
Administration Guide

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Administration Guide

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Administration Guide iii

Contents

About This Document
What You Need to Know .. xvi

e-docs Web Site .. xvii

How to Print the Document.. xvii

Related Information.. xvii

Contact Us! .. xviii

Documentation Conventions ... xviii

1. Introduction to Administration
The Administrator’s Job .. 1-1

The Groundwork Phase.. 1-2

The Operational Phase ... 1-3

Differences Between the BEA WebLogic Enterprise and BEA Tuxedo
Systems ... 1-4

Roadmap for Your Responsibilities .. 1-6

Planning Your Configuration .. 1-6

Questions About the Design... 1-7

Questions About Server Applications .. 1-8

2. Administration Tools
Configuration and Run-Time Administration ... 2-1

Tools for Configuration.. 2-2

Tools for Run-Time Administration .. 2-4

BEA Administration Console.. 2-4

Command-line Interface.. 2-6

AdminAPI.. 2-6

iv Administration Guide

3. Creating a Configuration File
About the Configuration File... 3-2

Build Environment ... 3-2

Forms of the Configuration File ... 3-2

Configuration File Content... 3-3

Administrative Requirements and Performance.. 3-7

Configuring NameManager.. 3-8

Reliability Requirements .. 3-9

Performance Hint.. 3-10

Configuring Resources .. 3-10

Setting the Shared Memory Address .. 3-12

Specifying the Master Machine.. 3-13

Setting the Application Type.. 3-13

Defining Access Control (BEA Tuxedo Servers) 3-14

Defining IPC Limits ... 3-15

Enabling Load Balancing ... 3-19

Setting Buffer Type and Subtype Limits.. 3-19

Setting the Number of Sanity Checks and Timeouts................................ 3-19

Setting Conversation Limits (BEA Tuxedo Servers) 3-21

Setting the Security Level .. 3-21

Setting Parameters of Unsolicited Notification (BEA Tuxedo Servers) .. 3-22

Protecting Shared Memory... 3-24

Configuring Machines ... 3-24

Identifying Machines in the MACHINES Section 3-25

Reserving the Physical Address and Machine ID 3-26

Identifying the Location of the Configuration File 3-27

Identifying the Locations of the System and Application Software......... 3-28

Identifying the User Log File Location .. 3-28

Specifying Environment Variable Settings for Processes 3-29

Overriding System-wide Parameters .. 3-30

Configuring Groups ... 3-31

Specifying a Group Name, Number, and LMID 3-31

Sample GROUPS Section .. 3-32

Encrypting Passwords in OPENINFO.. 3-34

Configuring Servers... 3-34

Administration Guide v

Identifying Server Information in the SERVERS Section 3-35

Defining Server Name, Group, and ID .. 3-37

Using Server Command-Line Options... 3-37

Starting JavaServer... 3-39

Setting the Server Boot Order .. 3-48

Identifying Server Environment File Location .. 3-52

Identifying Server Queue Information ... 3-52

Defining Server Restart Information.. 3-54

Specifying a Conversational Server (BEA Tuxedo Servers) 3-55

Setting Security Parameters for ISL Servers .. 3-56

Defining Server Access to Shared Memory ... 3-56

Configuring Modules... 3-57

Example of a MODULES Section for an EJB JavaServer....................... 3-59

Configuring JDBC Connection Pools (BEA WebLogic Enterprise System).. 3-60

Encrypting DBPASSWORD and PROPS.. 3-64

Configuring Services (BEA Tuxedo System) ... 3-65

Identifying BEA Tuxedo Services in the SERVICES Section 3-65

Enabling Load Balancing ... 3-66

Controlling the Flow of Data by Service Priority 3-67

Specifying Different Service Parameters for Different Server Groups.... 3-67

Specifying a List of Allowable Buffer Types for a Service 3-68

Configuring Interfaces (BEA WebLogic Enterprise Servers)......................... 3-68

Specifying CORBA Interfaces in the INTERFACES Section................. 3-69

Specifying FACTORYROUTING Criteria (CORBA only) 3-71

Enabling Load Balancing ... 3-73

Controlling the Flow of Data by Interface Priority 3-73

Specifying Different Interface Parameters for Different Server Groups . 3-74

Configuring Routing.. 3-74

Defining Routing Criteria in the ROUTING Section............................... 3-74

Specifying Range Criteria in the ROUTING Section 3-76

Example: Factory-based Routing (BEA WebLogic Enterprise Servers) . 3-76

Example: Factory-based Routing in the Bankapp Sample Application (BEA
WebLogic Enterprise Servers) .. 3-79

Configuring Network Information .. 3-81

Specifying Information in the NETGROUPS Section 3-81

vi Administration Guide

Sample NETGROUPS Configuration .. 3-83

Configuring the UBBCONFIG File with Netgroups................................ 3-85

4. Starting and Shutting Down Applications
Starting Applications ... 4-1

Prerequisite Checklist ... 4-2

Booting the Application ... 4-9

Shutting Down Applications ... 4-12

Using tmshutdown ... 4-13

Clearing Common Problems ... 4-13

Common Startup Problems... 4-13

Common Shutdown Problems.. 4-17

5. Distributing Applications

6. Building Networked Applications
Terms and Definitions ... 6-1

Configuring Networked Applications ... 6-2

Example: A Network Configuration with Multiple Netgroups 6-5

The UBBCONFIG File for the Network Example..................................... 6-7

Assigning Priorities for Each Network Group ... 6-8

Running a Networked Application .. 6-10

Scheduling Network Data Over Parallel Data Circuits 6-10

Network Data in Failover and Failback.. 6-12

Using Data Compression for Network Data... 6-12

Using Link-level Encryption (BEA Tuxedo Servers) 6-15

7. Configuring Transactions

8. Managing Interface Repositories (BEA WebLogic Enterprise
Systems)

Administration Considerations .. 8-2

Using Administration Commands to Manage Interface Repositories 8-3

Prerequisites ... 8-3

Creating and Populating an Interface Respository 8-4

Displaying or Extracting the Content of an Interface Repository 8-4

Administration Guide vii

Deleting an Object from an Interface Repository 8-5

Configuring the UBBCONFIG File to Start One or More Interface Repository
Servers .. 8-5

9. Configuring Multiple Domains (BEA WebLogic Enterprise
Systems)

Overview of Multiple Domains.. 9-1

Interdomain Communication.. 9-2

Functions of Multiple-domain Configuration Elements 9-4

Configuring Multiple Domains ... 9-6

The UBBCONFIG File .. 9-6

The Domain Configuration (DMCONFIG) File .. 9-8

The factory_finder.ini File ... 9-15

Local Factories ... 9-21

Types of Domain Configurations .. 9-21

Directly Connected Domains ... 9-22

Indirectly Connected Domains... 9-22

Examples: Configuring Multiple Domains ... 9-23

Sample UBBCONFIG Files ... 9-24

10. Working with Multiple Domains (BEA Tuxedo Systems)
Benefits of Using BEA Tuxedo System Domains .. 10-2

What Is the Domains Gateway Configuration File?.. 10-3

Components of the DMCONFIG File.. 10-4

Configuring Local and Remote Domains.. 10-5

Setting Environment Variables .. 10-5

Building a Local Application Configuration File and a Local Domains
Gateway Configuration File.. 10-6

Building a Remote Application Configuration File and a Remote Domains
Gateway Configuration File.. 10-7

Example of a Domains-based Configuration ... 10-7

Defining the Local Domains Environment .. 10-8

Defining the Local and Remote Domains, Addressing, and Imported and
Exported Services ... 10-10

Defining the Exported Services.. 10-13

Using Data Compression Between Domains .. 10-14

viii Administration Guide

Ensuring Security in Domains ... 10-14

Creating a Domain Access Control List (ACL) 10-15

Routing Service Requests to Remote Domains ... 10-15

11. Managing Workstation Clients (BEA Tuxedo Systems)
Workstation Terms .. 11-2

What Is a Workstation Client?... 11-2

Illustration of an Application with Two Workstation Clients 11-3

How the Workstation Client Connects to an Application 11-5

Setting Environment Variables.. 11-5

Setting the Maximum Number of Workstation Clients 11-6

Configuring a Workstation Listener (WSL) .. 11-7

Format of the CLOPT Parameter ... 11-7

Command-line Options of the CLOPT Parameter 11-8

Modifying the MACHINES Section to Support Workstation Clients 11-9

12. Managing Remote Client Applications (BEA WebLogic
Enterprise Systems)

Terms and Definitions ... 12-2

Remote Client Overview ... 12-5

Illustration of an Application with Remote Clients.................................. 12-6

How the Remote Client Connects to an Application................................ 12-6

Setting Environment Variables.. 12-7

Setting the Maximum Number of Remote Clients .. 12-8

Configuring a Listener for a Remote Client .. 12-9

Format of the CLOPT Parameter ... 12-9

Modifying the UBBCONFIG File to Support Remote Clients 12-10

Configuring Outbound IIOP for Remote Joint Client/Servers 12-11

Functional Description ... 12-11

Using the ISL Command to Configure Outbound IIOP Support 12-18

Types of Object References.. 12-18

User Interface ... 12-18

13. Managing Queued Messages (BEA Tuxedo System)
Terms and Definitions ... 13-2

Administration Guide ix

Overview of the BEA Tuxedo Queued Message Facility 13-3

Administrative Tasks... 13-3

Setting the QMCONFIG Environment Variable... 13-7

Using qmadmin, the /Q Administrative Interface ... 13-8

Creating an Application Queue Space and Queues... 13-8

Modifying the Configuration File ... 13-10

Associating a Queue with a Group... 13-10

Listing the /Q Servers in the SERVERS Section 13-11

14. Securing Application

15. Monitoring a Running System
Overview of System and Application Data ... 15-2

Components and Activities for Which Data Is Available 15-2

Where the Data Resides ... 15-2

How You Can Use the Data ... 15-3

Static and Dynamic Data.. 15-3

Monitoring Methods .. 15-5

Using the tmadmin Command Interpreter ... 15-6

How a tmadmin Session Works ... 15-6

Running tmadmin Commands... 15-12

Monitoring a Running System with tmadmin ... 15-13

Example: Output from tmadmin Commands .. 15-17

printqueue Output... 15-17

printconn Data .. 15-19

printnet Command Output.. 15-20

printtrans Command Output... 15-21

printjdbcconnpool Command Output... 15-22

Case Study: Monitoring Run-time bankapp .. 15-24

Configuration File for bankapp .. 15-24

Output from Checking the Local IPC Resources 15-26

Output from Checking System-wide Parameter Settings....................... 15-28

16. Monitoring Log Files
What is the ULOG?... 16-1

Purpose ... 16-2

x Administration Guide

How Is the ULOG created? .. 16-2

How Is the ULOG Used? ... 16-3

Message Format.. 16-3

Location.. 16-4

What Is the Transaction Log (TLOG)? ... 16-5

How Is the TLOG Created?.. 16-5

How Is the TLOG Used? .. 16-5

Location.. 16-5

Creating and Maintaining Logs ... 16-6

How to Assign a Location for the ULOG .. 16-6

Creating a Transaction Log (TLOG).. 16-7

Using Logs to Detect Failures ... 16-13

Analyzing the User Log (ULOG)... 16-13

Analyzing tlisten Messages .. 16-14

Analyzing a Transaction Log (TLOG)... 16-15

17. Tuning Applications

18. Migrating Applications
About Migration .. 18-1

Migration Options.. 18-2

Switching Master and Backup Machines .. 18-2

How to Switch the Master and Backup Machines.................................... 18-3

Examples: Switching Master and Backup Machines 18-3

Migrating a Server Group.. 18-4

Migrating a Server Group When the Alternate Machine Is Accessible from
the Primary Machine ... 18-5

Migrating a Server Group When the Alternate Machine Is Not Accessible
from the Primary Machine .. 18-5

Examples: Migrating a Server Group... 18-6

Migrating Machines... 18-7

Migrating Machines When the Alternate Machine Is Accessible from the
Primary Machine ... 18-7

Migrating Machines When the Alternate Machine Is Not Accessible from the
Primary Machine ... 18-8

Examples: Migrating a Machine .. 18-8

Administration Guide xi

Canceling a Migration ... 18-9

Example: A Migration Cancellation .. 18-9

Migrating Transaction Logs to a Backup Machine 18-10

19. Dynamically Modifying Systems
Dynamic Modification Methods.. 19-1

Procedures for Dynamically Modifying Your System.................................... 19-2

Suspending and Resuming Services (BEA Tuxedo Servers)................... 19-2

Advertising and Unadvertising Services (BEA Tuxedo Servers) 19-4

Changing Service Parameters (BEA Tuxedo Servers) or Interface Parameters
(BEA WebLogic Enterprise Servers).. 19-5

Changing the AUTOTRAN Timeout Value .. 19-5

Suspending and Resuming Interfaces (BEA WebLogic Enterprise System)...
19-6

20. Dynamically Reconfiguring Applications
Introduction to Dynamic Reconfiguration... 20-1

Overview of the tmconfig Command Interpreter .. 20-2

What tmconfig Does... 20-3

How tmconfig Works ... 20-4

Output from tmconfig Operations .. 20-7

General Instructions for Running tmconfig... 20-9

Preparing to Run tmconfig ... 20-9

Running tmconfig: A High-level Walk-through 20-10

Input Buffer Considerations ... 20-12

Procedures ... 20-13

Adding a New Machine.. 20-13

Adding a Server.. 20-16

Activating a Newly Configured Server .. 20-17

Adding a New Group ... 20-18

Changing the Factory-based Routing (FBR) for an Interface 20-19

Changing the Data-dependent Routing (DDR) for the Application....... 20-21

Changing Application-wide Parameters... 20-22

Changing an Application Password ... 20-24

Final Advice About Dynamic Reconfiguration... 20-26

xii Administration Guide

21. Event Broker/Monitor (BEA Tuxedo Systems)
Events .. 21-2

Event Classifications .. 21-2

List of Events.. 21-3

Setting Up Event Detection ... 21-3

Subscribing to Events .. 21-3

Application-specific Event Broker/Monitors .. 21-5

How an Event Broker/Monitor Might Be Deployed 21-6

How the Event Broker/Monitor Works ... 21-7

22. Troubleshooting Applications
Distinguishing Between Types of Failures.. 22-2

Determining the Cause of an Application Failure.................................... 22-2

Determining the Cause of a BEA WebLogic Enterprise or BEA Tuxedo
System Failure... 22-3

Broadcasting Unsolicited Messages (BEA Tuxedo System) 22-4

Performing System File Maintenance ... 22-5

Creating a Device List .. 22-5

Destroying a Device List .. 22-6

Reinitializing a Device ... 22-6

Printing the Universal Device List (UDL) ... 22-7

Printing VTOC Information ... 22-7

Repairing Partitioned Networks .. 22-7

Detecting Partitioned Networks ... 22-8

Restoring a Network Connection ... 22-10

Restoring Failed Machines .. 22-11

Restoring a Failed Master Machine.. 22-11

Restoring a Failed Nonmaster Machine ... 22-11

Replacing System Components (BEA Tuxedo System) 22-12

Replacing Application Components .. 22-13

Cleaning Up and Restarting Servers Manually ... 22-13

Cleaning Up Resources .. 22-14

Checking the Order in Which Servers Are Booted (BEA WebLogic Enterprise
Servers)... 22-15

Administration Guide xiii

Checking Hostname Format and Capitalization (BEA WebLogic Enterprise
Servers)... 22-16

Some Clients Fail to Boot (BEA WebLogic Enterprise Servers).................. 22-16

Aborting or Committing Transactions... 22-17

Aborting a Transaction... 22-17

Committing a Transaction .. 22-18

Recovering from Failures When Transactions Are Used.............................. 22-19

Index

xiv Administration Guide

Administration Guide xv

About This Document

This document describes how to administer BEA WebLogic Enterprise™ and BEA
Tuxedo® systems.

This document covers the following topics:

n Introduces the administration tasks.

n Identifies the administration tools that are part of the BEA WebLogic Enterprise
and Tuxedo systems.

n Details the application, machine, group, server, services, interfaces, routing, and
network parameters in an application’s UBBCONFIG configuration file.

n Explains how to start and shut down applications.

n Explains how to distribute applications.

n Explains how to build networked applications.

n Explains how to configure transactions.

n Explains how to manage Interface Repositories. This chapter is specific to the
BEA WebLogic Enterprise system.

n Explains how to configure multiple domains. This chapter is specific to the BEA
WebLogic Enterprise system.

n Explains how to manage multiple domains. This chapter is specific to the BEA
Tuxedo system.

n Explains how to manage Workstation clients. This chapter is specific to the BEA
Tuxedo system.

n Explains how to manage remote BEA WebLogic Enterprise client applications.
This chapter is specific to the BEA WebLogic Enterprise system.

xvi Administration Guide

n Explains how to manage queued messages. This chapter is specific to the BEA
Tuxedo system.

n Explains how to implement application security. The access control list (ACL)
mechanism used in the BEA Tuxedo system is not present in the BEA WebLogic
Enterprise system. Therefore, the ACL section of this chapter is specific to BEA
Tuxedo systems. Other sections of this security chapter, however, are relevant to
the BEA WebLogic Enterprise administrator.

n Explains how to monitor a running system.

n Explains how to monitor log files.

n Explains how to tune applications.

n Explains how to migrate applications.

n Explains how to modify systems dynamically.

n Explains how to reconfigure applications dynamically.

n Explains how to use Event Broker. This chapter is specific to the BEA Tuxedo
system.

n Explains how to troubleshoot problems.

What You Need to Know

This document is intended for administrators who configure operational parameters
that support mission-critical BEA WebLogic Enterprise and BEA Tuxedo systems.

e-docs Web Site

Administration Guide xvii

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxedo,
distributed object computing, transaction processing, C++ programming, and Java
programming, see the BEA WebLogic Enterprise Bibliography in the WebLogic
Enterprise online documentation.

xviii Administration Guide

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA Systems, Inc. professionals who
create and update the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

Documentation Conventions

Administration Guide xix

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item

xx Administration Guide

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Administraton Guide 1-1

CHAPTER

1 Introduction to
Administration

As the administrator of your organization’s computing applications, you are
responsible for setting up and running a system that is critical to your corporate
mission. You must plan how to maximize the performance and reliability of your BEA
WebLogic Enterprise or BEA Tuxedo systems, and then make it happen.

This topic includes the following sections:

n The Administrator’s Job

n Roadmap for Your Responsibilities

n Planning Your Configuration

The Administrator’s Job

You are the person responsible for configuring and booting an application and then
keeping it running smoothly. Your job can be viewed in two phases:

n During the “groundwork phase,” you establish the foundation of your application
by planning, designing, installing, and configuring your application with the
BEA WebLogic Enterprise or BEA Tuxedo system. You also select a security
scheme for your application.

Most of the work you do during this phase is necessary only once. The exception
to this rule is the configuration work: the BEA WebLogic Enterprise or BEA

1 Introduction to Administration

1-2 Administration Guide

Tuxedo system allows you to reconfigure your application whenever necessary
to maximize performance and reliability.

n During the “operational phase,” you run the application, monitor it and
reconfigure it when necessary. You also diagnose and correct run-time problems.

The remainder of this chapter lists the specific tasks you need to do during each phase.

The Groundwork Phase

During the this phase, you must do the tasks listed in Table 1-1.
:

Depending on your application, you may also need to set up the tasks listed in
Table 1-2.

Table 1-1 Groundwork Phase Tasks

Plan Collect information from the application designers, the
programmers, and the business that will use the
application. Use this information to configure your
system.

Install Set up your environment (including hardware and
software), and install the BEA WebLogic Enterprise
system and the application.

Configure Your system Set the parameters provided by the BEA WebLogic
Enterprise system that govern how the components of
your application will be used.

Transactions Add transactions functionality to your definitions of
domains, machines, groups, interfaces, services, and
any other required components of your application.

Implement Security Select and implement one or more methods provided by
the BEA WebLogic Enterprise system for protecting
your application and data.

The Administrator’s Job

Administration Guide 1-3

:

Note: This guide provides instructions for all the tasks listed in Table 1-3, except
installation. For installation instructions, see the BEA WebLogic Enterprise
Installation Guide.

The Operational Phase

During the this phase, you must do the tasks listed in Table 1-4.

Depending on your application, you may also have to do the following:

Table 1-2 Additional Groundwork Phase Tasks

Distributed applications Create distributed applications with the routing tools:
factory-based routing in BEA WebLogic Enterprise applications
and data-dependent routing in BEA Tuxedo applications.

Networked applications Set up any networked applications.

BEA WebLogic
Enterprise remote client
applications

To support BEA WebLogic Enterprise remote client applications,
configure an Internet Inter-ORB Protocol (IIOP)
Listener/Handler and modify the machine configuration.

Table 1-3 Operational Phase Tasks

Start up Boot your application.

Monitor Log the activities, problems, and performance of your application and
analyze the results regularly.

Troubleshoot Identify and resolve problems as they occur.

Table 1-4 Additional Operational Phase Tasks

Tune Use techniques such as load balancing and prioritizing to maximize the
performance of your application.

Migrate Reassign primary responsibility for your application from your original
MASTER machine to an alternate (BACKUP) machine when problems
occur on the MASTER.

1 Introduction to Administration

1-4 Administration Guide

Differences Between the BEA WebLogic Enterprise and
BEA Tuxedo Systems

For the BEA WebLogic Enterprise system, the existing BEA Tuxedo administration
facilities have been extended to support the administration of applications running
within the context of the BEA WebLogic Enterprise Object Request Broker (ORB) and
the BEA WebLogic Enterprise TP Framework.

The UBBCONFIG configuration file for BEA WebLogic Enterprise systems includes the
following enhancements to support the configuration of client and server applications:

n The RESOURCES section is enhanced to provide application-wide defaults for the
sizing of Bulletin Board tables.

n The MACHINES section is enhanced to allow the specification of
processor-specific values for sizing of those tables.

n A new section, INTERFACES, is added to allow the specification of information
about CORBA interfaces used by the application.

n The ROUTING section is enhanced to provide support for a different type of
routing criteria used with BEA WebLogic Enterprise systems. Also, existing
ROUTING sections that specify BEA Tuxedo data-dependent routing parameters
continue to work without modification.

n In the BEA Tuxedo system, you configure workstation handlers and listeners for
connections from client applications to server applications. From an
administrative viewpoint, this task is similar in BEA WebLogic Enterprise
systems.

However, BEA WebLogic Enterprise systems use a different communications
protocol to connect remote and foreign clients to BEA WebLogic Enterprise
server applications. The protocol is the standard Internet Inter-ORB Protocol

Dynamically
modify

Change system parameters and the menu of services offered, when
necessary, to meet the evolving needs of your customers.

Dynamically
reconfigure

Redefine your application to reflect the addition of a component, such as a
new machine or server.

Table 1-4 Additional Operational Phase Tasks (Continued)

The Administrator’s Job

Administration Guide 1-5

(IIOP). Instead of the BEA Tuxedo Workstation Handler (WSH) process and
Workstation Listener (WSL) process, the BEA WebLogic Enterprise system calls
its gateway processes the IIOP Handler (ISH) and the IIOP Listener (ISL). This
results in a slight syntax difference, ISL instead of WSL, in the SERVERS section
of each application’s UBBCONFIG configuration file.

Overall, the administration tasks for the BEA WebLogic Enterprise and BEA Tuxedo
systems are similar. There are a few principal differences between the systems,
however, as follows:

n In both systems you use a routing criteria to distribute processing to specific
server groups. The routing mechanism in a BEA WebLogic Enterprise system is
known as factory-based routing. It is fundamentally different than the BEA
Tuxedo data-dependent routing mechanism.

In the BEA Tuxedo system, you can examine any FML field used for a service
invocation to determine the data-dependent routing criteria. In BEA WebLogic
Enterprise systems, the system designer must personally communicate to you the
routing criteria of CORBA interfaces. For BEA WebLogic Enterprise systems,
there is no service request message data or associated buffer information
available for routing. This occurs because BEA WebLogic Enterprise routing is
performed at the factory, not on a method invocation on the target CORBA
object.

n You cannot dynamically advertise CORBA interfaces at run time. However, you
can suspend or reactivate CORBA interfaces.

n No direct ACL control is provided for CORBA interfaces. No control over
servants is provided at the administrative level. In the UBBCONFIG configuration
file, the MANDATORY_ACL parameter to the SECURITY parameter is ignored.

Details on these differences and exceptions are provided in subsequent chapters of this
document.

Note: The Management Information Base (MIB) defines the set of classes through
which the fundamental aspects of an application can be configured and
managed. The MIB classes provide an administrative programming interface
to the BEA WebLogic Enterprise or BEA Tuxedo system.

The BEA Tuxedo Reference Manual includes, in the TM_MIB(5) section,
reference material about the T_INTERFACE MIB class, T_IFQUEUE MIB class,
and T_FACTORY MIB class. Those MIB classes were added for BEA
WebLogic Enterprise.

1 Introduction to Administration

1-6 Administration Guide

An online version of the BEA Tuxedo Reference Manual is available on the
BEA WebLogic Enterprise online documentation. At the online
documentation Home page, click on Tuxedo Documentation in the left
navigation bar. The Tuxedo ATMI topics page is displayed. Then click
Reference in the left navigation bar. The BEA Tuxedo Reference Manual page
is displayed.

See also the descriptions of the T_DOMAIN MIB class, T_MACHINE MIB class,
T_SERVER MIB class, T_TRANSACTION MIB class, and T_ROUTING MIB class.
These MIB classes were enhanced for BEA WebLogic Enterprise.

Roadmap for Your Responsibilities

At the beginning of this chapter, we summarized your job responsibilities in two
phases. For software descriptions and procedures that help you perform your work,
refer to the appropriate documentation, as follows:

n During the groundwork phase, see the Installation Guide and Chapters 3 through
15 of this document.

n During the operational phase, see Chapters 16 through 23 of this document.

Planning Your Configuration

As an administrator, you need to work with your system designers and application
designers to understand how the administrative configuration of your application can
support the requirements for it. In addition, you need to know the requirements of your
customer: the business unit using the new software.

Before you can start configuring your system, you need answers to questions about the
design of your application and about the server applications developed from that
design, as defined in the following section.

Planning Your Configuration

Administration Guide 1-7

Questions About the Design

The following questions may help you start the planning process:

n How many machines will be used?

n Will client applications reside on machines that are remote from the server
applications?

n Which CORBA interfaces will your BEA WebLogic Enterprise client or server
application use?

n What resource managers will the application use and where will they be located?

n What “open” strings will the resource managers need?

n What setup information will be needed for a database resource manager?

n Will transactions be distributed?

n What buffer types will be used?

n Will data be distributed across machines?

n Will factory-based routing be used in your BEA WebLogic Enterprise
application?

n Will data-dependent routing be used in your BEA Tuxedo application?

n In what order of priority should interfaces in BEA WebLogic Enterprise
applications or BEA Tuxedo services be available?

n For BEA WebLogic Enterprise systems, will the domain need an Interface
Repository (IR) database? If so, will the domain benefit from having IR replicas,
and how many IR server applications should be defined?

n What are the reliability requirements? Will redundant listener and handler ports
be needed? Will replicated server applications be needed?

1 Introduction to Administration

1-8 Administration Guide

Questions About Server Applications

The following questions may help you focus on the issues related to your server
application that need to be resolved in your plan:

n What are the names of the BEA WebLogic Enterprise interfaces or BEA Tuxedo
services?

n Are there any conversational services (BEA Tuxedo system)?

n What resource managers do they access?

n What buffer types do they use?

As you start putting together a configuration plan, you will discover more questions to
which you need answers.

Administraton Guide 2-1

CHAPTER

2 Administration Tools

Your BEA WebLogic Enterprise or BEA Tuxedo systems give you a choice of several
methods for performing the same set of administrative tasks. Whether you are more
comfortable using a graphical user interface or entering commands at a shell prompt,
you will be able to find a comfortable method of doing your job as the administrator
of a domain. This chapter describes the menu of administration tools.

All administrative tools can be used to administer BEA WebLogic Enterprise C++
servers and Java servers. C++ servers support CORBA applications. Java servers
support both CORBA applications and Enterprise JavaBean (EJB) applications.

This topic includes the following sections:

n Configuration and Run-Time Administration

n BEA Administration Console

n Command-line Interface

n AdminAPI

Configuration and Run-Time Administration

At the highest level, the job of an administrator can be viewed as two broadly defined
tasks:

n Configuration—the most important (and complicated) part of setting up your
system before booting your application

n Run-time administration—the set of tasks that are performed on an application
that has been booted

2 Administration Tools

2-2 Administration Guide

The BEA WebLogic Enterprise and BEA Tuxedo systems offer three tools for both of
these tasks:

n BEA Administration Console

n Command-line Interface

Note: You can enter administration commands either at a shell prompt on any
supported UNIX platform, or from an MS-DOS command line on a
Windows NT platform.

n AdminAPI

This chapter describes how these tools can be used to configure an application and to
administer a running system.

Tools for Configuration

Because the BEA WebLogic Enterprise and BEA Tuxedo systems offer great
flexibility and many options to application designers and programmers, no two
applications are alike. An application, for example, may be small and simple (a single
client and server running on one machine), or complex enough to handle transactions
among thousands of clients and servers. For this reason, for every BEA WebLogic
Enterprise application being managed, an administrator must provide a file that defines
and governs the components of that application.

The components are as follows:

domain
The collection of servers, services, interfaces, machines, and associated
resource managers defined by a single UBBCONFIG (ASCII) or TUXCONFIG
(binary) configuration file; a collection of programs that perform a function.
A domain represents an administrative set of functionality.

server
A software program (or the hardware on which it runs) in which BEA
WebLogic Enterprise interfaces or BEA Tuxedo services offered to your
users are stored.

client
A software program that requests services from servers (and sometimes
resides on nonserver hardware).

Configuration and Run-Time Administration

Administration Guide 2-3

queue
A set of requests that are submitted to servers in a particular order (which may
be determined by the administrator).

service
A program that takes client requests as input and performs a particular
function in response.

interface
In a BEA WebLogic Enterprise system, a set of operations and attributes. An
interface is defined by an application programmer using the Object
Management Group Interface Definition Language (OMG IDL). The
definition contains operations and attributes that can be used to manipulate a
CORBA object.

server group
A set of interfaces or a logical grouping of servers.

These components (and others, when appropriate) are defined, or configured, in an
ASCII file that is referred to, in the BEA WebLogic Enterprise and BEA Tuxedo
documentation, as UBBCONFIG. The UBBCONFIG file may, in fact, be given any
filename. When compiled into a binary file, the file is referred to as TUXCONFIG.
During the groundwork (or setup) phase of administration, the administrator’s goal is
to create a TUXCONFIG file. You have a choice of the following three tools.

:

If you select the . . . You must . . .

BEA Administration Console Use a graphical user interface (GUI) to create and edit the
TUXCONFIG file. For details, see the BEA Administration
Console online help.

Command-line interface 1. Edit the UBBCONFIG file (an ASCII version of
TUXCONFIG) with a text editor.

2. Run tmloadcf to convert the UBBCONFIG file into a
TUXCONFIG (binary) file.

For details about using the command-line interface to
perform administrative tasks, see the applicable chapters
in this document. For information about the tmloadcf
command, see Chapter 4, “Starting and Shutting Down
Applications.”

For details about the tmloadcf command options, see
tmloadcf(1) in the BEA Tuxedo Reference Manual.

2 Administration Tools

2-4 Administration Guide

Tools for Run-Time Administration

With your BEA WebLogic Enterprise or BEA Tuxedo system installed, your client or
server application installed, and your TUXCONFIG file loaded, you are ready to boot
your application. As soon as your application is launched, you must start monitoring
its activities and watching for problems—both actual and potential.

When problems occur, you must identify and solve them. If performance is degraded,
you may want to do load balancing or prioritize your interfaces or services. If trouble
develops on a MASTER machine, you may want to replace it with a designated
BACKUP machine.

As the processing and resource usage requirements of your application evolve, you
may need to add machines, servers, clients, interfaces, services, and so on, to your
existing system.

The job of run-time administration encompasses many tasks, from starting and
stopping the application, to monitoring activity, troubleshooting problems, and
dynamically reconfiguring the application. Again, you have a choice of three tools for
performing these tasks: the BEA Administration Console, the command-line interface,
and the AdminAPI.

BEA Administration Console

The BEA Administration Console is a graphical user interface that enables you to
perform most administration tasks for BEA WebLogic Enterprise and BEA Tuxedo
applications. Figure 2-1 shows a sample Administration Console screen.

AdminAPI Write a program that modifies the TUXCONFIG file for
you. For details, see Chapter 21, “Event Broker/Monitor
(BEA Tuxedo Systems).”

If you select the . . . You must . . .

BEA Administration Console

Administration Guide 2-5

Figure 2-1 Sample BEA Administration Console Screen

The BEA Administration Console is implemented as a Java applet. You can run the
applet on platforms that support a Java-enabled Web browser, such as Netscape 3.01
or higher, or Microsoft Internet Explorer 3.0 or higher.

For the BEA Administration Console startup procedure, see the Installation Guide.

For more information about how to use the BEA Administration Console, see the
online help.

2 Administration Tools

2-6 Administration Guide

Command-line Interface

You can use the following commands to administer the BEA WebLogic Enterprise or
BEA Tuxedo system. This document provides procedures for administrative tasks that
are based on the command-line interface. For details about individual commands, see
the BEA Tuxedo Reference Manual.

n tmboot—activates the application that is referenced in the specified
configuration file. Depending on the options used, the entire application or parts
of the application are started.

n tmloadcf—parses the UBBCONFIG file and loads the binary TUXCONFIG
configuration file.

n tmunloadcf—unloads the TUXCONFIG configuration file.

n tmconfig—dynamically updates and retrieves information about the
configuration for a running system.

n dmadmin—updates the compiled DMCONFIG (binary domain configuration file)
while the system is running.

n tmadmin—produces information about configuration parameters. Once invoked,
you can enter many administrative commands that duplicate the functions of
other commands. For example, the tmadmin shutdown command is identical to
the tmshutdown command.

n tmshutdown—shuts down a set of specified BEA WebLogic Enterprise or BEA
Tuxedo servers, or removes a set of BEA WebLogic Enterprise interfaces or
BEA Tuxedo services listed in a configuration file.

AdminAPI

The AdminAPI is an application programming interface (API) for directly accessing
and manipulating system settings in the BEA Tuxedo Management Information Bases
(MIBs). The advantage of the AdminAPI is that it can be used to automate

AdminAPI

Administration Guide 2-7

administrative tasks, such as monitoring log files and dynamically reconfiguring an
application, thus eliminating the need for human intervention. This advantage can be
crucial in mission-critical, real-time applications.

For details about the MIBs, see ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5),
TM_MIB(5), and WS_MIB(5) in the BEA Tuxedo Reference Manual.

Note: The BEA Tuxedo Reference Manual includes, in the TM_MIB(5) section,
reference material about the T_INTERFACE MIB class, T_IFQUEUE MIB class,
and T_FACTORY MIB class. These MIB classes were added for BEA
WebLogic Enterprise.

An online version of the BEA Tuxedo Reference Manual is available on the
Online Documentation CD. On the CD, click the Reference button from the
main menu. Next, click the hyperlink “BEA Tuxedo Manuals.” On the BEA
Tuxedo home page, click the hyperlink “Reference Manual: Section 5.”

See also the descriptions of the T_DOMAIN MIB class, T_MACHINE MIB class,
T_SERVER MIB class, T_TRANSACTION MIB class, and T_ROUTING MIB class.
These MIB classes were enhanced for BEA WebLogic Enterprise.

2 Administration Tools

2-8 Administration Guide

Administraton Guide 3-1

CHAPTER

3 Creating a
Configuration File

This topic includes the following sections:

n About the Configuration File

n Administrative Requirements and Performance

n Configuring Resources

n Configuring Machines

n Configuring Groups

n Configuring Servers

n Configuring Modules

n Configuring Services (BEA Tuxedo System)

n Configuring Interfaces (BEA WebLogic Enterprise Servers)

n Configuring Routing

n Configuring Network Information

3 Creating a Configuration File

3-2 Administration Guide

About the Configuration File

The configuration file is the primary way to define the configuration of BEA
WebLogic Enterprise applications. It consists of parameters that the BEA WebLogic
Enterprise software interprets to create an executable application.

This file is usually created by programmers who develop and build BEA WebLogic
Enterprise applications. Administrators modify the configuration file as necessary to
satisfy application and system requirements.

Build Environment

In addition to the configuration file, you need the following three basic components to
build a BEA WebLogic Enterprise application:

n A server application that performs the operations requested by the client.

n A client application that issues the operation requests to the server application.

n The development commands that you use to build the client and server
executables.

Forms of the Configuration File

The configuration file exists in two forms:

UBBCONFIG

The UBBCONFIG file is an ASCII version of the configuration file. You can
create and edit this version with any editor. Sample configuration files are
provided with each of the BEA WebLogic Enterprise sample applications,
including the simple sample—Simpapp. You must create a UBBCONFIG file
for each new application. You can use any of the sample UBBCONFIG files as
a starting point and edit it to meet the requirements of your particular
application. The syntax used for entries in the file is described in detail in the
ubbconfig(5) reference pages in the BEA Tuxedo Reference Manual.

About the Configuration File

Administration Guide 3-3

TUXCONFIG

The TUXCONFIG file is a binary version of the configuration file that you
generate from the ASCII version using the tmloadcf(1) command. You
cannot create this file directly; a UBBCONFIG file must be created first. You
can, however, use the tmconfig(1) command to edit many of the parameters
in this file while the application is running.

The TUXCONFIG file contains information used by tmboot(1) to start the
servers and initialize the Bulletin Board of a BEA Tuxedo system Bulletin
Board instantiation in an orderly sequence. The tmadmin(1) command line
utility uses the configuration file (or a copy of it) to carry out monitoring
activities. The tmshutdown(1) command references the configuration file for
information needed to shut the application down.

Note: When tmloadcf(1) is executed, the TUXCONFIG environment variable
must be set to the full pathname of the device or system file where
TUXCONFIG is to be loaded.

Configuration File Content

The configuration file can contain up to ten specification sections and many different
parameters. Lines beginning with an asterisk (*) indicate the beginning of a
specification section and the name of the section immediately follows the asterisk.

Section Names and Functions

Supported section names and their functions are as follows:

n RESOURCES—specifies system-wide resources, such as the number of machines,
servers, server groups, services, and network groups that can exist within a
service area. (Required)

n MACHINES—specifies the logical names for physical machines for the
configuration and parameters specific to a given machine. (Required)

n GROUPS—defines all application server groups by group name, logical machine,
and group number. (Required)

n SERVERS—specifies server processes to be booted in the application. (Optional)

3 Creating a Configuration File

3-4 Administration Guide

Note: While the SERVERS section is not required, an application without this section
has no application servers and so little functionality that it is not practical to
leave this section out. The following warning is issued if this section is not
supplied: Missing Servers Section.

n SERVICES—defines parameters for BEA Tuxedo services used by the
application. (Required)

n INTERFACES—defines application-wide, default parameters for CORBA
interfaces used by the application. (Optional)

n ROUTING—defines the routing criteria named in the INTERFACES section for
BEA WebLogic Enterprise factory-based routing, or in the SERVICES section for
BEA Tuxedo data-dependant routing. (Optional)

n NETGROUPS—specifies the network groups available to an application in a LAN
environment. (Optional)

n NETWORK—describes the network configuration for a LAN environment.
(Optional)

n JDBCCONNPOOLS—describes the pooling of JDBC connections for Java servers.
(Optional)

Each of these topics and the associated parameters are discussed in the following
sections of this document. Also, the syntax used for entries in this file is described in
detail in the ubbconfig(5) reference pages in the BEA Tuxedo Reference Manual.

Arrangement of Sections in the Configuration File

These sections must be arranged in the file as follows:

n The RESOURCES and MACHINES sections must appear as the first two sections, in
that order.

n The GROUPS section must precede the SERVERS, SERVICES, INTERFACES, and
ROUTING sections.

n The NETGROUPS section must precede the NETWORK section.

n The SERVERS section must be precede the JDBCCONNPOOLS section

For all sections except the RESOURCES section you can:

About the Configuration File

Administration Guide 3-5

n Specify multiple entries, each with its own selection of parameters.

n Make use of a DEFAULT parameter to specify parameters that repeat from one
entry to the next. For example, in the SERVERS section in Listing 3-1, the default
specified for all servers is that if a server crashes, it will be restarted up to 5
times in 24 hours.

Sample UBBCONFIG File

Listing 3-1 shows a basic UBBCONFIG file. This is the UBBCONFIG file used for the
University Basic sample application that is provided with the BEA WebLogic
Enterprise software.

This file contains configuration information in four sections: RESOURCES, MACHINES,
GROUPS, and SERVERS. Each of these sections and the associated parameters are
discussed in the following sections of this document. This UBBCONFIG file also
contains the required SERVICES section, but this section contains no information. For
more information about the syntax used for entries in the file, see the ubbconfig(5)
reference pages in the BEA Tuxedo Reference Manual.

Listing 3-1 University Basic Sample Application UBBCONFIG File (ubb_b.nt)

*RESOURCES
 IPCKEY 55432
 DOMAINID university
 MASTER SITE1
 MODEL SHM
 LDBAL N
#--
*MACHINES

Specify the name of your server machine
#
 PCWIZ
 LMID = SITE1

Pathname of your copy of this sample application.
Must match "APPDIR" in "setenv.cmd"
#
 APPDIR = "C:\MY_APP_DIR\basic"

Pathname of the tuxconfig file.
Must match "TUXCONFIG" in "setenv.cmd"

3 Creating a Configuration File

3-6 Administration Guide

 TUXCONFIG="C:\MY_APP_DIR\basic\tuxconfig"

Pathname of the BEA WebLogic Enterprise installation.
Must match "TUXDIR" in "setenv.cmd"
#

 TUXDIR="C:\wledir"

 MAXWSCLIENTS=10
#--
*GROUPS

 SYS_GRP
 LMID = SITE1
 GRPNO = 1

 ORA_GRP
 LMID = SITE1
 GRPNO = 2
#--
*SERVERS

By default, restart a server if it crashes, up to 5 times in
24 hours.
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

Start the Tuxedo System Event Broker. This event broker must
be started before any servers providing the NameManager Service
#
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

Start the NameManager Service (-N option). This name manager
is being started as a Master (-M option).
#
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

Start a slave NameManager Service
#
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

Administrative Requirements and Performance

Administration Guide 3-7

Start the FactoryFinder (-F) service
#
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

Start the interface repository server
#
 TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5

Start the university server
#
 univb_server
 SRVGRP = ORA_GRP
 SRVID = 1
 RESTART = N

Start the listener for IIOP clients
Specify the host name of your server machine as
well as the port. A typical port number is 2500
#
 ISL
 SRVGRP = SYS_GRP
 SRVID = 6
 CLOPT = "-A -- -n //PCWIZ:2500"

#--
*SERVICES

Administrative Requirements and
Performance

This section provides information to assist you in administering your system.

3 Creating a Configuration File

3-8 Administration Guide

Configuring NameManager

Adhering to the following requirements is fundamental to successful system
administration.

n NameManagers should coordinate their activities with each other using the BEA
Tuxedo Event Broker without administrative or operations intervention. The
Event Broker must be started before any servers providing the NameManager
service. If the Event Broker is not configured into the application and is not
running when the NameManager service is booted, the NameManager aborts its
startup and writes an error message to the user log.

n At least two servers must be configured to run the NameManager service as part
of any application. This requirement is to ensure that a working copy of the
“name-to-IOR” mapping is always available. If the servers are on different
machines, and one machine crashes, when the machine and application are
restarted, the new NameManager obtains the mapping from the other
NameManager. If an application is solely contained on one machine and the
machine crashes, the NameManagers are rebooted as part of the application
startup because the application must be rebooted. If two NameManagers are not
configured in the application when a NameManager service is booted, the
NameManager aborts its startup and writes an error message to the user log.

n NameManagers can be designated as either Master or Slave, the default being
Slave. If a Master NameManager server is not configured in the application and
is not running when a slave NameManager server starts, the server terminates
itself during boot and writes an error message to the user log.

n If a NameManager service is not configured in the application when a
FactoryFinder service is booted, the FactoryFinder aborts its startup and writes
an error message to the user log. It is not necessary for the NameManager
service to start before a FactoryFinder service because the FactoryFinder only
communicates with a NameManager when a “find” request is received from an
application. NameManagers, on the other hand, attempt to communicate with
each other when they boot. FactoryFinders do not communicate with each other
except when a request is received to find a factory that is in a remote domain.

n BEA Tuxedo Event Broker, NameManager, and FactoryFinder services must be
started before any of the application-specific servers. However, if more than one
Event Broker is to be configured in the application, all secondary Event Brokers
must be started after all application servers are started. There is no system

Administrative Requirements and Performance

Administration Guide 3-9

protocol to enforce this in an application server; therefore, you accomplish this
by positioning all secondary Event Brokers after the application servers.

n The Master NameManager must be started and must be running before any
application server can register a reference to a factory object. The existence of
an executing Slave NameManager is not sufficient.

Reliability Requirements

This section contains information that will improve system reliability.

Managing Factory Entries

When application servers "die," they often fail to unregister their factories with the
NameManager. In some cases, the FactoryFinder may give out object references for
factories that are no longer active. This occurs because the servers containing those
factories have become unavailable, have failed to unregister their factories with the
NameManager, and there is no other server capable of servicing the interface for that
factory.

In general, an application factory can restart shortly thereafter, and then offer the
factories. However, to ensure that factory entries are not kept indefinitely, the
NameManager is notified when application servers die. Upon receipt of this
notification, the NameManager may remove those factory entries that are not
supported in any currently active server.

Configuring Multiple NameManagers and FactoryFinders

At a minimum, two NameManagers, a Master and a Slave, must be configured in an
application, preferably on different machines, to provide querying capabilities for a
FactoryFinder. Multiple FactoryFinders should also be configured in an application.

Designating a Master NameManager

A Master NameManager must be designated in the UBBCONFIG file. All registration
activities are sent to the Master NameManager. The Master NameManager then
notifies the Slave NameManagers about the updates. If the Master NameManager is
down, registration/unregistration of factories is disabled until the Master restarts.

3 Creating a Configuration File

3-10 Administration Guide

Performance Hint

Implementing the following hint may improve system performance of the
administrative servers:

n You can optimize FactoryFinder and NameManager performance by running
these services on separate servers within the same machine rather than running
these services on different machines. This provides a quicker response because it
eliminates the need for machine-to-machine communication.

Configuring Resources

The following paragraphs explain how to set RESOURCES parameters that control the
application as a whole.

RESOURCES is a required section and must appear as the first section in the
configuration file. Some of the parameters in the RESOURCES section serve as
system-wide defaults (UID, GID, PERM, MAXACCESSERS, MAXCONV, and MAXOBJECTS)
and can be overridden on a per-machine basis.

Table 3-1 lists some of the parameters in the RESOURCES section and gives sample
values for a BEA WebLogic Enterprise server application. For more detailed
information about these parameters, see the ubbconfig(5) reference page in the BEA
Tuxedo Reference Manual.

Table 3-1 RESOURCES Section Parameters

Parameter Description Sample
Value

Meaning of Sample Value

IPCKEY The address of shared
memory.

39210 Indicates a number unique to this
application on this system.

MAXSERVERS IPC limit for the number
of server processes.

20 Allows up to 20 active server processes for
this application.

Configuring Resources

Administration Guide 3-11

MAXINTERFACES The IPC limit for the
number of interfaces.

25 Allows up to 25 CORBA interfaces in the
Bulletin Board interface tables.

The MAXINTERFACES parameter is
specific to the BEA WebLogic Enterprise
system.

MAXSERVICES The IPC limit for the
number of services
offered.

25 Allows up to 25 services to be advertised.

On BEA WebLogic Enterprise systems,
each CORBA interface is mapped to a
BEA Tuxedo service.

If you are using JavaServers, each
JavaServer instance advertises two
additional services.

MAXOBJECTS The IPC limit for the
number of CORBA
objects.

800 Allows up to 800 BEA WebLogic
Enterprise active CORBA objects in the
Active Object Map tables in the Bulletin
Board.

The MAXOBJECTS parameter is specific to
the BEA WebLogic Enterprise system.

MASTER The administration site
(MASTER) for boot and
shutdown.

SITE1, SITE2 Specifying LMID SITE1 means the
machine is the master. If LMID SITE2 is
specified, the machine is the backup.

MODEL Application architecture,
which indicates a single
machine or multiple
machines application.

MP Indicates that this application has more
than one machine in the configuration.

OPTIONS The options used. LAN, MIGRATE Indicates a networked application, and that
the machine and servers can be migrated to
alternate processors.

SECURITY The level of security. APP_PW Indicates that this is a secure application;
clients are required to supply a password to
join.

Table 3-1 RESOURCES Section Parameters (Continued)

Parameter Description Sample
Value

Meaning of Sample Value

3 Creating a Configuration File

3-12 Administration Guide

The following sections describe how to set the RESOURCES section parameters.

Setting the Shared Memory Address

You set the address of shared memory using the IPCKEY parameter. The BEA
WebLogic Enterprise system uses this parameter to allocate application IPC resources
so that they may be located easily by new processes joining the application. This key
and its variations are used internally to allocate the Bulletin Board, message queues,
and semaphores that must be available to new application processes. In a single
processor mode, this key names the Bulletin Board; in a multiprocessor mode, this key
names the message queue of the DBBL.

