample 7-9
overview 2-19
SECURITY parameter 4-2
user-defined exceptions 5-20

v

vetoing a transaction 5-16

-6 Creating CORBA C++ Server Applications

w

WLE server applications
and security 4-1
and transactions 5-4
Wrapper University sample
configuring 6-13
design summary 6-8
how it works 6-10
wrapping a TUXEDO service
as an object 6-3

X

XA resource manager
closing 5-15
delegating object state management to 5-
16
opening 5-15
using in Transactions University sample
5-9

	Restricted Rights Legend
	Trademarks or Service Marks
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Server Application Concepts
	The Entities You Create to Build a WebLogic Enterprise Server Application
	The Implementation of the CORBA Objects for Your Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects
	The Content of an Object Reference
	The Lifetime of an Object Reference
	Passing Object Instances

	How You Instantiate a CORBA Object at Run Time
	Servant Pooling

	The Server Object

	Process for Developing WebLogic Enterprise Server Applications
	Generating Object References
	How Client Applications Find Your Server Application’s Factories
	Creating an Active Object Reference

	Managing Object State
	About Object State
	Object Activation Policies
	Application-controlled Deactivation

	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Servant Pooling and Stateless Objects

	Stateful Objects and Durable State
	Servant Pooling and Stateful Objects

	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	2 Steps for Creating a WebLogic Enterprise Server Application
	Summary of the WebLogic Enterprise Server Application Development Process
	Step 1: Compile the OMG IDL File for the Server Application
	Using the IDL Compiler
	Generating the Skeleton and Implementation Files
	Generating Tie Classes

	Step 2: Write the Methods That Implement Each Interface’s Operations
	The Implementation File Generated by the IDL Compiler
	Implementing a Factory

	Step 3: Create the Server Object
	Initializing the Server Application
	Writing the Code That Creates and Registers a Factory
	Creating Servants
	Releasing the Server Application

	Step 4: Define the In-memory Behavior of Objects
	Specifying Object Activation and Transaction Policies in the ICF File

	Step 5: Compile and Link the Server Application
	Step 6: Deploy the Server Application
	Development and Debugging Tips
	Use of CORBA and M3 Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions
	Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by Application Code
	The M3 System’s Handling of Exceptions Raised by Application Code During the Invocation of Operat...

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in Tobj_ServantBase::deactivate_object()

	Servant Pooling
	How Servant Pooling Works
	How You Implement Servant Pooling

	Delegation-based Interface Implementation
	About Tie Classes in the WebLogic Enterprise System
	When to Use Tie Classes
	How to Create Tie Classes in a WebLogic Enterprise Application

	3 Designing and Implementing a Basic WebLogic Enterprise Server Application
	How the Basic University Sample Application Works
	The Basic University Sample Application OMG IDL
	Application Startup
	Browsing Course Synopses
	Browsing Course Details

	Design Considerations for the University Server Application
	Design Considerations for Generating Object References
	Design Considerations for Managing Object State
	The RegistrarFactory Object
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Basic University Sample Application ICF File

	Design Considerations for Handling Durable State Information
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Using the University Database

	How the Basic Sample Application Applies Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	Additional Performance Efficiencies Built into the WebLogic Enterprise System
	Preactivating an Object with State
	How You Preactivate an Object with State
	Usage Notes for Preactivated Objects

	4 Security and WebLogic Enterprise Server Applications
	Overview of Security and WebLogic Enterprise Server Applications
	Design Considerations for the University Server Application
	How the Security University Sample Application Works
	Design Considerations for Returning Student Details to the Client Application

	5 Integrating Transactions into a WebLogic Enterprise Server Application
	Overview of Transactions in the WebLogic Enterprise System
	Designing and Implementing Transactions in a WebLogic Enterprise Server Application
	How the Transactions University Sample Application Works
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the WebLogic Enterprise System
	User-defined Exceptions
	Defining the Exception
	Throwing the Exception

	6 Wrapping a BEA Tuxedo Service in an Object
	Overview of Wrapping a BEA Tuxedo Service
	Designing the Object That Wraps the BEA Tuxedo Service
	Creating the Buffer in Which to Encapsulate BEA Tuxedo Service Calls
	Implementing the Operations That Send Messages to and from the BEA Tuxedo Service
	Restrictions

	Design Considerations for the Wrapper Sample Application
	How the Wrapper University Sample Application Works
	Interface Definitions for the Billing Server Application
	Additional Design Considerations for the Wrapper Sample Application
	Sending Requests to the Teller Object
	Exception Handling
	Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
	Configuring the University and Billing Server Applications

	7 Scaling a WebLogic Enterprise Server Application
	Overview of the Scalability Features Available in the WebLogic Enterprise System
	Scaling a WebLogic Enterprise Server Application
	OMG IDL Changes for the Production Sample Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG file
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations for the Registrar and Teller Objects
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object is Instantiated in the Correct Server Group

	How the Production Server Application Can Be Scaled Further
	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects

	Index

