%, hea
BEA WebLogic Enterprise

CORBA C++ Programming
Reference

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
CORBA C++ Programming Reference

Document Edition Date Software Version

5.1 Mauy 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWcccoiuiiiiiiieesiiese ettt e XVi
E-0OCSWED SItE....oceeieeeeeee et s st et e re e Xvi
How to Print the DOCUMENL..........c.oooe e e e Xvii
Related INfOrmation.........c.oouioieieieieee e e e e Xvii
(01 =oAL U LS TR Xvii
Documentation CONVENLIONSc.c.ccoeeiueieiieieeseeecee et st sre e e Xviii
1. OMG IDL Syntax
OMG DL EXEENSIONS......eiuiiireeiieeieeieeee e e et ee s s e e e seeseenesseeseeneenssnesnea 1-2

2. Implementation Configuration File (ICF)

[0 Y 1= GRS USRS 2-2
SAMPIE TCF FilE... et e e 2-3
Creating the ICF Fil@ ..ot e e 2-4

3. TP Framework

A Simple Programming MOdE] ..o e 33
CONIOl FIOW ...ttt et e e e eneene e 34
Object State Managementccceeveeieirieeciee e e 34
Transaction INEEGIratioNcc.ooeoeeieeriere e et 34
Object HOUSEKEEPING -....cveeeeieeie e e e s eene e 35
High-16VEl SEIVICES ..ot 35

SEAE MANAGEIMENTeiieieeiee ettt ae e ste e reesbe et aeenee e 3-6
ACHVALION POLICY ...t 3-6
Application-controlled Activation and Deactivationcccccceeveeenenne 3-8
SErVaNt LifEliMe.....c.eieeiee et e e 311

CORBA C++ Programming Reference iii

Saving and Restoring Object State..........cooeoeeireriene e 3-13

TEANSACHIONS.ceeeeeeee ettt ettt e a e e e et re e e seeseene e s e eb e e e anesreenea 3-14
TranSaCtion POlICIES.cuiiiieieer ettt e 3-14
Transaction INItiatioN.coueiiieeiee e e e 3-15
Transaction TEMMINGLTONcc.oveieiiee e e e 3-16
Transaction Suspend and RESUME...........ccoeieie e e 3-16
REStriCtions ON TraNSaCtiONS........cueriieeeeiriere et eeens 3-18
SQL and Global Transactionsccccceeiieiieiiiieiree e s sreerae e 3-18
Voting on Transaction OULCOMEcceveeecieviieie e 3-19
TranSaCtion TIME-OULS........cueuiiieeieeee et e e e e 3-20

TP Framework AP ... e e e 3-20
SEIVEr INEEITACE ...t e 321

SEIVEICreale SEIVANLcviiiieceie st eesteee sttt rae e nre e e 3-23
Server:iNtialiZE()...ccecvee e e e e 3-26
S AL o €= 1= S S 3-29
Tobj_ServantBase INterface ... e 3-31
Tobj_ServantBase:: activate object()cccoeeveeieiieciieiecieeeeceeeee 3-33
Tobj_ServantBase::deactivate 0bject()ccceveevvereeieiecceeceeeeee 3-36
TP INEEITACE ..t e e 3-42
TP::application_responsibilityccoceoeiirineie e, 3-44
TP:IDOOSIFP() v veeenieree ettt e e e b e 3-45
TP::ClOSE XA M) c.veeviecre ettt et st s e ae e ens 3-46
TP::create_active_object _reference().......cccoveveeiecveevienieeveeeceeceeeee 3-48
TP::create_object_reference()ccocovvvveveves i 3-51
TP::deactivateENabl @..........cooevviriiieieeceee e 3-54
TP::get 0bJECE i ()eeveiieeieeeiie sttt e 3-56
TP::get_object reference().....ccvvveeiece e 3-57
IR0 o= - W 11 RS SRR 3-58
LI S0 o TS 3-60
TP:register factory() ..ocveeoe e et 3-61
TP:unregister_factory() ..ovvveveeiece et 3-63
LI ST =T oo) TS 3-65
CosTransactions:: Transactional Object Interface Not Enforced............... 3-66

Error Conditions, Exceptions, and Error Messages...........ccoecvveveeeverieesiesseennn, 3-67

Exceptions Raised by the TP Frameworkcccccecveviecieci e, 3-67

iv CORBA C++ Programming Reference

Exceptionsin the Server Application Code........cceovinieeeienieie e 3-67
Exceptions and TranSaCtioNS...........ceireeeeeereriene e e 3-68
Restriction of Nested Callson Corba Objects.........ccccceevvvieciiceeie e, 3-68

C++ Bootstrap Object Programming Reference

Why Bootstrap Objects Are Needed ..o 4-2
How Bootstrap ObjectS WOrKcccoiieieiiie e e 4-2
Types of Remote Clients SUPPOIE.........cooeerrereree e e 4-6
Capabilities and Limitations...........ccocooeoeeirire e 4-7
BOOtStrap ODJECE AP ...ttt e s e 4-8
TOD) MOUIE. ...ttt sr e sr et e srae 4-9
L8 Y ="o] o 11 o SRS 4-10

= V2= Y=o o 1 o RO SUPTSORPRIN 4-10
Microsoft Desktop Client Mappings.coceeeeeeerrerieeeseereene e seereseeeeenne 4-11
C++ Member Functions and Java Methods..........cccoovereniieiineee e 4-12
TOD] BOOSIIaD.coiieceireiiee et e e e 4-13
Tobj_Bootstrap::register_callback_port...........ccoovereeeiineniininnenns 4-19
Tobj_Bootstrap::resolve_initial_references..........ccocveeeveveeccciineenn 4-21
Tobj_Bootstrap::destroy _ CUrrent().......c.cceevererereseenesie e 4-22
AUtoMaLion MEthOUS..........oiiiiee e e 4-23
INITTAIIZE et e 4-24

(10T (=0 o 1= o: SRS 4-26
DESIIOYCUITENTeiitie ettt srae e sre e e ste e saeasraesanee s 4-28
Programming EXAMPIEScuoiiieiiiee e e e 4-28
Java Client Example: Getting a SecurityCurrent Object..........ccovcereneene 4-28
Visual Basic Client Example: Using the Bootstrap Object...................... 4-29

FactoryFinder Interface

Capabilities, Limitations, and RequUirements............cooceveveereeieinneeieeineneie e 5-2
FUNCLION@l DESCHIPLION ...ttt e e nre e 5-3
Locating a FaCtoryFINGErc.coeeiieiieieree e s 5-3
REGISLENING @ FACLOIYcveiieee et e e 5-4
(oo (] g o JF- 1 =T (o) V2SSOSR 55
Creating Application Factory Keys........cccovereoeeirnneee e 5-11
C++ Member Functions and Java Methods............ccvveieine e nece e 5-19

CORBA C++ Programming Reference %

Vi

CosL ifeCycle::FactoryFinder::find_factories...........ccooveenevenennnn. 5-20

Tobj::FactoryFinder::find_one factory.........ccccoeeveiieiecccieciee e, 5-22
Tobj::FactoryFinder::find_one factory by id........cccoooniiinnnnnne 5-24
Tobj::FactoryFinder::find_factories by id.......c.cceoeevieiiicicinnns 5-26
Tobj::Factoryfinder::list_factories ..., 5-28
AULOMELION MELNOAS ... e 5-29
DITobj_FactoryFinder.find_one factoryccccooveeeniiciinicnens 5-30
DITobj_FactoryFinder.find_one factory by id......c.ccccovvinnnnnen. 5-32
DITobj_FactoryFinder.find_factories by id........cccooeevivviircnninnne. 5-34
DITobj_FactoryFinder.find factories........c.ccccoevevveeveeveececiece e, 5-36
DITobj_FactoryFinder.list_factories........coccveeeceie e, 5-37
Programming EXAMPIESccccuiiiiaiiiriiree ettt e 5-38
Using the FactoryFinder ObJECtccovcii e 5-38
Using Extensions to the FactoryFinder Object..........cccvvvvvevevieviinienienns 5-40
6. Security Service
7. Transactions Service
8. Notification Service
9. Request-Level Interceptors
10. Interface Repository Interfaces
SErUCIUIE @NA USAQE.......eieeee ettt ettt e e s e 10-2
Programming INfOrMationooeeeeirinene et 10-3
Performance ImpliCations...........coeveieie e 10-4
Building Client AppliCationS.c.coeeiiiiriee e e s 10-5
Getting Initial References to the InterfaceRepository Object..........cccccceueee. 10-5
Interface RepoSItory INtErfaces. ... oo e 10-6
Supporting Type DefiNitioNS..........ooeueiriee e 10-6
IRODJECE INLEITACEviiieei et e 10-7
ContaiNed INtEIfACcEoov i e 10-7
ContaiNer INLEIfaCEoii e e 10-9
IDLTYPE INEEITACE ...ttt e 10-11
REPOSILOrY INLEITACEeiiie e e 10-11

CORBA C++ Programming Reference

MOdUIEDES INEEITACEee ittt s 10-12

ConstantDef INtEIfaCecvvovieieee e e 10-12
TypedefDef INLErfaCeccoceieiie e 10-13
SEUCEDES ...t st st s e e 10-14
UNIONDES ...ttt ns 10-14
ENUMDES ... e sttt et e 10-15
ATIBSDES ...ttt e r et e 10-15
PrimIitiVEDES ..o e e 10-16
EXCEPLIONDES ...ttt e e e 10-16
AHDULEDES ... s 10-17
OPEratiONDESot e e s 10-18
INEEITACEDES ... e e e e 10-20

11. Joint Client/Servers

Main Program and Server [nitializationccccoveieinininie i 11-2
SEIVANLS ...ttt ee et sae st she e s et et et ae e et e s e eee e e e sbeeeeesreenee s 11-2
Servant Inheritance from SKeletons............ooeieieiiiie e 11-3
Callback Object Models SUPPOITE.......c.ooeieie et e 11-4
Preparing Callback Objects Using CORBAcocooiiiiiine e 11-5
Preparing Callback Objects Using BEAWTrapper Callbacks...........ccoceeeeueeeeee. 11-8
BEAWTrapper Callbacks AP ... s 11-11
CallDACKS. ...t e e 11-12
StArt traNSIENE ... 11-13
start_persistent_SyStemMIidoooeeeiireice e 11-15
restart_persistent_Systemidocooeeereicie e 11-17
start_Persistent_USErid.o oeririe i 11-19
SEOP_ODJECL ... e 11-21
StOP_8ll_OBJECES. ...t e 11-22
(o1 A= 1 o oo SR 11-23
~CAlIDACKS. ... et e e 11-24

12. Development Commands

13. Mapping of OMG IDL Statements to C++

CORBA C++ Programming Reference Vii

viii

CONSEANES ...ttt ettt e et se e e es e e sheesaeesbenbeeneans 13-4
ENUMS ...ttt e e e 13-5
SEIUCES ... ettt ettt et sttt e et ne e se e b seesbeebaesbeenbenbean 13-6
UNEONS..... ottt ettt e s et s e et e e e e e e eeeeeeneaneeseeneanesseneens 13-8
SEOUENCES ...ttt ettt ettt et re et et e e et bee sbeeb b sbeesbenbeenbenaeanes 13-13
ATTAYS ettt ettt et ee et ee e e e e e be e e shaesaeennan 13-18
EXCEPLIONS ...ttt ettt e e e 13-20
Mapping of Pseudo-0bjectSto CH+......ooeiiiieieieie e 13-22
L7 o USSP 13-23
MEPPING RUIES........ciueieie ettt e e 13-23
Relation to the C PIDL Mapping........cccueererieriereenieinseenesriniesse e sreseesens 13-25
TYPEAELS ..t e e e 13-26
Implementing INtErfaces. ... e 13-27
Implementing OPEratioNS.........c.coeieierereeieee e e e 13-29
PortableServer FUNCLIONS...........ocoe it 13-31
IMOAUIESttt e e et b e 13-31
INEEITACES ...t e e 13-33
Generated Static Member FUNCIONS ..o 13-34
Object REFErENCE TYPES ..oeieeeie ettt e e 13-35
ATLTDULES ... et e 13-35
F N VA 1] ¢TSRS T TP PR OPUURTPRROI 13-37
Fixed-length Versus Variable-length User-defined TYpesS.......ccccovvceeenennens 13-49
USING VA ClLASSES.....ueciiieeeeiieieeit et eesaesteetaesraesaestesraesae s e e ereeae e e e e 13-49
SEOUENCE VAISvviiiieceeiesteeeesiieestaeaseessteassseesseasssesaessssesssaesseessseannessnsens 13-53
ATTAY VAIS....iiiitieiiiecteestiesiteeseassae e ssaeasseesseaeste e nessbeessaesnnessteesssannseens 13-53
] g0 AV =TT 13-53
USING OUL ClASSES......eceeieeeeieeieeit et ee e st etaesraesaesresraesae s e e ese e e e e e e e 13-56
Object Reference out Parameter..........oovevevveececieie s 13-58
SEOUENCE OULS ..vviiiie e sie e sieestae e s ste e s e et e ssaeeaee st e e sraeseess e anneesnseas 13-59
ATTAY OULS....iiiitieitieciieestiese et essae e e ssaessaaesseeeste s asssbeessaesseesseeensannseenns 13-59
] g o o0 | €= 13-59
Argument Passing ConSiderations.............cceueeciieeieesieises s seesres s sree e 13-61
Operation Parameters and SIgNatures...........coveeeeveieeieieceeeceesee e 13-64

CORBA C++ Programming Reference

14. CORBA API

GlODEI ClaSSES ... ittt et e ee e e e eenene 14-1
(eSS0 (o T o] o= ox £ F USSR 14-2
Any Class Member FUNCLIONSooiiiieieee e e e 14-2
CORBA:ZANYANY() ottt ettt e e see e 14-4
CORBA::Any::Any(const CORBA:: ANy & INitANY)cccceveeenen. 14-5
CORBA::Any::Any(TypeCode ptr TC, void * Value, Boolean Release)
14-6

CORBA:ZANY~ANY() ceeieeieeie et ettt e e e seenee e 14-7

CORBA::Any & CORBA::Any::operator=(const CORBA::Any &
F 01 75N 017 TSP 14-8
void CORBA ::any::0perator<<=()ccocerueruereereeieeisserseesenees e eee e 14-9
CORBA::Boolean CORBA::Any::0perator>>=()ccoeererererncns 14-10
CORBA::ANY::0PEratOr <<=() ..coueeeieeeriese e e e seeneas 14-11
CORBA::Boolean CORBA::Any::0perator>>=()ccererererncns 14-12
CORBA::TypeCode_ptr CORBA::Any::type() constccceueeee. 14-13
vOoid CORBA::ANY:IEPIACE() .oveveeeeieereerieie et 14-14
Context Member FUNCLIONS..........ouiiie e e 14-15
Memory Managementccceeeiiieirieie e e e e s 14-15
CORBA::Context::CoNteXt_NAMEccceviverieerieisiieeeeesriesseesse e 14-16
CORBA::Context::create child.........cccccevviieeiviicn i 14-17
CORBA::Context::delete ValUEs..........cccoeveevevrieieceeie e 14-18
CORBA::Context::get VAlUES........cccceveeievtie e 14-19
CORBA::CONEXE IPArENT......eeevieeveeee ettt e siee e e 14-21
CORBA::Context::set_one ValUe.........ccccceeevevrieiieeeecie e 14-22
CORBA::Context::set_ ValUES.........cccveeieviieie e 14-23
ContextList Member FUNCLIONS.........cccuririei e 14-24
CORBA::CONEXELISE:: COUNE......oivireenieiienereetiniee e e e 14-25
CORBA::CONteXtList::add.ccooeeeereereie e e 14-26
CORBA::ContextList::add_CONSUME..........cceeveevreieereeieceeieeeeneas 14-27
CORBA::CONtEXELISEIITEM .o e e 14-28
CORBA::CONtEXLLISL :TEMOVE. ...t e 14-29
NamedValue Member FUNCLIONS..........cccoiiiriree e s 14-30
MemOry Managementoccveiieeie e et sr e 14-30
CORBA::NamedValue:flags.........ccooevvisiieiin i 14-31

CORBA C++ Programming Reference iX

CORBA::NamedValUE:iNamE.........ccocuereeeeeeieie e eeeee s e 14-32

CORBA::NamedValue::ValUe...........cceoeiereiieie e 14-33

NVList Member FUNCLIONS.coiii e 14-34
Memory ManagemMeENTccocirieeeree et se e 14-34
CORBA::NVLISE: A0 ... 14-36
CORBA::NVList::add itemM.....ccccoiiieiieeeceeceeeere e 14-37
CORBA::NVList::add value.......cccccoueeecieiceececeeecee e 14-38
CORBA NV LISEICOUNL ...t et 14-39
CORBA NV LISEOM. ..t 14-40
CORBA NV LISEIIEMOVE. ...ttt 14-41

Object Member FUNCLIONSc.coi ittt 14-42
CORBA::Object::_Create reqUESE.......cccovererieeerieeeeeireeseieseeseenees 14-44
CORBA::Object::_dupliCatecceverere e 14-46
CORBA::Object::_get interface.......ccccovvececiecce e, 14-47

(O(0] 2 {27 N @ o [=v S F- T NS 14-48
CORBA::Object:: IS equiValent.........ccooreeerererieeirrere e 14-49
CORBA::OBJECE:: Nil.ceieiicie ettt 14-50
CORBA::Object::_non_eXistent.......cccccevievieeieseeese e se e se e 14-51
CORBA ::ODJECE:: TEOUESLecvecveeeie et e 14-52
CORBA Member FUNCLIONS.......co.oiiie e e e 14-53
CORBATEIBASE. ..ottt e 14-54
CORBA:S Nil e 14-55
CORBA::INESN.......o s 14-56
CORBA::resolve initial_references........cccvveveevecveeciieceecieceeeeee, 14-57

ORB Member FUNCLIONS........coiiiie ettt e 14-58
CORBA::ORB::create_environment.........ccceeeeeeereesreeeeseeneseennns 14-59
CORBA::ORB::Create liSt.....ccocvieeeiiiiee it se e 14-60
CORBA::ORB::create_ named ValUe.........cccecevveeveevrieiece e, 14-61
CORBA::ORB::create_exception_listcccceevveveesiniesesiese e, 14-62
CORBA::ORB::create_context list........ccoevveveevieeveesieneeee e, 14-63
CORBA::ORB::Create POlICYccoeeeeiiieiereieieesreeseesreeaeseeerae e esnens 14-64
CORBA::ORB::create_operation list.......c.cccceveevesieiesecieceenns 14-67
CORBA::ORB::get_default_context.........ccceeveeiereciieieecieereereeeenn 14-68
CORBA::ORB::get_NEXt_IeSPONSE......ovuiirieeieesiriesieeriessreeeseesseeas 14-69
CORBA::ORB::perform_WOrKccccovevierieie e 14-70

X CORBA C++ Programming Reference

CORBA::ORB:IUN .ottt ettt sbe e e 14-71

CORBA::ORB::ShULAOWN. ...ttt e 14-72
CORBA::ORB::0bject t0 StrNg......cccceveeueeiriene e 14-73
CORBA::ORB::pOll_NeXt_reSPONSE......ccveruereereereeieeie e eneneesenes 14-74
CORBA::ORB::WOrk_pendingccoocooeeererenese e 14-75
CORBA::ORB::send_multiple_requests deferred.........ccccoceveeenee 14-76
CORBA::ORB::send_multiple_requests onewayccccceeeeuenee. 14-77
CORBA::ORB::String_t0 ODJECLccuvieiiiiieierienee e 14-78

ORB Initialization Member FUNCLION...........cooi i 14-79
CORBA::ORB NIt .c.uiciiicceiceicee ettt 14-80

Policy Member FUNCLIONS............coveie e er e s 14-83
CORBA POl CY:ICOPY...ecueetereeieieseeneenetee sttt es e e e e ane s 14-84
CORBA::POlICY::HESIIOY ..ovcvvecveceiecee ettt e 14-85
PortableServer Member FUNCLIONS.........cooiiiie e s 14-86
PortableServer::POA::activate Objectcoocevveievieiecieieee 14-87
PortableServer::POA::activate object with_id.........cccooeevrenennee. 14-88
PortableServer::POA::create id_assignment_policy.......cccecereeene 14-89
PortableServer::POA::create lifespan policyccccoceevereneiienenn 14-90
PortableServer::POA::create POAccocoeiieeiceecee e 14-92
PortableServer::POA::create reference.........cocovveveevveieceeceeceenn, 14-94
PortableServer::POA::create reference with_id.......ccccceveenenns 14-95
PortableServer::POA::deactivate objectccccevvevevievecicienee 14-96
PortableServer::POA i dESIIOYccvcve et 14-97
PortableServer::POA::find_POA ... 14-98
PortableServer::POA::reference to id.......ccccoovveveviciiviinsesieens 14-99
PortableServer::POA::the POAMaNagErccceevvecveeeecieneeeenne, 14-100
PortableServer::ServantBase::_default POAc.coovveevevenene. 14-101

POA Current Member FUNCLIONS..........ooiiririree e e e e 14-102
PortableServer::Current::get_object idcccceeoveeiiveiiecceiiieen, 14-103
PortableServer::Current::get POAcoooiieiieieeecereeeee e 14-104
POAManager Member FUNCLIONS...........ccccceiieceieieeceeeseeetee e 14-105
PortableServer::POAManager::activate..........ccccoeeueeveeiecceeiieenns 14-106
PortableServer::POAManager::deactivate...........ccceeeveerveevvenrnnne. 14-107

POA Policy Member ODJECLS.........c.ccvciiieeeseeceeeee et 14-108
PortableServer::LifespanPoliCyc.ccccoeeveeieiinie e 14-109

CORBA C++ Programming Reference Xi

PortableServer::1dAssignmentPolicycooeeeeiencie e 14-110

Request Member FUNCHIONScoiiiieirieree e 14-111
CORBA::RequesE: :arguMENTS........coccererieereerree e e 14-112
CORBA ::Request::ctx(COoNnteXt_PLr)ccooeeeeeeeeereee e 14-113
CORBA::Request::get_reSPONSE.........ccieuvirieeeeneeree s siesseeseeens 14-114
CORBA ::ReqUESL:IINVOKE........ccuecviieie e 14-115
CORBA ::ReqUESL::0PEratiON......ccvereereieee e 14-116
CORBA::Request::poll_reSpONSe........ccvueeeieereenie e e 14-117
CORBA ::REQUESL:ITESUILeecveeeeie et 14-118
CORBA::IREQUESE BNV ...ttt e s 14-119
CORBA ::IREQUESE ICEX .ttt e s e e 14-120
CORBA ::REQUESE: ICONMEXESueiveeeee e 14-121
CORBA ::ReqUESL: :€XCEPLIONS.......crveeereeseereeieeie et e 14-122
CORBA:::ReqUESE: TargELot 14-123
CORBA::Request::send_deferred.........cocooeeirniienininiee e 14-124
CORBA::Request::Send_ONEWAYccovvereeeeeerreeieeeeneesesieseeseenes 14-125

1 1110 RS UR 14-126
CORBA::StING_ @llOC....ccuiciiciieice e 14-127
CORBA:SIING_AUP ..t e 14-128
CORBA::SIING frEE..uviiieceiee e e 14-129

TypeCode Member FUNCLIONSo.ooiieiiireeieeee e e 14-130

MemOory Managementccvvvieerien et se e sie e se s 14-131
CORBA::TypeCode::equalcoeiuerrreeeeiriise e 14-132
CORBA::TYPECOAE:Id. ... 14-133
CORBA::TypeCode::Kind...........coceoeeieiecieieseeseeeereee e 14-134
CORBA::TypeCode::param_COUNtccoeevereererieereeeieesressee e 14-136
CORBA::TypeCode::parametercccceeveieeeeseeeeneeeseeseessee e 14-137

Exception Member FUNCLIONS..........c.ooveve e 14-138

Standard EXCEPLIONSc.ccie ittt st 14-140

Exception DEfiNitioNS.........ccocveiieiiieiececiese e 14-141

ODbj ECt NONEXISLENCE.ccvve ettt ettt s s sraeaee s 14-142

Transaction EXCEPLIONSoceeivieeiece e e 14-142

ExceptionList Member FUNCLIONScccceoieviieieecise e 14-144
CORBA::ExceptionList::countccceeeveieieececeeeee e 14-145
CORBA::ExceptionList::addccccveeeeieiececiecceeceseeceeeeeerene 14-146

Xii CORBA C++ Programming Reference

CORBA.::ExceptionList::add_consume..........cooceveerieieierneninennnes 14-147
CORBA::EXCeptionList:item.......c.cueiereee e 14-148
CORBA::EXCEptionList::remOVe.cccoceeeririie e 14-149

15. Server-side Mapping

Implementing INtEIfaCES.........oeioi i e s 15-1
Inheritance-based Interface Implementationc.cccoveiinie e veneie e 15-2
Delegation-based Interface Implementation............c.cccoeernie e sencene e 15-5
Implementing OPErations..........ccoeeeirerieiereeee et e e e enes 15-9

CORBA C++ Programming Reference Xiii

Xiv CORBA C++ Programming Reference

About This Document

This document describes the BEA WeblLogic Enterprise™ CORBA C++ application
programming interface (API).

This document covers the following topics:

Chapter 1, “OMG IDL Syntax and the C++ IDL Compiler,” describes the Object
Management Group (OMG) Interface Definition Language (IDL) and OMG IDL
extensions.

Chapter 2, “Implementation Configuration File (ICF),” describes the
Implementation Configuration File (ICF).

Chapter 3, “TP Framework,” describes the WebLogic Enterprise TP Framework
application programming interface (API).

Chapter 4, “C++ Bootstrap Object Programming Reference,” describes the
Bootstrap object.

Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

Chapter 6, “Security Service,” directs you to information about the Security
Service.

Chapter 7, “Transactions Service,” directs you to information about the
Transactions Service.

Chapter 8, “Notification Service,” directs you to information about the
Notification Service.

Chapter 9, “Request-Level Interceptors,” directs you to information about
Request-Level Interceptors.

Chapter 10, “Interface Repository Interfaces,” describes the Interface Repository
interfaces.

CORBA C++ Programming Reference XV

m Chapter 11, “Joint Client/Servers,” describes how to program joint client/server
applications and the BEAWrapper Callbacks API.

m Chapter 12, “Development Commands,” describes the build and administration
commands for UNIX and Windows NT platforms.

m Chapter 13, “Mapping of OMG IDL Statements to C++,” describes mapping of
OMG IDL statements to C++.

m Chapter 14, “CORBA API,” describes the CORBA API.

m Chapter 15, “Server-side Mapping,” describes server-side mapping of OMG IDL
statements to C++.

What You Need to Know

This document is intended for application developers interested in using the BEA
WebLogic Enterprise CORBA C++ API to write client and joint client/server
applications and object implementations. It assumes a familiarity with CORBA, and
with C++ and Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

XVi CORBA C++ Programming Reference

How to Print the Document

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site &tttp://www.adobe.com

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see tebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

CORBA C++ Programming Reference XVii

If you have any questions about this version of BEA WebL ogic Enterprise, or if you
have problems installing and running BEA WebL ogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. Y ou can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone humber, and fax number

m Your company name and company address

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

XViii

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

CORBA C++ Programming Reference

Documentation Conventions

Convention Item
nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chnmod u+w *
\'t ux\ dat a\ ap
.doc
t ux. doc
Bl TVAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
text void comit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logicd operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

CORBA C++ Programming Reference Xix

XX

Convention

Item

Indicates one of the following in acommand line:

m That an argument can be repeated several timesin acommand line

m That the statement omits additional optiona arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

CORBA C++ Programming Reference

CHAPTER

1

OMG IDL Syntax and
the C++ IDL Compiler

The Object Management Group (OMG) Interface Definition Language (IDL) is used

to describe the interfaces that client objects call and that object implementations

provide. An OMG IDL interface definition fully specifies each operation’s parameters
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a client
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language that
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements also
provide full support for standard C++ preprocessing features and OMG IDL-specific
pragmas.

Note: When using a pragma version statement, be sure to locate it after the
corresponding interface definition. Here is an example of proper usage:

nodul e A

{

interface B

{

#pragma version B "3.5"
void opl();
b
b

CORBA C++ Programming Reference 1-1

1 omcipL Syntax and the C++ IDL Compiler

TheOMG IDL grammar isasubset of ANSI C++ with additional constructsto support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

For adescription of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

All OMG IDL grammar is supported, with the exception of the following type
declarations and associated literals:

m native

Note: Because CORBA 2.2 states that tha¢i ve type declaration is intended for
use in Object Adapters, not user interfaces, this type is available in the
Por t abl eSer ver module only for clients that support callbacks, that is, joint
client/servers.

m |ong | ong

m unsigned |long |ong

® | ong double

m wstring

® wchar

m fixed

Do not use these data types in IDL definitions.

1-2 CORBA C++ Programming Reference

OMG IDL Compiler Extensions

OMG IDL Compiler Extensions

The IDL compiler defines preprocessor macros specific to the platform. All macros
predefined by the preprocessor that you are using can be used inthe OMG IDL file, in
addition to the user-defined macros. Y ou can also define your own macros when you
are compiling or loading OMG IDL files.

Table 1-1 describes the predefined macros for each platform.

Table 1-1 Predefined M acros

Macro ldentifier Platform on Which the Macro | s Defined

_unix__ Sun Solaris, HP-UX, Tru64 UNIX, and IBM AlIX
ol True4 UNIX

sun Sun Solaris

__hpux__ HP-UX

aix IBM AIX

_win_nt__ Microsoft Windows NT

CORBA C++ Programming Reference 1-3

1 omcipL Syntax and the C++ IDL Compiler

C++ IDL Compiler Constraints

Table 1-2 describes constraints for BEA WebL ogic Enterprise 5.1 C++ IDL compiler
and provides information about recommended workarounds.

Table 1-2 C++ DL Compiler

Constraint Use of wildcardingin OMG IDL context strings produceswar nings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

void op5() context("*");
N
LIBORBCMD_CAT:131: INFO: *'is a non-standard
context property.

Workaround The OMG CORBA specification is ambiguous about whether the first
character of a context string must be alphabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown aboveis not OMG CORBA compliant, butitis
processed by the BEA WebL ogic Enterprise software as intended by
the user.

Constraint Use of wildcardingin OMG IDL context strings produceswar nings.

Description A warning is generated by the C++ IDL compiler when context strings that
contain wildcard characters are used in the operation definitions. When you
specify a context string in an OMG IDL operation definition, the following
warning may be generated:

void op5() context("*");
N

LIBORBCMD_CAT:131: INFO: *'is a non-standard
context property.

1-4 CORBA C++ Programming Reference

C++ IDL Compiler Constraints

Table 1-2 C++ DL Compiler (Continued)

Wor karound

The OMG CORBA specification is ambiguous about whether the first
character of a context string must be al phabetic.

Thiswarning is generated to inform you that you are not in compliance with
some interpretations of the OMG CORBA specification. If you are intending
to specify all strings as context string values, as shown above, the OMG
CORBA specification requires acomma-separated list of strings, in which the
first character is alphabetic.

Note: The example shown above is not OM G CORBA compliant, but it is
processed by the BEA WebL ogic Enterprise software asintended by

the user.
Constraint The C++ IDL compiler does not support some data types.
Description The C++ IDL compiler currently does not support the following data types,
which are defined in the CORBA version 2.2 specification:
I ong | ong
| ong doubl e
unsi gned | ong | ong
wchar
Workaround Avoid using these datatypesin IDL definitions.
Constraint Using certain substringsin identifiers may cause incorrect code gener ation by the C++
IDL compiler.
Description Using the following substringsin identifiers may cause code to be generated
incorrectly and result in errors when the generated code is compiled:
get _
set _
I mpl _
_btr
_slice
Workaround Avoid the use of these substrings in identifiers.

CORBA C++ Programming Reference 1-5

1 omcipL Syntax and the C++ IDL Compiler

Table 1-2 C++ IDL Compiler (Continued)

Constraint Inconsistent behavior in IDL compiler regarding case sensitivity.

Desription According to the CORBA standard, IDL identifiersthat differ only in case
should be considered colliding and yield a compilation error. Thereisa
current limitation of the BEA WebL ogic Enterprise IDL compiler for C++
bindingsin that it does not always detect and report such name collisions.

Workaround Avoid using IDL identifiers that differ only in case.

Constraint C++ DL typedef problem.

Description The C++ IDL compiler generates code that does not compile when:
¢ Defining IDL variables of char or bool ean type
4 Andthetypeisaliased multiple times
For example, the generated C++ code from the following IDL code will not

compile:
nmodul e X
{
t ypedef bool ean a;
t ypedef a b;
interface Y
{
attribute b Z;
}s
s

C++ compilersreport an error that an"oper at or <<"isambiguousand that
thereisno"oper at or >>" for typechar . Theseerrorsare produced because
of the multiplelevel sof typedefs; the C++ compiler may not associatethe type
X: : b with CORBA: : Bool ean because of theintermediate type definition of
X ra.

Workaround Useasinglelevel of indirection when you define char or bool ean types.
In the IDL example above, the attribude © Z' would be defined using either
the standard typébol ean’ or the user typeX: : a’, but not the user type
X:i:b'.

1-6

CORBA C++ Programming Reference

CHAPTER

2

Implementation
Configuration File (ICF)

The BEA WebL ogic Enterprise TP Framework application programming interface
(API) provides callback methods for object activation and deactivation. These
methods provide the ability for application code to implement flexible state
management schemes for CORBA objects.

State management isthe way you control the saving and restoring of object state during
object deactivation and activation. State management al so affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external APl of the TP Framework includesthe act i vat e_obj ect () and
deact i vat e_obj ect () methods, which provide a possible location for state
management code. Additionally, the TP Framework API includesthe

deact i vat eEnabl e() method to enable the user to control the timing of object
deactivation. The default duration of object activation is controlled by policies
assigned to implementationsat OMG IDL compile time.

While CORBA objects are active, their stateis contained in a servant. This state must
beinitialized when objects arefirst invoked (that is, thefirst time amethod isinvoked
on aCORBA object after itsobject referenceis created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in

which the servant was active. When an object is activated, its state must be restored.

The object’s state can be saved in shared memory, in a file, in a database, and so forth.
It is up to the programmer to determine what constitutes an object’s state, and what
must be saved before an object is deactivated and restored when an object is activated.

You can use the Implementation Configuration File (ICF) to set activation policies to
control the duration of object activations in each implementation. The ICF file
manages object state by specifying the activation policy. The activation policy

CORBA C++ Programming Reference 2-1

2

Implementation Configuration File (ICF)

determines the in-memory activation duration for a CORBA object. A CORBA object

is active in a Portable Object Adapter (POA) if the POA'’s active object map contains
an entry that associates an object ID with an existing servant. Object deactivation
removes the association of an object ID with its active servant.

ICF Syntax

2-2

ICF syntax is as follows:

[#pragma activation_policy nethod|transaction| process]
[#pragma transaction_policy never|ignore|optional|al ways]
[Modul e nodul e-nane {]

i npl enentation [inpl enentation-nane]

{

i npl enent s (nodul e-nane: : i nterface-nane);

[activation_policy (method|transaction|process);]

[transaction_policy (never]|ignore|optional]|always);]

b

[}:]
pragnas

The two optional pragmas allow you to set a specific policy as the default
policy for the entire ICF for all implementations that do not have an explicit
activation_policy ortransaction_pol i cy statement. This feature
relieves the programmer from having to specify policies for each
implementation and/or allows overriding of the defaults.

Modul e nodul e- nanme
Thenodul e- nane variable is optional if it is optional in the OMG IDL file.
This variable is used for scoping and grouping. Its use must be consistent wit!
the way it is used inside the OMG IDL file.

i npl enent ati on- nane
This variable is optional and is used as the name of the servant or as the cla:
name in the server. It is constructed usinger f ace- name with an_i
appended if it is not specified by the programmer.

i npl enent s (nodul e- nane: : i nt er f ace- nane)
This variable identifies the module and the interface to which the activation

policy and the transaction policy apply.

CORBA C++ Programming Reference

Sample ICF File

activation_policy
For a description of the activation policies, see “Activation Policy” on

page 3-6.

transaction_policy
For a description of the transaction policies, see “Transaction Policies” on

page 3-14.

Sample ICF File

Listing 2-1 shows a sample ICF file.

Listing 2-1 SamplelCF

nmodul e PQOA Uni versityl

{
i npl enent ati on CourseSynopsi sEnuner at or _i
{
activation_policy (process);
transaction_policy (optional);
i mpl ements (Universityl:: CourseSynopsi seEnunerator);
b
I
nmodul e PQOA Uni versityl
{
i mpl ementation Registrar_i
{
activation_policy (method);
transaction_policy (optional);
implements (Universityl:: Registrar);
b
b
nmodul e PQOA Uni versityl
{
i mpl enent ati on Regi strar Factory_i

{

activation_policy (process);

CORBA C++ Programming Reference 2-3

2 Implementation Configuration File (ICF)

transaction_policy (optional);
i npl enents (Universityl:: RegistrarFactory);

’

Creating the ICF File

Y ou have the option of either coding the ICF file manually or using the geni cf
command to generate it from the OMG IDL file. For a description of the syntax and
options for the geni cf command, see Commands, Processes, and MIB Reference.

2-4 CORBA C++ Programming Reference

CHAPTER

3

TP Framework

This topic includes the following sections:
m A Simple Programming Model. This section describes:
e Control Flow
e Object State Management
e Transaction Integration
e Object Housekeeping
e High-level Services
m State Management. This section describes:
e Activation Policy
e Application-controlled Activation and Deactivation
e Servant Lifetime
e Saving and Restoring Object State

m Transactions. This section describes:
e Transaction Policies
e Transaction Initiation
e Transaction Termination
e Transaction Suspend and Resume
e Restrictions on Transactions
e SQL and Globa Transactions
e \oting on Transaction Outcome

e Transaction Time-outs

CORBA C++ Programming Reference

3-1

3 TP Framework

3-2

m TP Framework API
m Error Conditions, Exceptions, and Error Messages

The BEA WebLogic Enterprise TP Framework provides a programming TP
Framework that enables users to create serversfor high-performance TP applications.
This chapter describes the TP Framework programming model and the TP Framework
application programming interface (API) in detail. Additional information about how
to use this API can be found in Creating CORBA C++ Server Applications.

The TP Framework is required when developing BEA WebL ogic Enterprise servers.
Later releases will relax this requirement, though it is expected that most customers
will usethe TP Framework as an integral part of their applications.

BEA WebL ogic Enterprise uses BEA Tuxedo as the underlying infrastructure for
providing load balancing, transactional capabilities, and administrative infrastructure.
The base API used by the TP Framework is the CORBA APl with BEA extensions.
The TP Framework API is exposed to customers. The BEA Tuxedo ATMI isan
optional API that can be mixed in with TP Framework APIs, alowing a customer to
deploy distributed applications using amix of BEA Tuxedo servers and BEA

WebL ogic Enterprise servers.

Before BEA WebLogic Enterprise, ORB products did not approach BEA Tuxedo’s

performance in large-scale environments. BEA Tuxedo systems support application
that can process hundreds of transactions per second. These applications are built us
the BEA Tuxedo stateless-service programming model that minimizes the amount o
system resources used for each request, and thus maximizes throughput and price

performance.

Now, BEA WebLogic Enterprise and its TP Framework give customers a way to
develop CORBA applications with performance similar to BEA Tuxedo applications.
BEA WebLogic Enterprise servers that use the TP Framework provide throughput,
response time, and price performance approaching the BEA Tuxedo stateless-servi

programming model, while using the CORBA programming model.

CORBA C++ Programming Reference

A Simple Programming Model

A Simple Programming Model

The TP Framework provides a simple, useful subset of the wide range of possible

CORBA object implementation choices. Y ou useit for the development of server-side

object implementations only. When using any client-side CORBA ORB, clients

interact with CORBA objects whose server-side implementations are managed by the

TP Framework. Clients are unaware of the existence of the TP Framework—a client
written to access a CORBA object executing in a non-BEA WebLogic Enterprise
server environment will be able to access that same CORBA object executing in a BEA
WebLogic Enterprise server environment without any changes or restrictions to the
client interface.

The TP Framework provides a server environment and an API that is easier to use and
understand than the CORBA Portable Object Adapter (POA) API, and is specifically
geared towards enterprise applications. It is a simple server programming model and
an orthodox implementation of the CORBA model, which will be familiar to
programmers using ORBs such as ORBIX or VisiBroker.

The TP Framework simplifies the programming of BEA WebLogic Enterprise servers
by reducing the complexity of the server environment in the following ways:

m The TP Framework does all interactions with the POA and the Naming Service.
The application programmer requires no knowledge of POA or Naming Service
interfaces.

m The TP Framework is single threaded—only one request on one CORBA object
will be processed at a time, obviating the need to write thread-safe
implementations.

m A CORBA object may be involved in only one transaction at a time (consistent
with the association of one object ID to one servant).

The TP Framework provides the following functionality:
m Control Flow

m Object State Management

m Transaction Integration

m Object Housekeeping

CORBA C++ Programming Reference 3-3

3 TP Framework

m High-level Services

Control Flow

The TP Framework, in conjunction with the ORB and the POA, controls the flow of
the application program by doing the following:

m Controlling the server mainline and invoking callback methods on TP
Framework-defined classes at appropriate times for server startup and shutdown.
This relieves the application programmer from complex interactions related to
ORB and POA initialization and coordination of transactions, resource
managers, and object state on shutdown.

m Scheduling objects for activation and deactivation when client requests arrive
and are completed. This removes the complexity of management of object
activation and deactivation from the realm of the application programmer and
enables the use of the TP monitor infrastructure’s powerful load-balancing
capabilities, crucial to performance of mission-critical tasks.

Object State Management

The TP Framework API provides callback methods for application code to implement
flexible state management schemes for CORBA objects. State management involve
the saving and restoring of object state on object deactivation and activation. It also
concerns the duration of activation of objects, which influences the performance of
servers and their resource usage. The default duration of object activation is controlle
by policies assigned to implementations at IDL compile time.

Transaction Integration

TP Framework transaction integration provides the following features:

m CORBA objects can participate in global transactions.

3-4 CORBA C++ Programming Reference

A Simple Programming Model

m Objects participating in transactions can be implemented as stateful objects that
remain in memory for the duration of a transaction (by using the transaction
activation policy), to decrease client response time.

m CORBA objects that participate in transactions can affect transaction outcome
either during their transactional work or just prior to the system’s execution of
the two-phase commit algorithm after all transactional work has been completed.

m Transactions can be automatically initiated on the server transparent to the client.

Object Housekeeping

When a server is shut down, the TP Framework rolls back any transactions that the
server is involved in and deactivates any CORBA objects that are currently active.

High-level Services

The TP interface in the TP Framework API provides methods for performing object
registrations and utility functions. The following services are provided:

m Object reference creation

m Factory-based routing support

m Accessors for system objects, such as the ORB

m Registration and unregistration of factories with the Factory Finder
m Application-controlled activation and deactivation

m User logging

The purpose of these high-level service methods is to eliminate the need for developers
to understand the CORBA POA, CORBA Naming Service, and BEA Tuxedo APIs,
which they use for their underlying implementations. By encapsulating the underlying
API calls with a high-level set of methods, programmers can focus their efforts on
providing business logic rather than understanding and using the more complex
underlying facilities.

CORBA C++ Programming Reference 3-5

3 TP Framework

State Management

State management involves the saving and restoring of object state on object
deactivation and activation. It also concerns the duration of activation of objects,
which influences the performance of servers and their resource usage. The external
API of the TP Framework providesacti vat e_obj ect anddeacti vat e_obj ect
methods, which are a possible location for state management code.

Activation Policy

State management is provided in the TP Framework by the activation policy. This
policy control sthe activation and deactivation of servantsfor aparticular IDL interface
(as opposed to the creation and destruction of the servants). This policy is applicable
only to CORBA objects using the TP Framework.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object isactivein a POA if the POA’s active object map
contains an entry that associates an object |D with an existing servant. Object
deactivation removes the association of an object ID with its active servant. You can
choose from one of three activation policies: met hod (the default), t r ansact i on, or
process.

Note: Theactivation policies are set in an ICF file that is configured at OMG IDL
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

The activation policies are described below:

m net hod (This is the default activation policy.)

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the method. At the completion of a
method, the object is deactivated. When the next method is invoked on the
object reference, the CORBA object is activated (the object ID is associated with
a new servant). This behavior is similar to that of a BEA Tuxedo stateless
service.

3-6 CORBA C++ Programming Reference

State Management

transaction

The activation of the CORBA object (that is, the association between the object
ID and the servant) lasts until the end of the transaction. During the transaction,
multiple object methods can be invoked. The object is activated before the first
method invocation on the object and is deactivated in one of the following ways:

e |f auser-initiated transaction is in effect when the object is activated, the
object is deactivated when the first of the following occurs: the transaction is
committed or rolled back, or the server is shut down in an orderly fashion.
The latter is done using either the t nshut down(1) or t madni n(1) command.
These commands are described in the BEA Tuxedo Reference online
document.

e |f auser-initiated transaction is not in effect when the TP object is activated,
the TP object is deactivated when the method compl etes.

Thetransacti on activation policy provides a means for an object to vote on
the outcome of the transaction prior to the execution of the two-phase commit
algorithm. An object votesto roll back the transaction by calling
CQurrent.rol |l back_only() inthe

Tobj _Servant Base: : deacti vat e_obj ect method. It votes to commit the
transaction by not calling Current . rol | back_onl y() inthe method.

Note: Thisisamodel of resource allocation that is similar to that of a BEA
Tuxedo conversational service. However, thismodel islessexpensive than
the BEA Tuxedo conversational servicein that it uses fewer system
resources. This is because of the BEA WebLogic Enterprise ORB'’s

multicontexted dispatching model (that is, the presence of many servants
in memory at the same time for one server), which makes it possible for a
single server process to be shared by many concurrently active servants

that service many clients. In the BEA Tuxedo system, the process would

be dedicated to a single client and to only one service for the duration of a
conversation.

process

The activation of the CORBA object begins when it is invoked while in an
inactive state and, by default, lasts until the end of the process.

Note: The TP Framework API provides an interface method

(TP: : deact i vat eEnabl €) that allows the application to control the
timing of object deactivation for objects that havedbei vat i on

pol i cy set topr ocess. For a description of this method, see the section
“TP::deactivateEnable” on page 3-54.

CORBA C++ Programming Reference 3-7

3 TP Framework

Application-controlled Activation and Deactivation

Ordinarily, activation and deactivation decisions are made by the TP Framework, as
discussed earlier in this chapter. The techniques in this section show how to use
alternate mechanisms. The application can control the timing of activation and
deactivation explicitly for objects with particular policies.

Explicit Activation

Usage Notes

Application code can bypass the on-demand activation feature of the TP Framework
for objects that use the pr ocess activation policy. The application can “preactivate”
an object (that is, activate it before any invocation) using the

TP: : create_active_object_reference call

Preactivation works as follows. Before the application creates an object reference, th
application instantiates a servant and initializes that servant’s state. The application
usesTP: : creat e_acti ve_obj ect _r ef erence to put the object into the Active

Object Map (that is, associate the servant witkxgrect 1 d). Then, when the first
invocation is made, the TP Framework immediately directs the request to the proces
that created the object reference and then to the existing servant, bypassing the
necessity to calber ver: : create_servant and then the servant's

activate_obj ect method (just as if this were the second or later invocation on the
object). Note that the object reference for such an object will not be directed to anothe
server and the object will never go through on-demand activation as long as the obje
remains activated.

Since the preactivated object hasthecess activation policy, it will remain active
until one of two events occurs: 1) the ending of the process or 2) a
TP: : deact i vat eEnabl e call.

Preactivation is especially useful if the application needs to establish the servant wit
an initial state in the same process, perhaps using shared memory to initialize state.
Waiting to initialize state until a later time and in a potentially different process may
be very difficult if that state includes pointers, object references, or complex data
structuresTP: : cr eat e_acti ve_obj ect _r ef er ence guarantees that the

preactivated object is in the same process as the code that is doing the preactivatio

3-8 CORBA C++ Programming Reference

State Management

While thisis convenient, preactivation should be used sparingly, as should all process
objects, because it preallocates precious resources. However, when needed and used
properly, preallocation is more efficient than alternatives.

Examples of such usage might be an object using the “iterator” pattern. For example,
there might a potentially long list of items that could be returned (in an unbound IDL
sequence) from a “database_query” method (for example, the contents of the telephone
book). Returning all such items in the sequence is impractical because the message size
and the memory requirements would be too large.

On aninitial call to get the list, an object using the iterator pattern returns only a limited
number of items in the sequence and also returns a reference to an “iterator” object that
can be invoked to receive further elements. This iterator object is initialized by the
initial object; that is, the initial object creates a servant and sets its state to keep track
of where in the long list of items the iteration currently stands (the pointer to the
database, the query parameters, the cursor, and so forth).

The initial object preactivates this iterator object by using

TP: :create_acti ve_object _reference. It also creates an object reference to that
object to return to the client. The client then invokes repeatedly on the iterator object
to receive, say, the next 100 items in the list each time. The advantage of preactivation
in this situation is that the state might be complex. It is often easiest to set such state
initially, from a method that has all the information in its context (call frame), when
the initial object still has control.

When the client is finished with the iterator object, it invokes a final method on the
initial object which deacativates the iterator object. The initial object deactivates the
iterator object by invoking a method on the iterator object that calls the

TP: : deact i vat eEnabl e method, that is, the iterator object calls

TP: : deact i vat eEnabl e on itself.

Caution to Users

For objects to be preactivated in this fashion, the state usually cannot be recovered if a
crash occurs. (This is because the state was considered too complex or inconvenient to
set upon initial, delayed activation.) This is a valid object technique, essentially stating
that the object is valid only for a single activation period.

CORBA C++ Programming Reference 39

3 TP Framework

However, a problem may arise because of the “one-time” usage. Since a client still
holds an object reference that leads to the process containing that state, and since t
state cannot be recreated after the crash, care must be taken that the client’s next
invocation does not automatically provoke a new activation of the object, because th:
object would have inapplicable state.

The solution is to refuse to allow the object to be activated automatically by the TP
Framework. If the user provides tfebj S: : Acti vat eObj ect Fai | ed exception to

the TP Framework as a result of thet i vat e_obj ect call, the TP Framework will

not complete the activation and will return an exception to the client,

CORBA: : OBJECT_NOT_EXI ST. The client has presumably been warned about this
possibility, since it knows about the iterator (or similar) pattern. The client must be
prepared to restart the iteration.

Note: This defensive measure may not be necessary in the future; the TP Framewol
itself may detect that the object reference is no longer valid. In particular, you
should not depend on the possibility thatdhei vat e_obj ect method might
be called. If the TP Framework does in fact change, activate_object will not be
called and the framework itself will generate 8BIECT_NOT_EXI ST
exception.

Self Deactivation

3-10

Just as it is possible to preactivate an object witlptloeess activation policy, it is
possible to request the deactivation of an object witlptbeess activation policy.
The ability to preactivate and the ability to request deactivation are independent;
regardless of how an object was activated, it can be deactivated explicitly.

A method in the application can request (Wa: deact i vat eEnabl e) that the object

be deactivated. WherP: : deact i vat eEnabl e is called and the object is
subsequently deactivated, no guarantee is made that subsequent invocations on the
CORBA object will result in reactivation in the same process as a previous activation
The association between tfig ect | d and the servant exists from the activation of the
CORBA object until one of the following events occurs: 1) the shutdown of the server
process or 2) the application callg: : deact i vat eEnabl e. After the association is
broken, when the object is invoked again, it can be re-activated anywhere that is
allowed by the BEA WebLogic Enterprise configuration parameters.

CORBA C++ Programming Reference

State Management

There are two forms of TP: : deact i vat eEnabl e. In the first form (with no
parameters), the object currently executing will be deactivated after completion of the
method in which the call is made. The object itself makes the decision that it should be
deactivated. This is often done during a method call that acts as a"signoff" signal.

The second form of TP: : deact i vat eEnabl e alows a server to request deactivation
of any active object, whether it is the object that isexecuting or not; that is, any part of
the server can ask that the object be deactivated. Thisform takes parameters
identifying the object to be deactivated. Explicit deactivation is not allowed for objects
with an activation policy of t ransact i on, because such objects cannot be safely
deactivated until the end of atransaction.

Inthe TP: : deact i vat eEnabl e call, the TP Framework calls the servant’s

deact i vat e_obj ect method. Exactly when the TP Framework invokes

deact i vat e_obj ect depends on the state of the object to be deactivated. If the object
is not currently in execution, the TP Framework deactivates it before returning to the
caller. The object might be currently executing a method; this is always the case for
TP: : deact i vat eEnabl e with no parameters (since it refers to the currently
executing object). In this caser: : deact i vat eEnabl e is not told whether the object
was deactivated immediately or not.

Note: TheTP: : deacti vat eEnabl e(i nterface, object id, servant)
met hod can be used to deactivate an object. However, if that object is currently
in a transaction, the object will be deactivated when the transaction commits
or rolls back. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensure the desired behavior, make sure that the object is not in a transaction
or ensure that no invokes occur on the object after the
TP: : deact i vat eEnabl e() call until the transaction is complete.

Servant Lifetime

A servant is a C++ class that contains methods to implement an IDL interface’s
operations. The user writes the servant code. The TP Framework invokes methods in
the servant code to satisfy requests. The servant is created by the C++ "new" statement
and is destroyed by the C++ "delete" statement. Exactly who does the creation and who
does the deletion, and the timing of creation and deletion, is the subject of this section.

CORBA C++ Programming Reference 3-11

3 TP Framework

The Normal Case

Special Cases

3-12

In the normal case, the TP Framework completely controls the lifetime of a servant.
The basic model isthat, when arequest for an inactive object arrives, the TP
Framework obtains a servant and then activatesit (by callingitsact i vat e_obj ect
method). At deactivation time, the TP Framework calls the servant’s

deacti vat e_obj ect method and then disposes of the servant.

For this release of BEA WebLogic Enterprise, two phrases in the basic model above
need to be further explained. The phrase "the TP Framework obtains a servant" mea
that when the TP Framework needs a servant to be created, it calls the user-written
Server:: create_servant method. At that time, the application code must return a
pointer to the requested servant. The application almost always does this by using tt
C++ "new" statement to create a new instance of a servant. The phrase "disposes of t
servant” means that the TP Framework deletes it.

The application must be aware that this current behavior of always creating and
deleting a servant may change in future versions of this product. The application
should not depend on the current behavior, but should write servant code that allow
re-use of a servant. Specifically, the servant code must work even if the servant has n
been freshly created (by the C++ "new" statement). The TP Framework reserves the
right not to delete a servant after it has been deactivated and then to reactivate it. TF
means that the servant must completely initialize itself at the time of the callback on
the servant'act i vat e_obj ect method, not at the time of servant creation (not in the
constructor).

There are two techniques an application can use to alter the normal TP Framework u:
of servants. The first has to do with obtaining a servant and the second has to do wif
disposing of the servant.

The application can alter the “obtaining” mechanism by using explicit preactivation.
In this case, the application creates and initializes a servant before asking the TP
Framework to declare it activated. Once such a servant has been turned over to the -
Framework (by th@P: : create_acti ve_obj ect _ref er ence call), that servant is
treated by the TP Framework just like every other servant. The only difference is in its
method of creation and initialization.

The application can alter the “disposing” mechanism by taking the responsibility for
disposing of a servant instead of leaving that responsibility with the TP Framework.
Once a servant is known to the TP Framework (thrasglver : : create_servant

CORBA C++ Programming Reference

State Management

orTP: : creat e_acti ve_obj ect _r ef er ence), the TP Framework’s default behavior
is to dispose of that servant itself. In this case, the application code must no longer use
references to the servant after deactivation.

However, the application may tell the TP Framework not to dispose of the servant (not
to delete or re-use it) after the TP Framework deactivates it. Taking responsibility for

a servant is done on an individual servant basis, not for a whole class of servants, by
calling TP: : appl i cati on_r esponsi bi | i t y with a parameter identifying the

servant. In this case, the TP Framework does nothing further with the servant; the TP
Framework does not delete, save, or make any further references to the servant.

The advantage of taking responsibility for the servant is that the servant does not have
to be created anew. If obtaining the servant is an expensive proposition, the application
may choose to save the servant and re-use it later. This is especially likely to be true
for servants for preactivated objects, but is true in general. For example, the next time
the TP Framework makes a call ®# ver : : cr eat e_ser vant, the application might

return a previously saved servant. It should be remembered that any time a servant is
given to the TP Framework (even if it had been previously saved) the TP Framework
assumes it has responsibility. Thus, even if the application saved the servant one time
after giving the servant to the TP Framework, if the application gives the servant to the
TP Framework again and want to save the servant again, the application must again
call TP: : appl i cati on_responsi bi | i ty to save the servant after that use.

Once an application has taken responsibility for a servant, the application must take
care to delete the servant when the servant is no longer needed, the same as for any
other C++ instance.

TheTP: : appl i cation_responsi bi |l ity call can only be used after the TP
Framework has possession of the servant. It cannot be used, for example, during the
servant'sact i vat e_obj ect callback because the TP Framework does not yet know
about the servant (the servant has not been returned yet).

Saving and Restoring Object State

While CORBA objects are active, their state is contained in a servant. Unless an
application usesP: : creat e_acti ve_obj ect _r ef er ence, state must be initialized

when the object is first invoked (that is, the first time a method is invoked on a CORBA
object after its object reference is created), and on subsequent invocations after they
have been deactivated. While a CORBA object is deactivated, its state must be saved

CORBA C++ Programming Reference 3-13

3 TP Framework

outside the process in which the servant was active. The object’s state can be saved
shared memory, in a file, or in a database. Before a CORBA object is deactivated, it
state must be saved, and when it is activated, its state must be restored.

The programmer determines what constitutes an object’s state and what must be sav
before an object is deactivated, and restored when an object is activated.

Note On Use of Constructors and Destructors for Corba Objects

The state of CORBA objects must not be initialized, saved, or restored in the
constructors or destructors for the servant classes. This is because the TP Framewc
may reuse an instance of a servant rather than deleting it at deactivation. No guarant
is made as to the timing of the creation and deletion of servant instances.

Transactions

The following sections provide information about transaction policies and how to use
transactions.

Transaction Policies

3-14

Eligibility of CORBA objects to participate in global transactions is controlled by the
transaction policies assigned to implementations at compile time. The following
policies can be assigned.

Note: The transaction policies are set in an ICF file that is configured at OMG IDL
compile time. For a description of the ICF file, refer to Chapter 2,
“Implementation Configuration File (ICF).”

B never

The implementation is not transactional. Objects created for this interface can
never be involved in a transaction. The system generates an exception

(I NVALI D_TRANSACTI ON) if an implementation with this policy is involved in a
transaction. An AUTOTRAN policy specified in ttuBBCONFI Gfile for the
interface is ignored.

CORBA C++ Programming Reference

Transactions

i gnore

The implementation is not transactional. This policy instructs the system to
allow requests within a transaction to be made of thisimplementation. An
AUTOTRAN policy specified in the UBBCONFI Gfile for the interface is ignored.

optional (Thisisthedefaulttransaction_policy.)

The implementation may be transactional. Objects can beinvolved in a
transaction if the request is transactional. Servers containing transactional objects
must be configured within a group associated with an XA-compliant resource
manager. |f the AUTOTRAN parameter is specified in the UBBCONFI Gfile for the
interface, AUTOTRAN is ON.

al ways

The implementation is transactional . Objects are required to aways be involved
in atransaction. If areguest is made outside a transaction, the system
automatically starts atransaction before invoking the method. The transaction is
committed when the method ends. (This is the same behavior that results from
specifying AUTOTRAN for an object with the option transaction policy, except that
no administrative configuration is necessary to achieve this behavior, and it
cannot be overridden by administrative configuration.) Servers containing
transactional objects must be configured within a group that is associated with
an X A-compliant resource manager.

Note: Theopti onal policy isthe only transaction policy that can be influenced by

administrative configuration. If the system administrator sets the AUTOTRAN
attribute for the interface by means of the UBBCONFI Gfile or by using
administrative tools, the system automatically starts a transaction upon
invocation of the object, if it isnot already infected with atransaction (that is,
the behavior isasif the al ways policy were specified).

Transaction Initiation

Transactions are initiated in one of two ways:

By the application code via use of the CosTransacti ons: : Current: : begi n()
operation. This can be done in either the client or the server. For a description of
this operation, see Using Transactions.

By the system when an invocation is done on an object which has either:

CORBA C++ Programming Reference 3-15

3 TP Framework

e Transaction policy al ways
e Transaction policy opti onal and asetting of AUTOTRAN for the interface

For more information, refer to the Administration Guide.

Transaction Termination

In general, the handling of the outcome of atransaction is the responsibility of the
initiator. Therefore, the following are true:

m If the client or server application codeinitiates transactions, the TP Framework
never commits a transaction. The BEA WebL ogic Enterprise system may roll
back the transaction if server processing triesto return to the client while the
transaction isin anillegal state.

m If the system initiates a transaction, the commit or rollback will always be
handled by the BEA WebL ogic Enterprise system.

Thefollowing behavior is enforced by the BEA WebL ogic Enterprise system:

m If no transaction is active when a method on a CORBA object is invoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actionsis taken, the transaction is rolled back by the TP Framework, and the
CORBA: : OBJ_ADAPTER exception is raised to the client application. This
exception is raised because the transaction was initiated in the server application;
therefore, the client application would not expect a transactional error condition
such as TRANSACTI ON_ROLLEDBACK.

Transaction Suspend and Resume

3-16

The CORBA object must follow strict rules with respect to suspending and resuming
atransaction within a method invocation. These rules and the error conditions that
result from their violation are described bel ow.

When a CORBA object method begins execution, it can be in one of the following
three states with respect to transactions:

m Theclient application began the transaction.

CORBA C++ Programming Reference

Transactions

Legal server application behavior: Suspend and resume the transaction
within the method execution.

Illegal server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : TRANSACTI ON_ROLLEDBACK exception to the client application and
the transaction is rolled back by the BEA WebL ogic Enterprise system.

m The system began atransaction to provide AUTOTRAN or transaction policy
al ways behavior.