The IPCKEY parameter is:

n Required and must appear in the configuration file.

AUTHSVC The name of an
application
authentication service
invoked by the system
for each client joining
the system.

"AUTHSVC" Indicates that in addition to the password,
clients must pass authentication from a
service called "AUTHSVC".

SYSTEM_ACCESS The default mode used
by BEA Tuxedo system
libraries within
application processes to
gain access to a BEA
Tuxedo system’s internal
tables.

PROTECTED,
FASTPATH,
NO_OVERRIDE

Specifying PROTECTED means the
application code does not attach to shared
memory.

LDBAL Server load balancing
enabled.

Y Indicates that load balancing is on.

This value is always Y in BEA WebLogic
Enterprise systems; that is, setting LDBAL
to N is ignored in the BEA WebLogic
Enterprise system.

Table 3-1 RESOURCES Section Parameters (Continued)

Parameter Description Sample
Value

Meaning of Sample Value

Configuring Resources

Administration Guide 3-13

n Used to access the Bulletin Board and other IPC resources.

n An integer in the range 32,769 to 262,143.

n Unique. No other application on the system may use this specific value for its
IPCKEY.

Specifying the Master Machine

You must specify a master machine for all configurations (MASTER). The master
machine controls the booting and administration of the entire application. This
machine is specified using a Logical Machine Identifier (LMID). This is an
alphanumeric name chosen by the administrator. (LMIDs are discussed further in the
section “Configuring Machines” on page 3-24.)

Two LMIDs are specified if migration of the master site is to be allowed. If it is
necessary to bring down the master site without shutting down the application, it is
necessary to specify the backup master site.

The MASTER parameter:

n Is required and controls booting and administration.

n Requires two LMIDs for migration to back up the MASTER machine.

Setting the Application Type

Among the architectural decisions you need to make for a BEA WebLogic Enterprise
or a BEA Tuxedo application are the following:

n Should this application run on a single processor with global shared memory?

n Will the application be networked?

n Will the application support server migration?

The MODEL parameter specifies whether an application runs on a single processor. It is
set to SHM for uniprocessors and also for multiprocessors with global shared memory.
A MODEL value of MP is used for multiprocessors that do not have global shared
memory, as well as for networked applications. This is a required parameter.

3 Creating a Configuration File

3-14 Administration Guide

The OPTIONS parameter is a comma-separated list of application configuration
options. Two available options are LAN (indicating a networked configuration) and
MIGRATE (indicating that application server migration is supported).

Table 3-2 lists the characteristics for the MODEL and OPTIONS parameters.

Note: No OPTIONS are specified for the SHM model.

Defining Access Control (BEA Tuxedo Servers)

The BEA WebLogic Enterprise system provides security features, but does not support
access control lists (ACLs) at this time. This section applies only to BEA Tuxedo
servers.

You can provide basic access to a BEA Tuxedo application using the following three
parameters:

n UID—the user ID of the administrator. The value is a numeric value
corresponding to the UNIX system user ID of the person who boots and shuts
down the system.

n GID—the numeric Group ID of the administrator.

n PERM—an octal number that specifies the permissions to assign to the IPC
resources created when the application is booted. This provides the first level of

Table 3-2 Model and Options Parameter Characteristics

Parameter Characteristics

MODEL n It is a required parameter.

n A value of SHM indicates a single machine with global shared
memory.

n A value of MP indicates multiple machines or a nonglobal
shared memory multiprocessor.

OPTIONS n It is a comma-separated list of application configuration
options.

n A value of LAN indicates a local area network.

n A value of MIGRATE enables server migration.

Configuring Resources

Administration Guide 3-15

security to protect the BEA Tuxedo system IPC structures against unauthorized
access. The default is 0666, which gives read/write access to all. These values
should be specified for production applications.

Note: If the UID and GID parameters are not specified, they default to the IDs of the
person who runs the tmloadcf(1) command on the configuration, unless they
are overridden in the MACHINES section.

Table 3-3 lists the UID, GID, and PERM parameters characteristics.

Note: You can overwrite values on remote machines.

Defining IPC Limits

Because most IPC and Shared Memory Bulletin Board tables are statically allocated
for speedy processing, it is important to tune them correctly. If they are sized too
generously, memory and IPC resources are consumed to excess; if they are set too
small, the process fails when the limits are eclipsed.

Table 3-3 Access Control Parameters Characteristics

Parameter Characteristics

UID The user ID of the administrator.

The default is the ID of the person who runs tmloadcf(1).

Example: UID=3002

On Windows NT, this value is always 0.

GID The group ID of the administrator.

The default is the ID of the person who runs tmloadcf(1).

Example: GID=100

On Windows NT, this value is always 0.

PERM The permissions for access to IPC structures.

The default is 0666.

Example: PERM=0660

On Windows NT, this value is always 0.

3 Creating a Configuration File

3-16 Administration Guide

Currently, the following tunable parameters are related to IPC sizing in the RESOURCES
section:

n MAXACCESSERS—the maximum number of overall processes allowed to be
attached to the BEA WebLogic Enterprise or BEA Tuxedo system at one site.
This number is not the sum of all processes, but is equal to the number at the site
that has the most processes. The default is 50. (You can overwrite
MAXACCESSERS on a per-machine basis in the MACHINES section.)

The MAXACCESSERS parameter sets the maximum number of concurrent
accessors of a BEA WebLogic Enterprise system. Accessors include native and
remote clients, servers, and administration processes.

A single-threaded server counts as one accessor.

For multithreaded BEA WebLogic Enterprise JavaServers, you must account for
the number of worker threads that each server is configured to run. A worker
thread is a thread that is started and managed by the BEA WebLogic Enterprise
Java software, as opposed to threads started and managed by an application
program. Internally, BEA WebLogic Enterprise Java manages a pool of available
worker threads. When a client request is received, an available worker thread
from the thread pool is scheduled to execute the request. When the request is
completed, the worker thread is returned to the pool of available threads.

For a multithreaded JavaServer, the number of accessors can be up to twice the
maximum number of worker threads that the server is configured to run, plus
one for the server itself. However, to calculate a MAXACCESSERS value for a BEA
WebLogic Enterprise system running multithreaded servers, do not simply
double the existing MAXACCESSERS value of the whole system. Instead, you add
up the accessors for each multithreaded server.

For example, assume that you have three multithreaded JavaServers in your
system. JavaServer A is configured to run three worker threads. JavaServer B is
configured to run four worker threads. JavaServer C is configured to run five
worker threads. The accessor requirement of these servers is calculated by using
the following formula:

[(3*2) + 1] + [(4*2) + 1] + [(5*2) + 1] = 27 accessors

n MAXSERVERS—the maximum number of server processes in the application,
including all the administrative servers (for example, BBL and TMS). It is the
sum of the server processes at all sites. The default is 50.

n MAXINTERFACES—on a BEA WebLogic Enterprise system, the maximum
number of CORBA interfaces to be accommodated in the interface table of the

Configuring Resources

Administration Guide 3-17

Bulletin Board. Valid values are from 0 to 32766. If not specified, and if the
BEA WebLogic Enterprise system is licensed for the domain, the default is 100.
If the BEA WebLogic Enterprise system is not licensed, any nonzero value is
replaced with a value of zero.

Note: All instances of an interface occupy and reuse the same slot in the interface
table in the Bulletin Board. For example, if server SVR1 advertises
interfaces IF1 and IF2, server SVR2 advertises interfaces IF2 and IF3, and
server SVR3 advertises interfaces IF3 and IF4, the interface count is 4 (not
6) when calculating MAXINTERFACES.

n MAXOBJECTS—on a BEA WebLogic Enterprise system, the maximum number of
active CORBA objects to be accommodated in the Active Object Table for a
particular machine at one time. Valid values are from 0 to 32766. If not
specified, and if the BEA WebLogic Enterprise system is licensed for the
domain, the default is 1000. The RESOURCES value for this parameter can be
overridden in the MACHINES section on a per-machine basis. If the BEA
WebLogic Enterprise system is not licensed, any nonzero value is replaced with
a value of zero.

n MAXSERVICES—the maximum number of different services that can be
advertised in the application. It is the sum of all services in the system. The
default is 100.

Note: On BEA WebLogic Enterprise systems, each CORBA interface is mapped
to a BEA Tuxedo service. Make sure you account for the number of
services generated.

Note: On BEA WebLogic Enterprise systems, each JavaServer instance
advertises five additional services. If you are running JavaServers, you
may need to increase the value of MAXSERVICES to take account of these
additional services.

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site
per accessor. There is a small fixed semaphore overhead for system processes in
addition to that added by the MAXACCESSERS value. The cost of increasing
MAXSERVERS and MAXSERVICES is a small amount of shared memory that is kept for
each server, service, and client entry, respectively. The general idea for these
parameters is to allow for future growth of the application. It is especially important to
pay attention to the value of MAXACCESSERS.

3 Creating a Configuration File

3-18 Administration Guide

Note: Two additional parameters, MAXGTT and MAXCONV, affect shared memory. For
details, see the UBBCONFIG(5) reference page in the BEA Tuxedo Reference
Manual.

Table 3-4 lists the characteristics for the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, MAXOBJECTS, and MAXSERVICES parameters.

Table 3-4 IPC Sizing Parameters Characteristics

Parameter Characteristics

MAXACCESSERS Number of processes on the site that is running the most
processes.

You can overwrite the value on a per-machine basis in the
MACHINES section.

The cost is one additional semaphore per accesser.

MAXSERVERS Maximum number of server processes in an application (sum
of all sites).

The cost is a small amount of shared memory.

MAXINTERFACES
(BEA WebLogic
Enterprise servers)

Maximum number of CORBA interfaces advertised in the
application (sum of all active interfaces in the domain).
The cost is a small amount of shared memory. Default is 100.

MAXOBJECTS
(BEA WebLogic
Enterprise system)

Maximum number of CORBA objects in an application (sum
of all objects in the domain).

The cost is a small amount of shared memory.

Default is 1000.

You can overwrite the value on a per-machine basis in the
MACHINES section.

MAXSERVICES Maximum number of BEA Tuxedo services advertised in the
application (sum of all sites).

The cost is a small amount of shared memory.

Default is 100.

On BEA WebLogic Enterprise systems, each CORBA
interface is mapped to a BEA Tuxedo service. Make sure you
account for the number of services generated.

Configuring Resources

Administration Guide 3-19

Enabling Load Balancing

Load balancing is always enabled on BEA WebLogic Enterprise systems. On BEA
Tuxedo systems, use LDBAL=Y to enable load balancing.

Note: For more information about load balancing, see the section “Enabling Load
Balancing” on page 3-73.

Setting Buffer Type and Subtype Limits

You can control the number of buffer types and subtypes allowed in the application
with the MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The default for
MAXBUFTYPE is 16. Unless you are creating many user-defined buffer types, you can
omit MAXBUFTYPE. However, if you intend to use many different VIEW subtypes, you
may want to set MAXBUFSTYPE to exceed its current default of 32.

Table 3-5 lists the characteristics of the MAXBUFTYPE and MAXBUFSTYPE parameters.

Setting the Number of Sanity Checks and Timeouts

You can set the number of times the administrative server (BBL) will periodically
check the sanity of servers local to its machine. In addition, you can set the number of
timeout periods for blocking messages, transactions, and other system activities.

Table 3-5 Buffer Type and Subtype Sizing Characteristics

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system.

Default is 16.

Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.

Default is 32.

Example: MAXBUFSTYPE 40

3 Creating a Configuration File

3-20 Administration Guide

You use the SCANUNIT parameter to control the granularity of such checks and
timeouts. Its value (in seconds) can be a positive multiple of 5. Its default is 10.

You use the SANITYSCAN parameter to specify how many SCANUNITs elapse between
sanity checks of the servers. The value of SANITYSCAN * SCANUNIT cannot exceed
300. The default value of SANITYSCAN * SCANUNIT is approximately 120 seconds.

Example: Setting Sanity Checks and Timeouts

A SCANUNIT of 10 and a BLOCKTIME of 3 allows 30 seconds before the client
application times out. The BLOCKTIME default is set so that BLOCKTIME * SCANUNIT is
approximately 60 seconds. The time is a total of the following times:

n Time waiting to get on the queue

n Time waiting on the queue

n Time for service processing

n Time on the network

Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

Table 3-6 lists the SCANUNIT, SANITYSCAN, and BLOCKTIME parameters
characteristics.

Table 3-6 SCANUNIT, SANITYSCAN, and BLOCKTIME Characteristics

Parameter Characteristics

SCANUNIT Establishes granularity of check intervals and timeouts.

Value must be in multiples of 5 seconds.

The default is 10.

Example: SCANUNIT 10

SANITYSCAN Frequency at which the BBL checks the server (in SCANUNIT
intervals).

SCANUNIT * SANITYSCAN must not exceed 300.

Default of SCANUNIT * SANITYSCAN is approximately 120
seconds.

Example: SANITYSCAN 3

Configuring Resources

Administration Guide 3-21

Setting Conversation Limits (BEA Tuxedo Servers)

You can specify the maximum number of conversations on a machine with the
MAXCONV parameter.

Note: The MAXCONV parameter applies only to the BEA Tuxedo servers.

The MAXCONV parameter has the following characteristics:

n It is the maximum number of simultaneous conversations per machine.

n Its value must be greater than or equal to 0 and less than 32766.

n The default for an application that has conversational servers listed in the
SERVERS section is 10; otherwise, the default is 1.

n You can overwrite this value in the MACHINES section.

Setting the Security Level

You can set three levels of security using the following parameters:

n PERM parameter—sets the first or lowest-level permission to write to the
application queues.

n SECURITY parameter—sets the second-level permission. As a minimum, this
level requires that the client supply a password when joining the application.
This password is checked against the password supplied by the system
administrator when the TUXCONFIG file is generated from the UBBCONFIG file.

BLOCKTIME Timeout for blocking messages.

SCANUNIT * BLOCKTIME must not exceed 300.

Default of SCANUNIT * BLOCKTIME is approximately 60
seconds.

Example: BLOCKTIME 1

Table 3-6 SCANUNIT, SANITYSCAN, and BLOCKTIME Characteristics

Parameter Characteristics

3 Creating a Configuration File

3-22 Administration Guide

Optionally, this level can also require user authorization and access control list
privileges.

Note: For details about the supported security parameters, see Using Security in the
BEA WebLogic Enterprise online documentation.

n AUTHSVC parameter—sets the third-level permission. This sends the client’s
request to join the application to an authentication service. This level requires
the second level of SECURITY to be present. The authentication service may be
the default supplied by the BEA Tuxedo system or it may be a service, such as a
Kerberos service, supplied by another vendor.

Table 3-7 lists the SECURITY and AUTHSVC parameters characteristics.

Setting Parameters of Unsolicited Notification (BEA
Tuxedo Servers)

This section applies only to BEA Tuxedo servers.

Table 3-7 Security Level Parameters Characteristics

Parameter Characteristics

Security Accepted values are: NONE (default), APP_PW,
USER_AUTH, ACL, and MANDATORY_ACL. The ACL and
MANDATORY_ACL parameters are not supported and are
ignored on machines using the BEA WebLogic Enterprise
CORBA API.

Default is NONE.

Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.

SECURITY APP_PW must be specified.

Default is no authentication service.

Client authentication with Kerberos is possible.

Example: AUTHSVC ‘‘ AUTHSVC’’

Configuring Resources

Administration Guide 3-23

You can set the default method for clients to receive unsolicited messages using the
NOTIFY parameter. The client, however, can override this setting in the TPINIT
structure when tpinit() is called.

The following three methods can be set for clients:

n IGNORE—ignore unsolicited messages.

n DIPIN—receive unsolicited messages only when the clients call tpchkunsol()
or when they make an ATMI call.

n SIGNAL—receive unsolicited messages by having the system generate a signal
that has the signal handler call the function; that is, set with tpsetunsol().

Two types of signals can be generated: SIGUSR1 and SIGUSR2. The USIGNAL
parameter allows the administrator to choose the type of signal. The default is
SIGUSR2. In applications that choose notification by signals, any MS-DOS client
workstations are switched automatically to DIPIN.

Table 3-8 lists the NOTIFY and USIGNAL parameters characteristics.

Table 3-8 Unsolicited Notification Parameters Characteristics

Parameter Characteristics

NOTIFY Value of IGNORE means clients should ignore unsolicited
messages.

Value of DIPIN means clients should receive unsolicited
messages by dip-In.

Value of SIGNAL means clients should receive unsolicited
messages by signals.

Default is DIPIN.

Example: NOTIFY SIGNAL

USIGNAL Value of SIGUSR1 means notify clients with this type of
signal.

Value of SIGUSR2 means notify clients with this type of
signal.

Default is SIGUSR2.

Example: USIGNAL SIGUSR1

3 Creating a Configuration File

3-24 Administration Guide

Protecting Shared Memory

You can shield system tables kept in shared memory from application clients or servers
using the SYSTEM_ACCESS parameter. This option is useful when applications are
being developed because faulty application code can inadvertently corrupt shared
memory with a bad pointer. When the application is fully debugged and tested, this
option could then be changed to allow for faster responses. The following are the
options for this parameter:

n PROTECTED—BEA WebLogic Enterprise or BEA Tuxedo libraries compiled with
application code will not attach to shared memory while executing system code.

n FASTPATH—BEA WebLogic Enterprise or BEA Tuxedo libraries will attach to
shared memory at all times.

n NO_OVERRIDE—the selected option cannot be changed either by the client in the
TPINIT structure of the tpinit() call or in the SERVERS section for servers.

Table 3-9 lists the PROTECTED, FASTPATH, and NO_OVERRIDE parameters
characteristics.

Example: SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

Configuring Machines

This section explains how to define parameters for each processor, or machine, on
which your application runs.

Table 3-9 Shared Memory Protection Parameters Characteristics

Parameter Characteristics

PROTECTED Internal structures in shared memory will not be corrupted inadvertently
by application processes.

FASTPATH

(default)
Application processes will join with access to shared memory at all times.

Configuring Machines

Administration Guide 3-25

Identifying Machines in the MACHINES Section

Every machine in an application must have a MACHINES section entry in the
configuration file and it must be the second section in the file. The MACHINES section
contains the following information specific to each machine in the application:

n The mapping of the machine address to a logical identifier (LMID). (Required)

n The location of the configuration file (TUXCONFIG). (Required)

n The location of the installed BEA WebLogic Enterprise or BEA Tuxedo
software (TUXDIR). Note that the TUXDIR parameter is used on BEA WebLogic
Enterprise systems. Use it to identify the top-level location where you installed
the BEA WebLogic Enterprise system, such as c:\wledir. (Required)

n The location of the application servers (APPDIR). (Required)

n The location of the application log file (ULOGPFX). (Optional)

n The location of the environment file (ENVFILE). (Optional)

n The maximum number of active CORBA objects to be accommodated in the
Active Object Table for this processor (MAXOBJECTS). (Optional)

Note: For a particular machine, you can override the UID, GID, PERM,
MAXACCESSERS, MAXCONV, and MAXOBJECTS values that were specified in the
RESOURCES section.

Example: MACHINES Section

The following example provides a sample MACHINES section of a configuration file:

*MACHINES
gumby LMID=SITE1
 TUXDIR=”/wledir”
 APPDIR=”/home/apps/mortgage”
 TUXCONFIG=”/home/apps/mortgage/tuxconfig”
 ENVFILE=”/home/apps/mortgage/ENVFILE”
 MAXOBJECTS=700
 ULOGPFX=”/home/apps/mortgage/logs/ULOG”
 MAXACCESSERS=100

3 Creating a Configuration File

3-26 Administration Guide

Parameters in a Sample MACHINES Section

Table 3-10 lists the MACHINES section parameters characteristics.

Reserving the Physical Address and Machine ID

You initially define the address in the address portion, which is the basis for a
MACHINES section entry. All other parameters in the entry describe the machine
specified by the address. You must set the address to the value printed by calling uname
-n on UNIX systems. On Windows NT systems, see the Computer Name value in the
Network Control Panel.

Table 3-10 MACHINES Section Parameter Characteristics

Parameter Description

gumby The machine name obtained with the command uname -n on UNIX
systems. On Windows NT systems, see the Computer Name value in
the Network Control Panel.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The double quoted string of the full path to the installed BEA
WebLogic Enterprise or BEA Tuxedo software.

APPDIR The string of the full path to the application directory, enclosed in
double quotes.

TUXCONFIG The string of the full pathname of the configuration file, enclosed in
double quotes.

ENVFILE The string of the full pathname of a file containing environment
information, enclosed in double quotes.

MAXOBJECTS Override the system wide value defined in RESOURCES with 700.

ULOGPFX The string of the full pathname prefix of the log file, enclosed in double
quotes.

MAXACCESSERS Override the system-wide value with 100 for this machine.

MAXCONV Override the system-wide value with 15 for this machine.

Configuring Machines

Administration Guide 3-27

The LMID parameter is mandatory and specifies a logical name used to designate the
computer whose address has just been provided. It may be any alphanumeric value,
and must be unique among other machines in the application.

The address and machine ID and the LMID parameter have the following
characteristics:

n The address and machine ID are specified in the following way:

hostname LMID=logical_machine_name

n hostname identifies the physical machine.

n The format of the LMID parameter is LMID=logical_machine_name.

n The LMID is the logical machine name for a physical processor.

n LMID is alphanumeric and must be unique within the MACHINES section.

Identifying the Location of the Configuration File

You identify the configuration file location and file name for the machine with
TUXCONFIG, a required parameter. The TUXCONFIG parameter is enclosed in double
quotes and represents the full pathname up to 64 characters. The path specified must
be the same as the environment variable, TUXCONFIG; otherwise, the tmloadcf(1) will
not compile the binary file.

The TUXCONFIG parameter has the following characteristics:

n The syntax of the TUXCONFIG parameter is TUXCONFIG=”<tuxconfig>” .

n This parameter identifies the location of the configuration file and filename
(though it should remain TUXCONFIG for convention purposes) for the machine.

n The full pathname for TUXCONFIG can be up to 64 characters.

n The value of TUXCONFIG must match the TUXCONFIG environment variable.

3 Creating a Configuration File

3-28 Administration Guide

Identifying the Locations of the System and Application
Software

Each machine in an application must have a copy of the BEA WebLogic Enterprise or
BEA Tuxedo system software and application software. You identify the location of
system software with the TUXDIR parameter. You identify the location of the
application servers with the APPDIR parameter. Both parameters are mandatory. The
APPDIR parameter becomes the current working directory of all server processes. The
BEA WebLogic Enterprise or BEA Tuxedo software looks in the TUXDIR/bin and
APPDIR for executables.

Table 3-11 lists the TUXDIR and APPDIR parameters characteristics.

Identifying the User Log File Location

The user log file contains warning and informational messages, as well as error
messages that describe the nature of any ATMI error with a return code of TPESYSTEM
and TPEOS (that is, underlying system errors). The user can use this log to track
application-related errors. By default, the file is named ULOG.mmddyy where mmddyy
is the month, date, and two-digit year. By default, the file is written into the APPDIR.

Table 3-11 System Software Location Parameters Characteristics

Parameter Characteristics

TUXDIR The syntax requires the full pathname in a string enclosed in double
quotes: TUXDIR=”<TUXDIR>” .

Identifies the location of the BEA WebLogic Enterprise or BEA Tuxedo
software.

Is a required parameter.

APPDIR The syntax requires the full pathname in a string enclosed in double
quotes: APPDIR=”<APPDIR>” .

Identifies the location of application servers.

Is a required parameter.

Becomes the current working directory of server processes.

Configuring Machines

Administration Guide 3-29

You can override the default directory and prefix by specifying the ULOGPFX parameter
which is the absolute pathname of the application log file, without the date. For
example, this may be set to APPDIR/logs/ULOG so that logs collect in a particular
directory. In a networked application, a central log can be maintained by specifying a
remote directory that is mounted on all machines.

The ULOGPFX parameter has the following characteristics:

n The syntax of the ULOGPFX parameter is a string enclosed in double quotes:
ULOGPFX=”<ULOGPFX>”.

n The ULOGPFX defaults to <APPDIR>/ULOG.

Examples: ULOGPFX=”/usr/appdir/logs/ULOG”
 ULOGPFX=”/mnt/usr/appdir/logs/BANKLOG”

Specifying Environment Variable Settings for Processes

With the ENVFILE parameter, you can specify a file that contains environment variable
settings for all processes to be booted by the BEA WebLogic Enterprise or BEA
Tuxedo system. The system sets TUXDIR and APPDIR for each process, so these
variables should not be specified in this file. You can specify settings for the following
variables because they affect an application’s operation. Most of these settings apply
only to BEA Tuxedo servers, as noted.

n FIELDTBLS, FLDTBLDIR (BEA Tuxedo servers)

n VIEWFILES, VIEWDIR (BEA Tuxedo servers)

n TMCMPLIMIT (BEA Tuxedo servers)

n TMNETLOAD

The ENVFILE parameter has the following characteristics:

n The syntax of the ENVFILE parameter is a string enclosed in double quotes:
ENVFILE=”< envfile>” .

n ENVFILE is the file containing environment variable settings for all processes
booted by the BEA WebLogic Enterprise or BEA Tuxedo system.

n You can set the environment variables but do not set TUXDIR and APPDIR.

3 Creating a Configuration File

3-30 Administration Guide

n The ENVFILE parameter is optional and all settings must be hard coded. No
evaluations such as FLDTBLDIR=$APPDIR are allowed.

n The format is VARIABLE=string.

Overriding System-wide Parameters

Table 3-12 lists the system-wide parameters you can override for a specific machine.

Note: You can override values on remote as well as local machines.

Table 3-12 System-wide Parameters That Can Be Overridden

Parameter Characteristics

UID The user ID of the administrator.

The default is the ID of the person who runs tmloadcf(1).

Example: UID=3002

On Windows NT, UID value is always 0.

GID The group ID of the administrator.

The default is the ID of the person who runs tmloadcf(1).

Example: GID=100

On Windows NT, this value is always 0.

PERM The permissions for access to IPC structures.

The default is 0666.

Example: PERM=0660

On Windows NT, this value is always 0.

MAXACCESSERS Number of processes on the site that is running the most
processes.

You can overwrite the value on a per-machine basis in the
MACHINES section.

The cost is one additional semaphore per accessor.

Configuring Groups

Administration Guide 3-31

Configuring Groups

You can use GROUPS to group servers together logically. These groupings can later be
used to access resource managers, and for server group migration. The GROUPS section
of the configuration file contains the definition of server groups. You must define at
least one server group for a machine to have an application server running on it. If no
group is defined for a machine, the machine can still be part of the application and you
can run the administrative command tmadmin(1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You only
need to define the basic mapping of group name to group number and logical machine
of each group.

Specifying a Group Name, Number, and LMID

The group name is an alphanumeric name by which the group is identified. It must
have a unique group number (GRPNO). Each group must reside entirely on one logical
machine (LMID). The LMID is also mandatory.

MAXOBJECTS (BEA
WebLogic Enterprise
system)

Maximum number of active CORBA objects in an application on
any machine (sum of all active CORBA objects on the machine).

The cost is a small amount of shared memory.

Default is 1000.

You can overwrite the value on a per-machine basis in the
MACHINES section.

MAXGTT Maximum number of simultaneous global transactions in which a
particular machine can be involved.

Table 3-12 System-wide Parameters That Can Be Overridden (Continued)

Parameter Characteristics

3 Creating a Configuration File

3-32 Administration Guide

Sample GROUPS Section

The example GROUPS section in Listing 3-2 is from the UBBCONFIG file in the BEA
WebLogic Enterprise University sample Production application. In this sample, the
groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG
file need to be identified and configured.

The Production sample specifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1,
and APP_GRP2. These groups mst be configured, and the machines on which they run
on must be identified.

Configuring Groups

Administration Guide 3-33

Listing 3-2 Example GROUPS Section

*GROUPS

APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS

APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS

ORA_GRP1
 LMID = SITE1
 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

ORA_GRP2
 LMID = SITE1
 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""
TMSNAME = "TMS_ORA"

The preceding example shows how the ORA_GRP1, ORA_GRP2, APP_GRP1, and
APP_GRP2 groups are configured. See the section “Example: Factory-based Routing
(BEA WebLogic Enterprise Servers)” on page 3-76 to understand how the names in
the GROUPS section match the group names specified in the ROUTING section. This
match is critical for the routing function to work correctly. Also, any change in the way
groups are configured in an application must be reflected in the ROUTING section.

Note: The Production sample application packaged with the BEA WebLogic
Enterprise software is configured to run entirely on one machine. However,
you can easily configure this application to run on multiple machines by
specifying the other machines in the LMID parameter. This step assumes that
you specify the MODEL MP parameter in the RESOURCES section.

3 Creating a Configuration File

3-34 Administration Guide

Encrypting Passwords in OPENINFO

Passwords for server groups can be stored in the UBBCONFIG file in encrypted form
using the tmloadcf utility.

To secure a password in the UBBCONFIG file, you initially enter a string of five or more
continuous asterisks at the place in the OPENINFO statement where a password is to go.
The asterisks are a placeholder for the password. For example:

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

When tmloadcf encounters this string, it prompts the user to create a password. For
example:

>tmloadcf -y e:/wle5/samples/atmi/bankapp/xx
Password for OPENINFO (SRVGRP=BANKB1):

The password is stored in the TUXCONFIG in encrypted form. To place the encrypted
password in the UBBCONFIG file, use tmunloadcf to generate a UBBCONFIG file. When
tmunloadcf is run, the encrypted password is written into the OPENINFO string in the
UBBCONFIG file with @@ as delimiters. For example:

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

When tmloadcf encounters an encrypted password in a UBBCONFIG file generated by
tmunloadcf, it does not prompt the user to create a password. Instead, the tmloadcf
command uploads the encrypted password back into the system.

Note: The UBBCONFIG file with the encrypted form of the password may be uploaded
back into the system only once; subsequent attempts will fail.

Use of encrypted passwords is recommended for production environments.

Configuring Servers

This following paragraphs explain the SERVERS section parameters that you need to
define to configure server processes.

Note: Administrators and programmers who are working in a Java environment
should see the section “Starting JavaServer” on page 3-39.

Configuring Servers

Administration Guide 3-35

Identifying Server Information in the SERVERS Section

The SERVERS section of the configuration file contains information specific to a server
process. While this section is not required, an application without this section has no
application servers and little functionality. Each entry in this section represents a server
process to be booted in the application. Server-specific information includes the
following:

n A server name, group, and numeric identifier (SRVGRP, SRVID)

n Command-line options (CLOPT)

n Parameters to determine the booting order and number of servers to boot
(SEQUENCE, MIN, MAX)

n A server-specific environment file (ENVFILE)

n JavaServer information (JAR file and options)

n Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM) (BEA
Tuxedo servers)

n Restart information (RESTART, RCMD, MAXGEN, GRACE)

n Server designation as a conversational server (CONV) (BEA Tuxedo servers)

n Overriding of system-wide shared memory access (SYSTEM_ACCESS)

n Setting Security Parameters for ISL Servers

Command-line options supported by the BEA Tuxedo system are described on the
servopts(5) reference page in the BEA Tuxedo Reference Manual.

Table 3-13 provides a sample of parameters and their values in the SERVERS section of
the configuration file.

3 Creating a Configuration File

3-36 Administration Guide

Table 3-13 SERVERS Section Parameters

Parameter Example Meaning

RESTART=Y Restart the servers.

MAXGEN=5 The MAXGEN parameter specifies a number greater than 0 and less than 256
that controls the number of times the server can be started within the period
specified by the GRACE parameter. The default is 1. If the server is to be
restartable, MAXGEN must be greater than or equal to 2. The number of restarts
is at most number minus 1 times. RESTART must be Y or MAXGEN is
ignored.

GRACE=3600 If RESTART is Y, the GRACE parameter specifies the time period (in seconds)
during which this server can be restarted as MAXGEN minus 1 times. The
number assigned must be equal to or greater than 0. The maximum is
2,147,483,648 seconds (or a little more than 68 years). If GRACE is not
specified, the default is 86,400 seconds (24 hours). As soon as one GRACE
period is over, the next grace period begins. Setting the grace period to 0
removes all limitations; the server can be restarted an unlimited number of
times.

REPLYQ=N There is no reply queue.

CLOPT=”-A” Specify -A on the command line of each server.

ENVFILE=”/usr/home/env
file”

Read environment settings from the file ENVFILE.

SYSTEM_ACCESS=
FASTPATH

Specifies the default mode used by system libraries within application
processes to gain access to the BEA WebLogic Enterprise or BEA Tuxedo
system’s internal tables. Valid access types are FASTPATH or PROTECTED.

FASTPATH specifies that the internal tables should be accessible by the
libraries via shared memory for fast access.

Note: Always use FASTPATH when you start a JavaServer .

PROTECTED specifies that while the internal tables are accessible by system
libraries via shared memory, the shared memory for these tables is not
accessible outside of the system libraries.

NO_OVERRIDE can be specified (alone, or in conjunction with FASTPATH or
PROTECTED) to indicate that the mode selected cannot be overridden by an
application process. If SYSTEM_ACCESS is not specified, the default mode is
determined by the setting of the SYSTEM_ACCESS keyword in the
RESOURCES section.

Configuring Servers

Administration Guide 3-37

Defining Server Name, Group, and ID

You initially define the server name entry in the SERVERS section entry. The server
name is the name of an executable file built with:

n buildserver(1) (BEA Tuxedo systems)

n buildobjserver (BEA WebLogic Enterprise C++ server applications)

n buildjavaserver (BEA WebLogic Enterprise Java server application)

You must provide each server with a group identifier (SRVGRP). This is set to the name
specified in the beginning of a GROUPS section entry. You must also provide each
server process in a given group with a unique numeric identifier (SRVID). Every server
must specify a SRVGRP and SRVID. Because the entries describe machines to be booted
and not just applications, it is possible that in some cases the same server name will
display in many entries.

Table 3-14 lists the servername, SRVGRP, and SRVID parameters characteristics:

Using Server Command-Line Options

The server may need to obtain information from the command line. The CLOPT
parameter lets you specify command-line options that can change some defaults in the
server.

Table 3-14 Servername, SRVGRP, and SRVID Parameters Characteristics

Parameter Characteristics

servername Identifies the executable to be booted.

Is built with buildserver(1) on BEA Tuxedo systems, or with
buildobjserver (C++) or buildjavaserver (Java) on BEA
WebLogic Enterprise systems.

Is required, but may not be unique.

SRVGRP Identifies the group affiliation.

The group name from a GROUPS section entry.

Is required.

3 Creating a Configuration File

3-38 Administration Guide

Note: On BEA Tuxedo systems only, you alternatively can pass user-defined options
to the tpsvrinit() function. The standard main() of a server parses one set
of options ending with the argument --, and passes the remaining options to
tpsvrinit().

On BEA WebLogic Enterprise systems, the standard main() of a server parses
the set of options ending with the argument --; it passes the remaining
user-defined options to tpsvrinit() on BEA Tuxedo servers, the
Server::initialize operation on BEA WebLogic Enterprise C++ servers,
or the Server.initialize method on BEA WebLogic Enterprise Java
servers.

Table 3-15 provides a partial list of the available options.

Note: You can find other standard main() options in the servopts(5) reference
page in the BEA Tuxedo Reference Manual.

Table 3-15 Partial List of Command-Line Options

Option Function

-o filename Redirects standard output to file filename.

-e filename Redirects standard error to file filename.

-f filename Specifies a nondefault location, name, or both of an Interface
Repository. This option can only be used for BEA WebLogic
Enterprise Interface Repository servers.

-s services Advertises services (BEA Tuxedo servers only).

-s x,y,z An example that advertises services x, y, and z.

-s
x,y,z:funcname

An example that advertises services x, y, and z, but processes requests
for those services with function funcname. This is called aliasing a
function name.

-r An example that specifies that the server should log the services
performed.

-A The default for CLOPT is -A, which tells the server to advertise all the
services built into it with buildserver(1) or buildobjserver
or buildjavaserver.

Configuring Servers

Administration Guide 3-39

Server Command-Line Options

The following options apply to both BEA WebLogic Enterprise and BEA Tuxedo
servers:

n The syntax is CLOPT=”servopts -- application_opts” .

n This is an optional parameter with a default of -A .

The following options apply only to BEA Tuxedo servers:

n Both main() and tpsvrinit() use server command-line options.

n The servopts (5) options are passed to main() .

n The application options are passed to tpsvrinit() .

A BANKAPP example is CLOPT=”-A -- -T 10" .

Starting JavaServer

In the BEA WebLogic Enterprise Java system, a server application is represented by a
Java Archive (JAR). The JAR must be loaded in the Java Virtual Machine (JVM) to
be executed. This JVM must execute in a BEA WebLogic Enterprise server to be
integrated in a BEA WebLogic Enterprise application. By default, the server that loads
the JVM is called JavaServer .

You include the options to start a JavaServer application in the SERVERS and
MODULES sections of the application’s UBBCONFIG file.

WebLogic Enterprise provides support for the Java HotSpot Server VM on Windows
NT platforms. If the Java HotSpot Server VM is installed, the JavaServer will load it
by default. If you want to bypass the Java HotSpot VM after it is installed, set the
WLE_JVM environment varible equal to classic or specify the -classic option for the
JavaServer. Note that for Windows NT platforms, the JAVA_HOME environment
variable must be set to the directory path where you installed the JDK software.

See the section “Required Order in Which to Boot Servers (BEA WebLogic Enterprise
Servers)” on page 3-49 for important information about starting the BEA WebLogic
Enterprise servers in the correct order.

3 Creating a Configuration File

3-40 Administration Guide

Threading Options

The BEA WebLogic Enterprise Java system supports the ability to configure
multithreaded BEA WebLogic Enterprise applications written in Java. A
multithreaded BEA WebLogic Enterprise Java server can service multiple object
requests simultaneously, while a single-threaded BEA WebLogic Enterprise Java
server runs only one request at a time.

You can establish the number of threads for a Java server application by using the -M
options to the JavaServer parameter in the SERVERS section. The -M options are
described in the section “BEA WebLogic Enterprise JavaServer Options” on
page 3-45.

For related information about the MAXACCESSERS parameter, see the section “Defining
IPC Limits” on page 3-15.

Running the BEA WebLogic Enterprise Java server in multithreaded mode or in
single-threaded mode is transparent to the application programmer. In the current
version of BEA WebLogic Enterprise Java, you should not establish multiple threads
in your object implementation code.

The potential for a performance gain from a multithreaded JavaServer depends on:

n The application pattern.

n Whether the application is running on a single-processor machine or a
multiprocessor machine.

If the application is running on a single-processor machine and the application is
merely CPU-intensive but without I/O or other external delays, in most cases the
multithreaded JavaServer will not perform better. In fact, due to the overhead of
switching between threads, the multithreaded JavaServer in this configuration may
perform worse than a single-threaded JavaServer.

A performance gain is more likely with a multithreaded JavaServer when the
application has some delays or is running on a multiprocessor machine.

Note: If your application uses JNI code to access ATMI, JavaServer must be
configured as single-threaded.

Check that SYSTEM_ACCESS=FASTPATH is set for the JavaServer. Do not use
SYSTEM_ACCESS=PROTECTED with JavaServer. (If SYSTEM_ACCESS is not
specified in the SERVERS section, the default mode is determined by the setting of the
SYSTEM_ACCESS keyword in the RESOURCES section.)

Configuring Servers

Administration Guide 3-41

If your application is sending messages to the ULOG, it is not helpful to use the
process ID to distinguish among the different threads. Instead, you can include
in each message the object ID, the thread name, and (if your object is
transactional) the transaction ID.

JavaServer Parameters

When you start JavaServer, the parameters are:

JavaServer
 SRVTYPE=JAVA
 SRVGRP=group
 SRVID=number
 MAXEJBCACHE=number
 EJBCACHE_FLUSH=number

 CLOPT="-A -- [java_options]"

Note: The JavaServer MODULE, archive_file, and options parameters were
deprecated in BEA WebLogic Enterprise 5.1. To replace the MODULE
parameter, the MODULES section was added to the UBBCONFIG file. For a
description of the MODULES section, refer to “Configuring Modules” on
page 3-57.

These JavaServer parameters are used as follows:

n SRVTYPE—the type of server. If the name of the server is JavaServer (not case
sensitive), or at least one MODULE statement is specified, the default value for
SRVTYPE is JAVA.

n SRVGRP—the name of the BEA WebLogic Enterprise group in the GROUPS
section of the UBBCONFIG file.

n SRVID—a numeric identifier of the server in the group.

n MAXEJBCACHE—the capacity of the EJB cache. You use this parameter to specify
the maximum number of beans that can be cached (that is, not passivated) at one
time. This parameter is used for performance tuning. The following values can
be specified:

Note: By default, if MAXEJBCACHE is not specified, the cache size is set to the larger
of 10 or the number of threads (-M option) + 1.

3 Creating a Configuration File

3-42 Administration Guide

Note: It is very important that you set the cache accurately for your EJB application
as it directly affects performance. For more information, see “Using the EJB
Cache Size for Tuning and Scaling” on page 3-43.

n EJBCACHE_FLUSH—the number of minutes between EJB cache flushes. At the
interval specified by this value, all beans that are not currently involved in a
transaction or a method invocation are passivated and their memory is released.
You can specify the following values:

n java-options—the JavaServer command-line options (CLOPT) are Java
Virtual Machine (JVM) options, similar to the options that are passed to the
java interpreter command. These options are described in the sections “Standard
Java Virtual Machine Options” on page 3-44, “BEA WebLogic Enterprise
JavaServer Options” on page 3-45, and “Nonstandard Java Virtual Machine
Options” on page 3-46.

Example of CORBA JavaServer Entry

*SERVERS
 JavaServerXA
 SRVGRP=BANK_GROUP1
 SRVID=8
 CLOPT="-A -- -M 10"
 RESTART=N

*MODULES
 BankApp
 SRVGRP=BANK_GROUP1
 SRVID=8

n The maximum number of beans that can be contained in the cache where n
is greater than zero.

0 Disables the cache and results in the same behavior as in BEA WebLogic
Enterprise 5.0.

n The flush time in minutes, where n is greater than zero.

0 No time-determined flush. The beans are passivated only when the cache
becomes full. This is the default if EJBCACHE_FLUSH is not set.

Configuring Servers

Administration Guide 3-43

 FILE="BankApp.jar"
 ARGS ="TellerFactory_1"

In this example, the JavaServer that implements the Bankapp’s TellerFactory_1 and
Teller interfaces are started. The -M 10 option enables multithreading for the
JavaServer and specifies 10 as the maximum number of worker threads that a
particular instance of JavaServer can support. The FILE="Bankapp.jar" option
specifies the name of the JAR file that contains the implementation of the
TellerFactory and Teller CORBA interfaces. The ARGS="TellerFactory_1" option
specifies a TellerFactory name which is passed to the
com.beasys.Tobj.Server.initialize method.

A worker thread is a thread that is started and managed by the BEA WebLogic
Enterprise Java software, as opposed to threads started and managed by an application
program. Internally, BEA WebLogic Enterprise Java manages a pool of available
worker threads. When a client request is received, an available worker thread from the
thread pool is scheduled to execute the request. When the request is completed, the
worker thread is returned to the pool of available threads.

Example of EJB JavaServer Entry

JavaServer
 SRVTYPE=JAVA
 SRVGRP="APP_GRP"
 SRVID=5
 CLOPT="-A"
 MAXEJBCACHE=15
 EJBCACHE_FLUSH=1440

Using the EJB Cache Size for Tuning and Scaling

Sizing the bean cache correctly is very important. If you are using multithreaded
servers, the cache should at least be the number of threads in the server. If the cache is
smaller than the number of threads, you could get the CacheFullException exception
because all the beans (one per thread) are active in a method invocation.

The optimum number of beans to maintain in the cache should be based on how many
beans can be active simultaneously in the server process. This number is determined
by:

n How long a bean will remain active in a JavaServer before it can be removed or
is dormant.

3 Creating a Configuration File

3-44 Administration Guide

n The maximum number of worker threads the JavaServer can support.

The guidelines for tuning and scaling the bean cache are as follows:

n While a bean is cached in a server process, all requests for the bean return to the
server process that has cached the bean. Caching a bean effectively disables load
balancing for the bean. The advantage of caching a bean is that caching saves a
lot of activation and passivation, which involves input and output, especially in
the case of stateful session beans.

Every bean is passivated immediately after creation to give an opportunity to
balance the load. This approach incurs at least two I/O cycles during the
lifecycle of a stateful bean, even though the lifecycle may be relatively short.
This could change in the future based on customer input regarding the pattern in
which stateful beans are used.

In general, BEA recommends not flushing the cache frequently. However, after a
cache flush, all the beans that are not active (in a method or a transaction) are
again available for load balancing to servers supporting the bean.

n If a server process in which a cached bean exists crashes, there is no recovery of
that bean’s state.

n Every bean cache entry potentially uses an Active Object Map (AOM) entry.
The default of 1,000 objects in the AOM parameter specified in the UBBCONFIG
file may be insufficient if you have many server processes with many large
caches.

Standard Java Virtual Machine Options

The standard Java virtual machine options are shown in the following list.

-cp, -classpath path

Specifies the path JavaServer uses to look up classes. Overrides the default
or the CLASSPATH environment variable if it is set.

-verbose, -verbose:class

Causes JavaServer to print a message to the user log each time a class file
is loaded.

-verbose:gc

Causes the garbage collector to print messages in the user log whenever it
frees memory.

Configuring Servers

Administration Guide 3-45

-verbose:jni

Prints JNI-related messages in the user log, including information about
which native methods have been linked and warnings about excessive
creation of local references.

-DpropertyName=newValue

Redefines a property value. propertyName is the name of the property whose
value you want to change and newValue is the value to change it to.

BEA WebLogic Enterprise JavaServer Options

The following JavaServer options are provided by the BEA WebLogic Enterprise
system:

-Dwle.dynamic

Enables hot (runtime) deployment, undeployment, and redeployment of
Enterprise JavaBeans on JavaServers. By default, this feature is disabled.

Note: If hot deployment is not enabled on the JavaServer, attempts to use the
tmadmin commands addmodule, removemodule, and changemodule
will fail and no change will take effect.

-M number
Enables multithreading for the JavaServer and specifies the maximum
number of worker threads that a particular instance of JavaServer can
support. The largest number that you can specify is 500.

-M 0 (zero) means that there are no worker threads and that all application
code is executed in the single infrastructure thread.

-M 1 is not useful because there is only one worker thread, which does not
provide significant processing parallelism.

If number is a negative decimal, the server will revert to single-threaded
mode. If number is larger than 500, the server will use a maximum of 500
worker threads. In all cases, if number is invalid, the BEA WebLogic
Enterprise software logs a warning message to the application’s ULOG file.

-noredirect

Causes the System.out and System.err streams to be redirected to the
$APPDIR/stdout and $APPDIR/stderr files, respectively. If -noredirect
is not specified, the System.out and System.err streams are redirected to
the user log (ULOG).

3 Creating a Configuration File

3-46 Administration Guide

-classic
Specifies that if the Java HotSpot Server VM is installed, the JavaServer
should bypass it and load the Classic VM instead. If the WLE_JVM
environment variable is set equal to hotspot, the -classic option will take
precedence.

-hotspot
Specifies that if the Java HotSpot Server VM is installed, the JavaServer
should load it. If the WLE_JVM environment variable is set equal to classic, the
-hotspot option will take precedence.

Note: BEA WebLogic Enterprise supports both classic Java VM and Java
HotSpot Server VM on Microsoft Windows NT systems and supports only
Java VM on UNIX systems.

Nonstandard Java Virtual Machine Options

The Java Virtual Machine (JVM) in JDK 1.2 supports the nonstandard options in the
following list. To display the nonstandard Java virtual machine options, use the java
-X command at a system prompt.

-Xdebug

Allows the Java debugger, jdb, to attach itself to this JavaServer session.
For example:

CLOPT = "-A -- -Xbootclasspath:d:\jdk1.2\lib\tools.jar;d:\jdk1.2\jre\lib\rt.jar
-Djava.compiler=NONE -Xdebug BankApp.jar TellerFactory_1"

Note: When -Xdebug is specified in the command-line options, JavaServer
prints a password in the user log, which must be used when starting the
debugging session.

-Xmxx

Sets the maximum size of the memory allocation pool (the garbage collected
heap) to x. The default is 16 megabytes of memory. The value of x must be
greater than or equal to 1000 bytes. The maximum memory size must be
greater than or equal to the startup memory size (specified with the -Xms
option, default 16 megabytes). By default, x is measured in bytes. You can
specify x in kilobytes or megabytes by appending the letter k for kilobytes or
the letter m for megabytes.

-Xmsx

Sets the startup size of the memory allocation pool (the garbage collected
heap) to x. The default is 1 megabyte of memory. The value of x must be

Configuring Servers

Administration Guide 3-47

greater than 1000 bytes. The startup memory size must be less than or equal
to the maximum memory size (specified with the -Xmx option, default 16
megabytes). By default, x is measured in bytes. You can specify x in kilobytes
or megabytes by appending the letter k for kilobytes or the letter m for
megabytes.

-Xnoclassgc

Turns off garbage collection of Java classes. By default, the Java interpreter
reclaims space for unused Java classes during garbage collection.

-Xbootclasspath:bootclasspath

Specifies a semicolon-separated list of directories, JAR archives, and ZIP
archives to search for boot class files. These are used in place of the boot class
files included in the JDK version 1.2 software.

-Xrs

Reduces the use of operating system signals.

-Xcheck:jni

Performs additional check for Java Native Interface (JNI) functions.

