
CORBA C++ Programming

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Reference

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

CORBA C++ Programming Reference

Document Edition Date Software Version

5.1 Mauy 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document
What You Need to Know .. xvi

e-docs Web Site ... xvi

How to Print the Document.. xvii

Related Information.. xvii

Contact Us! ... xvii

Documentation Conventions ... xviii

1. OMG IDL Syntax
OMG IDL Extensions.. 1-2

2. Implementation Configuration File (ICF)
ICF Syntax... 2-2

Sample ICF File... 2-3

Creating the ICF File ... 2-4

3. TP Framework
A Simple Programming Model ... 3-3

Control Flow .. 3-4

Object State Management .. 3-4

Transaction Integration .. 3-4

Object Housekeeping ... 3-5

High-level Services .. 3-5

State Management ... 3-6

Activation Policy.. 3-6

Application-controlled Activation and Deactivation 3-8

Servant Lifetime ... 3-11
CORBA C++ Programming Reference iii

Saving and Restoring Object State ... 3-13

Transactions... 3-14

Transaction Policies.. 3-14

Transaction Initiation.. 3-15

Transaction Termination .. 3-16

Transaction Suspend and Resume .. 3-16

Restrictions on Transactions... 3-18

SQL and Global Transactions .. 3-18

Voting on Transaction Outcome .. 3-19

Transaction Time-outs.. 3-20

TP Framework API.. 3-20

Server Interface .. 3-21

Server::create_servant ... 3-23

Server::initialize().. 3-26

Server::release() .. 3-29

Tobj_ServantBase Interface ... 3-31

Tobj_ServantBase:: activate_object() ... 3-33

Tobj_ServantBase::deactivate_object() .. 3-36

TP Interface .. 3-42

TP::application_responsibility .. 3-44

TP::bootstrap() .. 3-45

TP::close_xa_rm() ... 3-46

TP::create_active_object_reference().. 3-48

TP::create_object_reference() ... 3-51

TP::deactivateEnable... 3-54

TP::get_object_id ()... 3-56

TP::get_object_reference().. 3-57

TP::open_xa_rm() ... 3-58

TP::orb() .. 3-60

TP::register_factory() .. 3-61

TP::unregister_factory() .. 3-63

TP::userlog().. 3-65

CosTransactions::TransactionalObject Interface Not Enforced 3-66

Error Conditions, Exceptions, and Error Messages... 3-67

Exceptions Raised by the TP Framework .. 3-67
iv CORBA C++ Programming Reference

Exceptions in the Server Application Code ... 3-67

Exceptions and Transactions .. 3-68

Restriction of Nested Calls on Corba Objects.. 3-68

4. C++ Bootstrap Object Programming Reference
Why Bootstrap Objects Are Needed ... 4-2

How Bootstrap Objects Work ... 4-2

Types of Remote Clients Supported.. 4-6

Capabilities and Limitations.. 4-7

Bootstrap Object API .. 4-8

Tobj Module... 4-9

C++ Mapping ... 4-10

Java Mapping ... 4-10

Microsoft Desktop Client Mappings .. 4-11

C++ Member Functions and Java Methods... 4-12

Tobj_Bootstrap.. 4-13

Tobj_Bootstrap::register_callback_port.. 4-19

Tobj_Bootstrap::resolve_initial_references 4-21

Tobj_Bootstrap::destroy_current().. 4-22

Automation Methods ... 4-23

Initialize .. 4-24

CreateObject.. 4-26

DestroyCurrent.. 4-28

Programming Examples .. 4-28

Java Client Example: Getting a SecurityCurrent Object.......................... 4-28

Visual Basic Client Example: Using the Bootstrap Object...................... 4-29

5. FactoryFinder Interface
Capabilities, Limitations, and Requirements... 5-2

Functional Description .. 5-3

Locating a FactoryFinder ... 5-3

Registering a Factory ... 5-4

Locating a Factory.. 5-5

Creating Application Factory Keys.. 5-11

C++ Member Functions and Java Methods... 5-19
CORBA C++ Programming Reference v

CosLifeCycle::FactoryFinder::find_factories 5-20

Tobj::FactoryFinder::find_one_factory... 5-22

Tobj::FactoryFinder::find_one_factory_by_id.................................. 5-24

Tobj::FactoryFinder::find_factories_by_id 5-26

Tobj::Factoryfinder::list_factories .. 5-28

Automation Methods ... 5-29

DITobj_FactoryFinder.find_one_factory .. 5-30

DITobj_FactoryFinder.find_one_factory_by_id............................... 5-32

DITobj_FactoryFinder.find_factories_by_id 5-34

DITobj_FactoryFinder.find_factories ... 5-36

DITobj_FactoryFinder.list_factories... 5-37

Programming Examples .. 5-38

Using the FactoryFinder Object ... 5-38

Using Extensions to the FactoryFinder Object... 5-40

6. Security Service

7. Transactions Service

8. Notification Service

9. Request-Level Interceptors

10. Interface Repository Interfaces
Structure and Usage ... 10-2

Programming Information .. 10-3

Performance Implications... 10-4

Building Client Applications ... 10-5

Getting Initial References to the InterfaceRepository Object.......................... 10-5

Interface Repository Interfaces.. 10-6

Supporting Type Definitions .. 10-6

IRObject Interface .. 10-7

Contained Interface .. 10-7

Container Interface ... 10-9

IDLType Interface .. 10-11

Repository Interface ... 10-11
vi CORBA C++ Programming Reference

ModuleDef Interface .. 10-12

ConstantDef Interface .. 10-12

TypedefDef Interface ... 10-13

StructDef .. 10-14

UnionDef .. 10-14

EnumDef .. 10-15

AliasDef ... 10-15

PrimitiveDef ... 10-16

ExceptionDef.. 10-16

AttributeDef ... 10-17

OperationDef .. 10-18

InterfaceDef.. 10-20

11. Joint Client/Servers
Main Program and Server Initialization .. 11-2

Servants ... 11-2

Servant Inheritance from Skeletons... 11-3

Callback Object Models Supported... 11-4

Preparing Callback Objects Using CORBA.. 11-5

Preparing Callback Objects Using BEAWrapper Callbacks........................... 11-8

BEAWrapper Callbacks API ... 11-11

Callbacks... 11-12

start_transient .. 11-13

start_persistent_systemid .. 11-15

restart_persistent_systemid ... 11-17

start_persistent_userid... 11-19

stop_object .. 11-21

stop_all_objects... 11-22

get_string_oid.. 11-23

~Callbacks... 11-24

12. Development Commands

13. Mapping of OMG IDL Statements to C++
Mappings ... 13-1

Data Types.. 13-2
CORBA C++ Programming Reference vii

Strings... 13-4

Constants .. 13-4

Enums ... 13-5

Structs ... 13-6

Unions... 13-8

Sequences ... 13-13

Arrays ... 13-18

Exceptions .. 13-20

Mapping of Pseudo-objects to C++.. 13-22

Usage .. 13-23

Mapping Rules.. 13-23

Relation to the C PIDL Mapping.. 13-25

Typedefs ... 13-26

Implementing Interfaces... 13-27

Implementing Operations ... 13-29

PortableServer Functions.. 13-31

Modules .. 13-31

Interfaces .. 13-33

Generated Static Member Functions .. 13-34

Object Reference Types ... 13-35

Attributes .. 13-35

Any Type .. 13-37

Fixed-length Versus Variable-length User-defined Types 13-49

Using var Classes... 13-49

Sequence vars ... 13-53

Array vars ... 13-53

String vars... 13-53

Using out Classes... 13-56

Object Reference out Parameter... 13-58

Sequence outs ... 13-59

Array outs ... 13-59

String outs... 13-59

Argument Passing Considerations... 13-61

Operation Parameters and Signatures... 13-64
viii CORBA C++ Programming Reference

14. CORBA API
Global Classes ... 14-1

Pseudo-objects ... 14-2

Any Class Member Functions ... 14-2

CORBA::Any::Any() .. 14-4

CORBA::Any::Any(const CORBA::Any & InitAny) 14-5

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
14-6

CORBA::Any::~Any() .. 14-7

CORBA::Any & CORBA::Any::operator=(const CORBA::Any &
InitAny).. 14-8

void CORBA::any::operator<<=().. 14-9

CORBA::Boolean CORBA::Any::operator>>=() 14-10

CORBA::Any::operator<<=()... 14-11

CORBA::Boolean CORBA::Any::operator>>=() 14-12

CORBA::TypeCode_ptr CORBA::Any::type() const 14-13

void CORBA::Any::replace() ... 14-14

Context Member Functions ... 14-15

Memory Management .. 14-15

CORBA::Context::context_name ... 14-16

CORBA::Context::create_child .. 14-17

CORBA::Context::delete_values .. 14-18

CORBA::Context::get_values... 14-19

CORBA::Context::parent.. 14-21

CORBA::Context::set_one_value ... 14-22

CORBA::Context::set_values ... 14-23

ContextList Member Functions ... 14-24

CORBA::ContextList:: count.. 14-25

CORBA::ContextList::add.. 14-26

CORBA::ContextList::add_consume.. 14-27

CORBA::ContextList::item .. 14-28

CORBA::ContextList::remove.. 14-29

NamedValue Member Functions... 14-30

Memory Management .. 14-30

CORBA::NamedValue::flags.. 14-31
CORBA C++ Programming Reference ix

CORBA::NamedValue::name ... 14-32

CORBA::NamedValue::value ... 14-33

NVList Member Functions .. 14-34

Memory Management .. 14-34

CORBA::NVList::add ... 14-36

CORBA::NVList::add_item.. 14-37

CORBA::NVList::add_value .. 14-38

CORBA::NVList::count.. 14-39

CORBA::NVList::item.. 14-40

CORBA::NVList::remove... 14-41

Object Member Functions ... 14-42

CORBA::Object::_create_request... 14-44

CORBA::Object::_duplicate ... 14-46

CORBA::Object::_get_interface ... 14-47

CORBA::Object::_is_a.. 14-48

CORBA::Object::_is_equivalent... 14-49

CORBA::Object::_nil .. 14-50

CORBA::Object::_non_existent.. 14-51

CORBA::Object::_request .. 14-52

CORBA Member Functions .. 14-53

CORBA::release.. 14-54

CORBA::is_nil .. 14-55

CORBA::hash.. 14-56

CORBA::resolve_initial_references.. 14-57

ORB Member Functions.. 14-58

CORBA::ORB::create_environment... 14-59

CORBA::ORB::create_list .. 14-60

CORBA::ORB::create_named_value.. 14-61

CORBA::ORB::create_exception_list .. 14-62

CORBA::ORB::create_context_list .. 14-63

CORBA::ORB::create_policy ... 14-64

CORBA::ORB::create_operation_list ... 14-67

CORBA::ORB::get_default_context... 14-68

CORBA::ORB::get_next_response... 14-69

CORBA::ORB::perform_work ... 14-70
x CORBA C++ Programming Reference

CORBA::ORB::run ... 14-71

CORBA::ORB::shutdown... 14-72

 CORBA::ORB::object_to_string .. 14-73

CORBA::ORB::poll_next_response ... 14-74

CORBA::ORB::work_pending ... 14-75

CORBA::ORB::send_multiple_requests_deferred 14-76

CORBA::ORB::send_multiple_requests_oneway 14-77

CORBA::ORB::string_to_object .. 14-78

ORB Initialization Member Function.. 14-79

CORBA::ORB_init ... 14-80

Policy Member Functions.. 14-83

CORBA:Policy::copy.. 14-84

CORBA::Policy::destroy .. 14-85

PortableServer Member Functions .. 14-86

PortableServer::POA::activate_object .. 14-87

PortableServer::POA::activate_object_with_id 14-88

PortableServer::POA::create_id_assignment_policy...................... 14-89

PortableServer::POA::create_lifespan_policy 14-90

PortableServer::POA::create_POA ... 14-92

PortableServer::POA::create_reference .. 14-94

PortableServer::POA::create_reference_with_id............................ 14-95

PortableServer::POA::deactivate_object .. 14-96

PortableServer::POA::destroy... 14-97

PortableServer::POA::find_POA .. 14-98

PortableServer::POA::reference_to_id ... 14-99

PortableServer::POA::the_POAManager 14-100

PortableServer::ServantBase::_default_POA 14-101

POA Current Member Functions... 14-102

PortableServer::Current::get_object_id .. 14-103

PortableServer::Current::get_POA ... 14-104

POAManager Member Functions.. 14-105

PortableServer::POAManager::activate.. 14-106

PortableServer::POAManager::deactivate 14-107

POA Policy Member Objects .. 14-108

PortableServer::LifespanPolicy .. 14-109
CORBA C++ Programming Reference xi

PortableServer::IdAssignmentPolicy .. 14-110

Request Member Functions ... 14-111

CORBA::Request::arguments ... 14-112

CORBA::Request::ctx(Context_ptr) ... 14-113

CORBA::Request::get_response ... 14-114

CORBA::Request::invoke... 14-115

CORBA::Request::operation... 14-116

CORBA::Request::poll_response.. 14-117

CORBA::Request::result ... 14-118

CORBA::Request::env .. 14-119

CORBA::Request::ctx ... 14-120

CORBA::Request::contexts .. 14-121

CORBA::Request::exceptions... 14-122

CORBA::Request::target... 14-123

CORBA::Request::send_deferred ... 14-124

CORBA::Request::send_oneway .. 14-125

Strings .. 14-126

CORBA::string_alloc .. 14-127

CORBA::string_dup.. 14-128

CORBA::string_free.. 14-129

TypeCode Member Functions ... 14-130

Memory Management .. 14-131

CORBA::TypeCode::equal ... 14-132

CORBA::TypeCode::id ... 14-133

CORBA::TypeCode::kind... 14-134

CORBA::TypeCode::param_count ... 14-136

CORBA::TypeCode::parameter .. 14-137

Exception Member Functions.. 14-138

Standard Exceptions .. 14-140

Exception Definitions... 14-141

Object Nonexistence... 14-142

Transaction Exceptions .. 14-142

ExceptionList Member Functions ... 14-144

CORBA::ExceptionList::count ... 14-145

CORBA::ExceptionList::add .. 14-146
xii CORBA C++ Programming Reference

CORBA::ExceptionList::add_consume .. 14-147

CORBA::ExceptionList::item... 14-148

CORBA::ExceptionList::remove .. 14-149

15. Server-side Mapping
Implementing Interfaces.. 15-1

Inheritance-based Interface Implementation ... 15-2

Delegation-based Interface Implementation.. 15-5

Implementing Operations .. 15-9
CORBA C++ Programming Reference xiii

xiv CORBA C++ Programming Reference

ion

ct
L

rk

tory
About This Document

This document describes the BEA WebLogic Enterprise™ CORBA C++ applicat
programming interface (API).

This document covers the following topics:

n Chapter 1, “OMG IDL Syntax and the C++ IDL Compiler,” describes the Obje
Management Group (OMG) Interface Definition Language (IDL) and OMG ID
extensions.

n Chapter 2, “Implementation Configuration File (ICF),” describes the
Implementation Configuration File (ICF).

n Chapter 3, “TP Framework,” describes the WebLogic Enterprise TP Framewo
application programming interface (API).

n Chapter 4, “C++ Bootstrap Object Programming Reference,” describes the
Bootstrap object.

n Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

n Chapter 6, “Security Service,” directs you to information about the Security
Service.

n Chapter 7, “Transactions Service,” directs you to information about the
Transactions Service.

n Chapter 8, “Notification Service,” directs you to information about the
Notification Service.

n Chapter 9, “Request-Level Interceptors,” directs you to information about
Request-Level Interceptors.

n Chapter 10, “Interface Repository Interfaces,” describes the Interface Reposi
interfaces.
CORBA C++ Programming Reference xv

er

n

f

DL

nd

e at
n Chapter 11, “Joint Client/Servers,” describes how to program joint client/serv
applications and the BEAWrapper Callbacks API.

n Chapter 12, “Development Commands,” describes the build and administratio
commands for UNIX and Windows NT platforms.

n Chapter 13, “Mapping of OMG IDL Statements to C++,” describes mapping o
OMG IDL statements to C++.

n Chapter 14, “CORBA API,” describes the CORBA API.

n Chapter 15, “Server-side Mapping,” describes server-side mapping of OMG I
statements to C++.

What You Need to Know

This document is intended for application developers interested in using the BEA
WebLogic Enterprise CORBA C++ API to write client and joint client/server
applications and object implementations. It assumes a familiarity with CORBA, a
with C++ and Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.
xvi CORBA C++ Programming Reference

How to Print the Document

tion
ent
rise

 you

rom

ng,

s.

date

r the
How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free f
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programmi
and Java programming, see the WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and up
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation fo
BEA WebLogic Enterprise 5.1 release.
CORBA C++ Programming Reference xvii

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xviii CORBA C++ Programming Reference

Documentation Conventions
monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
CORBA C++ Programming Reference xix

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xx CORBA C++ Programming Reference

CHAPTER

ers

t

that

ew
also
ific
1 OMG IDL Syntax and
the C++ IDL Compiler

The Object Management Group (OMG) Interface Definition Language (IDL) is used
to describe the interfaces that client objects call and that object implementations
provide. An OMG IDL interface definition fully specifies each operation’s paramet
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a clien
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although n
keywords are introduced to support distribution concepts. OMG IDL statements
provide full support for standard C++ preprocessing features and OMG IDL-spec
pragmas.

Note: When using a pragma version statement, be sure to locate it after the
corresponding interface definition. Here is an example of proper usage:

module A
{
 interface B
 {
#pragma version B "3.5"
 void op1();
 };
};
CORBA C++ Programming Reference 1-1

1 OMG IDL Syntax and the C++ IDL Compiler

nt
The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

For a description of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

All OMG IDL grammar is supported, with the exception of the following type
declarations and associated literals:

n native

Note: Because CORBA 2.2 states that the native type declaration is intended for
use in Object Adapters, not user interfaces, this type is available in the
PortableServer module only for clients that support callbacks, that is, joi
client/servers.

n long long

n unsigned long long

n long double

n wstring

n wchar

n fixed

Do not use these data types in IDL definitions.
1-2 CORBA C++ Programming Reference

OMG IDL Compiler Extensions
OMG IDL Compiler Extensions

The IDL compiler defines preprocessor macros specific to the platform. All macros
predefined by the preprocessor that you are using can be used in the OMG IDL file, in
addition to the user-defined macros. You can also define your own macros when you
are compiling or loading OMG IDL files.

Table 1-1 describes the predefined macros for each platform.

Table 1-1 Predefined Macros

Macro Identifier Platform on Which the Macro Is Defined

__unix__ Sun Solaris, HP-UX, Tru64 UNIX, and IBM AIX

__osf1__ Tru64 UNIX

__sun__ Sun Solaris

__hpux__ HP-UX

__aix__ IBM AIX

__win_nt__ Microsoft Windows NT
CORBA C++ Programming Reference 1-3

1 OMG IDL Syntax and the C++ IDL Compiler
C++ IDL Compiler Constraints

Table 1-2 describes constraints for BEA WebLogic Enterprise 5.1 C++ IDL compiler
and provides information about recommended workarounds.

Table 1-2 C++ IDL Compiler

Constraint Use of wildcarding in OMG IDL context strings produces warnings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

 void op5() context("*");
 ^
 LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
 context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

This warning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires a comma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown above is not OMG CORBA compliant, but it is
processed by the BEA WebLogic Enterprise software as intended by
the user.

Constraint Use of wildcarding in OMG IDL context strings produces warnings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

 void op5() context("*");
 ^
 LIBORBCMD_CAT:131: INFO: ‘*’ is a non-standard
 context property.
1-4 CORBA C++ Programming Reference

C++ IDL Compiler Constraints
Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

This warning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires a comma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown above is not OMG CORBA compliant, but it is
processed by the BEA WebLogic Enterprise software as intended by
the user.

Constraint The C++ IDL compiler does not support some data types.

Description The C++ IDL compiler currently does not support the following data types,
which are defined in the CORBA version 2.2 specification:

long long
long double
unsigned long long
wchar

Workaround Avoid using these data types in IDL definitions.

Constraint Using certain substrings in identifiers may cause incorrect code generation by the C++
IDL compiler.

Description Using the following substrings in identifiers may cause code to be generated
incorrectly and result in errors when the generated code is compiled:

 get_
 set_
 Impl_
 _ptr
 _slice

Workaround Avoid the use of these substrings in identifiers.

Table 1-2 C++ IDL Compiler (Continued)
CORBA C++ Programming Reference 1-5

1 OMG IDL Syntax and the C++ IDL Compiler
Constraint Inconsistent behavior in IDL compiler regarding case sensitivity.

Desription According to the CORBA standard, IDL identifiers that differ only in case
should be considered colliding and yield a compilation error. There is a
current limitation of the BEA WebLogic Enterprise IDL compiler for C++
bindings in that it does not always detect and report such name collisions.

Workaround Avoid using IDL identifiers that differ only in case.

Constraint C++ IDL typedef problem.

Description The C++ IDL compiler generates code that does not compile when:

t Defining IDL variables of char or boolean type

t And the type is aliased multiple times

For example, the generated C++ code from the following IDL code will not
compile:

module X

 {

 typedef boolean a;

 typedef a b;

 interface Y

 {

 attribute b Z;

 };

 };

C++ compilers report an error that an "operator <<" is ambiguous and that
there is no "operator>>" for type char. These errors are produced because
of the multiple levels of typedefs; the C++ compiler may not associate the type
X::b with CORBA::Boolean because of the intermediate type definition of
X::a.

Workaround Use a single level of indirection when you define char or boolean types.
In the IDL example above, the attribute ‘X::Z’ would be defined using either
the standard type ‘boolean’ or the user type ‘X::a’, but not the user type
‘X::b’.

Table 1-2 C++ IDL Compiler (Continued)
1-6 CORBA C++ Programming Reference

CHAPTER

 forth.
hat
ivated.

s to
2 Implementation
Configuration File (ICF)

The BEA WebLogic Enterprise TP Framework application programming interface
(API) provides callback methods for object activation and deactivation. These
methods provide the ability for application code to implement flexible state
management schemes for CORBA objects.

State management is the way you control the saving and restoring of object state during
object deactivation and activation. State management also affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includes the activate_object() and
deactivate_object() methods, which provide a possible location for state
management code. Additionally, the TP Framework API includes the
deactivateEnable() method to enable the user to control the timing of object
deactivation. The default duration of object activation is controlled by policies
assigned to implementations at OMG IDL compile time.

While CORBA objects are active, their state is contained in a servant. This state must
be initialized when objects are first invoked (that is, the first time a method is invoked
on a CORBA object after its object reference is created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in
which the servant was active. When an object is activated, its state must be restored.
The object’s state can be saved in shared memory, in a file, in a database, and so
It is up to the programmer to determine what constitutes an object’s state, and w
must be saved before an object is deactivated and restored when an object is act

You can use the Implementation Configuration File (ICF) to set activation policie
control the duration of object activations in each implementation. The ICF file
manages object state by specifying the activation policy. The activation policy
CORBA C++ Programming Reference 2-1

2 Implementation Configuration File (ICF)

ains
n

lt
cit

 with

 class

ion
determines the in-memory activation duration for a CORBA object. A CORBA object
is active in a Portable Object Adapter (POA) if the POA’s active object map cont
an entry that associates an object ID with an existing servant. Object deactivatio
removes the association of an object ID with its active servant.

ICF Syntax

ICF syntax is as follows:

[#pragma activation_policy method|transaction|process]
[#pragma transaction_policy never|ignore|optional|always]
[Module module-name {]
 implementation [implementation-name]
 {
 implements (module-name::interface-name);
 [activation_policy (method|transaction|process);]
 [transaction_policy (never|ignore|optional|always);]
 };
 [};]

pragmas

The two optional pragmas allow you to set a specific policy as the defau
policy for the entire ICF for all implementations that do not have an expli
activation_policy or transaction_policy statement. This feature
relieves the programmer from having to specify policies for each
implementation and/or allows overriding of the defaults.

Module module-name
The module-name variable is optional if it is optional in the OMG IDL file.
This variable is used for scoping and grouping. Its use must be consistent
the way it is used inside the OMG IDL file.

implementation-name
This variable is optional and is used as the name of the servant or as the
name in the server. It is constructed using interface-name with an _i
appended if it is not specified by the programmer.

implements (module-name::interface-name)

This variable identifies the module and the interface to which the activat
policy and the transaction policy apply.
2-2 CORBA C++ Programming Reference

Sample ICF File

n
activation_policy

For a description of the activation policies, see “Activation Policy” on
page 3-6.

transaction_policy

For a description of the transaction policies, see “Transaction Policies” o
page 3-14.

Sample ICF File

Listing 2-1 shows a sample ICF file.

Listing 2-1 Sample ICF

module POA_University1
 {
 implementation CourseSynopsisEnumerator_i
 {
 activation_policy (process);
 transaction_policy (optional);
 implements (University1::CourseSynopsisEnumerator);
 };

 };

module POA_University1
 {
 implementation Registrar_i
 {
 activation_policy (method);
 transaction_policy (optional);
 implements (University1::Registrar);
 };

 };

module POA_University1
 {
 implementation RegistrarFactory_i
 {
 activation_policy (process);
CORBA C++ Programming Reference 2-3

2 Implementation Configuration File (ICF)
 transaction_policy (optional);
 implements (University1::RegistrarFactory);
 };

 };

Creating the ICF File

You have the option of either coding the ICF file manually or using the genicf
command to generate it from the OMG IDL file. For a description of the syntax and
options for the genicf command, see Commands, Processes, and MIB Reference.
2-4 CORBA C++ Programming Reference

CHAPTER
3 TP Framework

This topic includes the following sections:

n A Simple Programming Model. This section describes:

l Control Flow

l Object State Management

l Transaction Integration

l Object Housekeeping

l High-level Services

n State Management. This section describes:

l Activation Policy

l Application-controlled Activation and Deactivation

l Servant Lifetime

l Saving and Restoring Object State

n Transactions. This section describes:

l Transaction Policies

l Transaction Initiation

l Transaction Termination

l Transaction Suspend and Resume

l Restrictions on Transactions

l SQL and Global Transactions

l Voting on Transaction Outcome

l Transaction Time-outs
CORBA C++ Programming Reference 3-1

3 TP Framework

’s
tions
lt using
nt of
ice

ns.
ut,
ervice
n TP Framework API

n Error Conditions, Exceptions, and Error Messages

The BEA WebLogic Enterprise TP Framework provides a programming TP
Framework that enables users to create servers for high-performance TP applications.
This chapter describes the TP Framework programming model and the TP Framework
application programming interface (API) in detail. Additional information about how
to use this API can be found in Creating CORBA C++ Server Applications.

The TP Framework is required when developing BEA WebLogic Enterprise servers.
Later releases will relax this requirement, though it is expected that most customers
will use the TP Framework as an integral part of their applications.

BEA WebLogic Enterprise uses BEA Tuxedo as the underlying infrastructure for
providing load balancing, transactional capabilities, and administrative infrastructure.
The base API used by the TP Framework is the CORBA API with BEA extensions.
The TP Framework API is exposed to customers. The BEA Tuxedo ATMI is an
optional API that can be mixed in with TP Framework APIs, allowing a customer to
deploy distributed applications using a mix of BEA Tuxedo servers and BEA
WebLogic Enterprise servers.

Before BEA WebLogic Enterprise, ORB products did not approach BEA Tuxedo
performance in large-scale environments. BEA Tuxedo systems support applica
that can process hundreds of transactions per second. These applications are bui
the BEA Tuxedo stateless-service programming model that minimizes the amou
system resources used for each request, and thus maximizes throughput and pr
performance.

Now, BEA WebLogic Enterprise and its TP Framework give customers a way to
develop CORBA applications with performance similar to BEA Tuxedo applicatio
BEA WebLogic Enterprise servers that use the TP Framework provide throughp
response time, and price performance approaching the BEA Tuxedo stateless-s
programming model, while using the CORBA programming model.
3-2 CORBA C++ Programming Reference

A Simple Programming Model

lient

 BEA
the

e and
ally
l and

ers

e.
ce

ect

t
A Simple Programming Model

The TP Framework provides a simple, useful subset of the wide range of possible
CORBA object implementation choices. You use it for the development of server-side
object implementations only. When using any client-side CORBA ORB, clients
interact with CORBA objects whose server-side implementations are managed by the
TP Framework. Clients are unaware of the existence of the TP Framework—a c
written to access a CORBA object executing in a non-BEA WebLogic Enterprise
server environment will be able to access that same CORBA object executing in a
WebLogic Enterprise server environment without any changes or restrictions to
client interface.

The TP Framework provides a server environment and an API that is easier to us
understand than the CORBA Portable Object Adapter (POA) API, and is specific
geared towards enterprise applications. It is a simple server programming mode
an orthodox implementation of the CORBA model, which will be familiar to
programmers using ORBs such as ORBIX or VisiBroker.

The TP Framework simplifies the programming of BEA WebLogic Enterprise serv
by reducing the complexity of the server environment in the following ways:

n The TP Framework does all interactions with the POA and the Naming Servic
The application programmer requires no knowledge of POA or Naming Servi
interfaces.

n The TP Framework is single threaded—only one request on one CORBA obj
will be processed at a time, obviating the need to write thread-safe
implementations.

n A CORBA object may be involved in only one transaction at a time (consisten
with the association of one object ID to one servant).

The TP Framework provides the following functionality:

n Control Flow

n Object State Management

n Transaction Integration

n Object Housekeeping
CORBA C++ Programming Reference 3-3

3 TP Framework

ent
olves
lso

 of
rolled
n High-level Services

Control Flow

The TP Framework, in conjunction with the ORB and the POA, controls the flow of
the application program by doing the following:

n Controlling the server mainline and invoking callback methods on TP
Framework-defined classes at appropriate times for server startup and shutdown.
This relieves the application programmer from complex interactions related to
ORB and POA initialization and coordination of transactions, resource
managers, and object state on shutdown.

n Scheduling objects for activation and deactivation when client requests arrive
and are completed. This removes the complexity of management of object
activation and deactivation from the realm of the application programmer and
enables the use of the TP monitor infrastructure’s powerful load-balancing
capabilities, crucial to performance of mission-critical tasks.

Object State Management

The TP Framework API provides callback methods for application code to implem
flexible state management schemes for CORBA objects. State management inv
the saving and restoring of object state on object deactivation and activation. It a
concerns the duration of activation of objects, which influences the performance
servers and their resource usage. The default duration of object activation is cont
by policies assigned to implementations at IDL compile time.

Transaction Integration

TP Framework transaction integration provides the following features:

n CORBA objects can participate in global transactions.
3-4 CORBA C++ Programming Reference

A Simple Programming Model

ted.

lient.

the
e.

ct

opers
Is,
ying
n

n Objects participating in transactions can be implemented as stateful objects that
remain in memory for the duration of a transaction (by using the transaction
activation policy), to decrease client response time.

n CORBA objects that participate in transactions can affect transaction outcome
either during their transactional work or just prior to the system’s execution of
the two-phase commit algorithm after all transactional work has been comple

n Transactions can be automatically initiated on the server transparent to the c

Object Housekeeping

When a server is shut down, the TP Framework rolls back any transactions that
server is involved in and deactivates any CORBA objects that are currently activ

High-level Services

The TP interface in the TP Framework API provides methods for performing obje
registrations and utility functions. The following services are provided:

n Object reference creation

n Factory-based routing support

n Accessors for system objects, such as the ORB

n Registration and unregistration of factories with the Factory Finder

n Application-controlled activation and deactivation

n User logging

The purpose of these high-level service methods is to eliminate the need for devel
to understand the CORBA POA, CORBA Naming Service, and BEA Tuxedo AP
which they use for their underlying implementations. By encapsulating the underl
API calls with a high-level set of methods, programmers can focus their efforts o
providing business logic rather than understanding and using the more complex
underlying facilities.
CORBA C++ Programming Reference 3-5

3 TP Framework

ct

with
State Management

State management involves the saving and restoring of object state on object
deactivation and activation. It also concerns the duration of activation of objects,
which influences the performance of servers and their resource usage. The external
API of the TP Framework provides activate_object and deactivate_object
methods, which are a possible location for state management code.

Activation Policy

State management is provided in the TP Framework by the activation policy. This
policy controls the activation and deactivation of servants for a particular IDL interface
(as opposed to the creation and destruction of the servants). This policy is applicable
only to CORBA objects using the TP Framework.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object is active in a POA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant. You can
choose from one of three activation policies: method (the default), transaction, or
process.

Note: The activation policies are set in an ICF file that is configured at OMG IDL
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

The activation policies are described below:

n method (This is the default activation policy.)

The activation of the CORBA object (that is, the association between the obje
ID and the servant) lasts until the end of the method. At the completion of a
method, the object is deactivated. When the next method is invoked on the
object reference, the CORBA object is activated (the object ID is associated
a new servant). This behavior is similar to that of a BEA Tuxedo stateless
service.
3-6 CORBA C++ Programming Reference

State Management

nts
or a
nts
uld
of a

n
n transaction

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the transaction. During the transaction,
multiple object methods can be invoked. The object is activated before the first
method invocation on the object and is deactivated in one of the following ways:

l If a user-initiated transaction is in effect when the object is activated, the
object is deactivated when the first of the following occurs: the transaction is
committed or rolled back, or the server is shut down in an orderly fashion.
The latter is done using either the tmshutdown(1) or tmadmin(1) command.
These commands are described in the BEA Tuxedo Reference online
document.

l If a user-initiated transaction is not in effect when the TP object is activated,
the TP object is deactivated when the method completes.

The transaction activation policy provides a means for an object to vote on
the outcome of the transaction prior to the execution of the two-phase commit
algorithm. An object votes to roll back the transaction by calling
Current.rollback_only() in the
Tobj_ServantBase::deactivate_object method. It votes to commit the
transaction by not calling Current.rollback_only() in the method.

Note: This is a model of resource allocation that is similar to that of a BEA
Tuxedo conversational service. However, this model is less expensive than
the BEA Tuxedo conversational service in that it uses fewer system
resources. This is because of the BEA WebLogic Enterprise ORB’s
multicontexted dispatching model (that is, the presence of many serva
in memory at the same time for one server), which makes it possible f
single server process to be shared by many concurrently active serva
that service many clients. In the BEA Tuxedo system, the process wo
be dedicated to a single client and to only one service for the duration
conversation.

n process

The activation of the CORBA object begins when it is invoked while in an
inactive state and, by default, lasts until the end of the process.

Note: The TP Framework API provides an interface method
(TP::deactivateEnable) that allows the application to control the
timing of object deactivation for objects that have the activation

policy set to process. For a description of this method, see the sectio
“TP::deactivateEnable” on page 3-54.
CORBA C++ Programming Reference 3-7

3 TP Framework

, the
tion

cess

he
other
bject

 with
ate.
ay

ation.
Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the TP Framework, as
discussed earlier in this chapter. The techniques in this section show how to use
alternate mechanisms. The application can control the timing of activation and
deactivation explicitly for objects with particular policies.

Explicit Activation

Application code can bypass the on-demand activation feature of the TP Framework
for objects that use the process activation policy. The application can “preactivate”
an object (that is, activate it before any invocation) using the
TP::create_active_object_reference call.

Preactivation works as follows. Before the application creates an object reference
application instantiates a servant and initializes that servant’s state. The applica
uses TP::create_active_object_reference to put the object into the Active
Object Map (that is, associate the servant with an ObjectId). Then, when the first
invocation is made, the TP Framework immediately directs the request to the pro
that created the object reference and then to the existing servant, bypassing the
necessity to call Server::create_servant and then the servant’s
activate_object method (just as if this were the second or later invocation on t
object). Note that the object reference for such an object will not be directed to an
server and the object will never go through on-demand activation as long as the o
remains activated.

Since the preactivated object has the process activation policy, it will remain active
until one of two events occurs: 1) the ending of the process or 2) a
TP::deactivateEnable call.

Usage Notes

Preactivation is especially useful if the application needs to establish the servant
an initial state in the same process, perhaps using shared memory to initialize st
Waiting to initialize state until a later time and in a potentially different process m
be very difficult if that state includes pointers, object references, or complex data
structures. TP::create_active_object_reference guarantees that the
preactivated object is in the same process as the code that is doing the preactiv
3-8 CORBA C++ Programming Reference

State Management

ple,
IDL
phone
ge size

ited
ct that
e
 track

at
ject
ation

state
n

e
the

ed if a
ient to
ting
While this is convenient, preactivation should be used sparingly, as should all process
objects, because it preallocates precious resources. However, when needed and used
properly, preallocation is more efficient than alternatives.

Examples of such usage might be an object using the “iterator” pattern. For exam
there might a potentially long list of items that could be returned (in an unbound
sequence) from a “database_query” method (for example, the contents of the tele
book). Returning all such items in the sequence is impractical because the messa
and the memory requirements would be too large.

On an initial call to get the list, an object using the iterator pattern returns only a lim
number of items in the sequence and also returns a reference to an “iterator” obje
can be invoked to receive further elements. This iterator object is initialized by th
initial object; that is, the initial object creates a servant and sets its state to keep
of where in the long list of items the iteration currently stands (the pointer to the
database, the query parameters, the cursor, and so forth).

The initial object preactivates this iterator object by using
TP::create_active_object_reference. It also creates an object reference to th
object to return to the client. The client then invokes repeatedly on the iterator ob
to receive, say, the next 100 items in the list each time. The advantage of preactiv
in this situation is that the state might be complex. It is often easiest to set such
initially, from a method that has all the information in its context (call frame), whe
the initial object still has control.

When the client is finished with the iterator object, it invokes a final method on th
initial object which deacativates the iterator object. The initial object deactivates
iterator object by invoking a method on the iterator object that calls the
TP::deactivateEnable method, that is, the iterator object calls
TP::deactivateEnable on itself.

Caution to Users

For objects to be preactivated in this fashion, the state usually cannot be recover
crash occurs. (This is because the state was considered too complex or inconven
set upon initial, delayed activation.) This is a valid object technique, essentially sta
that the object is valid only for a single activation period.
CORBA C++ Programming Reference 3-9

3 TP Framework

till
ce the
xt
 that

P

e

work
you

t be

 the
tion.
e
rver

However, a problem may arise because of the “one-time” usage. Since a client s
holds an object reference that leads to the process containing that state, and sin
state cannot be recreated after the crash, care must be taken that the client’s ne
invocation does not automatically provoke a new activation of the object, because
object would have inapplicable state.

The solution is to refuse to allow the object to be activated automatically by the T
Framework. If the user provides the TobjS::ActivateObjectFailed exception to
the TP Framework as a result of the activate_object call, the TP Framework will
not complete the activation and will return an exception to the client,
CORBA::OBJECT_NOT_EXIST. The client has presumably been warned about this
possibility, since it knows about the iterator (or similar) pattern. The client must b
prepared to restart the iteration.

Note: This defensive measure may not be necessary in the future; the TP Frame
itself may detect that the object reference is no longer valid. In particular,
should not depend on the possibility that the activate_object method might
be called. If the TP Framework does in fact change, activate_object will no
called and the framework itself will generate the OBJECT_NOT_EXIST
exception.

Self Deactivation

Just as it is possible to preactivate an object with the process activation policy, it is
possible to request the deactivation of an object with the process activation policy.
The ability to preactivate and the ability to request deactivation are independent;
regardless of how an object was activated, it can be deactivated explicitly.

A method in the application can request (via TP::deactivateEnable) that the object
be deactivated. When TP::deactivateEnable is called and the object is
subsequently deactivated, no guarantee is made that subsequent invocations on
CORBA object will result in reactivation in the same process as a previous activa
The association between the ObjectId and the servant exists from the activation of th
CORBA object until one of the following events occurs: 1) the shutdown of the se
process or 2) the application calls TP::deactivateEnable. After the association is
broken, when the object is invoked again, it can be re-activated anywhere that is
allowed by the BEA WebLogic Enterprise configuration parameters.
3-10 CORBA C++ Programming Reference

State Management

ject
 the
 for

ntly
its

ction

ds in
ement
d who
ction.
There are two forms of TP::deactivateEnable. In the first form (with no
parameters), the object currently executing will be deactivated after completion of the
method in which the call is made. The object itself makes the decision that it should be
deactivated. This is often done during a method call that acts as a "signoff" signal.

The second form of TP::deactivateEnable allows a server to request deactivation
of any active object, whether it is the object that is executing or not; that is, any part of
the server can ask that the object be deactivated. This form takes parameters
identifying the object to be deactivated. Explicit deactivation is not allowed for objects
with an activation policy of transaction, because such objects cannot be safely
deactivated until the end of a transaction.

In the TP::deactivateEnable call, the TP Framework calls the servant’s
deactivate_object method. Exactly when the TP Framework invokes
deactivate_object depends on the state of the object to be deactivated. If the ob
is not currently in execution, the TP Framework deactivates it before returning to
caller. The object might be currently executing a method; this is always the case
TP::deactivateEnable with no parameters (since it refers to the currently
executing object). In this case, TP::deactivateEnable is not told whether the object
was deactivated immediately or not.

Note: The TP::deactivateEnable(interface, object id, servant)
method can be used to deactivate an object. However, if that object is curre
in a transaction, the object will be deactivated when the transaction comm
or rolls back. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object is not in a transa
or ensure that no invokes occur on the object after the
TP::deactivateEnable() call until the transaction is complete.

Servant Lifetime

A servant is a C++ class that contains methods to implement an IDL interface’s
operations. The user writes the servant code. The TP Framework invokes metho
the servant code to satisfy requests. The servant is created by the C++ "new" stat
and is destroyed by the C++ "delete" statement. Exactly who does the creation an
does the deletion, and the timing of creation and deletion, is the subject of this se
CORBA C++ Programming Reference 3-11

3 TP Framework

ove
eans

tten
 a
g the
 of the

lows
as not
 the
. This
 on
e

rk use
 with

n.

he TP

in its

for
rk.
The Normal Case

In the normal case, the TP Framework completely controls the lifetime of a servant.
The basic model is that, when a request for an inactive object arrives, the TP
Framework obtains a servant and then activates it (by calling its activate_object
method). At deactivation time, the TP Framework calls the servant’s
deactivate_object method and then disposes of the servant.

For this release of BEA WebLogic Enterprise, two phrases in the basic model ab
need to be further explained. The phrase "the TP Framework obtains a servant" m
that when the TP Framework needs a servant to be created, it calls the user-wri
Server::create_servant method. At that time, the application code must return
pointer to the requested servant. The application almost always does this by usin
C++ "new" statement to create a new instance of a servant. The phrase "disposes
servant" means that the TP Framework deletes it.

The application must be aware that this current behavior of always creating and
deleting a servant may change in future versions of this product. The application
should not depend on the current behavior, but should write servant code that al
re-use of a servant. Specifically, the servant code must work even if the servant h
been freshly created (by the C++ "new" statement). The TP Framework reserves
right not to delete a servant after it has been deactivated and then to reactivate it
means that the servant must completely initialize itself at the time of the callback
the servant’s activate_object method, not at the time of servant creation (not in th
constructor).

Special Cases

There are two techniques an application can use to alter the normal TP Framewo
of servants. The first has to do with obtaining a servant and the second has to do
disposing of the servant.

The application can alter the “obtaining” mechanism by using explicit preactivatio
In this case, the application creates and initializes a servant before asking the TP
Framework to declare it activated. Once such a servant has been turned over to t
Framework (by the TP::create_active_object_reference call), that servant is
treated by the TP Framework just like every other servant. The only difference is
method of creation and initialization.

The application can alter the “disposing” mechanism by taking the responsibility
disposing of a servant instead of leaving that responsibility with the TP Framewo
Once a servant is known to the TP Framework (through Server::create_servant
3-12 CORBA C++ Programming Reference

State Management

r use

 (not
 for
s, by

e TP
.

 have
ation
 true
 time

ant is
work
 time

o the
gain

ake
r any

g the
w

BA
 they
saved
or TP::create_active_object_reference), the TP Framework’s default behavior
is to dispose of that servant itself. In this case, the application code must no longe
references to the servant after deactivation.

However, the application may tell the TP Framework not to dispose of the servant
to delete or re-use it) after the TP Framework deactivates it. Taking responsibility
a servant is done on an individual servant basis, not for a whole class of servant
calling TP::application_responsibility with a parameter identifying the
servant. In this case, the TP Framework does nothing further with the servant; th
Framework does not delete, save, or make any further references to the servant

The advantage of taking responsibility for the servant is that the servant does not
to be created anew. If obtaining the servant is an expensive proposition, the applic
may choose to save the servant and re-use it later. This is especially likely to be
for servants for preactivated objects, but is true in general. For example, the next
the TP Framework makes a call on Server::create_servant, the application might
return a previously saved servant. It should be remembered that any time a serv
given to the TP Framework (even if it had been previously saved) the TP Frame
assumes it has responsibility. Thus, even if the application saved the servant one
after giving the servant to the TP Framework, if the application gives the servant t
TP Framework again and want to save the servant again, the application must a
call TP::application_responsibility to save the servant after that use.

Once an application has taken responsibility for a servant, the application must t
care to delete the servant when the servant is no longer needed, the same as fo
other C++ instance.

The TP::application_responsibility call can only be used after the TP
Framework has possession of the servant. It cannot be used, for example, durin
servant's activate_object callback because the TP Framework does not yet kno
about the servant (the servant has not been returned yet).

Saving and Restoring Object State

While CORBA objects are active, their state is contained in a servant. Unless an
application uses TP::create_active_object_reference, state must be initialized
when the object is first invoked (that is, the first time a method is invoked on a COR
object after its object reference is created), and on subsequent invocations after
have been deactivated. While a CORBA object is deactivated, its state must be
CORBA C++ Programming Reference 3-13

3 TP Framework

ved in
d, its

 saved

ework
rantee

 use

he

DL

outside the process in which the servant was active. The object’s state can be sa
shared memory, in a file, or in a database. Before a CORBA object is deactivate
state must be saved, and when it is activated, its state must be restored.

The programmer determines what constitutes an object’s state and what must be
before an object is deactivated, and restored when an object is activated.

Note On Use of Constructors and Destructors for Corba Objects

The state of CORBA objects must not be initialized, saved, or restored in the
constructors or destructors for the servant classes. This is because the TP Fram
may reuse an instance of a servant rather than deleting it at deactivation. No gua
is made as to the timing of the creation and deletion of servant instances.

Transactions

The following sections provide information about transaction policies and how to
transactions.

Transaction Policies

Eligibility of CORBA objects to participate in global transactions is controlled by t
transaction policies assigned to implementations at compile time. The following
policies can be assigned.

Note: The transaction policies are set in an ICF file that is configured at OMG I
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

n never

The implementation is not transactional. Objects created for this interface can
never be involved in a transaction. The system generates an exception
(INVALID_TRANSACTION) if an implementation with this policy is involved in a
transaction. An AUTOTRAN policy specified in the UBBCONFIG file for the
interface is ignored.
3-14 CORBA C++ Programming Reference

Transactions
n ignore

The implementation is not transactional. This policy instructs the system to
allow requests within a transaction to be made of this implementation. An
AUTOTRAN policy specified in the UBBCONFIG file for the interface is ignored.

n optional (This is the default transaction_policy.)

The implementation may be transactional. Objects can be involved in a
transaction if the request is transactional. Servers containing transactional objects
must be configured within a group associated with an XA-compliant resource
manager. If the AUTOTRAN parameter is specified in the UBBCONFIG file for the
interface, AUTOTRAN is on.

n always

The implementation is transactional. Objects are required to always be involved
in a transaction. If a request is made outside a transaction, the system
automatically starts a transaction before invoking the method. The transaction is
committed when the method ends. (This is the same behavior that results from
specifying AUTOTRAN for an object with the option transaction policy, except that
no administrative configuration is necessary to achieve this behavior, and it
cannot be overridden by administrative configuration.) Servers containing
transactional objects must be configured within a group that is associated with
an XA-compliant resource manager.

Note: The optional policy is the only transaction policy that can be influenced by
administrative configuration. If the system administrator sets the AUTOTRAN
attribute for the interface by means of the UBBCONFIG file or by using
administrative tools, the system automatically starts a transaction upon
invocation of the object, if it is not already infected with a transaction (that is,
the behavior is as if the always policy were specified).

Transaction Initiation

Transactions are initiated in one of two ways:

n By the application code via use of the CosTransactions::Current::begin()
operation. This can be done in either the client or the server. For a description of
this operation, see Using Transactions.

n By the system when an invocation is done on an object which has either:
CORBA C++ Programming Reference 3-15

3 TP Framework
l Transaction policy always

l Transaction policy optional and a setting of AUTOTRAN for the interface

For more information, refer to the Administration Guide.

Transaction Termination

In general, the handling of the outcome of a transaction is the responsibility of the
initiator. Therefore, the following are true:

n If the client or server application code initiates transactions, the TP Framework
never commits a transaction. The BEA WebLogic Enterprise system may roll
back the transaction if server processing tries to return to the client while the
transaction is in an illegal state.

n If the system initiates a transaction, the commit or rollback will always be
handled by the BEA WebLogic Enterprise system.

The following behavior is enforced by the BEA WebLogic Enterprise system:

n If no transaction is active when a method on a CORBA object is invoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actions is taken, the transaction is rolled back by the TP Framework, and the
CORBA::OBJ_ADAPTER exception is raised to the client application. This
exception is raised because the transaction was initiated in the server application;
therefore, the client application would not expect a transactional error condition
such as TRANSACTION_ROLLEDBACK.

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming
a transaction within a method invocation. These rules and the error conditions that
result from their violation are described below.

When a CORBA object method begins execution, it can be in one of the following
three states with respect to transactions:

n The client application began the transaction.
3-16 CORBA C++ Programming Reference

Transactions
l Legal server application behavior: Suspend and resume the transaction
within the method execution.

l Illegal server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

l Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::TRANSACTION_ROLLEDBACK exception to the client application and
the transaction is rolled back by the BEA WebLogic Enterprise system.

n The system began a transaction to provide AUTOTRAN or transaction policy
always behavior.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

l Legal server behavior: Suspend and resume the transaction within the
method execution.

Note: Not recommended. The transaction may be timed out and aborted before
the method causes the transaction to be resumed.

l Illegal server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

l Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::OBJ_ADAPTER exception to the client, and the transaction is rolled
back by the system. The CORBA::OBJ_ADAPTER exception is raised because
the client application did not initiate the transaction, and, therefore, does not
expect transaction error conditions to be raised.

n The CORBA object is not involved in a transaction when it starts executing.

l Legal server behavior:

t Begin and commit a transaction within the method execution.

t Begin and roll back a transaction within the method execution.

t Begin and suspend a transaction within the method execution.

l Illegal server behavior: Begin a transaction and return from the method with
the transaction active.
CORBA C++ Programming Reference 3-17

3 TP Framework
l Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA::OBJ_ADAPTER exception to the client application and the transaction
is rolled back by the BEA WebLogic Enterprise system. The
CORBA::OBJ_ADAPTER exception is raised because the client application did
not initiate the transaction, and, therefore, does not expect transaction error
conditions to be raised.

Restrictions on Transactions

The following restrictions apply to BEA WebLogic Enterprise transactions:

n A CORBA object in the BEA WebLogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

n A CORBA object can be infected by only one transaction at a time. If an
invocation tries to infect an already infected object, a
CORBA::INVALID_TRANSACTION exception is returned.

n If a CORBA object is infected with a transaction and a nontransactional request
is made on it, a CORBA::OBJ_ADAPTER exception is raised.

n If the application begins a transaction in Server::initialize(), it must
either commit or roll back the transaction before returning from the method. If
the application does not, the TP Framework shuts down the server. This is
because the application has no predictable way of regaining control after
completing the Server::initialize method.

n If a CORBA object is infected by a transaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COMMITTING or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the Tobj_ServantBase::deactivate_object
method. Such an invocation results in a CORBA::BAD_INV_ORDER exception.

SQL and Global Transactions

Adhere to the following guidelines when using SQL and Global Transactions:
3-18 CORBA C++ Programming Reference

Transactions
n Care should be taken when executing SQL statements outside the scope of a
global transaction. The SQL standard specifies that a local transaction should be
started implicitly by the database resource manager whenever an SQL statement
that needs the context of a transaction is executed and no transaction is active.
The standard also says that a transaction that is implicitly started by the database
resource manager must then be explicitly terminated by executing a COMMIT
or ROLLBACK SQL statement; the TP Framework is not responsible for
terminating transactions that are started by the resource manager.

Note: This is not an issue when an application uses the XA library to connect to
the Oracle server because those applications can operate only on global
transactions. The Oracle server does not allow local transactions when it is
using XA.

n The SQL COMMIT and ROLLBACK statements cannot be used to terminate a
global transaction that has been either started explicitly using Current.begin()
or started implicitly by the system. Check the database vendor documentation for
each database product for other possible restrictions when using global
transactions.

n SQL cursors may be closed when transactions are terminated. Consult your
database product documentation for exact information about cursor handling
rules. Application programmers should be careful to use cursors only with
CORBA objects with appropriate activation policies and within appropriate
transaction boundaries.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

n During transactional work

The Current.rollback_only method can be used to ensure that the only
possible outcome is to roll back the current transaction.
Current.rollback_only() can be invoked from any CORBA object method.

n After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
CORBA C++ Programming Reference 3-19

3 TP Framework
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit algorithm when the TP Framework
invokes their deactivate_object method.

Note that this behavior does not apply to objects with process or method
activation policies. If the CORBA object wants to roll back the transaction, it
can call Current::rollback_only. If it wants to vote to commit the
transaction, it does not make that call. Note, however, that a vote to commit does
not guarantee that the transaction is committed, since other objects may
subsequently vote to roll back the transaction.

Note: Users of SQL cursors must be careful when using an object with the method
or process activation policy. A process opens an SQL cursor within a
client-initiated transaction. For typical SQL database products, once the client
commits the transaction, all cursors that were opened within that transaction
are automatically closed; however, the object will not receive any notification
that its cursor has been closed.

Transaction Time-outs

When a transaction time-out occurs, the transaction is marked so that the only possible
outcome is to roll back the transaction, and the CORBA::TRANSACTION_ROLLEDBACK
standard exception is returned to the client. Any attempts to send new requests will also
fail with the CORBA::TRANSACTION_ROLLEDBACK exception until the transaction has
been aborted.

TP Framework API

This section describes the TP Framework API. Additional information about how to
use this API can be found in Creating CORBA C++ Server Applications.

The TP Framework comprises the following components:

n The Server C++ class, which has virtual methods for application-specific server
initialization and termination logic
3-20 CORBA C++ Programming Reference

TP Framework API
n The Tobj_ServantBase C++ class, which has virtual methods for object state
management

n The TP C++ class, which provides methods to:

l Create object references for CORBA objects

l Register (and unregister) factories with the FactoryFinder object

l Initiate user-controlled preactivation and deactivation of objects

l Initiate user-controlled deactivation of the CORBA object currently being
invoked

l Obtain an object reference to the CORBA object currently being invoked

l Open and close XA resource managers

l Log messages to a user log (ULOG) file

l Obtain object references to the ORB and to Bootstrap objects

n Header files for these classes

n Libraries that are used by server applications

The visible part of the TP Framework consists of two categories of operations:

n Service methods that can be called by user code. These are in the TP interface.

n Callback methods that are written by the user and that are invoked by the TP
Framework. This includes methods in the Tobj_ServantBase and Server
classes. These operations are intended to be called by TP Framework code only.
The application code should never call the methods of these classes. If it does,
unpredictable results may occur.

