BEA WebLogic Enterprise

Creating CORBA
Client Applications

WebLogic Enterprise 5.1
Documen t Edition 5.1
May 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Creating CORBA Client Applications

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What Y OU NEed t0 KINOWcceiiuiiiiiieceeeiieseecee ettt et e viii
E-00CSWED SItE....oceieeeecee ettt s s ra e e r e e re e viii
How to Print the DOCUMENL..........coeie e sttt eae viii
Related INfOrmMation........ccocvioiiieieece e e e iX
(0701 = ot AL U LS TR ixX
Documentation CONVENLIONSc..ccieciueiecieieeieesiee st e s eeree e sraesresraesaeeaeeaeereens X

1. Client Application Development Concepts

Overview of Client APPliCatiONS.cceeereeree et 1-2
(@1 3 | TSSOSO 1-3
OMG IDL-t0-CH+ M@APPING «.eenveneereeeenieiieseeeee e nese e seeseesaeseeseeneeseesesneas 1-3
OMG IDL-t0-JaVa M@PPING. ...c.ueveeeereiieniereeneeeeeee e eaeseeseeaeseeseeeeneeseeneas 1-3
OMG IDL-t0-COM MaPPING-....cueaeereerieeerieieeneeeeseeseeeeeeseese e seeseesseneeseas 1-4
Static and DyNamic INVOCELIONccueceiiuececieeecee ettt e e 1-4
CHENt SEUBS ..ot et 1-6
INterface REPOSITONYcc.eiviiiie ettt e e e ne e 1-7
DOMIBINS. .. ottt ettt ettt et st e et seese et eneese et eaeeeeeseneseeseeeanseneenean 1-8
EnVironmental ODJECES.......coueiueiiieeieie ettt s seee e 1-9
2100 LS 1= N @] o] = o SRR 1-11
Factories and the FactoryFinder Objectcocooveviivevivieceee e, 1-12
Naming Conventions and WebL ogic Enterprise Extensions to the
FactoryFinder ODJECL.........coiiuiieriereeeie et e 1-13
SeCUrityCUrTeNnt ODJECL..........oeiiie ettt e e 1-15
TransactionCurrent ObJECcceivieiiiiieerceee et 1-16
InterfaceRePOSItOry ODJECEccciiririeie e e 1-17
Conceptsfor ActiveX Client AppliCations.........cccocvireieiineeeie e 1-18

Creating CORBA Client Applications i

iv

WL IS ACLIVEX 2 .ttt st enen 1-18
Views and BiNAiNgS........ocooeeereree e saeeeas 1-18
Naming Conventions for ACtiVEX VIEWS.........cccceevecieceeeiecseeceeseeeene 1-19

2. Creating CORBA (Client Applications

Summary of the Development Process for CORBA C++ Client Applications. 2-2
Summary of the Development Process for CORBA Java Client Applications. 2-3

Step 1: Obtaining the OMG IDL File......ccooiiiiiiiiiie e 2-4
Step 2: Selecting the INVOCatiON TYPE....ccceveie e e e 2-6
Step 3: Compiling the OMG IDL File.....c.cooiiiieiiieece e 2-7
Step 4: Writing the CORBA Client AppliCationccooevoiiieieneeie e 2-8
INItIAliZING TNE ORB ... e st st st 2-8
Establishing Communication with the WebL ogic Enterprise Domain....... 29
Resolving Initial References to the FactoryFinder Objectccccceees 2-11
Using the FactoryFinder Object to Get a Factorycccooveereiereennnnnn. 2-12
Using a Factory to Get a CORBA ODJeCtooeieiineiiecireree e 2-13
Step 5: Building the CORBA Client AppliCation..........coocueerineeenieneieneene 2-13
Server Applications Acting as Client Applications..........cccceovvvreeiencrienieneene 2-14
USING JAVB2 APPIELS ... vttt et s e 2-14

3. Creating ActiveX Client Applications

Summary of the Development Process for ActiveX Client Applications......... 3-2
The BEA Application BUIlAErcooiiieiiieieer e 3-3
Step 1: Loading the Automation Environmental Objects into the Interface
REPOSITONY ...ttt ettt e et a et eb e e eeeee e benee s 35
Step 2: Loading the CORBA Interfaces into the Interface Repository 35
Step 3: Starting the Interface Repository Server Applicationccccceveeneee. 3-6
Step 4: Creating ActiveX Bindings for the CORBA Interfaces...........cccccveeee. 3-7
Step 5: Loading the Type Library for the ActiveX Bindings..........cccocoeevveeenns 3-8
Step 6: Writing the ActiveX Client Application ... veeinie e 39
Including Declarations for the Automation Environmental Objects,
Factories, and ActiveX Views of CORBA Objects.......cccoeeeeeevvennne. 3-9
Establishing Communication with the WebL ogic Enterprise Domain3-10
Obtaining References to the FactoryFinder Object..........cccevvveeceieenen, 3-11
Using a Factory to Get an ACtIVEX VIEW.....c.ccovviveeiieenee e 311
Invoking Operations on the ACtiVEX VIeWccccoeevrnecenininccesenens 312

Creating CORBA Client Applications

Step 7: Deploying the ActiveX Client Application...........cooeoeeeneeieeincnienne 3-13

4. Using Security
Overview of WebL ogic Enterprise SECUNLYcooeririineieieeneee e 4-1
Summary of the Development Process for SeCUrity.......c.ccoevereeeveneeceeinenae 4-2
Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object 4-3
Step 2: Getting the Principal Authenticator Object from the SecurityCurrent
OBJECE ...ttt ettt et sttt 4-3
Step 3: Obtaining the Authentication Level ... 4-4
Step 4: Logging on to the WebL ogic Enterprise Domain with Proper
AULNENEICALTION ...ttt 4-5
Step 5: Logging off the WebL ogic Enterprise DOMain.........cccoeeueverieeencrennns 4-7

5. Using Transactions

Overview of WebL ogic Enterprise Transactions...........ccoceveeeirneeneeincnieneenens 51
Summary of the Development Process for Transactions..........ccoeeeeveerceneene. 5-2
Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object.. 5-3
Step 2: Using the TransactionCurrent Methodscocooeeiiirene e seenecineees 5-3

6. Using the Dynamic Invocation Interface

WHEN O USE DI e 6-2
DI CONCEPLS. ..ottt ettt et se et sa et e sa e sbe b e e it e aae e se e e e eneeaes 6-3
REQUESE ODJECLS. ...ttt ettt e e e e e eneeneeneeneas 6-3
Options for Sending REQUESES........ccceerriiee e s 6-4
Options for Receiving the Results of REQUESES........cccoveuireriece e, 6-5
Summary of the Development Process for DI ..o iiniie e 6-6
Step 1: Loading the CORBA Interfaces into the Interface Repository 6-7
Step 2: Obtaining the Object Reference for the CORBA Object............c......... 6-8
Step 3: Creating a RequEst ODJECEcoo it 6-8
Using the CORBA::Object::_request Member Function..............ccccceeuee 6-8
Using the CORBA ::Object::create_request Member Function.................. 6-9
Setting Arguments for the Request Objectccccoverceeieiircnciee. 6-9
Setting Input and Output Arguments with the CORBA::NamedV alue
MeEMDET FUNCHION ... 6-9
Example of Using CORBA::Object::create_request Member
FUNCEION .ttt 6-10

Creating CORBA Client Applications %

Step 4: Sending a DIl Request and Retrieving the Results............cccceoeieene. 6-11

SYNCHIONOUS REQUESES. ... ceeeeeeie ettt sttt st 6-11
Deferred Synchronous REQUESES.ucvereireerieie e 6-11
ONEWEY REUESEScoiviriie ettt seesee e s e sreenae e ans 6-12
MUIPIE REQUESES... ...ttt sttt enea 6-12
Step 5: Deleting the REQUESE ..o 6-16
Step 6: Using the Interface Repository with DI ..o 6-17

7. Handling Exceptions

CORBA Exception Handling CONCEPLScouervereerieie e 7-1
CORBA SyStem EXCEPLIONS........c.uiieieeiirieriee et s e e e e e see e 7-1
CORBA C++ Client APPlICatiONScoeeeiereeieiie et s 7-3
Handling System EXCEPLiONS........c.coeiireeieiee et e 7-4
USEr EXCEPLIONS. ...ttt sttt e es 7-5
CORBA Java Client APPliCAIONScooeieeereeeie et 7-6
SYSEEM EXCEPLIONS. ... vttt et sttt e e e e 7-7
USEr EXCEPLIONS......ciueeeieiee ettt et sr e enee s 7-8
ActiveX Client APPlICALIONSco.eiiieieieee et 7-9
Index

Vi Creating CORBA Client Applications

About This Document

This document describes how to create CORBA C++, CORBA Java, and ActiveX
client applications for tke BEA WebL ogic Enterprise™ (WLE) software. This
document introduces importart product concepts, provides step-by-step instructions
for creating dient applications, and indudes code examplesto illustrate the
development process

This document covers the following topics:

m Chaper 1, “Client Application Development Corcepts,” introduces the concepts
you need to know to d&elop client appications for the WebLogic Enterprise
software.

m Chaper 2, “Creating CORBA Client Applications,” provides instructions for
creating CORBA C-+ and COMA Java dient gpplications.

m Chaper 3, “Creating ActiveX Client Applications,” provides instructions for
creating ActiveX cliert applications.

m Chapter 4, “Using Security,” describes using security in CORBA C++, CORBA
Java, and ActiveX cliert applications.

m Chaper 5, “Using Transactions,” describes wsing trarsactionsin CORBA C++,
CORBA Java, and AdiveX client appications.

m Chaper 6, “Using the Dyname Invocation Interface,” explains how to use the
Dynamic Invocation Interface (DI1) from CORBA C++ and CORBA Java client
applications.

m Chaper 7, “Handling Exceptions,” explains how CORBA G-+, CORBA Java,
and ActiveX cliert applications hardle CORBA exceptions.

Creating CORBA Client Applications Vii

What You Need to Know

This document is intended for programmers who want to develop client applications
for the WebL ogic Enterprise software.

e-docs Web Site

The BEA WebL ogic Enterprise product documentation is available on the BEA

Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

How to Print the Document

viii

You can print a copy of this document from a Web browser, one file at a time, by usinc
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire documen
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document yoL
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site dittp://www.adobe.corh

Creating CORBA Client Applications

How to Print the Document

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA

Tuxedo™, distributed object computing, transaction processing, C++ programming,
and Java programming, see tebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORWatwv.bea.comYou can also

contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company nhame and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Creating CORBA Client Applications iX

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

nonospace Indicates code samples, commands and their options, data structures and

t ext their members, data types, directories, and filenames and their extensions.

M onospace text also indicates text that you must enter from the keyboard.
Examples:

#include <iostreamh> void main () the pointer psz
chnod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMVAP

f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text

void commit ()

nonospace Identifies variables in code.

italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

X Creating CORBA Client Applications

Documentation Conventions

Convention

Item

{1}

Indicates a set of choicesin a syntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Creating CORBA Client Applications

Xi

Xii Creating CORBA Client Applications

CHAPTER

1

Client Application
Development Concepts

Thistopic reviews the types of client applications supported by the BEA WebL ogic
Enterprise software and introduces the concepts that you need to understand before
you develop client applications for the WebL ogic Enterprise software.

Thistopic includes the following sections:

OMG IDL

Static and dynamic invocation
Client stubs

Interface Repository

Domains

Environmental objects
ActiveX

Views

Bindings

Naming conventions for ActiveX views

Creating CORBA Client Applications 1-1

1 dient Application Development Concepts

Overview of Client Applications

1-2

The WebL ogic Enterprise software supports the following types of client applications:

m CORBA C++

This type of client application uses the C++ environmental objectsto access the
CORBA objects in an WebL ogic Enterprise domain, and the WebL ogic
Enterprise Object Request Broker (ORB) to process requests to CORBA aobjects.
Use the WebL ogic Enterprise development commands to build CORBA C++
client applications.

m CORBA Java

This type of client application uses the Java environmental objects to access
CORBA objects in an WebL ogic Enterprise domain. However, these client
applications use an ORB product other than the WebL ogic Enterprise ORB to
process requests to CORBA objects. CORBA Java client applications are built
using the ORB product’s Java development tools. The WebLogic Enterprise
software supports interoperability with the Sun Java Development Kit (JDK)
Java client.

Note: See theBEA Weblogic Installation Guide for the specific versions of
supported software.

m ActiveX

This type of client application uses the Automation environmental objects to
access CORBA objects in an WebLogic Enterprise domain, and the BEA
ActiveX Client to process requests to CORBA objects. Use the Application
Builder to select the CORBA interfaces that are available to ActiveX client
applications, to create ActiveX views of the CORBA interfaces, and to create
packages for deploying ActiveX views of CORBA interfaces to client machines.
These client applications are built using an automation development tool such as
Visual Basic or PowerBuilder.

The WebLogic Enterprise product also provides EJB and RMI client applications. For
a description of creating RMI client applications, sseng RMI in a WebLogic

Enterprise Environment. For a description of creating EJB client applications, see
Getting Sarted.

Creating CORBA Client Applications

OMG IDL

OMG IDL

With any distributed application, the client/server application needs some basic
information to communicate. For example, the client application needs to know which
operations it can request, and the arguments to the operations.

Y ou use the Object Management Group (OMG) Interface Definition Language (IDL)

to describe available CORBA interfacesto client applications. An interface definition
writtenin OMG IDL completely definesthe CORBA interface and fully specifieseach
operation’s arguments. OMG IDL is a purely declarative language. This means that it
contains no implementation details. Operations specified in OMG IDL can be written
in and invoked from any language that provides CORBA bindings. C++ and Java are
two of the supported languages.

Generally, the application designer provides the OMG IDL files for the available
CORBA interfaces and operations to the programmer who creates the client
applications.

OMG IDL-to-C++ Mapping

The WebLogic Enterprise software conforms to The Common Object Request
Broker:Architecture and Specification, Version 2.2. For complete information about
the OMG IDL-to-C++ mapping, see The Common Object Request
Broker:Architecture and Specification, Version ZR&vised: February, 1998.

OMG IDL-to-Java Mapping

The WebLogic Enterprise software conformdte Common Object Request
Broker:Architecture and Specification, Version 2.2. For complete information about
the OMG IDL-to-Java mapping, séée Common Object Request
Broker:Architecture and Specification, Version 2.2, Revised: February, 1998.

Creating CORBA Client Applications 1-3

1 dient Application Development Concepts

OMG IDL-to-COM Mapping

The WebL ogic Enterprise software conforms to the OMG COM/CORBA
Internetworking Specification Version 1.1. The mapping of COM datatypesis
included in the OMG COM/CORBA Internetworking Specification Version 1.1.

Static and Dynamic Invocation

The WebL ogic Enterprise Object Request Broker (ORB) supports two types of
client/server invocations: static and dynamic. In both cases, the client application
performs arequest by gaining accessto an object referencefor aserver application and
invoking the operation that satisfies the request. The server application cannot tell the
difference between static and dynamic invocations.

When using static invocation, the client application invokes operations directly on the
client stubs. Static invocation isthe easiest, most common type of invocation. The
stubs are generated by the IDL compiler. Static invocation is recommended for
applications that know at compile time the particulars of the operations they need to
invoke and can process within the synchronous nature of the invocation. Figure 1-1
illustrates static invocation.

1-4 Creating CORBA Client Applications

Static and Dynamic Invocation

Figure1-1 Static Invocation

Client Application
Static Invocation Server Application
OMG IDL
A
v
IDL Compiler > Client Stub
Server
Skeleton

Object Request Broker @

While dynamic invocation is more complicated it enables your client application to
invoke operations on any CORBA object without having to know the CORBA object’s
interfaces at compile time. Figure 1-2 illustrates dynamic invocation.

Creating CORBA Client Applications 1-5

1 dient Application Development Concepts

Figure 1-2 Dynamic I nvocation

OMG IDL
Server Application
v
A
Interface P .| Client Application
Repository D "] Dynamic Invocation

Server
Skeleton

Object Request Broker

When using dynamic invocation, the client application can dynamically build

operation requests for a CORBA aobject interface that has been stored in the Interface
Repository. Server applications do not require any special design to be able to receive
and handle dynamic invocation requests. Dynamic invocation is generally used when
the client application reguires deferred synchronous communication, or by dynamic
client applications when the nature of the interaction is undefined. For more
information about using dynamic invocation, see Chapter 6, “Using the Dynamic
Invocation Interface.”

Client Stubs

Client stubs provide the programming interface to operations that a CORBA object cal
perform. A client stub is a local proxy for the CORBA object. Client stubs provide a
mechanism for performing a synchronous invocation on an object reference for a

1-6 Creating CORBA Client Applications

Interface Repository

CORBA object. The client application does not need specia code to deal with the
CORBA abject or itsarguments; the client application simply treats the stub asalocal
object.

A client application must have astub for eachinterfaceit plansto use. Y ou usethei dl
command (or your Java product’s equivalent command) to generate a client stub from
the OMG IDL definition of the CORBA interface. The command generates a stub file
and a header file that describe everything that you need if you want to use the client
stub from a programming language, such as C++ or Java. You simply invoke a method
from within your client application to request an operation in the server application.