Note:

For each CORBA interface, set AUTOTRANtO Yes if you want atransaction to
start automatically when an operation invocation is received. Setting
AUTOTRANto Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

Legal server behavior: Suspend and resume the transaction within the
method execution.

Note: Not recommended. The transaction may be timed out and aborted before

the method causes the transaction to be resumed.

Illegal server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

Error Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client, and the transaction is rolled
back by the system. The CORBA: : OBJ_ADAPTER exception is raised because
the client application did not initiate the transaction, and, therefore, does not
expect transaction error conditions to be raised.

m The CORBA object isnot involved in atransaction when it starts executing.

Legal server behavior:

4 Begin and commit a transaction within the method execution.
4+ Begin androll back atransaction within the method execution.
4 Begin and suspend a transaction within the method execution.

Illegal server behavior: Begin atransaction and return from the method with
the transaction active.

CORBA C++ Programming Reference 3-17

3 TP Framework

e FError Processing: If illegal behavior occurs, the TP Framework raises the
CORBA: : OBJ_ADAPTER exception to the client application and the transaction
isrolled back by the BEA WebL ogic Enterprise system. The
CORBA: : OBJ_ADAPTER exception is raised because the client application did
not initiate the transaction, and, therefore, does not expect transaction error
conditions to be raised.

Restrictions on Transactions

Thefollowing restrictions apply to BEA WebL ogic Enterprise transactions:

m A CORBA abject in the BEA WebL ogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

m A CORBA aobject can beinfected by only one transaction at atime. If an
invocation tries to infect an already infected object, a
CORBA: : | NVALI D_TRANSACTI ON exception is returned.

m |f aCORBA object isinfected with atransaction and a nontransactional request
ismade on it, a CORBA: : OBJ_ADAPTER exception is raised.

m |f the application beginsatransactionin Server: :initialize(), it must
either commit or roll back the transaction before returning from the method. If
the application does not, the TP Framework shuts down the server. Thisis
because the application has no predictable way of regaining control after
completing the Server: :initial i ze method.

m |f aCORBA object isinfected by atransaction and with an activation policy of
transact i on, and if the reason code passed to the method is either
DR_TRANS_COWM TTI NG or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the Tobj _Ser vant Base: : deact i vat e_obj ect
method. Such an invocation resultsin a CORBA: : BAD_| NV_ORDER exception.

SQL and Global Transactions

Adhere to the following guidelines when using SQL and Global Transactions:

3-18 CORBA C++ Programming Reference

Transactions

m Care should be taken when executing SQL statements outside the scope of a
global transaction. The SQL standard specifies that alocal transaction should be
started implicitly by the database resource manager whenever an SQL statement
that needs the context of atransaction is executed and no transaction is active.
The standard also says that a transaction that is implicitly started by the database
resource manager must then be explicitly terminated by executinga COMMIT
or ROLLBACK SQL statement; the TP Framework is not responsible for
terminating transactions that are started by the resource manager.

Note: Thisis not an issue when an application uses the XA library to connect to
the Oracle server because those applications can operate only on global
transactions. The Oracle server does not allow local transactionswhenitis
using XA.

m The SQL COMMIT and ROLLBACK statements cannot be used to terminate a
global transaction that has been either started explicitly using Curr ent . begi n()
or started implicitly by the system. Check the database vendor documentation for
each database product for other possible restrictions when using global
transactions.

m SQL cursors may be closed when transactions are terminated. Consult your
database product documentation for exact information about cursor handling
rules. Application programmers should be careful to use cursors only with
CORBA objects with appropriate activation policies and within appropriate
transaction boundaries.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

m During transactional work

ThecCurrent . rol | back_onl y method can be used to ensure that the only
possible outcome is to roll back the current transaction.
CQurrent.roll back_onl y() canbeinvoked from any CORBA object method.

m After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work

CORBA C++ Programming Reference 3-19

3 TP Framework

is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit a gorithm when the TP Framework
invokestheir deact i vat e_obj ect method.

Note that this behavior does not apply to objects with pr ocess or net hod
activation policies. If the CORBA abject wantsto roll back the transaction, it
cancal Current::roll back_only. If it wantsto vote to commit the
transaction, it does not make that call. Note, however, that a vote to commit does
not guarantee that the transaction is committed, since other objects may
subsequently vote to roll back the transaction.

Note: Users of SQL cursors must be careful when using an object with the met hod
or process activation policy. A process opens an SQL cursor within a
client-initiated transaction. For typical SQL database products, once the client
commits the transaction, all cursors that were opened within that transaction
are automatically closed; however, the object will not receive any notification
that its cursor has been closed.

Transaction Time-outs

When atransaction time-out occurs, the transaction ismarked so that the only possible
outcome isto roll back the transaction, and the CORBA: : TRANSACTI ON_ROLLEDBACK
standard exceptionisreturned to the client. Any attemptsto send new requestswill aso
fail with the CORBA: : TRANSACTI ON_ROLLEDBACK exception until the transaction has
been aborted.

TP Framework API

This section describes the TP Framework API. Additional information about how to
use this API can be found in Creating CORBA C++ Server Applications.

The TP Framework comprises the following components:

m TheServer C++ class, which has virtual methods for application-specific server
initialization and termination logic

3-20 CORBA C++ Programming Reference

TP Framework API

m TheTobj _Servant Base C++ class, which has virtual methods for object state
management

m The TP C++ class, which provides methods to:

Create object references for CORBA objects
Register (and unregister) factories with the FactoryFinder object
Initiate user-controlled preactivation and deactivation of objects

Initiate user-controlled deactivation of the CORBA object currently being
invoked

Obtain an object reference to the CORBA object currently being invoked
Open and close XA resource managers

Log messages to a user log (ULOG) file

Obtain object referencesto the ORB and to Bootstrap objects

m Header files for these classes

m Librariesthat are used by server applications

The visible part of the TP Framework consists of two categories of operations:

m Service methods that can be called by user code. These arein the TP interface.

m Callback methods that are written by the user and that are invoked by the TP
Framework. This includes methods in the Tobj _Ser vant Base and Ser ver
classes. These operations are intended to be called by TP Framework code only.
The application code should never call the methods of these classes. If it does,
unpredictable results may occur.

Server Interface

The Server interface provides callback methods that can be used for
application-specific server initialization and termination logic. Thisinterface also
provides a callback method that is used to create servants when servants are required
for object activation.

The Server interface has the following characteristics:

CORBA C++ Programming Reference 3-21

3 TP Framework

m TheServer classisaC++ native class.

m TheServer. h file contains the declarations and definitions for the Server class.

C++ Declarations

3-22

The C++ mapping is as follows:

typedef Tobj ServantBase* Tobj Servant;

class Server {

public:

CORBA: : Bool ean initialize(int argc, char** argv);

voi d rel ease();

Tobj _Ser vant create_servant (const char* interfaceNane);
b

Note: Programmers must provide definitions for the Server: :initi alize(),
Server::rel ease(), and Server:.cr eat e_ser vant methods.

CORBA C++ Programming Reference

TP Framework API

Server::create_servant

Synopsis
C++ Binding

Argument

Return Value

Description

Creates a servant to instantiate a C++ object.

cl ass Server {
public:

Tobj _Ser vant create_servant (const char* interfaceNane);
b

i nt er faceNane
Specifiesacharacter string that containsthefully qualified interface namefor
the object. Thiswill be the same interface name that was supplied when the
object reference was created (TP: : creat e_obj ect _reference() or
TP: : create_acti ve_object _reference()) for the object reference used
for thisinvocation. This name can be used to determine which servant needs
to be constructed.

Tobj _Servant Base
The pointer to the newly created servant (instance) for the specified interface.
A NULL valueshould bereturned if cr eat e_ser vant () isinvoked with an
interface name that it does not recognize or if the servant cannot be created
for some reason.
If thecreat e_servant method returnsa NULL pointer, activation fails. A
CORBA: : OBJECT_NOT_EXI ST() exceptionisraised back to the client. Also,
the following message iswritten to the user log (ULOG):

"TPFW CAT: 23: ERROR Activating object - application raised
Tobj S:: Creat eServant Fai | ed. Reason = Application’s
Server::create_servant returned NULL. Interface =
interfaceNane, A D = oid"

Where i nt er f aceNane isthe interface D of the invoked interface and oi d
is the corresponding object ID.

Note: The restriction on the length of the Cbj ect I d has been removed in this
release.

Thecr eat e_ser vant methodisinvoked by the TP Framework when arequest arrives
at the server and thereis no available servant to satisfy therequest. The TP Framework
callsthecr eat e_servant method with the interface name for the servant to be
created. The server application instantiates an appropriate C++ object and returns a
pointer to it. Typically, the method contains a switch statement on the interface name
and creates a new object, depending on the interface name.

CORBA C++ Programming Reference 3-23

3

TP Framework

3-24

Caution: The server application must not depend on this method being invoked for
every activation of a CORBA object. The server application must not do
any handling of CORBA object state in the constructors or destructors of
any servant classesfor CORBA objects. Thisisbecausethe TP Framework
may possibly reuse servants on activation and may possibly not destroy
servants on deactivation.

Exception If an exceptionisthrownin Server: : creat e_servant (), the TP Framework
catches the exception. Activation fails. A CORBA: : OBJECT_NOT_EXI ST() exception
israised back to the client. In addition, an error message is written to the user log
(uLog) file, asfollows, for each exception type:

Tobj S: :

Tobj S: :

CORBA: :

Creat eServant Fai | ed

"TPFW CAT: 23: ERROR Activating object - application
rai sed Tobj S:: O eateServantFai |l ed. Reason = reason.
Interface = interfaceNane, O D = oi d"

Where r eason is a user-supplied reason, and i nt er f aceNane and
oi d aretheinterface ID and object ID, respectively, of the invoked
CORBA object.

Qut Of Menory

"TPFW CAT: 22: ERROR Activating object - application
rai sed Tobj S:: Qut O Menory. Reason =reason. Interface
= jnterfaceNane, O D = oid"

Where r eason is a user-supplied reason, and i nt er f aceNane and
oi d aretheinterface ID and object ID, respectively, of the invoked
CORBA object.

Excepti on

"TPFW CAT: 28: ERROR: Activating object - CORBA
Exception not handl ed by application. Exception ID =
exceptionlD. Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er f aceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA abject.

CORBA C++ Programming Reference

TP Framework API

O her Exception

"TPFW CAT: 29: ERROR Activating object - Unknown
Excepti on not handl ed by application. Exception ID =
exceptionl D. Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA object.

CORBA C++ Programming Reference 3-25

3 TP Framework

Server::initialize()

Synopsis

C++ Binding

Arguments

Return Value

Description

Allows the application to perform application-specific initialization procedures, such
aslogging into a database, creating and registering well-known object factories,
initializing global variables, and so forth.

class Server {
public:

CORBA: : Bool ean initialize(int argc, char** argv);
I

The ar gc and ar gv arguments are passed from the command line. The ar gc argument
contains the name of the server. The ar gv argument contains the first command-line
option that is specific to the application, if there are any.

Command-line options are specified in the UBBCONFI Gfile using the CLOPT parameter
in the entry for the server in the SERVERS section. System-recognized options come
first in the CLOPT parameter, followed by a double-hyphen (- -), followed by the
application-specific options. The value of ar gc isone greater than the number of
application-specific options. For details, see ubbconfi g(5) inthe BEA Tuxedo
Reference Manual.

Boolean TRUE or FALSE. TRUE indicates success. FALSE indicatesfailure. If an
error occursininitial i ze() , the application code should return FALSE. The
application code should not call thesystemcall exit () .Calingexit () doesnotgive
the TP Framework a chance to release resources allocated during startup and may
cause unpredictable results.

If the return value is FALSE:
m Server::rel ease() isnotinvoked.

m Any transactionsthat are started in thei ni ti al i ze() method and are not
terminated will eventually time out; they are not automatically rolled back.

Theini tial i ze callback method, which isinvoked as the last step in server
initialization, allows the application to perform application-specific initiaization.

Typically, aserver application does the following tasksin Server: : i ni ti al i ze:

m Creates references for CORBA object factories implemented in the server
application and registers them with the FactoryFinder using the
TP: :regi ster_factory() operation.

3-26 CORBA C++ Programming Reference

TP Framework API

Exceptions

Initializes global variables, if any are used.

Opens XA resource managers if any are used by the server application.

It is the responsibility of the server application to open any required XA resource
managers. Thisis done by invoking either of the following methods:

TP: : open_xa_rm()
Thisisthe preferred technique for server applications, since it can be done on a
static function, without the need to obtain an object reference.

Tobj : : Transacti onCQurrent::open_xa_rm)

A reference to the TransactionCurrent object can be obtained from the Bootstrap
object. For an explanation of how to obtain a reference to the Bootstrap object,

see the section “TP::bootstrap()” on page 3-45. For more information about the
TransactionCurrent object, see Chapter 4, “C++ Bootstrap Object Programming
Reference,” antlsing Transactions.

Transactions may be started in the ti al i ze method after invoking the

Tobj : : Transacti onCurrent::open_xa_rm() OrTP: : open_xa_r mmethod.
However, any transactions that are starteichirti al i ze() must be terminated

by the server application beforei ti al i ze() returns. If the transactions are

still active when control is returned, the server application fails to boot, and it
exits gracefully. This happens because the server application has no logical way
of either committing or rolling back the transaction after

Server::initialize() returns. This condition is an error.

If an exception is raised ®erver: :initialize(),the TP Framework catches the
exception. The TP Framework behavior is the sameias ifi al i ze() returned
FALSE (that is, an exception is considered to be a failure). In addition, an error
message is written to the user lay@g) file, as follows, for each exception type:

Tobj S::InitializeFailed

"TPFW CAT: 1: ERROR Exception in
Server::initialize():|DL: beasys.conl Tobj S/ Initialize
Failed: 1. 0. Reason = reason"

Wherer eason is a string supplied by application code. For
example:
Throw Tobj S::InitializeFail ed(
"Couldn’t register factory");

CORBA C++ Programming Reference 3-27

3 TP Framework

CORBA: : Excepti on

G her

"TPFW CAT: 1: ERROR Exception in
Server::initialize(): exception Reason = unknown"

Where except i onistheinterface |D of the CORBA exception that
was raised.

Excepti ons

TPFW CAT: 1: ERROR Exceptionin Server::initialize():
unknown exception. Reason = unknown"

3-28° CORBA C++ Programming Reference

TP Framework API

Server::release()

Synopsis

C++ Binding

Arguments
Return Value

Description

Allowstheapplication to perform any application-specific cleanup, such aslogging of f
a database, unregistering well-known factories, or deallocating resources.

typedef Tobj Servant Base* Tobj Servant;

cl ass Server {
public:
voi d rel ease();

}
None.

None.

The r el ease callback method, whichisinvoked asthefirst step in server shutdown,
allows the server application to perform any application-specific cleanup. The user
must override the virtual function definition.

Typical tasks performed by the application in this method are as follows:
m Close XA resource managers.

m Unregister CORBA object factories that were registered with the Factory Finder
inServer::initialize().

m Deallocate any server resources not yet released.

Thismethod is normally called in response to at mshut down command from the
administrator or operator.

The TP Framework provides a default implementation of Ser ver: : rel ease() . The
default implementation closes XA resource managers for the server. The
implementation doesthisby issuing at x_cl ose() invocation, which uses the default
CLOSEI NFO configured for the server's group in the UBBCONFI Gfile.

Itisthe responsibility of the application to close any open X A resource managers. This
is done by issuing either of the following calls:

m TP:.:close xa_rm

m Tobj::TransactionCurrent::close xa_rn().A referencetothe
TransactionCurrent object can be obtained from the Bootstrap object. For an
explanation of how to obtain areference to the Bootstrap object, see the section
“TP::bootstrap()” on page 3-45. For more information about the

CORBA C++ Programming Reference 3-29

3 TP Framework

3-30

TransactionCurrent object, see Chapter 4, “C++ Bootstrap Object Programming
Reference,” antl/sing Transactions.

Note:

Once a server receives a request from thehut down(1) command to shut
down, it can no longer receive requests from other remote objects. This may
require servers to be shut down in a specific order. For example, if the
Server::rel ease() method in Server 1 needs to access a method of an
object that resides in Server 2, Server 2 should be shut down after Sever 1 ic
shut down. In particular, thEP: : unr egi st er _factory() method accesses
the FactoryFinder Registrar object that resides in a separate server. The

TP: :unregi ster_factory() method is typically invoked from the

rel ease() method; therefore, the FactoryFinder server should be shut down
after all servers that catb: : unregi ster _factory() in their

Server::rel ease() method.

If an exception is raised irel ease() , the TP Framework catches the exception. Each
exception causes an error message to be written to the user @y file, as follows:

Tobj S: : Rel easeFai | ed

"TPFW CAT: 2: WARN. Exception in Server::release():
| DL: beasys. conf Tobj S/ Rel easeFai | ed: 1. 0. Reason =
reason"

Wherer eason is a string supplied by application code. For
example:

Thr ow Tobj S: : Rel easeFai | ed(
"Coul dn’t unregister factory");

CORBA C++ Programming Reference

TP Framework API

CORBA: : Excepti on

"TPFW CAT: 2: WARN: Exception in Server::release():
exception. Reason = unknown"

Whereexcept i on istheinterface |D of the CORBA exception that
was raised.

Ot her Exceptions

"TPFW CAT: 2: WARN: Exception in Server::release():
unknown exception. Reason = unknown"

In all cases, the server continues to exit.

Tobj_ServantBase Interface

The Tobj _Ser vant Base interface defines operations that allow a CORBA object to
assist in the management of its state. Every implementation skeleton generated by the
IDL compiler automatically inherits from the Tobj _Ser vant Base class. The

Tobj _Ser vant Base class contains two virtual methods, act i vat e_obj ect () and
deact i vate_obj ect (), that may be optionally implemented by the programmer.

Whenever arequest comesinfor aninactive CORBA object, theobject isactivated and
theact i vat e_obj ect () method isinvoked on the servant. When the CORBA object

is deactivated, the deact i vat e_obj ect () method isinvoked on the servant. The

timing of deactivation is driven by the implementation’s activation policy. When the
deactivate_obj ect () method is invoked, the TP Framework passes in a reason
code to indicate why the call was made.

Note: Tobj _Servant Base: : acti vat e_obj ect () and
Tobj _Servant Base: : deact i vat e_obj ect () are the only methods that the
TP Framework guarantees will be invoked for CORBA object activation and
deactivation. The servant class constructor and destructor may or may not be
invoked at activation or deactivation time (through the
Server::create_servant call for C++ or directly by Java). Therefore, the
server application code must not do any state handling for CORBA objects in
either the constructor or destructor of the servant class.

CORBA C++ Programming Reference 3-31

3 TP Framework

Note: The programmer does not need to use a cast or reference to
Tobj _Ser vant Base directly. The Tobj _Ser vant Base methods show up as
part of the skeleton and, therefore, in the implementation class for a servant.
The programmer may provide definitions for the act i vat e_obj ect and
deacti vat e_obj ect methods, but the programmer should never make direct
invocations on those methods; only the TP Framework should call those
methods.

C++ Dedlaration (in Tobj _Ser vant Base. h)

The C++ mapping for the Tobj _ser vant Base interfaceisasfollows:

class Tobj _Servant Base : public Portabl eServer:: Servant Base {

public:
virtual void activate object(const char * stroid) {}
virtual void deactivate_object(const char*,
Tobj S: : Deact i vat eReasonVal ue) {}
b

3-32 CORBA C++ Programming Reference

TP Framework API

Tobj_ServantBase:: activate_object()

Synopsis

C++ Binding

Argument

Return Value

Description

Associates an object 1D with a servant. This method gives the application an
opportunity to restore the object’s state when the object is activated. The state may be
restored from shared memory, from an ordinary flat file, or from a database file.

cl ass Tobj _ServantBase : public Portabl eServer:: Servant Base {
public:
virtual void activate_object(const char * stroid) {}

}

stroid
Specifieghe object ID in string format. The object ID uniquely identifies this
instance of the class. This is the same object ID that was specified when the
object reference was created (usit®ycr eat e_obj ect _reference()) or
intheTP: : creat e_acti ve_obj ect _reference() forthe object reference
used for this invocation.

Note: The restriction on the length of the object ID has been removed in this
release.

None.

Object activation is triggered by a client invoking a method on an inactive CORBA
object. This causes the Portable Object Adapter (POA) to assign a servant to the
CORBA object. Thecti vat e_obj ect () method is invoked before the method
invoked by the clientis invoked. dkt i vat e_obj ect () returns successfully, that is,
without raising an exception, the requested method is executed on the servant.

Theactivat e_obj ect () anddeacti vate_object () methods and the method

invoked by the client can be used by the programmer to manage object state. The
particular way these methods are used to manage object state may vary according to
the needs of the application. For a discussion of how these methods might be used, see
Creating CORBA C++ Server Applications.

If the object is currently infected with a global transactin,i vat e_obj ect ()
executes within the scope of that same global transaction.

It is the responsibility of the programmer of the object to check that the stored state of
the object is consistent. In other words, it is up to the application code to save a
persistent flag that indicates whether or ¢exct i vat e_obj ect () successfully

saved the state of the object. That flag should be checked ivat e_obj ect ().

CORBA C++ Programming Reference 3-33

3

TP Framework

3-34

Exceptions If an error occurs while executing act i vat e_obj ect () , the application code should
raise either a CORBA standard exception or a Tobj S: : Act i vat eQbj ect Fai | ed
exception. When an exception israised, the TP Framework catches the exception, and
the following events occur:

m Theactivation fails.

m The method invoked by the client is not executed.

m If acti vate_obj ect () isexecuting within atransaction and the client initiated
the transaction, the transaction is not rolled back.

m A CORBA: : OBJECT_NOT_EXI ST exception israised back to the client.

Note:

For each CORBA interface, set AUTOTRANtO Yes if you want a transaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

m Based on the exception israised, a message is written to the user log (ULOG) file,
asfollows:

Tobj S: :

Tobj S: :

Acti vat eCbj ect Fai | ed

"TPFW CAT: 24: ERROR Activating object - application
rai sed Tobj S:: Acti vat eObj ect Fai | ed. Reason = reason.
Interface = interfaceNane, O D = oi d"

Where r eason is a user-supplied reason, and i nt er f aceNane and
oi d aretheinterface ID and object ID, respectively, of the invoked
CORBA object.

Qut Of Menory

"TPFW CAT: 22: ERROR Activating object - application
rai sed Tobj S:: Qut O Menory. Reason =reason. Interface
= jnterfaceNane, O D = oid"

Where r eason is a user-supplied reason, and i nt er f aceNane and
oi d aretheinterface ID and object ID, respectively, of the invoked
CORBA object.

CORBA C++ Programming Reference

TP Framework API

CORBA: : Excepti on

"TPFW CAT: 25: ERROR: Activati ng object - CORBA
Excepti on not handl ed by application. Exception ID =
exceptionl D. Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA object.

O her exception
"TPFW CAT: 26: ERROR: Activating object - Unknown
Exception not handl ed by application. Exception ID =

exceptionl D. Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA object.

CORBA C++ Programming Reference 3-35

3 TP Framework

Tobj_ServantBase::deactivate_object()

Synopsis

C++ Binding

3-36

Arguments

Removes the association of an object ID with its servant. This method gives the
application an opportunity to save all or part of the object’s state before the object is
deactivated. The state may be saved in shared memory, in an ordinary flat file, or in
database file.

class Tobj _Servant Base : public Portabl eServer:: Servant Base {
public:
virtual void deactivate_object(const char* stroid,
Tobj S: : Deact i vat eReasonVal ue reason) {}

b
stroid

Specifieghe object ID in string format. The object ID uniquely identifies this
instance of the class.

Note: The restriction on the length of the object ID has been removed in this
release.

reason
Indicates the event that caused this method to be invoked.eihen code
can be one of the following:

DR_METHOD_END
Indicates that the object is being deactivated after the completion of
a method. It is used if the object’s deactivation policy is:

4 nethod
4 transaction (only if there is no transaction in effect)
¢ process (if TP: : deact i vat eEnabl e() called)

DR_SERVER SHUTDOWN
Indicates that the object is being deactivated because the server is
being shut down in an orderly fashion. It is used if the object’s
deactivation policy is:

4 transaction (only if transaction is active)

¢ process

Note that when a server is shut down in an orderly fashion, all
transactions that the server is involved in are marked for rollback.

CORBA C++ Programming Reference

TP Framework API

Return Value

Description

DR_TRANS_ABORTED
Thisr eason codeisused only for objects that have the
transacti on activation policy. It can occur when the transactionis
started by either the client or automatically by the system. When the
deact i vat e_obj ect () method isinvoked with this reason code,
the transaction is marked for rollback only.

DR_TRANS _COWM TTI NG
Thisr eason codeisused only for objects that have the
transacti on activation policy. It can occur when the transactionis
started by either the client or the TP Framework. It indicates that a
Current. conmnit () operation was invoked for the transaction in
which the object isinvolved. Thedeacti vat e_obj ect () method
is invoked just before the transaction manager’s two-phase commit
algorithm begins; that is, befope epar e is sent to the resource
managers.

The CORBA object is allowed to vote on the outcome of the
transaction when théeact i vat e_obj ect () method is invoked

with theDR_TRANS_COWM TTI NGr eason code. By invoking
CQurrent.rol | back_onl y(), the method can force the transaction

to be rolled back; otherwise, the two-phase commit algorithm
continues. The transaction is not necessarily committed just because
theCurrent . roll back_onl y() is notinvoked in this method. Any
other CORBA object or resource manager involved in the
transaction could also vote to roll back the transaction.

DR_EXPLI Cl T_DEACTI VATE
Indicates that the object is being deactivated because the application
executed &P: : deact i vat eEnabl e(-, -, -) on this object. This
can happen only for objects that havepthecess activation policy.

None.

Object deactivation is initiated either by the system or by the application, depending
on the activation policy of the implementation for the CORBA object. The
deactivate_obj ect () method is invoked before the CORBA object is deactivated.
For details of these policies and their use, see the section “ICF Syntax” on page 2-2.

Deactivation may occur after an execution of a method invoked by a client if the
activation policy for the CORBA object implementationis hod, or as a result of the
end of transactional work if the activation policy isansacti on. It may also occur
as the result of server shutdown if the activation poliey ésact i on orprocess.

CORBA C++ Programming Reference 3-37

3 TP Framework

3-38

Restriction

In addition, the BEA WebL ogic Enterprise software supports the use of
user-controlled deactivation of CORBA objects having an activation policy of
process or net hod viathe use of the TP: : deact i vat eEnabl e() and

TP: : deact i vat eEnabl e(-, -, -) methods. TP: : deact i vat eEnabl e can be called
inside a method of an object to cause the object to be deactivated at the end of the
method. If TP: : deact i vat eEnabl e is called in an object with thet ransact i on
activation policy, an exception israised (Tobj S: : 11 | egal Oper at i on) and the TP
Framework takes no action. TP: : deact i vat eEnabl e(-, -, -) can becalled to
deactivate any object that has apr ocess activation policy. For more information, see
the section “TP::deactivateEnable” on page 3-54.

Note: Thedeacti vat e_obj ect method will be called at server shutdown time for
every object remaining in the Active Object Map, whether it was entered there
implicitly by the TP Framework (the activation-on-demand technique:

TP: : creat e_servant and the servant’scti vat e_obj ect method) or
explicitly by the user witlTP: : creat e_act i ve_obj ect _r ef erence.

Theact i vat e_obj ect () anddeact i vate_obj ect () methods and explicit methods
invoked by the client can be used by the programmer to manage object state. The
manner in which these methods are used to manage object state may vary according
the needs of the application. For a discussion of how these methods might be used, s
Creating CORBA C++ Server Applications.

The CORBA object withr ansact i on activation policy gets to vote on the outcome

of the transaction when thieact i vat e_obj ect () method is invoked with the
DR_TRANS_COWM TTI NGreason code. By callinqurrent . rol | back_onl y() the
method can force the transaction to be rolled back; otherwise, the two-phase comm
algorithm continues. The transaction will not necessarily be committed just because
Current.roll back_only() is not called in this method. Any other CORBA object

or resource manager involved in the transaction could also vote to roll back the
transaction.

Note that if the object is involved in a transaction when this method is invoked, there
are restrictions on what type of processing can be done based on the reason the obj
is invoked. If the object was involved in a transaction, the activation policy is
transact i on and the eason code for the call is:

DR_TRANS_ABORTED
No invocations on any CORBA objects are allowed in the method. No
tpcal | () is allowed. Transactions cannot be suspended or begun.

CORBA C++ Programming Reference

TP Framework API

DR_TRANS_COWM TTI NG
No invocations on any CORBA objects are allowed in the method. No
tpcal | () isallowed. Transactions cannot be suspended or begun.

The reason for these restrictionsis that the deactivation of objects with activation
policy transaction is controlled by a call to the TP Framework from the transaction
manager for thetransaction. Whenthe call withr eason code DR_TRANS_COVM TTI NG
is made, the transaction manager is executing phase 1 (prepare) of the two-phase
commit. At this stage, it is not possible to issue a call to suspend atransaction nor to
initiate a new transaction. Since acall to a CORBA object that wasin another process
would require that processto join the transaction, and the transaction manager is

already executing the prepare phase, this would cause an errorl. Sinceacal to a
CORBA object that had no transactional propertieswould reguire that the current
transaction be suspended, this would also cause an error. The sameistrue of a
tpcall ().

Similarly, when the invocation with r eason code DR_TRANS_ABORTED is made, the
transaction manager is already aborting. While the transaction manager is aborting, it
is not possible to either suspend a transaction or initiate a new transaction. The same
restrictions apply asfor DR_TRANS_COVM TTI NG.

1. In theory, this would mean that an invocation on atransactional CORBA object in
the same process would be valid since it would not require a new process to be regis-
tered with the transaction manager. However, it is not possible for the programmer to
guarantee that an invocation on a CORBA object will occur in-proc, therefore, this
practice is discouraged.

CORBA C++ Programming Reference 3-39

3 TP Framework

3-40

Exceptions

If the CORBA object method that isinvoked by the client raises an exception, that
exception is caught by the TP Framework and iseventually returned to the client. This
istrue even if deacti vat e_obj ect () isinvoked and raises an exception.

The client will never be notified about exceptions that are raised in

deacti vat e_obj ect () . It isthe responsibility of the application code to check that
the stored state of the CORBA object is consistent. For example, the application code
could save a persistent flag that indicates whether or not deact i vat e_obj ect ()
successfully saved the state. That flag can then be checked in acti vat e_obj ect () .

If an error occurs while executing deact i vat e_obj ect (), the application code
should raise either a CORBA standard exception or aDeact i vat e(bj ect Fai | ed
exception. If deacti vat e_obj ect () wasinvoked by the TP Framework, the TP
Framework catches the exception and the following events occur:

m Theobject is deactivated.
m |f theclient initiated atransaction, the transaction is not rolled back.

m Theclient is not notified of the exception that israised in
deacti vate_object().

m Based on which exception israised, amessage is logged to the user log (ULOG)
file, asfollows:

Tobj S: : Deacti vat eObj ect Fai | ed

"TPFW CAT: 27: ERROR: De-activating object -
application raised Tobj S:: Deactivat eCbj ect Fai | ed.
Reason = reason. Interface = interfaceNane, O D = oi d"

Where r eason is a user-supplied reason, and i nt er f aceNane and
oi d aretheinterface ID and object ID, respectively, of the invoked
CORBA object.

CORBA: : Excepti on

"TPFW CAT: 28: ERROR: De-activating object - CORBA
Exception not handl ed by application. Exception ID =
exceptionlD. Interface = interfaceNane, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er f aceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA abject.

CORBA C++ Programming Reference

TP Framework API

O her exception

"TPFW CAT: 29: ERROR De-activating object - Unknown
Excepti on not handl ed by application. Exception ID =
exceptionl D Interface = jnterfaceName, O D = oid"

Where except i onl Disthe interface ID of the exception, and
i nt er faceNane and oi d are the interface ID and object ID,
respectively, of the invoked CORBA object.

CORBA C++ Programming Reference 3-41

3 TP Framework

TP Interface

Usage Notes

The TP interface supplies a set of service methods that can be invoked by application
code. Thisisthe only interface in the TP Framework that can safely be invoked by
application code. All other interfaces have callback methods that are intended to be
invoked only by system code.

The purpose of thisinterfaceisto provide high-level callsthat application code can
call, instead of callsto underlying APIs provided by the Portable Object Adapter
(POA), the CORBA Naming Service, and the BEA Tuxedo system. By using these
calls, programmers can learn asimpler APl and are spared the

complexity of the underlying APIs.

The TP interface implicitly uses two features of the BEA WebL ogic Enterprise
software that extend the CORBA APIs:

m Factories and the FactoryFinder object
m Factory-based routing

For information about the FactoryFinder object, see Chapter 5, “FactoryFinder
Interface.” For more information about Factory-based routing, sefthi@istration
Guide.

m During server application initialization, the application constructs the object
reference for an application factory. It then invokesrttg st er _fact ory()
method, passing in the factory's object reference together with a fadtéisid.
On server release (shutdown), the application usesitheyi ster _f act ory()
method to unregister the factory.

m TheTPclass is a C++ native class.
m TheTP. h file contains the declarations and definitions for tReclass.

C++ Declarations (inTP. h)

3-42 CORBA C++ Programming Reference

TP Framework API

The C++ mapping is as follows:

class TP {
public:
static CORBA:: Cbject_ptr create_object _reference(
const char* i nt er f aceNane,
const char* stroid,
CORBA: : NVLi st _ptr criteria);
static CORBA:: Cbject_ptr create_active_object _reference(
const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);
static CORBA:: (bject_ptr get_object_reference();

static void register_factory(
CORBA: : Cbj ect _ptr factory_or,
const char* factory_ id);
static void unr egi ster_factory(
CORBA: : Cbj ect _ptr factory_or,
const char* factory_ id);
static void deact i vat eEnabl e()
static void deact i vat eEnabl e(

const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);

static CORBA:: ORB_ptr orb();

static Tobj _Bootstrap* bootstrap();

static void open_xa_rn();

static void close xa_rm);

static int userlog(char*, ...);

static char* get _obj ect _i d(CORBA: : Obj ect _ptr obj);
static void application_responsibility(

Tobj _Servant servant);

CORBA C++ Programming Reference 3-43

3 TP Framework

TP::application_responsibility

Synopsis

C++ Binding

Arguments

Return Values

Description

Exceptions

Tells the TP Framework that the application is taking responsibility for the servant’'s
lifetime.

static void application_responsibility(Tobj Servant servant);

ser vant
A pointer to a servant that is already known to the TP Framework.

None.

This method tells the TP Framework that the application is taking responsibility for the
servant’s lifetime. As a result of this call, when the TP Framework has completed
deactivating the object (that is, after invoking the servafi’gti vat e_obj ect

method), the TP Framework does nothing more with the object.

Once an application has taken responsibility for a servant, the application must take
care to delete servant when it is no longer needed, the same as for any other C++
instance.

If the servant is not known to the TP Framework (that is, it is not active), this call has
no effect.

Tobj S: : I nval i dServant
Indicates that the specified servant is Null.

3-44 CORBA C++ Programming Reference

TP Framework API

TP::bootstrap)

Synopsis

C++ Binding
Arguments

Return Value

Description

Exceptions

Returns a pointer to a Tobj : : Tobj _Boot st r ap object. The Bootstrap object is used
to accessinitial object references for the FactoryFinder object, the Interface
Repository, the TransactionCurrent, and the SecurityCurrent objects.

static Tobj Bootstrap* TP::bootstrap();
None.

Upon successful completion, boot st r ap() returns a pointer to the
Tobj : : Tobj _Boot st r ap object that is created by the TP Framework when the server
application is started.

The TP Framework createsaTobj : : Tobj _Boot st r ap object as part of initialization;
it is not necessary for the application code to create any other
Tobj : : Tobj _Boot st r ap objectsin the server.

Caution: Because the TP Framework ownsthe Tobj : : Tobj _Boot strap object,
server application code must not dispose of the Bootstrap object.

None.

CORBA C++ Programming Reference 3-45

3 TP Framework

TP::close_xa_rm()

Synopsis Closes the XA resource manager to which the invoking processis linked.
C++Binding static void TP::close_xa_rm();
Arguments None.
Return Values None.

Description Thecl ose_xa_rm() method closes the XA resource manager to which the invoking
processis linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: Thefunctionality of thiscall isalso provided by
Tobj : : TransactionCurrent::close xa rn().The
TP:: cl ose_xa_rn() method providesamore convenient way for a server
application to close a resource manager because there is no need to obtain an
object reference to the TransactionCurrent object. A referenceto the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-45 for an explanation of how to obtain a reference
to the Bootstrap object. For more information about the TransactionCurrent
object, see Chapter 4, “C++ Bootstrap Object Programming Reference,” and
Using Transactions.

This method should be invoked once from $kever : : r el ease() method for each
server that is involved in global transactions. This includes servers that are linked witt
an XA resource manager, as well as servers that are involved in global transactions
but are not actually linked with an XA-compliant resource manager.

Thecl ose_xa_rm() method should be invoked in place of a close invocation that is
specific to the resource manager. Because resource managers differ in their
initialization semantics, the specific information needed to close a particular resourct
manager is placed in thgt OSEI NFO parameter in theROUPS section of the BEA
WebLogic Enterprise systebBBCONFI G file.

The format of thecL OSEI NFO string is dependent on the requirements of the database
vendor providing the underlying resource manager. For more information about the
CLOSEI NFO parameter, see thgministration Guide andubbconfi g(5) reference

page in theBEA Tuxedo Reference. Also, refer to database vendor documentation for
information about how to develop and install applications that use the XA libraries.

3-46 CORBA C++ Programming Reference

TP Framework API

Exceptions CORBA: : BAD_| NV_CRDER
Thereis an active transaction. The resource manager cannot be closed while

atransaction is active.

Tobj : : RMFai | ed
Thetx_cl ose() cal returned an error return code.

Note: Unlikeother exceptionsreturned by the TP Framework, the Tobj : : RVFai | ed
exception isdefined in t obj _c. h (which is derived from t obj . i dl), not
Tobj S_c. h (whichisderived from Tobj S. i dI). Thisisbecause nativeclients
can aso open XA resource managers. Therefore, the exception returned is
consistent with the exception expected by native client code and by
Server: :rel ease() if it usesthe alternate mechanism,
TransactionCurrent::cl ose_xa_rm which isshared with native clients.

CORBA C++ Programming Reference 3-47

3 TP Framework

TP::create_active_object_reference()

Synopsis

C++ Binding

Arguments

Return Value

3-48

Description

Creates an object reference and preactivates an object.

static CORBA : Object _ptr
create_active_object_reference(

const char* i nterfaceNane,
const char* stroid,
Tobj _Servant servant) ;

i nterfaceName
Specifiesacharacter string that containsthefully qualified interface namefor
the object.

stroid
Specifiesthe bj ect | d in string format. The Obj ect | d uniquely identifies
thisinstance of the class. The programmer decides what information to place
in the Obj ect I d. One possibility would be to use it to hold a database key.
Choosing the value of an object identifier, and the degree of uniqueness, is
part of the application design. The BEA WebL ogic Enterprise software
cannot guarantee any uniqueness in object references, since these may be
legitimately copied and shared outside the BEA WebL ogic Enterprise
environment, for example by stringifying the object reference.

ser vant
A pointer to a servant that the application has aready created and initialized.

The newly created object reference.

This method creates an object reference and preactivates an object. The resulting
object reference may be passed to clients who will use it to access the object.

Ordinarily, the application will call this method in two places:

m InServer::initialize() topreactivate process objects so that they do not
need activation on the first invocation

m In any method that creates object references to be returned to clients

This method allows an application to activate an object explicitly before itsfirst
invocation. (For reasons you might want to do this, refer to the section “Explicit
Activation” on page 3-8.) The user first creates a servant and sets its state before
callingcreate_active_obj ect _reference. The TP Framework then enters the

CORBA C++ Programming Reference

TP Framework API

servant and string Objectld in the Active Object Map. Theresult is exactly the same as
if the TP Framework had previously invoked Server: : cr eat e_ser vant , received
back the servant pointer, and then had invoked servant : : act i vat e_obj ect.

The object so activated must be for an interface that was declared with the process
activation policy; otherwise, an exception is raised.

If the object is deactivated, an object reference held by a client might cause the object
to be activated again in some other process. For adiscussion about situationsin which
this might be a problem, refer to the section “Explicit Activation” on page 3-8.

Caution When you preactivate objects in an interface, you must specify an activation policy of
process in the ICF file for that interface. However, when you specifypthecess
activation policy for an interface in the ICF file, this can lead to the following problem.

Problem Statement

1.

Workaround

You write SERVER1 such that all objects on interface A are preactivated. To
prevent the object from being activated on demand by the TP Framework, you
write the interface'sct i vat e_obj ect method to always throw the

Act i vat eCbj ect Fai | ed exception.

SERVER?2 also implements objects of interface A. However, instead of
preactivating the objects, SERVER?2 lets the TP Framework activate them on
demand.

If the administrator configures SERVER1 and SERVER? in the same group, then
a client can get an interface A object reference from SERVER2 and invoke on it.
Then, due to load balancing, SERVER1 could be asked to activate an object on
interface A. However, SERVERL is not able to activate an object on interface A
on demand because #st i vat e_obj ect method throws the

Act i vat eCbj ect Fai | ed exception.

You can avoid this problem by having the administrator configure SERVER1 and
SERVER?2 in different groups. The administrator use SHRYERS section of the
UBBCONFI Gfile to define groups.

Exceptions: Tobj S::Invalidlnterface

Indicates that the specified interfaceName is Null.

CORBA C++ Programming Reference 3-49

3 TP Framework

3-50

Tobj S: :

Tobj S: :

Tobj S: :

Tobj S: :

I nvali dojectld
Indicates the specified stroid is NULL.

Servant Al readyActi ve

The object could not be activated explicitly because the servant is already
being used with another Obj ect | d. A servant can be used only with asingle
bj ect | d. To preactivate objects containing different bj ect 1 ds, the
application must create multiple servants and preactivate them separately,
one per Cbj ect | d.

bj ect Al readyActive

The object could not be activated explicitly because the (bj ect | d isaready
being used in the Active Object Map. A given bj ect | d can have only one
servant associated with it. To change to a different servant, the application
must first deactivate the object and activateit again.

I'l'l egal Qperati on
The object could not be activated explicitly because it does not have the

process activation policy.

CORBA C++ Programming Reference

TP Framework API

TP::create_object_reference)

Synopsis Creates an object reference. The resulting object reference may be passed to clients
who use it to access the object.

C++Binding static

CORBA: : Cbj ect _ptr TP: : create_object _reference (
const char* interfaceNane,
const char* stroid,

CORBA: : NVLi st_ptr criteria);

Arguments i nt er f aceName

stroid

Specifiesacharacter string that containsthefully qualified interface namefor
the object.

The interface name can be retrieved by making a call on the following
interface typecode id function:

const char* _tc_<CORBA interface nanme>.:id();

where <CORBA i nt er face nane>isany object class name. For example:

char* idlnane = _tc_Sinple->id();

Specifies the Obj ect | d in string format. The Obj ect | d uniquely identifies
thisinstance of the class. It is up to the programmer to decide what
information to place in the Objectld. One possibility would be to use the
bj ect | d to hold a database key. Choosing the value of an object identifier,
and the degree of uniqueness, is part of the application design. The BEA
WebL ogic Enterprise software cannot guarantee any unigueness in object
references, since object references may be legitimately copied and shared
outside the BEA WebL ogic Enterprise domain (for example, by passing the
object reference asa string). It is strongly recommended the you choose a
unigue bj ect | d in order to alow parallel execution of invokes on object
references.

Note: The restriction on the length of the object ID has been removed in this

release.

criteria

Specifies alist of named values that can be used to provide factory-based
routing for the object reference. The list is optional and is of type

CORBA: : NVLi st . The use of factory-based routing is optional and is
dependent on the use of thisargument. If you do not want to use factory-based
routing, you can pass a value of 0 (zero) for thisargument.

CORBA C++ Programming Reference 3-51

3 TP Framework

Return Value

Description

3-52

Exceptions

Example

The BEA WebL ogic Enterprise system administrator configures
factory-based routing by specifying routing rules in the UBBCONFI Gfile. See
the Administration Guide online document for details on this facility.

oj ect
The newly created object reference.

Theserver applicationisresponsiblefor invokingthecr eat e_obj ect _ref erence()
method. This method creates an object reference. The resulting object reference may
be passed to clients who will use it to access the object.

Ordinarily, the server application calls this method in two places:
m InServer::initialize() tocreatefactoriesfor the server.
m |Infactory methods to create object references to be returned to clients.

For examples of how and when to call thecr eat e_obj ect _ref er ence() method,
see Creating CORBA C++ Server Applications.

Thefollowing exceptions can be raised by the cr eat e_obj ect _ref erence()
method:

Invalidlnterface
Indicates that the specified i nt er f aceNane isNull.

I nval i dObj ect 1 d
Indicates that the specified st r oi d isNull.

The following example shows how to use the criteria argument:

CORBA: : NVLi st_ptr criteria,;
CORBA: : Long branch_id = 7;
CORBA: : Long account _id = 10001;
CORBA: : Any any_val ;

/1 Create the list and assign to _var to cleanup on exit
CORBA: : ORB: :create_list (2, criteria);
CORBA: : NVLi st _var criteria_var(criteria);

/1 Add the BRANCH | D
any_val <<= branch_id;
criteria->add_value("BRANCH ID', any_val, 0);

// Add the ACCOUNT_ID
any_val <<= account i d;
criteria->add_val ue("ACCOUNT_I D', any_val, 0);

CORBA C++ Programming Reference

TP Framework API

/1 COreate the object reference.
TP: :create_obj ect _reference ("IDL: BankApp/ Tel l er: 1. 0",
"Teller_01", criteria);

CORBA C++ Programming Reference 3-53

3 TP Framework

TP::deactivateEnable

Synopsis
C++ Binding

Arguments

Return Value

Description

Enables application-controlled deactivation of CORBA objects.
Current-object format:

static void TP: : deact i vat eEnabl e() ;
Any-object format:

static void TP: : deact i vat eEnabl e(
const char* interfaceNane,
const char* stroid,
Tobj _Servant servant);

i nt erfaceName
Specifiesacharacter string that containsthefully qualified interface namefor
the object.

stroid
Specifiesthe bj ect | d in string format for the object to be deactivated.

ser vant
A pointer to the servant associated with the stroid.

None.

This method can be used to cause deactivation of an object, either the object currently
executing (upon completion of the method in which it is called) or another object. It
can only be used for objects with the process activation policy. It provides additional
flexibility for objects with the pr ocess activation policy.

Note: TheTP:: deactivat eEnabl e(interface, object id, servant)
met hod can be used to deactivate an object. However, if that object is currently
in atransaction, the object will be deactivated when the transaction commits
or rolls back. If an invoke occurs on the object before the transaction is
committed or rolled back, the object will not be deactivated.

To ensurethe desired behavior, make sure that the object isnot in atransaction
or ensure that no invokes occur on the object after the
TP: : deact i vat eEnabl e() call until the transaction is complete.

Depending on which of the overloaded functions are called, the actions are as follows.

3-54 CORBA C++ Programming Reference

TP Framework API

Exceptions

Current-object format

When called from within a method of an object with process activation
policy, the object currently executing will be deactivated after completing the
method being executed.

When called from within a method of an object with method activation, the
effect isthe same as the normal behavior of such objects (effectively, a
NOOP).

When the object is deactivated, the TP Framework first removes the object
from the Active Object Map. It then calls the associated servant's
deact i vat e_obj ect method with a reason OR_METHOD END.

Any-object format

The application can request deactivation of an object by specifying its

bj ect | d and the associated servant.

If the object is currently executing, the TP Framework marks it for
deactivation and waits until the object's method completes before
deactivating the object (as with the “current-object format”). If the object is
not currently executing, the TP Framework may deactivate it immediately.
No indication is given to the caller as to the status of the deactivation. When
the object is deactivated, the TP Framework first removes the object from the
Active Object Map. It then calls the associated servant's

deact i vat e_obj ect method with a reason ®R_EXPLI Cl T_DEACTI VATE.

If the object for which the deactivate is requested hasasact i on activation

policy, anl I | egal Qper ati on exception is raised. This is because deactivation of
such objects may interfere with their correct notification of transaction completion by
the BEA WebLogic Enterprise transaction manager.

The following exceptions can be raised by dleact i vat eEnabl e() method:

Il egal

Tobj S::

Operation
Indicates that th&P: : deact i vat eEnabl e method was invoked by an object

with the activation policy set tor ansact i on.

bj ect Not Act i ve

In the Any-object format, the object specified could not be deactivated
because it was not active (ther oi d andser vant parameters did not
identify an object that was in the Active Object Map).

CORBA C++ Programming Reference 3-55

3 TP Framework

TP::get_object_id ()

Synopsis

C++ Binding

Arguments

Return Value

Description

Exception

Allows a server to retrieve the string Obj ect | d contained in an object reference that
was created in the TP Framework.

char* TP::get_object _id(Corba:: Chject _ptr obj);
obj
The object reference from which to get the Qbj ect I d.

Thestring Gbj ect | d passed to TP: : cr eat e_obj ect _ref er ence or
TP: : create_active_obj ect _ref er ence when the object reference was created.

This method allows a server to retrieve the string Obj ect I d contained in an object
referencethat wascreated inthe TP Framework. If the object reference was not created
in the TP Framework (for example, it was created by a client ORB), an exception is
raised.

The caller must call CORBA: : st ri ng_f r ee on the returned value when the object
reference is no longer needed.

Tobj S:: I nval i dObj ect
The object is nil or was not created by the TP Framework

3-56 CORBA C++ Programming Reference

TP Framework API

TP::get_object_reference()

Synopsis Returns a pointer to the current object.
C++Binding static CORBA:: Object_ptr TP::get_object_reference ();
Arguments None.

Return Value Theget obj ect _reference() method returns a CORBA: : Obj ect _pt r for the
current object when invoked within the scope of a CORBA object execution.
Otherwise, the Tobj S: : Ni | Obj ect exception israised.

Notethat if get _obj ect _reference() isinvoked from within either
Server::initialize() orServer::rel ease(),itisconsidered to beinvoked
outside the scope of an application’s TP object execution; therefore, the
Tobj S: : Ni | Cbj ect exception is raised.

Description This method returns a pointer to the current object. CORBA: : Obj ect _pt r pointer
that is returned can be passed to a client.

Exceptions The following exception can be raised by tfe¢ _obj ect _r ef erence() method:

N | Obj ect
Indicates that the method was invoked outside the scope of an application’s
CORBA object execution. Theeason string contain®ut Of Scope.

CORBA C++ Programming Reference 3-57

3 TP Framework

TP::open_xa_rm()

Synopsis

C++ Binding
Arguments
Return Values

Description

Opens the XA resource manager to which the invoking processis linked.
static void TP::open_xa rm));

None.

None.

Theopen_xa_r n() method opens the XA resource manager to which the invoking
processis linked. XA resource managers are provided by database vendors, such as
Oracle and Informix.

Note: Thefunctionality of this method is also provided by
Tobj : : TransactionCurrent::close xa rn(). However,
TP: : open_xa_r m() providesamore convenient way for aserver application
to close a resource manager because there is no need to obtain an object
reference to the TransactionCurrent object. A reference to the
TransactionCurrent object can be obtained from the Bootstrap object. See
“TP::bootstrap()” on page 3-45 for an explanation of how to obtain a reference
to the Bootstrap object. For more information about the TransactionCurrent
object, see Chapter 4, “C++ Bootstrap Object Programming Reference,” and
Using Transactions.

This method should be invoked once from $kever: :initialize() method for
each server that participates in a global transaction. This includes servers that are
linked with an XA resource manager, as well as servers that participate in a global
transaction, but are not actually linked with an XA-compliant resource manager.

Theopen_xa_r n() method should be invoked in place of an open invocation that is
specific to a resource manager. Because resource managers differ in their initializatio
semantics, the specific information needed to open a particular resource manager is
placed in thedPENI NFO parameter in theROUPS section of theJBBCONFI Gfile.

The format of thedPENI NFO string is dependent on the requirements of the database
vendor providing the underlying resource manager. For more information about the
CLOSEI NFO parameter, see theministration Guide and theaubbconf i g(5) reference
page in theBEA Tuxedo Reference Manual. Also, refer to database vendor
documentation for information about how to develop and install applications that use
the XA libraries.

Note: Only one resource manager can be linked to the invoking process.

3-58 CORBA C++ Programming Reference

TP Framework API

Exceptions ~ Tobj : : RVFai | ed
Thet x_open() call returned an error return code.

Note: Unlike other exceptions returned by the TP Framework, this exception is
definedint obj _c. h (which isderived fromt obj . i dl), notin
Tobj S_c. h (which is derived from Tobj S. i dI). Thisis because native
clients can also open XA resource managers. Therefore, the exception
returned is consi stent with the exception expected by native client codeand
by Server: : rel ease() if it usesthe alternate mechanism,
TransactionCurrent::cl ose_xa_rm which isshared with native
clients.

CORBA C++ Programming Reference 3-59

3 TP Framework

TP::orb()
Synopsis
C++ Binding
Arguments

Return Value

Description

Exceptions

Returns a pointer to an ORB object.
static CORBA : ORB ptr TP::orb();
None.

Upon successful completion, or b() returns a pointer to the ORB object that is created
by the TP Framework when the server program is started.

Access to the ORB object allows the application to invoke ORB operations, such as
string _to_object() andobject _to_string().

Note: Becausethe TP Framework owns the ORB object, the application must not
deleteit.

None.

3-60 CORBA C++ Programming Reference

TP Framework API

TP::register_factory()

Synopsis

C++ Binding

Arguments

Return Value

Description

Exceptions

Locates the BEA WebL ogic Enterprise FactoryFinder object and registers a BEA
WebL ogic Enterprise factory.

static void TP::register_factory(
CORBA: : (bject_ptr factory_or, const char* factory_id);

factory_or
Specifiesthe object referencethat was created for an application factory using
the TP: : cr eat e_obj ect _ref erence() method.

factory_id
Specifiesastring identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
C++ Server Applications.

None.

Thismethod locatesthe BEA WebL ogic Enterprise FactoryFinder object and registers
aBEA WebL ogic Enterprise factory. Typically, TP: : regi ster _factory() is
invoked from Server: :initialize() whenthe server createsits factories. The
regi ster_factory() method locates the BEA WebL ogic Enterprise FactoryFinder
object and registers the BEA WebL ogic Enterprise factory.

Caution: Callback objects (that is, those created by ajoint client/server directly
through the POA) should not be registered with a FactoryFinder.

The following exceptions can be raised by ther egi st er _f act or y() method:

Tobj S: : Cannot Pr oceed
Indicates that the FactoryFinder encountered an internal error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of theinterna error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameM anager running, start anew one. If no
NameManagers are running, restart the application.

Tobj S:: I nval i dNanme
Indicatesthat thei d stringisempty. Itisalso raised if thefield contains blank
spaces or control characters.

CORBA C++ Programming Reference 3-61

3 TP Framework

Tobj S:: I nval i dObj ect
Indicates that the f act ory valueisnil.

Tobj S: : Regi strar Not Avai | abl e
Indicates that the FactoryFinder object cannot |ocate the NameM anager.
Notify the operations staff immediately if this exceptionisraised. If no
naming services servers are running, restart the application.

Note: Another possible reason that this exception might occur is that the
FactoryFinder cannot participate in atransaction. Therefore, you may need
to suspend the current transaction before issuing the
TP: :regi ster_factory() andTP: : unregi ster_factory() cals. For
information on suspending and resuming transactions, refer to Using
Transactions in the online documentation.

Tobj S: : Over Fl ow
Indicates that thei d string islonger than 128 bytes (currently the maximum
allowable length).

3-62 CORBA C++ Programming Reference

TP Framework API

TP::unregister_factory()

Synopsis
C++ Binding

Arguments

Return Value

Description

Exceptions

Locates the BEA WebL ogic Enterprise FactoryFinder object and removes a factory.

static void TP::unregister_factory (
CORBA: : (bject_ptr factory_or, const char* factory_id);

factory_or
Specifiesthe object referencethat was created for an application factory using
the TP: : cr eat e_obj ect _ref erence() method.

factory_id
Specifiesastring identifier that is used to identify the application factory. For
some suggestions as to the composition of this string, see Creating CORBA
C++ Server Applications.

None.

Thismethod locatesthe BEA WebL ogic Enterprise FactoryFinder object and removes
afactory. Typicaly TP: : unregi ster _factory() isinvoked from
Server: :rel ease() tounregister server factories.

The following exceptions can be raised by the unr egi st er _fact ory() method:

Cannot Pr oceed
Indicates that the FactoryFinder encountered an internal error during the
search, with the error being written to the user log (ULOG). Notify the
operations staff immediately if this exception is raised. Depending on the
severity of theinterna error, the server running the FactoryFinder or the
NameManager may have terminated. If a FactoryFinder service has
terminated, start a new FactoryFinder service. If the NameManager has
terminated, and there is another NameM anager running, start anew one. If no
NameManagers are running, restart the application.

I nval i dName
Indicatesthat thei d stringisempty. Itisalso raised if thefield contains blank

spaces or control characters.

Regi strar Not Avai |l abl e
Indicates that the FactoryFinder object cannot locate the NameM anager.
Notify the operations staff immediately if this exception israised. If no
naming Services servers are running, restart the application.

Note: Another possible reason that this exception might occur isthat the
FactoryFinder cannot participatein atransaction. Therefore, you may need

CORBA C++ Programming Reference 3-63

3 TP Framework

to suspend the current transaction before issuing the

TP: :regi ster_factory() andTP: : unregi ster_factory() cals. For
information on suspending and resuming transactions, refer to Using
Transactionsin the online documentation.

Tobj S: : Over Fl ow

Indicates that thei d string islonger than 128 bytes (currently the maximum
allowable length).

3-64 CORBA C++ Programming Reference

TP Framework API

TP::userlog()
Synopsis
C++ Binding

Arguments

Return Value

Description

Exceptions

Example

Writes a message to the user log (ULOG) file.
static int TP: :userlog(char*, ...);

Thefirst argument isapri ntf (3S) style format specification. The pri nt f (3S)
argument is described ina C or C++ reference manual.

Theuser | og() method returns the number of charactersthat were output, or a
negative value if an output error was encountered. Output errors include the inability
to open or write to the current log file.

Theuser | og() method writes a message to the user log (ULOG) file. Messages are
appended to the ULOG file with atag made up of the time (hhmmss), system name,
process name, and process-id of the invoking process. Thetag is terminated with a
colon.

We recommend that server applications limit their use of user| og() messagesto
messagesthat can be used to help debug application errors; flooding the ULOG filewith
incidental information can make it difficult to spot actua errors.

None.

The following example shows how to use the TP: : user | og() method:

userlog (“System exception caught: %s”, e.get_id());

CORBA C++ Programming Reference 3-65

3 TP Framework

CosTransactions::TransactionalObject Interface Not
Enforced

Use of thisinterface is now deprecated. Therefore, the use of thisinterfaceis now
optional and no enforcement of descent from thisinterfaceis donefor objectsinfected
with transactions. The programmer can specify that an object is not to be infected by
transactions by specifying the never or i gnor e transaction policies. Thereis no
interface enforcement for eligibility for transactions. The only indicator isthe
transaction policy.

Note: The CORBAservices Object Transaction Service does not require that all
reguests be performed within the scope of atransaction. It is up to each object
to determine its behavior when invoked outside the scope of atransaction; an
object that requires a transaction context can raise a standard exception.

3-66 CORBA C++ Programming Reference

Error Conditions, Exceptions, and Error Messages

Error Conditions, Exceptions, and Error
Messages

Exceptions Raised by the TP Framework

The following exceptions are raised by the TP Framework and are returned to clients
when error conditions occur in, or are detected by, the TP Framework:

CORBA: : | NTERNAL

CORBA: : OBJECT_NOT_EXI ST

CORBA: : OBJ_ADAPTER

CORBA: : | NVALI D_TRANSACTI ON
CORBA: : TRANSACTI ON_ROLLEDBACK

Since the reason for these exceptions may be ambiguous, each time one of these
exceptionsisraised, the TP Framework also writes a descriptive error message that
explains the reason to the user log file.

Exceptions in the Server Application Code

Exceptions raised within a method invoked by a client are aways raised back to the
client exactly as they were raised in the method invoked by the client.

The following TP Framework callback methods are initiated by events other than
client requests on the object:

Tobj _Servant Base: : acti vate_obj ect ()
Tobj _Servant Base: : deacti vat e_obj ect ()
Server::create_servant ()

If exception conditions are raised in these methods, those exact exceptions are not
reported back to the client. However, each of these methodsis defined to raise an
exception that includes a reason string. The TP Framework will catch the exception
raised by the callback and log the reason string to the user log file. The TP Framework
may raise an exception back to the client. Refer to the descriptions of theindividual TP
Framework callback methods for more information about these exceptions.

CORBA C++ Programming Reference 3-67

3 TP Framework

Example

For Tobj _Ser vant Base: : deact i vat e_obj ect () thefollowing line of code throws
aDeact i vat eObj ect Fai | ed exception:

throw TobjS::DeactivateObjectFailed(“deactivate failed to save
state!”);

Thismessageisappended to the user log file with atag made up of the time (hhmmss),
system name, process name, and process-id of the calling process. Thetag is
terminated with a colon. The preceding throw statement causes the following line to
appear in the user log file:

151104.T1!simpapps.247: APPEXC: deactivate failed to save state!
Where 151104 isthetime (3:11:04pm), T1 isthe system name, simpapps isthe

process hame, 247 is the process-id, and APPEXCdentifies the message as an
application exception message.

Exceptions and Transactions

Exceptions that are raised in either CORBA object methods or in TP Framework
callback methods will not automatically cause a transaction to be rolled back unless
the TP Framework started the transaction. It is up to the application code to call
Current.rollback_only() if the condition that caused the exception to be raised
should also cause the transaction to be rolled back.

Restriction of Nested Calls on Corba Objects

The TP Framework restricts nested calls on CORBA objects. Therestriction is as
follows:

m During aclient invocation of a method of CORBA object A, CORBA object A
cannot be invoked by another CORBA object B that is acting as a client of
CORBA object A.

The TP Framework will detect thefact that asecond CORBA object isacting asaclient
to an object that is already processing a method invocation, and will return a
CORBA::OBJ_ADAPTERexception to the caller.