Server Interface

The Server interface provides callback methods that can be used for
application-specific server initialization and termination logic. This interface also
provides a callback method that is used to create servants when servants are required
for object activation.

The Server interface has the following characteristics:
CORBA C++ Programming Reference 3-21

3 TP Framework
n The Server class is a C++ native class.

n The Server.h file contains the declarations and definitions for the Server class.

C++ Declarations

The C++ mapping is as follows:

typedef Tobj_ServantBase* Tobj_Servant;

class Server {
public:
 CORBA::Boolean initialize(int argc, char** argv);
 void release();
 Tobj_Servant create_servant(const char* interfaceName);
};

Note: Programmers must provide definitions for the Server::initialize(),
Server::release(), and Server::create_servant methods.
3-22 CORBA C++ Programming Reference

TP Framework API
Server::create_servant

Synopsis Creates a servant to instantiate a C++ object.

C++ Binding class Server {
public:
 Tobj_Servant create_servant(const char* interfaceName);
};

Argument interfaceName

Specifies a character string that contains the fully qualified interface name for
the object. This will be the same interface name that was supplied when the
object reference was created (TP::create_object_reference() or
TP::create_active_object_reference()) for the object reference used
for this invocation. This name can be used to determine which servant needs
to be constructed.

Return Value Tobj_ServantBase

The pointer to the newly created servant (instance) for the specified interface.
A NULL value should be returned if create_servant() is invoked with an
interface name that it does not recognize or if the servant cannot be created
for some reason.
If the create_servant method returns a NULL pointer, activation fails. A
CORBA::OBJECT_NOT_EXIST() exception is raised back to the client. Also,
the following message is written to the user log (ULOG):

"TPFW_CAT:23: ERROR: Activating object - application raised
TobjS::CreateServantFailed. Reason = Application’s
Server::create_servant returned NULL. Interface =
interfaceName, OID = oid"

Where interfaceName is the interface ID of the invoked interface and oid
is the corresponding object ID.

Note: The restriction on the length of the ObjectId has been removed in this
release.

Description The create_servant method is invoked by the TP Framework when a request arrives
at the server and there is no available servant to satisfy the request. The TP Framework
calls the create_servant method with the interface name for the servant to be
created. The server application instantiates an appropriate C++ object and returns a
pointer to it. Typically, the method contains a switch statement on the interface name
and creates a new object, depending on the interface name.
CORBA C++ Programming Reference 3-23

3 TP Framework
Caution: The server application must not depend on this method being invoked for
every activation of a CORBA object. The server application must not do
any handling of CORBA object state in the constructors or destructors of
any servant classes for CORBA objects. This is because the TP Framework
may possibly reuse servants on activation and may possibly not destroy
servants on deactivation.

Exception If an exception is thrown in Server::create_servant(), the TP Framework
catches the exception. Activation fails. A CORBA::OBJECT_NOT_EXIST() exception
is raised back to the client. In addition, an error message is written to the user log
(ULOG) file, as follows, for each exception type:

TobjS::CreateServantFailed

"TPFW_CAT:23: ERROR: Activating object - application
raised TobjS::CreateServantFailed. Reason = reason.
Interface = interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and
oid are the interface ID and object ID, respectively, of the invoked
CORBA object.

TobjS::OutOfMemory

"TPFW_CAT:22: ERROR: Activating object - application
raised TobjS::OutOfMemory. Reason = reason. Interface
= interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and
oid are the interface ID and object ID, respectively, of the invoked
CORBA object.

CORBA::Exception

"TPFW_CAT:28: ERROR: Activating object - CORBA
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.
3-24 CORBA C++ Programming Reference

TP Framework API
Other Exception

"TPFW_CAT:29: ERROR: Activating object - Unknown
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.
CORBA C++ Programming Reference 3-25

3 TP Framework
Server::initialize()

Synopsis Allows the application to perform application-specific initialization procedures, such
as logging into a database, creating and registering well-known object factories,
initializing global variables, and so forth.

C++ Binding class Server {
public:

 CORBA::Boolean initialize(int argc, char** argv);

};

Arguments The argc and argv arguments are passed from the command line. The argc argument
contains the name of the server. The argv argument contains the first command-line
option that is specific to the application, if there are any.

Command-line options are specified in the UBBCONFIG file using the CLOPT parameter
in the entry for the server in the SERVERS section. System-recognized options come
first in the CLOPT parameter, followed by a double-hyphen (--), followed by the
application-specific options. The value of argc is one greater than the number of
application-specific options. For details, see ubbconfig(5) in the BEA Tuxedo
Reference Manual.

Return Value Boolean TRUE or FALSE. TRUE indicates success. FALSE indicates failure. If an
error occurs in initialize(), the application code should return FALSE. The
application code should not call the system call exit(). Calling exit() does not give
the TP Framework a chance to release resources allocated during startup and may
cause unpredictable results.

If the return value is FALSE:

n Server::release() is not invoked.

n Any transactions that are started in the initialize() method and are not
terminated will eventually time out; they are not automatically rolled back.

Description The initialize callback method, which is invoked as the last step in server
initialization, allows the application to perform application-specific initialization.

Typically, a server application does the following tasks in Server::initialize:

n Creates references for CORBA object factories implemented in the server
application and registers them with the FactoryFinder using the
TP::register_factory() operation.
3-26 CORBA C++ Programming Reference

TP Framework API

e
ng

ay

n Initializes global variables, if any are used.

n Opens XA resource managers if any are used by the server application.

It is the responsibility of the server application to open any required XA resource
managers. This is done by invoking either of the following methods:

n TP::open_xa_rm()

This is the preferred technique for server applications, since it can be done on a
static function, without the need to obtain an object reference.

n Tobj::TransactionCurrent::open_xa_rm()

A reference to the TransactionCurrent object can be obtained from the Bootstrap
object. For an explanation of how to obtain a reference to the Bootstrap object,
see the section “TP::bootstrap()” on page 3-45. For more information about th
TransactionCurrent object, see Chapter 4, “C++ Bootstrap Object Programmi
Reference,” and Using Transactions.

n Transactions may be started in the initialize method after invoking the
Tobj::TransactionCurrent::open_xa_rm() or TP::open_xa_rm method.
However, any transactions that are started in initialize() must be terminated
by the server application before initialize() returns. If the transactions are
still active when control is returned, the server application fails to boot, and it
exits gracefully. This happens because the server application has no logical w
of either committing or rolling back the transaction after
Server::initialize() returns. This condition is an error.

Exceptions If an exception is raised in Server::initialize(), the TP Framework catches the
exception. The TP Framework behavior is the same as if initialize() returned
FALSE (that is, an exception is considered to be a failure). In addition, an error
message is written to the user log (ULOG) file, as follows, for each exception type:

TobjS::InitializeFailed

"TPFW_CAT:1: ERROR: Exception in
Server::initialize():IDL:beasys.com/TobjS/Initialize
Failed:1.0. Reason = reason"

Where reason is a string supplied by application code. For
example:
 Throw TobjS::InitializeFailed(
 "Couldn’t register factory");
CORBA C++ Programming Reference 3-27

3 TP Framework
 CORBA::Exception

"TPFW_CAT:1: ERROR: Exception in
Server::initialize(): exception. Reason = unknown"

Where exception is the interface ID of the CORBA exception that
was raised.

 Other Exceptions

TPFW_CAT:1: ERROR: Exception in Server::initialize():
unknown exception. Reason = unknown"
3-28 CORBA C++ Programming Reference

TP Framework API
Server::release()

Synopsis Allows the application to perform any application-specific cleanup, such as logging off
a database, unregistering well-known factories, or deallocating resources.

C++ Binding typedef Tobj_ServantBase* Tobj_Servant;

class Server {
public:
 void release();
};

Arguments None.

Return Value None.

Description The release callback method, which is invoked as the first step in server shutdown,
allows the server application to perform any application-specific cleanup. The user
must override the virtual function definition.

Typical tasks performed by the application in this method are as follows:

n Close XA resource managers.

n Unregister CORBA object factories that were registered with the Factory Finder
in Server::initialize().

n Deallocate any server resources not yet released.

This method is normally called in response to a tmshutdown command from the
administrator or operator.

The TP Framework provides a default implementation of Server::release(). The
default implementation closes XA resource managers for the server. The
implementation does this by issuing a tx_close() invocation, which uses the default
CLOSEINFO configured for the server’s group in the UBBCONFIG file.

It is the responsibility of the application to close any open XA resource managers. This
is done by issuing either of the following calls:

n TP::close_xa_rm

n Tobj::TransactionCurrent::close_xa_rm(). A reference to the
TransactionCurrent object can be obtained from the Bootstrap object. For an
explanation of how to obtain a reference to the Bootstrap object, see the section
“TP::bootstrap()” on page 3-45. For more information about the
CORBA C++ Programming Reference 3-29

3 TP Framework

ing

ay

 1 is

wn

ch
TransactionCurrent object, see Chapter 4, “C++ Bootstrap Object Programm
Reference,” and Using Transactions.

Note: Once a server receives a request from the tmshutdown(1) command to shut
down, it can no longer receive requests from other remote objects. This m
require servers to be shut down in a specific order. For example, if the
Server::release() method in Server 1 needs to access a method of an
object that resides in Server 2, Server 2 should be shut down after Sever
shut down. In particular, the TP::unregister_factory() method accesses
the FactoryFinder Registrar object that resides in a separate server. The
TP::unregister_factory() method is typically invoked from the
release() method; therefore, the FactoryFinder server should be shut do
after all servers that call TP::unregister_factory() in their
Server::release() method.

Exceptions If an exception is raised in release(), the TP Framework catches the exception. Ea
exception causes an error message to be written to the user log (ULOG) file, as follows:

TobjS::ReleaseFailed

"TPFW_CAT:2: WARN: Exception in Server::release():
IDL:beasys.com/TobjS/ReleaseFailed:1.0. Reason =
reason"

Where reason is a string supplied by application code. For
example:
 Throw TobjS::ReleaseFailed(
 "Couldn’t unregister factory");
3-30 CORBA C++ Programming Reference

TP Framework API

he

nd
ot be

s in
 CORBA::Exception

"TPFW_CAT:2: WARN: Exception in Server::release():
exception. Reason = unknown"

Where exception is the interface ID of the CORBA exception that
was raised.

 Other Exceptions

"TPFW_CAT:2: WARN: Exception in Server::release():
unknown exception. Reason = unknown"

In all cases, the server continues to exit.

Tobj_ServantBase Interface

The Tobj_ServantBase interface defines operations that allow a CORBA object to
assist in the management of its state. Every implementation skeleton generated by the
IDL compiler automatically inherits from the Tobj_ServantBase class. The
Tobj_ServantBase class contains two virtual methods, activate_object() and
deactivate_object(), that may be optionally implemented by the programmer.

Whenever a request comes in for an inactive CORBA object, the object is activated and
the activate_object() method is invoked on the servant. When the CORBA object
is deactivated, the deactivate_object() method is invoked on the servant. The
timing of deactivation is driven by the implementation’s activation policy. When t
deactivate_object() method is invoked, the TP Framework passes in a reason
code to indicate why the call was made.

Note: Tobj_ServantBase::activate_object() and
Tobj_ServantBase::deactivate_object() are the only methods that the
TP Framework guarantees will be invoked for CORBA object activation a
deactivation. The servant class constructor and destructor may or may n
invoked at activation or deactivation time (through the
Server::create_servant call for C++ or directly by Java). Therefore, the
server application code must not do any state handling for CORBA object
either the constructor or destructor of the servant class.
CORBA C++ Programming Reference 3-31

3 TP Framework
Note: The programmer does not need to use a cast or reference to
Tobj_ServantBase directly. The Tobj_ServantBase methods show up as
part of the skeleton and, therefore, in the implementation class for a servant.
The programmer may provide definitions for the activate_object and
deactivate_object methods, but the programmer should never make direct
invocations on those methods; only the TP Framework should call those
methods.

C++ Declaration (in Tobj_ServantBase.h)

The C++ mapping for the Tobj_servantBase interface is as follows:

class Tobj_ServantBase : public PortableServer::ServantBase {
public:
 virtual void activate_object(const char * stroid) {}
 virtual void deactivate_object(const char*,
 TobjS::DeactivateReasonValue) {}
};
3-32 CORBA C++ Programming Reference

TP Framework API

ay be

is
 the

A

e
ing to
d, see

te of
Tobj_ServantBase:: activate_object()

Synopsis Associates an object ID with a servant. This method gives the application an
opportunity to restore the object’s state when the object is activated. The state m
restored from shared memory, from an ordinary flat file, or from a database file.

C++ Binding class Tobj_ServantBase : public PortableServer::ServantBase {
public:
 virtual void activate_object(const char * stroid) {}
};

Argument stroid

Specifies the object ID in string format. The object ID uniquely identifies th
instance of the class. This is the same object ID that was specified when
object reference was created (using TP:create_object_reference()) or
in the TP::create_active_object_reference() for the object reference
used for this invocation.

Note: The restriction on the length of the object ID has been removed in this
release.

Return Value None.

Description Object activation is triggered by a client invoking a method on an inactive CORB
object. This causes the Portable Object Adapter (POA) to assign a servant to the
CORBA object. The activate_object() method is invoked before the method
invoked by the client is invoked. If activate_object() returns successfully, that is,
without raising an exception, the requested method is executed on the servant.

The activate_object() and deactivate_object() methods and the method
invoked by the client can be used by the programmer to manage object state. Th
particular way these methods are used to manage object state may vary accord
the needs of the application. For a discussion of how these methods might be use
Creating CORBA C++ Server Applications.

If the object is currently infected with a global transaction, activate_object()
executes within the scope of that same global transaction.

It is the responsibility of the programmer of the object to check that the stored sta
the object is consistent. In other words, it is up to the application code to save a
persistent flag that indicates whether or not deactivate_object() successfully
saved the state of the object. That flag should be checked in activate_object().
CORBA C++ Programming Reference 3-33

3 TP Framework
Exceptions If an error occurs while executing activate_object(), the application code should
raise either a CORBA standard exception or a TobjS::ActivateObjectFailed
exception. When an exception is raised, the TP Framework catches the exception, and
the following events occur:

n The activation fails.

n The method invoked by the client is not executed.

n If activate_object() is executing within a transaction and the client initiated
the transaction, the transaction is not rolled back.

n A CORBA::OBJECT_NOT_EXIST exception is raised back to the client.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

n Based on the exception is raised, a message is written to the user log (ULOG) file,
as follows:

TobjS::ActivateObjectFailed

"TPFW_CAT:24: ERROR: Activating object - application
raised TobjS::ActivateObjectFailed. Reason = reason.
Interface = interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and
oid are the interface ID and object ID, respectively, of the invoked
CORBA object.

TobjS::OutOfMemory

"TPFW_CAT:22: ERROR: Activating object - application
raised TobjS::OutOfMemory. Reason = reason. Interface
= interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and
oid are the interface ID and object ID, respectively, of the invoked
CORBA object.
3-34 CORBA C++ Programming Reference

TP Framework API
CORBA::Exception

"TPFW_CAT:25: ERROR: Activating object - CORBA
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.

Other exception

"TPFW_CAT:26: ERROR: Activating object - Unknown
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.
CORBA C++ Programming Reference 3-35

3 TP Framework

ct is
r in a

is

 of

r is

k.
Tobj_ServantBase::deactivate_object()

Synopsis Removes the association of an object ID with its servant. This method gives the
application an opportunity to save all or part of the object’s state before the obje
deactivated. The state may be saved in shared memory, in an ordinary flat file, o
database file.

C++ Binding class Tobj_ServantBase : public PortableServer::ServantBase {
public:
 virtual void deactivate_object(const char* stroid,
 TobjS::DeactivateReasonValue reason) {}
};

Arguments stroid

Specifies the object ID in string format. The object ID uniquely identifies th
instance of the class.

Note: The restriction on the length of the object ID has been removed in this
release.

reason

Indicates the event that caused this method to be invoked. The reason code
can be one of the following:

DR_METHOD_END

Indicates that the object is being deactivated after the completion
a method. It is used if the object’s deactivation policy is:

t method

t transaction (only if there is no transaction in effect)

t process (if TP::deactivateEnable() called)

DR_SERVER_SHUTDOWN

Indicates that the object is being deactivated because the serve
being shut down in an orderly fashion. It is used if the object’s
deactivation policy is:

t transaction (only if transaction is active)

t process

Note that when a server is shut down in an orderly fashion, all
transactions that the server is involved in are marked for rollbac
3-36 CORBA C++ Programming Reference

TP Framework API

mit

n

use

tion

ing

d.
2-2.
DR_TRANS_ABORTED

This reason code is used only for objects that have the
transaction activation policy. It can occur when the transaction is
started by either the client or automatically by the system. When the
deactivate_object() method is invoked with this reason code,
the transaction is marked for rollback only.

DR_TRANS_COMMITTING

This reason code is used only for objects that have the
transaction activation policy. It can occur when the transaction is
started by either the client or the TP Framework. It indicates that a
Current.commit() operation was invoked for the transaction in
which the object is involved. The deactivate_object() method
is invoked just before the transaction manager’s two-phase com
algorithm begins; that is, before prepare is sent to the resource
managers.

The CORBA object is allowed to vote on the outcome of the
transaction when the deactivate_object() method is invoked
with the DR_TRANS_COMMITTING reason code. By invoking
Current.rollback_only(), the method can force the transactio
to be rolled back; otherwise, the two-phase commit algorithm
continues. The transaction is not necessarily committed just beca
the Current.rollback_only() is not invoked in this method. Any
other CORBA object or resource manager involved in the
transaction could also vote to roll back the transaction.

DR_EXPLICIT_DEACTIVATE

Indicates that the object is being deactivated because the applica
executed a TP::deactivateEnable(-,-,-) on this object. This
can happen only for objects that have the process activation policy.

Return Value None.

 Description Object deactivation is initiated either by the system or by the application, depend
on the activation policy of the implementation for the CORBA object. The
deactivate_object() method is invoked before the CORBA object is deactivate
For details of these policies and their use, see the section “ICF Syntax” on page

Deactivation may occur after an execution of a method invoked by a client if the
activation policy for the CORBA object implementation is method, or as a result of the
end of transactional work if the activation policy is transaction. It may also occur
as the result of server shutdown if the activation policy is transaction or process.
CORBA C++ Programming Reference 3-37

3 TP Framework

r
ere

e

ding to
d, see

e

mmit
use
t

ere
 object
In addition, the BEA WebLogic Enterprise software supports the use of
user-controlled deactivation of CORBA objects having an activation policy of
process or method via the use of the TP::deactivateEnable() and
TP::deactivateEnable(-,-,-) methods. TP::deactivateEnable can be called
inside a method of an object to cause the object to be deactivated at the end of the
method. If TP::deactivateEnable is called in an object with the transaction
activation policy, an exception is raised (TobjS::IllegalOperation) and the TP
Framework takes no action. TP::deactivateEnable(-,-,-) can be called to
deactivate any object that has a process activation policy. For more information, see
the section “TP::deactivateEnable” on page 3-54.

Note: The deactivate_object method will be called at server shutdown time fo
every object remaining in the Active Object Map, whether it was entered th
implicitly by the TP Framework (the activation-on-demand technique:
TP::create_servant and the servant’s activate_object method) or
explicitly by the user with TP::create_active_object_reference.

The activate_object() and deactivate_object() methods and explicit methods
invoked by the client can be used by the programmer to manage object state. Th
manner in which these methods are used to manage object state may vary accor
the needs of the application. For a discussion of how these methods might be use
Creating CORBA C++ Server Applications.

The CORBA object with transaction activation policy gets to vote on the outcom
of the transaction when the deactivate_object() method is invoked with the
DR_TRANS_COMMITTING reason code. By calling Current.rollback_only() the
method can force the transaction to be rolled back; otherwise, the two-phase co
algorithm continues. The transaction will not necessarily be committed just beca
Current.rollback_only() is not called in this method. Any other CORBA objec
or resource manager involved in the transaction could also vote to roll back the
transaction.

Restriction Note that if the object is involved in a transaction when this method is invoked, th
are restrictions on what type of processing can be done based on the reason the
is invoked. If the object was involved in a transaction, the activation policy is
transaction and the reason code for the call is:

DR_TRANS_ABORTED
No invocations on any CORBA objects are allowed in the method. No
tpcall() is allowed. Transactions cannot be suspended or begun.
3-38 CORBA C++ Programming Reference

TP Framework API
DR_TRANS_COMMITTING

No invocations on any CORBA objects are allowed in the method. No
tpcall() is allowed. Transactions cannot be suspended or begun.

The reason for these restrictions is that the deactivation of objects with activation
policy transaction is controlled by a call to the TP Framework from the transaction
manager for the transaction. When the call with reason code DR_TRANS_COMMITTING
is made, the transaction manager is executing phase 1 (prepare) of the two-phase
commit. At this stage, it is not possible to issue a call to suspend a transaction nor to
initiate a new transaction. Since a call to a CORBA object that was in another process
would require that process to join the transaction, and the transaction manager is

already executing the prepare phase, this would cause an error1. Since a call to a
CORBA object that had no transactional properties would require that the current
transaction be suspended, this would also cause an error. The same is true of a
tpcall().

Similarly, when the invocation with reason code DR_TRANS_ABORTED is made, the
transaction manager is already aborting. While the transaction manager is aborting, it
is not possible to either suspend a transaction or initiate a new transaction. The same
restrictions apply as for DR_TRANS_COMMITTING.

1. In theory, this would mean that an invocation on a transactional CORBA object in
the same process would be valid since it would not require a new process to be regis-
tered with the transaction manager. However, it is not possible for the programmer to
guarantee that an invocation on a CORBA object will occur in-proc, therefore, this
practice is discouraged.
CORBA C++ Programming Reference 3-39

3 TP Framework
Exceptions If the CORBA object method that is invoked by the client raises an exception, that
exception is caught by the TP Framework and is eventually returned to the client. This
is true even if deactivate_object() is invoked and raises an exception.

The client will never be notified about exceptions that are raised in
deactivate_object(). It is the responsibility of the application code to check that
the stored state of the CORBA object is consistent. For example, the application code
could save a persistent flag that indicates whether or not deactivate_object()
successfully saved the state. That flag can then be checked in activate_object().

If an error occurs while executing deactivate_object(), the application code
should raise either a CORBA standard exception or a DeactivateObjectFailed
exception. If deactivate_object() was invoked by the TP Framework, the TP
Framework catches the exception and the following events occur:

n The object is deactivated.

n If the client initiated a transaction, the transaction is not rolled back.

n The client is not notified of the exception that is raised in
deactivate_object().

n Based on which exception is raised, a message is logged to the user log (ULOG)
file, as follows:

TobjS::DeactivateObjectFailed

"TPFW_CAT:27: ERROR: De-activating object -
application raised TobjS::DeactivateObjectFailed.
Reason = reason. Interface = interfaceName, OID = oid"

Where reason is a user-supplied reason, and interfaceName and
oid are the interface ID and object ID, respectively, of the invoked
CORBA object.

CORBA::Exception

"TPFW_CAT:28: ERROR: De-activating object - CORBA
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.
3-40 CORBA C++ Programming Reference

TP Framework API
Other exception

"TPFW_CAT:29: ERROR: De-activating object - Unknown
Exception not handled by application. Exception ID =
exceptionID. Interface = interfaceName, OID = oid"

Where exceptionID is the interface ID of the exception, and
interfaceName and oid are the interface ID and object ID,
respectively, of the invoked CORBA object.
CORBA C++ Programming Reference 3-41

3 TP Framework
TP Interface

The TP interface supplies a set of service methods that can be invoked by application
code. This is the only interface in the TP Framework that can safely be invoked by
application code. All other interfaces have callback methods that are intended to be
invoked only by system code.

The purpose of this interface is to provide high-level calls that application code can
call, instead of calls to underlying APIs provided by the Portable Object Adapter
(POA), the CORBA Naming Service, and the BEA Tuxedo system. By using these
calls, programmers can learn a simpler API and are spared the
complexity of the underlying APIs.

The TP interface implicitly uses two features of the BEA WebLogic Enterprise
software that extend the CORBA APIs:

n Factories and the FactoryFinder object

n Factory-based routing

For information about the FactoryFinder object, see Chapter 5, “FactoryFinder
Interface.” For more information about Factory-based routing, see the Administration
Guide.

Usage Notes

n During server application initialization, the application constructs the object
reference for an application factory. It then invokes the register_factory()
method, passing in the factory's object reference together with a factory id field.
On server release (shutdown), the application uses the unregister_factory()
method to unregister the factory.

n The TP class is a C++ native class.

n The TP.h file contains the declarations and definitions for the TP class.

C++ Declarations (in TP.h)
3-42 CORBA C++ Programming Reference

TP Framework API
The C++ mapping is as follows:

class TP {
public:
 static CORBA::Object_ptr create_object_reference(
 const char* interfaceName,
 const char* stroid,
 CORBA::NVList_ptr criteria);
 static CORBA::Object_ptr create_active_object_reference(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);
 static CORBA::Object_ptr get_object_reference();
 static void register_factory(
 CORBA::Object_ptr factory_or,
 const char* factory_id);
 static void unregister_factory(
 CORBA::Object_ptr factory_or,
 const char* factory_id);
 static void deactivateEnable()
 static void deactivateEnable(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);
 static CORBA::ORB_ptr orb();
 static Tobj_Bootstrap* bootstrap();
 static void open_xa_rm();
 static void close_xa_rm();
 static int userlog(char*, ...);
 static char* get_object_id(CORBA::Object_ptr obj);
 static void application_responsibility(
 Tobj_Servant servant);
};
CORBA C++ Programming Reference 3-43

3 TP Framework

t’s

 the

ake
+

 has
TP::application_responsibility

Synopsis Tells the TP Framework that the application is taking responsibility for the servan
lifetime.

C++ Binding static void application_responsibility(Tobj_Servant servant);

Arguments servant

A pointer to a servant that is already known to the TP Framework.

Return Values None.

Description This method tells the TP Framework that the application is taking responsibility for
servant’s lifetime. As a result of this call, when the TP Framework has completed
deactivating the object (that is, after invoking the servant’s deactivate_object
method), the TP Framework does nothing more with the object.

Once an application has taken responsibility for a servant, the application must t
care to delete servant when it is no longer needed, the same as for any other C+
instance.

If the servant is not known to the TP Framework (that is, it is not active), this call
no effect.

Exceptions TobjS::InvalidServant

Indicates that the specified servant is Null.
3-44 CORBA C++ Programming Reference

TP Framework API
TP::bootstrap()

Synopsis Returns a pointer to a Tobj::Tobj_Bootstrap object. The Bootstrap object is used
to access initial object references for the FactoryFinder object, the Interface
Repository, the TransactionCurrent, and the SecurityCurrent objects.

C++ Binding static Tobj_Bootstrap* TP::bootstrap();

Arguments None.

Return Value Upon successful completion, bootstrap() returns a pointer to the
Tobj::Tobj_Bootstrap object that is created by the TP Framework when the server
application is started.

Description The TP Framework creates a Tobj::Tobj_Bootstrap object as part of initialization;
it is not necessary for the application code to create any other
Tobj::Tobj_Bootstrap objects in the server.

Caution: Because the TP Framework owns the Tobj::Tobj_Bootstrap object,
server application code must not dispose of the Bootstrap object.

Exceptions None.
CORBA C++ Programming Reference 3-45

3 TP Framework

nce
nt
and

 with
ons,

t is

urce

se
the

or
s.
TP::close_xa_rm()

Synopsis Closes the XA resource manager to which the invoking process is linked.

C++ Binding static void TP::close_xa_rm ();

Arguments None.

Return Values None.

Description The close_xa_rm() method closes the XA resource manager to which the invoking
process is linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: The functionality of this call is also provided by
Tobj::TransactionCurrent::close_xa_rm(). The
TP::close_xa_rm() method provides a more convenient way for a server
application to close a resource manager because there is no need to obtain an
object reference to the TransactionCurrent object. A reference to the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-45 for an explanation of how to obtain a refere
to the Bootstrap object. For more information about the TransactionCurre
object, see Chapter 4, “C++ Bootstrap Object Programming Reference,”
Using Transactions.

This method should be invoked once from the Server::release() method for each
server that is involved in global transactions. This includes servers that are linked
an XA resource manager, as well as servers that are involved in global transacti
but are not actually linked with an XA-compliant resource manager.

The close_xa_rm() method should be invoked in place of a close invocation tha
specific to the resource manager. Because resource managers differ in their
initialization semantics, the specific information needed to close a particular reso
manager is placed in the CLOSEINFO parameter in the GROUPS section of the BEA
WebLogic Enterprise system UBBCONFIG file.

The format of the CLOSEINFO string is dependent on the requirements of the databa
vendor providing the underlying resource manager. For more information about
CLOSEINFO parameter, see the Administration Guide and ubbconfig(5) reference
page in the BEA Tuxedo Reference. Also, refer to database vendor documentation f
information about how to develop and install applications that use the XA librarie
3-46 CORBA C++ Programming Reference

TP Framework API
Exceptions CORBA::BAD_INV_ORDER

There is an active transaction. The resource manager cannot be closed while
a transaction is active.

Tobj::RMFailed

The tx_close() call returned an error return code.

Note: Unlike other exceptions returned by the TP Framework, the Tobj::RMFailed
exception is defined in tobj_c.h (which is derived from tobj.idl), not
TobjS_c.h (which is derived from TobjS.idl). This is because native clients
can also open XA resource managers. Therefore, the exception returned is
consistent with the exception expected by native client code and by
Server::release() if it uses the alternate mechanism,
TransactionCurrent::close_xa_rm, which is shared with native clients.
CORBA C++ Programming Reference 3-47

3 TP Framework

e
TP::create_active_object_reference()

Synopsis Creates an object reference and preactivates an object.

C++ Binding static CORBA::Object_ptr
 create_active_object_reference(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);

Arguments interfaceName

Specifies a character string that contains the fully qualified interface name for
the object.

stroid
Specifies the ObjectId in string format. The ObjectId uniquely identifies
this instance of the class. The programmer decides what information to place
in the ObjectId. One possibility would be to use it to hold a database key.
Choosing the value of an object identifier, and the degree of uniqueness, is
part of the application design. The BEA WebLogic Enterprise software
cannot guarantee any uniqueness in object references, since these may be
legitimately copied and shared outside the BEA WebLogic Enterprise
environment, for example by stringifying the object reference.

servant

A pointer to a servant that the application has already created and initialized.

Return Value The newly created object reference.

Description This method creates an object reference and preactivates an object. The resulting
object reference may be passed to clients who will use it to access the object.

Ordinarily, the application will call this method in two places:

n In Server::initialize() to preactivate process objects so that they do not
need activation on the first invocation

n In any method that creates object references to be returned to clients

This method allows an application to activate an object explicitly before its first
invocation. (For reasons you might want to do this, refer to the section “Explicit
Activation” on page 3-8.) The user first creates a servant and sets its state befor
calling create_active_object_reference. The TP Framework then enters the
3-48 CORBA C++ Programming Reference

TP Framework API

y of

m.

u

then
n it.
on
 A

servant and string ObjectId in the Active Object Map. The result is exactly the same as
if the TP Framework had previously invoked Server::create_servant, received
back the servant pointer, and then had invoked servant::activate_object.

The object so activated must be for an interface that was declared with the process
activation policy; otherwise, an exception is raised.

If the object is deactivated, an object reference held by a client might cause the object
to be activated again in some other process. For a discussion about situations in which
this might be a problem, refer to the section “Explicit Activation” on page 3-8.

Caution When you preactivate objects in an interface, you must specify an activation polic
process in the ICF file for that interface. However, when you specify the process
activation policy for an interface in the ICF file, this can lead to the following proble

Problem Statement

1. You write SERVER1 such that all objects on interface A are preactivated. To
prevent the object from being activated on demand by the TP Framework, yo
write the interface's activate_object method to always throw the
ActivateObjectFailed exception.

2. SERVER2 also implements objects of interface A. However, instead of
preactivating the objects, SERVER2 lets the TP Framework activate them on
demand.

3. If the administrator configures SERVER1 and SERVER2 in the same group,
a client can get an interface A object reference from SERVER2 and invoke o
Then, due to load balancing, SERVER1 could be asked to activate an object
interface A. However, SERVER1 is not able to activate an object on interface
on demand because its activate_object method throws the
ActivateObjectFailed exception.

Workaround

You can avoid this problem by having the administrator configure SERVER1 and
SERVER2 in different groups. The administrator uses the SERVERS section of the
UBBCONFIG file to define groups.

Exceptions: TobjS::InvalidInterface

Indicates that the specified interfaceName is Null.
CORBA C++ Programming Reference 3-49

3 TP Framework
TobjS::InvalidObjectId

Indicates the specified stroid is NULL.

TobjS::ServantAlreadyActive

The object could not be activated explicitly because the servant is already
being used with another ObjectId. A servant can be used only with a single
ObjectId. To preactivate objects containing different ObjectIds, the
application must create multiple servants and preactivate them separately,
one per ObjectId.

TobjS::ObjectAlreadyActive

The object could not be activated explicitly because the ObjectId is already
being used in the Active Object Map. A given ObjectId can have only one
servant associated with it. To change to a different servant, the application
must first deactivate the object and activate it again.

TobjS::IllegalOperation

The object could not be activated explicitly because it does not have the
process activation policy.
3-50 CORBA C++ Programming Reference

TP Framework API
TP::create_object_reference()

Synopsis Creates an object reference. The resulting object reference may be passed to clients
who use it to access the object.

C++ Binding static CORBA::Object_ptr TP::create_object_reference (
 const char* interfaceName,
 const char* stroid,
 CORBA::NVList_ptr criteria);

Arguments interfaceName

Specifies a character string that contains the fully qualified interface name for
the object.
The interface name can be retrieved by making a call on the following
interface typecode id function:

const char* _tc_<CORBA interface name>::id();

where <CORBA interface name> is any object class name. For example:

char* idlname = _tc_Simple->id();

stroid

Specifies the ObjectId in string format. The ObjectId uniquely identifies
this instance of the class. It is up to the programmer to decide what
information to place in the ObjectId. One possibility would be to use the
ObjectId to hold a database key. Choosing the value of an object identifier,
and the degree of uniqueness, is part of the application design. The BEA
WebLogic Enterprise software cannot guarantee any uniqueness in object
references, since object references may be legitimately copied and shared
outside the BEA WebLogic Enterprise domain (for example, by passing the
object reference as a string). It is strongly recommended the you choose a
unique ObjectId in order to allow parallel execution of invokes on object
references.

Note: The restriction on the length of the object ID has been removed in this
release.

criteria

Specifies a list of named values that can be used to provide factory-based
routing for the object reference. The list is optional and is of type
CORBA::NVList. The use of factory-based routing is optional and is
dependent on the use of this argument. If you do not want to use factory-based
routing, you can pass a value of 0 (zero) for this argument.
CORBA C++ Programming Reference 3-51

3 TP Framework
The BEA WebLogic Enterprise system administrator configures
factory-based routing by specifying routing rules in the UBBCONFIG file. See
the Administration Guide online document for details on this facility.

Return Value Object

The newly created object reference.

Description The server application is responsible for invoking the create_object_reference()
method. This method creates an object reference. The resulting object reference may
be passed to clients who will use it to access the object.

Ordinarily, the server application calls this method in two places:

n In Server::initialize() to create factories for the server.

n In factory methods to create object references to be returned to clients.

For examples of how and when to call the create_object_reference() method,
see Creating CORBA C++ Server Applications.

Exceptions The following exceptions can be raised by the create_object_reference()
method:

InvalidInterface

Indicates that the specified interfaceName is Null.

InvalidObjectId

Indicates that the specified stroid is Null.

Example The following example shows how to use the criteria argument:

CORBA::NVList_ptr criteria;
CORBA::Long branch_id = 7;
CORBA::Long account_id = 10001;
CORBA::Any any_val;

// Create the list and assign to _var to cleanup on exit
CORBA::ORB::create_list (2, criteria);
CORBA::NVList_var criteria_var(criteria);

// Add the BRANCH_ID
any_val <<= branch_id;
criteria->add_value("BRANCH_ID", any_val, 0);

// Add the ACCOUNT_ID
any_val <<= account_id;
criteria->add_value("ACCOUNT_ID", any_val, 0);
3-52 CORBA C++ Programming Reference

TP Framework API
// Create the object reference.
TP::create_object_reference ("IDL:BankApp/Teller:1.0",
"Teller_01", criteria);
CORBA C++ Programming Reference 3-53

3 TP Framework
TP::deactivateEnable

Synopsis Enables application-controlled deactivation of CORBA objects.

C++ Binding Current-object format:

static void TP::deactivateEnable();

Any-object format:

static void TP::deactivateEnable(
 const char* interfaceName,
 const char* stroid,
 Tobj_Servant servant);

Arguments interfaceName

Specifies a character string that contains the fully qualified interface name for
the object.

stroid

Specifies the ObjectId in string format for the object to be deactivated.

servant

A pointer to the servant associated with the stroid.

Return Value None.

Description This method can be used to cause deactivation of an object, either the object currently
executing (upon completion of the method in which it is called) or another object. It
can only be used for objects with the process activation policy. It provides additional
flexibility for objects with the process activation policy.

Note: The TP::deactivateEnable(interface, object id, servant)
method can be used to deactivate an object. However, if that object is currently
in a transaction, the object will be deactivated when the transaction commits
or rolls back. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object is not in a transaction
or ensure that no invokes occur on the object after the
TP::deactivateEnable() call until the transaction is complete.

 Depending on which of the overloaded functions are called, the actions are as follows.
3-54 CORBA C++ Programming Reference

TP Framework API

 is
y.
hen
 the

 by

t
Current-object format
When called from within a method of an object with process activation
policy, the object currently executing will be deactivated after completing the
method being executed.
When called from within a method of an object with method activation, the
effect is the same as the normal behavior of such objects (effectively, a
NOOP).
When the object is deactivated, the TP Framework first removes the object
from the Active Object Map. It then calls the associated servant’s
deactivate_object method with a reason of DR_METHOD_END.

Any-object format
The application can request deactivation of an object by specifying its
ObjectId and the associated servant.
If the object is currently executing, the TP Framework marks it for
deactivation and waits until the object’s method completes before
deactivating the object (as with the “current-object format”). If the object
not currently executing, the TP Framework may deactivate it immediatel
No indication is given to the caller as to the status of the deactivation. W
the object is deactivated, the TP Framework first removes the object from
Active Object Map. It then calls the associated servant’s
deactivate_object method with a reason of DR_EXPLICIT_DEACTIVATE.

If the object for which the deactivate is requested has a transaction activation
policy, an IllegalOperation exception is raised. This is because deactivation of
such objects may interfere with their correct notification of transaction completion
the BEA WebLogic Enterprise transaction manager.

Exceptions The following exceptions can be raised by the deactivateEnable() method:

IllegalOperation

Indicates that the TP::deactivateEnable method was invoked by an objec
with the activation policy set to transaction.

TobjS::ObjectNotActive

In the Any-object format, the object specified could not be deactivated
because it was not active (the stroid and servant parameters did not
identify an object that was in the Active Object Map).
CORBA C++ Programming Reference 3-55

3 TP Framework
TP::get_object_id ()

Synopsis Allows a server to retrieve the string ObjectId contained in an object reference that
was created in the TP Framework.

C++ Binding char* TP::get_object_id(Corba::Object_ptr obj);

Arguments obj

The object reference from which to get the ObjectId.

Return Value The string ObjectId passed to TP::create_object_reference or
TP::create_active_object_reference when the object reference was created.

Description This method allows a server to retrieve the string ObjectId contained in an object
reference that was created in the TP Framework. If the object reference was not created
in the TP Framework (for example, it was created by a client ORB), an exception is
raised.

The caller must call CORBA::string_free on the returned value when the object
reference is no longer needed.

Exception TobjS::InvalidObject

The object is nil or was not created by the TP Framework
3-56 CORBA C++ Programming Reference

TP Framework API

n’s
TP::get_object_reference()

Synopsis Returns a pointer to the current object.

C++ Binding static CORBA::Object_ptr TP::get_object_reference ();

Arguments None.

Return Value The get_object_reference() method returns a CORBA::Object_ptr for the
current object when invoked within the scope of a CORBA object execution.
Otherwise, the TobjS::NilObject exception is raised.

Note that if get_object_reference() is invoked from within either
Server::initialize() or Server::release(), it is considered to be invoked
outside the scope of an application’s TP object execution; therefore, the
TobjS::NilObject exception is raised.

Description This method returns a pointer to the current object. The CORBA::Object_ptr pointer
that is returned can be passed to a client.

Exceptions The following exception can be raised by the get_object_reference() method:

NilObject

Indicates that the method was invoked outside the scope of an applicatio
CORBA object execution. The reason string contains OutOfScope.
CORBA C++ Programming Reference 3-57

3 TP Framework

nce
nt
and

re
al

 is
ation
er is

se
the

 use
TP::open_xa_rm()

Synopsis Opens the XA resource manager to which the invoking process is linked.

C++ Binding static void TP::open_xa_rm();

Arguments None.

Return Values None.

Description The open_xa_rm() method opens the XA resource manager to which the invoking
process is linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: The functionality of this method is also provided by
Tobj::TransactionCurrent::close_xa_rm(). However,
TP::open_xa_rm() provides a more convenient way for a server application
to close a resource manager because there is no need to obtain an object
reference to the TransactionCurrent object. A reference to the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-45 for an explanation of how to obtain a refere
to the Bootstrap object. For more information about the TransactionCurre
object, see Chapter 4, “C++ Bootstrap Object Programming Reference,”
Using Transactions.

This method should be invoked once from the Server::initialize() method for
each server that participates in a global transaction. This includes servers that a
linked with an XA resource manager, as well as servers that participate in a glob
transaction, but are not actually linked with an XA-compliant resource manager.

The open_xa_rm() method should be invoked in place of an open invocation that
specific to a resource manager. Because resource managers differ in their initializ
semantics, the specific information needed to open a particular resource manag
placed in the OPENINFO parameter in the GROUPS section of the UBBCONFIG file.

The format of the OPENINFO string is dependent on the requirements of the databa
vendor providing the underlying resource manager. For more information about
CLOSEINFO parameter, see the Administration Guide and the ubbconfig(5) reference
page in the BEA Tuxedo Reference Manual. Also, refer to database vendor
documentation for information about how to develop and install applications that
the XA libraries.

Note: Only one resource manager can be linked to the invoking process.
3-58 CORBA C++ Programming Reference

TP Framework API
Exceptions Tobj::RMFailed

The tx_open() call returned an error return code.

Note: Unlike other exceptions returned by the TP Framework, this exception is
defined in tobj_c.h (which is derived from tobj.idl), not in
TobjS_c.h (which is derived from TobjS.idl). This is because native
clients can also open XA resource managers. Therefore, the exception
returned is consistent with the exception expected by native client code and
by Server::release() if it uses the alternate mechanism,
TransactionCurrent::close_xa_rm, which is shared with native
clients.
CORBA C++ Programming Reference 3-59

3 TP Framework
TP::orb()

Synopsis Returns a pointer to an ORB object.

C++ Binding static CORBA::ORB_ptr TP::orb();

Arguments None.

Return Value Upon successful completion, orb() returns a pointer to the ORB object that is created
by the TP Framework when the server program is started.

Description Access to the ORB object allows the application to invoke ORB operations, such as
string_to_object() and object_to_string().

Note: Because the TP Framework owns the ORB object, the application must not
delete it.

Exceptions None.
3-60 CORBA C++ Programming Reference

TP Framework API
TP::register_factory()

Synopsis Locates the BEA WebLogic Enterprise FactoryFinder object and registers a BEA
WebLogic Enterprise factory.

C++ Binding static void TP::register_factory(
 CORBA::Object_ptr factory_or, const char* factory_id);

Arguments factory_or

Specifies the object reference that was created for an application factory using
the TP::create_object_reference() method.

factory_id

Specifies a string identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
C++ Server Applications.

Return Value None.

Description This method locates the BEA WebLogic Enterprise FactoryFinder object and registers
a BEA WebLogic Enterprise factory. Typically, TP::register_factory() is
invoked from Server::initialize() when the server creates its factories. The
register_factory() method locates the BEA WebLogic Enterprise FactoryFinder
object and registers the BEA WebLogic Enterprise factory.

Caution: Callback objects (that is, those created by a joint client/server directly
through the POA) should not be registered with a FactoryFinder.

Exceptions The following exceptions can be raised by the register_factory() method:

TobjS::CannotProceed

Indicates that the FactoryFinder encountered an internal error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of the internal error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameManager running, start a new one. If no
NameManagers are running, restart the application.

TobjS::InvalidName

Indicates that the id string is empty. It is also raised if the field contains blank
spaces or control characters.
CORBA C++ Programming Reference 3-61

3 TP Framework
TobjS::InvalidObject

Indicates that the factory value is nil.

TobjS::RegistrarNotAvailable

Indicates that the FactoryFinder object cannot locate the NameManager.
Notify the operations staff immediately if this exception is raised. If no
naming services servers are running, restart the application.

Note: Another possible reason that this exception might occur is that the
FactoryFinder cannot participate in a transaction. Therefore, you may need
to suspend the current transaction before issuing the
TP::register_factory() and TP::unregister_factory() calls. For
information on suspending and resuming transactions, refer to Using
Transactions in the online documentation.

TobjS::OverFlow

Indicates that the id string is longer than 128 bytes (currently the maximum
allowable length).
3-62 CORBA C++ Programming Reference

TP Framework API
TP::unregister_factory()

Synopsis Locates the BEA WebLogic Enterprise FactoryFinder object and removes a factory.

C++ Binding static void TP::unregister_factory (
 CORBA::Object_ptr factory_or, const char* factory_id);

Arguments factory_or

Specifies the object reference that was created for an application factory using
the TP::create_object_reference() method.

factory_id

Specifies a string identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
C++ Server Applications.

Return Value None.

Description This method locates the BEA WebLogic Enterprise FactoryFinder object and removes
a factory. Typically TP::unregister_factory() is invoked from
Server::release() to unregister server factories.

Exceptions The following exceptions can be raised by the unregister_factory() method:

CannotProceed

Indicates that the FactoryFinder encountered an internal error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of the internal error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameManager running, start a new one. If no
NameManagers are running, restart the application.

InvalidName

Indicates that the id string is empty. It is also raised if the field contains blank
spaces or control characters.

RegistrarNotAvailable

Indicates that the FactoryFinder object cannot locate the NameManager.
Notify the operations staff immediately if this exception is raised. If no
naming services servers are running, restart the application.

Note: Another possible reason that this exception might occur is that the
FactoryFinder cannot participate in a transaction. Therefore, you may need
CORBA C++ Programming Reference 3-63

3 TP Framework
to suspend the current transaction before issuing the
TP::register_factory() and TP::unregister_factory() calls. For
information on suspending and resuming transactions, refer to Using
Transactions in the online documentation.

TobjS::OverFlow

Indicates that the id string is longer than 128 bytes (currently the maximum
allowable length).
3-64 CORBA C++ Programming Reference

TP Framework API
TP::userlog()

Synopsis Writes a message to the user log (ULOG) file.

C++ Binding static int TP::userlog(char*, ...);

Arguments The first argument is a printf(3S) style format specification. The printf(3S)
argument is described in a C or C++ reference manual.

Return Value The userlog() method returns the number of characters that were output, or a
negative value if an output error was encountered. Output errors include the inability
to open or write to the current log file.

Description The userlog() method writes a message to the user log (ULOG) file. Messages are
appended to the ULOG file with a tag made up of the time (hhmmss), system name,
process name, and process-id of the invoking process. The tag is terminated with a
colon.

We recommend that server applications limit their use of userlog() messages to
messages that can be used to help debug application errors; flooding the ULOG file with
incidental information can make it difficult to spot actual errors.

Exceptions None.

Example The following example shows how to use the TP::userlog() method:

userlog (“System exception caught: %s”, e.get_id());
CORBA C++ Programming Reference 3-65

3 TP Framework
CosTransactions::TransactionalObject Interface Not
Enforced

Use of this interface is now deprecated. Therefore, the use of this interface is now
optional and no enforcement of descent from this interface is done for objects infected
with transactions. The programmer can specify that an object is not to be infected by
transactions by specifying the never or ignore transaction policies. There is no
interface enforcement for eligibility for transactions. The only indicator is the
transaction policy.

Note: The CORBAservices Object Transaction Service does not require that all
requests be performed within the scope of a transaction. It is up to each object
to determine its behavior when invoked outside the scope of a transaction; an
object that requires a transaction context can raise a standard exception.
3-66 CORBA C++ Programming Reference

Error Conditions, Exceptions, and Error Messages
Error Conditions, Exceptions, and Error
Messages

Exceptions Raised by the TP Framework

The following exceptions are raised by the TP Framework and are returned to clients
when error conditions occur in, or are detected by, the TP Framework:

CORBA::INTERNAL
CORBA::OBJECT_NOT_EXIST
CORBA::OBJ_ADAPTER
CORBA::INVALID_TRANSACTION
CORBA::TRANSACTION_ROLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these
exceptions is raised, the TP Framework also writes a descriptive error message that
explains the reason to the user log file.

Exceptions in the Server Application Code

Exceptions raised within a method invoked by a client are always raised back to the
client exactly as they were raised in the method invoked by the client.

The following TP Framework callback methods are initiated by events other than
client requests on the object:

Tobj_ServantBase::activate_object()
Tobj_ServantBase::deactivate_object()
Server::create_servant()

If exception conditions are raised in these methods, those exact exceptions are not
reported back to the client. However, each of these methods is defined to raise an
exception that includes a reason string. The TP Framework will catch the exception
raised by the callback and log the reason string to the user log file. The TP Framework
may raise an exception back to the client. Refer to the descriptions of the individual TP
Framework callback methods for more information about these exceptions.
CORBA C++ Programming Reference 3-67

3 TP Framework
Example

For Tobj_ServantBase::deactivate_object() the following line of code throws
a DeactivateObjectFailed exception:

throw TobjS::DeactivateObjectFailed(“deactivate failed to save
 state!”);

This message is appended to the user log file with a tag made up of the time (hhmmss),
system name, process name, and process-id of the calling process. The tag is
terminated with a colon. The preceding throw statement causes the following line to
appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!

Where 151104 is the time (3:11:04pm), T1 is the system name, simpapps is the
process name, 247 is the process-id, and APPEXC identifies the message as an
application exception message.

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework
callback methods will not automatically cause a transaction to be rolled back unless
the TP Framework started the transaction. It is up to the application code to call
Current.rollback_only() if the condition that caused the exception to be raised
should also cause the transaction to be rolled back.

Restriction of Nested Calls on Corba Objects

The TP Framework restricts nested calls on CORBA objects. The restriction is as
follows:

n During a client invocation of a method of CORBA object A, CORBA object A
cannot be invoked by another CORBA object B that is acting as a client of
CORBA object A.

The TP Framework will detect the fact that a second CORBA object is acting as a client
to an object that is already processing a method invocation, and will return a
CORBA::OBJ_ADAPTER exception to the caller.
3-68 CORBA C++ Programming Reference

Error Conditions, Exceptions, and Error Messages
Note: Application code should not depend on this behavior; that is, users should not
make any processing dependent on this behavior. This restriction may be lifted
in a future release.
CORBA C++ Programming Reference 3-69

3 TP Framework
3-70 CORBA C++ Programming Reference

CHAPTER
4 C++ Bootstrap Object
Programming
Reference

This topic includes the following sections:

n Why Bootstrap Objects Are Needed

n How Bootstrap Objects Work

n Types of Remote Clients Supported

n Capabilities and Limitations

n Bootstrap Object API. This section describes:

l Tobj Module

l C++ Mapping

l Java Mapping

l Microsoft Desktop Client Mappings

n C++ Member Functions and Java Methods

n Programming Examples. The following examples are provided:

l Java Client Example: Getting a SecurityCurrent Object

l Visual Basic Client Example: Using the Bootstrap Object
CORBA C++ Programming Reference 4-1

4 C++ Bootstrap Object Programming Reference

ts

nel

A
eir

ct
rise

 in the

 object
Why Bootstrap Objects Are Needed

The Problem: To communicate with BEA WebLogic Enterprise objects, a client
application must obtain object references. The client application uses the Bootstrap
object to obtain initial object references to six key objects in a BEA WebLogic
Enterprise domain:

n FactoryFinder—used to locate factory objects

n SecurityCurrent—used to log on to the system

n TransactionCurrent—used to manage transactions

n InterfaceRepository—used to obtain information about available interfaces

n NotificationService—used to locate Notification Service channel factory objec

n Tobj_SimpleEventsService—used to locate BEA Simple Events Service chan
factory objects

However, this poses a problem: How does the client application access the Bootstrap
object?

The solution: Bootstrap objects are local programming objects, not remote CORB
objects, in both the client and the server. When Bootstrap objects are created, th
constructor requires the network address of a BEA WebLogic Enterprise IIOP
Listener/Handler. Given this information, the Bootstrap object can generate obje
references for the above-mentioned remote objects in the BEA WebLogic Enterp
domain. These object references can then be used to access services available
BEA WebLogic Enterprise domain.

How Bootstrap Objects Work

Bootstrap objects are created by a client or a server application that must access
references to the following objects:

n SecurityCurrent
4-2 CORBA C++ Programming Reference

How Bootstrap Objects Work

 the
ver,
d to

prise

r
cts

A
n TransactionCurrent

n FactoryFinder

n Interface Repository

n NotificationService

n Tobj_SimpleEventsService

Bootstrap objects may represent the first connection to a specific BEA WebLogic
Enterprise domain depending on the format of the IIOP Listener/Handler address. If
the Null scheme Universal Resource Locator (URL) format is used (the only address
format supported in releases of BEA WebLogic Enterprise prior to V5.1), the
Bootstrap objects represent the first connection. However, if the URL format is used,
the connection will not occur until after Bootstrap object creation. For more
information on address formats and connection times, refer to “Tobj_Bootstrap.”

For a BEA WebLogic Enterprise remote client, the Bootstrap object is created with
host and the port for the BEA WebLogic Enterprise IIOP Listener/Handler. Howe
for BEA WebLogic Enterprise native client and server applications, there is no nee
specify a host and port because they execute in a specific BEA WebLogic Enter
domain. The IIOP Listener/Handler host and the port ID are included in the BEA
WebLogic Enterprise domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references fo
objects in a particular BEA WebLogic Enterprise domain. Different Bootstrap obje
allow the application to use multiple domains.