Interface Repository

The Interface Repository contains descriptions of a CORBA object’s interfaces and
operations. The information stored in the Interface Repository is equivalent to the
information defined in an OMG IDL file, but the information is accessible
programmatically at run time. Client applications use the Interface Repository for the
following reasons:

m CORBA client applications that use static invocation do not access the Interface
Repository at run time. The information about the CORBA object’s interfaces is
included in the client stub.

m CORBA client applications that use dynamic invocation use the Interface
Repository to learn about a CORBA object’s interfaces, and to invoke operations
on the object.

m ActiveX client applications are not aware that they are using the Interface
Repository. The BEA ActiveX Client uses CORBA operations to obtain
information about CORBA objects from the Interface Repository.

You use the following WebLogic Enterprise development commands to manage the
Interface Repository:

m Theidl 2i r command populates the Interface Repository with CORBA
interfaces. This command creates an Interface Repository if an Interface
Repository does not exist. Also use this command to update the CORBA
interfaces in the Interface Repository.

Creating CORBA Client Applications 1-7

Client Application Development Concepts

m The ir2idl command createsan OMG IDL file from the contents of the
Interface Repository.

m The irdel command deletes CORBA interfaces from the Interface Repository.

For adescription of the development commands for the Interface Repository, see
Commands, System Processes, and MIB Reference.

Domains

1-8

A domain isaway of grouping objects and services together as a management entity.
An WebL ogic Enterprise domain has at least one 11OP Listener/Handler and is
identified by a name. One client application can connect to multiple WebL ogic
Enterprise domains using different Bootstrap objects. For each WebL ogic Enterprise
domain, aclient application can get a FactoryFinder object, an InterfaceRepository
object, a SecurityCurrent object, a TransactionCurrent object, a NotificationService
object or a NameService object which correspond to the services offered within the
WebL ogic Enterprise domain. For a description of the Bootstrap object, the
FactoryFinder object, the InterfaceRepository object, the SecurityCurrent object, the
TransactionCurrent object, the NotificationService object, and the NameService
object, see “Environmental Objects” in this topic.

Note: Only one TransactionCurrent object and one SecurityCurrent object can exis
at the same time, and they must be associated with the same Bootstrap obje

Figure 1-3 illustrates how an WebLogic Enterprise domain works.

Creating CORBA Client Applications

Environmental Objects

Figure1-3 How an WebL ogic Enter prise Domain Works

Client Application Domain 1
HOP FactoryFinder
g Object
Bootstrap 1 Listener/)
/lhostl:portl Handler TransactionCurrent
/lhostl:portl Object

InterfaceRepository
Object

SecurityCurrent
Object

Environmental Objects

The WebL ogic Enterprise software provides a set of environmental objectsthat set up
communication between client applications and server applicationsin a particular
WebL ogic Enterprise domain. The WebL ogic Enterprise software provides the
following environmental objects:

m Bootstrap

This object establishes communication between a client application and an
WebL ogic Enterprise domain. It also obtains object references for the other
environmental objectsin the WebL ogic Enterprise domain.

m FactoryFinder

This CORBA object locates a factory, which in turn can create object references
for CORBA objects.

Creating CORBA Client Applications 1-9

1 dient Application Development Concepts

1-10

SecurityCurrent

Thisobject can be used to log a client application into an WebL ogic Enterprise
domain with the proper security. The WebL ogic Enterprise software provides an
implementation of the CORBA services Security Service.

TransactionCurrent

This object allows a client application to participate in atransaction. The
WebL ogic Enterprise software provides an implementation of the
CORBAservices Object Transaction Service (OTS).

User Transaction

This object allows a client application to participate in atransaction. The
WebL ogic Enterprise software provides an implementation of the Sun
Microsystems, Inc. Java Transaction Application Programming Interface (JTA
API). This object is supported with Java client and server applications only.

InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA
interfaces and the factories used to create object referencesto the CORBA
interfaces.

NotificationService

This object allows a client application to obtain a reference to the event channel
factory (CosNot i f yChannel Adni n: : Event Channel Fact ory) in the
CosNotification Service. In the WebL ogic Enterprise software, the
EventChannel Factory is used to locate the Notification Service channel. For
information about using the NotificiationService object, see Using the
Notification Service.

NameService

This object alows a client application to use a namespace to resolve object
references. The WebL ogic Enterprise software provides an implementation of
the CORBA services Name Service. For information about using the
NameService object, see Using the CORBA Name Service.

The WebL ogic Enterprise software provides environmental objects for the following
programming environments:

m C++

Creating CORBA Client Applications

Environmental Objects

m Java

m Automation

Bootstrap Object

The client application creates a Bootstrap object. A list of [10P Listener/Handlers can
be supplied either as aparameter or viathe TOBJADDR environmental variable or Java
property. A single I1OP Listener/Handler is specified as follows:

/'l host: port
For example, //nyser ver : 4000

Once the Bootstrap object is instantiated, ther esol ve_i ni ti al _ref er ences
method isinvoked, passing in a string id, to obtain a reference to an avail able object.
The valid values for the string id are FactoryFinder, TransactionCurrent,
SecurityCurrent, and I nterfaceRepository.

Figure 1-4 illustrates how the Bootstrap object worksin an WebL ogic Enterprise
domain.

Creating CORBA Client Applications 1-11

1 dient Application Development Concepts

Figure1-4 How the Bootstrap Object Works

Client

Application Domain

—> Bootstrap FactoryFinder

Object V\ Object

resolve_initial _references \) lHOP TransactionCurrent
Listener/Handler Object

FactoryFinder

‘ SecurityCurrent
Object Reference

Object

TransactionCurrent

) InterfaceRepository
Object Reference

Object

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

Factories and the FactoryFinder Object

Client applications get object references to CORBA objects from afactory. A factory
isany CORBA object that returns an object reference to another CORBA object and
registers itself with the FactoryFinder object.

To use a CORBA object, the client application must be able to locate the factory that
creates an object reference for the CORBA object. The Webl ogic Enterprise software
offers the FactoryFinder object for this purpose. The factories available to client
applications are those that are registered with the FactoryFinder object by WebL ogic
Enterprise server applications at startup.

The client application uses the following sequence of stepsto obtain areferenceto a
CORBA object:

1. OncetheBootstrap objectiscreated, ther esol ve_i ni ti al _r ef er ences method
isinvoked to obtain the reference to the FactoryFinder object.

1-12 Creating CORBA Client Applications

Environmental Objects

2. Client applications query the FactoryFinder object for object referencesto the
desired factory.

3. Client applications call the factory to obtain an object reference to the CORBA
object.

Figure 1-5 illustrates the client application interaction with the FactoryFinder object.

Figure1-5 How Client Applications Use the FactoryFinder Object

Domain
Client Application
Bootstrap Get FactoryFinder object. Facto WFinder
Dbject * » Object
+ FactoryFinder object returns |- —— - — — — — — — — — —— — :
Facto ryFinder ’ factory for CORBA abject. | |
Object i-—~ Factory |
. I I
Factory B Factory gets CORBA ohject. !.; CORBA Dbject :
I |
|
: Server Application I
| |

Naming Conventions and WebLogic Enterprise
Extensions to the FactoryFinder Object

The factories available to client applications are those that are registered with the
FactoryFinder object by the WebL ogic Enterprise server applications at startup.
Factories are registered using a key consisting of the following fields:

m The Interface Repository ID of the factory’s interface

m An object reference to the factory

Creating CORBA Client Applications ~ 1-13

1 dient Application Development Concepts

1-14

The FactoryFinder object used by the WebL ogic Enterprise software is defined in the
CORBAservices LifeCycle Service. The WebL ogic Enterprise software implements
extensionstotheCCs: : Li f eCycl e: : Fact or yFi nder interfacethat makeit easier for
client applications to locate afactory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the

COs: : Li f eCycl e: : Fact or yFi nder interface. These names consist of asequence of
NameConponent structures, which consist of | Dand ki nd fields.

The use of CORBA namesto locate factoriesis cumbersome for client applications; it
involves many callsto build the appropriate name structures and assembl e the Naming
Service name that must be passed to the fi nd_f act ori es method of the

COS: : Li feCycl e: : Fact oryFi nder interface. Also, since the method can return
more than one factory, client applications must manage the selection of an appropriate
factory and the disposal of unwanted object references.

The FactoryFinder object is designed to make it easier for client applicationsto locate
factories by extending the interface with smpler method calls.

The extensions are intended to provide the following simplifications for the client
application:

m Lettheclient application locate factories by id, using asimple string parameter
for theid field. This reduces the work needed by the client application to build
name structures.

m Permit the FactoryFinder object to implement aload balancing scheme by
choosing from a pool of available factories.

m Provide methods that return one object reference to afactory, instead of a
seguence of object references. This eliminates the need for client applications to
provide code to handle the selection of a single factory from a sequence, and
then dispose of the unneeded references.

The most straightforward application design can be achieved by using the

Tobj : : Fact oryFi nder ::fi nd_one_factory_by_i d methodin client applications.
This method accepts a simple string for factory id as input and returns one factory to
the client application. The client application is freed from the necessity of

mani pul ating name components and sel ecting among many factories.

Tousethe Tobj :: FactoryFinder::find_one factory by id method, the
application designer must establish a naming convention for factories that client
applications can use to easily locate factories for specific CORBA object interfaces.

Creating CORBA Client Applications

Environmental Objects

Ideally, this convention should establish some mnemonic types for factories that
supply object references for certain types of CORBA object interfaces. Factories are
then registered using these conventions. For example, a factory that returns an object
reference for Student objects might be called StudentFactory. For more information
about registering factories with the FactoryFinder object, see Creating C++ Server
Applications and Creating Java Server Applications.

Itisrecommended that you either usetheactual interface ID of thefactory inthe OMG
IDL file, or specify the the factory ID as a constant inthe OMG IDL file. This
technique ensures naming consistency between the client application and the server
application.

SecurityCurrent Object

The SecurityCurrent object is an WebL ogic Enterprise implementation of the
CORBAservices Security Service. The WebL ogic Enterprise security model is based
on authentication. Y ou use the SecurityCurrent object to specify the appropriate level
of security. The following levels of authentication are provided:

m TOBJ NOAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a user name and a client application name,
but no password.

m TOBJ SYSAUTH

The client application must authenticate itself to the WebL ogic Enterprise
domain and must specify a user name, client application name, and application
password.

m TOBJ APPAUTH

In addition to the TOBJ_SY SAUTH information, the client application must
provide application-specific information. If the default WebL ogic Enterprise
authentication serviceis used in the application configuration, the client
application must provide a user password; otherwise, the client application
provides authentication data that is interpreted by the custom authentication
service in the application.

Creating CORBA Client Applications ~ 1-15

1 dient Application Development Concepts

Note: If aclient application is not authenticated and the security level is
TOBJ_NQAUTH, the IOP Listener/Handler of the WebL ogic Enterprise domain
registersthe client application with the user name and client application name
sent to the I1OP Listener/Handler.

In the WebL ogic Enterprise software, only the Principal Authenticator and Credentials
properties on the SecurityCurrent object are supported. For information about using

the SecurityCurrent object in client applications, see Chapter 4, “Using Security.” For
a description of th&ecuri tyLevel 1:: Current and SecurityLevel 2:: Current
interfaces, refer to thé++ Programming Reference or theWebLogic Enterprise

Javadoc.

TransactionCurrent Object

The TransactionCurrent object is an WebLogic Enterprise implementation of the
CORBAservices Object Transaction Service. The TransactionCurrent object
maintains a transactional context for the current session between the client applicatic
and the server application. Using the TransactionCurrent object, the client applicatiol
can perform transactional operations, such as initiating and terminating a transactiol
and getting the status of a transaction.

Transactions are used on a per-interface basis. During design, the application desigr
decides which interfaces within an WebLogic Enterprise application will handle
transactionsA transaction policy for each interface is then defined in an
Implementation Configuration File (ICF). The transaction policies are:

m Never

The interface is not transactional. Objects created for this interface can never be
involved in a transaction. The WebLogic Enterprise software generates an
exception (NVALI D_TRANSACTI ON) if an interface with this policy is involved

in a transaction.

m Optional

The interface may be transactional. Objects can be involved in a transaction if
the request is transactional.

m Always

The interface must always be part of a transaction. If the interface is not part of ¢
transaction, a transaction will be automatically started by the TP framework.

1-16 Creating CORBA Client Applications

Environmental Objects

m Ignore

The interface is not transactional. The interface can be included in atransaction,
however, the AUTOTRAN policy specified for thisinterface in the UBBCONFI G
fileisignored.

For information about using the TransactionCurrent object in client applications, see
Chapter 5, “Using Transactions.” For a description of the TransactionCurrent object,
see theC++ Programming Reference or theWebL ogic Enterprise Javadoc.

InterfaceRepository Object

The InterfaceRepository object returns information about the Interface Repository in a
specific WebLogic Enterprise domain. The InterfaceRepository object is based on the
CORBA definition of an Interface Repository. It offers the proper set of CORBA
interfaces as defined by tl@®mmon Request Broker Architecture and Specification
Version 2.2.

CORBA client applications that use the Dynamic Invocation Interface (DIl) need to
access the Interface Repository programmatically. The exact steps taken to access the
Interface Repository depend on whether the client application is seeking information
about a specific CORBA interface or browsing the Interface Repository to find an
interface. In either case, the client application can ogggl to the Interface

Repository, it cannotriteto the Interface Repository.

Before a CORBA client application using DIl can browse the Interface Repository in
an WebLogic Enterprise domain, the client application needs to obtain an object
reference for the InterfaceRepository object in that domain. CORBA client
applications using DIl use the Bootstrap object to obtain the object reference.

ActiveX client applications are not aware they are using the Interface Repository
object. Like CORBA client applications, ActiveX client applications use the Bootstrap
object to obtain a reference to the Interface Repository object.

For information about using the Interface Repository object in CORBA client
applications that use DlII, see Chapter 6, “Using the Dynamic Invocation Interface.”
For a description of the Interface Repository object, se€t¥eProgramming
Reference.

Creating CORBA Client Applications ~ 1-17

1 dient Application Development Concepts

Concepts for ActiveX Client Applications

The following sections describe concepts that are specific to ActiveX client
applications.

What Is ActiveX?

ActiveX isaset of technologies from Microsoft that enables software components to
interact with one another in a networked environment, regardless of the language in
which the componentswere created. ActiveX is built on the Component Object M odel
(COM) and integrates with Object Linking and Embedding (OLE). OLE provides an
architecture for document embedding. Automation isthe part of COM that allows
applications such as Visual Basic, Delphi, and PowerBuilder to manipulate
Automation objects, ActiveX controls, and ActiveX documents.

The BEA ActiveX Client provides interoperability between the WebL ogic Enterprise
and COM object systems. The ActiveX Client transforms the interfaces of CORBA
objects in an WebL ogic Enterprise domain into methods on Automation objects.

Views and Bindings

1-18

ActiveX client applications use views of CORBA interfaces. Views represent the
CORBA interfacesin an WebL ogic Enterprise domain locally as Automation objects.
To use an ActiveX view of a CORBA object (referred to as an ActiveX view), you
need to create abinding for ActiveX. The binding describestheinterface of aCORBA
object to ActiveX. The interfaces of the CORBA objects are loaded into the Interface
Repository. Y ou then use the BEA Application Builder to create Automation bindings
for the interfaces.

The Application Builder is a development tool that you use along with a client
development tool (such as Visual Basic) to select which CORBA objectsin an
WebL ogic Enterprise domain you want your ActiveX client application to interact
with. For adescription of the Application Builder and how it works, seethe online help
that isintegrated into the Application Builder graphical user interface (GUI).

Creating CORBA Client Applications

Concepts for ActiveX Client Applications

The combination of the ActiveX client application and the generated binding creates
the ActiveX view of the object.

For a complete description of creating and using ActiveX client applications, see the
ActiveX Developer's Guide

Figure 1-6 illustrates how the ActiveX Client works.

Figure1-6 How the ActiveX Client Works

CORBAInterface.idl

\ 4

Interface Application Builder .| DICORBAInterface.tlb
Repository PP 4 (binding)

|

ActiveX Client
Application

) 4

Naming Conventions for ActiveX Views

Naming conventions describe an algorithm for mapping CORBA interfaces to
ActiveX to avoid type and variable name conflicts. Naming conventions a so indicate
how to use a given object. The names of all ActiveX methods begin with DI .

The ActiveX Client observes this naming convention when it creates Automation
bindings for CORBA interfaces. If a CORBA interface hasthe name Account, the
Automation binding for that interface has the name DI Account .

Creating CORBA Client Applications 1-19

1 dient Application Development Concepts

1-20

CORBA interface names are often scoped within nested level s known as modules;
however, in ActiveX, thereisno scoping. To avoid name conflicts, the ActiveX Client
exposes a CORBA interface into ActiveX with the name of the different scopes
prepended to the name of the interface.

For example, a CORBA interface named Account isdefinedinthe OMG IDL fileas:

nmodul e University

{
nodul e Student
{
interface Account
{// Qperations and attributes of the Account interface
};
b
b

In CORBA, thisinterfaceisnamed Uni versi ty: : Student : : Account . The ActiveX
Client trandates this nameto DI Uni ver sity_Student _Account for ActiveX.