-Xrunhprof[:help]|[:suboption=value,...]
Enables CPU, heap, or monitor profiling. This option is typically followed by
a list of comma-separated suboption=value pairs. Run the command java
-Xrunhprof:help to obtain a list of suboptions and their default values.

3 Creating a Configuration File

3-48 Administration Guide

JavaServer Options

-stat

If set, enables run-time statistics gathering by various parts of JavaServer.
Enabling statistics gathering can have adverse impacts on performance.

-jdbclog

If set, causes JDBClog information to be written into the ULOG.

Setting the Server Boot Order

You can specify the server boot sequence with the SEQUENCE parameter, using a
number in the range of 1 to 10,000. A server given a smaller SEQUENCE value is booted
before a server with a larger value. If two servers have the same SEQUENCE value, they
are booted simultaneously (that is, the second server can be started before the first
server is finished booting).

 If no servers specify SEQUENCE, servers are booted in the order of their appearance
within the SERVERS section. If there is a mixture of sequenced and unsequenced
servers, the sequenced servers are booted first. Servers are shut down in reverse order
of the boot sequence.

This is an optional parameter. The SEQUENCE parameter may be helpful in a large
application where control over the order is important. Also, the parallel booting may
speed the boot process.

Warning: On a BEA WebLogic Enterprise system, there is a strict order in which
the system Event Broker, the FactoryFinder object, and the application
factories must be booted. A BEA WebLogic Enterprise application
program will not boot if the order is changed. See the section “Required
Order in Which to Boot Servers (BEA WebLogic Enterprise Servers)” on
page 3-49 for details.

You can boot multiple servers using the MIN parameter, which is a shorthand method
of booting. The servers all share the same server options. On a BEA Tuxedo system,
if you specify RQADDR, the servers will form an MSSQ set (not supported on a BEA
WebLogic Enterprise system). The default for MIN is 1.

You specify the maximum number of servers that can be booted with the MAX
parameter. The tmboot(1) command boots up to MIN servers at run time. Additional
servers can be booted up to MAX. The default is MIN.

Configuring Servers

Administration Guide 3-49

The MIN and MAX parameters are helpful in large applications to keep the size of the
configuration file manageable. Allowances for MAX values must be made in the IPC
resources.

Characteristics of the SEQUENCE, MIN, and MAX Parameters

Table 3-16 lists the SEQUENCE, MIN, and MAX parameters characteristics.

Required Order in Which to Boot Servers (BEA WebLogic Enterprise Servers)

The following is the correct order in which to boot the servers on a BEA WebLogic
Enterprise system. A BEA WebLogic Enterprise application program will not boot if
the order is changed.

1. The system Event Broker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the
NameManager service (as a Master). This service maintains a mapping of
application-supplied names to object references.

Table 3-16 SEQUENCE, MIN, and MAX Parameters Characteristics

Parameter Characteristics

SEQUENCE Is an optional parameter with a numeric range of 1 to 10,000.

Smaller values are booted before larger values.

The same values can be booted in parallel.

Omitted values are booted in the order that they appear in the SERVERS
section.

Sequenced parameters are booted before any unsequenced parameters.

MIN Represents the minimum number of servers to boot during run time.

If RQADDR is specified and MIN>1, an MSSQ set is created.

MSSQ sets apply only to the BEA Tuxedo system.

All instances have the same server options.

SRVIDs are SRVID + n - 1.

The default is 1.

MAX Represents the maximum number of servers to boot.

Defaults to MIN.

3 Creating a Configuration File

3-50 Administration Guide

3. The TMFFNAME server with the -N option only, to start a Slave NameManager
service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder object.

5. The application JavaServers and C++ servers that are advertising factories.

Listing 3-3 shows the order in which servers are booted for the BEA WebLogic
Enterprise University Basic application, which is one of the sample applications
included with the BEA WebLogic Enterprise software. This SERVERS section is
excerpted from an edited version of the ubb_b.nt configuration file.

Listing 3-3 Edited SERVERS Section from a University Sample UBBCONFIG

*SERVERS
 # By default, restart a server if it crashes, up to 5 times
 # in 24 hours.
 #
 DEFAULT:
 RESTART = Y
 MAXGEN = 5

 # Start the BEA Tuxedo System Event Broker. This event broker
 # must be started before any servers providing the
 # NameManager Service
 #
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 # TMFFNAME is a BEA WebLogic Enterprise provided server that
 # runs the NameManager and FactoryFinder services.

 # The NameManager service is a BEA WebLogic Enterprise-specific
 # service that maintains a mapping of application-supplied names
 # to object references.

 # Start the NameManager Service (-N option). This name
 # manager is being started as a Master (-M option).
 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 # Start a slave NameManager Service

Configuring Servers

Administration Guide 3-51

 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 # Start the FactoryFinder (-F) service
 #
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 # Start the interface repository server
 #
 TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5

 # Start the university server
 #
 univb_server
 SRVGRP = ORA_GRP
 SRVID = 6
 RESTART = N

 # Start the listener for IIOP clients
 #
 # Specify the host name of your server machine as
 # well as the port. A typical port number is 2500
 #
 ISL
 SRVGRP = SYS_GRP
 SRVID = 7
 CLOPT = "-A -- -n //TRIXIE:2500"

In the example, after the TMSYSEVT and TMFFNAME servers are started, servers are
started for:

n An Interface Repository. For information about this feature and the
command-line options (CLOPT parameter), see Chapter 8, “Managing Interface
Repositories (BEA WebLogic Enterprise Systems).”

3 Creating a Configuration File

3-52 Administration Guide

n The univb_server, for the University Basic sample application. For details
about the sample applications, see the Guide to the University Sample
Applications.

n An Internet Inter-ORB Protocol (IIOP) Server Listener (also known as an ISL).
For information about this feature and the CLOPT parameter, see Chapter 12,
“Managing Remote Client Applications (BEA WebLogic Enterprise Systems).”

Note: When migrating or shutting down and restarting groups or machines for any
reason, if there are active slave NameManagers in other groups, be sure to
organize your UBBCONFIG file so that a FactoryFinder or a slave
NameManager is never restarted before the master NameManager is active.
For example, if you have a FactoryFinder in the same group as the master
NameManager, arrange the order of these servers in the UBBCONFIG file so the
master NameManager is started first.

Identifying Server Environment File Location

You use the ENVFILE parameter in the MACHINES section to specify environment
settings. You can also specify the same parameter for a specific server process. If both
the MACHINES section ENVFILE and the SERVERS section ENVFILE are specified, both
go into effect. For the same variable is defined in both the MACHINES and SERVERS
sections, the setting in the SERVERS section prevails.

The server environment file has the following characteristics:

n It is an optional parameter that contains the same semantics as the ENVFILE
parameter in the MACHINES section, but for one server only.

n For overlapping variables, the setting in the SERVERS section ENVFILE overrides
the setting in the MACHINES section ENVFILE.

Identifying Server Queue Information

Server queue information controls the creation of, and access to, server message
queues. On a BEA Tuxedo system, you can create multiple server single queue (MSSQ)
sets using the RQADDR parameter. For any given server, you can set this parameter to
an alphanumeric value. Those servers that offer the same set of services can

Configuring Servers

Administration Guide 3-53

consolidate their services under one message queue, providing automatic load
balancing. You can do this by specifying the same value for all members of the MSSQ
set.

Note: MSSQ sets are not supported on a BEA WebLogic Enterprise system.

MSSQ Example (BEA Tuxedo Servers)

An MSSQ set must include servers that offer the same set of services only. The MSSQ
set is similar to a situation at a bank. If you have four tellers, one line may be formed
and everyone is assured of the most equitable wait in line. Understandably, the loan
teller is not included because some people do not want loans on a given day. Similarly,
MSSQ sets are not allowed if the participant servers offer different services from one
another.

The RQPERM parameter allows you to specify the permissions of server request queues,
similar to the UNIX system convention (for example, 0666). This allows services to
control access to the request queue.

If the service routines within an MSSQ server perform service requests, they must
receive replies to their requests on a reply queue. This is done by specifying REPLYQ=Y.
By default, REPLYQ is set to N. If REPLYQ is set to Y, you can also assign permissions
to it with the RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

Table 3-17 lists the RQADDR, RQPERM, REPLYQ, and RPPERM parameters characteristics.

Table 3-17 MSSQ Set Parameter Characteristics

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created.

The value is the same for all members of an MSSQ set.

All members of an MSSQ set must offer the same set of services.

Note: MSSQ sets are specific to the BEA Tuxedo system.

3 Creating a Configuration File

3-54 Administration Guide

Defining Server Restart Information

A properly debugged server should not terminate on its own. By default, servers that
do terminate while the application is booted will not be restarted by the BEA Tuxedo
system. You can set the RESTART parameter to Y if you want the server to restart. The
RCMD, MAXGEN, and GRACE parameters are relevant to a server if RESTART=Y.

The RCMD parameter specifies a command to be performed in parallel with restarting a
server. This command must be an executable file. The option lets you take some action
when a server is being restarted. For example, mail could be sent to the developer of
the server or to someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled
within the period specified by GRACE. The server can then be restarted MAXGEN-1 times
during GRACE seconds. If GRACE is set to zero, there is no limit on server restarts.
MAXGEN defaults to 1 and may not exceed 256. GRACE must be greater than or equal to

zero and must not exceed 2,147,483,647 (231 - 1).

RQPERM Represents the permissions on a request queue. If no parameter is
specified, the permissions of the Bulletin Board, as specified by PERM in
the RESOURCES section, is used. If no value is specified there, the default
of 0666 is used. This opens your application to possible use by any login
on the system.

REPLYQ Specifies whether a reply queue, separate from the request queue, is to be
set up for this server. If only one server is using the request queue, replies
can be picked up from the request queue without causing problems. On a
BEA Tuxedo system, if the server is a member of an MSSQ set and
contains services programmed to receive reply messages, REPLYQ
should be set to Y so that an individual reply queue is created for this
server. If not, the reply is sent to the request queue shared by all servers
of the MSSQ set, and there is no way of assuring that it will be picked up
by the server that is waiting for it.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue,
only RQPERM is needed; RPPERM is ignored.

Table 3-17 MSSQ Set Parameter Characteristics (Continued)

Parameter Characteristics

Configuring Servers

Administration Guide 3-55

Note: A fully debugged server should not need to be restarted. The RESTART and
associated parameters should have different settings during the testing phase
than they do during production.

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

Table 3-18 lists the RESTART, RCMD, MAXGEN, and GRACE parameters characteristics.

Specifying a Conversational Server (BEA Tuxedo Servers)

If a server is a conversational server (that is, it establishes a connection with a client),
the CONV parameter is required and must be set to Y. The default is N, indicating that
the server will not be part of a conversation.

This feature is specific to BEA Tuxedo servers.

The CONV parameter has the following characteristics:

n A Y value indicates a server is conversational; an N value indicates a server is
not conversational.

Table 3-18 Server Restart Parameters Characteristics

Parameter Characteristics

RESTART A setting of Y enables a server to restart.

The default is N.

RCMD Specifies a command to be performed in parallel with restarting a server.

Lets you take an action when a server is being restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.

It defaults to 1; the maximum is 256.

GRACE Represents the interval used by MAXGEN.

Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).

The default is 24 hours.

3 Creating a Configuration File

3-56 Administration Guide

n A Y value is required if the server is to receive conversational requests.

n The default is N.

Setting Security Parameters for ISL Servers

The IIOP Listener (ISL) process listens for remote clients requesting a connection. The
ISL process is specified in one entry as a server supplied by the BEA WebLogic
Enterprise system.

The Secure Socket Layer (SSL) protocol defines how processes can communicate in a
secure manner over IIOP. Use the -s option on the ISL command to set the required
parameters. You only need to set these parameters if you are using the SSL protocol,
which is installed in the BEA WebLogic Enterprise Security Pack.

Table 3-19 lists the SSL parameters characteristics.
:

For more information about setting these parameters, see Using Security.

Defining Server Access to Shared Memory

The SYSTEM_ACCESS parameter determines if the server process may attach to shared
memory and thus have access to internal tables outside of the system code. During
application development, we recommend that such access be denied (PROTECTED).
When the application is fully tested, you can change it to FASTPATH to yield better
performance.

Table 3-19 ISL and SSL Parameters Characteristics

Parameter Characteristics

SEC_PRINCIPAL_NAME Specifies the identity of the IIOP Listener/Handler.

SEC_PRINCIPAL_LOCATION Specifies the location of the private key for the IIOP Listener/Handler.

SEC_PRINCIPAL_PASSWORD Specifies the phrase for the private key of the IIOP Listener/Handler.

Configuring Modules

Administration Guide 3-57

This parameter overrides the value specified in the RESOURCES section unless the
NO_OVERRIDE value was specified. In this case, the parameter is ignored.

The SYSTEM_ACCESS parameter has the following characteristics:

n A value of PROTECTED indicates that the server may not attach to shared
memory outside of the system code.

n A value of FASTPATH indicates that the server will attach to shared memory at
all times.

n If NO_OVERRIDE is specified in the RESOURCES section, this parameter is
ignored.

n The default is the RESOURCES value.

Configuring Modules

When you use BEA WebLogic Enterprise 5.1 or later software to write applications in
Java, you specify the JavaServer parameters in the SERVERS and MODULES sections of
the UBBCONFIG file.

Notes: In BEA WebLogic Enterprise 5.1 and later software, a MODULES section was
added to the UBBCONFIG file to replace the MODULE line(s) and the
archive_file and options parameters in the JavaServer command-line
options (CLOPT) in the SERVERS section. The MODULES section must follow
the SERVERS section in the UBBCONFIG file.

The MODULES section format is as follows:

*MODULES
<module_name> SRVGRP=<group_name>
 SRVID=<server_id>
 FILE=<filename>
 [ARGS=<arguments>]
 [CLASSPATH=<local_classpath>]
[<module_name2> ...]

The MODULES section parameters are as follows:

3 Creating a Configuration File

3-58 Administration Guide

<module_name>
Identifies this module within this domain. This is a logical name that will be
used when referring to this module (required parameter).

SRVGRP=<group_name>
Specifies the name of the server group (required parameter).

SRVID=<server_id>
Specifies the ID of the server (required parameter).

FILE=<filename>
Specifies the JAR file that contains the EJB or CORBA descriptor, the remote
and home interfaces, the implementation classes for the remote and home
interfaces, the classes for the stubs and keys, and so on (required parameter).
The JAR file typically contains the class that actually implements the
module’s business logic, but it is not required to do so.

ARGS=<arguments>
Provides values that will be used to initialize the module (optional
parameter).

CLASSPATH=<local_classpath>
Indicates a “local class path” that can specify additional classes that may be
required by the main JAR (optional parameter). For example, this parameter
can be used for third party utility classes, business libraries, and so on. This
parameter follows the standard Java class path semantics and is searched after
searching the system/server class path and the main JAR of the module. For
the BEA WebLogic Enterprise 5.1 release, only JAR or ZIP files may be
specified.

For all files, if an absolute path is given, that path will be used. If a relative
path is specified, it will be relative to the APPDIR specified earlier in the
UBBCONFIG file. Since APPDIR represents one or more paths (separated by
“;”), all path combinations are checked when a relative path is used and the
first match is used.

Note: The UBBCONFIG parser will recognize illegal fields and inform the user. The
order of the fields does not matter.

The MODULES section syntax allows a module to be deployed to a specific server group
and server, for example:

 <module_name> SVRGRP=<group> SRVID=<id> FILE=<jar_file>

Or to a subset of servers in a particular group, for example:

Configuring Modules

Administration Guide 3-59

 <module_name> SVRGRP=<group> SRVID=<id1> FILE=<jar_file>
 <module_name> SVRGRP=<group> SRVID=<id2> FILE=<jar_file>

In the last case, note that it is permissible to repeat the module name as long as different
server groups and/or server ids are used. In the case where the exact same module
name, server group, and server id occur more than once, tmloadcf will indicate an
error. To minimize repetition and reduce the possibility of error, the use of the
DEFAULT section is encouraged. For example:

*MODULES
 DEFAULT: SVRGRP=<group> FILE=<jar_file>
 <module_name> SVRID=<id1>
 <module_name> SVRID=<id2>

Note: For compatibility purposes, when the tmloadcf command encounters a BEA
WebLogic Enterprise 5.0 version of a JavaServer MODULE in a UBBCONFIG file,
it is converted to BEA WebLogic Enterprise 5.1 format and stored in the
TUXCONFIG file. The module name is constructed based on the JAR file
(without the .jar extension). When a UBBCONFIG file is regenerated using
tmunloadcf, it will always use the BEA WebLogic Enterprise 5.1 format.

Example of a MODULES Section for an EJB JavaServer

Listing 3-4 shows an example of a MODULES section for an EJB JavaServer.

Listing 3-4 EJB JavaServer Example

*MODULES
 ejb_basic_statefulSession
 SRVGRP=APP_GRP
 SRVID=5

 FILE="D:\test\ejb\basic\statefulSession\ejb_basic_statefulSession.jar"

Note: The order in which the EJB JavaServer parameters are specified does not
matter.

3 Creating a Configuration File

3-60 Administration Guide

Configuring JDBC Connection Pools (BEA
WebLogic Enterprise System)

The JDBCCONNPOOLS section applies only to the BEA WebLogic Enterprise system.
This section must be placed after the SERVERS section in the configuration file. This
section is used to configure connection pooling for Java Database Connectivity
(JDBC). Pooling of JDBC connections is provided by the BEA WebLogic Enterprise
infrastructure to conserve resources and improve performance. Each entry in the
section represents a JDBC connection pool. This section has the following
characteristics:

n For JDBC drivers version 2.0 or later (the default), the entries in this section
start with the names of connection pools.

n The SRVID and SRVGRP attributes must refer to a JavaServer that is specified in
the SERVERS section.

n Only the SRVGRP, SRVID, MAXCAPACITY, and CAPACITYINCR attributes are
required for entries. TESTTABLE must be specified if REFRESH is specified, or if
TESTONRELEASE or TESTONRESERVE are set to Y.

n Some attributes are dependent on the version of the JDBC driver.

Table 3-20 lists JDBC connection pool entries attributes.

Table 3-20 JDBC Connect Pool Entries Attributes

Attribute
Value Required?
/Default

Allowable
Values Description

SRVID Yes / N/A A number
from 1 to
30001

A server ID listed in the SERVERS section. In
conjunction with SRVGRP, this attribute
identifies the JavaServer for which the
connection pool is being configured.

SRVGRP Yes / N/A A string of
up to 30
characters

Name of a server group for identifying the
JavaServer for which the connection pool is
being configured.

Configuring JDBC Connection Pools (BEA WebLogic Enterprise System)

Administration Guide 3-61

DRIVER Yes for JDBC versions
earlier than 2.0 / None

A string of
up to 256
characters

The Java class name in the case of a driver
that is not JDBC 2.0-compliant.

URL Yes for JDBC driver
versions prior to 2.0 /
None

A string of 0
to 256
characters

URL for a JDBC driver that is not JDBC
2.0-compliant.

DBNAME No / None A string of 0
to 30
characters

The database name.

DBUSER No / None A string of 0
to 30
characters

The user account name that will access the
database for this BEA WebLogic Enterprise
application.

DBPASSWORD No / None A string of 0
to 64
characters

The user password for the user account that
will access the database for this BEA
WebLogic Enterprise application.This can be
specified as clear text or it can be encrypted
using tmloadcf.

USERROLE No / None A string of 0
to 30
characters

The SQL role of the user account that will
access the database for this BEA WebLogic
Enterprise application.

DBHOST No / None A string of 0
to 30
characters

The hostname of the database server.

DBNETPROTOCOL No / None A string of 0
to 30
characters

The network protocol used to communicate
with the database.

DBPORT No / None A number
from 0 to
65535

The port number used for database
connections.

Table 3-20 JDBC Connect Pool Entries Attributes (Continued)

Attribute
Value Required?
/Default

Allowable
Values Description

3 Creating a Configuration File

3-62 Administration Guide

PROPS Yes for JDBC driver
versions prior to 2.0 /
None

A string of 0
to 256
characters

The vendor-specific properties of the JDBC
driver. This information can be encrypted.
See “Encrypting Passwords in OPENINFO”
on page 3-34.

ENABLEXA No / N Y or N Indicates whether the connection pool will be
used with an XA-compliant driver. For
applications using the BEA WebLogic
Enterprise JDBC/XA driver, this value must
be set to Y.

CREATEONSTARTUP No / Y Y or N Indicates whether the connection pool will be
created when the server is started. Otherwise
the pool is created when the first request
arrives.

LOGINDELAY No / 0 Any
number 0 or
greater

The number of seconds to wait between each
attempt to open a connection to the database.
Some database servers cannot handle
multiple requests for connections in rapid
succession. This property allows you to build
in a small delay to allow the database server
to catch up.

INITCAPACITY No / The default is the
value of the
CAPACITYINCR
parameter

Any
number 0 or
greater

The number of connections initially
supported in the connection pool. This should
not exceed the value of the MAXCAPACITY
parameter.

MAXCAPACITY Yes / None Any
number 0 or
greater

The maximum number of connections
supported by the connection pool.

CAPACITYINCR Yes / None Any
number 0 or
greater

The number of connections added to the pool
when the current limit is exceeded, but the
maximum capacity is not yet reached.

ALLOWSHRINKING No / N Y or N Indicates that the connection pool’s number
of connections can return to the initial
capacity, after expanding to meet demands.
Shrinking only closes unused connections.

Table 3-20 JDBC Connect Pool Entries Attributes (Continued)

Attribute
Value Required?
/Default

Allowable
Values Description

Configuring JDBC Connection Pools (BEA WebLogic Enterprise System)

Administration Guide 3-63

SHRINKPERIOD No / 15 Any
number 1 or
greater

The length of time (in minutes) during which
the JavaServer shrinks the pool to its initial
capacity if additional connections are not
used.

TESTTABLE Yes if REFRESH is
specified or if the
parameter
TESTONRELEASE or
TESTONRESERVE is set
to Y.

Default: None

A string of 0
to 256
characters

The name of a database table that is used to
test the viability of connections in the
connection pool. The query select
count(*) from TESTTABLE is used to
test a connection. The table must exist and be
accessible to the database user for the
connection.

REFRESH No / None Any
number 0 or
greater

Defines a time interval (in minutes) for tests
performed on the connection pool. This
parameter is used in conjunction with the
TESTTABLE parameter to enable automatic
refreshes of connections in pools. At the
specified interval, each unused connection in
the pool is tested by executing an SQL query
on the connection. If the test fails, the
connection’s resources are dropped and a
new connection is created to replace it.

TESTONRESERVE No / N Y or N Indicates whether the JavaServer tests a
connection after removing it from the pool
and before giving it to the client.

TESTONRELEASE No / N Y or N Indicates whether the JavaServer tests a
connection before returning it to the
connection pool. If all connections in a pool
are in use and a client is waiting for a
connection, the client will wait longer while
the connection is tested. This feature requires
that a value be set for the TESTTABLE
parameter.

Table 3-20 JDBC Connect Pool Entries Attributes (Continued)

Attribute
Value Required?
/Default

Allowable
Values Description

3 Creating a Configuration File

3-64 Administration Guide

Encrypting DBPASSWORD and PROPS

Both DBPASSWORD and PROPS specify sensitive data that you may want to encrypt.
Values for these attributes can be encrypted in the UBBCONFIG file using the tmloadcf
and tmunloadcf utilities.

To store a value for DBPASSWORD or PROPS in encrypted form, you initially use a text
editor to enter a string of five or more continuous asterisks in the parameter value in
place of the password in the UBBCONFIG file. This string of asterisks is a placeholder
for the password. The following is a sample DBPASSWORD statement illustrating this:

DBPASSWORD="*******"

When tmloadcf encounters this string of asterisks, it prompts the user to select a
password. For example:

>tmloadcf -y e:/wle5/samples/atmi/bankapp/xx

DBPASSWORD ("pool2" SRVGRP=GROUP1 SRVID=5):

After entering the password, tmloadcf stores the password in the TUXCONFIG in
encrypted form. If you use tmunloadcf to generate a UBBCONFIG file, the encrypted
password entered is written into the DBPASSWORD statement in the UBBCONFIG file with
@@ as delimiters. The following is a sample DBPASSWORD statement generated by
tmunloadcf:

DBPASSWORD="@@A0986F7733D4@@"

WAITFORCONN No / If WAITTIMEOUT is
specified, the default is
N. If WAITTIMEOUT is
not specified, the default
is Y.

Y or N Indicates whether an application waits
indefinitely for a connection if none is
currently available. If set to N, the request for
a connection returns to caller.

WAITTIMEOUT No / None Any
number 0 or
greater

Defines the interval (in seconds) for an
application to wait for a connection to
become available. WAITFORCONN and
WAITTIMEOUT are mutually exclusive.

Table 3-20 JDBC Connect Pool Entries Attributes (Continued)

Attribute
Value Required?
/Default

Allowable
Values Description

Configuring Services (BEA Tuxedo System)

Administration Guide 3-65

When tmloadcf encounters an encrypted password in a UBBCONFIG generated using
tmunloadcf, it does not prompt the user to create a password.

Use of encrypted passwords is only recommended for production environments.
Clear-text passwords can be used during application development.

Configuring Services (BEA Tuxedo System)

This section applies only to BEA Tuxedo systems. For information relevant to BEA
WebLogic Enterprise systems, see the section “Configuring Interfaces (BEA
WebLogic Enterprise Servers)” on page 3-68.

Note: Although each BEA WebLogic Enterprise interface is mapped to a BEA
Tuxedo service, you do not have to configure these services in the SERVICES
section of the application’s UBBCONFIG file. As the administrator, you only
need to account for the generated services in the MAXSERVICES parameter in
the RESOURCES section. For more information, see the section “Defining IPC
Limits.”

Identifying BEA Tuxedo Services in the SERVICES Section

You indicate specific information about BEA Tuxedo services in your application in
the SERVICES section of the configuration file. Such information, for nontransactional,
nondistributed applications, is relatively simple. The SERVICES section includes the
following types of information:

n Load balancing information (SRVGRP)

n Assignment of priorities to services

n Different service parameters for different server groups

n Buffer type checking information (BUFTYPE)

3 Creating a Configuration File

3-66 Administration Guide

Sample SERVICES Section

The following example provides a sample SERVICES section of a configuration file:

*SERVICES
#
DEFAULT: LOAD=50 PRIO=50
RINGUP BUFTYPE=”VIEW:ringup”

In this example, the default load and priority of a service are set to 50; the one service
declared is a RINGUP service that accepts a ringup VIEW as its required buffer type.

Enabling Load Balancing

If you set the RESOURCES section parameter LDBAL to Y, server load balancing occurs.
A LOAD factor is assigned to each service performed, which keeps track of the total
load of services that each server has performed. Each service request is routed to the
server with the smallest total load. The routing of that request causes the server’s total
to be increased by the LOAD factor of the service requested.

Load information is stored only on the site originating the service request. It would be
inefficient for the BEA Tuxedo system to attempt to constantly propagate load
information to all sites in a distributed application. When performing load balancing
in such an environment, each site knows only about the load it originated and performs
load balancing accordingly. This means that each site has different load statistics for a
given server (or queue). The server perceived as being the least busy differs across
sites.

When load balancing is not activated, and multiple servers offer the same service, the
first available queue receives the request.

The LDBAL parameter has the following characteristics:

n Load balancing is used if the RESOURCES LDBAL parameter is set to Y.

n The load factor is added to a server’s total load.

n The load is relative to other services.

Configuring Services (BEA Tuxedo System)

Administration Guide 3-67

Controlling the Flow of Data by Service Priority

You can control the flow of data in an application by assigning service priorities using
the PRIO parameter. For instance, Server 1 offers Services A, B, and C. Services A and
B have a priority of 50 and Service C has a priority of 70. A service requested for C
will always be dequeued before a request for A or B. Requests for A and B are
dequeued equally with respect to one another. The system dequeues every tenth
request in FIFO order to prevent a message from waiting indefinitely on the queue.

Note: A priority can also be changed dynamically with the tpsprio()call.

The PRIO parameter has the following characteristics:

n It determines the priority of a service on the server’s queue.

n The highest assigned priority gets first preference.

n Every tenth request is dequeued FIFO.

Specifying Different Service Parameters for Different
Server Groups

You can specify different load, priority, or other service-specific parameters for
different server groups. To do this, you should repeat the service’s entry for each group
with different values for the SRVGRP parameter.

Sample SERVICES Section

The following example provides a sample SERVICES section of a configuration file:

*SERVICES
A SRVGRP=GRP1 PRIO=50 LOAD=60
A SRVGRP=GRP2 PRIO=70 LOAD=30

This example assigns different service-specific parameters to two different server
groups. Service A assigns a priority of 50, and a load of 60 in server group GRP1; and
a priority of 70, and a load of 30 in server group GRP2.

3 Creating a Configuration File

3-68 Administration Guide

Specifying a List of Allowable Buffer Types for a Service

Using the BUFTYPE parameter, you can tune a service to check buffer types
independently of the actual service code. This parameter specifies a list of allowable
buffer types for a service. Its syntax is a semicolon-separated list of types in the format
type[:subtype[,subtype]]. The subtype may be set to * to allow all subtypes.

If the BUFTYPE parameter for a service is set to ALL, then this service accepts all buffer
types. If this parameter is not specified, the default is ALL.

Examples of the BUFTYPE Parameter

Table 3-21 lists the BUFTYPE parameters characteristics.

Configuring Interfaces (BEA WebLogic
Enterprise Servers)

This section applies only to the BEA WebLogic Enterprise system.

The BEA WebLogic Enterprise software has an INTERFACES section in the
UBBCONFIG file. In this section, you define application-wide default parameters for
CORBA or EJB interfaces used by the application. For a CORBA interface
participating in factory-based routing, you define the interface names and specify the

Table 3-21 BUFTYPE Parameters Characteristics

BUFTYPE Example Meaning

BUFTYPE=”FML;VIEW:aud,
aud2"

FML and VIEW with subtypes aud and aud2 buffer types
are allowed.

BUFTYPE=”FML;VIEW:*” All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).

Configuring Interfaces (BEA WebLogic Enterprise Servers)

Administration Guide 3-69

name of the routing criteria that the BEA WebLogic Enterprise system should apply to
each interface. Factory-based routing is a feature that lets you distribute processing to
specific server groups. Factory-based routing is not currently supported for EJB.

In addition to defining the INTERFACES section, you must specify routing criteria in
the ROUTING section and the names of groups in the GROUPS section when you
implement factory-based routing. For details about the parameters and more
information about factory-based routing, see the section “Configuring Routing” in this
chapter.

Specifying CORBA Interfaces in the INTERFACES Section

You indicate specific information about CORBA interfaces used by your application
in the INTERFACES section of the configuration file. There are no required parameters.
CORBA interfaces need not be listed if no optional parameters are desired. The
INTERFACES section includes the following types of information:

n Whether transactions should be started automatically (AUTOTRAN) (CORBA
only)

n The routing criteria to be used for factory-based routing for this CORBA
interface (FACTORYROUTING) (CORBA only)

n Load balancing information (LOAD)

n Assignment of priorities to interfaces (PRIO)

n Different service parameters for different server groups (SRVGRP)

n Timeout value for transactions associated with this CORBA interface
(TRANTIME)

n Timeout value for processing a method for this CORBA or EJB interface
(TIMEOUT)

Table 3-22 lists the AUTOTRAN, FACTORYROUTING, LOAD, PRIO, SRVGRP, TRANTIME,
and TIMEOUT parameters characteristics.

3 Creating a Configuration File

3-70 Administration Guide

Table 3-22 INTERFACES Section Parameters Characteristics

Parameter Characteristic

AUTOTRAN = {Y | N } For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is already in transaction mode. The default is N.

The effect of specifying a value for AUTOTRAN is dependent on the transactional
policy specified by the system designer in the implementation configuration file
(ICF) or Server Description File (XML) for the interface. This transactional policy
will become the transactional policy attribute of the associated T_IFQUEUE MIB
object at run time. The only time this value actually affects the behavior of the
application is if the system designer specified a transaction policy of optional.

Note: To work properly, this feature may be dependent on personal
communication between the system designer and the system
administrator. If the system administrator sets this value to Y without prior
knowledge of the ICF or XML parameters set by the programmer, the
actual run-time effort of the parameter might be unknown.

Note: AUTOTRAN=Y is not supported for EJB.

FACTORYROUTING =
criterion-name

Note: Specify the name of the routing criteria to be used for factory-based routing
for this CORBA interface. You must specify a FACTORYROUTING
parameter for interfaces requesting factory-based routing. This feature is
not supported for EJB.

LOAD = number This is an arbitrary number between 1 and 100 that represents the relative load that
the CORBA interface is expected to impose on the system. The numbering scheme
is relative to the LOAD numbers assigned to other CORBA interfaces used by this
application. The default is 50. The number is used by the BEA WebLogic
Enterprise system to select the best server to route the request.

PRIO = number Specify the dequeuing priority number for all methods of the CORBA interface.
The value must be greater than 0 and less than or equal to 100. 100 is the highest
priority. The default is 50.

SRVGRP =
server-group-name

Use SRVGRP to indicate that any parameter defined in this portion of the
INTERFACES section applies to the interface within the specified server group. For
a given CORBA interface, this feature lets you define different parameter values in
different server groups.

Configuring Interfaces (BEA WebLogic Enterprise Servers)

Administration Guide 3-71

Specifying FACTORYROUTING Criteria (CORBA only)

For each CORBA interface, the INTERFACES section specifies what kinds of criteria
the interface routes on. The INTERFACES section specifies the routing criteria via an
identifier, FACTORYROUTING.

University Sample

The University Production sample application demonstrates how to code
factory-based routing (see Listing 3-5). You can find the UBBCONFIG files (ubb_p.nt
or ubb_p.mk) for this sample in the directory where the BEA WebLogic Enterprise
software is installed. Look in the \samples\corba\university\production
subdirectory.

TRANTIME = number If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the
transaction timeout in seconds, for the transactions to be computed. The value must

be greater than or equal to zero and must not exceed 2,147,483,647 (231 - 1),
or about 70 years. A value of 0 (zero) implies there is no timeout for the transaction.
(The default is 30 seconds.) This feature is not supported for EJB.

TIMEOUT=number The amount of time, in seconds, to allow for processing of a method for this
CORBA interface. The values must be greater than or equal to 0. A value of 0
indicates that the interface cannot time out. A timed-out method causes the server
processing the method for the interface to terminate with a SIGKILL event. You
should consider specifying a timeout value for the longest-running method for the
interface.

Table 3-22 INTERFACES Section Parameters Characteristics (Continued)

Parameter Characteristic

3 Creating a Configuration File

3-72 Administration Guide

Listing 3-5 Production Sample INTERFACES Section

*INTERFACES

 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID

 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces
in the University Production sample. The FACTORYROUTING identifier specifies the
names of the routing values, which are STU_ID and ACT_NUM, respectively.

To understand the connection between the INTERFACES FACTORYROUTING parameter
and the ROUTING section, see the section “Example: Factory-based Routing (BEA
WebLogic Enterprise Servers)” on page 3-76.

Bankapp Sample

Listing 3-6 shows how factory-based routing is specified in the Bankapp sample
application.

Listing 3-6 Bankapp Sample Factory-based Routing

*INTERFACES
 "IDL:BankApp/Teller:1.0"
 FACTORYROUTING=atmID

*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1

Configuring Interfaces (BEA WebLogic Enterprise Servers)

Administration Guide 3-73

In this example, the IDL:Bankapp/Teller interface uses a factory-based routing
scheme called atmID, as defined in the ROUTING section. In the ROUTING section, the
sample indicates that the processing will be distributed across two groups.
BANK_GROUP1 processes interfaces used by the application when the atmID field is
between 1 and 5, or greater than 10. BANK_GROUP2 processes interfaces used by the
application when the atmID field is between 6 and 10, inclusive.

Enabling Load Balancing

In BEA WebLogic Enterprise systems, load balancing is always enabled.

A LOAD factor is assigned to each CORBA interface invoked, which keeps track of the
total load of CORBA interfaces that each server process has performed. Each interface
request is routed to the server with the smallest total load. The routing of that request
causes the server’s total to be increased by the LOAD factor of the CORBA interface
requested.

When load balancing is not activated, and multiple servers offer the same CORBA
interface, the first available queue receives the request.

Controlling the Flow of Data by Interface Priority

You can control the flow of data in a BEA WebLogic Enterprise client or server
application by assigning interface priorities using the PRIO parameter. For instance,
Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50 and
Interface C has a priority of 70. An interface requested for C will always be dequeued
before a request for A or B. Requests for A and B are dequeued equally with respect
to one another. The system dequeues every tenth request in FIFO order to prevent a
message from waiting indefinitely on the queue.

The PRIO parameter has the following characteristics:

n It determines the priority of a CORBA interface on the server’s queue.

n The highest assigned priority gets first preference.

n Every tenth request is dequeued FIFO.

3 Creating a Configuration File

3-74 Administration Guide

Specifying Different Interface Parameters for Different
Server Groups

You can specify different load, priority, or other interface-specific parameters for
different server groups. To do this, you should repeat the interface’s entry for each
group with different values for the SRVGRP parameter.

Configuring Routing

The ROUTING section of UBBCONFIG allows the full definition of the routing criteria
named in the INTERFACES section (for BEA WebLogic Enterprise factory-based
routing) or in the SERVICES section (for BEA Tuxedo data-dependent routing).

For more information about using these parameters to implement factory-based
routing or data-dependent routing, see Chapter 5, "Distributing Applications."

Defining Routing Criteria in the ROUTING Section

Table 3-23 identifies the information required for an entry in the ROUTING section.

Table 3-23 ROUTING Section Parameters Characteristics

Parameter Characteristics

criterion_name This is a string value with a maximum length of 15 characters.

For BEA Tuxedo data-dependent routing, the routing criterion name that you specified
as the ROUTING parameter in the SERVICES section.

For BEA WebLogic Enterprise factory-based routing, the routing criteria name that you
specified as the FACTORYROUTING parameter in the INTERFACES section.

TYPE Specifies the routing type. The default is TYPE=SERVICE to ensure that existing
UBBCONFIG files used in BEA Tuxedo environments continue to work properly. Use
TYPE=FACTORY if you are implementing factory-based routing for a BEA WebLogic
Enterprise interface.

Configuring Routing

Administration Guide 3-75

FIELD The name of the buffer field on which the routing is to be done.

In BEA Tuxedo data-dependent routing, the name of an FML field (for FML buffers) or
VIEW structure element name (for VIEW buffers). This is the actual field that is used to
route the message. It may be of any data type.

In BEA WebLogic Enterprise factory-based routing, this value specifies the name of the
routing field. The maximum length is 30 characters. It must correspond to a field name
specified for factory-based routing in a factory’s call to
TP::create_object_reference (C++) or
com.beasys.Tobj.TP::create_object_reference (Java) for the interface.

FIELDTYPE Specifies the type of the routing field. Field types supported are:

SHORT -215 ... 215 - 1 (16 bit)

LONG -231 ... 231 - 1 (32 bit)
FLOAT IEEE single-precision floating point numbers
DOUBLE IEEE double-precision numbers
CHAR A single character; an 8-bit quantity
STRING A null-terminated character array

RANGES The limits assigned to each criteria. The syntax is:
RANGES=”[val1[-val2]:group1]
[,val3[-val4]:group2]...[,*:groupn]”

val1 is a value, val1-val2 is a range, group<n> is either a group name or the
wildcard character (*) denoting all group names. val can be a numeric literal, a string
enclosed in single quotes (‘ ’), MIN or MAX; a wildcard in place of a range is Catch-All,
or No Limit to the number of ranges.

BUFTYPE For BEA Tuxedo data-dependent routing, the buffer type allowed. This parameter is
similar to its SERVICES section counterpart in that it restricts the routing criteria to a
specific set of buffer types and subtypes. Only FML and VIEW types can be used for
routing. The syntax is the same as the SERVICES section, a semicolon-separated list of
type:subtype[,subtype]. You can specify only one type for a routing criteria.
This restriction limits the number of buffer types allowed in routing services.

Table 3-23 ROUTING Section Parameters Characteristics (Continued)

Parameter Characteristics

3 Creating a Configuration File

3-76 Administration Guide

Specifying Range Criteria in the ROUTING Section

The RANGES parameter provides the actual mapping between field value and group
name. Its syntax is as follows:

RANGES=”[val1[- val2]: group1] [, val3[- val4]: group2]...[,*: groupn]”

where val1, and so on, are values of that field and group<n> may be either a group
name or the wildcard character (*) denoting that any group may be selected. The *
character occupying the place of val at the end is a catch-all choice, that is, what to
do if the data does not fall into any range yet specified. val1 would be a numeric literal
for numeric fields, and would be enclosed in single quotes (‘ ’) for STRING or CARRAY
fields. The field values MIN and MAX (not enclosed in quotes) are provided to allow
machine minimum and maximum data values to be expressed. There is no limit to the
number of ranges that may be specified, but all routing information is stored in shared
memory and incurs a cost there.

Note: Overlapping ranges are allowed, but will map to the first group. For example:
RANGES=”0-5:Group1,3-5:Group2” , a range value of 4 would route to
Group1 .

Example: Factory-based Routing (BEA WebLogic
Enterprise Servers)

The University Production sample application demonstrates how to implement
factory-based routing. You can find the ubb_p.nt or ubb_p.mk UBBCONFIG files for
this sample in the directory where the BEA WebLogic Enterprise software is installed.
Look in the \samples\corba\university\production subdirectory.

The following INTERFACES, ROUTING, and GROUPS sections from the ubb_b.nt
configuration file show how you can implement factory-based routing in a BEA
WebLogic Enterprise application.

The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria
the interface routes on. This section specifies the routing criteria via an identifier,
FACTORYROUTING, as in the example in Listing 3-7.

Configuring Routing

Administration Guide 3-77

Listing 3-7 Production Sample INTERFACES Section

*INTERFACES

 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID

 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces
in the Production sample in which factory-based routing is used. The
FACTORYROUTING identifier specifies the names of the routing values, which are
STU_ID and ACT_NUM, respectively.

The ROUTING section specifies the following data for each routing value:

n The TYPE parameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this parameter is
defined to FACTORY.

n The FIELD parameter, which specifies the variable name that the factory inserts
as the routing value. In the Production sample, the field parameters are
student_id and account_number, respectively.

n The FIELDTYPE parameter, which specifies the data type of the routing value. In
the Production sample, the field types for student_id and account_number
are long.

n The RANGES parameter, which associates a server group with a subset of the
valid ranges for each routing value.

Listing 3-8 shows the ROUTING section of the UBBCONFIG file used in the Production
sample application.

3 Creating a Configuration File

3-78 Administration Guide

Listing 3-8 Production Sample ROUTING Section

*ROUTING

 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows that Registrar objects for students with IDs in one range
are instantiated to one server group, and Registrar objects for students with IDs in
another range are instantiated in another group. Likewise, Teller objects for accounts
in one range are instantiated to one server group, and Teller objects for accounts in
another range are instantiated in another group.

The groups specified by the RANGES identifier in the ROUTING section of the
UBBCONFIG file need to be identified and configured. For example, the Production
sample specifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2.
These groups need to be configured, and the machines on which they run need to be
identified.

Listing 3-9 shows the GROUPS section of the Production sample UBBCONFIG file.
Notice how the names in the GROUPS section match the group names specified in the
ROUTING section; this is critical for factory-based routing to work correctly.
Furthermore, any change in the way groups are configured in an application must be
reflected in the ROUTING section. (Note that the Production sample packaged with the
BEA WebLogic Enterprise software is configured to run entirely on one machine.
However, you can easily configure this application to run on multiple machines.)

Configuring Routing

Administration Guide 3-79

Listing 3-9 Production Sample GROUPS Section

*GROUPS

APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS

APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS

ORA_GRP1
 LMID = SITE1
 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

ORA_GRP2
 LMID = SITE1
 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""
TMSNAME = "TMS_ORA"

Example: Factory-based Routing in the Bankapp Sample
Application (BEA WebLogic Enterprise Servers)

Listing 3-10 shows how the INTERFACES section extends the Bankapp sample
application to use factory-based routing. The sample included with the BEA
WebLogic Enterprise software does not contain these parameter settings.

3 Creating a Configuration File

3-80 Administration Guide

Listing 3-10 Bankapp Sample INTERFACES Section

*INTERFACES
 "IDL:BankApp/Teller:1.0"
 FACTORYROUTING=atmID

*ROUTING
 atmID
 TYPE = FACTORY
 FIELD = "atmID"
 FIELDTYPE = LONG
 RANGES = "1-5:BANK_GROUP1,
 6-10: BANK_GROUP2,
 *:BANK_GROUP1

*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
 BANK_GROUP1
 LMID = SITE1
 GRPNO = 2
 BANK_GROUP2
 LMID = SITE1
 GRPNO = 3

In this example, the IDL:Bankapp/Teller interface employs a factory-based routing
scheme called atmID, as defined in the ROUTING section. In the ROUTING section, the
example indicates that the processing will be distributed across the following two
server groups:

n BANK_GROUP1 processes interfaces used by the application when the atmID
field is between 1 and 5 (inclusive), or greater than 10.

n BANK_GROUP2 processes interfaces used by the application when the atmID is
between 6 and 10, inclusive.

Configuring Network Information

Administration Guide 3-81

Configuring Network Information

You can configure network groups in the NETGROUPS and NETWORK sections of an
application’s UBBCONFIG file.

Note: For specific information about the tasks involved, see Chapter 6, “Building
Networked Applications.”

Specifying Information in the NETGROUPS Section

The NETGROUPS section of the UBBCONFIG file describes the network groups available
to an application in a LAN environment. There is no limit to the number of network
groups to which a pair of machines may be assigned. The method of communication
to be used by members of different networks in a network group is determined by the
priority mechanism (NETPRIO).

Every LMID must be a member of the default network group (DEFAULTNET). The
network group number for this group (that is, the value of NETGRPNO) must be zero.
However, you can modify the default priority of DEFAULTNET. Networks defined in
releases of the BEA Tuxedo system prior to Release 6.4 are assigned to the
DEFAULTNET network group.

Table 3-24 lists the NETGRPNO, NETPRIO, NETGROUP, MAXNETGROUPS, and
MAXPENDINGBYTES parameters characteristics.

Table 3-24 NETGROUPS Section Parameters Characteristics

Parameter Required/
Optional

Description

NETGRPNO =
numeric_value

Required A unique network group number that you must assign to use in
failover and failback situations. If this entry describes
DEFAULTNET, the numeric value must be zero.
Communication with pre-version 6.4 releases of the BEA
Tuxedo system use only DEFAULTNET.

3 Creating a Configuration File

3-82 Administration Guide

NETPRIO =
numeric_value

Optional The priority of this network group. A pair of machines in
multiple network groups of the same priority communicates
simultaneously over the circuits with the highest priority. If all
network circuits of a certain priority are torn down by the
administrator or by network conditions, the next lowest priority
circuit is used. Retries of the higher priority circuits are
attempted. This value must be greater than zero and less than
8,192. If not specified, the default is 100.

Note: In version 6.4 of the BEA Tuxedo system, parallel
data circuits are prioritized by the network group
number (NETGRPNO) parameter within the priority
group number. In future releases, a different
algorithm/mechanism may be used to prioritize
parallel data circuits.

NETGROUP =
string_value

Required The network group associated with this network entry. All
network entries with a NETGROUP parameter of DEFAULTNET
are represented in the T_MACHINE class, while NETWORK
entries associated with any other NETGROUP are represented in
the T_NETMAP class to interoperate with previous releases.

MAXNETGROUPS Optional Allows more netgroups to be defined than the default (8).

MAXPENDINGBYTES Optional MAXPENDINGBYTES enables you to configure the maximum
size of data waiting for the network to become available. There
are two situations when MAXPENDINGBYTES is significant:

n When the BRIDGE requests an asynchronous connection

n When all circuits are busy

You can configure larger computers that have more memory
and disk space, with larger MAXPENDINGBYTES, and smaller
computers with smaller MAXPENDINGBYTES. Because
connections were always synchronous in version 6.3 of the
BEA Tuxedo system, situation (1) above did not apply.

Table 3-24 NETGROUPS Section Parameters Characteristics (Continued)

Parameter Required/
Optional

Description

Configuring Network Information

Administration Guide 3-83

Sample NETGROUPS Configuration

You can associate network addresses with a network group. The following example
illustrates how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two
or three of four NETGROUPS that you have defined in the following way:

n DEFAULTNET (the default network, which is the corporate WAN)

n MAGENTA_GROUP (a LAN)

n BLUE_GROUP (a LAN)

n GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each
machine is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally,
some machines in the MAGENTA_GROUP LAN also belong to the private GREEN_GROUP.
Figure 3-1 shows machines A through E in the networks for which they have network
addresses.

Figure 3-1 Example of a Network Grouping (netgrp1.gif)

Table 3-25 lists which machines have addresses for which groups.

3 Creating a Configuration File

3-84 Administration Guide

Note: Because the local area networks are not routed among the locations, machine
D (in the BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP
LAN) only by using the single address they have in common: the corporate
WAN network address.

Table 3-25 Machine Addresses and Groups

Machines Has Addresses for These Groups

A and B DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

D and E DEFAULTNET (the corporate WAN)

BLUE_GROUP (LAN)

Configuring Network Information

Administration Guide 3-85

Configuring the UBBCONFIG File with Netgroups

To set up the configuration just described, the First State Bank system administrator
defines each group in the NETGROUPS section of the UBBCONFIG file, as shown in
Listing 3-11.