Using the Bootstrap object, you can obtain six different references, as follows:

n SecurityCurrent

The SecurityCurrent object is used to establish a security context within a BE
WebLogic Enterprise domain. The client can then obtain the
PrincipalAuthenticator from the principal_authenticator attribute of the
SecurityCurrent object.

n TransactionCurrent

The TransactionCurrent object is used to participate in a BEA WebLogic
Enterprise transaction. The basic operations are as follows:

l Begin
CORBA C++ Programming Reference 4-3

4 C++ Bootstrap Object Programming Reference
Begin a transaction. Future operations take place within the scope of this
transaction.

l Commit

End the transaction. All operations on this client application have completed
successfully.

l Roll back

Abort the transaction. Tell all other participants to roll back.

l Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction later.

l Resume

Resume participation in the specified transaction.

n FactoryFinder

The FactoryFinder object is used to obtain a factory. In the BEA WebLogic
Enterprise system, factories are used to create application objects. The
FactoryFinder provides the following different methods to find factories:

l Get a list of all available factories that match a factory object reference
(find_factories).

l Get the factory that matches a name component consisting of id and kind
(find_one_factory).

l Get the first available factory of a specific kind
(find_one_factory_by_id).

l Get a list of all available factories of a specific kind
(find_factories_by_id).

l Get a list of all registered factories (list_factories).

n InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the BEA WebLogic Enterprise domain.
Clients using the Dynamic Invocation Interface (DII) need a reference to the
Interface Repository to be able to build CORBA request structures. The ActiveX
Client is a special case of this. Internally, the implementation of the COM/IIOP
4-4 CORBA C++ Programming Reference

How Bootstrap Objects Work
Bridge uses DII, so it must get the reference to the Interface Repository,
although this is transparent to the desktop client.

n NotificationService

The NotificationService object is used to obtain a reference to the event channel
factory (CosNotifyChannelAdmin::EventChannelFactory) in the CosNotification
Service. In the BEA WebLogic Enterprise system, the EventChannelFactory is
used to locate the Notification Service channel.

n Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain a reference to the event
channel factory (Tobj_SimpleEvents::ChannelFactory) in the BEA Simple
Events Service. In the BEA WebLogic Enterprise system, the ChannelFactory is
used to locate the BEA Simple Events Service channel.

The FactoryFinder and Interface Repository objects are not implemented in the
environmental objects library. However, they are specific to a BEA WebLogic
Enterprise domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objects in use.

The Bootstrap object implies an association or "session" between the client application
and the BEA WebLogic Enterprise domain. Within the context of this association, the
Bootstrap object imposes a containment relationship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects are valid only for this domain and only while the Bootstrap object exists.

Note: Resolving the SecurityCurrent when using the new URL address format
(corbaloc://hostname:port_number) is a local operation; that is, no
connection is made by the client to the IIOP Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any
time. If a Current object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
a client application may have more than one reference to the single instance of the
Current object.

To create a new instance of a Current object, the application must first invoke the
destroy_current() method on the Bootstrap object. This invalidates all of the
Current objects, but does not destroy the session with the BEA WebLogic Enterprise
domain. After invoking destroy_current(), new instances of the Current objects
can be created within the BEA WebLogic Enterprise domain using the existing
Bootstrap object.
CORBA C++ Programming Reference 4-5

4 C++ Bootstrap Object Programming Reference

ed

ct,

hips
 by

ccess
To obtain Current objects for another domain, a different Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at one time,
only one Bootstrap object may be “active;” that is, have Current objects associat
with it. Thus, an application must first invoke destroy_current() on the "active"
Bootstrap object before obtaining new Current objects on another Bootstrap obje
which then becomes the active Bootstrap object.

Servers and native clients are inside of the BEA WebLogic Enterprise domain;
therefore, no “session” is established. However, the same containment relations
are enforced. Servers and native clients access the domain they are currently in
specifying an empty string, rather than //host:port.

Note: Client and server applications must use the
Tobj_Bootstrap::resolve_initial_references()method, not the
ORB::resolve_initial_references() method.

Types of Remote Clients Supported

Table 4-1 shows the types of remote clients that can use the Bootstrap object to a
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository.

Table 4-1 Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applications use the BEA WebLogic Enterprise C++
environmental objects to access the CORBA objects in a BEA WebLogic
Enterprise domain, and the BEA WebLogic Enterprise Object Request
Broker (ORB) to process from CORBA objects. Use the BEA WebLogic
Enterprise system development commands to build these client applications
(see Commands, Processes, and MIB Reference).
4-6 CORBA C++ Programming Reference

Capabilities and Limitations

he

rm.

n

r.
This container describes how to use the Bootstrap object in C++ and ActiveX client
applications. For reference information about how to use the Bootstrap object in Java
client applications, see the chapter Java Bootstrap Object Reference in the CORBA
Java Programming Reference.

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

n Multiple Bootstrap objects can coexist in a client application, although only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke destroy_current() on the Bootstrap
object associated with one domain before obtaining the Current objects on
another domain. Although it is possible to have multiple Bootstrap objects that
establish connections to different BEA WebLogic Enterprise domains, only one
set of Current objects is valid. Attempts to obtain other Current objects without
destroying the existing Current objects fail.

CORBA Java CORBA Java client applications use the Java environmental objects to
access CORBA objects in a BEA WebLogic Enterprise domain. However,
these client applications use an ORB product other than the BEA WebLogic
Enterprise ORB to process requests from CORBA objects. These client
applications are built using the ORB product’s Java development tools. T
BEA WebLogic Enterprise (C++) software supports interoperability with
Netscape Communicator versions 4.07 and 4.5, depending on the platfo

ActiveX Use the BEA WebLogic Enterprise Automation environmental objects to
access CORBA objects in a BEA WebLogic Enterprise domain, and the
ActiveX Client to process requests from CORBA objects. Use the
Application Builder to create bindings for CORBA objects so that they ca
be accessed from ActiveX client applications, which are built using a
development tool such as Microsoft Visual Basic, Delphi, or PowerBuilde

Table 4-1 Remote Clients Supported (Continued)

Client Description
CORBA C++ Programming Reference 4-7

4 C++ Bootstrap Object Programming Reference

in
ructor
n Method invocations to any BEA WebLogic Enterprise domain other than the
domain that provides the valid SecurityCurrent object fail and return a
CORBA::NO_PERMISSION exception.

n Method invocations to any BEA WebLogic Enterprise domain other than the
domain that provides the valid TransactionCurrent object do not execute within
the scope of a transaction.

n The transaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other (“native”) Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) is described first in
terms of the OMG Interface Definition Language (IDL) (for portability), and then
C++, Java, and ActiveX. The C++ and Java descriptions add the necessary const
to build a Bootstrap object for a particular BEA WebLogic Enterprise domain.
4-8 CORBA C++ Programming Reference

Bootstrap Object API
Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-3 describes the Tobj module exceptions.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (Tobj::FactoryFinder)

InterfaceRepository InterfaceRepository object (CORBA::Repository)

SecurityCurrent SecurityCurrent object (SecurityLevel2::Current)

TransactionCurrent OTS Current object (Tobj::TransactionCurrent)

NotificationService EventChannelFactory object

(CosNotifyChannelAdmin::EventChannelFactory)

Tobj_SimpleEventsService BEA Simple Events ChannelFactory object
(Tobj_SimpleEvents::ChannelFactory)

Table 4-3 Tobj Module Exceptions

Exception Description

Tobj::InvalidName Raised if id is not one of the names specified in Table 4-2.
On the server, resolve_initial_references also
raises Tobj::InvalidName when
SecurityCurrent is passed.

Tobj::InvalidDomain On the server application, raised if the BEA WebLogic
Enterprise server environment is not booted.

CORBA::NO_PERMISSION Raised if id is TransactionCurrent or
SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

BAD_PARAM Raised if the object is nil or if the hostname contained in the
object does not match the connection.
CORBA C++ Programming Reference 4-9

4 C++ Bootstrap Object Programming Reference
C++ Mapping

Listing 4-1 shows the C++ declarations in the Tobj_bootstrap.h file.

Listing 4-1 Tobj_boostrap.h Declarations

#include <CORBA.h>

class Tobj_Bootstrap {
public:
 Tobj_Bootstrap(CORBA::ORB_ptr orb, const char* address);
 CORBA::Object_ptr resolve_initial_references(
 const char* id);
 void register_callback_port(CORBA::Object_ptr objref);
 void destroy_current();
};

Java Mapping

Listing 4-2 shows the Tobj_Bootstrap.java mapping.

Listing 4-2 Tobj_Bootstrap.java Mapping

package com.beasys;

public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb,
 String address)
 throws org.omg.CORBA.SystemException;

IMP_LIMIT Raised if the register_callback_port method is
called more than once.

Table 4-3 Tobj Module Exceptions (Continued)

Exception Description
4-10 CORBA C++ Programming Reference

Bootstrap Object API
public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb, String address,
 java.applet.Applet applet)
 throws org.omg.CORBA.SystemException;

public void register_callback_port(orb.omg.CORBA.Object objref)
 throws org.omg.CORBA.SystemException;

public org.omg.CORBA.Object
 resolve_initial_references(String id)
 throws Tobj.InvalidName,
 org.omg.CORBA.SystemException;
public void destroy_current()
 throws org.omg.CORBA.SystemException;
}

Microsoft Desktop Client Mappings

The Bootstrap object is provided in the BEA ActiveX Client software for use by clients
that are implemented on Microsoft desktops. There are two possible interfaces that
desktop clients may use:

n The Automation interface for Visual Basic (VB), Delphi, or PowerBuilder
clients.

n The Dual interface that provides both the Automation interfaces required by
dynamic clients (Visual Basic) and the Vtable interfaces required by statically
linked clients (C++). The Bootstrap object in the ActiveX Client provides the
hybrid DUAL interface.

Automation Mapping

Listing 4-3 shows Automation Bootstrap interface mapping.

Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

interface DITobj_Bootstrap : IDispatch
{
 HRESULT Initialize(
 [in] BSTR address);
CORBA C++ Programming Reference 4-11

4 C++ Bootstrap Object Programming Reference
 HRESULT CreateObject(
 [in] BSTR progid,
 [out, retval] IDispatch** rtrn);

 HRESULT destroy_current();
};

C++ Member Functions and Java Methods

This section describes the C++ member functions and Java methods for Bootstrap
objects.
4-12 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

 on
Tobj_Bootstrap

Synopsis The Bootstrap object constructor.

C++ Mapping Tobj_Bootstrap(CORBA::ORB_ptr orb, const char* address);

 throws Tobj::BAD_PARAM

 org.omg.CORBA.SystemException;

Java Mapping public Tobj_Bootstrap(org.omg.CORBA.ORB orb, String address,

 java.applet.Applet applet)

 throws com.beasys.Tobj.BAD_PARAM,

 throws org.omg.CORBA.SystemException;

Parameters orb
A pointer to the ORB object in the client. The Bootstrap object uses the
string_to_object method of orb internally.

address

The address of the BEA WebLogic Enterprise domain IIOP Listener/Handler.
The address is specified differently depending on the type of client and the
level of security required. There can be three types of clients, as follows:

l Remote client

For a description of the remote clients supported by BEA WebLogic
Enterprise systems, see the section “Types of Remote Clients Supported”
page 4-6.

For remote clients, address specifies the network address of an IIOP
Listener/Handler through which client applications gain access to a BEA
WebLogic Enterprise domain.

The address may be specified in either of the following formats:

“// hostname: port_number”
“//#.#.#.#: port_number”
“corbaloc:// hostname: port_number”
“corbalocs:// hostname: port_number”

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). The hostname must be the remote
machine, and the local name resolution facilities must unambiguously resolve
hostname to the address of the remote machine.

Note: The hostname must begin with a letter character.
CORBA C++ Programming Reference 4-13

4 C++ Bootstrap Object Programming Reference
In the second format, the #.#.#.# is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted
decimal number represents the IP address of the remote machine.

In both the first and second formats, port_number is the TCP port number at
which the domain process listens for incoming requests. The port_number
should be a number between 0 and 65535.

You can specify one or more TCP/IP addresses. You specify multiple
addresses using a comma-separated list. For example:
 //m1.acme:3050
 //m1.acme:3050,//m2.acme:3050,//m3.acme:3051

If you specify multiple addresses, the BEA WebLogic Enterprise software
tries the addresses in order, left to right, until a connection is established. If a
syntax error is detected in any of the addresses as it is being tried, a
BAD_PARAM exception is returned to the caller immediately and the BEA
WebLogic Enterprise software aborts the attempt to make a connection. For
example, if the first address in the common separated list shown above were
//m1.3050, a syntax error would be detected and the attempt to make a
connection would be aborted. If the BEA WebLogic Enterprise software
encounters the end of the address list before it tries an address that is valid,
that is, a connection cannot be made to any of the addresses listed, the
INVALID_DOMAIN exception is returned to the caller. If an exception other
than INVALID_DOMAIN is raised, it is returned to the caller immediately.

BEA WebLogic Enterprise also supports random address selection. To used
random address selection, you can specify any member of an address list as a
grouping of pipe-separated (|) network addresses enclosed in parentheses.
For example:
 (//m1.acme:3050|//m2.acme:3050),//m1.acme:7000

When you use this format, the BEA WebLogic Enterprise system randomly
selects one of the addresses enclosed in parentheses, either //m1.acme:3050
or //m2.acme:3050. If an exception other than INVALID_DOMAIN is raised,
it is returned to the caller immediately. If a connection cannot be made to the
address selected, the next element that follows the addresses enclosed in
parentheses is attempted. If the end of the string is encountered before a
connection can be made, the INVALID_DOMAIN exception is thrown to the
caller.

Note: If you specify an address list in the following format:

(//m1.acme:3050||//m2.acme:3050),//r1.acme:7000
4-14 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

e

 as

l.
ats.
the null address in the pipe-separated list is considered invalid. If the BEA
WebLogic Enterprise software randomly selects the invalid address, the
BAD_PARAM exception is returned to the caller and the BEA WebLogic
Enterprise software aborts the connection attempt.

The address string can be specified either in the TOBJADDR environment
variable or in the address parameter of the Tobj_Bootstrap constructor.

For information about the TOBJADDR environment variable, see the chapter
Managing Remote client Applications in the Administration Guide. However,
the address specified in Tobj_Bootstrap always take precedence over the
TOBJADDR environment variable. To use the TOBJADDR environment
variable to specify an address string, you must specify an empty string in the
Tobj_Bootstrap address parameter.

Note: For C++ applications, TOBJADDR is an environment variable; for Java
applications, it is a property; for Java applets, it is an HTML parameter.

The third and fourth formats are called Uniform Resource Locator (URL)
address formats and are new in the BEA WebLogic Enterprise version 5.1
release. As with the Null scheme URL address format
(//hostname:port_number), you use the URL address formats to specify
the location of the IIOP Listener/Handler. However, when the corbaloc
URL address format is used, the client application’s initial connection to th
IIOP Listener/Handler is deferred until authentication of the principal’s, or
client’s, identity or the first user initiated operation. Using the carbolocs
URL address format has the same effect on the deferred connection time
carboloc, but, additionally, the client application makes its initial
connection to the ISL/ISH using the Secure Sockets Layer (SSL) Protoco
Table 4-4 highlights the differences between to the two URL address form

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Differences in Mode of Operation

corbaloc Invocations to the IIOP Listener/Handler are unprotected. Configuring the IIOP
Listener/Handler for the SSL protocol is optional.

Note: A principal can secure the bootstrapping process by using the
SecurityLevel2::Current::authenticate() operation to
specify that certificate-based authentication is to be used.
CORBA C++ Programming Reference 4-15

4 C++ Bootstrap Object Programming Reference
These new URL address formats are a subset of the definition of object
URLs adopted by the OMG as part of the Interoperable Naming Service
submission. The BEA WebLogic Enterprise software also extends the URL
format described in the OMG Interoperable Naming Service submission to
support a secure form that is modeled after the URL for secure HTTP, as
well as to support the randomize functionality that was supported in the BEA
WebLogic Enterprise version 4.2.

The corbaloc and corbalocs URL schemes provide locations that are
easily manipulated in both TCP/IP and DNS centric environments. These
URL schemes contain a DNS-style hostname or IP address and a
port_number. Here are some examples of the URL formats:

corbaloc://curly:1024,larry:1022,joe:1999
corbalocs://host1:1024,{host2:1022|host3:1999}

As an enhancement to the URL syntax described in the OMG Interoperable
Naming Service submission, the BEA WebLogic Enterprise version 5.1
software has extended the syntax to support a list of multiple URLs, each with
a different scheme. Here are some examples of the extension:

corbalocs://curly:1024,corbaloc://larry:1111,
corbalocs://ctxobj:3434,mthd:3434,corbaloc://force:1111

In the above example, if the parser reaches the URL
corbaloc://force:1111, it resets its internal state as if it had never
attempted secure connections and then begins attempting unprotected
connections.

Caution: Do not mix the use of Null scheme URL addresses
(//hostname:port_number) with corbaloc and corbalocs URL
addresses.

corbalocs Invocations to the IIOP Listener/Handler are protected and the IIOP
Listener/Handler or the server ORB must be configured to enable the use of the
SSL protocol.

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats (Continued)

URL Address Formats Differences in Mode of Operation
4-16 CORBA C++ Programming Reference

C++ Member Functions and Java Methods
Note: The Bootstrap object supplied for use with the Netscape embedded Java
ORB and JavaSoft JDK ORB does not support corbaloc and corbalocs
URLs.

Note: For more information on using the corbaloc and corbalocs URL
address formats, see Using Security.

Note: The network address that is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the server
application’s UBBCONFIG file, both the address as well as the capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

 ERROR: Unofficial connection from client at
 <tcp/ip address>/<port-number>

For example, if the network address is specified (using the Null URL
address format) as //TRIXIE:3500 in the ISL command line option string
in the server application’s UBBCONFIG file, specifying either
//192.12.4.6:3500 or //trixie:3500 in the Bootstrap constructor or
in TOBJADDR will cause the connection attempt to fail. On UNIX systems,
use the uname -n command on the host system to determine the
capitalization used. On Windows NT systems, see the host system’s
network settings in the Control Panel to determine the correct
capitalization.

Note: The error in the previous note is deferred when the URL address format is
used, that is, the error does not occur at the time of Bootstrap object
construction because the connection to the ISL/ISH is deferred until later.

l Native client

For a native client, the address parameter in the Tobj_Bootstrap
constructor must always be an empty string (not a null pointer). The native
client connects to the application that is specified in the TUXCONFIG
environment variable. The constructor raises CORBA::BAD_PARAM if the
address is not empty.
CORBA C++ Programming Reference 4-17

4 C++ Bootstrap Object Programming Reference
l Server acting as a client

When servers need access to the Bootstrap object, they should obtain a
reference to it using the TP framework by invoking TP.bootstrap().
Servers should not attempt to create a new instance of the Bootstrap object.

applet (Applies to Java method only)
This is a pointer to the client applet. If the client applet does not explicitly pass
the ISH host and port to the Bootstrap constructor, you can pass this
argument, which causes the Bootstrap object to search for the TOBJADDR
definition in the HTML file for the applet.

Exception BAD_PARAM

Raised if the object is nil or if the host contained in the object does not match
the connection or the host address (//hostname:port_number) is not in a
valid format.

Description A C++ member function (or Java method) that creates Bootstrap objects.

Return Values A pointer to a newly created Bootstrap object.
4-18 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

tch

ing
ver
 1.1

joint

the

ke
Tobj_Bootstrap::register_callback_port

Synopsis Registers the joint client/server’s listening port in IIOP Handler (ISH).

C++ Mapping void register_callback_port(CORBA::Object_ptr objref);

Java Mapping public void register_callback_port(orb.omg.CORBA.Object objref)
 throws org.omg.CORBA.SystemException;

Parameter objref

The object reference created by the joint client/server.

Exceptions BAD_PARAM

Raised if the object is nil or if the host contained in the object does not ma
the connection.

IMP_LIMIT

Raised if the register_callback_port method is called more than once.

Description This C++ member function (or Java method) is called to notify the ISH of a listen
port in the joint client/server. This method should only be used for joint client/ser
ORBs that do not support GIOP 1.2 bidirectional capabilities (that is GIOP 1.0 and
client ORBs). For GIOP 1.0 and 1.1, the ISH supports only one listening port per
client/server; therefore, the register_callback_port method should only be called
once per connected joint client/server.

Usage Notes The following information must be given consideration when using this method:

n If the register_callback_port method is not invoked by the joint
client/server, the callback port is not registered with the ISH and the server
defaults to Asymmetric Outbound IIOP. In this case, you must start the server’s
IIOP Listener (ISL) with the -O option. The -O option enables Asymmetric
outbound IIOP; otherwise, server-to-client invocations will not be allowed by
ISL/ISH.

n If you are using the BEAWrapper Callbacks API instead of the POA and you
want to use bidirectional behavior, you always need to invoke the
register_callback_port method, even when you are using a ISH that
supports GIOP 1.2.

n If you want to use bidirectional capability for a callback object, you must invo
the register_callback_port method before you pass the callback object
reference to the server.
CORBA C++ Programming Reference 4-19

4 C++ Bootstrap Object Programming Reference
Return Values None.
4-20 CORBA C++ Programming Reference

C++ Member Functions and Java Methods
Tobj_Bootstrap::resolve_initial_references

Synopsis Acquires CORBA object references.

C++ Mapping CORBA::Object_ptr resolve_initial_references(

 const char* id);

 throws Tobj::InvalidName,

 org.omg.CORBA.SystemException;

Java Mapping public org.omg.CORBA.Object

 resolve_initial_references(String id)

 throws Tobj.InvalidName,

 org.omg.CORBA.SystemException;

Parameter id

This parameter must be one of the following:

“FactoryFinder”
“SecurityCurrent”
“TransactionCurrent”
“InterfaceRepository”
“NotificationService”
“Tobj_SimpleEventsService”

Exceptions InvalidName

Raised if id is not one of the names specified above. On the server,
resolve_initial_references also raises Tobj::InvalidName when
SecurityCurrent is passed.

CORBA::NO_PERMISSION

Raised if id is TransactionCurrent or SecurityCurrent and another Bootstrap
object in the client owns the Current objects.

Description This C++ member function (or Java method) acquires CORBA object references for
the FactoryFinder, SecurityCurrent, TransactionCurrent, NotificationService,
Tobj_SimpleEventsService, and InterfaceRepository objects. For the specific object
reference, invoke the _narrow function. For example, for FactoryFinder, invoke
Tobj::FactoryFinder::_narrow .

Return Values Table 4-2 shows the object reference that is returned for each type id .
CORBA C++ Programming Reference 4-21

4 C++ Bootstrap Object Programming Reference
Tobj_Bootstrap::destroy_current()

Synopsis Destroys the Current objects for the domain represented by the Bootstrap object.

C++ Mapping void destroy_current();

Java Mapping public void destroy_current()

 throws org.omg.CORBA.SystemException;

Exception Raises CORBA::NO_PERMISSION if the Bootstrap object is not the owner of the Current
objects.

Description This C++ member function invalidates the Current objects for the domain represented
by the Bootstrap object. After invoking the destroy_current() method, the Current
objects are marked as invalid. Any subsequent attempt to use the old Current objects
will throw the exception CORBA::BAD_INV_ORDER. Good programming practice is to
release all Current objects before invoking destroy_current().

Note: The destroy_current() method must be invoked on the Bootstrap object
for the domain that currently owns the two Current objects (Transaction and
Security). This also results in an implicit invocation to logoff for security and
implicitly rolls back any transaction that was begun by the client.

The application must invoke destroy_current() before invoking
resolve_initial_references for TransactionCurrent or SecurityCurrent on
another domain; otherwise, resolve_initial_references raises
CORBA::NO_PERMISSION.

Return Values None.
4-22 CORBA C++ Programming Reference

Automation Methods
Automation Methods

This section describes the Automation methods for Bootstrap objects.
CORBA C++ Programming Reference 4-23

4 C++ Bootstrap Object Programming Reference
Initialize

Synopsis Initializes the Bootstrap object into a BEA WebLogic Enterprise domain.

MIDL Mapping HRESULT Initialize(
 [in] BSTR host);

Automation
Mapping

Sub Initialize(address As String)

Parameter address

The host name and port of the BEA WebLogic Enterprise domain IIOP
Listener/Handler. One or more TCP/IP addresses can be specified. Multiple
addresses are specified using a comma-separated list, as in the C++
mappings. If no address is specified, the value of the TOBJADDR
environmental variable is used.

Note: The network address that is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the application’s
UBBCONFIG file, both the format of the address as well as the capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

 ERROR: Unofficial connection from client at
 <tcp/ip address>/<port-number>

For example, if the network address is specified as //TRIXIE:3500 in the
ISL command line option string, specifying either //192.12.4.6:3500
or //trixie:3500 in the Bootstrap constructor or in TOBJADDR will cause
the connection attempt to fail. On UNIX systems, use the uname -n
command on the host system to determine the capitalization used. On
Windows NT systems, see the host system’s network settings in the
Control Panel to determine the correct capitalization.

Return Values None.
4-24 CORBA C++ Programming Reference

Automation Methods
Exceptions Table 4-5 describes the exceptions.

Table 4-5 Initialize Exceptions

HRESULT Description Meaning

ITF_E_NO_PERMISSION_
YES

Bootstrap already
initialized

The Bootstrap object has already
been initialized. To connect to a new
BEA WebLogic Enterprise domain,
you must create a new Bootstrap
object.

E_INVALIDARG Invalid address
parameter

The address supplied is not valid.

E_OUTOFMEMOY Memory allocation
failed

The required memory could not be
allocated.

E_FAIL Invalid domain Unable to communicate with the
BEA WebLogic Enterprise domain at
the address specified or TOBJADDR is
not defined.

<SYSTEM ERROR> Unable to obtain
initial object

Unable to initialize the Bootstrap
object. The system error causing the
failure is returned in the "Number"
member of the error object.
CORBA C++ Programming Reference 4-25

4 C++ Bootstrap Object Programming Reference
CreateObject

Synopsis Creates an instance of a Current environmental object.

MIDL Mapping HRESULT CreateObject(
 [in] BSTR progid,
 [out, retval] IDispatch** rtrn);

Automation
Mapping

Function CreateObject(progid As String) As Object

Parameter progid
The progid of the environmental object to create. Valid progids are:

Tobj.FactoryFinder
Tobj.SecurityCurrent
Tobj.TransactionCurrent

Return Value A reference to the interface pointer of the created environmental object.

Exceptions Table 4-6 describes the exceptions.

Table 4-6 CreateObject Exceptions

Exception Description Meaning

ITF_E_NO_PERMISSION
_YES

Bootstrap must
initialized

The Bootstrap object has not been
initialized.

ITF_E_NO_PERMISSION
_NO

No permission. If the progid specifies a transaction
or security current and another
Bootstrap object in the client owns the
current objects.

E_INVALIDARG Invalid progid
parameter

The progid specified is not valid.

E_INVALIDARG Invalid name The requested progid is not one of the
valid parameter values specified
above.

E_INVALIDARG Unknown
object

The requested progid is not
registered on your system.
4-26 CORBA C++ Programming Reference

Automation Methods
<SYSTEM ERROR> CoCreate

Instance()
failed

The Bootstrap object could not create
an instance of the requested object.
The system error is returned in the
"Number" member of the error object.

Table 4-6 CreateObject Exceptions (Continued)

Exception Description Meaning
CORBA C++ Programming Reference 4-27

4 C++ Bootstrap Object Programming Reference
DestroyCurrent

Synopsis Logs out of the BEA WebLogic Enterprise domain and invalidates the
TransactionCurrent and SecurityCurrent objects.

MIDL Mapping HRESULT destroy_current();

Automation
Mapping

Sub destroy_current()

Parameters None

Return Value None

Exceptions None

Programming Examples

This section provides the following programming examples that use Bootstrap objects.

l Java Client Example: Getting a SecurityCurrent Object

l Visual Basic Client Example: Using the Bootstrap Object

Java Client Example: Getting a SecurityCurrent Object

Listing 4-4 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object

import org.omg.CORBA.*;
import com.beasys.*;

class client {
 public static void main(String[] args)
 {
 Tobj.PrincipalAuthenticator auth = null;
4-28 CORBA C++ Programming Reference

Programming Examples
 try {
 // Initialize ORB
 ORB orb = ORB.init();

 // Create Bootstrap object
 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb,
 "//host:1234");

 // Get security current
 org.omg.CORBA.Object ocur =

 bs.resolve_initial_references("SecurityCurrent");
 SecurityLevel2.Current cur =
 SecurityLevel2.CurrentHelper.narrow(ocur);
 }
 catch (Tobj.InvalidName e){
 System.out.println("Invalid name: " + e);
 System.exit(1);
 }
 catch (Tobj.InvalidDomain e){
 System.out.println("Invalid domain address:
 //host:port: " + e);
 System.exit(1);
 }
 catch (SystemException e){
 System.out.println("Exception getting security
 current: " + e);
 System.exit(1);
 }
 }
}

Visual Basic Client Example: Using the Bootstrap Object

Listing 4-5 shows how to program a Visual Basic client to use the Bootstrap object.

Listing 4-5 Programming a Client in Visual Basic

‘Declare the Bootstrap object

Public oBootstrap As DITobj_Bootstrap

‘Declare the FactoryFinder object
CORBA C++ Programming Reference 4-29

4 C++ Bootstrap Object Programming Reference
Public oBsFactoryFinder As DITobj_FactoryFinder

‘Declare factory for Registrar object

Public oRegistrarFactory As DIUniversityB_RegistrarFactory

‘Declare actual Registrar object

Public oRegistrarFactory As DIUniversityB_RegistrarFactory

....

‘Create the Bootstrap object

Set oBootstrap = CreateObject(“Tobj.Bootstrap”)

‘Connect to the BEA WebLogic Enterprise Domain

oBootstrap.Initialize “//host:port”

‘Get the FactoryFinder for the BEA WebLogic Enterprise Domain

Set oBSFactoryFinder =
oBootstrap.CreateObject(“Tobj.FactoryFinder”)

‘Get a factory for the Registrar object
‘using the FactoryFinder method find_one_factory_by_id

Set oRegistrarFactory =
oBSFactoryFinder.find_one_factory_by_id(“RegistrarFactoryID”)

'Create a Registrar object

Set oRegistrar = oRegistrarFactory.find_registrar(exc)
4-30 CORBA C++ Programming Reference

CHAPTER
5 FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA WebLogic Enterprise domain. The BEA
WebLogic Enterprise NameManager provides the mapping of factory names to object
references for the FactoryFinder. Multiple FactoryFinders and NameManagers
together provide increased availability and reliability. In this release the level of
functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming
Service, but is merely a vehicle for storing registered factories.

In the BEA WebLogic Enterprise environment, application factory objects are used to
create objects that clients interact with to perform their business operations (for
example, TellerFactory and Teller). Application factories are generally created during
server initialization and are accessed by both remote clients and clients located within
the server application.

The FactoryFinder interface and the NameManager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domains in this release benefits customers that need to scale
to a large number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factories in a BEA
WebLogic Enterprise environment has been enhanced to allow factories in one domain
to be visible in another. The visibility of factories in other domains is under the control
of the system administrator.
CORBA C++ Programming Reference 5-1

5 FactoryFinder Interface

ility
il.

e

n
s
h

e
.

r is
ode
Capabilities, Limitations, and Requirements

During server application initialization, application factories need to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve a factory object reference based on associated
names that were created when the factory was registered.

The following functional capabilities, limitations, and requirements apply to this
release:

n The FactoryFinder interface is in compliance with the
CosLifeCycle::FactoryFinder interface.

n Server applications can register and unregister application factories with the
CORBAservices Naming Service.

n Clients can access objects using a single point of entry—the FactoryFinder.

n Clients can construct names for objects using a simplified BEA scheme made
possible by BEA WebLogic Enterprise extensions to the CORBAservices
interface or the more general CORBA scheme.

n Multiple FactoryFinders and NameManagers can be used to increase availab
and reliability in the event that one FactoryFinder or NameManager should fa

n Support for multiple domains. Factories in one domain can be configured to b
visible in another domain under administrative control.

n Two NameManager services, at a minimum, must be configured, preferably o
different machines, to maintain the factory-to-object reference mapping acros
process failures. If both NameManagers fail, the master NameManager, whic
has been keeping a persistent journal of the registered factories, recovers th
previous state by processing the journal so as to re-establish its internal state

n One NameManager must be designated as the Master and the Master
NameManager must be started before the Slave. If the master NameManage
started after one or more Slaves, the Master assumes that it is in recovery m
instead of in initializing mode.
5-2 CORBA C++ Programming Reference

Functional Description

97,

with

r.
tion
t is

in
main

tion
ine as
ibly
Functional Description

The BEA WebLogic Enterprise environment promotes the use of the factory design
pattern as the primary means for a client to obtain a reference to an object. Through the
use of this design pattern, client applications require a mechanism to obtain a reference
to an object that acts as a factory for another object. Because the BEA WebLogic
Enterprise environment has chosen CORBA as its visible programming model, the
mechanism used to locate factories is modeled after the FactoryFinder as described in
the CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 19
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinde
Client applications locate factories by querying a FactoryFinder. The client applica
can control the references to the factory object returned by specifying criteria tha
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can beg
locating an appropriate factory. To obtain a reference to a FactoryFinder in the do
to which a client application is associated, the client application must invoke the
Tobj_Bootstrap::resolve_initial_references operation with a value of
“FactoryFinder” . This operation returns a reference to a FactoryFinder that is in the
domain to which the client application is currently attached. For more information, see
the section “Tobj_Bootstrap::register_callback_port” on page 4-19.

Note: The references to the FactoryFinder that are returned to the client applica
can be references to factory objects that are registered on the same mach
the FactoryFinder, on a different machine than the FactoryFinder, or poss
in a different domain than the FactoryFinder.
CORBA C++ Programming Reference 5-3

5 FactoryFinder Interface
Registering a Factory

For a client application to be able to obtain a reference to a factory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (See Figure 5-1). Usingthe BEA WebLogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP::register_factory operation, once a reference to a
factory object has been created. The reference to the factory object, along with a value
that identifies the factory, is passed to this operation. The registration of references to
factory objects is typically done as part of initialization of the application (normally as
part of the implementation of the operation Server::initialize).

Figure 5-1 Registering a Factory Object

When the server application is shutting down, it must unregister any references to
factory objects that it has previously registered in the application server. This is done
by passing the same reference to the factory object, along with the corresponding value
used to identify the factory, to the TP::unregister_factory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Server::release operation. For more information about
these operations, see the section “Server Interface” on page 3-21.

Server
Name

Manager
TPFW

System
Event
Broker

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers
5-4 CORBA C++ Programming Reference

Functional Description

 in

hat

ust
s
-2).
 and
C++ Mapping

Listing 5-1 shows the C++ class (static) methods. For more information about these
methods, see the sections “TP::register_factory()” on page 3-61 and
“TP::unregister_factory()” on page 3-63.

Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

#include <TP.h>

static void TP::register_factory(
 CORBA::Object_ptr factory_or, const char* factory_id);

static void TP::unregister_factory (
 CORBA::Object_ptr factory_or, const char* factory_id);

The TP.h header file contains the two method declarations and is to be included
any server application that wants to use these methods.

A server application generally includes this header file within the application file t
contains the methods for application server initialization and release.

Locating a Factory

For a client application to request a factory to create a reference to an object, it m
first obtain a reference to the factory object. The reference to the factory object i
obtained by querying a FactoryFinder with specific selection criteria (see Figure 5
The criteria are determined by the format of the particular FactoryFinder interface
method used.
CORBA C++ Programming Reference 5-5

5 FactoryFinder Interface
Figure 5-2 Locating a Factory Object

The BEA WebLogic Enterprise software extends the
CosLifeCycle::FactoryFinder interface by introducing four methods in addition
to the find_factories() method declared for the FactoryFinder. Therefore, using
the Tobj extensions, a client can use either the find_factories() or
find_factories_by_id() methods to obtain a list of application factories. A client
can also use the find_one_factory() or find_one_factory_by_id() method to
obtain a single application factory, and list_factories () to obtain a list of all
registered factories.

The CosLifeCycle::FactoryFinder interface defines a factory_key, which is a
sequence of id and kind strings conforming to the CosNaming Name shown below.
The kind field of the NameComponent for all BEA WebLogic Enterprise application
factories is set to the string FactoryInterface by the TP Framework when an
application factory is registered. Applications supply their own value for the id field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
own file (ns.idl and lcs.idl, respectively), only the OMG IDL code for that subset
of both files that is relevant for using the BEA WebLogic Enterprise FactoryFinder is
shown in the following listings.

Client
Factory
Finder

Bootstrap Name
Manager

resolve_initial_references

CORBA::Object

factory::_narrow()

find_*_factor*

CORBA::Object

Tobj_FF::_narrow()

find factory object in
NameManager

IOR string
5-6 CORBA C++ Programming Reference

Functional Description
CORBAservices Naming Service Module OMG IDL

Listing 5-2 shows the portions of the ns.idl file that are relevant to the FactoryFinder.

Listing 5-2 CORBAservices Naming OMG IDL

// ------ ns.idl ------

module CosNaming {
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence <NameComponent> Name;

};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 3-6. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-3 shows the portions of the lcs.idl file that are relevant to the
FactoryFinder.

Listing 5-3 Life Cycle Service OMG IDL

// ----- lcs.idl -----

#include “ns.idl”

module CosLifeCycle{
 typedef CosNaming::Name Key;
 typedef Object Factory;
 typedef sequence<Factory> Factories;

 exception NoFactory{ Key search_key; }
CORBA C++ Programming Reference 5-7

5 FactoryFinder Interface
 interface FactoryFinder {
 Factories find_factories(in Key factory_key)
 raises(NoFactory);

 };

};

// This information is taken from CORBAservices: Common Object
// Services Specification, pages 6-10, 11. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Tobj Module OMG IDL

Listing 5-4 shows the Tobj Module OMG IDL.

Listing 5-4 Tobj Module OMG IDL

// ----- Tobj.idl -----

module Tobj {

 // Constants

 const string FACTORY_KIND = "FactoryInterface";

 // Exceptions

 exception CannotProceed { };
 exception InvalidDomain {};
 exception InvalidName { };
 exception RegistrarNotAvailable { };

 // Extension to LifeCycle Service

 struct FactoryComponent {
 CosLifeCycle::Key factory_key;
 CosLifeCycle::Factory factory_ior;
 };

 typedef sequence<FactoryComponent> FactoryListing;

 interface FactoryFinder : CosLifeCycle::FactoryFinder {
 CosLifeCycle::Factory find_one_factory(in CosLifeCycle::Key
 factory_key)
5-8 CORBA C++ Programming Reference

Functional Description
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factory find_one_factory_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factories find_factories_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 FactoryListing list_factories()
 raises (CannotProceed,
 RegistrarNotAvailable);
 };
};

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain as the FactoryFinder itself. However, it is possible to return references to
factory objects in domains other than the domain in which a FactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (See Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives a request to locate a factory object, it must first
determine if a reference to a factory object that meets the specified criteria exists. If
there is registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object is local to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.
CORBA C++ Programming Reference 5-9

5 FactoryFinder Interface

ion
e.

t

.

Figure 5-3 Inter-Domain FactoryFinder Interaction (ff_fig3.wmf)

If, on the other hand, the information indicates that the actual factory object is from
another domain, the FactoryFinder delegates the request to an interdomain
FactoryFinder in the appropriate domain. As a result, only a FactoryFinder in the same
domain as the factory object will contain an actual reference to the factory object. The
interdomain FactoryFinder is responsible for returning the reference of the factory
object to the local FactoryFinder, which subsequently returns it to the client.

Why Use BEA WebLogic Enterprise Extensions?

The BEA WebLogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

n Although the CORBA-defined approach is powerful and allows various select
criteria, the interface used to query a FactoryFinder can be complicated to us

n Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory objec
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

n Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register a factory object

Client
Factory
Finder

Bootstrap
Name

Manager

resolve_initial_references

CORBA::Object

factory::_narrow()

find_*_factor*

CORBA::Object

Tobj_FF::_narrow()
find factory

object in
NameManager

IOR string

Factory
Finder

find_*_factor*

Intra-domain
FactoryFinder
delegates request
to inter-domain
FactoryFinder

CORBA::Object
5-10 CORBA C++ Programming Reference

Functional Description

 the

gh the
Therefore, BEA WebLogic Enterprise extends the interfaces defined in the
CORBAservices specification to make using a FactoryFinder easier. The extensions
are manifested as refined interfaces to the FactoryFinder that are derived from the
interfaces specified in the CORBAservices specification.

Creating Application Factory Keys

Two of the five methods provided by the FactoryFinder interface accept
CosLifeCycle::Keys, which corresponds to CosNaming::Name. A client must be
able to construct these keys.

The CosNaming Specification describes two interfaces that constitute a Names Library
interface that can be used to create and manipulate CosLifeCycle::Keys. The
pseudo OMG IDL statements for these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL

Note: This information is taken from the CORBAservices: Common Object Services
Specification, pp. 3-14 to18. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipulate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
names are described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “The CosNaming Module,” the CORBAservices Naming Service supports
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service throu
NamingContext interface.
CORBA C++ Programming Reference 5-11

5 FactoryFinder Interface
Note: It is not a requirement to use the names library in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the LName interface, as shown in Listing 5-5.

Listing 5-5 Names Library Interfaces in Pseudo-IDL

interface LNameComponent { // PIDL
 const short MAX_LNAME_STRLEN = 128;

 exception NotSet{ };
 exception OverFlow{ };

 string get_id
 raises (NotSet);
 void set_id(in string i)
 raises (OverFlow);
 string get_kind()
 raises(NotSet);
 void set_kind(in string k)
 raises (OverFlow);
 void destroy();
};

interface LName {// PIDL
 exception NoComponent{ };
 exception OverFlow{ };
 exception InvalidName{ };
 LName insert_component(in unsigned long i,
 in LNameComponent n)
 raises (NoComponent, OverFlow);
 LNameComponent get_component(in unsigned long i)
 raises (NoComponent);
 LNameComponent delete_component(in unsigned long i)
 raises (NoComponent);

 unsigned long num_components();
 boolean equal(in LName ln);
 boolean less_than(in LName ln);
 Name to_idl_form()
 raises (InvalidName);
 void from_idl_form(in Name n);
 void destroy();
};

LName create_lname();// C/C++
LNameComponent create_lname_component();// C/C++
5-12 CORBA C++ Programming Reference

Functional Description
Creating a Library Name Component

To create a library name component pseudo-object, use the following C/C++ function:

LNameComponent create_lname_component(); // C/C++

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-5.

Creating a Library Name

To create a library name pseudo-object, use the following C/C++ function:

LName create_lname(); // C/C++

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-5.

The LNameComponent Interface

A name component consists of two attributes: identifier and kind. The
LNameComponent interface defines the operations associated with these attributes, as
follows:

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
raises(NotSet);
void set_kind(in string k);

get_id

The get_id operation returns the identifier attribute’s value. If the
attribute has not been set, the NotSet exception is raised.

set_id

The set_id operation sets the identifier attribute to the string argument.

get_kind

The get_kind operation returns the kind attribute’s value. If the attribute
has not been set, the NotSet exception is raised.
CORBA C++ Programming Reference 5-13

5 FactoryFinder Interface
set_kind

The set_kind operation sets the kind attribute to the string argument.

The LName Interface

The following operations are described in this section:

n Destroying a library name component pseudo-object

n Inserting a name component

n Getting the ith name component

n Deleting a name component

n Number of name components

n Testing for equality

n Testing for order

n Producing an OMG IDL form

n Translating an OMG IDL form

n Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-Object

The destroy operation destroys library name component pseudo-objects.

void destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
insert_component operation inserts a component after position i.

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

If component i-1 is undefined and component i is greater than 1 (one), the
insert_component operation raises the NoComponent exception.
5-14 CORBA C++ Programming Reference

Functional Description
If the library cannot allocate resources for the inserted component, the OverFlow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1 (one).

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

Deleting a Name Component

The delete_component operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has
one fewer component and components previously identified as i+1...n are now
identified as i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library name.

unsigned long num_components();

Testing for Equality

The equal operation tests for equality with library name ln.

boolean equal(in LName ln);

Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.
CORBA C++ Programming Reference 5-15

5 FactoryFinder Interface
boolean less_than(in LName ln);

This operation returns true if the library name is less than the library name ln passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Name. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Name to_idl_form()
 raises(InvalidName);

If the name is of length 0 (zero), the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of type Name. The following PIDL operation on library names
sets the components and kind attribute for a library name from a returned OMG IDL
defined structure, Name.

void from_idl_form(in Name n);

Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects.

void destroy();

C++ Mapping

The Names Library pseudo OMG IDL interface maps to the C++ classes shown in
Listing 5-6, which can be found in the NamesLib.h header file.
5-16 CORBA C++ Programming Reference

Functional Description

es
Two BEA WebLogic Enterprise extensions to CORBA are included to support
scalability. Specifically, the LNameComponent::set_id() and
LNameComponent::set_kind() methods raise an OverFlow exception if the length
of the input string exceeds MAX_LNAME_STRLEN. This length coincides with the
maximum length of the BEA WebLogic Enterprise object ID (OID) and interface
name. For a detailed description of the Library Name class, see the section “Nam
Library Interface Pseudo OMG IDL” on page 5-11.

Listing 5-6 Library Name Class

const short MAX_LNAME_STRLEN = 128;

class LNameComponent {
public:
 class NotSet{ };
 class OverFlow{ };
 static LNameComponent* create_lname_component();
 void destroy();
 const char* get_id() const throw (NotSet);
 void set_id(const char* i) throw (OverFlow);
 const char* get_kind() const throw (NotSet);
 void set_kind(const char* k) throw (OverFlow);
};

class LName {
public:
 class NoComponent{ };
 class OverFlow{ };
 class InvalidName{ };
 static LName* create_lname();
 void destroy();
 LName* insert_component(const unsigned long i,
 LNameComponent* n)
 throw (NoComponent, OverFlow);
 const LNameComponent* get_component(
 const unsigned long i) const
 throw (NoComponent);
 const LNameComponent* delete_component(
 const unsigned long i)
 throw (NoComponent);
 unsigned long num_components() const;
 CORBA::Boolean equal(const LName* ln) const;
 CORBA::Boolean less_than(
 const LName* ln) const; // not implemented
 CosNaming::Name* to_idl_form()
 throw (InvalidName);
CORBA C++ Programming Reference 5-17

5 FactoryFinder Interface
 void from_idl_form(const CosNaming::Name& n);
};

Java Mapping

The Names Library pseudo OMG IDL interface maps to the Java classes contained in
the com.beasys.Tobj package, shown in Listing 5-7. All exceptions are contained in
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the
CORBAservices: Common Object Services Specification.

Listing 5-7 Java Mapping for LNameComponent

public class LNameComponent {
 public static LNameComponent create_lname_component();
 public static final short MAX_LNAME_STRING = 128;
 public void destroy();
 public String get_id() throws NotSet;
 public void set_id(String i) throws OverFlow;
 public String get_kind() throws NotSet;
 public void set_kind(String k) throws OverFlow;
};

public class LName {

 public static LName create_lname();
 public void destroy();
 public LName insert_component(long i, LNameComponent n)
 throws NoComponent, OverFlow;
 public LNameComponent get_component(long i)
 throws NoComponent;
 public LNameComponent delete_component(long i)
 throws NoComponent;
 public long num_components();
 public boolean equal(LName ln);
 public boolean less_than(LName ln);// not implemented
 public org.omg.CosNaming.NameComponent[] to_idl_form()
 throws InvalidName;
 public void from_idl_form(org.omg.CosNaming.NameComponent[] nr);
};
5-18 CORBA C++ Programming Reference

C++ Member Functions and Java Methods
C++ Member Functions and Java Methods

This section describes the FactoryFinder C++ member functions and Java methods.

Note: All FactoryFinder member functions, except the less_than member function
in LName, are implemented in both C++ and Java.

The following methods are described in this section:

n CosLifeCycle::FactoryFinder::find_factories

n Tobj::Factoryfinder::find_one_factory

n Tobj::Factoryfinder::find_one_factory_by_id

n Tobj::Factoryfinder::find_factories_by_id

n Tobj::Factoryfinder::list_factories

Note: The CosLifeCycle::FactoryFinder::find_factories method is the
standard CORBA CosLifeCycle method. The four Tobj methods are
extensions to the CosLifeCycle interface and, therefore, inherit the attributes
of the CosLifeCycle interface.
CORBA C++ Programming Reference 5-19

5 FactoryFinder Interface
CosLifeCycle::FactoryFinder::find_factories

Synopsis Obtains a sequence of factory object references.

C++ Mapping CosLifeCycle::Factories *
CORBA::Object_ptr CosLifeCycle::FactoryFinder::find_factories(
 const CosNaming::Name& factory_key)
 throw (CosLifeCycle::NoFactory);

Java Mapping import org.omg.CosLifeCycle.*;

public org.omg.CORBA.Object[] find_factories(
 org.omg.CosNaming.NameComponent[] factory_key)
 throws org.omg.CosLifeCycle.NoFactory;

Parameter factory_key

This parameter is an unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an id and a kind,
both of type string. The id field is used to represent the identity of factory
object. The kind field is used to indicate how the value of the id field should
be interpreted.
References to factory object registered using the operation
TP::register_factory will have a kind value of “FactoryInterface” .

Exception CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception is raised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory

Indicates that there are no factories registered that match the information in
the factory_key parameter.

Description The find_factories method is called by an application to obtain a sequence of
factory object references. The operation is passed a key used to identify the desired
factory. The Key is a name, as defined by the CORBAservices Naming service. More
than one factory may match the key, and, if that is the case, the FactoryFinder returns
a sequence of factories.

The scope of the key is the FactoryFinder. The FactoryFinder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.
5-20 CORBA C++ Programming Reference

C++ Member Functions and Java Methods
Key values are considered equal if they are of equal length (same number of elements
in the sequence), and if every NameComponent value in the Key matches the
corresponding NameComponent value at the exact same location in the Key that was
specified when the reference to the factory object was registered.

Return Values An unbounded sequence of references to Factory objects that match the information
specified as the value of the factory_key parameter. In C++, the method returns a
sequence of object references of type CosLifeCycle::Factory. In Java, the method
returns an unbounded array of object references of type org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need to be
released by the caller.
CORBA C++ Programming Reference 5-21

5 FactoryFinder Interface
Tobj::FactoryFinder::find_one_factory

Synopsis Obtains a reference to a single factory object.

C++ Mapping virtual CosLifeCycle::Factory_ptr
 find_one_factory(const CosNaming::Name& factory_key) = 0;

Java Mapping public org.omg.CORBA.Object
 find_one_factory(org.omg.CosNaming.NameComponent[] factory_key)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Parameter factory_key

This parameter is an unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an id and a kind,
both of type string. The id field is used to represent the identity of factory
object. The kind field is used to indicate how the value of the id field should
be interpreted.
References to factory object registered using the operation
TP::register_factory will have a kind value of “FactoryInterface” .

Exceptions CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception is raised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory

Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed

Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable

Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.
5-22 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

cing

tics to

ents

t was

ence
 of

 to be
Description The find_one_factory method is called by an application to obtain a reference to a
single factory object whose key matches the value of the key specified as input to the
method. If more than one factory object is registered with the specified key, the
FactoryFinder selects one factory object based on the FactoryFinder’s load balan
scheme. As a result, invoking the find_one_factory method multiple times using
the same key may return different object references.

The scope of the key is the FactoryFinder. The FactoryFinder assigns no seman
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factory or objects they create.

Key values are considered equal if they are of equal length (same number of elem
in the sequence), and if every NameComponent value in the Key matches the
corresponding NameComponent value at the exact same location in the Key tha
specified when the reference to the factory object was registered.

Return Values An object reference for a factory object. In C++, the method returns an object refer
of type CosLifeCycle::Factory. In Java, the method returns an object reference
type org.omg.CORBA.Object.

If the operation raises an exception, the return value is invalid and does not need
released by the caller.
CORBA C++ Programming Reference 5-23

5 FactoryFinder Interface
Tobj::FactoryFinder::find_one_factory_by_id

Synopsis Obtains a reference to a single factory object.

C++ Mapping virtual CosLifeCycle::Factory_ptr
 find_one_factory_by_id(const char * factory_id) = 0;

Java Mapping public org.omg.CORBA.Object
 find_one_factory_by_id(java.lang.String factory_id)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Parameter factory_id

A NULL-terminated string that contains a value that is used to identify the
registered factory object to be found.
The value of the factory_id parameter is used as the value of the id field
of a NameComponent that has a kind field with the value
“FactoryInterface” when comparing against registered references for
factory objects.

Exceptions CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception is raised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory

Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed

Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable

Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

Description The find_one_factory_by_id method is called by an application to obtain a
reference to a single factory object whose registration ID matches the value of the ID
specified as input to the method. If more than one factory object is registered with the
5-24 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

der’s

s.
specified ID, the FactoryFinder selects one factory object based on the FactoryFin
load balancing scheme. As a result, invoking the find_one_factory_by_id
operation multiple times using the same ID may return different object reference

The find_one_factory_by_id method behaves the same as the
find_one_factory operation that was passed a Key that contains a single
NameComponent with an id field that contains the same value as the factory_id
parameter and a kind field that contains the value “FactoryInterface” .

The registered identifier for a factory is considered equal to the value of the
factory_id parameter if the result of constructing a CosLifeCycle::Key structure
containing a single NameComponent that has the factory_id parameter as the value
of the id field and the value “FactoryInterface” as the value of the kind field. The
values must match exactly in all respects (case, location, etc.).

Return Values An object reference for a factory object. In C++, the method returns an object reference
of type CosLifeCycle::Factory . In Java, the method returns an object reference of
type org.omg.CORBA.Object .

If the operation raises an exception, the return value is invalid and does not need to be
released by the caller.
CORBA C++ Programming Reference 5-25

5 FactoryFinder Interface
Tobj::FactoryFinder::find_factories_by_id

Synopsis Obtains a sequence of one or more factory object references.

C++ Mapping virtual CosLifeCycle::Factories *
 find_factories_by_id(const char * factory_id) = 0;

Java Mapping public org.omg.CORBA.Object[]
 find_factories_by_id(java.lang.String factory_id)
 throws
 org.omg.CosLifeCycle.NoFactory,
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Parameter factory_id

A NULL-terminated string that contains a value that is used to identify the
registered factory object to be found.
The value of the factory_id parameter is used as the value of the id field
of a NameComponent that has a kind field with the value
“FactoryInterface” when comparing against registered references for
factory objects.

Exceptions CORBA::BAD_PARAM

Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception is raised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory

Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed

Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable

Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.
5-26 CORBA C++ Programming Reference

C++ Member Functions and Java Methods
Description The find_factories_by_id method is called by an application to obtain a sequence
of one or more factory object references. The method is passed a NULL terminated
string that contains the identifier of the factory to be located. If more than one factory
object is registered with the specified ID, the FactoryFinder will return a list of object
references for the matching registered factory objects.