Creating CORBA Client Applications

CHAPTER

2

Creating CORBA (Client
Applications

Thistopic includes the following sections:

The development process for CORBA C++ client applications
The development process for CORBA Java client applications

Obtaining the Object Management Group (OMG) Interface Definition Language
(IDL) file

Selecting the invocation type

Compiling the OMG IDL file

Writing the CORBA client application
Building the CORBA client application

Server applications acting as client applications

Using Java2 Applets

Creating CORBA Client Applications 2-1

2 Creating CORBA Client Applications

Summary of the Development Process for
CORBA C++ Client Applications

The stepsfor creating a CORBA C++ client application are as follows:

Step Description

1 Obtain the OMG IDL file for the CORBA interfaces used by
the CORBA C++ client application.

2 Select the invocation type.

3 UsethelDL compiler to compilethe OMG IDL file. Theclient

stubs are generated as aresult of compiling the OMG IDL.

4 Writethe CORBA C++ client application. Thistopic describes
creating abasic client application. You can also implement
security and transactions in your CORBA C++ client
applications.

m For information about implementing security in your
CORBA Java client application, see Chapter 4, “Using
Security.”

m Forinformation about using transactions in your CORBA

Java client application, see Chapter 5, “Using
Transactions.”

5 Build the CORBA C++ client application.

Each step in the processis explained in detail in the following sections.

The WebL ogic Enterprise development environment for CORBA C++ client
applications includes the fol lowing:

m The idl command, which compilesthe OMG IDL file and generates the client
stubs required for the CORBA interface.

m The buil dobj cl i ent command, which constructs a CORBA C++ client
application executable.

2-2 Creating CORBA Client Applications

Summary of the Development Process for CORBA Java Client Applications

m The C++ environmenta objects, which provide access to CORBA objectsin an
WebL ogic Enterprise domain and to the services provided by the CORBA

objects.

Summary of the Development Process for
CORBA Java (Client Applications

The BEA WebL ogic Enterprise software supportsinteroperability with the SUN Java
Development Kit (JDK) Javaclient.

Note: Seethe BEA Weblogic Installation Guide for the specific versions of

supported software

The steps for creating a CORBA Java client application are as follows:

Step

Description

1

Obtain the OMG IDL file for the CORBA interfaces used by
the CORBA Java client application.

Select the invocation type.

Use the devel opment tools provided by your CORBA Java
Object Request Broker (ORB) to compilethe OMG IDL file
and generate client stubs.

Write the CORBA Javaclient application. Thistopic describes
creating a basic client application. Y ou can also implement
security and transactions in your CORBA Java client
applications.

m For information about implementing security in your
CORBA Java client application, see Chapter 4, “Using
Security.”

m For information about using transactions in your CORBA

Java client application, see Chapter 5, “Using
Transactions.”

Creating CORBA Client Applications 2-3

2 Creating CORBA Client Applications

Step 1:

Step Description

5 Build the CORBA Java client application.

Each step in the processis explained in detail in the following sections.

Y ou need to use the devel opment tools provided by your CORBA Java ORB product
to compile the OMG IDL file, generate the client stubs, and build the CORBA Java
client application executable. Y ou use the Java environmental objects, which provide
access to CORBA objectsin an WebL ogic Enterprise domain and to the services
provided by the CORBA objects.

Obtaining the OMG IDL File

Generally, the OMG IDL filesfor the available interfaces and operations are provided
to the client programmer by the application designer. This section containsthe OMG
IDL for the Basic sample application. Listing 2-1 showsthe uni vb. i dI file, which
defines the following interfaces:

Interface Description Operations

Regi strar Obtains course information from the get _courses_synopsi s()
course database get _courses_det ail s()

Regi strar Factory Creates object references to the find registrar()
Registrar object

Cour seSynopsi sEnuner at or Gets a subset of the information from get _next _n()

the course database, and iteratively destroy()
returns portions of that subset to the
client application

2-4 Creating CORBA Client Applications

Step 1: Obtaining the OMG IDL File

Listing2-1 OMG IDL Filefor the Basic Sample Application

#pragma prefix "beasys. cont

nmodul e Uni versityB

{

typedef unsi gned | ong Cour seNunber;
typedef sequence<Cour seNurmber > Cour seNunber Li st ;

struct CourseSynopsi s

{

Cour seNunber cour se_nunber ;
string title;

b

typedef sequence<Cour seSynopsi s> CourseSynopsi sLi st ;
i nterface CourseSynopsi sEnunerat or

{
Cour seSynopsi sLi st get _next_n(
in unsigned |ong nunber _to_get,
out unsi gned | ong nunber _remai ni ng
b
voi d destroy();
b

typedef unsigned short Days;

const Days MONDAY = 1;

const Days TUESDAY = 2;

const Days WEDNESDAY = 4;

const Days THURSDAY = 38§;

const Days FRI DAY = 16;

struct d assSchedul e

{
Days cl ass_days; // bitmask of days
unsi gned short start_hour; // whole hours in mlitary tine
unsi gned short duration; // m nutes

}s

struct CourseDetails

{

Cour seNunber course_nunber;
doubl e cost;

unsi gned short nunmber_of credits;
Cl assSchedul e cl ass_schedul e;
unsi gned short nunber_of seats;
string title;

Creating CORBA Client Applications 2-5

Creating CORBA Client Applications

string pr of essor;
string descri pti on;

}

typedef sequence<CourseDetail s> CourseDetail sLi st;

interface Registrar

{
Cour seSynopsi sLi st

get _courses_synopsi s(

in string search_criteria,
in unsigned |ong nunber _to _get, // 0 = all
out unsigned | ong nunber _renai ni ng,

out CourseSynopsi sEnuner at or rest

Cour seDet ai | sLi st get _courses_detail s(in CourseNunberLi st
courses);

interface RegistrarFactory

{

Regi strar find_ registrar(

Step 2: Selecting the Invocation Type

2-6

Select the invocation type (static or dynamic) that you will use in the requests in the
client application. Y ou can use both types of invocation in a client application.

For an overview of static and dynamic invocation, see Chapter 1, “Client Application
Development Concepts.”

The remainder of this topic assumes that you chose to use static invocation in your
CORBA client application. If you chose to use dynamic invocation, see Chapter 6,
“Using the Dynamic Invocation Interface.”

Creating CORBA Client Applications

Step 3: Compiling the OMG IDL File

Step 3: Compiling the OMG IDL File

When creating CORBA C++ client applications, usethe i dl command to compilethe
OMG IDL file and generate the files required for the interface. The following isthe
syntax of the i dl command:

idl idlfilenane(s)

The IDL compiler generates aclient stub (i d/ fi | enane_c. cpp) and a header file
(i dI filename_c. h) that describe everything you need to have to use the client stub
from the C++ programming language. Y ou need to link these filesinto your client
application.

In addition, the IDL compiler generates skeletons that contain the signatures of the
CORBA object’s operations. The generated skeleton information is placed in the
idlfilename_s.cpp andidl filenane_s. hfiles. During development of the client
application, it can be useful to look at the server header files and skeleton file.

Note: Do not modify the generated client stub or the skeleton.

For a complete description of tHell command and options, sééblL ogic
Enterprise Commands, System Processes, and MIB Reference.

When creating CORBA Java client applications:

e If you are using JDK version 1.2, you can use thiét oj ava command to
compile the OMG IDL file. For more information about th# t oj ava
command, see the documentation for the JDK version 1.2.

e If you are using Netscape version 3.0 and Java Development Kit (JDK)
version 1.1.5, you need to use that product’s IDL compiler to compile the
OMG IDL.

Thei dl t oj ava command or the IDL compiler generates the following:
m The client stubs for each interface (t er f aceSt ub. j ava)

m The CORBA helper classg ft er faceHel per. j ava) and the CORBA holder
class (nt er f aceHol der . j ava) that describe everything you need to use the
client stub from the Java programming language.

Creating CORBA Client Applications 2-7

2 Creating CORBA Client Applications

Note that each OMG IDL defined exception defines an exception class and its hel per
and holder classes. Thecompiled. cl ass filesmust beinthe CLASSPATH of your client
application.

In addition, thei dI t oj ava command or the IDL compiler generates skeletons that
contain the signatures of the operations of the CORBA object. The generated skeleton
information is placed inthe _i nt er f acel npl Base file.

Step 4: Writing the CORBA (lient
Application

To participate in a session with an WebL ogic Enterprise server application, an

WebL ogic Enterprise client application must be able to get an object reference for a
CORBA object and invoke operations on the object. To accomplish this, the CORBA
client application code must do the following:

Initialize the WebL ogic Enterprise ORB.
Establish communication with the WebL ogic Enterprise domain.
Resolveinitia references to the FactoryFinder object.

Use afactory to get an object reference for the desired CORBA object.

a > w bR

Invoke operations on the CORBA aobject.

The following sections use portions of the client applicationsin the Basic sample
application to illustrate the steps. For information about the Basic sample application,
see the Guide to University Sample Applications. The Basic sample application is
located in the following directory on the WebL ogic Enterprise software kit:

dri ve:\WLEdi r\ sanpl es\ cor ba\ uni versi ty\basic

Initializing the ORB

All CORBA client applications must first initialize the ORB.

2-8 Creating CORBA Client Applications

Step 4: Writing the CORBA Client Application

Use the following code to initialize the ORB from a CORBA C++ client application:
C++
CORBA: : ORB_var orb=CORBA: : ORB_init(argc, argv, ORBi d);

Typically, no ORBId is specified and the default ORBid specified during installation
is used. However, when a client application is running on a machine that also has
server applications running and the client application wants to access server
applicationsin another WebL ogic Enterprise domain, you need to override the default
ORBId. This can be done by hard coding the ORBid as BEA_| | OP or by passing the
ORBId in the command lineas _CRBi d BEA || CP.

Use the following code to initialize the ORB from a CORBA Java client application:
Java Application

org.ong. CORBA. ORB orb = org. ong. CORBA. ORB.init (args, props);

Use the following code to initialize the ORB from a CORBA Java client applet:
Java Applet

org.ong. CORBA. ORB orb = org.ong. CORBA.ORB.init (this,null);

where t hi s isthe name of the Java applet

Establishing Communication with the WebLogic
Enterprise Domain

The client application creates a Bootstrap object. A list of [10P Listener/Handlers can
be supplied either as a parameter, via the TOBJADDR Java property or applet property.
A single I1OP Listener/Handler is specified as follows:

/'l host: port

When the |1OP Listerner/Handler is provided via TOBJ ADDR, the second argument of
the constructor can be null.

The host and port combination for the I10P Listener/Handler is defined in the
UBBCONFI Gfile. The host and port combination that is specified for the Bootstrap
object must exactly match the ISL parameter in the WebLogic Enterprise domain’s

Creating CORBA Client Applications 2-9

2 Creating CORBA Client Applications

UBBCONFI G file. The format of the host and port combination, as well as the
capitalization, must match. If the addresses do not match, the call to the Bootstrap
object will fail and the following message appearsin thelog file:

Error: Unofficial connection fromclient at <tcp/ip
adr ess>/ <port nunber >

For example, if the network address is specified as// TRI XI E: : 3500 inthe ISL
parameter in the UBBCONFI G file, specifying either //192.12. 4. 6. : 3500 or
//trixie: 3500 in the Bootstrap object will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Window NT, use the Network Control Panel to determine the
capitalization.

Thefollowing C++ and Java examples show how to use the Bootstrap object:

C++

Tobj _Boot strap* bootstrap = new Tobj Boot st rap(orb, “// host : port™),

Java

Use the following commands to get the valid I1OP Listener/Handlers for the client
application:

Native client applications

Properties prop = Tobj_Bootstrap.getNativeProperties();

Remote client applications

Properties prop = Tobj_Bootstrap.getRemoteProperties();

Usethe IIOP Listerner/Handler in the following command:

Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “// host : port™);,
Java Applet
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “// host : port”, this);

2-10

where t hi s isthe name of the Java applet

An WebL ogic Enterprise domain can have multiple [|OP Listener/Handlers. If you are
accessing an WebL ogic Enterprise domain with multiple I1OP Listener/Handl ers, you
supply alist of Host:Port ~ combinations to the Bootstrap object. If the second

Creating CORBA Client Applications

Step 4: Writing the CORBA Client Application

parameter of the Bootstrap command is an empty string, the Bootstrap object walks
through the list until it connects to an WebL ogic Enterprise domain. The list of 110P
Listener/Handlers can a so be specified in TOBJADDR.

If you want to access multiple WebL ogic Enterprise domains, you must create a
Bootstrap object for each WebL ogic Enterprise domain you want to access.

Resolving Initial References to the FactoryFinder Object

The client application must obtain initial references to the environmental objects that

provide services for the application. The Bootstrap object’s

resol ve_initial _references operation can be called to obtain references to the
FactoryFinder, InterfaceRepository, SecurityCurrent, TransactionCurrent,
NotificationService, and NameService environmental objects. The argument passed to
the operation is a string containing the name of the desired object reference. You need
to getinitial references only for the environmental objects you plan to use in your client
application.

The following C++ and Java examples show how to use the Bootstrap object to resolve
initial references to the FactoryFinder object:

C++

/'l Resol ve Factory Finder

CORBA: : (hj ect _var var_factory finder_oref = bootstrap.resolve_ initial_references
(“FactoryFinder”);

Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
(factory_finder_oref.in());

Java

/IResolve Factory Finder

org.omg.CORBA.Object off = bootstrap.resolve_initial_references
(“FactoryFinder”);

FactoryFinder ff=FactoryFinderHelper.narrow(off);

For information about using security in client applications, see Chapter 4, “Using
Security.” For information about transactions in client applications, see Chapter 5,
“Using Transactions.”

Creating CORBA Client Applications 2-11

2 Creating CORBA Client Applications

Using the FactoryFinder Object to Get a Factory

CORBA client applications get object referencesto CORBA objectsfrom factories. A
factory is any CORBA object that returns an object reference to another CORBA

object and registersitself asafactory. The client application invokes anoperation on a
factory to obtain an object reference to a CORBA object of a specific type. To use
factories, the client application must be able to locate the factory it needs. The
FactoryFinder object serves this purpose. For information about the function of the
FactoryFinder object, see Chapter 1, “Client Application Development Concepts.”

The FactoryFinder object has the following methods:
m find factories()
Returns a sequence of factories that match the input key exactly.
m find_one_factory()
Returns one factory that matches the input key exactly.
m find factories_by id()

Returns a sequence of factories whose id field in the name component matches
the input argument.

m find _one_factory_ by id()

Returns one factory whose id field in the factory’s CORBA name component
matches the input argument.

The following C++ and Java examples show how to use the FactoryFinder
find_one_factory_by_id method to get a factory for the Registrar object used in
the client application for the Basic sample applications:

C++

CORBA: : Obj ect _var var _registrar _factory oref = var_factory finder _ref->
find one_factory by id(UniversityB:: tc_ RegistrarFactory->id()
)

Uni versi tyB:: Regi strarFactory var var_RegistrarFactory ref =
Uni versi tyB: : Regi strarFactory:: narrow
var _Regi strarFactory_oref.in()

)

2-12 Creating CORBA Client Applications

Step 5: Building the CORBA Client Application

Java

org. ong. CORBA. Obj ect of = FactoryFinder.find one factory by id
(UniversityB. Regi strarFactoryHel per.id());
Uni versityB. Regi strarFactory F = UniversityB. Regi strarFactoryHel per. narrowof);

Using a Factory to Get a CORBA Object

Client applications call the factory to get an object reference to a CORBA object. The
client applicationsthen invoke operations on the CORBA object by passing it apointer
to the factory and any arguments that the operation requires.

The following C++ and Java examples illustrate getting the factory for the Registrar
object and then invoking the get _cour ses_det ai | s() method on the Registrar
object:
C++
Uni versityB: : Regi strar_var var_Registrar = var_Regi strarFactory->
find Registrar();
Uni versityB: : CourseDetail sList_var course_details |ist = Registrar_oref->
get _course_det ai | s(Cour seNunber Li st) ;

Java

Uni versityB. Regi strar gRegi strarCbjRef = F.find_registrar();
gRegi strar Cbj Ref. get _course_detail s(sel ected_course_nunbers);

Step 5: Building the CORBA (lient
Application

Thefinal step in the development of the CORBA client application isto produce the
executable client application. To do this, you heed to compil e the code and link against
the client stub.

Creating CORBA Client Applications ~ 2-13

2 Creating CORBA Client Applications

When creating CORBA C++ client applications, use the bui | dobj cl i ent command
to construct an WebL ogic Enterprise client application executable. The command
combines the client stubs for interfaces that use static invocation, and the associated
header files with the standard WebL ogic Enterprise libraries to form aclient
executable. For the syntax of the bui I dobj cl i ent command, see WebL ogic
Enterprise Commands, System Processes, and MIB Reference.

When compiling CORBA Java client applications, you need to include the Java
Archive (JAR) file that contains the Java classes for the WebL ogic Enterprise
environmental objects in your CLASSPATH. If you are using JDK Version 1.2, the
nBenvobj . j ar fileislocated in the following directory:

WLEdi r / udat aobj / j ava/j dk

Server Applications Acting as Client
Applications

To process arequest from a client application, the server application may need to
request processing from another server application. In this situation, the server
application is acting as a client application.