3-68 CORBA C++ Programming Reference

Error Conditions, Exceptions, and Error Messages

Note: Application code should not depend on this behavior; that is, users should not
make any processing dependent on thisbehavior. Thisrestriction may belifted
in afuture release.

CORBA C++ Programming Reference 3-69

3 TP Framework

3-70 CORBA C++ Programming Reference

CHAPTER

A4

C++ Bootstrap Object

Programming
Reference

Thistopic includes the following sections:

Why Bootstrap Objects Are Needed

How Bootstrap Objects Work

Types of Remote Clients Supported

Capabilities and Limitations

Bootstrap Object API. This section describes:

e Tobj Module

e C++ Mapping

e JavaMapping

e Microsoft Desktop Client Mappings

C++ Member Functions and Java Methods

Programming Examples. The following examples are provided:
e JavaClient Example: Getting a SecurityCurrent Object

e Visua Basic Client Example: Using the Bootstrap Object

CORBA C++ Programming Reference

4 Cc++ Bootstrap Object Programming Reference

Why Bootstrap Objects Are Needed

The Problem: To communicate with BEA WebL ogic Enterprise objects, a client
application must obtain object references. The client application uses the Bootstrap
object to obtain initial object references to six key objectsin a BEA WebL ogic
Enterprise domain:

m FactoryFinder—used to locate factory objects

m SecurityCurrent—used to log on to the system

m TransactionCurrent—used to manage transactions

m InterfaceRepository—used to obtain information about available interfaces

m NotificationService—used to locate Notification Service channel factory objects

m Tobj_SimpleEventsService—used to locate BEA Simple Events Service channel
factory objects

However, this poses a problektow does the client application access the Bootstrap
object?

The solution: Bootstrap objects are local programming objects, not remote CORBA
objects, in both the client and the server. When Bootstrap objects are created, their
constructor requires the network address of a BEA WebLogic Enterprise IIOP
Listener/Handler. Given this information, the Bootstrap object can generate object
references for the above-mentioned remote objects in the BEA WebLogic Enterprise
domain. These object references can then be used to access services available in tl
BEA WebLogic Enterprise domain.

How Bootstrap Objects Work

Bootstrap objects are created by a client or a server application that must access obj
references to the following objects:

m SecurityCurrent

4-2 CORBA C++ Programming Reference

How Bootstrap Objects Work

m TransactionCurrent

m FactoryFinder

m Interface Repository

m NotificationService

m Tobj_SimpleEventsService

Bootstrap objects may represent the first connection to a specific BEA WebL ogic
Enterprise domain depending on the format of the 11OP Listener/Handler address. If
the Null scheme Universal Resource Locator (URL) format is used (the only address
format supported in releases of BEA WebL ogic Enterprise prior to V5.1), the
Bootstrap objects represent the first connection. However, if the URL format is used,
the connection will not occur until after Bootstrap object creation. For more
information on address formats and connection times, refer to “Tobj_Bootstrap.”

For a BEA WebLogic Enterprise remote client, the Bootstrap object is created with the
host and the port for the BEA WebLogic Enterprise IIOP Listener/Handler. However,
for BEA WebLogic Enterprise native client and server applications, there is no need to
specify a host and port because they execute in a specific BEA WebLogic Enterprise
domain. The IIOP Listener/Handler host and the port ID are included in the BEA
WebLogic Enterprise domain configuration information.

After they are created, Bootstrap objects satisfy requests for object references for
objects in a particular BEA WebLogic Enterprise domain. Different Bootstrap objects
allow the application to use multiple domains.

Using the Bootstrap object, you can obtain six different references, as follows:

m SecurityCurrent

The SecurityCurrent object is used to establish a security context within a BEA
WebLogic Enterprise domain. The client can then obtain the
PrincipalAuthenticator from ther i nci pal _aut henti cat or attribute of the
SecurityCurrent object.

m TransactionCurrent

The TransactionCurrent object is used to participate in a BEA WebLogic
Enterprise transaction. The basic operations are as follows:

e Begin

CORBA C++ Programming Reference 4-3

4 Cc++ Bootstrap Object Programming Reference

4-4

Begin atransaction. Future operations take place within the scope of this
transaction.

e Commit

End the transaction. All operations on this client application have completed
successfully.

e Roll back
Abort the transaction. Tell all other participantsto roll back.
e Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction | ater.

¢ Resume

Resume participation in the specified transaction.

m FactoryFinder

The FactoryFinder object is used to obtain a factory. In the BEA WebL ogic
Enterprise system, factories are used to create application objects. The
FactoryFinder provides the following different methods to find factories:

e Getalist of all available factories that match a factory object reference
(find_factories).

e Get the factory that matches a name component consisting of i d and kind
(find_one_factory).

e Get thefirst available factory of a specific kind
(find_one_factory_by_id).

e Getalist of all available factories of a specific kind
(find_factories_by_id).
e Getalist of all registered factories (1i st _factori es).

m InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the BEA WebL ogic Enterprise domain.
Clients using the Dynamic Invocation Interface (DII) need areference to the
Interface Repository to be able to build CORBA request structures. The ActiveX
Client is a special case of this. Internally, the implementation of the COM/I1OP

CORBA C++ Programming Reference

How Bootstrap Objects Work

Bridge uses DI, so it must get the reference to the Interface Repository,
although this is transparent to the desktop client.

m NotificationService

The NotificationService object is used to obtain a reference to the event channel
factory (CosNotifyChannel Admin::EventChannel Factory) in the CosNotification
Service. In the BEA WebL ogic Enterprise system, the EventChannel Factory is
used to locate the Notification Service channel.

m Tobj_SimpleEventsService

The Tobj_SimpleEventsService object is used to obtain areference to the event
channel factory (Tobj_SimpleEvents::Channel Factory) in the BEA Simple
Events Service. In the BEA WebL ogic Enterprise system, the ChannelFactory is
used to locate the BEA Simple Events Service channel.

The FactoryFinder and Interface Repository objects are not implemented in the
environmental objects library. However, they are specific to aBEA WebL ogic
Enterprise domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objectsin use.

The Bootstrap object implies an association or "session” between the client application
and the BEA WebL ogic Enterprise domain. Within the context of thisassociation, the
Bootstrap object imposes a containment rel ationship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects arevalid only for this domain and only while the Bootstrap object exists.

Note: Resolving the SecurityCurrent when using the new URL address format
(corbal oc: // host nane: port_nunber) isaloca operation; that is, no
connection is made by the client to the IIOP Listener/Handler.

In addition, a client can have only one instance of each of the Current objects at any
time. If aCurrent object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
aclient application may have more than one reference to the single instance of the
Current object.

To create a new instance of a Current object, the application must first invoke the
destroy_current () method on the Bootstrap object. Thisinvalidates all of the
Current objects, but does not destroy the session with the BEA WebL ogic Enterprise
domain. After invoking dest r oy_current (), new instances of the Current objects
can be created within the BEA WebL ogic Enterprise domain using the existing
Bootstrap object.

CORBA C++ Programming Reference 4-5

4 Cc++ Bootstrap Object Programming Reference

To obtain Current objects for another domain, adifferent Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at onetime,

only one Bootstrap object may be “active;” that is, have Current objects associated
with it. Thus, an application must first invollest roy_current () on the "active"
Bootstrap object before obtaining new Current objects on another Bootstrap object,
which then becomes the active Bootstrap object.

Servers and native clients are inside of the BEA WebLogic Enterprise domain;
therefore, no “session” is established. However, the same containment relationships
are enforced. Servers and native clients access the domain they are currently in by
specifying an empty string, rather thiarost : port.

Note: Client and server applications must use the
Tobj Boot strap::resolve_initial _references()method, not the
ORB: :resolve_initial_references() method.

Types of Remote Clients Supported

4-6

Table 4-1 shows the types of remote clients that can use the Bootstrap object to acce
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository.

Table 4-1 Remote Clients Supported

Client Description

CORBA C++ CORBA C++ client applications use the BEA WebLogic Enterprise C++
environmenta objectsto access the CORBA objectsin a BEA WebL ogic
Enterprise domain, and the BEA WebL ogic Enterprise Object Request
Broker (ORB) to process from CORBA objects. Use the BEA WebL ogic
Enterprise system devel opment commandsto build these client applications
(see Commands, Processes, and MIB Reference).

CORBA C++ Programming Reference

Capabilities and Limitations

Table 4-1 Remote Clients Supported (Continued)

Client Description

CORBA Java CORBA Javaclient applications use the Java environmental objectsto
access CORBA objectsin a BEA WebL ogic Enterprise domain. However,
these client applicationsuse an ORB product other than the BEA WebL ogic
Enterprise ORB to process requests from CORBA objects. These client
applications are built using the ORB product’s Java development tools. The
BEA WebLogic Enterprise (C++) software supports interoperability with
Netscape Communicator versions 4.07 and 4.5, depending on the platform.

ActiveX Use the BEA WebLogic Enterprise Automation environmental objects to
access CORBA objects in a BEA WebLogic Enterprise domain, and the
ActiveX Client to process requests from CORBA objects. Use the
Application Builder to create bindings for CORBA objects so that they can
be accessed from ActiveX client applications, which are built using a
development tool such as Microsoft Visual Basic, Delphi, or PowerBuilder.

This container describes how to use the Bootstrap object in C++ and ActiveX client
applications. For reference information about how to use the Bootstrap object in Java
client applications, see the chapter Java Bootstrap Object Reference in the CORBA
Java Programming Reference.

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

m Multiple Bootstrap objects can coexist in a client application, athough only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke dest r oy_curr ent () on the Bootstrap
object associated with one domain before obtaining the Current objects on
another domain. Although it is possible to have multiple Bootstrap objects that
establish connectionsto different BEA WebL ogic Enterprise domains, only one
set of Current objectsis valid. Attempts to obtain other Current objects without
destroying the existing Current objects fail.

CORBA C++ Programming Reference 4-7

4 Cc++ Bootstrap Object Programming Reference

m Method invocations to any BEA WebL ogic Enterprise domain other than the
domain that provides the valid SecurityCurrent object fail and return a
CORBA: : NO_PERM SSI ON exception.

m Method invocations to any BEA WebL ogic Enterprise domain other than the
domain that provides the valid TransactionCurrent object do not execute within
the scope of atransaction.

m Thetransaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other (“native”) Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) is described first in
terms of the OMG Interface Definition Language (IDL) (for portability), and then in
C++, Java, and ActiveX. The C++ and Java descriptions add the necessary construct
to build a Bootstrap object for a particular BEA WebLogic Enterprise domain.

4-8 CORBA C++ Programming Reference

Bootstrap Object API

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (Tobj : : Fact or yFi nder)
InterfaceRepository InterfaceRepository object (CORBA: : Reposi t ory)
SecurityCurrent SecurityCurrent object (SecurityLevel 2:: Current)

TransactionCurrent

OTS Current object (Tobj : : Transacti onCurrent)

NotificationService

EventChannel Factory object
(CosNot i f yChannel Admi n: : Event Channel Fact ory)

Tobj_SimpleEventsService

BEA Simple Events Channel Factory object

(Tobj _Si nmpl eEvent s: : Channel Fact ory)

Table 4-3 describes the Tobj module exceptions.

Table 4-3 Tobj Module Exceptions

Exception

Description

Tobj : : I nval i dNane

Raised if i d isnot one of the names specified in Table 4-2.
Ontheserver,resol ve_initial _references aso
raises Tobj : : | nval i dNane when
SecurityCurrent ispassed.

Tobj : : I nval i dDorai n

On the server application, raised if the BEA WebLogic
Enterprise server environment is not booted.

CORBA: : NO_PERM SSI ON

Raisedif i disTransacti onCurrent or
Securi t yCur rent and another Bootstrap object in the
client owns the Current objects.

BAD_PARAM

Raised if the object isnil or if the hosthame contained in the
object does not match the connection.

CORBA C++ Programming Reference 4-9

4 Cc++ Bootstrap Object Programming Reference

Table 4-3 Tobj M odule Exceptions (Continued)

Exception Description

IMP_LIMT Raised if t he regi ster _cal | back_port methodis
called more than once.

C++ Mapping
Listing 4-1 showsthe C++ declarationsin the Tobj _boot strap. h file.

Listing4-1 Tobj_boostrap.h Declarations

#i ncl ude <CORBA. h>

class Tobj _Bootstrap {

public:
Tobj _Boot strap(CORBA: : ORB_ptr orb, const char* address);
CORBA: : Obj ect _ptr resolve_initial _references(
const char* id);
voi d register_cal |l back_port (CORBA: : Obj ect _ptr objref);
void destroy_current();
b

Java Mapping
Listing 4-2 showsthe Tobj _Boot st r ap. j ava mapping.

Listing 4-2 Tobj_Bootstrap.java Mapping

package com beasys;

public class Tobj Bootstrap {
public Tobj Bootstrap(org. ong. CORBA. ORB orb,
String address)
throws org. ong. CORBA. Syst enExcepti on;

4-10 CORBA C++ Programming Reference

Bootstrap Object API

public class Tobj Bootstrap {
public Tobj Boot strap(org.ong. CORBA. ORB orb, String address,
j ava. appl et . Appl et appl et)
t hrows org. ong. CORBA. Syst enExcepti on;

public void register_call back_port (orb. ong. CORBA. Cbj ect objref)
throws org.ong. CORBA. Syst enExcepti on;

public org.ong. CORBA. Obj ect
resolve_initial _references(String id)
throws Tobj. I nval i dNane,
or g. ong. CORBA. Syst enExcepti on;
public void destroy_current()
throws org. ong. CORBA. Syst enExcepti on;
}

Microsoft Desktop Client Mappings

The Bootstrap object isprovidedinthe BEA ActiveX Client softwarefor useby clients
that are implemented on Microsoft desktops. There are two possible interfaces that
desktop clients may use:

m The Automation interface for Visual Basic (VB), Delphi, or PowerBuilder
clients.

m The Dual interface that provides both the Automation interfaces required by
dynamic clients (Visual Basic) and the Vtable interfaces required by statically
linked clients (C++). The Bootstrap object in the ActiveX Client providesthe
hybrid DUAL interface.

Automation Mapping

Listing 4-3 shows Automation Bootstrap interface mapping.

Listing 4-3 Automation (Dual) Bootstrap I nterface M apping

interface DI Tobj Bootstrap : |Di spatch

HRESULT Initialize(
[in] BSTR address);

CORBA C++ Programming Reference 4-11

4 Cc++ Bootstrap Object Programming Reference

HRESULT Creat e(oj ect (
[in] BSTR progid,
[out, retval] IDispatch** rtrn);

HRESULT destroy_current();

C(++ Member Functions and Java Methods

This section describes the C++ member functions and Java methods for Bootstrap
objects.

4-12 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Tobj_Bootstrap

Synopsis
C++ Mapping

Java Mapping

Parameters

The Bootstrap object constructor.

Tobj _Bootstrap(CORBA: : ORB_ptr orb, const char* address);
throws Tobj:: BAD_PARAM
org. ong. CORBA. Syst emExcepti on;

publ ic Tobj Bootstrap(org.ong. CORBA. ORB orb, String address,
java. appl et. Appl et appl et)
t hrows com beasys. Tobj . BAD_PARAM
throws org. ong. CORBA. Syst enExcepti on;

orb
A pointer to the ORB object in the client. The Bootstrap object uses the
string_t o_object method of or b internally.

addr ess
The address of the BEA WebL ogic Enterprisedomain 11 OP Listener/Handler.
The addressis specified differently depending on the type of client and the
level of security required. There can be three types of clients, asfollows:

¢ Remoteclient

For a description of the remote clients supported by BEA Webl ogic

Enterprise systems, see the section “Types of Remote Clients Supported” on

page 4-6.

For remote clientsaddr ess specifies the network address of an [IOP
Listener/Handler through which client applications gain access to a BEA
WebLogic Enterprise domain.

The address may be specified in either of the following formats:

‘Il host nane: port_number”

‘I 4 H port_number”

“corbaloc:// host nane: port_nunber”
“corbalocs:// host nane: port_nunmber”

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). The hostname must be the remote
machine, and the local name resol ution facilities must unambiguously resolve
hostname to the address of the remote machine.

Note: The host name must begin with aletter character.

CORBA C++ Programming Reference 4-13

4 Cc++ Bootstrap Object Programming Reference

4-14

Note:

In the second format, the #. #. #. # isin dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted
decimal number represents the | P address of the remote machine.

In both the first and second formats, port_number isthe TCP port number at
which the domain process listens for incoming requests. The port_number
should be a number between 0 and 65535.

You can specify one or more TCP/IP addresses. You specify multiple
addresses using a comma-separated list. For example:

// mL. acne: 3050

// mL. acne: 3050, // n2. acne: 3050, // nB. acne: 3051

If you specify multiple addresses, the BEA WebL ogic Enterprise software
triesthe addresses in order, |eft to right, until aconnection is established. If a
syntax error is detected in any of the addresses asit isbeing tried, a
BAD_PARAMexception is returned to the caller immediately and the BEA
WebL ogic Enterprise software aborts the attempt to make a connection. For
example, if the first addressin the common separated list shown above were
//Im1.3050, a syntax error would be detected and the attempt to make a
connection would be aborted. If the BEA WebL ogic Enterprise software
encounters the end of the address list before it tries an addressthat is valid,
that is, a connection cannot be made to any of the addresses listed, the

I NVALI D_DOVAI N exception isreturned to the caller. If an exception other
than I NVALI D_DOMAI Nisraised, it isreturned to the caller immediately.

BEA WebL ogic Enterprise also supports random address selection. To used
random address selection, you can specify any member of an addresslist asa
grouping of pipe-separated (|) network addresses enclosed in parentheses.
For example:

(// L. acme: 3050|// n2. acne: 3050), // nl. acne: 7000

When you use this format, the BEA WebL ogic Enterprise system randomly
selects one of the addresses enclosed in parentheses, either / / nL. acme: 3050
or// n2. acne: 3050. If an exception other than | NVALI D_DOVAI Nis raised,
it is returned to the caller immediately. If a connection cannot be made to the
address sel ected, the next element that follows the addresses enclosed in
parentheses is attempted. If the end of the string is encountered before a
connection can be made, the | NVALI D_DOVAI N exception is thrown to the
caller.

If you specify an address list in the following format:

(// L. acnme: 3050| | // nR. acme: 3050), //r 1. acre: 7000

CORBA C++ Programming Reference

C++ Member Functions and Java Methods

the null address in the pipe-separated list is considered invalid. If the BEA
WebL ogic Enterprise software randomly selects the invalid address, the
BAD_PARAMexception is returned to the caller and the BEA WebL ogic
Enterprise software aborts the connection attempt.

The address string can be specified either in the TOBJADDR environment
variable or in the address parameter of the Tobj_Bootstrap constructor.

For information about the TOBJADDR environment variable, see the chapter
Managing Remote client Applications in the Administration Guide. However,
the address specified in Tobj _Boot st r ap always take precedence over the
TOBJADDR environment variable. To use the TOBJADDR environment
variable to specify an address string, you must specify an empty string in the
Tobj _Boot strap addr ess parameter.

Note: For C++ applications, TOBJADDR is an environment variable; for Java
applications, it is a property; for Java applets, it isan HTML parameter.

The third and fourth formats are called Uniform Resource Locator (URL)

address formats and are new in the BEA WebL ogic Enterprise version 5.1

release. Aswith the Null scheme URL address format

(/I host nane: por t _nunber), you use the URL address formats to specify

the location of the I1OP Listener/Handler. However, when the cor bal oc

URL address format is used, the client application’s initial connection to the
[IOP Listener/Handler is deferred until authentication of the principal’s, or
client’s, identity or the first user initiated operation. Usingdhebol ocs

URL address format has the same effect on the deferred connection time as
car bol oc, but, additionally, the client application makes its initial

connection to the ISL/ISH using the Secure Sockets Layer (SSL) Protocol.
Table 4-4 highlights the differences between to the two URL address formats.

Table 4-4 Differences Between cor baloc and cor balocs URL Address For mats

URL Address Formats Differencesin Mode of Operation

cor bal oc Invocationsto the I1OP Listener/Handler are unprotected. Configuring the 11OP
Listener/Handler for the SSL protocol is optional.

Note: A principal can secure the bootstrapping process by using the
Securitylevel 2:: Current::authenticate() operationto
specify that certificate-based authentication is to be used.

CORBA C++ Programming Reference 4-15

4 Cc++ Bootstrap Object Programming Reference

Table 4-4 Differences Between corbaloc and corbalocs URL Address Formats (Continued)

URL AddressFormats Differencesin Mode of Operation

cor bal ocs

Invocations to the |1 OP Listener/Handler are protected and the [1OP
Listener/Handler or the server ORB must be configured to enable the use of the
SSL protocol.

These new URL address formats are a subset of the definition of object
URL s adopted by the OMG as part of the Interoperable Naming Service
submission. The BEA WebL ogic Enterprise software also extends the URL
format described in the OMG Interoperable Naming Service submission to
support a secure form that is modeled after the URL for secure HTTP, as
well as to support the randomize functionality that was supported in the BEA
WebL ogic Enterprise version 4.2.

The cor bal oc and cor bal ocs URL schemes provide locations that are
easily manipulated in both TCP/IP and DNS centric environments. These
URL schemes contain aDNS-style host nane or |P address and a

port _nunber. Here are some examples of the URL formats:

corbal oc://curly: 1024, arry: 1022, j oe: 1999
cor bal ocs://host 1: 1024, { host 2: 1022| host 3: 1999}

As an enhancement to the URL syntax described in the OMG Interoperable
Naming Service submission, the BEA WebL ogic Enterprise version 5.1
software hasextended the syntax to support alist of multiple URL s, each with
adifferent scheme. Here are some examples of the extension:

corbal ocs://curly: 1024, corbaloc://larry: 1111,
cor bal ocs://ctxobj: 3434, nt hd: 3434, corbal oc://force: 1111

In the above example, if the parser reaches the URL

corbal oc://force: 1111, it resetsitsinternal state asif it had never
attempted secure connections and then begins attempting unprotected
connections.

Caution: Do not mix the use of Null scheme URL addresses

(/ 1 host name: port _nunber) with cor bal oc and cor bal ocs URL
addresses.

4-16 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Note:

Note:

Note:

Note:

The Bootstrap object supplied for use with the Netscape embedded Java
ORB and JavaSoft JDK ORB does not support cor bal oc and cor bal ocs
URLs.

For more information on using the cor bal oc and cor bal ocs URL
address formats, see Using Security.

The network address that is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the server
application’s UBBCONFI Gfile, both the address aswell asthe capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

ERROR: Unofficial connection fromclient at
<tcp/ip address>/ <port - nunber >

For example, if the network addressis specified (using the Null URL
addressformat) as/ / TRI XI E: 3500 inthe|SL command line option string
in the server application’s UBBCONFI Gfile, specifying either
/1192.12.4.6:35000r//trixie: 3500 in the Bootstrap constructor or
in TOBJADDR will cause the connection attempt to fail. On UNIX systems,
use the uname - n command on the host system to determine the
capitalization used. On Windows NT systems, see the host system'’s
network settingsin the Control Panel to determine the correct
capitalization.

The error in the previous note is deferred when the URL addressformat is
used, that is, the error does not occur at the time of Bootstrap object
construction because the connection to the ISL/ISH is deferred until later.

e Nativeclient

For anative client, the addr ess parameter in the Tobj _Boot st rap
constructor must always be an empty string (not anull pointer). The native
client connects to the application that is specified in the TUXCONFI G
environment variable. The constructor raises CORBA: : BAD PARAMIf the
address is not empty.

CORBA C++ Programming Reference 4-17

4 Cc++ Bootstrap Object Programming Reference

e Server acting asaclient

When servers need access to the Bootstrap object, they should obtain a
reference to it using the TP framework by invoking TP. boot st r ap() .
Servers should not attempt to create a new instance of the Bootstrap object.

applet (Appliesto Java method only)
Thisisapointer to theclient applet. If theclient appl et does not explicitly pass
the ISH host and port to the Bootstrap constructor, you can pass this
argument, which causes the Bootstrap object to search for the TOBJ ADDR
definition in the HTML file for the appl et.

Exception BAD PARAM
Raised if the object isnil or if the host contained in the object does not match
the connection or the host address (/ / host nane: port _nunber)isnotina
valid format.

Description A C++ member function (or Java method) that creates Bootstrap objects.

Return Values A pointer to anewly created Bootstrap object.

4-18 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Tobj_Bootstrap::register_callback_port

Synopsis
C++ Mapping
Java Mapping

Parameter

Exceptions

Description

Usage Notes

Registers the joint client/server’s listening port in IIOP Handler (ISH).
void register_cal |l back_port (CORBA: : Obj ect _ptr objref);

public void register_call back_port (orb. ong. CORBA. (bj ect objref)
t hrows org. ong. CORBA. Syst enExcepti on;

obj ref
The object reference created by the joint client/server.

BAD_PARAM
Raised if the object is nil or if the host contained in the object does not match
the connection.

INP LIMT
Raised if the egi ster _cal | back_port method is called more than once.

This C++ member function (or Java method) is called to notify the ISH of a listening
port in the joint client/server. This method should only be used for joint client/server
ORBs that do not support GIOP 1.2 bidirectional capabilities (thatis GIOP 1.0 and 1.1
client ORBs). For GIOP 1.0 and 1.1, the ISH supports only one listening port per joint
client/server; therefore, thegi st er _cal | back_port method should only be called
once per connected joint client/server.

The following information must be given consideration when using this method:

m Iftheregister_call back_port method is not invoked by the joint
client/server, the callback port is not registered with the ISH and the server
defaults to Asymmetric Outbound IIOP. In this case, yost start the server’s
[IOP Listener (ISL) with the O option. The- O option enables Asymmetric
outbound IIOP; otherwise, server-to-client invocations will not be allowed by the
ISL/ISH.

m If you are using the BEAWrapper Callbacks API instead of the POA and you
want to use bidirectional behavior, you always need to invoke the
regi ster_cal | back_port method, even when you are using a ISH that
supports GIOP 1.2.

m If you want to use bidirectional capability for a callback object, you must invoke
ther egi st er _cal | back_port method before you pass the callback object
reference to the server.

CORBA C++ Programming Reference 4-19

4 Cc++ Bootstrap Object Programming Reference

Return Values None.

4-20 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Tobj_Bootstrap::resolve_initial_references

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Description

Return Values

Acquires CORBA object references.

CORBA: : Cbj ect _ptr resolve_initial _references(
const char* id);
throws Tobj::InvalidNane,
org. ong. CORBA. Syst enmExcept i on;

public org. ong. CORBA. Obj ect
resolve_initial _references(String id)
throws Tobj.Inval i dNane,
org. ong. CORBA. Syst enmExcept i on;

id
This parameter must be one of the following:

“FactoryFinder”
“SecurityCurrent”
“TransactionCurrent”
“InterfaceRepository”
“NotificationService”
“Tobj_SimpleEventsService”

InvalidName
Raised if id isnot one of the names specified above. On the server,
resolve_initial_references also raises Tobj::InvalidName when
SecurityCurrent is passed.

CORBA::NO_PERMISSION
Raised if id is TransactionCurrent or SecurityCurrent and another Bootstrap
object in the client ownsthe Current objects.

This C++ member function (or Java method) acquires CORBA object references for
the FactoryFinder, SecurityCurrent, TransactionCurrent, NotificationService,
Tobj_SimpleEventsService, and InterfaceRepository objects. For the specific object
reference, invoke the _narrow function. For example, for FactoryFinder, invoke
Tobj::FactoryFinder::_narrow

Table 4-2 shows the object reference that is returned for each typeid .

CORBA C++ Programming Reference 4-21

4 Cc++ Bootstrap Object Programming Reference

Tobj_Bootstrap::destroy_current()

Synopsis Destroys the Current objects for the domain represented by the Bootstrap object.
C++ Mapping voi d destroy_current ();

Java Mapping public void destroy_current ()
throws org. ong. CORBA. Syst enExcepti on;

Exception Raises CORBA: : NO_PERM SSI ONif the Bootstrap object isnot the owner of the Current
objects.

Description ~ This C++ member function invalidates the Current objects for the domain represented
by the Bootstrap object. After invokingthedest r oy_current () method, the Current
objects are marked asinvalid. Any subsequent attempt to use the old Current objects
will throw the exception CORBA: : BAD | NV_ORDER. Good programming practiceisto
release all Current objects before invoking dest roy_current ().

Note: The destroy_current () method must be invoked on the Bootstrap object
for the domain that currently owns the two Current objects (Transaction and
Security). Thisalsoresultsinanimplicitinvocationtol ogof f for security and
implicitly rolls back any transaction that was begun by the client.

The application must invoke dest r oy_cur rent () beforeinvoking

resol ve_i ni tial _references for TransactionCurrent or SecurityCurrent on
another domain; otherwise, resol ve_i nitial _references raises

CORBA: : NO_PERM SSI ON.

Return Values None.

4-22 CORBA C++ Programming Reference

Automation Methods

Automation Methods

This section describes the Automation methods for Bootstrap objects.

CORBA C++ Programming Reference 4-23

4 Cc++ Bootstrap Object Programming Reference

Initialize
Synopsis Initializes the Bootstrap object into a BEA WebL ogic Enterprise domain.

MIDL Mapping HRESULT Initialize(
[in] BSTR host);

Automation Sub Initialize(address As String)
Mapping

Parameter address
The host name and port of the BEA Webl ogic Enterprise domain |10P
Listener/Handler. One or more TCP/IP addresses can be specified. Multiple
addresses are specified using a comma-separated list, asin the C++
mappings. If no address is specified, the value of the TOBJADDR
environmental variableis used.

Note: The network address that is specified in the Bootstrap constructor or in
TOBJADDR must exactly match the network address in the application’s
UBBCONFI Gfile, both theformat of the addressaswell asthe capitalization.
If the addresses do not match, the invocation to the Bootstrap constructor
will fail with the following seemingly unrelated error message:

ERROR Unofficial connection fromclient at
<tcp/ip address>/<port-nunber>

For example, if the network addressis specified as// TR Xl E: 3500 in the
ISL command line option string, specifying either / / 192. 12. 4. 6: 3500
or//trixie: 3500 intheBootstrap constructor or in TOBJADDRwill cause
the connection attempt to fail. On UNIX systems, use the unane - n
command on the host system to determine the capitalization used. On
Windows NT systems, see the host system’s network settings in the
Control Panel to determine the correct capitalization.

Return Values None.

4-24 CORBA C++ Programming Reference

Automation Methods

Exceptions Table 4-5 describes the exceptions.

Table 4-5 Initialize Exceptions

HRESULT Description M eaning
| TF_E_NO _PERM SSI ON_ Bootstrap already The Bootstrap object has already
YES initialized been initialized. To connect to a new
BEA WebL ogic Enterprise domain,
you must create a new Bootstrap
object.
E_| NVALI DARG Invalid address The address supplied is not valid.
parameter
E_OUTOFMEMOY Memory allocation The required memory could not be
failed allocated.
E FAIL Invalid domain Unable to communicate with the

BEA WebL ogic Enterprise domain at
the address specified or TOBJADDRIs
not defined.

<SYSTEM ERROR>

Unable to obtain
initial object

Unableto initialize the Bootstrap
object. The system error causing the
failureisreturned in the "Number"
member of the error object.

CORBA C++ Programming Reference 4-25

4 Cc++ Bootstrap Object Programming Reference

CreateObject

Synopsis Creates an instance of a Current environmental object.

MIDL Mapping HRESULT Creat eCbj ect (
[in] BSTR progid,
[out, retval] ID spatch** rtrn);

Automation Functi on CreateQbject(progid As String) As Qbject
Mapping

Parameter progid
The pr ogi d of the environmental object to create. Valid pr ogi ds are:

Tobj . Fact or yFi nder
Tobj . SecurityCurrent
Tobj . Transacti onCurrent
Return Value A reference to the interface pointer of the created environmental object.

Exceptions Table 4-6 describes the exceptions.

Table 4-6 CreateObject Exceptions

Exception Description M eaning

I TF_E_NO PERM SSI ON Bootstrap must The Bootstrap object has not been
_YES initialized initialized.

| TF_E_NO_PERM SSI ON Nopermission. |f the pr ogi d specifies a transaction

_NO or security current and another
Bootstrap object in the client owns the
current objects.

E | NVALI DARG Invalidprogi d Theprogi d specified is not valid.
parameter
E_| NVALI DARG Invalid name Therequested pr ogi d isnot oneof the
valid parameter values specified
above.
E_| NVALI DARG Unknown The requested pr ogi d is not
object registered on your system.

4-26 CORBA C++ Programming Reference

Automation Methods

Table 4-6 CreateObject Exceptions (Continued)

Exception Description M eaning

<SYSTEM ERROR> CoCreate The Bootstrap object could not create
I nstance() an instance of the requested object.
failed The system error is returned in the

"Number" member of the error object.

CORBA C++ Programming Reference 4-27

4 Cc++ Bootstrap Object Programming Reference

DestroyCurrent

Synopsis Logs out of the BEA WebL ogic Enterprise domain and invalidates the

TransactionCurrent and SecurityCurrent objects.

MIDL Mapping HRESULT destroy_current();

Automation Sub destroy_current()

Mapping

Parameters None

Return Value None

Exceptions None

Programming Examples

This section provides the following programming examples that use Bootstrap objects.
e JavaClient Example: Getting a SecurityCurrent Object
e Visual Basic Client Example: Using the Bootstrap Object

Java Client Example: Getting a SecurityCurrent Object

4-28

Listing 4-4 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object

i nport org. ong. CORBA. *;
i nport com beasys. *;

class client {
public static void main(String[] args)

{

Tobj . Pri nci pal Authenticator auth = null;

CORBA C++ Programming Reference

Programming Examples

try {
/'l Initialize ORB

ORB orb = ORB.init();

/'l Create Bootstrap object
Tobj _Bootstrap bs = new Tobj Bootstrap(orb,
"/l host:1234");

/1l Get security current
org. ong. CORBA. Obj ect ocur =

bs.resolve_initial _references("SecurityCQurrent");
SecuritylLevel 2. Current cur =
SecuritylLevel 2. Current Hel per. narrow ocur);

}

catch (Tobj.InvalidNane e){
Systemout.println("lInvalid name: " + e);
Systemexit(1l);

catch (Tobj.InvalidDomain e){

Systemout.println("lInvalid domain address:
/lhost:port: " + e);

Systemexit(1l);

}

catch (SystenException e){
Systemout. println("Exception getting security

current: " + e);

Systemexit(1l);

Visual Basic Client Example: Using the Bootstrap Object
Listing 4-5 shows how to program a Visual Basic client to use the Bootstrap object.

Listing4-5 Programming aClient in Visual Basic

‘Declare the Bootstrap object
Public oBootstrap As DITobj_Bootstrap

‘Declare the FactoryFinder object

CORBA C++ Programming Reference 4-29

4 Cc++ Bootstrap Object Programming Reference

4-30

Publ i ¢ oBsFact oryFi nder As DI Tobj Fact oryFi nder
‘Declare factory for Registrar object

Public oRegistrarFactory As DIUniversityB_RegistrarFactory
‘Declare actual Registrar object

Public oRegistrarFactory As DIUniversityB_RegistrarFactory

‘Create the Bootstrap object

Set oBootstrap = CreateObject(“Tobj.Bootstrap”)

‘Connect to the BEA WebLogic Enterprise Domain
oBootstrap.Initialize “//host:port”

‘Get the FactoryFinder for the BEA WebLogic Enterprise Domain

Set oBSFactoryFinder =
oBootstrap.CreateObject(“Tobj.FactoryFinder”)

‘Get a factory for the Registrar object
‘using the FactoryFinder method find_one_factory by id

Set oRegistrarFactory =
oBSFactoryFinder.find_one_factory by id(“RegistrarFactorylD")

'Create a Registrar object

Set oRegistrar = oRegistrarFactory.find_registrar(exc)

CORBA C++ Programming Reference

CHAPTER

5

FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the BEA WebL ogic Enterprise domain. The BEA
WebL ogic Enterprise NameManager provides the mapping of factory namesto object
references for the FactoryFinder. Multiple FactoryFinders and NameManagers
together provide increased availability and reliability. In this release the level of
functionality has been extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBA services Naming
Service, but is merely avehicle for storing registered factories.

Inthe BEA WebL ogic Enterprise environment, application factory objects are used to
create objects that clients interact with to perform their business operations (for
example, TellerFactory and Teller). Application factories are generally created during
server initialization and are accessed by both remote clients and clients located within
the server application.

The FactoryFinder interface and the NameM anager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domains in this release benefits customers that need to scale
to alarge number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factoriesin a BEA

WebL ogic Enterprise environment has been enhanced to allow factoriesin one domain
tobevisibleinanother. Thevisibility of factoriesin other domainsisunder the control
of the system administrator.

CORBA C++ Programming Reference 5-1

5 FactoryFinder Interface

Capabilities, Limitations, and Requirements

5-2

During server applicationinitialization, application factoriesneed to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve afactory object reference based on associated
names that were created when the factory was registered.

Thefollowing functional capabilities, limitations, and requirements apply to this
release:

The FactoryFinder interface isin compliance with the
CoslLi f eCycl e: : Fact or yFi nder interface.

Server applications can register and unregister application factories with the
CORBAservices Naming Service.

Clients can access objects using a single point of entry—the FactoryFinder.

Clients can construct names for objects using a simplified BEA scheme made
possible by BEA WebLogic Enterprise extensions to the CORBAservices
interface or the more general CORBA scheme.

Multiple FactoryFinders and NameManagers can be used to increase availability
and reliability in the event that one FactoryFinder or NameManager should fail.

Support for multiple domains. Factories in one domain can be configured to be
visible in another domain under administrative control.

Two NameManager services, at a minimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameManager, which
has been keeping a persistent journal of the registered factories, recovers the
previous state by processing the journal so as to re-establish its internal state.

One NameManager must be designated as the Master and the Master
NameManager must be started before the Slave. If the master NameManager is
started after one or more Slaves, the Master assumes that it is in recovery mode
instead of in initializing mode.

CORBA C++ Programming Reference

Functional Description

Functional Description

The BEA WebL ogic Enterprise environment promotes the use of the factory design

pattern asthe primary means for aclient to obtain areference to an object. Through the

use of thisdesign pattern, client applications require amechanism to obtain areference

to an object that acts as a factory for another object. Because the BEA WebL ogic
Enterprise environment has chosen CORBA as its visible programming model, the
mechanism used to locate factoriesis modeled after the FactoryFinder as described in

the CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applications locate factories by querying a FactoryFinder. The client application
can control the references to the factory object returned by specifying criteria that is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain a reference to a FactoryFinder in the domain
to which a client application is associated, the client application must invoke the

Tobj _Bootstrap: :resol ve_initial _references operation with a value of
“FactoryFinder” . This operation returns areference to a FactoryFinder that isin the

domain to which the client application is currently attached. For moreinformation, see

the section “Tobj_Bootstrap::register_callback_port” on page 4-19.

Note: The references to the FactoryFinder that are returned to the client application
can be references to factory objects that are registered on the same machine as
the FactoryFinder, on a different machine than the FactoryFinder, or possibly
in a different domain than the FactoryFinder.

CORBA C++ Programming Reference 5-3

5 FactoryFinder Interface

Registering a Factory

5-4

For aclient application to be able to obtain areference to afactory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (See Figure 5-1). Usingthe BEA WebL ogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP: : r egi st er _f act ory operation, once areferenceto a
factory object has been created. The referenceto the factory object, along with avalue
that identifies the factory, is passed to this operation. The registration of referencesto
factory objectsistypically done as part of initialization of the application (normally as
part of the implementation of the operation Server: :initialize).

Figure5-1 Registering a Factory Object

Name

Server TPFW
Manager

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

When the server application is shutting down, it must unregister any referencesto
factory objectsthat it has previously registered in the application server. Thisisdone
by passing the samereferenceto the factory object, al ong with the corresponding value
used to identify the factory, to the TP: : unr egi st er _f act ory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Server : : r el ease operation. For more information about
these operations, see the section “Server Interface” on page 3-21.

CORBA C++ Programming Reference

Functional Description

C++ Mapping

Listing 5-1 shows the C++ class (static) methods. For more information about these
methods, see the sections “TP::register_factory()” on page 3-61 and
“TP::unregister_factory()” on page 3-63.

Listing5-1 C++ Mappingsfor the Factory Registration Pseudo OMG IDL

#i ncl ude <TP. h>

static void TP::register_factory(
CORBA: : (bject_ptr factory_or, const char* factory_id);

static void TP::unregister_factory (
CORBA: : (bject_ptr factory_or, const char* factory_id);

TheTP. h header file contains the two method declarations and is to be included in
any server application that wants to use these methods.

A server application generally includes this header file within the application file that
contains the methods for application server initialization and release.

Locating a Factory

For a client application to request a factory to create a reference to an object, it must
first obtain a reference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria (see Figure 5-2).
The criteria are determined by the format of the particular FactoryFinder interface and
method used.

CORBA C++ Programming Reference 5-5

5 FactoryFinder Interface

5-6

Figure5-2 Locating a Factory Object

Client Bootstrap 'i:?rfg)e? Name
Manager

resolve_initial_references

CORBA::Object

ITo bj_FF::_narrow()

find_*_factor* | find factory object in
NameManager
. IOR string
CORBA::Object <

“*

I factory::_narrow()

The BEA WebL ogic Enterprise software extends the

CosLi f eCycl e: : Fact or yFi nder interface by introducing four methods in addition
tothefi nd_f act ori es() method declared for the FactoryFinder. Therefore, using
the Tobj extensions, a client can use either thefi nd_f actori es() or
find_factories_by_id() methodsto obtain alist of application factories. A client
canasousethefind_one_factory() or find_one_factory_by_i d() methodto
obtain asingle application factory, and 1 i st _factories () toobtainalist of all
registered factories.

The CosLi f eCycl e: : Fact oryFi nder interface definesaf act ory_key, whichisa
sequence of i d and ki nd strings conforming to the CosNaming Name shown below.
Theki nd field of the NameComponent for all BEA WebL ogic Enterprise application
factoriesis set to the string Fact or yI nt er f ace by the TP Framework when an

application factory isregistered. Applications supply their own value for thei d field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
ownfile(ns.idl andlcs.idl, respectively), only the OMG IDL codefor that subset
of both files that isrelevant for using the BEA WebL ogic Enterprise FactoryFinder is
shown in the following listings.

CORBA C++ Programming Reference

Functional Description

CORBAservices Naming Service Module OMG IDL

Listing 5-2 showsthe portionsof thens. i dl filethat arerelevant to the FactoryFinder.

Listing5-2 CORBAservicesNaming OMG IDL

Io------ ns.idl ------

nmodul e CosNam ng {
typedef string Istring;
struct NanmeConponent {
Istring id;
I string kind;
}

t ypedef sequence <NanmeConponent> Nane;
b

/1 This information is taken from CORBAservi ces: Conmon (bj ect

// Services Specification, page 3-6. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-3 shows the portions of the | cs. i dI filethat are relevant to the
FactoryFinder.

Listing 5-3 Life Cycle Service OMG IDL

[l ----- les.idl -----
#include “ns.idl"

module CosLifeCycle{
typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence<Factory> Factories;

exception NoFactory{ Key search_key; }

CORBA C++ Programming Reference 5-7

5 FactoryFinder Interface

interface FactoryFi nder {
Factories find factories(in Key factory_key)
rai ses(NoFactory);

}s

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, pages 6-10, 11. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

Tobj Module OMG IDL

Listing 5-4 showsthe Tobj Module OMG IDL.

Listing 54 Tobj Module OMG IDL

Io----- Tobj .idl -----

nodul e Tobj {
/1 Constants
const string FACTORY_KIND = "Factoryl nterface";
/1 Exceptions

exception Cannot Proceed { };
exception InvalidDomain {};
exception InvalidName { };

exception RegistrarNot Available { };

/1 Extension to LifeCycle Service

struct FactoryConponent {
CoslLi feCycl e:: Key factory_ key;
CoslLi feCycle:: Factory factory_ior;

I
t ypedef sequence<Fact or yConponent > FactorylLi sti ng;

interface FactoryFinder : CosLifeCycle::FactoryFi nder {
CoslLifeCycle::Factory find_one_factory(in CosLifeCycle:: Key
factory_key)

5-8 CORBA C++ Programming Reference

Functional Description

rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi st rar Not Avai | abl e) ;
CoslLifeCycle::Factory find_one_factory by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
CoslLifeCycle::Factories find factories by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
FactoryListing list _factories()
rai ses (Cannot Proceed,
Regi st rar Not Avai | abl e) ;

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain asthe FactoryFinder itself. However, it is possible to return references to
factory objectsin domains other than the domain in which a FactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (See Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives arequest to locate a factory object, it must first
determine if areferenceto afactory object that meets the specified criteria exists. If
thereis registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object islocal to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

CORBA C++ Programming Reference 5-9

5 FactoryFinder Interface

Figure5-3 Inter-Domain FactoryFinder Interaction (ff_fig3.wmf)

; Factor Factor Name
Client Bootstrap wctory ictory
Finder Finder Manager
resolve_initial_references
> Intra-domain
CORBA::Object R
< delegates request
H - to inter-domain
I Tobj_FF::_narrow() FactoryFinder .
ind factory
find_*_factor* iecti
— »| find_*_factor Nar?]tgls/l(;rlgger
) IOR strin
CORBA::Object CORBA::Object |« d
Ifactory::fnarrow()

If, on the other hand, the information indicates that the actual factory object isfrom
another domain, the FactoryFinder del egates the request to an interdomain
FactoryFinder in the appropriate domain. Asaresult, only aFactoryFinder in the same
domain asthe factory object will contain an actual reference to the factory object. The
interdomain FactoryFinder is responsible for returning the reference of the factory
object to the local FactoryFinder, which subsequently returnsit to the client.

Why Use BEA WebLogic Enterprise Extensions?

The BEA WebL ogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

m Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

m Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

m Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register a factory object.

5-10 CORBA C++ Programming Reference

Functional Description

Therefore, BEA WebL ogic Enterprise extends the interfaces defined in the

CORBA services specification to make using a FactoryFinder easier. The extensions
are manifested as refined interfaces to the FactoryFinder that are derived from the
interfaces specified in the CORBA services specification.

Creating Application Factory Keys

Two of the five methods provided by the FactoryFinder interface accept
CosLi f eCycl e: : Keys, which corresponds to CosNami ng: : Name. A client must be
able to construct these keys.

The CosNaming Specification describestwo interfacesthat constituteaNamesLibrary
interface that can be used to create and manipulate CosLi f eCycl e: : Keys. The
pseudo OMG IDL statementsfor theseinterfacesisdescribed in the following section.

Names Library Interface Pseudo OMG IDL

Note: Thisinformation istaken from the CORBAservices: Common Object Services
Soecification, pp. 3-14 t018. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipul ate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
namesare described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described

in Chapter 3 of the CORBAservices: Common Object Services Specification, in the

section “The CosNaming Module,” the CORBAservices Naming Service supports the
NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service through the
NamingContext interface.

CORBA C++ Programming Reference 5-11

5 FactoryFinder Interface

Note: Itisnot arequirement to use the nameslibrary in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the L Name interface, as shown in Listing 5-5.

Listing 55 NamesLibrary Interfacesin Pseudo-1DL

interface LNameConponent { // PIDL
const short MAX LNAME _STRLEN = 128;

exception NotSet{ };
exception OverFlow };

string get_id
rai ses (NotSet);
void set_id(in string i)
rai ses (OverFl ow);
string get_kind()
rai ses(Not Set) ;
void set_kind(in string k)
rai ses (OverFl ow);
voi d destroy();
I

interface LNanme {// PIDL
exception NoComponent{ };
exception OverFl o };
exception | nvalidNane{ };
LNare i nsert_conponent (in unsigned long i,
i n LNaneConponent n)
rai ses (NoConponent, OverFl ow);
LNarmeConponent get _conponent (i n unsigned long i)
rai ses (NoConponent);
LNameConponent del ete_conponent (i n unsigned long i)
rai ses (NoConmponent);
unsi gned | ong num conponents();
bool ean equal (in LName | n);
bool ean | ess_than(in LName | n);
Nane to_idl _forn()
rai ses (Invali dNane);
void fromidl _form(in Nane n);
voi d destroy();
b

LNane create_ | name();// C C++
LNameConponent create_| name_conponent ();// C C++

5-12 CORBA C++ Programming Reference

Functional Description

Creating a Library Name Component

To create alibrary name component pseudo-object, use the following C/C++ function:

LNarmeConponent creat e_| name_conponent () ; Il O C++

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-5.

(Creating a Library Name

To create alibrary name pseudo-object, use the following C/C++ function:

LNane create_| name(); /Il O CH+

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-5.

The LNameComponent Interface

A name component consists of two attributes: i dent i fi er and ki nd. The
L NameComponent interface definesthe operations associated with these attributes, as
follows:

string get_id()

rai ses(Not Set) ;

void set_id(in string k);
string get_kind()

rai ses(Not Set) ;

void set_kind(in string k);

get _id
The get _i d operation returnsthei denti fi er attribute’s value. If the
attribute has not been set, the Set exception is raised.
set_id
Theset _i d operation sets thelent i fi er attribute to the string argument.
get _kind

Theget _ki nd operation returns thia nd attribute’s value. If the attribute
has not been set, thet Set exception is raised.

CORBA C++ Programming Reference 5-13

5 FactoryFinder Interface

The LName Interface

set ki nd

Theset _ki nd operation setsthe ki nd attribute to the string argument.

Thefollowing operations are described in this section:

Destroying alibrary name component pseudo-object
Inserting a name component

Getting the it name component

Deleting a name component

Number of name components

Testing for equality

Testing for order

Producing an OMG IDL form

Translating an OMG IDL form

Destroying alibrary name pseudo-object

Destroying a Library Name Component Pseudo-Object

The destroy operation destroys library hame component pseudo-objects.

voi d destroy();

Inserting a Name Component

5-14

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
i nsert_conponent operation inserts a component after positioni .

LNane insert_conponent(in unsigned |Iong i, in LNameConponent | nc)
rai ses(NoConponent, OverFl ow);

If component i -1 is undefined and component i is greater than 1 (one), the
i nsert_conponent operation raises the NoConponent exception.

CORBA C++ Programming Reference

Functional Description

If the library cannot all ocate resources for the inserted component, the Over Fl ow
exception israised.

Getting the i Name Component

The get _conponent operation returnsthe i th component. The first component is
numbered 1 (one).

LNaneConponent get_ conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception israised.

Deleting a Name Component

The del et e_conponent operation removes and returnsthe i th component.

LNaneConponent del et e_conponent (i n unsigned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception israised.

After adel et e_conponent operation has been performed, the compound name has
one fewer component and components previously identified asi +1...n are now
identified asi ...n-1.

Number of Name Components

The num conponent s operation returns the number of componentsin alibrary name.

unsi gned | ong num conponent s();

Testing for Equality
The equal operation tests for equality with library name| n.
bool ean equal (i n LNanme | n);

Testing for Order

Thel ess_t han operation tests for the order of alibrary namein relation to library
namel n.

CORBA C++ Programming Reference 5-15

5 FactoryFinder Interface

bool ean | ess_than(in LNane I n);

This operation returnstrue if the library name is less than the library name | n passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Nane. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Narme to_idl _form))
rai ses(| nval i dNane) ;

If the name s of length O (zero), the | nval i dName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of typeName. Thefollowing PIDL operation on library names
sets the components and ki nd attribute for alibrary name from areturned OMG IDL
defined structure, Nane.

void fromidl form(in Nanme n);

Destroying a Library Name Pseudo-Object

The dest r oy operation destroys library name pseudo-objects.

voi d destroy();

C++ Mapping

The Names Library pseudo OMG IDL interface maps to the C++ classes shown in
Listing 5-6, which can be found in the NamesLi b. h header file.

5-16 CORBA C++ Programming Reference

Functional Description

Two BEA WebL ogic Enterprise extensionsto CORBA are included to support

scalability. Specifically, the LNaneConponent : : set _i d() and
LNaneConponent : : set _ki nd() methods raise an Over FI ow exception if the length

of the input string exceeds MAX_LNAME_STRLEN. Thislength coincides with the

maximum length of the BEA Webl ogic Enterprise object ID (OID) and interface
name. For a detailed description of the Library Name class, see the section “Names
Library Interface Pseudo OMG IDL" on page 5-11.

Listing5-6 Library Name Class

const short MAX LNAME STRLEN = 128;

cl ass LNanmeConponent {
public:

I

class Not Set{ };

class OverFlow };

static LNaneConponent* create_| name_conponent () ;

voi d destroy();

const char* get _id() const throw (NotSet);

voi d set _id(const char* i) throw (OverFl ow);
const char* get _kind() const throw (Not Set);

voi d set _kind(const char* k) throw (OverFl ow);

cl ass LNane {
public:

cl ass NoConponent{ };
class OverFlowf };
class I nvalidNane{ };
stati c LNane* create_| name();
voi d destroy();
LName* insert_conponent (const unsigned long i,
LNarmeConponent * n)
t hr ow (NoConponent, OverFl ow);
const LNaneConponent* get_conponent (
const unsigned long i) const
t hr ow (NoComnponent) ;
const LNaneConponent* del et e_conponent (
const unsigned long i)
t hr ow (NoConponent) ;
unsi gned | ong num conponent s() const;
CORBA: : Bool ean equal (const LName* | n) const;
CORBA: : Bool ean | ess_t han(
const LNane* | n) const; // not inplenmented
CosNam ng: : Nanme* to_idl _form)
throw (I nvali dNane);

CORBA C++ Programming Reference

5-17

5 FactoryFinder Interface

void from.idl _form const CosNami ng:: Nane& n);

Java Mapping

5-18

The Names Library pseudo OMG IDL interface mapsto the Java classes contained in
thecom beasys. Tobj package, shownin Listing 5-7. All exceptionsarecontained in
the same package.

For adetailed description of the Library Name class, refer to Chapter 3 in the
CORBAservices: Common Object Services Specification.

Listing 57 Java Mapping for L NameComponent

public class LNaneConponent {

public static LNaneConponent create_ | name_conponent();
public static final short MAX LNAVE STRI NG = 128;
public void destroy();
public String get _id() throws Not Set;
public void set _id(String i) throws OverFl ow,
public String get_kind() throws NotSet;

c

public void set _kind(String k) throws OverFl ow;

I
public class LNane {

public static LNane create_|l name();

public void destroy();

public LName insert_conponent(long i, LNaneConponent n)
t hrows NoConponent, Over Fl ow,

publ i c LNanmeConponent get_conponent (long i)
t hr ows NoComnponent ;

publi c LNanmeConponent del et e_conponent (1 ong i)
t hr ows NoComnponent ;

public | ong num conmponent s();

public bool ean equal (LName I n);

public bool ean | ess_than(LName | n);// not inplenmented

public org. ong. CosNani ng. NaneConponent [] to_idl _form()
t hrows | nval i dNane;

public void from.idl _form org. omg. CosNani ng. NameConponent[] nr);

H

CORBA C++ Programming Reference

C++ Member Functions and Java Methods

C(++ Member Functions and Java Methods

This section describes the FactoryFinder C++ member functions and Java methods.

Note: All FactoryFinder member functions, except thel ess_t han member function

in LName, are implemented in both C++ and Java.

The following methods are described in this section:

CoslLi feCycl e:: FactoryFinder::find factories

Tobj : :
Tobj : :
Tobj : :
Tobj : :

Note:

Factoryfinder::find one_factory

Factoryfinder::find one_factory by id
Factoryfinder::find factories by id

Factoryfinder::list factories

The CosLifeCycl e:: FactoryFinder::find_factories methodisthe
standard CORBA CosLifeCycle method. The four Tobj methods are

extensions to the CosLifeCycle interface and, therefore, inherit the attributes
of the CosLifeCycle interface.

CORBA C++ Programming Reference 5-19

5 FactoryFinder Interface

CosLifeCycle::FactoryFinder::find_factories

Synopsis
C++ Mapping

Java Mapping

Parameter

Exception

Description

Obtains a sequence of factory object references.

CoslLifeCycle:: Factories *
CORBA: : Obj ect _ptr CoslLifeCycle::FactoryFinder::find factories(
const CosNani ng:: Name& factory_key)
throw (CoslLi feCycl e:: NoFactory);

i nport org.ony. CosLi feCycl e. *;

public org. ong. CORBA. bject[] find factories(
or g. ong. CosNam ng. NaneConponent[] factory_key)
throws org.ong. CosLi feCycl e. NoFact ory;

factory_key
This parameter isan unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an i d and aki nd,
both of type string. Thei d field is used to represent the identity of factory
object. Theki nd field is used to indicate how the value of thei d field should
be interpreted.
References to factory object registered using the operation
TP: : regi ster_f actory will have akind value of “Factoryinterface”

CORBA::BAD_PARAM
Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in
the factory_key parameter.

The find_factories method is called by an application to obtain a sequence of
factory object references. The operation is passed a key used to identify the desired
factory. The Key isaname, as defined by the CORBA services Naming service. More
than one factory may match the key, and, if that is the case, the FactoryFinder returns
a sequence of factories.

The scope of the key isthe FactoryFinder. The FactoryFinder assigns no semanticsto
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factories or objects they create.

5-20 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Key values are considered equd if they are of equal length (same number of elements
in the sequence), and if every NameComponent value in the Key matches the
corresponding NameComponent value at the exact same location in the Key that was
specified when the reference to the factory object was registered.

Return Values An unbounded sequence of referencesto Factory objects that match the information
specified asthe value of the f act ory_key parameter. In C++, the method returns a
sequence of object references of type CosLi f eCycl e: : Fact or y. In Java, the method
returns an unbounded array of object references of type or g. ong. CORBA. Qbj ect .

If the operation raises an exception, thereturn value isinvalid and does not need to be
released by the caller.

CORBA C++ Programming Reference 5-21

5 FactoryFinder Interface

Tobj::FactoryFinder::find_one_factory

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Obtains a reference to a single factory object.

virtual CoslLifeCycle::Factory ptr
find _one factory(const CosNam ng::Name& factory _key) = 0;

public org. ong. CORBA. Obj ect
find_one_factory(org. ong. CosNam ng. NameConponent [] factory_key)
t hr ows
or g. ong. CosLi f eCycl e. NoFact ory,
com beasys. Tobj . Cannot Pr oceed,
com beasys. Tobj . Regi strar Not Avai | abl e;

factory_key
This parameter isan unbounded sequence of NameComponents (tuple of <id,
kind> pairs) that uniquely identifies a factory object reference.
A NameComponent is defined as a having two members: an i d and aki nd,
both of type string. Thei d field is used to represent the identity of factory
object. Theki nd field isused to indicate how the value of thei d field should
be interpreted.
References to factory object registered using the operation
TP: : regi ster_factory will have akind value of “Factoryinterface”

CORBA::BAD_PARAM
Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the
NameM anager.
Error information is written to the user log.

5-22 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Description

Return Values

Thefind_one_factory methodiscalled by an application to obtain areferenceto a

single factory object whose key matches the value of the key specified as input to the

method. If more than one factory object is registered with the specified key, the
FactoryFinder selects one factory object based on the FactoryFinder’s load balancing
scheme. As a result, invoking thend_one_f act ory method multiple times using

the same key may return different object references.

The scope of the key is the FactoryFinder. The FactoryFinder assigns no semantics to
the key. It simply matches keys. It makes no guarantees about the interface or
implementation of the returned factory or objects they create.

Key values are considered equal if they are of equal length (same number of elements
in the sequence), and if every NameComponent value in the Key matches the
corresponding NameComponent value at the exact same location in the Key that was
specified when the reference to the factory object was registered.

An object reference for a factory object. In C++, the method returns an object reference
of typeCosLi f eCycl e: : Fact ory. In Java, the method returns an object reference of
typeor g. ong. CORBA. Obj ect .

If the operation raises an exception, the return value is invalid and does not need to be
released by the caller.

CORBA C++ Programming Reference 5-23

5 FactoryFinder Interface

Tobj::FactoryFinder::find_one_factory_by_id

Synopsis
C++ Mapping

Java Mapping

Parameter

Exceptions

Description

Obtains a reference to a single factory object.

virtual CoslLifeCycle::Factory ptr
find_one factory by id(const char * factory_ id) = O;

public org. ong. CORBA. Obj ect
find_one_factory by id(java.lang. String factory_id)
t hr ows
org. ong. CosLi feCycl e. NoFact ory,
com beasys. Tobj . Cannot Proceed,
com beasys. Tobj . Regi st rar Not Avai | abl e;

factory_ id
A NULL-terminated string that contains avalue that is used to identify the
registered factory object to be found.
Thevalue of thef act ory_i d parameter is used asthe value of thei d field
of aNameComponent that has aki nd field with the value
“FactoryInterface” when comparing against registered references for
factory objects.

CORBA::BAD_PARAM
Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the
NameM anager.
Error information is written to the user log.

Thefind_one_factory_by id method is called by an application to obtain a
reference to a single factory object whose registration |D matches the value of the ID
specified as input to the method. If more than one factory object is registered with the

5-24 CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Return Values

specified ID, the FactoryFinder selects one factory object based on the FactoryFinder’s
load balancing scheme. As a result, invokingfthed_one_f actory_by_id
operation multiple times using the same ID may return different object references.

Thefind_one_factory by id method behaves the same as the

fi nd_one_f act or y operation that was passed a Key that contains a single
NameComponent with ard field that contains the same value asfthet ory_i d
parameter and la nd field that contains the valuEactoryinterface”

The registered identifier for afactory is considered equal to the value of the
factory_id parameter if the result of constructing a CosLifeCycle::Key structure
containing asingle NameComponent that hasthefactory id parameter asthevalue
of theid field and the value“Factoryinterface” asthevalueof thekind field. The
values must match exactly in al respects (case, location, etc.).

An object referencefor afactory object. In C++, the method returnsan object reference
of type CosLifeCycle::Factory . In Java, the method returns an object reference of
type org.omg.CORBA.Object

If the operation raises an exception, thereturn value isinvalid and does not need to be
released by the caller.