The find_factories_by_id method behaves the same as the find_factory
operation that was passed a Key that contains a single NameComponent with an id
field that contains the same value as the factory_id parameter and a kind field that
contains the value “FactoryInterface” .

The registered identifier for a factory is considered equal to the value of the
factory_id parameter if the result of constructing a CosLifeCycle::Key structure
containing a single NameComponent that has the factory_id parameter as the value
of the id field and the value “FactoryInterface” as the value of the kind field. The
values must match exactly in all respects (case, location, etc.).

Return Values An unbounded sequence of references to factory objects that match the information
specified as the value of the factory_key parameter. In C++, the method returns a
sequence of object references of type CosLifeCycle::Factory . In Java, the method
returns an unbounded array of object references of type org.omg.CORBA.Object .

If the operation raises an exception, the return value is invalid and does not need to be
released by the caller.
CORBA C++ Programming Reference 5-27

5 FactoryFinder Interface
Tobj::Factoryfinder::list_factories

Synopsis Obtains a lists of factory objects currently registered with the FactoryFinder.

C++ Mapping virtual FactoryListing * list_factories() = 0;

Java Mapping public com.beasys.Tobj.FactoryComponent[] list_factories()
 throws
 com.beasys.Tobj.CannotProceed,
 com.beasys.Tobj.RegistrarNotAvailable;

Exception Tobj::CannotProceed

Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable

Indicates that the FactoryFinder could not communicate with the
NameManager.
Error information is written to the user log.

Description The list_factories method is called by an application to obtain a list of the factory
objects currently registered with the FactoryFinder. The method returns both the Key
used to register the factory, as well as a reference to the factory object.

Return Values An unbounded sequence of Tobj::FactoryComponent. Each occurrence of a
Tobj::FactoryComponent in the sequence contains a reference to the registered
factory object, as well as the CosLifeCycle::Key that was used to register that
factory object.

If the operation raises an exception, the return value is invalid and does not need to be
released by the caller.
5-28 CORBA C++ Programming Reference

Automation Methods
Automation Methods

This section describes the DITobj_FactoryFinder Automation methods.
CORBA C++ Programming Reference 5-29

5 FactoryFinder Interface
DITobj_FactoryFinder.find_one_factory

Synopsis Obtains a single application factory.

MIDL Mapping HRESULT find_one_factory(
 [in] VARIANT factory_key,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] IDispatch** returnValue);

Automation
Mapping

Function find_one_factory(factory_key, [exceptionInfo]) As Object

Parameters factory_key

This parameter contains a safe array of DICosNaming_NameComponent
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionInfo

An optional input argument that enables the application to get additional
exception data if an error occurred.

Exceptions NoFactory

This exception is raised if the FactoryFinder cannot find an application
factory object reference that corresponds to the input factory_key.

CannotProceed

This exception is raised if the FactoryFinder or CORBAservices Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server
running the FactoryFinder or CORBAservices Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If no naming services servers are running,
restart the application.

RegistrarNotAvailable

This exception is raised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception is raised. If no naming services servers are
running, restart the application.
5-30 CORBA C++ Programming Reference

Automation Methods

cing
Description This member function instructs the FactoryFinder to return one application factory
object reference whose key matches the input factory_key. To accomplish this, the
member function performs an equality match; that is, every NameComponent <id,
kind> pair in the input factory_key must exactly match each <id, kind> pair in the
application factory’s key. If multiple factory keys contain the input factory_key, the
FactoryFinder selects one factory key, based on an internally defined load balan
scheme. Invoking find_one_factory multiple times using the same id may return
different object references.

Return Values Returns a reference to an interface pointer for the application factory.
CORBA C++ Programming Reference 5-31

5 FactoryFinder Interface
DITobj_FactoryFinder.find_one_factory_by_id

Synopsis Obtains a single application factory.

MIDL Mapping HRESULT find_one_factory_by_id(
 [in] BSTR factory_id,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] IDispatch** returnValue);

Automation
Mapping

Function find_one_factory_by_id(factory_id As String,
 [exceptionInfo]) As Object

Parameters factory_id

This parameter represents a string identifier that is used to identify the kind
or type of application factory. For some suggestions as to the composition of
this string, see Creating CORBA C++ Server Applications.

exceptionInfo

An optional input argument that enables the application to get additional
exception data if an error occurred.

Exceptions NoFactory

This exception is raised if the FactoryFinder cannot find an application
factory object reference that corresponds to the input factory_id.

CannotProceed

This exception is raised if the FactoryFinder or CORBAservices Naming
Service encounter an internal error during the search, with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server
running the FactoryFinder or the CORBAservices Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If there are no naming services running,
restart the application.

RegistrarNotAvailable

This exception is raised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception is raised. If no naming service servers are
running, restart the application.
5-32 CORBA C++ Programming Reference

Automation Methods

ut

cing
Description This member function instructs the FactoryFinder to return one application factory
object reference whose id in the key matches the method’s input factory_id. To
accomplish this, the member function performs an equality match (that is, the inp
factory_id must exactly match the id in the <id,kind> pair in the application
factory’s key). If multiple factory keys contain the input factory_id, the
FactoryFinder selects one factory key, based on an internally defined load balan
scheme. Invoking find_one_factory_by_id multiple times using the same id may
return different object references.

Return Values Returns a reference to an interface pointer for the application factory.
CORBA C++ Programming Reference 5-33

5 FactoryFinder Interface
DITobj_FactoryFinder.find_factories_by_id

Synopsis Obtains a list of application factories.

MIDL Mapping HRESULT find_factories_by_id(
 [in] BSTR factory_id,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function find_factories_by_id(factory_id As String,
 [exceptionInfo])

Parameters factory_id

This parameter represents a string identifier that will be used to identify the
kind or type of application factory. The Creating Client Applications online
document provides some suggestions as to the composition of this string.

exceptionInfo

An optional input argument that enables the application to get additional
exception data if an error occurred.

Exceptions NoFactory

This exception is raised if the FactoryFinder cannot find an application
factory object reference that corresponds to the input factory_key or
factory_id.

CannotProceed

This exception is raised if the FactoryFinder or CORBAservices Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server
running the FactoryFinder or CORBAservices Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If no naming services servers are running,
restart the application.

RegistrarNotAvailable

This exception is raised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception is raised. If no naming services servers are
running, restart the application.
5-34 CORBA C++ Programming Reference

Automation Methods

ut

s.
Description This member function instructs the FactoryFinder to return a list of application factory
object references whose id in the keys match the method’s input factory_id. To
accomplish this, the member function performs an equality match (that is, the inp
factory_id must exactly match each id in the <id,kind> pair in the application
factory’s keys).

Return Values Returns a variant containing an array of interface pointers to application factorie
CORBA C++ Programming Reference 5-35

5 FactoryFinder Interface
DITobj_FactoryFinder.find_factories

Synopsis Obtains a list of application factories.

MIDL Mapping HRESULT find_factories(
 [in] VARIANT factory_key,
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function find_factories(factory_key, [exceptionInfo])

Parameters factory_key

This parameter contains a safe array of DICosNaming_NameComponents
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionInfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

Exception NoFactory

This exception is raised if the FactoryFinder cannot find an application
factory object reference that corresponds to the input factory_key.

Description The find_factories method instructs the FactoryFinder to return a list of server
application factory object references whose keys match the method’s input key. The
BEA WebLogic Enterprise system assumes that an equality match is to be performed.
This means that for the two sequences of <id,kind> pairs (those corresponding to the
input key and those in the application factory’s keys), each are of equal length; for
every pair in one sequence, there is an identical pair in the other.

Return Values Returns a variant containing an array of interface pointers to application factories.
5-36 CORBA C++ Programming Reference

Automation Methods
DITobj_FactoryFinder.list_factories

Synopsis Lists all of the application factory names and object references.

MIDL Mapping HRESULT list_factories(
 [in,out,optional] VARIANT* exceptionInfo,
 [out,retval] VARIANT* returnValue);

Automation
Mapping

Function list_factories([exceptionInfo])

Parameter exceptionInfo

An optional input argument that enables the application to get additional
exception data if an error occurred.

Exception CannotProceed

This exception is raised if the FactoryFinder or the CORBAservices Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception is raised. Depending on the severity of the internal error, the server
running the FactoryFinder or the CORBAservices Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBAservices Naming Service running, start a new
CORBAservices Naming Service. If there are no naming service servers
running, restart the application.

RegistrarNotAvailable

This exception is raised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception is raised. It is possible that no naming service
servers are running. Restart the application.

Description This method instructs the FactoryFinder to return a list containing all of the factory
keys and associated object references for application factories registered with the
CORBAservices Naming Service.

Return Values Returns a variant containing an array of DITobj_FactoryComponent objects. The
FactoryComponent object consists of a variant containing an array of
DICosNaming_NameComponent objects and an interface pointer to the application
factory.
CORBA C++ Programming Reference 5-37

5 FactoryFinder Interface

ber

et the
Programming Examples

This section describes how to program using the FactoryFinder interface.

Note: Remember to check for exceptions in your code.

Using the FactoryFinder Object

A FactoryFinder object is used by programmers to locate a reference to a factory
object. The FactoryFinder object provides operations to obtain one or more references
to factory objects based on the criteria specified.

There can be more than one FactoryFinder object in a process address space. Multiple
references to a FactoryFinder object must be supported. A FactoryFinder object is
semi-stateful in that it maintains state about the association between FactoryFinder
objects within a domain and a particular IIOP Server Listener/Handler (ISL/ISH)
through which to access the domain.

All FactoryFinder objects support the CosLifeCycle::FactoryFinder interface as
defined in CORBAservices Specification, Chapter 6 “Life Cycle Service,” Decem
1997, published by the Object Management Group. The interface contains one
operation that is used to obtain one or more references to factory objects that me
criteria specified.

Registering a Reference to a Factory Object

The following code fragment (Listing 5-8) shows how to use the TP Framework
interface to register a reference to a factory object with a FactoryFinder.

Listing 5-8 Server Application: Registering a Factory

// Server Application: Registering a factory.
// C++ Example.

TP::register_factory(factory_obj.in(), “TellerFactory”);
5-38 CORBA C++ Programming Reference

Programming Examples
Obtaining a Reference to a FactoryFinder Object Using the
CosLifeCycle::FactoryFinder Interface

The following code fragment (Listing 5-9) shows how to use of the
CORBA-compliant interface to obtain one or more references to factory objects.

Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

// Client Application: Obtaining the object reference
// to factory objects.

CosLifeCycle::Key_var factory_key = new CosLifeCycle::Key();
factory_key ->length(1);
factory_key[0].id = string_dupalloc(“strlen(“TellerFactory”) +1);
factory_key[0].kind = string_dupalloc(
 strlen(““FactoryInterface”) + 1);
strcpy(factory_key[0].id, “”TellerFactory”);
strcpy(facory_key[0].kind, “FactoryInterface”);
CosLifeCycle::Factories_var * flp = ff_np ->
 find_factories(factory_key.in());

Obtaining a Reference to a FactoryFinder Object Using the Extensions
Bootstrap object

The following code fragment (Listing 5-10) shows how to use of the BEA WebLogic
Enterprise extensions Bootstrap object to obtain a reference to a FactoryFinder object.

Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

// Client Application: Finding one factory using the Tobj
// approach.

Tobj_Bootstrap * bsp = new Tobj_Bootstrap(
 orb_ptr.in(), host_port);
CORBA::Object_varptr ff_op = bsp ->
 resolve_initial_references(“FactoryFinder”);
Tobj::FactoryFinder_ptrvar ff_np =
 Tobj::FactoryFinder::_narrow(ff_op);
CORBA C++ Programming Reference 5-39

5 FactoryFinder Interface

ly

 on an
Using Extensions to the FactoryFinder Object

BEA WebLogic Enterprise extends the FactoryFinder object with functionality to
support similar capabilities to those provided by the operations defined by CORBA,
but with a much simpler and more restrictive signature. The enhanced functionality is
provided by defining the Tobj::FactoryFinder interface. The operations defined
for the Tobj::FactoryFinder interface are intended to provide a focused, simplified
form of the equivalent capability defined by CORBA. An application developer can
choose to use the CORBA-defined or BEA WebLogic Enterprise extensions when
developing an application. The interface Tobj::FactoryFinder is derived from the
CosLifeCycle::FactoryFinder interface.

BEA WebLogic Enterprise extensions to the FactoryFinder object adhere to all the
same rules as the FactoryFinder object defined in the CORBAservices Specification,
Chapter 6 “Life Cycle Service,” December 1997, published by the Object
Management Group.

The implementation of the extended FactoryFinder object requires users to supp
either a CosLifeCycle::Key, as in the CORBA-defined
CosLifeCycle::FactoryFinder interface, or a NULL-terminated string containing
the identifier of a factory object to be located.

Obtaining One Factory Using Tobj::FactoryFinder

The following code fragment (Listing 5-11) shows how to use the BEA WebLogic
Enterprise extensions interface to obtain one reference to a factory object based
identifier.

Listing 5-11 Client Application: Finding Factories Using the BEA WebLogic
Enterprise Extensions Approach

CosLifeCycle::Factory_ptrvar fp_obj = ff_np ->
 find_one_factory_by_id(“TellerFactory”);
5-40 CORBA C++ Programming Reference

Programming Examples
Obtaining One or More Factories Using Tobj::FactoryFinder

The following code fragment (Listing 5-12) shows how to use the BEA WebLogic
Enterprise extensions to obtain one or more references to factory objects based on an
identifier.

Listing 5-12 Client Application: Finding One or More Factories Using the BEA
WebLogic Enterprise Extensions Approach

CosLifeCycle::Factories * _var flp = ff_np ->
 find_factories_by_id(“TellerFactory”);
CORBA C++ Programming Reference 5-41

5 FactoryFinder Interface
5-42 CORBA C++ Programming Reference

CHAPTER
6 Security Service

For a detailed discussion of Securty, see Using Security. This document provides an
introduction to crytography and other concepts associated with the BEA WebLogic
Enterprise security features, a description of how to secure your BEA WebLogic
Enterprise applications using the security features, and a guide to the use of the
application programming interfaces (APIs) in the Security Service.

A PDF file of Using Security is also provided in the online documentation.
CORBA C++ Programming Reference 6-1

6 Security Service
6-2 CORBA C++ Programming Reference

CHAPTER
7 Transactions Service

For a detailed discussion of Transactions, see Using Transactions. This document
provides an introduction to transactions, a description the application programming
interfaces (APIs), and a guide to the use of the application programming interfaces
(APIs) to develop applications.

A PDF file of Using Transactions is also provided in the online documentation.
CORBA C++ Programming Reference 7-1

7 Transactions Service
7-2 CORBA C++ Programming Reference

CHAPTER
8 Notification Service

For a detailed discussion of the Notification Service, see Using the Notification
Service. This document provides an introduction to the Notification Service, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to develop applications.

A PDF file of Using the Notification Service is also provided in the online
documentation.
CORBA C++ Programming Reference 8-1

8 Notification Service
8-2 CORBA C++ Programming Reference

CHAPTER
9 Request-Level
Interceptors

For a detailed discussion of request-level interceptors, see Using Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to implement request-level
interceptors.

A PDF file of Using Request-Level Interceptors is also provided in the online
documentation.
CORBA C++ Programming Reference 9-3

9 Request-Level Interceptors
9-4 CORBA C++ Programming Reference

CHAPTER
10 Interface Repository
Interfaces

This chapter describes the Interface Repository interfaces.

Note: Most of the information in this chapter is taken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the BEA WebLogic Enterprise implementation of the Interface
Repository interfaces. Used with permission by OMG.

The BEA WebLogic Enterprise Interface Repository contains the interface
descriptions of the CORBA objects that are implemented within the BEA WebLogic
Enterprise domain.

The BEA WebLogic Enterprise Interface Repository is based on the CORBA
definition of an Interface Repository. It offers a proper subset of the interfaces defined
by CORBA; that is, the APIs that are exposed to programmers are implemented as
defined by the Common Object Request Broker: Architecture and Specification
Revision 2.2. However, not all interfaces are supported. In general, the interfaces
required to read from the Interface Repository are supported, but the interfaces
required to write to the Interface Repository are not. Additionally, not all TypeCode
interfaces are supported.

Administration of the Interface Repository is done using tools specific to the BEA
WebLogic Enterprise software. These tools allow the system administrator to create an
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Administration Guide.
CORBA C++ Programming Reference 10-1

10 Interface Repository Interfaces

face
e set
Several abstract interfaces are used as base interfaces for other objects in the Interface
Repository. A common set of operations is used to locate objects within the Interface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objects that are containers inherit navigation operations from
the Container interface. Objects that are contained by other objects inherit navigation
operations from the Contained interface. The IDLType interface is inherited by all
Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1
character set.

Note: The Write interface is not documented in this chapter because the BEA
WebLogic Enterprise software supports only read access to the Interface
Repository. Any attempt to use the Write interface to the Interface Repository
will raise the exception CORBA::NO_IMPLEMENT.

Structure and Usage

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and populated using the idl2ir
administrative command. For a description of this command, see the Administration
Guide. From the programmer’s point of view, there is no write access to the Inter
Repository. None of the write operations defined by CORBA are supported, nor ar
operations on nonread-only attributes.
10-2 CORBA C++ Programming Reference

Structure and Usage

hether

nts
.

ject
strap
ction

ry.

ce

al
e
Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined by the CORBA Common
Object Request Broker: Architecture and Specification, Revision 2.2, are described in
this chapter.

Programming Information

The interface to a server is defined in the OMG IDL file. How the OMG IDL file is
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL file to generate stubs, and so forth. (For
more information, see Creating CORBA Client Applications.) No other access to the
Interface Repository is required.

Client applications that use the Dynamic Invocation Interface (DII) need to access the
Interface Repository programmatically. The interface to the Interface Repository is
defined in this chapter and is discussed in “Building Client Applications” on
page 10-5. The exact steps taken to access the Interface Repository depend on w
the client is seeking information about a specific object, or browsing the Interface
Repository to find an interface. To obtain information about a specific object, clie
use the CORBA::Object::_get_interface method to obtain an InterfaceDef object
(Refer to CORBA::Object::_get_interface for a description of this method.)
Using the InterfaceDef object, the client can get complete information about the
interface.

Before a DII client can browse the Interface Repository, it needs to obtain the ob
reference of the Interface Repository to start the search. DII clients use the Boot
object to obtain the object reference. (For a description of this method, see the se
“Tobj_Bootstrap::register_callback_port” on page 4-19.) Once the client has the
object reference, it can navigate the Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Reposito

Client applications that use ActiveX are not aware that they are using the Interfa
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DII client. ActiveX clients include the Bootstrap object in the Visu
Basic code. Like DII clients, ActiveX clients use the Bootstrap object to obtain th
CORBA C++ Programming Reference 10-3

10 Interface Repository Interfaces

e

rver.

ction
a DII

ct

t

es a
Interface Repository object reference. (Refer to
“Tobj_Bootstrap::register_callback_port” on page 4-19 for a description of this
method.) Once the client has the object reference, it can navigate the Interface
Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interfac
Repository.

Performance Implications

All run-time access to the Interface Repository is via the Interface Repository se
Because there is considerable overhead in making requests of a remote server
application, designers need to be aware of this. For example, consider the intera
required to use an object reference to obtain the necessary information to make
invocation on the object reference. The steps are as follows:

1. The client application invokes the _get_interface opertion on the
CORBA::Object to get the InterfaceDef object associated with the object in
question. This causes a message to be sent to the ORB that created the obje
reference.

2. The ORB returns the InterfaceDef object to the client.

3. The client invokes one or more _is_a operations on the object to determine wha
type of interface is supported by the object.

4. After the client has identified the interface, it invokes the describe_interface
operation on the Interface object to get a full description of the interface (for
example, version number, operations, attributes, and parameters). This caus
message to be sent to the Interface Repository, and a reply is returned.

5. The client is now ready to construct a DII request.
10-4 CORBA C++ Programming Reference

Building Client Applications
Building Client Applications

Clients that use the Interface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application is using the BEA
WebLogic Enterprise ORB, the BEA WebLogic Enterprise software provides the
stubs in the form of a library. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs. The Interface Repository definitions are
contained within the CORBA.h file, but they are not included by default.

Note: To use the Interface Repository definitions, you must define the
ORB_INCLUDE_REPOSITORY macro before including CORBA.h in your client
application code (for example: #Define ORB_INCLUDE_REPOSITORY).

If the client application is using a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide a local Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

You use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see the command
“Tobj_Bootstrap::register_callback_port” on page 4-19.
CORBA C++ Programming Reference 10-5

10 Interface Repository Interfaces

in
e
Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that is implemented in
the BEA WebLogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

 enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 };
};

Identifiers are the simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An Identifier is not necessarily unique within an entire Interface
Repository; it is unique only within a particular Repository, ModuleDef, InterfaceDef,
or OperationDef.

A ScopedName is a name made up of one or more identifiers separated by the
characters “::”. They correspond to OMG IDL scoped names. An absolute
ScopedName is one that begins with “::” and unambiguously identifies a definition
a Repository. An absolute ScopedName in a Repository corresponds to a global nam
in an OMG IDL file. A relative ScopedName does not begin with “::” and must be
resolved relative to some context.
10-6 CORBA C++ Programming Reference

Interface Repository Interfaces

itself.

ithin
A RepositoryId is an identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because RepositoryIds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A DefinitionKind identifies the type of an Interface Repository object.

IRObject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository

module CORBA {
 interface IRObject {
 readonly attribute DefinitionKind def_kind;
 };
};

The def_kind attribute identifies the type of the definition.

Contained Interface

The Contained interface (shown below) is inherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects w
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

module CORBA {
 typedef string VersionSpec;

 interface Contained : IRObject {
 readonly attribute RepositoryId id;
 readonly attribute Identifier name;
 readonly attribute VersionSpec version;
 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
CORBA C++ Programming Reference 10-7

10 Interface Repository Interfaces

ce.
he

 any value;
 };

 Description describe ();
 };
};

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing Container
object. It also has a version attribute that distinguishes it from other versioned objects
with the same name. The BEA WebLogic Enterprise Interface Repository does not
support simultaneous containment or multiple versions of the same named object.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined_in
attribute identifies the InterfaceDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained
object uniquely within its enclosing Repository. If this object’s defined_in attribute
references a Repository, the absolute_name is formed by concatenating the string
“::” and this object’s name attribute. Otherwise, the absolute_name is formed by
concatenating the absolute_name attribute of the object referenced by this object’s
defined_in attribute, the string “::” , and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interfa
The description structure associated with each interface is provided below with t
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, if the describe operation is
invoked on an attribute object, the kind field contains dk_Attribute and the value
field contains an any, which contains the AttributeDescription structure.
10-8 CORBA C++ Programming Reference

Interface Repository Interfaces
Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

module CORBA {
 typedef sequence <Contained> ContainedSeq;

 interface Container : IRObject {
 Contained lookup (in ScopedName search_name);

 ContainedSeq contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;
 };

 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq describe_contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);
 };
};

The lookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped name
(beginning with “::”) locates the definition relative to the enclosing Repository. If no
object is found, a nil object reference is returned.
CORBA C++ Programming Reference 10-9

10 Interface Repository Interfaces

ed

call
The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, all of the interfaces within a specific module, and so on.

limit_type

If limit_type is set to dk_all, objects of all types are returned. For
example, if this is an InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute.

exclude_inherited

If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
The lookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
describe_contents operation combines the contents operation and the
describe operation. For each object returned by the contents operation, the
description of the object is returned (that is, the object’s describe operation
is invoked and the results are returned).

search_name

Specifies which name is to be searched for.

levels_to_search

Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contain
by the object as well. Setting levels_to_search to -1 searches the current
object and all contained objects. Setting levels_to_search to 1 searches
only the current object.

max_returned_objs

Limits the number of objects that can be returned in an invocation of the
to the number provided. Setting the parameter to -1 indicates return all
contained objects.
10-10 CORBA C++ Programming Reference

Interface Repository Interfaces
IDLType Interface

The IDLType interface (shown below) is an abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides access to the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

module CORBA {
 interface IDLType : IRObject {
 readonly attribute TypeCode type;
 };
};

The type attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within a module or an interface) either
by name or by id.

module CORBA {
 interface Repository : Container {
 Contained lookup_id (in RepositoryId search_id);
 PrimitiveDef get_primitive (in PrimitiveKind kind);

 };
};

The lookup_id operation is used to look up an object in a Repository, given its
RepositoryId. If the Repository does not contain a definition for search_id, a nil
object reference is returned.

The get_primitive operation returns a reference to a PrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.
CORBA C++ Programming Reference 10-11

10 Interface Repository Interfaces
ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

module CORBA {
 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 };

};

The inherited describe operation for a ModuleDef object returns a
ModuleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

module CORBA {
 interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 readonly attribute IDLType type_def;
 readonly attribute any value;
 };

 struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
 };
};
10-12 CORBA C++ Programming Reference

Interface Repository Interfaces

.

r all

a
type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).

type_def
Identifies the definition of the type of the constant.

value
Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface fo
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

module CORBA {
 interface TypedefDef : Contained, IDLType {
 };

 struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

The inherited describe operation for interfaces derived from TypedefDef returns
TypeDescription.
CORBA C++ Programming Reference 10-13

10 Interface Repository Interfaces
StructDef

A StructDef (shown below) represents an OMG IDL structure definition. It contains
the members of the struct.

module CORBA {
 struct StructMember {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <StructMember> StructMemberSeq;

 interface StructDef : TypedefDef, Container{
 readonly attribute StructMemberSeq members;
 };
};

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) represents an OMG IDL union definition. It contains the
members of the union.

module CORBA {
 struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <UnionMember> UnionMemberSeq;

 interface UnionDef : TypedefDef, Container {
 readonly attribute TypeCode discriminator_type;
 readonly attribute IDLType discriminator_type_def;
 readonly attribute UnionMemberSeq members;
 };
};
10-14 CORBA C++ Programming Reference

Interface Repository Interfaces

ame
)

discriminator_type and discriminator_type_def
Describe and identify the union’s discriminator type.

members

Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of the discriminator_type.
Adjacent members can have the same name. Members with the same n
must also have the same type. A label with type octet and value 0 (zero
indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.

EnumDef

An EnumDef (shown below) represents an OMG IDL enumeration definition.

module CORBA {
 typedef sequence <Identifier> EnumMemberSeq;

 interface EnumDef : TypedefDef {
 readonly attribute EnumMemberSeq members;
 };
};

members
Contains a distinct name for each possible value of the enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

AliasDef

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

module CORBA {
 interface AliasDef : TypedefDef {
 readonly attribute IDLType original_type_def;
 };
};
CORBA C++ Programming Reference 10-15

10 Interface Repository Interfaces
original_type_def
Identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from TypedefDef
or Contained.

module CORBA {
 enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring
 };

 interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
 };
};

kind
Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref
represents the OMG IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.
10-16 CORBA C++ Programming Reference

Interface Repository Interfaces
module CORBA {
 interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 readonly attribute StructMemberSeq members;
 };

 struct ExceptionDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

type
tk_except TypeCode that describes the exception.

members
Describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

module CORBA {
 enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

 interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
 };

 struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
 };
};
CORBA C++ Programming Reference 10-17

10 Interface Repository Interfaces
type
Provides the TypeCode describing the type of this attribute.

type_def
Identifies the object that defines the type of this attribute.

mode
Specifies read only or read/write access for this attribute.

OperationDef

An OperationDef (shown below) represents the information needed to define an
operation of an interface.

module CORBA {
 enum OperationMode {OP_NORMAL, OP_ONEWAY};

 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentifier> ContextIdSeq;

 typedef sequence <ExceptionDef> ExceptionDefSeq;
 typedef sequence <ExceptionDescription> ExcDescriptionSeq;

 interface OperationDef : Contained {
 readonly attribute TypeCode result;
 readonly attribute IDLType result_def;
 readonly attribute ParDescriptionSeq params;
 readonly attribute OperationMode mode;
 readonly attribute ContextIdSeq contexts;
 readonly attribute ExceptionDefSeq exceptions;
 };

 struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
10-18 CORBA C++ Programming Reference

Interface Repository Interfaces

is
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
 };
};

result
A TypeCode that describes the type of the value returned by the operation.

result_def
Identifies the definition of the returned type.

params
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptions in
the sequence is significant. The name member of each structure provides the
parameter name. The type member is a TypeCode describing the type of the
parameter. The type_def member identifies the definition of the type of the
parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter.

mode

The operation’s mode is either oneway (that is, no output is returned) or
normal.

contexts
Specifies the list of context identifiers that apply to the operation.

exceptions
Specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an
OperationDescription.

The inherited describe_contents operation provides a complete description of th
operation, including a description of each parameter defined for this operation.
CORBA C++ Programming Reference 10-19

10 Interface Repository Interfaces
InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.

module CORBA {
 interface InterfaceDef;
 typedef sequence <InterfaceDef> InterfaceDefSeq;
 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence <OperationDescription> OpDescriptionSeq;
 typedef sequence <AttributeDescription> AttrDescriptionSeq;

 interface InterfaceDef : Container, Contained, IDLType {

 readonly attribute InterfaceDefSeq base_interfaces;

 boolean is_a (in RepositoryId interface_id);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

 FullInterfaceDescription describe_interface();

 };

 struct InterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 };
};

base_interfaces
Lists all the interfaces from which this interface inherits. The is_a operation
returns TRUE if the interface on which it is invoked either is identical to or
inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise, it returns FALSE.
10-20 CORBA C++ Programming Reference

Interface Repository Interfaces
The describe_interface operation returns a FullInterfaceDescription describing
the interface, including its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.
CORBA C++ Programming Reference 10-21

10 Interface Repository Interfaces
10-22 CORBA C++ Programming Reference

CHAPTER
11 Joint Client/Servers

This chapter describes programming requirements for joint client/servers and the
BEAWrapper Callbacks API.

For either a BEA WebLogic Enterprise client or joint client/server (that is, a client that
can receive and process object invocations), the programmer writes the client
main(). The main() uses BEA WebLogic Enterprise environmental objects to
establish connections, set up security, and start transactions.

BEA WebLogic Enterprise clients invoke operations on objects. In the case of DII,
client code creates the DII Request object and then invokes one of two operations on
the DII Request. In the case of static invocation, client code performs the invocation
by performing what looks like an ordinary C++ invocation (which ends up calling code
in the generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG, and BEA WebLogic Enterprise environmental objects that are
supplied with the BEA WebLogic Enterprise software, to perform functions unique to
BEA WebLogic Enterprise.

For BEA WebLogic Enterprise joint client/servers, the client code must be structured
so that it can act as a server for callback BEA WebLogic Enterprise objects. Such
clients do not use the TP Framework and are not subject to BEA WebLogic Enterprise
system administration. Besides the programming implications, this means that joint
client/servers do not have the same scalability and reliability as BEA WebLogic
Enterprise servers, nor do they have the state management and transaction behavior
available in the TP Framework. If a user wants to have those characteristics, the
application must be structured in such a way that the object implementations are in a
BEA WebLogic Enterprise server, rather than in a client.

The following sections describe the mechanisms you use to add callback support to a
BEA WebLogic Enterprise client. In some cases, the mechanisms are contrasted with
the BEA WebLogic Enterprise server mechanisms that use the TP Framework.
CORBA C++ Programming Reference 11-1

11 Joint Client/Servers
Main Program and Server Initialization

In a BEA WebLogic Enterprise server, you use the buildobjserver command to
create the main program for the server. That main program takes care of all BEA
WebLogic Enterprise- and CORBA-related initialization of the server functions. The
server main program allows the user to take part in server initialization and shutdown
by making invocations on a user-written C++ object, the Server class.

In contrast, for a BEA WebLogic Enterprise joint client/server (as for a BEA
WebLogic Enterprise client), you create the main program and are responsible for all
initialization. You do not need to provide a Server object because you have complete
control over the main program and you can provide initialization and shutdown code
in any way that is convenient.

The specific initialization needed for a joint client/server is discussed below.

Servants

Servants (method code) for BEA WebLogic Enterprise joint client/servers are very
similar to servants for BEA WebLogic Enterprise servers. All business logic is written
the same way. The differences result from not using the TP Framework, which
includes the Server, TP, and Tobj_ServantBase interfaces. Therefore, the main
difference is that you use CORBA functions directly instead of indirectly through the
TP Framework.

The Server interface is used in BEA WebLogic Enterprise servers to allow the TP
Framework to ask the user to create a servant for an object when the ORB receives a
request for that object. In BEA WebLogic Enterprise joint client/servers, the user
program is responsible for creating a servant before any requests arrive; thus, the
Server interface is not needed. Typically, the program creates a servant and then
activates the object (using the servant and an ObjectId; the ObjectId is possibly
system generated) before handing a reference to the object. Such an object might be
used to handle callbacks. Thus, the servant already exists and the object is activated
before a request for the object arrives.
11-2 CORBA C++ Programming Reference

Servant Inheritance from Skeletons

odels

rom

s
s not

ant’s
Instead of invoking the TP interface to perform certain operations, client servants
directly invoke the ORB and POA (which is what the TP interface does internally).
Alternately, since much of the interaction with the ORB and POA is the same for all
applications, for ease of use, the BEA WebLogic Enterprise client library provides a
convenience wrapper object that does the same things, using a single operation. For a
discussion of how to use the convenience wrapper object, see “Callback Object M
Supported” on page 11-4 and “Preparing Callback Objects Using BEAWrapper
Callbacks” on page 11-7.

Servant Inheritance from Skeletons

In a BEA WebLogic Enterprise client that supports callbacks, as well as in a BEA
WebLogic Enterprise server, you write a C++ implementation class that inherits f
the same skeleton class name generated by the IDL compiler (the idl command). For
example, given the IDL:

interface Hospital{ … };

The skeleton generated by the idl command contains a “skeleton” class,
POA_Hospital, that the user-written class inherits from, as in:

class Hospital_i : public POA_Hospital { ... };

In a BEA WebLogic Enterprise server, the skeleton class inherits from the TP
Framework class Tobj_ServantBase, which in turn inherits from the predefined
PortableServer::ServantBase.

The inheritance tree for a callback object implementation in a joint client/server i
different than that in a BEA WebLogic Enterprise server. The skeleton class doe
inherit from the TP Framework class Tobj_ServantBase, but instead inherits
directly from PortableServer::ServantBase. This behavior is achieved by
specifying the -P option in the idl command.

Not having the Tobj_ServantBase class in the inheritance tree for a servant
means that the servant does not have activate_object and
deactivate_object methods. In a BEA WebLogic Enterprise server, these
methods are called by the TP Framework to dynamically initialize and save a serv
CORBA C++ Programming Reference 11-3

11 Joint Client/Servers

d to

ather

uires

the

t a
A
state before invoking a method on the servant. For a BEA WebLogic Enterprise client
that supports callbacks, you must write code that explicitly creates a servant and
initializes a servant’s state.

Callback Object Models Supported

BEA WebLogic Enterprise software supports four kinds of callback objects and
provides wrappers for the three that are most common. These objects correspon
three combinations of POA policies. The POA policies control both the types of
objects and the types of object references that are possible.

The POA policies that are applicable are:

n The LifeSpanPolicy, which controls how long an object reference is valid.

n The IdAssignmentPolicy, which controls who assigns the ObjectId—the user or
the system.

These objects are explained primarily in terms of their behavioral characteristics r
than in details about how the ORB and the POA handle them. Those details are
discussed in the next sections, using either direct ORB and POA calls (which req
a little extra knowledge of CORBA servers) or using the BEAWrapper Callbacks
interface, which hides the ORB and POA calls (for users who do not care about
details).

n Transient/SystemId—object references are valid only for the life of the client
process. The ObjectId is not assigned by the client application, but is a unique
value assigned by the system. This type of object is useful for invocations tha
client wants to receive only until the client terminates. (The corresponding PO
LifeSpanPolicy value is TRANSIENT and the IdAssignmentPolicy is SYSTEM_ID.)

n Persistent/SystemId—object references are valid across multiple activations.
The ObjectId is not assigned by the client application, but is a unique value
assigned by the system. This type of object and object reference is useful when
the client goes up and down over a period of time. When the client is up, it can
receive callback objects on that particular object reference.

Typically, the client will create the object reference once, save it in its own
permanent storage area, and reactivate the servant for that object every time it
11-4 CORBA C++ Programming Reference

Preparing Callback Objects Using CORBA

t.

OA
ogic

ust

ck
re

EA

e
comes up. (The corresponding POA policy values are PERSISTENT and
SYSTEM_ID.)

n Persistent/UserId—this is the same as Persistent/SystemId with the exception
that the ObjectId has to be assigned by the client application. Such an
ObjectId might be, for example, a database key meaningful only to the clien
(The corresponding POA policy values are PERSISTENT and USER_ID.)

Note: The Transient/UserId policy combination is not considered particularly
important. It is possible for users to provide for themselves by using the P
in a manner analogous to either of the persistent cases, but the BEA WebL
Enterprise wrappers do not provide special help to do so.

Note: For BEA WebLogic Enterprise native joint client/servers, neither of the
Persistent policies is supported, only the Transient policy.

Preparing Callback Objects Using CORBA

To set up BEA WebLogic Enterprise callback objects using CORBA, the client m
do the following:

1. Establish a connection with a POA with the appropriate policies for the callba
object model. (This can be the root POA, available by default, or it may requi
creating a new POA.)

2. Create a servant (that is, an instance of the C++ implementation class for the
interface).

3. Inform the POA that the servant is ready to accept requests on the callback B
WebLogic Enterprise object. Technically, this means the client activates the
object in the POA (that is, puts the servant and the ObjectId into the POA’s
Active Object Map).

4. Tell the POA to start accepting requests from the network (that is, activate th
POA itself).

5. Create an object reference for the callback BEA WebLogic Enterprise object.
CORBA C++ Programming Reference 11-5

11 Joint Client/Servers
6. Give out the object reference. This usually happens by making an invocation on
another object with the callback object reference as a parameter (that is, the
parameter is a callback object). That other object will then invoke the callback
object (perform a callback invocation) at some later time.

Assuming that the client already has obtained a reference to the ORB, performing this
task takes four interactions with the ORB and the POA. It might look like the following
for the Transient/SystemId model. In this model, only the Root POA is needed.

// Create a servant for the callback Object
Catcher_i* my_catcher_i = new Catcher_i();

// Get root POA reference and activate the POA
1 CORBA::Object_var oref =
 orb->resolve_initial_references("RootPOA");
2 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);
3 root_poa -> the_POAManager() -> activate();
4 PortableServer::objectId_var temp_Oid =
 root_poa ->activate_object (my_catcher_i);
5 oref = root_poa->create_reference_with_id(
 temp_Oid, _tc_Catcher->id());
6 Catcher_var my_catcher_ref = Catcher::_narrow(oref);

To use the Persistent/UserId model, there are some additional steps required when
creating a POA. Further, the ObjectId is specified by the client, and this requires
more steps. It might look like the following.

 Catcher_i* my_catcher_i = new Catcher_i();
 const char* oid_str = "783";
1 PortableServer::objectId_var oid =
 PortableServer::string_to_objectId(oid_str);

// Find root POA
2 CORBA::Object_var oref =
 orb->resolve_initial_references("RootPOA");
3 PortableServer::POA_var root_poa =
 PortableServer::POA::_narrow(oref);

// Create and activate a Persistent/UserId POA
4 CORBA::PolicyList policies(2);
5 policies.length(2);
6 policies[0] = root_poa->create_lifespan_policy(
 PortableServer::PERSISTENT);
7 policies[1] = root_poa->create_id_assignment_policy(
 PortableServer::USER_ID);
8 PortableServer::POA_var my_poa_ref =
 root_poa->create_POA(
11-6 CORBA C++ Programming Reference

Preparing Callback Objects Using BEAWrapper Callbacks
 "my_poa_ref", root_poa->the_POAManager(), policies);
9 root_poa->the_POAmanager()->activate();

// Create object reference for callback Object
10 oref = my_poa_ref -> create_reference_with_id(
 oid, _tc_Catcher->id());
11 Catcher_var my_catcher_ref = Catcher::_narrow(oref);

// activate object
12 my_poa_ref -> activate_object_with_id(oid, my_catcher_i);

// Make the call passing the callback ref
 foo -> register_callback (my_catcher_ref);

All the interfaces and operations described here are standard CORBA interfaces and
operations.

Preparing Callback Objects Using
BEAWrapper Callbacks

Since the code required for callback objects is nearly identical for every client that
supports callbacks, you may find it convenient to use the BEAWrappers provided in
the library provided for joint client/servers.

The BEAWrappers are described in IDL, as follows.

Note: These same wrappers are designed to be used for the WebLogic Enterprise
V4.2 (Java) software, where a POA is not yet available, although aspects
related to POAs do exist (notably, PortableServer.Servant). For a
discussion of these for the Java software, see CORBA Java Programming
Reference.

// File: BEAWrapper
#ifndef _BEA_WRAPPER _IDL_
#define _BEA_WRAPPER _IDL_
#include <orb.idl>
#include <PortableServer.idll>

#pragma prefix “beasys.com”
CORBA C++ Programming Reference 11-7

11 Joint Client/Servers
module BEAWrapper {
 interface Callbacks
 {
 exception ServantAlreadyActive{ };
 exception ObjectAlreadyActive { };
 exception NotInRequest{ };

 // set up transient callback Object
 // -- prepare POA, activate object, return objref
 Object start_transient(
 in PortableServer::Servant Servant,
 in CORBA::RepositoryId rep_id)
 raises (ServantAlreadyActive);

 // set up persistent/systemid callback Object
 Object start_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::Repository rep_id,
 out string stroid)
 raises (ServantAlreadyActive);

 // reinstate set up for persistent/systemid
 // callback object
 Object restart_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

 // set up persistent/userid callback Object
 Object start_persistent_userid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

 // stop servicing a particular callback Object
 // with the given servant
 void stop_object(in PortableServer::Servant servant);

 //shutdown Stop all callback Object processing
 void stop_all_objects();

 // get oid string for the current request
 string get_string_oid() raises (NotInRequest);
 };
}
#endif /* _BEA_WRAPPER _IDL_ */

The BEAwrappers are described in C++ as follows:
11-8 CORBA C++ Programming Reference

Preparing Callback Objects Using BEAWrapper Callbacks
C++ Declarations (in beawrapper.h)

#ifndef _BEAWRAPPER_H_
#define _BEAWRAPPER_H_

#include <PortableServer.h>
class BEAWrapper{
class Callbacks{
 public:
 Callbacks (CORBA::ORB_ptr init_orb);

 CORBA::Object_ptr start_transient (
 PortableServer::Servant servant,
 const char * rep_id);

 CORBA::Object_ptr start_persistent_systemid (
 PortableServer::Servant servant,
 const char * rep_id,
 char * & stroid);

 CORBA::Object_ptr restart_persistent_systemid (
 PortableServer::Servant servant,
 const char * rep_id,
 const char * stroid);

 CORBA::Object_ptr start_persistent_userid (
 PortableServer::Servant servant,
 const char * rep_id,
 const char * stroid);

 void stop_object(PortableServer::Servant servant);

 char* get_string_oid ();

 void stop_all_objects();

 ~Callbacks();

 private:

 static CORBA::ORB_var orb_ptr;

 static PortableServer::POA_var root_poa;
 static PortableServer::POA_var trasys_poa;
 static PortableServer::POA_var persys_poa;
 static PortableServer::POA_var peruser_poa;
 };
CORBA C++ Programming Reference 11-9

11 Joint Client/Servers
};
#endif // _BEAWRAPPER_H_

The description of each operation in the BEAWrapper::Callbacks interface follows,
in the order declared above.

BEAWrapper Callbacks API

This API is described in the following sections.
11-10 CORBA C++ Programming Reference

BEAWrapper Callbacks API
Callbacks

Synopsis Returns a reference to the Callbacks interface.

C++ Binding BEAWrapper::Callbacks(CORBA::ORB_ptr init_orb);

Java Binding public Callbacks(org.omg.CORBA.Object init_orb);

Argument init_orb

The ORB to be used for all further operations.

Return Value A reference to the Callbacks object.

Description The constructor returns a reference to the Callbacks interface. Only one such object
should be created for the process, even if multiple threads are used. Using more than
one such object will result in undefined behavior.

Exception CORBA::IMP_LIMIT

The BEAWrapper::Callbacks class has already be instantiated with an
ORB pointer. Only one instance of this class can be used in a process. Users
who need additional flexibility should use the POA directly.
CORBA C++ Programming Reference 11-11

11 Joint Client/Servers
start_transient

Synopsis Activates an object, sets the ORB and the POA to the proper state, and returns an object
reference to the activated object.

IDL Object start_transient(in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id)
 raises (ServantAlreadyActive);

C++ Binding CORBA::Object_ptr start_transient(
 PortableServer::Servant servant,
 const char* rep_id);

Java Binding org.omg.CORBA.Object start_transient(
 org.omg.PortableServer.Servant servant,
 java.lang.String rep_id);

Arguments servant

An instance of the C++ implementation class for the interface.

rep_id

The repository id of the interface.

Return Value CORBA::Object_ptr

A reference to the object that was created with the ObjectId generated by the
system and the rep_id provided by the user. The object reference will need
to be converted to a specific object type by invoking the _narrow()
operation defined for the specific object. The caller is responsible for
releasing the object when the conversion is done.

 Description This operation performs the following actions:

n Activates an object using the Servant supplied to service objects of the type
rep_id, using an ObjectId generated by the system.

n Sets the ORB and the POA into the state in which they will accept requests on
that object.

n Returns an object reference to the activated object. The returned object reference
will be valid only until the termination of the client or until the callback servant
is halted by the user via the stop_object operation; after that, invocations on
that object reference are no longer valid and can never be made valid.
11-12 CORBA C++ Programming Reference

BEAWrapper Callbacks API
Exceptions ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only
for a callback with a single ObjectId. To receive callbacks on objects
containing different ObjectIds, you must create different servants and
activate them separately. The same servant can be re-used only if a
stop_object operation tells the system to stop using the servant for its
original ObjectId.

CORBA::BAD_PARAM

The repository ID was a null string or the servant was a null pointer.
CORBA C++ Programming Reference 11-13

11 Joint Client/Servers
start_persistent_systemid

Synopsis Activates an object, sets the ORB and the POA to the proper state, sets the output
parameter stroid, and returns an object reference to the activated object.

IDL Object start_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 out string stroid)
 raises (ServantAlreadyActive);

C++ Binding CORBA::Object_ptr start_persistent_systemid(
 PortableServer::Servant servant,
 const char* rep_id,
 char*& stroid);

Java Binding org.omg.CORBA.Object start_persistent_systemid(
 org.omg.PortableServer.Servant servant,
 java.lang.String rep_id,
 java.lang.String stroid);

Arguments servant

An instance of the C++ implementation class for the interface.

rep_id

The repository ID of the interface.

stroid

This argument is set by the system and is opaque to the user. The client will
use it when it reactivates the object at a later time (using
restart_persistent_systemid), most likely after the client process has
terminated and restarted.

Return Value CORBA::Object_ptr

An object reference created with the ObjectId generated by the system and
the rep_id provided by the user. The object reference will need to be
converted to a specific object type by invoking the _narrow() operation
defined for the specific object. The caller is responsible for releasing the
object when the conversion is done.
11-14 CORBA C++ Programming Reference

BEAWrapper Callbacks API
Description This operation performs the following actions:

n Activates an object using the Servant supplied to service objects of the type
rep_id, using an ObjectId generated by the system.

n Sets the ORB and the POA into the state in which they will accept requests on
that object.

n Sets the output parameter stroid to the stringified version of an ObjectId
assigned by the system.

n Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
restarts again, and then activates a servant with the same rep_id and for the
same ObjectId, the servant will accept requests made on that same object
reference. Since the ObjectId was generated by the system, the application has
to save that ObjectId.

Exceptions ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only
for a callback with a single ObjectId. To receive callbacks on objects
containing different ObjectIds, you must create different servants and
activate them separately. The same servant can be reused only if a stop
operation tells the system to stop using the servant for its original ObjectId.

CORBA::BAD_PARAMETER

The repository ID was a null string or the servant was a null pointer.

CORBA::IMP_LIMIT

In addition to other system reasons for this exception, a reason unique to this
situation is that the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.
CORBA C++ Programming Reference 11-15

11 Joint Client/Servers
restart_persistent_systemid

Synopsis Activates an object, sets the ORB and the POA to the proper state, and returns an object
reference to the activated object.

IDL Object restart_persistent_systemid(
 in PortableServer::Servant servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

C++ Binding CORBA::Object_ptr restart_persistent_systemid(
 PortableServer::Servant servant,
 const char* rep_id
 const char* stroid);

Java Binding org.omg.CORBA.Object restart_persistent_systemid(
 org.omg.PortableServer.Servant servant,
 java.lang.String rep_id,
 java.lang.String stroid);

Arguments servant

An instance of the C++ implementation class for the interface.

rep_id

The repository ID of the interface.

stroid

The stringified version of the ObjectId provided by the user to be set in the
object reference being created. It must have been returned from a previous
call on start_persistent_systemid.

Return Value CORBA::Object_ptr

An object reference created with the stringified ObjectId stroid and the
rep_id provided by the user. The object reference will need to be converted
to a specific object type by invoking the _narrow() operation defined for the
specific object. The caller is responsible for releasing the object when done.

Description This operation performs the following actions:

n Activates an object using the Servant supplied to service objects of the type
rep_id, using the supplied stroid (a stringified ObjectId), which must have
been obtained by a previous call on start_persistent_systemid.
11-16 CORBA C++ Programming Reference

BEAWrapper Callbacks API
n Sets the ORB and the POA into the state in which they will accept requests on
that object.

n Returns an object reference to the object activated.

n The re-activation would be done using the "restart_persistent_systemid" method.

Exceptions ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only
for a callback with a single ObjectId. To receive callbacks on objects
containing different ObjectIds, you must create different servants and
activate them separately. The same servant can be reused only if a
stop_object operation tells the system to stop using the servant for its
original ObjectId.

ObjectAlreadyActive

The stringified ObjectId is already being used for a callback. A given
ObjectId can have only one servant associated with it. If you wish to change
to a different servant, you must first invoke stop_object with the servant
currently in use.

CORBA::BAD_PARAM

The repository ID was a null string or the servant was a null pointer or the
ObjectId supplied was not previously assigned by the system.

CORBA::IMP_LIMIT

In addition to other system reasons for this exception, a reason unique to this
situation is that the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.
CORBA C++ Programming Reference 11-17

11 Joint Client/Servers
start_persistent_userid

Synopsis Activates an object, sets the ORB and the POA to the proper state, and returns an object
reference to the activated object.

IDL Object start_persistent_userid(
 portableServer::Servant a_servant,
 in CORBA::RepositoryId rep_id,
 in string stroid)
 raises (ServantAlreadyActive, ObjectAlreadyActive);

C++ Binding CORBA::Object_ptr start_persistent_userid (
 PortableServer::Servant servant,
 const char* rep_id,
 const char* stroid);

Java Binding org.omg.CORBA.Object start_persistent_userid(
 org.omg.PortableServer.Servant servant,
 java.lang.String rep_id,
 java.lang.String stroid);

Arguments servant

An instance of the C++ implementation class for the interface.

rep_id

The repository ID of the interface.

stroid

The stringified version of an ObjectId provided by the user to be set in the
object reference being created. The stroid holds application-specific data
and is opaque to the ORB.

Return Value CORBA::Object_ptr

An object reference created with the stringified ObjectId stroid and the
rep_id provided by the user. The object reference will need to be converted
to a specific object type by invoking the _narrow() operation defined for the
specific object. The caller is responsible for releasing the object when the
conversion is done.
11-18 CORBA C++ Programming Reference

BEAWrapper Callbacks API
Description This operation performs the following actions:

n Activates an object using the Servant supplied to service objects of the type
rep_id, using the object id stroid.

n Sets the ORB and the POA into the state in which they will accept requests on
that object.

n Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
and restarts again, and then activates a servant with the same rep_id and for the
same ObjectId, the servant will accept requests made on that same object
reference.

Exceptions ServantAlreadyActive

The servant is already being used for a callback. A servant can be used only
for a callback with a single ObjectId. To receive callbacks on objects
containing different ObjectIds, you must create different servants and
activate them separately. The same servant can be reused only if a
stop_object operation tells the system to stop using the servant for its
original ObjectId.

ObjectAlreadyActive

The stringified ObjectId is already being used for a callback. A given
ObjectId can have only one servant associated with it. If you wish to change
to a different servant, you must first invoke stop_object with the servant
currently in use.

CORBA::BAD_PARAM

The repository ID was a null string or the servant was a null pointer.

CORBA::IMP_LIMIT

In addition to other system reasons for this exception, a reason unique to this
situation is that the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.
CORBA C++ Programming Reference 11-19

11 Joint Client/Servers
stop_object

Synopsis Tells the ORB to stop accepting requests on the object that is using the given servant.

IDL void stop_object(in PortableServer::Servant servant);

C++ Binding void stop_object(PortableServer::Servant servant);

Java Binding void stop_object(org.omg.PortableServer.Servant servant);

Argument servant

An instance of the C++ implementation class for the interface. The
association between this servant and its ObjectId will be removed from the
Active Object Map.

Description This operation tells the ORB to stop accepting requests on the given servant. It does
not matter what state the servant is in, activated or deactivated; no error is reported.

Note: If you do an invocation on a callback object after you call the stop_object
operation, the OBJECT_NOT_EXIST exception is returned to the caller. This is
because the stop_object operation, in effect, deletes the object.

Return Value None.

Exceptions None.
11-20 CORBA C++ Programming Reference

BEAWrapper Callbacks API
stop_all_objects

Synopsis Tells the ORB to stop accepting requests on all servants.

IDL void stop_all_objects ();

C++ Binding void stop_all_objects ();

Java Binding void stop_all_objects ();

Return Value None.

Description This operation tells the ORB to stop accepting requests on all servants that have been
set up in this process.

Usage Note If a client calls the ORB::shutdown method, then it must not subsequently call
stop_all_objects.

Exceptions None.
CORBA C++ Programming Reference 11-21

11 Joint Client/Servers
get_string_oid

Synopsis Requests the string version of the ObjectId of the current request.

IDL string get_string_oid() raises (NotInRequest);

C++ Binding char* get_string_oid();

Java Binding java.lang.String get_string_oid();

Return Value char*

The string version of the ObjectId of the current request. This is the string
that was supplied when the object reference was created. The string is
meaningful to users only in the case when the object reference was created by
the start_persistent_userid function. (That is, the ObjectId created by
start_transient and start_persistent_systemid were created by the
ORB and has no relationship to the user application.)

Description This operation returns the string version of the ObjectId of the current request.