To act asaclient application, the server application must obtain a Bootstrap object for
the current WebL ogic Enterprise domain. The Bootstrap object for the server
application is aready available viaTP: : Boot st r ap (for CORBA C++ client
applications) or TP. Boot st r ap (for CORBA Java client applications). The server
application then uses the FactoryFinder object to locate afactory for the CORBA
object that can satisfy the request from the client application.

Using Java2 Applets

BEA WebL ogic Enterprise supports Java2 applets. To run Java2 applets, you need to
install the Java Plug-In product from Sun Microsystems, Inc. The Java Plug-in runs
Java applets in an HTML page using Sun’s Java Virtual Machine (JVM).

2-14 Creating CORBA Client Applications

Using Java2 Applets

Before downloading the Java Plug-in kit from the Sun web site, verify whether or not
the Java Plug-1n is already installed on your machine.

Netscape Navigator

In Netscape Navigator, choose the About Plug-Ins option from the Help menu in the
browser window. The following will appear if the Java Plug-Inisinstalled:

appl i cation/ x-java- appl et;version 1.2
Internet Explorer

From the Start menu in Windows NT version 4.0, select the Programs option. If the
Java Plug-Inisinstalled, a Java Plug-1n Control Panel option will appear.

If the Java Plug-In isnot installed, you need to download and install the JDK1.2
plug-in (j r e12- wi n32. exe) and the HTML Converter tool (ht ni conv12. zi p). You
can obtain both these products from j ava. sun. conf pr oduct s/ pl ugi n.

Y ou also need to read the Java Plug-In HTML Specification located at

j ava. sun. cont pr oduct s/ pl ugi n/ 1. 2/ docs. This specification explains the
changes Web page authors need to make to their existing HTML codeto have existing
JDK 1.2 applets run using the Java Plug-In rather that the brower’s default Java
run-time environment.

Write your Java applet. Use the following command to intialize the ORB from the Java
applet:

org.ong. CORBA. ORB orb = org.ong. CORBA.ORB.init (this,null);

To automatically launch the Java Plug-In when Internet Explorer or Netscape
Navigator browses the HTML page for your applet, us@®1€CT tag and th&VBED

tag in the HTML specification. If you use the HTML Converter tool to convert your
applet to HTML, these tags are automatically inserted. For more information about
using theOBJECT andEMBED tags, see

j ava. sun. com product s/ pl ugi n/ 1. 2/ docs/tags. htm .

Creating CORBA Client Applications ~ 2-15

2 Creating CORBA Client Applications

2-16 Creating CORBA Client Applications

CHAPTER

3

Creating ActiveX Client
Applications

Thistopic includes the following sections:

The development process for ActiveX client applications

An overview of the BEA Application Builder

Starting the Interface Repository server application

Loading the Automation environmental objects into the Interface Repository
Loading the CORBA interfaces into the Interface Repository

Creating ActiveX bindings for CORBA interfaces

Loading the type library for the ActiveX bindings

Writing the ActiveX client application

Creating a deployment package for the ActiveX client application

For adescription of the conceptsyou need to understand before devel oping an ActiveX
client application, see Chapter 1, “Client Application Development Concepts.”

Creating CORBA Client Applications 31

3 Creating ActiveX Client Applications

Summary of the Development Process for
ActiveX Client Applications

The stepsfor creating an ActiveX client application are as follows:

Step

Description

L oad the Automation environmental obj ectsintothe Interface
Repository.

Verify that the CORBA interfaces you want to access from
your ActiveX client application are loaded in the Interface
Repository. If necessary, load the Object Management Group
(OMG) I nterface Definition Language (IDL) definitionsfor the
CORBA interfaces into the Interface Repository.

Start the server application process for the Interface
Repository.

Usethe BEA Application Builder to create ActiveX bindings
for the interfaces of the CORBA object.

Load the type library for the ActiveX binding in your
development tool.

Write the ActiveX client application. This topic describes
creating abasic client application. You can also implement
security and transactions in your ActiveX client applications.

m For information about implementing security in your
ActiveX client application, see Chapter 4, “Using
Security.”

m Forinformation about using transactions in your ActiveX
client application, see Chapter 5, “Using Transactions.”

Create a deployment package for the ActiveX client
application.

Each step in the processis explained in detail in the following sections.

3-2 Creating CORBA Client Applications

The BEA Application Builder

The WebL ogic Enterprise devel opment environment for ActiveX client applications
includes the following:

m The idl 2i r command, which loads interface definitions defined in OMG IDL
into the Interface Repository

m The Application Builder, which creates ActiveX bindings for the interfaces of
CORBA objects and creates deployment packages for the interfaces

m The Automation environmental objects, which provide accessto ActiveX views
of CORBA aobjects (referred to as ActiveX views) in an WebL ogic Enterprise
domain and the services provided by the ActiveX views

The BEA Application Builder

The Application Builder is the development tool that creates ActiveX views of
CORBA objects. The Application Builder isthe primary user interface to the BEA
ActiveX Client. It can be used to select which CORBA objects are avail ableto desktop
applications, to create ActiveX views of the CORBA objects, and to create packages
for deploying ActiveX views of CORBA objectsto client machines.

To use an ActiveX view, you load the interfaces of the CORBA objects into the
Interface Repository. Y ou then create an ActiveX binding for the CORBA interface.
The binding describes the interface of a CORBA object to ActiveX. The combination
of the ActiveX client application and the generated binding creates the view of the
object.

Asshownin Figure 3-1, the Application Builder main window is partitioned into two
parts: the Services window and the Workstation Views window.

Creating CORBA Client Applications 3-3

3 Creating ActiveX Client Applications

Figure3-1 Application Builder Main Window

E‘Buildel - Services

Fle Edit “iew Took ‘Window Help

E@E o] alal 5] 2%

E| Services Hi=1 Workstation Yiews
E|[:| ‘weblogic ED Automation
=0 Irterfaces -zp DIUniversityB asic_Registrar

iC gﬁ UriversityB agic_CourseS ynopsisEnumerator

CourseSynopsisE numerator ﬁ UniversityB asic_R egistraF actone

gﬁ Registrar

[WisualE dge

For Help, press F1 o

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local WebL ogic Enterprise domain. Y ou
can create bindings for all the interfaces in the Interface Repository.

At the top of the Serviceswindow are entries for each object system that is available
from the WebL ogic Enterprise domain. The ActiveX Client supports only the

WebL ogic Enterprise object system. The objectsare displayed in the same hierarchical
format used in the Interface Repository, that is, as modul es, interfaces, operations, and
the parameters contained in operations. The [+] symbol indicates an object that can be
expanded to display the other objects.

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry from the Services window and into the Workstation Views window.

3-4 Creating CORBA Client Applications

Step 1: Loading the Automation Environmental Objects into the Interface Repository

For a description of the Application Builder and how it works, see the online help,
which isintegrated into the product graphical user interface (GUI).

Step 1: Loading the Automation
Environmental Objects into the Interface
Repository

L oad the Automation environmental objects into the Interface Repository so that the
interface definitions for the objects are available to ActiveX client applications. From
the MS-DOS prompt, enter the following command to load the OMG IDL file
(TOBJIN. i dI') into the Interface Repository:

prompt> idl2ir -D _TOBJ -I| drive:\W.Edi r\include drive:\W.Edi r\include\tobjin.idl

Step 2: Loading the CORBA Interfaces into
the Interface Repository

Before you can create an ActiveX view for a CORBA object, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Serviceswindow of the Application Builder. If adesired CORBA interface does not
appear in the Serviceswindow, usethe i dl 2i r command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the i dl 2i r
command is as follows:

idl2ir [repositoryfile.idl] file.idl

Creating CORBA Client Applications 35

3 Creating ActiveX Client Applications

Option Description

repositoryfile Directs the command to load the OMG IDL filesfor the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the WebL ogic
Enterprise domain that the ActiveX client application will
access.

file.idl Specifiesthe OMG IDL file containing definitions for the
CORBA interface.

For acomplete description of the i dl 2i r command, refer to WebLogic Enterprise
Commands, System Processes, and MIB Reference.

Chapter 2, “Creating CORBA Client Applications,” provides a sample OMG IDL file
that is the starting point for all the WebLogic Enterprise University sample
applications. Based on this OMG IDL file, the following CORBA interfaces should
appear in the Application Builder window:

m RegistrarFactory
B Registrar

m Cour seSynopsi sEnuner at or

For a complete description of the University sample applications, s&iitieto the
University Sample Applications.

Step 3: Starting the Interface Repository
Server Application

3-6

ActiveX client applications read the interface definitions for CORBA objects from the
Interface Repository dynamically at run time and translate them to Automation
objects. Therefore, the server application for the Interface Repository needs to be
started so that the interface definitions are available. UsdBth@ONFI Gfile to start

the server application process for the Interface Repository.

Creating CORBA Client Applications

Step 4: Creating ActiveX Bindings for the CORBA Interfaces

Note: In some cases, the system administrator may have performed this step.

In the UBBCONFI Gfilefor the WebL ogic Enterprise domain, check that TM FRSVR, the
server application for the Interface Repository, is started. The following entry should
appear in the UBBCONFI Gfile:

T™ FRSVR
SRVCGRP = SYS_GRP
SRVID = 6
RESTART =Y
MAXGEN = 5
GRACE = 3600

In addition, make sure that the | SL parameter to start the |1OP Listener/Handler is
specified. The following entry should appear in the UBBCONFI Gfile:

I SL
SRVGRP = SYS_GRP
SRID =5
CLOPT ="-A-- -n // TR XI E 2500"

where TRI XI E isthe name of the host (server) system and 2500 isthe port number.

For more information about starting server applications and specifying the ISL
parameter, see Administration Guide.

Step 4: Creating ActiveX Bindings for the
CORBA Interfaces

For an ActiveX client application to access a CORBA object, you must generate
ActiveX bindingsfor the interfaces of the CORBA object. Y ou use the Application
Builder to create the ActiveX bindings for CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the BEA WebL ogic Enterprise System
version 2.1 program group.

The Domain logon window appears.

Creating CORBA Client Applications 3-7

3 Creating ActiveX Client Applications

2. Enter the host name and port number that you specified in the | SL parameter in
the UBBCONFI Gfile in the logon window. Y ou must match exactly the
capitalization used in the UBBCONFI Gfile.

The Application Builder logon window appears.

3. Highlight the desired CORBA interface in the Services window and drag it to the
Workstation Views window, or cut the CORBA interface from the Services
window and pasteit into the Workstation Views window.

The Application Builder:

e Createsatypelibrary. By default, the type library isplaced in
\ WLEdi r\ TypeLi brari es.

Thetype library fileis named: DI nodul ename_i nt er f acenane. t| b

e Creates aWindows system registry entry, including unique Program IDs for
each object type, for the CORBA interface.

Y ou can now use the ActiveX view from an ActiveX client application.

For acompl ete description of the features of the Application Builder, see the online
help that isintegrated into the Application Builder graphical user interface (GUI).

Step 5: Loading the Type Library for the
ActiveX Bindings

3-8

Before you start writing your ActiveX client application, you need to load the type
library that describes the ActiveX binding for the CORBA interface in your
development tool. Follow your development product’s instructions for loading type
libraries.

For example, in Visual Basic, you use the References option on the Project menu tc
get a list of available type libraries. You then select the desired type libraries from the
list.

By default, the Application Builder places all generated type libraries in
\ WLEdi r\ TypeLi brari es. The type library for the ActiveX binding of the CORBA
interface has the following format:

Creating CORBA Client Applications

Step 6: Writing the ActiveX Client Application

Dl modul ename_i nterfacenane. tlb

Step 6: Writing the ActiveX Client
Application

The ActiveX client application must do the following:

1

2
3
4.
5
6

Include declarations for the Automation environmental objects, the factory for the
ActiveX view, and the ActiveX view.

. Establish communication with the WebL ogic Enterprise domain.

. Usethe Bootstrap object to obtain a reference to the FactoryFinder object.

Use afactory to obtain an object reference to an ActiveX view.

. Invoke operations on the ActiveX view.

. Deploy the ActiveX client application.

The following sections use portions of the ActiveX client applicationsin the Basic
sample application to illustrate the steps. For information about the Basic sample
application, see the Guide to the University Sample Applications. The Basic sample
application islocated in the following directory on the BEA WebL ogic Enterprise
software kit:

drive:\WLEdi r\ sanpl es\ cor ba\ uni ver si t y\ basi c

Including Declarations for the Automation
Environmental Objects, Factories, and ActiveX Views of
CORBA Objects

To prevent errors at run time, you need to declare the object types of:

The Automation environmental objects

Creating CORBA Client Applications 39

3 Creating ActiveX Client Applications

m Thefactoriesthat create the ActiveX views of the CORBA objects
m TheActiveX views

Thefollowing example is Visual Basic code that declares the Bootstrap and
FactoryFinder objects, thefactory for the ActiveX view of the Registrar object, and the
ActiveX view of the Registrar object:

\\ Decl are Bootstrap object\\
Publ i ¢ obj Bootstrap As DI Tobj Bootstrap
\\ Decl are FactoryFi nder object\\
Publ i ¢ obj Fact oryFi nder As Dl Tobj FactoryFi nder
\\Declare factory object for Registrar Object\\
Publ i ¢ obj Regi strarFactory As DI UniversityB Regi strarFactory
\\Declare the ActiveX view of the Registrar object\\
Publ i ¢ obj Regi strar As DI UniversityB Registrar

Establishing Communication with the WebLogic
Enterprise Domain

3-10

When writing an ActiveX client application, there are two steps to establishing
communication with the WebL ogic Enterprise domain:

1. Create the Bootstrap object.
2. Initialize the Bootstrap object.

Thefollowing Visual Basic exampleillustrates using the Cr eat ebj ect operationto
create a Bootstrap object:

Set objBootstrap = CreateObject(“Tobj.Bootstrap”)

Y ou then initialize the Bootstrap object. When you initialize the Bootstrap object, you
supply the host and port of the I1OP Listener/Handler of the desired WebL ogic
Enterprise domain, as follows:

objBootstrap.Initialize “// host : port”

The host and port combination for the I10P Listener/Handler is defined in the ISL
parameter of the UBBCONFIJile. The host and port combination that is specified for
the Bootstrap object must exactly match theISL parameter. The format of the host and

Creating CORBA Client Applications

Step 6: Writing the ActiveX Client Application

port combination, aswell as the capitalization, must match. If the addresses do not
match, the call to the Bootstrap object will fail and the following message appearsin
thelog file:

Error: Unofficial connection fromclient at <tcp/ip adress/<portnunber>

For example, if the network addressis specified as// TRI XI E: : 3500 inthe ISL
parameter in the UBBCONFI G file, specifying either //192. 12. 4. 6. : 3500 or
/1trixie: 3500 in the Bootstrap object will cause the connection attempt to fail .

An WebL ogic Enterprise domain can have multiple || OP Listener/Handlers. If you are
accessing an WebL ogic Enterprise domain with multiple 11OP Listener/Handl ers, you
supply alist of host : port combinationsto the Bootstrap object. The Bootstrap object
walks through the list until it connects to an WebL ogic Enterprise domain. The list of
[1OP Listener/Handlers can al so be specified in the TOBJ ADDRenvironmental variable.

If you want to access multiple WebL ogic Enterprise domains, you must create a
Bootstrap object for each WebL ogic Enterprise domain you want to access.

Obtaining References to the FactoryFinder Object

The client application must obtain initial referencesto the objectsthat provide services
for the application. The Bootstrap object is used to obtain referencesto the
FactoryFinder object, SecurityCurrent object, TransactionCurrent object,
NotificationService object, and NameService object. The argument passed to the
operation is a string containing the pr ogi d of the desired object. Y ou have to get
references only for the objects that you plan to use in your ActiveX client application.

The following Visual Basic example shows how to use the Bootstrap object to obtain
areference to the FactoryFinder object:

Set objFactoryFinder = objBootstrap.CreateObject(“Tobj.FactoryFinder”)

Using a Factory to Get an ActiveX View

ActiveX client applications get interface pointersto ActiveX viewsof CORBA objects
from factories. A factory isany CORBA object that returns an object reference to
another CORBA object. The ActiveX client application invokes an operation on a
factory to obtain an object reference to a CORBA object of aspecific type. To use

Creating CORBA Client Applications 3-11

3 Creating ActiveX Client Applications

factories, the ActiveX client application must beableto locatethefactory it needs. The
FactoryFinder object serves this purpose. For information about the function of the
FactoryFinder object, see Chapter 1, “Client Application Development Concepts.”

Use theCr eat ebj ect function to create the FactoryFinder object, and then use one
of the FactoryFinder object methods to find a factory. The FactoryFinder object has the
following methods:

m find factories()

Returns a sequence of factories that match the input key exactly.
m find_one_factory()

Returns one factory that matches the input key exactly.
m find factories_by id()

Returns a sequence of factories whose ID field in the name component matches
the input argument.

m find _one_factory_ by id()

Returns one factory whose ID field in the factory’'s CORBA name component
matches the input argument.

