
Enterprise
ActiveX Client

D o c u m e n t E d i t i o n 5 . 1
M a y 2 0 0 0

BEA WebLogic

Developer’s Guide

B E A W e b L o g i c E n t e r p r i s e V e r s i o n 5 . 1

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

WebLogic Enterprise ActiveX Client

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

WebLogic Enterprise ActixeX Client Developer’s Guide iii

Contents

About This Online Help
How to Use the Online Help .. vii

What if the Help System Doesn’t Display Properly?.. viii

Make Sure You Are Using an Up-to-Date Browser ix

Customize the Font Size so the Help is Easy to Read.................................. ix

Important Considerations About the BEA Builder Installed Browserx

Using Your Favorite Web Browser...x

How to Print .. xi

How to Print the Current Topic.. xi

How to Print the Complete Book .. xii

Documentation Conventions .. xii

Where to Find Related Information... xiv

BEA BEA WebLogic Enterprise Related Information xiv

Contact Information...xv

Documentation Support..xv

Customer Support... xvi

1. Overview
What is ActiveX? .. 1-1

Views and Bindings ... 1-2

How It Works .. 1-2

Naming Conventions for ActiveX Views.. 1-3

OMG IDL .. 1-4

Interface Repository .. 1-5

Domains... 1-5

Environmental Objects .. 1-6

Bootstrap Object... 1-7

iv WebLogic Enterprise ActixeX Client Developer’s Guide

Factories and the FactoryFinder Object ... 1-8

Naming Conventions and BEA WebLogic Enterprise Extensions to the
FactoryFinder Object... 1-9

SecurityCurrent Object ... 1-11

TransactionCurrent Object ... 1-12

InterfaceRepository Object... 1-13

2. Creating ActiveX Client Applications
Summary of the Development Process for ActiveX Client Applications 2-2

The BEA Application Builder ... 2-3

Step 1: Loading the Automation Environmental Objects into the Interface
Repository... 2-5

Step 2: Loading the CORBA Interfaces into the Interface Repository 2-5

Step 3: Starting the Interface Repository Server Application 2-6

Step 4: Creating ActiveX Bindings for the CORBA Interfaces 2-7

Step 5: Loading the Type Library for the ActiveX Bindings 2-8

Step 6: Writing the ActiveX Client Application ... 2-9

Including Declarations for the Automation Environmental Objects, Factories,
and ActiveX Views of CORBA Objects ... 2-9

Establishing Communication with the BEA WebLogic Enterprise Domain ..
2-10

Obtaining References to the FactoryFinder Object 2-11

Using a Factory to Get an ActiveX View... 2-11

Invoking Operations on the ActiveX View .. 2-12

Creating an Automation Server for Callbacks.. 2-13

Creating Instances of the COM Objects.. 2-14

Step 7: Deploying the ActiveX Client Application ... 2-15

3. Application Builder Main Window
Application Builder Main Window ... 3-1

Services Window ... 3-3

Workstation Views Window ... 3-3

Application Builder Objects .. 3-4

Menu Options .. 3-6

File Menu Options.. 3-6

Edit Menu Options ... 3-6

WebLogic Enterprise ActixeX Client Developer’s Guide v

View Menu Options ... 3-7

Tools Menu Options... 3-8

Window Menu Options .. 3-8

Help Menu Options .. 3-9

Toolbar Buttons ... 3-10

4. Tasks
Loading CORBA Interfaces into the Interface Repository 4-1

Starting Application Builder.. 4-2

Creating ActiveX Bindings for CORBA Interfaces .. 4-3

Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces 4-4

Creating Deployment Packages... 4-6

Changing the Directory Location for Deployment Packages............................ 4-7

Changing the Default Directory Locations.. 4-7

Filtering Objects Displayed in the Main Window... 4-8

Displaying Properties .. 4-10

5. Using Security
Overview of BEA WebLogic Enterprise Security .. 5-1

Summary of the Development Process for Security.. 5-2

Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object 5-3

Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent
Object ... 5-3

Step 3: Obtaining the Authentication Level .. 5-3

Step 4: Logging on to the BEA WebLogic Enterprise Domain with Proper
Authentication .. 5-4

Step 5: Logging off the BEA WebLogic Enterprise Domain............................ 5-6

6. Using Transactions
Overview of Transactions.. 6-1

Summary of the Development Process for Transactions 6-2

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object.. 6-2

Step 2: Using the TransactionCurrent Methods .. 6-3

vi WebLogic Enterprise ActixeX Client Developer’s Guide

7. Command-Line Options

Glossary

Index

BEA WebLogic Enterprise ActiveX Client Developer’s Guide vii

About This Online Help

This chapter includes the following topics:

t How to Use the Online Help

t What if the Help System Doesn’t Display Properly?

t Important Considerations About the BEA Builder Installed Browser

t Using Your Favorite Web Browser

t How to Print

t Documentation Conventions

t Where to Find Related Information

t Contact Information

How to Use the Online Help

You need to open Application Builder to get Help on the using the application.

To bring up Help on a main topic, choose Help on the Application Builder main
window and select any of the following menu topics:

t Overview — Explains what Rose Expert is and gives an overview of the
application development tasks you can accomplish with the Rose Expert
Application Builder GUI

t Creating ActiveX Client Applications — A procedural view of building ActiveX
client applications using Application Builder.

viii BEA WebLogic Enterprise ActiveX Client Developer’s Guide

t Application Builder Main Window — An explanation of the various components
of the Application Builder Main Window.

t Tasks — Explains how to use the various task windows. (You can also access
this help information for a particular window by pressing F1 while that window
is open.)

t Glossary — Explanation of relevant BEA WebLogic Enterprise (BEA WebLogic
Enterprise), WebLogic Builder, Application Builder, ActiveX and object oriented
development terms

t About Application Builder — Provides version and copyright information

You can also click the Help button on any task window that is currently open.

What if the Help System Doesn’t Display
Properly?

The Help system relies on the Netscape Navigator for its functionality. Therefore,
display problems are generally related to what version of the Netscape browser is
active on your system, and the font size preference settings on that browser.
Additionally, some specific problems on UNIX platforms (such as Help not displaying
or the search feature not working) are generally related to incomplete user PATH and
CLASSPATH environment variable settings.

The following topics provide some troubleshooting tips on problems that can affect
various aspects of Help start-up and display:

t Make Sure You Are Using an Up-to-Date Browser

t Customize the Font Size so the Help is Easy to Read

BEA WebLogic Enterprise ActiveX Client Developer’s Guide ix

Make Sure You Are Using an Up-to-Date Browser

The context-sensitive help system requires that Netscape Navigator version 4.0 or
above be present on the local system and in use. If you are using an earlier version of
the Netscape browser, you will get an error message when you try to use the Find or
Print buttons.

Note that even if you have Navigator 4.0 installed, you can still get this error if you
also have earlier versions of the Netscape browser and one of these down-level
versions was the last browser used. The remedy for this problem is to close out of the
current BEA WebLogic Builder application, close any earlier versions of the Netscape
browser (if you have some open) and open Navigator 4.0. (You can close Navigator
4.0 as soon as you have opened it.)

When you re-start the Builder application, the Help system should work properly.

Note: If you want to view the online help information in a Web browser, keep in
mind that older versions of browsers may not support some of the features
built into the HTML help files. Therefore, we recommend using Internet
Explorer version 4.0 or above, Netscape Navigator version 4.0 or above, or
other browsers with equivalent HTML support. For information on how to
access the help information in any Web browser, see the section Using Your
Favorite Web Browser.

Customize the Font Size so the Help is Easy to Read

The context-sensitive Help system relies on your Netscape browser font preference
settings. If the information shown in the Help system is difficult to read because the
print is too small (or too large), you can change the font size. To do this, simply re-set
your font preferences in the Netscape Navigator browser. The fonts sizes and styles
you set in the browser also will show up in the Help system.

If you have more than one version of the Netscape browser on your system, make sure
you set the font preferences in the active browser (which is preferably the most
up-to-date browser). The Help system uses the last active browser. If you might be
using more than one browser version to view help files, set preferences in all browsers
for optimal readability.

x BEA WebLogic Enterprise ActiveX Client Developer’s Guide

For more about why it is important to use an up-to-date browser, refer to the section
Make Sure You Are Using an Up-to-Date Browser.

Important Considerations About the BEA
Builder Installed Browser

If you did not have the Netscape Navigator on your system when you installed the BEA
Builder products, it is likely that you have a BEA Builder installed version of this
browser.

The context-sensitive help system requires that Netscape Navigator version 4.0 or
above be present on the local system. So, the BEA WebLogic Builder product
installation checks to see if the Netscape Navigator 4.0 browser is already present on
the target system. On Windows systems, if the appropriate version of the browser is
not found; the install script gives you the option of installing it as a part of the BEA
Builder product installation to support the Online Help system.

The Netscape Navigator 4.0 that gets installed during the BEA Builder product
installation contains a level of encryption that is allowed to be exported from the
United States. If you use this browser for anything other than the Help system, please
note that this is not the most secure version of the Netscape Navigator.

Note: This consideration does not apply to UNIX systems because the BEA product
installation for UNIX does not automatically install the right version of the
browser. You have to do this manually on UNIX systems.

Using Your Favorite Web Browser

The ActiveX Application Builder graphical user interface (GUI) is designed and
configured to use Netscape Nethelp as an HTML-based, context-sensitive help
solution.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide xi

However, you can also view the online help for WLE ActiveX Client with the
Microsoft Internet Explorer 4.0 browser, Netscape Navigator or Communicator 4.0, or
any other Web browser that supports HTML 3.0 and above. If you choose to use the
Internet Explorer (or some other browser) to view the Builder documentation, the
primary difference is that you will not get the context-sensitive menu and dialog access
that you do when you view the Help by means of the GUIs. You may find some
discrepancies in display since browsers other than the Netscape NetHelp viewer are
not officially supported for this documentation set.

To view the WLE ActiveX Client documentation with a Web browser, open the
following file in the browser:

YourDrive:wledir\help\AppBuilderHtm\default.htm (Windows NT)

Note: Older versions of browsers may not support some of the features built into the
HTML help files. Therefore, we recommend using Internet Explorer version
4.0 or above, Netscape Navigator version 4.0 or above, or other browsers with
equivalent HTML support.

How to Print

You can print a single topic directly from the online help display or you can print all
the help topics in book form (with page numbers, table of contents, and so on). The
following sections explain how to print.

How to Print the Current Topic

To print the topic file showing in the online help display, click on the print button (see
Figure). Before you print, make sure that the topic you want to print is displayed. Also
make the topic frame the active frame by clicking anywhere inside that frame.

xii BEA WebLogic Enterprise ActiveX Client Developer’s Guide

How to Print the Complete Book

If you choose the option to install the documentation during the WebLogic Builder
installation process, PDF versions of this guide and the online help for this product are
made available on your system in the following locations:

BEA WebLogic Enterprise ActiveX Client Developer’s Guide
YourDrive:wledir\help\app_builder_help.pdf (Windows NT)

To print the documentation, open a PDF file in an Adobe Acrobat Reader and choose
the file print option.

If you do not have a reader, you can download one from the Adobe web site at
http://www.adobe.com/.

Documentation Conventions

The following documentation conventions are used throughout this online help.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys sequentially.

italics Indicates emphasis or book titles.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide xiii

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xiv BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Where to Find Related Information

The following documentation provides more information on the BEA WebLogic
Builder product line, BEA WebLogic Enterprise, and issues related to application
development.

BEA BEA WebLogic Enterprise Related Information

The following BEA WebLogic Enterprise documentation will be helpful in
understanding the BEA WebLogic Enterprise system. BEA WebLogic Enterprise
documentation is shipped with your BEA WebLogic Enterprise software and is also
available on the BEA Web site.

t BEA WebLogic Enterprise — Introduction. This document introduces the BEA
WebLogic Enterprise (BEA WebLogic Enterprise) system — components and
APIs, how to get started with the application development process, and
understanding where to find topics in the documentation.

t BEA WebLogic Enterprise — Creating C++ Server Applications. Describes how
C++ programmers can implement key features in the BEA BEA WebLogic

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

BEA WebLogic Enterprise ActiveX Client Developer’s Guide xv

Enterprise product to design and implement scalable, high-performance C++
server applications that run in an BEA WebLogic Enterprise domain.

t BEA WebLogic Enterprise — Creating Java Server Applications. Describes how
Java programmers can implement key features to design and implement scalable,
high-performance Java server applications that run in an BEA WebLogic
Enterprise domain

t BEA WebLogic Enterprise — C++ Programming Reference. Provides reference
material about the C++ environment, including the OMG IDL syntax, the
Interface Configuration File, and the buildobjserver command.

t BEA WebLogic Enterprise — Java Programming Reference. Provides reference
material about the Java environment, including the OMG IDL syntax, the
m3idltojava compiler, the XML-based Server Description File, and the
buildjavaserver command.

t BEA WebLogic Enterprise — Guide to the University Sample Applications.
Provides information on building and running the University sample client and
server applications included with WLE.

Contact Information

The following sections provide information about how to obtain support for the
documentation and software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

xvi BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Customer Support

If you have any questions about this version of BEA WebLogic Builder, or if you have
problems installing and running BEA WebLogic Builder, contact BEA Customer
Support through BEA WebSupport at www.beasys.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-1

CHAPTER

1 Overview

This chapter provides overview of BEA WebLogic Enterprise ActiveX client
application development and concepts that you need to understand before you develop
ActiveX client applications for the BEA WebLogic Enterprise environment. Topics
include:

t What is ActiveX?

t How It Works

t Naming Conventions for ActiveX Views

t OMG IDL

t Interface Repository

What is ActiveX?