Exceptions NotInRequest

The function was called when the ORB was not in the context of a request
(that is, not while the ORB was servicing a request in method code). Do not
call this function from client code. It is legal only during the execution of a
method of the callback object (that is, the servant).
11-22 CORBA C++ Programming Reference

BEAWrapper Callbacks API
~Callbacks

Synopsis Destroys the callback object.

C++ Binding BEAWrapper::~Callbacks();

Java Binding public ~Callbacks();

Arguments None.

Return Value None.

Description This destructor destroys the callback object.

Usage Note If a client wants to get rid of the wrapper, but not shut down the ORB, then the client
must call the stop_all_objects method.

Exceptions None.
CORBA C++ Programming Reference 11-23

11 Joint Client/Servers
11-24 CORBA C++ Programming Reference

CHAPTER
12 Development
Commands

For a detailed discussion of BEA WebLogic Enterprise development commands, see
Commands, Processes, and MIB Reference. This document describes all BEA
WebLogic Enterprise commands and processes.

A PDF file of the Commands Reference is also provided in the online documentation.
CORBA C++ Programming Reference 12-1

12 Development Commands
12-2 CORBA C++ Programming Reference

CHAPTER
13 Mapping of OMG IDL
Statements to C++

This chapter discusses the mappings from OMG IDL statements to C++.

Note: Some of the information in this chapter is taken from the Common Object
Request Broker: Architecture and Specification. Revision 2.2, February 1998,
published by the Object Management Group (OMG). Used with permission by
OMG.

Mappings

OMG IDL-to-C++ mappings are described for the following:

n Data types

n Strings

n Constants

n C PIDL

n Enums

n Portableserver functions

n Pseudo-objects

n Serverless objects
CORBA C++ Programming Reference 13-1

13 Mapping of OMG IDL Statements to C++
n Structs

n Unions

n Usage

n Sequences

n Arrays

n Exceptions

n Typedefs

n Operations (implementing)

n Operations (interfaces)

n Attributes

n Any types

This chapter also describes the generated var classes for user-defined data types.

Data Types

Each OMG IDL data type is mapped to a C++ data type or class.

Basic Data Types

The basic data types in OMG IDL statements are mapped to C++ typedefs in the
CORBA module, as shown in Table 13-1.

Table 13-1 Basic OMG IDL and C++ Data Types

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

unsigned
short

CORBA::UShort CORBA::UShort_out
13-2 CORBA C++ Programming Reference

Mappings
Note: On a 64-bit machine where a long integer is 64 bits, the definition of
CORBA::Long would still refer to a 32-bit integer.

Complex Data Types

Object, pseudo-object, and user-defined types are mapped as shown in Table 13-2.

unsigned
long

CORBA::ULong CORBA::ULong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

char CORBA::Char CORBA::Char_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet_out

Table 13-1 Basic OMG IDL and C++ Data Types (Continued)

OMG IDL C++ C++ Out Type

Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

OMG IDL C++

Object CORBA::Object_ptr

struct C++ struct

union C++ class

enum C++ enum

string char *

sequence C++ class

array C++ array
CORBA C++ Programming Reference 13-3

13 Mapping of OMG IDL Statements to C++
The mapping for strings and UDTs is described in more detail in the following
sections.

Strings

A string in OMG IDL is mapped to char * in C++. Both bounded and unbounded
strings are mapped to char *. CORBA strings in C++ are NULL-terminated and can
be used wherever a char * type is used.

If a string is contained within another user-defined type, such as a struct, it is
mapped to a CORBA::String_var type. This ensures that each member in the struct
manages its own memory.

Strings must be allocated and deallocated using the following member functions in the
CORBA class:

n string_alloc

n string_dup

n string_free

Note: The string_alloc function allocates len+1 characters so that the resulting
string has enough space to hold a trailing NULL character.

Constants

A constant in OMG IDL is mapped to a C++ const definition. For example, consider
the following OMG IDL definition:

 // OMG IDL

 const string CompanyName = “BEA Systems Incorporated”;

 module INVENT
 {
 const string Name = “Inventory Modules”;

 interface Order
 {
 const long MAX_ORDER_NUM = 10000;
13-4 CORBA C++ Programming Reference

Mappings
 };
 };

This definition maps to C++ as follows:

 // C++

 const char *const
 CompanyName = “BEA Systems Incorporated”;
 . . .
 class INVENT
 {
 static const char *const Name;
 . . .

 class Order : public virtual CORBA::Object
 {
 static const CORBA::Long MAX_ORDER_NUM;
 . . .
 };
 };

Top-level constants are initialized in the generated .h include file, but module and
interface constants are initialized in the generated client stub modules.

The following is an example of a valid reference to the MAX_ORDER_NUM constant, as
defined in the previous example:

CORBA::Long accnt_id = INVENT::Order::MAX_ORDER_NUM;

Enums

An enum in OMG IDL is mapped to an enum in C++. For example, consider the
following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 enum Reply {ACCEPT, REFUSE};
 }

This definition maps to C++ as follows:

 // C++
CORBA C++ Programming Reference 13-5

13 Mapping of OMG IDL Statements to C++

ction
 class INVENT
 {
 . . .

 enum Reply {ACCEPT, REFUSE};
 };

The following is an example of a valid reference to the enum defined in the previous
example. You refer to enum as follows:

 INVENT::Reply accept_reply;
 accept_reply = INVENT::ACCEPT;

Structs

A struct in OMG IDL is mapped to a C++ struct.

The generated code for a struct depends upon whether it is fixed-length or
variable-length. For more information about fixed-length versus variable-length types,
see the section “Fixed-length Versus Variable-length User-defined Types” on
page 13-47.

Fixed-length Versus Variable-length Structs

A variable-length struct contains an additional assignment operator member fun
to handle assignments between two variable-length structs.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 // Fixed-length
 struct Date
 {
 long year;
 long month;
 long day;
 };

 // Variable-length
 struct Address
 {
13-6 CORBA C++ Programming Reference

Mappings

and
 string aptNum;
 string streetName;
 string city;
 string state;
 string zipCode;
 };
 };

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 struct Date
 {
 CORBA::Long year;
 CORBA::Long month;
 CORBA::Long day;
 };

 struct Address
 {
 CORBA::String_var aptNum;
 CORBA::String_var streetName;
 CORBA::String_var city;
 CORBA::String_var state;
 CORBA::String_var zipCode;
 Address &operator=(const Address &_obj);
 };

 };

Member Mapping

Members of a struct are mapped to the appropriate C++ data type. For basic data types
(long, short, and so on), see Table 13-1 on page 13-2. For object references,
pseudo-object references, and strings, the member is mapped to the appropriate var
class:

n CORBA::String_var

n CORBA::Object_var

All other data types are mapped as shown in Table 13-2, “Object, Pseudo-object,
User-defined OMG IDL and C++ Types,” on page 13-3.
CORBA C++ Programming Reference 13-7

13 Mapping of OMG IDL Statements to C++

g var

g out

ing:
No constructor for a generated struct exists, so none of the members are initialized.
Fixed-length structs can be initialized using aggregate initialization. For example:

INVENT::Date a_date = { 1995, 10, 12 };

Variable-length members map to self-managing types; these types have constructors
that initialize the member.

Var

A var class is generated for structs. For more information, see the section “Usin
Classes” on page 13-47.

Out

An out class is generated for structs. For more information, see the section “Usin
Classes” on page 13-53.

Unions

A union in OMG IDL is mapped to a C++ class. The C++ class contains the follow

n Constructors

n Destructors

n Assignment operators

n Modifiers for the union value

n Accessors for the union value

n Modifiers and accessors for the union discriminator

For example, consider the following OMG IDL definition:

 // OMG IDL

 union OrderItem switch (long)
 {
 case 1: itemStruct itemInfo;
 case 2: orderStruct orderInfo;
13-8 CORBA C++ Programming Reference

Mappings
 default: ID idInfo;
 };

This definition maps to C++ as follows:

 // C++

 class OrderItem
 {
 public:
 OrderItem();
 OrderItem(const OrderItem &);
 ~OrderItem();

 OrderItem &operator=(const OrderItem&);

 void _d (CORBA::Long);
 CORBA::Long _d () const;

 void itemInfo (const itemStruct &);
 const itemStruct & itemInfo () const;
 itemStruct & itemInfo ();

 void orderInfo (const orderStruct &);
 const orderStruct & orderInfo () const;
 orderStruct & orderInfo ();

 void idInfo (ID);
 ID idInfo () const;

 . . .
 };

The default union constructor does not set a default discriminator value for the union;
therefore, you cannot call any union accessor member function until you have set the
value of the union. The discriminator is an attribute that is mapped through the _d
member function.

Union Member Accessor and Modifier Member Function Mapping

For each member in the union, accessor and modifier member functions are generated.

In the following code, taken from the previous example, two member functions are
generated for the ID member function:

 void idInfo (ID);
 ID idInfo () const;
CORBA C++ Programming Reference 13-9

13 Mapping of OMG IDL Statements to C++

har,

ce
hen
In this example, the first function (the modifier) sets the discriminator to the default
value and sets the value of the union to the specified ID value. The second function,
the accessor, returns the value of the union.

Depending upon the data type of the union member, additional modifier functions are
generated. The member functions generated for each data type are as follows:

n Basic data types—short, long, unsigned short, unsigned long, float, double, c
boolean, and octet

The following example generates two member functions for a basic data type
with member name basictype:

void basictype (TYPE); // modifier
TYPE basictype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TYPE, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2.

n Object and pseudo-object

For object and Typecode types with member name objtype, member functions
are generated as follows:

void objtype (TYPE); // modifier
TYPE objtype () const; // accessor

For the mapping from an OMG IDL data type to the C++ data type TYPE, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2.

The modifier member function does not assume ownership of the specified
object reference argument. Instead, the modifier duplicates the object referen
or pseudo-object reference. You are responsible for releasing the reference w
it is no longer required.

n Enum

For an enum TYPE with member name enumtype, member functions are
generated as follows:

void enumtype (TYPE); // modifier
TYPE enumtype () const; // accessor
13-10 CORBA C++ Programming Reference

Mappings
n String

For strings, one accessor and three modifier functions are generated, as follows:

void stringInfo (char *); // modifier 1
void stringInfo (const char *); // modifier 2
void stringInfo (const CORBA::String_var &); // modifier 3
const char * stringInfo () const; // accessor

The first modifier assumes ownership of the char * parameter passed to it and
the union is responsible for calling the CORBA::string_free member
function on this string when the union value changes or when the union is
destroyed.

The second and third modifiers make a copy of the specified string passed in the
parameter or contained in the string var.

The accessor function returns a pointer to internal memory of the union; do not
attempt to free this memory, and do not access this memory after the union value
has been changed or the union has been destroyed.

n Struct, union, sequence, and any

For these data types, modifier and accessor functions are generated with
references to the type, as follows:

void reftype (TYPE &); // modifier
const TYPE & reftype () const; // accessor
TYPE & reftype (); // accessor

The modifier function does not assume ownership of the input type parameter;
instead, the function makes a copy of the data type.

n Array

For an array, the modifier member function accepts an array pointer while the
accessor returns a pointer to an array slice, as follows:

void arraytype (TYPE); // modifier
TYPE_slice * arraytype () const; // accessor
CORBA C++ Programming Reference 13-11

13 Mapping of OMG IDL Statements to C++

g var

ing

 by
e

ion

 in

rent
pe
e

pe.
The modifier function does not assume ownership of the input type parameter;
instead, the function makes a copy of the array.

Var

A var class is generated for a union. For more information, see the section “Usin
Classes” on page 13-47 .

Out

An out class is generated for a union. For more information, see the section “Us
out Classes” on page 13-53.

Member Functions

In addition to the accessor and modifiers, the following member functions are
generated for an OMG IDL union of type TYPE with switch (long) discriminator:

TYPE();

This is the default constructor for a union. No default discriminator is set
this function, so you cannot access the union until you set the value of th
union.

TYPE(const TYPE & From);

This copy constructor deep copies the specified union. Any data in the un
parameter is copied. The From argument specifies the union to be copied.

~TYPE();

This destructor frees the data associated with the union.

TYPE &operator=(const TYPE & From);

This assignment operator copies the specified union. Any existing value
the current union is freed. The From argument specifies the union to be
copied.

void _d (CORBA::Long Descrim);
This member function sets the value of the discriminant and frees the cur
value. The Descrim argument specifies the new discriminant. The data ty
of the argument is determined by the OMG IDL data type specified in th
switch statement of the union. For each OMG IDL data type, see Table 13-1,
“Basic OMG IDL and C++ Data Types,” on page 13-2 for the C++ data ty
13-12 CORBA C++ Programming Reference

Mappings

asic

)

CORBA::Long _d () const;

This function returns the current discriminant value. The data type of the
return value is determined by the OMG IDL data type specified in the switch
statement of the union. For each OMG IDL data type, see Table 13-1, “B
OMG IDL and C++ Data Types,” on page 13-2 for the C++ data type.

Sequences

A sequence in OMG IDL is mapped to a C++ class. The C++ class contains the
following:

n Constructors

Each sequence has the following:

l A default constructor

l A constructor that initializes each element

l A copy constructor

n Destructors

n Modifiers for current length (and for maximum, if the sequence is unbounded

n Accessors for current length

n Operator[] functions to access or modify sequence elements

n Allocation and deallocation member functions

You must set the length before accessing any elements.

For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
 {
 . . .
 typedef sequence<LogItem> LogList;
 }

This definition maps to C++ as follows:

// C++
CORBA C++ Programming Reference 13-13

13 Mapping of OMG IDL Statements to C++

ge
apped

class LogList
 {
 public:
 // Default constructor
 LogList();

 // Maximum constructor
 LogList(CORBA::ULong _max);

 // TYPE * data constructor
 LogList
 (
 CORBA::ULong _max,
 CORBA::ULong _length,
 LogItem *_value,
 CORBA::Boolean _relse = CORBA_FALSE
);

 // Copy constructor
 LogList(const LogList&);

 // Destructor
 ~LogList();

 LogList &operator=(const LogList&);

 CORBA::ULong maximum() const;

 void length(CORBA::ULong);
 CORBA::ULong length() const;

 LogItem &operator[](CORBA::ULong _index);
 const LogItem &operator[](CORBA::ULong _index) const;

 static LogItem *allocbuf(CORBA::ULong _nelems);
 static void freebuf(LogItem *);
 };

 };

Sequence Element Mapping

The operator[] functions are used to access or modify the sequence element. These
operators return a reference to the sequence element. The OMG IDL sequence base
type is mapped to the appropriate C++ data type.

For basic data types, see Table 13-1, “Basic OMG IDL and C++ Data Types,” on pa
13-2. For object references, TypeCode references, and strings, the base type is m
to a generated _ForSeq_var class. The _ForSeq_var class provides the capability to
13-14 CORBA C++ Programming Reference

Mappings

and

Using

Using

). If

nd

tion
uffer
e

ce.
update a string or an object that is stored within the sequence. This generated class has
the same member functions and signatures as the corresponding var class. However,
this _ForSeq_var class honors the setting of the release parameter in the sequence
constructor. The distinction is that the _ForSeq_var class lets users specify the
Release flag, thereby allowing users to control the freeing of memory.

All other data types are mapped as shown in Table 13-2, “Object, Pseudo-object,
User-defined OMG IDL and C++ Types,” on page 13-3.

Vars

A var class is generated for a sequence. For more information, see the section “
var Classes” on page 13-47.

Out

An out class is generated for a sequence. For more information, see the section “
out Classes” on page 13-53.

Member Functions

For a given OMG IDL sequence SEQ with base type TYPE, the member functions for
the generated sequence class are described as follows:

SEQ ();

This is the default constructor for a sequence. The length is set to 0 (zero
the sequence is unbounded, the maximum is also set to 0 (zero). If the
sequence is bounded, the maximum is specified by the OMG IDL type a
cannot be changed.

SEQ (CORBA::ULong Max);

This constructor is present only if the sequence is unbounded. This func
sets the length of the sequence to 0 (zero) and sets the maximum of the b
to the specified value. The Max argument specifies the maximum length of th
sequence.

SEQ (CORBA::ULong Max, CORBA::ULong Length, TYPE * Value,
 CORBA::Boolean Release);

This constructor sets the maximum, length, and elements of the sequen
The Release flag determines whether elements are released when the
sequence is destroyed. Explanations of the arguments are as follows:
CORBA C++ Programming Reference 13-15

13 Mapping of OMG IDL Statements to C++
Max

The maximum value of the sequence. This argument is not present
in bounded sequences.

Length

The current length of the sequence. For bounded sequences, this
value must be less than the maximum specified in the OMG IDL
type.

Value

A pointer to the buffer containing the elements of the sequence.

Release

Determines whether elements are released. If this flag has a value of
CORBA_TRUE, the sequence assumes ownership of the buffer pointed
to by the Value argument. If the Release flag is CORBA_ TRUE, this
buffer must be allocated using the allocbuf member function,
because it will be freed using the freebuf member function when
the sequence is destroyed.

SEQ(const S& From);

This copy constructor deep copies the sequence from the specified argument.
The From argument specifies the sequence to be copied.

~SEQ();

This destructor frees the sequence and, depending upon the Release flag,
may free the sequence elements.

SEQ& operator=(const SEQ& From);

This assignment operator deep copies the sequence from the specified
sequence argument. Any existing elements in the current sequence are
released if the Release flag in the current sequence is set to CORBA_TRUE.
The From argument specifies the sequence to be copied.

CORBA::ULong maximum() const;

This function returns the maximum of the sequence. For a bounded sequence,
this is the value set in the OMG IDL type. For an unbounded sequence, this
is the current maximum of the sequence.

void length(CORBA::ULong Length);

This function sets the current length of the sequence. The Length argument
specifies the new length of the sequence. If the sequence is unbounded and
the new length is greater than the current maximum, the buffer is reallocated
and the elements are copied to the new buffer. If the new length is greater than
the maximum, the maximum is set to the new length.
13-16 CORBA C++ Programming Reference

Mappings
For a bounded sequence, the length cannot be set to a value greater than the
maximum.

CORBA::ULong length() const;

This function returns the current length of the sequence.

TYPE & operator[](CORBA::ULong Index);
const TYPE & operator[](CORBA::ULong Index) const;

These accessor functions return a reference to the sequence element at the
specified index. The Index argument specifies the index of the element to
return. This index cannot be greater than the current sequence length. The
length must have been set either using the TYPE * constructor or the
length(CORBA::ULong) modifier. If TYPE is an object reference,
TypeCode reference, or string, the return type will be a ForSeq_var class.

static TYPE * allocbuf(CORBA::ULong NumElems);

This static function allocates a buffer to be used with the TYPE * constructor.
The NumElems argument specifies the number of elements in the buffer to
allocate. If the buffer cannot be allocated, NULL is returned.

If this buffer is not passed to the TYPE * constructor with release set to
CORBA_TRUE, it should be freed using the freebuf member function.

static void freebuf(TYPE * Value);

This static function frees a TYPE * sequence buffer allocated by the
allocbuf function. The Value argument specifies the TYPE * buffer
allocated by the allocbuf function. A 0 (zero) pointer is ignored.

Arrays

An array in OMG IDL is mapped to a C++ array definition. For example, consider the
following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 . . .
 typedef LogItem LogArray[10];
 };

This definition maps to C++ as follows:

 // C++
CORBA C++ Programming Reference 13-17

13 Mapping of OMG IDL Statements to C++

g var
 module INVENT
 {
 . . .
 typedef LogItem LogArray[10];
 typedef LogItem LogArray_slice;
 static LogArray_slice * LogArray_alloc(void);
 static void LogArray_free(LogArray_slice *data);

 };

Array Slice

A slice of an array is an array with all the dimensions of the original array except the
first demension. The member functions for the array-generated classes use a pointer to
a slice to return pointers to an array. A typedef for each slice is generated.

For example, consider the following OMG IDL definition:

 // OMG IDL
 typedef LogItem LogMultiArray[5][10];

This definition maps to C++ as follows:

 // C++
 typedef LogItem LogMultiArray[5][10];
 typedef LogItem LogMultiArray_slice[10];

If you have a one-dimensional array, an array slice is just a type. For example, if you
had a one-dimensional array of long, an array slice would result in a CORBA::Long
data type.

Array Element Mapping

The type of the OMG IDL array is mapped to the C++ array element type in the same
manner as structs. For more information, see the section “Member Mapping” on
page 13-7.

Vars

A var class is generated for an array. For more information, see the section “Usin
Classes” on page 13-47.
13-18 CORBA C++ Programming Reference

Mappings

ing

. For
s:

al
Out

An out class is generated for an array. For more information, see the section “Us
out Classes” on page 13-53.

Allocation Member Functions

For each array, there are two static functions for array allocation and deallocation
a given OMG IDL type TYPE, the allocation and deallocation routines are as follow

static TYPE_slice * TYPE_alloc(void);

This function allocates a TYPE array, returning a pointer to the allocated TYPE
array. If the array cannot be dynamically allocated, 0 (zero) is returned.

static void TYPE_free(TYPE_slice * Value);

This function frees a dynamically allocated TYPE array. The Value argument
is a pointer to the dynamically allocated TYPE array to be freed.

Exceptions

An exception in OMG IDL is mapped to a C++ class. The C++ class contains the
following:

n Constructors

n Destructors

n A static _narrow function, to determine the type of exception

The generated class is similar to a variable-length structure, but with an addition
constructor to simplify initialization, and with the static _narrow member function to
determine the type of UserException.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 exception NonExist
 {
 ID BadId;
CORBA C++ Programming Reference 13-19

13 Mapping of OMG IDL Statements to C++

tly.

sing
 };
 };

This definition maps to C++ as follows:

 // C++

 class INVENT
 {
 . . .

 class NonExist : public CORBA::UserException
 {
 public:
 static NonExist * _narrow(CORBA::Exception_ptr);
 NonExist (ID _BadId);
 NonExist ();
 NonExist (const NonExist &);
 ~NonExist ();
 NonExist & operator=(const NonExist &);
 void _raise ();
 ID BadId;
 };
 };

Attributes (data members) of the Exception class are public, so you may access them
directly.

Member Mapping

Members of an exception are mapped in the same manner as structs. For more
information, see “Member Mapping” on page 13-7.

All exception members are public data in the C++ class, and are accessed direc

Var

A var class is generated for an exception. For more information, see the section “U
var Classes” on page 13-47.

Out

An out class is generated for an exception. For more information, see the
section“Using out Classes” on page 13-53.
13-20 CORBA C++ Programming Reference

Mappings

n

e
Member Functions

For a given OMG IDL exception TYPE, the generated member functions are as follows:

static TYPE * _narrow(CORBA::Exception_ptr Except);

This function returns a pointer to a TYPE exception class if the exception can
be narrowed to a TYPE exception. If the exception cannot be narrowed, 0
(zero) is returned. The TYPE pointer is not a pointer to a new class. Instead, it
is a typed pointer to the original exception pointer and is valid only as long as
the Except parameter is valid.

TYPE ();

This is the default constructor for the exception. No initialization of members
is performed for fixed-length members. Variable-length members map to
self-managing types; these types have constructors that initialize the member.

TYPE(member-parameters);

This constructor has an argument for each of the members in the exception.
The constructor copies each argument and does not assume ownership of the
memory for any argument. Building on the previous example, the signature
of the constructor is:

NonExist (ID _BadId);

There is one argument for each member of the exception. The type and
parameter-passing mechanism are identical to the Any insertion operator. For
information about the Any insertion operator, see the section to “Insertio
into Any” on page 13-36.

TYPE (const TYPE & From);

This copy constructor copies the data from the specified TYPE exception
argument. The From argument specifies the exception to be copied.

~TYPE ();

This destructor frees the data associated with the exception.

TYPE & operator=(const TYPE & From);

This assignment operator copies the data from the specified TYPE exception
argument. The From argument specifies the exception to be copied.

void _raise ();

This function causes the exception instance to throw itself. A catch claus
can catch it by a more derived type.
CORBA C++ Programming Reference 13-21

13 Mapping of OMG IDL Statements to C++
Mapping of Pseudo-objects to C++

CORBA pseudo-objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

n Serverless object types do not inherit from CORBA::Object.

n Individual serverless objects are not registered with any ORB.

n Serverless objects do not necessarily follow the same memory management rules
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects that are
passed as parameters may result in the construction of independent, functionally
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such as data layout) of serverless objects
are made known to the ORB. Specifications for achieving this are not contained in this
chapter; making serverless objects known to the ORB is an implementation detail.

This chapter provides a standard mapping algorithm for all pseudo-object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo-object
types, and accommodates any pseudo-object types that may be proposed in future
revisions of CORBA. It also avoids representation dependence in the C mapping, while
still allowing implementations that rely on C-compatible representations.

Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo-object types follow the same
rules as normal OMG IDL interfaces, with the following exceptions:

n They are prefaced by the keyword pseudo.

n Their declarations may refer to other1 serverless object types that are not
otherwise necessarily allowed in OMG IDL.

1. In particular, exception used as a data type and a function name.
13-22 CORBA C++ Programming Reference

Mappings
The pseudo prefix means that the interface may be implemented in either a normal or
serverless fashion. That is, apply either the rules described in the following sections,
or the normal mapping rules described in this chapter.

Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object,
and are not necessarily subclasses of any other C++ class. Thus, they do not necessarily
support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA namespace:

// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. Implementations are
allowed to make assumptions about internal representations and transport formats that
may not apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is because some
serverless objects, such as CORBA::NVList, are essentially just containers for several
levels of other serverless objects. Requiring callers to explicitly free the values
returned from accessor functions for the contained serverless objects would be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

n The types of references to serverless objects, T_ptr, may or may not simply be a
typedef of T*.

n Each mapped class supports the following static member functions:

n // C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();
CORBA C++ Programming Reference 13-23

13 Mapping of OMG IDL Statements to C++

 as

alogs
 using
een

of

n Legal implementations of _duplicate include simply returning the argument or
constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

n The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the
appropriate constructive operations.

n As with normal interfaces, assignment operators are not supported.

n Although they can transparently employ “copy-style” rather than
“reference-style” mechanics, parameter passing signatures and rules as well
memory management rules are identical to those for normal objects, unless
otherwise noted.

Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct an
in the C mapping. The mapped C++ classes can, but need not, be implemented
representations compatible to those chosen for the C mapping. Differences betw
the pseudo-object specifications for C-PIDL and C++ PIDL are as follows:

n C++ PIDL calls for removal of representation dependencies through the use
interfaces rather than structs and typedefs.

n C++ PIDL calls for placement of operations on pseudo-objects in their
interfaces, including a few cases of redesignated functionality as noted.

n In C++ PIDL, release performs the role of the associated free and delete
operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
document.
13-24 CORBA C++ Programming Reference

Mappings
Typedefs

A typedef in OMG IDL is mapped to a typedef in C++. Depending upon the OMG IDL
data type, additional typedefs and member functions may be defined. The generated
code for each data type is as follows:

n Basic data types (short, long, unsigned short, unsigned long, float, double, char,
boolean, and octet)

Basic data types map to a simple typedef. For example:

// OMG IDL
typedef long ID;

// C++
typedef CORBA::Long ID;

n string

A string typedef is mapped to a simple typedef. For example:

// OMG IDL
typedef string IDStr;

// C++
typedef char * IDStr;

n object, interfaces, TypeCode

Object, interfaces, and TypeCode types are mapped to four typedefs. For
example:

// OMG IDL
typedef Item Intf;

// C++
typedef Item Intf;
typedef Item_ptr Intf_ptr;
typedef Item_var Intf_var;
typedef Item_ptr & Intf _out;

n enum, struct, union, sequence

UDTs are mapped to three typedefs. For example:

// OMG IDL
typedef LogList ListRetType;

// C++
typedef LogList ListRetType;
CORBA C++ Programming Reference 13-25

13 Mapping of OMG IDL Statements to C++
typedef LogList_var ListRetType_var;
typedef LogList_out & ListRetType_out;

n array

Arrays are mapped to four typedefs and the static member functions to allocate
and free memory. For example:

// OMG IDL
typedef LogArray ArrayRetType;

// C++
typedef LogArray ArrayRetType;
typedef LogArray_var ArrayRetType_var;
typedef LogArray_forany ArrayRetType_forany;
typedef LogArray_slice ArrayRetType_slice;
ArrayRetType_slice * ArrayRetType_alloc();
void ArrayRetType_free(ArrayRetType_slice *);

Implementing Interfaces

An operation in OMG IDL is mapped to a C++ member function.

The name of the member function is the name of the operation. The operation is
defined as a member function in both the interface class and the stub class. The
interface class is virtual; the stub class inherits from the virtual class and contains the
member function code from the client application stub. When an operation is invoked
on the object reference, the code contained in the corresponding stub member function
executes.

For example, consider the following OMG IDL definition:

// OMG IDL

module INVENT
 {
 interface Order
 {
 . . .
 ItemList modifyOrder (in ItemList ModifyList);
 };
 };

This definition maps to C++ as follows:

// C++
13-26 CORBA C++ Programming Reference

Mappings

nd
” on

8,
class INVENT
 {
 . . .

 class Order : public virtual CORBA::Object
 {
 . . .
 virtual ItemList * modifyOrder (
 const ItemList & ModifyList) = 0;
 };
 };

class Stub_Order : public Order
 {
 . . .
 ItemList * modifyOrder (
 const ItemList & ModifyList);
 };

The generated client application stub then contains the following generated code for
the stub class:

// ROUTINE NAME: INVENT::Stub_Order::modifyOrder
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for operation
// modifyOrder.
// (Interface : Order)

INVENT::ItemList * INVENT::Stub_Order::modifyOrder (
 const INVENT::ItemList & ModifyList)
{
. . .
}

Argument Mapping

Each of the arguments in an operation is mapped to the corresponding C++ type as
described in Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2 a
Table 13-2, “Object, Pseudo-object, and User-defined OMG IDL and C++ Types,
page 13-3.

The parameter passing modes for arguments in an operation are described in
Table 13-7, “Basic Argument and Result Passing,” on page 13-62 and Table 13-
“T_var Argument and Result Passing,” on page 13-63.
CORBA C++ Programming Reference 13-27

13 Mapping of OMG IDL Statements to C++

ata
y
Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate exception (throw) specification. This
requirement allows the compiler to detect when an invalid exception is raised, which
is necessary in the case of a local C++-to-C++ library call (otherwise, the call would
have to go through a wrapper that checks for a valid exception). For example:

// IDL
interface A
{
exception B {};
void f() raises(B);
};

// C++
class MyA : public virtual POA_A
{
 public:
void f() throw(A::B, CORBA::SystemException);
...
};

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even when an
operation has no raises clause.

Within a member function, the “this” pointer refers to the implementation object’s d
as defined by the class. In addition to accessing the data, a member function ma
implicitly call another member function defined by the same class. For example:

// IDL

interface A
{
void f();
void g();
};

// C++
class MyA : public virtual POA_A
{
 public:
13-28 CORBA C++ Programming Reference

Mappings
void f() throw(SystemException);
void g() throw(SystemException);
 private:
long x_;
};

void
MyA::f() throw(SystemException)
{
this->x_ = 3;
this->g();
}

However, when a servant member function is invoked in this manner, it is being called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available via the POA_Current
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

Skeleton Derivation from Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod::A, the skeleton class
POA_Mod::A is derived from class Mod::A. These systems, therefore, allow an object
reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = &my_a; // obtain its object reference
 // by C++ derived-to-base conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _this() on
the implementation object to implicitly register it if it has not yet been registered, and
to get its object reference:

// C++
MyImplOfA my_a; // declare impl of A
A_ptr a = my_a._this(); // obtain its object reference
CORBA C++ Programming Reference 13-29

13 Mapping of OMG IDL Statements to C++
PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because
C++ programmers often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to ObjectId and vice versa:

// C++
namespace PortableServer
{
char* ObjectId_to_string(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the string
(such as a NUL), the first two functions throw the CORBA::BAD_PARAM exception.

Modules

A module in OMG IDL is mapped to a C++ class. Objects contained in the module are
defined within this C++ class. Because interfaces and types are also mapped to classes,
nested C++ classes result.

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 interface Order
 {
 . . .
 };
 };

This definition maps to C++ as follows:

 // C++
13-30 CORBA C++ Programming Reference

Mappings
 class INVENT
 {
 . . .
 class Order : public virtual CORBA::Object
 {
 . . .
 }; // class Order
 }; // class INVENT

Multiple nested modules yield multiple nested classes. Anything inside the module
will be in the module class. Anything inside the interface will be in the interface class.

OMG IDL allows modules, interfaces, and types to have the same name. However,
when generating files for the C++ language, having the same name is not allowed. This
restriction is necessary because the OMG IDL names are generated into nested C++
classes with the same name; this is not supported by C++ compilers.

Note: The BEA WebLogic Enterprise OMG IDL compiler outputs an informational
message if you generate C++ code from OMG IDL with an interface or type
with the same name as the current module name. If you ignore this
informational message and do not use unique names to differentiate the
interface or type from the module name, the compiler will signal errors when
compiling the generated files.

Interfaces

An interface in OMG IDL is mapped to a C++ class. This class contains the definitions
of the operations, attributes, constants, and user-defined types (UDTs) contained in the
OMG IDL interface.

For an interface INTF, the generated interface code contains the following items:

n Object reference type (INTF_ptr)

n Object reference variable type (INTF_var)

n _duplicate static member function

n _narrow static member function

n _nil static member function

n UDTs
CORBA C++ Programming Reference 13-31

13 Mapping of OMG IDL Statements to C++
n Member functions for attributes and operations

For example, consider the following OMG IDL definition:

 // OMG IDL

 module INVENT
 {
 interface Order
 {
 void cancelOrder ();
 };
 };

This definition maps to C++ as follows:

 // C++
 class INVENT
 {
 . . .
 class Order;
 typedef Order * Order_ptr;

 class Order : public virtual CORBA::Object
 {
 . . .
 static Order_ptr _duplicate(Order_ptr obj);
 static Order_ptr _narrow(CORBA::Object_ptr obj);
 static Order_ptr _nil();
 virtual void cancelOrder () = 0;
 . . .
 };
 };

The object reference types and static member functions are described in the following
sections, as are UDTs, operations, and attributes.

Generated Static Member Functions

This section describes in detail the generated static member functions: _duplicate,
_narrow, and _nil for an interface INTF.

static INTF_ptr _duplicate (INTF_ptr Obj)
This static member function duplicates an existing INTF object reference and
returns a new INTF object reference. The new INTF object reference must be
13-32 CORBA C++ Programming Reference

Mappings

s” on
released by calling the CORBA::release member function. If an error
occurs, a reference to the nil INTF object is returned. The argument Obj
specifies the object reference to be duplicated.

static INTF_ptr _narrow (CORBA::Object_ptr Obj)
This static member function returns a new INTF object reference given an
existing CORBA::Object_ptr object reference. The Object_ptr object
reference may have been created by a call to the
CORBA::ORB::string_to_object member function or may have been
returned as a parameter from an operation.

The INTF_ptr object reference must correspond to an INTF object or to an
object that inherits from the INTF object. The new INTF object reference
must be released by calling the CORBA::release member function. The
argument Obj specifies the object reference to be narrowed to an INTF object
reference. The Obj parameter is not modified by this member function and
should be released by the user when it is no longer required. If Obj cannot be
narrowed to an INTF object reference, the INTF nil object reference is
returned.

static INTF_ptr _nil ()
This static member function returns the new nil object reference for the INTF
interface. The new reference does not have to be released by calling the
CORBA::release member function.

Object Reference Types

An interface class (INTF) is a virtual class; the CORBA standard does not allow you to:

n Create or hold an instance of the interface class

n Use a pointer or a reference to the interface class

Instead, you use one of the object reference types, INTF_ ptr or INTF_var class.
You can obtain an object reference by using the _narrow static member function.
Operations are invoked on these classes using the arrow operator (->).

The INTF_var class simplifies memory management by automatically releasing the
object reference when the INTF_var class goes out of scope or is reassigned. Variable
types are generated for many of the UDTs and are described in “Using var Classe
page 13-47.
CORBA C++ Programming Reference 13-33

13 Mapping of OMG IDL Statements to C++
Attributes

A read-only attribute in OMG IDL is mapped to a C++ function that returns the
attribute value. A read-write attribute maps to two overloaded C++ functions, one to
return the attribute value and one to set the attribute value. The name of the overloaded
member function is the name of the attribute.

Attributes are generated in the same way that operations are generated. They are
defined in both the virtual and the stub classes. For example, consider the following
OMG IDL definition:

// OMG IDL

module INVENT
 {
 interface Order
 {
 . . .
 attribute itemStruct itemInfo;
 };
 };

This definition maps to C++ as follows:

// C++

class INVENT
 {
 . . .

 class Item : public virtual CORBA::Object
 {
 . . .
 virtual itemStruct * itemInfo () = 0;

 virtual void itemInfo (
 const itemStruct & itemInfo) = 0;
 };
 };

class Stub_Item : public Item
 {
. . .
 itemStruct * itemInfo ();

 void itemInfo (
 const itemStruct & itemInfo);
 };
13-34 CORBA C++ Programming Reference

Mappings

2,
3-3.

8,
The generated client application stub then contains the following generated code for
the stub class:

// ROUTINE NAME: INVENT::Stub_Item::itemInfo
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for attribute
// INVENT::Stub_Item::itemInfo. (Interface : Item)

INVENT::itemStruct * INVENT::Stub_Item::itemInfo ()
{
. . .
}

//
// ROUTINE NAME: INVENT::Stub_Item::itemInfo
//
// FUNCTIONAL DESCRIPTION:
//
// Client application stub routine for attribute
// INVENT::Stub_Item::itemInfo. (Interface : Item)

void INVENT::Stub_Item::itemInfo (
 const INVENT::itemStruct & itemInfo)
{
}

Argument Mapping

An attribute is equivalent to two operations, one to return the attribute and one to set
the attribute. For example, the itemInfo attribute listed above is equivalent to:

void itemInfo (in itemStruct itemInfo);
itemStruct itemInfo ();

The argument mapping for the attribute is the same as the mapping for an operation
argument. The attribute is mapped to the corresponding C++ type as described in
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2 and Table 13-
“Object, Pseudo-object, and User-defined OMG IDL and C++ Types,” on page 1
The parameter passing modes for arguments in an operation are described in
Table 13-7, “Basic Argument and Result Passing,” on page 13-62 and Table 13-
“T_var Argument and Result Passing,” on page 13-63.
CORBA C++ Programming Reference 13-35

13 Mapping of OMG IDL Statements to C++

.

Any Type

An any in OMG IDL is mapped to the CORBA::Any class. The CORBA::Any class
handles C++ types in a type-safe manner.

Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided. Overloaded operators are used for these functions to completely
avoid any name space pollution. The nature of these functions, which are described in
detail below, is that the appropriate TypeCode is implied by the C++ type of the value
being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

l The boolean, octet, and char OMG IDL types are not required to map to
distinct C++ types, which means that a separate means of distinguishing
them from each other for the purpose of function overloading is necessary.
The means of distinguishing these types from each other is described in
“Distinguishing boolean, octet, char, and Bounded Strings” on page 13-42

l Since all strings are mapped to char* regardless of whether they are
bounded or unbounded, another means of creating or setting an any with a
bounded string value is necessary. This is described in “Distinguishing
boolean, octet, char, and Bounded Strings” on page 13-42.

l In C++, arrays within a function argument list decay into pointers to their
first elements. This means that function overloading cannot be used to
distinguish between arrays of different sizes. The means for creating or
setting an any when dealing with arrays is described below and in “Arrays”
on page 13-17.

Insertion into Any

To allow a value to be set in an any in a type-safe fashion, the following overloaded
operator function is provided for each separate OMG IDL type T:
13-36 CORBA C++ Programming Reference

Mappings

nter
// C++
void operator<<=(Any&, T);

This function signature suffices for the following types, which are usually passed by
value:

l Short, UShort, Long, ULong, Float, Double

l enumerations

l unbounded strings (char* passed by value)

l object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of
the insertion function are provided:

// C++
void operator<<=(Any&, const T&); // copying form
void operator<<=(Any&, T*); // non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any, as
follows:

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long sets both the value
and the TypeCode properly for the Any variable.

Setting a value in an any using operator<<= means the following:

l For the copying version of operator<<=, the lifetime of the value in the
Any is independent of the lifetime of the value passed to operator<<=. The
implementation of the Any does not store its value as a reference or a poi
to the value passed to operator<<=.

l For the noncopying version of operator<<=, the inserted T* is consumed by
the Any. The caller may not use the T* to access the pointed-to data after
insertion because the Any assumes ownership of T*, and the Any may
immediately copy the pointed-to data and destroy the original.
CORBA C++ Programming Reference 13-37

13 Mapping of OMG IDL Statements to C++

, and
ly
can
l With both the copying and noncopying versions of operator<<=, any
previous value held by the Any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor (described in “Handling
Untyped Values” on page 13-45) were called to create the Any, the Any is
responsible for deallocating the memory pointed to by the void* before
copying the new value.

Copying insertion of a string type causes the following function to be invoked:

// C++
void operator<<=(Any&, const char*);

Since all string types are mapped to char*, this insertion function assumes that the
value being inserted is an unbounded string. “Distinguishing boolean, octet, char
Bounded Strings” on page 13-42 describes how bounded strings may be correct
inserted into an Any. Noncopying insertion of both bounded and unbounded strings
be achieved using the Any::from_string helper type described in “Distinguishing
boolean, octet, char, and Bounded Strings” on page 13-42.

Type-safe insertion of arrays uses the Array_forany types described in “Arrays” on
page 13-17. The ORB provides a version of operator<<= overloaded for each
Array_forany type. For example:

// IDL
typedef long LongArray[4][5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to const.
The nocopy flag in the Array_forany constructor is used to control whether the
inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T*, it is highly
recommended that portable code explicitly use the appropriate Array_forany type
when inserting an array into an Any. For example:

// IDL
struct S {... };
typedef S SA[5];
13-38 CORBA C++ Programming Reference

Mappings
// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*) due to
the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address of the
T_ptr type, as follows:

// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed to by
T_ptr*; therefore, after insertion the caller may not access the object referred to by
T_ptr because the Any may have duplicated and then immediately released the
original object reference. The caller maintains ownership of the storage for the T_ptr
itself.

The copying version of operator<<= is also supported on the Any_var type.

Extraction from Any

To allow type-safe retrieval of a value from an any, the ORB provides the following
operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);

This function signature suffices for primitive types that are usually passed by value.
For values of type T that are too large to be passed by value efficiently, the ORB
provides a different signature, as follows:
CORBA C++ Programming Reference 13-39

13 Mapping of OMG IDL Statements to C++

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

l Boolean, Char, Octet, Short, UShort, Long, ULong, Float,
Double

l enumerations

l unbounded strings (char* passed by reference, i.e., char*&)

l object references (T_ptr)

For all other types, the second form of the function is used.

This “right-shift-assign” operator is used to extract a typed value from an any, as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {
 // ... use the value ...
}

In this case, the version of operator>>= for type Long determines whether the Any
truly does contain a value of type Long and, if so, copies its value into the reference
variable provided by the caller and returns TRUE. If the Any does not contain a value
of type Long, the value of the caller’s reference variable is not changed, and
operator>>= returns FALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the
following OMG IDL struct:

// IDL
struct MyStruct {
 long lmem;
 short smem;
};

Such a struct could be extracted from an Any as follows:

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {
13-40 CORBA C++ Programming Reference

Mappings

the

 of the

 the

the

f the
when
 // ... use the value ...
}

If the extraction is successful, the caller’s pointer points to storage managed by
Any, and operator>>= returns TRUE. The caller must not try to delete or otherwise
release this storage. The caller also should not use the storage after the contents
Any variable are replaced via assignment, insertion, or the replace function, or after
the Any variable is destroyed. Care must be taken to avoid using T_var types with
these extraction operators, since they will try to assume responsibility for deleting
storage owned by the Any.

If the extraction is not successful, the value of the caller’s pointer is set equal to
null pointer, and operator>>= returns FALSE.

Correct extraction of array types relies on the Array_forany types described in
“Arrays” on page 13-17.

An example of the OMG IDL is as follows:

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any&, A_forany&);
// for type A
Boolean operator>>=(const Any&, B_forany&); //
for type B

The Array_forany types are always passed to operator>>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode o
Any to be sure that they do not overstep the bounds of the array or string object
using the extracted value.

The operator>>= is also supported on the Any_var type.
CORBA C++ Programming Reference 13-41

13 Mapping of OMG IDL Statements to C++
Distinguishing boolean, octet, char, and Bounded Strings

Since the boolean, octet, and char OMG IDL types are not required to map to distinct
C++ types, another means of distinguishing them from each other is necessary so that
they can be used with the type-safe Any interface. Similarly, since both bounded and
unbounded strings map to char*, another means of distinguishing them must be
provided. This is done by introducing several new helper types nested in the Any class
interface. For example, this is accomplished as shown below:

// C++
class Any
{
 public:
 // special helper types needed for boolean, octet,
 // char, and bounded string insertion
 struct from_boolean {
 from_boolean(Boolean b) : val(b) {}
 Boolean val;
 };
 struct from_octet {
 from_octet(Octet o) : val(o) {}
 Octet val;
 };
 struct from_char {
 from_char(Char c) : val(c) {}
 Char val;
 };
 struct from_string {
 from_string(char* s, ULong b,
 Boolean nocopy = FALSE) :
 val(s), bound(b) {}
 char *val;
 ULong bound;
 };

 void operator<<=(from_boolean);
 void operator<<=(from_char);
 void operator<<=(from_octet);
 void operator<<=(from_string);
 // special helper types needed for boolean, octet,
 // char, and bounded string extraction
 struct to_boolean {
 to_boolean(Boolean &b) : ref(b) {}
 Boolean &ref;
 };
 struct to_char {
 to_char(Char &c) : ref(c) {}
 Char &ref;
13-42 CORBA C++ Programming Reference

Mappings
 };
 struct to_octet {
 to_octet(Octet &o) : ref(o) {}
 Octet &ref;
 };
 struct to_string {
 to_string(char *&s, ULong b) : val(s), bound(b) {}
 char *&val;
 ULong bound;
 };

 Boolean operator>>=(to_boolean) const;
 Boolean operator>>=(to_char) const;
 Boolean operator>>=(to_octet) const;
 Boolean operator>>=(to_string) const;

 // other public Any details omitted

private:
 // these functions are private and not implemented
 // hiding these causes compile-time errors for
 // unsigned char
 void operator<<=(unsigned char);
 Boolean operator>>=(unsigned char &) const;
};

The ORB provides the overloaded operator<<= and operator>>= functions for
these special helper types. These helper types are used as shown here:

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {
 // ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {
 // ...any contained a string<8>...
}

A bound value of 0 (zero) indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an Any, the nocopy
flag on the from_string constructor should be set to TRUE:
CORBA C++ Programming Reference 13-43

13 Mapping of OMG IDL Statements to C++
// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

Assuming that boolean, char, and octet all map the C++ type unsigned char, the
private and unimplemented operator<<= and operator>>= functions for unsigned
char cause a compile-time error if straight insertion or extraction of any of the
Boolean, Char, or Octet types is attempted:

// C++
Octet oct = 040;
Any any;
any <<= oct; // this line will not compile
any <<= Any::from_octet(oct); // but this one will

Widening to Object

Sometimes it is desirable to extract an object reference from an Any as the base Object
type. This can be accomplished using a helper type similar to those required for
extracting Boolean, Char, and Octet:

// C++
class Any
{
 public:
 ...
 struct to_object {
 to_object(Object_ptr &obj) : ref(obj) {}
 Object_ptr &ref;
 ;
 Boolean operator>>=(to_object) const;
 ...
};

The to_object helper type is used to extract an object reference from an Any as the
base Object type. If the Any contains a value of an object reference type as indicated
by its TypeCode, the extraction function operator>>=(to_object) explicitly
widens its contained object reference to Object and returns true; otherwise, it returns
false. This is the only object reference extraction function that performs widening on
the extracted object reference. As with regular object reference extraction, no
duplication of the object reference is performed by the to_object extraction
operator.
13-44 CORBA C++ Programming Reference

Mappings
Handling Untyped Values

Under some circumstances the type-safe interface to Any is not sufficient. An example
is a situation in which data types are read from a file in binary form and are used to
create values of type Any. For these cases, the Any class provides a constructor with
an explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor duplicates the given TypeCode pseudo-object reference. If the
release parameter is TRUE, the Any object assumes ownership of the storage pointed
to by the value parameter. A caller should make no assumptions about the continued
lifetime of the value parameter once it has been handed to an Any with
release=TRUE, since the Any may copy the value parameter and immediately free
the original pointer. If the release parameter is FALSE (the default case), the Any
object assumes that the caller manages the memory pointed to by value. The value
parameter can be a null pointer.

The Any class also defines three unsafe operations:

// C++
void replace(
 TypeCode_ptr,
 void *value,
 Boolean release = FALSE
);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with the
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage is deallocated, if necessary. The
TypeCode function parameter is duplicated. If the release parameter is TRUE, the
Any object assumes ownership for the storage pointed to by the value parameter. The
Any should make no assumptions about the continued lifetime of the value parameter
once it has been handed to the Any::replace function with release=TRUE, since the
Any may copy the value parameter and immediately free the original pointer. If the
release parameter is FALSE (the default case), the Any object assumes that the caller
manages the memory occupied by the value. The value parameter of the replace
function can be a null pointer.
CORBA C++ Programming Reference 13-45

13 Mapping of OMG IDL Statements to C++

ases its
en
’s

er
Note that neither the constructor shown above nor the replace function is type-safe.
In particular, no guarantees are made by the compiler at run time as to the consistency
between the TypeCode and the actual type of the void* argument. The behavior of an
ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

The type function returns a TypeCode_ptr pseudo-object reference to the TypeCode
associated with the Any. Like all object reference return values, the caller must release
the reference when it is no longer needed, or assign it to a TypeCode_var variable for
automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no
associated value, the value function returns a null pointer.

Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of type tk_null, and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its Any
parameter and deep-copies the parameter’s value. The assignment operator rele
own TypeCode_ptr and deallocates storage for the current value if necessary, th
duplicates the TypeCode_ptr of its Any parameter and deep-copies the parameter
value. The destructor calls release on the TypeCode_ptr and deallocates storage for
the value, if necessary.

Other constructors are described in the section “Handling Untyped Values” on
page 13-45.

 The Any Class

The full definition of the Any class can be found in the section “Any Class Memb
Functions” on page 14-2.
13-46 CORBA C++ Programming Reference

Fixed-length Versus Variable-length User-defined Types
Fixed-length Versus Variable-length
User-defined Types

The memory management rules and member function signatures for a user-defined
type depend upon whether the type is fixed-length or variable-length. A user-defined
type is variable-length if it is one of the following:

n A bounded or unbounded string

n A bounded or unbounded sequence

n A struct or union that contains a variable-length member

n An array with a variable-length element type

n A typedef to a variable-length type

If a type is not on this list, the type is fixed-length.

Using var Classes

Automatic variables (vars) are provided to simplify memory management. Vars are
provided through a var class that assumes ownership for the memory required for the
type and frees the memory when the instance of the var object is destroyed or when a
new value is assigned to the var object.

The BEA WebLogic Enterprise provides var classes for the following types:

n string (CORBA::String_var)

n object references (CORBA::Object_var)

n user-defined OMG IDL types (struct, union, sequence, array, and
interface)
CORBA C++ Programming Reference 13-47

13 Mapping of OMG IDL Statements to C++
The var classes have common member functions, but may support additional operators
depending upon the OMG IDL type. For an OMG IDL type TYPE, the TYPE_var class
contains constructors, destructors, assignment operators, and operators to access the
underlying TYPE type. An example var class is as follows:

class TYPE_var
 {
 public:
 // constructors
 TYPE_var();
 TYPE_var(TYPE *);
 TYPE_var(const TYPE_var &);
 // destructor
 ~TYPE_var();

 // assignment operators
 TYPE_var &operator=(TYPE *);
 TYPE_var &operator=(const TYPE_var &);

 // accessor operators
 TYPE *operator->();
 TYPE *operator->() const;

 TYPE_var_ptr in() const;
 TYPE_var_ptr& inout();
 TYPE_var_ptr& out();

 TYPE_var_ptr _retn();
 operator const TYPE_ptr&() const;
 operator TYPE_ptr&();
 operator TYPE_ptr;
 };

The details of the member functions are as follows:

TYPE_var()

This is the default constructor for the TYPE_var class. The constructor
initializes to 0 (zero) the TYPE * owned by the var class. You may not invoke
the operator-> on a TYPE_var class unless a valid TYPE * has been
assigned to it.

TYPE_var(TYPE * Value);
This constructor assumes ownership of the specified TYPE * parameter.
When the TYPE_var is destroyed, the TYPE is released. The Value argument
is a pointer to the TYPE to be owned by this var class. This pointer must not
be 0 (zero).
13-48 CORBA C++ Programming Reference

Using var Classes
TYPE_var(const TYPE_var & From);
This copy constructor allocates a new TYPE and makes a deep copy of the data
contained in the TYPE owned by the From parameter. When the TYPE_var is
destroyed, the copy of the TYPE is released or deleted. The From parameter
specifies the var class that points to the TYPE to be copied.

~TYPE_var();

This destructor uses the appropriate mechanism to release the TYPE owned by
the var class. For strings, this is the CORBA::string_free routine. For
object references, this is the CORBA::release routine. For other types, this
may be delete or a generated static routine used to free allocated memory.

TYPE_var &operator=(TYPE * NewValue);

This assignment operator assumes ownership of the TYPE pointed to by the
NewValue parameter. If the TYPE_var currently owns a TYPE, it is released
before assuming ownership of the NewValue parameter. The NewValue
argument is a pointer to the TYPE to be owned by this var class. This pointer
must not be 0 (zero).

TYPE_var &operator=(const TYPE_var &From);

This assignment operator allocates a new TYPE and makes a deep copy of the
data contained in the TYPE owned by the From TYPE_var parameter. If
TYPE_var currently owns a TYPE, it is released. When the TYPE_var is
destroyed, the copy of the TYPE is released. The From parameter specifies the
var class that points to the data to be copied.

TYPE *operator->();
TYPE *operator->() const;

These operators return a pointer to the TYPE owned by the var class. The var
class continues to own the TYPE and it is the responsibility of the var class to
release TYPE. You cannot use the operator-> until the var owns a valid
TYPE. Do not try to release this return value or access this return value after
the TYPE_var has been destroyed.

TYPE_var_ptr in() const;
TYPE_var_ptr& inout();
TYPE_var_ptr& out();
TYPE_var_ptr _retn();

Because implicit conversions can sometimes cause a problem with some C++
compilers and with code readability, the TYPE_var types also support
member functions that allow them to be explicitly converted for purposes of
parameter passing. To pass a TYPE_var and an in parameter, call the in()
member function; for inout parameters, the inout() member function; for
out parameters, the out() member function. To obtain a return value from
CORBA C++ Programming Reference 13-49

13 Mapping of OMG IDL Statements to C++

es.
e, in

l of the
the TYPE_var, call the _return() function. For each TYPE_var type, the
return types of each of these functions will match the type shown in
Table 13-7, “Basic Argument and Result Passing,” on page 13-62 for thein,
inout, out, and return modes for the underlying type TYPE, respectively.