CORBA C++ Programming Reference 5-25

5 FactoryFinder Interface

Tobj::FactoryFinder::find_factories_by _id

Synopsis

C++ Mapping

Java Mapping

5-26

Parameter

Exceptions

Obtains a sequence of one or more factory object references.

virtual CosLifeCycle::Factories *
find factories by id(const char * factory_ id) = 0;

public org. ong. CORBA. Obj ect[]
find factories by id(java.lang. String factory_id)
t hr ows
or g. ong. CosLi f eCycl e. NoFact ory,
com beasys. Tobj . Cannot Pr oceed,
com beasys. Tobj . Regi st rar Not Avai | abl e;

factory_ id
A NULL-terminated string that contains avalue that is used to identify the
registered factory object to be found.
Thevalue of thef act ory_i d parameter is used asthe value of thei d field
of aNameComponent that has aki nd field with the value
“FactoryInterface” when comparing against registered references for
factory objects.

CORBA::BAD_PARAM
Indicates that the value of an input parameter has an inappropriate value or is
invalid. Of particular importance, the exception israised if no value or a
NULL value for the parameter factory_key is specified.

CosLifeCycle::NoFactory
Indicates that there are no factories registered that match the information in
the factory_key parameter.

Tobj::CannotProceed
Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj::RegistrarNotAvailable
Indicates that the FactoryFinder could not communicate with the
NameM anager.
Error information is written to the user log.

CORBA C++ Programming Reference

C++ Member Functions and Java Methods

Description

Return Values

Thefind_factories_by_i dmethodiscalled by an application to obtain a sequence
of one or more factory object references. The method is passed a NULL terminated
string that contains the identifier of the factory to be located. If more than one factory
object is registered with the specified 1D, the FactoryFinder will return alist of object
references for the matching registered factory objects.

Thefind_factories_by_id method behavesthe sameasthefi nd_factory
operation that was passed a Key that contains a single NameComponent with ani d
field that contains the same value asthef act ory_i d parameter and aki nd field that
contains the value “FactorylInterface”

The registered identifier for afactory is considered equal to the value of the
factory_id parameter if the result of constructing a CosLifeCycle::Key structure
containing asingle NameComponent that hasthefactory id parameter asthevalue
of theid field and the value“Factoryinterface” asthevalueof thekind field. The
values must match exactly in al respects (case, location, etc.).

An unbounded sequence of references to factory objects that match the information
specified asthe value of the factory_key parameter. In C++, the method returns a
sequence of object references of type CosLifeCycle::Factory . In Java, the method
returns an unbounded array of object references of type org.omg.CORBA.Object

If the operation raises an exception, thereturn value isinvalid and does not need to be
released by the caller.

CORBA C++ Programming Reference 5-27

5 FactoryFinder Interface

Tobj::Factoryfinder::list_factories

Synopsis
C++ Mapping
Java Mapping

Exception

Description

Return Values

Obtains alists of factory objects currently registered with the FactoryFinder.
virtual FactoryListing * list _factories() = O;

public com beasys. Tobj . Fact oryConponent[] l|ist_factories()
t hr ows
com beasys. Tobj . Cannot Pr oceed,
com beasys. Tobj . Regi strar Not Avai | abl e;

Tobj : : Cannot Pr oceed
Indicates that the FactoryFinder or NameManager encountered an internal
error while attempting to locate a reference for a factory object.
Error information is written to the user log.

Tobj : : Regi strar Not Avai | abl e
Indicates that the FactoryFinder could not communicate with the

NameM anager.
Error information is written to the user log.

Thelist_factories methodiscalled by an application to obtain alist of the factory
objects currently registered with the FactoryFinder. The method returns both the Key
used to register the factory, aswell as areference to the factory object.

An unbounded sequence of Tobj : : Fact or yConponent . Each occurrence of a
Tobj : : Fact or yConponent in the sequence contains a reference to the registered
factory object, aswell asthe CosLi f eCycl e: : Key that was used to register that
factory object.

If the operation raises an exception, the return value isinvalid and does not need to be
released by the caller.

5-28° CORBA C++ Programming Reference

Automation Methods

Automation Methods

This section describes the DITobj_FactoryFinder Automation methods.

CORBA C++ Programming Reference 5-29

5 FactoryFinder Interface

DITobj_FactoryFinder.find_one_factory

Synopsis
MIDL Mapping

Automation
Mapping

Parameters

Exceptions

Obtains a single application factory.

HRESULT find_one_factory(
[in] VAR ANT factory_ key,
[in,out,optional] VARI ANT* exceptionlnfo,
[out,retval] |Di spatch** returnVal ue);

Function find one factory(factory_ key, [exceptionlnfo]) As Object

factory_key
This parameter contains a safe array of DICosNaming_NameComponent
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionlnfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
This exception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_key.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search with the error being
written totheuser log (ULOG). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinterna error, the server
running the FactoryFinder or CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If no naming services serversare running,
restart the application.

Regi st rar Not Avai | abl e
This exception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if thisexception israised. If no naming services servers are
running, restart the application.

5-30 CORBA C++ Programming Reference

Automation Methods

Description This member function instructs the FactoryFinder to return one application factory
object reference whose key matches the input f act or y_key. To accomplish this, the
member function performs an equality match; that is, every NameComponent <id,
kind> pair in theinput f act ory_key must exactly match each <id, kind> pair in the
application factory’s key. If multiple factory keys contain the irfautt ory_key, the
FactoryFinder selects one factory key, based on an internally defined load balancing
scheme. Invokingi nd_one_f act ory multiple times using the same may return
different object references.

Return Values Returns a reference to an interface pointer for the application factory.

CORBA C++ Programming Reference 5-31

5 FactoryFinder Interface

DITobj_FactoryFinder.find_one_factory_by_id

Synopsis
MIDL Mapping

Automation
Mapping
Parameters

Exceptions

Obtains a single application factory.

HRESULT find_one _factory by id(
[in] BSTR factory_id,
[in,out,optional] VARI ANT* exceptionlnfo,
[out,retval] |Di spatch** returnVal ue);

Function find one factory by id(factory id As String,
[exceptionlnfo]) As (hject

factory_ id
This parameter represents a string identifier that is used to identify the kind
or type of application factory. For some suggestions as to the composition of
this string, see Creating CORBA C++ Server Applications.

exceptionlnfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
This exception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_i d.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search, with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinterna error, the server
running the FactoryFinder or the CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming services running,
restart the application.

Regi st rar Not Avai | abl e
This exception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exception is raised. If no naming service serversare
running, restart the application.

5-32 CORBA C++ Programming Reference

Automation Methods

Description

Return Values

This member function instructs the FactoryFinder to return one application factory

object reference whosei d in the key matches the method’s inpattory_i d. To
accomplish this, the member function performs an equality match (that is, the input
fact ory_i d must exactly match theal in the <id,kind> pair in the application

factory’s key). If multiple factory keys contain the inpactory_i d, the

FactoryFinder selects one factory key, based on an internally defined load balancing
scheme. Invokingi nd_one_f act ory_by_i d multiple times using the same may
return different object references.

Returns a reference to an interface pointer for the application factory.

CORBA C++ Programming Reference 5-33

5 FactoryFinder Interface

DITobj_FactoryFinder.find_factories_by id

Synopsis
MIDL Mapping

Automation
Mapping
Parameters

Exceptions

Obtains a list of application factories.

HRESULT find_factories_by id(
[in] BSTR factory_id,
[in,out,optional] VARI ANT* exceptionlnfo,
[out,retval] VARIANT* returnVal ue);

Function find factories by id(factory id As String,
[exceptionl nfo])

factory_ id
This parameter represents a string identifier that will be used to identify the
kind or type of application factory. The Creating Client Applicationsonline
document provides some suggestions as to the composition of this string.

exceptionlnfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
This exception israised if the FactoryFinder cannot find an application
factory object reference that corresponds to the input f act ory_key or
factory_id.

Cannot Pr oceed
This exception israised if the FactoryFinder or CORBA services Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinterna error, the server
running the FactoryFinder or CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If no naming services serversare running,
restart the application.

Regi st rar Not Avai | abl e
This exception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if thisexception israised. If no naming services servers are
running, restart the application.

5-34 CORBA C++ Programming Reference

Automation Methods

Description

Return Values

Thismember function instructs the FactoryFinder to return alist of application factory
object referenceswhosei d in the keys match the method’s inpuakt ory_i d. To
accomplish this, the member function performs an equality match (that is, the input
factory_i d must exactly match eachi in the <id,kind> pair in the application
factory’s keys).

Returns a variant containing an array of interface pointers to application factories.

CORBA C++ Programming Reference 5-35

5 FactoryFinder Interface

DITobj_FactoryFinder.find_factories

Synopsis
MIDL Mapping

Automation
Mapping
Parameters

Exception

Description

Return Values

Obtains a list of application factories.

HRESULT find_factories(
[in] VAR ANT factory_ key,
[in,out,optional] VARI ANT* exceptionlnfo,
[out,retval] VARIANT* returnVal ue);

Function find factories(factory_key, [exceptionlnfo])

factory_key
This parameter contains a safe array of DI CosNaming_NameComponents
(<id, kind> value pairs) that uniquely identifies a factory object reference.

exceptionlnfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

NoFact ory
This exception israised if the FactoryFinder cannot find an application
factory object reference that correspondsto the input f act ory_key.

Thefind_f act ori es method instructs the FactoryFinder to return alist of server
application factory object references whose keys match the method's input key. The
BEA WebL ogic Enterprise system assumes that an equality match isto be performed.
This means that for the two sequences of <id,kind> pairs (those corresponding to the
input key and those in the application factory’s keys), each are of equal length; for
every pair in one sequence, there is an identical pair in the other.

Returns a variant containing an array of interface pointers to application factories.

5-36 CORBA C++ Programming Reference

Automation Methods

DITobj_FactoryFinder.list_factories

Synopsis
MIDL Mapping

Automation
Mapping

Parameter

Exception

Description

Return Values

Listsall of the application factory names and object references.

HRESULT |ist_factories(
[in,out,optional] VAR ANT* excepti onl nfo,
[out,retval] VAR ANT* returnVal ue);

Function list_factories([exceptionlnfo])

exceptionl nfo
An optional input argument that enables the application to get additional
exception data if an error occurred.

Cannot Pr oceed
Thisexception israised if the FactoryFinder or the CORBA services Naming
Service encounter an internal error during the search with the error being
written to the user log (ULOG). Notify the operations staff immediately if this
exception israised. Depending on the severity of theinternal error, the server
running the FactoryFinder or the CORBA services Naming Service may have
terminated. If a FactoryFinder service has terminated, start a new
FactoryFinder service. If a CORBAservices Naming Service has terminated
and there is another CORBA services Naming Service running, start a new
CORBAservices Naming Service. If there are no naming service servers
running, restart the application.

Regi strar Not Avai |l abl e
This exception israised if the FactoryFinder object cannot locate the
CORBAservices Naming Service object. Notify the operations staff
immediately if this exceptionisraised. It is possible that no naming service
servers are running. Restart the application.

This method instructs the FactoryFinder to return alist containing all of the factory
keys and associated object references for application factories registered with the
CORBAservices Naming Service.

Returns a variant containing an array of DITobj_FactoryComponent objects. The
FactoryComponent object consists of a variant containing an array of
DICosNaming_NameComponent objects and an interface pointer to the application
factory.

CORBA C++ Programming Reference 5-37

5 FactoryFinder Interface

Programming Examples

This section describes how to program using the FactoryFinder interface.

Note: Remember to check for exceptionsin your code.

Using the FactoryFinder Object

A FactoryFinder object is used by programmers to locate a reference to a factory
object. The FactoryFinder object provides operationsto obtain one or more references
to factory objects based on the criteria specified.

There can be more than one FactoryFinder object in aprocess address space. Multiple
references to a FactoryFinder object must be supported. A FactoryFinder object is
semi-stateful in that it maintains state about the association between FactoryFinder
objects within adomain and a particular 11OP Server Listener/Handler (1SL/ISH)
through which to access the domain.

All FactoryFinder objects support the CosLi f eCycl e: : Fact or yFi nder interface as
defined in CORBAservices Specification, Chapter 6 “Life Cycle Service,” December
1997, published by the Object Management Group. The interface contains one
operation that is used to obtain one or more references to factory objects that meet t
criteria specified.

Registering a Reference to a Factory Object

5-38

The following code fragment (Listing 5-8) shows how to use the TP Framework
interface to register a reference to a factory object with a FactoryFinder.

Listing 5-8 Server Application: Registering a Factory

/1 Server Application: Registering a factory.
/1l C++ Exanpl e.

TP::register_factory(factory_obj.in(), “TellerFactory”);

CORBA C++ Programming Reference

Programming Examples

Obtaining a Reference to a FactoryFinder Object Using the
CosLifeCycle::FactoryFinder Interface

The following code fragment (Listing 5-9) shows how to use of the
CORBA-compliant interface to obtain one or more references to factory objects.

Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

/1 dient Application: Obtaining the object reference
/1 to factory objects.

CosLi feCycle::Key var factory_key = new CoslLifeCycle::Key();
factory_key ->length(1);
factory_key[0].id = string_dupalloc(“strlen(“TellerFactory”) +1);
factory_key[0].kind = string_dupalloc(
strlen(*“FactoryInterface”) + 1);

strcpy(factory_key[0].id, “"TellerFactory”);
strcpy(facory_key[0].kind, “Factorylnterface”);
CoslLifeCycle::Factories_var * flpo=ff_np->

find_factories(factory_key.in());

Obtaining a Reference to a FactoryFinder Object Using the Extensions
Bootstrap object

Thefollowing code fragment (Listing 5-10) shows how to use of the BEA WebL ogic
Enterprise extensions Bootstrap object to obtain areference to a FactoryFinder object.

Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

/I Client Application: Finding one factory using the Tobj
/I approach.

Tobj_Bootstrap * bsp=new Tobj Bootstrap(
orb_ptr.in(), host_port);
CORBA::Object_varptr ff_op = bsp ->
resolve_initial_references(“FactoryFinder”);
Tobj::FactoryFinder_ptrvar ff_ np=
Tobj::FactoryFinder::_narrow(ff_op);

CORBA C++ Programming Reference 5-39

5 FactoryFinder Interface

Using Extensions to the FactoryFinder Object

BEA WebL ogic Enterprise extends the FactoryFinder object with functionality to
support similar capabilities to those provided by the operations defined by CORBA,
but with amuch simpler and more restrictive signature. The enhanced functionality is
provided by defining the Tobj : : Fact or yFi nder interface. The operations defined
for the Tobj : : Fact or yFi nder interface areintended to provide afocused, simplified
form of the equivalent capability defined by CORBA. An application developer can
choose to use the CORBA-defined or BEA WebL ogic Enterprise extensions when
developing an application. The interface Tobj : : Fact or yFi nder is derived from the
CoslLi f eCycl e: : Fact or yFi nder interface.

BEA WebL ogic Enterprise extensions to the FactoryFinder object adhere to all the
same rules as the FactoryFinder object defined in the CORBA services Specification,
Chapter 6 “Life Cycle Service,” December 1997, published by the Object
Management Group.

The implementation of the extended FactoryFinder object requires users to supply
either aCosLi f eCycl e: : Key, as in the CORBA-defined

CosLi f eCycl e: : Fact or yFi nder interface, or a NULL-terminated string containing
the identifier of a factory object to be located.

Obtaining One Factory Using Tobj::FactoryFinder

5-40

The following code fragment (Listing 5-11) shows how to use the BEA WebLogic
Enterprise extensions interface to obtain one reference to a factory object based on
identifier.

Listing 511 Client Application: Finding Factories Using the BEA WebL ogic
Enterprise Extensions Approach

CoslLifeCycle::Factory ptrvar fp_obj =ff_np ->
find_one_factory_by id(“TellerFactory”);

CORBA C++ Programming Reference

Programming Examples

Obtaining One or More Factories Using Tobj::FactoryFinder

The following code fragment (Listing 5-12) shows how to use the BEA WebL ogic
Enterprise extensions to obtain one or more references to factory objects based on an
identifier.

Listing5-12 Client Application: Finding Oneor More Factories Using the BEA
WebL ogic Enterprise Extensions Approach

CosLi feCycle:: Factories * _var flp = ff_np ->
find_factories_by id(“TellerFactory”);

CORBA C++ Programming Reference 5-41

5 FactoryFinder Interface

5-42 CORBA C++ Programming Reference

CHAPTER

O Security Service

For a detailed discussion of Securty, see Using Security. This document provides an
introduction to crytography and other concepts associated with the BEA WebL ogic
Enterprise security features, a description of how to secure your BEA WebL ogic
Enterprise applications using the security features, and a guide to the use of the
application programming interfaces (APIs) in the Security Service.

A PDF file of Using Security is also provided in the online documentation.

CORBA C++ Programming Reference 6-1

6 Security Service

6-2 CORBA C++ Programming Reference

CHAPTER

[Transactions Service

For adetailed discussion of Transactions, see Using Transactions. This document
provides an introduction to transactions, a description the application programming
interfaces (APIs), and a guide to the use of the application programming interfaces
(APIs) to develop applications.

A PDF file of Using Transactions is also provided in the online documentation.

CORBA C++ Programming Reference 7-1

7 Transactions Service

7-2 CORBA C++ Programming Reference

CHAPTER

8 Notification Service

For a detailed discussion of the Natification Service, see Using the Natification
Service. This document provides an introduction to the Notification Service, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to develop applications.

A PDF file of Using the Notification Serviceis aso provided in the online
documentation.

CORBA C++ Programming Reference 8-1

8 Notification Service

8-2 CORBA C++ Programming Reference

CHAPTER

O Request-Level
Interceptors

For a detailed discussion of request-level interceptors, see Using Request-Level
Interceptors. This document provides an introduction to request-level interceptors, a
description the application programming interfaces (APIs), and a guide to the use of
the application programming interfaces (APIs) to implement request-level
interceptors.

A PDF file of Using Request-Level Interceptorsisalso provided in the online
documentation.

CORBA C++ Programming Reference 9-3

9 Request-Level Interceptors

9-4 CORBA C++ Programming Reference

CHAPTER

10 Interface Repository

Interfaces

This chapter describes the I nterface Repository interfaces.

Note: Most of theinformationin thischapter istaken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the BEA WebL ogic Enterprise implementation of the Interface
Repository interfaces. Used with permission by OMG.

The BEA WebL ogic Enterprise Interface Repository containsthe interface
descriptions of the CORBA objectsthat are implemented within the BEA WebL ogic
Enterprise domain.

The BEA WebL ogic Enterprise Interface Repository is based on the CORBA
definition of an Interface Repository. It offers aproper subset of the interfaces defined
by CORBA; that is, the APIs that are exposed to programmers are implemented as
defined by the Common Object Request Broker: Architecture and Specification
Revision 2.2. However, not all interfaces are supported. In general, the interfaces
required to read from the Interface Repository are supported, but the interfaces
required to write to the Interface Repository are not. Additionally, not all TypeCode
interfaces are supported.

Administration of the Interface Repository is done using tools specific to the BEA
WebL ogic Enterprise software. Thesetools allow the system administrator to create an
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Administration Guide.

CORBA C++ Programming Reference 10-1

10 mn terface Repository Interfaces

Several abstract interfaces are used as base interfaces for other objectsin the Interface
Repository. A common set of operations is used to locate objects within the Interface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objectsthat are containersinherit navigation operationsfrom
the Container interface. Objects that are contained by other objects inherit navigation
operations from the Contained interface. The IDL Type interface is inherited by all
Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the SO 8859-1
character set.

Note: TheWriteinterface is not documented in this chapter because the BEA
WebL ogic Enterprise software supports only read access to the Interface
Repository. Any attempt to use the Write interface to the Interface Repository
will raise the exception CORBA: : NO_| MPLEMENT.

Structure and Usage

10-2

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and populated using thei dl 2i r
administrative command. For a description of this command, see the Administration

Guide. From the programmer’s point of view, there is no write access to the Interface
Repository. None of the write operations defined by CORBA are supported, nor are se

operations on nonread-only attributes.

CORBA C++ Programming Reference

Structure and Usage

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined by the CORBA Common
Object Request Broker: Architecture and Specification, Revision 2.2, are described in
this chapter.

Programming Information

The interface to a server is defined in the OMG IDL file. How the OMG IDL fileis
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DIl), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL fileto generate stubs, and so forth. (For
more information, see Creating CORBA Client Applications.) No other accessto the
Interface Repository is required.

Client applicationsthat use the Dynamic Invocation Interface (DIl) need to access the

Interface Repository programmatically. The interface to the Interface Repository is

defined in this chapter and is discussed in “Building Client Applications” on

page 10-5. The exact steps taken to access the Interface Repository depend on whether
the client is seeking information about a specific object, or browsing the Interface
Repository to find an interface. To obtain information about a specific object, clients
use theCORBA: : (bj ect: : _get _i nt er f ace method to obtain an InterfaceDef object.
(Refer toCORBA: : Obj ect : : _get _i nt erf ace for a description of this method.)

Using the InterfaceDef object, the client can get complete information about the
interface.

Before a DIl client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search. DIl clients use the Bootstrap
object to obtain the object reference. (For a description of this method, see the section
“Tobj_Bootstrap::register_callback_port” on page 4-19.) Once the client has the
object reference, it can navigate the Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DIl client. ActiveX clients include the Bootstrap object in the Visual
Basic code. Like DIl clients, ActiveX clients use the Bootstrap object to obtain the

CORBA C++ Programming Reference 10-3

10 mn terface Repository Interfaces

Interface Repository object reference. (Refer to
“Tobj_Bootstrap::register_callback_port” on page 4-19 for a description of this
method.) Once the client has the object reference, it can navigate the Interface
Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interface

Repository.

Performance Implications

10-4

All run-time access to the Interface Repository is via the Interface Repository server
Because there is considerable overhead in making requests of a remote server
application, designers need to be aware of this. For example, consider the interactic
required to use an object reference to obtain the necessary information to make a D
invocation on the object reference. The steps are as follows:

1.

The client application invokes theget _i nt er f ace opertion on the

CORBA: : Obj ect to get the InterfaceDef object associated with the object in
guestion. This causes a message to be sent to the ORB that created the object
reference.

The ORB returns the InterfaceDef object to the client.

The client invokes one or mores_a operations on the object to determine what
type of interface is supported by the object.

After the client has identified the interface, it invokesdéscri be_i nterface
operation on the Interface object to get a full description of the interface (for
example, version number, operations, attributes, and parameters). This causes &
message to be sent to the Interface Repository, and a reply is returned.

The client is now ready to construct a DIl request.

CORBA C++ Programming Reference

Building Client Applications

Building Client Applications

Clientsthat use the Interface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application is using the BEA
WebL ogic Enterprise ORB, the BEA Webl ogic Enterprise software provides the
stubsin the form of alibrary. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs. The Interface Repository definitions are
contained within the CORBA. h file, but they are not included by default.

Note: To usethe Interface Repository definitions, you must define the
ORB_| NCLUDE_REPGS| TORY macro before including CORBA. h in your client
application code (for example: #Def i ne ORB_| NCLUDE_REPCSI TORY).

If the client application is using a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechani sm.

Some third-party ORBs provide alocal Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

Y ou use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see the command
“Tobj_Bootstrap::register_callback_port” on page 4-19.

CORBA C++ Programming Reference 10-5

10 mn terface Repository Interfaces

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that isimplemented in
the BEA WebL ogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

nmodul e CORBA {

typedef string Identifier;
typedef string ScopedNane;
typedef string Reposi toryl d;

enum DefinitionKind {

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,

dk_Modul e, dk_Operation, dk_Typedef,

dk_Alias, dk_Struct, dk_Union, dk_Enum

dk Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
H
b
I dentifiers arethe simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An1 denti fi er isnot necessarily unique within an entire Interface
Repository; it isunique only within aparticular Repository, ModuleDef, InterfaceDef,
or OperationDef.

A ScopedName isaname made up of one or more identifiers separated by the
characters “::". They correspond to OMG IDL scoped names. An absolute
ScopedNane is one that begins with “::” and unambiguously identifies a definition in
a Repository. An absoluzopedNane in a Repository corresponds to a global name
in an OMG IDL file. A relativeScopedName does not begin with “::” and must be
resolved relative to some context.

10-6 CORBA C++ Programming Reference

Interface Repository Interfaces

A Reposi toryl d isan identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because Repositorylds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A Def i ni ti onKi nd identifies the type of an Interface Repository object.

IRODbject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

nmodul e CORBA {
interface | RObject {
readonly attribute DefinitionKind def ki nd;

b
}

Thedef _ki nd attribute identifies the type of the definition.

Contained Interface

The Contained interface (shown below) is inherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

nodul e CORBA {
typedef string VersionSpec;

interface Contai ned : | RObject {
readonly attribute Repositoryld id;
readonly attribute ldentifier name;
readonly attribute VersionSpec ver si on;
readonly attribute Container defined_in;
readonly attribute ScopedNane absol ut e_nane;
readonly attribute Repository cont ai ni ng_repository;
struct Description {
Definiti onKind ki nd;

CORBA C++ Programming Reference 10-7

10 mn terface Repository Interfaces

10-8

any val ue;
b

Description describe ();

b
b
An object that is contained by another object hasan i d attribute that identifiesit
globally, and anane attribute that identifiesit uniquely within the enclosing Container
object. It also hasaver si on attributethat distinguishesit from other versioned objects
with the same name. The BEA WebL ogic Enterprise Interface Repository does not
support simultaneous containment or multiple versions of the same named object.

Contained objects also have adef i ned_i n attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
modul€) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, thedef i ned_i n
attribute identifies the InterfaceDef from which the object isinherited.

Theabsol ut e_name attribute is an absolute ScopedNane that identifies a Contained
object uniquely within its enclosing Repository. If this objed#si ned_i n attribute
references a Repository, thiesol ut e_name is formed by concatenating the string

and this object’sane attribute. Otherwise, thebsol ut e_name is formed by
concatenating thebsol ut e_name attribute of the object referenced by this object’s
def i ned_i n attribute, the string:” , and this object’sane attribute.

The cont ai ni ng_r eposi t ory attribute identifies the Repository that is eventually
reached by recursively following the objeafsf i ned_i n attribute.

Thedescri be operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, ifddwer i be operation is

invoked on an attribute object, thiend field containgdk_At t ri but e and the value

field contains amny, which contains thét t ri but eDescri pti on structure.

CORBA C++ Programming Reference

Interface Repository Interfaces

Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

nodul e CORBA {
typedef sequence <Contai ned> Cont ai nedSeq;

interface Container : |RObject {
Cont ai ned | ookup (in ScopedNane search_nane);

Cont ai nedSeq contents (

in DefinitionKind limt_type,

i n bool ean excl ude_i nherited
);

Cont ai nedSeq | ookup_nane (

in ldentifier sear ch_nane,

in long | evel s_to_search,

in DefinitionKind limt_type,

i n bool ean excl ude_i nherited
);

struct Description {

Cont ai ned cont ai ned_obj ect;
Defi ni ti onKi nd ki nd;

any val ue;

h
typedef sequence<Description> DescriptionSeq;

Descri pti onSeq descri be_contents (

in DefinitionKind limt_type,

in bool ean excl ude_i nherited,

in long max_returned_objs
);

b
h
Thel ookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped name
(beginning with *::") locates the definition relative to the enclosing Repository. If no
object isfound, anil object reference is returned.

CORBA C++ Programming Reference 10-9

10 mn terface Repository Interfaces

The cont ent s operation returnsthe list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client usesthis operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, al of the interfaces within a specific module, and so on.

limt_t

ype
If1imt_typeissettodk_all, objectsof al types arereturned. For

example, if thisis an InterfaceDef, the attribute, operation, and exception
objectsare al returned. If 1i ni t _t ype isset to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returnedif linmit_typeissettodk _Attri bute.

excl ude_i nheri ted

search_|

| evel s_

mex_r et

If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.

Thel ookup_nane operation is used to locate an object by name within a
particular object or within the objects contained by that object. The

descri be_cont ent s operation combines the cont ent s operation and the
descri be operation. For each object returned by the contents operation, the
description of the object is returned (that is, the objeetsr i be operation
is invoked and the results are returned).

namne
Specifies which name is to be searched for.

to_search

Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained
by the object as well. Settingvel s_t o_sear ch to -1 searches the current
object and all contained objects. Settirgyel s_t o_sear ch to 1 searches

only the current object.

urned_obj s

Limits the number of objects that can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

10-10 CORBA C++ Programming Reference

Interface Repository Interfaces

IDLType Interface

The DL Typeinterface (shown below) isan abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides accessto the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

nodul e CORBA {
interface | DLType : | RObject {
readonly attri bute TypeCode type;
b
b

Thet ype attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within amodule or an interface) either
by name or by i d.

nodul e CORBA {
interface Repository : Container {
Contai ned | ookup_id (in Repositoryld search_id);
PrimtiveDef get _primtive (in PrimtiveKi nd kind);

}s
}

Thel ookup_i d operation is used to look up an object in a Repository, given its
Reposi t oryl d. If the Repository does not contain a definition for sear ch_i d, anil
object reference is returned.

Theget _pri nmiti ve operation returnsareferenceto aPrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

CORBA C++ Programming Reference 10-11

10 mn terface Repository Interfaces

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

nmodul e CORBA {
interface Modul eDef : Container, Contained {

}
struct Modul eDescription {
I dentifier nanme;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec Ver si on;

b
Theinherited descr i be operation for a ModuleDef object returns a
M oduleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

nmodul e CORBA {
interface Constant Def : Contained {

readonly attribute TypeCode type;
readonly attribute |IDLType type_def;
readonly attribute any val ue;
b
struct ConstantDescription {
I dentifier nanme;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;
any val ue;
b

10-12 CORBA C++ Programming Reference

Interface Repository Interfaces

type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simpletypes (long, short, float, char, string, octet,
and so on).

type_def
Identifies the definition of the type of the constant.

val ue

Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2").

The descri be operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for all
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

nodul e CORBA {
interface TypedefDef : Contained, |DLType {
b

struct TypeDescription {

I dentifier namne;

Reposi toryld id;

Repositoryld defined_in;

Ver si onSpec ver si on;

TypeCode type;

b

I
The inheriteddescri be operation for interfaces derived from TypedefDef returns a
TypeDescription.

CORBA C++ Programming Reference 10-13

10 mn terface Repository Interfaces

StructDef

A StructDef (shown below) representsan OMG IDL structure definition. It contains
the members of the struct.

nmodul e CORBA {
struct Struct Menber {

ldentifier name;
TypeCode type;
| DLType type_def;

b
typedef sequence <Struct Menber> Struct Menber Seq;

interface StructDef : TypedefDef, Container{
readonly attribute Struct Menber Seq menbers;

}s
}s

The menber s attribute contains a description of each structure member.

Theinherited t ype attributeisat k_st ruct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) representsan OMG IDL union definition. It contains the
members of the union.

nmodul e CORBA {
struct Uni onMenber {

I dentifier nane;

any | abel ;
TypeCode type;

| DLType type_def;

H
typedef sequence <Uni onMenber > Uni onMenber Seq;

interface Uni onDef : TypedefDef, Container {
readonl y attri bute TypeCode di scrim nator_type;
readonl y attribute IDLType di scrim nator_type_def;
readonl y attribute Uni onMenber Seq nenbers;

¥

10-14 CORBA C++ Programming Reference

Interface Repository Interfaces

EnumDef

AliasDef

di scrimnator_type anddi scrimnator_type_ def
Describe and identify the union’s discriminator type.

menber s
Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of thescri mi nat or _t ype.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value O (zero)
indicates the default union member.

The inherited ype attribute is a k_uni on TypeCode describing the union.

An EnumDef (shown below) represents an OMG IDL enumeration definition.

nodul e CORBA {
typedef sequence <ldentifier> Enumvenber Seq;

interface EnunDef : Typedef Def {
readonly attribute EnumMenber Seq menbers;

}s
}

menber s
Contains a distinct name for each possible value of the enumeration.

The inherited ype attribute is a k_enumTypeCode describing the enumeration.

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

nodul e CORBA {
interface AliasDef : Typedef Def {
readonly attribute | DLType original _type_def;

}s

CORBA C++ Programming Reference 10-15

10 mn terface Repository Interfaces

ori ginal type_def
| dentifies the type being aliased.

Theinherited t ype attributeisat k_al i as TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from Typedef Def
or Cont ai ned.

nmodul e CORBA {
enum PrimtiveKi nd {
pk_null, pk_void, pk_short, pk_Iong, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk _char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_I ongl ong, pk_ul ongl ong, pk_| ongdoubl e, pk_wchar, pk _wstring

b
interface PrimtiveDef: |DLType {
readonly attribute PrimtivekKind ki nd;
}s
}s
ki nd

Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefswith kind pk_nul | . A PrimitiveDef with kind pk_stri ng
represents an unbounded string. A PrimitiveDef with kind pk_obj r ef
represents the OMG IDL type Object.

Theinherited t ype attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primtive.

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

10-16 CORBA C++ Programming Reference

Interface Repository Interfaces

nodul e CORBA {
interface Excepti onDef : Contai ned, Container {

readonl y attribute TypeCode type;
readonl y attribute Struct Menber Seq menber s;
b
struct ExceptionDescription {
ldentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec version;
TypeCode type;
b
b
type
t k_except TypeCode that describes the exception.
menber s

Describes any exception members.

The descri be operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

nodul e CORBA {
enum AttributeMode {ATTR NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonl y attri bute TypeCode type;
attribute | DLType type_def;
attri bute AttributeMde node;
b
struct AttributeDescription {
I dentifier name;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;
Attri but eMode node;
s

CORBA C++ Programming Reference 10-17

10 mn terface Repository Interfaces

type

Provides the TypeCode describing the type of this attribute.
type_def

I dentifies the object that defines the type of this attribute.
node

Specifiesread only or read/write access for this attribute.

OperationDef

An OperationDef (shown bel ow) represents the information needed to define an
operation of an interface.

nmodul e CORBA {
enum Qper ati onvbde { OP_NORVAL, OP_ONEWAY};

enum Par anet er Mode { PARAM I N, PARAM OUT, PARAM | NOUT};
struct ParaneterDescription {

I dentifier nane;
TypeCode type;
| DLType type_def;
Par anet er Mode node;

}

typedef sequence <Paranet er Description> ParDescri pti onSeq;

typedef ldentifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <Excepti onDef> Excepti onDef Seq;
typedef sequence <ExceptionDescription> ExcDescri pti onSeq;

interface OperationDef : Contained {

readonl y attri bute TypeCode resul t;
readonl y attribute |IDLType resul t _def;
readonl y attribute ParDescriptionSeq par ans;
readonl y attribute Operati onMbde node;
readonl y attribute Contextl| dSeq contexts;
readonl y attribute Excepti onDef Seq excepti ons;
h
struct OperationDescription {
I dentifier name;
Repositoryld id;
Repositoryld defined_in;

10-18 CORBA C++ Programming Reference

Interface Repository Interfaces

Ver si onSpec Ver si on;
TypeCode result;
Qper at i onMode node
Cont ext | dSeq cont exts;
Par Descri pti onSeq par aneters
ExcDescri pti onSeq exceptions
};
};
resul t

A TypeCode that describes the type of the value returned by the operation.

resul t _def
Identifies the definition of the returned type.

par ans
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptionsin
the sequenceis significant. The nane member of each structure provides the
parameter name. Thet ype member isa TypeCode describing the type of the
parameter. Thet ype_def member identifies the definition of the type of the
parameter. The node member indicateswhether the parameter isanin, out, or
inout parameter.

nmode
The operation’sode is either oneway (that is, no output is returned) or
normal.

contexts

Specifies the list of context identifiers that apply to the operation.

excepti ons
Specifies the list of exception types that can be raised by the operation.

The inheriteddescri be operation for an OperationDef object returns an
OperationDescription.

The inheritediescri be_cont ent s operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

CORBA C++ Programming Reference 10-19

10 mn terface Repository Interfaces

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.
nmodul e CORBA {
interface | nterfaceDef;

typedef sequence <InterfaceDef> InterfaceDef Seq;

typedef sequence <Repositoryld> RepositoryldSeq;

typedef sequence <QOperationDescription> QoDescriptionSeq;

typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, |DLType {

readonly attribute |nterfaceDef Seq base_interfaces;
boolean is_a (in Repositoryld interface_id);

struct FulllnterfaceDescription {

ldentifier name;
Repositoryld id;
Reposi toryl d defined_in;
Ver si onSpec ver si on;
OpDescri pti onSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi t oryl dSeq base_interfaces;
TypeCode type;
s
Ful I I nterfaceDescription describe_interface();
b
struct InterfaceDescription {
I dentifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec Ver si on;
Reposi toryl dSeq base_i nterfaces;
s

b

base_interfaces
Listsall the interfaces from which thisinterface inherits. Thei s_a operation
returns TRUE if the interface on which it is invoked either isidentical to or
inherits, directly or indirectly, from the interface identified by its
interface_i d parameter. Otherwise, it returns FALSE.

10-20 CORBA C++ Programming Reference

Interface Repository Interfaces

Thedescribe_i nt er f ace operation returns a FulllnterfaceDescription describing
the interface, including its operations and attributes.

Theinherited descri be operation for an InterfaceDef returnsan InterfaceDescription.

Theinherited cont ent s operation returnsthe list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If theexcl ude_i nheri t ed parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
theexcl ude_i nheri t ed parameter isset to FALSE, all attributes and operations are
returned.

CORBA C++ Programming Reference 10-21

10 mn terface Repository Interfaces

10-22 CORBA C++ Programming Reference

CHAPTER

11 Joint Client/Servers

This chapter describes programming requirements for joint client/servers and the
BEAWTrapper Callbacks API.

For either aBEA WebL ogic Enterprise client or joint client/server (that is, aclient that
can receive and process object invocations), the programmer writes the client

mai n() . Themai n() uses BEA WebL ogic Enterprise environmental objects to
establish connections, set up security, and start transactions.

BEA WebL ogic Enterprise clientsinvoke operations on objects. In the case of DI,
client code creates the DIl Request object and then invokes one of two operations on
the DIl Request. In the case of static invocation, client code performs the invocation
by performing what lookslike an ordinary C++ invocation (which ends up calling code
in the generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG, and BEA WebL ogic Enterprise environmental objects that are
supplied with the BEA WebL ogic Enterprise software, to perform functions uniqueto
BEA WebL ogic Enterprise.

For BEA WeblL ogic Enterprise joint client/servers, the client code must be structured
so that it can act as a server for callback BEA WebL ogic Enterprise objects. Such
clientsdo not use the TP Framework and are not subject to BEA WebL ogic Enterprise
system administration. Besides the programming implications, this means that joint
client/servers do not have the same scalability and reliability as BEA WebL ogic
Enterprise servers, nor do they have the state management and transaction behavior
available in the TP Framework. If a user wants to have those characteristics, the
application must be structured in such away that the object implementations arein a
BEA WebL ogic Enterprise server, rather than in a client.

The following sections describe the mechanisms you use to add callback support to a
BEA WebL ogic Enterprise client. In some cases, the mechanisms are contrasted with
the BEA WebL ogic Enterprise server mechanisms that use the TP Framework.

CORBA C++ Programming Reference 11-1

11 Joint client/Servers

Main Program and Server Initialization

In aBEA WebL ogic Enterprise server, you use the bui | dobj ser ver command to
create the main program for the server. That main program takes care of all BEA
WebL ogic Enterprise- and CORBA-related initialization of the server functions. The
server main program allows the user to take part in server initialization and shutdown
by making invocations on a user-written C++ object, the Ser ver class.

In contrast, for aBEA WebL ogic Enterprise joint client/server (asfor aBEA

WebL ogic Enterprise client), you create the main program and are responsible for all
initialization. Y ou do not need to provide a Ser ver object because you have complete
control over the main program and you can provide initialization and shutdown code
in any way that is convenient.

The specific initialization needed for ajoint client/server is discussed below.

Servants

11-2

Servants (method code) for BEA WebL ogic Enterprise joint client/servers are very
similar to servantsfor BEA WebL ogic Enterprise servers. All businesslogic iswritten
the same way. The differences result from not using the TP Framework, which
includestheSer ver , TP,and Tobj _Ser vant Base interfaces. Therefore, themain
differenceisthat you use CORBA functions directly instead of indirectly through the
TP Framework.

The Ser ver interfaceis used in BEA WebL ogic Enterprise serversto allow the TP
Framework to ask the user to create a servant for an object when the ORB receives a
reguest for that object. In BEA WebL ogic Enterprise joint client/servers, the user
program is responsible for creating a servant before any requests arrive; thus, the
Ser ver interfaceis not needed. Typically, the program creates a servant and then
activates the object (using the servant and an oj ect | d; the Cbj ect | d is possibly
system generated) before handing a reference to the object. Such an object might be
used to handle callbacks. Thus, the servant already exists and the object is activated
before a reguest for the object arrives.

CORBA C++ Programming Reference

Servant Inheritance from Skeletons

Instead of invoking the TP interface to perform certain operations, client servants

directly invoke the ORB and POA (which is what the TP interface does internally).
Alternately, since much of the interaction with the ORB and POA is the same for all
applications, for ease of use, the BEA WebL ogic Enterprise client library provides a
convenience wrapper object that does the same things, using a single operation. For a
discussion of how to use the convenience wrapper object, see “Callback Object Models
Supported” on page 11-4 and “Preparing Callback Objects Using BEAWTrapper
Callbacks” on page 11-7.

Servant Inheritance from Skeletons

In a BEA WebLogic Enterprise client that supports callbacks, as well as in a BEA
WebLogic Enterprise server, you write a C++ implementation class that inherits from
the same skeleton class name generated by the IDL compiléd(tltemmand). For
example, given the IDL:

interface Hospital ... };

The skeleton generated by theidl command contains a “skeleton” class,
POA Hospi t al , that the user-written class inherits from, as in:

class Hospital i : public POA Hospital { ... };

In a BEA WebLogic Enterprise server, the skeleton class inherits from the TP
Framework clas3obj _Ser vant Base, which in turn inherits from the predefined
Por t abl eServer:: Servant Base.

The inheritance tree for a callback object implementation in a joint client/server is
different than that in a BEA WebLogic Enterprise server. The skeleton class does not
inherit from the TP Framework cla$ebj _Ser vant Base, but instead inherits

directly fromPor t abl eSer ver : : Ser vant Base. This behavior is achieved by
specifying the P option in the dI command.

Not having theTobj _Ser vant Base class in the inheritance tree for a servant

means that the servant does not hewei vat e_obj ect and

deacti vat e_obj ect methods. In a BEA WebLogic Enterprise server, these
methods are called by the TP Framework to dynamically initialize and save a servant’s

CORBA C++ Programming Reference 11-3

11 Joint client/Servers

state before invoking amethod on the servant. For a BEA WebL ogic Enterprise client
that supports callbacks, you must write code that explicitly creates a servant and
initializes a servant’s state.

Callback Object Models Supported

11-4

BEA WebLogic Enterprise software supports four kinds of callback objects and
provides wrappers for the three that are most common. These objects correspond tc
three combinations of POA policies. The POA policies control both the types of
objects and the types of object references that are possible.

The POA policies that are applicable are:
m The LifeSpanPolicy, which controls how long an object reference is valid.

m The IdAssignmentPolicy, which controls who assignstjesct | d—the user or
the system.

These objects are explained primarily in terms of their behavioral characteristics rathe
than in details about how the ORB and the POA handle them. Those details are
discussed in the next sections, using either direct ORB and POA calls (which require
a little extra knowledge of CORBA servers) or using the BEAWrapper Callbacks
interface, which hides the ORB and POA calls (for users who do not care about the
details).

m Transient/Systeml d—object references are valid only for the life of the client
process. Thébj ect | d is not assigned by the client application, but is a unique
value assigned by the system. This type of object is useful for invocations that a
client wants to receive only until the client terminates. (The corresponding POA
LifeSpanPolicy value i3RANSI ENT and the IdAssignmentPolicy 8STEM | D.)

m Persistent/Systemld—ebject references are valid across multiple activations.
The Obj ect | d is not assigned by the client application, but is a unique value
assigned by the system. Thistype of object and object reference is useful when
the client goes up and down over a period of time. When the client is up, it can
receive callback objects on that particular object reference.

Typicaly, the client will create the object reference once, saveit in itsown
permanent storage area, and reactivate the servant for that object every time it

CORBA C++ Programming Reference

Preparing Callback Objects Using CORBA

comes up. (The corresponding POA policy values are PERSI STENT and
SYSTEM | D.)

Persistent/User| d—this is the same as Persistent/Systemld with the exception
that theObj ect | d has to be assigned by the client application. Such an

oj ect | d might be, for example, a database key meaningful only to the client.
(The corresponding POA policy values 8#RSI STENT andUSER_I D.)

Note: The Transient/Userlgolicy combinationis not considered particularly

important. It is possible for users to provide for themselves by using the POA
in a manner analogous to either of the persistent cases, but the BEA WebLogic
Enterprise wrappers do not provide special help to do so.

Note: For BEA WebLogic Enterprise native joint client/servers, neither of the

Persistent policies is supported, only the Transient policy.

Preparing Callback Objects Using CORBA

To set up BEA WebLogic Enterprise callback objects using CORBA, the client must
do the following:

1.

Establish a connection with a POA with the appropriate policies for the callback
object model. (This can be the root POA, available by default, or it may require
creating a new POA.)

Create a servant (that is, an instance of the C++ implementation class for the
interface).

Inform the POA that the servant is ready to accept requests on the callback BEA
WebLogic Enterprise object. Technically, this means the diientvat es the

object in the POA (that is, puts the servant andithiect | d into the POA's

Active Object Map).

Tell the POA to start accepting requests from the network (that is, activate the
POA itself).

Create an object reference for the callback BEA WebLogic Enterprise object.

CORBA C++ Programming Reference 11-5

11 Joint client/Servers

6. Give out the object reference. This usually happens by making an invocation on
another object with the callback object reference as a parameter (that is, the
parameter is a callback object). That other object will then invoke the callback
object (perform a callback invocation) at some later time.

Assuming that the client already has obtained areference to the ORB, performing this
task takesfour interactionswith the ORB and the POA.. It might look like thefollowing
for the Transient/Systemld model. In this model, only the Root POA is needed.

/1 Create a servant for the call back Object
Catcher _i* ny_catcher i = new Catcher _i();

/1 Get root POA reference and activate the POA
1 CORBA: : Ooj ect _var oref =

orb->resolve_initial _references("Root POA");
2 Port abl eServer: : POA var root_poa =

Port abl eServer:: POA:: _narrow oref);
3 root _poa -> the_PQAManager () -> activate();
4 Port abl eServer::objectld var tenp O d =

root _poa ->activate object (my_catcher_i);
5 oref = root_poa->create_reference_w th_id(

tenp_ O d, _tc_Catcher->id());

6 Catcher_var ny_catcher _ref = Catcher:: _narrow oref);

To use the Per sistent/User |d model, there are some additional steps required when
creating a POA. Further, the Ooj ect | d is specified by the client, and this requires
more steps. It might look like the following.

Catcher _i* ny_catcher _i = new Catcher _i();
const char* oid_str = "783";
1 Port abl eServer: :objectld var oid =
Portabl eServer::string to _objectld(oid str);

/1 Find root PQA
2 CORBA: : Ohj ect _var oref =

orb->resolve_initial _references("Root POA");
3 Port abl eServer: : POA var root_poa =

Port abl eServer:: POA : _narroworef);

/1l Create and activate a Persistent/Userld POA
4 CORBA: : Pol i cyLi st policies(2);
5 policies.length(2);

6 policies[0] = root_poa->create_lifespan_policy(
Por t abl eServer : : PERSI STENT) ;
7 policies[1l] = root_poa->create_id_assignment_policy(

Port abl eServer: : USER I D);
8 Port abl eServer:: POA var ny_poa_ref =
r oot _poa- >cr eat e_PQOA(

11-6 CORBA C++ Programming Reference

Preparing Callback Objects Using BEAWrapper Callbacks

"ny_poa_ref", root_poa->t he POAManager (), policies);
9 r oot _poa->t he_POAmanager () - >acti vat e();

/1l Create object reference for callback Object
10 oref = nmy_poa ref -> create reference_w th_id(

oid, _tc_Catcher->id());
11 Catcher _var ny_catcher _ref = Catcher:: _narrow(oref);

/1 activate object
12 ny_poa_ref -> activate object with_id(oid, ny_catcher i);

/1 Make the call passing the callback ref
foo -> register_callback (my_catcher_ref);

All the interfaces and operations described here are standard CORBA interfaces and
operations.

Preparing Callback Objects Using
BEAWrapper Callbacks

Since the code required for callback objectsis nearly identical for every client that
supports callbacks, you may find it convenient to use the BEAWrappers provided in
the library provided for joint client/servers.

The BEAWTrappers are described in IDL, as follows.

Note: These same wrappers are designed to be used for the WebL ogic Enterprise
V4.2 (Java) software, where a POA is not yet available, athough aspects
related to POAs do exist (notably, Por t abl eServer. Servant). For a
discussion of these for the Java software, see CORBA Java Programming
Reference.

/1 File: BEAW apper

#i f ndef _BEA WRAPPER | DL_
#defi ne _BEA WRAPPER | DL_

#i ncl ude <orb.idl>

#i ncl ude <Port abl eServer.idll>

#pragma prefix “beasys.com”

CORBA C++ Programming Reference 11-7

11 Joint client/Servers

nmodul e BEAW apper {
interface Call backs

{
exception Servant Al readyActive{ };
exception Object Al readyActive { };
exception NotlnRequest{ };
/1 set up transient call back Object
/1l -- prepare POA, activate object, return objref
Cbj ect start_transient(
in Portabl eServer:: Servant Servant ,
in CORBA: : Repositoryld rep_id)
rai ses (Servant Al readyActive);
/1l set up persistent/system d call back bject
bj ect start_persistent_system d(
in Portabl eServer: : Servant servant,
i n CORBA: : Repository rep_id,
out string stroid)
rai ses (Servant Al readyActive);
/'l reinstate set up for persistent/systemd
/1 call back object
Obj ect restart_persistent_system d(
in Portabl eServer: : Servant servant,
in CORBA:: Repositoryld rep_id,
in string stroid)
rai ses (Servant Al readyActive, ObjectAl readyActive);
/1l set up persistent/userid callback Object
Obj ect start_persistent_useri d(
in Portabl eServer:: Servant servant,
in CORBA: : Repositoryld rep_id,
in string stroid)
rai ses (Servant Al readyActive, ObjectAl readyActive);
/] stop servicing a particular callback Object
/1 with the given servant
void stop_object(in Portabl eServer::Servant servant);
/I shutdown Stop all call back Cbject processing
void stop_all_objects();
/1 get oid string for the current request
string get_string_oid() raises (NotlnRequest);
b

}
#endif /* BEA WRAPPER _IDL_ */

The BEAwrappers are described in C++ asfollows:

11-8 CORBA C++ Programming Reference

Preparing Callback Objects Using BEAWrapper Callbacks

C++ Declarations (in beawrapper.h)

#i f ndef _BEAWRAPPER H_
#define _BEAWRAPPER H_

#i ncl ude <Port abl eServer. h>
cl ass BEAW apper {
cl ass Cal | backs{
public:
Cal | backs (CORBA: : ORB ptr init_orb);

CORBA: : Obj ect _ptr start_transient (
Port abl eServer: : Servant servant,
const char * rep_id);

CORBA: : (bj ect _ptr start_persistent_systemd (
Por t abl eServer:: Servant servant,
const char * rep_id,
char * & stroid);

CORBA: : Obj ect _ptr restart_persistent_systemd (
Por t abl eServer:: Servant servant,
const char * rep_id,
const char * stroid);

CORBA: : Cbj ect _ptr start_persistent_userid (
Por t abl eServer:: Servant servant,
const char * rep_id,
const char * stroid);

void stop_object(Portabl eServer:: Servant servant);
char* get _string_oid ();
void stop_all _objects();
~Cal | backs();
private:
static CORBA:: ORB var orb _ptr;

static Portabl eServer::POA var root_poa;
static Portabl eServer::PQOA var trasys_poa;
static Portabl eServer::PQOA var persys _poa;
static Portabl eServer::POA var peruser_poa,

CORBA C++ Programming Reference 11-9

11 Joint client/Servers

}s
#endi f // _BEAWRAPPER H_

The description of each operation inthe BEAW apper : : Cal | backs interfacefollows,
in the order declared above.

BEAWrapper Callbacks API

This API is described in the following sections.

11-10 CORBA C++ Programming Reference

BEAWrapper Callbacks API

Callbacks
Synopsis
C++ Binding
Java Binding

Argument

Return Value

Description

Exception

Returns areference to the Callbacks interface.
BEAW apper :: Cal | backs(CORBA:: ORB ptr init_orb);
public Cal |l backs(org.ong. CORBA. Obj ect init_orb);

init_orb
The ORB to be used for all further operations.

A reference to the Callbacks object.

The constructor returns a reference to the Callbacks interface. Only one such object
should be created for the process, even if multiple threads are used. Using more than
one such object will result in undefined behavior.

CORBA: : | MP_LIMT
The BEAW apper : : Cal | backs class has already be instantiated with an
ORB pointer. Only oneinstance of this class can be used in a process. Users
who need additional flexibility should use the POA directly.

CORBA C++ Programming Reference 11-11

11 Joint client/Servers

start_transient

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Return Value

Description

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect start_transient(in Portabl eServer:: Servant servant,
in CORBA: : Repositoryld rep_id)
rai ses (Servant Al readyActive);

CORBA: : Cbj ect_ptr start_transient(
Por t abl eSer ver: : Servant servant,
const char* rep_id);

org. ong. CORBA. Obj ect start _transient(
org.ong. Portabl eServer. Servant servant,
java.l ang. String rep_id);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository i d of the interface.

CORBA: : Cbj ect _ptr
A referenceto the object that was created with the Qbj ect | d generated by the
system and ther ep_i d provided by the user. The object reference will need
to be converted to a specific object type by invoking the _nar r ow()
operation defined for the specific object. The caller is responsible for
releasing the object when the conversion is done.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_id, using an Obj ect | d generated by the system.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the activated object. The returned object reference
will be valid only until the termination of the client or until the callback servant
ishalted by the user viathe st op_obj ect operation; after that, invocations on
that object reference are no longer valid and can never be made valid.

11-12 CORBA C++ Programming Reference

BEAWrapper Callbacks API

Exceptions Servant Al r eadyAct i ve

CORBA:

The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different Qbj ect I ds, you must create different servants and
activate them separately. The same servant can be re-used only if a

st op_obj ect operation tellsthe system to stop using the servant for its
original Cbj ect I d.

: BAD_PARAM

The repository 1D was anull string or the servant was a null pointer.

CORBA C++ Programming Reference 11-13

11 Joint client/Servers

start_persistent_systemid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Return Value

Activates an object, setsthe ORB and the POA to the proper state, sets the output
parameter st r oi d, and returns an object reference to the activated object.

bj ect start_persistent_system d(

in Portabl eServer:: Servant servant,
in CORBA: : Repositoryld rep_id,
out string stroid)

rai ses (Servant Al readyActive);

CORBA: : Cbj ect _ptr start_persistent_system d(

Por t abl eServer: : Servant servant,
const char* rep_id,
char*& stroid);

org. ong. CORBA. Obj ect start_persistent_system d(
org. ong. Port abl eServer. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
This argument is set by the system and is opague to the user. The client will
use it when it reactivates the object at alater time (using
restart_persistent_systenid), most likely after the client process has
terminated and restarted.

CORBA: : Cbj ect_ptr
An object reference created with the oj ect | d generated by the system and
therep_i d provided by the user. The object reference will need to be
converted to a specific object type by invoking the _narrow() operation
defined for the specific object. The caller is responsible for releasing the
object when the conversion is done.

11-14 CORBA C++ Programming Reference

BEAWrapper Callbacks API

Description

Exceptions

This operation performs the following actions:

Activates an object using the Ser vant supplied to service objects of the type
rep_i d, using an Qoj ect | d generated by the system.

Sets the ORB and the POA into the state in which they will accept requests on
that object.

Sets the output parameter st r oi d to the stringified version of an Obj ect I d
assigned by the system.

Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
restarts again, and then activates a servant with the samer ep_i d and for the
same (bj ect | d, the servant will accept requests made on that same object
reference. Since the Qbj ect | d was generated by the system, the application has
to save that oj ect | d.

Servant Al r eadyActi ve

The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different Qbj ect I ds, you must create different servants and
activate them separately. The same servant can be reused only if ast op
operation tells the system to stop using the servant for its original Qoj ect 1 d.

CORBA: : BAD_PARAMETER

The repository 1D was anull string or the servant was a null pointer.

CORBA: : | MP_LIMT

In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

CORBA C++ Programming Reference 11-15

11 Joint client/Servers

restart_persistent_systemid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Return Value

Description

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect restart_persistent_system d(
in Portabl eServer:: Servant servant,
in CORBA: : Repositoryld rep_id,
in string stroid)
rai ses (Servant Al readyActive, ObjectAlreadyActive);

CORBA: : Cbj ect _ptr restart_persistent _system d(
Por t abl eSer ver : : Ser vant servant,
const char* rep_id
const char* stroid);

org. ong. CORBA. Obj ect restart_persistent_systemn d(

or g. ong. Portabl eServer. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
The stringified version of the Objectld provided by the user to be set in the
object reference being created. It must have been returned from a previous
cal onstart _persistent_systemid.

CORBA: : Cbj ect_ptr
An object reference created with the stringified Objectld st r oi d and the
rep_i d provided by the user. The object reference will need to be converted
to aspecific object type by invoking the _nar r ow() operation defined for the
specific object. The caller is responsible for releasing the object when done.

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_id, using the supplied st r oi d (a stringified Objectld), which must have
been obtained by a previous call on st art _per si stent _syst em d.

11-16 CORBA C++ Programming Reference

BEAWrapper Callbacks API

Exceptions

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the object activated.

m There-activation would be done using the "restart_persistent_systemid" method.

Servant Al r eadyActi ve

The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different Qbj ect I ds, you must create different servants and
activate them separately. The same servant can be reused only if a

st op_obj ect operation tellsthe system to stop using the servant for its
original Cbj ect 1 d.

bj ect Al readyActi ve

CORBA:

CORBA:

The stringified Objectld is already being used for acallback. A given
Objectld can have only one servant associated with it. If you wish to change
to adifferent servant, you must first invoke st op_obj ect with the servant
currently in use.

: BAD_PARAM

The repository ID was a null string or the servant was a null pointer or the
Objectld supplied was not previously assigned by the system.

SIMP_LIMT

In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

CORBA C++ Programming Reference 11-17

11 Joint client/Servers

start_persistent_userid

Synopsis

IDL

C++ Binding

Java Binding

Arguments

Return Value

Activates an object, setsthe ORB and the POA to the proper state, and returnsan object
reference to the activated object.

bj ect start_persistent _userid(

port abl eServer: : Ser vant a_servant,
in CORBA: : Repositoryld rep_id,
in string stroid)

rai ses (Servant Al readyActive, ObjectAl readyActive);

CORBA: : Obj ect _ptr start_persistent_userid (

Por t abl eSer ver: : Servant servant,
const char* rep_id,
const char* stroid);

org. ong. CORBA. Obj ect start_persistent_useri d(

or g. ony. Port abl eServer. Servant servant,
java.lang. String rep_id,
java.lang. String stroid);

ser vant
An instance of the C++ implementation class for the interface.

rep_id
Therepository ID of theinterface.

stroid
The stringified version of an oj ect | d provided by the user to be set in the
object reference being created. The st r oi d holds application-specific data
and is opague to the ORB.

CORBA: : Cbj ect_ptr
An object reference created with the stringified Objectld st r oi d and the
rep_i d provided by the user. The object reference will need to be converted
to aspecific object type by invoking the _nar r ow() operation defined for the
specific object. The caller is responsible for releasing the object when the
conversion is done.

11-18 CORBA C++ Programming Reference

BEAWrapper Callbacks API

Description

Exceptions

This operation performs the following actions:

m Activates an object using the Ser vant supplied to service objects of the type
rep_i d, using the object id st r oi d.

m Setsthe ORB and the POA into the state in which they will accept requests on
that object.

m Returns an object reference to the activated object. The returned object reference
will be valid even after termination of the client. That is, if the client terminates,
and restarts again, and then activates a servant with the samer ep_i d and for the
same (bj ect | d, the servant will accept requests made on that same object
reference.

Servant Al r eadyActi ve

The servant is already being used for a callback. A servant can be used only
for acallback with asingle oj ect 1 d. To receive callbacks on objects
containing different Qbj ect I ds, you must create different servants and
activate them separately. The same servant can be reused only if a

st op_obj ect operation tellsthe system to stop using the servant for its
original Cbj ect 1 d.

bj ect Al readyActi ve

CORBA:

CORBA: :

The stringified Qoj ect | d is aready being used for acallback. A given

bj ect | d can haveonly one servant associated withit. If you wish to change
to adifferent servant, you must first invoke st op_obj ect with the servant
currently in use.

: BAD_PARAM

The repository 1D was anull string or the servant was a null pointer.

IMP LIMT

In addition to other system reasons for this exception, areason unique to this
situation isthat the joint client/server was not initialized with a port number;
therefore, a persistent object reference cannot be created.

CORBA C++ Programming Reference 11-19

11 Joint client/Servers

stop_object
Synopsis
IDL
C++ Binding
Java Binding

Argument

Description

Return Value

Exceptions

Tells the ORB to stop accepting requests on the object that is using the given servant.
voi d stop_object(in Portabl eServer:: Servant servant);

voi d stop_obj ect (Portabl eServer:: Servant servant);

voi d stop_obj ect (org. ong. Portabl eServer. Servant servant);

ser vant
An instance of the C++ implementation class for the interface. The
associ ation between this servant and its Obj ect | d will be removed from the
Active Object Map.

This operation tells the ORB to stop accepting requests on the given servant. It does
not matter what state the servant isin, activated or deactivated; no error is reported.

Note: If you do an invocation on a callback object after you call the st op_obj ect
operation, the OBJECT_NOT_EXI ST exception isreturned tothecaller. Thisis
because the st op_obj ect operation, in effect, deletes the object.

None.

None.

11-20 CORBA C++ Programming Reference

BEAWrapper Callbacks API

stop_all_objects

Synopsis
IDL

C++ Binding
Java Binding
Return Value

Description

Usage Note

Exceptions

Tellsthe ORB to stop accepting requests on all servants.

void stop_all_objects ();
void stop_all_objects ();
void stop_all_objects ();

None.

This operation tells the ORB to stop accepting requests on all servants that have been

set up in this process.