ActiveX is a set of technologies from Microsoft that enables software components to
interact with one another in a networked environment, regardless of the language in
which the components were created. ActiveX is built on the Component Object Model
(COM) and integrates with Object Linking and Embedding (OLE). OLE provides an
architecture for document embedding. Automation is the part of COM that allows
applications such as Visual Basic, Delphi, and PowerBuilder to manipulate
Automation objects, ActiveX controls, and ActiveX documents.

The BEA ActiveX Client provides interoperability between the BEA WebLogic
Enterprise and COM object systems. The ActiveX Client transforms the interfaces of
CORBA objects in a BEA WebLogic Enterprise domain into methods on Automation
objects.

1 Overview

1-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Views and Bindings

ActiveX client applications use views of CORBA interfaces. Views represent the
CORBA interfaces in a BEA WebLogic Enterprise domain locally as Automation
objects. To use an ActiveX view of a CORBA object (referred to as an ActiveX view),
you need to create a binding for ActiveX. The binding describes the interface of a
CORBA object to ActiveX. The interfaces of the CORBA objects are loaded into the
Interface Repository. You then use the BEA ActiveX Application Builder to create
Automation bindings for the interfaces.

The combination of the ActiveX client application and the generated binding creates
the ActiveX view of the object.

How It Works

The BEA ActiveX Client makes it possible for ActiveX client applications to interact
with CORBA objects in a BEA WebLogic Enterprise domain. The ActiveX client
application uses the Automation environmental objects to access CORBA objects in
the BEA WebLogic Enterprise domain. The ActiveX Client creates ActiveX views of
the CORBA objects. The ActiveX views of CORBA objects convert and forward all
requests they receive from ActiveX client applications to the appropriate CORBA
object in the BEA WebLogic Enterprise domain.

The Application Builder is a development tool that you use along with a client
development tool (such as Visual Basic) to select which CORBA objects in a BEA
WebLogic Enterprise domain you want your ActiveX client application to interact
with.

The Application Builder is the primary user interface to the ActiveX Client. The
Application Builder can be used to select which CORBA objects are available to
desktop applications, to create ActiveX views of the CORBA objects, and to create
packages for deploying ActiveX views of CORBA objects to client computers.

Figure 1-1 illustrates how the ActiveX Client works.

Naming Conventions for ActiveX Views

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-3

Figure 1-1 How the ActiveX Client Works

Naming Conventions for ActiveX Views

Naming conventions describe an algorithm for mapping CORBA interfaces to
ActiveX to avoid type and variable name conflicts. Naming conventions also indicate
how to use a given object. The names of all ActiveX methods begin with DI.

The ActiveX Client observes this naming convention when it creates Automation
bindings for CORBA interfaces. If a CORBA interface has the name Account, the
Automation binding for that interface has the name DIAccount.

CORBA interface names are often scoped within nested levels known as modules;
however, in ActiveX, there is no scoping. To avoid name conflicts, the ActiveX Client
exposes a CORBA interface into ActiveX with the name of the different scopes
prepended to the name of the interface.

For example, a CORBA interface named Account is defined in the OMG IDL file as:

module University
{
 module Student

CORBAInterface.idl

Interface
Repository

Application Builder
DICORBAInterface.tlb

(binding)

ActiveX Client
Application

1 Overview

1-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

 {
 interface Account
 {//Operations and attributes of the Account interface
 };
 };

};

In CORBA, this interface is named University::Student::Account. The ActiveX
Client translates this name to DIUniversity_Student_Account for ActiveX.

ActiveX client applications use OLE Automation environmental objects to access
CORBA objects in a BEA WebLogic Enterprise domain. ActiveX client applications
use the BEA ActiveX Client to process requests to CORBA objects. You use the
ActiveX Application Builder to select the CORBA interfaces that are available to
ActiveX client applications, to create ActiveX views of the CORBA interfaces, and to
create packages for deploying ActiveX views of CORBA interfaces to client machines.
These client applications are built using an automation development tool such as
Visual Basic or PowerBuilder.

OMG IDL

With any distributed application, the client/server application needs some basic
information to communicate. For example, the client application needs to know which
operations it can request, and the arguments to the operations.

You use the Object Management Group (OMG) Interface Definition Language (IDL)
to describe available CORBA interfaces to client applications. An interface definition
written in OMG IDL completely defines the CORBA interface and fully specifies each
operation’s arguments. OMG IDL is a purely declarative language. This means that it
contains no implementation details. Operations specified in OMG IDL can be written
in and invoked from any language that provides CORBA bindings.

Generally, the application designer provides the OMG IDL files for the available
CORBA interfaces and operations to the programmer who creates the client
applications.

Interface Repository

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-5

Interface Repository

The Interface Repository contains descriptions of a CORBA object’s interfaces and
operations. The information stored in the Interface Repository is equivalent to the
information defined in an OMG IDL file, but the information is accessible
programmatically at run time.

ActiveX client applications are not aware that they are using the Interface Repository.
The BEA ActiveX Client uses CORBA operations to obtain information about
CORBA objects from the Interface Repository.

You use the following BEA WebLogic Enterprise development commands to manage
the Interface Repository:

t The idl2ir command populates the Interface Repository with CORBA
interfaces. This command creates an Interface Repository if an Interface
Repository does not exist. Also use this command to update the CORBA
interfaces in the Interface Repository.

t The ir2idl command creates an OMG IDL file from the contents of the
Interface Repository.

t The irdel command deletes CORBA interfaces from the Interface Repository.

Domains

A domain is a way of grouping objects and services together as a management entity.
A BEA WebLogic Enterprise domain has at least one IIOP Server Listener/Handler
(ISL/ISH) and is identified by a name. One client application can connect to multiple
BEA WebLogic Enterprise domains using different Bootstrap objects. For each BEA
WebLogic Enterprise domain, a client application can get a FactoryFinder object, an
InterfaceRepository object, a SecurityCurrent object, and a TransactionCurrent object,
which correspond to the services offered within the BEA WebLogic Enterprise
domain. For a description of the Bootstrap object, the FactoryFinder object, the
InterfaceRepository object, the SecurityCurrent object, and the TransactionCurrent
object, see “Environmental Objects” in this chapter.

1 Overview

1-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Note: Only one TransactionCurrent object and one SecurityCurrent object can exist
at the same time, and they must be associated with the same Bootstrap object.

Figure 1-2 illustrates how an BEA WebLogic Enterprise domain works.

Figure 1-2 How a BEA WebLogic Enterprise Domain Works

Environmental Objects

The BEA WebLogic Enterprise software provides a set of environmental objects that
set up communication between client applications and server applications in a
particular BEA WebLogic Enterprise domain. The BEA WebLogic Enterprise
software provides the following environmental objects:

t Bootstrap

This object establishes communication between a client application and a BEA
WebLogic Enterprise domain. It also obtains object references for the other
environmental objects in the BEA WebLogic Enterprise domain.

t FactoryFinder

This CORBA object locates a factory, which in turn can create object references
for CORBA objects.

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object

Environmental Objects

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-7

t SecurityCurrent

This object can be used to log a client application into a BEA WebLogic
Enterprise domain with the proper security. The BEA WebLogic Enterprise
software provides an implementation of the CORBAservices Security Service.

t TransactionCurrent

This object allows a client application to participate in a transaction. The BEA
WebLogic Enterprise software provides an implementation of the
CORBAservices Object Transaction Service (OTS).

t UserTransaction

This object allows a client application to participate in a transaction. The BEA
WebLogic Enterprise software provides an implementation of the Sun
Microsystems, Inc. Java Transaction Application Programming Interface (JTA
API). This object is supported with Java client and server applications only.

t InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA
interfaces and the factories used to create object references to the CORBA
interfaces.

The BEA WebLogic Enterprise software provides environmental objects for the
Automation programming environment.

Bootstrap Object

The client application creates a Bootstrap object. A list of ISLs/ISHs can be supplied
either as a parameter or via the TOBJADDR environmental variable or Java property. A
single ISL/ISH is specified as follows:

//host:port

For example, //myserver:4000

Once the Bootstrap object is instantiated, the resolve_initial_references
method is invoked, passing in a string id, to obtain a reference to an available object.
The valid values for the string id are FactoryFinder, TransactionCurrent,
SecurityCurrent, and InterfaceRepository.

1 Overview

1-8 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Figure 1-3 illustrates how the Bootstrap object works in a BEA WebLogic Enterprise
domain.

Figure 1-3 How the Bootstrap Object Works

Factories and the FactoryFinder Object

Client applications get object references to CORBA objects from a factory. A factory
is any CORBA object that returns an object reference to another CORBA object and
registers itself with the FactoryFinder object.

To use a CORBA object, the client application must be able to locate the factory that
creates an object reference for the CORBA object. The BEA WebLogic Enterprise
software offers the FactoryFinder object for this purpose. The factories available to
client applications are those that are registered with the FactoryFinder object by BEA
WebLogic Enterprise server applications at startup.

The client application uses the following sequence of steps to obtain a reference to a
CORBA object:

Client
Application

Domain

IIOP
Listener/Handler

Bootstrap
Object

FactoryFinder
Object Reference

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

FactoryFinder
Object

TransactionCurrent
Object

SecurityCurrent
Object

InterfaceRepository
Object

resolve_initial_references

Environmental Objects

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-9

1. Once the Bootstrap object is created, the resolve_initial_references method
is invoked to obtain the reference to the FactoryFinder object.

2. Client applications query the FactoryFinder object for object references to the
desired factory.

3. Client applications call the factory to obtain an object reference to the CORBA
object.

Figure 1-4 illustrates the client application interaction with the FactoryFinder object.

Figure 1-4 How Client Applications Use the FactoryFinder Object

Naming Conventions and BEA WebLogic Enterprise
Extensions to the FactoryFinder Object

The factories available to client applications are those that are registered with the
FactoryFinder object by the BEA WebLogic Enterprise server applications at startup.
Factories are registered using a key consisting of the following fields:

t The Interface Repository Id of the factory’s interface

t An object reference to the factory

Client Application

M3 Domain

Bootstrap
Object

FactoryFinder
Object

Factory

CORBA Object

Get FactoryFinder object.

FactoryFinder
Object

FactoryFinder object returns
factory for CORBA object.

Factory
Factory gets CORBA object.

Server Application

1 Overview

1-10 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

The FactoryFinder object used by the BEA WebLogic Enterprise software is defined
in the CORBAservices LifeCycle Service. The BEA WebLogic Enterprise software
implements extensions to the COS::LifeCycle::FactoryFinder interface that
make it easier for client applications to locate a factory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the
COS::LifeCycle::FactoryFinder interface. These names consist of a sequence of
NameComponent structures, which consist of ID and kind fields.

The use of CORBA names to locate factories is cumbersome for client applications; it
involves many calls to build the appropriate name structures and assemble the Naming
Service name that must be passed to the find_factories method of the
COS::LifeCycle::FactoryFinder interface. Also, since the method can return
more than one factory, client applications must manage the selection of an appropriate
factory and the disposal of unwanted object references.

The FactoryFinder object is designed to make it easier for client applications to locate
factories by extending the interface with simpler method calls.

The extensions are intended to provide the following simplifications for the client
application:

t Let the client application locate factories by id, using a simple string parameter
for the id field. This reduces the work needed by the client application to build
name structures.

t Permit the FactoryFinder object to implement a load balancing scheme by
choosing from a pool of available factories.

t Provide methods that return one object reference to a factory, instead of a
sequence of object references. This eliminates the need for client applications to
provide code to handle the selection of a single factory from a sequence, and
then dispose of the unneeded references.

The most straightforward application design can be achieved by using the
Tobj::FactoryFinder::find_one_factory_by_id method in client applications.
This method accepts a simple string for factory id as input and returns one factory to
the client application. The client application is freed from the necessity of
manipulating name components and selecting among many factories.

To use the Tobj::FactoryFinder::find_one_factory_by_id method, the
application designer must establish a naming convention for factories that client
applications can use to easily locate factories for specific CORBA object interfaces.

Environmental Objects

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-11

Ideally, this convention should establish some mnemonic types for factories that
supply object references for certain types of CORBA object interfaces. Factories are
then registered using these conventions. For example, a factory that returns an object
reference for Student objects might be called StudentFactory.

It is recommended that you either use the actual interface ID of the factory in the OMG
IDL file, or specify the factory ID as a constant in the OMG IDL file. This technique
ensures naming consistency between the client application and the server application.

SecurityCurrent Object

The SecurityCurrent object is a BEA WebLogic Enterprise implementation of the
CORBAservices Security Service. The BEA WebLogic Enterprise security model is
based on authentication. You use the SecurityCurrent object to specify the appropriate
level of security. The following levels of authentication are provided:

t TOBJ_NOAUTH

No authentication is needed; however, the client application can still authenticate
itself, and must specify a user name and a client name, but no password is
required.

t TOBJ_SYSAUTH

The client application must authenticate itself to the WLE domain, and must
specify a user name, client name, and client application password.

t TOBJ_APPAUTH

The client application must provide information in addition to that which is
required by TOBJ_SYSAUTH. If the default WLE authentication service is used in
the WLE domain configuration, the client application must provide a user
password; otherwise, the client application provides authentication data that is
interpreted by the custom authentication service in the WLE domain.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTH, the ISL/ISH of the BEA WebLogic Enterprise domain
registers the client application with the user name and client application name
sent to the ISL/ISH.