Some differences occur in the operators supported for the user-defined data typ
Table 13-3 describes the various operators supported by each OMG IDL data typ
the generated C++ code. Because the assignment operators are supported for al
data types described in Table 13-3, they are not included in the comparison.

The signatures are as shown in Table 13-4.

Table 13-3 Comparison of Operators Supported for User-defined Data Type
var Classes

OMG IDL Data Type operator -> operator[]

struct Yes No

union Yes No

sequence Yes Yes, non-const only

array No Yes

Table 13-4 Operator Signatures for _var Classes

OMG IDL Data
Type

Operator Member Functions

struct TYPE * operator-> ()
TYPE * operator-> () const

union TYPE * operator-> ()
TYPE * operator-> () const

sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA::Long index)

array TYPE_slice & operator[](CORBA::Long index)
TYPE_slice & operator[](CORBA::Long index) const
13-50 CORBA C++ Programming Reference

Using var Classes

Sequence vars

Sequence vars support the following additional operator[] member function:

TYPE &operator[](CORBA::ULong Index);

This operator invokes the operator[] of sequence owned by the var class.
The operator[] returns a reference to the appropriate element of the
sequence at the specified index. The Index argument specifies the index of
the element to return. This index cannot be greater than the current sequence
length.

Array vars

Array vars do not support operator->, but do support the following additional
operator[] member functions to access the array elements:

TYPE_slice& operator[](CORBA::ULong Index);
const TYPE_slice & operator[](CORBA::ULong Index) const;

These operators return a reference to the array slice at the specified index. An
array slice is an array with all the dimensions of the original array except the
first dimension. The member functions for the array-generated classes use a
pointer to a slice to return pointers to an array. The Index argument specifies
the index of the slice to return. This index cannot be greater than the array
dimension.

String vars

The String vars in the member functions described in this section and in the section
“Sequence vars” on page 13-51 have a TYPE of char *. String vars support additional
member functions, as follows:

String_var(char * str)

This constructor makes a String_var from a string. The str argument
specifies the string that will be assumed. The user must not use the str
pointer to access data.
CORBA C++ Programming Reference 13-51

13 Mapping of OMG IDL Statements to C++

es.
e, in

l of the
String_var(const char * str)
String_var(const String_var & var)

This constructor makes a String_var from a const string. The str
argument specifies the const string that will be copied. The var argument
specifies a reference to the string to be copied.

String_var & operator=(char * str)

This assignment operator first releases the contained string using
CORBA::string_free, and then assumes ownership of the input string. The
str argument specifies the string whose ownership will be assumed by this
String_var object.

String_var & operator=(const char * str)
String_var & operator=(const String_var & var)

This assignment operator first releases the contained string using
CORBA::string_free, and then copies the input string. The Data argument
specifies the string whose ownership will be assumed by this String_var
object.

char operator[] (Ulong Index)
char operator[] (Ulong Index) const

These array operators are superscripting operators that provide access to
characters within the string. The Index argument specifies the index of the
array to use in accessing a particular character within the array. Zero-based
indexing is used. The returned value of the Char operator[] (Ulong
Index) function can be used as an lvalue. The returned value of the
Char operator[] (Ulong Index) const function cannot be used as an
lvalue.

out Classes

Structured types (struct, union, sequence), arrays, and interfaces have a corresponding
generated _out class. The out class is provided for simplifying the memory
management of pointers to variable-length and fixed-length types. For more
information about out classes and the common member functions, see the section
“Using out Classes” on page 13-53.

Some differences occur in the operators supported for the user-defined data typ
Table 13-5 describes the various operators supported by each OMG IDL data typ
the generated C++ code. Because the assignment operators are supported for al
data types described in Table 13-3, they are not included in the comparison.
13-52 CORBA C++ Programming Reference

Using out Classes
The signatures are as shown in Table 13-6.

Using out Classes

When a TYPE_var is passed as an out parameter, any previous value it referred to must
be implicitly deleted. To give the ORB enough hooks to meet this requirement, each
T_var type has a corresponding TYPE_out type that is used solely as the out
parameter type.

Table 13-5 Comparison of Operators Supported for User-defined Data Type Out
Classes

OMG IDL Data Type operator -> operator[]

struct Yes No

union Yes No

sequence Yes Yes, non-const only

array No Yes

Table 13-6 Operator Signatures for _out Classes

OMG IDL Data
Type

Operator Member Functions

struct TYPE * operator-> ()
TYPE * operator-> () const

union TYPE * operator-> ()
TYPE * operator-> () const

sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA::Long index)

array TYPE_slice & operator[](CORBA::Long index)
TYPE_slice & operator[](CORBA::Long index) const
CORBA C++ Programming Reference 13-53

13 Mapping of OMG IDL Statements to C++
Note: The _out classes are not intended to be instantiated directly by the
programmer. Specify an _out class only in function signatures.

The general form for TYPE_out types for variable-length types is as follows:

// C++
class TYPE_out
{
 public:
 TYPE_out(TYPE*& p) : ptr_(p) { ptr_ = 0; }
 TYPE_out(TYPE_var& p) : ptr_(p.ptr_) { delete ptr_; ptr_ = 0;}
 TYPE_out(TYPE_out& p) : ptr_(p.ptr_) {}
 TYPE_out& operator=(TYPE_out& p) { ptr_ = p.ptr_;
 return *this;
 }
 Type_out& operator=(Type* p) { ptr_ = p; return *this; }

 operator Type*&() { return ptr_; }
 Type*& ptr() { return ptr_; }

 Type* operator->() { return ptr_; }

 private:
 Type*& ptr_;

 // assignment from TYPE_var not allowed
 void operator=(const TYPE_var&):
};

The first constructor binds the reference data member with the T*& argument and sets
the pointer to the zero (0) pointer value. The second constructor binds the reference
data member with the pointer held by the TYPE_var argument, and then calls delete
on the pointer (or string_free() in the case of the String_out type or
TYPE_free() in the case of a TYPE_var for an array type TYPE). The third constructor,
the copy constructor, binds the reference data member to the same pointer referenced
by the data member of the constructor argument.

Assignment from another TYPE_out copies the TYPE* referenced by the TYPE_out
argument to the data member. The overloaded assignment operator for TYPE* simply
assigns the pointer argument to the data member. Note that assignment does not cause
any previously held pointer to be deleted; in this regard, the TYPE_out type behaves
exactly as a TYPE*. The TYPE*& conversion operator returns the data member. The
ptr() member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator
13-54 CORBA C++ Programming Reference

Using out Classes
(operator->()) allows access to members of the data structure pointed to by the
TYPE* data member. Compliant applications may not call the overloaded
operator->() unless the TYPE_out has been initialized with a valid non-null TYPE*.

Assignment to a TYPE_out from instances of the corresponding TYPE_var type is
disallowed because there is no way to determine whether the application developer
wants a copy to be performed, or whether the TYPE_var should yield ownership of its
managed pointer so it can be assigned to the TYPE_out. To perform a copy of a
TYPE_var to a TYPE_out, the application should use new, as follows:

// C++
TYPE_var t = ...;
my_out = new TYPE(t.in()); // heap-allocate a copy

The in() function called on t typically returns a const TYPE&, suitable for invoking
the copy constructor of the newly allocated T instance.

Alternatively, to make the TYPE_var yield ownership of its managed pointer so it can
be returned in a T_out parameter, the application should use the TYPE_var::_retn()
function, as follows:

// C++
TYPE_var t = ...;
my_out = t._retn(); // t yields ownership, no copy

Note that the TYPE_out types are not intended to serve as general-purpose data types
to be created and destroyed by applications; they are used only as types within
operation signatures to allow necessary memory management side-effects to occur
properly.

Object Reference out Parameter

When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation of an _out type that
is used solely as the out parameter type. For example, interface TYPE results in the
object reference type TYPE_ptr, the helper type TYPE_var, and the out parameter
type TYPE_out. The general form for object reference _out types is as follows:

// C++
class TYPE_out
{

CORBA C++ Programming Reference 13-55

13 Mapping of OMG IDL Statements to C++
 public:
 TYPE_out(TYPE_ptr& p) : ptr_(p) { ptr_ = TYPE::_nil(); }
 TYPE_out(TYPE_var& p) : ptr_(p.ptr_) {
 release(ptr_); ptr_ = TYPE::_nil();
 }
 TYPE_out(TYPE_out& a) : ptr_(a.ptr_) {}
 TYPE_out& operator=(TYPE_out& a) {
 ptr_ = a.ptr_; return *this;
 }
 TYPE_out& operator=(const TYPE_var& a) {
 ptr_ = TYPE::_duplicate(TYPE_ptr(a)); return *this;
 }
 TYPE_out& operator=(TYPE_ptr p) { ptr_ = p; return *this; }
 operator TYPE_ptr&() { return ptr_; }
 TYPE_ptr& ptr() { return ptr_; }
 TYPE_ptr operator->() { return ptr_; }

 private:
 TYPE_ptr& ptr_;
};

Sequence outs

Sequence outs support the following additional operator[] member function:

TYPE &operator[](CORBA::ULong Index);

This operator invokes the operator[] of the sequence owned by the out
class. The operator[] returns a reference to the appropriate element of the
sequence at the specified index. The Index argument specifies the index of
the element to return. This index cannot be greater than the current sequence
length.

Array outs

Array outs do not support operator->, but do support the following additional
operator[] member functions to access the array elements:

TYPE_slice& operator[](CORBA::ULong Index);
const TYPE_slice & operator[](CORBA::ULong Index) const;

These operators return a reference to the array slice at the specified index. An
array slice is an array with all the dimensions of the original array except the
13-56 CORBA C++ Programming Reference

Using out Classes
first dimension. The member functions for the array-generated classes use a
pointer to a slice to return pointers to an array. The Index argument specifies
the index of the slice to return. This index cannot be greater than the array
dimension.

String outs

When a String_var is passed as an out parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to meet
this requirement, the string type also results in the generation of a String_out type in
the CORBA namespace that is used solely as the string out parameter type. The
general form for the String_out type is as follows:

// C++
class String_out
{
 public:
 String_out(char*& p) : ptr_(p) { ptr_ = 0; }
 String_out(String_var& p) : ptr_(p.ptr_) {
 string_free(ptr_); ptr_ = 0;
 }
 String_out(String_out& s) : ptr_(s.ptr_) {}

 String_out& operator=(String_out& s) {
 ptr_ = s.ptr_; return *this;
 }
 String_out& operator=(char* p) {
 ptr_ = p; return *this;
 }
 String_out& operator=(const char* p) {
 ptr_ = string_dup(p); return *this;
 }
 operator char*&() { return ptr_; }
 char*& ptr() { return ptr_; }

 private:
 char*& ptr_;

 // assignment from String_var disallowed
 void operator=(const String_var&);
};
CORBA C++ Programming Reference 13-57

13 Mapping of OMG IDL Statements to C++

g

2” to
e
The first constructor binds the reference data member with the char*& argument. The
second constructor binds the reference data member with the char* held by the
String_var argument, and then calls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the same char*
bound to the data member of its argument.

Assignment from another String_out copies the char* referenced by the argument
String_out to the char* referenced by the data member. The overloaded assignment
operator for char* simply assigns the char* argument to the data member. The
overloaded assignment operator for const char* duplicates the argument and assigns
the result to the data member. Note that the assignment does not cause any previously
held string to be freed; in this regard, the String_out type behaves exactly as a
char*. The char*& conversion operator returns the data member. The ptr() member
function, which can be used to avoid having to rely on implicit conversion, also returns
the data member.

Assignment from String_var to a String_out is disallowed because of the memory
management ambiguities involved. Specifically, it is not possible to determine whether
the string owned by the String_var should be taken over by the String_out without
copying, or if it should be copied. Disallowing assignment from String_var forces
the application developer to make the choice explicitly, as follows:

// C++
void
A::op(String_out arg)
{
 String_var s = string_dup("some string");
 ...
 out = s; // disallowed; either
 out = string_dup(s); // 1: copy, or
 out = s._retn(); // 2: adopt
}

On the line marked with the comment “1,” the caller is explicitly copying the strin
held by the String_var and assigning the result to the out argument. Alternatively,
the caller could use the technique shown on the line marked with the comment “
force the String_var to give up its ownership of the string it holds so that it may b
returned in the out argument without incurring memory management errors.
13-58 CORBA C++ Programming Reference

Argument Passing Considerations
Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references,
the modes are straightforward, passing the type P for primitives and enumerations and
the type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, such as a Point type
represented as a struct containing three floating point members, caller allocation is
preferable (to allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach has
the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var.

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, the BEA
WebLogic Enterprise includes out parameters because the parameter could contain
the result from a previous call. The provision of the T_out types is intended to give
implementations the hooks necessary to free the inaccessible storage while converting
from the T_var types. The following examples demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
CORBA C++ Programming Reference 13-59

13 Mapping of OMG IDL Statements to C++
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)
q(s); // memory leak!

Each call to the q function in the loop results in a memory leak because the caller is not
invoking string_free on the out result. There are two ways to fix this, as shown
below:

// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {
 q(s);
 string_free(s); // explicit deallocation
 // OR:
 q(svar); // implicit deallocation
}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For
example, before assigning to an inout string parameter, the implementor of an
operation may first delete the old character data. Similarly, an inout interface
parameter should be released before being reassigned. One way to ensure that the
parameter storage is released is to assign it to a local T_var variable with an automatic
release, as in the following example:

// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {
 String_var s_tmp = s;
13-60 CORBA C++ Programming Reference

Argument Passing Considerations

d

ssing
 s = /* new data */;
 A_var obj_tmp = obj;
 obj = /* new reference */
}

For parameters that are passed or returned as a pointer (T*) or as a reference to a pointer
(T*&), an application is not allowed to pass or return a null pointer; the result of doing
so is undefined. In particular, a caller may not pass a null pointer under any of the
following circumstances:

l in and inout string

l in and inout array (pointer to first element)

However, a caller may pass a reference to a pointer with a null value for out
parameters, because the callee does not examine the value, but overwrites it. A callee
may not return a null pointer under any of the following circumstances:

l out and return variable-length struct

l out and return variable-length union

l out and return string

l out and return sequence

l out and return variable-length array, return fixed-length array

l out and return any

Operation Parameters and Signatures

Table 13-7, “Basic Argument and Result Passing,” on page 13-62 displays the
mapping for the basic OMG IDL parameter passing modes and return type
according to the type being passed or returned. Table 13-8, “T_var Argument an
Result Passing,” on page 13-63 displays the same information for T_var types.
Table 13-8 is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter-pa
modes shown in Table 13-7, with the exception that the T_out types will be used as
the actual parameter types for all out parameters.
CORBA C++ Programming Reference 13-61

13 Mapping of OMG IDL Statements to C++
It is also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either T_var
types or the base types shown in Table 13-7, and callees should treat their T_out
parameters as if they were actually the corresponding underlying types shown in
Table 13-7.

In Table 13-7, fixed-length arrays are the only case where the type of an out
parameter differs from a return value, which is necessary because C++ does not allow
a function to return an array. The mapping returns a pointer to a slice of the
array, where a slice is an array with all the dimensions of the original array
specified except the first dimension.

Table 13-7 Basic Argument and Result Passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

float Float Float& Float& Float

double Double Double& Double& Double

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr (See
Note below.)

objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*
13-62 CORBA C++ Programming Reference

Argument Passing Considerations

iated
Note: The Object reference ptr data type includes pseudo-object references. The
array slice return is an array with all the dimensions of the original array except
the first dimension.

A caller is responsible for providing storage for all arguments passed as in arguments.

Note: The object reference var data type includes pseudo-object references

Table 13-9 and Table 13-10 describe the caller’s responsibility for storage assoc
with inout and out parameters and for return results.

string const char* char*& char*& char*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice* (See Note
below.)

array, variable const array array array slice*& array slice*

any const any& any& any*& any*

Table 13-7 Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return

Table 13-8 T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var
(See Note below.)

const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var
CORBA C++ Programming Reference 13-63

13 Mapping of OMG IDL Statements to C++
Table 13-9 Caller Argument Storage Responsibilities

Type Inout Param Out Param Return Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3
13-64 CORBA C++ Programming Reference

Argument Passing Considerations

r’s
 to

ed
e as
f a
to

d

ign

r
,
Table 13-10 Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and
managed within the parameter itself. For inout parameters, the caller provides
the initial value, and the callee may change that value. For out parameters, the
caller allocates the storage but need not initialize it, and the callee sets the value.
Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller
provides an initial value; if the callee wants to reassign the inout parameter, it
will first call CORBA::release on the original input value. To continue to use
an object reference passed in as an inout, the caller must first duplicate the
reference. The caller is responsible for the release of all out and return object
references. Release of all object references embedded in other structures is
performed automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the
callee. The callee sets the pointer to point to a valid instance of the paramete
type. For returns, the callee returns a similar pointer. The callee is not allowed
return a null pointer in either case.

In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always release the return
storage, regardless of whether the callee is located in the same address spac
the caller or is located in a different address space. Following the completion o
request, the caller is not allowed to modify any values in the returned storage—
do so, the caller must first copy the returned instance into a new instance, an
modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the
char* pointing to it. Since the callee may deallocate the input string and reass
the char* to point to new storage to hold the output value, the caller should
allocate the input string using string_alloc(). The size of the out string is,
therefore, not limited by the size of the in string. The caller is responsible for
deleting the storage for the out using string_free(). The callee is not
allowed to return a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence o
any may cause deallocation of owned storage before any reallocation occurs
depending upon the state of the Boolean release parameter with which the
sequence or any was constructed.
CORBA C++ Programming Reference 13-65

13 Mapping of OMG IDL Statements to C++

ew
6 For out parameters, the caller allocates a pointer to an array slice, which has all
the same dimensions of the original array except the first, and passes the pointer
by reference to the callee. The callee sets the pointer to point to a valid instance
of the array.

For returns, the callee returns a similar pointer. The callee is not allowed to return
a null pointer in either case. In both cases, the caller is responsible for releasing
the returned storage.

To maintain local/remote transparency, the caller must always release the
returned storage, regardless of whether the callee is located in the same address
space as the callee or is located in a different address space. Following completion
of a request, the caller is not allowed to modify any values in the returned
storage—to do so, the caller must first copy the returned array instance into a n
array instance, and modify the new instance.

Table 13-10 Argument Passing Cases (Continued)

Case
13-66 CORBA C++ Programming Reference

CHAPTER
14 CORBA API

This chapter describes the BEA WebLogic Enterprise implementation of the CORBA
core member functions in C++ and their extensions. It also describes pseudo-objects
and their relationship to C++ classes. Pseudo-objects are object references that cannot
be transmitted across the network. Pseudo-objects are similar to other objects;
however, because the ORB owns them, they cannot be extended.

Note: Some of the information in this chapter is taken from Chapter 20 of the
Common Object Request Broker: Architecture and Specification. Revision
2.2, February 1998, published by the Object Management Group (OMG).
Used with permission by OMG.

Global Classes

The following BEA WebLogic Enterprise classes are global in scope:

n CORBA

n Tobj

These classes contain the predefined types, classes, and functions used in BEA
WebLogic Enterprise development.

The CORBA class contains the classes, data types, and member functions essential to
using an Object Request Broker (ORB) as defined by CORBA. The BEA WebLogic
Enterprise extensions to CORBA are contained in the Tobj C++ class. The Tobj class
contains data types, nested classes, and member functions that BEA WebLogic
Enterprise provides as an extension to CORBA.
CORBA C++ Programming Reference 14-1

14 CORBA API
Using CORBA data types and member functions in the BEA WebLogic Enterprise
product requires the CORBA:: prefix. For example, a Long is a CORBA::Long.
Likewise, to use Tobj nested classes and member functions in the BEA WebLogic
Enterprise product, you need the Tobj:: prefix. For example, FactoryFinder is
Tobj::FactoryFinder.

Pseudo-objects

Pseudo-objects are represented as local classes, which reside in the CORBA class. A
pseudo-object and its corresponding member functions are named using a nested class
structure. For example, an ORB object is a CORBA::ORB and a Current object is a
CORBA::Current.

Any Class Member Functions

This section describes the member functions of the Any class.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class Any
 {
 public:

 Any ();
 Any (const Any&);
 Any (TypeCode_ptr tc, void *value, Boolean release =
 CORBA_ FALSE);
 ~Any ();
 Any & operator=(const Any&);

 void operator<<=(Short);
 void operator<<=(UShort);
 void operator<<=(Long);
 void operator<<=(ULong);
 void operator<<=(Float);
14-2 CORBA C++ Programming Reference

Any Class Member Functions
 void operator<<=(Double);
 void operator<<=(const Any&);
 void operator<<=(const char*);
 void operator<<=(Object_ptr);
 void operator<<=(from_boolean);
 void operator<<=(from_char);
 void operator<<=(from_octet);
 void operator<<=(from_string);
 Boolean operator>>=(Short&) const;
 Boolean operator>>=(UShort&) const;
 Boolean operator>>=(Long&) const;
 Boolean operator>>=(ULong&) const;
 Boolean operator>>=(Float&) const;
 Boolean operator>>=(Double&) const;
 Boolean operator>>=(Any&) const;
 Boolean operator>>=(char*&) const;
 Boolean operator>>=(Object_ptr&) const;
 Boolean operator>>=(to_boolean) const;
 Boolean operator>>=(to_char) const;
 Boolean operator>>=(to_octet) const;
 Boolean operator>>=(to_object) const;
 Boolean operator>>=(to_string) const;

 TypeCode_ptr type()const;
 void replace(TypeCode_ptr, void *, Boolean);
 void replace(TypeCode_ptr, void *);
 const void * value() const;

 };
}; //CORBA
CORBA C++ Programming Reference 14-3

14 CORBA API
CORBA::Any::Any()

Synopsis Constructs the Any object.

C++ Binding CORBA::Any::Any()

Arguments None.

Description This is the default constructor for the CORBA::Any class. It creates an Any object with
a TypeCode of type tc_null and a value of 0 (zero).

Return Values None.
14-4 CORBA C++ Programming Reference

Any Class Member Functions

u
CORBA::Any::Any(const CORBA::Any & InitAny)

Synopsis Constructs the Any object that is a copy of another Any object.

C++ Binding CORBA::Any::Any(const CORBA::Any & InitAny)

Argument InitAny
Refers to the CORBA::Any to copy.

Description This is the copy constructor for the CORBA::Any class. This constructor duplicates
the TypeCode reference of the Any that is passed in.

The type of copying to be performed is determined by the release flag of the Any
object to be copied. If release evaluates as CORBA_TRUE, the constructor
deep-copies the parameter’s value; if release evaluates as CORBA_FALSE, the
constructor shallow-copies the parameter’s value. Using a shallow copy gives yo
more control to optimize memory allocation, but the caller must ensure the Any does
not use memory that has been freed.

Return Values None.
CORBA C++ Programming Reference 14-5

14 CORBA API
CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Synopsis Creates the Any object using a TypeCode and a value.

C++ Binding CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Arguments TC

A pointer to a TypeCode pseudo-object reference, specifying the type to be
created.

Value

A pointer to the data to be used to create the Any object. The data type of this
argument must match the TypeCode specified.

Release

Determines whether the Any assumes ownership of the memory specified by
the Value argument. If Release is CORBA_TRUE, the Any assumes
ownership. If Release is CORBA_FALSE, the Any does not assume
ownership; the data pointed to by the Value argument is not released upon
assignment or destruction.

Description This constructor is used with the nontype-safe Any interface. It duplicates the specified
TypeCode object reference and then inserts the data pointed to by value inside the
Any object.

Return Values None.
14-6 CORBA C++ Programming Reference

Any Class Member Functions
CORBA::Any::~Any()

Synopsis Destructor for the Any.

C++ Binding CORBA::Any::~Any()

Arguments None.

Description This destructor frees the memory that the CORBA::Any holds (if the Release flag is
specified as CORBA_TRUE), and releases the TypeCode pseudo-object reference
contained in the Any.

Return Values None.
CORBA C++ Programming Reference 14-7

14 CORBA API

r

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Synopsis Any assignment operator.

C++ Binding CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)

Arguments InitAny
A reference to an Any to use in the assignment. The Any to use in the
assignment determines whether the Any assumes ownership of the memory in
Value. If Release is CORBA_TRUE, the Any assumes ownership and
deep-copies the InitAny argument’s value; if Release is CORBA_FALSE, the
Any shallow-copies the InitAny argument’s value.

Description This is the assignment operator for the Any class. Memory management of this membe
function is determined by the current value of the Release flag. The current value of
the Release flag determines whether the current memory is released before the
assignment. If the current Release flag is CORBA_TRUE, the Any releases any value
previously held; if the current Release flag is CORBA_FALSE, the Any does not release
any value previously held.

Return Values Returns the Any, which holds the copy of the InitAny.
14-8 CORBA C++ Programming Reference

Any Class Member Functions
void CORBA::any::operator<<=()

Synopsis Type safe Any insertion operators.

C++ Binding void CORBA::Any::operator<<=(CORBA::Short Value)
void CORBA::Any::operator<<=(CORBA::UShort Value)
void CORBA::Any::operator<<=(CORBA::Long Value)
void CORBA::Any::operator<<=(CORBA::Ulong Value)
void CORBA::Any::operator<<=(CORBA::Float Value)
void CORBA::Any::operator<<=(CORBA::Double Value)
void CORBA::Any::operator<<=(const CORBA::Any & Value)
void CORBA::Any::operator<<=(const char * Value)
void CORBA::Any::operator<<=(Object_ptr Value)

Argument Value

Type specific value to be inserted into the Any.

Description This insertion member function performs type-safe insertions. If the Any had a
previous value, and the release flag is CORBA_TRUE, the memory is deallocated and
the previous TypeCode object reference is freed. The new value is inserted into the Any
by copying the value passed in using the Value parameter. The appropriate TypeCode
reference is duplicated.

Return Values None.
CORBA C++ Programming Reference 14-9

14 CORBA API
CORBA::Boolean CORBA::Any::operator>>=()

Synopsis Type safe Any extraction operators.

C++ Binding CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Short & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::UShort & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Long & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Ulong & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Float & Value) const
CORBA::Boolean CORBA::Any::operator>>=(
 CORBA::Double & Value) const
CORBA::Boolean CORBA::Any::operator>>=(CORBA::Any & Value) const
CORBA::Boolean CORBA::Any::operator>>=(char * & Value) const
CORBA::Boolean CORBA::Any::operator>>=(Object_ptr & Value) const

Argument The Value argument is a reference to the relevant object that receives the output of the
value contained in the Any object.

Description This extraction member function performs type-safe extractions. If the Any object
contains the specified type, this member function assigns the pointer of the Any to the
output reference value, Value, and CORBA_TRUE is returned. If the Any does not
contain the appropriate type, CORBA_FALSE is returned. The caller must not attempt to
release or delete the storage because it is owned and managed by the Any object. The
Value argument is a reference to the relevant object that receives the output of the
value contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

Return Values CORBA_TRUE if the Any contained a value of the specific type. CORBA_FALSE if the Any
did not contain a value of the specific type.
14-10 CORBA C++ Programming Reference

Any Class Member Functions
CORBA::Any::operator<<=()

Synopsis Type safe insertion operators for Any.

C++ Binding void CORBA::Any::operator<<=(from_boolean Value)
void CORBA::Any::operator<<=(from_char Value)
void CORBA::Any::operator<<=(from_octet Value)
void CORBA::Any::operator<<=(from_string Value)

Argument Value

A relevant object that contains the value to insert into the Any.

Description These insertion member functions perform a type-safe insertion of a
CORBA::Boolean, a CORBA::Char, or a CORBA::Octet reference into an Any. If the
Any had a previous value, and its Release flag is CORBA_TRUE, the memory is
deallocated and the previous TypeCode object reference is freed. The new value is
inserted into the Any object by copying the value passed in using the Value parameter.
The appropriate TypeCode reference is duplicated.

Return Values None.
CORBA C++ Programming Reference 14-11

14 CORBA API
CORBA::Boolean CORBA::Any::operator>>=()

Synopsis Type-safe extraction operators for Any.

C++ Binding CORBA::Boolean CORBA::Any::operator>>=(to_boolean Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_char Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_octet Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_object Value) const
CORBA::Boolean CORBA::Any::operator>>=(to_string Value) const

Argument Value
A reference to the relevant object that receives the output of the value
contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

Description These extraction member functions perform a type-safe extraction of a
CORBA::Boolean, a CORBA::Char, a CORBA::Octet, a CORBA::Object, or a
String reference from an Any. These member functions are helpers nested in the Any
class. Their purpose is to distinguish extractions of the OMG IDL types: boolean, char,
and octet (C++ does not require these to be distinct types).

Return Values If the Any contains the specified type, this member function assigns the value in the
Any object reference to the output variable, Value, and returns CORBA_TRUE. If the
Any object does not contain the appropriate type, CORBA_FALSE is returned.
14-12 CORBA C++ Programming Reference

Any Class Member Functions
CORBA::TypeCode_ptr CORBA::Any::type() const

Synopsis TypeCode accessor for Any.

C++ Binding CORBA::TypeCode_ptr CORBA::Any::type();

Arguments None.

Description This function returns the TypeCode_ptr pseudo-object reference of the TypeCode
object associated with the Any. The TypeCode_ptr pseudo-object reference must be
released by the CORBA::release member function or must be assigned to a
TypeCode_var to be automatically released.

Return Values TypeCode_ptr contained in the Any.
CORBA C++ Programming Reference 14-13

14 CORBA API

 the

 by

ed in

 for
d to by

e
void CORBA::Any::replace()

Synopsis Non-type safe Any “insertion.”

C++ Binding void CORBA::Any::replace(TypeCode_ptr TC, void * Value,
 Boolean Release = CORBA_FALSE);

Arguments TC

A TypeCode pseudo-object reference specifying the TypeCode value for
replaced Any object. This argument is duplicated.

Value

A void pointer specifying the storage pointed to by the Any object.

Release

Determines whether the Any manages the specified Value argument. If
Release is CORBA_TRUE, the Any assumes ownership. If Release is

CORBA_FALSE, the Any does not assume ownership and the data pointed to
the Value parameter is not released upon assignment or destruction.

Description These member functions replace the data and TypeCode value currently contain
the Any with the value of the TC and Value arguments passed in. The functions
perform a nontype-safe replacement, which means that the caller is responsible
consistency between the TypeCode value and the data type of the storage pointe
the Value argument.

If the value of Release is CORBA_TRUE, this function releases the existing TypeCod
pseudo-object in the Any object and frees the storage pointed to be the Any object
reference.

Return Values None.
14-14 CORBA C++ Programming Reference

Context Member Functions
Context Member Functions

A Context supplies optional context information associated with a method invocation.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class Context
 {
 public:
 const char *context_name() const;
 Context_ptr parent() const;

 void create_child(const char *, Context_out);

 void set_one_value(const char *, const Any &);
 void set_values(NVList_ptr);
 void delete_values(const char *);
 void get_values(
 const char *,
 Flags,
 const char *,
 NVList_out
);
 }; // Context
}// CORBA

Memory Management

Context has the following special memory management rule:

l Ownership of the return values of the context_name and parent functions
is maintained by the Context; these return values must not be freed by the
caller.

This section describes Context member functions.
CORBA C++ Programming Reference 14-15

14 CORBA API
CORBA::Context::context_name

Synopsis Returns the name of a given Context object.

C++ Binding Const char * CORBA::Context::context_name () const;

Arguments None.

Description This member function returns the name of a given Context object. The Context object
reference owns the memory for the returned char *. Users should not modify this
memory.

Return Values If the member function succeeds, it returns the name of the Context object. The value
may be empty if the Context object is not a child Context created by a call to
CORBA::Context::create_child.

If the Context object has no name, this is an empty string.
14-16 CORBA C++ Programming Reference

Context Member Functions
CORBA::Context::create_child

Synopsis Creates a child of the Context object.

C++ Binding void CORBA::Context::create_child (
 const char * CtxName,
 CORBA::Context_out CtxObject);

Arguments CtxName
The name to be associated with the child of the Context reference.

CtxObject
The newly created Context object reference.

Description This member function creates a child of the Context object. That is, searches on the
child Context object will look for matching property names in the parent context (and
so on, up the context tree), if necessary.

Return Values None.

Exception CORBA::NO_MEMORY

See Also CORBA::ORB::get_default_context
CORBA::release
CORBA C++ Programming Reference 14-17

14 CORBA API
CORBA::Context::delete_values

Synopsis Deletes the values for a specified attribute in the Context object.

C++ Binding void CORBA::Context::delete_values (
 const char * AttrName);

Argument AttrName
The name of the attribute whose values are to be deleted. If this argument has
a trailing wildcard character (*), all names that match the string preceding the
wildcard character are deleted.

Description This member function deletes named values for an attribute in the Context object. Note
that it does not do recursively do the same to its parents, if any.

Return Values None.

Exceptions CORBA::BAD_PARAM if attribute is an empty string.
CORBA::BAD_CONTEXT if no matching attributes to be deleted were found.

See Also CORBA::Context::create_child
CORBA::ORB::get_default_context
14-18 CORBA C++ Programming Reference

Context Member Functions
CORBA::Context::get_values

Synopsis Retrieves the values for a given attribute in the Context object within the specified
scope.

C++ Binding void CORBA::Context::get_values (
 const char * StartScope,
 CORBA::Flags OpFlags,
 const char * AttrName,
 CORBA::NVList_out AttrValues);

Arguments StartScope
The Context object level at which to initiate the search for specified
properties. The level is the name of the context, or parent, at which the
search is started. If the value is 0 (zero), the search begins with the current
Context object.

OpFlags
The only valid operation flag is CORBA::CTX_RESTRICT_SCOPE. If you
specify this flag, the object implementation restricts the property search to the
current scope only (that is, the property search is not executed recursively up
the chain of the parent context); otherwise, the search continues to a wider
scope until a match has been found or until all wider levels have been
searched.

AttrName
The name of the attribute whose values are to be returned. If this argument
has a trailing wildcard character (*), all names that match the string preceding
the wildcard character are returned.

AttrValues
Receives the values for the specified attributes (returns an NVList object)
where each item in the list is a NamedValue.

Description This member function retrieves the values for a specified attribute in the Context
object. These values are returned as an NVList object, which must be freed when no
longer needed using the CORBA::release member function.

Return Values None.
CORBA C++ Programming Reference 14-19

14 CORBA API
Exceptions CORBA::BAD_PARAM if attribute is an empty string.
CORBA::BAD_CONTEXT if no matching attributes were found.
CORBA::NO_MEMORY if dynamic memory allocation failed.

See Also CORBA::Context::create_child
CORBA::ORB::get_default_context
14-20 CORBA C++ Programming Reference

Context Member Functions
CORBA::Context::parent

Synopsis Returns the parent context of the Context object.

C++ Binding CORBA::Context_ptr CORBA::Context::parent () const;

Arguments None.

Description This member function returns the parent context of the Context object. The parent of
the Context object is an attribute owned by the Context and should not be modified or
freed by the caller. This parent is nil unless the Context object was created using the
CORBA::Context::create_child member function.

Return Values If the member function succeeds, the parent context of the Context object is returned.
The parent context may be nil. Use the CORBA::is_nil member function to test for
a nil object reference.

If the member function does not succeed, an exception is thrown. Use the
CORBA::is_nil member function to test for a nil object reference.
CORBA C++ Programming Reference 14-21

14 CORBA API
CORBA::Context::set_one_value

Synopsis Sets the value for a given attribute in the Context object.

C++ Binding void CORBA::Context::set_one_value (
 const char * AttrName,
 const CORBA::Any & AttrValue);

Arguments AttrName
The name of the attribute to set.

AttrValue
The value of the attribute. Currently, the BEA WebLogic Enterprise system
supports only the string type; therefore, this parameter must contain a
CORBA::Any object with a string inside.

Description This member function sets the value for a given attribute in the Context object.
Currently, only string values are supported by the Context object. If the Context object
already has an attribute with the given name, it is deleted first.

Return Values None.

Exceptions CORBA::BAD_PARAM if AttrName is an empty string or AttrValue does not contain a
string type.
CORBA::NO_MEMORY if dynamic memory allocation failed.

See Also CORBA::Context::get_values
CORBA::Context::set_values
14-22 CORBA C++ Programming Reference

Context Member Functions
CORBA::Context::set_values

Synopsis Sets the values for given attributes in the Context object.

C++ Binding void CORBA::Context::set_values (
 CORBA::NVList_ptr AttrValue);

Argument AttrValues
The name and value of the attribute. Currently the BEA WebLogic Enterprise
system supports only the string type; therefore, all NamedValue objects in the
list must have CORBA::Any objects with a string inside.

Description This member function sets the values for given attributes in the Context object. The
CORBA::NVList member function contains the property name and value pairs to be
set.

Return Values None.

Exceptions CORBA::BAD_PARAM if any of the attribute values has a value that is not a string type.
CORBA::NO_MEMORY if dynamic memory allocation failed.

See Also CORBA::Context::get_values
CORBA::Context::set_one_value
CORBA C++ Programming Reference 14-23

14 CORBA API

.

ext
f
of the
ContextList Member Functions

The ContextList allows a client or server application to provide a list of context strings
that must be supplied with Request invocation. For a description of the Request
member functions, see the section “Request Member Functions” on page 14-111

The ContextList differs from the Context in that the former supplies only the cont
strings whose values are to be looked up and sent with the request invocation (i
applicable), while the latter is where those values are obtained. For a description
Context member functions, see the section “Context Member Functions” on
page 14-15.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class ContextList
 {
 public:
 Ulong count ();
 void add(const char* ctxt);
 void add_consume(char* ctxt);
 const char* item(Ulong index);
 Status remove(Ulong index);
 }; // ContextList
}// CORBA
14-24 CORBA C++ Programming Reference

ContextList Member Functions
CORBA::ContextList:: count

Synopsis Retrieves the current number of items in the list.

C++ Binding Ulong count ();

Arguments None.

Description This member function retrieves the current number of items in the list.

Return Values If the function succeeds, the returned value is the number of items in the list. If the list
has just been created, and no ContextList objects have been added, this function returns
0 (zero).

Exception If the function does not succeed, an exception is thrown.

See Also CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::item
CORBA::ContextList::remove
CORBA C++ Programming Reference 14-25

14 CORBA API
CORBA::ContextList::add

Synopsis Constructs a ContextList object with an unnamed item, setting only the flags
attribute.

C++ Binding void add(const char* ctxt);

Argument ctxt

Defines the memory location referred to by char*.

Description This member function constructs a ContextList object with an unnamed item, setting
only the flags attribute.

The ContextList object grows dynamically; your application does not need to track its
size.

Return Values If the function succeeds, the return value is a pointer to the newly created ContextList
object.

Exception If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.

See Also CORBA::ContextList::add_consume
CORBA::ContextList::count
CORBA::ContextList::item
CORBA::ContextList::remove
14-26 CORBA C++ Programming Reference

ContextList Member Functions
CORBA::ContextList::add_consume

Synopsis Constructs a ContextList object.

C++ Binding void add_consume(const char* ctxt);

Argument ctxt
Defines the memory location referred to by char*.

Description This member function constructs a ContextList object.

The ContextList object grows dynamically; your application does not need to track its
size.

Return Values If the function succeeds, the return value is a pointer to the newly created ContextList
object.

Exception If the member function does not succeed, an exception is raised.

See Also CORBA::ContextList::add
CORBA::ContextList::count
CORBA::ContextList::item
CORBA::ContextList::remove
CORBA C++ Programming Reference 14-27

14 CORBA API
CORBA::ContextList::item

Synopsis Retrieves a pointer to the ContextList object, based on the index passed in.

C++ Binding const char* item(ULong index);

Argument index
The index into the ContextList object. The indexing is zero-based.

Description This member function retrieves a pointer to a ContextList object, based on the index
passed in. The function uses zero-based indexing.

Return Values If the function succeeds, the return value is a pointer to the ContextList object.

Exceptions If this function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::count
CORBA::ContextList::remove
14-28 CORBA C++ Programming Reference

ContextList Member Functions
CORBA::ContextList::remove

Synopsis Removes the item at the specified index, frees any associated memory, and reorders
the remaining items on the list.

C++ Binding Status remove(ULong index);

Argument Index

The index into the ContextList object. The indexing is zero-based.

Description This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

Return Values None.

Exceptions If this function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::ContextList::add
CORBA::ContextList::add_consume
CORBA::ContextList::count
CORBA::ContextList::item
CORBA C++ Programming Reference 14-29

14 CORBA API
NamedValue Member Functions

NamedValue is used only as an element of NVList, especially in the DII. NamedValue
maintains an (optional) name, an any value, and labelling flags. Legal flag values are
CORBA::ARG_IN, CORBA::ARG_OUT, and CORBA::ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.

The mapping of these member functions to C++ is as follows:

// C++
class NamedValue
{
 public:
 Flags flags() const;
 const char * name() const;
 Any * value() const;
};

Memory Management

NamedValue has the following special memory management rule:

n Ownership of the return values of the name() and value() functions is
maintained by the NamedValue; these return values must not be freed by the
caller.

The following sections describe NamedValue member functions.
14-30 CORBA C++ Programming Reference

NamedValue Member Functions
CORBA::NamedValue::flags

Synopsis Retrieves the flags attribute of the NamedValue object.

C++ Binding CORBA::Flags CORBA::NamedValue::flags () const;

Arguments None.

Description This member function retrieves the flags attribute of the NamedValue object.

Return Values If the function succeeds, the return value is the flags attribute of the NamedValue
object.

If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-31

14 CORBA API
CORBA::NamedValue::name

Synopsis Retrieves the name attribute of the NamedValue object.

C++ Binding const char * CORBA::NamedValue::name () const;

Arguments None.

Description This member function retrieves the name attribute of the NamedValue object. The
name returned by this member function is owned by the NamedValue object and
should not be modified or released.

Return Values If the function succeeds, the value returned is a constant Identifier object representing
the name attribute of the NamedValue object.

If the function does not succeed, an exception is thrown.
14-32 CORBA C++ Programming Reference

NamedValue Member Functions
CORBA::NamedValue::value

Synopsis Retrieves a pointer to the value attribute of the NamedValue object.

C++ Binding CORBA::Any * CORBA::NamedValue::value () const;

Arguments None.

Description This member function retrieves a pointer to the Any object that represents the value
attribute of the NamedValue object. This attribute is owned by the NamedValue
object, and should not be modified or released.

Return Values If the function succeeds, the return value is a pointer to the Any object contained in the
NamedValue object.

If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-33

14 CORBA API

ays:
NVList Member Functions

NVList is a list of NamedValues. A new NVList is constructed using the
ORB::create_list operation (see “CORBA::ORB::create_list” on page 14-60).
New NamedValues may be constructed as part of an NVList, in any of following w

l add—creates an unnamed value, initializing only the flags

l add_item—initializes name and flags

l add_value—initializes name, value, and flags

Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add, add_item,
add_value, add_item_consume, and add_value_consume functions lengthen the
NVList to hold the new element each time they are called. The item function can be
used to access existing elements.

// C++
class NVList
{
 public:
 ULong count() const;
 NamedValue_ptr add(Flags);
 NamedValue_ptr add_item(const char*, Flags);
 NamedValue_ptr add_value(const char*, const Any&, Flags);
 NamedValue_ptr item(ULong);
 void remove(ULong);
};

Memory Management

NVList has the following special memory management rules:

l Ownership of the return values of the add, add_item, add_value,
add_item_consume, add_value_consume, and item functions is
maintained by the NVList; these return values must not be freed by the
caller.

l The char* parameters to the add_item_consume and add_value_consume
functions and the Any* parameter to the add_value_consume function are
14-34 CORBA C++ Programming Reference

NVList Member Functions
consumed by the NVList. The caller may not access these data after they
have been passed to these functions because the NVList may copy them and
destroy the originals immediately. The caller should use the
NamedValue::value() operation to modify the value attribute of the
underlying NamedValue, if desired.

l The remove function also calls CORBA::release on the removed
NamedValue.

The following sections describe NVList member functions.
CORBA C++ Programming Reference 14-35

14 CORBA API
CORBA::NVList::add

Synopsis Constructs a NamedValue object with an unnamed item, setting only the flags
attribute.

C++ Binding CORBA::NamedValue_ptr CORBA::NVList::add (
 CORBA::Flags Flags);

Argument Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT

Description This member function constructs a NamedValue object with an unnamed item, setting
only the flags attribute. The NamedValue object is added to the NVList object that the
call was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values If the function succeeds, the return value is a pointer to the newly created NamedValue
object. The returned NamedValue object reference is owned by the NVList and should
not be released.

If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::remove
14-36 CORBA C++ Programming Reference

NVList Member Functions
CORBA::NVList::add_item

Synopsis Constructs a NamedValue object, creating an empty value attribute and initializing the
name and flags attributes.

C++ Binding CORBA::NamedValue_ptr CORBA::NVList::add_item (

 const char * Name,

 CORBA::Flags Flags);

Arguments Name
The name of the list item.

Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT

Description This member function constructs a NamedValue object, creating an empty value
attribute and initializing the name and flags attributes that pass in as parameters. The
NamedValue object is added to the NVList object that the call was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values If the function succeeds, the return value is a pointer to the newly created NamedValue
object. The returned NamedValue object reference is owned by the NVList and should
not be released.

If the member function does not succeed, an exception is thrown.

See Also CORBA::NVList::add
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::item
CORBA::NVList::remove
CORBA C++ Programming Reference 14-37

14 CORBA API
CORBA::NVList::add_value

Synopsis Constructs a NamedValue object, initializing the name, value, and flags attribute.

C++ Binding CORBA::NamedValue_ptr CORBA::NVList::add_value (

 const char * Name,

 const CORBA::Any & Value,

 CORBA::Flags Flags);

Arguments Name
The name of the list item.

Value
The value of the list item.

Flags
Flags to determine argument passing. Valid values are:

 CORBA::ARG_IN
 CORBA::ARG_INOUT
 CORBA::ARG_OUT

Description This member function constructs a NamedValue object, initializing the name, value,
and flags attributes. The NamedValue object is added to the NVList object that the call
was invoked upon.

The NVList object grows dynamically; your application does not need to track its size.

Return Values If the function succeeds, the return value is a pointer to the newly created NamedValue
object. The returned NamedValue object reference is owned by the NVList and should
not be released.

If the member function does not succeed, an exception is raised.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::count
CORBA::NVList::item
CORBA::NVList::remove
14-38 CORBA C++ Programming Reference

NVList Member Functions
CORBA::NVList::count

Synopsis Retrieves the current number of items in the list.

C++ Binding CORBA::ULong CORBA::NVList::count () const;

Arguments None.

Description This member function retrieves the current number of items in the list.

Return Values If the function succeeds, the returned value is the number of items in the list. If the list
has just been created, and no NamedValue objects have been added, this function
returns 0 (zero).

If the function does not succeed, an exception is thrown.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::item
CORBA::NVList::remove
CORBA C++ Programming Reference 14-39

14 CORBA API
CORBA::NVList::item

Synopsis Retrieves a pointer to the NamedValue object, based on the index passed in.

C++ Binding CORBA::NamedValue_ptr CORBA::NVList::item (

 CORBA::ULong Index);

Argument Index
The index into the NVList object. The indexing is zero-based.

Description This member function retrieves a pointer to a NamedValue object, based on the index
passed in. The function uses zero-based indexing.

Return Values If the function succeeds, the return value is a pointer to the NamedValue object. The
returned NamedValue object reference is owned by the NVList and should not be
released.

Exception If this function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::remove
14-40 CORBA C++ Programming Reference

NVList Member Functions
CORBA::NVList::remove

Synopsis Removes the item at the specified index, frees any associated memory, and reorders
the remaining items on the list.

C++ Binding void CORBA::NVList::remove (
 CORBA::ULong Index);

Argument Index

The index into the NVList object. The indexing is zero-based.

Description This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

Return Values None.

Exception If this function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::NVList::count
CORBA::NVList::item
CORBA C++ Programming Reference 14-41

14 CORBA API

ons”

re

he
Object Member Functions

The rules in this section apply to the OMG IDL interface Object, which is the base of
the OMG IDL interface hierarchy. Interface Object defines a normal CORBA object,
not a pseudo-object. However, it is included here because it references other
pseudo-objects.

In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is
divided into three forms, corresponding to the usage styles described in the section
“Request Member Functions” on page 14-111. The is_nil and release functions
are provided in the CORBA namespace, as described in “Object Member Functi
on page 14-42.

The BEA WebLogic Enterprise software uses object reference operations that a
defined by CORBA Revision 2.2. These operations depend only on type Object, so
they can be expressed as regular functions within the CORBA namespace.

Note: Because the BEA WebLogic Enterprise software uses the POA and not t
BOA, the deprecated get_implementation() member function is not
visible; you will get a compile error if you attempt to reference it.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class Object
 {
 public:
 CORBA::Boolean _is_a(const char *)
 CORBA::Boolean _is_equivalent();
 CORBA::Boolean _nonexistent(Object_ptr);

 static Object_ptr _duplicate(Object_ptr obj);
 static Object_ptr _nil();
 InterfaceDef_ptr _get_interface();
 CORBA::ULong _hass(CORBA::ULong);
 void _create_request(
 Context_ptr ctx,
 const char *operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 Request_out request,
14-42 CORBA C++ Programming Reference

Object Member Functions
 Flags req_flags
);
 Status _create_request(
 Context_ptr ctx,
 const char * operation,
 NVList_ptr arg_list,
 NamedValue_ptr result,
 ExceptionList_ptr Except_list,
 ContextList_ptr Context_list,
 Request_out request,
 Flags req_flags
);
 Request_ptr _request(const char* operation);
 }; //Object
}; // CORBA

The following sections describe the Object member functions.
CORBA C++ Programming Reference 14-43

14 CORBA API
CORBA::Object::_create_request

Synopsis Creates a request with user-specified information.

C++ Binding Void CORBA::Object::_create_request (

 CORBA::Context_ptr Ctx,

 const char * Operation,

 CORBA::NVList_ptr Arg_list,

 CORBA::NamedValue_ptr Result,

 CORBA::ExceptionList_ptr Except_list,

 CORBA::ContextList_ptr Context_list,

 CORBA::Request_out Request,

 CORBA::Flags Req_flags,);

Arguments Ctx
The Context to be used for this request.

Operation
The operation name for this request.

Arg_list
The argument list for this request.

Result
The NamedValue reference where the return value of this request is to be
stored after a successful invocation.

Except_list

The exception list for this request.

Context_list

The context list for this request.

Request
The newly created request reference.

Req_flags
Reserved for future use; the user must pass a value of zero.
14-44 CORBA C++ Programming Reference

Object Member Functions
Description This member function creates a request that provides information on context, operation
name, and other values (long form). To create a request with just the operation name
supplied at the time of the call (short form), use the CORBA::Object::_request
member function. The remainder of the information provided in the long form
eventually needs to be supplied.

Return Values None.

See Also CORBA::Object::_request
CORBA C++ Programming Reference 14-45

14 CORBA API
CORBA::Object::_duplicate

Synopsis Duplicates the Object object reference.

C++ Binding CORBA::Object_ptr CORBA::Object::_duplicate(
 Object_ptr Obj);

Argument obj

The object reference to be duplicated.

Description This member function duplicates the specified Object object reference (Obj). If the
given object reference is nil, the _duplicate function returns a nil object reference.
The object returned by this call should be freed using CORBA::release, or should be
assigned to CORBA::Object_var for automatic destruction.

This function can throw CORBA system exceptions.

Return Values Returns the duplicate object reference. If the specified object reference is nil, a nil
object reference is returned.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0","MyTeller");
CORBA::Object_ptr dop = CORBA::Object::_duplicate(op);
14-46 CORBA C++ Programming Reference

Object Member Functions
CORBA::Object::_get_interface

Synopsis Returns an interface definition for the Repository object.

C++ Binding CORBA::InterfaceDef_ptr CORBA::Object::_get_interface ();

Arguments None.

Description Returns an interface definition for the Repository object.

Note: To use the Repository Interface API, define a macro before CORBA.h is
included. For information about how to define a macro, see Creating CORBA
C++ Server Applications.

Return Values InterfaceDef_ptr
CORBA C++ Programming Reference 14-47

14 CORBA API
CORBA::Object::_is_a

Synopsis Determines whether an object is of a certain interface.

C++ Binding CORBA::Boolean CORBA::Object::_is_a(const char * interface_id);

Argument interface_id

A string that denotes the interface repository ID.

Description This member function is used to determine if an object is an instance of the interface
that you specify in the interface_id parameter. It facilitates maintaining type-safety
for object references over the scope of an ORB.

Return Values Returns TRUE if the object is an instance of the specified type, or if the object is an
ancestor of the “most derived” type of that object.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Boolean b = op->_is_a("IDL:Teller:1.0");

Exceptions Can throw a standard CORBA exception.
14-48 CORBA C++ Programming Reference

Object Member Functions
CORBA::Object::_is_equivalent

Synopsis Determines if two object references are equivalent.

C++ Binding CORBA::Boolean CORBA::Object::_is_equivalent (
 CORBA::Object_ptr other_obj);

Argument other_obj

The object reference for the other object, which is used for comparison with
the target object.

Description This member function is used to determine if two object references are equivalent, so
far as the ORB can easily determine. It returns TRUE if your object reference is
equivalent to the object reference you pass as a parameter. If two object references are
identical, they are equivalent. Two different object references that refer to the same
object are also equivalent.

Return Values Returns TRUE if the target object reference is known to be equivalent to the other
object reference passed as a parameter; otherwise, it returns FALSE.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Object_ptr dop = CORBA::Object::_duplicate(op);
CORBA::Boolean b = op->_is_equivalent(dop);
CORBA C++ Programming Reference 14-49

14 CORBA API
CORBA::Object::_nil

Synopsis Returns a reference to a nil object.

C++ Binding CORBA::Object_ptr CORBA::Object::_nil();

Arguments None.

Description This member function returns a nil object reference. To test whether a given object is
nil, use the appropriate CORBA::is_nil member function (see the section
“CORBA::release” on page 14-54). Calling the CORBA:is_nil routine on any _nil
member function always yields CORBA_TRUE.

Return Values Returns a nil object reference.

Example CORBA::Object_ptr op = CORBA::Object::_nil();
14-50 CORBA C++ Programming Reference

Object Member Functions
CORBA::Object::_non_existent

Synopsis May be used to determine if an object has been destroyed.

C++ Binding CORBA::Boolean CORBA::Object::_non_existent();

Arguments None.

Description This member function may be used to determine if an object has been destroyed. It
does this without invoking any application-level operation on the object, and so will
never affect the object itself.

Return Values Returns CORBA_TRUE (rather than raising CORBA::OBJECT_NOT_EXIST) if the ORB
knows authoritatively that the object does not exist; otherwise, it returns
CORBA_FALSE.
CORBA C++ Programming Reference 14-51

14 CORBA API
CORBA::Object::_request

Synopsis Creates a request specifying the operation name.