Listing 3-11 Sample NETGROUPS and NETWORK Sections

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default

BLUE_GROUP NETGRPNO = 9 NETPRIO = 100

MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200

GREEN_GROUP NETGRPNO = 13 NETPRIO = 200

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”

A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"

B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"

C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

3 Creating a Configuration File

3-86 Administration Guide

Administraton Guide 4-1

CHAPTER

4 Starting and Shutting
Down Applications

This chapter describes how to ensure that your application is ready to be booted, how
to boot it, and how to shut it down. There are also procedures that help you resolve
some problems you may run into when you first begin to start and shut down your BEA
WebLogic Enterprise or BEA Tuxedo applications.

This topic includes the following sections:

n Starting Applications

n Shutting Down Applications

n Using tmshutdown

n Clearing Common Problems

Starting Applications

Before you start an application, make sure you have completed all of the tasks in the
prerequisite checklist, described in the following section.

4 Starting and Shutting Down Applications

4-2 Administration Guide

Prerequisite Checklist

Complete the following tasks before booting your application:

1. Set Environment Variables.

2. Create TUXCONFIG.

3. Propagate the Software.

4. Create a TLOG Device.

5. Start tlisten at All Sites (MP environments).

Set Environment Variables

Set and export variables TUXDIR, TUXCONFIG, PATH, and LD_LIBRARY_PATH so that
they are in your environment as the system is booted. For example:

TUXDIR=<pathname to installed BEA WebLogic Enterprise or
 BEA Tuxedo directory>
TUXCONFIG=<pathname where TUXCONFIG should go>
PATH=$PATH:$TUXDIR/bin
LD_LIBRARY_PATH=<pathname to shared libraries>
export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

Replace text within angle brackets (< >) with values for your installation. Other
environment variables can be specified in an ENVFILE (see ubbconfig(5)).

On AIX, LIBPATH must be set instead of LD_LIBRARY_PATH. On HP UX, SHLIB_PATH
must be set instead of LD_LIBRARY_PATH. On Windows NT, no variable for shared
libraries is required.

Starting Applications

Administration Guide 4-3

For BEA WebLogic Enterprise Java, verify that the following environment variables
were defined by the Java installation procedure:

n JAVA_HOME, the directory where the JDK is installed.

n CLASSPATH, which must point to the location of the BEA WebLogic Enterprise
Java ARchive (JAR) file (which contains all the class files), and the location of
the message catalogs.

n TUXDIR, the directory where the BEA WebLogic Enterprise software is installed.

Then, use the new environment variables when you add to your system’s PATH, as
shown in the following platform-specific examples.

Windows NT system example:

set JAVA_HOME=c:\jdk1.2

set CLASSPATH=.;%TUXDIR%\udataobj\java\jdk\wle.jar;%TUXDIR%\locale\java\wle

set PATH=%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;%JAVA_HOME%\jre\bin\classic;
%TUXDIR%\lib;%TUXDIR%\bin;%PATH%

Solaris system example:

JAVA_HOME=/usr/kits/jdk1.2

CLASSPATH=.:$TUXDIR/udataobj/java/jdk/wle.jar:$TUXDIR/locale/java/wle

PATH=$JAVA_HOME/bin:$TUXDIR/bin:$PATH

LD_LIBRARY_PATH=$JAVA_HOME/jre/lib/sparc/native_threads:
$JAVA_HOME/jre/lib/sparc/classic:$JAVA_HOME/jre/lib/sparc:$TUXDIR/lib

THREADS_FLAG=native

export JAVA_HOME CLASSPATH PATH LD_LIBRARY_PATH THREADS_FLAG

During the deployment step, you must also define the environment variables
TUXCONFIG and APPDIR. These variables are described in subsequent sections of this
chapter.

 Create TUXCONFIG

TUXCONFIG is a binary version of the text configuration file. The tmloadcf(1)
command converts the configuration file to binary form and writes it to the location
given in the TUXCONFIG variable.

4 Starting and Shutting Down Applications

4-4 Administration Guide

Enter the command as follows:

$ tmloadcf [-n] [-y] [-c] [-b blocks] {ubbconfig_file | - }

You may want to consider the following options before you create TUXCONFIG:

-c
Calculates the minimum IPC resources of the configuration.

-n
Performs a syntax check only; report errors.

The -c and -n options do not load the TUXCONFIG file.

UNIX IPC resources are platform specific. If you use the -c option, check the platform
data sheet for your platform in Appendix A of the WebLogic Enterprise or Tuxedo
Installation Guide to judge whether you need to make some changes. If you do want
to change IPC resources, refer to “Defining IPC Limits” on page 3-15.

If the -n option indicates syntax errors in the configuration file, correct the errors
before you proceed.

For ubbconfig_file, substitute the fully qualified name of your configuration file.

When you are ready to create the TUXCONFIG file, you may want to consider the
following options:

-b

Limits the size of the TUXCONFIG file.

-y

Overwrites the existing TUXCONFIG file without prompting for permission.

The -b option takes an argument that limits the number of blocks used to store the
TUXCONFIG file. Use it if you are installing TUXCONFIG on a raw disk device that has
not been initialized. This option is not recommended if TUXCONFIG will be stored in a
regular UNIX system file.

You must be logged in on the MASTER machine and have the effective user ID of the
owner of the configuration file.

Starting Applications

Administration Guide 4-5

Creating Encrypted Passwords

If you have set up the UBBCONFIG file for storing server group or JDBC database
passwords in encrypted form, when you run tmloadcf to load this UBBCONFIG file,
you are prompted to create the passwords. tmloadcf then stores the passwords in
encrypted form in the TUXCONFIG file.

To force encryption of a password for a server group, for example, you would write a
continuous string of five or more asterisks into the OPENINFO string in the UBBCONFIG
file in the place where the password is to go. For example,

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

When tmloadcf encounters a continuous string of five or more asterisks, it will
prompt the user to enter a password, for example:

>tmloadcf -y e:\wle5\samples\atmi\bankapp\xx
Password for OPENINFO (SRVGRP=BANKB1):

The values for the DBPASSWORD and PROPS atttibutes for JDBC connection pools can
also be encrypted in the same manner. Refer to Chapter 3, “Creating a Configuration
File”.

Note: If you use the tmunloadcf command to convert the binary version of the
configuration file back into a UBBCONFIG file, an encrypted password is
written into the UBBCONFIG file with @@ as delimiters. When a password is
stored in the UBBCONFIG file in encrypted form, tmloadcf does not prompt
the user to create a password. The following is a sample OPENINFO statement
generated by tmunloadcf:

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

Propagate the Software

TUXCONFIG is automatically propagated by the BEA WebLogic Enterprise or BEA
Tuxedo system to all machines in your configuration when you run tmboot(1), but
there are other files that need to be present on all machines. Table 4-1 is a list of files
and directories needed for a networked application.

4 Starting and Shutting Down Applications

4-6 Administration Guide

Create a TLOG Device

To enable distributed transaction processing, several parameters in the MACHINES
section of the configuration file are used to define a global transaction log (TLOG). You
must create the device list entry for the TLOGDEVICE on each machine where a TLOG is
needed. It can be done before or after TUXCONFIG has been loaded, but must be done
before the system is booted.

Table 4-1 Propagating Directories or Files

Directory or File Comments

APPDIR The directory named in the APPDIR variable must be created
on each node. It is helpful if this directory has the same
pathname on all nodes.

Executables Application servers must be built once for each platform type,
and must be manually propagated to other machines of that
platform (that is, BEA WebLogic Enterprise or BEA Tuxedo
does not do this automatically). Store the executables in
APPDIR,or in a directory pointed to in a PATH variable in
ENVFILES in the MACHINES section.

Field tables
View files

Depending on the requirements of application services (that is,
if FML or VIEWS buffer types are used), field tables and view
description files must be manually propagated to machines
where they are used, then recompiled. Use mkfldhdr(1) to
make a header file out of a field table file; use viewc(1) to
compile a view file. The FML field tables and VIEW
description files should be available through the environment
variables FLDTBLDIR, FIELDTBLS, VIEWDIR, and
VIEWFILES, or their 32-bit equivalents.

tlisten The tlisten process must be started on each machine of a
networked BEA WebLogic Enterprise or BEA Tuxedo
application. See tlisten(1). The tlisten process must be
started before the application is booted.

Note: You must define TUXDIR, TUXCONFIG, APPDIR,
and other relevant environment variables before
starting tlisten.

Starting Applications

Administration Guide 4-7

Follow these steps to create an entry in the Universal Device List (UDL) for the TLOG
device.

1. On the master node with the application inactive, invoke tmadmin -c.
The -c option brings tmadmin up in configuration mode.

2. Enter:

crdl -z config -b blocks

where

-z config specifies the full pathname for the device where the UDL should be
created (that is, where the TLOG will reside).The value of config should match
the value of the TLOGDEVICE parameter in the MACHINES section. If config is
not specified, it defaults to the value of the variable FSCONFIG (which points to
the application’s databases).

-b blocks specifies the number of blocks to be allocated on the device.

3. Repeat steps 1 and 2 on each node of your application that is expected to be
involved with global transactions.

If the TLOGDEVICE is mirrored between two machines, step 3 is not required on the
paired machine. To be recoverable, the TLOG should preferably be on a device that can
be mirrored. Because the TLOG is too small (typically,100 pages) to warrant having a
whole disk partition to itself, the expectation is that the TLOG will be stored on the same
raw disk slice as the application's databases. FSCONFIG is the environment variable
used by the system. Therefore, the tmadmin crdl command defaults to FSCONFIG.

Start tlisten at All Sites

To have a networked application, a listener process must be running on each machine.

This step is required if you are running the application on more than one machine, as
established by the MODEL MP parameter in the RESOURCES section of the application’s
UBBCONFIG file.

Note: You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant
environment variables before starting tlisten.

The port on which the process is listening must be the same as the port specified for
NLSADDR in the NETWORK section of the configuration file. On each machine, use the
tlisten(1) command, as follows:

4 Starting and Shutting Down Applications

4-8 Administration Guide

tlisten [-d device] -l nlsaddr [-u {uid-# | uid-name}] [-z bits\
] [-Z bits]

The options to this command are as follows:

-d device
The full pathname of the network device. For the BEA WebLogic Enterprise
system and BEA Tuxedo system version 6.4 or later, this option is not
required. For earlier versions of the BEA Tuxedo system (version 6.3 and
earlier), some network providers (TCP/IP, for example) require this
information.

-l nlsaddr
The network address, as specified for this machine (LMID) in the NETWORK
section of the configuration file. nlsaddr, can be specified in any of the
formats that can be specified for the NADDR parameter in the same section. If
the address has the form 0xhex-digits or \\xhex-digits, it must contain
an even number of valid hexadecimal digits.

TCP/IP addresses may be in the //#.#.#.#:port format or the
//machine-name:port format.

tmloadcf(1) prints an error if nlsaddr is missing from any entry but the
entry for the MASTER LMID, for which it prints a warning. However, if
nlsaddr is missing from the MASTER LMID entry, tmadmin(1) is not able to
run in administrator mode on remote machines; it will be limited to read-only
operations. This also means that the backup site is unable to reboot the master
site after failure.

-u uid-# or uid-name
This parameter can be used to have the tlisten process run as the indicated
user. This option is required if the tlisten(1) command is run by root on a
remote machine.

-z [bits]
This parameter is specific to BEA Tuxedo systems. When establishing a
network link between a BEA Tuxedo administrative process and tlisten, it
requires at least this minimum level of encryption. Zero (0) means no
encryption, while 40 and 128 specify the length (in bits) of the encryption
key. If this minimum level of encryption cannot be met, link establishment
fails. The default is zero.

Starting Applications

Administration Guide 4-9

-Z [bits]
This parameter is specific to BEA Tuxedo systems. When establishing a
network link between a BEA Tuxedo administrative process and tlisten,
allow encryption up to this level. Zero (0) means no encryption, while 40 and
128 specify the length (in bits) of the encryption key. The default is 128. The
-z and -Z options are available only if either the International or Domestic
BEA Tuxedo Security Add-on Package is installed.

Booting the Application

Once the preliminaries have been successfully completed, you are ready to bring up
the application, as described in the following section.

Using tmboot

The user who created the TUXCONFIG file is considered the administrator of the
application. Only this user can execute tmboot(1).

The application is normally booted from the machine designated as the MASTER in the
RESOURCES section of the configuration file, or the BACKUP MASTER acting as the
MASTER. The -b option allows some deviation from this rule.

For tmboot(1) to find executables, the BEA WebLogic Enterprise or BEA Tuxedo
system processes, such as the BBL, must be located in $TUXDIR/bin. Application
servers should be in APPDIR, as specified in the configuration file.

When booting application servers, tmboot(1) uses the CLOPT, SEQUENCE, SRVGRP,
SRVID, and MIN parameters from the configuration file.

Application servers are booted in the order specified by their SEQUENCE parameter, if
SEQUENCE is used. If SEQUENCE is not specified, servers are booted in the order in
which they appear in the configuration file.

The command line should look something like the following (this is a greatly
simplified example):

$ tmboot [-g grpname] [-o sequence] [-s server] [-S] [-A] [-y]

Table 4-2 describes the tmboot options.

4 Starting and Shutting Down Applications

4-10 Administration Guide

There are many more options than are shown in the example. For a complete listing of
the tmboot options, see the tmboot(1) reference page in the BEA Tuxedo Reference
Manual.

Default Boot Sequence for a Small Application

The following scenario shows the order of processing when booting a two-machine
configuration. This is not a procedure that you have to initiate; it is what the software
does if you enter the following command:

prompt> tmboot -y

1. tmboot comes up on the MASTER site and processes the TUXCONFIG file, creating a
“to do” list for itself.

2. tmboot boots the DBBL on the MASTER machine.

3. tmboot boots the BBL on the MASTER machine, which creates the shared memory
Bulletin Board.

Table 4-2 tmboot Options

Option Meaning

-g grpname Boots all TMS and application servers in groups using this
grpname parameter.

-o sequence Boots all servers in the order shown in their SEQUENCE
parameter.

-s server-name Boots individual servers.

-S Boots all servers listed in the SERVERS section.

-A Boots all administrative servers for machines listed in the
MACHINES section. This ensures that the DBBL, BBL, and
BRIDGE processes are started in the proper order.

-y Provides an automatic "yes" response to the prompt that
asks if all administrative and application servers should be
booted. This prompt appears only if no options that limit
the scope of the command (-g grpname, for example) are
specified.

Starting Applications

Administration Guide 4-11

4. tmboot boots the BRIDGE on the MASTER machine, which establishes its listening
address.

5. tmboot establishes a connection with the remote site tlisten process and
propagates the TUXCONFIG file to the remote site if the file is not already there.

6. tmboot boots a BSBRIDGE. The BSBRIDGE establishes a connection back to the
BRIDGE process on the MASTER machine.

7. tmboot boots a BBL. The BBL creates the local Bulletin Board and sends a request
to the DBBL via the BSBRIDGE, to register it as a server. The reply from the DBBL
contains a complete copy of the MASTER Bulletin Board and the BBL updates its
Bulletin Board with the information.

8. tmboot boots a BRIDGE. The BRIDGE establishes a connection back to the
BRIDGE on the MASTER site, at which point tmboot tells the BSBRIDGE to go
away, since it is no longer needed.

9. tmboot can then boot the application servers.

10. tmboot boots the local application servers first, then boots the remote application
servers.

11. tmboot is now finished processing and terminates gracefully.

Optimized Boot Sequence for Large Applications

The boot sequence recommended for larger applications is shown here. This sequence
boots entire machines in a single step, rather than taking all the steps used to boot two
machines in the default sequence. The optimized sequence can be explained as
follows:

1. Boot the entire MASTER machine first. This is done by using the -M -l combination.

2. Boot the entire remote machine. This is done by using the -B -l combination.

This method is faster because the number of system messages is far smaller. In large
applications (more than 50 machines), this method generally reduces boot time by
50%.

In a configuration with a slow network, boot time can be improved by first booting the
machines that have higher speed connections to the MASTER machine.

4 Starting and Shutting Down Applications

4-12 Administration Guide

Shutting Down Applications

The tmshutdown(1) command is used to shut down an application.

The tmshutdown(1) command is the inverse of the tmboot(1) command. It shuts
down part or all of the BEA WebLogic Enterprise or BEA Tuxedo application.

When the entire application is shut down, tmshutdown(1) removes the IPC resources
associated with the BEA WebLogic Enterprise or BEA Tuxedo system.

The options used by tmboot(1) for partial booting (-A, -g, -I, -S, -s, -l, -M, -B)
are supported in tmshutdown(1). Note that the -B option, which allows tmboot to be
used from a non-MASTER machine, is not supported for tmshutdown; the tmshutdown
command must be entered from the MASTER (or BACKUP MASTER) machine.

If servers are to be migrated, the -R option must be used. This option shuts down the
servers without removing the Bulletin Board entries.

If a node is partitioned, tmshutdown(1) with the -P lmid option can be run on the
partitioned machine to shut down the servers on that machine.

tmshutdown(1) will not shut down the administrative server BBL on a machine that
has clients attached. The -c option can be used to override this feature. This option is
required when a machine must be brought down immediately and the administrator has
been unable to contact the clients.

The -w delay option can be used to force a hard shutdown after delay seconds. This
option suspends all servers immediately so that additional work cannot be queued. The
value of delay should allow time for requests already queued to be serviced. After
delay seconds, a SIGKILL signal is sent to the servers. This option enables the
administrator to shut down servers that are looping or blocked in application code.

Always check the details of a command such as tmshutdown(1) in the BEA Tuxedo
Reference Manual to make sure you have the most recent information on available
options.

Using tmshutdown

Administration Guide 4-13

Using tmshutdown

The user creating the TUXCONFIG file is considered to be the administrator of the
application. Only this user can execute tmshutdown(1).

The application can be shut down only from the machine designated as MASTER in the
configuration file. When the BACKUP MASTER is acting as the MASTER, it is considered
to be the MASTER for shutdown purposes.

The only exception to this rule is a partitioned machine. By using the -p option, the
administrator can run the command from the partitioned machine to shut down the
application at that site.

Application servers are shut down in the reverse order specified by their SEQUENCE
parameter, or by reverse order of their appearance in the configuration file. If some
servers have SEQUENCE numbers and others do not, the unnumbered servers are the
first to be shut down, followed by the application servers with SEQUENCE numbers (in
reverse order). Finally, administrative servers are shut down.

When an application is shut down, all the IPC resources allocated by the BEA
WebLogic Enterprise or BEA Tuxedo system are removed. Note that tmshutdown
does not remove IPC resources allocated by the DBMS.

Clearing Common Problems

There are several problems that you may encounter when first working with the BEA
WebLogic Enterprise system. This section lists and discusses some of the common
startup and shutdown problems.

Common Startup Problems

When starting your first BEA WebLogic Enterprise application you might encounter
evidence of a problem in the form of a message to ULOG, a message to your screen, or
both, as follows:

4 Starting and Shutting Down Applications

4-14 Administration Guide

n TLOG Not Created

n Server Not Built Correctly

n Incorrect OPENINFO String

n Unable to Propagate BEA WebLogic Enterprise System

TLOG Not Created

If the transaction log (TLOG) fails to get created, a message is sent to the user log
(ULOG).

The message includes the message catalog name, the unique message number within
the catalog, and the reason for the failure. For example, one such message is:

CMDTUX 142 ERROR: Identifier for TLOGNAME must be <= len characters in length

TLOGNAME cannot be more than 30 characters long.

You can avoid problems of this kind if you check the syntax of the TLOG parameters in
the MACHINES section of the UBBCONFIG file (see ubbconfig(5)).

The TLOG also might not get created for the following reasons:

n The person entering the command may lack the proper authority to do so.

n File permissions may not let you write to the device.

n There is not enough space to create the file.

Server Not Built Correctly

A server may not start correctly if either:

n buildobjserver fails, or

n buildobjserver succeeds but the server comes up with the wrong services

buildobjserver Failure

You should try to detect an error in this area before you attempt to boot a BEA
WebLogic Enterprise application. buildobjserver is used to compile application
code, combining the interfaces to be offered by a server into the executable module. If

Clearing Common Problems

Administration Guide 4-15

the code fails to compile, the causes can be that an incorrect compiler was specified,
the needed libraries were not found, needed interface modules were not found, there is
a problem in the code, and so forth. Pay close attention to the error messages and
consult Creating C++ Server Applications and Creating Java Server Applications.

Server Comes Up with Wrong Services (BEA Tuxedo Systems)

Problems in this area can often be attributed to an incorrect CLOPT parameter for the
server (CLOPT is an abbreviation for “command-line options”). The CLOPT parameter
is assigned in the SERVERS section of the UBBCONFIG file. It carries command-line
options that apply to a server when the server is booted. The options are defined on the
servopts(5) reference page. Refer to this page and the ubbconfig(5) reference page
for help on debugging the problem.

Another cause for a server coming up with the wrong services could be an incorrect
specification of services when the server is built. While services are usually in a
module of code that has a mnemonic name, there is no requirement that this be the case.
Service a, for example, may actually be performed by function x, which could lead to
an error.

Incorrect OPENINFO String

The OPENINFO string is specified in the GROUPS section of the UBBCONFIG file. It
contains information needed by servers in the group when they try to open an
application database. There is a very specific form for the information that is agreed to
by vendors of XA-compliant database management systems. The information is stored
in the BEA WebLogic Enterprise or BEA Tuxedo system file
$TUXDIR/udataobj/RM.

Note: After changing the OPENINFO string, BEA recommends that you reboot the
servers that use this resource manager (RM).

To clear a problem:

1. Check the System Messages for an explanation of the error message.

If this does not resolve the problem, go to step 2.

2. Check the syntax of the OPENINFO parameter as specified in the GROUPS section
of ubbconfig(5).

If the problem persists, go to step 3.

4 Starting and Shutting Down Applications

4-16 Administration Guide

3. Look in $TUXDIR/udataobj/RM to see how the information for your DBMS
needs to be specified.

Unable to Propagate BEA WebLogic Enterprise System

In a networked application, there are several reasons why the system may not be able
to propagate the TUXCONFIG file. The generic message is as follows:

cannot propagate TUXCONFIG file

The following are possible reasons for the failure:

n No listener on the remote machine

n Mismatched address specifications for the listener on the remote machine

n Group ID or the user ID are not the same on both machines

n Access (permissions) problems

n Cannot overwrite an existing TUXCONFIG on the slave (remote) machine

Table 4-3 shows a possible solution for each propagation problem.

Table 4-3 Possible Solutions to Propagation Failure

Problem Solution

Application fails to boot If tlisten password security is enabled, check that
the tlisten passwords match on both machines. The
match is required.

Listener process not started on
remote machine

Check that the TUXDIR, TUXCONFIG, APPDIR, and
other relevant environment variables are set on the
remote machine, before starting the listener. Then use
the tlisten(1) command to start the listener.

Listener started at address
different from the NLSADDR
in the configuration file

Correct the listener address and rerun the tlisten(1)
command.

Group ID or the user ID are
not the same on both
machines

Change the IDs to be the same or specify the correct IDs
in the MACHINES section for that machine.

Clearing Common Problems

Administration Guide 4-17

Common Shutdown Problems

The two most common problems encountered when shutting down applications are
shown with solutions in Table 4-4.

Wrong permissions on
files/directories on remote
machine

Change the permissions to the appropriate values.

Table 4-3 Possible Solutions to Propagation Failure

Problem Solution

Table 4-4 Two Common Shutdown Problems and Their Solutions

Problem Solution

Shutting down administrative
servers before application
servers

The BEA WebLogic Enterprise or BEA Tuxedo system
does not allow this action because the administrative
servers are needed even after all application servers are
shut down. If you want to shut down a machine, you must
shut down the application servers before the
administrative servers. Use the tmshutdown -l, -S, -s,
-g, and -I options before -A, -M, and -B.

Unable to shut down a machine
with clients attached

As a rule, the BEA WebLogic Enterprise or BEA Tuxedo
system does not allow this. However, if the client cannot
be contacted, the -c option can be used to shut down the
BBL while it still has clients attached. There are
consequences to client applications that must be
considered before taking this action.

Try using the tmshutdown -w delay option to shut
down servers forcibly after delay seconds, or use the
tmshutdown -c option to shut down the BBL, even
though it has clients attached.

4 Starting and Shutting Down Applications

4-18 Administration Guide

Administraton Guide 5-1

CHAPTER

5 Distributing
Applications

For a detailed discussion of distributing applications administrative information, see
the chapter Distributing Applications in BEA WebLogic Enterprise Tuning and
Scaling.

5 Distributing Applications

5-2 Administration Guide

Administration Guide 6-1

CHAPTER

6 Building Networked
Applications

This topic includes the following sections:

n Terms and Definitions

n Configuring Networked Applications

n Example: A Network Configuration

n Example: A Network Configuration with Multiple Netgroups

n Running a Networked Application

Terms and Definitions

asynchronous connections
Virtual circuits set up to execute independently of each other or
asynchronously. An asynchronous connection does not block the processing
of working circuits while attempts are being made to reconnect failed circuits.
The BEA Tuxedo system BRIDGE allows the use of nonfailing network
paths by listening and transferring data using multiple network address
endpoints.

failover and failback
Network failover occurs when a redundant unit seamlessly takes over the
network load for the primary unit. Some operating system and hardware
bundles transparently detect a problem on one network card and have a spare

6 Building Networked Applications

6-2 Administration Guide

automatically replace it. When done quickly enough, application-level TCP
virtual circuits have no indication a fault happened.

In the BEA WebLogic Enterprise or BEA Tuxedo system, data flows over the
highest available priority circuit. If network groups have the same priority,
data travels over all networks simultaneously. If all circuits at the current
priority fail, data is sent over the next lower priority circuit. This is called
failover.

When a higher priority circuit becomes available, the data flow is shifted to
flow over the higher priority circuit. This is called failback.

When a failover condition is detected, all higher priority circuits are retried
periodically. After connections to all network addresses have been tried and
failed, connections are tried again the next time data needs to be sent between
machines.

multiple listening addresses
Having addresses available on separate networks means that even if one
virtual circuit is disrupted, the other circuit can continue undisturbed. Only a
failure on all configured networks makes reconnection of the BRIDGES
impossible. For example, when a high priority network fails, its load can be
switched to an alternate network that has a lower priority. When the higher
priority network returns to service, the network load returns to it.

parallel data circuits
Parallel data circuits enable data to flow simultaneously on more than one
circuit. When you configure parallel data circuits, network traffic is
scheduled over the circuit with the largest network group number
(NETGRPNO). When this circuit is busy, the traffic is scheduled automatically
over the circuit with the next lower network group number. When all circuits
are busy, data is queued until a circuit is available.

Note: Alternate scheduling algorithms may be introduced in future releases.

Configuring Networked Applications

To configure a networked application, make these changes in the configuration file.

Configuring Networked Applications

Administration Guide 6-3

1. Check the following settings in the RESOURCES section:

l Make sure MODEL is set to MP.

MP stands for multiprocessor and enables the other networking parameters.

l Make sure OPTIONS is set to LAN.

LAN specifies that communication between machines is via a Local Area
Network (as opposed to being between two or more processors in a single
machine).

l Use the MAXNETGROUPS parameter to set a limit on the number of NETGROUPS
that can be defined.

The default is 8; the upper limit 8192.

2. Check the following settings in the MACHINES section:

l TYPE=string. Specifying string for the machines in your network allows
the system to bypass encode/decode processing when messages are
transmitted between machines of the same TYPE.

When you identify machines as being of the same TYPE, encode/decode
processing is not needed. If you have, say, nine SPARC machines and one
HP machine, specify TYPE= string only for the HP; for the SPARC
machines, the default null string identifies them as being of the same type.

l CMPLIMIT=remote,local. The CMPLIMIT setting specifies thresholds for
the point at which message compression should begin. A threshold is a
number from 0 to MAXLONG. It sets the minimum byte size for a message to
be compressed before being sent over the network. For example:

 CMPLIMIT=1024

This parameter specifies that any message greater than 1024 bytes bound for
a remote location should be compressed. The absence of a second number
means that local messages are never compressed. Compression thresholds
can also be specified with the variable TMCMPLIMIT. See also the discussion
in tuxenv(5) of the variable TMCMPPRFM. It sets the degree of compression in
a range of 1 to 9.

l NETLOAD=number. Assigns an application-specific number to be added to a
remote service’s LOAD number. The result is used by the system to evaluate
whether the request should be processed locally or sent to a remote machine.

3. Check the following settings in the NETGROUPS section:

6 Building Networked Applications

6-4 Administration Guide

l NETGROUP. The name assigned by the application to the particular group.
The name can be up to 30 characters long. One group (that includes all
machines on the network) must be named DEFAULTNET.

l NETGRPNO=number. If this is DEFAULTNET, NETGRPNO must be zero; for any
other group the number can be from 1 to 8192. This parameter is required.

l NETPRIO=number. Assigning a priority to a NETGROUP helps the software
determine which network connection to use. The number must be between 0
and 8192. Assign higher priority to your faster circuits; give your lowest
priority to DEFAULTNET.

4. Check the following settings in the NETWORK section:

l LMID. This Logical Machine Identifier must match one of the entries in the
MACHINES section. It associates this particular NETWORK section entry with
one of the application’s machines.

l NADDR=string. This network address is the listening address for the
BRIDGE process on this LMID. There are four valid formats for specifying this
address. See the NETWORK section of ubbconfig(5).

l NLSADDR=string. This parameter is the network address for the tlisten
process on this LMID. Valid formats are the same as the valid formats for
NADDR.

l NETGROUP=string. This must be a NETWORK group name previously
specified in the NETGROUPS section. If not specified, it defaults to
DEFAULTNET.

Example: A Network Configuration

Administration Guide 6-5

Example: A Network Configuration

The following example illustrates the configuration of a simple network:

The following configuration file excerpt shows a NETWORK
section for a 2-site configuration.

*NETWORK
 SITE1 NADDR="//mach1:80952”
 NLSADDR="//mach1:serve"
#
 SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

Example: A Network Configuration with
Multiple Netgroups

The hypothetical First State Bank has a network of five machines (A-E). It serves the
bank’s business best interest to have four network groups and to have each machine
belong to two or three of the four groups.

Note: Configuration of multiple NETGROUPS has both hardware and system
software prerequisites that are beyond the scope of this document. For
example, NETGROUPS commonly requires machines with more than one
directly attached network. Each TCP/IP symbolic address must be identified
in the /etc/hosts file or in the DNS (Domain Name Services). In the
example that follows, addresses in the form “//A_CORPORATE:5345” assume
that the string “A_CORPORATE” is in the /etc/hosts file or in DNS.

The four groups in the First State Bank example are as follows:

n DEFAULTNET (the default network, which is the corporate WAN)

n MAGENTA_GROUP (a LAN)

6 Building Networked Applications

6-6 Administration Guide

n BLUE_GROUP (a LAN)

n GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point
links between member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machine
is associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some
machines in the MAGENTA_GROUP also belong to the GREEN_GROUP. Figure 6-1
illustrates group assignments for the network.

Figure 6-1 Example of a Network Grouping

In this example, machines A and B have addresses for the following:

n DEFAULTNET (the corporate WAN)

n MAGENTA_GROUP (LAN)

n GREEN_GROUP (LAN)

Machine C has addresses for the following:

n DEFAULTNET (the corporate WAN)

n MAGENTA_GROUP (LAN)

Machines D and E have addresses for the following:

n DEFAULTNET (the corporate WAN)

Example: A Network Configuration with Multiple Netgroups

Administration Guide 6-7

n BLUE_GROUP (LAN)

Because the local area networks are not routed among the locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.

The UBBCONFIG File for the Network Example

To set up the configuration described in the preceding section, the First State Bank
administrator defined each group in the NETGROUPS and NETWORK sections of the
UBBCONFIG file as follows:

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default
BLUE_GROUP NETGRPNO = 9 NETPRIO = 100
MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200
GREEN_GROUP NETGRPNO = 13 NETPRIO = 200

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”
A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"
A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"
B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"
B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"
C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

6 Building Networked Applications

6-8 Administration Guide

Assigning Priorities for Each Network Group

Appropriately assigning priorities for each NETGROUP enables you to maximize the
capability of network BRIDGE processes. When determining your NETGROUP
priorities, keep in mind the following considerations:

n Data flows over the highest available priority circuit.

n If network groups have the same priority, data travels over all circuits
simultaneously.

n If all circuits at the current priority fail, data is sent over the next lower priority
circuit.

n When a higher priority circuit becomes available, data flows over this higher
priority circuit.

n All unavailable higher priority circuits are retried periodically.

n After connections to all network addresses have been tried and have failed,
connections are tried again the next time data needs to be sent between
machines.

Figure 6-2 illustrates how the First State Bank administrator can assign priorities to the
network groups.

Example: A Network Configuration with Multiple Netgroups

Administration Guide 6-9

Figure 6-2 Assigning Priorities to Network Groups

The UBBCONFIG Example Considerations

You can specify the value of NETPRIO for DEFAULTNET just as you do for any other
netgroup. If you do not specify a NETPRIO for DEFAULTNET, a default of 100 is used,
as in the following example:

*NETGROUP
DEFAULTNET NETGRPNO = 0 NETPRIO = 100

For DEFAULTNET, the value of the network group number must be zero; any other
number is invalid. If the BLUE_GROUP’s network priority is commented out, the priority
defaults to 100. Network group number entries are unique. Some of the network
priority values are equal, as in the case of MAGENTA_GROUP and GREEN_GROUP (200).

Each network address is associated by default with the network group, DEFAULTNET.
It may be specified explicitly for uniformity or to associate the network address with
another netgroup.

*NETWORK
D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

In this case, MAGENTA_GROUP and GREEN_GROUP have the same network priority of
200. Note that a lower priority network, such as DEFAULTNET, could be a
charge-per-minute satellite link.

6 Building Networked Applications

6-10 Administration Guide

Running a Networked Application

For the most part, the work of running a BEA WebLogic Enterprise or BEA Tuxedo
networked application takes place in the configuration phase. Once you have defined
the network for an application and you have booted the system, the software
automatically takes care of running the network for you.

In this section, we discuss some aspects of running a networked application to give you
a better understanding of how the software works. Knowledge of how the software
works can often make configuration decisions easier.

Scheduling Network Data Over Parallel Data Circuits

If you have configured a networked application that uses parallel data circuits,
scheduling network data proceeds as follows:

n The BRIDGE listens on more than one address and may send data simultaneously
on parallel data circuits, thus making the BRIDGE more frequently available and
making error recovery faster.

n When you configure parallel data circuits, the software attempts to schedule
traffic over the circuit with the highest network group number (NETGRPNO). If
this circuit is busy, the traffic is automatically scheduled over the circuit with the
next lower network group number. When all circuits are busy, data is queued
until a circuit is available.

n The software guarantees that conversational messages are kept in the correct
sequence by binding the conversation connection to one particular data circuit.

n If your application requires that all messages be kept in sequence, the application
must be programmed to keep track of the sequence for nonconversational
messages. If this is your design, you might elect not to configure parallel data
circuits.

n The BRIDGE sends a message to destination machine X by writing the message
to a virtual circuit and delegating to the operating system the responsibility for
sending it. The operating system retains a copy of pending messages. If a
network error occurs, however, pending messages are lost.

Running a Networked Application

Administration Guide 6-11

Figure 6-3 is a flow diagram that illustrates how the BRIDGE processes data by priority.

Figure 6-3 Flow of Data over the BRIDGE

6 Building Networked Applications

6-12 Administration Guide

Figure 6-3 illustrates the flow of data when machine A attempts to contact machine B.
First, the BRIDGE determines which network groups are common to both machine A
and machine B. They are the MAGENTA_GROUP, the GREEN_GROUP, and the
DEFAULTNET.

The highest priority network addresses originate from the network groups with the
highest network priority. Network groups with the same NETPRIO value flow network
data in parallel. All network groups with a higher priority than that of the network
groups that are flowing data are retried, periodically.

Once network connections have been established with different NETPRIO values, no
further data is scheduled for the lower priority connection. The lower priority
connection is disconnected in an orderly fashion.

Network Data in Failover and Failback

Data flows over the highest available priority circuit. If network groups have the
same priority, data travels over all networks simultaneously. If all circuits at the current
priority fail, data is sent over the next lower priority circuit. This is called failover.

When a higher priority circuit becomes available, data flow is restored to the higher
priority circuit. This is called failback.

All unavailable higher priority circuits are retried periodically. After connections to all
network addresses have been tried and have failed, connections are tried again the next
time data needs to be sent between machines.

Using Data Compression for Network Data

When data is sent between processes of an application, you can elect to have it
compressed. Several aspects of data compression are described in the sections that
follow.

 Taking Advantage of Data Compression

Data compression is useful in most applications and is in fact vital to supporting large
configurations. Following is a list of recommendations for when to use data
compression and for how the limits should be set.

Running a Networked Application

Administration Guide 6-13

When should I set remote data compression and what setting should be used?

You should always use remote data compression as long as all of your sites are running
BEA Tuxedo Release 4.2.1 or later. The setting used depends on the speed of your
network. In general, you can separate the decision into high-speed (for example,
Ethernet) and low-speed (for example, X.25) networks.

High-speed networks. Set remote data compression to the lowest limit for BEA
WebLogic Enterprise or BEA Tuxedo generated file transfers (see note below on file
transfers). That is, compress only the messages that are large enough to be candidates
for file transfer either on the sending site or on the receiving site. Note that each
machine in an application may have a different limit and the lowest limit should be
chosen.

Low-speed networks. Set remote data compression to zero on all machines; that is,
compress all application and system messages.

When should I set local data compression and what setting should be used?

You should always set local data compression for sites running BEA Tuxedo Release
4.2.1 or later, even if they are interoperating with pre-4.2.1 sites. The setting should be
the local limit for file transfers generated by the BEA Tuxedo system (see note below).
This setting enables you to avoid file transfers in many cases that might otherwise have
required a transfer, and greatly reduces the size of files used if file transfers are still
necessary.

Note: For high-traffic applications that involve a large volume of timeouts and
discarding of messages due to queue blocking, you may want to set local
compression to always occur, thus lowering the demand of the application on
the queuing subsystem.

Setting the Compression Level

An environment variable, TMCMPPRFM, can be used to set the level of compression.
This variable adds further control to data compression by allowing you to go beyond
the simple choice of “compress or do not compress” that is provided by CMPLIMIT.

You can specify any of nine levels of compression. The TMCMPPRFM environment
variable takes as its value a single digit in the range of 1 through 9. A value of 1
specifies the lowest level of compression; 9 is the highest. When a low number is
specified, the compression routine does its work more quickly. (See tuxenv(5) in the
BEA Tuxedo Reference Manual for details.)

6 Building Networked Applications

6-14 Administration Guide

Balancing Network Request Loads

If load balancing is on (LDBAL set to Y in the RESOURCES section of the configuration
file), the BEA WebLogic Enterprise or BEA Tuxedo system attempts to balance
requests across the network. Because load information is not updated globally, each
site will have its own view of the load at remote sites. This means the local site views
will not all be the same.

The TMNETLOAD environment variable (or the NETLOAD parameter in the MACHINES
section) can be used to force more requests to be sent to local queues. The value
expressed by this variable is added to the remote values to make them appear to have
more work. This means that load balancing can be on, but that local requests will be
sent to local queues more often.

NETLOAD

The NETLOAD parameter affects the load balancing behavior of a system when a service
is available on both local and remote machines. NETLOAD is a numeric value (of
arbitrary units) that is added to the load factor of services remote from the invoking
client. This provides a bias for choosing a local server over a remote server.

As an example, assume servers A and B offer a service with load factor 50. Server A
is running on the same machine as the calling client (local), and server B is running on
a different machine (remote). If NETLOAD is set to 100, approximately three requests
will be sent to A for every one sent to B.

Another enhancement to load balancing is local idle server preference. Requests are
preferentially sent to a server on the same machine as the client, assuming it offers the
desired service and is idle. This decision overrides any load balancing considerations,
since the local server is known to be immediately available.

SPINCOUNT

SPINCOUNT determines the number of times a process tries to get the shared memory
latch before the process stops trying. Setting SPINCOUNT to a value greater than 1 gives
the process that is holding the latch enough time to finish.

Running a Networked Application

Administration Guide 6-15

Using Link-level Encryption (BEA Tuxedo Servers)

Note: This section is specific to BEA Tuxedo servers; however, see the note below
for benefits to BEA WebLogic Enterprise servers.

Link-level encryption (LLE) is the encryption of messages going across network links.
This functionality is provided in the BEA Tuxedo system Security Package, which is
offered in two versions: U.S./Canada and International. The difference between the
two versions consists solely in the number of bits of the 128-bit encryption key that
remain private. The U.S./Canada version has a key length of 128 bits; the International
version now has an effective key length of 56 bits.

The Security Package allows encryption of data that flows over BEA Tuxedo system
network links. The objective is to ensure data privacy, so a network-based
eavesdropper cannot learn the content of BEA Tuxedo system messages or
application-generated messages.

Link-level encryption applies to the following types of BEA Tuxedo links:

n Workstation client to WSH

n BRIDGE to BRIDGE

n Administrative utilities (tmboot, tmshutdown, tmadmin, and so forth) to
tlisten

n Domains gateway to Domains gateway

Note: Link-Level Encryption is currently a BEA Tuxedo system feature; however, a
BEA WebLogic Enterprise-only customer can benefit from this feature in the
following ways:

l BRIDGE to BRIDGE links

l Administrative utilities (tmboot, tmshutdown, tmadmin, and so forth) to
tlisten

l Domains gateway to Domains gateway

l BEA Administration Console

Note: Administration Console now supports up to 128-bit encryption for the data
communication between the applet and the Administration Console server
(wgated process). This encryption level is irrespective of the strength of

6 Building Networked Applications

6-16 Administration Guide

the WebLogic Enterprise encryption level. You can downgrade the
encryption to 0-bit, 40-bit, or 56-bit by specifying the parameter
ENCRYPTBITS in the Administration Console configuration file
webgui.ini.

How LLE Works

Link-level encryption control parameters and underlying communication protocols are
different for various link types, but there are some common themes, as follows:

n A Connecting process begins the communication session.

n An Accepting process receives the initial connection.

n Both processes are aware of the link-level encryption feature, and both have two
configuration parameters. (This statement is not true if the processes are
interoperating between releases, in which case the older release’s lack of
encryption capability is implicitly assumed.)

n The first configuration parameter is the minimum encryption level a process will
accept. The value is a number representing the key length: 0, 40, or 128 bits.

n The second configuration parameter is the maximum encryption level a process
is willing to support. The value of this parameter is expressed as 0, 40, or 128
bits.

n For convenience, we denote the two parameters as (MIN, MAX). So (40,128)
means that a process will accept at least a 40-bit encryption key but would prefer
a 128-bit key, if possible.

n LLE is point-to-point, which means that your data may be encrypted/decrypted
many times as it flows over network links.

Encryption Key Size Negotiation

The first step in negotiating the key size is for the two processes to agree on the largest
common key size supported by both. This negotiation need not be encrypted or hidden.

Once encryption is negotiated, it remains in effect for the lifetime of the network
connection.

Running a Networked Application

Administration Guide 6-17

A preprocessing step temporarily reduces the maximum key size parameter configured
to agree with the installed software’s capabilities. This must be done at link negotiation
time, because at configuration time it may not be possible to verify a particular
machine’s installed encryption package. For example, the administrator may configure
(0, 128) encryption for an unbooted machine that has only a 40-bit encryption package
installed. When the machine actually negotiates a key size, it should represent itself as
(0, 40). In some cases this may cause a run-time error; for example (128, 128) is not
possible with a 40-bit encryption package.

In some cases, international link level is upgraded automatically from 40 bits to 56 bits.
The encryption strength upgrade requires that both sides of a network connection are
running BEA Tuxedo Release 6.5 software, with the optional U.S./Canada or
International Encryption Security Add-on Package installed. You can verify a server
machine’s encryption package by running the tmadmin -v command. Both machines
must also be configured to accept 40-bit encryption. When these conditions are met,
the encryption strength is upgraded automatically to 56 bits.

Table 6-1 shows the outcome for all possible combinations of min/max parameters.

Table 6-1 Encryption Key Matrix

Inter-
Process
Negotiation
Results

 (0,0) (0,40) (0, 128) (40, 40) (40,128) (128, 128)

(0,0) 0 0 0 ERROR ERROR ERROR

(0,40) 0 56 56 56 56 ERROR

(0,128) 0 56 128 56 128 128

(40,40) ERROR 56 56 56 56 ERROR

(40,128) ERROR 56 128 56 128 128

(128,128) ERROR ERROR 128 ERROR 128 128

6 Building Networked Applications

6-18 Administration Guide

Note: Shaded cells show the result of an automatic upgrade from 40-bit to 56-bit
encryption when both machines are running BEA Tuxedo Release 6.5. When
communicating with an older release, encryption remains at 40-bit strength in
the shaded cells.

MINENCRYPTBITS/MAXENCRYPTBITS

When a network link is established to the machine identified by the LMID for the
current entry, the MIN and MAX parameters are used to specify the number of significant
bits of the encryption key. MINENCRYPTBITS says, in effect, “at least this number of
bits are meaningful.” MAXENCRYPTBITS, on the other hand, says, “encryption should
be negotiated up to this level.” The possible values are 0, 40, and 128. A value of zero
means no encryption is used, while 40 and 128 specify the number of significant bits
in the encryption key.

The BEA Tuxedo system U.S./Canada security package permits use of up to 128 bits;
the International package allows specification of no more than 56 bits.

How to Change Network Configuration Parameters

Use tmconfig(1) to change configuration parameters while the application is running.
In effect, tmconfig is a shell-level interface to the BEA Tuxedo system Management
Information Base (MIB). See the tmconfig(1), MIB(5), and TM_MIB(5) reference
pages in the BEA Tuxedo Reference Manual.

Administraton Guide 7-1

CHAPTER

7 Configuring
Transactions

For a detailed discussion of transactions administrative information, see the chapter
Administering Transactions in BEA WebLogic Enterprise Using Transactions.

7 Configuring Transactions

7-2 Administration Guide

Administraton Guide 8-1

CHAPTER

8 Managing Interface
Repositories (BEA
WebLogic Enterprise
Systems)

This topic, which is specific to BEA WebLogic Enterprise systems, includes the
following sections:

n Administration Considerations

n Using Administration Commands to Manage Interface Repositories

n Configuring the UBBCONFIG File to Start One or More Interface Repository
Servers

An Interface Repository contains the interface descriptions of the CORBA objects that
are implemented within the BEA WebLogic Enterprise domain. Administration of the
Interface Repository is done using tools specific to BEA WebLogic Enterprise servers.
These tools allow you to create an Interface Repository, populate it with definitions
specified in Object Management Group Interface Definition Language (OMG IDL),
and then delete interfaces. You may need to configure the system to include an
Interface Repository server by adding entries in the application’s UBBCONFIG file.

For related programming information, see the CORBA Java Programming Reference
or the CORBA C++ Programming Reference.

8 Managing Interface Repositories (BEA WebLogic Enterprise Systems)

8-2 Administration Guide

Administration Considerations

As an administrator, you need to determine whether an Interface Repository is
required. Not all systems require it. If an Interface Repository is required, you need to
create and populate a repository database. The repository database is created and
populated using the idl2ir command.

If an Interface Repository is required, you need to answer the following questions:

n How many Interface Repository servers will be required?

n Will the Interface Repository database(s) be replicated?

n Will there be shared access to the Interface Repository database(s)?

n What procedures will be followed for updating the Interface Repository?

You can configure the system to have one or more Interface Repository servers. At
least one Interface Repository server needs to be configured if any of the clients use
Dynamic Invocation Interface (DII) or ActiveX.

There are two reasons to have more than one server: performance and fault tolerance.
From a performance point of view, the number of Interface Repository servers is a
function of the number of DII and ActiveX clients. From a fault tolerance point of
view, the number of Interface Repository servers needed is determined by the
configuration of the system, and the degree of failure protection required.

In systems with more then one Interface Repository server, you must decide whether
to have replicated databases, shared databases, or a combination of the two. There are
advantages and disadvantages to each configuration. Replicated Interface Repository
databases allow for local file access that can potentially increase performance.

The main problem with replicated databases is updating them. All the databases must
be identical and this requires the starting and stopping of Interface Repository servers.
Having the Interface Repository database mounted and shared eliminates this problem,
but this has performance implications and introduces a single point of failure. A
combination of the two alternatives is also possible.

Using Administration Commands to Manage Interface Repositories

Administration Guide 8-3

Using Administration Commands to Manage
Interface Repositories

Use the following commands to manage the Interface Respository for a BEA
WebLogic Enterprise domain:

n idl2ir

n ir2idl

n irdel

Prerequisites

Before executing a BEA WebLogic Enterprise command, you must ensure the bin
directory is in your defined path, as follows:

On Windows NT

set path=%TUXDIR%\bin;%path%

On UNIX

For c shell (csh): set path = ($TUXDIR/bin $path)

For Bourne (sh) or Korn (ksh): PATH=$TUXDIR/bin:$PATH
 export PATH

To set environment variables:

On Windows NT

set var=value

On UNIX

For c shell:

setenv var value

8 Managing Interface Repositories (BEA WebLogic Enterprise Systems)

8-4 Administration Guide

For Bourne and Korn (sh/ksh):

var=value
export var

Creating and Populating an Interface Respository

Use the idl2ir command to create an Interface Repository and load interface
definitions into it. If no repository file exists, the command creates it. If the repository
file does exists, the command loads the specified interface definitions into it. The
format of the command is as follows:

idl2ir [options] definition-filename-list

For a detailed description of this command, see the Commands, System Processes, and
MIB Reference in the BEA WebLogic Enterprise online documentation.