The following Visual Basic example shows how to use the FactoryFinder
find_one_factory_by_id() method to get a factory for the Registrar object used in
the client application for the Basic sample applications:

Set obj Regi strarFactory = objBsFactoryFi nder.find _one factory by id

(“RegistrarFactory”)
Set objRegistrar = RegistrarFactory.find_registrar

Invoking Operations on the ActiveX View

Invoke operations on the ActiveX view by passing it a pointer to the factory and any
arguments that the operation requires.

Thefollowing Visual Basic example shows how to invoke operations on an ActiveX
view:

‘Get course details from the Registrar object’
aryCourseDetails = objRegistrar.get_course_details(aryCourseNumbers)

3-12 Creating CORBA Client Applications

Step 7: Deploying the ActiveX Client Application

Step 7: Deploying the ActiveX Client
Application

To distribute ActiveX client applications to other client machines, you need to create
a deployment package. A deployment package contains all the data needed by the
client application to use ActiveX views of CORBA objects, including the bindings, the
type libraries, and the registration information. The deployment package is a
self-registering ActiveX control with the file extension. ocx.

To create a deployment package for an ActiveX view:
1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules, or click the right mouse button on the desired
view and choose the Deploy Modules option from the menu.

A confirmation window is displayed.

3. Click Create to create the deployment package.
By default, the deployment packageis placed in \ WLEdi r \ Packages.

Creating CORBA Client Applications ~ 3-13

3 Creating ActiveX Client Applications

3-14 Creating CORBA Client Applications

CHAPTER

4 Using Security

Thistopic describes how to use security in CORBA C++, CORBA Java, and ActiveX
client applications for the BEA WebL ogic Enterprise software. For a more detail ed
description of using security in WebL ogic Enterprise applications, see Using Security.

For an example of how security isimplemented in working client applications, seethe
description of the Security sample application in the Guide to the University Sample
Applications.

For an overview of the SecurityCurrent object, see Chapter 1, “Client Application
Development Concepts.”

Overview of WebLogic Enterprise Security

CORBA C++, CORBA Java, and ActiveX client applications use security to
authenticate themselves to the WebLogic Enterprise domain. Authentication is the
process of verifying the identity of a client application. By entering the correct logon
information, the client application authenticates itself to the WebLogic Enterprise
domain. The WebLogic Enterprise software uses authentication as defined in the
CORBAservices Security Service and provides extensions for ease of use.

A client application must provide security information according to the security level
defined in the desired WebL ogic Enterprise domain. This information is defined by the
WebLogic Enterprise system administrator in tBBCONFI G file for the WebLogic
Enterprise domain. When creating client applications, you must work with the
WebLogic Enterprise system administrator to obtain the correct security information
(such as the username and user password) for the WebLogic Enterprise domain you
want to access from the client application.

Creating CORBA Client Applications 4-1

4 Using Security

Summary of the Development Process for
Security

4-2

The steps for adding security to a client application are as follows:

Step Description

1 Use the Bootstrap object to obtain areference to the
SecurityCurrent object in the specified WebL ogic Enterprise
domain.

2 Get the Principal Authenticator object from the SecurityCurrent
object.

3 Usetheget _aut h_t ype operation of the

Principal Authenticator object to return the type of
authentication expected by the WebL ogic Enterprise domain.

4 Log on to the WebL ogic Enterprise domain using the required
security information.

5 L og off the WebL ogic Enterprise domain.

The following sections describe these steps and use portions of the client applications
in the Security sample application to illustrate the steps. For information about the
Security sample application, seethe Guideto the University Sample Applications. The
Security sample application islocated in the following directory on the WebL ogic
Enterprise software kit:

drive:\W.Edi r\ sanpl es\ corba\uni versity\security

Creating CORBA Client Applications

Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object

Step 1: Using the Bootstrap Object to Obtain
the SecurityCurrent Object

Use the Bootstrap object to obtain an object reference to the SecurityCurrent object for
the specified WebL ogic Enterprise domain. The SecurityCurrent object isa
Securitylevel 2:: Current object as defined by the CORBAservices Security
Service. For a complete description of the SecurityCurrent object, see Using Security.

The following C++ , Java, and Visual Basic examplesillustrate how the Bootstrap
object is used to return the SecurityCurrent object:

C++
CORBA: : (hj ect _var var_security current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security _current_ref =
SecurityLevel2::Current::_narrow(var_security _current_oref.in());

Java
org.omg.CORBA.Object SecurityCurrentObj =
gBootstrapObjRef.resolve _initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current secCur =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

Visual Basic

Set objSecurityCurrent = objBootstrap.CreateObject(“Tobj.SecurityCurrent”)

Step 2: Getting the PrincipalAuthenticator
Object from the SecurityCurrent Object

The SecurityCurrent object returns a reference to the Principal Authenticator for the
WebL ogic Enterprise domain. The Principal Authenticator is used to get the
authentication level required for an WebL ogic Enterprise domain.

Creating CORBA Client Applications 4-3

4 Using Security

Thefollowing C++, Java, and Visual Basic examplesillustrate how to obtain the
Principal Authenticator for an WebL ogic Enterprise domain:

C++

/1 Get the Principal Aut henticat or
SecuritylLevel 2:: Princi pal Aut henti cator_var var_princi pal _aut henti cator_oref =
var _security current _oref->principal _authenticator();
/I Narrow the Princi pal Aut henti cat or
Tobj :: Princi pal Aut henti cator _var var_bea_princi pal _authenticator =
Tobj :: Princi pal Aut henticator:: _narrow
var _principal _authenticator_oref.in());

Java

/1 Get the Principal Aut henti cat or
org. ong. SecuritylLevel 2. Pri nci pal Aut henti cator authlevel 2 =
secCur. princi pal _authenticator();
/I Narrow the Princi pal Aut henti cat or
com beasys. Tobj . Pri nci pal Aut henti cat or Cbj Ref gPri nAut hObj Ref =
(com beasys. Tobj . Pri nci pal Aut henti cat or)
org. ong. SecuritylLevel 2. Pri nci pal Aut henti cat or Hel per. narrow(aut hl evel 2) ;

Visual Basic

Set obj PrincAuth = obj SecurityCurrent. principal authenticator

Step 3: Obtaining the Authentication Level

Usethe Tobj : : Pri nci pal Aut henti cator::get _auth_type() method to get the
level of authentication required by the WebL ogic Enterprise domain.

For acomplete description of the Tobj : : Pri nci pal Aut henti cat or methods, see
Using Security.

Thefollowing C++, Java, and Visual Basic examplesillustrate how to obtain the
Principal Authenticator for an WebL ogic Enterprise domain:

C++

/I Determ ne the security | evel
Tobj :: Aut hType aut h_type = var _bea princi pal _aut henti cator->get _auth_type();

4-4 Creating CORBA Client Applications

Step 4: Logging on to the WebLogic Enterprise Domain with Proper Authentication

Java

/I Determ ne the security |evel
com beasys. Tobj . Aut ht ype aut hType = gPrinAut hObj Ref. get _auth_type();

Visual Basic

Aut hori tyType = obj PrinAut h. get _auth_type

Step 4: Logging on to the WebLogic
Enterprise Domain with Proper
Authentication

Usethe Tobj : : Pri nci pal Aut henti cator:: 1 ogon() methodto log your client
application into the desired WebL ogic Enterprise domain. The method requires the
following arguments:

B user_nane

The WebL ogic Enterprise username. Thisinformation isrequired for

TOBJ SYSAUTH and TOBJ APPAUTH authentication levels. Thisinformation
may be supplied for the TOBJ_NOAUTH authentication level; however, it is not
required. The system designer decides this name at design time.

m client_nane

The WebL ogic Enterprise client application name. Thisinformation is required
for TOBJ_SYSAUTH and TOBJ APPAUTH authentication levels. This
information may be supplied for the TOBJ_NOAUTH authentication level;
however, it is not required. Obtain this information from the system
administrator.

B system password

The WebL ogic Enterprise password. Thisinformation is required for
TOBJ SYSAUTH and TOBJ APPAUTH authentication levels. Obtain this
information from the system administrator.

Creating CORBA Client Applications 4-5

4 Using Security

4-6

W user_password

The user password for the WebL ogic Enterprise authentication service. This
information is required for the TOBJ APPAUTH authentication level.

W user_data

Application-specific data for authentication. This information is required when
the WebL ogic Enterprise domain the client application is accessing is hot using
the authentication service provided with the WebL ogic Enterprise software.

The user_password and user_dat a arguments are mutually exclusive, depending
on the authentication service used in the configuration of the WebL ogic Enterprise
software. If you are using an authentication service other than an authenti cation service
provided by the WebL ogic Enterprise software, provide the information required for
logon inthe user _dat a argument. The

Tobj : : Princi pal Aut henti cat or: : | ogon() method raisesa CORBA: : BAD_PARAM
exception if both user_passwor d and user _dat a are set.

If an WebL ogic Enterprise domain hasa TOBJ_NOAUTH authentication level, the
client application is not required to supply a user_nane or cl i ent_name when
logging on to the WebL ogic Enterprisedomain. If the client application does not logon
with auser_nane and c! i ent _nane, the I|OP Listener/Handler of the WebL ogic
Enterprise domain registers the client application with the user_nane and the

cli ent _nane set for the IIOP Listener/Handler in the UBBCONFI Gfile. However, the
client application can log on with any user_nane and ¢! i ent _nane.

Thel ogon() method returns one of the following:

B Security::AuthenticationStatus::SecAut hSuccess if the authentication
succeeded

B Security::AuthenticationStatus:: SecAut hFai | ur e if the authentication
failed or if the client application was already authenticated and did not log off
the WebL ogic Enterprise domain

Thefollowing C++, Java, and Visual Basic examplesillustrate how to use the
Tobj : : Princi pal Aut henti cat or:: | ogon() method:

Creating CORBA Client Applications

Step 5: Logging off the WebLogic Enterprise Domain

C++

Tobj : : Aut hType auth_type = var_bea_princi pal _authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_pri nci pal aut henti cat or - >l ogon(
user _nane,
client_nane,
syst em password,
user _password,
0);

Java

org.ong. Security. Aut henticati onStatus status = gPri nAut hObj Ref. | ogon
(gUserNanme, dientNane, gSystenmPassword, gUserPassword, 0);

Visual Basic

If AuthorityType = TOBJ_APPAUTH Then | ogonStatus = oPrincAuth. Logon(
User Nane, _
d i ent Nane, _
Syst enPassword, _
User Password, _
User Dat a)
End | f

Step 5: Logging off the WebLogic Enterprise
Domain

The client application must log off the current WebL ogic Enterprise domain before it
can log on as another user in the same WebL ogic Enterprise domain. Use the

Tobj : : Princi pal Authenticator: : 1 ogoff() method to discard the WebL ogic
Enterprise current authentication context and credentials. This method does not close
the network connectionsto the WebL ogic Enterprise domain. After logging off the
WebL ogic Enterprise domain, calls using the existing authentication fail if the
authentication typeisnot TP_NOAUTH.

Creating CORBA Client Applications 4-7

4 Using Security

4-8 Creating CORBA Client Applications

CHAPTER

5 Using Transactions

Thistopic describes how to use transactions in CORBA C++, CORBA Java, and
ActiveX client applicationsfor the WebL ogic Enterprise software. For amorein-depth
discussion of using transactions in WebL ogic Enterprise applications, see Using
Transactions.

For an example of how transactions are implemented in working client applications,
see the descrption of the Transactions sample application in the Guide to the
University Sample Applications.

For an overview of the TransactionCurrent object, see Chapter 1, “Client Application
Development Concepts.”

Overview of WebLogic Enterprise
Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. The transactions in the WebLogic Enterprise software allow
client applications to begin and terminate transactions and to get the status of
transactions. The WebLogic Enterprise software uses transactions as defined in the
CORBAservices Object Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within an WebLogic Enterprise client/server application will handle
transactionsTransaction policies are defined in the Implementation Configuration
File (ICF) for C++ server applications, or in the Server Description file (XML) for Java
server applications. Generally, the ICF file or the Server Description file for the
available interfaces is provided to the client programmer by the application designer.

Creating CORBA Client Applications 5-1

5 Using Transactions

If you prefer, you can use the Transaction application programming interface (API)
defined inthe j avax. t ransact i on package that is shipped with the BEA WebL ogic
Enterprise Java version 2.2 software.

Summary of the Development Process for
Transactions

The steps for adding transactions to a client application are as follows:

Step Description

1 Use the Bootstrap object to obtain areference to the
TransactionCurrent object in the specified WebL ogic
Enterprise domain.

2 Use the methods of the TransactionCurrent object to include
the interface of a CORBA object in a transaction operation.

The following sections describe these steps and use portions of the client applications
in the Transactions sample application to illustrate the steps. For information about the
Transactions sample application, see the Guide to the Univer sity Sample Applications.
The Transactions sample application is located in the following directory on the
WebL ogic Enterprise software kit:

drive:\WLEdi r\ sanpl es\ corba\uni versi ty\transactions

5-2 Creating CORBA Client Applications

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object

Step 1: Using the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Bootstrap object to obtain an object reference to the TransactionCurrent object
for the specified WebL ogic Enterprise domain. For acompl ete description of the
TransactionCurrent object, see Using Transactions.

The following C++, Java, and Visual Basic examplesillustrate how the Bootstrap
object is used to return the TransactionCurrent object:

C++

CORBA: : (hj ect _var var_transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(var_transaction_current_oref.in());

Java
org.omg.CORBA.Object transCurObj = gBootstrapObjRef.resolve_initial_references
(“TransactionCurrent”);
org.omg.CosTransactions.Current gTransCur=
org.omg.CosTransactions.CurrentHelper.narrow(transCurObj);

Visual Basic

Set objTransactionCurrent = objBootstrap.CreateObject(“Tobj. TransactionCurrent”)

Step 2: Using the TransactionCurrent
Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain
information about the current transaction. The TransactionCurrent object providesthe
following methods:

Creating CORBA Client Applications 5-3

5 Using Transactions

5-4

begi n()

Creates a new transaction. Future operations take place within the scope of this
transaction. When a client application begins a transaction, the default
transaction timeout is 300 seconds. You can change this default, using the

set _timeout method.

commit ()

Ends the transaction successfully. Indicates that all operations on this client
application have completed successfully.

rol | back()
Forces the transaction to roll back.
rol | back_only ()

Marks the transaction so that the only possible action isto roll back. Generally,
this method is used only in server applications.

suspend()

Suspends participation in the current transaction. This method returns an object
that identifies the transaction and alows the client application to resume the
transaction later.

resune()

Resumes participation in the specified transaction.

get _status()

Returns the status of a transaction with a client application.
get _transacti on_nane()

Returns a printable string describing the transaction.

set _timeout ()

M odifies the timeout period associated with transactions. The default transaction
timeout value is 300 seconds. If atransaction is automatically started instead of
explicity started with the begin() method, the timeout value is determined by the
value of the TRANTIME parameter in the UBBCONFI Gfile. For more
information about setting the TRANTIME parameter, see Administration Guide
available from the WebL ogic Enterprise online information set.

get _control ()

Returns a control object that represents the transaction.

Creating CORBA Client Applications

Step 2: Using the TransactionCurrent Methods

A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj : : Transact i onCurrent: : begi n() method. Thismethod does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If acall to any of these operations raises an exception (either
explicitly or as aresult of acommunications failure), the exception can be caught
and the transaction can be rolled back.

3. UsetheTobj:: TransactionCurrent: conmit () method to committhe
current transaction. This method ends the transaction and starts the processing of
the operation. The transaction is committed only if al of the participants in the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application callsthe Tobj : : Transact i onCur r ent : commi t () method or
the Tobj :: TransactionCurrent:rol | back() method.The following C++,
Java, and Visual Basic examplesillustrate using a transaction to encapsulate the

operation of a student registering for a class:
C++

//Begin the transaction
var _transaction_current_oref->begin();

try {
/Il Performthe operation inside the transaction

poi nter _Regi star_ref->register_for_courses(student _id, course_nunber list);

/11f operation executes with no errors, commit the transaction:
CORBA: : Bool ean report_heuristics = CORBA TRUE;
var_transaction_current_ref->commt(report_heuristics);

}
catch (...) {
//1f the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//1f the rollback fails,ignore the exception and throw the
//original exception again.

try {
var_transaction_current _ref->roll back();

}
catch (...) {
TP: :userlog("roll back failed");

}

t hr ow;

}

Creating CORBA Client Applications

5-5

5 Using Transactions

Java

try{
gTransCur. begin();

/I Performthe operation inside the transaction
not _registered =
gRegi strar Obj Ref . regi ster_for_courses(student _id, sel ected_course_nunbers);

if (not_registered != null)

/11f operation executes with no errors, commt the transaction
bool ean report _heuristics = true;
gTransCur.comm t (report _heuristics);

} else gTransCur.rollback();

} catch(org.ong. CosTransacti ons. NoTransacti on nte) {
System.err.printin(“NoTransaction: “ + nte);

System.exit(1);

} catch(org.omg.CosTransactions.SubtransactionsUnavailable e) {
System.err.printin(“Subtransactions Unavailable: “ + e);
System.exit(1);

} catch(org.omg.CosTransactions.HeuristicHazard e) {
System.err.printin(“HeuristicHazard: “ + e);

System.exit(1);

} catch(org.omg.CosTransactions.HeuristicMixed e) {
System.err.printin(“HeuristicMixed: “ + e);

System.exit(1);

}

Visual Basic
' Begin the transaction
objTransactionCurrent.begin
' Try to register for courses

NotRegisteredList = objRegistrar.register_for_courses(mStudentID,
CourselList, exception)

If exception.EX_majorCode = NO_EXCEPTION then
' Request succeeded, commit the transaction

Dim report_heuristics As Boolean

report_heuristics = True
objTransactionCurrent.commit report_heuristics

5-6 Creating CORBA Client Applications

Step 2: Using the TransactionCurrent Methods

El se
" Request failed, Roll back the transaction
obj Transacti onCurrent. rol | back
MsgBox "Transacti on Rolled Back"
End I f

Creating CORBA Client Applications 5-7

5 Using Transactions

5-8 Creating CORBA Client Applications

CHAPTER

6

Using the Dynamic
Invocation Interface

Thistopic includes the following sections:

When to use the Dynamic Invocation Interface (DII)

DIl concepts

The development process for client applications using DI
Loading the CORBA interfaces into the Interface Repository
Obtaining a generic object reference

Creating a request

Sending DI reguests and retrieving the results

Deleting the request

Using the Interface Repository with DI

Theinformation in thistopic appliesto CORBA C++ and CORBA Java client
applications. DIl is not supported in ActiveX client applications.