C++ Binding CORBA::Request_ptr CORBA::Object::_request (

 const char * Operation);

Argument Operation
The name of the operation for this request.

Description This member function creates a request specifying the operation name. All other
information, such as arguments and results, must be populated using
CORBA::Request member functions.

Return Values If the member function succeeds, the return value is a pointer to the newly created
request.

If the member function does not succeed, an exception is thrown.

See Also CORBA::Object::_create_request
14-52 CORBA C++ Programming Reference

CORBA Member Functions
CORBA Member Functions

This section describes the Object and Pseudo-Object Reference member functions.

The mapping of these member functions to C++ is as follows:

class CORBA {
 void release(Object_ptr);
 void release(Environment_ptr);
 void release(NamedValue_ptr);

void release(NVList_ptr);
 void release(Request_ptr);
 void release(Context_ptr);
 void release(TypeCode_ptr);
 void release(POA_ptr);
 void release(ORB_ptr);
 void release(ExceptionList_ptr);
 void release(ContextList_ptr);

 Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);

 Boolean is_nil(NamedValue_ptr);
 Boolean is_nil(NVList_ptr);
 Boolean is_nil(Request_ptr);
 Boolean is_nil(Context_ptr);
 Boolean is_nil(TypeCode_ptr);
 Boolean is_nil(POA_ptr);
 Boolean is_nil(ORB_ptr);
 Boolean is_nil(ExceptionList_ptr);
 Boolean is_nil(ContextList_ptr);

 hash(maximum);

resolve_initial_references(identifier);
 ...
};
CORBA C++ Programming Reference 14-53

14 CORBA API

e so
s nil,
nce to
e as
CORBA::release

Synopsis Allows allocated resources to be released for the specified object type.

C++ Binding void CORBA::release(spec_object_type obj);

Argument obj

The object reference that the caller will no longer access. The specified object
type must be one of the types listed in the section “CORBA Member
Functions” on page 14-53.

Description This member function indicates that the caller will no longer access the referenc
that associated resources may be deallocated. If the specified object reference i
the release operation does nothing. If the ORB instance release is the last refere
the ORB, then the ORB will be shutdown prior to its destruction. This is the sam
calling ORB_shutdown prior to calling CORBA::release. This only applies to the
release member function called on the ORB.

This member function may not throw CORBA exceptions.

Return Values None.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::release(op);
14-54 CORBA C++ Programming Reference

CORBA Member Functions

t
CORBA::is_nil

Synopsis Determines if an object exists for the specified object type.

C++ Binding CORBA::Boolean CORBA::is_nil(spec_object_type obj);

Argument obj

The object reference. The specified object type must be one of the types listed
in the section “CORBA Member Functions” on page 14-53.

Description This member function is used to determine if a specified object reference is nil. I
returns TRUE if the object reference contains the special value for a nil object
reference as defined by the ORB.

This operation may not throw CORBA exceptions.

Return Values Returns TRUE if the specified object is nil; otherwise, returns FALSE.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
CORBA::Boolean b = CORBA::is_nil(op);
CORBA C++ Programming Reference 14-55

14 CORBA API
CORBA::hash

Synopsis Provides indirect access to object references using identifiers internal to the ORB.

C++ Binding CORBA::hash(CORBA::ULong maximum);

Argument maximum

Specifies an upper bound on the hash value returned by the ORB.

Description Object references are associated with ORB-internal identifiers that may indirectly be
accessed by applications using the hash() operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision-chained hash table of object
references, the more randomly distributed the values are within that range, and the less
expensive those values are to compute, the better.

Return Values None.
14-56 CORBA C++ Programming Reference

CORBA Member Functions
CORBA::resolve_initial_references

Synopsis Returns an initial object reference corresponding to an identifier string.

C++ Binding CORBA::Object_ptr CORBA::resolve_initial_references(
 const CORBA::char *identifier);

Argument identifier

String identifying the object whose reference is required.

Description Returns an initial object reference corresponding to an identifier string. Valid
identifiers are “RootPOA” and “POACurrent” .

Note: This function is supported only for a joint client/server.

Return Values Returns a CORBA::Object_ptr .

Exception InvalidName

Example CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);
CORBA::Object_ptr pfobj =
 orb->resolve_initial_references("RootPOA");
PortableServer::POA_ptr rootPOA;
rootPOA = PortableServer::POA::narrow(pfobj);
CORBA C++ Programming Reference 14-57

14 CORBA API
ORB Member Functions

The ORB member functions constitute the programming interface to the Object
Request Broker.

The mapping of the ORB member functions to C++ is as follows:

class CORBA
{
 class ORB
 {
 public:
 char *object_to_string(Object_ptr);
 Object_ptr string_to_object(const char *);
 void create_list(Long, NVList_out);
 void create_operation_list(operationDef_ptr, NVList_out);
 void create_named_value(NamedValue_out);
 void create_environment(Environment_out);
 void create_policy (in PolicyType type, in any val);
 void destroy ()
 void send_multiple_requests_oneway(const requestSeq&);
 void send_multiple_requests_deferred(const requestSeq&);
 void create_exception_list(ExceptionList_out);
 void create_context_list(ContextList_out);
 void get_default_context(Context_out);
 void get_next_response(Request_out);
 void perform_work();
 void run();
 void shutdown(in boolean wait_for_completion);
 Boolean poll_next_response();
 Boolean work_pending();
 }; //ORB
}; // CORBA

Thread-related Operations:

To support single-threaded ORBs, as well as multithreaded ORBs that run
multithread-unaware code, four operations (perform_work, run, shutdown, and
work_pending) are included in the ORB interface. These operations can be used by
single-threaded and multithreaded applications. An application that is a pure ORB
client would not need to use these operations. Both the ORB::run() and
ORB::shutdown() are useful in fully multithreaded programs.

The following sections describe the ORB member functions.
14-58 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::create_environment

Synopsis Creates an environment.

C++ Binding void CORBA::ORB::create_environment (
 CORBA::Environment_out New_env);

Argument New_env

Receives a reference to the newly created environment.

Description This member function creates an environment.

Return Values None.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release
CORBA C++ Programming Reference 14-59

14 CORBA API
CORBA::ORB::create_list

Synopsis Creates and returns an NVList object reference.

C++ Binding void CORBA::ORB::create_list (

 CORBA::Long NumItem,

 CORBA::NVList_out List);

Arguments NumItem
The number of elements to preallocate in the newly created list.

List
Receives the newly created list.

Description This member function creates a list, preallocating a specified number of items. List
items may be sequentially added to the list using the CORBA::NVList_add_item
member function. When no longer needed, this list must be freed using the
CORBA::release member function.

Return Values None.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release
14-60 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::create_named_value

Synopsis Creates a NamedValue object reference.

C++ Binding void CORBA::ORB::create_named_value (

 NameValue_out NewNamedVal);

Argument NewNamedVal
A reference to the newly created NamedValue object.

Description This member function creates a NamedValue object. Its intended use is for the result
argument of a request that needs a NamedValue object. The extra steps of creating an
NVList object are avoided by calling this member function.

When no longer needed, the NamedValue object must be freed using the
CORBA::release member function.

Return Values None.

See Also CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release
CORBA C++ Programming Reference 14-61

14 CORBA API
CORBA::ORB::create_exception_list

Synopsis Returns a list of exceptions.

C++ Binding void CORBA::ORB::create_exception_list(

 CORBA::ExceptionList_out List);

Argument List

Receives a reference to the newly created exception list.

Description This member function creates and returns a list of exceptions in a form that may be
used in the Dynamic Invocation Interface (DII). When no longer needed, this list must
be freed using the CORBA::release member function.

Return Values None.
14-62 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::create_context_list

Synopsis Creates and returns a list of contexts.

C++ Binding void CORBA::ORB::create_context_list(

 CORBA::ContextList_out List);

Argument List

Receives a reference to the newly created context list.

Description This member function creates and returns a list of context strings that must be supplied
with the Request operation in a form that may be used in the Dynamic Invocation
Interface (DII). When no longer needed, this list must be freed using the
CORBA::release member function.

Return Values None.
CORBA C++ Programming Reference 14-63

14 CORBA API

erent

 1.2,
sts.
rences
 to
-used
ust
CORBA::ORB::create_policy

Synopsis Creates new instances of policy objects of a specific type with specified initial state.

C++ Binding void CORBA::ORB::create_policy (
 in PolicyType type,
 in any val);

Arguments type

BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE is the only PolicyType
value supported for WLE V4.2 .

val
The only val value supported for WLE V4.2 is
BiDirPolicy::BidirectionalPolicyValue.

Description This operation can be invoked to create new instances of policy objects of a specific
type with specified initial state. If create_policy fails to instantiate a new Policy
object due to its inability to interpret the requested type and content of the policy, it
raises the Policy Error exception with the appropriate reason. (See Exceptions below.)

The BidirectionalPolicy argument is provided for remote clients using callbacks
because remote clients use IIOP. It is not used for native clients using callbacks or for
BEA WebLogic Enterprise servers because machines inside a BEA WebLogic
Enterprise domain communicate differently.

Before GIOP 1.2, bidirectional policy was not available as a choice in IIOP (which
uses TCP/IP). Connections in GIOP 1.0 and 1.1 were one way (that is, a request flowed
from a client to a server); only responses flowed from the server back to the client. If
the server wanted to make a request back to the client machine (say for a callback), the
server machine had to establish another one-way connection. (Be advised that
“connections” in this sense mean operating system resources, not physically diff
wires or communication paths. A connection uses resources, so minimizing
connections is desirable.)

Since this release of the BEA WebLogic Enterprise C++ software supports GIOP
it supports reuse of the TCP/IP connection for both incoming and outgoing reque
Re-using connections saves resources when a remote client sends callback refe
to a BEA WebLogic Enterprise domain. The joint client/server uses a connection
send a request to a BEA WebLogic Enterprise domain; that connection can be re
for the callback request. If the connection is not re-used, the callback request m
establish another connection.
14-64 CORBA C++ Programming Reference

ORB Member Functions

form
 a
llow

low

 take
hould
a

tion.

Allowing reuse of a connection is a choice of the ORB/POA that creates callback
object references. The server for those object references (usually the creator of the
references, especially in the callback case) might choose not to allow reuse for security
considerations (that is, the outgoing connection (a client request from this machine to
a remote server) may not need security because the remote server does not require it,
but the callback server on this machine might require security). Since security is
established partly on a connection basis, the incoming security can be established only
if a separate connection is used. If the remote server requires security, and if that
security involves a mutual authentication, the local server usually feels safe in allowing
reuse of the connection.

Since the choice of connection reuse is at the server end, whenever a process acts as a
server—in this case a joint client/server—and creates object references, it must in
the ORB that it is willing to re-use connections. The process does this by setting
policy on the POA that creates the object references. The default policy is to not a
reuse (that is, if you do not supply a policy object for reuse, the POA does not al
reuse).

This default allows for backward compatibility with code written before CORBA
version 2.3. Such code did not know that reuse was possible so it did not have to
into consideration the security implications of reuse. Thus, that unchanged code s
continue to disallow reuse until the user considers security and explicitly makes
decision to the contrary.

To allow reuse, you use the create_policy operation to create a policy object that
allows reuse, and use that policy object as part of the list of policies for POA crea

Return Values None.

Exceptions PolicyError

This exception is raised to indicate problems with the parameter values
passed to the ORB::create_policy operation. The specific exception and
reasons are as follows:

Exception Reason

BAD_POLICY The requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY The requested Policy is understood to be valid by the ORB,
but is not currently supported.
CORBA C++ Programming Reference 14-65

14 CORBA API
Example #include <BiDirPolicy_c.h>
BiDirPolicy::BidirectionalPolicy_var bd_policy;
CORBA::Any allow_reuse;

allow_reuse <<= BiDirPolicy::BOTH;

CORBA::Policy_var generic_policy =
 orb->create_policy(BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE,
 allow_reuse);
bd_policy = BiDirPolicy::BidirectionalPolicy::_narrow(
 generic_policy);

In the above example, the bd_policy would then be placed in the PolicyList passed
to the create_poa operation.

BAD_POLICY_TYPE The type of the value requested for the Policy is not valid for
that PolicyType.

BAD_POLICY_VALUE The value requested for the Policy is of a valid type, but is
not within the valid range for that type.

UNSUPPORTED_POLICY_
VALUE

The value requested for the Policy is of a valid type and
within the valid range for that type, but this valid value is not
currently supported.

Exception Reason
14-66 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::create_operation_list

Synopsis Creates and returns a list of the arguments of a specified operation.

C++ Binding void CORBA::ORB::create_operation_list (
 CORBA::OperationDef_ptr Oper,
 CORBA::NVList_out List);

Arguments Oper
The operation definition for which the list is being created.

List
Receives a reference to the newly created arguments list.

Description This member function creates and returns a list of the arguments of a specified
operation, in a form that may be used with the Dynamic Invocation Interface (DII).
When no longer needed, this list must be freed using the CORBA::release member
function.

Return Values None.

See Also CORBA::OBB::create_list
CORBA::NVList::add
CORBA::NVList::add_item
CORBA::NVList::add_value
CORBA::release
CORBA C++ Programming Reference 14-67

14 CORBA API
CORBA::ORB::get_default_context

Synopsis Returns a reference to the default context.

C++ Binding void CORBA::ORB::get_default_context (
 CORBA::Context_out ContextObj);

Argument ContextObj
The reference to the default context.

Description This member function returns a reference to the default context. When no longer
needed, this context reference must be freed using the CORBA::release member
function.

Return Values None.

See Also CORBA::Context::get_one_value

CORBA::Context::get_values
14-68 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::get_next_response

Synopsis Determines and reports the next deferred synchronous request that completes.

C++ Binding void CORBA::ORB::get_next_response (
 CORBA::Request_out RequestObj);

Argument RequestObj
The reference to the next completed request.

Description This member function returns a reference to the next request that completes. If no
requests have completed, the function waits for a request to complete. This member
function returns the next request on the queue, in contrast to the
CORBA::Request::get_response member function, which waits for a particular
request to complete. When no longer needed, this request must be freed using the
CORBA::release member function.

Return Values None.

See Also CORBA::ORB::poll_next_response
CORBA::Request::get_reponse
CORBA C++ Programming Reference 14-69

14 CORBA API
CORBA::ORB::perform_work

Synopsis Allows the ORB to perform server-related work.

C++ Binding void CORBA::ORB::perform_work ();

Arguments None.

Description If called by the main thread, this operation allows the ORB to perform server-related
work. Otherwise, it does nothing.

The work_pending() and perform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multithreaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread. See the example below for such a polling loop.

Return Values None.

Exceptions Once the ORB has shut down, a call to work_pending and perform_work() raises
the BAD_INV_ORDER exception. An application can detect this exception to determine
when to terminate a polling loop.

See Also CORBA::ORB::work_pending

Example Here is an example of a polling loop:

// C++
for (;;) {
 if (orb->work_pending()) {
 orb->perform_work();
 }
 // do other things
 // sleep?
}

14-70 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::run

Synopsis Enables the ORB to perform work using the main thread.

C++ Binding void CORBA::ORB::run();

Argument None

Description This operation provides execution resources to the ORB so that it can perform its
internal functions. Since the WLE C++ ORB is single-threaded, this essentially turns
the process into a pure server.

This operation blocks until the ORB has completed the shutdown process, initiated
when a thread calls CORBA::ORB::shutdown().

Return Values None.

See Also CORBA::ORB::perform_work
CORBA C++ Programming Reference 14-71

14 CORBA API
CORBA::ORB::shutdown

Synopsis Instructs the ORB to shut down.

C++ Binding void shutdown(in boolean wait_for_completion);

Argument wait_for_completion
 A value of TRUE blocks until all ORB processing has completed.

Description This operation instructs the ORB to shut down (that is, to stop processing in
preparation for destruction).

Shutting down the ORB causes all POAs to be destroyed, since they cannot exist in the
absence of an ORB. Shut down is complete when all ORB processing (including
request processing and object deactivation or other operations associated with the
POAs) has completed and all POAs have been destroyed.

If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application calls shutdown(TRUE) in a thread that is currently
servicing an invocation, the BAD_INV_ORDER system exception will be raised with the
OMG minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE, the shutdown may not have
completed upon return. This use of FALSE is not recommended.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed.

Once an ORB has shut down, invoking any operation on that ORB or any object
reference obtained from that ORB will raise the BAD_INV_ORDER system exception
with the OMG minor code 4, except for the reference management operations
duplicate(), release(), and is_nil().

Return Values None.
14-72 CORBA C++ Programming Reference

ORB Member Functions
 CORBA::ORB::object_to_string

Synopsis Produces a string representation of an object reference.

C++ Binding char * CORBA::ORB::object_to_string (
 CORBA::Object_ptr ObjRef);

Argument ObjRef
The object reference to represent as a string.

Description This member function produces a string representation of an object reference. The
calling program must use the CORBA::string_free member function to free the
string memory after it is no longer needed.

Return Values The string representing the specified object reference.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
char* objstr = TP::orb()->object_to_string(op);

See Also CORBA::ORB::string_to_object
CORBA::string_free
CORBA C++ Programming Reference 14-73

14 CORBA API
CORBA::ORB::poll_next_response

Synopsis Determines whether a completed request is outstanding.

C++ Binding CORBA::Boolean CORBA::ORB::poll_next_response ();

Arguments None.

Description This member function reports on whether there is an outstanding (pending) completed
request; it does not remove the request. If a completed request is outstanding, the next
call to the CORBA::ORB::get_next_response member function is guaranteed to
return a request without waiting. If there are no completed requests outstanding, the
CORBA::ORB::poll_next_response member function returns without waiting
(blocking).

Return Values If a completed request is outstanding, the function returns CORBA_TRUE.

If no completed request is outstanding, the function returns CORBA_FALSE.

See Also CORBA::ORB::get_next_response
14-74 CORBA C++ Programming Reference

ORB Member Functions
CORBA::ORB::work_pending

Synopsis Returns an indication of whether the ORB needs the main thread to perform
server-related work.

C++ Binding CORBA::boolean CORBA::ORB::work_pending ();

Arguments None.

Description This operation returns an indication of whether the ORB needs the main thread to
perform server-related work.

Return Values A result of TRUE indicates that the ORB needs the main thread to perform
server-related work, and a result of FALSE indicates that the ORB does not need the
main thread.

See Also CORBA::ORB::perform_work
CORBA C++ Programming Reference 14-75

14 CORBA API

 caller
CORBA::ORB::send_multiple_requests_deferred

Synopsis Sends a sequence of deferred synchronous requests.

C++ Binding void CORBA::ORB::send_multiple_requests_deferred (

 const CORBA::ORB::RequestSeq & Reqs);

Argument Reqs
The sequence of requests to be sent. For more information about how to
populate the sequence with request references, see
CORBA::ORB::RequestSeq in the section “Usage” on page 13-22.

Description This member function sends out a sequence of requests and returns control to the
without waiting for the operation to complete. The caller uses CORBA::ORB::poll_

next_response, CORBA::ORB::get_next_response, or
CORBA::Rquest::get_response or all three to determine if the operation has
completed and if the output arguments have been updated.

Return Values None.

See Also CORBA::Request::get_response
CORBA::ORB::get_next_response
CORBA::ORB::send_multiple_requests_oneway
14-76 CORBA C++ Programming Reference

ORB Member Functions

 caller
r a
CORBA::ORB::send_multiple_requests_oneway

Synopsis Sends a sequence of one-way, deferred synchronous requests.

C++ Binding void CORBA::ORB::send_multiple_requests_oneway (

 const CORBA::RequestSeq & Reqs);

Argument Reqs
The sequence of requests to be sent. For more information about how to
populate the sequence with request references, see
CORBA::ORB::RequestSeq in the section “Usage” on page 13-22.

Description This member function sends out a sequence of requests and returns control to the
without waiting for the operation to complete. The caller neither intends to wait fo
response nor expects any output arguments to be updated.

Return Values None.

See Also CORBA::ORB::send_multiple_requests_deferred
CORBA C++ Programming Reference 14-77

14 CORBA API
CORBA::ORB::string_to_object

Synopsis Creates an object reference, given a specified string.

C++ Binding CORBA::Object_ptr CORBA::ORB::string_to_object (

 const char * ObjRefString);

Argument ObjRefString
The string to be transformed into an object reference.

Description This member function creates an object reference, given a specified string. Usually the
string has been obtained previously by calling the
CORBA::ORB::object_to_string member function. After you are done with the
object reference, use the CORBA::release member function to free the associated
memory.

Return Values If the member function succeeds, the object reference represented by the specified
string is returned.

If the member function does not succeed, an exception is thrown.

Example CORBA::Object_ptr op = TP::create_object_reference(
 "IDL:Teller:1.0", "MyTeller");
char* objstr = TP::orb()->object_to_string(op);
CORBA::Object_ptr op2 = TP::orb()->string_to_object(objstr);

See Also CORBA::ORB::object_to_string
14-78 CORBA C++ Programming Reference

ORB Initialization Member Function
ORB Initialization Member Function

The mapping of this member function to C++ is as follows:

class CORBA {
 typedef char* ORBid;
 static CORBA::ORB_ptr ORB_init(int& argc, char** argv,
 const char* orb_identifier = 0,
 const char* -ORBport nnn);
};
CORBA C++ Programming Reference 14-79

14 CORBA API

he
ber

e
ent

nt.

 to
from
n the

ps.

CORBA::ORB_init

Synopsis Initializes operations for an ORB.

C++ Binding static CORBA::ORB_ptr ORB_init(int& argc, char** argv,

 const char* orb_identifier = 0);

Arguments argc
The number of strings in argv.

argv

This argument is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc parameter.

orb_identifier

If the orb_identifier parameter is supplied, “BEA_IIOP” explicitly specifies a
remote client and “BEA_TOBJ” explicitly specifies a native client, as defined
in the section “Tobj_Bootstrap” on page 4-13.

Description This member function initializes operations for an ORB and returns a pointer to t
ORB. When your program is done with the ORB, use the CORBA::release mem
function to free the resources allocated for the ORB pointer returned from
CORBA::ORB_ptr ORB_init.

The ORB returned has been initialized with two pieces of information to determin
how it will operate: client type (remote or native) and server port number. The cli
type can be specified in the orb_identifier argument, in the argv argument, or in
the system registry. The server port number can be specified in the argv argume

The arguments argc and argv are typically the same parameters that were passed
the main program. As specified by C++, these parameters contain string tokens
the command line that started the client. The two ORB options can be specified o
command line, each using a pair of tokens, as shown in examples below.

Client Type

The ORB_init function determines the client type of the ORB by the following ste

1. If the orb_identifier argument is present, ORB_init determines the client type,
either native or remote, if the string is "BEA_IIOP" or "BEA_TOBJ", respectively.
If an orb_identifier string is present, all -ORBid parameters in the argv are
ignored (removed).
14-80 CORBA C++ Programming Reference

ORB Initialization Member Function

ser”

 is
7 as

2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the
entries in argc/argv. If argv contains an entry with "-ORBid", the next entry
should be either "BEA_IIOP" or "BEA_TOBJ", again specifiying remote or native.
This pair of entries occurs if the command line contains either "-ORBid
BEA_IIOP” or "-ORBid BEA_TOBJ” .

3. If no client type is specified in argc/argv , ORB_init uses the default client type
from the system registry (BEA_IIOP or BEA_TOBJ). The system registry was
initialized at the time BEA WebLogic Enterprise was installed.

Server Port

In the case of a BEA WebLogic Enterprise remote joint client/server, in order to
support IIOP, by definition, the object references created for the server part must
contain a host and port. For transient object references, any port is sufficient and can
be obtained by the ORB dynamically, but this is not sufficient for persistent

object references. Persistent references must be served on the same port after the ORB
restarts, that is, the ORB must be prepared to accept requests on the same port with
which it created the object reference. Thus, there must be some way to configure the
ORB to use a particular port.

Typically, a system administrator assigns the port number for the client from the “u
range of port numbers rather from the dynamic range. This keeps the joint
client/servers from using conflicting ports.

To determine port number, ORB_init searches the argv parameter for the token
"-ORBport" and a following numeric token. For example, if the client executable
named sherry, the command line might specify that the server port should be 93
follows:

 sherry -ORBport 937

ARGV Parameter Considerations

For C++, the order of consumption of argv parameters may be significant to an
application. To ensure that applications are not required to handle argv parameters
they do not recognize, the ORB initialization function must be called before the
remainder of the parameters are consumed. Therefore, after the ORB_init call, the
argv and argc parameters have been modified to remove the ORB understood
arguments. It is important to note that the ORB_init function can only reorder or
remove references to parameters from the argv list. This restriction is made to avoid
CORBA C++ Programming Reference 14-81

14 CORBA API
potential memory management problems caused by trying to free parts of the argv list
or extending the argv list of parameters. This is why argv is passed as a char** and
not as a char**&.

Note: Use the CORBA::release member function to free the resources allocated for
the pointer returned from CORBA::ORB_init.

Return Value A pointer to a CORBA::ORB.

Exceptions None.
14-82 CORBA C++ Programming Reference

Policy Member Functions
Policy Member Functions

A policy is an object used to communicate certain choices to an ORB regarding its
operation. This information is accessed in a structured manner using interfaces derived
from the Policy interface defined in the CORBA module.

Note: These CORBA::Policy operations and structures are not usually needed by
programmers. The derived interfaces usually contain the information relevant
to specifications. A Policy object can be constructed by a specific factory or
by using the CORBA::create_policy operation.

The mapping of this object to C++ is as follows:

class CORBA
{
 class Policy
 {
 public:
 copy();
 void destroy();
 }; //Policy
 typedef sequence<Policy>PolicyList;
}; // CORBA

PolicyList is used the same as any other C++ sequence mapping. For a discussion
of sequence usage, see “Sequences” on page 13-13.

See Also: POA Policy and CORBA::ORB::create_policy.
CORBA C++ Programming Reference 14-83

14 CORBA API
CORBA:Policy::copy

Synopsis Copies the policy object.

C++ Binding CORBA::Policy::copy();

Argument None.

Description This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain or object.

Note: This function is supported only for a joint client/server.

Return Values None.
14-84 CORBA C++ Programming Reference

Policy Member Functions
CORBA::Policy::destroy

Synopsis Destroys the policy object.

C++ Binding void CORBA::Policy::destroy();

Argument None.

Description This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Note: This function is supported only for a joint client/server.

Return Values None.

Exceptions If the policy object determines that it cannot be destroyed, the
CORBA::NO_PERMISSION exception is raised.
CORBA C++ Programming Reference 14-85

14 CORBA API

ied

by the
PortableServer Member Functions

The mapping of the PortableServer member functions to C++ is as follows:

// C++
class PortableServer
{
 public:
 class LifespanPolicy;
 class IdAssignmentPolicy;
 class POA::find_POA
 class reference_to_id
 class POAManager;
 class POA;
 class Current;
 class virtual ObjectId
 class ServantBase
};

ObjectId—an ObjectId is a value that is used by the POA and by the user-suppl
implementation to identify a particular abstract CORBA object. ObjectId values may
be assigned and managed by the POA, or they may be assigned and managed
implementation. ObjectId values are hidden from clients, encapsulated by
references. ObjectIds have no standard form; they are managed by the POA as
uninterpreted octet sequences.

The following sections describe the remaining classes.
14-86 CORBA C++ Programming Reference

PortableServer Member Functions
PortableServer::POA::activate_object

Synopsis Explicitly activates an individual object.

C++ Binding ObjectId * activate_object (
Servant p_servant);

Argument p_servant

An instance of the C++ implementation class for the interface.

Description This operation explicitly activates an individual object by generating an ObjectId and
entering the ObjectId and the specified servant in the Active Object Map.

Note: This function is supported only for a joint client/server.

Return Values If the function succeeds, the ObjectId is returned.

Exceptions If the specified servant is already in the Active Object Map, the
ServantAlreadyActive exception is raised.

Note: Other exceptions can occur if the POA uses unsupported policies.

Example In the following example, the first struct creates a servant by a user-defined
constructor. The second struct tells the POA that the servant can be used to handle
requests on an object. The POA returns the ObjectId it has created for the object. The
third statement assumes that the POA has the IMPLICIT_ACTIVATION policy (the only
supported policy in version 4.2 of the BEA WebLogic Enterprise software) and returns
a reference to the object. That reference can then be handed to a client for invocations.
When the client invokes on the reference, the request is returned to the servant just
created.

MyFooServant* afoo = new MyFooServant(poa,27);
PortableServer::ObjectId_var oid =

 poa->activate_object(afoo);
Foo_var foo = afoo->_this();
CORBA C++ Programming Reference 14-87

14 CORBA API
PortableServer::POA::activate_object_with_id

Synopsis Activates an individual object with a specified ObjectId.

C++ Binding void activate_object_with_id (
 const ObjectId & id,
 Servant p_servant);

Argument id

ObjectId that identifies the object on which that operation was invoked.

p_servant

An instance of the C++ implementation class for the interface.

Description This operation enters an association between the specified ObjectId and the specified
servant in the Active Object Map.

Note: This function is supported only for a joint client/server.

Return Values None.

Exceptions The ObjectAlreadyActive exception is raised if the CORBA object denoted by the
ObjectId value is already active in this POA.

The ServantAlreadyActive exception is raised if the servant is already in the Active
Object Map.

Note: Other exceptions can occur if the POA uses unsupported policies.

The BAD_PARAM system exception may be raised if the POA has the SYSTEM_ID policy
and it detects that the ObjectId value was not generated by the system or for this
POA. An ORB is not required to detect all such invalid ObjectId values. However, a
portable application must not invoke activate_object_with_id on a POA if the
POA has the SYSTEM_ID policy with an ObjectId value that was not previously
generated by the system for that POA, or, if the POA also has the PERSISTENT policy,
for a previous instantiation of the same POA.

Example MyFooServant* afoo = new MyFooServant(poa, 27);
PortableServer::ObjectId_var oid =
 PortableServer::string_to_ObjectId("myLittleFoo");
poa->activate_object_with_id(oid.in(), afoo);
Foo_var foo = afoo->_this();
14-88 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::create_id_assignment_policy

Synopsis Obtain an object with the IdAssignmentPolicy interface so the user can pass the
object to the POA::create_POA operation.

C++ Binding IdAssignmentPolicy_ptr
 PortableServer::POA::create_id_assignment_policy (
 PortableServer::IdAssignmentPolicyValue value)

Argument value

A value of either PortableServer::USER_ID, indicating ObjectIds are
assigned only by the application, or PortableServer::SYSTEM_ID,
indicating ObjectIds are assigned only by the system.

Description The POA::create_id_assignment_policy operation obtains objects with the
IdAssignmentPolicy interface. When passed to the POA::create_POA operation,
this policy specifies whether ObjectIds in the created POA are generated by the
application or by the ORB. The following values can be supplied:

n PortableServer::USER_ID—objects created with that POA are assigned
ObjectIds only by the application.

n PortableServer::SYSTEM_ID—objects created with that POA are assigned
ObjectIds only by the POA. If the POA also has the PERSISTENT
LifespanPolicy, assigned ObjectIds must be unique across all instantiations
of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Note: This function is supported only for a joint client/server.

Return Values Returns an Id Assignment policy.
CORBA C++ Programming Reference 14-89

14 CORBA API

in

ted

f its

al

). A
ill
PortableServer::POA::create_lifespan_policy

Synopsis Obtain an object with the LifespanPolicy interface so the user can pass the object to
the POA::create_POA operation.

C++ Binding LifespanPolicy_ptr
 PortableServer::POA::create_lifespan_policy (
 PortableServer::LifespanPolicyPolicyValue value)

Argument value

A value of either PortableServer::USER_ID, indicating ObjectIds are
assigned only by the application, or PortableServer::SYSTEM_ID,
indicating ObjectIds are assigned only by the system.

Description Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and passed to the POA::create_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

n TRANSIENT—the objects implemented in the POA cannot outlive the process
which they are first created. Once the POA is deactivated, use of any object
references generated from it will result in an OBJECT_NOT_EXIST exception.

n PERSISTENT—the objects implemented in the POA can outlive the process in
which they are first created.

l Persistent objects have a POA associated with them (the POA which crea
them). When the ORB receives a request on a persistent object, it first
searches for the matching POA, based on the names of the POA and all o
ancestors.

l Administrative action beyond the scope of this specification may be
necessary to inform the ORB's location service of the creation and eventu
termination of existence of this POA, and optionally to arrange for
on-demand activation of a process implementing this POA.

l POA names must be unique within their enclosing scope (the parent POA
portable program can assume that POA names used in other processes w
not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no LifespanPolicy object is passed to POA::create_POA, the lifespan policy
defaults to TRANSIENT.

Note: This function is supported only for a joint client/server.
14-90 CORBA C++ Programming Reference

PortableServer Member Functions
Return Values Returns a LifespanPolicy.
CORBA C++ Programming Reference 14-91

14 CORBA API
PortableServer::POA::create_POA

Synopsis Creates a new POA as a child of the target POA.

C++ Binding POA_ptr PortableServer::create_POA (
 const char * adapter_name,
 POAManager_ptr a_POAManager,
 const CORBA::PolicyList & policies)

Arguments adapter_name

The name of the POA to be created.

a_POAManager

Either a null value, indicating that a new POAManager is to be created and
associated with the new POA, or a pointer to an existing POAManager.

policies

Policy objects to be associated with the new POA.

Description This operation creates a new POA as a child of the target POA. The specified name,
which must be unique, identifies the new POA with respect to other POAs with the
same parent POA.

If the a_POAManager parameter is null, a new PortableServer::POAManager
object is created and associated with the new POA. Otherwise, the specified
POAManager object is associated with the new POA. The POAManager object can be
obtained using the attribute name the_POAManager.

The specified policy objects are associated with the POA and are used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA is in use. Policies are not inherited
from the parent POA.

Note: This function is supported only for joint client/servers.

Return Values Returns a pointer to the POA that was created.

Exceptions AdapterAlreadyExists

Raised if the target POA already has a child POA with the specified name.

InvalidPolicy
Raised if any of the policy objects specified are not valid for the ORB
implementation, if conflicting policy objects are specified, or if any of the
specified policy objects require prior administrative action that has not been
14-92 CORBA C++ Programming Reference

PortableServer Member Functions

; the
ve if
performed. This exception contains the index in the policy parameter value of
the first offending policy object.

IMP_LIMIT

Raised if the program tries to create a POA with a LifespanPolicy of
PERSISTENT without having set a port, as described in the operation
“CORBA::ORB_init” on page 14-80.

Examples Example 1

In this example, the child POA would use the same manager as the parent POA
child POA would then have the same state as the parent (that is, it would be acti
the parent is active).

CORBA::PolicyList policies(2);
policies.length (1);
policies[0] = rootPOA->create_lifespan_policy(
 PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
 rootPOA->create_POA("my_little_poa",
 rootPOA->the_POAManager, policies);

Example 2

In this example, a new POA is created as a child of the root POA.

CORBA::PolicyList policies(2);
policies.length (1);
policies[0] = rootPOA->create_lifespan_policy(
 PortableServer::LifespanPolicy::TRANSIENT);
PortableServer::POA_ptr poa =
 rootPOA->create_POA("my_little_poa",
 PortableServer::POAManager::_nil(), policies);
CORBA C++ Programming Reference 14-93

14 CORBA API
PortableServer::POA::create_reference

Synopsis Creates an object reference that encapsulates a POA-generated ObjectId value and
the specified interface repository ID.

C++ Binding CORBA::Object_ptr create_reference (
 const char * intf)

Argument intf

The interface repository ID.

Description This create_reference operation creates an object reference that encapsulates a
POA-generated ObjectId value and the specified interface repository ID. This
operation collects the necessary information to constitute the reference from
information associated with the POA and from parameters to the operation. This
operation only creates a reference; it does not associate the reference with an active
servant. The resulting reference may be passed to clients, so that subsequent requests
on those references return to the POA using the ObjectId generated. The generated
ObjectId value may be obtained by invoking POA::reference_to_id with the
created reference.

Note: This function is supported only for a joint client/server.

Return Values Returns a pointer to the object.

Exceptions This operation requires the LifespanPolicy to have the value SYSTEM_ID; if not
present, the PortableServer::WrongPolicy exception is raised.
14-94 CORBA C++ Programming Reference

PortableServer Member Functions
PortableServer::POA::create_reference_with_id

Synopsis Creates an object reference that encapsulates the specified ObjectId and interface
repository ID values.

C++ Binding CORBA::Object_ptr create_reference_with_id (
 const ObjectId & oid,
 const char * intf)

Arguments oid

ObjectId that identifies the object on which that operation was invoked.

intf

The interface repository ID.

Description The create_reference operation creates an object reference that encapsulates the
specified ObjectId and interface repository ID values. This operation collects the
necessary information to constitute the reference from information associated with the
POA and from parameters to the operation. This operation only creates a reference; it
does not associate the reference with an active servant. The resulting reference may be
passed to clients, so that subsequent requests on those references cause the invocation
to be returned to the same POA with ObjectId specified.

Note: This function is supported only for a joint client/server.

Return Values Returns Object_ptr.

Exceptions If the POA has a LifespanPolicy with value SYSTEM_ID and it detects that the
ObjectId value was not generated by the system or for this POA, the operation will
raise the BAD_PARAM system exception.

Example PortableServer::ObjectId_var oid =
PortableServer::string_to_ObjectId("myLittleFoo");

CORBA::Object_var obj = poa->create_reference_with_id(
oid.in(), "IDL:Foo:1.0");

Foo_var foo = Foo::_narrow(obj);
CORBA C++ Programming Reference 14-95

14 CORBA API
PortableServer::POA::deactivate_object

Synopsis Removes the ObjectId from the Active Object Map.

C++ Binding void deactivate_object (
 const ObjectId & oid)

Argument oid

ObjectId that identifies the object.

Description This operation causes the association of the ObjectId specified by the oid parameter
and its servant to be removed from the Active Object Map.

Note: This function is supported only for a joint client/server.

Return Values None.

Exceptions If there is no active object associated with the specified ObjectId, the operation raises
an ObjectNotActive exception.
14-96 CORBA C++ Programming Reference

PortableServer Member Functions
PortableServer::POA::destroy

Synopsis Destroys the POA and all descendant POAs.

C++ Binding void destroy (
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion)

Arguments etherealize_objects

This argument should be FALSE for this release of BEA WebLogic
Enterprise.

wait_for_completion

This argument indicates whether or not the operation should return
immediately.

Description This operation destroys the POA and all descendant POAs. The POA with its name
may be re-created later in the same process. (This differs from the
POAManager::deactivate operation, which does not allow a re-creation of its
associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to
completion. Any requests that have not started execution are processed as if they were
newly arrived and there is no POA; that is, they are rejected and the
OBJECT_NON_EXIST exception is raised.

If the wait_for_completion parameter is TRUE, the destroy operation returns only
after all requests in process have completed and all invocations of etherealize have
completed. Otherwise, the destroy operation returns after destroying the POAs.

Note: This release of BEA WebLogic Enterprise does not support multithreading.
Hence, wait_for_completion should not be TRUE if the call is made in the
context of an object invocation. That is, the POA cannot start destroying itself
if it is currently executing.

Note: This function is supported only for a joint client/server.

Return Values None.
CORBA C++ Programming Reference 14-97

14 CORBA API
PortableServer::POA::find_POA

Synopsis Returns a reference to a child POA with a given name.

C++ Binding void find_POA(in string adapter_name, in boolean activate_it);

Argument adapter_name

A reference to the target POA.

active_it

In this version of BEA WebLogic Enterprise, this parameter must be false.

Description If the POA has a child POA with the specified name, that child POA is returned. If a
child POA with the specified name does not exist and the value of the activate_it
parameter is FALSE, the AdapterNonExistent exception is raised.

Return Values None.

Exception AdapterNonExistent

This exception is raised if the POA does not exist.
14-98 CORBA C++ Programming Reference

PortableServer Member Functions
PortableServer::POA::reference_to_id

Synopsis Returns the ObjectId value encapsulated by the specified reference.

C++ Binding ObjectId reference_to_id(in Object reference);

Argument reference
Specifies the reference to the object.

Description This operation returns the ObjectId value encapsulated by the specified reference.
This operation is valid only if the reference was created by the POA on which the
operation is being performed. The object denoted by the reference does not have to be
active for this operation to succeed.

Note: This function is supported only for a joint client/server.

Return Values Returns the ObjectId value encapsulated by the specified reference.

Exceptions WrongAdapter

This exception is raised if the reference was not created by that POA.
CORBA C++ Programming Reference 14-99

14 CORBA API

ctive
PortableServer::POA::the_POAManager

Synopsis Identifies the POA manager associated with the POA.

C++ Binding POAManager_ptr the_POAManager ();

Argument None.

Description This read-only attribute identifies the POA manager associated with the POA.

Note: This function is supported only for a joint client/server.

Return Values None.

Example poa->the_POAManager()->activate();

This statement will set the state of the POAManager for the given POA to active,
which is required if the POA is to accept requests. Note that if the POA has a parent,
that is, it is not the root POA, all of its parent’s POAManagers must also be in the a
state for this statement to have any effect.
14-100 CORBA C++ Programming Reference

PortableServer Member Functions

n of
PortableServer::ServantBase::_default_POA

Synopsis Returns an object reference to the POA associated with the servant.

C++ Binding class PortableServer
{
class ServantBase
 {
 public:
 virtual POA_ptr _default_POA();
 }
}

Argument None.

Description All C++ Servants inherit from PortableServer::ServantBase, so they all inherit
the _default_POA function. In this version of BEA WebLogic Enterprise there is
usually no reason to use _default_POA.

The default implementation of this function returns an object reference to the root POA
of the default ORB in this process—the same as the return value of an invocatio
ORB::resolve_initial_references("RootPOA"). A C++ Servant can override
this definition to return thePOA of its choice, if desired.

Note: This function is supported only for joint client/servers.

Return Values The default POA associated with the servant.
CORBA C++ Programming Reference 14-101

14 CORBA API
POA Current Member Functions

The PortableServer::Current interface, derived from CORBA::Current,
provides method implementations with access to the identity of the object on which the
method was invoked.
14-102 CORBA C++ Programming Reference

POA Current Member Functions
PortableServer::Current::get_object_id

Synopsis Returns the ObjectId identifying the object in whose context it is called.

C++ Binding ObjectId * get_object_id ();

Arguments None.

Description This operation returns the PortableServer::ObjectId identifying the object in
whose context it is called.

Note: This function is supported only for a joint client/server.

Return Values This operation returns the ObjectId identifying the object in whose context it is
called.

Exception If called outside the context of a POA-dispatched operation, a
PortableServer::NoContext exception is raised.
CORBA C++ Programming Reference 14-103

14 CORBA API
PortableServer::Current::get_POA

Synopsis Returns a reference to the POA implementing the object in whose context it is called.

C++ Binding POA_ptr get_POA ();

Argument None.

Description This operation returns a reference to the POA implementing the object in whose
context it is called.

Note: This function is supported only for a joint client/server.

Return Values This operation returns a reference to the POA implementing the object in whose
context it is called.

Exceptions If this operation is called outside the context of a POA-dispatched operation, a
PortableServer::NoContext exception is raised.
14-104 CORBA C++ Programming Reference

POAManager Member Functions
POAManager Member Functions

Each POA object has an associated POAManager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsulates the
processing state of the POAs with which it is associated. Using operations on the POA
manager, an application can cause requests for those POAs to be queued or discarded,
and can cause the POAs to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

A POA manager has four possible processing states: active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POAs
and the disposition of requests received by those POAs.

A POA manager is created in the holding state. In that state, any invocations on its
POA are queued until the POA manager enters the active state. This version of BEA
WebLogic Enterprise supports only the ability to enter active and inactive states. That
is, this version does not support the ability to return to holding state or to enter
discarding state.
CORBA C++ Programming Reference 14-105

14 CORBA API
PortableServer::POAManager::activate

Synopsis Changes the state of the POA manager to active.

C++ Binding void activate();

Argument None.

Description This operation changes the state of the POA manager to active. Entering the active
state enables the associated POAs to process requests.

Note: All parent POAs must also have POAManagers in the active state for this POA
to process requests.

Note: This function is supported only for a joint client/server.

Return Values None.

Exceptions If this operation is issued while the POA manager is in the inactive state, the
PortableServer::POAManager::AdapterInactive exception is raised.
14-106 CORBA C++ Programming Reference

POAManager Member Functions
PortableServer::POAManager::deactivate

Synopsis Changes the state of the POA manager to inactive.

C++ Binding void deactivate (
 CORBA::Boolean etherealize_objects,
 CORBA::Boolean wait_for_completion);

Argument etherealize_objects

For WebLogic Enterprise 4.2 software, this argument should always be set to
FALSE.

wait_for_completion

If this argument is TRUE, the deactivate operation returns only after all
requests in process have completed. If this argument is FALSE, the
deactivate operation returns after changing the state of the associated
POAs.

Description This operation changes the state of the POA manager to inactive. Entering the inactive
state causes the associated POAs to reject requests that have not begun to be executed,
as well as any new requests.

Note: This release of BEA WebLogic Enterprise does not support multithreading.
Hence, wait_for_completion should not be TRUE if the call is made in the
context of an object invocation. That is, the POAManager cannot be set to
inactive state if it is currently executing.

Note: This function is supported only for a joint client/server.

Return Values None.

Exceptions If issued while the POA manager is in the inactive state, the
PortableServer::POAManager::AdapterInactive exception is raised.
CORBA C++ Programming Reference 14-107

14 CORBA API
POA Policy Member Objects

Interfaces derived from CORBA::Policy are used with the POA::create_POA
operation to specify policies that apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such as the root POA. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA.
Policies are not inherited from the parent POA.
14-108 CORBA C++ Programming Reference

POA Policy Member Objects

in

em).

not
PortableServer::LifespanPolicy

Synopsis Specifies the life span of objects to the create_POA operation.

Description Objects with the LifespanPolicy interface are obtained using the
POA::create_lifespan_policy operation and are passed to the POA::create_POA
operation to specify the life span of the objects implemented in the created POA. The
following values can be supplied:

n TRANSIENT—the objects implemented in the POA cannot outlive the process
which they are first created.

n PERSISTENT—the objects implemented in the POA can outlive the process in
which they are first created.

Persistent objects have a POA associated with them (the POA that created th
When the ORB receives a request on a persistent object, it searches for the
matching POA, based on the names of the POA and all of its ancestors.

POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will
conflict with its own POA names.

If no LifespanPolicy object is passed to create_POA, the lifespan policy defaults
to TRANSIENT.

Note: This function is supported only for a joint client/server.

Exceptions None.
CORBA C++ Programming Reference 14-109

14 CORBA API
PortableServer::IdAssignmentPolicy

Synopsis Specifies whether ObjectIds in the created POA are generated by the application or
by the ORB.

Description Objects with the IdAssignmentPolicy interface are obtained using the
POA::create_id_assignment_policy operation and are passed to the
POA::create_POA operation to specify whether ObjectIds in the created POA are
generated by the application or by the ORB. The following values can be supplied:

n USER_ID—objects created with that POA are assigned ObjectIds only by the
application.

n SYSTEM_ID—objects created with that POA are assigned ObjectIds only by the
POA. If the POA also has the PERSISTENT policy, assigned ObjectIds must be
unique across all instantiations of the same POA.

If no IdAssignmentPolicy is specified at POA creation, the default is SYSTEM_ID.

Note: This function is supported only for a joint client/server.
14-110 CORBA C++ Programming Reference

Request Member Functions
Request Member Functions

The mapping of these member functions to C++ is as follows:

// C++
class Request
{
 public:
 Object_ptr target() const;
 const char *operation() const;
 NamedValue_ptr result();
 NVList_ptr arguments();
 Environment_ptr env();
 ExceptionList_ptr exceptions();
 ContextList_ptr contexts();
 void ctx(Context_ptr);
 Context_ptr ctx() const

 // argument manipulation helper functions
 Any &add_in_arg();
 Any &add_in_arg(const char* name);
 Any &add_inout_arg():
 Any &add_inout_arg(const char* name);
 Any &add_out_arg():
 Any &add_out_arg(const char* name);
 void set_return_type(TypeCode_ptr tc);
 Any &return_value();

 void invoke();
 void send_oneway();
 void send_deferred();
 void get_response();
 Boolean poll_response();
};

Note: The add_*_arg, set_return_type, and return_value member functions
are added as shortcuts for using the attribute-based accessors.

The following sections describe these member functions.
CORBA C++ Programming Reference 14-111

14 CORBA API
CORBA::Request::arguments

Synopsis Retrieves the argument list for the request.

C++ Binding CORBA::NVList_ptr CORBA::Request::arguments () const;

Arguments None.

Description This member function retrieves the argument list for the request. The arguments can
be input, output, or both.

Return Values If the function succeeds, the value returned is a pointer to the list of arguments to the
operation for the request. The returned argument list is owned by the Request object
reference and should not be released.

If the function does not succeed, an exception is thrown.
14-112 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::ctx(Context_ptr)

Synopsis Sets the Context object for the operation.

C++ Binding void CORBA::Request::ctx (
 CORBA::Context_ptr CtxObject);

Argument CtxObject
The new value to which to set the Context object.

Description This member function sets the Context object for the operation.

Return Values None.

See Also CORBA::Request::ctx()
CORBA C++ Programming Reference 14-113

14 CORBA API
CORBA::Request::get_response

Synopsis Retrieves the response of a specific deferred synchronous request.

C++ Binding void CORBA::Request::get_response ();

Arguments None.

Description This member function retrieves the response of a specific request; it is used after a call
to the CORBA::Request::send_deferred function or the
CORBA::Request::send_multiple_requests function. If the request has not
completed, the CORBA::Request::get_response function blocks until it does
complete.

Return Values None.

See Also CORBA::Request::send_deferred
14-114 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::invoke

Synopsis Performs an invoke on the operation specified in the request.

C++ Binding void CORBA::Request::invoke ();

Arguments None.

Description This member function calls the Object Request Broker (ORB) to send the request to
the appropriate server application.

Return Values None.
CORBA C++ Programming Reference 14-115

14 CORBA API
CORBA::Request::operation

Synopsis Retrieves the operation intended for the request.

C++ Binding const char * CORBA::Request::operation () const;

Arguments None.

Description This member function retrieves the operation intended for the request.

Return Values If the function succeeds, the value returned is a pointer to the operation intended for
the object; the value can be 0 (zero). The memory returned is owned by the Request
object and should not be freed.

If the function does not succeed, an exception is thrown.
14-116 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::poll_response

Synopsis Determines whether a deferred synchronous request has completed.

C++ Binding CORBA::Boolean CORBA::Request::poll_response ();

Arguments None.

Description This member function determines whether the request has completed and returns
immediately. You can use this call to check the state of the request. This member
function can also be used to determine whether a call to
CORBA::Request::get_response will block.

Return Values If the function succeeds, the value returned is CORBA_TRUE if the response has already
completed, and CORBA_FALSE if the response has not yet completed.

If the function does not succeed, an exception is thrown.

See Also CORBA::ORB::get_next_response
CORBA::ORB::poll_next_response
CORBA::ORB::send_multiple_requests
CORBA::Request::get_response
CORBA::Request::send_deferred
CORBA C++ Programming Reference 14-117

14 CORBA API
CORBA::Request::result

Synopsis Retrieves the result of the request.

C++ Binding CORBA::NamedValue_ptr CORBA::Request::result ();

Arguments None.

Description This member function retrieves the result of the request.

Return Values If the function succeeds, the value returned is a pointer to the result of the operation.
The returned result is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.
14-118 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::env

Synopsis Retrieves the environment of the request.

C++ Binding CORBA::Environment_ptr CORBA::Request::env ();

Arguments None.

Description This member function retrieves the environment of the request.

Return Values If the function succeeds, the value returned is a pointer to the environment of the
operation. The returned environment is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-119

14 CORBA API
CORBA::Request::ctx

Synopsis Retrieves the context of the request.

C++ Binding CORBA::context_ptr CORBA::Request::ctx ();

Arguments None.

Description This member function retrieves the context of the request.

Return Values If the function succeeds, the value returned is a pointer to the context of the operation.
The returned context is owned by the Request object and should not be released.

If the function does not succeed, an exception is thrown.
14-120 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::contexts

Synopsis Retrieves the context lists for the request.

C++ Binding CORBA::ContextList_ptr CORBA::Request::contexts ();

Arguments None.

Description This member function retrieves the context lists for the request.

Return Values If the function succeeds, the value returned is a pointer to the context lists for the
operation. The returned context list is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-121

14 CORBA API
CORBA::Request::exceptions

Synopsis Retrieves the exception lists for the request.

C++ Binding CORBA::ExceptionList_ptr CORBA::Request::exceptions ();

Arguments None.

Description This member function retrieves the exception lists for the request.

Return Values If the function succeeds, the value returned is a pointer to the exception list for the
request. The returned exception list is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.
14-122 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::target

Synopsis Retrieves the target object reference for the request.

C++ Binding CORBA::Object_ptr CORBA::Request::target () const;

Arguments None.

Description This member function retrieves the target object reference for the request.

Return Values If the function succeeds, the value returned is a pointer to the target object of the
operation. The returned value is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-123

14 CORBA API
CORBA::Request::send_deferred

Synopsis Initiates a deferred synchronous request.

C++ Binding void CORBA::Request::send_deferred ();

Arguments None.

Description This member function initiates a deferred synchronous request. You use this function
when a response is expected and in conjunction with the
CORBA::Request::get_response function.

Return Values None.

See Also CORBA::ORB::get_next_response
CORBA::ORB::poll_next_response
CORBA::ORB::send_multiple_requests
CORBA::Request::get_response
CORBA::Request::poll_response
CORBA::Request::send_oneway
14-124 CORBA C++ Programming Reference

Request Member Functions
CORBA::Request::send_oneway

Synopsis Initiates a one-way request.

C++ Binding void CORBA::Request::send_oneway ();

Arguments None.

Description This member function initiates a one-way request; it does not expect a response.

Return Values None.

See Also CORBA::ORB::send_multiple_requests
CORBA::Request::send_deferred
CORBA C++ Programming Reference 14-125

14 CORBA API
Strings

The mapping of these functions to C++ is as follows:

// C++

namespace CORBA {
 static char * string_alloc(ULong len);
 static char * string_dup (const char *);
 static void string_free(char *);
 ...
}

Note: A static array of char in C++ decays to a char*. Therefore, care must be taken
when assigning a static array to a String_var, because the String_var
assumes that the pointer points to data allocated via string_alloc, and thus
eventually attempts to free it using string_free.

This behavior has changed in ANSI/ISO C++, where string literals are const
char*, not char*. However, since most C++ compilers do not yet implement
this change, portable programs must heed the advice given here.

The following sections describe the functions that manage memory allocated to
strings.
14-126 CORBA C++ Programming Reference

Strings
CORBA::string_alloc

Synopsis Allocates memory for a string.