Note: If you want changes to be visible, you must restart the Interface Repository
servers.

Displaying or Extracting the Content of an Interface
Repository

Use the ir2idl command to display the content of an Interface Repository. You can
also extract the OMG IDL statements of one or more interfaces to a file. The format of
the command is as follows:

ir2idl [options] [interface-name]

For a detailed description of this command, see the Commands, System Processes, and
MIB Reference in the BEA WebLogic Enterprise online documentation.

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

Administration Guide 8-5

Deleting an Object from an Interface Repository

Use the irdel command to delete the specified object from the Interface Repository.
Only interfaces not referenced from another interface can be deleted. By default, the
repository file is repository.ifr. The format of the command is as follows:

irdel [-f repository-name] [-i id] object-name

For a detailed description of this command, see the Commands, System Processes, and
MIB Reference in the online documentation.

Note: If you want changes to be visible, you must restart the Interface Repository
servers.

Configuring the UBBCONFIG File to Start
One or More Interface Repository Servers

For each application that uses one or more Interface Repositories, you must start one
or more of the Interface Repository servers provided by the BEA WebLogic Enterprise
system. The server name is TMIFRSVR.You can add one or more entries for TMIFRSVR
to the SERVERS section of the application’s UBBCONFIG file.

By default, the TMIFRSVR server uses the Interface Repository file repository.ifr

in the first pathname specified in the APPDIR environment variable. You can override
this default setting by specifying the -f filename option on the command line
options (CLOPT) parameter.

The following example shows a SERVERS section from a sample UBBCONFIG file.
Instead of using the default file repository.ifr in the default directory ($APPDIR)
where the application resides, the example specifies an alternate file and location,
/usr/repoman/myrepo.ifr.

Note: Other server entries are shown in the following sample to emphasize that the
order in which servers are started for BEA WebLogic Enterprise applications
is critical. A BEA WebLogic Enterprise application will not boot if the order
is changed. For more information, see the section “Required Order in Which

8 Managing Interface Repositories (BEA WebLogic Enterprise Systems)

8-6 Administration Guide

to Boot Servers (BEA WebLogic Enterprise Servers)” on page 3-49 in
Chapter 3, “Creating a Configuration File.” Notice that the TMIFRSVR
Interface Repository server is the fifth server started.

*SERVERS

 # Start the BEA Tuxedo System Event Broker
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 # Start the NameManager (master)
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 # Start the NameManager (slave)
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

 # Start the FactoryFinder (-F)
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 # Start the interface repository server
 TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5
 RESTART=Y
 MAXGEN=5
 GRACE=3600
 CLOPT="-A -- -f /usr/repoman/myrepo.ifr"

For a description of the TMIFRSVR -f filename parameter, refer to the Commands,
System Processes, and MIB Reference in the BEA WebLogic Enterprise online
documentation. In addition to the CLOPT -f filename parameter, the TMIFRSVR
parameter can contain other parameters (those that are not specific to the BEA Tuxedo
system) in the SERVERS section of an application’s UBBCONFIG configuration file. See
the section “Configuring Servers” on page 3-34 for details about parameters such as
SRVGRP, SRVID, RESTART, MAXGEN, and GRACE.

Administration Guide 9-1

9 Configuring Multiple
Domains (BEA
WebLogic Enterprise
Systems)

BEA WebLogic Enterprise domains are an extension of BEA Tuxedo domains. A
domain is a construct that is entirely administrative. There are no programming
interfaces that refer to domains. Everything concerning domains is done by
configuration files; only an administrator is aware of domains.

This topic includes the following sections:

n Configuring Multiple Domains

n Types of Domain Configurations

n Examples: Configuring Multiple Domains

Overview of Multiple Domains

In the versions 4.0 and 4.1 releases of the BEA WebLogic Enterprise software, a
domain was an administrative unit that was entirely self-contained and that described
one application. The concept of application in those earlier versions is that of a “logical
application” that covers the entire domain. The logical application might well be made
up of several individual subapplications with little or no interactions. Only servers

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-2 Administration Guide

described in the domain were available to the applications. In this context, it is correct
to say that BEA WebLogic Enterprise version 4.0 and 4.1 systems consisted of only
one “local domain.”

Since BEA WebLogic Enterprise software was capable of having only one domain,
there was no reason to consider reasons for grouping services one way or another.
There was only one way: everything goes into the (single) local domain. However, an
enterprise can have many different kinds of applications, be geographically dispersed,
and be organized into different areas of responsibility. There might be many separate
domains. Each domain is a separately administered unit. Perhaps it is organized for
geographical considerations (all the machines in a given location). Perhaps it is
organized on departmental grounds within an enterprise (accounting, manufacturing,
shipping, and so on).

Eventually, an enterprise wants the different applications in those domains to be able
to cooperate. It is often impossible to expand a single domain to encompass the
enterprise. However, the size of an expanded domain in terms of the number of
machines and services would be impractical. Since a single domain must be
administered as a whole, the configuration would rapidly become huge and require
more effort in administering than in developing and implementing applications.

Therefore, to keep a domain relatively compact for administration, there must be a way
to separate applications into multiple domains and still allow applications in one
domain to access services in other domains. This capability for interdomain
communication is what is generically called “BEA WebLogic Enterprise domains.”

Interdomain Communication

Figure 9-1 shows a simple multiple-domain configuration.

Administration Guide 9-3

Figure 9-1 Multiple-domain Configuration

The following steps describe single-domain communication between Client X and
Domain A:

1. Client X connects to Domain A using the Bootstrap object. The client application
uses the Bootstrap object to locate a FactoryFinder and then uses the FactoryFinder
to ask for a factory for objects of type Q. (The FactoryFinder call is itself an
invocation on Domain A.)

2. When the FactoryFinder returns a factory, the client then invokes that factory in
Domain A.

3. The factory returns a reference to an object of type Q, called Q1.

4. The client now invokes on object Q1 in Domain A.

Note: Throughout all of these steps, the client does not know where any of the
objects are, or which domains they are in. It might not even know that there is
something called a domain. The administrative actions for connecting a client
to Domain A are relatively simple for a client, because the client is a simple
machine and has very little infrastructure; it stands alone for the most part.
Indeed, the connection to a WebLogic Enterprise domain is the primary
administration for a client. The actual administrative chore is setting the
address of the ISL that is in Domain A.

For multiple-domain communication, Q1 needs the services of Object R1, which is in
Domain C; therefore, object Q1 must execute operations similar to those described in
steps 1 through 4 above, but across domain boundaries. The actual steps are as follows:

text
Client X

Server
for Q

Domain
Gateway

Domain
Gateway

Server
for R

Domain A Domain C

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-4 Administration Guide

1. Object Q1 uses a Bootstrap object to locate a FactoryFinder and then uses the
FactoryFinder to ask for a factory for objects of type R.

2. When the FactoryFinder returns a reference to a factory in Domain C, Object Q1
invokes that factory.

3. The factory returns a reference to an object of type R, called R1.

4. Object Q1 invokes on Object R1.

Note: As with Client X, there must be some administration to allow Object Q1 to get
at the factories and objects in Domain C. As Figure 9-1 shows, the mechanism
for communication between domains is a domain gateway. A domain gateway
is a system server in a domain.

A system server is different than a user-written server because it is provided
as part of the WebLogic Enterprise product; other system servers are the name
servers, FactoryFinders, and ISLs. A domain gateway is somewhat similar in
concept to an ISL because it is the “contact” point for a domain. It is different
from an ISL, however, because a domain gateway connects to another domain
gateway, which is itself a contact point for a domain; that is, a domain
gateway’s job is to connect to another domain gateway. Thus, the pair of
domain gateways cooperate to make sure that invocation on objects that
inhabit different domains are routed to the correct domain.

For domain gateways to operate in this manner, they must be configured properly. That
configuration is the subject of the following sections.

Functions of Multiple-domain Configuration Elements

The following elements work together to accomplish the configuration of multiple
domains:

n UBBCONFIG file

The UBBCONFIG file names a domain and identifies the group and service entry
for a domain gateway server. No attributes of domain gateways are specified in
the UBBCONFIG file; all such attributes are in the DMCONFIG file.

Administration Guide 9-5

n Domain configuration file

The domain configuration file (DMCONFIG) describes the remote domains that are
connected to the local domain. If there is no DMCONFIG file, there are no
connections.

n FactoryFinder domain configuration file

One FactoryFinder domain configuration file (factory_finder.ini) is
required for each domain that is connected to one or more other domains. If a
domain is not connected to another domain, there is no need for this file.

This file specifies which factories can be searched for or found across domain
boundaries. You must carefully coordinate the factory_finder.ini file with
the DMCONFIG so that they both have information about the same connected
domains and provide the same connectivity.

n Invocation of an object in a remote domain

The whole point of the “BEA WebLogic Enterprise Domains” feature is for a
application in one domain to be able to make an invocation on an object in
another domain, without either the client or server applications being aware that
domains are a factor. Configuration information is intended to allow such
invocations to cross domain boundaries and to hide the fact of those boundaries
from applications.

Being able to make an invocation on a reference for an object in a remote
domain depends on a satisfactory set of three configuration files—the
UBBCONFIG, DMCONFIG, and factory_finder.ini files—for each domain and
on the coordination of two of those configuration files—the DMCONFIG and
factory_finder.ini files—between domains. As the number of domains
grows, the coordination effort grows.

n References to objects in a remote domain

Any object reference may specify a local domain or a remote domain. A
reference to a remote domain typically happens when a FactoryFinder returns a
reference to a factory in a remote domain. It also happens when that factory, in
turn, creates and returns a reference to an object in that remote domain
(although, of course, the reference is local to the domain of the factory).

Note: Applications are not aware of the domain of an object reference. Applications
cannot find out what domain an object reference refers to. Thus, invocations
on an object reference for a remote domain are transparent to the application.
This transparency allows administrators the freedom to configure services in

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-6 Administration Guide

individual domains and to spread resources across multiple domains. If
applications were to include information about domains, changing
configurations would require that the applications be rewritten as well.

n FactoryFinders

For a server in a local domain to obtain an object reference to an object in
another domain, the application uses the same FactoryFinder pattern as it does
for objects in the local domain. The application uses the same pattern because it
is not aware that the factory finder returns a reference to a factory in another
domain. The configuration files hide this fact.

Once an object reference has been obtained via a FactoryFinder or factory, the
object reference can be passed anywhere; that is, passed to objects in the local
domain, returned to a client, or passed to another domain.

Configuring Multiple Domains

You use the following three configuration files to configure multiple domains:

n The UBBCONFIG file

n The domain configuration (DMCONFIG) file, and

n The FactoryFinder domain configuration file (factory_finder.ini).

The UBBCONFIG File

You must specify the following parameters in the UBBCONFIG file to configure
multiple domains:

n Domain name

n Gateway group

n Gateway service

Configuring Multiple Domains

Administration Guide 9-7

Domain Name

Though not required for single domains (that is, standalone domains), a domain that is
connected to another domain must have a DOMAIN ID. You specify this parameter in
the RESOURCES section of the UBBCONFIG file, as follows:

 DOMAIN ID = <domain-name>

The <domain-name> must be 1 to13 characters long. For example:

 DOMAIN ID = headquarters

<domain-name> is the name that will be referenced in the DM_REMOTE_SERVICES and
DM_LOCAL_SERVICES sections of the related DMCONFIG file. In that file, the
<domain-name> will be referenced as:

 "//<domain-name>"

The quotes are part of the reference. The slashes (//) mean that the name applies to
BEA WebLogic Enterprise domains, rather than to BEA Tuxedo domains. For
example:

 "//headquarters"

Note: Every domain in an enterprise must have a unique <domain-name>.

Gateway Group and Service

As with every other system service, there must be a group and a service name specified
for a gateway. For example, the GROUPS section might contain:

LGWGRP GRPNO=4 LMID=LDOM

In this example, LGWGRP is a name chosen by a user (perhaps an abbreviation for
“Local Gateway Group”).

The service name for a domain gateway is GWTDOMAIN and must be associated, like
every other group, with a server group and a server ID. You specify the service name
in the SERVERS section associated with the server group name chosen. For example:

GWTDOMAIN SRVGRP=LGWGRP SRVID=1

This tells the BEA WebLogic Enterprise server that a domain gateway is to be used
and that additional information is found in the DMCONFIG file.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-8 Administration Guide

The Domain Configuration (DMCONFIG) File

There is one DMCONFIG file per domain. It describes the relationship between the local
domain (the domain in which the DMCONFIG file resides) and remote domains (any
other domains). The DMCONFIG file contains domain information for BEA Tuxedo
domains and for BEA WebLogic Enterprise domains.

The sections below concentrate on the information that applies to BEA WebLogic
Enterprise domains. In other documentation for the DMCONFIG file, the communication
between local and remote domains is based on BEA Tuxedo services, a concept not
used in BEA WebLogic Enterprise. For BEA WebLogic Enterprise, the “service”
name is the name of another BEA WebLogic Enterprise domain that can service BEA
WebLogic Enterprise requests.

The DMCONFIG file consists of up to eight parts, but one part, DM_ROUTING, does not
apply to BEA WebLogic Enterprise domains. The other seven parts refer to BEA
WebLogic Enterprise domains, but many of the BEA Tuxedo parameters are not used.
Those seven parts are: DM_RESOURCES, DM_LOCAL_DOMAINS, DM_REMOTE_DOMAINS,
DM_LOCAL_SERVICES, DM_REMOTE_SERVICES, DM_ACCESS_CONTROL, and
DM_TDOMAIN.

The following sections refer to the sample DMCONFIG file shown in Listing 9-1.

Listing 9-1 Sample DMCONFIG File

#
BEA WebLogic Enterprise DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES
VERSION=Experimental8.9

*DM_LOCAL_DOMAINS
LDOM GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="MUTT"

*DM_REMOTE_DOMAINS
TDOM1 TYPE=TDOMAIN DOMAINID="JEFF"

*DM_TDOMAIN
LDOM NWADDR="//MUTT:2507"
TDOM1 NWADDR="//JEFF:3186"

*DM_LOCAL_SERVICES
"//MUTT"

Configuring Multiple Domains

Administration Guide 9-9

*DM_REMOTE_SERVICES
"//JEFF" RDOM=TDOM1

DM_RESOURCES

The DM_RESOURCES section can contain a single field, VERSION. It is not checked by
software; it is provided simply as a place where users can enter a string that may have
some documentation value to the application.

 *DM_RESOURCES
 VERSION=Experimental8.9

DM_LOCAL_DOMAINS

The DM_LOCAL_DOMAINS section specifies some attributes for gateways into the local
domain from the outside. The section must have an entry for each gateway group
defined in the UBBCONFIG fle that will provide access to the local domain from other
domains. Each entry specifies the parameters required for the domain gateway
processes running in that group.

Entries have the form:

 LDOM required-parameters [optional-parameters]

where LDOM is an identifier used to refer to the gateway to the local domain. LDOM must
be unique among all LDOM and RDOM entries across the enterprise (that is, among the set
of domains connected to each other). Note that LDOM is not the same name as the
<domain-name> or the gateway group that is specified in the UBBCONFIG file. Rather,
LDOM is a name used only within the DMCONFIG file to provide an extra level of
insulation from potential changes in the UBBCONFIG file (changes in UBBCONFIG will
affect only this one part of DMCONFIG).

The following are required parameters:

GWGRP = identifier

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-10 Administration Guide

This parameter specifies the name of a gateway server group (the name provided
in the UBBCONFIG file) representing this local domain.

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of domains for BEA
WebLogic Enterprise.

DOMAINID = string

The DOMAINID parameter is used to identify the local domain for the purposes of
security. The gateway server group in GWGRP uses this string during any security
checks. It has no required relationship to the <domain-name> found in the
RESOURCES section of the UBBCONFIG file. DOMAINID must be unique across
both local and remote domains. The value of string can be a sequence of
characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal digits
preceded by 0x (for example, “0x0002FF98C0000B9D6”). DOMAINID must be
32 octets or fewer in length. If the value is a string, it must be 32 characters or
fewer (counting the trailing null).

For example, the lines

 *DM_LOCAL_DOMAINS
 LDOM GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="MUTT"

identify LDOM as an access point to the local domain. It is associated with the service
group LGWGRP (as specified in the UBBCONFIG file). If the gateway is ever involved in
a domain-to-domain security check, it goes by the name MUTT.

Optional parameters describe resources and limits used in the operation of domain
gateways. For a description of these parameters, refer the dmconfig (5) reference page
in the BEA Tuxedo Reference Manual.

DM_REMOTE_DOMAINS

The DM_REMOTE_DOMAINS section specifies some attributes for gateways to remote
domains. The section has an entry for each UBBCONFIG file-defined gateway group that
will send requests to remote domains. Each entry specifies the parameters required for
the domain gateway processes running in that group.

Entries have the form:

 RDOM required-parameters

Configuring Multiple Domains

Administration Guide 9-11

where RDOM is an identifier used to refer to the gateway providing access to the remote
domain. RDOM must be unique among all LDOM and RDOM entries across the enterprise
(that is, among the set of domains connected to each other). Note that RDOM is not the
same name as the <domain-name> or the gateway group that is specified in the
UBBCONFIG file. Rather, RDOM is a name used only within the DMCONFIG to provide an
extra level of insulation from potential changes in UBBCONFIG (changes in UBBCONFIG
will affect only this one part of DMCONFIG).

The required parameters are:

TYPE = TDOMAIN

The TYPE parameter is required to specify the use of domains for BEA
WebLogic Enterprise.

DOMAINID = string

The DOMAINID parameter is used to identify the remote domain for the
purposes of security. The gateway uses this string during any security checks.
DOMAINID has no required relationship to the <domain-name> found in the
RESOURCES section of the UBBCONFIG file. DOMAINID must be unique across
both local and remote domains. The value of string can be a sequence of
characters (for example, “BA.CENTRAL01”), or a sequence of hexadecimal
digits preceded by “0x” (for example, “0x0002FF98C0000B9D6”).
DOMAINID must be 32 octets or fewer in length. If the value is a string, it must
be 32 characters or fewer (counting the trailing null).
Entries associated with a remote domain can be specified more than once. The
first one specified is considered to be the primary address, which means it is
the first one tried when a connection is being attempted to a remote domain.
If a network connection cannot be established using the NWADDR of the
primary entry, the NWADDR associated with the secondary entry is used.
(NWADDR is the physical address; see the DM_TDOMAIN section.)
For example, the lines

 *DM_REMOTE_DOMAINS
 TDOM1 TYPE=TDOMAIN DOMAINID="JEFF"

identify TDOM1 as the access point name of a gateway. If the gateway is ever
involved in a domain-to-domain security check with a partner gateway, the
gateway expects that partner to go by the name JEFF.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-12 Administration Guide

DM_TDOMAIN

The DM_TDOMAIN section defines the network addressing information for gateways
implementing BEA WebLogic Enterprise domains. There should be one entry for each
domain gateway that accepts requests from remote domains, and one entry for each
domain gateway that sends requests to remote domains.

The format of each entry is:

DOM required-parameters [optional-parameters]

where DOM is an identifier value used to identify either a local domain access point
(LDOM in the DM_LOCAL_DOMAINS section) or a remote domain access point (RDOM in
the DM_REMOTE_DOMAINS section).

The following parameter is required:

NWADDR = string

This parameter specifies the network address associated with a local domain
or a remote domain. If the association is with a local domain, the NWADDR is
used to accept connections from other domains. If the association is with a
remote domain, the NWADDR is used to initiate a connection. This parameter
specifies the network address to be used by the process as its listening
address. The listening address for a domain gateway is the means by which it
is contacted by other gateway processes participating in the application. If
string has the form "0xhex-digits" or "\\xhex-digits", it must
contain an even number of valid hex digits. These forms are translated
internally into a character array containing TCP/IP addresses. The addresses
may also be in either of the following two forms:
 "//hostname:port_number"
 "//#.#.#.#:port_number"

In the first of these formats, hostname is resolved to a TCP/IP host address
at the time the address is bound, using the locally configured name resolution
facilities accessed via gethostbyname(3c). The "#.#.#.#" is the dotted
decimal format, where each # represents a decimal number in the range 0 to
255.

Port_number is a decimal number in the range 0 to 65535 (the hexadecimal
representations of the string specified). For example:
 *DM_TDOMAIN
 LDOM NWADDR="//MUTT:2507"
 TDOM1 NWADDR="//JEFF:3186"

Configuring Multiple Domains

Administration Guide 9-13

Continuing the example from above, the first entry specifies a gateway with
the domain access name of LDOM (meaning that it corresponds to the local
gateway group LGWGRP, specified in UBBCONFIG). Since LDOM was defined in
DM_LOCAL_DOMAINS, that means the gateway is configured to accept requests
from other domains. It listens on the address "//MUTT:2507". Similarly, the
second entry is for the domain access name TDOM1, which appears in
DM_REMOTE_DOMAINS, transferring requests to a remote domain. In this case,
the gateway associated with TDOM1 sends requests to the address
"//JEFF:3186".

For a description of the optional parameters, refer to the dmconfig(5) reference page
in the BEA Tuxedo Reference Manual.

DM_REMOTE_SERVICES

The DM_REMOTE_SERVICES section specifies additional attributes for gateways to
remote domains. The format of each entry is:

 service RDOM=<rdom-name>
 [LDOM=<ldom-name>]
 [TRAN_TIME=...]

where service is of the form:

 "//<domain-name>"

This <domain-name> is the name that occurs RESOURCES section of the UBBCONFIG
file as <domain-name>. Each entry specifies an rdom-name and, optionally, an
ldom-name. The gateway uses the attributes for those entries for establishing a
gateway pair for BEA WebLogic Enterprise domain communication. Gateways
operate in pairs. At boot time, the local domain uses attributes of rdom-name (the
address specified in the DM_TDOMAIN section) to establish a connection to a gateway in
the other domain. If security is used, the other attributes of rdom-name and ldom-name
are used for mutual authentication. At run time, when BEA WebLogic Enterprise
determines that a request must travel to domain <domain-name>. It uses the gateway
specified by rdom-name to send the request to another domain.

Most often, <domain-name> is the name of the domain specified in the address of the
rdom-name. In that situation, when the request ends up at the other end of the gateway,
it is served in that domain. For example:

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-14 Administration Guide

 *DM_REMOTE_SERVICES
 "//JEFF" RDOM=TDOM1

In this case, the domain name JEFF is located at the address "//JEFF:3186". That
address might or might not have a UBBCONFIG file that specifies its domain name as
JEFF. If it does, the request can be serviced immediately.

It is possible to have entries that send requests for the specified domain-name to an
intermediary domain that acts as a pass-through for routing purposes.

The remaining optional parameter, TRANTIME = integer, specifies the default
timeout value, in seconds, for a transaction automatically started for the associated
service. The value must be greater than or equal to 0 (zero) and less than 2147483648.
The default is 30 seconds. A value of 0 (zero) implies the maximum timeout value for
the machine.

DM_LOCAL_SERVICES

The DM_LOCAL_SERVICES section specifies additional attributes for gateways that
accept requests into the local domain from the outside.

Lines within this section have the form:

 service [LDOM=<ldom-name>]
 [ACL=...]

where service is of the form:

 "//<domain-name>"

This <domain-name> is the name that occurs in the RESOURCES section of the
UBBCONFIG file as <domain-name>. Most likely this is the name of the domain in
which the gateway resides, meaning that this (local) domain accepts BEA WebLogic
Enterprise requests from other domains. It is also possible (but not necessary, except
for purposes of security) to have an entry that accepts requests for a different domain
name in the case where the local domain acts as a pass-through for routing purposes.

Notice that exported services inherit the properties specified for the service in an entry
in the SERVICES section of the TUXCONFIG file, or their defaults. Some of the
properties that may be inherited are LOAD, PRIO, AUTOTRAN, ROUTING, BUFTYPE, and
TRANTIME.

Configuring Multiple Domains

Administration Guide 9-15

The optional parameter, ACL = identifier, specifies the name of the access control
list (ACL) to be used by the local domain to restrict requests made to this service by
remote domains. The name of the ACL is defined in the DM_ACCESS_CONTROL section.
If this parameter is not specified, access control is not performed for requests to this
service.

For example, the lines:

 *DM_LOCAL_SERVICES
 "//MUTT"

state that this domain accepts requests destined for the domain with name MUTT.

DM_ACCESS_CONTROL

The DM_ACCESS_CONTROL section specifies the access control lists used by a local
domain. Lines in this section are of the form:

 ACL_NAME required parameters

where ACL_NAME is an (identifier) name used to identify a particular access control list;
it must be 15 characters or less in length.

The only required parameter is:

 ACLIST = identifier [,identifier]

where an ACLIST is composed of one or more remote domain names (RDOM) separated
by commas. The wildcard character (*) can be used to specify that all the remote
domains defined in the DM_REMOTE_DOMAINS section can access a local domain.

Note: The factory_finder.ini and DMCONFIG files must be coordinated; that is,
if the factory_finder.ini file declares another domain to have accessible
factories, there must be a way in DMCONFIG to get to that domain.

The factory_finder.ini File

Administrators are required to identify any factory objects that can be used in the
current (local) /Domain, but that are resident in a different (remote) /Domain. You
identify these factories in a FactoryFinder domain configuration file, also referred to
as the factory_finder.ini file. This is an ASCII file that can be created and
updated using a text editor.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-16 Administration Guide

The factory_finder.ini file can be used to identify remote CORBA factories and remote
EJB Home interfaces that can be used in the local domain.

The format of the factory_finder.ini file is modeled after the syntax used to
describe /Domains, and is shown below:

 *DM_REMOTE_FACTORIES
 "local_factory_id.factory_kind"
 DOMAINID="domain_id"
 RNAME="remote_factory_id.factory_kind"
 ...

 [*DM_LOCAL_FACTORIES]
 ["factory_id.factory_kind"]
 ...

Sample syntax for CORBA factory objects is as follows:

*DM_REMOTE_FACTORIES
 "AccountFactory.FactoryKind"
 "DOMAINID="MyAccountFactoryDomain"
 RNAME="MyAccountFactory.FactoryKind

where: AccountFactory is the name used to register the factory in the local domain’s
FactoryFinder, MyAccountFactoryDomain is the name of the remote domain,
MyAccountFactory is the name used to register the factory in the remote domain’s
FactoryFinder.

Sample syntax for EJB Home interfaces in the Java Naming and Directory Interface
(JNDI) is as follows:

*DM_REMOTE_FACTORIES
 "AccountHome.FactoryKind"
 DOMAINID="MyAccountHomeDomain"
 RNAME="MyAccountHome.FactoryKind"

where: AccountHome is the name used to register the EJB Home interface in the local
domain’s JNDI, MyAccountHomeDomain is the name of the remote domain, and
MyAccountHomeDomain is the name used to register the EJB Home interface in the
remote domain’s JNDI.

The Master NameManager reads the factory_finder.ini file when the process is
started. The reason for starting the Master NameManager affects which portions of the
factory_finder.ini file are processed. If the Master NameManager is being started
as part of booting an application, the initialization mode, the entire contents of the file
is processed. As a result, the information in the DM_REMOTE_FACTORIES section results
in entries being added for the factory objects or EJB Home interfaces being imported.

Configuring Multiple Domains

Administration Guide 9-17

On the other hand, if the Master NameManager is being restarted as a result of a
process failure, only the DM_LOCAL_FACTORIES section of the file is read. This section
of the factory_finder.ini file must be re-read to reload the information that is used
to restrict the exportation of certain factory objects or EJB Home interfaces into
another domain.

Note: Since the Master NameManager reads the factory_finder.ini file only
when the process is started, there is no way to update the Master
NameManager (for example, when a new domain with factory objects to be
imported needs to be added) without shutting down the Master NameManager.

A factory_finder.ini file applies to the domain in which it resides. It contains two
sections: the DM_REMOTE_FACTORIES section and the DM_LOCAL_FACTORIES section.
Either section can be absent or contain nothing.

The following sections provide more information on how to use the
DM_REMOTE_FACTORIES section and the DM_LOCAL_FACTORIES section.

DM_REMOTE_FACTORIES

The DM_REMOTE_FACTORIES section provides information about the factory objects or
EJB Home interfaces that are available in remote domains and that are imported so that
applications in the local domain can use them. Identifiers for remote factory objects or
EJB Home interfaces are listed in this section. The identifier, under which the object
is registered, including a kind value of “FactoryInterface” , must be listed in this
section. For example, the entry for a remote factory object to be registered by the TP
Framework with the identifier Teller in domain “Norwest” would be specified as:

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

If the RNAME is not specified, the factory_kind must be specified in the factory name
and the factory name must be enclosed in quotation marks; otherwise, the
NameManager is not able to locate the appropriate factory. An entry that does not
contain a factory_kind value is not defaulted with a value of
“FactoryInterface” . The following example shows a factory object to be registered
with the identifier Teller in domain “Norwest” . Note the absence of the RNAME

specification, the specification of the factory_kind value, and the quotation marks
around the factory name.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-18 Administration Guide

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"

Because the identities of factories in a multidomain configuration may collide, the
factory identifier and the RNAME parameters allow you to specify alternative identities,
or “aliases,” in the local domain for remote factories. Listing 9-2 shows two examples
of a remote factory that is registered by the TP Framework with the identifier
BankTeller in domain “Norwest” . In both examples, the factory is made available
in local domain with an alias of Teller .

Listing 9-2 Assigning an Alias to a Remote Factory

#EXAMPLE 1:

*DM_REMOTE_FACTORIES
 Teller
 DOMAINID="Norwest"
 RNAME=”BankTeller.FactoryInterface”

#EXAMPLE 2:

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

You can also assign multiple aliases to the same remote factory. In the example shown
in Listing 9-3, the remote factory will be registered in the local domain with two
aliases: Teller and BankTeller .

Listing 9-3 Assigning Multiple Aliases to a Remote Factory

*DM_REMOTE_FACTORIES
 "Teller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"
 "BankTeller.FactoryInterface"
 DOMAINID="Norwest"
 RNAME="BankTeller.FactoryInterface"

Configuring Multiple Domains

Administration Guide 9-19

Usage Note: In multidomain configurations, factory object and ejb home interface identifiers must
be unique across domains in the enterprise.

In a multidomain configuration, two different domains must not have a factory objects
or EJB Home interfaces with the same factory_id.factory_kind identifier, for
example: "Teller.FactoryInterface".

If the same identifier, or name, is used in two domains, the software behavior varies
according to the version of the BEA WebLogic Enterprise software.

n In releases prior to 5.1, the BEA WebLogic Enterprise software allows the first
server in a domain to register the factory without issuing an error message. If
two factories with the same name are registered in a domain, the Master
NameManager fails.

n In the 5.1 release, the BEA WebLogic Enterprise software generates an error and
writes it to the ULOG.

Note: In a single domain configuration, BEA WebLogic Enterprise supports
multiple factories objects or EJB Home interfaces with the same name. This
type of configuration is allowed so as to achieve load-balancing.

There are two ways to ensure that your identifiers, or names, are unique across
domains and thus avoid this problem:

1. Use unique identifiers throughout the enterprise. This may mean keeping a master
list of all identifiers.

2. In the factory_finder.ini file, use the RNAME parameter so that an alias is
used by the local NameManager. (This also means that local clients will have to
be modified to use the alias to access the remote factory object or EJB Home
interface.) Listing 9-2 shows an example of a factory_finder.ini file that
uses the RNAME parameter to create an alias.

DM_LOCAL_FACTORIES

The DM_LOCAL_FACTORIES section specifies factory objects or EJB Home interfaces
in the local domain that are available to be exported to other domains. This section can
be used in the following ways:

n If the DM_LOCAL_FACTORIES section does not exist in a factory_finder.ini,
or exists but is empty, all factory objects and EJB Home interfaces in the local
domain are available to remote domains. This allows administrators an easy

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-20 Administration Guide

means to make local factory objects or EJB Home interfaces available to remote
domains without having to provide an entry for every factory object or EJB
Home interface in the local domain.

n If the DM_LOCAL_FACTORIES section exists in a factory_finder.ini file but
contains the reserved keyword “NONE”, none of the factory objects or EJB Home
interfaces in the local domain are available to remote domains. This allows
administrators to restrict access without having to provide an entry for every
factory object or EJB Home interface in the local domain.

The identifier, or name, under which the factory object or EJB Home interface is
registered, including a kind value of “FactoryInterface” , must be listed in this
section. For example, the entry for a factory object to be registered by the TP
Framework with the identifier Teller would be specified as:

*DM_LOCAL_FACTORIES
 "Teller.FactoryInterface"

The factory_kind must be specified for the NameManager to locate the appropriate
factory object or EJB Home interface. An entry that does not contain a factory_kind
value is not defaulted with a value of “FactoryInterface” . This allows for the use
of the CORBA NamingService.

The factory_finder.ini file specifies that the process of finding a factory can be
exported to a remote domain by including a section beginning with
“*DM_REMOTE_FACTORIES”. In other words, including this section means that the
local domain can find factories in a remote domain.

An entry into the file for domain A might be:

 *DM_REMOTE_FACTORIES
 fA.FactoryInterface DOMAINID=B

This means that a request in domain A to find a factory with the identifier fA can be
satisfied by the Factory Finder in domain B. Of course, the UBBCONFIG and DMCONFIG
files for the two domains must also be set up so that there are connected domain
gateways between the two domains.)

An alternate form of the entry is:

 CDE.FactoryInterface DOMAINID=B RNAME=fA.FactoryInterface

This means that a request in domain A to find a factory with the identifier “CDE” will
be satisfied by the FactoryFinder in domain B using the ID fA . This is sometimes called
an alias.

Types of Domain Configurations

Administration Guide 9-21

Note: The factory ID must have “.FactoryInterface” at the end. For simplicity,
when talking about test configurations, we will leave that off, but it should
appear in the file.

For more information about the factory_finder.ini file, see description of the
factory_finder.ini file in the Commands, System Processes, and MIB Reference.

Local Factories

A domain can specify which of its factories can be accessed by other domains. This is
specified in a section beginning with *DM_LOCAL_FACTORIES. If the
factory_finder.ini file does not exist, or if it exists and this section does not
appear, or is empty, all local factories can be accessed by remote domains. If the
section exists and contains the keyword None, none of the local factories are
exportable; that is, none are allowed to be found by a remote Factory Finder. If the
section exists, it can contain a list of factories available to remote domains. For
example,

 *DM_LOCAL_FACTORIES
 fA.FactoryInterface
 fB.FactoryInterface

This specifies that factories fA and fB are findable from other domains. All factories
other than factories explicitly listed are not findable. Unlike remote factories, there is
no provision for an alias with local factories.

Note: The factory_finder.ini and DMCONFIG files must be coordinated, that is,
if the factory_finder.ini file declares another domain to have accessible
factories, there must be a way in DMCONFIG to get to that domain.

Types of Domain Configurations

When using the multiple domains feature, you can configure two types of
configurations: directly connected domains and indirectly connected domains. You, as
the administrator, configure both types using the domain configuration file, DMCONFIG.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-22 Administration Guide

Directly Connected Domains

It is possible for every domain in an enterprise to have a gateway to every other domain
it might use. Such a configuration has the advantage that a request goes directly to the
target domain, with the minimum of delay. Such an “n-way” configuration is quite
reasonable when the number of domains is small, but each new domain requires two
new gateways. At some point, an administrator may consider a different configuration,
giving up speed of delivery for ease of management of domain connections. This is
when the ability to configure indirectly connected domains becomes advantageous.

Indirectly Connected Domains

An administrator should consider what the likely traffic patterns are. Domains that
have only occasional interactions are candidates for gateway removal. Since there will
still be interactions, it must still be possible to reach the other domain. The technique
used is to route the request through an intermediate domain that does have direct access
to the target domain. For example, we might have three domains, A, B, and C. Domains
A and B are directly connected and domains B and C are directly connected, but A and
C are not directly connected (See Figure 9-2). For domains A and C to communicate,
they must use domain B as the intermediary. Therefore, the DMCONFIG file for domain
A must state that it is possible to connect to domain C by going through domain B (and
vice versa). That is, the connectivity is:

Domains A <-> B <-> C
Gateways GAB GBA GBC GCB

Domain A has a gateway process, GAB (the Gateway from A to B), that connects to
domain B. The domain A DMCONFIG file states that GAB acts as a gateway to two
domains, domains B and C. The DMCONFIG file for domain C has a similar
configuration, stating that GCB is connected to B and A. The DMCONFIG file for domain
B has two gateway processes, one which connects to A (GBA) and one which connects
to C (GBC). This is called an indirect connection.

Given this indirect connection, when a server in A invokes a request on an object in C,
BEA WebLogic Enterprise knows that it can send the request to gateway GAB. The
BEA WebLogic Enterprise gateway does not know that its partner gateway in B cannot
service the request itself, but that is acceptable. Once the request is in domain B, it is
routed through GBC to C, which can service the request. Thus, the request is serviced
with one extra hop.

Examples: Configuring Multiple Domains

Administration Guide 9-23

It is even possible for the two gateways in domain B to be a single gateway, so that
there is not an extra hop within B. In effect, the same processing occurs in domain B,
but it all occurs within a single gateway process.

Figure 9-2 Indirectly Connected Domains

Examples: Configuring Multiple Domains

The following sections provide examples of how to configure directly connected
domains.

Note: These examples are provided for informational purposes only. If you want to
use these examples, you will have to change the APPDIR, TUXCONFIG, and
TUXDIR variables to match your environment. Also, you will have to substitute
appropriate information wherever text is enclosed by left (<) and right (>)
angle brackets (for example, <App Server Name>) and delete the angle
brackets.

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-24 Administration Guide

Sample UBBCONFIG Files

Listing 9-4, Listing 9-5, and Listing 9-6 show the UBBCONFIG files for three directly
connected domains: Here, There, and Yonder.

Note: To use these files, you must replace host with the name of the local machine.

Listing 9-4 UBBCONFIG File for the Here Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
#
#
RESOURCES
#
*RESOURCES
 IPCKEY 123312
 DOMAINID HereD
 MASTER LAPP
 MODEL SHM
 LDBAL N

#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07:
 /tst1/wle4.2/dec_unix/wlemdomai"
 TUXCONFIG="/tst1/wle4.2/test_dom/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE

Examples: Configuring Multiple Domains

Administration Guide 9-25

 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for Here>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"

#
SERVICES
#
*SERVICES

Listing 9-5 UBBCONFIG File for the There Domain

#
Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 133445
 DOMAINID ThereD
 MASTER LAPP1
 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP1

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-26 Administration Guide

 APPDIR="D:\test_dom\t07;D:\Iceberg\qa\orb\bld\wlemdomain"
 TUXCONFIG="D:\test_dom\tuxconfig"
 TUXDIR="D:\Iceberg"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT LMID=LAPP1
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEV SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M -f <FF ini file for There>"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

Listing 9-6 UBBCONFIG File for the Yonder Domain

Copyright (c) 1999 BEA Systems, Inc.
All rights reserved
#
RESOURCES
#
*RESOURCES
 IPCKEY 123334
 DOMAINID YonderD
 MASTER LAPP

Examples: Configuring Multiple Domains

Administration Guide 9-27

 MODEL SHM
 LDBAL N
#
MACHINES
#
*MACHINES
 <host>
 LMID=LAPP
 APPDIR="/tst1/wle4.2/test_dom/t07p:
 /tst1/wle4.2/<host3>/wlemdomain"
 TUXCONFIG="/tst1/wle4.2/test_dom/<host3>/tuxconfig"
 TUXDIR="/lclobb/lc"
 MAXWSCLIENTS=10
#
GROUPS
#
*GROUPS
 DEFAULT: LMID=LAPP
 ICEGRP GRPNO=11 OPENINFO=NONE
 GROUP1 GRPNO=21 OPENINFO=NONE
 LDMGRP GRPNO=3
 LGWGRP GRPNO=4
#
SERVERS
#
*SERVERS
 DEFAULT: CLOPT="-A"
 DMADM SRVGRP=LDMGRP SRVID=1
 GWADM SRVGRP=LGWGRP SRVID=1
 GWTDOMAIN SRVGRP=LGWGRP SRVID=2
 TMSYSEVT SRVGRP=ICEGRP SRVID=1
 TMFFNAME SRVGRP=ICEGRP SRVID=2
 CLOPT="-A -- -N -M"
 TMFFNAME SRVGRP=ICEGRP SRVID=3 CLOPT="-A -- -N"
 TMFFNAME SRVGRP=ICEGRP SRVID=4 CLOPT="-A -- -F"
 <App Server Name> SRVGRP=GROUP1 SRVID=2
 ISL SRVGRP=GROUP1 SRVID=1
 CLOPT="-A -- -d /dev/tcp -n //<host>:<port>"
#
SERVICES
#
*SERVICES

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-28 Administration Guide

Sample DMCONFIG File

Listing 9-7, Listing 9-8, and Listing 9-10 show the DMCONFIG files for three directly
connected domains: Here, There, and Yonder.

Note: To use Listing 9-7 in a multidomain configuration, you must replace host1
with the name of the local machine for the Here domain, replace host2 with
the name of the local machine for the There domain, and replace host3 with
the name of the local machine for the Yonder domain,

Listing 9-7 DMCONFIG File for the local machine in the Here Domain in a
Three-Domain Configuration

#
#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="HereG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="ThereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

Examples: Configuring Multiple Domains

Administration Guide 9-29

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
 "//HereD"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//ThereD "RDOM=TDOM1
 "//YonderD "RDOM=TDOM2

Note: To use Listing 9-8 in a multidomain configuration, you must replace host1
with the name of the local machine for the There domain, replace host2 with
the name of the local machine for the Here domain, and replace host3 with
the name of the local machine for the Yonder domain,

Listing 9-8 DMCONFIG File for the There Domain in a Three-Domain
Configuration

Listing 9-9 #
#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-30 Administration Guide

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="ThereG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="HereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
 "//ThereD"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//HereD "RDOM=TDOM1
 "//YonderD "RDOM=TDOM2

Note: To use Listing 9-10 in a multidomain configuration, you must replace host1
with the name of the local machine for the Yonder domain, replace host2 with
the name of the local machine for the Here domain, and replace host3 with
the name of the local machine for the There domain,

Listing 9-10 DMCONFIG File for the Yonder Domain in a Three-Domain
Configuration

Listing 9-11 #

Examples: Configuring Multiple Domains

Administration Guide 9-31

#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
#
Tuxedo DOMAIN CONFIGURATION FILE
#
*DM_RESOURCES

 VERSION=U22

#
DM_LOCAL_DOMAINS
#
*DM_LOCAL_DOMAINS

 LDOM1 GWGRP=LGWGRP TYPE=TDOMAIN DOMAINID="YonderG"

#
DM_REMOTE_DOMAINS
#
*DM_REMOTE_DOMAINS

 TDOM1 TYPE=TDOMAIN DOMAINID="HereG"
 TDOM2 TYPE=TDOMAIN DOMAINID="ThereG"

#
DM_TDOMAIN
#
*DM_TDOMAIN

 LDOM1 NWADDR="//<host1>:<tcpport>"
 TDOM1 NWADDR="//<host2>:<tcpport>"
 TDOM2 NWADDR="//<host3>:<tcpport>"
#
DM_LOCAL_SERVICES
#
*DM_LOCAL_SERVICES
 "//YonderG"
#
DM_REMOTE_SERVICES
#
*DM_REMOTE_SERVICES

 "//HereD "RDOM=TDOM1
 "//ThereD "RDOM=TDOM2

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-32 Administration Guide

Sample factory_finder.ini File

This section shows the factory_finder.ini files for the Here and There domains.
The Yonder domain does not require a factory_finder.ini file.

Listing 9-12 factory_finder.ini File for the Here Local Domain

#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
Factory Finder Initialization file for Domain "Here".
This is the local Domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES

 "AFactory.FactoryInterface"
#
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
 DOMAINID="YonderD"
 RNAME="AFactory.FactoryInterface"

 "BFactory.FactoryInterface"
 DOMAINID="YonderD"

Listing 9-13 factory_finder.ini File for the There Remote Domain

#
#Copyright (c) 1999 BEA Systems, Inc.
#All rights reserved
#
Factory Finder Initialization file for Domain "There".
#This is a remote domain.
#
DM_LOCAL_FACTORIES
#
*DM_LOCAL_FACTORIES
 "AFactory.FactoryInterface"

Examples: Configuring Multiple Domains

Administration Guide 9-33

#
DM_REMOTE_FACTORIES
#
*DM_REMOTE_FACTORIES
 "AFacYonder.FactoryInterface"
DOMAINID="YonderD"
RNAME="AFactory.FactoryInterface"
 "BFactory.FactoryInterface"
DOMAINID="YonderD"

9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)

9-34 Administration Guide

Administraton Guide 10-1

CHAPTER

10 Working with Multiple
Domains (BEA Tuxedo
Systems)

This chapter describes the task of administering services across multiple Domains by
using the BEA Tuxedo Domains feature. For information about configuring WebLogic
Enterprise domains, refer to Chapter 9, “Configuring Multiple Domains (BEA
WebLogic Enterprise Systems).”

This topic includes the following sections:

n Benefits of Using BEA Tuxedo System Domains

n What Is the Domains Gateway Configuration File?

n Configuring Local and Remote Domains

n Example of a Domains-based Configuration

n Ensuring Security in Domains

n Routing Service Requests to Remote Domains

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-2 Administration Guide

Benefits of Using BEA Tuxedo System
Domains

Using Domains provides the following benefits:

n Scalability and modular growth—programmers can structure their application for
modularity, isolation of failures, and independent growth. Interoperation with
other transaction processing applications is achieved easily by adding to the
Domains configuration the description of the interfaces (that is, services) used by
a remote application.

n Transparency and independence—applications are totally unaware of service
distribution. A service may be available on the same machine, on another
machine in the local domain, or on a remote domain. Client application
programmers do not need to know the implementation changes made to a
service, the location of a service, network addresses, and so on.

n Aliasing capability—this allows you to define a mapping between the service
names used by a remote application and the service names used by the local
application, allowing for easy integration of applications that use different
naming schemes.

n Transaction management and reliability—the Domains feature us integrated with
the BEA Tuxedo system transaction management capabilities.

n Availability—you can specify alternate destinations to handle failure conditions.

n Security—an access control list (ACL) facility is provided to restrict access to
local services from a particular set of remote domains. Domains also provides
encryption and password verification.

What Is the Domains Gateway Configuration File?

Administration Guide 10-3

What Is the Domains Gateway Configuration
File?

All domain configuration information is stored in a binary file, called the BDMCONFIG
file. You can create and edit the domain gateway configuration file (DMCONFIG file),
with any UNIX text editor. You can update the compiled BDMCONFIG file while the
system is running by using the dmadmin(1) command when using Domains. There
must be one BDMCONFIG file per BEA Tuxedo application.

A BEA Tuxedo system domain gateway is a server supplied by the BEA Tuxedo
system that enables access to and from remote domains. Domains provides a gateway
administrative server (GWADM) that enables run-time administration of the Domains
gateway group, and a Domains administrative server (DMADM) that enables run-time
administration of the Domains configuration information (BDMCONFIG). You enable
remote domain access by specifying a gateway group and a domain administration
group in the GROUPS section of the TUXCONFIG file, and by adding entries for the
gateway and the two administrative servers in the SERVERS section.

In Figure 10-1, DGW is the domain gateway; GWADM is the gateway administrative
server; DMADM is the Domains administrative server; and BDMCONFIG is the Domains
gateway configuration file.

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-4 Administration Guide

Figure 10-1 BEA Tuxedo Domains Gateway

Components of the DMCONFIG File

Table 10-1 describes the sections of the DMCONFIG file.

5HPRWH
'RPDLQV

*DWHZD\
*URXS

%'0&21),*

'0$'0

'RPDLQV
$GPLQLVWUDWLRQ

*DWHZD\

*:$'0

'*:'RPDLQV
7UDQVDFWLRQ

/RJ

*:$'0

'*:'RPDLQV
7UDQVDFWLRQ

/RJ

*DWHZD\
*URXS

Table 10-1 DMCONFIG Sections Descriptions

Section Purpose

DM_LOCAL_DOMAINS Describes the environment for a particular domain gateway group. You can
use multiple entries in this section to define multiple gateway groups within a
single BEA Tuxedo application.

DM_REMOTE_DOMAINS Identifies the remote domains that clients and servers of this Domains
application can access.

DM_LOCAL_SERVICES Describes the set of services in this domain which remote domains can access.

DM_REMOTE_SERVICES Describes the set of services provided by remote domains that are accessible
from this domain.

Configuring Local and Remote Domains

Administration Guide 10-5

Configuring Local and Remote Domains

To configure a local domain and a remote domain, perform the following tasks:

n Set environment variables

n Build a local application configuration file and a local domain gateway
configuration file

n Build a remote application configuration file and a remote domain gateway
configuration file

Setting Environment Variables

You need to set the following environment variables for the application to be
configured successfully:

n TUXDIR—the root directory (for example, /opt/tuxedo)

n TUXCONFIG—the application configuration file (for example, lapp.tux or
rapp.tux)

n BDMCONFIG—the Domains gateway configuration file (for example, lapp.bdm
or rapp.bdm)

DM_ROUTING Specifies criteria for data-dependent routing used by gateways to route service
requests to specific remote domains.

DM_ACCESS_CONTROL Specifies a named list (the Access Control List) of remote domains permitted
to access a particular service.