1 Overview

1-12 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

In the BEA WebLogic Enterprise software, only the PrincipalAuthenticator and
Credentials properties on the SecurityCurrent object are supported. For information
about using the SecurityCurrent object in client applications, see Chapter 5, “Using
Security.”

TransactionCurrent Object

The TransactionCurrent object is a BEA WebLogic Enterprise implementation of the
CORBAservices Object Transaction Service. The TransactionCurrent object
maintains a transactional context for the current session between the client application
and the server application. Using the TransactionCurrent object, the client application
can perform transactional operations, such as initiating and terminating a transaction
and getting the status of a transaction.

Transactions are used on a per-interface basis. During design, the application designer
decides which interfaces within a BEA WebLogic Enterprise application will handle
transactions. A transaction policy for each interface is then defined in an
Implementation Configuration File (ICF). The transaction policies are:

t Never

The interface is not transactional. Objects created for this interface can never be
involved in a transaction. The BEA WebLogic Enterprise software generates an
exception (INVALID_TRANSACTION) if an implementation with this policy is
involved in a transaction. An AUTOTRAN policy specified in the UBBCONFIG
file for the interface is ignored.

t Optional (The is the default transaction_policy.)

The interface may be transactional. Objects can be involved in a transaction if
the request is transactional. If the AUTOTRAN parameter is specified in the
UBBCONFIG file for the interface, AUTOTRAN is on.

t Always

The interface must always be part of a transaction. If the interface is not part of a
transaction, a transaction will be automatically started by the TP framework. The
transaction is committed when the method ends. (This is the same behavior that
results from specifying AUTOTRAN for an object with the optional transaction
policy, except that no administrative configuration is necessary to achieve this
behavior, and it cannot be overridden by administrative configuration.)

Environmental Objects

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 1-13

t Ignore

The interface is not transactional. The interface can be included in a transaction,
however, the AUTOTRAN policy specified for this implementation in the
UBBCONFIG file is ignored.

For information about using the TransactionCurrent object in client applications, see
Chapter 6, “Using Transactions.”

InterfaceRepository Object

The InterfaceRepository object returns information about the Interface Repository in
a specific BEA WebLogic Enterprise domain. The InterfaceRepository object is based
on the CORBA definition of an Interface Repository. It offers the proper set of
CORBA interfaces as defined by the Common Request Broker Architecture and
Specification, Version 2.2.

ActiveX client applications are not aware they are using the Interface Repository
object. ActiveX client applications use the Bootstrap object to obtain a reference to the
Interface Repository object.

1 Overview

1-14 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-1

CHAPTER

2 Creating ActiveX Client
Applications

This chapter discusses the following topics:

t The development process for ActiveX client applications

t An overview of the BEA Application Builder

t Starting the Interface Repository server application

t Loading the Automation environmental objects into the Interface Repository

t Loading the CORBA interfaces into the Interface Repository

t Creating ActiveX bindings for CORBA interfaces

t Loading the type library for the ActiveX bindings

t Writing the ActiveX client application

t Creating a deployment package for the ActiveX client application

For a description of the concepts you need to understand before developing an ActiveX
client application, see Chapter 1, “Overview.”

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Summary of the Development Process for
ActiveX Client Applications

The steps for creating an ActiveX client application are as follows:

Each step in the process is explained in detail in the following sections.

Step Description

1 Load the Automation environmental objects into the Interface
Repository.

2 Verify that the CORBA interfaces you want to access from
your ActiveX client application are loaded in the Interface
Repository. If necessary, load the Object Management Group
(OMG) Interface Definition Language (IDL) definitions for the
CORBA interfaces into the Interface Repository.

3 Start the server application process for the Interface
Repository.

4 Use the BEA Application Builder to create ActiveX bindings
for the interfaces of the CORBA object.

5 Load the type library for the ActiveX binding in your
development tool.

6 Write the ActiveX client application. This chapter describes
creating a basic client application. You can also implement
security and transactions in your ActiveX client applications.

t For information about implementing security in your
ActiveX client application, see Chapter 5, “Using
Security.”

t For information about using transactions in your ActiveX
client application, see Chapter 6, “Using Transactions.”

7 Create a deployment package for the ActiveX client
application.

THE BEA APPLICATION BUILDER

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-3

The BEA WebLogic Enterprise development environment for ActiveX client
applications includes the following:

t The idl2ir command, which loads interface definitions defined in OMG IDL
into the Interface Repository

t The Application Builder, which creates ActiveX bindings for the interfaces of
CORBA objects and creates deployment packages for the interfaces

t The Automation environmental objects, which provide access to ActiveX views
of CORBA objects (referred to as ActiveX views) in a BEA WebLogic
Enterprise domain and the services provided by the ActiveX views

The BEA Application Builder

The Application Builder is the development tool that creates ActiveX views of
CORBA objects. The Application Builder is the primary user interface to the BEA
ActiveX Client. It can be used to select which CORBA objects are available to desktop
applications, to create ActiveX views of the CORBA objects, and to create packages
for deploying ActiveX views of CORBA objects to client machines.

To use an ActiveX view, you load the interfaces of the CORBA objects into the
Interface Repository. You then create an ActiveX binding for the CORBA interface.
The binding describes the interface of a CORBA object to ActiveX. The combination
of the ActiveX client application and the generated binding creates the view of the
object.

For information on how to invoke Application Builder, see Starting Application
Builder in Chapter 4, “Tasks.”

As shown in Figure 2-1, the Application Builder main window is partitioned into two
parts: the Services window and the Workstation Views window.

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Figure 2-1 Application Builder Main Window

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local BEA WebLogic Enterprise domain
(referred to as the M3 domain in the BEA Application Builder software that is installed
as part of the BEA WebLogic Enterprise V4.2 software kit). You can create bindings
for all the interfaces in the Interface Repository.

At the top of the Services window are entries for each object system that is available
from the BEA WebLogic Enterprise domain. The ActiveX Client supports only the
BEA WebLogic Enterprise object system. The objects are displayed in the same
hierarchical format used in the Interface Repository, that is, as modules, interfaces,
operations, and the parameters contained in operations. The [+] symbol indicates an
object that can be expanded to display the other objects.

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry from the Services window and into the Workstation Views window.

STEP 1: LOADING THE AUTOMATION ENVIRONMENTAL OBJECTS INTO THE INTERFACE REPOSITORY

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-5

For a fuller description of the Application Builder Main Window, see Chapter 3,
“Application Builder Main Window.”

The steps below refer to the University sample applications shipped with BEA
WebLogic Enterprise. For more information on the sample applications, refer to the
Guide to the University Sample Applications.

Step 1: Loading the Automation
Environmental Objects into the Interface
Repository

Load the Automation environmental objects into the Interface Repository so that the
interface definitions for the objects are available to ActiveX client applications. From
the MS-DOS prompt, enter the following command to load the OMG IDL file
(TOBJIN.idl) into the Interface Repository:

prompt> idl2ir -D _TOBJ -I drive:\wledir\include drive:\wledir\include\tobjin.idl

Step 2: Loading the CORBA Interfaces into
the Interface Repository

Before you can create an ActiveX view for a CORBA object, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Services window of the Application Builder. If a desired CORBA interface does not
appear in the Services window, use the idl2ir command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the idl2ir
command is as follows:

idl2ir [repositoryfile.idl] file.idl

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

For a complete description of the idl2ir command, refer to the BEA WebLogic
Enterprise Administration Guide.

For example, if the University sample application OMG IDL file has been loaded into
the interface repository, the following CORBA interfaces should appear in the
Application Builder window:

t RegistrarFactory

t Registrar

t CourseSynopsisEnumerator

Step 3: Starting the Interface Repository
Server Application

ActiveX client applications read the interface definitions for CORBA objects from the
Interface Repository dynamically at run time and translate them to Automation
objects. Therefore, the server application for the Interface Repository needs to be
started so that the interface definitions are available. Use the UBBCONFIG file to start
the server application process for the Interface Repository.

Note: In some cases, the system administrator may have performed this step.

Option Description

repositoryfile Directs the command to load the OMG IDL files for the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the BEA
WebLogic Enterprise domain that the ActiveX client
application will access.

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.

STEP 4: CREATING ACTIVEX BINDINGS FOR THE CORBA INTERFACES

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-7

In the UBBCONFIG file for the BEA WebLogic Enterprise domain, check that
TMIFRSVR, the server application for the Interface Repository, is started. The following
entry should appear in the UBBCONFIG file:

TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 6
 RESTART = Y
 MAXGEN = 5
 GRACE = 3600

In addition, make sure that the ISL parameter to start the ISL/ISH is specified. The
following entry should appear in the UBBCONFIG file:

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //TRIXIE:2500"

 where TRIXIE is the name of the host (server) system and 2500 is the port number.

For more information about starting server applications and specifying the ISL
parameter, see the BEA WebLogic Enterprise Administration Guide.

Step 4: Creating ActiveX Bindings for the
CORBA Interfaces

For an ActiveX client application to access a CORBA object, you must generate
ActiveX bindings for the interfaces of the CORBA object. You use the Application
Builder to create the ActiveX bindings for CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the BEA WebLogic Enterprise (C++)
v4.2 program group.

The Domain logon window appears.

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-8 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

2. Enter the host name and port number that you specified in the ISL parameter in
the UBBCONFIG file in the logon window. You must match exactly the
capitalization used in the UBBCONFIG file.

The Application Builder logon window appears.

3. Highlight the desired CORBA interface in the Services window and drag it to the
Workstation Views window, or cut the CORBA interface from the Services
window and paste it into the Workstation Views window.

The Application Builder:

t Creates a type library. By default, the type library is placed in
\wledir\TypeLibraries.

The type library file is named: DImodulename_interfacename.tlb

t Creates a Windows system registry entry, including unique Program IDs for
each object type, for the CORBA interface.

You can now use the ActiveX view from an ActiveX client application.

Step 5: Loading the Type Library for the
ActiveX Bindings

Before you start writing your ActiveX client application, you need to load the type
library that describes the ActiveX binding for the CORBA interface in your
development tool. Follow your development product’s instructions for loading type
libraries.

For example, in Visual Basic Version 5.0, you use the References option on the Project
menu to get a list of available type libraries. You then select the desired type libraries
from the list.

By default, the Application Builder places all generated type libraries in
\wledir\TypeLibraries. The type library for the ActiveX binding of the CORBA
interface has the following format:

DImodulename_interfacename.tlb

STEP 6: WRITING THE ACTIVEX CLIENT APPLICATION

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-9

Step 6: Writing the ActiveX Client
Application

The ActiveX client application must do the following:

1. Include declarations for the Automation environmental objects, the factory for the
ActiveX view, and the ActiveX view.

2. Establish communication with the BEA WebLogic Enterprise domain.

3. Use the Bootstrap object to obtain a reference to the FactoryFinder object.

4. Use a factory to obtain an object reference to an ActiveX view.

5. Invoke operations on the ActiveX view.

6. Creating an Automation Server for Callbacks

7. Deploy the ActiveX client application.

The following sections use portions of the ActiveX client applications in the Basic
University sample application to illustrate the steps.

Including Declarations for the Automation
Environmental Objects, Factories, and ActiveX Views of
CORBA Objects

To prevent errors at run time, you need to declare the object types of:

t The Automation environmental objects

t The factories that create the ActiveX views of the CORBA objects

t The ActiveX views

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-10 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

The following example is Visual Basic code that declares the Bootstrap and
FactoryFinder objects, the factory for the ActiveX view of the Registrar object, and the
ActiveX view of the Registrar object:

\\Declare Bootstrap object\\
 Public objBootstrap As DITobj_Bootstrap
\\Declare FactoryFinder object\\
 Public objFactoryFinder As DITobj_FactoryFinder
\\Declare factory object for Registrar Object\\
 Public objRegistrarFactory As DIUniversityB_RegistrarFactory
\\Declare the ActiveX view of the Registrar object\\
 Public objRegistrar As DIUniversityB_Registrar

Establishing Communication with the BEA WebLogic
Enterprise Domain

When writing an ActiveX client application, there are two steps to establishing
communication with the BEA WebLogic Enterprise domain:

1. Create the Bootstrap object.

2. Initialize the Bootstrap object.

The following Visual Basic example illustrates using the CreateObject operation to
create a Bootstrap object:

Set objBootstrap = CreateObject(“Tobj.Bootstrap”)

You then initialize the Bootstrap object. When you initialize the Bootstrap object, you
supply the host and port of the ISL/ISH of the desired BEA WebLogic Enterprise
domain, as follows:

objBootstrap.Initialize “// host:port”

The host and port combination for the ISL/ISH is defined in the ISL parameter of the
UBBCONFIG file. The host and port combination that is specified for the Bootstrap
object must exactly match the ISL parameter. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the call to the Bootstrap object will fail and the following message appears in the log
file:

Error: Unofficial connection from client at <tcp/ip address>/<portnumber>

STEP 6: WRITING THE ACTIVEX CLIENT APPLICATION

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-11

For example, if the network address is specified as //TRIXIE::3500 in the ISL
parameter in the UBBCONFIG file, specifying either //192.12.4.6.:3500 or
//trixie:3500 in the Bootstrap object will cause the connection attempt to fail.

A BEA WebLogic Enterprise domain can have multiple ISL/ISHs. If you are accessing
a BEA WebLogic Enterprise domain with multiple ISL/ISHs, you supply a list of
host:port combinations to the Bootstrap object. The Bootstrap object walks through
the list until it connects to a BEA WebLogic Enterprise domain. The list of ISL/ISHs
can also be specified in the TOBJADDR environmental variable.