For an overview of the invocation types and DIl, see Chapter 1, “Client Application
Development Concepts.”

For a complete description of the CORBA member functions mentioned in this topic,
see theC++ Programming Reference or the JDK 1.2 documentation for Java
mappings of the CORBA member functions.

Creating CORBA Client Applications 6-1

6 Using the Dynamic Invocation Interface

When to Use DII

6-2

Thereare good reasonsto use either static or dynamic invocation to send requestsfrom
the client application. Y ou may find you want to use both invocation typesin the same
client applications. To choose an invocation type, you need to understand the
advantages and disadvantages of DI|.

One of the major differences between static invocation and dynamic invocationisthat,
while both support synchronous and one-way communication, only dynamic
invocation supports deferred synchronous communication.

In synchronous communication, the client application sends a request and waits until
aresponse isretrieved; the client application cannot do any other work whileit is
waiting for the response. In deferred synchronous communication, the client
application sends the request and is free to do other work. Periodically, the client
application checksto seeif the request hascompl eted; when the request has completed,
the client application makes use of the result of that request.

In addition, DIl enables a client application to invoke a method on a CORBA object
whose type was unknown at the time the client application was written. This contrasts
with static invocation, which requires that the client application include a client stub
for each type of CORBA object the client application intendsto invoke. However, DI
ismore difficult to program (your code has to do the work of a client stub).

A client application can use DIl to obtain better performance. For example, the client
application can send multiple deferred synchronous requests at the same time and can
handl e the completions asthey occur. If the requestsgo to different server applications,
thiswork can bedonein parallel. Y ou cannot do thiswhen you are using synchronous
client stubs.

Note: The client stubs have optimizations, that allow the client stubsto achieve
quicker response timethan is achieved with DIl when sending a single request
and immediately blocking to get the response for that request.

DIl ispurely an interface to the client application; static and dynamic invocations are
identical from a server application’s point of view.

Creating CORBA Client Applications

DIl Concepts

DII Concepts

DIl frequently offers more than one way to accomplish atask, the trade-off being
programming simplicity versus performance. This section describes the high-level
concepts you need to understand to use DII. Details, including code examples, are
provided later in this topic.

The concepts presented in this section are as follows:
m Request objects
m Request sending options

m Reply receiving options

Request Objects

A request object represents one invocation on one method of a CORBA object. If you
want to make two invocations on the same method, you need to create two request
objects.

To invoke a method, you need an object reference to the CORBA object that contains
the method. Y ou use the object reference to create a request object, populate the
request object with arguments, send the request, wait for thereply, and obtain the result
from the request.

Y ou can create a reguest object in the following ways:

m Usethe CORBA: : Qbj ect: : _request member function.

Use the CORBA: : bj ect : : _request member function to create an empty
request object specifying only the interface name you intend to invoke in the
request (for example, get _cour se_det ai | s) . Once the reguest object is
created, the arguments, if there are any, must be added before the request can be
sent to the server application. You invoke the CORBA: : NVLi st : : add_val ue
member function for each argument required by the method you intend to
invoke.

You must also specify the type of the request’s result using the
CORBA: : Request : : resul t member function. For performance reasons, the

Creating CORBA Client Applications 6-3

6 Using the Dynamic Invocation Interface

messages exchanged between Object Request Brokers (ORBs) do not contain
type information. By specifying a place holder for the result type, you give the
ORB the information it needs to properly extract the result from the reply.
Similarly, if the method you are invoking can raise user exceptions, you must
add a place holder for exceptions before sending the request object.

m Usethe CORBA:: Obj ect:: create_request member function.

When you use the CORBA: : Obj ect:: _create_request member function to
create arequest object, you pass all the arguments required to make the request
and to specify the types of the result and user exceptions, if there are any, that
the request may return. Using this member function, you create an empty

NV List, add arguments to the NV List one at atime, and create the request
object, passing the completed NV List as an argument to the request. The
potentia advantage of the CORBA: : Obj ect : : _create_request member
function is performance. You can reuse the arguments in multiple

CORBA: : ORB: : _creat e_r equest callsif you invoke the same method on
multiple target objects.

For a compl ete description of the CORBA member functions, see the C++
Programming Reference available from the WebL ogic Enterprise online information
set.

Options for Sending Requests

6-4

Once you have created and populated a request object with arguments, a result type,
and exception types, you send the request to the CORBA object. There are several
ways to send a request:

m Thesimplest way isto call the CORBA: : Request : : i nvoke member function,
which blocks until the reply message is retrieved.

m More complex, but not blocking, isto use the
CORBA: : Request : : send_def er r ed member function.

m |If you want to invoke multiple CORBA requestsin parallel, use the
CORBA: : ORB: : send_nul tiple_requests_deferred member function. It
takes a sequence of request objects.

m Usethe CORBA: : Request : : send_oneway member function if, and only if, the
CORBA method has been defined as oneway in the OMG IDL file.

Creating CORBA Client Applications

DIl Concepts

m You can invoke multiple oneway methods in parallel with the ORB’s
CORBA: : ORB: : send_nul ti pl e_requests_oneway member function.

Note: When using th&@ORBA: : Request : : send_def er r ed member function, the
invocation on the request object acts synchronously when the target object is
in the same address space as the client application issuing the invocation. As
a result of this behavior, calling tldes Tr ansacti on: : Current : : suspend
operation does not raise theRBA: : BAD_| N_ORDER exception, because the
transaction has completed.

For a complete description of the CORBA member functions, se@ttie
Programming Reference or the JDK 1.2 documentation for the Java mappings of the
CORBA member functions.

Options for Receiving the Results of Requests

If you send a request using the invoke method, there is only one way to get the result:
use the request object’®RBA: : Request : : env member function to test for an
exception; and if there is not exception, extract the NVList from the request object
using theCORBA: : Request : : resul t member function.

If you send a request using the deferred synchronous method, you can use any of the
following member functions to get the result:

m CORBA:: ORB:: pol |l _response

This member function determines whether a request has completed and is ready
to be processed. This member function does not block. If the request is ready,
the client application has to use th& _response() or

get _next _r esponse() member functions to process the response. Use this
member function when you don't care about the order in which reponses are
processed, you want the client application to process other requests while
waiting for a specific response, or you want to impose a timeout.

m CORBA:: ORB:: poll_next _response

This member function indicates whether a response for any outstanding request
is ready to be processed. If the request is ready, the client application has to use
theget _response() orget _next _response() member functions to process

the response. Use this member function when the order in which requests are

Creating CORBA Client Applications 6-5

6 Using the Dynamic Invocation Interface

processed is not important and you want the client application to process other
requests while waiting for a specific response.

B CORBA: : ORB: : get _reponse

This member function blocks until the reponse for the specific request is
completed and processed. Use this member function when you want to process
the requests for outstanding requests in a particul ar order.

B CORBA: : ORB: : get _next_response

This member function blocks until a reponse for any outstanding requests are
completed and processed. Use this member function when the order in which
reguests are processed is not important.

If you used the CORBA: : Request : : send_oneway member function, thereisno result.

For a compl ete description of the CORBA member functions, see the C++
Programming Reference.

Summary of the Development Process for
DIl

The stepsfor using DIl in client applications are as follows:

Step Description

1 L oad the CORBA interfaces into the Interface Repository.

2 Obtain an obj ect referencefor the CORBA object on whichyou
want to invoke methods.

3 Create arequest object for the CORBA object.

4 Send the DI request and retrieve the results.

5 Delete the request.

6 Use the Interface Repository with DII.

6-6 Creating CORBA Client Applications

Step 1: Loading the CORBA Interfaces into the Interface Repository

The following sections describe these steps in detail and provide C++ code examples.

Step 1: Loading the CORBA Interfaces into
the Interface Repository

Before you can create CORBA client applications that use DI, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Serviceswindow of the Application Builder. If adesired CORBA interface does not
appear in the Serviceswindow, usethe i dl 2i r command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the i dl 2i r
command is as follows:

idl2ir [-f repositoryfile.idl] file.idl

Option Description

-f repositoryfile Directs the command to load the OMG IDL filesfor the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the WebL ogic
Enterprise domain that the ActiveX client application will
access.

file.idl Specifiesthe OMG IDL file containing definitions for the
CORBA interface.

For a complete description of the i dl 2i r command, see the C++ Programming
Reference.

Creating CORBA Client Applications 6-7

6 Using the Dynamic Invocation Interface

Step 2: Obtaining the Object Reference for
the CORBA Object

Use the Bootstrap object to get a FactoryFinder object. Then use the FactoryFinder
object to get afactory for the CORBA object you want to access from the DIl request.
For an example of using the Boostrap and FactoryFinder objects to get afactory, see
Chapter 2, “Creating CORBA Client Applications.”

Step 3: Creating a Request Object

When your client application invokes a method on a CORBA object, you create a
request for the method invocation. The request is written to a buffer and sent to the
server application. When your client application uses client stubs, this processing
occurs transparently. Client applications that want to use DIl must create a request
object and must send the request.

Using the CORBA::Object::_request Member Function

The following C++ code example illustrates how to use the
CORBA: : Qbj ect : : _request member function:

Bool ean aResul t;

CORBA: : ULong I ongl = 42;

CORBA: : Any in_argl;

CORBA: : Any & n_argl ref = in_argl;

in_argl <<= | ongl;

/1l Create the request using the short form
Request_ptr reqp = anObj->_request(“anOp”);

/I Use the argument manipulation helper functions
reqp->add_in_arg() <<=in_argl_ref;

6-8 Creating CORBA Client Applications

Step 3: Creating a Request Object

/1 W& want a bool ean result
reqp->set _return_type(_tc_bool ean);

/1 Provide sone place for the result
CORBA: : Any: : from bool ean bool ean_return_i n(aResul t);
reqp->return_value() <<= bool ean_return_in;

/1 Do the invoke
reqp- >i nvoke();

// No error,

so get the return val ue

CORBA: : Any: :to_bool ean bool ean_return_out (aResult);
reqp->return_value() >>= bool ean_return_out;

Using the CORBA::Object::create_request Member

Function

When you use the CORBA: : Obj ect : : cr eat e_r equest member function to create a
request object, you create an empty NV List and you add arguments to the NV List one
at atime. Y ou create the request object, passing the completed NV List as an argument
to the reguest.

Setting Arguments for the Request Object

The arguments for arequest object are represented with an NV List object that stores
named/value objects. Methods are provided for adding, removing, and querying the
objectsin the list. For a complete description of CORBA: : NVLi st , seethe C++
Programming Reference.

Setting Input and Output Arguments with the CORBA::NamedValue Member

Function

The CORBA: : NamedVal ue member function specifies a named/value object that can
be used to represent both input and output arguments for a request. The named/value
objects are used as arguments to the request object. The CORBA: : NanedVal ue pair is
also used to represent the result of areguest that is returned to the client application.
The name property of anamed/val ue object isacharacter string, and the value property
of anamed/value object is represented by a CORBA Any.

Creating CORBA Client Applications 6-9

6 Using the Dynamic Invocation Interface

For acomplete description of the CORBA: : NamedVal ue member function, see the
C++ Programming Reference available from the WebL ogic Enterprise online

information set.

Example of Using CORBA::0Object::create_request Member Function

Thefollowing C++ code exampleillustrates how to use the
CORBA: : Qbj ect : : create_r equest member function:

CORBA: : Request _ptr reqgp;

CORBA: : Cont ext _ptr ctx;

CORBA: : NanedVal ue_ptr bool ean_resultp = 0;

Bool ean bool ean_resul t;

CORBA: : Any bool ean_result _any(CORBA: : _tc_bool ean,
CORBA: : NVLi st _ptr arg list = 0;

CORBA: : Any arg;

/1 Get the default context
or bp->get _defaul t_context (ctx);

/1l Create the named val ue pair for the result
(voi d) orbp->create_naned_val ue(bool ean_resul tp);
CORBA: : Any *tnmpany = bool ean_result p->val ue();
*tmpany = bool ean_result_any;

arg.repl ace(CORBA: : _tc_long, & ong_arg, CORBA FALSE)

/1 Create the NVLi st
orbp->create_list(1, arg_list);

/1 Add an IN argunment to the I|ist
arg_list->add_value(“argl”, arg, CORBA::ARG_IN);

/I Create the request using the long form
anObj->_create_request (ctx,
“anOp”,
arg_list,
boolean_resultp,
reqp,
CORBA::VALIDATE_REQUEST);
/I Do the invoke
regp->invoke();

CORBA::NamedValue_ptrresult_namedvalue;
Boolean aResult;

CORBA::Any *result_any;

/I Get the result

6-10 Creating CORBA Client Applications

& bool ean_result);

Step 4: Sending a DIl Request and Retrieving the Results

resul t _namedval ue = reqp->result();
result_any = result_nanmedval ue->val ue();

/1 Extract the Boolean fromthe any
*result_any >>= aResult;

Step 4: Sending a DII Request and
Retrieving the Results

Y ou can invoke arequest in several ways, depending on what kind of communication
type you want to use. This section describes how the CORBA member functions are
used to send requests and retrieve the results.

Synchronous Requests

If you want synchronous communication, the CORBA: : Request : : i nvoke member
function sends the request and waits for aresponse before it returnsto the client
application. Use the CORBA: : Request : : resul t member function to return a
reference to anamed/val ue object that represents the return value. Once the results are
retrieved, you read the values from the NV List stored in the request.

Deferred Synchronous Requests

The nonblocking member function, CORBA: : Request : : send_deferred, isalso
provided for sending requests. It allowsthe client application to send arequest and then
usethe CORBA: : Request : : pol | _response member function to determinewhen the
responseis available. The CORBA: : Request : : get _r esponse member function
blocks until aresponseis available.

The following code example illustrates how to use the
CORBA: : Request : : send_def err ed, CORBA: : Request : : pol | _response, and
CORBA: : Request : : get _response member functions:

Creating CORBA Client Applications 6-11

6 Using the Dynamic Invocation Interface

request->send_deferred ();

if (poll)
{

}

(int k=0; k <10 ; k++)

CORBA: : Bool ean done = request->pol | _response();
if (done)
br eak;

request - >get _response();

Oneway Requests

Usethe CORBA: : Request : : send_oneway member function to send a oneway
reguest. Oneway requests do not involve aresponse from the server application. For a
complete description of the CORBA: : Request : : send_oneway member function, see
the C++ Programming Reference available from the WebL ogic Enterprise online
information set.

Thefollowing code example illustrates how to use the
CORBA: : Request : : send_oneway member function:

request - >send_oneway();

Multiple Requests

6-12

When a sequence of request objectsis sent using the

CORBA: : Request : : send_nul ti pl e_requests_def err ed member function, the
CORBA: : ORB: : pol | _response, CORBA: : ORB: : pol | _next _response,

CORBA: : ORB: : get _response, and CORBA: : ORB: : get _next _r esponse member
functions can be used to retrieve the response the server application sends for each

request.

The CORBA: : ORB: : pol | _response and CORBA: : ORB: : pol | _next response
member functions can be used to determine if aresponse has been retrieved from the
server application. These member functionsreturn alif thereis at least one response
available, and a zero if there are no responses available.

Creating CORBA Client Applications

Step 4: Sending a DIl Request and Retrieving the Results

The CORBA: : ORB: : get _r esponse and CORBA: : ORB: : get _next _response
member functions can be used to retrieve aresponse. If no responseisavailable, these
member functions block until aresponse isretrieved. If you do not want your client
application to block, use the CORBA: : ORB: : pol | _next _r esponse member function
to first determine when aresponse is available, and then use the

CORBA: : ORB: : get _next _r esponse method to retrieve the result.

Y ou can also send multiple oneway requests by using the
CORBA: : Request : : send_nul ti pl e_requests_oneway member function.