DM_<dmtype> Defines the specific parameters required for a particular Domains instance.
Currently, the value of dmtype can be OSITP, SNA, or TDOMAIN. (This
chapter focuses only on TDOMAIN.) You must specify each domain type in a
section of its own.

Table 10-1 DMCONFIG Sections Descriptions (Continued)

Section Purpose

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-6 Administration Guide

n PATH—must include $TUXDIR/bin

n LD_LIBRARY_PATH—must include $TUXDIR/lib

On AIX, LIBPATH must be set instead of LD_LIBRARY_PATH. On HP UX, SHLIB_PATH
must be set instead of LD_LIBRARY_PATH. On Windows NT, no variable for shared
libraries is required.

Examples

$ TUXDIR=/opt/tuxedo

$ PATH=$TUXDIR/bin:$PATH

$ LD_LIBRARY_PATH=$TUXDIR/lib:$LD_LIBRARY_PATH

$ export TUXDIR PATH LD_LIBRARY_PATH

Building a Local Application Configuration File and a
Local Domains Gateway Configuration File

Build a local application configuration file using tmloadcf(1), and a local domain
gateway configuration file using dmloadcf(1). The local application configuration file
(lapp.ubb) contains the information necessary to boot the local application. This file
is compiled into a binary data file (lapp.tux), using tmloadcf(1).

The local domain gateway configuration file (lapp.dom) contains the information
used by domain gateways for communications with other domains. This file is
compiled into a binary data file (lapp.bdm), using dmloadcf(1).

$ cd /home/lapp

$ TUXCONFIG=/home/lapp/lapp.tux; export TUXCONFIG

$ tmloadcf -y lapp.ubb

$ BDMCONFIG=/home/lapp/lapp_bdm; export BDMCONFIG

$ dmloadcf -y lapp.dom

$ tmboot -y

Configuring Local and Remote Domains

Administration Guide 10-7

Building a Remote Application Configuration File and a
Remote Domains Gateway Configuration File

Build a remote application configuration file and a remote domain gateway
configuration file. The remote application configuration file (rapp.ubb) contains the
information used by domain gateways for communication with other domains. This
file is compiled into a binary data file (rapp.tux).

The remote domain gateway configuration file (rapp.dom) contains the information
used by domain gateways to initialize the context required for communications with
other domains. This configuration file is similar to the local domain gateway
configuration file. The difference is in which services are exported and imported. This
file is compiled into a binary data file (rapp.bdm).

$ cd /home/rapp

$ TUXCONFIG=/home/rapp/rapp.tux; export TUXCONFIG

$ tmloadcf -y rapp.ubb

$ BDMCONFIG=/home/rapp/rapp_bdm; export BDMCONFIG

$ dmloadcf -y rapp.dom

$ tmboot -y

Once you create both the local and remote domains, you can then boot the application
using tmboot(1). The order in which the two domains are booted does not matter.
Monitor the applications with dmadmin(1).

Once both applications are booted, a client in the local application can call the
TOUPPER service residing in the remote application.

Example of a Domains-based Configuration

The Domains example, illustrated in Figure 10-2 and throughout this chapter, consists
of two applications, both of which are based on the Simpapp example provided with
the BEA Tuxedo system. The first application is called lapp for “local application;”
the second application is called rapp for “remote application.” lapp is configured to
allow its clients to access a service called TOUPPER, which is advertised in rapp.

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-8 Administration Guide

Figure 10-2 A Local and a Remote Application (simpapp)

Defining the Local Domains Environment

For the sample local application configuration file (lapp.ubb) shown in Listing 10-1,
only the required parameters are defined. Default settings are used for the other
parameters.

The following two server groups are defined:

n The first contains the domain administrative server (DMADM).

n The second contains the gateway administrative server (GWADM) and the domain
gateway (GWTDOMAIN).

The following three servers are defined:

n DMADM—the domain administrative server enables run-time administration of the
configuration information required by domain gateway groups. This server
provides run-time administration of the binary domain configuration file and
supports a list of registered gateway groups. (There must be only one instance of
DMADM per Domains application.)

Configuring Local and Remote Domains

Administration Guide 10-9

n GWADM—the gateway administrative server enables run-time administration of a
particular Domains gateway group. This server gets domain configuration
information from the DMADM server. It also provides administrative functionality
and transaction logging for the gateway group.

n GWTDOMAIN—the domain gateway server enables access to and from remote
Domains. It allows for interoperability of two or more BEA Tuxedo domains.
Information about the local and remote services it needs to export and import is
included in the domain configuration file. The domain gateway server should
always be configured with REPLYQ=N.

Listing 10-1 Example of a Local Application Configuration File

lapp.ubb
#
*RESOURCES
IPCKEY 111111

MASTER LAPP
MODEL SHM

*MACHINES
giselle

 LMID=LAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/lapp”
 TUXCONFIG=”/home/lapp/lapp.tux”

*GROUPS

LDMGRP GRPNO=1 LMID=LAPP
LGWGRP GRPNO=2 LMID=LAPP

*SERVERS

DMADM SRVGRP=LDMGRP SRVID=1
GWADM SRVGRP=LGWGRP SRVID=1
GWTDOMAIN SRVGRP=LGWGRP SRVID=2 REPLYQ=N

*SERVICES

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-10 Administration Guide

Defining the Local and Remote Domains, Addressing,
and Imported and Exported Services

For the sample local domain gateway configuration file (lapp.dom), shown in
Listing 10-2, only the required parameters are defined. Default settings are used for the
other parameters.

The DM_LOCAL_DOMAIN section identifies the local domains and their associated
gateway groups. This section has one entry (LAPP) and specifies the parameters
required for the domain gateway processes in that group, as follows:

n GWGRP specifies the name of the gateway server group as specified in the
application.

n TYPE of TDOMAIN indicates that the local domain will be communicating with
another BEA Tuxedo domain. Other options are SNA and OSI.

n DOMAINID identifies the name of the Domains gateway and must be unique
across all Domains.

The DM_REMOTE_DOMAINS section identifies the known set of remote Domains and
their characteristics. This section has one entry (RAPP). TYPE is used to classify the type
of Domains. DomainsID is a unique domain identifier.

The DM_TDOMAIN section defines the addressing information required by the BEA
Tuxedo Domains feature. Following are entries in the section for each local and remote
domain specified in this configuration file:

n NWADDR specifies either the network address to accept connections from other
BEA Tuxedo Domains (local Domains entry), or the network address to connect
to other BEA Tuxedo Domains (remote Domains entry).

The DM_LOCAL_SERVICES section provides information about the services that are
exported. This section has no entries because no services are being exported.

The DM_REMOTE_SERVICES section provides information about the services that are
imported. The TOUPPER service is imported so that it can be accessed by clients in the
local domains.

Configuring Local and Remote Domains

Administration Guide 10-11

Listing 10-2 Example of a Local Domains Gateway Configuration File

#
lapp.dom
#
*DM_LOCAL_DOMAINS

LAPP GWGRP=LGWGRP
 TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_REMOTE_DOMAINS

RAPP TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_TDOMAIN

LAPP NWADDR=”//mach1:5000"

RAPP NWADDR=”//mach2:5000"

*DM_LOCAL_SERVICES

*DM_REMOTE_SERVICES

TOUPPER

Defining the Remote Domains Environment

For the sample remote application configuration file (rapp.ubb), shown in
Listing 10-3, only the required parameters are defined. Default settings are used for the
other parameters.

The following three server groups are defined:

n The first server group (SRVGP=RDMGRP) contains the Domains administrative
server (DMADM).

n The second server group (SRVGP=RGWGRP) contains the gateway administrative
server, GWADM, and the Domains gateway, GWTDOMAIN.

n The third server group (SRVGP=APPGRP) contains the application server
simpserv .

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-12 Administration Guide

The following four servers are defined:

n DMADM—the Domains administrative server

n GWADM—the gateway administrative server

n GWTDOMAIN—the Domains gateway server

n simpserv—the simple application server that advertises the TOUPPER service,
which converts strings from lowercase to uppercase characters

Listing 10-3 Example of a Remote Application Configuration File

rapp.ubb
#
*RESOURCES
IPCKEY 222222

MASTER RAPP

MODEL SHM

*MACHINES

juliet

 LMID=RAPP
 TUXDIR=”/opt/tuxedo”
 APPDIR=”/home/rapp”
 TUXCONFIG=”/home/rapp/rapp.tux”

*GROUPS

RDMGRP GRPNO=1 LMID=RAPP
RGWGRP GRPNO=2 LMID=RAPP
APPGRP GRPNO=3 LMID=RAPP

*SERVERS

DMADM SRVGRP=RDMGRP SRVID=1
GWADM SRVGRP=RGWGRP SRVID=1
GWTDOMAIN SRVGRP=RGWGRP SRVID=2 REPLYQ=N
simpserv SRVGRP=APPGRP SRVID=1

*SERVICES
TOUPPER

Configuring Local and Remote Domains

Administration Guide 10-13

Defining the Exported Services

For the sample remote domain gateway configuration file (rapp.dom), shown in
Listing 10-4, only the required parameters are defined. Default settings are used for the
other parameters.

This configuration file is similar to the local domain gateway configuration file. The
difference is in which services are exported and imported.

The DM_LOCAL_SERVICES section provides information about the services exported
by each local domain. In this example, the TOUPPER service is exported and included
in the DM_LOCAL_SERVICES section. No service is imported so there are no entries in
the DM_REMOTE_SERVICES section.

Listing 10-4 Example of a Remote Domains Gateway Configuration File

rapp.dom
#

*DM_LOCAL_DOMAINS

RAPP GWGRP=RGWGRP
 TYPE=TDOMAIN
 DOMAINID=”222222"

*DM_REMOTE_DOMAINS

LAPP TYPE=TDOMAIN
 DOMAINID=”111111"

*DM_TDOMAIN

RAPP NWADDR=”//mach2:5000"

LAPP NWADDR=”//mach1:5000"

*DM_LOCAL_SERVICES
TOUPPER
*DM_REMOTE_SERVICES

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-14 Administration Guide

Using Data Compression Between Domains

Data compression is useful in most applications and vital to supporting large
configurations. When data is sent between Domains, you can elect to compress it for
faster performance. This is configured by setting the CMPLIMIT parameter in the
dmconfig(5). See Chapter 6, “Building Networked Applications,” for more
information on data compression.

Ensuring Security in Domains

Because Domains can exist under diverse ownership, multiple ways are offered to
enable you to provide sufficient security:

n Local Domains—provides a first level of security. A partial view of the
application (that is, a subset of services) can be made available to remote
domains. This partial view is defined by including the corresponding services in
the DM_LOCAL_SERVICES section of the DMCONFIG file.

n Domains Passwords—authentication techniques are required to ensure the proper
identity of each remote domain. Domains provides a facility for the definition of
passwords on a per-remote-domain basis. This is configured by setting
SECURITY=DM_PW in dmconfig(5).

n Access Control—access control provides another level of security in which you
can restrict access to services within a local domain such that only selected
remote domains can execute these services. This is configured in the
DM_ACCESS_CONTROL section of the dmconfig(5).

n Link-level Encryption—encryption can be used across domains to ensure data
privacy, so a network-based eavesdropper cannot learn the content of BEA
Tuxedo messages or application-generated messages from domain gateway to
domain gateway. This is configured by setting MINENCRYPTBITS and
MAXENCRYPTBITS in the dmconfig(5). (See Chapter 6, “Building Networked
Applications,” for more information.)

Routing Service Requests to Remote Domains

Administration Guide 10-15

Creating a Domain Access Control List (ACL)

To create a domain ACL, you must specify the name of the domain ACL and a list of
the remote domains that are part of the list (the Domain Import List) in the
DM_ACCESS_CONTROL section of the DMCONFIG file. Table 10-2 describes these two
fields.

Routing Service Requests to Remote
Domains

Information for data-dependent routing used by gateways to route service requests (to
specific remote domains) is provided in the DM_ROUTING section of the DMCONFIG file.
The FML32, VIEW32, FML, VIEW, X_C_TYPE, and X_COMMON typed buffers are
supported. To create a routing table for a domain, you must specify the buffer type for
which the routing entry is valid, the name of the routing entry and field, and the ranges
and associated remote domain names of the routing field. Table 10-3 describes these
fields.

Table 10-2 Domain ACL Fields

Fields Description

Domain ACL name The name of this ACL.

A valid name consists of a string of 1-30 characters, inclusive. It must be printable
and it may not include a colon, a pound sign, or a new line character. An example
is: ACLGRP1

Domain import VIEW list The list of remote domains that are granted access for this access control list.

A valid value in this field is a set of one or more comma-separated strings. An
example is: REMDOM1,REMDOM2,REMDOM3

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-16 Administration Guide

Table 10-3 Routing Table Fields

Fields Description

Buffer type A list of types and subtypes of data buffers for which this routing entry is valid. The types
may include FML32, VIEW32, FML, VIEW, X_C_TYPE, or X_COMMON. No subtype can be
specified for type FML; subtypes are required for the other types. The * (or wildcard) value
is not allowed. Duplicate type/subtype pairs cannot be specified for the same routing
criteria name; more than one routing entry can have the same criteria name as long as the
type/subtype pairs are unique. If multiple buffer types are specified for a single routing
entry, the data types of the routing field for each buffer type must be the same.

Valid values for type are:
[:subtype1[,subtype2 . . .]][;type2[:subtype3[
 ,subtype4 . . .]]] . . .

where the maximum length is 256 characters over 32 type/subtype combinations.

Valid values for subtype are names that may not include semicolons, colons, commas, or
asterisks.

An example is FML.

Domain routing
criteria

The name (identifier) of the routing entry.

A valid value is any string of 1-15 characters, inclusive.

An example is ROUTTAB1.

Routing field name The name of the routing field. This field is assumed to be a field name that is identified in
an FML field table (for FML buffers) or an FML VIEW table (for VIEW, X_C_TYPE, or
X_COMMON buffers).

A valid value is an identifier string that is 1-30 characters, inclusive.

An example is FIELD1.

Routing Service Requests to Remote Domains

Administration Guide 10-17

Ranges The ranges and associated remote domain names (RDOM) for the routing field. The routing
field can be of any data type supported in FML. A numeric routing field must have numeric
range values, and a string routing field must have string range values. String range values
for string, carray, and character field types must be placed inside a pair of single quotes and
cannot be preceded by a sign. Short and long integer values are a string of digits, optionally
preceded by a plus or minus sign. Floating point numbers are of the form accepted by the
C compiler or atof()as follows: an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optional sign or space,
followed by an integer. When a field value matches a range, the associated RDOM value
specifies the remote domains to which the request should be routed. An RDOM value of *
indicates that the request can go to any remote domain known by the gateway group.

Valid values are a comma-separated ordered list of range/RDOM pairs where a range is one
of two types: (a) a single value (signed numeric value or character string in single quotes);
or (b) a range of the form lower-upper (where lower and upper are both signed numeric
values or character strings in single quotes). Note that lower must be less than or equal to
upper. Within a range/RDOM pair, the range is separated from the RDOM by a colon (:). MIN
can be used to indicate the minimum value for the data type of the associated FIELD; for
strings and carrays, it is the null string; for character fields, it is 0; for numeric values, it is
the minimum numeric value that can be stored in the field. MAX can be used to indicate the
maximum value for the data type of the associated FIELD; for strings and carrays, it is
effectively an unlimited string of octal-255 characters; for a character field, it is a single
octal-255 character; for numeric values, it is the maximum numeric value that can be stored
in the field. Thus, MIN - -5 is all numbers less than or equal to -5 and - MAX is the set
of all numbers greater than or equal to 6. The meta-character * (wildcard) in the position
of a range indicates any values not covered by the other ranges previously seen in the entry;
only one wildcard range is allowed per entry and it should be last (ranges following it are
ignored).

An example is 1-100:REMDOM3.

Table 10-3 Routing Table Fields (Continued)

Fields Description

10 Working with Multiple Domains (BEA Tuxedo Systems)

10-18 Administration Guide

Administraton Guide 11-1

CHAPTER

11 Managing Workstation
Clients (BEA Tuxedo
Systems)

This chapter is specific to the BEA Tuxedo system. If you are using the BEA
WebLogic Enterprise system and you need to configure remote clients or the Internet
Inter-ORB Protocol (IIOP) Listener/Handler, see Chapter 12, “Managing Remote
Client Applications (BEA WebLogic Enterprise Systems)” for more information.

This topic includes the following BEA Tuxedo sections:

n Workstation Terms

n What Is a Workstation Client?

n Setting Environment Variables

n Setting the Maximum Number of Workstation Clients

n Configuring a Workstation Listener (WSL)

n Modifying the MACHINES Section to Support Workstation Clients

11 Managing Workstation Clients (BEA Tuxedo Systems)

11-2 Administration Guide

Workstation Terms

Workstation
Workstation Extension—the workstation product that is an extension of the
base BEA Tuxedo system.

DLL
Dynamic Link Libraries—a collection of functions grouped into a load
module that is dynamically linked with an executable program at run time for
a Microsoft Windows or an OS/2 application.

WSC
Workstation Client—a client process running on a remote site.

WSH
Workstation Handler—a client process running on an application site that
acts as a surrogate on behalf of the WSC.

WSL
Workstation Listener—a server process running on an application site that
listens for WSCs to connect.

What Is a Workstation Client?

The Workstation Extension of the BEA Tuxedo system allows application clients to
reside on a machine that does not have a full server-side installation, that is, a machine
that does not support any administration or application servers, or a Bulletin Board. All
communication between the client and the application takes place over the network.

The client process can be running UNIX, MS-DOS, Windows, or OS/2. The client has
access to the ATMI interface for clients. The networking behind the calls is transparent
to the user. The client process registers with the system and has the same status as a
native client. The client can do the following:

n Send and receive messages

n Begin, end, or commit transactions

What Is a Workstation Client?

Administration Guide 11-3

n Send and receive unsolicited messages

n Pass application security (on a mandatory basis)

n Communicate information about remote clients through the tmadmin(1)
command

Note: A client process communicates with the native domain through the WSH
rather than through a BRIDGE process.

Illustration of an Application with Two Workstation
Clients

Figure 11-1 shows an example of an application with two WSCs connected. The client
on the left is running on a UNIX system workstation, while the client on the right is
running on an MS-DOS workstation. Both WSCs are communicating with the
application through the WSH process. Initially, both joined by communicating with
the WSL (indicated by the heavily dashed line).

The administrative servers and the application servers are located entirely on SITE1.
Any request by a WSC to access the resource manager (RM) is sent over the network
to the WSH. This process sends the request to the appropriate server and sends the
reply back to the WSC.

The application is running in SHM mode. If the application was distributed over
several nodes, the procedure would be very similar. The WSC would communicate
with one WSH, and the request would be sent to a BRIDGE process, which would
forward it to the correct node.

Note: As used in this book, the term “resource manager” refers to an entity that
interacts with the BEA Tuxedo system and implements the XA standard
interfaces. The most common example of a resource manager is a database.
Resource managers provide transaction capabilities and permanence of
actions; they are the entities accessed and controlled within a global
transaction.

11 Managing Workstation Clients (BEA Tuxedo Systems)

11-4 Administration Guide

Figure 11-1 A Bank Application with Two Workstation Clients

Setting Environment Variables

Administration Guide 11-5

How the Workstation Client Connects to an Application

A Workstation client connects to an application in the following manner:

1. The client connects to the WSL process using a known network address. This is
initiated when the client calls either tpchkauth() or tpinit(). The WSL returns
the address of a WSH to the client.

2. The WSL process sends a message to the WSH process informing it of the
connection request.

3. The WSC connects to the WSH. (All further communication between the WSC
and the application takes place through the WSH.)

Setting Environment Variables

Eight environment variables can be used to pass information to the system. All are
optional except TUXDIR and WSNADDR. Defaults are available for all except
WSENVFILE:

n TUXDIR—this contains the location of the BEA Tuxedo software on this
workstation. It must be set for the client to connect.

n WSNADDR— this contains the network address of the WSL that the client wants to
contact. This must match the address of a WSL process, as specified in the
application configuration file.

n WSDEVICE—this contains the network device to be used. The default is an empty
string. WSDEVICE must be set if TLI is being used.

n WSENVFILE—this contains the name of a file in which all environment variables
may be set. There is no default for this variable.

n WSTYPE—this contains the machine type. If the value of WSTYPE matches the
value of TYPE in the configuration file for the WSL machine, no
encoding/decoding is performed. The default is the empty string. Keep in mind,
when deciding whether to use the default, that a value of “empty string” will
match any other “empty string” value. Be sure to specify the value of WSTYPE
whenever that value does not match the value of TYPE on the WSL machine.

11 Managing Workstation Clients (BEA Tuxedo Systems)

11-6 Administration Guide

n WSRPLYMAX—this contains the amount of core memory to be used for buffering
application replies. The default is 32,000 bytes.

n TMPDIR—this contains the directory in which to store replies when the
WSRPLYMAX limit has been reached. The default is the working directory.

n APP_PW—this contains the password in a secure application. Clients that run
from scripts can get the application password from this variable.

Setting the Maximum Number of
Workstation Clients

To join Workstation clients to an application, you must specify the MAXWSCLIENTS
parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS is the only parameter that has special significance for the Workstation
feature. MAXWSCLIENTS tells the BEA Tuxedo system at boot time how many accesser
slots to reserve exclusively for Workstation clients. For native clients, each accesser
slot requires one semaphore. However, the Workstation handler process (executing on
the native platform on behalf of Workstation clients) multiplexes Workstation client
accessers through a single accesser slot and, therefore, requires only one semaphore.
This points out an additional benefit of the Workstation extension. By putting more
clients out on workstations and off the native platform, an application reduces its IPC
resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS;
enough slots must be left to accommodate native clients as well as servers. If you
specify a value for MAXWSCLIENTS greater than MAXACCESSERS, native clients and
servers fail at tpinit() time. The following table describes the MAXWSCLIENTS
parameter.

Configuring a Workstation Listener (WSL)

Administration Guide 11-7

Configuring a Workstation Listener (WSL)

Workstation clients access your application through the services of a WSL process and
one or more WSH processes. The WSL and WSH are specified in one entry as a server
supplied by the BEA Tuxedo system, although they are separate processes. The WSL
can support multiple Workstation clients and acts as the single point of contact for all
the Workstation clients connected to your application at the network address specified
on the WSL command line. The listener schedules work for one or more Workstation
handler processes. A WSH process acts as a surrogate within the administrative
domain of your application for Workstation clients on remote workstations. The WSH
uses a multiplexing scheme to support multiple Workstation clients concurrently.

To join Workstation clients to an application, you must list the Workstation Listener
(WSL) processes in the SERVERS section of the UBBCONFIG file. Use the same syntax
you use when listing a server.

Format of the CLOPT Parameter

Use the command-line option string (CLOPT) to pass information to a WSL process.
The format of the CLOPT parameter is as follows.

CLOPT="[-A] [servopts-options] -- -n netaddr [-d device]]\
 [-w WSHname] [-t timeout-factor][-T Client-timeout]\
 [-m minh][-M maxh][-x mpx-factor]\
 [-p minwshport][-P maxwshport]\
 [-I init-timeout][-c compression-threshold][-k\
compression-threshold]\
 [-z bits][-Z bits][-H external-netaddr]"

Parameter Description

MAXWSCLIENTS Specifies the maximum number of WSCs that may connect to a node.

The default is 0. If not specified, WSCs may not connect to the
machine being described.

The syntax is MAXWSCLIENTS=number.

11 Managing Workstation Clients (BEA Tuxedo Systems)

11-8 Administration Guide

The -A value indicates that the WSL is to be booted to offer all its services. This is a
default, but it is shown to emphasize the distinction between system-supplied servers
and application servers. The latter can be booted to offer only a subset of their available
services. The -- syntax marks the beginning of a list of parameters that are passed to
the WSL after the latter has been booted.

Command-line Options of the CLOPT Parameter

You can specify the following command-line options in the CLOPT string after the --
(double minus signs):

n -n netaddr is the network address that WSCs use to contact the listener. The
WSC must set the environment variable (WSNADDR) to this value. This is a
required parameter.

n [-d device] is the network device name. This is an optional parameter because
some transport interfaces (sockets) do not require it. However, it is required if
the provider is TLI.

n [-t timeout] allows more time for a client to join when there is a large number
of clients attempting to join simultaneously. The value is multiplied by the
SCANUNIT parameter. The default is 3 in a nonsecure application, and 6 in an
application with security on it.

n [-w name] is the name of the WSH process that should be booted for this
listener. The default is WSH, which is the name of the handler provided. If
another handler process is built with the buildwsh(1) command, that name is
specified here.

n [-m number] specifies the minimum number of handlers that should be booted
and always available. The default is 0.

n [-M number] specifies the maximum number of handlers that can be booted. The
default is the value of MAXWSCLIENTS for that node divided by the multiplexing
value.

n [-x number] specifies the maximum number of clients that a WSH can multiplex
at a time. The default is 10 and the value must be greater than 0.

n [-T client-timeout] specifies the inactive client timeout option. The inactive
client timeout is the time (in minutes) allowed for a client to stay idle. If a client

Modifying the MACHINES Section to Support Workstation Clients

Administration Guide 11-9

does not make any requests within this time period, the WSH disconnects the
client. If this argument is not given or is set to 0, the timeout is infinite.

n [-p minwshport] [-P maxwshport] specifies the range for port numbers
available for use by WSHs associated with this listener server. Port numbers
must fall in the range between 0 and 65535. The default is 2048 for minwshport
and 65535 for maxwshport.

Modifying the MACHINES Section to
Support Workstation Clients

Listing 11-1 shows an example of how you can add the Workstation feature to the
bankapp application.

Listing 11-1 UBBCONFIG Configuration

MACHINES
SITE1
 ...
 MAXWSCLIENTS=150

 ...
SITE2

 ...
 MAXWSCLIENTS=0
 ...

SERVERS
 ...
WSL SRVGRP=”BANKB1" SRVID=500 RESTART=Y
 CLOPT=”-A -- -N 0x0002ffffaaaaaaaa \
 -d /dev/tcp -m 5 -M 30 -x 5"

 ...

Notice the following specifications in the MACHINES and SERVERS sections:

11 Managing Workstation Clients (BEA Tuxedo Systems)

11-10 Administration Guide

n The MACHINES section shows the default MAXWSCLIENTS as being overridden for
two sites. For SITE1, the default is raised to 150, while it is lowered to 0 for
SITE2, which will not have WSCs connected to it.

n The SERVERS section shows a WSL process listed for group BANKB1. The WSL
has a server ID of 500 and it is marked as restartable.

n The command-line options show the following:

l The WSL will advertise all of its services (-A).

l The WSL will listen at network address 0x0002ffffaaaaaaaa (-N).

l The network provider will be /dev/tcp (-d).

l A minimum of 5 WSHs will be booted (-m).

l A maximum of 30 WSHs will be booted (-M).

l Each handler will be allowed a maximum of 5 clients connected at any one
time (-x).

Administraton Guide 12-1

CHAPTER

12 Managing Remote
Client Applications
(BEA WebLogic
Enterprise Systems)

This chapter explains how to configure connections from remote client applications to
CORBA objects via the standard Internet Inter-ORB Protocol (IIOP). This chapter is
specific to BEA WebLogic Enterprise servers.

This topic includes the following sections:

n Terms and Definitions

n Remote Client Overview

n Setting Environment Variables

n Setting the Maximum Number of Remote Clients

n Configuring a Listener for a Remote Client

n Modifying the UBBCONFIG File to Support Remote Clients

n Configuring Outbound IIOP for Remote Joint Client/Servers

n Using the ISL Command to Configure Outbound IIOP Support

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-2 Administration Guide

Terms and Definitions

The following terms are used in this chapter.

DLL
Dynamic Link Libraries. These are a collection of functions grouped into a
load module that is dynamically linked with an executable program at run
time for a Microsoft Windows or an OS/2 application.

IIOP
Internet Inter-ORB Protocol (IIOP). IIOP is basically TCP/IP with some
CORBA-defined message exchanges that serve as a common backbone
protocol.

ISH
IIOP Handler. This is a client process running on an application site that acts
as a surrogate on behalf of the remote client.

ISL
IIOP Listener. This is a server process running on an application site that
listens for remote clients requesting connection.

server
A server hosted on a machine in a BEA WebLogic Enterprise domain. A
server is built with the BEA WebLogic Enterprise buildobjserver
command. Servers implement BEA WebLogic Enterprise functionality, such
as security, transactions, and object state management.

Note: In BEA WebLogic Enterprise 4.0, servers could only make invocations on
other servers inside the BEA WebLogic Enterprise domain. In BEA
WebLogic Enterprise 4.2, the servers can make invocations on any server,
inside or outside a BEA WebLogic Enterprise domain.

native client
A client located within a BEA WebLogic Enterprise domain, using the BEA
WebLogic Enterprise ORB to make invocations on objects either inside or
outside the BEA WebLogic Enterprise domain. A native client’s host
contains the BEA WebLogic Enterprise administrative and infrastructure
components, such as tmadmin, FactoryFinder, and ISL/ISH. Native clients
use the environmental objects to access BEA WebLogic Enterprise objects.

Terms and Definitions

Administration Guide 12-3

You build native clients with either the buildobjclient command or Java
client commands.

Note: In BEA WebLogic Enterprise 4.0, a native client could not make
invocations on objects outside the BEA WebLogic Enterprise domain.

remote client
A client not located within a BEA WebLogic Enterprise domain. A remote
client can use the BEA WebLogic Enterprise ORB to make invocations on
objects either inside or outside the BEA WebLogic Enterprise domain. A
remote client’s host does not contain BEA WebLogic Enterprise
administrative and infrastructure components, such as tmadmin,
FactoryFinder, and ISL/ISH; it does contain supporting software (the BEA
WebLogic Enterprise ORB) that allows remote clients to invoke objects.
Remote clients use the environmental objects to access BEA WebLogic
Enterprise objects. You build remote clients with either the buildobjclient
command or the Java client commands.

native joint client/server
A process that has two purposes: 1) to execute code acting as the starter for
some business actions and 2) to execute method code for invocations on
objects.
A joint client/server located within a BEA WebLogic Enterprise domain. You
build C++ native joint client/servers with the buildobjclient command.
Java native joint client servers are not supported.

Note: In BEA WebLogic Enterprise 4.0 and 4.1, a client could not act as a server.

Note: The server role of the native joint client/server is considerably less robust
than that of an server. It has none of the BEA WebLogic Enterprise
administrative and infrastructure components, such as tmadmin,
FactoryFinder, and ISL/ISH (hence none of BEA WebLogic Enterprise’s
scalability and reliability attributes), it does not use the BEA WebLogic
Enterprise TP Framework, and it requires more direct interaction between
the client and the ORB.

remote joint client/server
A process that has two purposes: 1) execute code acting as the starter for some
business actions and 2) execute method code for invocations on objects. A
joint client/server located outside a BEA WebLogic Enterprise domain. The
joint client/server does not use the BEA WebLogic Enterprise TP Framework
and requires more direct interaction between the Client and the ORB. You

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-4 Administration Guide

build remote joint client/servers with the buildobjclient command or the
Java client commands.

Note: In BEA WebLogic Enterprise 4.0, a remote client could not act as a server.

Note: A joint client/server is different from a server that acts as a client as part of
its server role. Once the server completes processing of an invocation, it
returns to dormancy. A joint client/server is always in the active mode,
executing code not related to a server role; the server role temporarily
interrupts the active client role, but the client role is always resumed.

Note: The server role of the remote joint client/server is considerably less robust
than that of a server. Neither the client nor the server has any of the BEA
WebLogic Enterprise administrative and infrastructure components, such
as tmadmin, FactoryFinder, and ISL/ISH (hence, none of BEA WebLogic
Enterprise’s scalability and reliability attributes).

BEA WebLogic Enterprise object
A CORBA object that is implemented using TP Framework and that
implements security, transactions, and object state management. BEA
WebLogic Enterprise objects are implemented in servers; that is, it is in a
BEA WebLogic Enterprise domain and uses the BEA WebLogic Enterprise
infrastructure.

Callback object
 A CORBA object supplied as a parameter in a client’s invocation on a target
object. The target object can make invocations on the callback object either
during the execution of the target object or at some later time (even after the
invocation on the target object has been completed). A callback object might
be located inside or outside a BEA WebLogic Enterprise domain.

Note: In BEA WebLogic Enterprise 4.0 and 4.1, callback objects existed but
were not named as such; they could have implementations only in the BEA
WebLogic Enterprise domain; that is, they could be located only in a server
(as a CORBA object).

Remote Client Overview

Administration Guide 12-5

Remote Client Overview

In this chapter, the term remote client means BEA WebLogic Enterprise client
applications that you deployed on systems that do not have the full BEA WebLogic
Enterprise server software installed. This means that no administration or application
servers are running there and that no Bulletin Board is present. All communication
between the client and the application takes place over the network. The types of
clients are:

n CORBA C++ client

n CORBA Java client

n ActiveX client

n RMI clients

n Jolt clients

n Tuxedo Workstations (/WS) clients

A client process can be running UNIX or Microsoft Windows. The CORBA and
ActiveX clients have access to the CORBA ORB interface. RMI clients have access to
Enterprise JavaBeans (EJBs). Jolt and Tuxedo /WS clients have access to Tuxedo
services. The networking behind the calls is transparent to the user. The client process
registers with the system and has the same status as a native client. The client can do
the following:

n Invoke methods on remote objects

n Begin, roll back, or commit transactions

n Be required to pass application security

Note: A client process communicates with the native domain through the ISH.

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-6 Administration Guide

Illustration of an Application with Remote Clients

Figure 12-1 shows an example of an application with remote clients connected. Any
request by a remote client to access the CORBA server application is sent over the
network to the ISH. This process sends the request to the appropriate server and sends
the reply back to the remote client.

Figure 12-1 Bank Application with Remote Clients

How the Remote Client Connects to an Application

The client connects to the ISL process in the IIOP Listener/Handler using a known
network address. This is initiated when the client calls the Bootstrap object
constructor. The ISL process uses a function that is specific to the operating system to
pass the connection directly to the selected ISH process. To the client application, there
is only one connection. The client application does not know, or need to know, that it
is now connected to the ISH process.

WLE
Domain

Server Application

Interface Repository

Factory Finder

Transaction
Coordinator

Development Tools

Bootstrap Object

Client Application

Bootstrap Object

IIOP Listener/
Handler

Client Application

Bootstrap Object

Client Application

Bootstrap Object

IIOP Listener/
Handler

Setting Environment Variables

Administration Guide 12-7

Setting Environment Variables

For CORBA C++ clients, environment variables can be used to pass information to the
system, as follows:

n TUXDIR—this contains the location of the BEA WebLogic Enterprise client
software on this remote client. It must be set for the client to connect.

n TOBJADDR—this contains the network address of the ISL that the client wants to
contact. This must match the address of an ISL process as specified in the
application configuration file.

Note: The network address that is specified by programmers in the Bootstrap
constructor or in TOBJADDR must exactly match the network address in the
server application’s UBBCONFIG file. The format of the address as well as
the capitalization must match. If the addresses do not match, the call to the
Bootstrap constructor will fail with a seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the
ISL command line option string (in the server application’s UBBCONFIG
file), specifying either //192.12.4.6:3500 or //trixie:3500 in the
Bootstrap constructor or in TOBJADDR will cause the connection attempt to
fail.

On UNIX systems, use the uname -n command on the host system to
determine the capitalization used. On Windows NT systems, see the host
system's Network control panel to determine the capitalization used. Or
use the environment variable COMPUTERNAME. For example:

echo %COMPUTERNAME%

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-8 Administration Guide

Setting the Maximum Number of Remote
Clients

To join remote clients to an application, you must specify the MAXWSCLIENTS
parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS tells the BEA WebLogic Enterprise system at boot time how many
accesser slots to reserve exclusively for remote clients. For native clients, each
accesser slot requires one semaphore. However, the ISH process (executing on the
native platform on behalf of remote clients) multiplexes remote client accessers
through a single accesser slot and, therefore, requires only one semaphore. This points
out an additional benefit of the remote extension. By putting more clients out on
remote systems and taking them off the native platform, an application reduces its IPC
resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS;
enough slots must remain to accommodate native clients as well as servers. Do not
specify a value for MAXWSCLIENTS greater than MAXACCESSERS. The following table
describes the MAXWSCLIENTS parameter.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of remote clients that may connect to
a machine.

The default is 0. If a value is not specified, remote clients may not
connect to the machine being described.

The syntax is MAXWSCLIENTS=number.

Configuring a Listener for a Remote Client

Administration Guide 12-9

Configuring a Listener for a Remote Client

Remote clients access your application through the services of an ISL process and one
or more ISH processes. The ISL is specified in one entry as a server supplied by the
BEA WebLogic Enterprise system. The ISL can support multiple remote clients and
acts as the single point of contact for all the remote clients connected to your
application at the network address specified on the ISL command line. The listener
schedules work for one or more remote handler processes. An ISH process acts as a
surrogate within the administrative domain of your application for remote clients on
remote systems. The ISH uses a multiplexing scheme to support multiple remote
clients concurrently.

To join remote clients to an application, you must list the ISL processes in the SERVERS
section of the UBBCONFIG file. The processes follow the same syntax for listing any
server.

Format of the CLOPT Parameter

You use the following ISL command-line options (CLOPT) to pass information to the
ISL process for remote clients. The format of the CLOPT parameter is as follows:

ISL SRVGRP=”identifier”
 SRVID="number"
 CLOPT="[-A] [servopts options] -- -n netaddr
 [-C {detect|warn|none}]
 [-d device]
 [-K {client|handler|both|none}]
 [-m minh]
 [-M maxh]
 [-T client-timeout]
 [-x mpx-factor]
 [-H external-netaddr"

For a detailed description of the command-line options (CLOPT), see the ISL command
in the Command, System Processes, and MIB Reference.

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-10 Administration Guide

Modifying the UBBCONFIG File to Support
Remote Clients

Listing 12-1 shows a sample UBBCONFIG file to support remote clients, as follows:

n The MACHINES section shows the default MAXWSCLIENTS as being overridden for
two sites. For SITE1, the default is raised to 150, while it is lowered to 0 for
SITE2, which does not have remote clients connected to it.

n The SERVERS section shows an ISL process listed for group BANKB1. Its server
ID is 500 and it is marked as restartable.

n The command line options show the following:

l The IIOP Listener/Handler will advertise all of its services (-A).

l The IIOP Listener/Handler will listen at host TRIXIE on port 2500.

l The network provider is /dev/tcp (-d).

l The minimum number of ISH processes to boot is 5 (-m).

l The maximum number of ISH processes to boot is 30 (-M).

l Each handler can have a maximum of 5 clients connected at any one time
(-x).

Listing 12-1 Sample UBBCONFIG File Configuration

*MACHINES
SITE1
 ...
 MAXWSCLIENTS=150
 ...
SITE2
 ...
 MAXWSCLIENTS=0
 ...
*SERVERS
 ...
ISL SRVGRP=”BANKB1" SRVID=500 RESTART=Y
 CLOPT=”-A -- -n //TRIXIE:2500 -d /dev/tcp

Configuring Outbound IIOP for Remote Joint Client/Servers

Administration Guide 12-11

 -m 5 -M 30 -x 5"
 ...

Configuring Outbound IIOP for Remote
Joint Client/Servers

Support for outbound IIOP provides native clients and servers acting as native clients
the ability to invoke on a remote object reference outside of the BEA WebLogic
Enterprise domain. This means that calls can be invoked on remote clients that have
registered for callbacks, and objects in remote servers can be accessed.

Administrators are the only users who interact directly with the outbound IIOP support
components. Administrators are responsible for booting the ISLs with the correct
startup parameters to enable outbound IIOP to objects not located in a connected client.
Administrators may need to adjust the number of ISLs they boot and the various
startup parameters to obtain the best configuration for their installation’s specific
workload characteristics. They have the option of booting the ISLs with the default
parameters.

Note: In this release, outbound IIOP is not supported for transactions or security.

Functional Description

Outbound IIOP support is required to support client callbacks. In version 4.0 and
version 4.1 releases of the BEA WebLogic Enterprise software, the ISL/ISH was an
inbound half-gateway. Outbound IIOP support adds the outbound half-gateway to the
ISL/ISH (see Figure 12-2).

There are three types of outbound IIOP connections available, depending on the
version of GIOP supported by the native server and the remote joint client/server
application:

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-12 Administration Guide

n Bidirectional—outbound IIOP reusing the same connection (supported only for
BEA WebLogic Enterprise 4.2 and later C++ GIOP 1.2 servers, clients, and joint
client/servers and WebLogic Enterprise 5.0 and later Java GIOP 1.2 servers).

n Asymmetric—outbound IIOP via a second connection (supported for GIOP
version 1.0, GIOP 1.1, and GIOP 1.2 servers, clients, and joint client/server
applications).

n Dual-paired connection—outbound IIOP (supported for GIOP 1.0 servers,
clients, and joint client/server applications).

Note: GIOP 1.2 is supported only by BEA WebLogic Enterprise 4.2 and later C++
clients, servers, and joint client/servers and WebLogic Enterprise 5.0 and later
Java servers. GIOP 1.2 is not supported by BEA WebLogic Enterprise 4.0 or
4.1 clients and joint client/servers. The Java clients and joint client/servers
only support GIOP 1.0. The BEA WebLogic Enterprise 4.0 and 4.1 C++
clients and servers only support GIOP 1.0 and 1.1.

Bidirectional and dual-paired connection outbound IIOP provides outbound IIOP to
object references located in joint client/servers connected to an ISH. Asymmetric
outbound IIOP provides outbound IIOP to object references not located in a joint
client/server connected to an ISH, and also allows BEA WebLogic Enterprise clients
to invoke on any object reference, not only object references located in clients
currently connected to an ISH.

Each type of outbound IIOP is described in more detail in the following sections.

Configuring Outbound IIOP for Remote Joint Client/Servers

Administration Guide 12-13

Figure 12-2 Joint Client/Server IIOP Connections Supported

Bidirectional Outbound IIOP

With bidirectional outbound IIOP, the following operations are executed (see
Figure 12-3):

1. A client creates an object reference and invokes on a BEA WebLogic Enterprise
server. The client ORB identifies the connection as being bidirectional using the
service context. The service context travels with the message to the BEA
WebLogic Enterprise server.

2. When unmarshaling the object reference, the BEA WebLogic Enterprise server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information needed for
routing to the ISH. This client information travels with the object reference
whenever it is passed to other BEA WebLogic Enterprise servers.

3. At some point in time, a BEA WebLogic Enterprise server or native client
invokes on the object reference, and the routing code invokes on the appropriate
ISH, given the client information.

Joint Client/
Server

(GIOP 1.0)

Joint Client/
Server

(GIOP 1.1)

Joint Client/
Server

(GIOP 1.2)

WLE Native
Client

ISL

ISL

ISH

WLE Server

WLE Server

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-14 Administration Guide

4. The ISH sends the request to the client over the same client connection.

5. The client executes the method and sends the reply back to the ISH via the client
connection.

6. The ISH receives the reply and sends it to the BEA WebLogic Enterprise server.

Figure 12-3 Bidirectional Connection

Asymmetric Outbound IIOP

With asymmetric outbound IIOP, the following operations are executed (see
Figure 12-4):

1. A server gets an object reference from some source. It could be a naming service,
a string_to_object, or it could be passed in through a client, but not located in
that client. Since the object reference is not located in a client connected to an ISH,
the outgoing call cannot be made using the bidirectional method. The BEA
WebLogic Enterprise server invokes on the object reference.

2. On the first invoke, the routing code invokes a service in the ISL and passes in
the host/port.

C++ Joint
Client/
Server

(GIOP 1.2)

ISL

ISH

C++ Server
(GIOP 1.2)

C++ Server
(GIOP 1.2)

1
2

3

5
6

Bidirectional
Connection

4

Native C++
Client

(GIOP 1.2)

Configuring Outbound IIOP for Remote Joint Client/Servers

Administration Guide 12-15

3. The ISL selects an ISH to handle the outbound invoke and returns the ISH
information to the BEA WebLogic Enterprise server.

4. The BEA WebLogic Enterprise server invokes on the ISH.

5. The ISH determines which outgoing connection to use to send the request to the
client. If none is connected, the ISH creates a connection to the host/port.

6. The client executes the method and sends the reply back to the ISH.

7. The ISH receives the reply and sends it to the BEA WebLogic Enterprise server.

Figure 12-4 Asymmetric Outbound IIOP

Dual-paired Connection Outbound IIOP

With dual-paired connection outbound IIOP, the following operations are executed
(see Figure 12-5):

1. A client creates an object reference and calls the Bootstrap function
(register_callback_port) and passes the object reference.

Joint Client/
Server

(GIOP 1.0
or 1.1)

WLE Native
Client

ISL

ISH

WLE Server

WLE Server7

1

2

5

6

Asymmetric
Connection

4

3

ISH

Servers and native clients can
be GIOP 1.0, 1.1 or 1.2.

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-16 Administration Guide

2. The ISH gets the host/port from the IOR and stores it with the client context.

3. The client invokes on a BEA WebLogic Enterprise server and passes the object
reference. From the register_callback_port call, the ISH creates a service
context containing the host/port. The service context travels with the message to
the BEA WebLogic Enterprise server.

4. When unmarshaling the object reference, the BEA WebLogic Enterprise server
compares the host/port in the service context with the host/port in the object
reference. If they match, the ORB adds the ISH client information to the object
reference. This client information travels with the object reference whenever it is
passed to other BEA WebLogic Enterprise servers.

5. At some point in time, a BEA WebLogic Enterprise server or native client
invokes on the object reference. The routing code invokes on the appropriate
ISH, passing the client information.

6. The ISH creates a second connection to the client. It sends the request to the
client over the second connection.

7. The client executes the method and sends the reply back to the ISH via the first
client connection.

8. The ISH receives the reply and sends it to the BEA WebLogic Enterprise server.
If the client disconnects from the ISH, the second connection is also
disconnected.

Configuring Outbound IIOP for Remote Joint Client/Servers

Administration Guide 12-17

Figure 12-5 Dual-paired Connections Outbound IIOP

How the Routing Code Finds an ISL

The steps to finding an ISL are as follows:

1. A service is advertised in each ISL.

2. The routing code invokes on that service name.

Note: Normal BEA Tuxedo routing is used to find an ISL.

3. An idle ISL on the same machine is always chosen, if available. If not available,
NETLOAD ensures that a local ISL is chosen most often.

Note: Some invokes may be made to ISLs on nonlocal machines.

Joint Client/
Server

(GIOP 1.0
or 1.1)

WLE Native
Client

ISL

ISH

WLE Server

WLE Server

1 2

3
4

56

7

8

Dual-paired
Connection Servers and native clients can

be GIOP 1.0, 1.1 or 1.2.

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-18 Administration Guide

Using the ISL Command to Configure
Outbound IIOP Support

Outbound IIOP support is used when a native C++ or Java client, or a server acting as
a native client, invokes on an object reference that is a remote object reference. The
routing code recognizes that the object reference is from a nonBEA WebLogic
Enterprise ORB or from a remote BEA WebLogic Enterprise joint client/server.

Types of Object References

There are two kinds of remote object references:

n Object references created by BEA WebLogic Enterprise remote joint
client/servers outside of the BEA WebLogic Enterprise domain.

n Object references created by other vendors’ servers.

Both are detected by the routing code and sent to the outbound IIOP support for
handling.

User Interface

The user interface to outbound IIOP support is the command-line interface for booting
the ISL process(es).

Command-line options to configure the outbound IIOP processing were added to the
ISL command in a previous release of the BEA WebLogic Enterprise software. These
options enable support for asymmetric IIOP to object references not located in clients
connected to an ISH.

Additional command-line options were added in the WebLogic Enterprise 5.1 release
for SSL and Secure Connection Pools. Listing 12-2 shows the ISL command syntax
and highlights the new options.

Using the ISL Command to Configure Outbound IIOP Support

Administration Guide 12-19

Listing 12-2 ISL Command-line Options

ISL SRVGRP="identifier"

 SRVID="number"

 CLOPT="[-A] [servopts options] -- -n netaddr
 [-C {detect|warn|none}]
 [-d device]
 [-K {client|handler|both|none}]
 [-m minh]
 [-M maxh]
 [-T Client-timeout]
 [-x mpx-factor]
 [-H external-netaddr]
#Options for outbound IIOP
 [-O]
 [-o outbound-max-connections]
 [-s Server-timeout]
 [-u out-mpx-users] "
#NEW options for SSL
 [a]
 [-R renegotiation-interval]
 [-S secure-port]
 [-v {detect | warn | none}]
 [-z [0|40|56|128]]
 [-Z [0|40|56|128]]
#NEW options for Secure connection Pools
 [-E principal_nane]”

For a detailed description of the CLOPT command-line options, see the ISL command
in the Command, System Processes, and MIB Reference.

12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)

12-20 Administration Guide

Administraton Guide 13-1

CHAPTER

13 Managing Queued
Messages (BEA Tuxedo
System)

This chapter, which is specific to the BEA Tuxedo system, describes how to configure
the BEA Tuxedo Queued Message Facility for your application, and how to manage
the facility when the application goes into production.

This topic includes the following sections:

n Terms and Definitions

n Overview of the BEA Tuxedo Queued Message Facility

n Administrative Tasks

n Setting the QMCONFIG Environment Variable

n Using qmadmin, the /Q Administrative Interface

n Creating an Application Queue Space and Queues

n Modifying the Configuration File

13 Managing Queued Messages (BEA Tuxedo System)

13-2 Administration Guide

Terms and Definitions

The following terms are used in this chapter.