If you want to access multiple BEA WebLogic Enterprise domains, you must create a
Bootstrap object for each BEA WebLogic Enterprise domain you want to access.

Obtaining References to the FactoryFinder Object

The client application must obtain initial references to the objects that provide services
for the application. The Bootstrap object is used to obtain references to the
FactoryFinder object, SecurityCurrent object, and TransactionCurrent object. The
argument passed to the operation is a string containing the progid of the desired
object. You have to get references only for the objects that you plan to use in your
ActiveX client application.

The following Visual Basic example shows how to use the Bootstrap object to obtain
a reference to the FactoryFinder object:

Set objFactoryFinder = objBootstrap.CreateObject(“Tobj.FactoryFinder”)

Using a Factory to Get an ActiveX View

ActiveX client applications get interface pointers to ActiveX views of CORBA objects
from factories. A factory is any CORBA object that returns an object reference to
another CORBA object. The ActiveX client application invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. To use
factories, the ActiveX client application must be able to locate the factory it needs. The
FactoryFinder object serves this purpose.

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-12 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Use the CreateObject function to create the FactoryFinder object, and then use one
of the FactoryFinder object methods to find a factory. The FactoryFinder object has the
following methods:

t find_factories()

Returns a sequence of factories that match the input key exactly.

t find_one_factory()

Returns one factory that matches the input key exactly.

t find_factories_by_id()

Returns a sequence of factories whose ID field in the name component matches
the input argument.

t find_one_factory_by_id()

Returns one factory whose ID field in the factory’s CORBA name component
matches the input argument.

t list_factories()

Lists factory objects currently registered with the FactoryFinder.

The following Visual Basic example shows how to use the FactoryFinder
find_one_factory_by_id() method to get a factory for the Registrar object used in
the client application for the BEA WebLogic Enterprise University sample
applications:

Set objRegistrarFactory =
 objBsFactoryFinder.find_one_factory_by_id (“RegistrarFactory”)
Set objRegistrar = RegistrarFactory.find_registrar

Invoking Operations on the ActiveX View

Invoke operations on the ActiveX view by passing it a pointer to the factory and any
arguments that the operation requires.

The following Visual Basic example shows how to invoke operations on an ActiveX
view:

‘Get course details from the Registrar object’
aryCourseDetails =
 objRegistrar.get_course_details(aryCourseNumbers)

STEP 6: WRITING THE ACTIVEX CLIENT APPLICATION

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-13

Creating an Automation Server for Callbacks

In some application development scenarios, it may be desireable to allow the ActiveX
client application to respond to requests from the CORBA server application.
Rationales for callbacks from the CORBA server might include notifiying the client
application when a certain event has occurred, validating security, or obtaining
additional information from the client. For example, a client application that tracks
stock prices might request of a CORBA server that it be notified when a specified stock
changes value. The client might do this by passing a notification object reference to the
CORBA server, which the server then uses to call back to notify the client when the
stock has changed price. The following description of the process for developing an
ActiveX client application that can function as a COM server assumes you are
developing the ActiveC client in Visual Basic.

To develop an ActiveX application that can act as a COM server in relation to a
CORBA application, you follow the six steps described above. In addition, however,
you implement the COM server functionality for a CORBA interface in Visual Basic
by creating an appropriate Visual Basic class.

One way to do this is to start by selecting the Add Class option in the Visual Basic
Project menu. Add an Implements clause to the class naming the Automation view
of the CORBA interface, as it appears in the type library that you created using
Application Builder. (See Step 4: Creating ActiveX Bindings for the CORBA
Interfaces.) For example:

Implements ChatClient_Listener

This example is taken from the chat room Visual Basic client sample that is packaged
with BEA WebLogic Enterprise. The chat room sample is by default located at:

wledir\samples\corba\chatroom

In this example ChatClient_Listener is the name of the interface. You would then
write private Visual Basic subroutines to implement each of the methods included in
the interface. For example:

Private Sub ChatClient_Listener_post(ByVal from As String,
ByVal output_line As String, Optional exceptionInfo As Variant)
MsgBox “User “ + from + “: “ + output_line
End Sub

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-14 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Creating Instances of the COM Objects

Now that you have implemented the COM object, you can create instances of it in your
ActiveX client application and pass those instances to CORBA services. You create
instances of these COM objects in exactly the same way that you create instances of
any COM object. For example,

Dim aListener as ChatClient_Listener
Set aListener = New MyListener

The call to New creates the instance, where ChatClient_Listener is the name of the
interface and MyListener is the name of the class you created to implement it. Once
an instance exists, it can be specified as a parameter to a CORBA method. For
example:

aModerator.signon “Hansel”, aListener

where aModerator is a CORBA object and aListener is the COM object that the
CORBA object will call back to as necessary.

STEP 7: DEPLOYING THE ACTIVEX CLIENT APPLICATION

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 2-15

Step 7: Deploying the ActiveX Client
Application

To distribute ActiveX client applications to other client machines, you need to create
a deployment package. A deployment package contains all the data needed by the
client application to use ActiveX views of CORBA objects, including the bindings, the
type libraries, and the registration information. The deployment package is a
self-registering ActiveX control with the file extension.ocx.

To create a deployment package for an ActiveX view:

1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules, or click the right mouse button on the desired
view and choose the Deploy Modules option from the menu. A confirmation
window is displayed.

3. Click Create to create the deployment package.

By default, the deployment package is placed in \wledir\Packages.

2 CREATING ACTIVEX CLIENT APPLICATIONS

2-16 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-1

CHAPTER

3 Application Builder
Main Window

 The Main Window help includes information on:

t Application Builder Main Window

t Services Window

t Workstation Views Window

t Application Builder Objects

t Menu Options

t Toolbar Buttons

Application Builder Main Window

As shown in Figure 3-1, the Application Builder main window is divided into two
parts: the Services window and the Workstation Views window.

3 Application Builder Main Window

3-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Figure 3-1 Application Builder Main Window

When you start the Application Builder, the main window displays one Services
window and one Workstation Views window. You can use the New option on the File
menu to create additional Services and Workstation Views windows. You can also use
the Window Menu options to change the arrangement of the Services and Workstation
Views windows.

Services Window

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-3

Services Window

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local BEA WebLogic Builder Rose Expert
domain. You can create bindings for all the items in the Interface Repository.

At the top of the Services window are entries for each object system that is available
from the BEA WebLogic Builder Rose Expert domain. This release of the ActiveX
Client supports only the BEA WebLogic Builder Rose Expert object system. The
objects are displayed in the same hierarchical format used in the Interface Repository,
that is, as modules, interfaces, methods, and the parameters contained in methods. The
[+] symbol indicates an object that can be expanded to display the other objects.

The Services window also can be used to display other kinds of Interface Repository
definitions such as attributes, methods, and data types. Use the options on the Display
tab page on the Options window to select which kinds of Interface Repository
definitions are displayed in the Services window. (For information about the Display
tab page, see Filtering Objects Displayed in the Main Window.)

To open an additional Services window from within the Application Builder, choose
File->New->Services Window.

Workstation Views Window

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry in the Services window and drop it into the Workstation Views window.

The ActiveX object system does not support a hierarchical module structure; therefore,
the tree structure of the ActiveX bindings in the Workstation Views window does not
necessarily match the tree structure in the Services window. The Application Builder
alters the names of the bindings to ensure uniqueness and to conform with the naming
convention of the ActiveX object model.

3 Application Builder Main Window

3-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

The Workstation Views window also can be used to display other kinds of Interface
Repository definitions such as attributes, methods, and data types. Use the options on
the Display tab page on the Options Window to select which kinds of Interface
Repository definitions are displayed in the Workstation Views window. (For more
information about the Display tab page, see Filtering Objects Displayed in the Main
Window.)

To open an additional Workstation Views window from within the Application
Builder, choose File->New->Workstation Views Window.

Application Builder Objects

Table 3-1 explains the objects represented in the Application Builder main window.

Table 3-1 Explanation of Objects in the Application Builder

Icons Description

Indicates the available object systems such as
BEA WebLogic Builder Rose Expert and
ActiveX. For this release of the ActiveX Client,
only the BEA WebLogic Builder Rose Expert
system is supported.

An argument that is passed as a parameter to a
method. An argument is based on a single data
type (for example, integer, floating point,
character) or a structure (for example, float,
string, enumerator).

An input argument.

An output argument.

Application Builder Objects

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-5

An input/output argument.

A data structure (for example, float, string,
enumerator).

An exception.

An interface which is a set of methods and
properties.

A method which is an operation that can be
invoked on an object.

A module which is a group of one or more
interfaces.

A property which is a data attribute associated
with an object.

Indicates that this ActiveX view is a server
application that can be a source of objects.

Table 3-1 Explanation of Objects in the Application Builder

Icons Description

3 Application Builder Main Window

3-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Menu Options

This help describes the menu options in the Application Builder.

File Menu Options

Figure 3-2 shows the File menu options.

Figure 3-2 Expanded File Menu

From the File menu, you can use:

t The New->Services Window option to open an additional Services window.

t The New->Workstation Views Window option to open an additional
Workstation Views window.

t The Exit option to end the Application Builder session.

Edit Menu Options

Figure 3-3 shows the Edit menu options.

Menu Options

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-7

Figure 3-3 Expanded Edit Menu

From the Edit menu, you can use:

t The Copy option to copy a CORBA object from the Services window to the
Clipboard. You can then paste the CORBA object into the Workstation Views
window to create a view of the CORBA object. You can also use the CTRL+C
keyboard shortcut to perform the copy action. The Copy option is not enabled
from the Workstation Views window.

t The Paste option to copy a CORBA object from the Services window to the
Workstation Views window. You can also use the CTRL+V keyboard shortcut
to perform this paste action. Pasting the CORBA object into the Workstation
Views window creates an ActiveX view of the CORBA object.

View Menu Options

Figure 3-4 shows the View menu options.

Figure 3-4 Expanded View Menu

From the View menu, you can use:

t The Toolbar option to hide or display the toolbar of shortcuts.

t The Status Bar option to hide or display the status window at the bottom of the
Application Builder main window.

3 Application Builder Main Window

3-8 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

t The Properties option to view the characteristics of a CORBA object or an
ActiveX view of a CORBA object.

t The Refresh option to update all the windows with new data from the Interface
Repository.

Tools Menu Options

Figure 3-5 shows the Tools menu options.

Figure 3-5 Expanded Tools Menu

From the Tools menu, you can use the Options option to open the Options window
which has the following dialog windows:

t Workstation Bindings—Use this window to control the default settings used
when creating bindings.

t Deployment Packages—Use this window to change the default directory
location for the deployment packages.

t Display—Use this window to determine the types of objects displayed in the
Services window and the Workstation Views window.

Window Menu Options

Figure 3-6 shows the Window menu options.

Menu Options

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-9

Figure 3-6 Expanded Window Menu

From the Window menu, you can use:

t The New option to open either a new Services or Workstation Views window.
The Application Builder creates a new window of the same type as the active
window.

t The Cascade option to arrange the open Services and Workstation Views
windows in an overlapping titled pattern.

t The Tile option to arrange the open Services and Workstation Views windows in
a nonoverlapping titled pattern.

The bottom half of the menu lists the open Services and Workstation Views windows.
A check mark indicates the active window.

Help Menu Options

The Help menu options direct you to categories of the Application Builder component
descriptions.

Figure 3-7 shows the Help Menu options.

3 Application Builder Main Window

3-10 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Figure 3-7 Expanded Help Menu

From the Help menu, you can bring up descriptions of the Application Builder
windows and features.

Toolbar Buttons

Figure 3-8 shows the Application Builder toolbar.

Figure 3-8 Application Builder Toolbar

The toolbar is located below the menu bar on the main window. The toolbar buttons,
from left to right, perform the following functions:

t Opens a new Services window

t Opens a new Workstation Views window

t Copies the selected interface to the Clipboard

t Pastes the contents of the Clipboard to the designated window

t Displays the properties of the selected interface or view

Toolbar Buttons

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 3-11

t Refreshes the active window

t Creates a deployment package for the selected interface

t Provides information about the product, version number, and copyright

t Provides context-sensitive help

3 Application Builder Main Window

3-12 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-1

CHAPTER

4 Tasks

This help topic describes the following tasks:

t Loading CORBA Interfaces into the Interface Repository

t Starting Application Builder

t Creating ActiveX Bindings for CORBA Interfaces

t Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

t Creating Deployment Packages

t Changing the Directory Location for Deployment Packages

t Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

t Changing the Default Directory Locations

t Filtering Objects Displayed in the Main Window

t Displaying Properties

Loading CORBA Interfaces into the Interface
Repository

Before you can create an ActiveX view of a CORBA object, you need to load the
interfaces of the CORBA object into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they are not displayed in the
Services window. If a desired CORBA interface is not displayed in the Services

4 Tasks

4-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

window, use the idl2ir command to load the Object Management Group (OMG)
Interface Definition Language (IDL) for the CORBA interface into the Interface
Repository. The syntax for the idl2ir command is as follows:

idl2ir -f repository-name file.idl

The following table describes the options for the idl2ir command.

For a complete description of the idl2ir command, see the C++ Programming
Reference.

Starting Application Builder

To start the Application Builder, perform the following steps:

1. Click the BEA Application Builder icon in the BEA BEA WebLogic Builder Rose
Expert System program group.

A logon window appears.

2. Enter the host name and port number that is specified in the ISL parameter in the
UBBCONFIG file. You must match exactly the capitalization used in the
UBBCONFIG file. See Figure 4-1.