The following code example illustrates how to use the

CORBA: : Request : :send_nul ti pl e_requests_deferred,
CORBA: : Request : : pol | _next _response, and

CORBA: : Request : : get _next _response member functions:

CORBA: : Context _ptr ctx;

CORBA: : Request _ptr request s[2] ;

CORBA: : Request _ptr request ;

CORBA: : NVLi st _ptr arg listl, arg_ list2;

CORBA: : ULong i, nreq;

CORBA: : Long argl = 1;

Bool ean aResult1l = CORBA FALSE;

Bool ean expected_aResul t1 = CORBA TRUE;
CORBA: : Long arg2 = 3;

Bool ean aResult2 = CORBA FALSE;

Bool ean expected_aResul t2 = CORBA_TRUE
try

{

or bp- >get _defaul t _cont ext (ctx);

popul ate_arg_list (&rg_listl, &argl, &Resultl);

nreq = 0;
an(bj ->_create_request (ctx,
“Multiply”,
arg_list1,
0,
requests[nreq++],

’

populate_arg_list (&arg_list2, &arg2, &aResult2);
anObj->_create_request (ctx,

“Multiply”,
arg_list2,

Creating CORBA Client Applications 6-13

6 Using the Dynamic Invocation Interface

0,
request s[nreq++],
0);

/1 Declare a request sequence variable...
CORBA: : ORB: : Request Seq rseq (nreq, nreq, requests, CORBA FALSE);

orbp->send_mul ti pl e_requests_deferred (rseq);
for (i =0 ; i <nreq; i++)

{

}
/1 Now check the results

requests[i]->get_response();

if (aResultl !'= expected aResultl)
{

cout << “aResultl=" << aResultl << “ different than expected: “ <<
expected_aResultl;

}

if (aResult2 != expected_aResult2)

{
cout << “aResult2=" << aResult2 << “ different than expected: “ <<
expected_aResult2;

}

aResultl = CORBA_FALSE;
aResult2 = CORBA_FALSE;

/I Using the same argument lists, multiply the numbers again.
/I This time we intend to poll for response...

orbp->send_multiple_requests_deferred (rseq);

/I Now poll for response...

for (i=0;i<nreq;i++)

{

/I We will randomly poll maximum 10 times...
for (intj=0;j<10;j++)

CORBA::Boolean done = requests|i]->poll_response();
if (done) break;
}

}

/I Now actually get the response...

6-14 Creating CORBA Client Applications

Step 4: Sending a DIl Request and Retrieving the Results

for (i =0 ; i <nreq; i++)

{
}

/1 Now check the results
if (aResultl !'= expected aResultl)
{

requests[i]->get_response();

cout << “aResult1=" << aResultl << “ different than expected: “ <<
expected_aResultl

if (aResult2 '= expected_aResult2)

{
cout << “aResult2=" << aResult2 << “ different than expected: “ <<
expected_aResult2;

}

aResultl = CORBA_FALSE;
aResult2 = CORBA_FALSE;

/I Using the same argument lists, multiply the numbers again.
/I Call get_next_response, and WAIT for a response.
orbp->send_multiple_requests_deferred (rseq);

/I Poll until we get a response and then use get_next_response get it...
for(i=0;i<nreq;it+)
{
CORBA::Boolean res = 0;

while (!res)

{

res = orbp->poll_next_response();

}
orbp->get_next_response(request);
CORBA::release(request);

/I Now check the results
if (aResultl != expected_aResultl)

{
cout << “aResult1=" << aResultl << “ different than expected: “ <<
expected_aResultl;

if (aResult2 |= expected_aResult2)

{
cout << “aResult2=" << aResult2 << “ different than expected: “ <<
expected_aResult2;

}

Creating CORBA Client Applications 6-15

6 Using the Dynamic Invocation Interface

static void populate_arg list (

CORBA: : NVLi st _ptr ArglLi st
CORBA: : Long * Argl,
CORBA: : Long * Result)
{

CORBA: : Any any_ar gi;
CORBA: : Any any result;

(* ArgList) = 0;
orbp->create list(3, *ArgList);

any_argl <<= *Argl,;
any _result.replace(CORBA:: tc_bool ean, Result, CORBA FALSE);

(*ArgList)->add_value(“argl”, any_argl, CORBA::ARG_IN);
(*ArgList)->add_value(“result”, any_result, CORBA::ARG_OUT);

return;

}

Step 5: Deleting the Request

Once you have been notified that the request has successfully completed, you need to
decide if you want to delete the existing request, or reuse portions of the request in the
next invocation.

To delete the entire request, use the CORBA::Release(request) member function
on the request to be deleted. This operation releases al memory associated with the
reguest. Deleting a request that was issued using the deferred synchronous
communication type causes that request to be canceled if it has not completed.

6-16 Creating CORBA Client Applications

Step 6: Using the Interface Repository with DIl

Step 6: Using the Interface Repository with

DII

A client application can create, populate, and send requests for objects that were not
known to the client application when it wasbuilt. To do this, the client application uses
the Interface Repository to retrieve information needed to create and populate the
requests. The client application uses DIl to send the requests, since it does not have
client stubs for the interfaces.

Although this technique is useful for invoking operations on a CORBA object whose
type is unknown, performance becomes an issue because of the overhead interaction
with the Interface Repository. Y ou might consider using thistype of DIl request when
creating a client application that browses for objects, or when creating a client
application that is an administration tool.

The steps for using the Interface Repository in a DIl request are as follows:

1. Set ORB_| NCLUDE_REPOSI TCRY in CORBA. h to the location of the Interface
Repository file in your WebL ogic Enterprise system.

2. Usethe Bootstrap object to obtain the InterfaceRepository object, which contains
areference to the Interface Repository in a particular WebL ogic Enterprise
domain. Once the reference to the Interface Repository is obtained, you can
navigate the Interface Repository from the root.

3. Usethe CORBA: : Obj ect:: _get i nterface member function to communicate
with the server application that implements the desired CORBA object.

4. UseCORBA: : I nterfaceDef_ptr togetthe definition of the CORBA interface
that is stored in the Interface Repository.

5. Locatethe Operati onDescri pti on for the desired operation in the
Ful I I nterfaceDescri pti on operations.

6. Retrieve the repository ID from the Qper ati onDescri pti on.

7. Cal CORBA: : Repository: : 1 ookup_id using the repository ID returned in the
Qper ati onDescri pti on to look up the Qper at i onDef in the Interface
Repository. This cal returns the contained object.

Creating CORBA Client Applications 6-17

6 Using the Dynamic Invocation Interface

8. Narrow the contained object to an Qper at i onDef .

9. Usethe CORBA: : ORB: : cr eat e_operat i on_| i st member function, using the
Oper at i onDef argument, to build an argument list for the operation.

10. Set the argument value within the operation list.

11. Send the request and retrieve the results as you would any other request. You can
use any of the options described in this topic to send arequest and to retrieve the
results.

6-18 Creating CORBA Client Applications

CHAPTER

[/ Handling Exceptions

Thistopic describeshow CORBA C++, CORBA Java, and ActiveX client applications
handle CORBA exceptions.

CORBA Exception Handling Concepts

CORBA definesthe following types of exceptions:

m System exceptions, which are general errors, such as running out of memory and
communication failures. System exceptions include exceptions raised by the
object request broker (ORB). The CORBA specification defines a set of system
exceptions that can be raised when errors occur in the processing of arequest
from aclient application.

m User exceptions, which are exceptions triggered by an object, where the
exception contains user-defined data. When you define your CORBA object’s
interface in OMG IDL, you can specify the user exceptions that the object may
raise.

The following sections describe how each type of client application handles
exceptions.

CORBA System Exceptions

Table 7-1 lists the CORBA system exceptions.

Creating CORBA Client Applications 7-1

7 Handling Exceptions

Table 7-1 CORBA System Exceptions

Exception Name

Description

BAD_CONTEXT

An error occured while processing context objects.

BAD | NV_ORDER

Routine invocations are out of order.

BAD_OPERATI ON

Invalid operation.

BAD_PARAM Aninvalid parameter was passed.
BAD_TYPECODE Invalid typecode.
COVW _FAI LURE Communication failure.

DATA_ CONVERSI ON

Data conversion error.

FREE_MEM Unabl e to free memory.

IMP_LIMT Implementation limit violated.

I NI TI ALI ZE ORB initialization failure.

| NTERNAL ORB internal error.

| NTF_REPCS An error occurred while accessing the Interface
Repository.

I NV_FLAG Invalid flag was specified.

I NV_I DENT Invalid identifier syntax.

I NV_OBJREF Invalid object reference was specified.

MVARSHAL Error marshaling parameter or result.

NO_I MPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERM SSI ON

No permission for attempted operation.

NO_RESOURCES

Insufficient resources to process request.

NO_RESPONSE

Creating CORBA Client Applications

Response to request not yet available.

CORBA C++ Client Applications

Table 7-1 CORBA System Exceptions (Continued)

Exception Name Description

OBJ_ADAPTER Failure detected by object adapter.
OBJECT_NOT_EXI ST Object is not available.

PERSI ST_STORE Persistent storage failure.

TRANSI ENT Transient failure.

UNKNOAN Unknown result.

CORBA C++ Client Applications

Since both system and user exceptions require similar functionality, the

Syst enExcept i on and User Except i on classes are derived from the common
Excepti on class. When an exception israised, your client application can narrow
fromthe Except i on classto aspecific Syst enExcepti on or User Except i on class.
The C++ Exception inheritance hierarchy is shown in Figure 7-1.

Figure7-1 C++ Exception Inheritance Hierarchy

Exception

UserException SystemException

User-Defined
Exceptions

Standard Exceptions

Creating CORBA Client Applications 7-3

7 Handling Exceptions

The Except i on class provides the following public operations:
B copy constructor
m destructor

B narrow

Thecopy constructor anddestruct or operations automatically manage the
storage associated with the exception.

The _nar r owoperation allows your client application to catch any type of exception
and then determine its type. The except i on argument passed to the _nar r ow
operation isapointer to the base class Except i on. The _nar r ow operation accepts a
pointer to any Exception object. If the pointer is of type Syst enExcepti on, the
narrow() operation returnsapointer to the exception. If the pointer is not of type
Syst enExcept i on, thenarrow() operationreturnsaNul | pointer.

Unlikethe _nar row operation on object references, the _nar r ow operation on
exceptions returns a suitably typed pointer to the same exception argument, not a
pointer to a new exception. Therefore, you do not free a pointer returned by the

_nar r ow operation. If the original exception goes out of scope or is destroyed, the

pointer returned by the _nar r ow operation is no longer valid.

Note: TheWebL ogic Enterprise sample applications do not use the _nar r ow
operation.

Handling System Exceptions

7-4

The CORBA C++ client applicationsin the WebL ogic Enterprise sample applications
use the standard C++ try-catch exception handling mechanism to raise and catch
exceptions when error conditions occur, rather than testing status values to detect
errors. This exception-handling mechanism is aso used to integrate CORBA
exceptions into WebL ogic Enterprise client applications. In C++, cat ch clauses are
attempted in the order specified, and the first matching handler is called.

Thefollowing examplefrom the C++ client application in the Basic sample application
shows printing an exception using the << operator.

Note: Throughout thistopic, bold text is used to highlight the exception code within
the example.

Creating CORBA Client Applications

CORBA C++ Client Applications

try{

//1nitialize the ORB
CORBA: : ORB* or b=CORBA: : ORB_ini t(argc, argv, ORBid);

/1 Get a Bootstrap bject
Tobj _Boot strap* bs= new Tobj Boot strap(orb, “// host : port™),

/IResolve Factory Finder

CORBA::Object_var var_factory_finder_oref = bs->
resolve_initial_reference(“FactoryFinder”);

Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
(var_factory_finder_oref.in());

cat ch(CORBA: : Exception& e) {
cerr <<e.get _id() <<endl;
}

User Exceptions

User exceptions are generated from the user-written OMG IDL file in which they are
defined. When handling exceptions, the code should first check for system exceptions.
System exceptions are predefined by CORBA, and often the application cannot
recover from a system exception. For example, system exceptions may signal
problems in the network transport or signal internal problemsin the ORB. Once you
have tested for the system exceptions, test for specific user exceptions.

The following C++ example shows the OMG IDL file that declares the
TooManyCredits user exceptioninsidethe Registar interface. Note that exceptions
can be declared either within amodule or within an interface.

excepti on TooManyCredits
{

unsigned short maximum_credits;

I
interface Registrar

NotRegisteredList register_for_courses(
in Studentld student,
in CourseNumberList courses
) raises (
TooManyCredits
)i

Creating CORBA Client Applications 7-5

7 Handling Exceptions

Thefollowing C++ code example shows how a TooManyCr edi t s user exception
would work within the scope of atransaction for registering for classes:

/I Regi ster a student for some course

try {
poi nter_registrar_reference->regi ster_for_courses

(student _id, course_nunber |ist);
catch (UniversityT:: TooManyCredits& e) {

cout <<"You cannot register for nore than"<< e.maxi numcredits
<<"credits."<<endl;

CORBA Java Client Applications

Note: Theinformation in this section is based on the OMG IDL/Java Language
Mapping Specification, orbog/97-03-01. Revised: March 19, 1997.

Java client applications handle exceptionsin a similar way to C++ client applications:
m System exceptions inherit from j ava. | ang. Runt i meExcept i on.
m User-defined exceptions inherit from j ava. | ang. Except i on.

Figure 7-2 shows the inheritance hierarchy of the Java Exception classes.

7-6 Creating CORBA Client Applications

CORBA Java Client Applications

Figure 7-2 Java Exception Inheritance Hierar chy

java.lang.exception

org.omg.CORBA
.UserException

java.lang.Runtime
.exception

User-Defined
Exceptions

org.omg.CORBA
.SystemException

System Exceptions

Thestandard OMG IDL system exceptions are mapped to final Javaclassesthat extend
or g. onmg. CORBA. Syst enmExcept i on and provide accessto the OMG IDL major and
minor exception code, as well as a string describing the reason for the exception.

Note: There are no public constructorsfor or g. omg. CORBA. Syst enExcept i on;
only classesthat extend it can be instantiated.

The Java class name for each standard OMG IDL exception isthe same asits OMG
IDL name and is declared to bein the or g. onmg. CORBA package. For example, the
CORBA-defined system exception BAD_CONTEXT maps to Java as

or g. onmg. CORBA. BAD_CONTEXT. The default constructor supplies zero for the minor
code, COVPLETED_NOfor the completion code, and ““ for the reason string. There is
also aconstructor that takes the reason and uses defaults for the other fields, aswell as
aconstructor that requires all three parameters to be specified.

Creating CORBA Client Applications 7-7

7 Handling Exceptions

Thefollowing Java code example illustrates how to use system exceptions:
try

/I Resol ve Fact or yFi nder
org. ong. CORBA. Obj ect of f = bs.resolve_initial _references
(“FactoryFinder”);

FactoryFinder ff=FactoryFinderHelper.narrow(off);

org.omg.CORBA.Object of = FactoryFinder.find_one_factory by id
(UniversityT.RegistrarFactoryHelper.id());

UniversityT.RegistrarFactory F =
UniversityT.RegistrarFactoryHelper.narrow(of);

catch (org. ong. CORBA. Syst enException e)

Systemerr.println("System exception " + e);
Systemexit(1);

User Exceptions

User exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped like the OM G IDL
struct datatype, including the generation of Helper and Holder classes.

If the exception is defined within anested OMG IDL scope (essentialy within an
interface), its Java class name is defined within a specia scope. Otherwise, its Java
class name is defined within the scope of the Java package that correspondsto the
exceptions’s enclosing OMG IDL module.

The following is an example of a user exception:

/I Regi ster for Courses

try{
gRegi strar Obj Ref . regi ster_for_courses(student _id, selected _course_nunbers);

cat ch(Uni versityT. TooManyCredits e)

{
Systemerr.println("TooManyCredits: " +e);

Systemexit(1);

7-8 Creating CORBA Client Applications

ActiveX Client Applications

ActiveX Client Applications

ActiveX client applications use the Visual Basic error handling model, which alows
you to perform specia actionswhen an error occurs, such as jumping to a particular
error handling routine. When an exception occursin an ActiveX client application, the
standard Visual Basic error handling works as expected; however, the amount of error
information that Visual Basic returns for any exceptionsis very limited.

Visual Basic provides additional information about the exception that occurred
through the descri pt i on property of the Visua Basic built-in Er r or object. When
an error occurs, the description string is set to indicate what type of error occurred. The
object returns a predefined datatype for the exceptions. User exceptions are named to
distinguish between them.

When using the Visual Basic error handling model, the description string describesthe
following:

m Whether the exception was a user or a system exception
m The name of the exception
m Whether or not the operation completed before the exception occurred

The Visual Basic error handling model cannot return exception-specific information,
such as the user data of a user exception.

To compensate for this shortcoming, ActiveX views of CORBA objects have an
additional optional exception return parameter that returns auser exception. When you
supply the optional exception object, no Visual Basic exception is triggered. Instead,
the return parameter returns the exception information.