/Q
A short name for the BEA Tuxedo Queued Message Facility

QMCONFIG

An environment variable that holds the name of the device (file) where /Q
queue space is located.

queue
A named stable storage area where service requests from client processes or
responses from application servers are stored.

queue space
A collection of queues that can be administered as a unit.

request queue
A space associated with an application server where service requests are
placed for processing by the server.

TMQUEUE
A BEA Tuxedo system server that accepts messages from a tpenqueue()
call and places them on a /Q queue.

TMQFORWARD

A BEA Tuxedo system server that dequeues a message from a /Q queue and
forwards the message to an application server.

TMS_QM
A BEA Tuxedo system server that manages transactions for /Q.

Overview of the BEA Tuxedo Queued Message Facility

Administration Guide 13-3

Overview of the BEA Tuxedo Queued
Message Facility

The BEA Tuxedo Queued Message Facilityallows messages to be queued to stable
storage for later processing. Primitives are added to the BEA Tuxedo system
application-transaction manager interface (ATMI), that provide for messages to be
added to or read from stable-storage queues. Reply messages and error messages can
be queued for later return to client programs. An administrative command interpreter
is provided for creating, listing, and modifying the queues. Prewritten servers are
included to accept requests to enqueue and dequeue messages, to forward messages
from the queue for processing, and to manage the transactions that involve the queues.

Administrative Tasks

The BEA Tuxedo system administrator is responsible for defining servers and creating
queue space and queues like those shown between the vertical dashed lines in
Figure 13-1.

The administrator must define at least one queue server group with TMS_QM as the
transaction manager server for the group.

Two additional system-provided servers need to be defined in the configuration file.
These servers perform the following functions:

n The message queue server, TMQUEUE(5), is used to enqueue and dequeue
messages. This provides a surrogate server for doing message operations for
clients and servers, whether or not they are local to the queue.

n The message forwarding server, TMQFORWARD(5), is used to dequeue and forward
messages to application servers. The BEA Tuxedo system provides routines for
servers that handle server initialization and termination, allocate buffers to
receive and dispatch incoming requests to service routines, and route replies to
the correct destination. All of this processing is transparent to the application.

13 Managing Queued Messages (BEA Tuxedo System)

13-4 Administration Guide

n Existing servers do not dequeue their own messages or enqueue replies. One
goal of /Q is to be able to use existing servers to service queued messages
without change. The TMQFORWARD server, for example:

l Dequeues a message from one or more queues in the queue space.

l Forwards the message to a server that has a service with the same name as
the queue.

l Waits for the reply.

l Queues the success reply or failure reply on the associated reply or failure
queues (assuming the originator specified a reply or failure queue).

Also, the administrator must create a queue space using the queue administration
program, qmadmin(1). The queue space contains a collection of queues. In
Figure 13-1, for example, four queues are present within the queue space named APP.
There is a one-to-one mapping of queue space to queue server group since each queue
space is a resource manager (RM) instance and only a single RM can exist in a group.

The notion of queue space allows for reducing the administrative overhead associated
with a queue by sharing the overhead among a collection of queues in the following
ways:

n The queues in a queue space share the stable storage area for messages.

n A single message queue server, such as TMQUEUE in Figure 13-1, can be used to
enqueue and dequeue messages for multiple queues within a single queue space.

n A single message forwarding server, such as TMQFORWARD in Figure 13-1, can be
used to dequeue and forward messages for multiple queues within a single queue
space.

n A single transaction manager server, such as TMS_QM in Figure 13-1, can be used
to complete transactions for multiple queues within a single queue space.

n The administrator can define a single server group in the application
configuration for the queue space by specifying the group in UBBCONFIG or by
using tmconfig(1) to add the group dynamically.

n Finally, when the administrator moves messages between queues within a queue
space, the overhead is less than if the messages were in different stable storage
areas, because a one-phase commit can be done.

Administrative Tasks

Administration Guide 13-5

Figure 13-1 shows how the BEA Tuxedo Queued Message Facility works. The queue
spaces and queues shown between the vertical dashed lines must be defined by the
system administrator.

Figure 13-1 Overview of the Queued Message Facility

In Figure 13-1 (Steps 1, 2, and 3), a client enqueues a message to the SERVICE1 queue
in the APP queue space using tpenqueue(). Optionally, the names of a reply queue
and a failure queue can be included in the call to tpenqueue(). In Figure 13-1 they
are the queues CLIENT_REPLY1 and FAILURE_Q. The client can specify a “correlation

13 Managing Queued Messages (BEA Tuxedo System)

13-6 Administration Guide

identifier” value to accompany the message. This value is persistent across queues so
that any reply or failure message associated with the queued message can be identified
when it is read from the reply or the failure queue.

The client can use the default queue ordering (for example, a time after which the
message should be dequeued), or can specify an override of the default queue ordering
(asking, for example, that this message be put at the top of the queue or ahead of
another message on the queue). The call to tpenqueue() sends the message to the
TMQUEUE server, the message is queued to stable storage, and an acknowledgment (step
3) is sent to the client. The acknowledgment is not seen directly by the client, but can
be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.)

A message identifier assigned by the queue manager is returned to the application. The
identifier can be used to dequeue a specific message. It can also be used in another
tpenqueue() to identify a message already on the queue that the subsequent message
should be enqueued ahead of.

Before an enqueued message is made available for dequeuing, the transaction in which
the message is enqueued must be committed successfully.

When the message reaches the top of the queue, the TMQFORWARD server dequeues the
message and forwards it, via tpcall(), to a service with the same name as the queue
name. In Figure 13-1 the queue and the service are both named SERVICE1; steps 4, 5,
and 6 show the transfer and return of the message. The client identifier and the
application authentication key are set to the client that caused the message to be
enqueued; they accompany the dequeued message as it is sent to the service.

When the service returns a reply, TMQFORWARD enqueues the reply (with an optional
user-return code) to the reply queue (step 7 in Figure 13-1). Sometime later, the client
uses tpdequeue() to read from the reply queue (CLIENT_REPLY1), and to get the
reply message (steps 8, 9, and 10 in Figure 13-1). Messages on the reply queue are not
automatically cleaned up; they must be dequeued, either by an application client or
server, or by a TMQFORWARD server.

Part of the task of defining a queue is specifying the order for messages on the queue.
Queue ordering can be time-based, priority based, FIFO or LIFO, or a combination of
these sort criteria. The administrator specifies one or more of these criteria for the
queue, listing the most significant criteria first. FIFO or LIFO can be specified only as
the least significant sort criteria. Messages are put on the queue according to the
specified sort criteria, and dequeued from the top of the queue.

Setting the QMCONFIG Environment Variable

Administration Guide 13-7

The administrator can configure as many message queuing servers as are needed to
keep up with the requests generated by clients for the stable queues.

Data-dependent routing can be used to route between multiple server groups with
servers offering the same service.

For housekeeping purposes, the administrator can set up a command to be executed
when a threshold is reached for a queue that does not routinely get drained. The
threshold can be based on the bytes, blocks, or percentage of the queue space used by
the queue, or the number of messages on the queue. The command set up by the
administrator might boot a TMQFORWARD server to drain the queue or send mail to the
administrator for manual handling.

Setting the QMCONFIG Environment
Variable

The environment variable QMCONFIG must be set and exported before work can be
done to create a queue space. A BEA Tuxedo system application uses a Universal
Device List (UDL). The QMCONFIG variable must contain the full pathname of the
device list, such as the path shown in the following example.

$ QMCONFIG = /dev/rawfs; export QMCONFIG

The commands provided by qmadmin, (the /Q administrative interface), will not work
unless this location is defined. The information can be furnished on the command line
as well as in the environment variable. If it is specified in both places, the information
on the command line takes precedence.

13 Managing Queued Messages (BEA Tuxedo System)

13-8 Administration Guide

Using qmadmin, the /Q Administrative
Interface

/Q has an administrative program, qmadmin(1), that is used to create and administer
queues. The following sections include a sampling of the available commands. For a
complete list of qmadmin commands, refer to the qmadmin(1) reference page in the
BEA Tuxedo Reference Manual.

Creating an Application Queue Space and
Queues

Complete the following four steps to create an application queue space and queues.

1. Create an entry in the UDL with the qmadmin crdl command. The device may be
created on a raw slice or in a UNIX file. For example:

qmadmin # to start the qmadmin command

crdl device offset size

where device is the same device named in the QMCONFIG variable; offset is
the block number within the UDL where space may begin to be allocated (the
first entry must have an offset of 0), and size is the number of blocks to
allocate. To make the example more realistic, it might be like the following:

crdl /dev/rawfs 500 500

which says create an entry on the device /dev/rawfs 500 blocks from the start
of the UDL and allocate 500 blocks. Implicit in this request is the presence of an
existing entry, since the offset 0 is not specified. If you enter crdl without
arguments, the software prompts you for information. You can create up to 25
entries on a device list.

Creating an Application Queue Space and Queues

Administration Guide 13-9

2. Create a queue space on the device. This will be a space on the device that will
contain a collection of queues. Space is created with the qmadmin qspacecreate
command.

qspacecreate queue_space_name ipckey pages queues trans procs\
messages errorq inityn

If you enter qspacecreate without arguments, the software prompts you for
information. This is probably the better choice for this command because the
prompts explain the information you need to provide. The following is an
example from the qmadmin(1) reference page.

 > qspacecreate
 Queue space name: myqueuespace
 IPC Key for queue space: 42000
 Size of queue space in disk pages: 50000
 Number of queues in queue space: 30
 Number of concurrent transactions in queue space: 20
 Number of concurrent processes in queue space: 30
 Number of messages in queue space: 20000
 Error queue name: ERRORQ
 Initialize extents (y, n [default=n]): y
 Blocking factor [default=16]: 16

The IPC key value must be unique and different from the value specified in the
RESOURCES section. The number of disk pages specified as the size of the queue
space varies from application to application and depends on the number of
queues, the number of messages to be handled and the size of the messages. The
specification for the number of concurrent processes in the queue space must be
large enough to include four or five possible BEA Tuxedo system processes.

3. Open the queue space.

qopen queue_space_name

The queue space has to be open for you to proceed.

4. Create individual queues within the queue space. Queues are created with the
qmadmin qcreate command, as follows.

qcreate queue_name qorder out-of-order retries delay high low

This is another command where it is better to allow the software to prompt you
for information. The following is an example from qmadmin(1) (using mostly
default values where available).

>qcreate Queue name: service1 queue order (priority, time, fifo,
lifo): fifo out-of-ordering enqueuing (top, msgid,
[default=none]):none retries [default=0]: 0 retry delay in

13 Managing Queued Messages (BEA Tuxedo System)

13-10 Administration Guide

seconds [default=0]: 0 High limit for queue capacity warning (b
for bytes used, B for blocks used, % for percent used, m for
messages [default=100%]): 100% Reset (low) limit for queue
capacity warning [default=0%]: 50% queue capacity command:
/usr/app/bin/mailadmin myqueuespace service1

Retries specifies the number of times the system attempts to enqueue the
message.

We recommend that you read the qmadmin(1) reference page in the BEA Tuxedo
Reference Manual carefully and that you also read the “Administration” chapter
of the BEA Tuxedo System /Q Guide. The parameters that you enter for the
qcreate command control the way the queue operates for your application. Of
particular importance is the choice for the order in which messages are placed on
the queue (they are always removed from the top).

Modifying the Configuration File

In addition to creating a queue space and queues, the system administrator needs to
associate these resources with the BEA Tuxedo Queued Message Facilityapplication
by editing the configuration file as described in the remaining sections of this chapter.

The configuration changes involve making an entry in the GROUPS section for the
group that owns the queue and the transaction server (TMS_QM), and listing (in the
SERVERS section) the two servers (TMQUEUE and TMQFORWARD).

Note: The chronological order of these specifications is not critical. The
configuration file can be created either before or after the queue space is
defined. The important thing is that the configuration must be defined and
queue space and queues must be created before the facility can be used.

Associating a Queue with a Group

A server group must be defined for each queue space the application expects to use. In
addition to the standard requirements of a group name tag and a value for GRPNO, the
TMSNAME and OPENINFO parameters need to be set, as shown in the following example.

TMSNAME=TMS_QM

Modifying the Configuration File

Administration Guide 13-11

and

OPENINFO="TUXEDO/QM:device_name:queue_space_name"

(See the ubbconfig(5) reference page in the BEA Tuxedo Reference Manual for
details.)

TMS_QM is the name for the transaction manager server for the BEA Tuxedo Queued
Message Facility. In the OPENINFO parameter, TUXEDO/QM is the literal name for the
resource manager as it appears in $TUXDIR/udataobj/RM. The values for
device_name and queue_space_name are instance-specific and must be set to the
path name for the universal device list and the name associated with the queue space,
respectively.

The following example includes some of the detail.

*GROUPS
QUE1
LMID = SITE1 GRPNO = 2
TMSNAME = TMS_QM TMSCOUNT = 2
OPENINFO = “TUXEDO/QM:/dev/rawfs:myqueuespace”

Note the use of quotation marks around the information for OPENINFO. We
recommend using quotation marks in this way to protect your entries in the
configuration file.

Listing the /Q Servers in the SERVERS Section

Three servers are provided with the BEA Tuxedo Queued Message Facility. One is the
TMS server, TMS_QM, that is the transaction manager server for the /Q resource
manager. TMS_QM is defined in the GROUPS section of the configuration file.

The other two, TMQUEUE(5) and TMQFORWARD(5), provide services to users. They must
be defined in the SERVERS section of the configuration file, as follows.

*SERVERS
TMQUEUE SRVGRP=QUE1 SRVID=1 CLOPT="-s QSPACENAME:TMQUEUE - - "
TMQFORWARD SRVGRP=QUE1 SRVID=5 CLOPT="- - -I 2 -q STRING"

The application can also create its own queue servers. If the functionality of
TMQFORWARD, for example, does not fully meet the needs of the application, you might
want to have a special server written. You might, for example, create a server that
dequeues messages moved to the error queue, which TMQFORWARD does not do.

13 Managing Queued Messages (BEA Tuxedo System)

13-12 Administration Guide

Administraton Guide 14-1

CHAPTER

14 Securing Application

For a detailed discussion of securing applications, see Using Security in the BEA
WebLogic Enterprise online documentation.

14 Securing Application

14-2 Administration Guide

Administraton Guide 15-1

CHAPTER

15 Monitoring a Running
System

After your application is up and running, as an administrator you must ensure that it
meets the performance, availability, and security standards of your company. To
perform this task, you need to monitor the resources (such as shared memory),
activities (such as transactions), and potential problems (such as security breaches) in
your configuration, and take any corrective actions that are necessary.

To help you meet this responsibility, the BEA WebLogic Enterprise and BEA Tuxedo
systems provide tools that enable you to oversee both system events and application
events. This chapter explains how to use these tools to keep your application
performing fast, correctly, and securely.

This topic includes the following sections:

n Overview of System and Application Data

n Monitoring Methods

n Using the tmadmin Command Interpreter

n Running tmadmin Commands

n Monitoring a Running System with tmadmin

n Example: Output from tmadmin Commands

n Case Study: Monitoring Run-time bankapp

15 Monitoring a Running System

15-2 Administration Guide

Overview of System and Application Data

This section describes the types of data available for monitoring a running system and
explains how to use that data.

Components and Activities for Which Data Is Available

Your BEA WebLogic Enterprise or BEA Tuxedo system maintains parameter settings
and generates statistics for the following system components:

n Clients

n Conversations

n Groups

n Message queues

n Networks

n Servers

n Services

n Transactions

n Interfaces

n JDBC Connection Pools

Where the Data Resides

To ensure that you have the information necessary for monitoring your system, the
BEA WebLogic Enterprise or BEA Tuxedo system provides the following data
repositories:

n UBBCONFIG—an ASCII file in which you define the parameters of your system
and application.

Overview of System and Application Data

Administration Guide 15-3

n Bulletin Board—a segment of shared memory (on each machine in your
network) to which your system writes statistics about the components and
activities of your configuration.

n Log files—files to which your system writes messages.

This chapter describes the data stored in the UBBCONFIG file and in the Bulletin Board,
and provides instructions for monitoring that data. For a description of the log files, see
Chapter 16, “Monitoring Log Files.”

How You Can Use the Data

The administrative data provided by your BEA WebLogic Enterprise or BEA Tuxedo
system lets you monitor a multitude of potential trouble areas on your system. For
example, this data lets you:

n Tune the running system based on actual loads

n Detect security breaches

You can also set up your system so that it is able to use the statistics in the Bulletin
Board to make decisions and to modify system components dynamically, without user
intervention. With proper configuration, your system may be able to perform tasks
such as the following (when indicated by Bulletin Board statistics):

n Turn on load balancing

n Start a new copy of a server

n Shut down servers that are not being used

Thus, by monitoring the administrative data for your system, you can prevent and
resolve problems that threaten the performance, availability, and security of your
application.

Static and Dynamic Data

There are two types of administrative data available on every running BEA WebLogic
Enterprise and BEA Tuxedo system: static and dynamic.

15 Monitoring a Running System

15-4 Administration Guide

Static Data

Static data consists of configuration settings that you assign when you first configure
your system and application. These settings are never changed without intervention
(either in realtime or through a program you have provided). Examples include
system-wide parameters (such as the number of machines being used) and the amount
of IPC resources (such as shared memory) that is allocated to your system on your local
machine. Static data is kept in the UBBCONFIG file and in the Bulletin Board.

At times you will need to check the static data about your configuration. For example:

n Suppose you want to add a large number of machines and you are concerned that
by doing so you may exceed the maximum number of machines allowed in your
configuration—or, to be precise, allowed in the machine tables of the Bulletin
Board. To look up the maximum number of machines allowed, check the current
values of the system-wide parameters for your configuration (one of which is
MAXMACHINES).

n Suppose you think you may be able to improve your application’s performance
by tuning your system. To determine whether tuning is required, you need to
check on the amount of local IPC resources currently available.

Dynamic Data

Dynamic data consists of information that changes in realtime, that is, while an
application is running. For example, the load (the number of requests sent to a server)
and the state of various configuration components (such as servers) change frequently.
Dynamic data is kept in the Bulletin Board and in JavaServers and the Active Object
Map (AOM).

You will need to check the dynamic data about your configuration frequently. For
example:

n Suppose performance is degraded and you want to know whether you have
enough servers running to accommodate the number of clients currently
connected.

l Check the numbers of running servers and connected clients

l Check the load on one or more servers

l Check the numbers of actively running threads

Monitoring Methods

Administration Guide 15-5

These numbers will help you determine whether adding more servers is likely to
improve performance.

n Suppose you receive complaints from multiple users about slow response when
making particular requests of your application. Checking load statistics may help
you determine whether it is appropriate to increase the value of BLOCKTIME.

Monitoring Methods

To monitor a running application, you need to keep track of the dynamic aspects of
your configuration and sometimes check the static data. Thus, you need to be able to
watch the Bulletin Board on an ongoing basis and consult the UBBCONFIG file when
necessary. Both the BEA WebLogic Enterprise and BEA Tuxedo systems provide the
following ways to monitor this data, as shown in the following table.

The preferred method depends on your level of experience and the type of information
you need to view.

If you are an experienced administrator (and have shell programming expertise), you
may prefer to write programs that automate your most frequently run commands.

If you are not an experienced UNIX user, you may be most comfortable using the
Web-based GUI.

You Can Use the . . . By . . . For Instructions, See . . .

tmadmin command Entering commands after a prompt This chapter

AdminAPI Using the MIB (and the commands described in
this chapter) to write programs that monitor
your run-time application

Chapter 21, “Event
Broker/Monitor (BEA
Tuxedo Systems)”

BEA Tuxedo Reference
Manual, Section 5

BEA Administration Console
Web-based GUI

Using a graphical interface The Help accessed directly
from the GUI

15 Monitoring a Running System

15-6 Administration Guide

If you examine the RESOURCES section of the UBBCONFIG file using the tmadmin
command, you can see only the current values; the defaults are not displayed.

If you decide to monitor your system at run time using the tmadmin command
interpreter, continue reading; this chapter describes tmadmin and explains how to use
it.

Using the tmadmin Command Interpreter

The tmadmin command is an interpreter for a large set of commands that let you view
and modify a Bulletin Board and its associated entities.

Note: tmadmin is supported on UNIX and Windows NT platforms.

This section provides step-by-step information about:

n What happens during a typical tmadmin session, which includes descriptions of
the operating modes for tmadmin sessions and instructions for invoking them, a
table showing the system requirements for access to various tmadmin
commands, and descriptions of the tmadmin meta-commands: commands that
help you make the best—and most efficient—use of the tmadmin commands.

n A procedure that you can follow to run tmadmin for most tasks.

Detailed instructions for individual tasks are provided in later sections of this
chapter.

How a tmadmin Session Works

How might you want to use tmadmin to modify your system while it is running?
Consider the following sample scenario. Suppose you want to check the current values
for all the parameters listed in the Bulletin Board, such as maximum number of servers
and services. You can do this by running the tmadmin command, bbparms.

1. A tmadmin session starts when you (the administrator) enter the tmadmin
command at a shell prompt. The shell prompt ($) is replaced by the tmadmin
prompt (>) which is used until you quit tmadmin.

Using the tmadmin Command Interpreter

Administration Guide 15-7

$ tmadmin [operating_mode_option]
>

You can request one of three operating modes on the command line: the default
mode (which allows you to view and change the Bulletin Board and associated
entities), read-only mode (-r), or configuration mode (-c).

2. tmadmin verifies that the configuration is running. If the configuration is not
running, the following message is displayed:

No bulletin board exists. Entering boot mode
>

3. tmadmin checks the TUXCONFIG environment variable (and the optional
TUXOFFSET variable if it is set) to get the location where the configuration file
has been loaded. (Be sure you have defined the TUXCONFIG environment variable
before beginning a tmadmin session.)

4. tmadmin enters the Bulletin Board in one of the following three states, depending
on which operating mode you have requested.

l If you have requested the default operating mode (tmadmin with no options),
tmadmin enters the Bulletin Board as an administrative process, allowing
you to view and make changes to configuration components and/or activities
listed in the Bulletin Board.

l If you have requested read-only mode (tmadmin -r), tmadmin enters the
Bulletin Board as a client instead of as an administrator. This mode is useful
if you want to leave the administrator slot unoccupied. (Only one tmadmin
process can be the administrator at one time.) If the -r option is specified by
a user other than the BEA WebLogic Enterprise or BEA Tuxedo
administrator and security is turned on, the user is prompted for a password.

l If you have requested configuration mode (tmadmin -c), tmadmin enters
the Bulletin Board as an administrative process, allowing you to make
changes to the configuration components and/or activities listed in the
Bulletin Board. You can request configuration mode on any machine,
whether the machine is active or inactive. (A machine is considered active if
tmadmin can join the application as an administrative process or as a client,
via a running BBL.)

5. The > prompt is displayed on your screen and you enter a tmadmin command.

Not all tmadmin commands are available on every machine at all times. Which
commands are available depends on several factors:

15 Monitoring a Running System

15-8 Administration Guide

l The mode (read-only or configuration) of the current tmadmin session

l The current state of the configuration

l The type of machine on which you are working

For details, see the tmadmin(1) reference page in the BEA Tuxedo Reference
Manual.

tmadmin Options

Whenever you start a tmadmin session, you have a choice of operating modes for that
session: read-only mode, configuration mode, or the default operating mode. You can
also generate a report of the BEA WebLogic Enterprise or BEA Tuxedo version and
license numbers.

Read-only Mode

In this mode, you can view the data in the Bulletin Board, but you cannot make any
changes. The advantage of working in read-only mode is that your administrator
process is not tied up by tmadmin; the tmadmin process attaches to the Bulletin Board
as a client, leaving your administrator slot available for other work.

To start a tmadmin session in read-only mode, specify the -r option on the command
line:

$ tmadmin -r

Configuration Mode

In this mode, you can view the data in the Bulletin Board and, if you are the BEA
Tuxedo application administrator, you can make changes. You can start a tmadmin
session in configuration mode on any machine, including an inactive machine. On
most inactive machines, configuration mode is required. (The only inactive machine
on which you can start a tmadmin session without requesting configuration mode is
the MASTER machine.)

To start a tmadmin session in configuration mode, specify the -c option on the
command line:

$ tmadmin -c

Using the tmadmin Command Interpreter

Administration Guide 15-9

Default Operating Mode

If you want to view and change Bulletin Board data during a tmadmin session, you
must:

n Have administrator privileges (that is, your effective UID and GID must be those
of the administrator).

n Invoke the command interpreter without any options:
 $ tmadmin

Version Number and License Number Report

To find out which version of the BEA WebLogic Enterprise or BEA Tuxedo system
you are running and to get the license number for it, specify the -v option on the
command line:

$ tmadmin -v

After displaying the version and license numbers, tmadmin exits, even if you have
specified -c or -r in addition to -v. When -v is requested, all other options are
ignored.

tmadmin Metacommands

The tmadmin command interpreter is equipped with a set of metacommands,
commands that help you use tmadmin. Table 15-1 lists the tmadmin metacommands.

Note: The tables and examples in this chapter include the abbreviated forms of the
tmadmin command names.

Table 15-1 tmadmin Metacommands

Use This Command Or Its
Abbreviation

To...

default d Set defaults for arguments of other
commands.

dump du Download the current Bulletin Board into a
file.

15 Monitoring a Running System

15-10 Administration Guide

Default

The default metacommand (d) lets you set and unset defaults for the following
frequently used parameters for most tmadmin commands: group name, server ID,
machine, username, client name, queue address, service name, device blocks, device
offset, JDBC connection pool name, and UDL configuration device path. For details,
see the tmadmin(1) reference page in the BEA Tuxedo Reference Manual.

Note: You cannot assign defaults to any parameters for the boot and shutdown
commands.

After defaults are set, they remain in effect until the session ends or until the
parameters are reset to different values. The remainder of this section provides a list of
instructions for checking, setting, and unsetting defaults.

n To check your current default settings, run the default metacommand without
any options. Listing 15-1 shows an example of the report that is displayed when
no parameters are set.

echo e Display input command lines.

help h Display command list or command syntax.

paginate page Pipe output of commands to a pager.

quit q Terminate the session.

verbose v Show output in verbose mode (a toggle key).

!shlcmd (n/a) Escape to the shell and run the specified shell
command.

!! (n/a) Repeat the previous shell command.

<RETURN> (n/a) Repeat the last tmadmin command.

Table 15-1 tmadmin Metacommands (Continued)

Use This Command Or Its
Abbreviation

To...

Using the tmadmin Command Interpreter

Administration Guide 15-11

Listing 15-1 Default Output

> d
Default Settings:
 Group Name: (not set)
 Server ID: (not set)
 Machine ID: (not set)
 Queue Name: (not set)
 client Name: (not set)
 Service Name: (not set)
 User Name: (not set)
Conn Pool Name: (not set)

 Blocks: 1000
 Offset: 0
 Path: (not set)
>

n To assign a new value as the default for a parameter, enter the default
command, specifying the parameter, as follows:

default -parameter new_value

For example, to change the default of the service name to “teller,” enter the
following command:

default -s teller

n To unset a default setting, run the default command with the appropriate
option for the parameter in question, followed by the * wildcard argument:

default -parameter *

For example, to unset the default for the service name (specified with the -s
argument), enter the following command:

default -s *

For most parameters, when you unset the default setting without specifying a
new one, the result is that you have no default for that parameter. This
generalization does not apply to the machine ID parameter, however.

In a multiprocessor environment, the value of the machine ID can be a specific
processor, the DBBL, or all. If the value of the machine ID is a specific
processor, information is retrieved only from that processor. To remind you of
this fact, the logical machine ID is added to the tmadmin session prompt (LMID
>), as shown in Listing 15-2.

15 Monitoring a Running System

15-12 Administration Guide

Listing 15-2 Prompt When Machine ID Is Set to a Specific Processor

 # 1. default mid not previously set
> d -m SITE1 # 2. set SITE1 as default mid
SITE1 > # 3. prompt now shows default mid

If you unset the current default of the machine ID without specifying a new
default, the DBBL is used automatically as the new default. In other words, if
you enter:

default -m *

DBBL becomes the machine ID. You can also simply specify DBBL as the new
machine by entering the following:

default -m DBBL

Optional and Required Arguments

Most tmadmin commands require explicit information about the resource on which the
command is to act. Required arguments can always be specified on the command line,
and can often be set via the default command, as well. tmadmin reports an error if
the required information is not available from either source.

Some tmadmin statistical commands interpret unspecified default parameters as all.

Running tmadmin Commands

This section provides the basic procedure for running tmadmin commands.
Commands for doing specific monitoring tasks through tmadmin are provided in the
section “Monitoring a Running System with tmadmin” in this chapter.

Note: For complete details about tmadmin, see the tmadmin(1) reference page in the
BEA Tuxedo Reference Manual.

To run the tmadmin commands:

Monitoring a Running System with tmadmin

Administration Guide 15-13

1. Make sure the TUXCONFIG environment variable has been set.

2. Enter tmadmin in the appropriate operating mode.

l For default mode (which allows you to view and change information listed in
the Bulletin Board), do not specify any options.

l For configuration mode, enter the -c option on the tmadmin command line.

l For read-only mode, enter the -r option on the tmadmin command line.

3. When the tmadmin session prompt (>) is displayed, enter your first tmadmin
command. Specify, on the command line, how much information from the
Bulletin Board you want to have displayed.

l For complete, detailed output, request verbose mode:

tmadmin_command -v

For example: bbparms -v

l For abbreviated (sometimes truncated) output, request terse mode:

tmadmin_command -t

For example: printjdbcconnpool -t

4. After viewing the output of your first tmadmin command, continue entering
tmadmin commands until you are ready to end the session.

5. End the tmadmin session by entering:

quit

Monitoring a Running System with
tmadmin

Table 15-2 provides a list of potential problems that you might want to check while
monitoring your run-time system, along with a list of the tmadmin commands that
enable you to perform such a check. The table also suggests follow-up actions you
might take if the tmadmin command you run generates a particular type of output.

15 Monitoring a Running System

15-14 Administration Guide

Note: For a comprehensive list of the tmadmin commands, see the tmadmin(1)
reference page in the BEA Tuxedo Reference Manual.

.

Table 15-2 Commands for Monitoring Tasks

To Determine
Whether . . .

Run This Command . .
.

If . . . Then . . .

Any servers are
stalled in a service.

$ tmadmin -r
> printserver

The Current Service and
Request fields do not
change.

The server is spending
excessive time on the current
service.

In a development environ-
ment, the server might be
stalled in an infinite loop; you
may want to stop it.

The load
distribution is
appropriate.

$ tmadmin -r
> printserver

The values in the Load
Done field are not
reasonably similar.

Check the layout of the MSSQs
and the data-dependent routing.

If the current servers have too
heavy a load, you may want to
boot more servers.

A particular service
is doing any work.

$ tmadmin -r
> printservice

The value in the
Requests Completed
field is 0.

Data-dependent routing may be
preventing requests from being
sent to that server for that
service. You can:

n Change the routing criteria
or

n Move the service to another
server.

An interface is
doing any work.

tmadmin -r
>printinterface -v

The value in the
Requests Done field is 0.

Factory-based routing may be
preventing requests from being
sent to that server for that
interface. You can:

n Change the routing criteria
or

n Move the interface to a
different server

Monitoring a Running System with tmadmin

Administration Guide 15-15

The number of
active objects is
approaching the
limit.

tmadmin -r
>bbparms
>bbstats

The number of active
objects reported by the
bbstats command is
close to the maximum
number of objects as
reported by the
bbparms command.

You may need to increase the
number of maximum objects.

An object is hung or
slow in processing
requests.

tmadmin -r
>printactiveobject

The value of the
Reference Count field is
greater than 1.

Clients are waiting for requests.
The object may be hung or
overloaded. You may need
more objects performing
functions currently assigned to
this object.

Any clients are
inactive.

$ tmadmin -r
> printclient

n There has been no
activity for a long
time for a client, and

n Resources are
needed.

Tell the client—via a broadcast
message—to exit.

The work is
distributed in such a
way that it is
flowing smoothly
through the system.

$ tmadmin -r
> printqueue

Some queues are always
heavy and others are not.

Check the arrangement of
services within servers,
data-dependent routing, and/or
queue organization.

A client is tying up a
connection and
preventing a server
from doing any
work for another
client.

$ tmadmin -r
> printconn

A client is maintaining
control of a connection
and is not issuing any
requests.

1. Suspend the client by using
the client MIB. (We
recommend using the BEA
Administration Console for
this task.)

2. Terminate the client.

Table 15-2 Commands for Monitoring Tasks (Continued)

To Determine
Whether . . .

Run This Command . .
.

If . . . Then . . .

15 Monitoring a Running System

15-16 Administration Guide

A JDBC connection
pool is overloaded.

$tmadmin -v
>printjdbcconnpool

The high-water mark
(HWM) of connections
in use is at or close to the
maximum size, or
connections in use is
close to the maximum
size and clients are
waiting.

You may want to expand the
maximum size of the pool.

The network is
stable.

$ tmadmin -r
> printnet

A machine is no longer
connected.

You may want to:

1. Partition the machine (that
is, take it off the network).

2. Resolve the problem.

3. Reconnect the machine.

You must manually
commit or abort a
transaction.

$ tmadmin -r
> printtrans

For example, the status
is TMGDECIDED.

The first phase of the two-phase
commit has completed
successfully. This means you
must find out why the second
phase cannot be completed.

For example, you may find that
the coordinating TMS cannot
complete the transaction
because a participating site has
gone down.

Your operating
system resources
(such as shared
memory and
semaphores) on a
local machine are
sufficient.

$tmadmin -r
> bbsread

You do not have
sufficient resources in
the operating system.

Increase the IPC resources
(semaphores, shared memory
segments, and so on) in the
operating system.

Table 15-2 Commands for Monitoring Tasks (Continued)

To Determine
Whether . . .

Run This Command . .
.

If . . . Then . . .

Example: Output from tmadmin Commands

Administration Guide 15-17

Example: Output from tmadmin Commands

This section provides examples of output from the following tmadmin monitoring
commands:

n printqueue

n printconn

n printnet

n printtrans

n printjdbcconnpool

Note: For a list of all 50 tmadmin commands, see the tmadmin(1) reference page in
the BEA Tuxedo Reference Manual.

printqueue Output

Listing 15-3 shows output from the printqueue command lets you check the
distribution of work in the bankapp application.

You want to keep
the current values
for system-wide
parameters (in the
RESOURCES
section of your
UBBCONFIG file).

$ tmadmin -r
> bbparms

You do not have
sufficient resources for
your application.

1. Stop the application.

2. Configure additional IPC
resources (assuming you
have enough available) by
increasing the values of
relevant parameters (such
as MAXSERVERS and
MAXCLIENTS) in the
RESOURCES section of the
configuration file.

3. Reboot the application.

Table 15-2 Commands for Monitoring Tasks (Continued)

To Determine
Whether . . .

Run This Command . .
.

If . . . Then . . .

15 Monitoring a Running System

15-18 Administration Guide

Listing 15-3 Printqueue Command Output

printqueue [qaddress]

tmadmin - Copyright © 1996-1999 BEA Systems, Inc.
Portions* Copyright 1986-1997 RSA Data Security, Inc.

>printqueue

Prog Name Queue Name # Serve Wk Queued # Queued Ave. Len Machine

TLR 28706 1 0 0 0.0 SITE1

TMS_SQL BANKB1_T 2 0 0 0.0 SITE1

TLR 24946 1 0 0 0.1 SITE1

BAL 8533 1 0 0 0.0 SITE1

BAL 24915 1 0 0 0.0 SITE1

BTADD 28897 1 0 0 0.0 SITE1

XFER 4380 1 0 0 0.0 SITE1

XFER 28840 1 100 0 1.0 SITE1

TLR 12519 1 100 2 0.0 SITE1

BBL 24846 1 0 2 0.0 SITE1

ACCT 71 1 0 0 0.0 SITE1

TMS_SQL BANKB3_T 2 0 0 0.0 SITE1

BAL 28958 1 0 0 0.0 SITE1

ACCT 254 1 0 0 0.0 SITE1

BTADD 12310 1 0 0 0.0 SITE1

XFER 16494 1 0 0 0.0 SITE1

TMS_SQL BANKB2_T 2 0 0 0.0 SITE1

BTADD 8430 1 0 0 0.0 SITE1

ACCT 24641 1 0 0 0.0 SITE1

Example: Output from tmadmin Commands

Administration Guide 15-19

Note: By default, information is supplied for all queues. If you want your output to
be limited to information about only one queue, specify the address for the
desired queue.

The output of this command includes the following information:

printconn Data

Listing 15-4 shows verbose output from the printconn command shows that the
client process has:

n Two conversations were initiated

n Control of both lines was maintained

n No requests were sent yet

Listing 15-4 Printconn Command Output

printconn [-m machine]

tmadmin - Copyright © 1996-1999 BEA Systems, Inc.

In the Column
Labeled . . .

You See . . .

Prog Name The name of the executable to which the queue is connected.

Queue Name The symbolic queue name (set to either the RQADDR parameter of
UBBCONFIG or a randomly chosen value).

Serve The number of servers connected to the queue.

Wk Queued The load factor of all requests currently queued.

Queued The actual number of requests queued.

Ave. Len The average queue length. Not available in MP mode.

Machine The LMID of the machine on which the queue is located.

15 Monitoring a Running System

15-20 Administration Guide

> echo
Echo now on.

> v
Verbose now on.

> pc

Originator
 Group/pid: Client/29704
 LMID: SITE1
 Sends: 0
Subordinate
 Group/server id: Group1/2
 LMID: SITE1
 Sends: -
 Service: TOUPPER1
Originator
 Group/pid: Client/29704
 LMID: SITE1
 Sends: 0
Subordinate
 Group/server id: Group1/2
 LMID: SITE1
 Sends: -
 Service: TOUPPER2

printnet Command Output

Listing 15-5 shows the output from the following procedure.

1. The printnet command was run. (The output shows the number of messages sent
and received by both sites.)

2. The BRIDGE process at SITE2 was stopped.

3. The printnet command was re-entered. (The output shows that SITE2 is no
longer connected to the master machine, SITE1.)

Example: Output from tmadmin Commands

Administration Guide 15-21

Listing 15-5 Printnet Command Output

printnet [-m machine_list]

tmadmin - Copyright © 1996-1999 BEA Systems, Inc. All rights
reserved.

> echo
Echo now on.

> pnw
SITE1 Connected To: msgs sent msgs received
SITE2 100103

SITE2 Connected To: msgs sent msgs received
SITE1 104 101

> pnw
SITE1 Connected To: msgs sent msgs received

 Could not retrieve status from SITE2

>

printtrans Command Output

The printtrans command reports statistics only for transactions that are currently in
progress, specifically, statistics on the number of rollbacks, commits, and aborts that
have been executed on your machine, group, or server.

Listing 15-6 shows the output produced by running the printtrans command in both
terse and verbose modes:

n In terse mode, the GTRID (a unique string that identifies a transaction across an
application) and the transaction state are shown.

n In verbose mode, information about timeouts and participants is added.

Note: The index shown in the example is used by the administrator to commit or
abort the transaction.

15 Monitoring a Running System

15-22 Administration Guide

Listing 15-6 Printtrans Command Output

printtrans [-m machine] [-g groupname]

tmadmin - Copyright © 1996-1999 BEA Systems, Inc.
Portions* Copyright 1986-1997 RSA Data Security, Inc.
All rights reserved.

> printtrans
>> index=0>gtrid=x0 x2bb8f464 x1
: Machine id: SITE1, Transaction status: TMGACTIVE
 Group count: 1

> v
Verbose now on.

> pt
>> index=0>gtrid=x0 x2bb8d464 x1
: Machine id: SITE1, Transaction status: TMGACTIVE
 Group count: 1, timeout: 300, time left: 299
 Known participants:
 group: GROUP1, status: TMGACTIVE, local, coord

>

printjdbcconnpool Command Output

The printjdbcconnpool command reports statistics on JDBC connection pools such
as the maximum number of connections per pool, the number of connections in use,
the number of clients waiting for a connection, and the high-water mark or highest
number of connections used for a pool.

Listing 15-7 shows the output produced by running the printjdbcconnpool
command in terse and verbose modes. In terse mode the maximum pool size, the
current pool size, and the number of connections currently in use are shown. In verbose
mode the number of clients waiting and the high-water mark are also shown.

Example: Output from tmadmin Commands

Administration Guide 15-23

Listing 15-7 Printjdbcconnpool Command Output

>printjdbcconnpool
Pool Name Grp Name Srv Id Size Max Size Used
----------- ---------- ------ ---- -------- ----
ejbPool J_SRVGRP 101 1 15 0
Pool2 J_SRVGRP 102 10 30 3

Listing 15-8 shows is the verbose mode output for a single connnection pool:

Listing 15-8 Printjdbcconnpool Command Verbose Mode Output

 Pool Name: Pool2
 Group ID: J_SRVGRP
 Server ID: 102
 Driver: (none)
 URL: (none)
 Database Name: Db
 User: leia
 Host: SITE1
 Password: mypwd
 Net Protocol: odbc
 Port: 120
 Props: (none)
 Enable XA: No
 Create On Startup: Yes
 Pool Size: 10
 Maximum Size: 30
 Capacity increment: 3
 Allow shrinking: Yes
 Shrink interval: 10 min(s)
 Login delay: 1 sec(s)
 Connections in use: 3
 Connections awaiting: 0
HWM connections in use: 5
 Test table: testtable
 Refresh interval: 20 sec(s)
 Test conn OnReserve: Yes
 Test conn OnRelease: No

15 Monitoring a Running System

15-24 Administration Guide

Case Study: Monitoring Run-time bankapp

This section presents a sample configuration for a multiprocessor (MP) version of the
bankapp application. This section also shows the output that was returned when the
local IPC resources and system-wide parameters were checked by running the
appropriate tmadmin commands.

Configuration File for bankapp

For this case study, we will use the configuration defined in the UBBCONFIG file shown
in Listing 15-9.

Listing 15-9 UBBCONFIG File for bankapp (MP Version)

#Copyright (c) 1997, 1998 BEA Systems, Inc.
#All rights reserved

*RESOURCES
IPCKEY 80952
UID 4196
GID 601
PERM 0660
MAXACCESSERS 40
MAXSERVERS 35
MAXSERVICES 75
MAXCONV 10
MAXGTT 20
MASTER SITE1,SITE2
SCANUNIT 10
SANITYSCA
 12
BBLQUERY 180
BLOCKTIME 30
DBBLWAIT 6
OPTIONS LAN,MIGRATE
MODEL MP
LDBAL Y
#
*MACHINES
mchn1 LMID=SITE1
 TUXDIR="/home/tuxroot"

Case Study: Monitoring Run-time bankapp

Administration Guide 15-25

 APPDIR="/home/apps/bank"
 ENVFILE="/home/apps/bank/ENVFILE"
 TLOGDEVICE="/home/apps/bank/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="/home/apps/bank/tuxconfig"
 TYPE="3B2"
 ULOGPFX="/home/apps/bank/ULOG"
wgs386 LMID=SITE2
 TUXDIR="/home2/tuxroot"
 APPDIR="/home2/apps/bank"
 ENVFILE="/home2/apps/bank/ENVFILE"
 TLOGDEVICE="/home2/apps/bank/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="/home2/apps/bank/tuxconfig"
 TYPE="386"
 ULOGPFX="/home2/apps/bank/ULOG"
#
*GROUPS
DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
For NT/Netware, :bankdb: becomes ;bankdb;
BANKB1 LMID=SITE1 GRPNO=1
 OPENINFO="TUXEDO/SQL:/home/apps/bank/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2
 OPENINFO="TUXEDO/SQL:/home2/apps/bank/bankdl2:bankdb:readwrite"

*NETWORK
SITE1 NADDR="//mach1.beasys.com:1900"
 BRIDGE="/dev/tcp"
 NLSADDR="//mach1.beasys.com:1900"
SITE2 NADDR="//mach386.beasys.com:1900"
 BRIDGE="/dev/tcp"
 NLSADDR="//mach386.beasys.com:1900"
*SERVERS
#
DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlr1 CLOPT="-A -- -T 100"
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlr1 CLOPT="-A -- -T 200"
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2 CLOPT="-A -- -T 600"
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2 CLOPT="-A -- -T 700"
XFER SRVGRP=BANKB1 SRVID=5
XFER SRVGRP=BANKB2 SRVID=6
ACCT SRVGRP=BANKB1 SRVID=7
ACCT SRVGRP=BANKB2 SRVID=8
BAL SRVGRP=BANKB1 SRVID=9
BAL SRVGRP=BANKB2 SRVID=10
BTADD SRVGRP=BANKB1
BTADD SRVGRP=BANKB2 SRVID=12
AUDITC SRVGRP=BANKB1 SRVID=13 CONV=Y MIN=1 MAX=10
BALC SRVGRP=BANKB1 SRVID=24
BALC SRVGRP=BANKB2 SRVID=25
#

15 Monitoring a Running System

15-26 Administration Guide

*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=N
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id
ABALC_BID PRIO=30 ROUTING=b_id
TBALC_BID PRIO=30 ROUTING=b_id

*ROUTING
ACCOUNT_ID FIELD=ACCOUNT_ID
 BUFTYPE="FML"
 RANGES="10000-59999:BANKB1,
 60000-109999:BANKB2,
 :"
BRANCH_ID FIELD=BRANCH_ID
 BUFTYPE="FML"
 RANGES="1-5:BANKB1,
 6-10:BANKB2,
 :"
b_id FIELD=b_id
 BUFTYPE="VIEW:aud"
 RANGES="1-5:BANKB1,
 6-10:BANKB2,
 :"

Output from Checking the Local IPC Resources

To check the local IPC resources for this configuration, a tmadmin session was started,
and the bbsread command was run. The output of bbsread is shown in Listing 15-10.

Case Study: Monitoring Run-time bankapp

Administration Guide 15-27

Listing 15-10 bbsread Output

SITE1> bbsread

IPC resources for the bulleti
board o
machine SITE1:
SHARED MEMORY: Key: 0x1013c38
SEGMENT 0:
 ID: 15730
 Size: 36924
 Attached processes: 12
 Last attach/detach by: 4181

This semaphore is the system semaphore
SEMAPHORE: Key: 0x1013c38
 Id: 15666
 | semaphore | current | last | # waiting |
 | number | status | accesser | processes |
 |--|
 | 0 | free | 4181 | 0 |
 |------------|----------|----------|-----------|
This semaphore set is part of the user-level semaphore
SEMAPHORE: Key: IPC_PRIVATE
 Id: 11572
 | semaphore | current | last | # waiting |
 | number | status | accesser | processes |
 |--|
 | 0 | locked | 4181 | 0 |
 | 1 | locked | 4181 | 0 |
 | 2 | locked | 4181 | 0 |
 | 3 | locked | 4181 | 0 |
 | 4 | locked | 4181 | 0 |
 | 5 | locked | 4181 | 0 |
 | 6 | locked | 4181 | 0 |
 | 7 | locked | 4181 | 0 |
 | 8 | locked | 4181 | 0 |
 | 9 | locked | 4181 | 0 |
 | 10 | locked | 4181 | 0 |
 | 11 | locked | 4181 | 0 |
 | 12 | locked | 4181 | 0 |
 | 13 | locked | 4181 | 0 |
 |------------|----------|----------|-----------|

Note: The display is the same with verbose mode on or off.

15 Monitoring a Running System

15-28 Administration Guide

Output from Checking System-wide Parameter Settings

To check the current values of the system-wide parameters for this configuration, we
started a tmadmin session and ran the bbparms command. The output of bbparms is
shown in Listing 15-11.

Listing 15-11 Sample bbparms Output

> bbparms
Bulletin Board Parameters:
 MAXSERVERS: 50
 MAXSERVICES: 100
 MAXACCESSERS: 50
 MAXGTT: 100
 MAXCONV: 1
 MAXBUFTYPE: 16
 MAXBUFSTYPE: 32
 MAXOBJECTS: 1000
 MAXINTERFACES: 150
 IPCKEY: 35384
 MASTER: SITE1,SITE2
 MODEL: MP
 LDBAL: Y
 OPTIONS: LAN,MIGRATE
 SCANUNIT: 10
 SANITYSCAN: 12
 DBBLWAIT: 6
 BBLQUERY: 30
 BLOCKTIME: 6
 Shared Memory ID: 0

Note: The display is the same with verbose mode on or off.

Administraton Guide 16-1

CHAPTER

16 Monitoring Log Files

To help you identify error conditions quickly and accurately, the BEA WebLogic
Enterprise and BEA Tuxedo systems provide you with two log files:

n User log (ULOG)—a log of messages generated by the system while your
application is running.

n Transaction log (TLOG)—a binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A
TLOG is created only on machines involved in global transactions.

These two logs are maintained and updated constantly while your application is
running.

This topic includes the following sections:

n What is the ULOG?

n What Is the Transaction Log (TLOG)?

n Creating and Maintaining Logs

n Using Logs to Detect Failures

What is the ULOG?

The user log (ULOG) is a central event logger. All messages generated by the BEA
WebLogic Enterprise or BEA Tuxedo system—error messages, warning messages,
information messages, and debugging messages—can be written to this log.
Application clients and servers can also write to the user log.

16 Monitoring Log Files

16-2 Administration Guide

A new ULOG is created every day and there can be a different log on each machine.
When a remote file system is being used, however, a ULOG can be shared across
machines.