If aclient callsthe ORB: : shut down method, then it must not subsequently call

stop_al | _obj ects.

None.

CORBA C++ Programming Reference

1n-21

11 Joint client/Servers

get_string_oid

Synopsis
IDL

C++ Binding
Java Binding

Return Value

Description

Exceptions

Requests the string version of the Obj ect I d of the current request.
string get_string oid() raises (NotlnRequest);

char* get_string_oid();

java.lang. String get_string_oid();

char*
The string version of the Obj ect I d of the current request. Thisis the string
that was supplied when the object reference was created. The string is
meaningful to usersonly in the case when the object reference was created by
thest art _per si st ent _useri dfunction. (Thatis, the Qbj ect | d created by
start_transient andstart_persistent_systen dwerecreated by the
ORB and has no relationship to the user application.)

This operation returns the string version of the Obj ect | d of the current request.

Not | nRequest
The function was called when the ORB was not in the context of a request
(that is, not while the ORB was servicing a request in method code). Do not
call thisfunction from client code. It islegal only during the execution of a
method of the callback object (that is, the servant).

11-22 CORBA C++ Programming Reference

BEAWrapper Callbacks API

~(Callbacks

Synopsis Destroys the callback object.
C++Binding BEAW apper : : ~Cal | backs();
Java Binding public ~Cal | backs();
Arguments None.
Return Value ~ None.
Description This destructor destroys the callback object.

Usage Note If aclient wantsto get rid of the wrapper, but not shut down the ORB, then the client
must call thest op_al | _obj ect s method.

Exceptions None.

CORBA C++ Programming Reference 11-23

11 Joint client/Servers

11-24 CORBA C++ Programming Reference

CHAPTER

12 Development
Commands

For a detailed discussion of BEA WebL ogic Enterprise development commands, see
Commands, Processes, and MIB Reference. This document describes all BEA
WebL ogic Enterprise commands and processes.

A PDF file of the Commands Reference is also provided in the online documentation.

CORBA C++ Programming Reference 12-1

12 Development Commands

12-2 CORBA C++ Programming Reference

CHAPTER

13 Mapping of OMG IDL
Statements to C++

This chapter discusses the mappings from OMG IDL statementsto C++.

Note:

Some of the information in this chapter istaken from the Common Object

Request Broker: Architecture and Specification. Revision 2.2, February 1998,
published by the Object Management Group (OM G). Used with permission by

OMG.

Mappings

OMG IDL-to-C++ mappings are described for the following:

Datatypes

Strings

Constants

CPIDL

Enums

Portableserver functions
Pseudo-objects

Serverless objects

CORBA C++ Programming Reference 13-1

13 Mapping of OMG IDL Statements to C++

Structs

Unions

Usage

Sequences

Arrays

Exceptions

Typedefs

Operations (implementing)
Operations (interfaces)
Attributes

Any types

This chapter also describes the generated var classes for user-defined data types.

Data Types

Each OMG IDL datatype is mapped to a C++ datat ype or class.

Basic Data Types

13-2

Thebasic datatypesin OMG IDL statements are mapped to C++ typedefs in the

CORBA module, as shown in Table 13-1.

Table 13-1 Basic OMG IDL and C++ Data Types

OMG IDL C++ C++ Out Type
short CORBA: : Short CORBA: : Short _out

| ong CORBA: : Long CORBA: : Long_out
unsi gned CORBA: : UShor t CORBA: : UShort _out
short

CORBA C++ Programming Reference

Mappings

Table 13-1 Basic OMG IDL and C++ Data Types (Continued)

OMG IDL C++ C++ Out Type

unsi gned CORBA: : ULong CORBA: : ULong_out

| ong

f 1 oat CORBA: : Fl oat CORBA: : Fl oat _out
doubl e CORBA: : Doubl e CORBA: : Doubl e_out
char CORBA: : Char CORBA: : Char _out
bool ean CORBA: : Bool ean CORBA: : Bool ean_out
oct et CORBA: : Cct et CORBA: : Cct et _out

Note: On a 64-bit machine where along integer is 64 bits, the definition of
CORBA: : Long would till refer to a 32-bit integer.

Complex Data Types

Object, pseudo-object, and user-defined types are mapped as shown in Table 13-2.

Table 13-2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

OMG IDL C++

oj ect CORBA: : Cbj ect_ptr
struct C++ struct

uni on C++ cl ass

enum C++ enum

string char *

sequence C++ cl ass

array C++ array

CORBA C++ Programming Reference 13-3

13 Mapping of OMG IDL Statements to C++

Strings

The mapping for strings and UDTs is described in more detail in the following
sections.

A stringin OMG IDL ismappedto char * in C++. Both bounded and unbounded
stringsaremapped to char *. CORBA stringsin C++ are NUL L-terminated and can
be used wherever achar * t ype isused.

If astring is contained within another user-defined t ype, suchasa struct, itis
mapped to a CORBA: : Stri ng_var type. Thisensuresthat each member in the struct
manages its own memory.

Strings must be allocated and deall ocated using the following member functionsin the
CORBA class:

m string_alloc
m string_dup

m string free

Note: Thestring_al | oc function allocates| en+1 characters so that the resulting
string has enough space to hold atrailing NULL character.

Constants

A constant in OMG IDL ismapped to aC++ const definition. For example, consider
the following OMG IDL definition:

/1 OMG | DL
const string CompanyName = “BEA Systems Incorporated”;

module INVENT
{

const string Name = “Inventory Modules”;

interface Order

{
const long MAX_ORDER_NUM = 10000;

13-4 CORBA C++ Programming Reference

Mappings

I
}

This definition maps to C++ as follows:
/1 C++

const char *const
CompanyName = “BEA Systems Incorporated”;

class INVENT
{

static const char *const Name;

class Order : public virtual CORBA::Object

{
static const CORBA::Long MAX_ORDER_NUM,;

Y
b

Top-level constants are initialized in the generated .h include file, but module and
interface constants are initialized in the generated client stub modules.

Thefollowing isan example of avalid reference to the MAX_ORDER_NUNonstant, as
defined in the previous example:

CORBA::Long accnt_id = INVENT::Order::MAX_ORDER_NUM;

Enums

Anenumin OMG IDL ismapped to an enum in C++. For example, consider the
following OMG IDL definition:

// OMG IDL

module INVENT

{
enum Reply {ACCEPT, REFUSE};

This definition maps to C++ as follows:

I C++

CORBA C++ Programming Reference 13-5

13 Mapping of OMG IDL Statements to C++

cl ass | NVENT
{

enum Reply {ACCEPT, REFUSE};
b

Thefollowing is an example of avalid reference to the enum defined in the previous
example. You refer to enum as follows:

I NVENT: : Repl y accept _reply;
accept _reply = | NVENT: : ACCEPT;

Structs

A struct in OMG IDL is mapped to a C++ struct.

The generated code for a struct depends upon whether it is fixed-length or
variable-length. For moreinformation about fixed-length versusvariable-length types,
see the section “Fixed-length Versus Variable-length User-defined Types” on
page 13-47.

Fixed-length Versus Variable-length Structs

A variable-length struct contains an additional assignment operator member functiot
to handle assignments between two variable-length structs.

For example, consider the following OMG IDL definition:
/] OMG | DL

nodul e | NVENT

/1 Fixed-1length
struct Date
{
| ong year;
| ong nont h;
| ong day;
I

/1 Variabl e-1 ength
struct Address

{

13-6 CORBA C++ Programming Reference

Mappings

string aptNum
string streetNaneg;
string city;
string state;
string zi pCode;
}
b

This definition maps to C++ as follows:
/] C++

cl ass | NVENT

{
struct Date

{

CORBA: : Long year;
CORBA: : Long nont h;
CORBA: : Long day;
b

struct Address

{
CORBA: : String_var apt Num
CORBA: : String_var street Nane;
CORBA: : String_var city;
CORBA: : String_var state;
CORBA: : String_var zipCode;
Addr ess &operator=(const Address & obj);
b

Member Mapping

Members of astruct are mapped to the appropriate C++ datatype. For basic datatypes
(long, short, and so on), see Table 13-1 on page 13-2. For object references,
pseudo-object references, and strings, the member is mapped to the appropriate var
class:

m CORBA:: String_var
m CORBA:: Obj ect _var

All other datatypes are mapped as shown in Table 13-2, “Object, Pseudo-object, and
User-defined OMG IDL and C++ Types,” on page 13-3.

CORBA C++ Programming Reference 13-7

13 Mapping of OMG IDL Statements to C++

No constructor for a generated struct exists, so none of the members are initialized.
Fixed-length structs can be initialized using aggregate initialization. For example:

I NVENT: : Date a_date = { 1995, 10, 12 };

Variable-length members map to self-managing types; these types have constructors
that initialize the member.

Var
A var class is generated for structs. For more information, see the section “Using va
Classes” on page 13-47.

Out
An out class is generated for structs. For more information, see the section “Using oL
Classes” on page 13-53.

Unions

A union in OMG IDL is mapped to a C++ class. The C++ class contains the following:
m Constructors

m Destructors

m Assignment operators

m Modifiers for the union value

m Accessors for the union value

m Modifiers and accessors for the union discriminator

For example, consider the following OMG IDL definition:

/1 OMG | DL

union Orderltemswitch (long)

{

case 1: itenStruct itemnm nfo;
case 2: orderStruct orderlnfo;

13-8 CORBA C++ Programming Reference

Mappings

default: 1D idlnfo;
b

This definition maps to C++ as follows:
/1 C++

class Orderltem

{

public:
Orderltem();
Orderltem(const Orderltem &) ;
~Orderltem);

Orderltem &operator=(const O derltenmg);

void _d (CORBA::Long);
CORBA: : Long _d () const;

void itemnfo (const itenStruct &);
const itenBtruct & itemnfo () const;
itenBtruct & itemnfo ();

void orderlnfo (const orderStruct &);
const orderStruct & orderlnfo () const;
orderStruct & orderinfo ();

void idinfo (I1D);
IDidlnfo () const;

b
The default union constructor does not set adefault discriminator value for the union;
therefore, you cannot call any union accessor member function until you have set the

value of the union. The discriminator is an attribute that is mapped through the _d
member function.

Union Member Accessor and Modifier Member Function Mapping

For each member in the union, accessor and modifier member functions are generated.

In the following code, taken from the previous example, two member functions are
generated for the ID member function:

void idinfo (ID);
IDidlnfo () const;

CORBA C++ Programming Reference 13-9

13 Mapping of OMG IDL Statements to C++

In this example, the first function (the modifier) sets the discriminator to the default
value and sets the value of the union to the specified ID value. The second function,
the accessor, returns the value of the union.

Depending upon thedatat ype of the union member, additional modifier functions are
generated. The member functions generated for each datat ype are asfollows:

m Basic data types—short, long, unsigned short, unsigned long, float, double, char
boolean, and octet

The following example generates two member functions for a basicyjata
with member nameasi ct ype:

voi d basictype (TYPE); /1 nodifier
TYPE basi ctype () const; /'l accessor

For the mapping from an OMG IDL datgpe to the C++ dataype TYPE, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2.

m Object and pseudo-object

For object and Typecode types with member nabje ype, member functions
are generated as follows:

voi d objtype (TYPE); /1 nodifier
TYPE objtype () const; /'l accessor

For the mapping from an OMG IDL data type to the C++ dataTypEe, see
Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2.

The modifier member function does not assume ownership of the specified
object reference argument. Instead, the modifier duplicates the object reference
or pseudo-object reference. You are responsible for releasing the reference whe
it is no longer required.

m Enum

For an enunTYPE with member namenunt ype, member functions are
generated as follows:

voi d enuntype (TYPE); /1 nodifier
TYPE enuntype () const; [/ accessor

13-10 CORBA C++ Programming Reference

Mappings

m String

For strings, one accessor and three modifier functions are generated, as follows:

void stringlnfo (char *); /1 nodifier 1
void stringlnfo (const char *); /1l nodifier 2
void stringlnfo (const CORBA: :String var &; [/ nodifier 3
const char * stringlnfo () const; /'l accessor

The first modifier assumes ownership of the char * parameter passed to it and
the union is responsible for calling the CORBA: : string_free member
function on this string when the union value changes or when the union is
destroyed.

The second and third modifiers make a copy of the specified string passed in the
parameter or contained in the string var.

The accessor function returns a pointer to internal memory of the union; do not
attempt to free this memory, and do not access this memory after the union value
has been changed or the union has been destroyed.

m Struct, union, sequence, and any

For these data types, modifier and accessor functions are generated with
referencesto the t ype, asfollows:

void reftype (TYPE &); /1 nodifier
const TYPE & reftype () const; // accessor
TYPE & reftype (); /'l accessor

The modifier function does not assume ownership of the input t ype parameter;
instead, the function makes a copy of the datat ype.

m Array

For an array, the modifier member function accepts an array pointer while the
accessor returns a pointer to an array slice, asfollows:

void arraytype (TYPE); /1 nodifier
TYPE slice * arraytype () const; [/ accessor

CORBA C++ Programming Reference 13-11

13 Mapping of OMG IDL Statements to C++

Var

Out

The modifier function does not assume ownership of theinput t ype parameter;
instead, the function makes a copy of the array.

A var class is generated for a union. For more information, see the section “Using va
Classes” on page 13-47 .

An out class is generated for a union. For more information, see the section “Using
out Classes” on page 13-53.

Member Functions

In addition to the accessor and modifiers, the following member functions are
generated for an OMG IDL union of typ&PE with switch (long) discriminator:

TYPE() ;
This is the default constructor for a union. No default discriminator is set by
this function, so you cannot access the union until you set the value of the
union.

TYPE(const TYPE & From;
This copy constructor deep copies the specified union. Any data in the union
parameter is copied. The omargument specifies the union to be copied.

~TYPE() ;
This destructor frees the data associated with the union.

TYPE &operator=(const TYPE & Fron);
This assignment operator copies the specified union. Any existing value in
the current union is freed. TiFeomargument specifies the union to be
copied.

void _d (CORBA::Long Descrim;
This member function sets the value of the discriminant and frees the curren
value. TheDescri margument specifies the new discriminant. The data type
of the argument is determined by the OMG IDL data type specified in the
switch statement of the union. For each OMG IDL daise, see Table 13-1,
“Basic OMG IDL and C++ Data Types,” on page 13-2 for the C++ data type.

13-12 CORBA C++ Programming Reference

Mappings

CORBA: : Long _d () const;

Sequences

This function returns the current discriminant value. The data type of the

return value is determined by the OMG IDL datatype specified in the switch
statement of the union. For each OMG IDL data type, see Table 13-1, “Basic
OMG IDL and C++ Data Types,” on page 13-2 for the C++ data type.

A sequence in OMG IDL is mapped to a C++ class. The C++ class contains the
following:

Constructors

Each sequence has the following:

e A default constructor

e A constructor that initializes each element

e A copy constructor

Destructors

Modifiers for current length (and for maximum, if the sequence is unbounded)
Accessors for current length

Oper at or [] functions to access or modify sequence elements

Allocation and deallocation member functions

You must set the length before accessing any elements.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nodul e | NVENT

{

typedef sequence<Loglten> Logli st;

}

This definition maps to C++ as follows:

[l C++

CORBA C++ Programming Reference 13-13

13 Mapping of OMG IDL Statements to C++

class LoglLi st

{

public:
/| Default constructor
LogLi st ();

// Maxi mum construct or
LogLi st (CORBA: : ULong _nax);

/1l TYPE * data constructor
LoglLi st
(
CORBA: : ULong _max,
CORBA: : ULong _Il ength,
Logltem *_val ue,
CORBA: : Bool ean _rel se = CORBA FALSE

)

/1 Copy constructor
LogLi st (const LogLi st &);

/| Destructor
~LogLi st ();

LogLi st &operat or=(const LogList&);
CORBA: : ULong maxi mum() const;

voi d | engt h(CORBA: : ULong) ;
CORBA: : ULong | engt h() const;

Loglt em &operator[](CORBA: : ULong _i ndex);
const Logltem &operator[] (CORBA: : ULong _i ndex) const;

static Logltem *al | ocbuf (CORBA: : ULong _nel ens);
static void freebuf(Logltem*);

}s
b

Sequence Element Mapping

The operator[] functionsare used to accessor modify the sequence element. These
operators return areference to the sequence element. The OMG IDL sequence base
type is mapped to the appropriate C++ data type.

For basic datatypes, see Table 13-1, “Basic OMG IDL and C++ Data Types,” on page
13-2. For object references, TypeCode references, and strings, the base type is map
to a generatedFor Seq_var class. The For Seq_var class provides the capability to

13-14 CORBA C++ Programming Reference

Mappings

Vars

Out

update a string or an object that is stored within the sequence. This generated class has
the same member functions and signatures as the corresponding var class. However,
this _For Seq_var class honorsthe setting of the rel ease parameter in the sequence
constructor. The distinction is that the _For Seq_var class lets users specify the

Rel ease flag, thereby allowing usersto control the freeing of memory.

All other datatypes are mapped as shown in Table 13-2, “Object, Pseudo-object, and
User-defined OMG IDL and C++ Types,” on page 13-3.

A var class is generated for a sequence. For more information, see the section “Using
var Classes” on page 13-47.

An out class is generated for a sequence. For more information, see the section “Using
out Classes” on page 13-53.

Member Functions

For a given OMG IDL sequen&EQ with base typa@YPE, the member functions for
the generated sequence class are described as follows:

SEQ ();
This is the default constructor for a sequence. The length is set to 0 (zero). If

the sequence is unbounded, the maximum is also set to 0 (zero). If the
sequence is bounded, the maximum is specified by the OMG IDL type and
cannot be changed.

SEQ (CORBA: : ULong Max);
This constructor is present only if the sequence is unbounded. This function
sets the length of the sequence to 0 (zero) and sets the maximum of the buffer
to the specified value. Thax argument specifies the maximum length of the
sequence.

SEQ (CORBA: : ULong Max, CORBA::ULong Length, TYPE * Val ue,
CORBA: : Bool ean Rel ease);
This constructor sets the maximum, length, and elements of the sequence.
TheRel ease flag determines whether elements are released when the
sequence is destroyed. Explanations of the arguments are as follows:

CORBA C++ Programming Reference 13-15

13 Mapping of OMG IDL Statements to C++

Max
The maximum value of the sequence. This argument is not present
in bounded sequences.
Length
The current length of the sequence. For bounded sequences, this
value must be less than the maximum specified in the OMG IDL
type.
Val ue
A pointer to the buffer containing the elements of the sequence.
Rel ease

Determineswhether elementsarereleased. If thisflag hasavalue of
CORBA_TRUE, the sequence assumes ownership of the buffer pointed
toby theval ue argument. If theRel ease flagis CORBA_ TRUE, this
buffer must be allocated using the al | ocbuf member function,
becauseit will be freed using the f r eebuf member function when
the sequence is destroyed.

SEQ(const S& From;

~SEQ() ;

This copy constructor deep copies the sequence from the specified argument.
The Fr omargument specifies the sequence to be copied.

This destructor frees the sequence and, depending upon the Rel ease flag,
may free the sequence elements.

SEQ& oper at or =(const SEQ& From;

CORBA: :

This assignment operator deep copies the sequence from the specified
seguence argument. Any existing el ementsin the current sequence are
released if the Rel ease flag in the current sequenceis set to CORBA TRUE.
The Fr omargument specifies the sequence to be copied.

ULong maximun{) const;

Thisfunction returns the maximum of the sequence. For abounded sequence,
thisis the value set in the OMG IDL type. For an unbounded sequence, this
isthe current maximum of the sequence.

voi d | engt h(CORBA: : ULong Lengt h);

This function sets the current length of the sequence. The Lengt h argument
specifies the new length of the sequence. If the sequence is unbounded and
the new length is greater than the current maximum, the buffer is reallocated
and the elementsare copied to the new buffer. If the new lengthisgreater than
the maximum, the maximum is set to the new length.

13-16 CORBA C++ Programming Reference

Mappings

For a bounded sequence, the length cannot be set to a value greater than the
maxi mum.

CORBA: : ULong | ength() const;
This function returns the current length of the sequence.

TYPE & operator[] (CORBA: : ULong | ndex);

const TYPE & operator[](CORBA: : ULong | ndex) const;
These accessor functions return areference to the sequence element at the
specified index. Thel ndex argument specifiesthe index of the element to
return. Thisindex cannot be greater than the current sequence length. The
length must have been set either using the TYPE * constructor or the
| engt h(CORBA: : ULong) modifier. If TYPE is an object reference,
TypeCode reference, or string, the return type will be a For Seq_var class.

static TYPE * all ocbuf (CORBA: : UL.ong NunEl ens);
Thisstatic function allocates a buffer to be used with the TYPE * constructor.
The NumElems argument specifies the number of e ements in the buffer to
alocate. If the buffer cannot be allocated, NULL is returned.

If this buffer is not passed to the TYPE * constructor with release set to
CORBA_TRUE, it should be freed using the f r eebuf member function.

static void freebuf (TYPE * Val ue);
This static function freesa TYPE * sequence buffer allocated by the
al | ocbuf function. The Val ue argument specifiesthe TYPE * buffer
alocated by the al | ocbuf function. A O (zero) pointer isignored.

Arrays

Anarray in OMG IDL is mapped to aC++ array definition. For example, consider the
following OMG IDL definition:

/1 OMG | DL

nmodul e | NVENT
{

iybeaef Logltem LogArray[10];
b

This definition maps to C++ as follows:

[l C++

CORBA C++ Programming Reference 13-17

13 Mapping of OMG IDL Statements to C++

nodul e | NVENT
{

typedef Logltem LogArray[10];

typedef Logltem LogArray_slice;

static LogArray_slice * LogArray_alloc(void);
static void LogArray free(LogArray_slice *data);

b
Array Slice
A dlice of an array isan array with al the dimensions of the original array except the
first demension. The member functionsfor the array-generated classes use apointer to
adliceto return pointersto an array. A typedef for each dlice is generated.
For example, consider the following OMG IDL definition:
/] OMG | DL
typedef Logltem LogMul ti Array[5][10];
This definition maps to C++ as follows:
/] C++
typedef Logltem LogWul ti Array[5][10];
typedef Logltem LogMul ti Array_slice[10];
If you have a one-dimensional array, an array diceisjust atype. For example, if you
had a one-dimensional array of | ong, an array slicewould result in a CORBA: : Long
datatype.
Array Element Mapping
Thetype of the OMG IDL array is mapped to the C++ array element typein the same
manner as structs. For more information, see the section “Member Mapping” on
page 13-7.
Vars

A var class is generated for an array. For more information, see the section “Using v
Classes” on page 13-47.

13-18 CORBA C++ Programming Reference

Mappings

Out

An out class is generated for an array. For more information, see the section “Using
out Classes” on page 13-53.

Allocation Member Functions

For each array, there are two static functions for array allocation and deallocation. For
a given OMG IDL typeTYPE, the allocation and deallocation routines are as follows:

static TYPE slice * TYPE al |l oc(void);
This function allocatesBYPE array, returning a pointer to the allocatetE
array. If the array cannot be dynamically allocated, 0 (zero) is returned.

static void TYPE free(TYPE slice * Val ue);
This function frees a dynamically allocatedPE array. Theval ue argument
is a pointer to the dynamically allocatedPE array to be freed.

Exceptions

An exception in OMG IDL is mapped to a C++ class. The C++ class contains the
following:

m Constructors
m Destructors
m A static _narr owfunction, to determine the type of exception

The generated class is similar to a variable-length structure, but with an additional
constructor to simplify initialization, and with the staticar r ow member function to
determine the type of UserException.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nmodul e | NVENT
{
excepti on NonExi st

{
| D Badl d;

CORBA C++ Programming Reference 13-19

13 Mapping of OMG IDL Statements to C++

b
b
This definition maps to C++ as follows:
/1 C++
cl ass | NVENT
{
class NonExist : public CORBA: :UserException
{
public:
static NonExist * _narrow CORBA: : Exception_ptr);
NonExi st (1D _Badld);
NonExi st ();
NonExi st (const NonExi st &);
~NonExi st ();
NonExi st & operat or=(const NonExist &);
void raise ();
I D Badl d;
b

b

Attributes (data members) of the Exception class are public, so you may access them
directly.

Member Mapping

Var

Out

Members of an exception are mapped in the same manner as structs. For more
information, see “Member Mapping” on page 13-7.

All exception members are public data in the C++ class, and are accessed directly.

A var class is generated for an exception. For more information, see the section “Usin
var Classes” on page 13-47.

An out class is generated for an exception. For more information, see the
section“Using out Classes” on page 13-53.

13-20 CORBA C++ Programming Reference

Mappings

Member Functions

For agiven OMG IDL exception TYPE, the generated member functions are asfollows:

static TYPE * _narrow(CORBA:: Exception_ptr Except);

TYPE (

Thisfunction returns a pointer to a TYPE exception classif the exception can
be narrowed to a TYPE exception. If the exception cannot be narrowed, 0
(zero) isreturned. The TYPE pointer isnot apointer to anew class. Instead, it
isatyped pointer to the original exception pointer andisvalid only aslong as
the Except parameter isvalid.

)
Thisisthe default constructor for the exception. No initialization of members
is performed for fixed-length members. Variable-length members map to
self-managing types; these types have constructors that initialize the member.

TYPE(menber - par anet ers) ;

TYPE (

~TYPE

This constructor has an argument for each of the members in the exception.
The constructor copies each argument and does not assume ownership of the
memory for any argument. Building on the previous example, the signature
of the constructor is:

NonExi st (1D _Badld);
There is one argument for each member of the exception. The type and
parameter-passing mechanism areidentical to the Any insertion operator. For
information about the Any insertion operator, see the section to “Insertion
into Any” on page 13-36.

const TYPE & From;
This copy constructor copies the data from the specified exception
argument. Th&r omargument specifies the exception to be copied.

0);
This destructor frees the data associated with the exception.

TYPE & operator=(const TYPE & Fron);

voi d

This assignment operator copies the data from the spetifieglexception
argument. Th&r omargument specifies the exception to be copied.

_raise ();
This function causes the exception instance to throw itself. A catch clause
can catch it by a more derived type.

CORBA C++ Programming Reference 13-21

13 Mapping of OMG IDL Statements to C++

Mapping of Pseudo-objects to C++

Usage

CORBA pseudo-objects may be implemented either as normal CORBA objects or as
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

m Serverless object types do not inherit from CORBA: : Obj ect .
m Individual serverless objects are not registered with any ORB.

m Serverless objects do not necessarily follow the same memory management rules
asfor regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for exampl e, address spaces. I nstead, referencesto serverless objectsthat are
passed as parameters may result in the construction of independent, functionally
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such asdatalayout) of serverlessobjects
are made known to the ORB. Specificationsfor achieving this are not contained in this
chapter; making serverless objects known to the ORB is an implementation detail.

This chapter provides a standard mapping algorithm for all pseudo-object types. This
avoidsthe need for piecemeal mappings for each of the nine CORBA pseudo-object
types, and accommodates any pseudo-object types that may be proposed in future
revisions of CORBA. It al so avoids representation dependencein the C mapping, while
till allowing implementations that rely on C-compatible representations.

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo-object types follow the same
rules as normal OMG IDL interfaces, with the following exceptions:

m They are prefaced by the keyword pseudo.

m Their declarations may refer to other! serverless object types that are not
otherwise necessarily allowed in OMG IDL.

1. In particular, except i on used as a data type and a function name.

13-22 CORBA C++ Programming Reference

Mappings

The pseudo prefix meansthat the interface may beimplemented in either anormal or
serverless fashion. That is, apply either the rules described in the following sections,
or the normal mapping rules described in this chapter.

Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA: : Obj ect,
and arenot necessarily subclassesof any other C++ class. Thus, they do not necessarily
support, for example, the Cbj ect : : creat e_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in the CORBA namespace:

/1 C++
void rel ease(T _ptr);
Boolean is_nil (T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users,
although subclasses can be provided by implementations. |mplementations are
allowed to make assumptions about internal representationsand transport formats that
may not apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the norma memory management rules. This is because some
serverless objects, such as CORBA: : NVLi st , are essentially just containers for several
levels of other serverless abjects. Requiring callersto explicitly free the values
returned from accessor functionsfor the contained serverless objectswould be counter
to their intended usage.

All other elements of the mapping are the same. In particular:

m Thetypes of references to serverless objects, T_pt r, may or may not simply be a
typedef of T*.

m Each mapped class supports the following static member functions:

m /] C++
static T _ptr _duplicate(T ptr p);
static T _ptr _nil();

CORBA C++ Programming Reference 13-23

13 Mapping of OMG IDL Statements to C++

Legal implementations of _dupl i cat e include simply returning the argument or
constructing references to a new instance. Individual implementations may
provide stronger guarantees about behavior.

The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the
appropriate constructive operations.

As with normal interfaces, assignment operators are not supported.

Although they can transparently employ “copy-style” rather than
“reference-style” mechanics, parameter passing signatures and rules as well as
memory management rules are identical to those for normal objects, unless
otherwise noted.

Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analoc
in the C mapping. The mapped C++ classes can, but need not, be implemented usi
representations compatible to those chosen for the C mapping. Differences betweer
the pseudo-object specifications for C-PIDL and C++ PIDL are as follows:

C++ PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.

C++ PIDL calls for placement of operations on pseudo-objects in their
interfaces, including a few cases of redesignated functionality as noted.

In C++ PIDL,r el ease performs the role of the associatece anddel et e
operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
document.

13-24 CORBA C++ Programming Reference

Mappings

Typedefs

A typedef in OMG IDL ismapped to atypedef in C++. Depending upon the OMG IDL
data type, additional typedefs and member functions may be defined. The generated
code for each datatypeis as follows:

m Basic datatypes (short, long, unsigned short, unsigned long, float, double, char,
boolean, and octet)

Basic data types map to a simple typedef. For example:

/1 OMG | DL
typedef long ID;
/1 C++

typedef CORBA::Long |ID;
m string
A string typedef is mapped to a simple typedef. For example:

/1 OMG | DL
typedef string IDStr;

/1 C++
typedef char * IDStr;

m object, interfaces, TypeCode

Object, interfaces, and TypeCode types are mapped to four typedefs. For
example:

/1 OMG | DL
typedef ItemIntf;
/1 C++

typedef ItemIntf;

typedef lItemptr Intf _ptr;
typedef lItemvar Intf_var;
typedef Itemptr & Intf _out;

®m enum, struct, union, sequence

UDTs are mapped to three typedefs. For example:

/1 OMG | DL
typedef LogList ListRetType;

/1 C++
typedef LogList ListRetType;

CORBA C++ Programming Reference 13-25

13 Mapping of OMG IDL Statements to C++

typedef LogLi st _var ListRetType_var;
typedef LogLi st _out & ListRetType out;

m aray

Arrays are mapped to four typedefs and the static member functions to allocate
and free memory. For example:

/1 OM5G I DL
typedef LogArray ArrayRet Type;

/] C++

typedef LogArray ArrayRet Type;

typedef LogArray var ArrayRet Type_var;
typedef LogArray forany ArrayRet Type_forany;
typedef LogArray_slice ArrayRet Type_slice;
ArrayRet Type_slice * ArrayRet Type_al |l oc();
voi d ArrayRet Type_free(ArrayRet Type_slice *);

Implementing Interfaces

An operation in OMG IDL is mapped to a C++ member function.

The name of the member function is the name of the operation. The operation is
defined as a member function in both the interface class and the stub class. The
interface classis virtual; the stub class inherits from the virtual class and contains the
member function code from the client application stub. When an operation is invoked
on the object reference, the code contained in the corresponding stub member function
executes.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nodul e | NVENT
{

interface Order

{
Itenlist modifyOrder (in Itenmtist ModifyList):
b
b
This definition maps to C++ as follows:

[l C++

13-26 CORBA C++ Programming Reference

Mappings

cl ass | NVENT
{

class Order : public virtual CORBA: : Object
{

virtual Itenlist * nodifyOrder (
const ltenList & ModifyList) = 0;

b
b
class Stub_Order : public Oder
{

Itenmlist * nodi fyOrder (
const Iltenlist & ModifyList);

b
The generated client application stub then contains the following generated code for
the stub class:
/1 ROUTI NE NAME: I NVENT: : Stub_Order: : nodi fyOrder
/1l
/1 FUNCTI ONAL DESCRI PTI ON:
/1l

/1 dient application stub routine for operation
/1 nodi fyOrder.
/1l (Interface : Order)

I NVENT: : [tenLi st * | NVENT:: Stub_Oder:: nodi fyOrder (
const | NVENT::Iltenlist & ModifyList)
{

-

Argument Mapping

Each of the arguments in an operation is mapped to the corresponding C++ type as
described in Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2 and
Table 13-2, “Object, Pseudo-object, and User-defined OMG IDL and C++ Types,” on
page 13-3.

The parameter passing modes for arguments in an operation are described in
Table 13-7, “Basic Argument and Result Passing,” on page 13-62 and Table 13-8,
“T_var Argument and Result Passing,” on page 13-63.

CORBA C++ Programming Reference 13-27

13 Mapping of OMG IDL Statements to C++

Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate exception (t hr ow) specification. This
requirement allows the compiler to detect when an invalid exception israised, which
isnecessary in the case of alocal C++-to-C++ library call (otherwise, the call would
have to go through awrapper that checks for avalid exception). For example:

/1 1DL
interface A

exception B {};
void f() raises(B);

I
/] C++
class MYA : public virtual PQA_A
{
public:
void f() throwA:: B, CORBA:: SystenkException);
b

Since all operations and attributes may throw CORBA system exceptions,
CORBA: : Syst enmExcept i on must appear inall exception specifications, evenwhen an
operation hasnor ai ses clause.

Within a member function, the “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:

/1 1DL

interface A

{
void f();
void g();
I

/] C++
class MYA : public virtual PQA A

{
public:

13-28 CORBA C++ Programming Reference

Mappings

void f() throw(SystenException);

void g() throw(SystenkException);
private:

long x_;

b

voi d

M/A: : f() throw(SystenException)

{

this->x_ = 3;
this->g();

However, when a servant member function isinvoked in thismanner, it isbeing called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available viathe POA_Cur r ent
object refersto the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

Skeleton Derivation from Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod: : A, the skeleton class
POA_Mod: : Aisderived from class Mod: : A. These systems, therefore, alow an object
reference for a servant to be implicitly obtained via norma C++ derived-to-base
conversion rules:

/1 C++
M/l npl OF A ny_a; /1 declare inmpl of A
A ptr a = &y_a; /1 obtain its object reference
/'l by C++ derived-to-base conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _t hi s() on
the implementation object to implicitly register it if it has not yet been registered, and
to get its object reference:

/] C++

M/l npl OF A ny_a; /1 declare inmpl of A
A ptr a = ny_a._this(); // obtain its object reference

CORBA C++ Programming Reference 13-29

13 Mapping of OMG IDL Statements to C++

PortableServer Functions

Modules

Objects registered with POAs use sequences of octet, specifically the

Por t abl eSer ver : : POA: : Cbj ect | d type, as object identifiers. However, because
C++ programmers often want to use strings as object identifiers, the C++ mapping
provides several conversion functionsthat convert stringsto Obj ect I d and vice versa:

/] C++
nanespace Port abl eServer

char* bjectld to_string(const ojectld&);

oj ectld* string _to_Cbjectld(const char*);
}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an Obj ect | d to astring would result in illegal charactersin the string
(such asa NUL), the first two functions throw the CORBA: : BAD_PARAMexception.

A modulein OMG IDL ismapped to a C++ class. Objects contained in the module are
defined within this C++ class. Because interfaces and types are also mapped to classes,
nested C++ classes result.

For example, consider the following OMG IDL definition:

/1 OMG | DL

nmodul e | NVENT
{

interface Order

{
H
H
This definition maps to C++ as follows:

[l C++

13-30 CORBA C++ Programming Reference

Mappings

cl ass | NVENT

{

class Order : public virtual CORBA:: (bject
{
}; Il class Order

}; I/ class | NVENT

Multiple nested modules yield multiple nested classes. Anything inside the module
will be in the module class. Anything inside the interface will bein theinterface class.

OMG IDL allows modules, interfaces, and types to have the same name. However,
when generating filesfor the C++ language, having the samenameisnot allowed. This
restriction is necessary because the OMG IDL names are generated into nested C++
classes with the same name; thisis not supported by C++ compilers.

Note: The BEA WebL ogic Enterprise OMG IDL compiler outputs an informational
message if you generate C++ code from OMG IDL with an interface or type
with the same name as the current module name. If you ignore this
informational message and do not use unique names to differentiate the
interface or type from the module name, the compiler will signal errors when
compiling the generated files.

Interfaces

Aninterfacein OMG IDL is mapped to a C++ class. Thisclass contains the definitions
of the operations, attributes, constants, and user-defined types (UDTs) contained in the
OMG IDL interface.

For an interface INTF, the generated interface code contains the following items:

m Object referencetype (INTF_ptr)

Object reference variable type (INTF_var)
m _duplicate static member function

® _narrow static member function

_ni | static member function

m UDTs

CORBA C++ Programming Reference 13-31

13 Mapping of OMG IDL Statements to C++

m Member functions for attributes and operations

For example, consider the following OMG IDL definition:
/1 OMG | DL

nmodul e | NVENT
{

interface Order

{

voi d cancel Order ();
b
h

This definition maps to C++ as follows:

/] C++
cl ass | NVENT

{
cl ass Or der;
typedef Order * Order _ptr;

class Order : public virtual CORBA:: Object
{

static Order_ptr _duplicate(Order _ptr obj);
static Order_ptr _narrow CORBA: : Obj ect _ptr obj);
static Order_ptr _nil();

virtual void cancel Oder () = O;

b
b

The object reference types and static member functions are described in the following
sections, asare UDTS, operations, and attributes.

Generated Static Member Functions

This section describesin detail the generated static member functions: _dupl i cat e,
_narrow, and _nil foraninterface INTF.

static INTF ptr _duplicate (/NTF ptr Obj)
This static member function duplicates an existing INTF object reference and
returns anew INTF object reference. The new INTF object reference must be

13-32 CORBA C++ Programming Reference

Mappings

released by calling the CORBA: : r el ease member function. If an error
occurs, areferenceto the nil INTF object is returned. The argument Qbj
specifies the object reference to be duplicated.

static INTF ptr _narrow (CORBA:: Object_ptr Obj)
This static member function returns a new INTF object reference given an
existing CORBA: : Obj ect _pt r object reference. The (bj ect _pt r object
reference may have been created by a call to the
CORBA: : ORB: : string_to_obj ect member function or may have been
returned as a parameter from an operation.

The I NTF_pt r object reference must correspond to an INTF object or to an
object that inherits from the INTF object. The new INTF object reference
must be released by calling the CORBA: : r el ease nenber function. The
argument Obj specifiesthe object reference to be narrowed to an INTF object
reference. The Gbj parameter is not modified by this member function and
should bereleased by the user when it isnolonger required. If Obj cannot be
narrowed to an INTF object reference, the INTF nil object referenceis
returned.

static INTF ptr _nil ()
This static member function returnsthe new nil object referencefor the INTF
interface. The new reference does not have to be released by calling the
CORBA: : r el ease member function.

Object Reference Types

Aninterfaceclass (INTF) isavirtual class, the CORBA standard doesnot allow you to:
m Create or hold an instance of theinterface class
m Useapointer or areference to the interface class

Instead, you use one of the object referencetypes, | NTF_ ptr or I NTF_var class.
Y ou can obtain an object reference by using the _narr ow static member function.
Operations are invoked on these classes using the arrow operator (- >).

The I NTF_var class simplifies memory management by automatically releasing the

object reference when the | NTF_var classgoes out of scope or isreassigned. Variable

types are generated for many of the UDTs and are described in “Using var Classes” on
page 13-47.

CORBA C++ Programming Reference 13-33

13 Mapping of OMG IDL Statements to C++

Attributes

A read-only attributein OMG IDL is mapped to a C++ function that returns the
attribute value. A read-write attribute maps to two overloaded C++ functions, one to
return the attribute value and one to set the attribute value. The name of the overloaded

member function is the name of the attribute.

Attributes are generated in the same way that operations are generated. They are
defined in both the virtual and the stub classes. For example, consider the following

OMG IDL definition:

/1 OMG | DL
nodul e | NVENT
{
interface O der
{
attribute itenBtruct i tenl nf o;
b
b

This definition maps to C++ as follows:
/] C++
class | NVENT
{
class Item: public virtual CORBA: : Cbject
{
virtual itenmStruct * itemnfo () = 0;

virtual void item nfo (
const itenBtruct & item nfo) = 0;

b
b
class Stub_Item: public Item
{

itenStruct * itemnfo ();

void item nfo (
const itenBtruct & item nfo);
}s

13-34 CORBA C++ Programming Reference

Mappings

The generated client application stub then contains the following generated code for

the stub class:

/1 ROUTI NE NAME: I NVENT: : Stub_Item:itenml nfo
/1

/1 FUNCTI ONAL DESCRI PTI ON:

/1

/1 Cient application stub routine for attribute
/1 INVENT: : Stub_Item:itemnfo. (Interface : lten)
INVENT: :itenStruct * | NVENT:: Stub_Item:item nfo ()
{

}

I/

/1 ROUTI NE NAME: I NVENT: : Stub_Item:itenm nfo
I/

/1 FUNCTI ONAL DESCRI PTI ON:

11

/1 Aient application stub routine for attribute
/1 INVENT: : Stub_Item:itemnfo. (Interface : lten

void INVENT: :Stub_ Item:item nfo (
const INVENT::itenStruct & item nfo)

{
}

Argument Mapping

An attribute is equivalent to two operations, one to return the attribute and one to set
the attribute. For example, thei t eml nf o attribute listed above is equivalent to:

void itemnfo (in itenStruct itenl nfo);
itenStruct itemnfo ();

The argument mapping for the attribute is the same as the mapping for an operation
argument. The attribute is mapped to the corresponding C++ type as described in

Table 13-1, “Basic OMG IDL and C++ Data Types,” on page 13-2 and Table 13-2,
“Object, Pseudo-object, and User-defined OMG IDL and C++ Types,” on page 13-3.
The parameter passing modes for arguments in an operation are described in
Table 13-7, “Basic Argument and Result Passing,” on page 13-62 and Table 13-8,
“T_var Argument and Result Passing,” on page 13-63.

CORBA C++ Programming Reference 13-35

13 Mapping of OMG IDL Statements to C++

Any Type

Anany in OMG IDL is mapped to the CORBA: : Any class. The CORBA: : Any class
handles C++ typesin atype-safe manner.

Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct typein
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided. Overloaded operators are used for these functions to completely
avoid any name space pollution. The nature of these functions, which are described in
detail below, isthat the appropriate TypeCodeisimplied by the C++ type of the value
being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are specia casesin which this requirement is not met:

e Theboolean, octet, and char OMG IDL typesare not required to map to
distinct C++ types, which means that a separate means of distinguishing
them from each other for the purpose of function overloading is necessary.
The means of distinguishing these types from each other is described in
“Distinguishing boolean, octet, char, and Bounded Strings” on page 13-42.

e Since all strings are mappeddiear * regardless of whether they are
bounded or unbounded, another means of creating or settingy avith a
bounded string value is necessary. This is described in “Distinguishing
boolean, octet, char, and Bounded Strings” on page 13-42.

e In C++, arrays within a function argument list decay into pointers to their
first elements. This means that function overloading cannot be used to
distinguish between arrays of different sizes. The means for creating or
setting amany when dealing with arrays is described below and in “Arrays”
on page 13-17.

Insertion into Any

To allow a value to be set in any in a type-safe fashion, the following overloaded
operator function is provided for each separate OMG IDL type T:

13-36 CORBA C++ Programming Reference

Mappings

/] C++
voi d operator<<=(Any& T);

This function signature suffices for the following types, which are usually passed by
value:

e Short, UShort, Long, ULong, Fl oat , Doubl e
e enumerations
e unbounded strings (char * passed by value)

e oObject references (T_ptr)

For values of type T that are too large to be passed by value efficiently, two forms of
the insertion function are provided:

/1 C++
voi d operator<<=(Any& const T&); /1l copying form
voi d operator<<=(Any& T*); /1 non-copying form

Note that the copying form islargely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value iaty pas
follows:

/1l C++

Long val ue = 42;
Any a;

a <<= val ue;

In this case, the version efier at or <<= overloaded for typeong sets both the value
and the TypeCode properly for the Any variable.

Setting a value in aany usingoper at or <<= means the following:

e For the copying version @fper at or <<=, the lifetime of the value in the
Any is independent of the lifetime of the value passeipto at or <<=. The
implementation of the Any does not store its value as a reference or a pointer
to the value passed tper at or <<=.

e For the noncopying version oper at or <<=, the inserted* is consumed by
the Any. The caller may not use tie to access the pointed-to data after
insertion because the Any assumes ownership of T*, and the Any may
immediately copy the pointed-to data and destroy the original.

CORBA C++ Programming Reference 13-37

13 Mapping of OMG IDL Statements to C++

e With both the copying and noncopying versions of oper at or <<=, any
previous vaue held by the Any is properly deallocated. For example, if the
Any(TypeCode_pt r, voi d*, TRUE) constructor (described in “Handling
Untyped Values” on page 13-45) were called to creatavhetheAny is
responsible for deallocating the memory pointed to by thel* before
copying the new value.

Copying insertion of a string type causes the following function to be invoked:

/] C++
voi d operat or<<=(Any&, const char*);

Since all string types are mappedttar *, this insertion function assumes that the
value being inserted is an unbounded string. “Distinguishing boolean, octet, char, an
Bounded Strings” on page 13-42 describes how bounded strings may be correctly
inserted into arny. Noncopying insertion of both bounded and unbounded strings can
be achieved using thany: : from st ri ng helper type described in “Distinguishing
boolean, octet, char, and Bounded Strings” on page 13-42.

Type-safe insertion of arrays uses fneay_f or any types described in “Arrays” on
page 13-17. The ORB provides a versiormpér at or <<= overloaded for each
Array_forany type. For example:

/1 1DL
typedef |long LongArray[4][5];

/] C++

typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray forany { ... };

voi d operator<<=(Any & const LongArray forany &);

TheArray_f orany types are always passedoieer at or <<= by reference toonst.
Thenocopy flag in theAr ray_f or any constructor is used to control whether the
inserted value is copieddcopy == FALSE) or consumednocopy == TRUE).
Because theocopy flag defaults ta-ALSE, copying insertion is the default.

Because of the type ambiguity between an arrayarid ar*, it is highly
recommended that portable code explicitly use the appropriatey_f or any type
when inserting an array into an Any. For example:

/1 1DL
struct S {.
typedef S SA[5]

13-38 CORBA C++ Programming Reference

Mappings

/1 C++

struct S{ ... };
typedef S SA[5];
typedef S SA slice;

class SA forany { ... };

SA s;

/1 ...initialize s...

Any a;

a <<= s; /Il line 1
a <<= SA forany(s); /'l line 2

Line 1 results in the invocation of the noncopying oper at or <<=(Any&, S*) dueto
the decay of the SA array type into a pointer to its first element, rather than the
invocation of the copying SA f or any insertion operator. Line 2 explicitly constructs
the SA_f or any type and thusresults in the desired insertion operator being invoked.

Thenoncopying version of oper at or <<= for object referencestakes the address of the
T_ptr type, asfollows:

/1 1DL

interface T { ... };

/1 C++

voi d operator<<=(Any& T ptr); /'l copying
voi d operator<<=(Any& T ptr*); /'l non-copyi ng

The noncopying object referenceinsertion consumes the object reference pointed to by
T_pt r *; therefore, after insertion the caller may not access the object referred to by
T_pt r because the Any may have duplicated and then immediately released the
original object reference. The caller maintains ownership of the storagefor the T_pt r
itself.

The copying version of oper at or <<= is aso supported on the Any_var type.

Extraction from Any

To alow type-saferetrieval of avalue from an any, the ORB provides the following
operatorsfor each OMG IDL type T:

/1 C++
Bool ean oper at or>>=(const Any&, T&);

This function signature suffices for primitive types that are usually passed by value.
For values of type T that are too large to be passed by value efficiently, the ORB
provides a different signature, as follows:

CORBA C++ Programming Reference 13-39

13 Mapping of OMG IDL Statements to C++

/] C++
Bool ean operat or >>=(const Any&, T*&);

Thefirst form of this function isused only for the following types:

e Bool ean, Char, Cctet, Short, Ushort, Long, ULong, Float,
Doubl e

e enumerations
e unbounded strings (char * passed by reference, i.e., char * &)
e object references (T_ptr)

For al other types, the second form of the function is used.

This “right-shift-assign” operator is used to extract a typed value froamghas
follows:

/] C++
Long val ue;
Any a;
a <<= Long(42);
if (a >>= value) {
// ... use the value ...
}

In this case, the version ofer at or >>= for typeLong determines whether the Any

truly does contain a value of typeng and, if so, copies its value into the reference
variable provided by the caller and retumE. If the Any does not contain a value
of typeLong, the value of the caller’s reference variable is not changed, and

oper at or >>= returnsFALSE.

For nonprimitive types, extraction is done by pointer. For example, consider the
following OMG IDL struct:

/1 1DL
struct MyStruct {
long | mem
short snmem
I
Such a struct could be extracted from an Any as follows:
/] C++
Any a;
/1 ... ais sonehow given a val ue of type MyStruct

MyStruct *struct _ptr;
if (a >= struct_ptr) {

13-40 CORBA C++ Programming Reference

Mappings

/Il ... use the value ...

}

If the extraction is successful, the caller’s pointer points to storage managed by the
Any, andoper at or >>= returnsTRUE. The caller must not try tdel et e or otherwise

release this storage. The caller also should not use the storage after the contents of the
Any variable are replaced via assignment, insertion, ardheace function, or after

the Any variable is destroyed. Care must be taken to avoid Usireg types with

these extraction operators, since they will try to assume responsibility for deleting the
storage owned by the Any.

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, ancper at or >>= returnsrFALSE.

Correct extraction of array types relies on Aheay_f or any types described in
“Arrays” on page 13-17.

An example of the OMG IDL is as follows:

/1 1DL
typedef |ong Al 20];
typedef A B[30][40][50];

/1 C++

typedef Long Al 20];
typedef Long A slice;
class A forany { ... };
typedef A B[30][40][50];
typedef A B slice[40][50];
class B forany { ... };

Bool ean oper at or>>=(const Any&, A forany&);

/1 for type A

Bool ean oper at or>>=(const Any&, B forany&); /1
for type B

TheArray_f orany types are always passedoteer at or >>= by reference.

For strings and arrays, applications are responsible for checking the TypeCode of the
Any to be sure that they do not overstep the bounds of the array or string object when
using the extracted value.

Theoper at or >>= is also supported on thaay_var type.

CORBA C++ Programming Reference 13-41

13 Mapping of OMG IDL Statements to C++

Distinguishing boolean, octet, char, and Bounded Strings

Since the boolean, octet, and char OMG IDL types are not required to map to distinct
C++ types, another means of distinguishing them from each other is necessary so that
they can be used with the type-safe Any interface. Similarly, since both bounded and
unbounded strings map to char *, another means of distinguishing them must be
provided. Thisisdone by introducing several new helper types nested inthe Any class
interface. For example, this is accomplished as shown below:

/] C++
class Any
{

public:

/| special hel per types needed for bool ean, octet,
/1 char, and bounded string insertion
struct from bool ean {
from bool ean(Bool ean b) : val (b) {}
Bool ean val ;
}
struct fromoctet {
fromoctet(Cctet o) : val (o) {}
Cctet val;
b
struct fromchar {
fromchar(Char c) : val(c) {}
Char val;
b
struct fromstring {
fromstring(char* s, ULong b,
Bool ean nocopy = FALSE)
val (s), bound(b) {}
char *val;
ULong bound;

}s

voi d oper at or<<=(from bool ean);
voi d operator<<=(from char);
voi d operator<<=(fromoctet);
voi d operator<<=(fromstring);
/| special hel per types needed for bool ean, octet,
/1 char, and bounded string extraction
struct to_bool ean {
to_bool ean(Bool ean &) : ref(b) {}
Bool ean &ref;
h
struct to_char {
to_char(Char &) : ref(c) {}
Char &ref;

13-42 CORBA C++ Programming Reference

Mappings

b
struct to_octet {
to_octet(Cctet &) : ref(o) {}
Cctet &ref;
b
struct to_string {
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val ;
ULong bound;

}s

Bool ean operator>>=(to_bool ean) const;
Bool ean operator>>=(to_char) const;
Bool ean operator>>=(to_octet) const;
Bool ean operator>>=(to_string) const;

/1 other public Any details onitted

private:
/1 these functions are private and not i npl enented
/1 hiding these causes conpile-tinme errors for
/1 unsigned char
voi d operat or <<=(unsi gned char);
Bool ean operator>>=(unsigned char &) const;

}s

The ORB provides the overloaded oper at or <<= and oper at or >>= functions for
these special helper types. These helper types are used as shown here:

/] C++
Bool ean b = TRUE;
Any any;
any <<= Any::frombool ean(b);
1.,
if (any >>= Any::to_bool ean(b)) {
/1 ...any contained a Boolean...
}
char* p = "bounded";
any <<= Any::fromstring(p, 8);
...
if (any >>= Any::to_string(p, 8)) {
/1 ...any contained a string<8>...
}

A bound value of 0 (zero) indicates an unbounded string.

For noncopying insertion of a bounded or unbounded string into an Any, the nocopy
flag on the f rom st ri ng constructor should be set to TRUE:

CORBA C++ Programming Reference 13-43

13 Mapping of OMG IDL Statements to C++

/] C++

char* p = string_alloc(8);

/1l ...initialize string p...

any <<= Any::fromstring(p, 8, 1); /1l any consumes p

Assuming that boolean, char, and octet all map the C++ type unsi gned char , the
private and unimplemented oper at or <<= and oper at or >>= functionsfor unsi gned
char cause acompile-time error if straight insertion or extraction of any of the
Boolean, Char, or Octet types is attempted:

/] C++

Cctet oct = 040;

Any any;

any <<= oct; /1 this line will not conpile

any <<= Any::fromoctet(oct); /1 but this one will
Widening to Object

Sometimesit is desirable to extract an object reference from an Any asthe base Object
type. This can be accomplished using a hel per type similar to those required for
extracting Boolean, Char, and Octet:

/] C++
class Any
{

public:

st r uct to_object {
to_object(Object_ptr &bj) : ref(obj) {}
oj ect _ptr &ref;

Bool ean oper at or>>=(t o_obj ect) const;

b

Thet o_obj ect helper type is used to extract an object reference from an Any as the
base Object type. If the Any contains a value of an object reference type as indicated
by its TypeCode, the extraction function oper at or >>=(t o_obj ect) explicitly
widens its contained object reference to Object and returns true; otherwise, it returns
false. Thisisthe only object reference extraction function that performswidening on
the extracted object reference. Aswith regular object reference extraction, no
duplication of the object reference is performed by the to_obj ect extraction
operator.

13-44 CORBA C++ Programming Reference

Mappings

Handling Untyped Values

Under some circumstancesthe type-safe interfaceto Any isnot sufficient. An example
is asituation in which data types are read from afilein binary form and are used to
create values of type Any. For these cases, the Any class provides a constructor with
an explicit TypeCode and generic pointer:

/1 C++
Any(TypeCode_ptr tc, void *val ue, Bool ean rel ease = FALSE)

The constructor duplicates the given TypeCode pseudo-object reference. If the

r el ease parameter is TRUE, the Any object assumes ownership of the storage pointed
to by theval ue parameter. A caller should make no assumptions about the continued
lifetime of the val ue parameter onceit has been handed to an Any with

r el ease=TRUE, since the Any may copy the val ue parameter and immediately free
the original pointer. If ther el ease parameter is FALSE (the default case), the Any
object assumes that the caller manages the memory pointed to by val ue. Theval ue
parameter can be anull pointer.

The Any class al so defines three unsafe operations:

/1 C++
voi d repl ace(

TypeCode_ptr,

voi d *val ue,

Bool ean rel ease = FALSE
);
TypeCode_ptr type() const;
const void *val ue() const;

Ther epl ace function isintended to be used with types that cannot be used with the
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage is deallocated, if necessary. The
TypeCode function parameter is duplicated. If ther el ease parameter is TRUE, the
Any object assumes ownership for the storage pointed to by theval ue parameter. The
Any should make no assumptionsabout the continued lifetime of the val ue parameter
onceit hasbeen handed tothe Any: : r epl ace functionwithr el ease=TRUE, sincethe
Any may copy theval ue parameter and immediately free the original pointer. If the
r el ease parameter is FALSE (the default case), the Any object assumesthat thecaller
manages the memory occupied by the value. The val ue parameter of ther epl ace
function can be anull pointer.

CORBA C++ Programming Reference 13-45

13 Mapping of OMG IDL Statements to C++

Note that neither the constructor shown above nor the r epl ace function istype-safe.
In particular, no guarantees are made by the compiler at run time asto the consi stency
between the TypeCode and the actual type of thevoi d* argument. The behavior of an
ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

Thetypefunction returnsa TypeCode_pt r pseudo-object reference to the TypeCode
associated withthe Any. Like all object referencereturn values, the caller must release
thereference when it isno longer needed, or assign it to aTypeCode_var variable for
automatic management.

Theval ue function returns a pointer to the data stored in the Any. If the Any has no
associated value, the val ue function returns a null pointer.

Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of typet k_nul | , and no

value. The copy constructor calls _dupl i cat e on the TypeCode_pt r of itsAny
parameter and deep-copies the parameter’s value. The assignment operator release
own TypeCode_pt r and deallocates storage for the current value if necessary, then
duplicates th@ypeCode_ptr of its Any parameter and deep-copies the parameter’s
value. The destructor callel ease on theTypeCode_pt r and deallocates storage for
the value, if necessary.

Other constructors are described in the section “Handling Untyped Values” on
page 13-45.

The Any Class

The full definition of the Any class can be found in the section “Any Class Member
Functions” on page 14-2.

13-46 CORBA C++ Programming Reference

Fixed-length Versus Variable-length User-defined Types

Fixed-length Versus Variable-length
User-defined Types

The memory management rules and member function signatures for a user-defined
type depend upon whether the type is fixed-length or variable-length. A user-defined
type is variable-length if it is one of the following:

A bounded or unbounded string

A bounded or unbounded sequence

A struct or union that contains a variable-length member
An array with avariable-length element type

A typedef to avariable-length type

If atypeisnot on thislist, the typeis fixed-length.

Using var Classes

Automatic variables (vars) are provided to simplify memory management. Vars are
provided through a var class that assumes ownership for the memory required for the
type and frees the memory when the instance of the var object is destroyed or when a
new value is assigned to the var object.

The BEA WebL ogic Enterprise provides var classes for the following types:

string (CORBA: : String_var)
object references (CORBA: : Obj ect _var)

user-defined OMG IDL types(struct, union, sequence, array, and
interface)

CORBA C++ Programming Reference 13-47

13 Mapping of OMG IDL Statements to C++

Thevar classes have common member functions, but may support additional operators
depending upon the OMG IDL type. For an OMG IDL type TYPE, the TYPE var class
contains constructors, destructors, assignment operators, and operators to access the
underlying TYPE type. An example var classis as follows:

class TYPE var

{

publ i c:
/] constructors
TYPE var ();

TYPE var (TYPE *);

TYPE var (const TYPE var &);
/| destructor

~TYPE var ();

/| assignment operators
TYPE var &operator=(TYPE *);
TYPE_var &operator=(const TYPE var &);

/| accessor operators
TYPE *operator->();
TYPE *operator->() const;

TYPE var _ptr in() const;
TYPE var _ptr& i nout();
TYPE var _ptr& out();

TYPE var _ptr _retn();

operator const TYPE ptré&() const;
operator TYPE ptré&();

operator TYPE_ptr;

b
The detail s of the member functions are as follows:

TYPE var ()
Thisisthe default constructor for the TYPE var class. The constructor
initializesto O (zero) the TYPE * owned by the var class. Y ou may not invoke
the oper at or->onaTYPE_var classunlessavalid TYPE * hasbeen
assigned to it.

TYPE var (TYPE * Val ue);
This constructor assumes ownership of the specified TYPE * parameter.
When the TYPE_var isdestroyed, the TYPE is released. The Val ue argument
isapointer to the TYPE to be owned by this var class. This pointer must not
be O (zero).

13-48 CORBA C++ Programming Reference

Using var Classes

TYPE var (const TYPE var & Fron);
Thiscopy constructor allocates anew TYPE and makes adeep copy of thedata
contained in the TYPE owned by the Fr omparameter. When the TYPE var is
destroyed, the copy of the TYPE is released or deleted. The Fr omparameter
specifies the var class that points to the TYPE to be copied.

~TYPE var ();
Thisdestructor usesthe appropri ate mechanism to rel ease the TYPE owned by
the var class. For strings, thisisthe CORBA: : st ri ng_f r ee routine. For
object references, thisisthe CORBA: : r el ease routine. For other types, this
may be del et e or agenerated static routine used to free allocated memory.

TYPE var &operator=(TYPE * NewVval ue);
This assignment operator assumes ownership of the TYPE pointed to by the
Newval ue parameter. If the TYPE_var currently ownsaTYPE, it isreleased
before assuming ownership of the Newval ue parameter. The Newval ue
argument is a pointer to the TYPE to be owned by this var class. This pointer
must not be 0 (zero).

TYPE var &operator=(const TYPE var &Fronj;
This assignment operator allocates a new TYPE and makes a deep copy of the
data contained in the TYPE owned by the Fr omTYPE_var parameter. If
TYPE var currently ownsaTYPE, it is released. When the TYPE_var is
destroyed, the copy of the TYPE isreleased. The Fr omparameter specifiesthe
var class that points to the data to be copied.

TYPE *operator->();

TYPE *operator->() const;
These operators return a pointer to the TYPE owned by the var class. The var
class continuesto own the TYPE and it isthe responsihility of the var classto
release TYPE. Y ou cannot use the oper at or - > until the var ownsavalid
TYPE. Do not try to release this return value or access this return value after
the TYPE var hasbeen destroyed.