Option Description

-f repository-name Loads the OMG IDL files for the CORBA interface into the
Interface Repository. Specify the Interface Repository that is in
the same BEA WebLogic Builder Rose Expert domain as the
ActiveX client application.

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.

Creating ActiveX Bindings for CORBA Interfaces

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-3

Figure 4-1 Connecting to the IIOP Listener

The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.

Creating ActiveX Bindings for CORBA
Interfaces

To create an ActiveX binding for a CORBA interface:

1. In the Application Builder window, highlight the desired CORBA interface in the
Services window.

2. Drag the desired CORBA interface to the Workstation Views window, or cut the
CORBA interface from the Services window and paste it into the Workstation
Views window.

The Confirm View Creation window appears.

4 Tasks

4-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

3. To create an ActiveX binding for the CORBA interface, click Create.

The Application Builder creates the following:

t A type library. By default the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named: DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

You can now use the ActiveX view of a CORBA object from an ActiveX client
application.

Changing the Settings for Creating ActiveX
Bindings for CORBA Interfaces

Use the Workstation Bindings tab page on the Options window to change the settings
used to create ActiveX bindings for the interfaces of CORBA objects. To get to the
Workstation Bindings tab page, click Tools->Options.

Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-5

Table 4-1 describes the options on the Workstation Bindings tab page.

Table 4-1 Workstation Bindings Tab Page Options

Option Description

Workstation Bindings Options Lists the types of bindings that can be created for the
interfaces of CORBA objects. A check mark appears
next to the type of bindings to be created.

Generate COM Views on
Workstation Drop

Creates COM bindings for the interfaces of CORBA
objects. This release of the ActiveX Client does not
support COM views of CORBA objects in a BEA
WebLogic Builder Rose Expert domain.

Generate OLE Automation Views
on Workstation Drop

Creates ActiveX bindings for the interfaces of CORBA
objects.

Create ActiveX Controls for OLE
Automation Views

Adds the necessary interfaces to a CORBA object so
that the CORBA object can be used as an ActiveX
control. It also registers the CORBA object as an
ActiveX control. The CORBA object can then be used
in ActiveX Control container applications.

Output Folders Specifies a directory location for the bindings that are
created for the interfaces of a CORBA object.

C++ Headers C++ header files need to be located in your computer’s
defined path so that they are compiled properly. By
default, the files are placed in:

\WLEdir\Include

You can click the Browse button to search for a
directory location.

MIDL/ODL Files Microsoft Definition Language (MIDL) and Object
Definition Language (ODL) files are for reference only
and can be placed anywhere on your computer. By
default, the files are placed in:

\WLEdir\TypeLibraries

You can click the Browse button to search for a
directory location.

4 Tasks

4-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Creating Deployment Packages

To distribute client applications to other client computers, you need to create a
deployment package. A deployment package contains all the data the client application
needs to have to use ActiveX views of CORBA objects, including the bindings, type
libraries, and registration information. The deployment package is a self-registering
ActiveX control with the file extension .ocx.

To create a deployment package for an ActiveX view of a CORBA object:

1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules or click the right mouse button on the desired
view and select the Deploy Modules option from the menu.

The Confirm Deployment window is displayed.

Type Libraries Type libraries are registered with a complete directory
path and can be placed in any directory that is always
available to a client computer. By default, the files are
placed in:

\WLEdir\TypeLibraries

You can click the Browse button to search for a
directory location.

Table 4-1 Workstation Bindings Tab Page Options

Option Description

Changing the Directory Location for Deployment Packages

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-7

3. Click Create to create the deployment package.

By default, the deployment package is placed in \WLEdir\Packages.

Changing the Directory Location for
Deployment Packages

Use the Deployment Packages tab page on the Options window to change the directory
location for deployment packages for ActiveX views of CORBA objects. To access the
Deployment Packages tab page, click Tools->Options. The current directory location
for the deployment packages is displayed. The default location is
\WLEdir\Packages.

Changing the Default Directory Locations

The Application Builder provides default directory locations for C++ header files,
MIDL and ODL files, and type libraries. You can change those directory locations.

To change the directory locations:

1. From the Tools menu, select the Options option.

4 Tasks

4-8 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

The Options window is displayed.

2. Choose the Workstation Bindings tab on the Options window.

The default directory location is displayed in the C++ Headers, MIDL/ODL
Files, and Type Libraries fields.

3. Select the specification for the desired output directory and delete it.

4. Either enter a new directory specification or click the Browse button to search for
a new directory.

5. Click OK to save the change.

Filtering Objects Displayed in the Main
Window

Use the Display tab page on the Options window to filter the types of objects displayed
in the Application Builder main window. By default CORBA interfaces and modules
are displayed.

Filtering Objects Displayed in the Main Window

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-9

You have the option of also displaying the following types of information:

t Data types

t Methods

t Arguments

t Properties

t Exceptions

Use the Include System Objects option to enable the display of a specific set of
definitions in the Interface Repository, for example, CosTransactions.

To display additional information in the Application Builder main window, click the
desired options and click OK.

4 Tasks

4-10 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Displaying Properties

Use the Properties window to display one or more pages listing the properties of the
selected adapter, module, or interface. The content of the Properties window is object
specific.

Table 4-2 describes the possible properties.

Table 4-2 Description of Properties

Property Description

Interface->Name The name of the selected CORBA interface.

Interface->Type The type of object. For example, interface, module, or
exception.

Adapter->Name The name of the object system. For this release, this option
appears as BEA WebLogic Builder Rose Expert Version 4.2

Adapter->Vendor The name of the vendor of the object system. For this
release, this option appears as BEA Systems.

Adapter->Platform The version of the object system. This option appears as
Version 4.2

Displaying Properties

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 4-11

Exposure Describes the source object system of the object. For
example, BEA WebLogic Builder Rose Expert.

Table 4-2 Description of Properties

Property Description

4 Tasks

4-12 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 5-1

CHAPTER

5 Using Security

This chapter describes how to use security in ActiveX client applications for the BEA
WebLogic Enterprise software.

For an overview of the SecurityCurrent object, see Chapter 1, “Overview.”

Overview of BEA WebLogic Enterprise
Security

ActiveX client applications use security to authenticate themselves to the BEA
WebLogic Enterprise domain. Authentication is the process of verifying the identity
of a client application. By entering the correct logon information, the client application
authenticates itself to the BEA WebLogic Enterprise domain. The BEA WebLogic
Enterprise software uses authentication as defined in the CORBAservices Security
Service and provides extensions for ease of use.

A client application must provide security information according to the security level
defined in the desired BEA WebLogic Enterprise domain. This information is defined
by the BEA WebLogic Enterprise system administrator in the UBBCONFIG file for the
BEA WebLogic Enterprise domain. When creating client applications, you must work
with the BEA WebLogic Enterprise system administrator to obtain the correct security
information (such as the user name and user password) for the BEA WebLogic
Enterprise domain you want to access from the client application.

5 USING SECURITY

5-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Summary of the Development Process for
Security

The steps for adding security to a client application are as follows:

The following sections describe these steps and use portions of the client applications
in the Security University sample application to illustrate the steps.

Step Description

1 Use the Bootstrap object to obtain a reference to the
SecurityCurrent object in the specified BEA WebLogic
Enterprise domain.

2 Get the PrincipalAuthenticator object from the SecurityCurrent
object.

3 Use the get_auth_type operation of the
PrincipalAuthenticator object to return the type of
authentication expected by the BEA WebLogic Enterprise
domain.

4 Log on to the BEA WebLogic Enterprise domain using the
required security information.

5 Log off the BEA WebLogic Enterprise domain.

STEP 1: USING THE BOOTSTRAP OBJECT TO OBTAIN THE SECURITYCURRENT OBJECT

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 5-3

Step 1: Using the Bootstrap Object to Obtain
the SecurityCurrent Object

Use the Bootstrap object to obtain an object reference to the SecurityCurrent object for
the specified BEA WebLogic Enterprise domain. The SecurityCurrent object is a
SecurityLevel2::Current object as defined by the CORBAservices Security
Service.

The following Visual Basic example illustrates how the Bootstrap object is used to
return the SecurityCurrent object:

Set objSecurityCurrent =
 objBootstrap.CreateObject(“Tobj.SecurityCurrent”)

Step 2: Getting the PrincipalAuthenticator
Object from the SecurityCurrent Object

The SecurityCurrent object returns a reference to the PrincipalAuthenticator for the
BEA WebLogic Enterprise domain. The PrincipalAuthenticator is used to get the
authentication level required for a BEA WebLogic Enterprise domain.

The following Visual Basic example illustrates how to obtain the
PrincipalAuthenticator for a BEA WebLogic Enterprise domain:

Set objPrincAuth = objSecurityCurrent.principal_authenticator

Step 3: Obtaining the Authentication Level

Use the Tobj::PrincipalAuthenticator::get_auth_type() method to get the
level of authentication required by the BEA WebLogic Enterprise domain.

5 USING SECURITY

5-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

The following Visual Basic example illustrates how to obtain the
PrincipalAuthenticator for a BEA WebLogic Enterprise domain:

AuthorityType = objPrinAuth.get_auth_type

Step 4: Logging on to the BEA WebLogic
Enterprise Domain with Proper
Authentication

Use the Tobj::PrincipalAuthenticator::logon() method to log your client
application into the desired BEA WebLogic Enterprise domain. The method requires
the following arguments:

t user_name

The BEA WebLogic Enterprise user name. This information is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels. This information
may be supplied for the TOBJ_NOAUTH authentication level; however, it is not
required. The system designer decides this name at design time.

t client_name

The BEA WebLogic Enterprise client application name. This information is
required for TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels. This
information may be supplied for the TOBJ_NOAUTH authentication level;
however, it is not required. Obtain this information from the system
administrator.

t system_password

The BEA WebLogic Enterprise password. This information is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels. Obtain this
information from the system administrator.

t user_password

The user password for the BEA WebLogic Enterprise authentication service.
This information is required for the TOBJ_APPAUTH authentication level.

STEP 4: LOGGING ON TO THE BEA WEBLOGIC ENTERPRISE DOMAIN WITH PROPER AUTHENTICA-

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 5-5

t user_data

Application-specific data for authentication. This information is required when
the BEA WebLogic Enterprise domain the client application is accessing is not
using the authentication service provided with the BEA WebLogic Enterprise
software.

The user_password and user_data arguments are mutually exclusive, depending
on the authentication service used in the configuration of the BEA WebLogic
Enterprise software. If you are using an authentication service other than an
authentication service provided by the BEA WebLogic Enterprise software, provide
the information required for logon in the user_data argument. The
Tobj::PrincipalAuthenticator::logon() method raises a CORBA::BAD_PARAM
exception if both user_password and user_data are set.

If a BEA WebLogic Enterprise domain has a TOBJ_NOAUTH authentication level,
the client application is not required to supply a user_name or client_name when
logging on to the BEA WebLogic Enterprise domain. If the client application does not
logon with a user_name and client_name, the IIOP Server Listener/Handler
(ISL/ISH) of the BEA WebLogic Enterprise domain registers the client application
with the user_name and the client_name set for the ISL/ISH in the UBBCONFIG file.
However, the client application can log on with any user_name and client_name.

The logon() method returns one of the following:

t Security::AuthenticationStatus::SecAuthSuccess if the authentication
succeeded

t Security::AuthenticationStatus::SecAuthFailure if the authentication
failed or if the client application was already authenticated and did not log off
the BEA WebLogic Enterprise domain

The followingVisual Basic example illustrates how to use the
Tobj::PrincipalAuthenticator::logon() method:

If AuthorityType = TOBJ_APPAUTH Then logonStatus =
 oPrincAuth.Logon(
 UserName,ClientName,SystemPassword,_
 UserPassword,UserData)
End If

5 USING SECURITY

5-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Step 5: Logging off the BEA WebLogic
Enterprise Domain

The client application must log off the current BEA WebLogic Enterprise domain
before it can log on as another user in the same BEA WebLogic Enterprise domain.
Use the Tobj::PrincipalAuthenticator::logoff() method to discard the BEA
WebLogic Enterprise current authentication context and credentials. This method does
not close the network connections to the BEA WebLogic Enterprise domain. After
logging off the BEA WebLogic Enterprise domain, calls using the existing
authentication fail if the authentication type is not TP_NOAUTH.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 6-1

CHAPTER

6 Using Transactions

This chapter describes how to use transactions in ActiveX client applications for the
BEA WebLogic Enterprise software.

For an overview of the TransactionCurrent object, see Chapter 1, “Overview.”

Overview of Transactions

Client applications use transaction processing to ensure that data remains correct,
consistent, and persistent. The transactions in the BEA WebLogic Enterprise software
allow client applications to begin and terminate transactions and to get the status of
transactions. The BEA WebLogic Enterprise software uses transactions as defined in
the CORBAservices Object Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a BEA WebLogic Enterprise client/server application will handle
transactions. Transaction policies are defined in the Implementation Configuration
File (ICF) for C++ server applications, or in the Server Description file (XML) for Java
server applications. Generally, the ICF file or the Server Description file for the
available interfaces is provided to the client programmer by the application designer.

If you prefer, you can use the Transaction application programming interface (API)
defined in the javax.transaction package that is shipped with the BEA WebLogic
Enterprise 5.1 software.

6 USING TRANSACTIONS

6-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Summary of the Development Process for
Transactions

The steps for adding transactions to a client application are as follows:

The following sections describe these steps and use portions of the client applications
in the Transactions University sample application to illustrate the steps. For
information about the Transactions University sample application, see the Guide to the
University Sample Applications. The Transactions University sample application is
located in the following directory on the BEA WebLogic Enterprise software kit:

 drive:\wledir\samples\corba\university\transactions

Step 1: Using the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Bootstrap object to obtain an object reference to the TransactionCurrent object
for the specified BEA WebLogic Enterprise domain. For a complete description of the
TransactionCurrent object, see the C++ Programming Reference available from the
Online Documentation CD.