If an exception occurs, the return parameter contains an object to get the data from the
exception. Thisobject issimilar to a structure pseudo-object, with properties for each
value. To determine the type of exception, use the exception object properties
EX_maj or Code or EX_mi nor Code. The EX_maj or Code object property has three
possible values:

m 0 when no exception occurred
m 1 when asystem exception occurred

m 2 when auser exception occurred

Creating CORBA Client Applications 7-9

7 Handling Exceptions

Thefollowing is an example of Visua Basic code that handles exceptions:

Di m except Type As ExceptionType
Di m except I nfo As DI Forei gnException

Set exceptlnfo = Exc
except Type = except | nfo. EX maj or Code

Sel ect Case except Type

Case NO_EXCEPTI ON
msg = "No Exception" & vbCrlLf
MsgBox nsg

Case SYSTEM EXCEPTI ON

"For a system exception, the returned variant supports the
"m nor Code and conpl eti onStatus properties.

Di m m nor Code As Long
Di m conpl etionStatus As CORBA Conpl eti onSt at us
Di m conpl eti onMsg As String

m nor Code = except | nf o. EX_m nor Code
conpl etionStatus = exceptlnfo.EX conpl etionStatus
Sel ect Case conpl etionSt at us
Case COWPLETI ON_NO
conpl eti onMsg = "No"
Case COWPLETI ON_YES
conpl eti onMsg = "Yes"
Case COVPLETI ON_MAYBE
conpl eti onMsg = " Maybe"

End Sel ect

nmsg = " System Exception" & vbOrLf

nmsg = neg & " M nor Code = " & m norCode & vbCrLf

nmsg = neg & " Conpletion Status =" & conpl etionMsg & vbCrlLf
MsgBox nsg

7-10 Creating CORBA Client Applications

ActiveX Client Applications

Case USER EXCEPTI ON

"If it is a user exception, the returned variant supports
"the properties for the defined user exceptions.

nmsg = "User Exception" & vbOrLf
nsg = neg & " Exception: " & exceptlnfo.l NSTANCE repositoryld &

vbCr Lf
MsgBox nsg

End Sel ect

Creating CORBA Client Applications 7-11

7 Handling Exceptions

7-12 Creating CORBA Client Applications

Index

A

ActiveX 1-16
concepts 1-16
bindings 1-16
views 1-16
naming conventions 1-17
ActiveX client applications
concepts 1-16
creating
bindings 3-7
views 3-7
defining security 4-2
deploying views 3-13
description 1-1
development process 3-2
establishing communication with the
domain 3-10
handling exceptions 7-9
invoking operations on objects 3-11
ISL parameter 3-7
loading environmental objects into the
Interface Repository 3-5
loading interfaces into the
Interface Repository 3-5
resolving initia references
to objects 3-11
starting a server application for the
Interface Repository 3-6
using factories 3-11
using security 4-2
using the Interface Repository 1-6

using transactions 5-2
writing 3-9
Application Builder
creating
bindings 3-7
deployment packages 3-13
typelibraries 3-8
views 3-7
description 1-16
ISL parameter 3-7
windows 3-3
authentication levels
getting
C++4-4
Java4-4
Visua Basic 4-4
in client applications 4-4
supported in the M3 software 1-13
TOBJ APPAUTH 1-13
TOBJ NOAUTH 1-13
TOBJ SYSAUTH 1-13
Automation environmental objects
loading into the Interface Repository 3-5
TOBJIN.IDL 3-5
writing declarations for 3-9

B

bindings
creating 3-7
deploying 3-13

Creating CORBA Client Applications -1

description 1-16

Bootstrap object

declaration

Visua Basic 3-10
description 1-9
getting SecurityCurrent object 4-3
getting TransactionCurrent object 5-2
resolving initial references

C++2-10

Java 2-10

Visua Basic 3-10
using in server applications 2-13
using with DIl 6-8

building

CORBA C++ client applications 2-13
CORBA Javaclient applications 2-13

buildobjclient command 2-2

C

C++4-6

code examples
Bootstrap object 2-10
factories 2-12
FactoryFinder object 2-11
initializing the ORB 2-8
logging on to the domain 4-6
Principal Authenticator object 4-3
SecurityCurrent object 4-3
system exceptions 7-4
TransactionCurrent object 5-2
transactions 5-5
user exceptions 7-5
using the Bootstrap object 2-10
handling exceptions 7-3

catching exceptions

C++7-4
Java7-7
Visual Basic 7-9

client applications

-2

choosing to use DIl 6-2

Creating CORBA Client Applications

supported 1-1
using security 4-1
using transactions 5-4

client stubs

defined 1-4
description 1-5
generating 1-5, 2-7

code examples

Bootstrap object

C++2-10

Java 2-10

Visua Basic 3-10
declarations

Visua Basic 3-10
factories

C++2-12

Java 2-12

Visua Basic 3-11
FactoryFinder object

C++2-11

Java 2-11

Visua Basic 3-11
invoking operations

C++2-12

Java 2-12

Visua Basic 3-11, 3-12
logging on to the M3 domain 4-6

C++4-5

Java4-5

Visua Basic 3-10
OMG IDL 2-4
ORB

initializing

C++2-8
Java2-8

Principal Authenticator object

C++4-3

Java4-3

Visua Basic 4-4
SecurityCurrent object

C++4-3
Java 4-3
Visua Basic 4-3
system exceptions
C++7-4
Java 7-7
Visua Basic 7-9
TransactionCurrent object
C++5-2
Java 5-2
Visua Basic 5-2
transactions
C++5-5
Java 5-5
Visua Basic 5-5
user exceptions
C++7-5
Java 7-8
Visua Basic 7-9
compiling
OMG IDL 2-6
CORBA C++ client applications 2-2
building 2-13
defining security 4-2
description 1-1
development process 2-1
handling exceptions 7-3
invocation type 2-6
invoking operations on objects 2-12
resolving initia references
to objects 2-10
system exceptions 7-3
user exceptions 7-5
using DIl 6-6
using factories 2-11
using security 4-2
using static invocation 2-6
using the Interface Repository 1-6
using transactions 5-2
writing 2-8
CORBA interfaces

creating bindings for 3-7

loading into the Interface Repository 3-5

CORBA Java client applications
building 2-13
defining security 4-2
description 1-1
devel opment process 2-3
handling exceptions 7-6
invocation type 2-6

invoking operations on objects 2-12

required files 2-13

resolving initia references
to objects 2-10

software requirements 2-3

system exceptions 7-6

user exceptions 7-8

using DIl 6-6

using factories 2-11

using security 4-2

using static invocation 2-6

using the Interface Repository 1-6

using transactions 5-2
writing 2-8

CORBA system exceptions
description 7-1

CORBAservices Object Transaction Service

5-1
CORBA Services Security service 4-1
CourseSynposisEnumerator interface
OMG IDL 2-4

D

deferred synchronous communication
using DIl 6-2

deployment package
description 3-13
directory location 3-13

devel opment commands
buildobjclient 2-2
idl 2-2

Creating CORBA Client Applications

idi2ir 1-6
ir2idl 1-6
irdel 1-6

development process

DIl

ActiveX client applications 3-2
CORBA C++ client applications 2-1
CORBA Java client applications 2-3
DIl 6-6

security 4-2

transactions 5-2

choosing 6-2
concepts
receiving options 6-3
Request objects 6-3
sending requests 6-3
creating arequest 6-8
deferred synchronous
communication 6-2
deleting reguests 6-16
Interface Reposity, using with 6-16
loading CORBA interfacesinto Interface
Repository 6-7
sending requests
deferred synchronous 6-11
multiple 6-12
oneway 6-12
synchronous 6-11
using NVList 6-9
using the Bootstrap object 6-8
using the FactoryFinder object 6-8

directory location

deployment package 3-13
type libraries 3-8

domains

-4

authentication level 4-3

defining security for 4-1

description 1-7

establishing communication with 2-8
ActiveX client applications 3-10

figure 1-7

Creating CORBA Client Applications

logging off 4-7
logging on with Principal Authenticator
object 4-5
dynamic invocation
description 1-4
how it works 1-4
illustrated 1-4

E

environmental objects 1-8
Automation 1-8, 3-3
Bootstrap 1-8
C++1-8,2-2
description 1-8
FactoryFinder 1-8
Interface Repository 1-8
Java 1-8
SecurityCurrent 1-8
TransactionCurrent 1-8

exceptions
concepts 7-1
CORBA system exceptions 7-1
system 7-1
user 7-1

F

factories 3-9
code examples
C++2-12
Java 2-12
Visua Basic 3-11
creating CORBA objects 1-10
declaration
Visua Basic 3-10
description 1-10
naming conventions 1-11
FactoryFinder object 2-11
code examples
C++2-11

Java 2-11

Visua Basic 3-11
declaration

Visua Basic 3-10
description 1-10
illustrated 1-10
methods 2-11
using in server applications 2-13
using with DI 6-8

H

handling exceptions
C++7-3
Java 7-6
Visual Basic 7-9

ICFfile
defining transaction policies 5-1
idl command 2-2
compiling OMG IDL 2-6
CORBA C++ client applications 2-6
description 2-2
format 2-6
generating
client stubs 2-7
skeletons 2-7
IDL compiler
generated files 2-7
idl2ir command
description 1-6
loading automation environmental
objects into the Interface
Repository 3-5
loading interfaces into the Interface
Repository 3-5
populating the Interface Repository 1-6
syntax 3-5
using with ActiveX client

applications 3-3
Interface Repository
commands
idi2ir 1-6
ir2idl 1-6
irdel 1-6
description 1-6
information stored in 1-6
loading
automation environmental objects
3-5
starting server application 3-6
using with DIl 6-16
InterfaceRepository object
description 1-15
invocation types
dynamic 1-4
static 1-4
using with CORBA client applications
2-6
ir2idl command
creating an OMG IDL file 1-6
description 1-6
irdel command
deleting CORBA interfaces from the
Interface Repository 1-6
description 1-6
ISL parameter 3-7
usinginActiveX client applications 3-10
using in CORBA client applications 2-9
using with the Application Builder 3-7

J

JARfile2-13
Java 4-6
code examples
Bootstrap object 2-10
factories 2-12
FactoryFinder object 2-11
initializing the ORB 2-8

Creating CORBA Client Applications -5

logging on to the domain 4-6
Principal Authenticator object
Java4-3
SecurityCurrent object 4-3
system exceptions 7-7
TransactionCurrent object 5-2
transactions 5-5
using the Bootstrap object 2-10
handling exceptions 7-6
use of with M3 software 2-3
Java Archivefile 2-13

M

methods
FactoryFinder object 2-11
TransactionCurrent object 5-3

N

naming conventions
ActiveX 1-17
factories 1-11
NVList
using with DIl 6-9

0

OMG IDL

code example 2-4

compiling 2-6

CourseSynopsisEnumerator
interface 2-4

defining user exceptions 7-1

description 1-2

for Basic sample application 2-4

mapping to C++ 1-3

mapping to COM 1-3

mapping to Java 1-3

Registrar interface 2-4

RegistrarFactory interface 2-4

-6 Creating CORBA Client Applications

ORB
initializing
C++ code example 2-8
Java code example 2-8
ORBid 2-8

P

Principal Authenticator object

arguments 4-5
code examples

C++4-3

Java4-3

Visua Basic 4-4
getting the authentication level 4-4
logging on to the M3 domain 4-5
using in client applications 4-3

R

Registrar interface
OMG IDL 2-4
RegistrarFactory interface
OMG IDL 2-4
relationship to M3 domains 1-8
Request objects
creating 6-8
setting arguments 6-9
description 6-3

S
sample applications
Basic 2-8
Security 4-2
Transactions 5-2
security
configuring 4-1
getting the Princi pal A uthenticator object
4-3
getting the SecurityCurrent object 4-3

logging on to the domain 4-5
logging off the domain 4-7
obtaining the authentication level 4-4
overview 4-1
supported authentication levels 1-13
SecurityCurrent object
code examples
C++4-3
Java 4-3
Visual Basic 4-3
description 1-13
properties
Credentials 1-13
Principal Authenticator 1-13
using in client applications 4-3
server applications
acting as client applications 2-13
using Bootstrap object 2-13
using FactoryFinder object 2-13
skeletons
generating 2-7
software requirements
CORBA Java client applications 2-3
static invocation 1-4
description 1-4
how it works 1-4
in client applications 2-6
using client stubs 1-4
support
documentation xv
technical xv
system exceptions
description 7-1

T

TOBJ_APPAUTH
description 1-13
required arguments 4-5

TOBJ NOAUTH
description 1-13

required arguments 4-5
TOBJ SYSAUTH

description 1-13

required arguments 4-5
transaction policies

defining in ICF file 5-1

description 1-14
TransactionCurrent object

methods 5-3

transaction policies 1-14
transactions

getting the TransactionCurrent

object 5-2

in client applications 5-4

overview 5-1
typelibraries

creating with Application Builder 3-8

directory location 3-8

loading bindings into development tool

3-8
naming conventions 3-8

U

UBBCONFIG file
defining
security 4-1
starting server application for Interface
Repository 3-6
user exceptions
description 7-1

Vv
views
creating 3-7
deploying 3-13
description 1-16
invoking operations on 3-11, 3-12
writing declarations for 3-9
Visual Basic 4-6

Creating CORBA Client Applications -7

code examples
Bootstrap object 3-10
exceptions 7-9
factories 3-11
FactoryFinder object 3-11
invoking operations 3-11, 3-12
logging on to the domain 4-6
Principal Authenticator object 4-4
SecurityCurrent object 4-3
TransactionCurrent object 5-2
transactions 5-5

declarations for 3-10
Bootstrap object 3-10
FactoryFinder object 3-10

handling exceptions 7-9

loading type libraries for bindings 3-8

w

writing declarations 3-9

-8 Creating CORBA Client Applications

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Client Application Development Concepts
	Overview of Client Applications
	OMG IDL
	OMG IDL-to-C++ Mapping
	OMG IDL-to-Java Mapping
	OMG IDL-to-COM Mapping

	Static and Dynamic Invocation
	Client Stubs
	Interface Repository
	Domains
	Environmental Objects
	Bootstrap Object
	Factories and the FactoryFinder Object
	Naming Conventions and WebLogic Enterprise Extensions to the FactoryFinder Object
	SecurityCurrent Object
	TransactionCurrent Object
	InterfaceRepository Object

	Concepts for ActiveX Client Applications
	What Is ActiveX?
	Views and Bindings
	Naming Conventions for ActiveX Views

	2 Creating CORBA Client Applications
	Summary of the Development Process for CORBA C++ Client Applications
	Summary of the Development Process for CORBA Java Client Applications
	Step 1: Obtaining the OMG IDL File
	Step 2: Selecting the Invocation Type
	Step 3: Compiling the OMG IDL File
	Step 4: Writing the CORBA Client Application
	Initializing the ORB
	Establishing Communication with the WebLogic Enterprise Domain
	Resolving Initial References to the FactoryFinder Object
	Using the FactoryFinder Object to Get a Factory
	Using a Factory to Get a CORBA Object

	Step 5: Building the CORBA Client Application
	Server Applications Acting as Client Applications
	Using Java2 Applets

	3 Creating ActiveX Client Applications
	Summary of the Development Process for ActiveX Client Applications
	The BEA Application Builder
	Step 1: Loading the Automation Environmental Objects into the Interface Repository
	Step 2: Loading the CORBA Interfaces into the Interface Repository
	Step 3: Starting the Interface Repository Server Application
	Step 4: Creating ActiveX Bindings for the CORBA Interfaces
	Step 5: Loading the Type Library for the ActiveX Bindings
	Step 6: Writing the ActiveX Client Application
	Including Declarations for the Automation Environmental Objects, Factories, and ActiveX Views of ...
	Establishing Communication with the WebLogic Enterprise Domain
	Obtaining References to the FactoryFinder Object
	Using a Factory to Get an ActiveX View
	Invoking Operations on the ActiveX View

	Step 7: Deploying the ActiveX Client Application

	4 Using Security
	Overview of WebLogic Enterprise Security
	Summary of the Development Process for Security
	Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object
	Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent Object
	Step 3: Obtaining the Authentication Level
	Step 4: Logging on to the WebLogic Enterprise Domain with Proper Authentication
	Step 5: Logging off the WebLogic Enterprise Domain

	5 Using Transactions
	Overview of WebLogic Enterprise Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	Step 2: Using the TransactionCurrent Methods

	6 Using the Dynamic Invocation Interface
	When to Use DII
	DII Concepts
	Request Objects
	Options for Sending Requests
	Options for Receiving the Results of Requests

	Summary of the Development Process for DII
	Step 1: Loading the CORBA Interfaces into the Interface Repository
	Step 2: Obtaining the Object Reference for the CORBA Object
	Step 3: Creating a Request Object
	Using the CORBA::Object::_request Member Function
	Using the CORBA::Object::create_request Member Function

	Step 4: Sending a DII Request and Retrieving the Results
	Synchronous Requests
	Deferred Synchronous Requests
	Oneway Requests
	Multiple Requests

	Step 5: Deleting the Request
	Step 6: Using the Interface Repository with DII

	7 Handling Exceptions
	CORBA Exception Handling Concepts
	CORBA System Exceptions
	CORBA C++ Client Applications
	Handling System Exceptions
	User Exceptions

	CORBA Java Client Applications
	System Exceptions
	User Exceptions

	ActiveX Client Applications