TYPE var _ptr in() const;

TYPE var _ptr& inout();

TYPE var _ptr& out();

TYPE var _ptr _retn();
Becauseimplicit conversions can sometimes cause a problem with some C++
compilers and with code readability, the TYPE var types also support
member functions that allow them to be explicitly converted for purposes of
parameter passing. To passa TYPE_var and ani n parameter, call thei n()
member function; for i nout parameters, thei nout () member function; for
out parameters, the out () member function. To obtain areturn value from

CORBA C++ Programming Reference 13-49

13 Mapping of OMG IDL Statements to C++

the TYPE var, cal the_return() function. For each TYPE var type, the
return types of each of these functions will match the type shown in

Table 13-7, “Basic Argument and Result Passing,” on page 13-62 fon the
i nout, out , and return modes for the underlying typ¢PE, respectively.

Some differences occur in the operators supported for the user-defined data types.
Table 13-3 describes the various operators supported by each OMG IDL data type, i
the generated C++ code. Because the assignment operators are supported for all of1
data types described in Table 13-3, they are not included in the comparison.

Table 13-3 Comparison of Operators Supported for User-defined Data Type

var Classes
OMG IDL Data Type operator -> operator|]
struct Yes No
uni on Yes No
sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-4.

Table 13-4 Operator Signaturesfor _var Classes

OMG IDL Data Operator Member Functions

Type
struct TYPE * operator-> ()
TYPE * operator-> () const
uni on TYPE * operator-> ()
TYPE * operator-> () const
sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[](CORBA:: Long i ndex)
array TYPE slice & operator[] (CORBA: : Long i ndex)

TYPE:S| ice & operator[] (CORBA: : Long index) const

13-50 CORBA C++ Programming Reference

Using var Classes

Sequence vars

Sequence vars support the following additional oper at or [] member function:

TYPE &operat or[] (CORBA: : ULong | ndex) ;

This operator invokesthe oper at or [] of sequence owned by the var class.
The operat or[] returns areference to the appropriate element of the
sequence at the specified index. The I ndex argument specifies the index of
the element to return. Thisindex cannot be greater than the current sequence
length.

Array vars

Array vars do not support oper at or - >, but do support the following additional
oper at or [] member functionsto access the array elements:

TYPE sl ice& operator[] (CORBA: : ULong | ndex) ;
const TYPE slice & operator[](CORBA: : ULong | ndex) const;

These operatorsreturn areference to the array slice at the specified index. An
array diceisan array with all the dimensions of the original array except the
first dimension. The member functions for the array-generated classes use a
pointer to asliceto return pointersto an array. The | ndex argument specifies
the index of the slice to return. Thisindex cannot be greater than the array
dimension.

String vars

The String vars in the member functions described in this section and in the section
“Sequence vars” on page 13-51 hawerBe of char *. String vars support additional
member functions, as follows:

String var(char * str)
This constructor makessari ng_var from a string. Thetr argument
specifies the string that will be assumed. The user must not userthe
pointer to access data.

CORBA C++ Programming Reference 13-51

13 Mapping of OMG IDL Statements to C++

out Classes

String_var(const char * str)

String var(const String _var & var)
This constructor makesa St ri ng_var fromaconst string. Thestr
argument specifies the const string that will be copied. The var argument
specifies areference to the string to be copied.

String var & operator=(char * str)
This assignment operator first releases the contained string using
CORBA: : st ri ng_fr ee, and then assumes ownership of theinput string. The
st r argument specifies the string whose ownership will be assumed by this
String_var object.

String_var & operator=(const char * str)

String var & operator=(const String var & var)
This assignment operator first releases the contained string using
CORBA: : stri ng_fr ee, and then copiestheinput string. The Dat a argument
specifies the string whose ownership will be assumed by thisSt ri ng_var
object.

char operator[] (U ong |ndex)

char operator[] (U ong Index) const
These array operators are superscripting operators that provide access to
characters within the string. The I ndex argument specifies the index of the
array to use in accessing a particular character within the array. Zero-based
indexing is used. The returned value of the Char operator[] (U ong
I ndex) function can be used as an Ivalue. The returned value of the
Char operator[] (U ong Index) const function cannot be used as an
Ivalue.

Structured types (struct, union, sequence), arrays, and interfaces have a corresponding
generated _out class. The out class is provided for simplifying the memory
management of pointers to variable-length and fixed-length types. For more
information about out classes and the common member functions, see the section
“Using out Classes” on page 13-53.

Some differences occur in the operators supported for the user-defined data types.
Table 13-5 describes the various operators supported by each OMG IDL data type, i
the generated C++ code. Because the assignment operators are supported for all of1
data types described in Table 13-3, they are not included in the comparison.

13-52 CORBA C++ Programming Reference

Using out Classes

Table13-5 Comparison of Operators Supported for User-defined Data Type Out

Classes

OMG IDL Data Type operator -> operator| |
struct Yes No

uni on Yes No

sequence Yes Y es, non-const only
array No Yes

The signatures are as shown in Table 13-6.

Table 13-6 Operator Signaturesfor _out Classes

OMG IDL Data Operator Member Functions

Type
struct TYPE * operator-> ()
TYPE * operator-> () const
uni on TYPE * operator-> ()
TYPE * operator-> () const
sequence TYPE * operator-> ()
TYPE * operator-> () const
TYPE & operator[] (CORBA: : Long i ndex)
array TYPE slice & operator[](CORBA::Long i ndex)

TYPE_

slice & operator[](CORBA::Long i ndex) const

Using out Classes

When aTYPE var ispassedasanout parameter, any previousvalueit referred to must
beimplicitly deleted. To give the ORB enough hooks to meet this requirement, each
T_var type hasa corresponding TYPE out typethat is used solely as the out

parameter type.

CORBA C++ Programming Reference 13-53

13 Mapping of OMG IDL Statements to C++

Note: The_out classes are not intended to be instantiated directly by the
programmer. Specify an _out class only in function signatures.

The general form for TYPE_out typesfor variable-length typesisasfollows:

/] C++
class TYPE out
{

public:

TYPE out (TYPE*& p) : ptr_(p) { ptr_=0; }
TYPE out (TYPE var& p) : ptr_(p.ptr_) { delete ptr_; ptr_ = 0;}
TYPE out (TYPE out& p) : ptr_(p.ptr_) {}
TYPE out & operator=(TYPE out& p) { ptr_ = p.ptr_;
return *this;
}

Type_out & operator=(Type* p) { ptr_ = p; return *this; }

operator Type*&) { return ptr_; }
Type*& ptr() { return ptr_; }

Type* operator->() { return ptr_; }

private:
Type*& ptr_;

/1 assignnent from TYPE var not all owed
voi d operator=(const TYPE_ var&):

b

Thefirst constructor binds the reference data member with the T* & argument and sets
the pointer to the zero (0) pointer value. The second constructor binds the reference
data member with the pointer held by the TYPE var argument, and then callsdel et e
on the pointer (or string_free() inthecaseof theString_out typeor
TYPE_free() inthecaseof aTYPE var for anarray type TYPE). Thethird constructor,
the copy constructor, binds the reference data member to the same pointer referenced
by the data member of the constructor argument.

Assignment from another TYPE_out copiesthe TYPE* referenced by the TYPE_out
argument to the data member. The overloaded assignment operator for TYPE* simply
assigns the pointer argument to the data member. Note that assignment does not cause
any previously held pointer to be deleted; in this regard, the TYPE_out type behaves
exactly as a TYPE* . The TYPE* & conversion operator returns the data member. The
ptr () member function, which can be used to avoid having to rely on implicit
conversion, also returns the data member. The overloaded arrow operator

13-54 CORBA C++ Programming Reference

Using out Classes

(oper at or - >()) allows access to members of the data structure pointed to by the
TYPE* data member. Compliant applications may not call the overloaded
oper at or - >() unlessthe TYPE_out hasbeen initialized with avalid non-null TYPE*.

Assignment to a TYPE _out from instances of the corresponding TYPE_var typeis
disallowed because there is no way to determine whether the application devel oper
wants a copy to be performed, or whether the TYPE var should yield ownership of its
managed pointer so it can be assigned to the TYPE out . To perform acopy of a
TYPE var to aTYPE out , the application should use new, as follows:

/1l C++
TYPE var t = ...;
ny_out = new TYPE(t.in()): /'l heap-allocate a copy

Thei n() function calledont typically returnsaconst TYPE&, suitable for invoking
the copy constructor of the newly alocated T instance.

Alternatively, to make the TYPE _var yield ownership of its managed pointer so it can
bereturnedinaT_out parameter, theapplication should usethe TYPE var:: _retn()
function, asfollows:

/] C++
TYPE var t = ...;
nmy_out =t. retn(); /1l t yields ownership, no copy

Note that the TYPE_out typesare not intended to serve as general-purpose data types
to be created and destroyed by applications; they are used only as types within
operation signatures to allow necessary memory management side-effects to occur

properly.

Object Reference out Parameter

When a_var ispassed asan out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type resultsin the generation of an _out type that
is used solely asthe out parameter type. For example, interface TYPE resultsin the
object reference type TYPE_pt r, the helper type TYPE var , and the out parameter
type TYPE out . The general form for object reference _out typesisasfollows:

/1 C++
cl ass TYPE out
{

CORBA C++ Programming Reference 13-55

13 Mapping of OMG IDL Statements to C++

b

public:

TYPE out (TYPE ptr& p) : ptr_(p) { ptr_ = TYPE : nil(); }
TYPE out (TYPE var& p) : ptr_(p.ptr_) {
rel ease(ptr_); ptr_ = TYPE: : _nil();

}
TYPE out (TYPE out& a) : ptr_(a.ptr_) {}
TYPE _out & operator=(TYPE out& a) {

ptr_ = a.ptr_; return *this;

}

TYPE out & operator=(const TYPE var& a) {

ptr_ = TYPE: : _duplicate(TYPE ptr(a)); return *this;

}

TYPE_out & operator=(TYPE ptr p) { ptr_ = p; return *this; }
operator TYPE ptr&) { return ptr_; }

TYPE ptr& ptr() { return ptr_; }

TYPE ptr operator->() { return ptr_; }

private:

TYPE ptré& ptr_;

Sequence outs

Sequence outs support the following additional oper at or [] member function:

TYPE &operator[] (CORBA: : ULong | ndex);

Array outs

This operator invokes the oper at or [] of the sequence owned by the out
class. Theoper at or [] returns areference to the appropriate element of the
seguence at the specified index. The | ndex argument specifies the index of
the element to return. Thisindex cannot be greater than the current sequence
length.

Array outs do not support oper at or - >, but do support the following additional
oper at or [] member functions to access the array elements:

TYPE_slice& operator[](CORBA:: ULong | ndex);
const TYPE slice & operator[](CORBA: : ULong | ndex) const;

These operatorsreturn areferenceto the array slice at the specified index. An
array sliceisan array with all the dimensions of the original array except the

13-56 CORBA C++ Programming Reference

Using out Classes

first dimension. The member functions for the array-generated classes use a
pointer to asliceto return pointersto an array. Thel ndex argument specifies
the index of the slice to return. Thisindex cannot be greater than the array
dimension.

String outs

When asString_var ispassed asanout parameter, any previous valueit refersto
must beimplicitly freed. To give C++ mapping implementati ons enough hooks to meet
thisrequirement, the string type a so resultsin the generation of aSt ri ng_out typein
the CORBA namespace that is used solely as the string out parameter type. The
general form for the St ri ng_out typeisasfollows:

/1 C++
class String_out
{

public:

String out(char*& p) : ptr_(p) { ptr_ =0; }

String out(String var& p) : ptr_(p.ptr_) {
string free(ptr_); ptr_ = 0;

}

String out(String out& s) : ptr_(s.ptr_) {}
String _out& operator=(String out& s) {
ptr_ = s.ptr_; return *this;
}
String_out & operator=(char* p) {
ptr_ = p; return *this;
}

String_out & operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}

operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

/1 assignment from String_var disall owed
voi d operator=(const String_var&);

}s

CORBA C++ Programming Reference 13-57

13 Mapping of OMG IDL Statements to C++

Thefirst constructor binds the reference data member with the char * & argument. The
second constructor binds the reference data member with the char * held by the
String_var argument, and then calls string_free() onthestring. The third
constructor, the copy constructor, bindsthe reference datamember to the same char *
bound to the data member of its argument.

Assignment from another St ri ng_out copiesthe char * referenced by the argument
String_out tothechar * referenced by the datamember. The overloaded assignment
operator for char * simply assignsthe char * argument to the data member. The
overloaded assignment operator for const char * duplicatesthe argument and assigns
the result to the data member. Note that the assignment does not cause any previously
held string to be freed; in thisregard, the St ri ng_out type behaves exactly asa
char *. Thechar * & conversion operator returns the datamember. The pt r () member
function, which can be used to avoid having to rely onimplicit conversion, al so returns
the data member.

Assignmentfrom St ri ng_var toaSt ri ng_out isdisallowed because of the memory
management ambiguitiesinvolved. Specifically, it isnot possible to determine whether
thestring owned by the St ri ng_var should betaken over by the St ri ng_out without
copying, or if it should be copied. Disallowing assignment from Stri ng_var forces
the application developer to make the choice explicitly, as follows:

/] C++

voi d

A::op(String_out arg)

{
String var s = string_dup("sonme string");
out = s; /] disallowed; either
out = string dup(s); /1 1. copy, or
out = s. retn(); /1 2: adopt

}

On the line marked with the comment “1,” the caller is explicitly copying the string
held by thest ri ng_var and assigning the result to tbeét argument. Alternatively,

the caller could use the technique shown on the line marked with the comment “2” c
force thest ri ng_var to give up its ownership of the string it holds so that it may be
returned in theut argument without incurring memory management errors.

13-58 CORBA C++ Programming Reference

Argument Passing Considerations

Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references,
the modes are straightforward, passing the type P for primitives and enumerations and
thetype A_pt r for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is alocated and deallocated. Mapping i n parameters s straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and i nout
parameters is more problematic. For variable-length types, the callee must alocate
some if not al of the storage. For fixed-length types, such as aPoint type
represented as a struct containing three floating point members, caller allocation is
preferable (to allow stack allocation).

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mapping
isT&for afixed-length aggregate T and T+ & for avariable-length T. This approach has
the unfortunate consequence that usage for structs depends on whether the struct is
fixed- or variable-length; however, the mapping is consistently T_var & if the caller
uses the managed type T_var .

The mapping for out andi nout parameters additionally requires support for

deall ocating any previous variable-length datain the parameter whena T_var is
passed. Even though their initial values are not sent to the operation, the BEA

WebL ogic Enterprise includes out parameters because the parameter could contain
the result from a previous call. The provision of the T_out typesisintended to give
implementations the hooks necessary to free the inaccessibl e storage while converting
fromthe T_var types. The following examples demonstrate the compliant behavior:

/1 1DL
struct S { string nane; float age; };
void f(out S p);

/] C++

S var s;

f(s);

/] use s

f(s); /1l first result will be freed

S *sp; /1 need not initialize before passing to out
f(sp);

CORBA C++ Programming Reference 13-59

13 Mapping of OMG IDL Statements to C++

/'l use sp
del ete sp; /] cannot assune next call will free old val ue

f(sp);

Notethat implicit deall ocation of previousvaluesfor out andi nout parametersworks
only with T_var types, not with other types:

/1 1DL

void gq(out string s);

/] C++

char *s;

for (int i =0; i < 10; i++)
q(s); /1 menmory | eak!

Each call to the g function in the loop resultsin amemory leak because the caller is not
invoking st ri ng_f ree ontheout result. There are two waysto fix this, as shown
below:

/] C++
char *s;
String_var svar;
for (int i =0 ; i <10; i++) {
q(s);
string free(s); /1 explicit deallocation
/Il OR
q(svar); /1 inplicit deallocation

}

Using aplain char * for the out parameter meansthat the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
usingastring_var meansthat any deallocation is performed implicitly upon each
use of the variable asan out parameter.

Variable-length data must be explicitly released before being overwritten. For
example, before assigning to ani nout string parameter, the implementor of an
operation may first delete the old character data. Similarly, ani nout interface
parameter should be released before being reassigned. One way to ensure that the
parameter storageisreleasedisto assignittoaloca T_var variablewith an automatic
release, as in the following example:

/1 1DL
interface A
void f(inout string s, inout A obj);

[l C++

void Ainpl::f(char *&s, A ptr &obj) {
String var s_tnp = s;

13-60 CORBA C++ Programming Reference

Argument Passing Considerations

}

obj

s = /* new data */;
A var obj _tnmp = obj;
= /* new reference */

For parametersthat are passed or returned asapointer (T*) or asareferenceto apointer
(T* &), an application is not allowed to pass or return anull pointer; the result of doing
so isundefined. In particular, a caller may not pass a null pointer under any of the
following circumstances:

inandi nout string

inandi nout array (pointer to first element)

However, a caller may pass areference to a pointer with a null value for out
parameters, because the callee does not examine the value, but overwritesit. A callee
may not return a null pointer under any of the following circumstances:

out

out

out

out

out

out

and return variable-length struct

and return variable-length union

and return string

and return sequence

and return variable-length array, return fixed-length array

and return any

Operation Parameters and Signatures

Table 13-7, “Basic Argument and Result Passing,” on page 13-62 displays the
mapping for the basic OMG IDL parameter passing modes and return type
according to the type being passed or returned. Table 13-8, “T_var Argument and
Result Passing,” on page 13-63 displays the same informatianvfar types.

Table 13-8 is merely for informational purposes; it is expected that operation
signatures for both clients and servers will be written in terms of the parameter-passing
modes shown in Table 13-7, with the exception thafrtheit types will be used as

the actual parameter types fora@lt parameters.

CORBA C++ Programming Reference 13-61

13 Mapping of OMG IDL Statements to C++

Itisalso expected that T_var typeswill support the necessary conversion operatorsto
allow themto be passed directly. Callers should always passinstances of either T_var
types or the base types shown in Table 13-7, and callees should treat their T_out
parameters asif they were actually the corresponding underlying types shown in
Table 13-7.

In Table 13-7, fixed-length arrays are the only case where the type of an out
parameter differsfrom areturn value, which is necessary because C++ does not allow
afunction to return an array. The mapping returns a pointer to a slice of the

array, where adliceis an array with all the dimensions of the original array

specified except thefirst dimension.

Table 13-7 Basic Argument and Result Passing

Data Type In I nout Out Return
short Short Short& Short& Short
long Long Long& Long& Long
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
float Float Float& Float& Float
double Double Double& Double& Double
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
octet Octet Octet& Octet& Octet
enum enum enumé& enum& enum
object referenceptr (See objref_ptr objref_ptr& objref_ptr& objref_ptr
Note below.)

struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct* & struct*
union, fixed const union& union& union& union
union, variable const union& union& union* & union*

13-62 CORBA C++ Programming Reference

Argument Passing Considerations

Table 13-7 Basic Argument and Result Passing (Continued)

Data Type In I nout Out Return

string congt char* char* & char*& char*

seguence const sequence& sequence& sequence* & sequence*

array, fixed const array array array array dice* (See Note
below.)

array, variable const array array array dice*& array dice*

any const any& any& any*& any*

Note: The Object reference ptr data type includes pseudo-object references. The
array dicereturnisan array with all the dimensions of theoriginal array except
the first dimension.

A callerisresponsible for providing storage for al arguments passed asi n arguments.

Table 13-8 T_var Argument and Result Passing

Data Type In Inout Out Return
object reference var const objref_var& objref_var& objref_var& objref_var
(See Note below.)

struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_var& union_var& union_var& union_var
string_var const string_var& string_var& string_var& string_var
sequence_var const sequence_var& sequence var& sequence var& seguence var
array_var const array_var& array_var& array_var& array_var
any_var const any_var& any_var& any_var& any_var

Note: The object reference var data type includes pseudo-object references

Table 13-9 and Table 13-10 describe the caller’s responsibility for storage associated
with i nout andout parameters and for return results.

CORBA C++ Programming Reference 13-63

13 Mapping of OMG IDL Statements to C++

Table 13-9 Caller Argument Stor age Responsibilities

Type Inout Param Out Param Return Result
short 1 1 1
long 1 1 1
unsigned short 1 1 1
unsigned long 1 1 1
float 1 1 1
double 1 1 1
boolean 1 1 1
char 1 1 1
octet 1 1 1
enum 1 1 1
object referenceptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
seguence 5 3 3
array, fixed 1 1 6
array, variable 1 6 6
any 5 3 3

13-64 CORBA C++ Programming Reference

Argument Passing Considerations

Table 13-10 Argument Passing Cases

Case

1

Caller dlocates all necessary storage, except that which may be encapsulated and
managed within the parameter itself. For i nout parameters, the caller provides
theinitia value, and the callee may change that value. For out parameters, the
caller all ocates the storage but need not initialize it, and the call ee setsthe value.
Function returns are by value.

Caller allocates storagefor the object reference. For i nout parameters, the caller
provides an initial vaue; if the callee wants to reassign the i nout parameter, it
will first call CORBA: : r el ease on theoriginal input value. To continue to use
an object reference passed in asan i nout , the caller must first duplicate the
reference. The caller isresponsible for the release of al out and return object
references. Release of all object references embedded in other structuresis
performed automatically by the structures themselves.

For out parameters, the caller allocates a pointer and passesit by reference to the
callee. The callee sets the pointer to point to a valid instance of the parameter’s
type. For returns, the callee returns a similar pointer. The callee is not allowed to
return a null pointer in either case.

In both cases, the caller is responsible for releasing the returned storage. To
maintain local/remote transparency, the caller must always release the returned
storage, regardless of whether the callee is located in the same address space as
the caller or is located in a different address space. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to
do so, the caller must first copy the returned instance into a new instance, and
modify the new instance.

Fori nout strings, the caller provides storage for both the input string and the
char * pointing to it. Since the callee may deallocate the input string and reassign
thechar * to point to new storage to hold the output value, the caller should
allocate the input string usired ri ng_al | oc() . The size of theut string is,
therefore, not limited by the size of the in string. The caller is responsible for
deleting the storage for tloait usingst ri ng_free(). The callee is not

allowed to return a null pointer for amout , out , or return value.

Fori nout sequences arahys, assignment or modification of the sequence or
any may cause deallocation of owned storage before any reallocation occurs,
depending upon the state of the Boolean release parameter with which the
sequence agny was constructed.

CORBA C++ Programming Reference 13-65

13 Mapping of OMG IDL Statements to C++

Table 13-10 Argument Passing Cases (Continued)

Case

6 For out parameters, the caller allocates a pointer to an array slice, which has all
the same dimensions of the original array except the first, and passes the pointer
by reference to the callee. The callee sets the pointer to point to avalid instance
of the array.

For returns, the calleereturnsa similar pointer. The calleeisnot alowed to return
anull pointer in either case. In both cases, the caller isresponsible for rel easing
the returned storage.

To maintain local/remote transparency, the caller must always release the

returned storage, regardless of whether the calleeis located in the same address

space asthecalleeor islocated in adifferent address space. Following completion

of arequest, the caller is not allowed to modify any values in the returned

storage—to do so, the caller must first copy the returned array instance into a new
array instance, and modify the new instance.

13-66 CORBA C++ Programming Reference

CHAPTER

14 CORBA API

This chapter describesthe BEA WebL ogic Enterpriseimplementation of the CORBA
core member functionsin C++ and their extensions. It aso describes pseudo-objects
and their relationship to C++ classes. Pseudo-objects are object references that cannot
be transmitted across the network. Pseudo-objects are similar to other objects;
however, because the ORB owns them, they cannot be extended.

Note: Some of theinformation in this chapter is taken from Chapter 20 of the
Common Object Request Broker: Architecture and Specification. Revision
2.2, February 1998, published by the Object Management Group (OMG).
Used with permission by OMG.

Global Classes

The following BEA WebL ogic Enterprise classes are global in scope:
m CORBA
m Tobj

These classes contain the predefined types, classes, and functions used in BEA
WebL ogic Enterprise devel opment.

The CORBA class contains the classes, data types, and member functions essential to
using an Object Request Broker (ORB) as defined by CORBA. The BEA WebL ogic
Enterprise extensions to CORBA are contained in the Tobj C++ class. The Tobj class
contains data types, nested classes, and member functions that BEA WebL ogic
Enterprise provides as an extension to CORBA.

CORBA C++ Programming Reference 14-1

14 coRrBa AP

Using CORBA data types and member functions in the BEA WebL ogic Enterprise
product requires the CORBA: : prefix. For example, aLong isa CORBA: : Long.
Likewise, to use Tobj nested classes and member functionsin the BEA WebL ogic
Enterprise product, you need the Tobj :: prefix. For example, FactoryFinder is
Tobj : : Fact oryFi nder .

Pseudo-objects

Pseudo-objects are represented as local classes, which residein the CORBA class. A
pseudo-object and its corresponding member functions are named using a nested class
structure. For example, an ORB object isa CORBA: : ORB and a Current object isa
CORBA: : Current.

Any Class Member Functions

14-2

This section describes the member functions of the Any class.
The mapping of these member functions to C++ isasfollows:

cl ass CORBA

{
cl ass Any

{
public:

Any ();

Any (const Any&);

Any (TypeCode ptr tc, void *val ue, Bool ean rel ease =
CORBA_ FALSE);

~Any ();

Any & operator=(const Any&);
voi d oper at or <<=(Short);
voi d oper at or <<=(UShort);
voi d oper at or <<=(Long);
voi d oper at or <<=(ULong) ;
voi d oper at or <<=(Fl oat) ;

CORBA C++ Programming Reference

Any Class Member Functions

voi d oper at or <<=(Doubl e)

voi d oper at or <<=(const Any&)

voi d oper at or <<=(const char*);

voi d oper at or <<=(Obj ect _ptr)

voi d oper at or <<=(from bool ean) ;

voi d operator<<=(fromchar);

voi d operator<<=(fromoctet)

voi d operator<<=(fromstring);

Bool ean oper at or >>=(Short & const
Bool ean oper at or >>=(UShort &) const;
Bool ean oper at or >>=(Long&) const;
Bool ean oper at or >>=(ULong&) const
Bool ean oper at or >>=(Fl oat & const
Bool ean oper at or >>=(Doubl e&) const;
Bool ean oper ator>>=(Any&) const

Bool ean oper at or >>=(char*&) const
Bool ean oper ator >>=((hj ect _ptr& const
Bool ean oper at or >>=(t o_bool ean) const;
Bool ean operator>>=(to_char) const;
Bool ean operator>>=(to_octet) const;
Bool ean oper at or >>=(t o_obj ect) const
Bool ean operator>>=(to_string) const

TypeCode_ptr type()const

voi d repl ace(TypeCode_ptr, void *,
voi d repl ace(TypeCode_ptr, void *)
const void * value() const;
s
}; // CORBA

Bool ean) ;

CORBA C++ Programming Reference 14-3

14 coRrBa AP

CORBA::Any::Any()
Synopsis Constructs the Any object.
C++ Binding CORBA: : Any: : Any()
Arguments None.

Description Thisisthe default constructor for the CORBA: : Any class. It createsan Any object with
aTypeCode of type tc_nul | and avalue of O (zero).

Return Values None.

14-4 CORBA C++ Programming Reference

Any Class Member Functions

CORBA::Any::Any(const CORBA::Any & InitAny)

Synopsis Constructsthe Any object that is a copy of another Any object.
C++Binding CORBA:: Any:: Any(const CORBA::Any & I nit Any)

Argument I ni t Any
Refersto the CORBA: : Any to copy.

Description Thisisthe copy constructor for the CORBA: : Any class. This constructor duplicates
the TypeCode reference of the Any that is passed in.

The type of copying to be performed is determined by ther el ease flag of the Any
object to be copied. If r el ease evaluatesas CORBA_TRUE, the constructor
deep-copies the parameter’s value;éfl ease evaluates a€ORBA FALSE, the
constructor shallow-copies the parameter’s value. Using a shallow copy gives you
more control to optimize memory allocation, but the caller must ensureyhtoes

not use memory that has been freed.

Return Values None.

CORBA C++ Programming Reference 14-5

14 coRrBa AP

CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)

Synopsis Creates the Any object using a TypeCode and avalue.
C++ Binding CORBA: : Any: : Any(TypeCode_ptr TC, void * Val ue, Bool ean Rel ease)

Arguments TC
A pointer to a TypeCode pseudo-object reference, specifying the type to be
created.

Val ue
A pointer to the datato be used to create the Any object. The datatype of this
argument must match the TypeCode specified.

Rel ease
Determines whether the Any assumes ownership of the memory specified by
the Val ue argument. If Rel ease is CORBA_TRUE, the Any assumes
ownership. If Rel ease isCORBA_FALSE, the Any does not assume
ownership; the data pointed to by the Val ue argument is not released upon
assignment or destruction.

Description Thisconstructor isused with the nontype-safe Any interface. It duplicatesthe specified
TypeCode object reference and then inserts the data pointed to by value inside the
Any object.

Return Values None.

14-6 CORBA C++ Programming Reference

Any Class Member Functions

CORBA::Any::~Any()

Synopsis
C++ Binding
Arguments

Description

Return Values

Destructor for the Any.
CORBA: : Any: : ~Any()

None.

This destructor frees the memory that the CORBA: : Any holds (if the Rel ease flagis

specified as CORBA_TRUE), and rel eases the TypeCode pseudo-object reference

contained in the Any.

None.

CORBA C++ Programming Reference

14-7

14 coRrBa AP

CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
Synopsis Any assignment operator.
C++ Binding CORBA: : Any & CORBA: : Any: : oper at or =(const CORBA:: Any & | nit Any)

Arguments | ni t Any
A reference to an Any to use in the assignment. The Any to usein the
assignment determineswhether the Any assumes ownership of thememory in
Val ue. If Rel ease iSCORBA_TRUE, the Any assumes ownership and
deep-copiesthel ni t Any argument’s value; if ReleasedSRBA_FALSE, the
Any shallow-copies theni t Any argument’s value.

Description This is the assignment operator for #ng class. Memory management of this member
function is determined by the current value offlRe¢ ease flag. The current value of
theRel ease flag determines whether the current memory is released before the
assignment. If the curreRel ease flag isCORBA_TRUE, theAny releases any value
previously held; if the current Release flag@RBA FALSE, theAny does not release
any value previously held.

Return Values Returns theny, which holds the copy of theni t Any.

14-8 CORBA C++ Programming Reference

Any Class Member Functions

void CORBA::
Synopsis
C++ Binding

Argument

Description

Return Values

any::operator<<=()

Type safe Any insertion operators.

voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :

Val ue

;. oper at or <<=(CORBA:
;. oper at or <<=(CORBA:
;. oper at or <<=(CORBA: :
. oper at or <<=(CORBA: :
;. oper at or <<=(CORBA: :
;. oper at or <<=(CORBA: :
.. operator<<=(const CORBA : Any & Val ue)
;. operator<<=(const char * Val ue)

.. operator<<=(bj ect_ptr Val ue)

: Short Val ue)
: UShort Val ue)

Long Val ue)
U ong Val ue)
Fl oat Val ue)
Doubl e Val ue)

Type specific value to be inserted into the Any .

Thisinsertion member function performs type-safe insertions. If the Any had a

previousvalue, andther el ease flagis CORBA_TRUE, thememory isdeall ocated and
the previous TypeCode object referenceisfreed. The new valueisinserted into the Any
by copying thevalue passed in using the Val ue parameter. Theappropriate TypeCode
reference is duplicated.

None.

CORBA C++ Programming Reference 14-9

14 coRrBa AP

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
C++ Binding

Argument

Description

Return Values

Type safe Any extraction operators.

CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Short & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : UShort & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Long & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Ul ong & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Fl oat & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(
CORBA: : Doubl e & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(CORBA: : Any & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(char * & Val ue) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(Cbj ect _ptr & Val ue) const

TheVal ue argument isareferenceto the relevant object that receivesthe output of the
value contained in the Any object.

This extraction member function performs type-safe extractions. If the Any object
contains the specified type, this member function assigns the pointer of the Any to the
output reference value, Val ue, and CORBA_TRUE isreturned. If the Any does not
contain the appropriate type, CORBA_FALSE is returned. The caller must not attempt to
release or delete the storage because it is owned and managed by the Any object. The
Val ue argument is areference to the relevant object that receives the output of the
value contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

CORBA_TRUE if the Any contained avalue of the specific type. CORBA FALSE if the Any
did not contain avalue of the specific type.

14-10 CORBA C++ Programming Reference

Any Class Member Functions

CORBA::Any::operator<<=()

Synopsis
C++ Binding

Argument

Description

Return Values

Type safe insertion operators for Any.

voi d CORBA: :
voi d CORBA: :
voi d CORBA: :
voi d CORBA: :

Val ue

.. operator<<=(from bool ean Val ue)
.. operator<<=(fromchar Val ue)

.. operator<<=(fromoctet Value)

;. operator<<=(fromstring Val ue)

A relevant object that contains the value to insert into the Any.

These insertion member functions perform atype-safe insertion of a

CORBA: : Bool ean, aCORBA: : Char, or aCORBA: : Cct et referenceinto an Any. If the
Any had apreviousvalue, and its Rel ease flag is CORBA TRUE, the memory is

deall ocated and the previous TypeCode object reference is freed. The new valueis
inserted into the Any object by copying the value passed in using the Val ue parameter.
The appropriate TypeCode reference is duplicated.

None.

CORBA C++ Programming Reference 14-11

14 coRrBa AP

CORBA::Boolean CORBA::Any::operator>>=()

Synopsis
C++ Binding

Argument

Description

Return Values

Type-safe extraction operators for Any.

CORBA: : Bool ean CORBA: : Any: : oper at or >>=(t o_bool ean Val ue) const
CORBA: : Bool ean CORBA: : Any: : operat or >>=(to_char Val ue) const
CORBA: : Bool ean CORBA: : Any: : operator >>=(to_octet Value) const
CORBA: : Bool ean CORBA: : Any: : oper at or >>=(t o_obj ect Val ue) const
CORBA: : Bool ean CORBA: : Any: : operator>>=(to_string Val ue) const

Val ue
A reference to the relevant object that receives the output of the value
contained in the Any object. If the Any object does not contain the appropriate
type, the value remains unchanged.

These extraction member functions perform a type-safe extraction of a

CORBA: : Bool ean, aCORBA: : Char, aCORBA: : Cctet, a CORBA:: (bject, or a
String referencefrom an Any. These member functions are hel pers nested in the Any
class. Their purposeisto distinguish extractions of the OMG IDL types: boolean, char,
and octet (C++ does not require these to be distinct types).

If the Any contains the specified type, this member function assigns the value in the
Any object reference to the output variable, val ue, and returns CORBA_TRUE. If the
Any object does not contain the appropriate type, CORBA_FALSE isreturned.

14-12 CORBA C++ Programming Reference

Any Class Member Functions

CORBA::TypeCode_ptr CORBA::Any::type() const

Synopsis
C++ Binding
Arguments

Description

Return Values

TypeCode accessor for Any.
CORBA: : TypeCode_ptr CORBA:: Any::type();
None.

This function returns the TypeCode_pt r pseudo-object reference of the TypeCode
object associated with the Any. The TypeCode_pt r pseudo-object reference must be
released by the CORBA: : r el ease member function or must be assigned to a
TypeCode_var to be automatically released.

TypeCode_ptr contained inthe Any.

CORBA C++ Programming Reference 14-13

14 coRrBa AP

void CORBA::Any::replace()

Synopsis
C++ Binding

Arguments

Description

Return Values

Non-type safe Any “insertion.”

voi d CORBA: : Any: :repl ace(TypeCode_ptr TC, void * Val ue,
Bool ean Rel ease = CORBA FALSE);

TC
A TypeCode pseudo-object reference specifying the TypeCode value for the
replacedany object. This argument is duplicated.

Val ue
A void pointer specifying the storage pointed to by shg object.

Rel ease
Determines whether thiny manages the specifiedl ue argument. If
Rel ease is CORBA_TRUE, theAny assumes ownership. If Release is
CORBA_FALSE, theAny does not assume ownership and the data pointed to by
theVal ue parameter is not released upon assignment or destruction.

These member functions replace the data and TypeCode value currently contained
the Any with the value of th&C andVal ue arguments passed in. The functions
perform a nontype-safe replacement, which means that the caller is responsible for
consistency between the TypeCode value and the data type of the storage pointed to
theVal ue argument.

If the value ofRel ease is CORBA_TRUE, this function releases the existing TypeCode
pseudo-object in theny object and frees the storage pointed to bextiyeobject
reference.

None.

14-14 CORBA C++ Programming Reference

Context Member Functions

Context Member Functions

A Context supplies optional context information associated with a method invocation.
The mapping of these member functions to C++ is as follows:

cl ass CORBA
{

cl ass Cont ext

public:
const char *context_nanme() const;
Cont ext _ptr parent() const;

void create_child(const char *, Context_out);

void set_one_val ue(const char *, const Any &);
voi d set_val ues(NVLi st_ptr);
voi d del ete_val ues(const char *);
voi d get val ues(
const char *,

Fl ags,
const char *,
NVLi st _out
}; /3 ' Cont ext
}// CORBA
Memory Management

Context has the following special memory management rule:

e Ownership of the return values of the cont ext _name and par ent functions
is maintained by the Context; these return values must not be freed by the
caller.

This section describes Context member functions.

CORBA C++ Programming Reference 14-15

14 coRrBa AP

CORBA::Context::context_ name

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns the name of a given Context object.
Const char * CORBA:: Context::context_nanme () const;
None.

This member function returns the name of a given Context object. The Context object
reference owns the memory for the returned char *. Users should not modify this
memory.

If the member function succeeds, it returns the name of the Context object. The value
may be empty if the Context object is not a child Context created by a call to
CORBA: : Cont ext :: create_child.

If the Context object has no name, thisis an empty string.

14-16 CORBA C++ Programming Reference

Context Member Functions

CORBA::Context::create_child

Synopsis
C++ Binding

Arguments

Description

Return Values
Exception

See Also

Creates a child of the Context object.

voi d CORBA:: Context::create_child (
const char * Ct xNane,
CORBA: : Cont ext _out Ct xCoj ect) ;

C xNane
The name to be associated with the child of the Context reference.

Gt xoj ect
The newly created Context object reference.

This member function creates a child of the Context object. That is, searches on the
child Context object will look for matching property namesin the parent context (and
S0 on, up the context tree), if necessary.

None.
CORBA: : NO_MEMORY

CORBA: : ORB: : get _def aul t _cont ext
CORBA: : r el ease

CORBA C++ Programming Reference 14-17

14 coRrBa AP

CORBA::Context::delete values

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

See Also

Deletes the values for a specified attribute in the Context object.

voi d CORBA: : Cont ext :: del et e_val ues (
const char * At tr Nane) ;

Attr Nane
The name of the attribute whose values are to be del eted. If thisargument has
atrailing wildcard character (*), all namesthat match the string preceding the
wildcard character are deleted.

This member function del etes named valuesfor an attribute in the Context object. Note
that it does not do recursively do the sameto its parents, if any.

None.

CORBA: : BAD_PARAMIf attribute is an empty string.
CORBA: : BAD_CONTEXT if no matching attributes to be deleted were found.

CORBA: : Context::create_child
CORBA: : ORB: : get _defaul t _cont ext

14-18 CORBA C++ Programming Reference

Context Member Functions

CORBA::Context::get_values

Synopsis

C++ Binding

Arguments

Description

Return Values

Retrieves the values for a given attribute in the Context object within the specified
scope.

voi d CORBA:: Cont ext::get_val ues (

const char * Start Scope,

CORBA: : Fl ags OpFl ags,

const char * Attr Nane,

CORBA: : NVLi st _out AttrVal ues);
St art Scope

The Context object level a which to initiate the search for specified
properties. The level isthe name of the context, or par ent , at which the
search is started. If the value is O (zero), the search begins with the current
Context object.

OoFl ags
The only valid operation flag is CORBA: : CTX_RESTRI CT_SCOPE. If you
specify thisflag, the object implementation restrictsthe property search tothe
current scope only (that is, the property search is not executed recursively up
the chain of the parent context); otherwise, the search continues to a wider
scope until a match has been found or until all wider levels have been
searched.

At t r Name
The name of the attribute whose values are to be returned. If this argument
hasatrailing wildcard character (*), all namesthat match the string preceding
the wildcard character are returned.

AttrVal ues
Receives the values for the specified attributes (returnsan NvLi st object)
where each item in the listisa NamedVval ue.

This member function retrieves the values for a specified attribute in the Context
object. These values are returned as an NV List object, which must be freed when no
longer needed using the CORBA: : r el ease member function.

None.

CORBA C++ Programming Reference 14-19

14 coRrBa AP

Exceptions CORBA: : BAD PARAM i f attribute is an enpty string.
CORBA: : BAD CONTEXT if no matching attributes were found.
CORBA: : NO MEMORY i f dynamic nmenory all ocation fail ed.

See Also CORBA: : Context::create child
CORBA: : ORB: : get _def aul t _cont ext

14-20 CORBA C++ Programming Reference

Context Member Functions

CORBA::Context::parent

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns the parent context of the Context object.
CORBA: : Cont ext _ptr CORBA:: Context::parent () const;
None.

This member function returns the parent context of the Context object. The parent of
the Context object is an attribute owned by the Context and should not be modified or
freed by the caller. This parent is nil unless the Context object was created using the
CORBA: : Context : : create_child member function.

If the member function succeeds, the parent context of the Context object is returned.
The parent context may be nil. Use the CORBA: : i s_ni | member function to test for
anil object reference.

If the member function does not succeed, an exception is thrown. Use the
CORBA: : i s_ni | member function to test for anil object reference.

CORBA C++ Programming Reference 14-21

14 coRrBa AP

CORBA::Context::set_one_ value

Synopsis
C++ Binding

Arguments

Description

Return Values

Exceptions

See Also

Sets the value for a given attribute in the Context object.

voi d CORBA: : Cont ext ::set_one_val ue (

const char * At tr Nane,
const CORBA:: Any & AttrVal ue);
Attr Nane

The name of the attribute to set.

AttrVal ue
Thevalue of the attribute. Currently, the BEA WebL ogic Enterprise system
supports only the string type; therefore, this parameter must contain a
CORBA: : Any object with astring inside.

This member function sets the value for a given attribute in the Context object.
Currently, only string values are supported by the Context object. If the Context object
already has an attribute with the given name, it is deleted first.

None.

CORBA: : BAD_PARAMIf At t r Nane isan empty string or At t r Val ue does not contain a

string type.
CORBA: : NO_MEMORY if dynamic memory allocation failed.

CORBA: : Cont ext : : get _val ues
CORBA: : Cont ext : : set _val ues

14-22 CORBA C++ Programming Reference

Context Member Functions

CORBA::Context::set_values

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

See Also

Setsthe values for given attributes in the Context object.

voi d CORBA: : Context::set_values (
CORBA: : NVLi st _ptr AttrVal ue);

At trVal ues
The name and value of the attribute. Currently the BEA WebL ogic Enterprise
system supportsonly the string type; therefore, all NamedV al ue objectsinthe
list must have CORBA: : Any objectswith a string inside.

This member function sets the values for given attributes in the Context object. The
CORBA: : NVLi st member function contains the property name and value pairsto be
set.

None.

CORBA: : BAD_PARAMIf any of the attribute values has a value that is not a string type.
CORBA: : NO_MEMDRY if dynamic memory allocation failed.

CORBA: : Cont ext : : get _val ues
CORBA: : Cont ext: : set _one_val ue

CORBA C++ Programming Reference 14-23

14 coRrBa AP

ContextList Member Functions

The ContextL ist allowsaclient or server application to provide alist of context strings
that must be supplied with Request invocation. For a description of the Request
member functions, see the section “Request Member Functions” on page 14-111.

The ContextList differs from the Context in that the former supplies only the context
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained. For a description of th
Context member functions, see the section “Context Member Functions” on

page 14-15.

The mapping of these member functions to C++ is as follows:
class CORBA

cl ass Context Li st
{
public:
U ong count ();
voi d add(const char* ctxt);
voi d add_consune(char* ctxt);
const char* item(U ong index);
Status renove(U ong index);
}; /1 ContextlList
}// CORBA

14-24 CORBA C++ Programming Reference

ContextList Member Functions

CORBA::ContextList:: count

Synopsis
C++ Binding
Arguments
Description

Return Values

Exception

See Also

Retrieves the current number of itemsin thelist.

U ong count ();

None.

This member function retrieves the current number of itemsin the list.

If the function succeeds, the returned value isthe number of itemsin thelist. If thelist
hasjust been created, and no ContextL ist objects have been added, thisfunction returns
0 (zero).

If the function does not succeed, an exception is thrown.

CORBA: : Cont ext Li st: : add

CORBA: : Cont ext Li st: : add_consune
CORBA: : ContextList::item

CORBA: : Context Li st::renove

CORBA C++ Programming Reference 14-25

14 coRrBa AP

CORBA::ContextList::add

Synopsis

C++ Binding

Argument

Description

Return Values

Exception

See Also

Constructs a ContextList object with an unnamed item, setting only the fI ags

attribute.

voi d add(const char* ctxt);

ct xt

Defines the memory location referred to by char*.

This member function constructs a ContextList object with an unnamed item, setting

only the flags attribute.

The ContextList object grows dynamically; your application does not need to track its

size.

If the function succeeds, the return value is a pointer to the newly created ContextList

object.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

CORBA: :
CORBA: :
CORBA: :

CORBA:

Cont ext Li st :
Cont ext Li st :
Cont ext Li st ::
:Cont extList::

:add_consune
: count

item
renove

14-26 CORBA C++ Programming Reference

ContextList Member Functions

CORBA::ContextList::add_consume

Synopsis
C++ Binding

Argument

Description

Return Values

Exception

See Also

Constructs a ContextL ist object.

voi d add_consune(const char* ctxt);

ctxt

Defines the memory location referred to by char*.

This member function constructs a ContextL st object.

The ContextL ist object grows dynamically; your application does not need to track its

size.

If the function succeeds, the return value is apointer to the newly created ContextL ist

object.

If the member function does not succeed, an exception is raised.

CORBA: :
CORBA: :
CORBA: :
CORBA: :

Cont ext Li st : :
Cont ext Li st : :
Cont ext Li st : :
Cont ext Li st : :

add
count
item
renove

CORBA C++ Programming Reference

14-27

14 coRrBa AP

CORBA::ContextList::item

Synopsis
C++ Binding

Argument

Description

Return Values
Exceptions

See Also

Retrieves a pointer to the ContextL ist object, based on the index passed in.
const char* itemULong index);

i ndex
Theindex into the ContextList object. The indexing is zero-based.

This member function retrieves a pointer to a ContextList object, based on the index
passed in. The function uses zero-based indexing.

If the function succeeds, the return value is a pointer to the ContextList object.
If this function does not succeed, the BAD_PARAMexception is thrown.

CORBA: : Cont ext Li st :: add

CORBA: : Cont ext Li st:: add_consune
CORBA: : Cont ext Li st : : count

CORBA: : Cont ext Li st: :renpve

14-28 CORBA C++ Programming Reference

ContextList Member Functions

CORBA::ContextList::remove

Synopsis

C++ Binding

Argument

Description

Return Values
Exceptions

See Also

Removestheitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

Status renove(ULong i ndex);

I ndex
The index into the ContextL ist object. The indexing is zero-based.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.
If this function does not succeed, the BAD_PARAMexception is thrown.

CORBA: : Cont ext Li st: : add

CORBA: : Cont ext Li st: : add_consune
CORBA: : Cont ext Li st:: count

CORBA: : ContextList::item

CORBA C++ Programming Reference 14-29

14 coRrBa AP

NamedValue Member Functions

NamedVaueisused only asan element of NV List, especially intheDIl. NamedVaue
maintains an (optional) name, an any value, and labelling flags. Legal flag values are
CORBA: : ARG | N, CORBA: : ARG_QUT, and CORBA: : ARG _| NOUT.

The value in a NamedV alue may be manipulated via standard operations on any.

The mapping of these member functions to C++ isasfollows:

/] C++
cl ass NanedVal ue
{
public:
FI ags flags() const;
const char * name() const;
Any * val ue() const;

}s

Memory Management

NamedV d ue has the following special memory management rule:

m Ownership of the return values of the nane() and val ue() functionsis
maintained by the NamedVal ue; these return values must not be freed by the
caller.

The following sections describe NamedV al ue member functions.

14-30 CORBA C++ Programming Reference

NamedValue Member Functions

CORBA::NamedValue::flags

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the flags attribute of the NamedV alue object.

CORBA: : Fl ags CORBA: : NanmedVal ue: : fl ags () const;

None.

This member function retrieves the flags attribute of the NamedV a ue object.

If the function succeeds, the return value is the flags attribute of the NamedValue
object.

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-31

14 coRrBa AP

CORBA::NamedValue::name

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the name attribute of the NamedV a ue object.
const char * CORBA:: NanmedVal ue::nanme () const;
None.

This member function retrieves the name attribute of the NamedV alue object. The
name returned by this member function is owned by the NamedV alue object and
should not be modified or rel eased.

If the function succeeds, the value returned is a constant | dentifier object representing
the name attribute of the NamedV alue object.

If the function does not succeed, an exception is thrown.

14-32 CORBA C++ Programming Reference

NamedValue Member Functions

CORBA::NamedValue::value

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves a pointer to the value attribute of the NamedV alue object.
CORBA: : Any * CORBA: : NamedVal ue: : value () const;
None.

This member function retrieves a pointer to the Any object that represents the value
attribute of the NamedV alue object. This attribute is owned by the NamedV alue
object, and should not be modified or released.

If the function succeeds, thereturn valueisapointer to the Any object contained inthe
NamedV alue object.

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-33

14 coRrBa AP

NVList Member Functions

NVListisalist of NamedValues. A new NVList is constructed using the
ORB: : create_| i st operation (see “CORBA::ORB::create_list” on page 14-60).
New NamedValues may be constructed as part of an NVList, in any of following ways

e add—creates an unnamed value, initializing only the flags
e add_it em—initializes name and flags

e add_val ue—initializes name, value, and flags
Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexingdThed_i t em
add_val ue, add_i t em consume, andadd_val ue_consune functions lengthen the
NVLi st to hold the new element each time they are calledi Thafunction can be
used to access existing elements.

/] C++
cl ass NVLi st
{

public:

ULong count () const;

NarmedVal ue_ptr add(Fl ags);

NarmedVal ue_ptr add_iten{const char*, Flags);

NarmedVal ue_ptr add_val ue(const char*, const Any& Fl ags);
NarmedVal ue_ptr iten{ULong);

voi d renove(ULong);

b

Memory Management

14-34

NVList has the following special memory management rules:

e Ownership of the return values of theéd, add_i t em add_val ue,
add_i t em consune, add_val ue_consune, andi t emfunctions is
maintained by the NVList; these return values must not be freed by the
caller.

e The char* parameters to th&ld_i t em consune andadd_val ue_consume
functions and theany* parameter to thadd_val ue_consune function are

CORBA C++ Programming Reference

NVList Member Functions

consumed by the NV List. The caller may not access these data after they
have been passed to these functions because the NV List may copy them and
destroy the originalsimmediately. The caller should use the

NamedVal ue: : val ue() operation to modify the val ue attribute of the
underlying NamedValue, if desired.

e Therenpve function also calls CORBA: : r el ease on the removed
NamedValue.

The following sections describe NV List member functions.

CORBA C++ Programming Reference 14-35

14 coRrBa AP

CORBA::NVList::add

Synopsis

C++ Binding

Argument

Description

Return Values

See Also

Constructs a NamedV alue object with an unnamed item, setting only the f1 ags

attribute.

CORBA: : NanmedVal ue_ptr CORBA: : NVLi st: :add (
CORBA: : Fl ags Fl ags) ;

Fl ags

Flags to determine argument passing. Valid values are:

CORBA: : ARG I N
CORBA: : ARG _| NOUT
CORBA: : ARG QUT

This member function constructs aNamedV alue object with an unnamed item, setting
only theflags attribute. The NamedV alue object is added to the NV List object that the
call was invoked upon.

The NV List object grows dynamically; your application does not need to track its size.

If the function succeeds, the return valueis a pointer to the newly created NamedVaue
object. Thereturned NamedV a ue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLI st :
NVLI st :
NVLI st :
NVLI st :
NVLI st : :

:add
;add_item
:add_val ue
:count

renove

14-36 CORBA C++ Programming Reference

NVList Member Functions

CORBA::NVList::add_item

Synopsis

C++ Binding

Arguments

Description

Return Values

See Also

ConstructsaNamedV alue object, creating an empty value attribute and initializing the
name and flags attributes.

CORBA: : NanedVal ue_ptr CORBA:: NVList::add_item (
const char * Name,
CORBA: : Fl ags Fl ags) ;

The name of the list item.

FI ags
Flags to determine argument passing. Vaid values are:

CORBA: : ARG_IN
CORBA: : ARG _| NOUT
CORBA: : ARG _QUT

This member function constructs a NamedV al ue object, creating an empty value
attribute and initializing the name and flags attributes that pass in as parameters. The
NamedV alue object is added to the NV List object that the call was invoked upon.

The NV List object grows dynamically; your application does not need to track its size.

If the function succeeds, thereturn valueis apointer to the newly created NamedValue
object. Thereturned NamedV alue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, an exception is thrown.

CORBA: : NVLi st : : add
CORBA: : NVLi st : : add_val ue
CORBA: : NVLi st : : count
CORBA: : NVList::item
CORBA: : NVLi st: : renpove

CORBA C++ Programming Reference 14-37

14 coRrBa AP

CORBA::NVList::add_value

Synopsis
C++ Binding

Arguments

Description

Return Values

See Also

Constructs a NamedV alue object, initiaizing the name, value, and flags attribute.

CORBA: : NanmedVal ue_ptr CORBA: : NVLi st: :add_val ue (

const char * Narme,

const CORBA:: Any & Val ue,

CORBA: : Fl ags Fl ags) ;
Narmre

The name of thelist item.

Val ue
The value of thelist item.

Fl ags
Flags to determine argument passing. Valid values are:

CORBA: : ARG I N
CORBA: : ARG_| NOUT
CORBA: : ARG _QUT

This member function constructs a NamedV alue object, initializing the name, value,
and flags attributes. The NamedV alue object is added to the NV List object that the call
was invoked upon.

The NV List object grows dynamically; your application does not need to track its size.

If the function succeeds, the return valueis a pointer to the newly created NamedVaue
object. Thereturned NamedV a ue object reference isowned by the NV List and should
not be released.

If the member function does not succeed, an exception is raised.

CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item
CORBA: : NVLi st : : count
CORBA: : NVLi st::item
CORBA: : NVLi st : : renpve

14-38 CORBA C++ Programming Reference

NVList Member Functions

CORBA::NVList::count

Synopsis
C++ Binding
Arguments
Description

Return Values

See Also

Retrieves the current number of itemsin thelist.

CORBA: : ULong CORBA: : NVLi st::count () const;

None.

This member function retrieves the current number of itemsin thelist.

If the function succeeds, the returned value isthe number of itemsin thelist. If thelist
has just been created, and no NamedV alue objects have been added, this function
returns O (zero).

If the function does not succeed, an exception is thrown.

CORBA: :
CORBA: :
CORBA: :
CORBA: :
CORBA: :

NVLi st :
NVLi st : :
NVLi st : :
NVLi st : :
NVLi st : :

add
add_item
add_val ue
item
renove

CORBA C++ Programming Reference

14-39

14 coRrBa AP

CORBA::NVList:item

Synopsis
C++ Binding

Argument

Description

Return Values

Exception

See Also

Retrieves a pointer to the NamedV al ue object, based on the index passed in.

CORBA: : NanedVal ue_ptr CORBA: :NVList::item (
CORBA: : ULong I ndex) ;

I ndex
Theindex into the NV List object. The indexing is zero-based.

This member function retrieves a pointer to aNamedV a ue object, based on the index
passed in. The function uses zero-based indexing.

If the function succeeds, the return value is a pointer to the NamedValue object. The
returned NamedV a ue object reference is owned by the NV List and should not be
released.

If this function does not succeed, the BAD_PARAMexception is thrown.

CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item
CORBA: : NVLi st : : add_val ue
CORBA: : NVLi st : : count
CORBA: : NVLi st : : renpve

14-40 CORBA C++ Programming Reference

NVList Member Functions

CORBA::NVList::remove

Synopsis

C++ Binding

Argument

Description

Return Values
Exception

See Also

Removestheitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

voi d CORBA:: NVLi st::renove (
CORBA: : ULong I ndex) ;

I ndex
Theindex into the NV List object. The indexing is zero-based.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.

If this function does not succeed, the BAD_PARAMexception is thrown.
CORBA: : NVLi st : : add

CORBA: : NVLi st::add_item

CORBA: : NVLi st : : add_val ue

CORBA: : NVLi st : : count
CORBA: : NVList::item

CORBA C++ Programming Reference 14-41

14 coRrBa AP

Object Member Functions

Therulesin this section apply to the OMG IDL interface Object, which is the base of
the OMG IDL interface hierarchy. Interface Object defines a normal CORBA object,
not a pseudo-object. However, it isincluded here because it references other
pseudo-objects.

In addition to other rules, all operation names in interface Object have leading

underscores in the mapped C++ class. Also, the mapping for cr eat e_r equest is

divided into three forms, corresponding to the usage styles described in the section
“Request Member Functions” on page 14-111. Theni| andr el ease functions

are provided in the CORBA namespace, as described in “Object Member Functions
on page 14-42.

The BEA WebLogic Enterprise software uses object reference operations that are
defined by CORBA Revision 2.2. These operations depend only ootyeet , SO
they can be expressed as regular functions within the CORBA namespace.

Note: Because the BEA WebLogic Enterprise software uses the POA and not the
BOA, the deprecateget _i npl enent ati on() member function is not
visible; you will get a compile error if you attempt to reference it.

The mapping of these member functions to C++ is as follows:

cl ass CORBA
{

cl ass Obj ect

CORBA: : Bool ean _is_a(const char *)
CORBA: : Bool ean _is_equivalent();
CORBA: : Bool ean _nonexi stent (Obj ect_ptr);

static Object_ptr _duplicate(Object_ptr obj);
static Qbject_ptr _nil();
InterfaceDef_ptr _get_interface();
CORBA: : ULong _hass(CORBA: : ULong) ;
void _create_request(
Context _ptr ctx,
const char *operation,
NVLi st _ptr arg_list,
NamedVal ue_ptr result,
Request _out request,

14-42 CORBA C++ Programming Reference

Object Member Functions

Fl ags req_fl ags

)
Status _create_request (
Context _ptr ctx,
const char * operation,
NVLi st_ptr arg_list,
NarmedVal ue_ptr result,
ExceptionLi st _ptr Except _|list,
Context Li st_ptr Context i st,
Request _out request,
Fl ags req_fl ags
)
Request _ptr _request(const char* operation);
}; 11 Object
}; /1 CORBA

The following sections describe the Obj ect member functions.

CORBA C++ Programming Reference 14-43

14 coRrBa AP

CORBA::Object::_create_request

Synopsis Creates a request with user-specified information.

C++Binding Voi d CORBA: : Cbj ect::_create_request (

CORBA: : Cont ext _ptr a x,

const char * Qperati on,
CORBA: : NVLi st _ptr Arg_list,
CORBA: : NanedVal ue_ptr Resul t,

CORBA: : ExceptionLi st_ptr Except_|ist,
CORBA: : Cont ext Li st_ptr Context _|ist,
CORBA: : Request _out Request,
CORBA: : Fl ags Req_fl ags,);

Arguments Ctx
The Context to be used for this request.

Oper ation
The operation name for this request.

Arg_list
The argument list for this request.

Resul t
The NamedV al ue reference where the return value of this request isto be
stored after a successful invocation.

Except _|i st
The exception list for this request.

Context _|ist
The context list for this request.

Request
The newly created request reference.

Req_fl ags
Reserved for future use; the user must pass a value of zero.

14-44 CORBA C++ Programming Reference

Object Member Functions

Description

Return Values

See Also

Thismember function creates arequest that providesinformation on context, operation
name, and other values (long form). To create a request with just the operation name
supplied at the time of the call (short form), usethe CORBA: : Cbj ect : : _request
member function. The remainder of the information provided in the long form
eventually needs to be supplied.

None.

CORBA: : (bj ect:: _request

CORBA C++ Programming Reference 14-45

14 coRrBa AP

CORBA::0bject::_duplicate

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Duplicates the Object object reference.

CORBA: : Cbj ect _ptr CORBA:: Obj ect:: duplicate(
oj ect_ptr Obj);

obj
The object reference to be duplicated.

This member function duplicates the specified Object object reference (Qbj). If the
given object referenceis nil, the _dupl i cat e function returns a nil object reference.
The object returned by this call should befreed using CORBA: : r el ease, or should be
assigned to CORBA: : Obj ect _var for automatic destruction.

This function can throw CORBA system exceptions.

Returnsthe duplicate object reference. If the specified object referenceis nil, anil
object reference is returned.

CORBA: : Cbject_ptr op = TP::create_object_reference(
"IDL: Tel ler:1.0","MTeller");
CORBA: : Cbj ect _ptr dop = CORBA: : bject:: _duplicate(op);

14-46 CORBA C++ Programming Reference

Object Member Functions

CORBA::Object::_get_interface

Synopsis
C++ Binding
Arguments

Description

Return Values

Returns an interface definition for the Repository object.
CORBA: : I nterfaceDef _ptr CORBA:: (hject:: _get _interface ();
None.

Returns an interface definition for the Repository object.

Note: To usethe Repository Interface API, define amacro before CORBA. h is
included. For information about how to define amacro, see Creating CORBA
C++ Server Applications.

InterfaceDef ptr

CORBA C++ Programming Reference 14-47

14 coRrBa AP

CORBA::Object::_is_a

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Exceptions

Determines whether an object is of a certain interface.
CORBA: : Bool ean CORBA: : bj ect:: _is_a(const char * interface_id);

interface_id
A string that denotes the interface repository ID.

This member function is used to determine if an object is an instance of the interface
that you specify inthei nt er f ace_i d parameter. It facilitates maintaining type-saf ety
for object references over the scope of an ORB.

Returns TRUE if the object is an instance of the specified type, or if the object isan
ancestor of the “most derived” type of that object.
CORBA: : Cbject_ptr op = TP::create_object _reference(

"IDL: Teller:1.0", "MWyTeller");
CORBA: : Boolean b = op->_is_a("IDL:Teller:1.0");

Can throw a standard CORBA exception.

14-48 CORBA C++ Programming Reference

Object Member Functions

CORBA::Object::_is_equivalent

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Determinesif two object references are equivalent.