The following Visual Basic example illustrates how the Bootstrap object is used to
return the TransactionCurrent object:

Step Description

1 Use the Bootstrap object to obtain a reference to the
TransactionCurrent object in the specified BEA WebLogic
Enterprise domain.

2 Use the methods of the TransactionCurrent object to include
the interface of a CORBA object in a transaction operation.

STEP 2: USING THE TRANSACTIONCURRENT METHODS

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 6-3

Set objTransactionCurrent =
 objBootstrap.CreateObject(“Tobj.TransactionCurrent”)

Step 2: Using the TransactionCurrent
Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain
information about the current transaction. The TransactionCurrent object provides the
following methods:

t begin()

Creates a new transaction. Future operations take place within the scope of this
transaction. When a client application begins a transaction, the default
transaction timeout is 300 seconds. You can change this default, using the
set_timeout method.

t commit()

Ends the transaction successfully. Indicates that all operations on this client
application have completed successfully.

t rollback()

Forces the transaction to roll back.

t rollback_only ()

Marks the transaction so that the only possible action is to roll back. Generally,
this method is used only in server applications.

t suspend()

Suspends participation in the current transaction. This method returns an object
that identifies the transaction and allows the client application to resume the
transaction later.

t resume()

Resumes participation in the specified transaction.

6 USING TRANSACTIONS

6-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

t get_status()

Returns the status of a transaction with a client application.

t get_transaction_name()

Returns a printable string describing the transaction.

t set_timeout()

Modifies the timeout period associated with transactions. The default transaction
timeout value is 300 seconds. If a transaction is automatically started instead of
explicitly started with the begin() method, the timeout value is determined by
the value of the TRANTIME parameter in the UBBCONFIG file. For more
information about setting the TRANTIME parameter, see Administration Guide,
available on the BEA WebLogic Enterprise online documentation CD.

t get_control()

Returns a control object that represents the transaction.

A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj::TransactionCurrent::begin() method. This method does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If a call to any of these operations raises an exception (either
explicitly or as a result of a communications failure), the exception can be caught
and the transaction can be rolled back.

3. Use the Tobj::TransactionCurrent:commit() method to commit the
current transaction. This method ends the transaction and starts the processing of
the operation. The transaction is committed only if all of the participants in the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application calls the Tobj::TransactionCurrent:commit()method or
the Tobj::TransactionCurrent:rollback() method.The following Visual
Basic example illustrates using a transaction to encapsulate the operation of a
student registering for a class:

’ Begin the transaction
’
objTransactionCurrent.begin
’

STEP 2: USING THE TRANSACTIONCURRENT METHODS

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 6-5

’ Try to register for courses
’
NotRegisteredList = objRegistrar.register_for_courses(mStudentID,
 CourseList, exception)
’
If exception.EX_majorCode = NO_EXCEPTION then
 ’ Request succeeded, commit the transaction
 ’
 Dim report_heuristics As Boolean
 report_heuristics = True
 objTransactionCurrent.commit report_heuristics
Else
 ’ Request failed, Roll back the transaction
 ’
 objTransactionCurrent.rollback
 MsgBox "Transaction Rolled Back"
End If

6 USING TRANSACTIONS

6-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

BEA WebLogic Enterprise ActiveX Client Developer’s Guide 7-1

CHAPTER

7 Command-Line
Options

This help topic describes the command-line version of the Application Builder.

The BEAAppBuilder command is a command-line version of the Application
Builder. The command is used in a makefile, in batch command files, or interactively
from the command line. Before using this command, make sure the ISL parameter in
the UBBCONFIG is set to the host and port of your server computer.

Format

BEAAppBuilder -v toAdpaterPath, sourcePath [,sourcePath...], -i directorypath, -t
directorypath, -o directorypath

Parameters

-v

Creates ActiveX bindings for the CORBA interface.

toAdapterPath

Specifies the adapter to be used to create the bindings. For this release of the
Application Builder, the toAdapterPath path is OLEAutomation.

sourcePath

Specifies one or more CORBA interfaces for which bindings are to be created. You
can also specify a module.

-i directorypath

7 COMMAND-LINE OPTIONS

7-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

Specifies the directory location for the C++ header files generated from the command.
The default location is \WLEdir\Include. If you do not specify this option, the
Application Builder uses the last defined values.

-t directorypath

Specifies the directory location for the type libraries generated from this command.
The default location is \WLEdir\TypeLibraries. If you do not specify this option,
the Application Builder uses the last defined values.

-o directorypath

Specifies the directory location for the MIDL/ODL files generated from this
command. The default location is \WLEdir\TypeLibraries. If you do not specify
this option, the Application Builder uses the last defined values.

Example

The following command creates ActiveX bindings for the Registrar and
RegistrarFactory interfaces:

BEAAppBuilder -v OLEAutomation, Registrar, RegistarFactory, -i
c:\WLEdir\Include, -t c:\WLEdir\TypeLibraries

BEA WebLogic Enterprise ActiveX Client Developer’s Guide G-1

Glossary

activation

The process of preparing an object for execution.

activation policy

The policy that determines the in-memory activation duration for a CORBA ob-
ject.

ActiveX

A set of technologies from Microsoft that enables software components to interact
with one another in a networked environment, regardless of the language in which
the components were created. ActiveX is built on the Component Object Model
(COM) and includes OLE functionality, such as OLE Automation.

ActiveX view

A representation of a CORBA object that conforms to the ActiveX standards, in-
cluding implementations of all the interfaces and mapping of data types to those
data types supported by ActiveX.

API

See application programming interface.

application

In the WLE system, a single computer program designed to do a certain type of
work.

application programming interface (API)

The verbs and environment that exist at the application level to support a particu-
lar system software product. A set of well-defined programming interfaces (that
is, entry points, calling parameters, and return values) by which one software pro-
gram uses the services of another.

G-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

application to transaction monitor interface (ATMI)

A UNIX international standard interface that BEA TUXEDO application pro-
grams can use to start and commit global transactions, send and receive messages,
maintain corrections, manage typed buffers, and perform similar tasks. The ATMI
interface is supported by all BEA TUXEDO-based systems and is the basis of the
X/Open TX and XATMI interfaces.

applications development environment (ADE)

A set of tools (often presented or accessed via a GUI) to help programmers build
applications.

asynchronous process

A process that executes independently of another process. When a request is pro-
cessed asynchronously, the client application continues to perform other opera-
tions while it waits for the service request to be filled.

asynchronous request

A request that lets the client do other work while the request is being processed,
enhancing parallelism within an application.

ATMI

See application to transaction monitor interface.

attribute

An identifiable association between an object and a value.

authenticate

To reliably determine a user’s or processor’s identity, often using a password or
series of passwords. Once authenticated, an identity can be mapped against the au-
thorization tables of services and objects. This mapping generally takes place in
the access control list.

authentication

A method consisting of application passwords and security services that is used to
verify users and allow users to join applications.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide G-3

BEA ActiveX Client

The component of the WLE software that provides interoperability between a
WLE domain and the ActiveX object system. The ActiveX Client translates into
ActiveX methods the interfaces of CORBA objects that are located in the WLE
domain.

BEA TUXEDO application

One or more TUXEDO domains cooperating to support a single business func-
tion.

BEA TUXEDO domain

A collection of servers, services, and associated resource managers defined by a
single UBBCONFIG or TUXCONFIG file.

BEA WLE software

The BEA WLE product as the customer receives it from BEA Systems, Inc.

BEA WLE system

The BEA WLE software and the hardware on which the WLE software is running.

binding

The association of the interface of a CORBA object to another object system, such
as an ActiveX object system.

broadcast

To send the same message to every node on a network.

business object

An application-level component that can be used in unpredictable combinations.
A business object is independent of any single application and represents a recog-
nizable, ordinary entity, such as a document processor. It is a self-contained deliv-
erable that has a user interface state, and that can cooperate with other separately
developed business objects to perform a desired task.

C++

An object-oriented programming language developed at AT&T Bell Laboratories
in the early 1980s. C++ is a “hybrid” language based on the non-object-oriented
C language.

G-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

call

An instruction that is used by an application program to request services.

class

A template for an object containing variables and methods representing behavior
and attributes. Class can inherit public and protected variables and methods from
other classes.

client

1) Software that asks a server to perform a task. In client/server terminology, a cli-
ent application typically contains the user interface, and the server application typ-
ically stores and manipulates the data. A software program that makes a request
for a service in a client/server architecture. 2) A process that generates service re-
quests handled by BEA TUXEDO software and receives responses to those re-
quests from BEA TUXEDO software.

client/server

A programming model in which application programs are structured as clients or
servers. A client program is an application program that requests services to be
performed. A server program is an entity that dispatches service routines to satisfy
requests from client programs. A service routine is an application program module
that performs one or more specific functions on behalf of client programs.

client stub

A file created by the IDL compiler when you compile an application’s OMG IDL
statements. The client stub contains code that is generated during the client appli-
cation build process. The client stub maps OMG IDL operation definitions for an
object type to the methods in the server application that the WLE domain calls
when it is invoking a request. The code is used to send the request to the server
application.

command-line interface

A style of user interface that allows user interaction by entering command strings
at a system prompt.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide G-5

commit

1) Complete a transaction so that changes are recorded and stable. Protected re-
sources are released. 2) The declaration or process of making a transaction’s up-
dates and messages visible to other transactions. When a transaction commits, all
its effects become public and durable. After commitment, the effects of a transac-
tion cannot be reversed automatically.

Component Object Model (COM)

The object model used on Microsoft platforms. COM is different from CORBA in
many ways. For example, there are differences in the mechanisms by which ob-
jects are referenced, and in the process by which objects are created.

COM view

A representation of an object that conforms to the Component Object Model
(COM) standards, including implementation of all necessary interfaces.

constructor

A pseudo-method that creates an object. In Java, constructors are instance meth-
ods with the same name as their class. Java constructors are invoked using the new
keyword.

conversational server

A server whose services conduct conversations with requesters.

conversational service

A service routine that is invoked by means of conversational communication from
a client program. When the connection is established and the service is invoked,
the client and service exchange data in a manner specific to the application. When
the service returns, the connection ends.

CORBA

Common Object Request Broker Architecture. A multivendor standard published
by the Object Management Group for distributed object-oriented computing.

CORBA facilities

The adopted OMG Common Facilities. Common Facilities provide horizontal end
user-oriented frameworks that are applicable to most domains, and defined in
OMG IDL.

G-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

CORBA interface

A set of operations and attributes. A CORBA interface is defined by using OMG
IDL statements to create an interface definition. The definition contains opera-
tions and attributes that can be used to manipulate an object.

CORBA object

An entity that complies with the CORBA standard upon which operations are per-
formed. An object is defined by its interface.

CORBA ORB

Any Object Request Broker (ORB) that complies with the CORBA standard. A
CORBA ORB is a communications intermediary between client and server appli-
cations that typically are distributed across a network. The WLE ORB is
a CORBA ORB.

core class

A public class (or interface) that is a standard member of the Java platform. The
intent is that the Java core classes, at a minimum, are available on all operating
systems where the Java platform runs.

daemon

A system process that processes and runs in the background.

database

A collection of interrelated or independent data items stored together without re-
dundancy to serve one or more applications.

database management system (DBMS)

A program or set of programs that let users structure and manipulate the data in
the tables of a database. A DBMS ensures privacy, recovery, and integrity of data
in a multi-user environment.

data-dependent routing

Routing that directs a request to be processed by a particular group based on the
value in a data field of the message.

DBMS

See database management system.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide G-7

deployment package

In AciveX Client, a self-registering OLE custom control executable that contains
the type libraries, Windows registration entries, and application needed to use an
ActiveX view of a CORBA object in a client application.

design pattern

A document that encapsulates, in structured format, solutions to design problems.
These patterns are essentially the articulation of rules and forms that have proved
useful in the context of object-oriented application design.

desktop client

A client application that operates on a Microsoft desktop platform, such as Win-
dows NT or Windows 98. Desktop client applications use the Component Object
Model (COM) and communicate with the WLE domain by using the ActiveX Cli-
ent to translate between COM and CORBA.

distributed application

An application that is separated into two or more parts (such as a client and a serv-
er) on different computers that communicate through a network.

distributed application framework

A middleware suite for building and managing client/server applications. The
framework also includes products providing connectivity across multiple operat-
ing environments, development services, and management.

distributed transaction

A transaction involving multiple transaction managers. In a distributed transaction
environment, a client application may send requests to several servers resulting in
resource updates at multiple resource managers. To complete the transaction, the
transaction manager for each participant (client, servers, and resource managers)
must be polled to coordinate the commit process for each participant within its do-
main.

distributed transaction processing (DTP)

A form of processing in which multiple application programs update multiple re-
sources (such as databases) in a coordinated manner. Programs and resources can
reside on one or more computers access a network.

domain

See BEA TUXEDO domain and WLE domain.