C++ Binding char * CORBA::string_alloc(ULong len);

Argument len

The length of the string for which to allocate memory.

Description This member function dynamically allocates memory for a string, or returns a nil
pointer if it cannot perform the allocation. It allocates len+1 characters so that the
resulting string has enough space to hold a trailing NULL character. Free the memory
allocated by this member function by calling the CORBA::string_free member
function.

This function does not throw CORBA exceptions.

Return Values If the function succeeds, the return value is a pointer to the newly allocated memory
for the string object; if the function fails, the return value is a nil pointer.

Example char* s = CORBA::string_alloc(10);

See Also CORBA::string_free
CORBA::string_dup
CORBA C++ Programming Reference 14-127

14 CORBA API
CORBA::string_dup

Synopsis Makes a copy of a string.

C++ Binding char * CORBA::string_dup (const char * Str);

Argument Str

The address of the string to be copied.

Description This function dynamically allocates enough memory to hold a copy of its string
argument, including the NULL character, copies the string argument into that memory,
and returns a pointer to the new string.

This function does not throw CORBA exceptions.

Return Values If the function succeeds, the return value is a pointer to the new string; if the function
fails, the return value is a nil pointer.

Example char* s = CORBA::string_dup("hello world");

See Also CORBA::string_free
CORBA::string_alloc
14-128 CORBA C++ Programming Reference

Strings
CORBA::string_free

Synopsis Frees memory allocated to a string.

C++ Binding void CORBA::string_free(char * Str);

Argument Str

The address of the memory to be deallocated.

Description This member function deallocates memory that was previously allocated to a string
using the CORBA::string_alloc() or CORBA::string_dup() member
functions. Passing a nil pointer to this function is acceptable and results in no action
being performed.

This function may not throw CORBA exceptions.

Return Values None.

Example char* s = CORBA::string_dup("hello world");
CORBA::string_free(s);

See Also CORBA::string_alloc
CORBA::string_dup
CORBA C++ Programming Reference 14-129

14 CORBA API
TypeCode Member Functions

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo-object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in Any, as arguments for equal, and so on.
In the names of these TypeCode reference constants, <type> refers to the local name
of the type within its defining scope. Each C++ _tc_<type> constant is defined at the
same scoping level as its matching type.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode. This operation can be used
to initialize TypeCode references embedded within constructed types. However, a nil
TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class TypeCode
 {
 public:
 class Bounds { ... };
 class BadKind { ... };

 Boolean equal(TypeCode_ptr) const;
 TCKind kind() const;
 Long param_count() const;
 Any *parameter(Long) const;
 RepositoryId id () const;
 }; // TypeCode
}; // CORBA
14-130 CORBA C++ Programming Reference

TypeCode Member Functions
Memory Management

TypeCode has the following special memory management rule:

l Ownership of the return values of the id function is maintained by the
TypeCode; these return values must not be freed by the caller.

The following sections describe these member functions.
CORBA C++ Programming Reference 14-131

14 CORBA API
CORBA::TypeCode::equal

Synopsis Determines whether two TypeCode objects are equal.

C++ Binding CORBA::Boolean CORBA::TypeCode::equal (
 CORBA::TypeCode_ptr TypeCodeObj) const;

Argument TypeCodeObj
A pointer to a TypeCode object with which to make the comparison.

Description This member function determines whether a TypeCode object is equal to the input
parameter, TypeCodeObj.

Return Values If the TypeCode object is equal to the TypeCodeObj parameter, CORBA_TRUE is
returned.

If the TypeCode object is not equal to the TypeCodeObj parameter, CORBA_FALSE is
returned.

If the function does not succeed, an exception is thrown.
14-132 CORBA C++ Programming Reference

TypeCode Member Functions
CORBA::TypeCode::id

Synopsis Returns the ID for the TypeCode.

C++ Binding CORBA::RepositoryId CORBA::TypeCode::id () const;

Arguments None.

Description This member function returns the ID for the TypeCode.

Return Values Repository ID for the TypeCode.
CORBA C++ Programming Reference 14-133

14 CORBA API
CORBA::TypeCode::kind

Synopsis Retrieves the kind of data contained in the TypeCode object reference.

C++ Binding CORBA::TCKind CORBA::TypeCode::kind () const;

Arguments None.

Description This member function retrieves the kind attribute of the CORBA::TypeCode class,
which specifies the kind of data contained in the TypeCode object reference.

Return Values If the member function succeeds, it returns the kind of data contained in the TypeCode
object reference. For a list of the TypeCode kinds and their parameters, see Table 14-1.

If the member function does not succeed, an exception is thrown.

Table 14-1 Legal Typecode Kinds and Parameters

Typecode Kind Parameters List

CORBA::tk_null *NONE*

CORBA::tk_void *NONE*

CORBA::tk_short *NONE*

CORBA::tk_long *NONE*

CORBA::tk_long *NONE*

CORBA::tk_ushort *NONE*

CORBA::tk_ulong *NONE*

CORBA::tk_float *NONE*

CORBA::tk_double *NONE*

CORBA::tk_boolean *NONE*

CORBA::tk_char *NONE*

CORBA::tk_octet *NONE*

CORBA::tk_Typecode *NONE*

CORBA::tk_Principal *NONE*
14-134 CORBA C++ Programming Reference

TypeCode Member Functions
CORBA::tk_objref {interface_id}

CORBA::tk_struct {struct-name, member-name, TypeCode, ... (repeat pairs)}

CORBA::tk_union {union-name, switch-TypeCode, label-value,
member-name, enum-id, ...}

CORBA::tk_enum {enum-name, enum-id, ...}

CORBA::tk_string {maxlen-integer}

CORBA::tk_sequence {TypeCode, maxlen-integer}

CORBA::tk_array {TypeCode, length-integer}

Table 14-1 Legal Typecode Kinds and Parameters (Continued)

Typecode Kind Parameters List
CORBA C++ Programming Reference 14-135

14 CORBA API
CORBA::TypeCode::param_count

Synopsis Retrieves the number of parameters for the TypeCode object reference.

C++ Binding CORBA::Long CORBA::TypeCode::param_count () const;

Arguments None.

Description This member function retrieves the parameter attribute of the CORBA::TypeCode
class, which specifies the number of parameters for the TypeCode object reference.
For a list of parameters of each kind, see Table 14-1.

Return Values If the function succeeds, it returns the number of parameters contained in the
TypeCode object reference.

If the function does not succeed, an exception is thrown.
14-136 CORBA C++ Programming Reference

TypeCode Member Functions
CORBA::TypeCode::parameter

Synopsis Retrieves a parameter specified by the index input argument.

C++ Binding CORBA::Any * CORBA::TypeCode::parameter (

 CORBA::Long Index) const;

Argument Index
An index to the parameter list, used to determine which parameter to retrieve.

Description This member function retrieves a parameter specified by the index input argument. For
a list of parameters of each kind, see Table 14-1.

Return Values If the member function succeeds, the return value is a pointer to the parameter
specified by the index input argument.

If the member function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-137

14 CORBA API
Exception Member Functions

The BEA WebLogic Enterprise software supports the throwing and catching of
exceptions.

Caution: Use of the wrong exception constructor causes noninitialization of a data
member. Exceptions that are defined to have a reason field need to be
created using the constructor that initializes that data member. If the
default constructor is used instead, that data member is not initialized and,
during destruction of the exception, the system may attempt to destroy
nonexistent data.

When creating exceptions, be sure to use the constructor function that most
fully initializes the data fields. These exceptions can be most easily
identified by looking at the OMG IDL definition; they have additional data
member definitions.

Descriptions of exception member functions follow:

CORBA::SystemException::SystemException ()

This is the default constructor for the CORBA::SystemException class.
Minor code is initialized to 0 (zero) and the completion status is set to
COMPLETED_NO.

CORBA::SystemException::SystemException (
 const CORBA::SystemException & Se)

This is the copy constructor for the CORBA::SystemException class.

CORBA::SystemException::SystemException(

 CORBA::ULong Minor, CORBA::CompletionStatus Status)
This constructor for the CORBA::SystemException class sets the minor
code and completion status.

Explanations of the arguments are as follows:

Minor

The minor code for the Exception object. The minor field is an
implementation-specific value used by the ORB to identify the
exception. The BEA WebLogic Enterprise minor field definitions
can be found in the file orbminor.h.
14-138 CORBA C++ Programming Reference

Exception Member Functions
Status

The completion status for the Exception object. The values are as
follows:
CORBA::COMPLETED_YES
CORBA::COMPLETED_NO
CORBA::COMPLETED_MAYBE

CORBA::SystemException::~SystemException ()
This is the destructor for the CORBA::SystemException class. It frees any
memory used for the Exception object.

CORBA::SystemException CORBA::SystemException::operator =
 const CORBA::SystemException Se)

This assignment operator copies exception information from the source
exception. The Se argument specifies the SystemException object that is to
be copied by this operator.

CORBA::CompletionStatus CORBA::SystemException::completed()

This member function returns the completion status for this exception.

CORBA::SystemException::completed(
 CORBA::CompletionStatus Completed)

This member function sets the completion status for this exception. The
Completed argument specifies the completion status for this exception.

CORBA::ULong CORBA::SystemException::minor()

This member function returns the minor code for this exception.

CORBA::SystemException::minor (CORBA::ULong Minor)

This member function sets the minor code for this exception. The minor
argument specifies the new minor code for this exception. The minor field is
an implementation-specific value used by the application to identify the
exception.

CORBA::SystemException * CORBA::SystemException::_narrow (
 CORBA::Exception_ptr Exc)

This member function determines whether a specified exception can be
narrowed to a system exception. The Exc argument specifies the exception to
be narrowed.

If the specified exception is a system exception, this member function returns
a pointer to the system exception. If the specified exception is not a system
exception, the function returns 0 (zero).
CORBA C++ Programming Reference 14-139

14 CORBA API
CORBA::UserException * CORBA::UserException::_narrow(
 CORBA::Exception_ptr Exc)

This member function determines whether a specified exception can be
narrowed to a user exception. The Exc argument specifies the exception to be
narrowed.

If the specified exception is a user exception, this member function returns a
pointer to the user exception. If the specified exception is not a user
exception, the function returns 0 (zero).

Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions are not listed in raises expressions.

To bound the complexity in handling the standard exceptions, the set of standard
exceptions is kept to a tractable size. This constraint forces the definition of
equivalence classes of exceptions, rather than enumerating many similar exceptions.

For example, an operation invocation can fail at many different points due to the
inability to allocate dynamic memory. Rather than enumerate several different
exceptions that correspond to the different ways that memory allocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets, and so forth), a single exception
corresponding to dynamic memory allocation failure is defined. Each standard
exception includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code, which takes one
of the following values:

CORBA::COMPLETED_YES

The object implementation completed processing prior to the exception being
raised.

CORBA::COMPLETED_NO

The object implementation was not initiated prior to the exception being
raised.
14-140 CORBA C++ Programming Reference

Standard Exceptions
CORBA::COMPLETED_MAYBE

The status of implementation completion is unknown.

Exception Definitions

The standard exceptions are defined below. Clients must be prepared to handle system
exceptions that are not on this list, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise nonstandard system exceptions. For more information about exceptions, see
System Messages.

Table 14-2 defines the exceptions.

Table 14-2 Exception Definitions

Exception Description

CORBA::UNKNOWN The unknown exception.

CORBA::BAD_PARAM An invalid parameter was passed.

CORBA::NO_MEMORY Dynamic memory allocation failure.

CORBA::IMP_LIMIT Violated implementation limit.

CORBA::COMM_FAILURE Communication failure.

CORBA::INV_OBJREF Invalid object reference.

CORBA::NO_PERMISSION No permission for attempted operation.

CORBA::INTERNAL ORB internal error.

CORBA::MARSHAL Error marshalling parameter/result.

CORBA::INITIALIZE ORB initialization failure.

CORBA::NO_IMPLEMENT Operation implementation unavailable.

CORBA::BAD_TYPECODE Bad typecode.

CORBA::BAD_OPERATION Invalid operation.

CORBA::NO_RESOURCES Insufficient resources for request.
CORBA C++ Programming Reference 14-141

14 CORBA API

ing
form
Object Nonexistence

The CORBA::OBJECT_NOT_EXIST exception is raised whenever an invocation on a
deleted object is performed. It is an authoritative “hard” fault report. Anyone receiv
it is allowed (even expected) to delete all copies of this object reference and to per
other appropriate “final recovery” style procedures.

CORBA::NO_RESPONSE Response to request not yet available.

CORBA::PERSIST_STORE Persistent storage failure.

CORBA::BAD_INV_ORDER Routine invocations out of order.

CORBA::TRANSIENT Transient failure; reissue request.

CORBA::FREE_MEM Cannot free memory.

CORBA::INV_IDENT Invalid identifier syntax.

CORBA::INV_FLAG Invalid flag was specified.

CORBA::INTF_REPOS Error accessing interface repository.

CORBA::BAD_CONTEXT Error processing context object.

CORBA::OBJ_ADAPTER Failure detected by object adapter.

CORBA::DATA_CONVERSION Data conversion error.

CORBA::OBJECT_NOT_EXIST Non-existent object; delete reference.

CORBA::TRANSACTION_REQUIRED Transaction required.

CORBA::TRANSACTION_ROLLEDBACK Transaction rolled back.

CORBA::INVALID_TRANSACTION Invalid transaction.

Table 14-2 Exception Definitions (Continued)

Exception Description
14-142 CORBA C++ Programming Reference

Standard Exceptions
Transaction Exceptions

The CORBA::TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

The CORBA::TRANSACTION_ROLLEDBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

The CORBA::INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurred
when trying to register a resource.
CORBA C++ Programming Reference 14-143

14 CORBA API
ExceptionList Member Functions

The ExceptionList member functions allow a client or server application to provide
a list of TypeCodes for all user-defined exceptions that may result when the Request
is invoked. For a description of the Request member functions, see the section
“Request Member Functions” on page 14-111.

The mapping of these member functions to C++ is as follows:

class CORBA
{
 class ExceptionList
 {
 public:
 Ulong count ();
 void add(TypeCode_ptr tc);
 void add_consume(TypeCode_ptr tc);
 TypeCode_ptr item(Ulong index);
 Status remove(Ulong index);
 }; // ExceptionList
}// CORBA
14-144 CORBA C++ Programming Reference

ExceptionList Member Functions
CORBA::ExceptionList::count

Synopsis Retrieves the current number of items in the list.

C++ Binding Ulong count ();

Arguments None.

Description This member function retrieves the current number of items in the list.

Return Values If the function succeeds, the returned value is the number of items in the list. If the list
has just been created, and no ExceptionList objects have been added, this function
returns 0 (zero).

Exception If the function does not succeed, an exception is thrown.
CORBA C++ Programming Reference 14-145

14 CORBA API
CORBA::ExceptionList::add

Synopsis Constructs a ExceptionList object with an unnamed item, setting only the flags
attribute.

C++ Binding void add(TypeCode_ptr tc);

Arguments tc

Defines the memory location referred to by TypeCode_ptr.

Description This member function constructs an ExceptionList object with an unnamed item,
setting only the flags attribute.

The ExceptionList object grows dynamically; your application does not need to track
its size.

Return Values If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

Exception If the member function does not succeed, a CORBA::NO_MEMORY exception is thrown.

See Also CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA::ExceptionList::remove
14-146 CORBA C++ Programming Reference

ExceptionList Member Functions
CORBA::ExceptionList::add_consume

Synopsis Constructs an ExceptionList object.

C++ Binding void add_consume(TypeCode_ptr tc);

Arguments tc

The memory location to be assumed.

Description This member function constructs an ExceptionList object.

The ExceptionList object grows dynamically; your application does not need to track
its size.

Return Values If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

Exceptions If the member function does not succeed, an exception is raised.

See Also CORBA::ExceptionList::add
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA::ExceptionList::remove
CORBA C++ Programming Reference 14-147

14 CORBA API
CORBA::ExceptionList::item

Synopsis Retrieves a pointer to the ExceptionList object, based on the index passed in.

C++ Binding TypeCode_ptr item(ULong index);

Argument index
The index into the ExceptionList object. The indexing is zero-based.

Description This member function retrieves a pointer to an ExceptionList object, based on the
index passed in. The function uses zero-based indexing.

Return Values If the function succeeds, the return value is a pointer to the ExceptionList object.

Exceptions If the function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::ExceptionList::add
CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::remove
14-148 CORBA C++ Programming Reference

ExceptionList Member Functions
CORBA::ExceptionList::remove

Synopsis Removes the item at the specified index, frees any associated memory, and reorders
the remaining items on the list.

C++ Binding Status remove(ULong index);

Argument Index

The index into the ContextList object. The indexing is zero-based.

Description This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

Return Values None.

Exceptions If the function does not succeed, the BAD_PARAM exception is thrown.

See Also CORBA::ExceptionList::add
CORBA::ExceptionList::add_consume
CORBA::ExceptionList::count
CORBA::ExceptionList::item
CORBA C++ Programming Reference 14-149

14 CORBA API
14-150 CORBA C++ Programming Reference

CHAPTER
15 Server-side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross-address space or machine boundaries. This
mapping addresses any implementation of an Object Management Group (OMG)
Interface Definition Language (IDL) interface.

Note: The information in this chapter is based on the Common Object Request
Broker: Architecture and Specification. Revision 2.2, February 1998,
published by the Object Management Group (OMG). Used with permission by
OMG.

Implementing Interfaces

To define an implementation in C++, you define a C++ class with any valid C++ name.
For each operation in the interface, the class defines a nonstatic member function with
the mapped name of the operation (the mapped name is the same as the OMG IDL
identifier).

The server application mapping specifies two alternative relationships between the
implementation class supplied by the application and the generated class or classes for
the interface. Specifically, the mapping requires support for both inheritance-based
relationships and delegation-based relationships. Conforming applications may use
either or both of these alternatives. This release of the BEA WebLogic Enterprise
software supports both inheritance-based and delegation-based relationships.
CORBA C++ Programming Reference 15-1

15 Server-side Mapping
Inheritance-based Interface
Implementation

In the inheritance-based interface implementation approach, the implementation
classes are derived from a generated base class based on the OMG IDL interface
definition. The generated base classes are known as skeleton classes, and the derived
classes are known as implementation classes. Each operation of the interface has a
corresponding virtual member function declared in the skeleton class. The generated
skeleton class is partially opaque to the programmer, though it will contain a member
function corresponding to each operation in the interface. The signature of the member
function is identical to that of the generated client stub class.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. To
allow portable implementations to multiple inheritances from both skeleton classes
and implementation classes for other base interfaces without error or ambiguity, the
Tobj_ServantBase class must be a virtual base class of the skeleton, and the
PortableServer::ServantBase class must be a virtual base class of the
Tobj_ServantBase class. The inheritance among the implementation class, the
skeleton class, the Tobj_ServantBase class, and the
PortableServer::ServantBase class must all be public virtual.

The implementation class or servant must only derive directly from a single generated
skeleton class. Direct derivation from multiple skeleton classes could result in
ambiguous errors due to multiple definitions of the _this() operation. This should
not be a limitation, however, since CORBA objects have only a single most-derived
interface. C++ servants that are intended to support multiple interface types can utilize
the delegation-based interface implementation approach. See Listing 15-1 for an
example of OMG IDL that uses interface inheritance.
15-2 CORBA C++ Programming Reference

Inheritance-based Interface Implementation

e,
Listing 15-1 OMG IDL that Uses Interface Inheritance

// IDL
interface A
{
 short op1() ;
 void op2(in long val) ;
};

Listing 15-2 Interface Class A

// C++
class A : public virtual CORBA::Object
 {
 public:
 virtual CORBA::Short op1 ();
 virtual void op2 (CORBA::Long val);
};

On the server side, a skeleton class is generated. This class is partially opaque to the
programmer, though it does contain a member function corresponding to each
operation in the interface.

For the Portable Object Adapter (POA), the name of the skeleton class is formed by
prepending the string “POA_” to the fully scoped name of the corresponding interfac
and the class is directly derived from the servant base class Tobj_ServantBase. The
C++ mapping for Tobj_ServantBase is as follows:

// C++
class Tobj_ServantBase
{
 public:
 virtual void activate_object(const char* stroid);
 virtual void deactivate_object (
 const char* stroid,
 TobjS::DeactivateReasonValue reason
);
}

CORBA C++ Programming Reference 15-3

15 Server-side Mapping

15-3.

ple,

d for

lass
An
The activate_object() and deactivate_object() member functions are
described in detail in the sections “Tobj_ServantBase:: activate_object()” on
page 3-33 and “Tobj_ServantBase::deactivate_object()” on page 3-36.

The skeleton class for interface A shown above would appear as shown in Listing

Listing 15-3 Skeleton Class for Interface A

// C++
class POA_A : public Tobj_ServantBase
{
 public:
 // ... server-side ORB-implementation-specific
 // goes here...

 virtual CORBA::Short op1 () = 0;
 virtual void op2 (CORBA::Long val) = 0;
 //...
};

If interface A were defined within a module rather than at global scope (for exam
Mod::A), the name of its skeleton class would be POA_Mod::A. This helps to separate
server application skeleton declarations and definitions from C++ code generate
the client.

To implement this interface using inheritance, you must derive from this skeleton c
and implement each of the operations in the corresponding OMG IDL interface.
implementation class declaration for interface A would take the form shown in
Listing 15-4.
15-4 CORBA C++ Programming Reference

Delegation-based Interface Implementation

t,”
sed

ch

by
Listing 15-4 Interface A Implementation Class Declaration

// C++
class A_impl : public POA_A
{
 public:
 CORBA::Short op1();
 void op2(CORBA::Long val);
 ...
};

Delegation-based Interface Implementation

The delegation-based interface implementation approach is an alternative to using
inheritance when implementing CORBA objects. This approach is used when the
overhead of inheritance is too high or cannot be used. For example, due to the invasive
nature of inheritance, implementing objects using existing legacy code might be
impossible if inheritance for some global class were required. Instead, delegation can
be used to solve these types of problems. Delegation is a more natural fit doing object
implementations when the Process-Entity design pattern is used. In this pattern, the
Process object would delegate operations onto one or more entity objects.

In the delegation-based approach, the implementation does not inherit from a skeleton
class. Instead, the implementation can be coded as required for the application, and a
wrapper object will delegate upcalls to that implementation. This “wrapper objec
called a tie, is generated by the IDL compiler, along with the same skeleton class u
for the inheritance approach. The generated tie class is partially opaque to the
programmer, though, like the skeleton, it provides a method corresponding to ea
OMG IDL operation for the associated interface. The name of the generated tie class
is the same as the generated skeleton class with the addition that the string _tie is
appended to the end of the class name.

An instance of the tie class is the servant, not the C++ object being delegated to
the tie object, that is passed as the argument to the operations that require a Servant
argument. It should also be noted that the tied object has no access to the _this()
operation, nor should it access data members directly.
CORBA C++ Programming Reference 15-5

15 Server-side Mapping
A type-safe tie class is implemented using C++ templates. The code shown in
Listing 15-5 illustrates a tie class generated from the Derived interface in the previous
OMG IDL example.

Listing 15-5 tie Class Generated from the Derived Interface

// C++
template <class T>
class POA_A_tie : public POA_A {
public:
 POA_A_tie(T& t)
 : _ptr(&t), _poa(PortableServer::POA::_nil()), _rel(0) {}
 POA_A_tie(T& t, PortableServer::POA_ptr poa)
 : _ptr(&t), _poa(PortableServer::POA::_duplicate(poa)), _rel(0) {}
 POA_A_tie(T* tp, CORBA::Boolean release = 1)
 : _ptr(tp), _poa(PortableServer::POA::_nil()), _rel(release) {}
 POA_A_tie(T* tp, PortableServer::POA_ptr poa, CORBA::Boolean release = 1)
 : _ptr(tp), _poa(PortableServer::POA::_duplicate(poa)), _rel(release) {}
 ~POA_A_tie()
 { CORBA::release(_poa);
 if (_rel) delete _ptr;
 }

 // tie-specific functions
 T* _tied_object () {return _ptr;}
 void _tied_object(T& obj)
 { if (_rel) delete _ptr;
 _ptr = &obj;
 _rel = 0;
 }
 void _tied_object(T* obj, CORBA::Boolean release = 1)
 { if (_rel) delete _ptr;
 _ptr = obj;
 _rel = release;
 }

 CORBA::Boolean _is_owner() { return _rel; }
 void _is_owner (CORBA::Boolean b) { _rel = b; }

 // IDL operations*************************************
 CORBA::Short op1 ()
 {
 return _ptr->op1 ();
 }
15-6 CORBA C++ Programming Reference

Delegation-based Interface Implementation

 void op2 (CORBA::Long val)
 {
 _ptr->op2 (val);
 }
 // ***

 // override ServantBase operations
 PortableServer::POA_ptr _default_POA()
 {
 if (!CORBA::is_nil(_poa))
 {
 return _poa;
 }
 else {
#ifdef WIN32
 return ServantBase::_default_POA();
#else
 return PortableServer::ServantBase::_default_POA();
#endif
 }
 }

private:
 T* _ptr;
 PortableServer::POA_ptr _poa;
 CORBA::Boolean _rel;

 // copy and assignment not allowed
 POA_A_tie (const POA_A_tie<T> &);
 void operator=(const POA_A_tie<T> &);
};

This class definition is a template generated by the IDL compiler. You typically use it
by first getting a pointer to the legacy class and then instantiating the tie class with that
pointer. For example,

Old::Legacy * legacy = new Old::Legacy(oid);
POA_A_tie<Old::Legacy> * A_servant_ptr =
 new POA_A_tie<Old::Legacy>(legacy);

As you can see, the tie class contains definitions for the op1 and op2 operations of the
interface that assume that the legacy class has operations with the same signatures as
those given in the IDL. If this is the case, you can use the tie class file as is, letting it
delegate exactly. It is more likely, however, that the legacy class will not have identical
CORBA C++ Programming Reference 15-7

15 Server-side Mapping

n of
es,
signatures or you may have to do more than a single function call. In that case, it is
your job to replace the code for op1 and op2 in this generated code. The code for each
operation typically makes invocations on the legacy class using the tie class variable
_ptr, which contains the pointer to the legacy class. For example, you might change
the following lines:

 CORBA::Short op1 () {return _ptr->op1 (); }
 void op2 (CORBA::Long val) {_ptr->op2 (val); }

to the following:

CORBA::Short op1 ()
{
 return _ptr->op37 ();
}

void op2 (CORBA::Long val)
{
 CORBA::Long temp;
 temp = val + 15;
 _ptr->lookup(val, temp, 43);
}

An instance of this template class performs the task of delegation. When the template
is instantiated with a class type that provides the operation of the Derived interface,
then the POA_Derived_tie class will delegate all operations to an instance of that
implementation class. A reference or pointer to the actual implementation object is
passed to the appropriate tie constructor when an instance of the POA_Derived_tie
class is created. When a request is invoked on it, the tie servant will just delegate the
request by calling the corresponding method on the implementation class.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s operations for a given instantiatio
the template. This allows the application to use legacy classes for tied object typ
where the operation signatures of the tied object will differ from that of the tie class.
15-8 CORBA C++ Programming Reference

Implementing Operations

ata
y

 this
Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client-side mapping, the OMG specifies that the
function header for the server-side mapping include the appropriate exception
specification. An example of this is shown in Listing 15-6.

Listing 15-6 Exception Specification

// IDL
interface A
{
 exception B {};
 void f() raises(B);
};

// C++
class MyA : public virtual POA_A
{
 public:
 void f();
 ...
};

Since all operations and attributes may raise CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even when an
operation has no raises clause.

Note: Because of the differences in C++ compilers, it is best to leave out the "throw
declaration" in the method signature. Some systems cause the application
server to crash if an undeclared exception is thrown in a method that has
declared the exceptions it will throw.

Within a member function, the “this” pointer refers to the implementation object’s d
as defined by the class. In addition to accessing the data, a member function ma
implicitly call another member function defined by the same class. An example of
is shown in Listing 15-7.
CORBA C++ Programming Reference 15-9

15 Server-side Mapping
Listing 15-7 Calling Another Member Function

// IDL
interface A
{
 void f();
 void g();
};

// C++
class MyA : public virtual POA_A
{
 public:
 void f();
 void g();
 private:
 long x_;
};

void
MyA::f();
{
 x_ = 3;
 g();
}

When a servant member function is invoked in this manner, it is being called simply
as a C++ member function, not as the implementation of an operation on a CORBA
object.
15-10 CORBA C++ Programming Reference

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. OMG IDL Syntax
	2. Implementation Configuration File (ICF)
	3. TP Framework
	4. C++ Bootstrap Object Programming Reference
	5. FactoryFinder Interface
	6. Security Service
	7. Transactions Service
	8. Notification Service
	9. Request-Level Interceptors
	10. Interface Repository Interfaces
	11. Joint Client/Servers
	12. Development Commands
	13. Mapping of OMG IDL Statements to C++
	14. CORBA API
	15. Server-side Mapping

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 OMG IDL Syntax and the C++ IDL Compiler
	OMG IDL Compiler Extensions
	Table 1�1 Predefined Macros

	C++ IDL Compiler Constraints
	Table 1�2 C++ IDL Compiler�

	2 Implementation Configuration File (ICF)
	ICF Syntax
	pragmas
	Module module-name
	implementation-name
	implements (module-name::interface-name)
	activation_policy
	transaction_policy

	Sample ICF File
	Listing 2-1 Sample ICF

	Creating the ICF File

	3 TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution to Users

	Self Deactivation

	Servant Lifetime
	The Normal Case
	Special Cases

	Saving and Restoring Object State
	Note On Use of Constructors and Destructors for Corba Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	SQL and Global Transactions
	Voting on Transaction Outcome
	Transaction Time-outs

	TP Framework API
	Server Interface
	C++ Declarations

	Server::create_servant
	Synopsis
	C++ Binding
	Argument
	interfaceName

	Return Value
	Tobj_ServantBase

	Description
	Exception

	Server::initialize()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	Server::release()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	Tobj_ServantBase Interface
	C++ Declaration (in Tobj_ServantBase.h)

	Tobj_ServantBase:: activate_object()
	Synopsis
	C++ Binding
	Argument
	stroid

	Return Value
	Description
	Exceptions

	Tobj_ServantBase::deactivate_object()
	Synopsis
	C++ Binding
	Arguments
	stroid
	reason
	DR_METHOD_END
	DR_SERVER_SHUTDOWN
	DR_TRANS_ABORTED

	Return Value
	Description
	Restriction
	DR_TRANS_ABORTED
	DR_TRANS_COMMITTING

	Exceptions
	TP Interface
	Usage Notes

	TP::application_responsibility
	Synopsis
	C++ Binding
	Arguments
	servant

	Return Values
	Description
	Exceptions
	TobjS::InvalidServant

	TP::bootstrap()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	TP::close_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Return Values
	Description
	Exceptions
	CORBA::BAD_INV_ORDER
	Tobj::RMFailed

	TP::create_active_object_reference()
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	servant

	Return Value
	Description
	Caution
	Problem Statement
	1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the object...
	2. SERVER2 also implements objects of interface A. However, instead of preactivating the objects,...
	3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can get a...

	Workaround
	Exceptions:
	TobjS::InvalidInterface
	TobjS::InvalidObjectId
	TobjS::ServantAlreadyActive
	TobjS::ObjectAlreadyActive
	TobjS::IllegalOperation

	TP::create_object_reference()
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	criteria

	Return Value
	Object

	Description
	Exceptions
	InvalidInterface
	InvalidObjectId

	Example

	TP::deactivateEnable
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	servant

	Return Value
	Description
	Current-object format
	Any-object format

	Exceptions
	IllegalOperation
	TobjS::ObjectNotActive

	TP::get_object_id ()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exception
	TobjS::InvalidObject

	TP::get_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	NilObject

	TP::open_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Return Values
	Description
	Exceptions
	Tobj::RMFailed

	TP::orb()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	TP::register_factory()
	Synopsis
	C++ Binding
	Arguments
	factory_or
	factory_id

	Return Value
	Description
	Exceptions
	TobjS::CannotProceed
	TobjS::InvalidName
	TobjS::InvalidObject
	TobjS::RegistrarNotAvailable
	TobjS::OverFlow

	TP::unregister_factory()
	Synopsis
	C++ Binding
	Arguments
	factory_or
	factory_id

	Return Value
	Description
	Exceptions
	CannotProceed
	InvalidName
	RegistrarNotAvailable
	TobjS::OverFlow

	TP::userlog()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	Example
	CosTransactions::TransactionalObject Interface Not Enforced
	Error Conditions, Exceptions, and Error Messages
	Exceptions Raised by the TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions
	Restriction of Nested Calls on Corba Objects

	4 C++ Bootstrap Object Programming Reference
	Why Bootstrap Objects Are Needed
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Table 4�1 Remote Clients Supported�

	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Table 4�2 Returned Object References
	Table 4�3 Tobj Module Exceptions�

	C++ Mapping
	Listing 4-1 Tobj_boostrap.h Declarations

	Java Mapping
	Listing 4-2 Tobj_Bootstrap.java Mapping

	Microsoft Desktop Client Mappings
	Automation Mapping
	Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

	C++ Member Functions and Java Methods
	Tobj_Bootstrap
	Synopsis
	C++ Mapping
	Java Mapping
	Parameters
	orb
	address
	Table 4�4 Differences Between corbaloc and corbalocs URL Address Formats�

	applet (Applies to Java method only)

	Exception
	BAD_PARAM

	Description
	Return Values

	Tobj_Bootstrap::register_callback_port
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	objref

	Exceptions
	BAD_PARAM
	IMP_LIMIT

	Description
	Usage Notes
	Return Values

	Tobj_Bootstrap::resolve_initial_references
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	id
	“FactoryFinder” “SecurityCurrent” “TransactionCurrent” “InterfaceRepository” “NotificationService...

	Exceptions
	InvalidName
	CORBA::NO_PERMISSION

	Description
	Return Values

	Tobj_Bootstrap::destroy_current()
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Description
	Return Values
	Automation Methods

	Initialize
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	address

	Return Values
	Exceptions
	Table 4�5 Initialize Exceptions

	CreateObject
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	progid
	Tobj.FactoryFinder Tobj.SecurityCurrent Tobj.TransactionCurrent

	Return Value
	Exceptions
	Table 4�6 CreateObject Exceptions�

	DestroyCurrent
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Return Value
	Exceptions
	Programming Examples
	Java Client Example: Getting a SecurityCurrent Object
	Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object

	Visual Basic Client Example: Using the Bootstrap Object
	Listing 4-5 Programming a Client in Visual Basic

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Figure 5�1 Registering a Factory Object
	C++ Mapping
	Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

	Locating a Factory
	Figure 5�2 Locating a Factory Object
	CORBAservices Naming Service Module OMG IDL
	Listing 5-2 CORBAservices Naming OMG IDL

	CORBAservices Life Cycle Service Module OMG IDL
	Listing 5-3 Life Cycle Service OMG IDL

	Tobj Module OMG IDL
	Listing 5-4 Tobj Module OMG IDL

	Locating Factories in Another Domain
	Figure 5�3 Inter-Domain FactoryFinder Interaction (ff_fig3.wmf)

	Why Use BEA WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Listing 5-5 Names Library Interfaces in Pseudo-IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	get_id
	set_id
	get_kind
	set_kind

	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL Form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	C++ Mapping
	Listing 5-6 Library Name Class

	Java Mapping
	Listing 5-7 Java Mapping for LNameComponent

	C++ Member Functions and Java Methods
	CosLifeCycle::FactoryFinder::find_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_key

	Exception
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory

	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_key

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_id

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::FactoryFinder::find_factories_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_id

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::Factoryfinder::list_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values
	Automation Methods

	DITobj_FactoryFinder.find_one_factory
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_key
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_one_factory_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_id
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_factories_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_id
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_key
	exceptionInfo

	Exception
	NoFactory

	Description
	Return Values

	DITobj_FactoryFinder.list_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	exceptionInfo

	Exception
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values
	Programming Examples
	Using the FactoryFinder Object
	Registering a Reference to a Factory Object
	Listing 5-8 Server Application: Registering a Factory

	Obtaining a Reference to a FactoryFinder Object Using the CosLifeCycle::FactoryFinder Interface
	Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

	Obtaining a Reference to a FactoryFinder Object Using the Extensions Bootstrap object
	Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

	Using Extensions to the FactoryFinder Object
	Obtaining One Factory Using Tobj::FactoryFinder
	Listing 5-11 Client Application: Finding Factories Using the BEA WebLogic Enterprise Extensions A...

	Obtaining One or More Factories Using Tobj::FactoryFinder
	Listing 5-12 Client Application: Finding One or More Factories Using the BEA WebLogic Enterprise ...

	6 Security Service
	7 Transactions Service
	8 Notification Service
	9 Request-Level Interceptors
	10 Interface Repository Interfaces
	Structure and Usage
	Programming Information
	Performance Implications
	1. The client application invokes the _get_interface opertion on the CORBA::Object to get the Int...
	2. The ORB returns the InterfaceDef object to the client.
	3. The client invokes one or more _is_a operations on the object to determine what type of interf...
	4. After the client has identified the interface, it invokes the describe_interface operation on ...
	5. The client is now ready to construct a DII request.

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	limit_type
	exclude_inherited
	search_name
	levels_to_search
	max_returned_objs

	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	type
	type_def
	value
	The describe operation for a ConstantDef object returns a ConstantDescription.

	TypedefDef Interface
	StructDef
	UnionDef
	discriminator_type and discriminator_type_def
	members

	EnumDef
	members

	AliasDef
	original_type_def

	PrimitiveDef
	kind

	ExceptionDef
	type
	members

	AttributeDef
	type
	type_def
	mode

	OperationDef
	result
	result_def
	params
	mode
	contexts
	exceptions

	InterfaceDef
	base_interfaces

	11 Joint Client/Servers
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects Using CORBA
	1. Establish a connection with a POA with the appropriate policies for the callback object model....
	2. Create a servant (that is, an instance of the C++ implementation class for the interface).
	3. Inform the POA that the servant is ready to accept requests on the callback BEA WebLogic Enter...
	4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).
	5. Create an object reference for the callback BEA WebLogic Enterprise object.
	6. Give out the object reference. This usually happens by making an invocation on another object ...

	Preparing Callback Objects Using BEAWrapper Callbacks
	BEAWrapper Callbacks API
	Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Argument
	init_orb

	Return Value
	Description
	Exception
	CORBA::IMP_LIMIT

	start_transient
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	CORBA::BAD_PARAM

	start_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	CORBA::BAD_PARAMETER
	CORBA::IMP_LIMIT

	restart_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	ObjectAlreadyActive
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT

	start_persistent_userid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	ObjectAlreadyActive
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT

	stop_object
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Argument
	servant

	Description
	Return Value
	Exceptions

	stop_all_objects
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Return Value
	Description
	Usage Note
	Exceptions

	get_string_oid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Return Value
	char*

	Description
	Exceptions
	NotInRequest

	~Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Arguments
	Return Value
	Description
	Usage Note
	Exceptions

	12 Development Commands
	13 Mapping of OMG IDL Statements to C++
	Mappings
	Data Types
	Basic Data Types
	Table 13�1 Basic OMG IDL and C++ Data Types�

	Complex Data Types
	Table 13�2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

	Strings
	Constants
	Enums
	Structs
	Fixed-length Versus Variable-length Structs
	Member Mapping
	Var
	Out

	Unions
	Union Member Accessor and Modifier Member Function Mapping
	Var
	Out
	Member Functions
	TYPE();
	TYPE(const TYPE & From);
	~TYPE();
	TYPE &operator=(const TYPE & From);
	void _d (CORBA::Long Descrim);
	CORBA::Long _d () const;

	Sequences
	Sequence Element Mapping
	Vars
	Out
	Member Functions
	SEQ ();
	SEQ (CORBA::ULong Max);
	SEQ (CORBA::ULong Max, CORBA::ULong Length, TYPE * Value, CORBA::Boolean Release);
	Max
	Length
	Value
	Release

	SEQ(const S& From);
	~SEQ();
	SEQ& operator=(const SEQ& From);
	CORBA::ULong maximum() const;
	void length(CORBA::ULong Length);
	CORBA::ULong length() const;
	TYPE & operator[](CORBA::ULong Index); const TYPE & operator[](CORBA::ULong Index) const;
	static TYPE * allocbuf(CORBA::ULong NumElems);
	static void freebuf(TYPE * Value);

	Arrays
	Array Slice
	Array Element Mapping
	Vars
	Out
	Allocation Member Functions
	static TYPE_slice * TYPE_alloc(void);
	static void TYPE_free(TYPE_slice * Value);

	Exceptions
	Member Mapping
	Var
	Out
	Member Functions
	static TYPE * _narrow(CORBA::Exception_ptr Except);
	TYPE ();
	TYPE(member-parameters);
	TYPE (const TYPE & From);
	~TYPE ();
	TYPE & operator=(const TYPE & From);
	void _raise ();

	Mapping of Pseudo-objects to C++
	Usage
	Mapping Rules
	Relation to the C PIDL Mapping
	Typedefs
	Implementing Interfaces
	Argument Mapping

	Implementing Operations
	Skeleton Derivation from Object

	PortableServer Functions
	Modules
	Interfaces
	Generated Static Member Functions
	static INTF_ptr _duplicate (INTF_ptr Obj)
	static INTF_ptr _narrow (CORBA::Object_ptr Obj)
	static INTF_ptr _nil ()

	Object Reference Types
	Attributes
	Argument Mapping

	Any Type
	Handling Typed Values
	Insertion into Any
	Extraction from Any
	Distinguishing boolean, octet, char, and Bounded Strings
	Widening to Object
	Handling Untyped Values
	Any Constructors, Destructor, Assignment Operator
	The Any Class

	Fixed-length Versus Variable-length User-defined Types
	Using var Classes
	TYPE_var()
	TYPE_var(TYPE * Value);
	TYPE_var(const TYPE_var & From);
	~TYPE_var();
	TYPE_var &operator=(TYPE * NewValue);
	TYPE_var &operator=(const TYPE_var &From);
	TYPE *operator->(); TYPE *operator->() const;
	TYPE_var_ptr in() const; TYPE_var_ptr& inout(); TYPE_var_ptr& out(); TYPE_var_ptr _retn();
	Table 13�3 �Comparison of Operators Supported for User-defined Data Type var Classes
	Table 13�4 Operator Signatures for _var Classes

	Sequence vars
	TYPE &operator[](CORBA::ULong Index);

	Array vars
	TYPE_slice& operator[](CORBA::ULong Index); const TYPE_slice & operator[](CORBA::ULong Index) const;

	String vars
	String_var(char * str)
	String_var(const char * str) String_var(const String_var & var)
	String_var & operator=(char * str)
	String_var & operator=(const char * str) String_var & operator=(const String_var & var)
	char operator[] (Ulong Index) char operator[] (Ulong Index) const
	out Classes
	Table 13�5 Comparison of Operators Supported for User-defined Data Type Out Classes
	Table 13�6 Operator Signatures for _out Classes

	Using out Classes
	Object Reference out Parameter
	Sequence outs
	TYPE &operator[](CORBA::ULong Index);

	Array outs
	TYPE_slice& operator[](CORBA::ULong Index); const TYPE_slice & operator[](CORBA::ULong Index) const;

	String outs

	Argument Passing Considerations
	Operation Parameters and Signatures
	Table 13�7 Basic Argument and Result Passing�
	Table 13�8 T_var Argument and Result Passing
	Table 13�9 Caller Argument Storage Responsibilities�
	Table 13�10 Argument Passing Cases�

	14 CORBA API
	Global Classes
	Pseudo-objects
	Any Class Member Functions
	CORBA::Any::Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	None.

	CORBA::Any::Any(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Argument
	InitAny

	Description
	Return Values
	None.

	CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
	Synopsis
	C++ Binding
	Arguments
	Value

	Description
	Return Values
	None.

	CORBA::Any::~Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	None.

	CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Arguments
	InitAny

	Description
	Return Values
	Returns the Any, which holds the copy of the InitAny.

	void CORBA::any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::TypeCode_ptr CORBA::Any::type() const
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::Any::replace()
	Synopsis
	C++ Binding
	Arguments
	TC
	Value
	Release

	Description
	Return Values
	Context Member Functions
	Memory Management

	CORBA::Context::context_name
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::Context::create_child
	Synopsis
	C++ Binding
	Arguments
	CtxName
	CtxObject

	Description
	Return Values
	Exception
	See Also

	CORBA::Context::delete_values
	Synopsis
	C++ Binding
	Argument
	AttrName

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::get_values
	Synopsis
	C++ Binding
	Arguments
	StartScope
	OpFlags
	AttrName
	AttrValues

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::parent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::set_one_value
	Synopsis
	C++ Binding
	Arguments
	AttrName
	AttrValue

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::set_values
	Synopsis
	C++ Binding
	Argument
	AttrValues

	Description
	Return Values
	Exceptions
	See Also
	ContextList Member Functions

	CORBA::ContextList:: count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::add
	Synopsis
	C++ Binding
	Argument
	ctxt

	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::add_consume
	Synopsis
	C++ Binding
	Argument
	ctxt

	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::item
	Synopsis
	C++ Binding
	Argument
	index

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ContextList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exceptions
	See Also
	NamedValue Member Functions
	Memory Management

	CORBA::NamedValue::flags
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::NamedValue::name
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::NamedValue::value
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	NVList Member Functions
	Memory Management

	CORBA::NVList::add
	Synopsis
	C++ Binding
	Argument
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::add_item
	Synopsis
	C++ Binding
	Arguments
	Name
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::add_value
	Synopsis
	C++ Binding
	Arguments
	Name
	Value
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::item
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception
	See Also

	CORBA::NVList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception
	See Also
	Object Member Functions

	CORBA::Object::_create_request
	Synopsis
	C++ Binding
	Arguments
	Ctx
	Operation
	Arg_list
	Result
	Except_list
	Context_list
	Request
	Req_flags

	Description
	Return Values
	See Also

	CORBA::Object::_duplicate
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::Object::_get_interface
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_is_a
	Synopsis
	C++ Binding
	Argument
	interface_id

	Description
	Return Values
	Example
	Exceptions

	CORBA::Object::_is_equivalent
	Synopsis
	C++ Binding
	Argument
	other_obj

	Description
	Return Values
	Example

	CORBA::Object::_nil
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Example

	CORBA::Object::_non_existent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_request
	Synopsis
	C++ Binding
	Argument
	Operation

	Description
	Return Values
	See Also
	CORBA Member Functions

	CORBA::release
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::is_nil
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::hash
	Synopsis
	C++ Binding
	Argument
	maximum

	Description
	Return Values

	CORBA::resolve_initial_references
	Synopsis
	C++ Binding
	Argument
	identifier

	Description
	Return Values
	Exception
	Example
	ORB Member Functions

	CORBA::ORB::create_environment
	Synopsis
	C++ Binding
	Argument
	New_env

	Description
	Return Values
	See Also

	CORBA::ORB::create_list
	Synopsis
	C++ Binding
	Arguments
	NumItem
	List

	Description
	Return Values
	See Also

	CORBA::ORB::create_named_value
	Synopsis
	C++ Binding
	Argument
	NewNamedVal

	Description
	Return Values
	See Also

	CORBA::ORB::create_exception_list
	Synopsis
	C++ Binding
	Argument
	List

	Description
	Return Values

	CORBA::ORB::create_context_list
	Synopsis
	C++ Binding
	Argument
	List

	Description
	Return Values

	CORBA::ORB::create_policy
	Synopsis
	C++ Binding
	Arguments
	type
	val

	Description
	Return Values
	Exceptions
	PolicyError

	Example

	CORBA::ORB::create_operation_list
	Synopsis
	C++ Binding
	Arguments
	Oper
	List

	Description
	Return Values
	See Also

	CORBA::ORB::get_default_context
	Synopsis
	C++ Binding
	Argument
	ContextObj

	Description
	Return Values
	See Also

	CORBA::ORB::get_next_response
	Synopsis
	C++ Binding
	Argument
	RequestObj

	Description
	Return Values
	See Also

	CORBA::ORB::perform_work
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exceptions
	See Also
	Example

	CORBA::ORB::run
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::shutdown
	Synopsis
	C++ Binding
	Argument
	wait_for_completion

	Description
	Return Values

	CORBA::ORB::object_to_string
	Synopsis
	C++ Binding
	Argument
	ObjRef

	Description
	Return Values
	Example
	See Also

	CORBA::ORB::poll_next_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::work_pending
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_deferred
	Synopsis
	C++ Binding
	Argument
	Reqs

	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_oneway
	Synopsis
	C++ Binding
	Argument
	Reqs

	Description
	Return Values
	See Also

	CORBA::ORB::string_to_object
	Synopsis
	C++ Binding
	Argument
	ObjRefString

	Description
	Return Values
	Example
	See Also
	ORB Initialization Member Function

	CORBA::ORB_init
	Synopsis
	C++ Binding
	Arguments
	argc
	argv
	orb_identifier

	Description
	1. If the orb_identifier argument is present, ORB_init determines the client type, either native ...
	2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in argc/...
	3. If no client type is specified in argc/argv, ORB_init uses the default client type from the sy...

	Return Value
	Exceptions
	None.

	Policy Member Functions

	CORBA:Policy::copy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Policy::destroy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Exceptions
	PortableServer Member Functions

	PortableServer::POA::activate_object
	Synopsis
	C++ Binding
	Argument
	p_servant

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::activate_object_with_id
	Synopsis
	C++ Binding
	Argument
	id
	p_servant

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::create_id_assignment_policy
	Synopsis
	C++ Binding
	Argument
	value

	Description
	Return Values

	PortableServer::POA::create_lifespan_policy
	Synopsis
	C++ Binding
	Argument
	value

	Description
	Return Values

	PortableServer::POA::create_POA
	Synopsis
	C++ Binding
	Arguments
	adapter_name
	a_POAManager
	policies

	Description
	Return Values
	Exceptions
	AdapterAlreadyExists
	InvalidPolicy
	IMP_LIMIT

	Examples

	PortableServer::POA::create_reference
	Synopsis
	C++ Binding
	Argument
	intf

	Description
	Return Values
	Exceptions

	PortableServer::POA::create_reference_with_id
	Synopsis
	C++ Binding
	Arguments
	oid
	intf

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::deactivate_object
	Synopsis
	C++ Binding
	Argument
	oid

	Description
	Return Values
	Exceptions

	PortableServer::POA::destroy
	Synopsis
	C++ Binding
	Arguments
	etherealize_objects
	wait_for_completion

	Description
	Return Values

	PortableServer::POA::find_POA
	Synopsis
	C++ Binding
	Argument
	adapter_name
	active_it

	Description
	Return Values
	Exception
	AdapterNonExistent

	PortableServer::POA::reference_to_id
	Synopsis
	C++ Binding
	Argument
	reference

	Description
	Return Values
	Exceptions
	WrongAdapter

	PortableServer::POA::the_POAManager
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Example

	PortableServer::ServantBase::_default_POA
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	POA Current Member Functions

	PortableServer::Current::get_object_id
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	Exception

	PortableServer::Current::get_POA
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Exceptions
	POAManager Member Functions

	PortableServer::POAManager::activate
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Exceptions

	PortableServer::POAManager::deactivate
	Synopsis
	C++ Binding
	Argument
	etherealize_objects
	wait_for_completion

	Description
	Return Values
	Exceptions
	POA Policy Member Objects

	PortableServer::LifespanPolicy
	Synopsis
	Description
	Exceptions

	PortableServer::IdAssignmentPolicy
	Synopsis
	Description
	Request Member Functions

	CORBA::Request::arguments
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::Request::ctx(Context_ptr)
	Synopsis
	C++ Binding
	Argument
	CtxObject

	Description
	Return Values
	See Also

	CORBA::Request::get_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::invoke
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::operation
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::poll_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::result
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::env
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::contexts
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::exceptions
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::target
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::send_deferred
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::send_oneway
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	Strings

	CORBA::string_alloc
	Synopsis
	C++ Binding
	Argument
	len

	Description
	Return Values
	Example
	See Also

	CORBA::string_dup
	Synopsis
	C++ Binding
	Argument
	Str

	Description
	Return Values
	Example
	See Also

	CORBA::string_free
	Synopsis
	C++ Binding
	Argument
	Str

	Description
	Return Values
	Example
	See Also
	TypeCode Member Functions
	Memory Management

	CORBA::TypeCode::equal
	Synopsis
	C++ Binding
	Argument
	TypeCodeObj

	Description
	Return Values

	CORBA::TypeCode::id
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::kind
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Table 14�1 Legal Typecode Kinds and Parameters�

	CORBA::TypeCode::param_count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::parameter
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception Member Functions
	CORBA::SystemException::SystemException ()
	CORBA::SystemException::SystemException (const CORBA::SystemException & Se)
	CORBA::SystemException::SystemException(CORBA::ULong Minor, CORBA::CompletionStatus Status)
	Minor
	Status

	CORBA::SystemException::~SystemException ()
	CORBA::SystemException CORBA::SystemException::operator = const CORBA::SystemException Se)
	CORBA::CompletionStatus CORBA::SystemException::completed()
	CORBA::SystemException::completed(CORBA::CompletionStatus Completed)
	CORBA::ULong CORBA::SystemException::minor()
	CORBA::SystemException::minor (CORBA::ULong Minor)
	CORBA::SystemException * CORBA::SystemException::_narrow (CORBA::Exception_ptr Exc)
	CORBA::UserException * CORBA::UserException::_narrow(CORBA::Exception_ptr Exc)

	Standard Exceptions
	CORBA::COMPLETED_YES
	CORBA::COMPLETED_NO
	CORBA::COMPLETED_MAYBE
	Exception Definitions
	Table 14�2 Exception Definitions�

	Object Nonexistence
	Transaction Exceptions

	ExceptionList Member Functions

	CORBA::ExceptionList::count
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	Exception

	CORBA::ExceptionList::add
	Synopsis
	C++ Binding
	Arguments
	tc

	Description
	Return Values
	Exception
	See Also

	CORBA::ExceptionList::add_consume
	Synopsis
	C++ Binding
	Arguments
	tc

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ExceptionList::item
	Synopsis
	C++ Binding
	Argument
	index

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ExceptionList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exceptions
	See Also

	15 Server-side Mapping
	Implementing Interfaces
	Inheritance-based Interface Implementation
	Listing 15-1 OMG IDL that Uses Interface Inheritance
	Listing 15-2 Interface Class A
	Listing 15-3 Skeleton Class for Interface A
	Listing 15-4 Interface A Implementation Class Declaration

	Delegation-based Interface Implementation
	Listing 15-5 tie Class Generated from the Derived Interface
	// C++ template <class T> class POA_A_tie : public POA_A { public: POA_A_tie(T& t) : _ptr(&t), _p...
	void op2 (CORBA::Long val) { _ptr->op2 (val); } // **...

	Implementing Operations
	Listing 15-6 Exception Specification
	Listing 15-7 Calling Another Member Function