CORBA: : Bool ean CORBA:: (bj ect:: i s_equivalent (
CORBA: : (bj ect _ptr other_obj);

ot her _obj
The object reference for the other object, which isused for comparison with
the target object.

This member function is used to determineif two object references are equivalent, so
far asthe ORB can easily determine. It returns TRUE if your object referenceis
equivalent to the object reference you pass as a parameter. If two object references are
identical, they are equivalent. Two different object references that refer to the same
object are also equivalent.

Returns TRUE if the target object reference is known to be equivalent to the other
object reference passed as a parameter; otherwise, it returns FALSE.

CORBA: : Cbj ect _ptr op = TP::create_object_reference(

"IDL: Tel ler:1.0", "MyTeller");
CORBA: : Obj ect _ptr dop = CORBA: : Obj ect:: _duplicate(op);
CORBA: : Bool ean b = op->_i s_equival ent (dop);

CORBA C++ Programming Reference 14-49

14 coRrBa AP

CORBA::Object::_nil

Synopsis
C++ Binding
Arguments

Description

Return Values

Example

Returns areferenceto anil object.
CORBA: : Cbject _ptr CORBA:: Qbject:: nil();
None.

This member function returns anil object reference. To test whether agiven object is
nil, use the appropriate CORBA: : i s_ni | member function (see the section
“CORBA::release” on page 14-54). Calling tlieRBA: i s_ni | routine on any ni |
member function always yieldSORBA_TRUE.

Returns a nil object reference.

CORBA: : Cbject_ptr op = CORBA:: Object:: _nil();

14-50 CORBA C++ Programming Reference

Object Member Functions

CORBA::Object::_non_existent

Synopsis
C++ Binding
Arguments

Description

Return Values

May be used to determine if an object has been destroyed.
CORBA: : Bool ean CORBA:: Obj ect:: _non_existent();
None.

This member function may be used to determine if an object has been destroyed. It
does this without invoking any application-level operation on the object, and so will
never affect the object itself.

Returns CORBA_TRUE (rather than raising CORBA: : OBJECT_NOT_EXI ST) if the ORB
knows authoritatively that the object does not exist; otherwise, it returns
CORBA_FALSE.

CORBA C++ Programming Reference 14-51

14 coRrBa AP

CORBA::0Object::_request

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Creates areguest specifying the operation name.

CORBA: : Request _ptr CORBA: : (bj ect:: _request (
const char * Operation);

Oper ation
The name of the operation for this request.

This member function creates a request specifying the operation name. All other
information, such as arguments and results, must be populated using
CORBA: : Request member functions.

If the member function succeeds, the return value is a pointer to the newly created
request.

If the member function does not succeed, an exception is thrown.

CORBA: : Cbj ect:: _create_request

14-52 CORBA C++ Programming Reference

CORBA Member Functions

CORBA Member Functions

This section describes the Object and Pseudo-Object Reference member functions.

The mapping of these member functions to C++ is as follows:

cl ass CORBA {

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

rel ease(Object _ptr);

rel ease(Envi ronnent _ptr);
rel ease(NanmedVal ue_ptr);
rel ease(NVLi st_ptr);

rel ease(Request _ptr);

rel ease(Context _ptr);

rel ease(TypeCode_ptr);

rel ease(POA ptr);

rel ease(ORB ptr);

rel ease(ExceptionLi st_ptr);
rel ease(ContextList_ptr);

Bool ean is_nil (Ohject_ptr);

Bool ean is_nil (Environment_ptr);
Bool ean is_nil (NanedVal ue_ptr);
Bool ean is_nil (NVLi st_ptr);

Bool ean is_nil (Request_ptr);

Bool ean is_nil (Context_ptr);

Bool ean is_nil (TypeCode_ptr);
Bool ean is_nil (POA ptr);

Bool ean is_nil (ORB_ptr);

Bool ean is_nil (ExceptionList_ptr);
Bool ean is_nil (ContextList_ptr);

hash(maxi num ;

resolve_initial _references(identifier);

CORBA C++ Programming Reference 14-53

14 coRrBa AP

CORBA::release

Synopsis
C++ Binding

Argument

Description

Return Values

Example

Allows allocated resources to be released for the specified object type.
voi d CORBA: : rel ease(spec_obj ect _type obj);

obj
Theobject referencethat the caller will nolonger access. The specified object
type must be one of the types listed in the section “CORBA Member
Functions” on page 14-53.

This member function indicates that the caller will no longer access the reference sc
that associated resources may be deallocated. If the specified object reference is nil
the release operation does nothing. If the ORB instance release is the last reference
the ORB, then the ORB will be shutdown prior to its destruction. This is the same as
calling ORB_shut down prior to callingCORBA: : r el ease. This only applies to the

r el ease member function called on the ORB.

This member function may not throw CORBA exceptions.
None.
CORBA: : Cbject_ptr op = TP::create_object _reference(

"IDL:Teller:1.0", "WTeller");
CORBA: : rel ease(op);

14-54 CORBA C++ Programming Reference

CORBA Member Functions

CORBA::is_nil
Synopsis Determinesif an object exists for the specified object type.
C++Binding CORBA: : Bool ean CORBA: :is_nil (spec_object_type obj);

Argument obj
The object reference. The specified object type must be one of thetypeslisted
in the section “CORBA Member Functions” on page 14-53.

Description This member function is used to determine if a specified object reference is nil. It
returns TRUE if the object reference contains the special value for a nil object
reference as defined by the ORB.

This operation may not throw CORBA exceptions.
Return Values Returns TRUE if the specified object is nil; otherwise, returns FALSE.
Example CORBA:: Obj ect _ptr op = TP::create_object_reference(

"IDL: Teller:1.0", "MyTeller");
CORBA: : Bool ean b = CORBA: :is_nil (op);

CORBA C++ Programming Reference 14-55

14 coRrBa AP

CORBA::hash
Synopsis
C++ Binding

Argument

Description

Return Values

Providesindirect access to object references using identifiersinternal to the ORB.
CORBA: : hash(CORBA: : ULong mexi mum ;

maxi mum

Specifies an upper bound on the hash value returned by the ORB.

Object references are associated with ORB-internal identifiers that may indirectly be
accessed by applications using the hash() operation. The value of thisidentifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maxi mumparameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since atypical use
of this feature isto construct and access a collision-chained hash table of object
references, the more randomly distributed the values are within that range, and the less
expensive those values are to compute, the better.

None.

14-56 CORBA C++ Programming Reference

CORBA Member Functions

CORBA::resolve_initial_references

Synopsis
C++ Binding

Argument

Description

Return Values
Exception

Example

Returns an initial object reference corresponding to ani dent i fi er string.

CORBA: : Cbj ect _ptr CORBA: :resolve_initial _references(
const CORBA::char *identifier);

identifier
String identifying the object whose reference is required.

Returns an initial object reference correspondingto ani denti fier string. Valid
identifiers are “RootPOA” and “POACurrent”

Note: Thisfunction is supported only for ajoint client/server.

Returns a CORBA::Object_ptr
InvalidName

CORBA::ORB_ptr orb = CORBA::ORB _init(argc, argv);

CORBA::Object_ptr pfobj =
orb->resolve_initial_references("RootPOA");

PortableServer::POA_ptr rootPOA;

rootPOA = PortableServer::POA::narrow(pfobj);

CORBA C++ Programming Reference 14-57

14 coRrBa AP

ORB Member Functions

The ORB member functions constitute the programming interface to the Object
Request Broker.

The mapping of the ORB member functionsto C++ is as follows:

class CORBA
{
class ORB
{
publ i c:
char *object _to_string(Object _ptr);
bj ect _ptr string_to_object(const char *);
void create_list(Long, NVList _out);
void create_operation_list(operationDef ptr, NVList_out);
voi d create_naned_val ue(NamedVal ue_out);
voi d create_environnent (Environment _out);
void create_policy (in PolicyType type, in any val);
voi d destroy ()
voi d send_mul ti pl e_requests_oneway(const requestSeq&);
voi d send_mul ti pl e_requests_deferred(const requestSeq&);
voi d create_exception_list(ExceptionList_out);
void create_context _|ist(ContextList _out);
voi d get _default_context (Context_out);
voi d get _next _response(Request _out);
voi d performwork();
void run();
voi d shutdown(in bool ean wait_for_conpl etion);
Bool ean pol | _next _response();
Bool ean wor k_pendi ng();
}; 1/ ORB
}; /1 CORBA

Thread-related Operations:

To support single-threaded ORBs, as well as multithreaded ORBs that run
multithread-unaware code, four operations (per f or m wor k, r un, shut down, and
wor k_pendi ng) areincluded in the ORB interface. These operations can be used by
single-threaded and multithreaded applications. An application that is a pure ORB
client would not need to use these operations. Both the ORB: : run() and

ORB: : shut down() are useful in fully multithreaded programs.

The following sections describe the ORB member functions.

14-58 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::create_environment

Synopsis Creates an environment.

C++Binding void CORBA:: ORB::create_environnent (
CORBA: : Envi ronnent _out New_env) ;

Argument New_env
Receives areference to the newly created environment.

Description This member function creates an environment.
Return Values None.
See Also CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item

CORBA: : NVLi st : : add_val ue
CORBA: : r el ease

CORBA C++ Programming Reference 14-59

14 coRrBa AP

CORBA::ORB::create_list

Synopsis

C++ Binding

Arguments

Description

Return Values

See Also

Creates and returns an NV List object reference.

void CORBA: : ORB: :create_list (

CORBA: : Long Num t em
CORBA: : NVLi st _out List);
Num t em

The number of elementsto preallocate in the newly created list.

Li st
Receives the newly created list.

This member function creates alist, preallocating a specified number of items. List
items may be sequentially added to the list using the CORBA: : NVLi st _add_i t em
member function. When no longer needed, this list must be freed using the

CORBA: : r el ease member function.

None.

CORBA: : NVLi st : : add
CORBA: : NVLi st: :add_item
CORBA: : NVLi st : : add_val ue
CORBA: : rel ease

14-60 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::create_named_value

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Creates a NamedV alue object reference.

voi d CORBA:: ORB: : creat e_naned_val ue (
NameVal ue_out NewNaredVal) ;

NewNanedVal
A reference to the newly created NamedV alue object.

This member function creates a NamedV a ue object. Itsintended use is for the result
argument of arequest that needs a NamedV alue object. The extra steps of creating an
NV List object are avoided by calling this member function.

When no longer needed, the NamedV alue object must be freed using the
CORBA: : r el ease member function.

None.
CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item

CORBA: : NVLi st : : add_val ue
CORBA: : r el ease

CORBA C++ Programming Reference 14-61

14 coRrBa AP

CORBA::0RB::create_exception_list

Synopsis
C++ Binding

Argument

Description

Return Values

Returnsalist of exceptions.

voi d CORBA: : ORB: : create_exception_li st (
CORBA: : ExceptionLi st_out List);

Li st
Receives a reference to the newly created exception list.

This member function creates and returns alist of exceptionsin aform that may be
used in the Dynamic Invocation Interface (D11). When no longer needed, thislist must
be freed using the CORBA: : r el ease member function.

None.

14-62 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::create_context_list

Synopsis
C++ Binding

Argument

Description

Return Values

Creates and returns alist of contexts.

void CORBA:: ORB: : create_context _|i st (
CORBA: : Cont ext Li st_out List);

Li st
Receives areference to the newly created context list.

Thismember function createsand returns alist of context stringsthat must be supplied
with the Request operation in aform that may be used in the Dynamic Invocation
Interface (DI1). When no longer needed, this list must be freed using the

CORBA: : r el ease member function.

None.

CORBA C++ Programming Reference 14-63

14 coRrBa AP

CORBA::0RB::create_policy

Synopsis
C++ Binding

Arguments

Description

Creates new instances of policy objects of a specific type with specified initia state.

void CORBA: : ORB: :create_policy (
in PolicyType type,
in any val);

type
Bi Di r Pol i cy: : Bl DI RECTI ONAL_PQLI CY_TYPE isthe only Pol i cy Type
value supported for WLE V4.2 .

val
Theonly val value supported for WLE V4.2 s
Bi Di rPol i cy::Bidirectional PolicyVal ue.

This operation can be invoked to create new instances of policy objects of a specific
type with specified initial state. If cr eat e_pol i cy failsto instantiate a new Policy
object dueto itsinability to interpret the requested type and content of the policy, it
raises the Policy Error exception with the appropriate reason. (See Exceptions below.)

TheBi di r ect i onal Pol i cy argument is provided for remote clients using callbacks
because remote clients use I1OP. It is not used for native clients using callbacks or for
BEA WebL ogic Enterprise servers because machines inside a BEA WebL ogic
Enterprise domain communicate differently.

Before GIOP 1.2, bidirectiona policy was not available as achoice in 110OP (which
uses TCP/IP). Connectionsin GIOP 1.0 and 1.1 were oneway (that is, arequest flowed
from aclient to aserver); only responses flowed from the server back to the client. If
the server wanted to make arequest back to the client machine (say for a callback), the
server machine had to establish another one-way connection. (Be advised that

“connections” in this sense mean operating system resources, not physically differer

wires or communication paths. A connection uses resources, SO minimizing
connections is desirable.)

Since this release of the BEA WebLogic Enterprise C++ software supports GIOP 1.2
it supports reuse of the TCP/IP connection for both incoming and outgoing requests
Re-using connections saves resources when a remote client sends callback referen
to a BEA WebLogic Enterprise domain. The joint client/server uses a connection to
send a request to a BEA WebLogic Enterprise domain; that connection can be re-use
for the callback request. If the connection is not re-used, the callback request must

establish another connection.

14-64 CORBA C++ Programming Reference

ORB Member Functions

Return Values

Exceptions

Allowing reuse of a connection is a choice of the ORB/POA that creates callback
object references. The server for those object references (usually the creator of the
references, especially in the callback case) might choose not to allow reuse for security
considerations (that is, the outgoing connection (aclient request from this machine to
aremote server) may not need security because the remote server does not requireit,
but the callback server on this machine might require security). Since security is
established partly on aconnection basis, the incoming security can be established only
if a separate connection is used. If the remote server requires security, and if that
security involvesamutual authentication, thelocal server usually feelssafeinallowing
reuse of the connection.

Since the choice of connection reuseis at the server end, whenever a process actsas a
server—in this case a joint client/server—and creates object references, it must inform
the ORB that it is willing to re-use connections. The process does this by setting a
policy on the POA that creates the object references. The default policy is to not allow
reuse (that is, if you do not supply a policy object for reuse, the POA does not allow
reuse).

This default allows for backward compatibility with code written before CORBA
version 2.3. Such code did not know that reuse was possible so it did not have to take
into consideration the security implications of reuse. Thus, that unchanged code should
continue to disallow reuse until the user considers security and explicitly makes a
decision to the contrary.

To allow reuse, you use tleeeat e_pol i cy operation to create a policy object that
allows reuse, and use that policy object as part of the list of policies for POA creation.

None.

Pol i cyError
This exception is raised to indicate problems with the parameter values
passed to therB: : cr eat e_pol i cy operation. The specific exception and
reasons are as follows:

Exception Reason

BAD_POLI CY The requested Policy is nhot understood by the ORB.

UNSUPPORTED _POLI CY Therequested Policy isunderstood to be valid by the ORB,
but is not currently supported.

CORBA C++ Programming Reference 14-65

14 coRrBa AP

Exception Reason

BAD_PCLI CY_TYPE The type of thevalue requested for the Policy isnot valid for
that PolicyType.

BAD_POLI CY_VALUE The value requested for the Policy is of avalid type, but is

not within the valid range for that type.

UNSUPPORTED_POLI CY_ The value requested for the Policy is of avalid type and
VALUE within thevalid rangefor that type, but thisvalid valueis not
currently supported.

Example #include <Bi DirPolicy_c.h>
BiDirPolicy::Bidirectional Policy_var bd_policy;
CORBA: : Any al | ow _reuse;

all ow reuse <<= BiDirPolicy::BOTH,

CORBA: : Policy_var generic_policy =
orb->create_policy(BiDrPolicy::Bl D RECTI ONAL_POLI CY_TYPE,
al | ow reuse);
bd _policy = BiDirPolicy::Bidirectional Policy:: narrow
generic_policy);

In the above example, the bd_pol i cy would then be placed in the PolicyList passed
to the cr eat e_poa operation.

14-66 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::create_operation_list

Synopsis
C++ Binding

Arguments

Description

Return Values

See Also

Creates and returns alist of the arguments of a specified operation.

void CORBA:: ORB:: create_operation_list (

CORBA: : Oper ati onDef _ptr Oper,
CORBA: : NVLi st _out Li st);
Qper
The operation definition for which thelist is being created.
Li st

Receives areference to the newly created arguments list.

This member function creates and returns alist of the arguments of a specified
operation, in aform that may be used with the Dynamic Invocation Interface (DII).
When no longer needed, thislist must be freed using the CORBA: : r el ease member
function.

None.

CORBA: : OBB: : create_|ist
CORBA: : NVLi st : : add
CORBA: : NVLi st::add_item
CORBA: : NVLi st : : add_val ue
CORBA: : r el ease

CORBA C++ Programming Reference 14-67

14 coRrBa AP

CORBA::0RB::get_default_context

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Returns areference to the default context.

voi d CORBA: : ORB: : get _default_context (
CORBA: : Cont ext _out Cont ext Obj) ;

Cont ext Cbj
The reference to the default context.

This member function returns a reference to the default context. When no longer
needed, this context reference must be freed using the CORBA: : r el ease member
function.

None.

CORBA: : Cont ext : : get _one_val ue

CORBA: : Cont ext : : get _val ues

14-68 CORBA C++ Programming Reference

ORB Member Functions

CORBA::0RB::get_next_response

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Determines and reports the next deferred synchronous request that compl etes.

voi d CORBA:: ORB: : get _next _response (
CORBA: : Request _out Request Obj) ;

Request j
The reference to the next completed request.

This member function returns a reference to the next request that completes. If no
requests have compl eted, the function waits for arequest to complete. This member
function returns the next request on the queue, in contrast to the

CORBA: : Request : : get _response member function, which waits for a particular
request to complete. When no longer needed, this request must be freed using the
CORBA: : r el ease member function.

None.

CORBA: : ORB: : pol | _next _response
CORBA: : Request : : get _reponse

CORBA C++ Programming Reference 14-69

14 coRrBa AP

CORBA::ORB::perform_work

Synopsis
C++ Binding
Arguments

Description

Return Values

Exceptions

See Also

Example

Allows the ORB to perform server-related work.
void CORBA: : ORB: : performwork ();
None.

If called by the main thread, this operation alows the ORB to perform server-related
work. Otherwise, it does nothing.

Thewor k_pendi ng() and per f or m wor k() operations can be used to writeasimple
polling loop that multiplexes the main thread among the ORB and other activities.
Such aloop would most likely be needed in a single-threaded server. A multithreaded
server would need a polling loop only if there were both ORB and other code that
reguired use of the main thread. See the example below for such a polling loop.

None.

Once the ORB has shut down, acall towor k_pendi ng and per f or m wor k() raises
the BAD_| NV_ORDER exception. An application can detect this exception to determine
when to terminate a polling loop.

CORBA: : ORB: : wor k_pendi ng

Here is an example of a polling loop:

/] C++
for (5;) {
if (orb->work_pending()) {
or b->per formwork();
}
/1 do other things
/'l sl eep?

14-70 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::run

Synopsis
C++ Binding
Argument

Description

Return Values

See Also

Enables the ORB to perform work using the main thread.
void CORBA:: ORB::run();
None

This operation provides execution resources to the ORB so that it can perform its
internal functions. Since the WLE C++ ORB is single-threaded, this essentially turns
the processinto a pure server.

This operation blocks until the ORB has completed the shutdown process, initiated
when athread calls CORBA: : ORB: : shut down() .

None.

CORBA: : ORB: : per f orm wor k

CORBA C++ Programming Reference 14-71

14 coRrBa AP

CORBA::ORB::shutdown

Synopsis Instructs the ORB to shut down.
C++Binding voi d shutdown(in boolean wait_for_conpletion);

Argument wait_for_conpl etion
A value of TRUE blocks until all ORB processing has compl eted.

Description This operation instructs the ORB to shut down (that is, to stop processing in
preparation for destruction).

Shutting down the ORB causesall POASsto be destroyed, since they cannot exist inthe
absence of an ORB. Shut down is complete when all ORB processing (including
reguest processing and object deactivation or other operations associated with the
POA s) has completed and all POAs have been destroyed.

If thewai t _for_conpl eti on parameter is TRUE, this operation blocks until the shut
downiscomplete. If an application calls shut down(TRUE) inathread that is currently
servicing an invocation, the BAD | NV_ORDER system exception will be raised with the
OMG minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE, the shutdown may not have
completed upon return. This use of FALSE is nhot recommended.

Whilethe ORB isin the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until al requests have been completed.

Once an ORB has shut down, invoking any operation on that ORB or any object
reference obtained from that ORB will raise the BAD | NV_ORDER system exception
with the OMG minor code 4, except for the reference management operations
duplicate(),release(),andis_nil ().

Return Values None.

14-72 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::0bject_to_string

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Produces a string representation of an object reference.

char * CORBA:: ORB::object to string (
CORBA: : (hj ect _ptr oj Ref);
Obj Ref
The object reference to represent as a string.
This member function produces a string representation of an object reference. The

calling program must use the CORBA: : string_f ree member function to free the
string memory after it is no longer needed.

The string representing the specified object reference.
CORBA: : Cbj ect _ptr op = TP::create_object_reference(

"IDL: Tel ler:1.0", "MyTeller");
char* objstr = TP::orb()->0bject _to _string(op);

CORBA: : ORB: : string_to_object
CORBA: : string free

CORBA C++ Programming Reference 14-73

14 coRrBa AP

CORBA::ORB::poll_next_response

Synopsis
C++ Binding
Arguments

Description

Return Values

See Also

Determines whether a completed request is outstanding.
CORBA: : Bool ean CORBA:: ORB: : pol | _next _response ();
None.

This member function reports on whether there is an outstanding (pending) completed
reguest; it does not remove the request. If acompleted request is outstanding, the next
call to the CORBA: : ORB: : get _next _response member function is guaranteed to
return a request without waiting. If there are no completed requests outstanding, the
CORBA: : ORB: : pol | _next _response member function returns without waiting
(blocking).

If a completed request is outstanding, the function returns CORBA_TRUE.
If no completed request is outstanding, the function returns CORBA_FAL SE.

CORBA: : ORB: : get _next _response

14-74 CORBA C++ Programming Reference

ORB Member Functions

CORBA::0RB::work_pending

Synopsis

C++ Binding
Arguments

Description

Return Values

See Also

Returns an indication of whether the ORB needs the main thread to perform
server-related work.

CORBA: : bool ean CORBA: : ORB: : work_pending ();
None.

This operation returns an indication of whether the ORB needs the main thread to
perform server-related work.

A result of TRUE indicates that the ORB needs the main thread to perform
server-related work, and aresult of FALSE indicates that the ORB does not need the
main thread.

CORBA: : ORB: : per f orm wor k

CORBA C++ Programming Reference 14-75

14 coRrBa AP

CORBA::ORB::send_multiple_requests_deferred

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Sends a sequence of deferred synchronous requests.

void CORBA: : ORB: :send_nul tiple_requests _deferred (
const CORBA:: ORB: : Request Seq & Reqs) ;

Reqgs
The sequence of requests to be sent. For more information about how to
populate the sequence with request references, see
CORBA: : ORB: : Request Seq in the section “Usage” on page 13-22.

This member function sends out a sequence of requests and returns control to the cal
without waiting for the operation to complete. The caller USBRBA: : ORB: : pol | _

next _response, CORBA: : ORB: : get _next _response, Or

CORBA: : Rquest : : get _response or all three to determine if the operation has
completed and if the output arguments have been updated.

None.
CORBA: : Request : : get _response

CORBA: : ORB: : get _next _response
CORBA: : ORB: : send_mnul ti pl e_requests_oneway

14-76 CORBA C++ Programming Reference

ORB Member Functions

CORBA::ORB::send_multiple_requests_oneway

Synopsis
C++ Binding

Argument

Description

Return Values

See Also

Sends a sequence of one-way, deferred synchronous requests.

voi d CORBA:: ORB: : send_nul ti pl e_requests_oneway (
const CORBA: : Request Seq & Regs) ;

Reqgs
The sequence of requests to be sent. For more information about how to
popul ate the sequence with request references, see
CORBA: : ORB: : Request Seq in the section “Usage” on page 13-22.

This member function sends out a sequence of requests and returns control to the caller
without waiting for the operation to complete. The caller neither intends to wait for a
response nor expects any output arguments to be updated.

None.

CORBA: : ORB: : send_nul ti pl e_requests_deferred

CORBA C++ Programming Reference 14-77

14 coRrBa AP

CORBA::ORB::string_to_object

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Creates an object reference, given a specified string.

CORBA: : Cbj ect _ptr CORBA:: ORB::string_to_object (
const char * bj Ref String);

bj Ref String
The string to be transformed into an object reference.

This member function creates an object reference, given aspecified string. Usually the
string has been obtained previously by calling the

CORBA: : ORB: : obj ect _to_string member function. After you are done with the
object reference, usethe CORBA: : rel ease member function to free the associated
memory.

If the member function succeeds, the object reference represented by the specified
string is returned.

If the member function does not succeed, an exception is thrown.

CORBA: : Cbject_ptr op = TP::create_object _reference(

"IDL: Teller:1.0", "MTeller");
char* objstr = TP::orb()->o0bject_to_string(op);
CORBA: : Cbject_ptr op2 = TP::orb()->string_to_object(objstr);

CORBA: : ORB: : obj ect _to_string

14-78 CORBA C++ Programming Reference

ORSB Initialization Member Function

ORB Initialization Member Function

The mapping of this member function to C++ is asfollows:

cl ass CORBA {
typedef char* ORBI d;
static CORBA :ORB ptr ORB_ init(int& argc, char** argv,
const char* orb_identifier = 0,
const char* -ORBport nnn);

CORBA C++ Programming Reference 14-79

14 coRrBa AP

CORBA::ORB init

Synopsis
C++ Binding

Arguments

Description

Initializes operations for an ORB.

static CORBA :ORB ptr ORB_ init(int& argc, char** argv,
const char* orb_identifier = 0);

argc
The number of stringsin ar gv.

ar gv
This argument is defined as an unbound array of strings (char **) and the
number of stringsin the array is passed in the ar gc parameter.

orb_identifier
If theorb_identifier parameter issupplied, “BEA_IIOP” explicitly specifiesa
remote client and “BEA_TOBJ” explicitly specifiesanative client, as defined
in the section “Tobj_Bootstrap” on page 4-13.

This member function initializes operations for an ORB and returns a pointer to the
ORB. When your program is done with the ORB, use the CORBA::release member
function to free the resources allocated for the ORB pointer returned from

CORBA: : ORB ptr ORB_init.

The ORB returned has been initialized with two pieces of information to determine
how it will operate: client type (remote or native) and server port number. The client
type can be specified in theb_i dent i fi er argument, in the argv argument, or in
the system registry. The server port number can be specified in the argv argument.

The argumentar gc andar gv are typically the same parameters that were passed to
the main program. As specified by C++, these parameters contain string tokens fron
the command line that started the client. The two ORB options can be specified on th
command line, each using a pair of tokens, as shown in examples below.

Client Type
TheORB_i ni t function determines the client type of the ORB by the following steps.

1. Iftheorb_i dentifi er argumentis preser@®RB_i ni t determines the client type,
either native or remote, if the string"iBEA | | OP" or"BEA_TOBJ", respectively.
If anorb_identifier string is present, aloRBi d parameters in thar gv are
ignored (removed).

14-80 CORBA C++ Programming Reference

ORSB Initialization Member Function

2. Iforb_identifier isnot present or isexplicitly zero, ORB i ni t looksat the
entriesin ar gc/ ar gv. If ar gv contains an entry with " - ORBi d", the next entry
should be either " BEA |11 OP" or " BEA_TOBJ", again specifiying remote or native.
This pair of entries occurs if the command line contains either - ORBi d
BEA_IIOP” or "-ORBid BEA_TOBJ"

3. If noclient typeisspecifiedin argc/argv , ORB_init usesthe default client type
from the system registry (BEA_IIOP or BEA_TOBJ). The system registry was
initialized at the time BEA WebL ogic Enterprise wasinstalled.

Server Port

In the case of a BEA WebL ogic Enterprise remote joint client/server, in order to
support 110OP, by definition, the object references created for the server part must
contain a host and port. For transient object references, any port is sufficient and can
be obtained by the ORB dynamically, but this is not sufficient for persistent

object references. Persistent references must be served on the same port after the ORB
restarts, that is, the ORB must be prepared to accept requests on the same port with
which it created the object reference. Thus, there must be some way to configure the
ORB to use a particular port.

Typically, a system administrator assigns the port number for the client from the “user”
range of port numbers rather from the dynamic range. This keeps the joint
client/servers from using conflicting ports.

To determine port numbebRB_i nit searches ther gv parameter for the token

"- ORBport" and a following numeric token. For example, if the client executable is
named sherry, the command line might specify that the server port should be 937 as
follows:

sherry -ORBport 937
ARGV Parameter Consider ations

For C++, the order of consumptionafgv parameters may be significant to an
application. To ensure that applications are not required to hanglleparameters
they do not recognize, the ORB initialization function must be called before the
remainder of the parameters are consumed. Therefore, afteRghieni t call, the

ar gv andar gc parameters have been modified to remove the ORB understood
arguments. It is important to note that ®®8_i ni t function can only reorder or
remove references to parameters fromathgv list. This restriction is made to avoid

CORBA C++ Programming Reference 14-81

14 coRrBa AP

potential memory management problems caused by trying to free parts of thear gv list
or extending the ar gv list of parameters. Thisiswhy ar gv ispassed asachar ** and
not asachar**&.

Note: Usethe CORBA: : r el ease member function to free the resources allocated for
the pointer returned from CORBA: : ORB_i ni t .

Return Value A pointer to a CORBA: : ORB.

Exceptions None.

14-82 CORBA C++ Programming Reference

Policy Member Functions

Policy Member Functions

A policy is an object used to communicate certain choicesto an ORB regarding its
operation. Thisinformation isaccessed in astructured manner using interfaces derived
from the Policy interface defined in the CORBA module.

Note: These CORBA: : Pol i cy operations and structures are not usually needed by
programmers. The derived interfaces usually contain the information relevant
to specifications. A Policy object can be constructed by a specific factory or
by using the CORBA: : cr eat e_pol i cy operation.

The mapping of this object to C++ isasfollows:

cl ass CORBA
{

class Policy

{
public:

copy();
voi d destroy();
}; /1Policy
typedef sequence<Pol i cy>PolicylLi st;
}; 1/ CORBA

Pol i cyLi st isused the same as any other C++ sequence mapping. For a discussion
of sequence usage, see “Sequences” on page 13-13.

See Also: POA Policy and CORBA: : ORB: : creat e_pol i cy.

CORBA C++ Programming Reference 14-83

14 coRrBa AP

CORBA:Policy::copy
Synopsis Copies the policy object.
C++ Binding CORBA: : Pol i cy: : copy();
Argument None.

Description This operation copiesthe policy object. The copy doesnot retain any relationships that
the policy had with any domain or object.

Note: Thisfunction is supported only for ajoint client/server.

Return Values None.

14-84 CORBA C++ Programming Reference

Policy Member Functions

CORBA::Policy::destroy

Synopsis
C++ Binding
Argument

Description

Return Values

Exceptions

Destroys the policy object.
voi d CORBA:: Policy::destroy();
None.

This operation destroys the policy object. It isthe responsibility of the policy object to
determine whether it can be destroyed.

Note: Thisfunction is supported only for ajoint client/server.

None.

If the policy object determines that it cannot be destroyed, the
CORBA: : NO_PERM SSI ON exception is raised.

CORBA C++ Programming Reference 14-85

14 coRrBa AP

PortableServer Member Functions

The mapping of the PortableServer member functionsto C++ isasfollows:

/] C++
cl ass Portabl eServer

{
public:

class LifespanPolicy;
class | dAssi gnnment Pol i cy;
class POA :find_POA
class reference_to_id
cl ass POAManager ;
cl ass POA;
class Current;
class virtual Objectld
cl ass Servant Base

b

bj ect | d—anObj ect | d is a value that is used by the POA and by the user-supplied
implementation to identify a particular abstract CORBA objest.ect | d values may

be assigned and managed by the POA, or they may be assigned and managed by t
implementation.Obj ect I d values are hidden from clients, encapsulated by
references.bj ect | ds have no standard form; they are managed by the POA as
uninterpreted octet sequences.

The following sections describe the remaining classes.

14-86 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::activate_object

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

Example

Explicitly activates an individual object.

Ooj ectld * activate_object (
Servant p_servant);

p_servant
An instance of the C++ implementation class for the interface.

Thisoperation explicitly activatesan individual object by generating an Qbj ect | d and
entering the Mbj ect | d and the specified servant in the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.

If the function succeeds, the Gbj ect | d is returned.

If the specified servant is already in the Active Object Map, the
Ser vant Al r eadyAct i ve exception is raised.

Note: Other exceptions can occur if the POA uses unsupported policies.

In the following example, the first struct creates a servant by a user-defined
constructor. The second struct tells the POA that the servant can be used to handle
requests on an object. The POA returnsthe bj ect | d it has created for the object. The
third statement assumesthat the POA hasthel MPLI CI T_ACTI VATI ON policy (theonly
supported policy in version 4.2 of the BEA WebL ogic Enterprise software) and returns
areference to the object. That reference can then be handed to a client for invocations.
When the client invokes on the reference, the request is returned to the servant just
created.

M/FooServant * af oo = new MyFooServant (poa, 27);
Portabl eServer::Objectld var oid =

poa- >acti vat e_obj ect (af 00) ;
Foo_var foo = afoo->_this();

CORBA C++ Programming Reference 14-87

14 coRrBa AP

PortableServer::POA::activate_object_with_id

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

Example

Activates an individual object with a specified Obj ect | d.

void activate_object with_id (
const Cbjectld & id,
Servant p_servant);

id
bj ect 1 d that identifies the object on which that operation was invoked.

p_servant
An instance of the C++ implementation class for the interface.

This operation enters an association between the specified Obj ect I d and the specified
servant in the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.

None.

The oj ect Al r eadyAct i ve exceptionisraised if the CORBA object denoted by the
bj ect 1 d valueisalready active in this POA.

TheServant Al readyAct i ve exceptionisraised if theservantisalready intheActive
Object Map.

Note: Other exceptions can occur if the POA uses unsupported policies.

TheBAD_PARAMSystem exception may be raised if the POA hasthe SYSTEM | D policy
and it detects that the (oj ect | d value was not generated by the system or for this
POA. An ORB isnot required to detect al such invalid Obj ect | d values. However, a
portable application must not invoke act i vat e_obj ect _wi t h_i d on aPOA if the
POA has the SYSTEM | D policy with an oj ect | d value that was not previously
generated by the system for that POA, or, if the POA also hasthe PERSI STENT policy,
for aprevious instantiation of the same POA.

MyFooServant* af oo = new MyFooServant (poa, 27);
Port abl eServer:: hjectld var oid =
Portabl eServer::string_to Qojectld("nmyLittleFoo");
poa->activate_object_with_ id(oid.in(), afoo);
Foo_var foo = afoo-> this();

14-88 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::create_id_assignment_policy

Synopsis

C++ Binding

Argument

Description

Return Values

Obtain an object with the | dAssi gnment Pol i cy interface so the user can passthe
object to the POA: : cr eat e_POA operation.

| dAssi gnnment Pol i cy_ptr
Portabl eServer:: POA: : create_i d_assi gnnent _policy (
Por t abl eServer: : | dAssi gnrent Pol i cyVal ue val ue)

val ue
A value of either Por t abl eSer ver: : USER | D, indicating Obj ect | ds are
assigned only by the application, or Port abl eSer ver : : SYSTEM I D,
indicating Qbj ect | ds are assigned only by the system.

The PQA: : creat e_i d_assi gnment _pol i cy operation obtains objects with the

I dAssi gnment Pol i cy interface. When passed to the POA: : cr eat e_POA operation,
this policy specifies whether Qbj ect I ds in the created POA are generated by the
application or by the ORB. The following values can be supplied:

m Portabl eServer: : USER | D—objects created with that POA are assigned
bj ect | ds only by the application.

m Portabl eServer:: SYSTEM | D—objects created with that POA are assigned
bj ect | ds only by the POA. If the POA also has #ERSI STENT
Li f espanPol i cy, assignedj ect | ds must be unique across all instantiations
of the same POA.

If no 1 dAssi gnnent Pol i cy is specified at POA creation, the defaulS¥STEM | D.
Note: This function is supported only for a joint client/server.

Returns and Assi gnment policy.

CORBA C++ Programming Reference 14-89

14 coRrBa AP

PortableServer::POA::create_lifespan_policy

Synopsis Obtain an object withtheLi f espanPol i cy interface so the user can passthe object to
the POA: : cr eat e_POA operation.

C++Binding Li f espanPol i cy_ptr
Port abl eServer:: POA::create |ifespan_policy (
Port abl eServer: : Li fespanPol i cyPol i cyVal ue val ue)

Argument val ue
A vaue of either Port abl eSer ver : : USER I D, indicating Qbj ect | ds are
assigned only by the application, or Por t abl eSer ver: : SYSTEM | D,
indicating Qbj ect | ds are assigned only by the system.

Description Objects with the Li f espanPol i cy interface are obtained using the
PQA: : create_| i fespan_pol i cy operation and passed to the POA: : cr eat e_POA
operation to specify the lifespan of the objects implemented in the created POA. The
following values can be supplied.

m TRANSI ENT—the objects implemented in the POA cannot outlive the process in
which they are first created. Once the POA is deactivated, use of any object
references generated from it will result in@IECT_NOT_EXI ST exception.

m PERSI STENT—the objects implemented in the POA can outlive the process in
which they are first created.

e Persistent objects have a POA associated with them (the POA which created
them). When the ORB receives a request on a persistent object, it first
searches for the matching POA, based on the names of the POA and all of it:
ancestors.

¢ Administrative action beyond the scope of this specification may be
necessary to inform the ORB's location service of the creation and eventual
termination of existence of this POA, and optionally to arrange for
on-demand activation of a process implementing this POA.

¢ POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will
not conflict with its own POA names. A conforming CORBA
implementation will provide a method for ensuring this property.

If no Li f espanPol i cy object is passed to POA: : cr eat e_PQA, the lifespan policy
defaults to TRANSI ENT.

Note: This function is supported only for a joint client/server.

14-90 CORBA C++ Programming Reference

PortableServer Member Functions

Return Values Returns a LifespanPolicy.

CORBA C++ Programming Reference 14-91

14 coRrBa AP

PortableServer::POA::create_ POA

Synopsis
C++ Binding

Arguments

Description

Return Values

Exceptions

Creates anew POA as achild of the target POA.

PQA ptr Portabl eServer::create POA (
const char * adapter_nane,
POAManager _ptr a_POAManager,
const CORBA:: PolicyList & policies)

adapt er _nane
The name of the POA to be created.

a_POAManager
Either anull value, indicating that a new POAManager is to be created and
associated with the new POA, or apointer to an existing POAManager.

policies
Policy objects to be associated with the new POA.

This operation creates a new POA as a child of the target POA. The specified name,
which must be unique, identifies the new POA with respect to other POAs with the
same parent POA.

If the a_POANManager parameter isnull, anew Port abl eSer ver : : POAManager
object is created and associated with the new POA. Otherwise, the specified
PQAMEnager object is associated with the new POA. The POAManager object can be
obtained using the attribute name t he_PQAManager .

The specified policy objects are associated with the POA and are used to control its
behavior. The policy objects are effectively copied before this operation returns, so the
application is free to destroy them while the POA isin use. Policies are not inherited
from the parent POA.

Note: Thisfunction is supported only for joint client/servers.

Returns a pointer to the POA that was created.

Adapt er Al readyExi sts
Raised if the target POA already has a child POA with the specified name.

I nval i dPol i cy
Raised if any of the policy objects specified are not valid for the ORB
implementation, if conflicting policy objects are specified, or if any of the
specified policy objects require prior administrative action that has not been

14-92 CORBA C++ Programming Reference

PortableServer Member Functions

performed. This exception containstheindex inthe policy parameter value of
the first offending policy object.

INP LIMT
Raised if the program triesto create a POA with a LifespanPolicy of
PERSI STENT without having set a port, as described in the operation
“CORBA::ORB_init” on page 14-80.

Examples Examplel

In this example, the child POA would use the same manager as the parent POA,; the
child POA would then have the same state as the parent (that is, it would be active if
the parent is active).

CORBA: : Pol i cyLi st policies(2);
policies.length (1);
policies[0] = root POA->create_ I|ifespan_policy(
Por t abl eServer: : Li fespanPol i cy: : TRANSI ENT) ;
Port abl eServer:: POA ptr poa =
r oot POA- >create POA("ny_little_poa",
r oot POA- >t he_ POAManager, policies);

Example 2
In this example, a new POA is created as a child of the root POA.

CORBA: : Pol i cyLi st policies(2);
policies.length (1);
policies[0] = root POA->create I|ifespan_policy(
Por t abl eServer: : Li fespanPol i cy: : TRANSI ENT) ;
Portabl eServer:: PQA ptr poa =
r oot POA- >create POA("ny_little_poa",
Por t abl eSer ver: : POAManager:: _nil (), policies);

CORBA C++ Programming Reference 14-93

14 coRrBa AP

PortableServer::POA::create_reference

Synopsis Creates an object reference that encapsulates a POA-generated Ooj ect | d value and
the specified interface repository ID.

C++Binding CORBA: : Obj ect _ptr create_reference (
const char * intf)

Argument intf
Theinterface repository ID.

Description Thiscr eat e_r ef er ence operation creates an object reference that encapsulates a
POA -generated Cbj ect | d value and the specified interface repository ID. This
operation collects the necessary information to constitute the reference from
information associated with the POA and from parameters to the operation. This
operation only creates areference; it does not associate the reference with an active
servant. The resulting reference may be passed to clients, so that subsequent requests
on those references return to the POA using the Qbj ect | d generated. The generated
bj ect 1 d value may be obtained by invoking POA: : r ef erence_t o_i d with the
created reference.

Note: Thisfunction is supported only for ajoint client/server.

Return Values Returnsa pointer to the object.

Exceptions This operation requires the LifespanPolicy to have the value SYSTEM | D; if not
present, the Por t abl eSer ver : : W ongPol i cy exception is raised.

14-94 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::create_reference_with_id

Synopsis

C++ Binding

Arguments

Description

Return Values

Exceptions

Example

Creates an object reference that encapsulates the specified Obj ect | d and interface
repository ID values.

CORBA: : Cbj ect _ptr create_reference_ with_id (
const Cbjectld & oid,
const char * intf)

oi d

bj ect | d that identifies the object on which that operation was invoked.
intf

The interface repository 1D.

Thecreat e_r ef er ence operation creates an object reference that encapsulates the
specified oj ect | d and interface repository 1D values. This operation collects the
necessary information to constitute the reference from information associated with the
POA and from parameters to the operation. This operation only creates areference; it
does not associatethe reference with an active servant. The resulting reference may be
passed to clients, so that subsequent requests on those references cause the invocation
to be returned to the same POA with Qbj ect | d specified.

Note: Thisfunction is supported only for ajoint client/server.

Returns Qbj ect _ptr.

If the POA has a LifespanPolicy with value SYSTEM | Dand it detects that the
bj ect | d value was not generated by the system or for this POA, the operation will
raise the BAD_PARAM system exception.

Portabl eServer::Objectld var oid =
Portabl eServer::string_to Qojectld("nmyLittleFoo");
CORBA: : Obj ect _var obj = poa->create_reference with_id(
oid.in(), "IDL: Foo:1.0");
Foo_var foo = Foo:: _narrow(obj);

CORBA C++ Programming Reference 14-95

14 coRrBa AP

PortableServer::POA::deactivate_object

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

Removes the Obj ect | d from the Active Object Map.

voi d deactivat e_obj ect (
const (hjectld & oid)

oid
bj ect 1 d that identifies the object.

This operation causes the association of the bj ect | d specified by the oi d parameter
and its servant to be removed from the Active Object Map.

Note: Thisfunction is supported only for ajoint client/server.
None.

If thereisno active object associated with the specified (bj ect | d, the operation raises
an Obj ect Not Act i ve exception.

14-96 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::destroy

Synopsis
C++ Binding

Arguments

Description

Return Values

Destroysthe POA and all descendant POASs.

voi d destroy (
CORBA: : Bool ean etherealize objects,
CORBA: : Bool ean wait _for_conpl eti on)

ethereal i ze_objects
This argument should be FAL SE for this release of BEA WebL ogic
Enterprise.

wai t _for_conpl etion
This argument indicates whether or not the operation should return
immediately.

This operation destroys the POA and al descendant POAs. The POA with its name
may be re-created later in the same process. (This differs from the

POAManager : : deact i vat e operation, which does not alow are-creation of its
associated POA in the same process.)

When a POA is destroyed, any requests that have started execution continue to
completion. Any requests that have not started execution are processed asif they were
newly arrived and there is no POA; that is, they are rejected and the
OBJECT_NON_EXI ST exception israised.

If thewai t _for_conpl eti on parameter isTRUE, thedest r oy operation returnsonly
after all requestsin process have completed and all invocations of et her eal i ze have
completed. Otherwise, the dest r oy operation returns after destroying the POAs.

Note: Thisrelease of BEA WebL ogic Enterprise does not support multithreading.
Hence, wai t _f or _conpl et i on should not be TRUE if thecall ismadeinthe
context of an object invocation. That is, the POA cannot start destroying itself
if it iscurrently executing.

Note: Thisfunction is supported only for ajoint client/server.

None.

CORBA C++ Programming Reference 14-97

14 coRrBa AP

PortableServer::POA::find POA

Synopsis
C++ Binding

Argument

Description

Return Values

Exception

Returns areference to a child POA with a given name.
void find PQA(in string adapter_name, in boolean activate_ it);

adapt er _nane
A reference to the target POA.

active_ it
In this version of BEA WebL ogic Enterprise, this parameter must be false.

If the POA has a child POA with the specified name, that child POA is returned. If a
child POA with the specified name does not exist and the value of theact i vate_i t
parameter is FALSE, the Adapt er NonExi st ent exception is raised.

None.

Adapt er NonExi st ent
This exception israised if the POA does not exist.

14-98 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::POA::reference_to id

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

Returns the oj ect | d value encapsulated by the specified r ef er ence.
ojectld reference_to_id(in Object reference);

reference
Specifies the reference to the object.

This operation returnsthe oj ect | d value encapsul ated by the specified r ef er ence.
Thisoperation isvalid only if the reference was created by the POA on which the
operation is being performed. The object denoted by the reference does not have to be
active for this operation to succeed.

Note: Thisfunction is supported only for ajoint client/server.

Returns the oj ect | d value encapsulated by the specified r ef er ence.

W ongAdapt er
This exception israised if the reference was not created by that POA.

CORBA C++ Programming Reference 14-99

14 coRrBa AP

PortableServer::POA::the_POAManager

Synopsis
C++ Binding
Argument

Description

Return Values

Example

| dentifies the POA manager associated with the POA.
PQAManager _ptr the_POAVanager ();
None.

This read-only attribute identifies the POA manager associated with the POA.
Note: Thisfunction is supported only for ajoint client/server.

None.
poa- >t he_POAManager () - >acti vate();

This statement will set the state of the POAManager for the given POA to active,

which isrequired if the POA isto accept requests. Note that if the POA has a parent,
thatis, itis not the root POA, all of its parent's POAManagers must also be in the activ
state for this statement to have any effect.

14-100 CORBA C++ Programming Reference

PortableServer Member Functions

PortableServer::ServantBase::_default POA

Synopsis Returns an object reference to the POA associated with the servant.

C++Binding cl ass Port abl eSer ver

{
cl ass Servant Base
{
public:
virtual POA ptr _default POA();
}
}

Argument None.

Description All C++ Servantsinherit from Por t abl eSer ver : : Ser vant Base, so they all inherit
the _def aul t _POA function. In this version of BEA WebL ogic Enterprisethereis
usually no reason to use _def aul t _POA.

The default implementation of thisfunction returns an object referenceto the root POA

of the default ORB in this process—the same as the return value of an invocation of
ORB: :resolve_initial _references("Root POA"). A C++ Servant can override

this definition to return thePOA of its choice, if desired.

Note: This function is supported only for joint client/servers.

Return Values The default POA associated with the servant.

CORBA C++ Programming Reference 14-101

14 coRrBa AP

POA Current Member Functions

The Port abl eSer ver: : Current interface, derived from CORBA: : Current,
provides method implementationswith accessto theidentity of the object onwhich the
method was invoked.

14-102 CORBA C++ Programming Reference

POA Current Member Functions

PortableServer::Current::get_object_id

Synopsis
C++ Binding
Arguments

Description

Return Values

Exception

Returns the bj ect | d identifying the object in whose context it is called.
Oojectld * get_object_id ();
None.

This operation returns the Por t abl eSer ver : : Qbj ect | d identifying the object in
whose context it is called.

Note: Thisfunction is supported only for ajoint client/server.

This operation returns the Qbj ect | d identifying the object in whose context it is
called.

If called outside the context of a POA-dispatched operation, a
Por t abl eSer ver : : NoCont ext exception israised.

CORBA C++ Programming Reference 14-103

14 coRrBa AP

PortableServer::Current::get_POA

Synopsis
C++ Binding
Argument

Description

Return Values

Exceptions

Returns areference to the POA implementing the object in whose context it is called.
POA ptr get_POA ();
None.

This operation returns a reference to the POA implementing the object in whose
context it is called.

Note: Thisfunction is supported only for ajoint client/server.

This operation returns a reference to the POA implementing the object in whose
context it is called.

If this operation is called outside the context of a POA-dispatched operation, a
Por t abl eSer ver : : NoCont ext exception is raised.

14-104 CORBA C++ Programming Reference

POAManager Member Functions

POAManager Member Functions

Each POA object has an associated POAMVanager object. A POA manager may be
associated with one or more POA objects. A POA manager encapsul ates the
processing state of the POAswith which it isassociated. Using operationson the POA
manager, an application can cause requests for those POAs to be queued or discarded,
and can cause the POAS to be deactivated.

POA managers are created and destroyed implicitly. Unless an explicit POA manager
object is provided at POA creation time, a POA manager is created when a POA is
created and is automatically associated with that POA. A POA manager object is
implicitly destroyed when all of its associated POAs have been destroyed.

A POA manager has four possible processing states: active, inactive, holding, and
discarding. The processing state determines the capabilities of the associated POASs
and the disposition of requests received by those POASs.

A POA manager is created in the holding state. In that state, any invocations on its
POA are queued until the POA manager enters the active state. This version of BEA
WebL ogic Enterprise supports only the ability to enter active and inactive states. That
is, this version does not support the ability to return to holding state or to enter
discarding state.

CORBA C++ Programming Reference 14-105

14 coRrBa AP

PortableServer::POAManager::activate

Synopsis
C++ Binding
Argument

Description

Return Values

Exceptions

Changes the state of the POA manager to active.
void activate();
None.

This operation changes the state of the POA manager to active. Entering the active
state enables the associated POAS to process requests.

Note: All parent POAsmust a so have POAManagersinthe active state for this POA
to process requests.

Note: Thisfunction is supported only for ajoint client/server.

None.

If this operation is issued while the POA manager isin the inactive state, the
PortableServer::POAManager::Adapt er | nact i ve exception israised.

14-106 CORBA C++ Programming Reference

POAManager Member Functions

PortableServer::POAManager::deactivate

Synopsis
C++ Binding

Argument

Description

Return Values

Exceptions

Changes the state of the POA manager to inactive.

voi d deactivate (
CORBA: : Bool ean et hereal i ze_obj ects,
CORBA: : Bool ean wait_for_conpl etion);

ethereal i ze_objects

For WebL ogic Enterprise 4.2 software, this argument should alwaysbe set to
FALSE.

wai t _for_conpl etion
If this argument is TRUE, the deact i vat e operation returns only after all
requests in process have completed. If this argument is FALSE, the

deact i vat e operation returns after changing the state of the associated
POAs.

This operation changes the state of the POA manager to inactive. Entering theinactive

state causes the associated POAsto reject requests that have not begun to be executed,
aswell as any new requests.

Note: Thisrelease of BEA WebL ogic Enterprise does not support multithreading.
Hence, wai t _f or _conpl et i on should not be TRUE if thecall ismadeinthe
context of an object invocation. That is, the POAManager cannot be set to
inactive state if it is currently executing.

Note: Thisfunction is supported only for ajoint client/server.
None.

If issued while the POA manager isin the inactive state, the
PortableServer::POAManager::Adapt er | nact i ve exception is raised.

CORBA C++ Programming Reference 14-107

14 coRrBa AP

POA Policy Member Objects

Interfaces derived from CORBA: : Pol i cy are used with the POA: : cr eat e POA
operation to specify policiesthat apply to a POA. Policy objects are created using
factory operations on any pre-existing POA, such asthe root POA. Policy objects are
specified when a POA is created. Policies may not be changed on an existing POA.
Policies are not inherited from the parent POA.

14-108 CORBA C++ Programming Reference

POA Policy Member Objects

PortableServer::LifespanPolicy

Synopsis

Description

Exceptions

Specifies the life span of objectsto the cr eat e_POA operation.

Objectswith the Li f espanPol i cy interface are obtained using the

POA: : create_| i f espan_pol i cy operationand arepassedtothe PQA: : cr eat e_PQOA
operation to specify the life span of the objects implemented in the created POA. The
following values can be supplied:

m TRANSI ENT—the objects implemented in the POA cannot outlive the process in
which they are first created.

m PERSI STENT—the objects implemented in the POA can outlive the process in
which they are first created.

Persistent objects have a POA associated with them (the POA that created them).
When the ORB receives a request on a persistent object, it searches for the
matching POA, based on the names of the POA and all of its ancestors.

POA names must be unique within their enclosing scope (the parent POA). A
portable program can assume that POA names used in other processes will not
conflict with its own POA names.

If no Li f espanPol i cy object is passed o eat e_PQA, the lifespan policy defaults
to TRANSI ENT.

Note: This function is supported only for a joint client/server.

None.

CORBA C++ Programming Reference 14-109

14 coRrBa AP

PortableServer::IdAssignmentPolicy

Synopsis Specifies whether Cbj ect I ds in the created POA are generated by the application or
by the ORB.

Description Objects with the | dAssi gnment Pol i cy interface are obtained using the
PQA: : create_i d_assi gnment _pol i cy operation and are passed to the
PQA: : cr eat e_POA operation to specify whether Obj ect I ds in the created POA are
generated by the application or by the ORB. The following values can be supplied:

m USER | D—objects created with that POA are assigned Obj ect | ds only by the
application.

m SYSTEM | D—objects created with that POA are assig@gjcect | ds only by the
POA. If the POA also has tiRERSI STENT policy, assignedbj ect | ds must be
unique across all instantiations of the same POA.

If no I dAssi gnment Pol i cy is specified at POA creation, the defauls¥STEM | D.

Note: This function is supported only for a joint client/server.

14-110 CORBA C++ Programming Reference

Request Member Functions

Request Member Functions

The mapping of these member functions to C++ is as follows:

/1 C++
cl ass Request

{

}s

public:

bj ect _ptr target() const;
const char *operation() const;
NarmedVal ue_ptr result();

NVLi st _ptr argunents();

Envi ronment _ptr env();
ExceptionLi st _ptr exceptions();
Cont ext Li st_ptr contexts();

voi d ctx(Context_ptr);
Context_ptr ctx() const

/1 argunent mani pul ation hel per functions
Any &add in_arg();

Any &add_in_arg(const char* nane);

Any &add_inout _arg():

Any &add_i nout _arg(const char* nane);

Any &add_out_arg():

Any &add_out _arg(const char* nane);

voi d set_return_type(TypeCode_ptr tc);
Any &return_val ue();

voi d i nvoke();

voi d send_oneway();

voi d send_deferred();
voi d get _response();
Bool ean pol | _response();

Note: Theadd * arg,set _return_type,andreturn_val ue member functions

are added as shortcuts for using the attribute-based accessors.

The following sections describe these member functions.

CORBA C++ Programming Reference 14-111

14 coRrBa AP

CORBA::Request::arguments

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the argument list for the request.
CORBA: : NVLi st _ptr CORBA:: Request::argunments () const;
None.

This member function retrieves the argument list for the request. The arguments can
bei nput , out put , or both.

If the function succeeds, the value returned is a pointer to thelist of arguments to the
operation for the request. The returned argument list is owned by the Request object
reference and should not be released.

If the function does not succeed, an exception isthrown.

14-112 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::ctx(Context_ptr)

Synopsis Sets the Context object for the operation.

C++Binding voi d CORBA:: Request::ctx (
CORBA: : Context _ptr Ct xCbj ect) ;

Argument Ct xObj ect
The new value to which to set the Context object.

Description This member function sets the Context object for the operation.
Return Values None.

See Also OORBA: : Request : : ct x()

CORBA C++ Programming Reference 14-113

14 coRrBa AP

CORBA::Request::get_response

Synopsis
C++ Binding
Arguments

Description

Return Values

See Also

Retrieves the response of a specific deferred synchronous request.
voi d CORBA: : Request :: get_response ();
None.

This member function retrieves the response of a specific request; it is used after a call
tothe CORBA: : Request :: send_def erred function or the

CORBA: : Request : : send_mul ti pl e_r equests function. If the request has not
completed, the CORBA: : Request : : get _r esponse function blocks until it does
complete.

None.

CORBA: : Request : : send_deferred

14-114 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::invoke

Synopsis Performs an invoke on the operation specified in the request.
C++Binding void CORBA:: Request::invoke ();
Arguments None.

Description This member function calls the Object Request Broker (ORB) to send the request to
the appropriate server application.

Return Values None.

CORBA C++ Programming Reference 14-115

14 coRrBa AP

CORBA::Request::operation

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the operation intended for the request.

const char * CORBA::Request::operation () const;

None.

This member function retrieves the operation intended for the request.

If the function succeeds, the value returned is a pointer to the operation intended for
the object; the value can be 0 (zero). The memory returned is owned by the Request
object and should not be freed.

If the function does not succeed, an exception isthrown.

14-116 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::poll_response
Synopsis Determines whether a deferred synchronous request has completed.
C++Binding CORBA: : Bool ean CORBA: : Request : : pol | _response ();
Arguments None.

Description This member function determines whether the request has completed and returns
immediately. Y ou can use this call to check the state of the request. This member
function can also be used to determine whether acal to
CORBA: : Request : : get _response will block.

Return Values If thefunction succeeds, thevaluereturned is CORBA_TRUE if the response hasalready
completed, and CORBA_FALSE if the response has not yet completed.

If the function does not succeed, an exception is thrown.

See Also OORBA: : ORB: : get _next _response
CORBA: : ORB: : pol | _next _response
CORBA: : ORB: : send_mul ti pl e_requests
CORBA: : Request : : get _response
CORBA: : Request : : send_deferred

CORBA C++ Programming Reference 14-117

14 coRrBa AP

CORBA::Request::result

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the result of the request.

CORBA: : NanmedVal ue_ptr CORBA: : Request::result ();
None.

This member function retrieves the result of the request.

If the function succeeds, the value returned is a pointer to the result of the operation.
Thereturned result is owned by the Request object and should not be rel eased.

If the function does not succeed, an exception is thrown.

14-118 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::env

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the environment of the request.

CORBA: : Environment _ptr CORBA: : Request::env ();
None.

This member function retrieves the environment of the request.

If the function succeeds, the value returned is a pointer to the environment of the
operation. Thereturned environment isowned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-119

14 coRrBa AP

CORBA::Request::ctx

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the context of the request.

CORBA: : context _ptr CORBA: : Request::ctx ();
None.

This member function retrieves the context of the request.

If the function succeeds, the value returned is a pointer to the context of the operation.
Thereturned context is owned by the Request object and should not be rel eased.

If the function does not succeed, an exception isthrown.

14-120 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::contexts

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the context lists for the request.

CORBA: : Cont ext Li st_ptr CORBA:: Request::contexts ();
None.

This member function retrieves the context lists for the request.

If the function succeeds, the value returned is a pointer to the context lists for the
operation. The returned context list is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-121

14 coRrBa AP

CORBA::Request::exceptions

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the exception lists for the request.

CORBA: : ExceptionLi st_ptr CORBA: : Request: : exceptions ();
None.

This member function retrieves the exception lists for the request.

If the function succeeds, the value returned is a pointer to the exception list for the
reguest. The returned exception list is owned by the Request object and should not be
released.

If the function does not succeed, an exception isthrown.

14-122 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::target

Synopsis
C++ Binding
Arguments
Description

Return Values

Retrieves the target object reference for the request.

CORBA: : (bj ect _ptr CORBA: : Request::target () const;

None.

This member function retrieves the target object reference for the request.

If the function succeeds, the value returned is a pointer to the target object of the
operation. The returned value is owned by the Request object and should not be
released.

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-123

14 coRrBa AP

CORBA::Request::send_deferred

Synopsis Initiates a deferred synchronous request.

C++Binding voi d CORBA: : Request ::send_deferred ();

Arguments None.

Description ~ This member function initiates a deferred synchronous request. Y ou use this function
when aresponse is expected and in conjunction with the
CORBA: : Request : : get _response function.

Return Values None.

See Also CORBA: : ORB: : get _next _response
CORBA: : ORB: : pol | _next _response
CORBA: : ORB: : send_mul ti pl e_requests
CORBA: : Request : : get _response
CORBA: : Request : : pol | _response
CORBA: : Request : : send_oneway

14-124 CORBA C++ Programming Reference

Request Member Functions

CORBA::Request::send_oneway

Synopsis
C++ Binding
Arguments
Description
Return Values

See Also

Initiates a one-way reguest.

voi d CORBA: : Request: :send_oneway ();

None.

This member function initiates a one-way request; it does not expect a response.

None.

CORBA: : ORB: : send_mul ti pl e_requests

CORBA: : Request : : send_deferred

CORBA C++ Programming Reference 14-125

14 coRrBa AP

Strings

The mapping of these functionsto C++ isasfollows:
/] C++

nanespace CORBA {
static char * string_alloc(ULong |en);
static char * string_dup (const char *);
static void string free(char *);

Note: A staticarray of char in C++decaystoachar *. Therefore, care must be taken
when assigning a static array to aSt ri ng_var , becausethe St ri ng_var
assumes that the pointer pointsto dataallocated viast ri ng_al | oc, and thus
eventually attemptsto freeit using string_free.