G-8 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

dynamic link libraries (DLL)

A collection of functions grouped into a load module that is dynamically linked
with an executable program at run time for a Windows or OS/2 application.

environmental object

Any support object that provides independence from the underlying environment
(for example, independence from the operating system). The Bootstrap object is
an environmental object.

event

The occurrence of a condition, state change, or the availability of some informa-
tion, that is of interest to one or more modules.

exception

An abnormal condition, such as an I/O error encountered in processing or data set
or a file, or using any resource.

factory

Any CORBA object that returns an object reference to other CORBA objects. A
factory is located in the server application.

factory finder

The object that locates the factories that an application needs. Both client applica-
tions and server applications can use a factory finder.

framework

The software environment tailored to the needs of a specific application domain.
Frameworks include a collection of software components that programmers use to
build applications for the domain the framework addresses. Frameworks can con-
tain specialized APIs, services, and tools, which reduce the knowledge a user or
programmer needs to have to accomplish a specific task.

garbage collection

The automatic detection and freeing of memory that is no longer in use. The Java
run-time system performs garbage collection so that programmers never explicitly
free objects.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide G-9

global transaction

1) A transaction that spans one or more resource managers comprising local trans-
actions. The Transaction Manager name for a transaction that uses multiple serv-
ers or multiple resource manager interfaces and is coordinated as an atomic unit
of work. 2) The BEA TUXEDO name for a transaction that uses multiple servers
or multiple resource manager interfaces and is coordinated as an atomic unit of
work.

graphical user interface (GUI)

A high-level interface that uses windows and menus with graphic symbols instead
of typed system commands to provide an interactive environment for a user.

GUI

See graphical user interface.

host

A computer that is attached to a network and provides services other than acting
as a communication switch.

identifier

The name of an item in a Java program.

IDL

See OMG IDL.

IDL interface

A declaration in OMG IDL of an interface to a CORBA object. The interface dec-
laration contains IDL operations and attributes. The OMG IDL interface declara-
tion is used to generate stubs and skeletons for WLE CORBA objects.

See also Java interface.

IIOP

Internet Inter-ORB Protocol. A protocol specified by the Object Management
Group (OMG). The IIOP enables two or more Object Request Brokers (ORBs) to
cooperate to deliver requests to the proper object.

See also CORBA ORB.

G-10 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

IIOP Listener/Handler

The WLE feature that enables client applications to communicate with the WLE
domain, and the reverse. The IIOP listener/handler receives a request from a client
application via the IIOP protocol, and then sends that request to the appropriate
server application within the WLE domain.

implementation code

The method code that you write that satisfies the client application’s request on a
specific object. The interface defines the operation and is implemented in the
method.

implementation file

The file that contains, among other data, method declarations for each operation
defined in your OMG IDL statements. You need to implement the method with
your business logic. When you build the server application, you provide this im-
plementation file to the WLE build procedure.

inheritance

The ability to pass along the capabilities and behaviors of one object to another
object. When an object inherits behavior from a single interface, it is called single
inheritance. When an object inherits behavior from more than one interface, it is
called multiple inheritance.

instance

An object instance in C++ or Java. Object instances are used as servants
for CORBA objects in the WLE system.

Interface Repository

An online database that contains the definitions of the interfaces that determine the
CORBA contracts between client and server applications.

Interoperable Object Reference (IOR)

The entity that associates a collection of tagged profiles with object references. An
ORB must create an IOR from an object reference whenever an object reference
is passed across ORBs.

Java

An object-oriented programming language modeled after C++ designed to be
small, simple and portable across platforms and operating systems.

BEA WebLogic Enterprise ActiveX Client Developer’s GuideG-11

Java Development Kit (JDK)

A package of software for Java developers that includes the Java interpreter, Java
classes, and Java development tools: compiler, debugger, disassembler, applet-
viewer, stub file generator, and documentation generator.

Java interface

A declaration used in the Java language to define an abstract interface. Since Java
does not have multiple inheritance, a Java class can implement one or more inter-
faces to provide mix-in functionality.

See also IDL interface.

Java Runtime Environment (JRE)

A subset of the Java Development Kit for end users and programmers who want
to redistribute the JRE. The JRE consists of the Java Virtual Machine, the Java
core classes, and supporting files.

Java Server

A server provided by the WLE system for Java server applications. You start the
WLE JavaServer in the application’s UBBCONFIG file before starting your applica-
tion’s Java servers. The server that loads the JVM.

Java Transaction API (JTA)

The API that defines a high-level transaction management specification for re-
source managers and transactional applications that are deployed in a distributed
application system.

Java Transaction Service (JTS)

The Sun Microsystems, Inc. Java interface for transaction services, based on the
OTS. The JTS defines a low-level transaction management specification intended
for vendors who provide the transaction system infrastructure required to support
the application run-time environment.

Java Virtual Machine

The part of the Java Runtime Environment responsible for interpreting Java byte-
codes.

JDK

See Java Developer’s Kit.

G-12 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

legacy application

An existing application that needs to be modified or wrapped so that it can gain
access to the WLE domain.

logical machine (LMID)

A processing element used in a transaction manager application and given a logi-
cal name in the configuration file.

makefile

A file, referenced by the make command, that tells the make command how to cre-
ate each of the files needed to generate a complete program. The makefile contains
a list of source files, object files, and dependency information.

managed object

An entity (such as a process, a piece of hardware, or system performance) that is
defined in the MIB and is controlled by a management device.

management information base (MIB)

1) A BEA WLE system component that provides a complete definition of the ob-
ject classes and their attributes that together comprise the BEA W:LE system. 2)
A virtual storage database that uses ASN.1 notation. The MIB contains an object
that represents each attribute that the system manager software monitors and con-
trols. These objects are defined in ASN.1 notation. Each attribute has an object
identifier (OID) that guarantees uniqueness within a standard registration hierar-
chy.

mapping

The relationship between OMG IDL statements and the programming language
code that results when the OMG IDL statements are compiled. For example, a
C++ IDL compiler maps OMG IDL statements into C++ language bindings.

method

A method of a C++ or Java class. User-written methods of C++ or Java classes
provide implementation of IDL operations for WLE distributed objects.

MIB

See management information base.

BEA WebLogic Enterprise ActiveX Client Developer’s GuideG-13

MIB group

A group of objects, represented by the name or object identifier of an object in the
OID tree, that contains a collection of managed objects.

middleware

A set of services for building distributed client/server applications, such as servic-
es for locating other programs in the network, establishing communication with
those programs, and passing information between applications. Middleware ser-
vices can also be used to resolve disparities between different computing plat-
forms and to provide a uniform authorization model in multivendor and
multioperating system networks.

model

A simplified representation of something. The representation is simplified in the
sense that some of the details have been abstracted.

modeling

A design technique used in developing architecture, simulations, and computer
systems.

multithreading

Use of a process by several transactions.

naming context

An object that contains a set of name associations in which each name is unique.

object

An entity defined by its state, behavior, and identity. These attributes (also known
as properties) are defined by the object’s object system.

See also CORBA object.

object ID (OID)

A value that uniquely identifies a distributed object of a given interface.s

object implementation

The code you write that implements the operations defined for an interface.

G-14 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

object interface

The interface of an object, as defined in an application’s OMG IDL statements.
The object interface identifies the set of operations that can be performed on an
object, such as withdrawals, deposits, and transfers.

object model

The model that represents as objects the overall object-oriented design of an ap-
plication or system.

object reference

An identifier that associates an object definition with an instance of the object,
such as an employee identification number.

object system

A software system that stores, manipulates, and uses a collection of objects ac-
cording to a set of system-specific standards. An object system specifies how in-
formation is exchanged between objects, and how objects are implemented in
accordance with an object model, such as CORBA or COM.

octet

A byte that consists of eight bits.

OLE

Object linking and embedding. A set of Microsoft technologies that address prob-
lems in software development, ranging from embedding documents from one ap-
plication into another application to more complex problems. OLE enables the
linking of clients and servers in a manner that is transparent to the user.

OLE Automation

A technology that lets software packages expose their unique features to scripting
tools and other applications. OLE Automation uses the OLE Component Object
Model (COM), but may be implemented independently from other OLE features.

OMG IDL

Object Management Group Interface Definition Language. A definition language
specified by the OMG for describing an object’s interface (that is, the characteris-
tics and behavior of an object, including the operations that can be performed on
the object).

BEA WebLogic Enterprise ActiveX Client Developer’s GuideG-15

operation

An action that can be performed by an object.

Portable Object Adapter (POA)

A runtime library of functions that are built in to the server application executable
image. The POA creates and manages object references to all objects used by the
application. In addition, the POA managers object state and provides the infra-
structure for support of persistent objects and the portability of object implemen-
tations between different ORB products. The WLE server application procedure
automatically builds the POA into the server application. The WLE TP framework
automatically handles all the server application interactions with the POA.

request

A message sent by a client application that identifies an operation to be performed.
The message is sent to the Object Request Broker (ORB) and is relayed to the ap-
propriate server application, which fulfills the request.

resource manager

An interface and associated software that provides access to a collection of infor-
mation and processes; for example, a database management system. Resource
managers provide transaction capabilities and permanence of actions; they are the
entities accessed and controlled within a global transaction.

rollback

1) Terminate a transaction such that all resources updated within a transaction re-
vert to the original state before the transaction started. 2) The event that ends a
transaction and nullifies or undoes all changes to resources that were specified
during that transaction.

scalability

The extent to which developers can apply a solution to problems of different sizes.
Ideally, a solution should work well across the entire range of complexity. In prac-
tice, however, there are usually simpler solutions for problems of lower complex-
ity.

security

The protection of information from unauthorized modification or disclosure and
the protection of resources from unauthorized use.

G-16 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

SecurityCurrent

The object that provides access to the security features of the system.

servant

The instance of the class that implements the interface defined in an application’s
OMG IDL statements. A servant contains the method code that implements the
operations of one or more CORBA objects.

Servant Factory

A feature of WLE Java server applications for automatically instantiating ser-
vants. Unlike WLE C++ servers, Java servers do not need to provide a callback
for instantiating servants.

server

See WLE server application.

server group

A collection of servers on a machine, often associated with a resource manager. A
server group is an administrative unit used for booting, shutting down, and migrat-
ing servers.

Server object

 The object that performs server application initialization functions, creates one or
more servants, and performs server application shutdown and cleanup procedures.

skeleton

The WLE Object Request Broker (ORB) component that is specific to the object
interface and that assists an Object Adapter in passing requests to particular meth-
ods. The skeleton is produced by the IDL compiler and is used at runtime by the
WLE ORB to invoke specific methods to satisfy requests.

state

A description (typically in memory) of the current situation of an object.

stateless application

An application that flushes state information from memory after a service or an
operation has been fulfilled.

BEA WebLogic Enterprise ActiveX Client Developer’s GuideG-17

subscriber

An application program that subscribes to an event or set of events, and declares
what action should take place when an event is posted.

thread

A unit of execution or an execution context. An executing sequence of instructions
and the memory they manipulate.

three-tier client/server

An implementation of n-tier client/server.

TM

See transaction manager.

transaction

1) A complete unit of work that transforms a database from one consistent state to
another. In DTP, a transaction can include multiple units of work performed on
one or more systems. 2) A logical construct through which applications perform
work on shared resources (e.g., databases). The work done on behalf of the trans-
action conforms to the four ACID Properties: atomicity, consistency, isolation,
and durability.

transaction coordinator

A system software component that provides the infrastructure that guarantees the
integrity and consistency of an operation and the data involved in a transaction.

TransactionCurrent

The object that is used to manage transactions. The TransactionCurrent object
supports APIs to open and close the resource manager.

transaction manager

A system software component that manages global transactions on behalf of ap-
plication programs. A transaction manager coordinates commands from applica-
tion programs and communication resource managers to start and complete global
transactions by communicating with all resource managers that are participating
in those transactions. When resource managers fail during global transactions,
transaction managers help resource managers decide whether to commit or roll-
back pending global transactions.

See also transaction coordinator.

G-18 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

transaction policy

The policy that determines the TP framework’s interaction between the client re-
quest (which may be associated with a transaction) and the servant’s transaction
context.

TUXCONFIG

The binary version of the configuration file for a BEA WLE or BEA TUXEDO
application. This file is accessed by all BEA TUXEDO and BEA WLE processes
for all configuration information.

two-phase commit (2PC)

A method of coordinating a single transaction across more than one DBMS (or
other resource manager). It guarantees data integrity by ensuring that transactional
updates are committed in all of the participating databases, or are fully rolled back
out of all of the databases, reverting to the state prior to the start of the transaction.

two-tier client/server

An application development approach that splits an application into two parts and
divides the processing between a desktop workstation and a server machine.

type library

A shared code repository represented by a single file. It stores data types and in-
terface types.

UBBCONFIG

An ASCII version of the configuration file for a TUXEDO or WLE application.
This is the ASCII representation of the TUXCONFIG file.

use case

Text that describes how a user will interact with the application that is being de-
signed. The use case reflects the processes the user will follow.

UserTransaction environmental object

The object that connects the client application to the WLE transaction subsystem,
wherein the client application can perform operations within the context of a trans-
action. The UserTransaction object exists only with Java client applications.

view

A representation of a CORBA object in the WLE domain that resides in another
object system, such as ActiveX.

BEA WebLogic Enterprise ActiveX Client Developer’s GuideG-19

See also CORBA object and WLE domain.

WLE client application

A program that was written to be used with the WLE software and that requests
services from other applications.

WLE domain

A specific instance of the WLE system, plus customer server applications, plus a
single UBBCONFIG file to configure the WLE domain.

WLE foreign client application

A client application that is implemented on an ORB that is not a product of BEA
Systems, Inc., such as Netscape Navigator. The ActiveX Client component of the
WLE software is not a foreign client application. Although the ORB is implement-
ed on a Microsoft product, the ORB is provided by BEA Systems, Inc.