Thisbehavior has changed in ANSI/ISO C++, where string literalsare const
char *, not char *. However, since most C++ compilers do not yet implement
this change, portable programs must heed the advice given here.

The following sections describe the functions that manage memory allocated to
strings.

14-126 CORBA C++ Programming Reference

Strings

CORBA::string_alloc

Synopsis
C++ Binding

Argument

Description

Return Values

Example

See Also

Allocates memory for a string.
char * CORBA::string_alloc(ULong | en);

len
The length of the string for which to allocate memory.

This member function dynamically allocates memory for a string, or returns a nil
pointer if it cannot perform the alocation. It allocates | en+1 characters so that the
resulting string has enough space to hold atrailing NULL character. Freethe memory
allocated by this member function by calling the CORBA: : stri ng_free member
function.

This function does not throw CORBA exceptions.

If the function succeeds, the return value is a pointer to the newly alocated memory
for the string object; if the function fails, the return value is anil pointer.

char* s = CORBA::string_alloc(10);

CORBA: : string free
CORBA: : string_dup

CORBA C++ Programming Reference 14-127

14 coRrBa AP

CORBA::string_dup
Synopsis Makes a copy of a string.
C++Binding char * CORBA: :string_dup (const char * Str);
Argument Str
The address of the string to be copied.
Description This function dynamically allocates enough memory to hold a copy of its string

Return Values

Example

See Also

argument, includingthe NULL character, copiesthe string argument into that memory,
and returns a pointer to the new string.

This function does not throw CORBA exceptions.

If the function succeeds, the return value is a pointer to the new string; if the function
fails, the return value is anil pointer.

char* s = CORBA :string_dup("hello world");

CORBA: :string _free
CORBA: :string_all oc

14-128 CORBA C++ Programming Reference

Strings

CORBA::string_free
Synopsis Freesmemory allocated to a string.
C++Binding void CORBA::string_free(char * Str);
Argument Str
The address of the memory to be deal located.

Description This member function deallocates memory that was previously allocated to a string
usingthe CORBA: : string_alloc() or CORBA: :string_dup() member
functions. Passing a nil pointer to thisfunction is acceptable and results in no action
being performed.

This function may not throw CORBA exceptions.
Return Values None.
Example char* s = CORBA: :string_dup("hello world");
CORBA: : string free(s);
See Also OORBA: :string_all oc

CORBA: : string_dup

CORBA C++ Programming Reference 14-129

14 coRrBa AP

TypeCode Member Functions

A TypeCode represents OMG IDL type information.

No constructors for TypeCodes are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo-object reference (TypeCode_pt r) of the form

tc<t ype>that may be used to set typesin Any, as arguments for equal , and so on.
In the names of these TypeCode reference constants, <t ype> refersto the local name
of thetype within its defining scope. Each C++ _t c_<t ype> constant isdefined at the
same scoping level asits matching type.

Like all other serverless objects, the C++ mapping for TypeCode providesa _ni | ()
operation that returnsanil object referencefor aTypeCode. This operation can be used
toinitialize TypeCode references embedded within constructed types. However, anil
TypeCode reference may never be passed as an argument to an operation, since
TypeCodes are effectively passed as values, not as object references.

The mapping of these member functions to C++ isasfollows:

cl ass CORBA

{
cl ass TypeCode

{
public:
class Bounds { ... };
class BadkKind { ... };

Bool ean equal (TypeCode_ptr) const;
TCKi nd kind() const;
Long param count() const;
Any *paranet er (Long) const;
Repositoryld id () const;
}; I/ TypeCode
}; /1 CORBA

14-130 CORBA C++ Programming Reference

TypeCode Member Functions

Memory Management

TypeCode has the following special memory management rule:

e Ownership of the return values of thei d function is maintained by the
TypeCode; these return values must not be freed by the caller.

The following sections describe these member functions.

CORBA C++ Programming Reference 14-131

14 coRrBa AP

CORBA::TypeCode::equal

Synopsis Determines whether two TypeCode objects are equal.

C++ Binding CORBA: : Bool ean CORBA: : TypeCode: : equal (
CORBA: : TypeCode_ptr TypeCodeChj) const;

Argument TypeCodeObj
A pointer to a TypeCode object with which to make the comparison.

Description This member function determines whether a TypeCode object is equal to the input
parameter, TypeCodeCbj .

Return Values If the TypeCode object is equal to the TypeCodeCbj parameter, CORBA TRUE is
returned.

If the TypeCode object is not equal to the TypeCodeCbj parameter, CORBA FALSE is
returned.

If the function does not succeed, an exception isthrown.

14-132 CORBA C++ Programming Reference

TypeCode Member Functions

CORBA::TypeCode::id

Synopsis
C++ Binding
Arguments
Description

Return Values

Returns the ID for the TypeCode.

CORBA: : Repositoryld CORBA:: TypeCode::id () const;

None.

This member function returnsthe ID for the TypeCode.

Repository ID for the TypeCode.

CORBA C++ Programming Reference 14-133

14 coRrBa AP

CORBA::TypeCode::kind

Synopsis Retrieves the kind of data contained in the TypeCode object reference.

C++ Binding CORBA: : TCKi nd CORBA: : TypeCode: : ki nd () const;

Argunents None.

Description This member function retrieves the ki nd attribute of the CORBA: : TypeCode class,
which specifies the kind of data contained in the TypeCode object reference.

Return Values If the member function succeeds, it returnsthe kind of data contained in the TypeCode
object reference. For alist of the TypeCodekinds and their parameters, see Table 14-1.

If the member function does not succeed, an exception is thrown.

Table 14-1 Legal Typecode Kindsand Parameters

Typecode Kind

ParametersList

CORBA: : tk_nul | *NONE*
CORBA: :tk_void *NONE*
CORBA: : t k_short *NONE*
CORBA: : tk_I ong *NONE*
CORBA: : tk_I ong *NONE*
CORBA: : t k_ushort *NONE*
CORBA: : t k_ul ong *NONE*
CORBA: : t k_fl oat *NONE*
CORBA: : t k_doubl e *NONE*
CORBA: : t k_bool ean *NONE*
CORBA: : t k_char *NONE*
CORBA: : tk_oct et *NONE*
CORBA: : t k_Typecode *NONE*
CORBA: : t k_Princi pal *NONE*

14-134 CORBA C++ Programming Reference

TypeCode Member Functions

Table 14-1 Legal Typecode Kinds and Parameter s (Continued)

Typecode Kind

ParametersList

CORBA: : t k_obj r ef {interface_id}

CORBA: : t k_struct { struct-name, member-name, TypeCode, ... (repeat pairs)}

CORBA: : t k_uni on {union-name, switch-TypeCode, |abel-value,
member-name, enum-id, ...}

CORBA: : t k_enum {enum-name, enum-id, ...}

CORBA: : tk_string {maxlen-integer}

CORBA: : t k_sequence {TypeCode, maxlen-integer}

CORBA: :tk_array {TypeCode, length-integer}

CORBA C++ Programming Reference 14-135

14 coRrBa AP

CORBA::TypeCode::param_count

Synopsis
C++ Binding
Arguments

Description

Return Values

Retrieves the number of parameters for the TypeCode object reference.
CORBA: : Long CORBA: : TypeCode: : param count () const;
None.

This member function retrieves the parameter attribute of the CORBA: : TypeCode
class, which specifies the number of parameters for the TypeCode object reference.
For alist of parameters of each kind, see Table 14-1.

If the function succeeds, it returns the number of parameters contained in the
TypeCode object reference.

If the function does not succeed, an exception is thrown.

14-136 CORBA C++ Programming Reference

TypeCode Member Functions

CORBA::TypeCode::parameter

Synopsis
C++ Binding

Argument

Description

Return Values

Retrieves a parameter specified by the index input argument.

CORBA: : Any * CORBA: : TypeCode: : paraneter (
CORBA: : Long I ndex) const;

I ndex
Anindex to the parameter list, used to determine which parameter to retrieve.

This member function retrievesa parameter specified by theindex input argument. For
alist of parameters of each kind, see Table 14-1.

If the member function succeeds, the return value is a pointer to the parameter
specified by the index input argument.

If the member function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-137

14 coRrBa AP

Exception Member Functions

The BEA WebL ogic Enterprise software supports the throwing and catching of
exceptions.

Caution: Use of the wrong exception constructor causes noninitialization of a data

member. Exceptions that are defined to have ar eason field need to be
created using the constructor that initializes that data member. If the
default constructor is used instead, that data member is not initialized and,
during destruction of the exception, the system may attempt to destroy
nonexistent data.

When creating exceptions, be sureto use the constructor function that most
fully initializes the data fields. These exceptions can be most easily
identified by looking at the OMG IDL definition; they have additional data
member definitions.

Descriptions of exception member functions follow:

CORBA: :

CORBA: :

CORBA: :

Syst enException: : Syst emException ()

Thisisthe default constructor for the CORBA: : Syst enExcept i on class.
Minor codeisinitialized to O (zero) and the completion statusis set to
COVPLETED_NO.

Syst enExcepti on: : Syst emException (
const CORBA: : Syst enException & Se)
Thisisthe copy constructor for the CORBA: : Syst enExcept i on class.

Syst enExcept i on: : Syst emExcepti on(

CORBA: : ULong M nor, CORBA:: Conpl eti onSt at us St at us)
This constructor for the CORBA: : Syst enExcept i on class setsthe minor
code and compl etion status.

Explanations of the arguments are as follows:

M nor
The minor code for the Exception object. The minor field isan
implementation-specific value used by the ORB to identify the
exception. The BEA WebL ogic Enterprise minor field definitions
can be found in the file or bni nor . h.

14-138 CORBA C++ Programming Reference

Exception Member Functions

CORBA: :

CORBA:

CORBA: :

CORBA: :

CORBA:

CORBA: :

CORBA: :

St atus
The completion status for the Exception object. The values are as
follows:
CORBA: : COVPLETED_YES
CORBA: : COVPLETED_NO
CORBA: : COVPLETED_NAYBE

Syst enExcepti on:: ~Syst enException ()
Thisisthe destructor for the CORBA: : Syst enExcept i on class. It freesany
memory used for the Exception object.

: Syst enExcepti on CORBA: : Syst enException: : operator =

const CORBA:: SystenException Se)
This assignment operator copies exception information from the source
exception. The Se argument specifies the SystemException object that isto
be copied by this operator.

Conpl eti onSt at us CORBA: : Syst enExcepti on: : conpl et ed()
This member function returns the completion status for this exception.

Syst enExcepti on: : conpl et ed(

CORBA: : Conpl eti onSt atus Conpl et ed)
This member function sets the completion status for this exception. The
Conpl et ed argument specifies the completion status for this exception.

: ULong CORBA: : Syst enException: : m nor ()

This member function returns the minor code for this exception.

Syst enException:: mnor (CORBA::ULong M nor)

This member function sets the minor code for this exception. The ni nor
argument specifies the new minor code for this exception. The minor fieldis
an implementation-specific value used by the application to identify the
exception.

Syst enException * CORBA:: Syst enException:: _narrow (

CORBA: : Exception_ptr Exc)
This member function determines whether a specified exception can be
narrowed to a system exception. The Exc argument specifiesthe exception to
be narrowed.

If the specified exception is asystem exception, this member function returns
apointer to the system exception. If the specified exception is not a system
exception, the function returns O (zero).

CORBA C++ Programming Reference 14-139

14 coRrBa AP

CORBA: : User Excepti on * CORBA: : User Excepti on:: _narrow
CORBA: : Exception_ptr Exc)
This member function determines whether a specified exception can be
narrowed to auser exception. The Exc argument specifiesthe exception to be
narrowed.

If the specified exception is a user exception, this member function returns a
pointer to the user exception. If the specified exception is not a user
exception, the function returns O (zero).

Standard Exceptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as aresult of any operation invocation, regardless of the
interface specification. Standard exceptions are not listed in r ai ses expressions.

To bound the complexity in handling the standard exceptions, the set of standard
exceptions is kept to atractable size. This constraint forces the definition of
equivalence classes of exceptions, rather than enumerating many similar exceptions.

For example, an operation invocation can fail at many different points due to the
inability to allocate dynamic memory. Rather than enumerate several different
exceptions that correspond to the different ways that memory allocation failure causes
the exception (during marshaling, unmarshaling, in the client, in the object
implementation, allocating network packets, and so forth), a single exception
corresponding to dynamic memory allocation failure is defined. Each standard
exception includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codesis left to each ORB implementation.

Each standard exception also includes a conpl et i on_st at us code, which takes one
of the following values:

CORBA: : COWLETED_YES
The obj ect implementation completed processing prior to the exception being
raised.

CORBA: : COWPLETED_NO
The object implementation was not initiated prior to the exception being
raised.

14-140 CORBA C++ Programming Reference

Standard Exceptions

CORBA: : COVPLETED_NAYBE
The status of implementation completion is unknown.

Exception Definitions

The standard exceptions are defined below. Clients must be prepared to handl e system
exceptions that are not on thislist, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise nonstandard system exceptions. For more information about exceptions, see
System Messages.

Table 14-2 defines the exceptions.

Table 14-2 Exception Definitions

Exception Description

CORBA: : UNKNO/N The unknown exception.

CORBA: : BAD_PARAM Aninvalid parameter was passed.
CORBA: : NO_MEMORY Dynamic memory allocation failure.
CORBA: : | MP_LIMT Violated implementation limit.
CORBA: : COW _FAI LURE Communication failure.

CORBA: : | NV_OBJREF Invalid object reference.

CORBA: : NO_PERM SS| ON No permission for attempted operation.
CORBA: : | NTERNAL ORB internal error.

CORBA: : MARSHAL Error marshalling parameter/result.
CORBA: : | NI TI ALI ZE ORB initidization failure.

CORBA: : NO_| MPLEMENT Operation implementation unavailable.
CORBA: : BAD_TYPECCDE Bad typecode.

CORBA: : BAD_OPERATI ON Invalid operation.

CORBA: : NO_RESOURCES Insufficient resources for request.

CORBA C++ Programming Reference 14-141

14 coRrBa AP

Table 14-2 Exception Definitions (Continued)

Exception

Description

CORBA: : NO_RESPONSE

Response to request not yet available.

CORBA: : PERSI ST_STCORE

Persistent storage failure.

CORBA: : BAD_| N\V_CRDER

Routine invocations out of order.

CORBA: : TRANSI ENT

Transient failure; reissue request.

CORBA: : FREE_MEM

Cannot free memory.

CORBA: : | NV_I DENT

Invalid identifier syntax.

CORBA: : | NV_FLAG

Invalid flag was specified.

CORBA: : | NTF_REPCS

Error accessing interface repository.

CORBA: : BAD_CONTEXT

Error processing context object.

CORBA: : OBJ_ADAPTER

Failure detected by object adapter.

CORBA: : DATA_CONVERSI ON

Data conversion error.

CORBA: : OBJECT_NOT_EXI ST

Non-existent object; delete reference.

CORBA: : TRANSACTI ON_REQUI RED

Transaction required.

CORBA: : TRANSACTI ON_RCOLLEDBACK

Transaction rolled back.

CORBA: : | NVALI D_TRANSACTI ON

Invalid transaction.

Object Nonexistence

The CORBA: : OBJECT_NOT_EXI ST exception is raised whenever an invocation on a

deleted object is performed. It is an authoritative “hard” fault report. Anyone receiving
it is allowed (even expected) to delete all copies of this object reference and to perforr
other appropriate “final recovery” style procedures.

14-142 CORBA C++ Programming Reference

Standard Exceptions

Transaction Exceptions

The CORBA: : TRANSACTI ON_REQUI RED exception indicates that the request carried a
null transaction context, but an active transaction is required.

The CORBA: : TRANSACTI ON_ROLLEDBACK exception indicates that the transaction
associ ated with the request has aready been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed because
further computation on behalf of the transaction would be fruitless.

The CORBA: : | NVALI D_TRANSACTI ON indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurred
when trying to register a resource.

CORBA C++ Programming Reference 14-143

14 coRrBa AP

ExceptionList Member Functions

TheExcepti onLi st member functionsallow aclient or server application to provide
alist of TypeCodes for all user-defined exceptions that may result when the Request
isinvoked. For a description of the Request member functions, see the section
“Request Member Functions” on page 14-111.

The mapping of these member functions to C++ is as follows:

cl ass CORBA
{

cl ass ExceptionLi st

publ i c:
U ong count ();
voi d add(TypeCode_ptr tc);
voi d add_consunme(TypeCode_ptr tc);
TypeCode_ptr item(U ong i ndex);
Status renove(U ong index);
}; /1 ExceptionLi st
}// CORBA

14-144 CORBA C++ Programming Reference

ExceptionList Member Functions

CORBA::ExceptionlList::count

Synopsis
C++ Binding
Arguments
Description

Return Values

Exception

Retrieves the current number of itemsin thelist.

U ong count ();

None.

This member function retrieves the current number of itemsin the list.

If the function succeeds, the returned value isthe number of itemsin thelist. If thelist
has just been created, and no ExceptionList objects have been added, this function
returns O (zero).

If the function does not succeed, an exception is thrown.

CORBA C++ Programming Reference 14-145

14 coRrBa AP

CORBA::ExceptionlList::add

Synopsis

C++ Binding

Arguments

Description

Return Values

Exception

See Also

Constructs a ExceptionList object with an unnamed item, setting only the f 1 ags
attribute.

voi d add(TypeCode_ptr tc);

tc
Defines the memory location referred to by TypeCode_pt r.

This member function constructs an ExceptionList object with an unnamed item,
setting only the flags attribute.

The ExceptionList object grows dynamically; your application does not need to track
itssize.

If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

If the member function does not succeed, a CORBA: : NO_MEMORY exception is thrown.

CORBA: : ExceptionLi st::add_consune
CORBA: : Excepti onLi st: : count

CORBA: : ExceptionList::item

CORBA: : ExceptionLi st:: renopve

14-146 CORBA C++ Programming Reference

ExceptionList Member Functions

CORBA::ExceptionlList::add_consume

Synopsis
C++ Binding

Arguments

Description

Return Values

Exceptions

See Also

Constructs an ExceptionList object.

voi d add_consune(TypeCode_ptr tc);

tc

The memory location to be assumed.

This member function constructs an ExceptionList object.

The ExceptionList object grows dynamically; your application does not need to track

its size.

If the function succeeds, the return value is a pointer to the newly created
ExceptionList object.

If the member function does not succeed, an exception is raised.

CORBA: :
CORBA:
CORBA: :
CORBA: :

Excepti onLi st ::
. ExceptionList::
Excepti onLi st ::
Excepti onLi st ::

add
count
item
renove

CORBA C++ Programming Reference 14-147

14 coRrBa AP

CORBA::ExceptionlList::item
Synopsis Retrieves a pointer to the ExceptionList object, based on the index passed in.
C++Binding TypeCode_ptr iten(ULong index);

Argument i ndex
Theindex into the ExceptionList object. The indexing is zero-based.

Description This member function retrieves a pointer to an ExceptionList object, based on the
index passed in. The function uses zero-based indexing.

Return Values If the function succeeds, the return value is a pointer to the ExceptionList object.
Exceptions If the function does not succeed, the BAD_PARAMexception is thrown.
See Also CORBA: : Excepti onLi st: : add
CORBA: : ExceptionLi st::add_consune

CORBA: : Excepti onLi st: : count
CORBA: : ExceptionLi st: : renopve

14-148 CORBA C++ Programming Reference

ExceptionList Member Functions

CORBA::ExceptionlList::remove

Synopsis

C++ Binding

Argument

Description

Return Values
Exceptions

See Also

Removestheitem at the specified index, frees any associated memory, and reorders
the remaining items on the list.

Status renove(ULong i ndex);

I ndex
The index into the ContextL ist object. The indexing is zero-based.

This member function removes the item at the specified index, frees any associated
memory, and reorders the remaining items on the list.

None.

If the function does not succeed, the BAD_PARAMexception is thrown.
CORBA: : Excepti onLi st:: add

CORBA: : Excepti onLi st::add_consune

CORBA: : Excepti onLi st:: count
CORBA: : ExceptionList::item

CORBA C++ Programming Reference 14-149

14 coRrBa AP

14-150 CORBA C++ Programming Reference

CHAPTER

15 Server-side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross-address space or machine boundaries. This
mapping addresses any implementation of an Object Management Group (OMG)
Interface Definition Language (IDL) interface.

Note: Theinformation in this chapter is based on the Common Object Request
Broker: Architecture and Specification. Revision 2.2, February 1998,
published by the Object Management Group (OM G). Used with permission by
OMG.

Implementing Interfaces

To defineanimplementation in C++, you definea C++ classwith any valid C++ name.
For each operation in the interface, the class defines a nonstatic member function with
the mapped name of the operation (the mapped name is the same as the OMG IDL
identifier).

The server application mapping specifies two alternative rel ationships between the
implementation class supplied by the application and the generated classor classesfor
the interface. Specifically, the mapping requires support for both inheritance-based
rel ationships and delegation-based relationships. Conforming applications may use
either or both of these alternatives. This release of the BEA WebL ogic Enterprise
software supports both inheritance-based and del egation-based rel ationships.

CORBA C++ Programming Reference 15-1

15 Server-side Mapping

Inheritance-based Interface
Implementation

15-2

In the inheritance-based interface implementation approach, the implementation
classes are derived from a generated base class based on the OMG IDL interface
definition. The generated base classes are known as skeleton classes, and the derived
classes are known as implementation classes. Each operation of the interface has a
corresponding virtual member function declared in the skeleton class. The generated
skeleton classis partially opague to the programmer, though it will contain a member
function corresponding to each operation intheinterface. The signature of the member
function isidentical to that of the generated client stub class.

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. To
allow portable implementations to multiple inheritances from both skeleton classes
and implementation classes for other base interfaces without error or ambiguity, the
Tobj _Ser vant Base class must be a virtual base class of the skeleton, and the

Por t abl eSer ver : : Ser vant Base class must be avirtua base class of the

Tobj _Ser vant Base class. The inheritance among the implementation class, the
skeleton class, the Tobj _Ser vant Base class, and the

Por t abl eSer ver : : Ser vant Base class must all be public virtual.

Theimplementation class or servant must only derive directly from asingle generated
skeleton class. Direct derivation from multiple skeleton classes could result in
ambiguous errors due to multiple definitions of the _t hi s() operation. This should
not be a limitation, however, since CORBA objects have only a single most-derived
interface. C++ servantsthat are intended to support multiple interface types can utilize
the delegation-based interface implementation approach. See Listing 15-1 for an
example of OMG IDL that usesinterface inheritance.

CORBA C++ Programming Reference

Inheritance-based Interface Implementation

Listing15-1 OMG IDL that UsesInterface | nheritance

/] 1DL
interface A

{
short opl() ;

void op2(in long val) ;

I

Listing 15-2 Interface ClassA

/1 C++
class A : public virtual CORBA : Object
{
public:
virtual CORBA:: Short opl ();
virtual void op2 (CORBA::Long val);
}

On the server side, a skeleton class is generated. This classis partially opague to the
programmer, though it does contain a member function corresponding to each
operation in the interface.

For the Portable Object Adapter (POA), the name of the skeleton classis formed by

prepending the stringPA_" to the fully scoped name of the corresponding interface,

and the class is directly derived from the servant baseTdagsSer vant Base. The
C++ mapping foffobj _Ser vant Base is as follows:

/1 C++
cl ass Tobj _Servant Base
{
public:
virtual void activate_object(const char* stroid);
virtual void deactivate_object (
const char* stroid,
Tobj S: : Deact i vat eReasonVal ue reason
)
}

CORBA C++ Programming Reference 15-3

15 Server-side Mapping

154

Theactivat e_obj ect () and deacti vat e_obj ect () member functions are
described in detail in the sections “Tobj_ServantBase:: activate_object()” on
page 3-33 and “Tobj_ServantBase::deactivate_object()” on page 3-36.

The skeleton class for interface A shown above would appear as shown in Listing 15-

Listing 15-3 Skeleton Classfor Interface A

/] C++
class POA A : public Tobj_Servant Base
{
public:
/1 ... server-side ORB-inplenentation-specific
/'l goes here...
virtual CORBA:: Short opl () = 0;
virtual void op2 (CORBA::Long val) = 0;
/...
b

If interface A were defined within a module rather than at global scope (for example,
Mod: : A), the name of its skeleton class wouldP®_Mod: : A. This helps to separate
server application skeleton declarations and definitions from C++ code generated fo
the client.

To implement this interface using inheritance, you must derive from this skeleton clas:
and implement each of the operations in the corresponding OMG IDL interface. An
implementation class declaration for interface A would take the form shown in
Listing 15-4.

CORBA C++ Programming Reference

Delegation-based Interface Implementation

Listing 15-4 Interface A Implementation Class Declaration

/1 C++
class A inpl : public POA A
{

public:

CORBA: : Short opl();
voi d op2(CORBA: : Long val);

Delegation-based Interface Implementation

The del egation-based interface implementation approach is an alternative to using
inheritance when implementing CORBA objects. This approach is used when the
overhead of inheritanceistoo high or cannot be used. For example, dueto theinvasive
nature of inheritance, implementing objects using existing legacy code might be
impossible if inheritance for some global class were required. Instead, delegation can
be used to solve these types of problems. Delegation is amore natural fit doing object
implementations when the Process-Entity design pattern is used. In this pattern, the
Process object would del egate operations onto one or more entity objects.

In the del egati on-based approach, the implementation does not inherit from a skeleton

class. Instead, the implementation can be coded as required for the application, and a
wrapper object will delegate upcalls to that implementation. This “wrapper object,”
called dtie, is generated by the IDL compiler, along with the same skeleton class used
for the inheritance approach. The generaitedlass is partially opaque to the
programmer, though, like the skeleton, it provides a method corresponding to each
OMG IDL operation for the associated interface. The name of the gengeatkbs

is the same as the generated skeleton class with the addition that thet $timng
appended to the end of the class name.

An instance of thei e class is the servant, not the C++ object being delegated to by
the tie object, that is passed as the argument to the operations that reguirena
argument. It should also be noted that the tied object has no accessttbi the)
operation, nor should it access data members directly.

CORBA C++ Programming Reference 15-5

15 Server-side Mapping

A type-safetie classisimplemented using C++ templates. The code shown in
Listing 15-5illustrates atie class generated from the Derived interface in the previous
OMG IDL example.

Listing 15-5 tie Class Generated from the Derived I nterface

/] C++
tenplate <class T>
class POA Atie : public POA A {
public:
POA Atie(T& t)
_ptr(&), _poa(PortableServer::POA : nil()), _rel(0) {}
POA Atie(T& t, PortableServer::POA ptr poa)
_ptr(&), _poa(PortableServer::POA: : duplicate(poa)), _rel(0) {}
POA A tie(T* tp, CORBA::Boolean release = 1)
_ptr(tp), _poa(PortableServer::POA:: nil()), _rel(release) {}
POA A tie(T* tp, Portabl eServer::PQA ptr poa, CORBA::Boolean rel ease = 1)
_ptr(tp), _poa(PortableServer::POA : _duplicate(poa)), _rel(release) {}
~PQA A tie()
{ CORBA::rel ease(_poa);
if (_rel) delete _ptr;

// tie-specific functions

T* _tied_object () {return _ptr;}
void _tied object(T& obj)

{ if (_rel) delete _ptr;

_ptr = &obj;

_rel 0;

}

void _tied _object(T* obj, CORBA::Boolean release = 1)
{ if (_rel) delete _ptr;

_ptr = obj;

_rel = rel ease;

}

CORBA: : Boolean _is_owner() { return _rel; }
void _is_owner (CORBA::Boolean b) { _rel =b; }

// IDL Operations*************************************
CORBA: : Short opl ()
{

return _ptr->opl ();

}

15-6 CORBA C++ Programming Reference

Delegation-based Interface Implementation

voi d op2 (CORBA::Long val)
{

}

_ptr->op2 (val);

// LR R R R R R Rk R R R R R R o o O

/1 override ServantBase operations
Portabl eServer:: POA ptr _default POA()

if (!CORBA :is_nil(_poa))

{
return _poa;
}
el se {
#i f def W N32
return ServantBase:: defaul t _PQA();
#el se
return Portabl eServer:: Servant Base:: default POA();
#endi f
}
}
private:
™ _ptr;

Por t abl eServer:: POA ptr _poa;
CORBA: : Bool ean _rel;

/1 copy and assignnent not all owed
POA A tie (const POA A tie<T> &);
voi d operator=(const POA A tie<T> &);

Thisclass definition is atemplate generated by the IDL compiler. Y ou typically useit
by first getting apointer to the legacy class and then instantiating the tie classwith that
pointer. For example,

A d::Legacy * |l egacy = new d d:: Legacy(oid);
POA A tie<d d::Legacy> * A servant_ptr =
new POA A tie<d d::Legacy>(|egacy);

Asyou can see, the tie class contains definitions for the op1 and op2 operations of the
interface that assume that the legacy class has operations with the same signatures as
those given inthe IDL. If thisisthe case, you can use thetie classfile asis, letting it
delegate exactly. It ismorelikely, however, that thelegacy classwill not haveidentical

CORBA C++ Programming Reference 15-7

15 Server-side Mapping

15-8

signatures or you may have to do more than a single function call. In that case, it is
your job to replace the code for opl and op2 in this generated code. The code for each
operation typically makes invocations on the legacy class using the tie class variable
_pt r, which contains the pointer to the legacy class. For example, you might change
the following lines:

CORBA: : Short opl () {return _ptr->opl (); }
void op2 (CORBA::Long val) { _ptr->o0p2 (val); }

to the following:

CORBA: : Short opl ()

{
return _ptr->0p37 ();
}
voi d op2 (CORBA: :Long val)
{
CORBA: : Long tenp;
tenmp = val + 15;
_ptr->l ookup(val, tenp, 43);
}

An instance of thistemplate class performs the task of delegation. When the template
isinstantiated with a class type that provides the operation of the Der i ved interface,
then the POA_Der i ved_ti e classwill delegate all operations to an instance of that
implementation class. A reference or pointer to the actual implementation object is
passed to the appropriate tie constructor when an instance of the POA Deri ved_ti e
classis created. When arequest isinvoked on it, the tie servant will just delegate the
reguest by calling the corresponding method on the implementation class.

The use of templates for tie classes alows the application developer to provide
specializations for some or all of the template’s operations for a given instantiation of
the template. This allows the application to use legacy classes for tied object types,
where the operation signatures of the tied object will differ from that dfdloéass.

CORBA C++ Programming Reference

Implementing Operations

Implementing Operations

The signature of an implementation member function is the mapped signature of the
OMG IDL operation. Unlike the client-side mapping, the OMG specifies that the
function header for the server-side mapping include the appropriate exception
specification. An example of thisis shownin Listing 15-6.

Listing 15-6 Exception Specification

/] 1DL
interface A

{

exception B {};
void f() raises(B);

b
/] C++
class MYA : public virtual POA A
{
public:
void f();
b

Since &l operations and attributes may raise CORBA system exceptions,
CORBA: : Syst enExcept i on must appear in all exception specifications, even whenan
operation hasno r ai ses clause.

Note: Because of the differencesin C++ compilers, it isbest to leave out the "throw
declaration" in the method signature. Some systems cause the application
server to crash if an undeclared exception isthrown in a method that has
declared the exceptions it will throw.

Within a member function, the “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. An example of this
is shown in Listing 15-7.

CORBA C++ Programming Reference 15-9

15 Server-side Mapping

Listing 15-7 Calling Another Member Function

/1 1DL
interface A
{
void f();
void g();
}

/] C++
class MYA : public virtual PQA A
{
public:
void f();
void g();
private:
long x_;

When a servant member function isinvoked in this manner, it is being called simply
as a C++ member function, not as the implementation of an operation on a CORBA
object.

15-10 CORBA C++ Programming Reference

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks
	Contents
	About This Document
	1. OMG IDL Syntax
	2. Implementation Configuration File (ICF)
	3. TP Framework
	4. C++ Bootstrap Object Programming Reference
	5. FactoryFinder Interface
	6. Security Service
	7. Transactions Service
	8. Notification Service
	9. Request-Level Interceptors
	10. Interface Repository Interfaces
	11. Joint Client/Servers
	12. Development Commands
	13. Mapping of OMG IDL Statements to C++
	14. CORBA API
	15. Server-side Mapping

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 OMG IDL Syntax and the C++ IDL Compiler
	OMG IDL Compiler Extensions
	Table 1�1 Predefined Macros

	C++ IDL Compiler Constraints
	Table 1�2 C++ IDL Compiler�

	2 Implementation Configuration File (ICF)
	ICF Syntax
	pragmas
	Module module-name
	implementation-name
	implements (module-name::interface-name)
	activation_policy
	transaction_policy

	Sample ICF File
	Listing 2-1 Sample ICF

	Creating the ICF File

	3 TP Framework
	A Simple Programming Model
	Control Flow
	Object State Management
	Transaction Integration
	Object Housekeeping
	High-level Services

	State Management
	Activation Policy
	Application-controlled Activation and Deactivation
	Explicit Activation
	Usage Notes
	Caution to Users

	Self Deactivation

	Servant Lifetime
	The Normal Case
	Special Cases

	Saving and Restoring Object State
	Note On Use of Constructors and Destructors for Corba Objects

	Transactions
	Transaction Policies
	Transaction Initiation
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions on Transactions
	SQL and Global Transactions
	Voting on Transaction Outcome
	Transaction Time-outs

	TP Framework API
	Server Interface
	C++ Declarations

	Server::create_servant
	Synopsis
	C++ Binding
	Argument
	interfaceName

	Return Value
	Tobj_ServantBase

	Description
	Exception

	Server::initialize()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	Server::release()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	Tobj_ServantBase Interface
	C++ Declaration (in Tobj_ServantBase.h)

	Tobj_ServantBase:: activate_object()
	Synopsis
	C++ Binding
	Argument
	stroid

	Return Value
	Description
	Exceptions

	Tobj_ServantBase::deactivate_object()
	Synopsis
	C++ Binding
	Arguments
	stroid
	reason
	DR_METHOD_END
	DR_SERVER_SHUTDOWN
	DR_TRANS_ABORTED

	Return Value
	Description
	Restriction
	DR_TRANS_ABORTED
	DR_TRANS_COMMITTING

	Exceptions
	TP Interface
	Usage Notes

	TP::application_responsibility
	Synopsis
	C++ Binding
	Arguments
	servant

	Return Values
	Description
	Exceptions
	TobjS::InvalidServant

	TP::bootstrap()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	TP::close_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Return Values
	Description
	Exceptions
	CORBA::BAD_INV_ORDER
	Tobj::RMFailed

	TP::create_active_object_reference()
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	servant

	Return Value
	Description
	Caution
	Problem Statement
	1. You write SERVER1 such that all objects on interface A are preactivated. To prevent the object...
	2. SERVER2 also implements objects of interface A. However, instead of preactivating the objects,...
	3. If the administrator configures SERVER1 and SERVER2 in the same group, then a client can get a...

	Workaround
	Exceptions:
	TobjS::InvalidInterface
	TobjS::InvalidObjectId
	TobjS::ServantAlreadyActive
	TobjS::ObjectAlreadyActive
	TobjS::IllegalOperation

	TP::create_object_reference()
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	criteria

	Return Value
	Object

	Description
	Exceptions
	InvalidInterface
	InvalidObjectId

	Example

	TP::deactivateEnable
	Synopsis
	C++ Binding
	Arguments
	interfaceName
	stroid
	servant

	Return Value
	Description
	Current-object format
	Any-object format

	Exceptions
	IllegalOperation
	TobjS::ObjectNotActive

	TP::get_object_id ()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exception
	TobjS::InvalidObject

	TP::get_object_reference()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	NilObject

	TP::open_xa_rm()
	Synopsis
	C++ Binding
	Arguments
	Return Values
	Description
	Exceptions
	Tobj::RMFailed

	TP::orb()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions

	TP::register_factory()
	Synopsis
	C++ Binding
	Arguments
	factory_or
	factory_id

	Return Value
	Description
	Exceptions
	TobjS::CannotProceed
	TobjS::InvalidName
	TobjS::InvalidObject
	TobjS::RegistrarNotAvailable
	TobjS::OverFlow

	TP::unregister_factory()
	Synopsis
	C++ Binding
	Arguments
	factory_or
	factory_id

	Return Value
	Description
	Exceptions
	CannotProceed
	InvalidName
	RegistrarNotAvailable
	TobjS::OverFlow

	TP::userlog()
	Synopsis
	C++ Binding
	Arguments
	Return Value
	Description
	Exceptions
	Example
	CosTransactions::TransactionalObject Interface Not Enforced
	Error Conditions, Exceptions, and Error Messages
	Exceptions Raised by the TP Framework
	Exceptions in the Server Application Code
	Example

	Exceptions and Transactions
	Restriction of Nested Calls on Corba Objects

	4 C++ Bootstrap Object Programming Reference
	Why Bootstrap Objects Are Needed
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Table 4�1 Remote Clients Supported�

	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Table 4�2 Returned Object References
	Table 4�3 Tobj Module Exceptions�

	C++ Mapping
	Listing 4-1 Tobj_boostrap.h Declarations

	Java Mapping
	Listing 4-2 Tobj_Bootstrap.java Mapping

	Microsoft Desktop Client Mappings
	Automation Mapping
	Listing 4-3 Automation (Dual) Bootstrap Interface Mapping

	C++ Member Functions and Java Methods
	Tobj_Bootstrap
	Synopsis
	C++ Mapping
	Java Mapping
	Parameters
	orb
	address
	Table 4�4 Differences Between corbaloc and corbalocs URL Address Formats�

	applet (Applies to Java method only)

	Exception
	BAD_PARAM

	Description
	Return Values

	Tobj_Bootstrap::register_callback_port
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	objref

	Exceptions
	BAD_PARAM
	IMP_LIMIT

	Description
	Usage Notes
	Return Values

	Tobj_Bootstrap::resolve_initial_references
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	id
	“FactoryFinder” “SecurityCurrent” “TransactionCurrent” “InterfaceRepository” “NotificationService...

	Exceptions
	InvalidName
	CORBA::NO_PERMISSION

	Description
	Return Values

	Tobj_Bootstrap::destroy_current()
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Description
	Return Values
	Automation Methods

	Initialize
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	address

	Return Values
	Exceptions
	Table 4�5 Initialize Exceptions

	CreateObject
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	progid
	Tobj.FactoryFinder Tobj.SecurityCurrent Tobj.TransactionCurrent

	Return Value
	Exceptions
	Table 4�6 CreateObject Exceptions�

	DestroyCurrent
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	Return Value
	Exceptions
	Programming Examples
	Java Client Example: Getting a SecurityCurrent Object
	Listing 4-4 Programming a Java Client to Get a SecurityCurrent Object

	Visual Basic Client Example: Using the Bootstrap Object
	Listing 4-5 Programming a Client in Visual Basic

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Figure 5�1 Registering a Factory Object
	C++ Mapping
	Listing 5-1 C++ Mappings for the Factory Registration Pseudo OMG IDL

	Locating a Factory
	Figure 5�2 Locating a Factory Object
	CORBAservices Naming Service Module OMG IDL
	Listing 5-2 CORBAservices Naming OMG IDL

	CORBAservices Life Cycle Service Module OMG IDL
	Listing 5-3 Life Cycle Service OMG IDL

	Tobj Module OMG IDL
	Listing 5-4 Tobj Module OMG IDL

	Locating Factories in Another Domain
	Figure 5�3 Inter-Domain FactoryFinder Interaction (ff_fig3.wmf)

	Why Use BEA WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Listing 5-5 Names Library Interfaces in Pseudo-IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	get_id
	set_id
	get_kind
	set_kind

	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL Form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	C++ Mapping
	Listing 5-6 Library Name Class

	Java Mapping
	Listing 5-7 Java Mapping for LNameComponent

	C++ Member Functions and Java Methods
	CosLifeCycle::FactoryFinder::find_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_key

	Exception
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory

	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_key

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::FactoryFinder::find_one_factory_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_id

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::FactoryFinder::find_factories_by_id
	Synopsis
	C++ Mapping
	Java Mapping
	Parameter
	factory_id

	Exceptions
	CORBA::BAD_PARAM
	CosLifeCycle::NoFactory
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values

	Tobj::Factoryfinder::list_factories
	Synopsis
	C++ Mapping
	Java Mapping
	Exception
	Tobj::CannotProceed
	Tobj::RegistrarNotAvailable

	Description
	Return Values
	Automation Methods

	DITobj_FactoryFinder.find_one_factory
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_key
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_one_factory_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_id
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_factories_by_id
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_id
	exceptionInfo

	Exceptions
	NoFactory
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values

	DITobj_FactoryFinder.find_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameters
	factory_key
	exceptionInfo

	Exception
	NoFactory

	Description
	Return Values

	DITobj_FactoryFinder.list_factories
	Synopsis
	MIDL Mapping
	Automation Mapping
	Parameter
	exceptionInfo

	Exception
	CannotProceed
	RegistrarNotAvailable

	Description
	Return Values
	Programming Examples
	Using the FactoryFinder Object
	Registering a Reference to a Factory Object
	Listing 5-8 Server Application: Registering a Factory

	Obtaining a Reference to a FactoryFinder Object Using the CosLifeCycle::FactoryFinder Interface
	Listing 5-9 Client Application: Getting a FactoryFinder Object Reference

	Obtaining a Reference to a FactoryFinder Object Using the Extensions Bootstrap object
	Listing 5-10 Client Application: Finding One Factory Using the Tobj Approach

	Using Extensions to the FactoryFinder Object
	Obtaining One Factory Using Tobj::FactoryFinder
	Listing 5-11 Client Application: Finding Factories Using the BEA WebLogic Enterprise Extensions A...

	Obtaining One or More Factories Using Tobj::FactoryFinder
	Listing 5-12 Client Application: Finding One or More Factories Using the BEA WebLogic Enterprise ...

	6 Security Service
	7 Transactions Service
	8 Notification Service
	9 Request-Level Interceptors
	10 Interface Repository Interfaces
	Structure and Usage
	Programming Information
	Performance Implications
	1. The client application invokes the _get_interface opertion on the CORBA::Object to get the Int...
	2. The ORB returns the InterfaceDef object to the client.
	3. The client invokes one or more _is_a operations on the object to determine what type of interf...
	4. After the client has identified the interface, it invokes the describe_interface operation on ...
	5. The client is now ready to construct a DII request.

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	limit_type
	exclude_inherited
	search_name
	levels_to_search
	max_returned_objs

	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	type
	type_def
	value
	The describe operation for a ConstantDef object returns a ConstantDescription.

	TypedefDef Interface
	StructDef
	UnionDef
	discriminator_type and discriminator_type_def
	members

	EnumDef
	members

	AliasDef
	original_type_def

	PrimitiveDef
	kind

	ExceptionDef
	type
	members

	AttributeDef
	type
	type_def
	mode

	OperationDef
	result
	result_def
	params
	mode
	contexts
	exceptions

	InterfaceDef
	base_interfaces

	11 Joint Client/Servers
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects Using CORBA
	1. Establish a connection with a POA with the appropriate policies for the callback object model....
	2. Create a servant (that is, an instance of the C++ implementation class for the interface).
	3. Inform the POA that the servant is ready to accept requests on the callback BEA WebLogic Enter...
	4. Tell the POA to start accepting requests from the network (that is, activate the POA itself).
	5. Create an object reference for the callback BEA WebLogic Enterprise object.
	6. Give out the object reference. This usually happens by making an invocation on another object ...

	Preparing Callback Objects Using BEAWrapper Callbacks
	BEAWrapper Callbacks API
	Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Argument
	init_orb

	Return Value
	Description
	Exception
	CORBA::IMP_LIMIT

	start_transient
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	CORBA::BAD_PARAM

	start_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	CORBA::BAD_PARAMETER
	CORBA::IMP_LIMIT

	restart_persistent_systemid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	ObjectAlreadyActive
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT

	start_persistent_userid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Arguments
	servant
	rep_id
	stroid

	Return Value
	CORBA::Object_ptr

	Description
	Exceptions
	ServantAlreadyActive
	ObjectAlreadyActive
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT

	stop_object
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Argument
	servant

	Description
	Return Value
	Exceptions

	stop_all_objects
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Return Value
	Description
	Usage Note
	Exceptions

	get_string_oid
	Synopsis
	IDL
	C++ Binding
	Java Binding
	Return Value
	char*

	Description
	Exceptions
	NotInRequest

	~Callbacks
	Synopsis
	C++ Binding
	Java Binding
	Arguments
	Return Value
	Description
	Usage Note
	Exceptions

	12 Development Commands
	13 Mapping of OMG IDL Statements to C++
	Mappings
	Data Types
	Basic Data Types
	Table 13�1 Basic OMG IDL and C++ Data Types�

	Complex Data Types
	Table 13�2 Object, Pseudo-object, and User-defined OMG IDL and C++ Types

	Strings
	Constants
	Enums
	Structs
	Fixed-length Versus Variable-length Structs
	Member Mapping
	Var
	Out

	Unions
	Union Member Accessor and Modifier Member Function Mapping
	Var
	Out
	Member Functions
	TYPE();
	TYPE(const TYPE & From);
	~TYPE();
	TYPE &operator=(const TYPE & From);
	void _d (CORBA::Long Descrim);
	CORBA::Long _d () const;

	Sequences
	Sequence Element Mapping
	Vars
	Out
	Member Functions
	SEQ ();
	SEQ (CORBA::ULong Max);
	SEQ (CORBA::ULong Max, CORBA::ULong Length, TYPE * Value, CORBA::Boolean Release);
	Max
	Length
	Value
	Release

	SEQ(const S& From);
	~SEQ();
	SEQ& operator=(const SEQ& From);
	CORBA::ULong maximum() const;
	void length(CORBA::ULong Length);
	CORBA::ULong length() const;
	TYPE & operator[](CORBA::ULong Index); const TYPE & operator[](CORBA::ULong Index) const;
	static TYPE * allocbuf(CORBA::ULong NumElems);
	static void freebuf(TYPE * Value);

	Arrays
	Array Slice
	Array Element Mapping
	Vars
	Out
	Allocation Member Functions
	static TYPE_slice * TYPE_alloc(void);
	static void TYPE_free(TYPE_slice * Value);

	Exceptions
	Member Mapping
	Var
	Out
	Member Functions
	static TYPE * _narrow(CORBA::Exception_ptr Except);
	TYPE ();
	TYPE(member-parameters);
	TYPE (const TYPE & From);
	~TYPE ();
	TYPE & operator=(const TYPE & From);
	void _raise ();

	Mapping of Pseudo-objects to C++
	Usage
	Mapping Rules
	Relation to the C PIDL Mapping
	Typedefs
	Implementing Interfaces
	Argument Mapping

	Implementing Operations
	Skeleton Derivation from Object

	PortableServer Functions
	Modules
	Interfaces
	Generated Static Member Functions
	static INTF_ptr _duplicate (INTF_ptr Obj)
	static INTF_ptr _narrow (CORBA::Object_ptr Obj)
	static INTF_ptr _nil ()

	Object Reference Types
	Attributes
	Argument Mapping

	Any Type
	Handling Typed Values
	Insertion into Any
	Extraction from Any
	Distinguishing boolean, octet, char, and Bounded Strings
	Widening to Object
	Handling Untyped Values
	Any Constructors, Destructor, Assignment Operator
	The Any Class

	Fixed-length Versus Variable-length User-defined Types
	Using var Classes
	TYPE_var()
	TYPE_var(TYPE * Value);
	TYPE_var(const TYPE_var & From);
	~TYPE_var();
	TYPE_var &operator=(TYPE * NewValue);
	TYPE_var &operator=(const TYPE_var &From);
	TYPE *operator->(); TYPE *operator->() const;
	TYPE_var_ptr in() const; TYPE_var_ptr& inout(); TYPE_var_ptr& out(); TYPE_var_ptr _retn();
	Table 13�3 �Comparison of Operators Supported for User-defined Data Type var Classes
	Table 13�4 Operator Signatures for _var Classes

	Sequence vars
	TYPE &operator[](CORBA::ULong Index);

	Array vars
	TYPE_slice& operator[](CORBA::ULong Index); const TYPE_slice & operator[](CORBA::ULong Index) const;

	String vars
	String_var(char * str)
	String_var(const char * str) String_var(const String_var & var)
	String_var & operator=(char * str)
	String_var & operator=(const char * str) String_var & operator=(const String_var & var)
	char operator[] (Ulong Index) char operator[] (Ulong Index) const
	out Classes
	Table 13�5 Comparison of Operators Supported for User-defined Data Type Out Classes
	Table 13�6 Operator Signatures for _out Classes

	Using out Classes
	Object Reference out Parameter
	Sequence outs
	TYPE &operator[](CORBA::ULong Index);

	Array outs
	TYPE_slice& operator[](CORBA::ULong Index); const TYPE_slice & operator[](CORBA::ULong Index) const;

	String outs

	Argument Passing Considerations
	Operation Parameters and Signatures
	Table 13�7 Basic Argument and Result Passing�
	Table 13�8 T_var Argument and Result Passing
	Table 13�9 Caller Argument Storage Responsibilities�
	Table 13�10 Argument Passing Cases�

	14 CORBA API
	Global Classes
	Pseudo-objects
	Any Class Member Functions
	CORBA::Any::Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	None.

	CORBA::Any::Any(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Argument
	InitAny

	Description
	Return Values
	None.

	CORBA::Any::Any(TypeCode_ptr TC, void * Value, Boolean Release)
	Synopsis
	C++ Binding
	Arguments
	Value

	Description
	Return Values
	None.

	CORBA::Any::~Any()
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	None.

	CORBA::Any & CORBA::Any::operator=(const CORBA::Any & InitAny)
	Synopsis
	C++ Binding
	Arguments
	InitAny

	Description
	Return Values
	Returns the Any, which holds the copy of the InitAny.

	void CORBA::any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Any::operator<<=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::Boolean CORBA::Any::operator>>=()
	Synopsis
	C++ Binding
	Argument
	Value

	Description
	Return Values

	CORBA::TypeCode_ptr CORBA::Any::type() const
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	void CORBA::Any::replace()
	Synopsis
	C++ Binding
	Arguments
	TC
	Value
	Release

	Description
	Return Values
	Context Member Functions
	Memory Management

	CORBA::Context::context_name
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::Context::create_child
	Synopsis
	C++ Binding
	Arguments
	CtxName
	CtxObject

	Description
	Return Values
	Exception
	See Also

	CORBA::Context::delete_values
	Synopsis
	C++ Binding
	Argument
	AttrName

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::get_values
	Synopsis
	C++ Binding
	Arguments
	StartScope
	OpFlags
	AttrName
	AttrValues

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::parent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Context::set_one_value
	Synopsis
	C++ Binding
	Arguments
	AttrName
	AttrValue

	Description
	Return Values
	Exceptions
	See Also

	CORBA::Context::set_values
	Synopsis
	C++ Binding
	Argument
	AttrValues

	Description
	Return Values
	Exceptions
	See Also
	ContextList Member Functions

	CORBA::ContextList:: count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::add
	Synopsis
	C++ Binding
	Argument
	ctxt

	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::add_consume
	Synopsis
	C++ Binding
	Argument
	ctxt

	Description
	Return Values
	Exception
	See Also

	CORBA::ContextList::item
	Synopsis
	C++ Binding
	Argument
	index

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ContextList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exceptions
	See Also
	NamedValue Member Functions
	Memory Management

	CORBA::NamedValue::flags
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::NamedValue::name
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::NamedValue::value
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	NVList Member Functions
	Memory Management

	CORBA::NVList::add
	Synopsis
	C++ Binding
	Argument
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::add_item
	Synopsis
	C++ Binding
	Arguments
	Name
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::add_value
	Synopsis
	C++ Binding
	Arguments
	Name
	Value
	Flags

	Description
	Return Values
	See Also

	CORBA::NVList::count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::NVList::item
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception
	See Also

	CORBA::NVList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception
	See Also
	Object Member Functions

	CORBA::Object::_create_request
	Synopsis
	C++ Binding
	Arguments
	Ctx
	Operation
	Arg_list
	Result
	Except_list
	Context_list
	Request
	Req_flags

	Description
	Return Values
	See Also

	CORBA::Object::_duplicate
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::Object::_get_interface
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_is_a
	Synopsis
	C++ Binding
	Argument
	interface_id

	Description
	Return Values
	Example
	Exceptions

	CORBA::Object::_is_equivalent
	Synopsis
	C++ Binding
	Argument
	other_obj

	Description
	Return Values
	Example

	CORBA::Object::_nil
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Example

	CORBA::Object::_non_existent
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Object::_request
	Synopsis
	C++ Binding
	Argument
	Operation

	Description
	Return Values
	See Also
	CORBA Member Functions

	CORBA::release
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::is_nil
	Synopsis
	C++ Binding
	Argument
	obj

	Description
	Return Values
	Example

	CORBA::hash
	Synopsis
	C++ Binding
	Argument
	maximum

	Description
	Return Values

	CORBA::resolve_initial_references
	Synopsis
	C++ Binding
	Argument
	identifier

	Description
	Return Values
	Exception
	Example
	ORB Member Functions

	CORBA::ORB::create_environment
	Synopsis
	C++ Binding
	Argument
	New_env

	Description
	Return Values
	See Also

	CORBA::ORB::create_list
	Synopsis
	C++ Binding
	Arguments
	NumItem
	List

	Description
	Return Values
	See Also

	CORBA::ORB::create_named_value
	Synopsis
	C++ Binding
	Argument
	NewNamedVal

	Description
	Return Values
	See Also

	CORBA::ORB::create_exception_list
	Synopsis
	C++ Binding
	Argument
	List

	Description
	Return Values

	CORBA::ORB::create_context_list
	Synopsis
	C++ Binding
	Argument
	List

	Description
	Return Values

	CORBA::ORB::create_policy
	Synopsis
	C++ Binding
	Arguments
	type
	val

	Description
	Return Values
	Exceptions
	PolicyError

	Example

	CORBA::ORB::create_operation_list
	Synopsis
	C++ Binding
	Arguments
	Oper
	List

	Description
	Return Values
	See Also

	CORBA::ORB::get_default_context
	Synopsis
	C++ Binding
	Argument
	ContextObj

	Description
	Return Values
	See Also

	CORBA::ORB::get_next_response
	Synopsis
	C++ Binding
	Argument
	RequestObj

	Description
	Return Values
	See Also

	CORBA::ORB::perform_work
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Exceptions
	See Also
	Example

	CORBA::ORB::run
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	See Also

	CORBA::ORB::shutdown
	Synopsis
	C++ Binding
	Argument
	wait_for_completion

	Description
	Return Values

	CORBA::ORB::object_to_string
	Synopsis
	C++ Binding
	Argument
	ObjRef

	Description
	Return Values
	Example
	See Also

	CORBA::ORB::poll_next_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::work_pending
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_deferred
	Synopsis
	C++ Binding
	Argument
	Reqs

	Description
	Return Values
	See Also

	CORBA::ORB::send_multiple_requests_oneway
	Synopsis
	C++ Binding
	Argument
	Reqs

	Description
	Return Values
	See Also

	CORBA::ORB::string_to_object
	Synopsis
	C++ Binding
	Argument
	ObjRefString

	Description
	Return Values
	Example
	See Also
	ORB Initialization Member Function

	CORBA::ORB_init
	Synopsis
	C++ Binding
	Arguments
	argc
	argv
	orb_identifier

	Description
	1. If the orb_identifier argument is present, ORB_init determines the client type, either native ...
	2. If orb_identifier is not present or is explicitly zero, ORB_init looks at the entries in argc/...
	3. If no client type is specified in argc/argv, ORB_init uses the default client type from the sy...

	Return Value
	Exceptions
	None.

	Policy Member Functions

	CORBA:Policy::copy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values

	CORBA::Policy::destroy
	Synopsis
	C++ Binding
	Argument
	Description
	Return Values
	Exceptions
	PortableServer Member Functions

	PortableServer::POA::activate_object
	Synopsis
	C++ Binding
	Argument
	p_servant

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::activate_object_with_id
	Synopsis
	C++ Binding
	Argument
	id
	p_servant

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::create_id_assignment_policy
	Synopsis
	C++ Binding
	Argument
	value

	Description
	Return Values

	PortableServer::POA::create_lifespan_policy
	Synopsis
	C++ Binding
	Argument
	value

	Description
	Return Values

	PortableServer::POA::create_POA
	Synopsis
	C++ Binding
	Arguments
	adapter_name
	a_POAManager
	policies

	Description
	Return Values
	Exceptions
	AdapterAlreadyExists
	InvalidPolicy
	IMP_LIMIT

	Examples

	PortableServer::POA::create_reference
	Synopsis
	C++ Binding
	Argument
	intf

	Description
	Return Values
	Exceptions

	PortableServer::POA::create_reference_with_id
	Synopsis
	C++ Binding
	Arguments
	oid
	intf

	Description
	Return Values
	Exceptions
	Example

	PortableServer::POA::deactivate_object
	Synopsis
	C++ Binding
	Argument
	oid

	Description
	Return Values
	Exceptions

	PortableServer::POA::destroy
	Synopsis
	C++ Binding
	Arguments
	etherealize_objects
	wait_for_completion

	Description
	Return Values

	PortableServer::POA::find_POA
	Synopsis
	C++ Binding
	Argument
	adapter_name
	active_it

	Description
	Return Values
	Exception
	AdapterNonExistent

	PortableServer::POA::reference_to_id
	Synopsis
	C++ Binding
	Argument
	reference

	Description
	Return Values
	Exceptions
	WrongAdapter

	PortableServer::POA::the_POAManager
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Example

	PortableServer::ServantBase::_default_POA
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	POA Current Member Functions

	PortableServer::Current::get_object_id
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	Exception

	PortableServer::Current::get_POA
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Exceptions
	POAManager Member Functions

	PortableServer::POAManager::activate
	Synopsis
	C++ Binding
	Argument
	None.

	Description
	Return Values
	Exceptions

	PortableServer::POAManager::deactivate
	Synopsis
	C++ Binding
	Argument
	etherealize_objects
	wait_for_completion

	Description
	Return Values
	Exceptions
	POA Policy Member Objects

	PortableServer::LifespanPolicy
	Synopsis
	Description
	Exceptions

	PortableServer::IdAssignmentPolicy
	Synopsis
	Description
	Request Member Functions

	CORBA::Request::arguments
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values

	CORBA::Request::ctx(Context_ptr)
	Synopsis
	C++ Binding
	Argument
	CtxObject

	Description
	Return Values
	See Also

	CORBA::Request::get_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::invoke
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::operation
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::poll_response
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::result
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::env
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::ctx
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::contexts
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::exceptions
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::target
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::Request::send_deferred
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also

	CORBA::Request::send_oneway
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	See Also
	Strings

	CORBA::string_alloc
	Synopsis
	C++ Binding
	Argument
	len

	Description
	Return Values
	Example
	See Also

	CORBA::string_dup
	Synopsis
	C++ Binding
	Argument
	Str

	Description
	Return Values
	Example
	See Also

	CORBA::string_free
	Synopsis
	C++ Binding
	Argument
	Str

	Description
	Return Values
	Example
	See Also
	TypeCode Member Functions
	Memory Management

	CORBA::TypeCode::equal
	Synopsis
	C++ Binding
	Argument
	TypeCodeObj

	Description
	Return Values

	CORBA::TypeCode::id
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::kind
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values
	Table 14�1 Legal Typecode Kinds and Parameters�

	CORBA::TypeCode::param_count
	Synopsis
	C++ Binding
	Arguments
	Description
	Return Values

	CORBA::TypeCode::parameter
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exception Member Functions
	CORBA::SystemException::SystemException ()
	CORBA::SystemException::SystemException (const CORBA::SystemException & Se)
	CORBA::SystemException::SystemException(CORBA::ULong Minor, CORBA::CompletionStatus Status)
	Minor
	Status

	CORBA::SystemException::~SystemException ()
	CORBA::SystemException CORBA::SystemException::operator = const CORBA::SystemException Se)
	CORBA::CompletionStatus CORBA::SystemException::completed()
	CORBA::SystemException::completed(CORBA::CompletionStatus Completed)
	CORBA::ULong CORBA::SystemException::minor()
	CORBA::SystemException::minor (CORBA::ULong Minor)
	CORBA::SystemException * CORBA::SystemException::_narrow (CORBA::Exception_ptr Exc)
	CORBA::UserException * CORBA::UserException::_narrow(CORBA::Exception_ptr Exc)

	Standard Exceptions
	CORBA::COMPLETED_YES
	CORBA::COMPLETED_NO
	CORBA::COMPLETED_MAYBE
	Exception Definitions
	Table 14�2 Exception Definitions�

	Object Nonexistence
	Transaction Exceptions

	ExceptionList Member Functions

	CORBA::ExceptionList::count
	Synopsis
	C++ Binding
	Arguments
	None.

	Description
	Return Values
	Exception

	CORBA::ExceptionList::add
	Synopsis
	C++ Binding
	Arguments
	tc

	Description
	Return Values
	Exception
	See Also

	CORBA::ExceptionList::add_consume
	Synopsis
	C++ Binding
	Arguments
	tc

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ExceptionList::item
	Synopsis
	C++ Binding
	Argument
	index

	Description
	Return Values
	Exceptions
	See Also

	CORBA::ExceptionList::remove
	Synopsis
	C++ Binding
	Argument
	Index

	Description
	Return Values
	Exceptions
	See Also

	15 Server-side Mapping
	Implementing Interfaces
	Inheritance-based Interface Implementation
	Listing 15-1 OMG IDL that Uses Interface Inheritance
	Listing 15-2 Interface Class A
	Listing 15-3 Skeleton Class for Interface A
	Listing 15-4 Interface A Implementation Class Declaration

	Delegation-based Interface Implementation
	Listing 15-5 tie Class Generated from the Derived Interface
	// C++ template <class T> class POA_A_tie : public POA_A { public: POA_A_tie(T& t) : _ptr(&t), _p...
	void op2 (CORBA::Long val) { _ptr->op2 (val); } // **...

	Implementing Operations
	Listing 15-6 Exception Specification
	Listing 15-7 Calling Another Member Function