WLE native client application

A client application that invokes operations defined in OMG IDL statements to
talk to WLE server applications. Remote and native client applications are the
same. Their requests are handled transparently and differently depending on
whether or not the applications are co-located on a machine that is running in he
WLE domain. WLE remote client applications are typically not located on a ma-
chine that is running in the WLE domain. The ActiveX Client component of the
WLE software is a remote client application.

WLE remote client application

A client application that invokes operations defined in OMG IDL statements to
talk to remote WLE server applications using IIOP. Remote and native client ap-
plications are the same. Their requests are handled transparently and differently
depending on whether or not the applications are co-located on a machine that is
running in the WLE domain. The ActiveX Client component of the WLE software
is a remote client application.

WLE server application

A program that was written to be used with the WLE software and that performs
a task requested of it by a client application.

WLE software

See BEA WLE software

G-20 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

WLE TP framework

A run-time library of default implementations that the WLE server application
build procedure links to the server application executable image. The TP (transac-
tion processing) framework consists of a set of convenience functions that make
it easy for you to write code that does the following:

1) Initializes the server application and executes startup and shutdown routines.

2) Ties the server application to WLE domain resources.

3) Managers objects, bringing them into memory when needed, flushing them
from memory when no longer needed, and managing reading and writing of data
for persistent objects.

4) Performing object housekeeping.

wrap

To enclose an application in a software layer to make the application available to
other applications

wrapper

The enclosure that is used to wrap a legacy application to make the legacy appli-
cation available as an implementation to WLE client applications.

XML

Extensible Markup Language. A language written by the World Wide Web Con-
sortium (W3C) organized by Sun Microsystems, Inc. to put SGML on the World
Wide Web.

BEA WebLogic Enterprise ActiveX Client Developer’s Guide I-1

Index

A
accessing

CORBA objects 1-2
ActiveX 1-1

concepts
bindings 1-2
views 1-2

naming conventions 1-3
ActiveX Client

overview 1-2
ActiveX client applications

creating
bindings 2-7
views 2-7

defining security 5-2
deploying views 2-15
development process 2-2
establishing communication with the

domain 2-10
invoking operations on objects 2-11
ISL parameter 2-7
loading environmental objects into the

Interface Repository 2-5
loading interfaces into the Interface

Repository 2-5
resolving initial references to objects 2-

11
starting a server application for the

Interface Repository 2-6
using factories 2-11
using security 5-2

using the Interface Repository 1-5
using transactions 6-2
using views 1-2
writing 2-9

Application Builder
creating

bindings 2-7
deployment packages 2-15
type libraries 2-8
views 2-7

description 1-2
how it works 1-2
ISL parameter 2-8
main user tasks 1-2
main window 3-1
overview 1-2
overview of 1-1
windows 2-3

authentication levels
getting

C++ 5-3
Java 5-3
Visual Basic 5-3

in client applications 5-3
supported in the BEA WebLogic

Enterprise software 1-11
TOBJ_APPAUTH 1-11
TOBJ_NOAUTH 1-11
TOBJ_SYSAUTH 1-11

Automation environmental objects
loading into the Interface Repository 2-5

I-2 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

TOBJIN.IDL 2-5
writing declarations for 2-9

automation server, creating 2-13

B
binding

definition 1-2
bindings

creating 2-7
deploying 2-15
description 1-2

Bootstrap object
declaration

Visual Basic 2-10
description 1-7
getting SecurityCurrent object 5-3
getting TransactionCurrent object 6-2
resolving initial references

Visual Basic 2-10
buttons

toolbar 3-10

C
C++ 5-5

code examples
logging on to the domain 5-5
PrincipalAuthenticator object

C++ 5-3
SecurityCurrent object 5-3
TransactionCurrent object 6-2
transactions 6-4

C++ Header files
directory location 4-4

changing the default directory locations 4-7
client applications

using security 5-1
using transactions 6-4

code examples
Bootstrap object

Visual Basic 2-10
declarations

Visual Basic 2-10
factories

Visual Basic 2-11
FactoryFinder object

Visual Basic 2-11
invoking operations

Visual Basic 2-11, 2-12
logging on to the domain 5-5
logging on to the WLE domain 5-5

C++ 5-4
Java 5-4
Visual Basic 2-10

PrincipalAuthenticator object
C++ 5-3
Java 5-3
Visual Basic 5-3

SecurityCurrent object
C++ 5-3
Java 5-3
Visual Basic 5-3

TransactionCurrent object
C++ 6-2
Visual Basic 6-2

transactions
C++ 6-4
Visual Basic 6-4

COM objects, creating instances of 2-14
CORBA C++ client applications

defining security 5-2
using security 5-2
using the Interface Repository 1-5
using transactions 6-2

CORBA interfaces
creating bindings for 2-7
loading into the Interface Repository 2-5

CORBA Java client applications
defining security 5-2
using security 5-2
using the Interface Repository 1-5

BEA WebLogic Enterprise ActiveX Client Developer’s Guide I-3

using transactions 6-2
CORBAservices Object Transaction Service

6-1
CORBAServices Security service 5-1
creating

deployment packages 4-6
customer support

contacting xvi

D
deploying applications 4-6
deployment package

description 2-15
directory location 2-15

Deployment Packages window 3-8
description 1-1
development commands

idl2ir 1-5
ir2idl 1-5
irdel 1-5

development process
ActiveX client applications 2-2
security 5-2
transactions 6-2

directory location
deployment package 2-15
type libraries 2-8

Display window 3-8
domains

authentication level 5-3
defining security for 5-1
description 1-5
establishing communication with

ActiveX client applications 2-10
figure 1-5
logging off 5-6
logging on with PrincipalAuthenticator

object 5-4

E
Edit menu 3-6
environmental objects 1-6

Automation 1-6, 2-3
Bootstrap 1-6
C++ 1-6
description 1-6
FactoryFinder 1-6
Interface Repository 1-6
Java 1-6
SecurityCurrent 1-6
TransactionCurrent 1-6

F
factories

code examples
Visual Basic 2-11

creating CORBA objects 1-8
declaration

Visual Basic 2-10
description 1-8
naming conventions 1-9
writing declarations for 2-9

FactoryFinder object
code examples

Visual Basic 2-11
declaration

Visual Basic 2-10
description 1-8
illustrated 1-8

File menu 3-6

H
Help menu 3-9

I
ICF file

defining transaction policies 6-1

I-4 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

idl2ir command
description 1-5
loading automation environmental

objects into the Interface
Repository 2-5

loading interfaces into the Interface
Repository 2-5

populating the Interface Repository 1-5
syntax 2-5
using with ActiveX client applications 2-

3
Interface Repository

commands
idl2ir 1-5
ir2idl 1-5
irdel 1-5

description 1-5
information stored in 1-5
loading

automation environmental objects
2-5

loading CORBA interfaces into 4-1
starting server application 2-6

InterfaceRepository object
description 1-13

ir2idl command
creating an OMG IDL file 1-5
description 1-5

irdel command
deleting CORBA interfaces from the

Interface Repository 1-5
description 1-5

ISL parameter 2-7
using in ActiveX client applications 2-10
using with the Application Builder 2-8

J
Java

code examples
PrincipalAuthenticator object

Java 5-3
SecurityCurrent object 5-3

L
Loading CORBA interfaces into the Interface

Repository 4-1

M
main window

Services window 3-1
Workstation Views window 3-1

menu options, description of 3-6
methods

TransactionCurrent object 6-3
MIDL files

directory location
 4-4

N
naming conventions

ActiveX 1-3
factories 1-9

O
objects

on the Application Builder GUI 3-4
ODL files

directory location 4-5
OMG IDL

description 1-4
online help

printing xii
using vii
window viii

options
Edit menu 3-6
File menu 3-6
Help menu 3-9

BEA WebLogic Enterprise ActiveX Client Developer’s Guide I-5

View menu 3-7, 3-8
Windows menu 3-8

P
PDF location

of online help xii
PrincipalAuthenticator object

arguments 5-4
code examples

C++ 5-3
Java 5-3
Visual Basic 5-3

getting the authentication level 5-3
logging on to the domain 5-4
using in client applications 5-3

R
relationship to domains 1-6

S
sample applications

Security 5-2
Transactions 6-2

security
configuring 5-1
getting the PrincipalAuthenticator object

5-3
getting the SecurityCurrent object 5-3
logging off the domain 5-6
logging on to the domain 5-4
obtaining the authentication level 5-3
overview 5-1
supported authentication levels 1-11

SecurityCurrent object
code examples

C++ 5-3
Java 5-3
Visual Basic 5-3

description 1-11
properties

Credentials 1-11
PrincipalAuthenticator 1-11

using in client applications 5-3
Services window 3-3

description 3-1
starting the Application Builder 4-2
support

customer xvi

T
tasks

changing the default directory locations
4-7

creating
ActiveX views of CORBA objects

4-3
creating Deployment Packages 4-6
loading CORBA interfaces into the

Interface Repository 4-1
starting the Application Builder 4-2

TOBJ_APPAUTH
description 1-11
required arguments 5-4

TOBJ_NOAUTH
description 1-11
required arguments 5-4

TOBJ_SYSAUTH
description 1-11
required arguments 5-4

toolbar 3-10
Tools menu 3-8
transaction policies

defining in ICF file 6-1
description 1-12

TransactionCurrent object
methods 6-3
transaction policies 1-12

transactions

I-6 BEA WebLogic Enterprise ActiveX Client Developer’s Guide

getting the TransactionCurrent object 6-
2

in client applications 6-4
overview 6-1

type libraries
creating with Application Builder 2-8
directory location 2-8, 4-4
loading bindings into development tool

2-8
naming conventions 2-8

type libraries 4-4

U
UBBCONFIG file

defining
security 5-1

starting server application for Interface
Repository 2-6

V
View menu

options 3-7
views

creating 2-7
definition 1-2
deploying 2-15
description 1-2
invoking operations on 2-11, 2-12
writing declarations for 2-9

Visual Basic 5-5
code examples

Bootstrap object 2-10
factories 2-11
FactoryFinder object 2-11
invoking operations 2-11, 2-12
logging on to the domain 5-5
PrincipalAuthenticator object 5-3
SecurityCurrent object 5-3

TransactionCurrent object 6-2
transactions 6-4

declarations for 2-10
Bootstrap object 2-10
FactoryFinder object 2-10

loading type libraries for bindings 2-8
Visual Basic samples

chat room sample 2-13

W
windows

Services 3-3
Workstation Bindings 4-4
Workstation Views 3-3

Windows menu 3-8
Workstation Bindings window 3-8, 4-4
Workstation Views window 3-3

description 3-1

	Copyright
	About This Online Help
	How to Use the Online Help
	What if the Help System Doesn’t Display Properly?
	Make Sure You Are Using an Up-to-Date Browser
	Customize the Font Size so the Help is Easy to Read
	Important Considerations About the BEA Builder Installed Browser
	Using Your Favorite Web Browser
	How to Print
	How to Print the Current Topic
	How to Print the Complete Book
	Documentation Conventions
	Where to Find Related Information
	BEA BEA WebLogic Enterprise Related Information
	Contact Information
	Documentation Support
	Customer Support

	1 Overview
	What is ActiveX?
	Views and Bindings

	How It Works
	Naming Conventions for ActiveX Views
	OMG IDL
	Interface Repository
	Domains
	Environmental Objects
	Bootstrap Object
	Factories and the FactoryFinder Object
	Naming Conventions and BEA WebLogic Enterprise Extensions to the FactoryFinder Object
	SecurityCurrent Object
	TransactionCurrent Object
	InterfaceRepository Object

	2 Creating ActiveX Client Applications
	Summary of the Development Process for ActiveX Client Applications
	The BEA Application Builder
	Step 1: Loading the Automation Environmental Objects into the Interface Repository
	Step 2: Loading the CORBA Interfaces into the Interface Repository
	Step 3: Starting the Interface Repository Server Application
	Step 4: Creating ActiveX Bindings for the CORBA Interfaces
	Step 5: Loading the Type Library for the ActiveX Bindings
	Step 6: Writing the ActiveX Client Application
	Including Declarations for the Automation Environmental Objects, Factories, and ActiveX Views of ...
	Establishing Communication with the BEA WebLogic Enterprise Domain
	Obtaining References to the FactoryFinder Object
	Using a Factory to Get an ActiveX View
	Invoking Operations on the ActiveX View
	Creating an Automation Server for Callbacks

	Step 7: Deploying the ActiveX Client Application

	3 Application Builder Main Window
	Application Builder Main Window
	Services Window
	Workstation Views Window
	Application Builder Objects
	Menu Options
	File Menu Options
	Edit Menu Options
	View Menu Options
	Tools Menu Options
	Window Menu Options
	Help Menu Options

	Toolbar Buttons

	4 Tasks
	Loading CORBA Interfaces into the Interface Repository
	Starting Application Builder
	Creating ActiveX Bindings for CORBA Interfaces
	Changing the Settings for Creating ActiveX Bindings for CORBA Interfaces
	Creating Deployment Packages
	Changing the Directory Location for Deployment Packages
	Changing the Default Directory Locations
	Filtering Objects Displayed in the Main Window
	Displaying Properties

	5 Using Security
	Overview of BEA WebLogic Enterprise Security
	Summary of the Development Process for Security
	Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object
	Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent Object
	Step 3: Obtaining the Authentication Level
	Step 4: Logging on to the BEA WebLogic Enterprise Domain with Proper Authentication
	Step 5: Logging off the BEA WebLogic Enterprise Domain

	6 Using Transactions
	Overview of Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	Step 2: Using the TransactionCurrent Methods

	7 Command-Line Options
	Glossary
	Index