The ULOG also contains messages generated by the tlisten process. The tlisten
process provides remote service connections for other machines. Each machine,
including the master machine, should have a tlisten process running on it.

In previous BEA Tuxedo releases, tlisten had its own log file. Now, all messages
from the tlisten are written in a ULOG format.

Note: It is possible that the tlisten might have its own ULOG file that is different
from the application’s ULOG file. This is because the tlisten process starts
before any application is started. Therefore, tlisten writes the ULOG in the
current directory where it was started, or in the directory in the ULOGPFX
environment variable, if one was defined. The application’s ULOG file is
usually present in the $APPDIR directory.

Purpose

The purpose of the ULOG is to give you, the administrator, a record of the events on your
system from which you can determine the cause of most BEA WebLogic Enterprise or
BEA Tuxedo system and application failures.

How Is the ULOG created?

The ULOG is created by the BEA WebLogic Enterprise or BEA Tuxedo system
whenever one of the following events occurs:

n A new configuration file is loaded

n An application is booted

With the exception of the RMI trace and JDBC log information, all messages
generated by the BEA WebLogic Enterprise or BEA Tuxedo system are written to this
log by default.

n To have the RMI trace information written to the ULOG file, you must set the
-rmilog CLOPT attribute in the SERVERS section of the UBBCONFIG file.

What is the ULOG?

Administration Guide 16-3

n To have the JDBC log information written to the ULOG file, you must set the
-jdbclog CLOPT attribute in the SERVERS section of the UBBCONFIG file.

For a discussion of these attributes, see “Configuring Servers” on page 3-34.

How Is the ULOG Used?

You can view the ULOG, an ASCII file, with any text editor.

When a message is written to the ULOG through the tperrno global variable,
application clients and servers are notified, as follows:

n If tperrno is set to TPESYSTEM after returning from an ATMI call, you can
conclude that:

l A BEA WebLogic Enterprise or a BEA Tuxedo system error has occurred.

l An error message has been placed in the user log.

n If tperrno is set to TPEOS after returning from an ATMI call, you can conclude
that:

l An operating system error has occurred.

l An error message has been placed in the user log.

Message Format

A ULOG message consists of two parts: a tag and text. Each part consists of three
strings, as shown in the following table.

This Part . . . Consists of . . .

tag A 6-digit string (hhmmss) representing the time of day (in terms of
hour, minute, and second).

Name of the machine (as returned, on UNIX systems, by the uname -n
command).

Name and identifier of the process that is logging the message.

16 Monitoring Log Files

16-4 Administration Guide

Consider the following example of a user log message.

121449.gumby!simpserv.27190: LIBTUX_CAT:262: std main starting

From the message tag we learn:

n The message was written into the log at around 12:15 P.M.

n The machine on which the error occurred was gumby.

n The message was logged by the simpserv process (which has an ID of 27190).

From the message text we learn:

n The message came from the LIBTUX catalog.

n The number of the message is 262.

n The message itself reads as follows: std main starting.

For more information about a message, note its catalog name and catalog number.
With this information you can look up the message in the System Messages and BEA
Tuxedo System Message Manual, which provide complete descriptions of all system
messages.

Location

By default, the user log is called ULOG.mmddyy (where mmddyy represents the date in
terms of month, day, and year) and it is created in the $APPDIR directory.

You can place this file in any location, however, by setting the ULOGPFX parameter in
the MACHINES section.

text Message catalog name

Message number

System message

This Part . . . Consists of . . .

What Is the Transaction Log (TLOG)?

Administration Guide 16-5

What Is the Transaction Log (TLOG)?

The transaction log (TLOG) keeps track of global transactions during the commit phase.
A global transaction is recorded in the TLOG only when it is in the process of being
committed. The TLOG is used to record the reply from the global transaction
participants at the end of the first phase of a two-phase-commit protocol. The TLOG
records the decision about whether a global transaction should be committed or rolled
back.

We recommend that you create a TLOG on each machine that participates in global
transactions.

How Is the TLOG Created?

For instructions on creating a TLOG, see the section “Creating a Transaction Log
(TLOG)” on page 16-7.

How Is the TLOG Used?

The TLOG file is used only by the Transaction Manager Server (TMS) that coordinates
global transactions. It is not read by the administrator.

Location

The location and size of the TLOG are specified by four parameters that you set in the
MACHINES section of the UBBCONFIG file: TLOGDEVICE, LOGOFFSET, TLOGNAME, and
TLOGSIZE. (For descriptions of these parameters and instructions for assigning values
to them, see “Creating a Transaction Log (TLOG)” on page 16-7.)

16 Monitoring Log Files

16-6 Administration Guide

Creating and Maintaining Logs

The ULOG is generated by various BEA WebLogic Enterprise or BEA Tuxedo system
processes; you do not need to create it. The TLOG, however, is not produced
automatically; you must create it.

This section provides instructions for:

n Maintaining the ULOG

n Creating TLOGs

How to Assign a Location for the ULOG

To override the default location for your ULOG file, specify the desired location as the
value of the ULOGPFX parameter in the MACHINES section of the UBBCONFIG file. (By
default, the value of ULOGPFX is $APPDIR/ULOG.) The value you assign becomes the
first part of the ULOG filename.

Listing 16-1 shows how you can override the default setting.

Listing 16-1 Overriding Default Settings in the MACHINES Section of Your
UBBCONFIG File

MACHINES
gumby LMID=SITE1
TUXDIR=”/usr/tuxedo”
APPDIR=”/home/apps”
TUXCONFIG=”/home/apps/tuxconfig”
ULOGPFX=”/home/apps/logs/ULOG”
...

The following ULOG was created for SITE1 on 04/13/98.

/home/apps/logs/ULOG.041398

Creating and Maintaining Logs

Administration Guide 16-7

Creating a Transaction Log (TLOG)

To create a TLOG, you must complete the following procedure:

n Step 1: Assign Values to MACHINES Section Parameters

n Step 2: Create a UDL Entry

n Step 3 (optional): Allocate Space for a New Device on an Existing System

n Step 4: Create the Log

This section provides instructions for each step.

Step 1: Assign Values to MACHINES Section Parameters

Your first step is to assign values to four parameters in the MACHINES section of the
UBBCONFIG file: TLOGDEVICE, TLOGNAME, TLOGOFFSET, and TLOGSIZE.

TLOGDEVICE

TLOGDEVICE specifies the device in the BEA Tuxedo file system that contains
the transaction log. This can be the same device used by TUXCONFIG.

Note: Technically, there is no reason that TLOGDEVICE cannot be a separate VTOC
file, but there are two reasons why it is not recommended: the TLOG is
generally too small to justify devoting a raw disk segment to it, and creating
TLOGDEVICE as a UNIX file leads to expensive delays when synchronous
writes to the TLOG are required.

The TLOG is stored as a BEA WebLogic Enterprise or a BEA Tuxedo system
VTOC table on the device named in this parameter. If the TLOGDEVICE
parameter is not specified, there is no default; the BEA WebLogic Enterprise
or BEA Tuxedo system assumes that no TLOG exists for the machine. If no
TLOG exists for a given machine, the associated LMID cannot be used by server
groups that participate in distributed transactions.

After TUXCONFIG has been created via tmloadcf, you must create a device list
entry for the TLOG on each machine for which TLOGDEVICE is specified. This
is done using the tmadmin crdl command. The BBL creates the log
automatically the first time the system is booted.

16 Monitoring Log Files

16-8 Administration Guide

TLOGNAME

TLOGNAME specifies the name of the Distributed Transaction Processing
(DTP) transaction log for this machine. The default name is TLOG. If more
than one transaction log exists on the same TLOGDEVICE, each transaction log
must have a unique name. If a name is specified, it must not conflict with any
other table specified on the configuration.

TLOGOFFSET

TLOGOFFSET specifies the offset in pages from the beginning of TLOGDEVICE
to the start of the VTOC that contains the transaction log for this machine.
The number must be greater than or equal to 0 and less than the number of
pages on the device. The default value is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs share the same
device or if a VTOC is stored on a device (such as a file system) that is shared
with another application, TLOGOFFSET can be used to indicate a starting
address relative to the address of the device.

TLOGSIZE

TLOGSIZE specifies the number of pages for the TLOG. The default is 100
pages. Once a global transaction is complete, TLOG records are no longer
needed and are thrown away. The maximum number of pages that can be
specified, subject to the amount of available space on TLOGDEVICE, is 2048
pages. Choosing a value is entirely application-dependent.

Listing 16-2 shows an example of the use of transaction log parameters.

Listing 16-2 Sample Transaction Log Parameters for a Specified Machine

MACHINES
gumby LMID=SITE1
...
TLOGDEVICE=”/home/apps/logs/TLOG”
TLOGNAME=TLOG
TLOGOFFSET=0
TLOGSIZE=100
...

Creating and Maintaining Logs

Administration Guide 16-9

Step 2: Create a UDL Entry

Next, create an entry in the Universal Device List (UDL) for the TLOGDEVICE on each
machine that requires a TLOG. You can perform this step either before or after
TUXCONFIG has been loaded, but you must do it before the system is booted.

To create an entry in the UDL for the TLOG device, complete the following procedure.

1. On the master machine (with the application inactive), enter the following.

tmadmin -c

You do not have to create TLOGs on any machine other than the master machine.
The BEA WebLogic Enterprise or BEA Tuxedo system creates TLOGs on
nonmaster machines (as long as a UDL exists on those machines) when the
application is booted.

2. Enter the command:

crdl -z config -b blocks

l -z config specifies the full path name for the device on which the UDL
should be created (and where the TLOG will reside).

l -b specifies the number of blocks to be allocated on the device.

l config should match the value of the TLOGDEVICE parameter in the
MACHINES section. If config is not specified, it defaults to the value of
FSCONFIG (a BEA WebLogic Enterprise or a BEA Tuxedo system
environment variable).

3. Repeat steps 1 and 2 on each machine of your application that will participate in
global transactions.

Note: If the TLOGDEVICE is mirrored between two machines, step 3 is not
required on the paired machine.

During the boot process, the Bulletin Board Listener (BBL) initializes and opens the
TLOG.

Step 3 (optional): Allocate Space for a New Device on an Existing System

In step 2 you created a new BEA WebLogic Enterprise or BEA Tuxedo file system that
can be used to hold the TLOG. Sometimes, however, it is necessary to add new devices
or space to an existing configuration or to check space usage. You can perform these
tasks by running the command:

16 Monitoring Log Files

16-10 Administration Guide

tmadmin -c

(You can run this command whether or not the system is booted.)

It is possible that the UDL exists on config but does not have sufficient space for the
log. To allocate space on a new device to an existing BEA Tuxedo file system, enter:

crdl -z config -b blocks new_device

where new_device specifies the full path name for the new device where space is to
be allocated. This creates a new entry on the UDL and the space is available for any
tables that are created on config. (For example, this procedure can be used for the
TUXCONFIG file when there is not enough space for a modified configuration, for
allocating a new TLOG, or for increasing the size of the TLOG by deleting an old log and
then creating a larger one.) If you are running several commands using the current
configuration, it is possible to set the default configuration by entering the default
command (d), as follows:

d -z config

If you run this command, you will not need to enter the -z option after each command.

Under rare circumstances, a device does not start at offset 0. This might happen if
space has been allocated on a device (less than the entire device) to a BEA Tuxedo file
system, and more space on the same device is available to be allocated. In this case,
you can allocate the second entry by entering the following command:

crdl -z config -b blocks -o new_device_offset new_device

Here, new_device_offset specifies the offset of the new space being allocated on
the device. (Note that the option is a lowercase o.) In this case, since the first entry on
the UDL is allocated at offset 0, TLOGOFFSET and/or TUXOFFSET are set to 0, instead
of to the offset of the new device. (The BEA WebLogic Enterprise or BEA Tuxedo
system needs to find the UDL, from which it can determine the offset of other available
space.)

A second (and rarer) reason that a device does not start at offset 0 is that a single raw
device is shared. This happens, for example, if a UNIX file system is followed by a
BEA Tuxedo file system on the same device. (This situation is risky because the raw
device must be writable by the BEA WebLogic Enterprise or BEA Tuxedo system
administrator and it is possible to overwrite the UNIX file system.) If the first entry on
the UDL does not start at offset 0 (as in this example), the device offset must be
specified everywhere that the device is referenced. To allocate the entry, enter the
following command:

Creating and Maintaining Logs

Administration Guide 16-11

crdl -z config -b blocks -o offset -O offset new_device

Here, offset is the offset of the space to be allocated for the BEA Tuxedo file system
(UDL and tables). Note that the -o (lowercase o) specifies the offset of the UDL and
-O (uppercase O) specifies the offset of the new device space being allocated, which
in this case are the same. Any devices that are created subsequently on this
configuration must use both the -o option with the offset of the first entry, and the -O
option with the offset of the new entry. (The offset may be 0 if a new device is being
specified.) Since the first entry on the UDL is not allocated at offset 0, TLOGOFFSET
and/or TUXOFFSET must be set to the offset of the first entry. This is the only case in
which TLOGOFFSET and TUXOFFSET must be set in the UBBCONFIG file, and the
TUXOFFSET environment variable must be set when all BEA Tuxedo application and
administrative processes are being run.

To list the current UDL, enter:

lidl -z config

where config was created using the above procedures. If the first entry was created
with an offset other than 0, -o offset must be specified in addition to the
configuration device. In verbose mode, this command lists not only the space initially
allocated for each device entry, but also the amount of free space.

It is also possible to generate a list of the tables on the configuration by entering the
following command:

livtoc -z config

Here config was creating using the above procedures. If the first entry was created
with an offset other than 0, -o offset must be specified in addition to the
configuration device. This command lists the table name, device number, offset within
the device, and number of pages for each table. The first two tables are always VTOC
and UDL. TUXCONFIG table names are of the form _secname_SECT, where secname
is the name of a section in the UBBCONFIG file. The TLOG table name is based on the
TLOG parameter in the UBBCONFIG file, and defaults to TLOG. In the rare case in which
two applications share a single BEA Tuxedo file system for the TLOGDEVICE, the TLOG
parameter must be different for each application.

Note: A BEA Tuxedo system file system is a file that is managed by BEA Tuxedo,
which may be located on a raw disk or in an operating system file system. A
BEA Tuxedo system file system contains one TUXCONFIG file and one or more
TLOG files.

16 Monitoring Log Files

16-12 Administration Guide

Because the table names for the TUXCONFIG file are fixed, it is not possible for two
applications to share the same BEA Tuxedo file system for the TUXCONFIG file.

Step 4: Create the Log

To create the log, complete the following steps:

1. Make sure you have a TUXCONFIG file. (If you do not, the commands for creating
the TLOG will fail.)

2. Start a tmadmin session by entering:

tmadmin -c

3. At the tmadmin command prompt (>), enter:

crlog [-m machine]

where the value of machine is the LMID of a machine, as specified in
TUXCONFIG.

Note: The -m option is shown as optional because it can be specified with the
default (d) command of tmadmin. If you have not specified a machine with
the d command, however, the -m option is required on the crlog command
line.

Maintaining a TLOG

There are few tasks needed to maintain a transaction log (TLOG). Two of them are as
follows:

n To reinitialize a TLOG, enter:

inlog [-yes] [-m machine]

The value of machine is the LMID of a machine, as specified in TUXCONFIG.

Be careful when using this command: it will reinitialize the log even if there are
outstanding transactions. The result could be inconsistent TLOGs, possibly
causing transactions to abort.

n To destroy a TLOG, enter:

dslog [-yes] [-m machine]

The value of machine is the LMID of a machine, as specified in TUXCONFIG.

Using Logs to Detect Failures

Administration Guide 16-13

If the application is not active or if there are transactions still outstanding in the log,
an error will be returned.

Note: The -yes and -m options are shown as optional because they can be specified
with the default (d) command. If you have not specified a machine with the
d command, however, the -m option is required on the inlog and dslog
command lines.

Using Logs to Detect Failures

The BEA Tuxedo log files can help you detect failures in both your application and
your system. This section provides instructions for analyzing the data in the logs.

Analyzing the User Log (ULOG)

Note: Although application administrators are responsible for analyzing user logs,
application programmers may also consult the logs.

It is not unusual for multiple messages to be placed in the user log for a given problem.
In general, the earlier messages will better reflect the exact nature of the problem.

Listing 16-3 shows how the LIBTUX_CAT message 358 identifies the exact nature of
the problem, namely, that there are not enough UNIX system semaphores to boot the
application.

Listing 16-3 Sample ULOG Messages

151550.gumby!BBL.28041: LIBTUX_CAT:262: std main starting
151550.gumby!BBL.28041: LIBTUX_CAT:358: reached UNIX limit on semaphore ids
151550.gumby!BBL.28041: LIBTUX_CAT:248: fatal: system init function ...
151550.gumby!BBL.28040: CMDTUX_CAT:825: Process BBL at SITE1 failed ...
151550.gumby!BBL.28040: WARNING: No BBL available on site SITE1.
 Will not attempt to boot server processes on that site.

16 Monitoring Log Files

16-14 Administration Guide

See the System Messages for complete descriptions of user log messages and
recommendations for any actions that should be taken to resolve the problems
indicated.

Analyzing tlisten Messages

Keep the following guidelines in mind as you check the tlisten messages in your
ULOG:

n A message is placed in the log every time the log is contacted.

n A sequence number is given to every accepted request.

n If you cannot boot your application and subsequently cannot find any tlisten
messages in your ULOG file, one of the following problems may have occurred:

l The tlisten process may not have been started.

l The tlisten process may be listening on the wrong network address.

To find out whether one of these errors has occurred, check the ULOG file.

n It is possible that the tlisten might have its own ULOG file that is different
from the application’s ULOG file. This is because the tlisten process starts
before any application is started. Therefore, tlisten writes the ULOG in the
current directory where it was started, or in the directory in the ULOGPFX
environment variable, if one was defined. The application’s ULOG file is usually
present in the $APPDIR directory.

Note: Application administrators are responsible for analyzing the tlisten
messages in the ULOG, but programmers may also find it useful to check these
messages.

The CMDTUX catalog in the BEA Tuxedo System Message Manual contains the
following information about tlisten messages:

n Descriptions of all messages

n Recommended actions that you (or a programmer) can take to resolve error
conditions reported in these messages

Using Logs to Detect Failures

Administration Guide 16-15

Example

Consider the following example of a tlisten message in ULOG.

042398; 27909;CMDTUX_CAT: 615 INFO: Terminating tlisten process

This message was recorded on April 23, 1998. Its purpose is simply to provide
information: the tlisten process is being terminated. No action is required.

Note: This message can be found in the CMDTUX catalog of the BEA Tuxedo System
Message Manual.

Analyzing a Transaction Log (TLOG)

The TLOG is a binary file that contains only messages about global transactions that are
in the process of being committed. You should never need to examine this file.

If you do need to view the TLOG, you must first convert it to ASCII format so that it is
readable. The BEA Tuxedo system provides two tmadmin commands for this purpose:

dumptlog (dl) -z config [-o offset] [-n name]
 [-g groupname] filename

This command downloads (or dumps) the TLOG (a binary file) to an ASCII
file.

loadtlog -m machine filename
This command uploads (or loads) an ASCII version of the TLOG into an
existing TLOG (a binary file).

The dumptlog and loadtlog commands are also useful when you need to move the
TLOG between machines as part of a server group migration or machine migration.

For more information about these tmadmin commands, see tmadmin(1) in the BEA
Tuxedo Reference.

16 Monitoring Log Files

16-16 Administration Guide

Administraton Guide 17-1

CHAPTER

17 Tuning Applications

For a detailed discussion of tuning applications administrative information, see the
chapter Tuning Applications in Tuning and Scaling in the BEA WebLogic Enterprise
online documentation.

17 Tuning Applications

17-2 Administration Guide

Administraton Guide 18-1

CHAPTER

18 Migrating Applications

This topic includes the following sections:

n About Migration

n Migration Options

n Switching Master and Backup Machines

n Migrating a Server Group

n Migrating Machines

n Canceling a Migration

n Migrating Transaction Logs to a Backup Machine

Note: A migration requirement is that both the master and backup machines must be
running the same release of the BEA WebLogic Enterprise software, or the
same release of the BEA Tuxedo software.

About Migration

Whether you need to migrate all or portions of an application, the changes to the
application setup must be made with minimal service disruption. Machines, networks,
databases, the BEA WebLogic Enterprise or BEA Tuxedo system, and the application
all need to be maintained. The BEA WebLogic Enterprise and BEA Tuxedo systems
provide a way to migrate the applications so that they can be serviced.

18 Migrating Applications

18-2 Administration Guide

The BEA WebLogic Enterprise and BEA Tuxedo systems offer migration tools that
can also be used to recover from a machine crash, network partitions, database
corruptions, BEA WebLogic Enterprise or BEA Tuxedo system problems, and
application faults.

Migration Options

The following is a list of migration options:

n Switch master and backup machines

n Migrate a server group from its primary machine to its alternate machine

n Migrate all server groups from their primary machine to their alternate machine

n Cancel a migration

n Migrate a transaction log

By using a combination of these options and partitioned network recovery utilities, you
can migrate entire machines.

Switching Master and Backup Machines

Server migration is the process of moving one or more servers from one machine to
another. One special instance of this process is the ability to switch master and backup
machines. This type of switching is done by migrating the DBBL from the master
machine to the backup machine. While this procedure is most frequently used when a
network is partitioned, it is also useful in situations that require you to shut down the
master machine.

Switching Master and Backup Machines

Administration Guide 18-3

Use the master command to switch the master machine.

Use the tmadmin(1) master (m) command to switch master and backup machines
when the master machine must be shut down for maintenance, or when the master
machine is no longer accessible. Switching master and backup machines, however, is
only a first step. In most cases, application servers need to be migrated to alternate
sites, or the master machine needs to be restored. (These tasks are described in this
chapter.)

How to Switch the Master and Backup Machines

To switch the master and backup machines, call the tmadmin(1) command interpreter
with the master (m) command from the backup machine.

Examples: Switching Master and Backup Machines

The following examples illustrate how you can switch master and backup machines.

In the first example (Listing 18-1), the master machine is accessible from the backup
machine, and the DBBL process is migrated from the master machine to the backup
machine.

Listing 18-1 When the Master Machine Is Accessible from the Backup Machine

$ tmadmin
tmadmin - Copyright © 1999 BEA. All rights reserved.
> master
are you sure? [y,n] y
Migrating active DBBL from SITE1 to SITE2, please wait...
DBBL has been migrated from SITE1 to SITE2
> q

Command Description

master(m) Switches the master machine to the backup machine or the
reverse

18 Migrating Applications

18-4 Administration Guide

In the second example (Listing 18-2), because the master machine is not accessible
from the backup machine, the DBBL process is created on the backup machine.

Listing 18-2 When the Master Machine Is Not Accessible from the Backup
Machine

$ tmadmin
> master
are you sure? [y,n] y
Creating new DBBL on SITE2, please wait... New DBBL created on SITE2
> q

Migrating a Server Group

Use the following two tmadmin commands to migrate servers.

The tmadmin(1) migrategroup (migg) command takes the name of a single server
group as an argument. You must first shut down the servers to be migrated with the -R
option (for example, tmshutdown -R -g GROUP1).

You must specify an alternate location in the LMID parameter (for the server group
being migrated) in the GROUPS section of the UBBCONFIG file. Servers in the group
must specify RESTART=Y and the MIGRATE option must be specified in the RESOURCES
section of the UBBCONFIG file.

If transactions are being logged for the server involved in a group migration, you may
need to move the TLOG to the backup machine, load it, and perform a warm start.

Use This Command To

migrategroup(migg) Migrate servers in a group to their alternate location

migratemach(migm) Migrate servers by using LMIDs

Migrating a Server Group

Administration Guide 18-5

Migrating a Server Group When the Alternate Machine Is
Accessible from the Primary Machine

To migrate a server group when the alternate machine is accessible from the primary
machine, complete the following steps.

1. Call tmshutdown(1) from the master machine with the -R and -g (group_name)
options.

2. Run tmadmin(1) from the master machine.

3. Call the migrategroup (migg) command with group_name as the argument.

4. Migrate the transaction log, if necessary.

5. Migrate the application data, if necessary.

Migrating a Server Group When the Alternate Machine Is
Not Accessible from the Primary Machine

To migrate a server group when the alternate machine is not accessible from the
primary machine, complete the following steps.

1. Switch the master and backup machines, if necessary.

2. Run tmadmin(1) from the alternate machine.

3. Call the pclean (pcl) command with the primary machine as the argument.

4. Call the migrategroup (migg) command with group_name as the argument.

5. Call the tmboot(1) command to boot the server group.

18 Migrating Applications

18-6 Administration Guide

Examples: Migrating a Server Group

Listing 18-3 and Listing 18-4 show how you can migrate a server group. In the first
example, the alternate machine is accessible from the primary machine. In the second
example, the alternate machine is not accessible from the primary machine.

Listing 18-3 When the Alternate Machine Is Accessible from the Primary
Machine

$ tmshutdown -R -g GROUP1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown succeeded
1 process stopped.
$ tmadmin
> migg GROUP1
migg successfully completed
> q

Listing 18-4 When the Alternate Machine Is Not Accessible from the Primary
Machine

$ tmadmin
> pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migg GROUP1
migg successfully completed.
> boot -g GROUP1
Booting server processes ...
exec simpserv -A :
on SITE2 -> process id=22699 ... Started.
1 process started.
> q

Migrating Machines

Administration Guide 18-7

Migrating Machines

Use the tmadmin(1) migratemach (migm) command to migrate all server groups from
one machine to another when the primary machine must be shut down for maintenance
or when the primary machine is no longer accessible.

The command takes one logical machine identifier as an argument. The LMID names
the processor on which the server group(s) have been running. The alternate location
must be the same for all server groups on the LMID. Servers on the LMID must specify
RESTART=Y and the MIGRATE options must be specified in the RESOURCES section of
the UBBCONFIG file. You must first shut down the server groups with the
tmshutdown(1) -R option, and servers in the groups must be marked as restartable.

Migrating Machines When the Alternate Machine Is
Accessible from the Primary Machine

To migrate a machine when the alternate machine is accessible from the primary
machine, complete the following steps.

1. Call tmshutdown(1) from the master machine with the -R and -l
(primary_machine) options.

2. Run tmadmin(1) from the master machine.

3. Call the migratemach (migm) command with primary_machine as the
argument.

4. Migrate the transaction log, if necessary.

5. Migrate the application data, if necessary.

18 Migrating Applications

18-8 Administration Guide

Migrating Machines When the Alternate Machine Is Not
Accessible from the Primary Machine

To migrate a machine when the alternate machine is not accessible from the primary
machine, complete the following steps.

1. Switch the master and backup machines, if necessary.

2. Run tmadmin(1) from the alternate machine.

3. Call the pclean (pcl) command with primary_machine as the argument.

4. Call the migratemach (migm) command with primary_machine as the
argument.

5. Call the boot (b) command to boot the server groups.

Examples: Migrating a Machine

Listing 18-5 and Listing 18-6 illustrate how you can migrate server groups. In the first
example, the alternate machine is accessible from the primary machine. In the second
example, the alternate machine is not accessible from the primary machine.

Listing 18-5 When the Alternate Machine Is Accessible from the Primary
Machine

$ tmshutdown -R -l SITE1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown
succeeded 1 process stopped.
$ tmadmin
> migm SITE1
migm successfully completed
> q

Canceling a Migration

Administration Guide 18-9

Listing 18-6 When the Alternate Machine Is Not Accessible from the Primary
Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
>pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migm SITE1
migm successfully completed.
> boot -l SITE1
Booting server processes ...
exec simpserv -A :
on SITE2 -- process id=22782 ... Started.
1 process started.
>q

Canceling a Migration

You can cancel a migration after a shutdown occurs, but before using the migrate
command, by using the -cancel option with the migrate command.

You can cancel a migration in the following ways:

n By using the tmadmin (1) migrategroup (migg) -cancel command to cancel a
server migration. Server entries are deleted from the Bulletin Board. You must
reboot the servers once the migration procedure is canceled.

n By using the tmadmin (1) migratemach (migm) -cancel command to cancel a
machine migration.

Example: A Migration Cancellation

Listing 18-7 illustrates how a server group and a machine can be migrated between
their respective primary and alternate machines.

18 Migrating Applications

18-10 Administration Guide

Listing 18-7 Canceling a Server Group Migration for Server Group GROUP1

$tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (DEAD MIGRATING)
> psr -g GROUP1
TMADMIN_CAT:121: No such server
migg -cancel GROUP1
>boot -g GROUP1
Booting server processes...
exec simpserv -A:
on SITE1 ->process id_27636 ... Started. 1 process started.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (-)
> q

Migrating Transaction Logs to a Backup
Machine

To migrate transactions logs to a backup machine, complete the following steps.

1. Shut down the servers in all the groups that write to the log to stop additional writes
to the log.

2. Dump the TLOG into an ASCII file by running the following command:

dumptlog [-z config] [-o offset] [-n name] [-g groupname]

Note: The TLOG is specified by the config and offset arguments. Offset
defaults to 0 and name defaults to TLOG. If the -g option is chosen, only
those records for which the TMS from groupname is the coordinator are
dumped.

Migrating Transaction Logs to a Backup Machine

Administration Guide 18-11

3. Copy filename to the backup machine.

4. Use loadtlog -m machine ASCII_file to read the name of the ASCII file
into the existing TLOG for the specified machine.

5. Use logstart machine to force a warm start of the TLOG.
(The information is read from the TLOG to create an entry in the transaction table
in shared memory.)

6. Migrate the servers to the backup machine.

18 Migrating Applications

18-12 Administration Guide

Administraton Guide 19-1

CHAPTER

19 Dynamically Modifying
Systems

The BEA WebLogic Enterprise and BEA Tuxedo systems allow you to make changes
to your configuration without shutting it down. Without inconveniencing your users,
you can suspend or resume interfaces or services, advertise or unadvertise services,
and change interface or service parameters (such as LOAD and PRIORITY). If your
configuration specifies interfaces or services as AUTOTRAN, it is also possible to change
the timeout value associated with such transactions. Thus, you can adjust your system
to reflect either current or expected conditions.

This topic includes the following sections:

n Dynamic Modification Methods

n Procedures for Dynamically Modifying Your System

Dynamic Modification Methods

You have a choice of two methods for making changes to your system while the system
is running:

n The BEA Administration Console—a graphical user interface to the commands
that perform administrative tasks, including dynamic system modification.

n The tmadmin command interpreter—a shell-level command with 50
subcommands for performing various administrative tasks, including dynamic
system modification.

19 Dynamically Modifying Systems

19-2 Administration Guide

Because it is a graphical user interface, the BEA Administration Console is easier to
use than the tmadmin command interpreter. If you prefer using a GUI, bring it up on
your screen as soon as you are ready to begin an administrative task. The graphics and
detailed procedures will guide you through any task you need to perform.

For instructions on using the tmadmin command interpreter, see Chapter 8,
“Monitoring a Running System.”

Instructions for dynamically modifying your system through tmadmin are provided in
this chapter.

Procedures for Dynamically Modifying Your
System

This section provides procedures for making the following types of changes, through

tmadmin, while your system is running:

n Suspending and resuming services

n Advertising and unadvertising services

n Changing service parameters

n Changing the AUTOTRAN timeout value

Suspending and Resuming Services (BEA Tuxedo
Servers)

This section provides instructions for suspending and resuming services and servers,
and describes the results of these operations.

Note: The execution of the suspend and resume commands described in this section
have minimal impact on the BEA Tuxedo system resources when compared
with the resources gained by suspending a server.

Procedures for Dynamically Modifying Your System

Administration Guide 19-3

Suspending Services

To suspend a server or a service, enter the suspend (or susp) command, as follows:

prompt> tmadmin
> susp

For example:

>susp -s toupper

The suspend command marks as inactive one of the following:

n One service

n All services of a particular queue

n All services of a particular group ID/server ID combination

After you have suspended a service or a server, any requests remaining on the queue
are handled, but no new service requests are routed to the suspended server. If a group
ID/server ID combination is specified and it is part of an MSSQ set, all servers in that
MSSQ set become inactive for the services specified.

Resuming Services

To resume a server or a service, enter the resume (or res) command, as follows:

prompt> tmadmin
> res

For example:

>res -s toupper

The resume command undoes the effect of the suspend command: it marks as active
for the queue one of the following:

n One service

n All services of a particular queue

n All services of a particular group ID/server ID combination

If, in this state, the group ID or the server ID is part of an MSSQ set, all servers in that
MSSQ set become active for the services specified.

19 Dynamically Modifying Systems

19-4 Administration Guide

Advertising and Unadvertising Services (BEA Tuxedo
Servers)

This section provides instructions for advertising and unadvertising services and
servers, and describes the results of these operations.

Advertising Services

To advertise a service, enter the following command:

adv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Note: Although a service must be suspended before it may be unadvertised, you do
not need to “unsuspend” a service before re-advertising it. If you simply
advertise a service that has been suspended and unadvertised previously, the
service will be unsuspended.

Unadvertising Services

To unadvertise a service, complete the following procedure:

1. Suspend the service.

2. Enter the following command:

unadv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Note: Unadvertising has more drastic results than suspending because when you
unadvertise a service, the service table entry for that service is deallocated
and the cleared space in the service table becomes available to other
services.

Procedures for Dynamically Modifying Your System

Administration Guide 19-5

Changing Service Parameters (BEA Tuxedo Servers) or
Interface Parameters (BEA WebLogic Enterprise Servers)

You can change the service and interface parameters for the following:

n A specific group ID/server ID combination

n A specific queue

The following table lists the names of the parameters for which you can change values
dynamically, along with the commands for changing them.

You must specify a service name (after the -s option) for both commands.

Note: The -s option is listed as optional because the required value may be specified
on the default subcommand line.

Changing the AUTOTRAN Timeout Value

To change the transaction timeout (TRANTIME) of an interface or service with the
AUTOTRAN flag set, run the changetrantime (chtt) command, as follows:

chtt [-m machine] {-q qaddress [-g groupname] [-i srvid]
 [-s service] | -g groupname -i srvid -s service |
 -I interface [-g groupname]} newtlim

Note: Transaction timeouts begun by application clients using tpbegin() or
tx_set_transaction_timeout() cannot be changed.

To Change . . . Enter the Following Command . . .

Load associated with the
specified service or interface.

chl [-m machine] {-q qaddress [-g groupname] [-i
srvid] [-s service] | -g groupname -i srvid
-s service | -I interface [-g groupname]} newload

Dequeuing priority associated
with the specified service or
interface.

chp [-m machine] {-q qaddress [-g groupname]
 [-i srvid] [-s service] | -g groupname -i srvid
 -s service | -I interface [-g groupname]} newpri

19 Dynamically Modifying Systems

19-6 Administration Guide

Suspending and Resuming Interfaces (BEA WebLogic
Enterprise System)

This section provides instructions for suspending and resuming interfaces.

Note: The execution of the suspend and resume commands described in this section
have minimal impact on the BEA WebLogic Enterprise system resources
when compared with the resources gained by suspending a server.

Suspending an Interface

To suspend an interface, enter the suspend (or susp) command. For example:

tmadmin
>susp -i IDL:beasys.com/Simple:1.0

If an interface is suspended, a client will not be able to invoke a method on that
interface until the interface is resumed.

Resuming an Interface

To resume an interface, enter the resume (or res) command. For example:

tmadmin
>res -i IDL:beasys.com/Simple:1.0

If a suspended interface is resumed, clients will be able to invoke methods on that
interface.

Administraton Guide 20-1

CHAPTER

20 Dynamically
Reconfiguring
Applications

This topic includes the following topics:

n Introduction to Dynamic Reconfiguration

n Overview of the tmconfig Command Interpreter

n General Instructions for Running tmconfig

n Procedures

n Final Advice About Dynamic Reconfiguration

Introduction to Dynamic Reconfiguration

At times you will want to modify an application’s configuration without having to shut
it down. The BEA WebLogic Enterprise and BEA Tuxedo systems allow you to
perform two types of dynamic reconfiguration of your application. You can do the
following:

n Modify existing entries in your configuration file (TUXCONFIG)

n Add components by adding entries for them to your configuration file

20 Dynamically Reconfiguring Applications

20-2 Administration Guide

Both types of change are implemented by editing TUXCONFIG. Because TUXCONFIG is
a binary file, however, it cannot be edited through a simple text editor. For this reason,
the BEA WebLogic Enterprise and BEA Tuxedo systems provide the following tools
for configuration file editing:

n The BEA Administration Console is a graphical user interface (GUI) to the
commands that perform administrative tasks, including dynamic system
modification.

n The tmconfig command interpreter is a shell-level command with 50
subcommands for performing various administrative tasks, including dynamic
system modification.

The BEA Administration Console is a graphical user interface to administrative tasks.
You always have the choice between doing application administration tasks through
this graphical interface or through a command-line interface. You can choose the
working style most familiar and comfortable to you. When it comes to dynamic
reconfiguration, however, we recommend using the BEA Administration Console.
You will find the dynamic reconfiguration is easier when you use the BEA
Administration Console instead of the tmconfig command interpreter.

The BEA Administration Console is not described in this document. Full descriptions
of the GUI are available by accessing the Help directly from the GUI.

If you prefer to work on the command line, run the tmconfig command interpreter.

Note: We recommend that you keep a copy of the tmconfig(1) and ubbconfig(5)
reference pages handy as you read this chapter. The input and output field
names that correspond to UBBCONFIG parameters and reconfiguration
restrictions are listed in tmconfig(1) and TM_MIB(5) in the BEA Tuxedo
Reference Manual. These reference pages are the final authority on the
semantics, range values, and validations of configuration parameters.

Overview of the tmconfig Command
Interpreter

This section describes the following:

Overview of the tmconfig Command Interpreter

Administration Guide 20-3

n What tmconfig does

n How tmconfig works

What tmconfig Does

The tmconfig command enables you to browse and modify the TUXCONFIG file and
its associated entities, and to add new components (such as machines and servers)
while your application is running.

When you modify your configuration file (TUXCONFIG on the MASTER machine),
tmconfig performs the following tasks:

n Updates the TUXCONFIG file on all nodes in the application that are currently
booted.

n Propagates the TUXCONFIG file automatically to new machines as they are
booted.

The tmconfig command runs as a BEA WebLogic Enterprise or a BEA Tuxedo
system client.

Implications of Running as a Client

Keep in mind the following implications of the fact that tmconfig runs as a BEA
WebLogic Enterprise or a BEA Tuxedo system client:

n tmconfig fails if it cannot allocate a TPINIT typed buffer.

n The username associated with the client is the login name of the user.
(tmconfig fails if the user’s login name cannot be determined.)

n For a secure application (that is, an application for which the SECURITY
parameter has been set in the UBBCONFIG file), tmconfig prompts for the
application password. If the application password is not provided, tmconfig
fails.

n If tmconfig cannot register as a client, an error message containing tperrno is
displayed and tmconfig exits. If this happens, check the user log to determine
the cause. The most likely causes for this type of failure are:

l The TUXCONFIG environment variable was not set correctly.

20 Dynamically Reconfiguring Applications

20-4 Administration Guide

l The system was not booted on the machine on which tmconfig is being run.

n tmconfig ignores all unsolicited messages.

n The client name for the tmconfig process that is displayed in the output from

printclient (a tmadmin command) will be tpsysadm.

How tmconfig Works

When you type tmconfig on a command line, you are launching the display of a series
of menus and prompts through which you can request an operation (such as the display
or modification of a configuration file entry). tmconfig collects your menu choices,
performs the requested operation, and prompts you to request another operation (by
making another set of menu choices). It repeatedly offers to perform operations (by
repeatedly displaying the menus) until you exit the tmconfig session by selecting
QUIT from a menu.

Listing 20-1 shows the menus and prompts that are displayed once you enter the
tmconfig command, thus launching the session.

Note: The lines in the listing have been numbered in this example for your
convenience; during an actual tmconfig session, these numbers are not
displayed.

Listing 20-1 Menus and Prompts Displayed in a tmconfig Session

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5
6 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
7 6) CLEAR BUFFER 7) QUIT [1]:
8 Enter editor to add/modify fields [n]?
9 Perform operation [y]?

As shown here, you are asked to answer four questions:

Overview of the tmconfig Command Interpreter

Administration Guide 20-5

n In which section of the configuration file do you want to view or modify an
entry?

n For the section of the configuration file you have just specified, which operation
do you want tmconfig to perform?

n Do you want to enter a text editor now?

n Do you want tmconfig to perform the requested operation now?

This section discusses these four questions and defines possible answers to each.

Sections of the Configuration File

When you start a tmconfig session, the following menu of sections (of TUXCONFIG,
the configuration file) is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Note: For details about these sections (including a list of configurable parameters for
each section), see the ubbconfig(5) reference page in the BEA Tuxedo
Reference Manual.

To select a section, enter the appropriate number after the menu prompt. For example,
to select the MACHINES section, enter 2, as follows:

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

The default selection is the RESOURCES section, in which parameters that apply to your
entire application are defined. To accept the default selection, simply press ENTER after
the menu and colon (:) prompt.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

tmconfig Operations

Next, a menu of operations that tmconfig can perform is displayed:

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]:

To select an operation, enter the appropriate number after the menu prompt. For
example, to select the UPDATE section, enter 5, as follows:

20 Dynamically Reconfiguring Applications

20-6 Administration Guide

6) CLEAR BUFFER 7) QUIT [1]: 5

Table 20-1 defines each operation.

Table 20-1 tmconfig Operations

Operation
Number . . .

Called . . . Performs the Following . . .

1 FIRST Displays the first record from the specified section. No key fields are
needed (they are ignored if they are in the input buffer).

Using the FIRST operation can reduce the amount of typing that is
needed. When adding a new entry to a section, instead of typing in all of
the parameter names and values, use the FIRST operation to retrieve an
existing entry for the UBBCONFIG section. Then, select the ADD
operation and use the text editor to modify the parameter values.

2 NEXT Displays the next record from the specified section, based on the key
fields in the input buffer.

3 RETRIEVE Displays the record (requested with the appropriate key field(s)) from the
specified section.

4 ADD Adds the indicated record in the specified section. Any fields not
specified (unless required) take the default values specified in
ubbconfig(5). (All default values and validations used by
tmloadcf(1) are enforced.) The current value for all fields is returned
in the output buffer. This operation can be done only by the BEA Tuxedo
system administrator.

5 UPDATE Updates the record specified in the input buffer in the selected section.
Any fields not specified in the input buffer remain unchanged. (All
default values and validations used by tmloadcf(1) are enforced.) The
current values for all fields are returned in the input buffer. This operation
can be done only by the BEA Tuxedo system administrator.

6 CLEAR BUFFER Clears the input buffer (all fields are deleted). After this operation,
tmconfig immediately prompts for the section again.

7 QUIT Exits tmconfig gracefully (that is, the client is terminated). A value of
q for any prompt allows you to exit tmconfig.

Overview of the tmconfig Command Interpreter

Administration Guide 20-7

Output from tmconfig Operations

After tmconfig has executed an operation, the results (a return value and the contents
of the output buffer) are displayed on the screen.

n If the operation was successful but no update was done, the following message is
displayed:

Return value TAOK

The following is the message in the TA_STATUS field:

Operation completed successfully.

n If the operation was successful and an update was done, the following message
is displayed:

Return value TAUPDATED

The following is the message in the TA_STATUS field:

Update completed successfully.

n If the operation failed, an error message is displayed:

l If there is a problem with permissions or a BEA Tuxedo system
communications error (rather than with the configuration parameters), one of
the following return values is displayed: TAEPERM, TAEOS, TAESYSTEM, or
TAETIME.

l If there is a problem with a configuration parameter of the running
application, the name of that parameter is displayed as the value of the
TA_BADFLDNAME file, and the problem is indicated in the value of the
TA_STATUS field in the output buffer. If this type of problem occurs, one of
the following return values is displayed: TAERANGE, TAEINCONSIS,
TAECONFIG, TAEDUPLICATE, TAENOTFOUND, TAEREQUIRED, TAESIZE,
TAEUPDATE, or TAENOSPACE.

The following list describes the conditions indicated by both sets of error
messages.

TAEPERM
The UPDATE or ADD operation was selected but tmconfig is not being run by
the BEA Tuxedo system administrator.

20 Dynamically Reconfiguring Applications

20-8 Administration Guide

 TAESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
recorded in userlog(3c).

TAEOS
An operating system error has occurred. The exact nature of the error is
written to userlog(3c).

TAETIME
A blocking timeout has occurred. The input buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by doing a retrieval on the record that was being
updated.

TAERANGE

A field value is either out of range or invalid.

TAEINCONSIS

A field value (or set of field values) is inconsistently specified. For example,
an existing RQADDR value may be specified for a different SRVGRP and
SERVERNAME.

TAECONFIG
An error occurred while the TUXCONFIG file was being read.

TAEDUPLICATE
The operation attempted to add a duplicate record.

TAENOTFOUND
The record specified for the operation was not found.

TAEREQUIRED
A field value is required but is not present.

TAESIZE
A field value for a string field is too long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENOSPACE
The operation attempted to do an update but there was not enough space in
the TUXCONFIG file and/or the Bulletin Board.

General Instructions for Running tmconfig

Administration Guide 20-9

General Instructions for Running tmconfig

This section explains how to do the following:

n Set up your environment properly before starting a tmconfig session

n Walk through a tmconfig session

Preparing to Run tmconfig

Before you can start a tmconfig session, you must have the required permissions and
set the required environment variables. For your convenience, you may also want to
select a text editor other than the default. Complete the following procedure to ensure
you have set up your working environment properly before running tmconfig.

1. Log in as the BEA WebLogic Enterprise or BEA Tuxedo application administrator
if you want to add entries to TUXCONFIG, or to modify existing entries. (If you want
to view existing configuration file entries without changing or adding to them, this
step is not necessary.)

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

a. The value of TUXCONFIG must be the pathname and binary configuration file
name on the machine on which tmconfig is being run.

b. The value of TUXDIR must be the root directory for the BEA WebLogic
Enterprise or BEA Tuxedo system binary files. (tmconfig must be able to
extract field names and identifiers from $TUXDIR/udataobj/tpadmin.)

3. You may also set the EDITOR environment variable; doing so is optional. The
value of EDITOR must be the name of the text editor you want to use when
changing parameter values; the default value is ed (a command-line editor).

Note: Many full-screen editors do not function properly unless the TERM
environment variable has also been set.

20 Dynamically Reconfiguring Applications

20-10 Administration Guide

Running tmconfig: A High-level Walk-through

This section provides a walk-through of a generic tmconfig session in which you
modify entries in your configuration file.

1. Enter tmconfig after a shell prompt.

$ tmconfig

Note: You can end a session at any time by entering q (short for quit) after the
Section menu prompt.

A menu of sections in the TMCONFIG file is displayed:

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

2. Select the section that you want to change by entering the appropriate menu
number, such as 2 for the MACHINES section. The default choice is the
RESOURCES section, represented by [1] at the end of the list of sections shown in
step 1. If you specify a section (instead of accepting the default), that section
becomes the new default choice and remains so until you specify another section.

A menu of possible operations is displayed:

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 1

Note: Each operation listed here is available to be performed on one entry at a
time of one section of the configuration file. The names of most operations
(FIRST and NEXT) are self-explanatory. When you select FIRST, you are
asking to have the first entry (in the specified section of the configuration
file) displayed on the screen. When you select NEXT, you are asking to have
the contents of the buffer replaced by the second entry in the specified
section, and to have the new buffer contents displayed on the screen. By
repeatedly choosing NEXT, you can view all the entries in a given section
of the configuration file in the order in which they are listed.

3. Select the operation that you want to have performed.

The default choice is the UPDATE operation, represented by [1] at the end of the
list of operations shown in step 2.

A prompt is displayed, asking whether you want to enter a text editor to start
making changes to the TMCONFIG section you specified in step 2.

General Instructions for Running tmconfig

Administration Guide 20-11

Enter editor to add/modify fields [n]?

4. Select y or n (for yes or no, respectively). The default choice (shown at the end of
the prompt) is no ([n]).

If you select yes, the specified editor is invoked and you can start adding or
changing fields. The format of each field is:

field_name<tabs>field_value

where the name and value of the field are separated by one or more tabs.

In most cases, the field name is the same as the KEYWORD in the UBBCONFIG file,
prefixed with TA_.

Note: For details about valid input, see the following section (“Input Buffer
Considerations”). For descriptions of the field names associated with each
section of UBBCONFIG, see the TM_MIB(5) reference page in the BEA
Tuxedo Reference Manual available on the online documentation CD.

When you finish editing the input buffer, tmconfig reads it. If any errors occur,
a syntax error is displayed and tmconfig prompts you to decide whether to
correct the problem.

Enter editor to correct?

5. Select n or y.

If you decide not to correct the problem (by selecting n), the input buffer
contains no fields. Otherwise, the editor is executed again.

Once you have finished editing the input buffer, a prompt is displayed, asking
whether you want to have the operation you specified (in step 3) performed now.

Perform operation [y]?

6. Select n or y. The default choice (shown at the end of the prompt) is yes ([y]).

l If you select no, the menu of sections is displayed again. (Return to step 2.)

l If you select yes, tmconfig executes the requested operation and displays
the following confirmation message:

Return value TAOK

The results of the operation are displayed on the screen.

You have completed an operation on one section of TMCONFIG; you may now
start another operation on the same section or on another section. To allow you

20 Dynamically Reconfiguring Applications

20-12 Administration Guide

to start a new operation, tmconfig displays, again, the menu of TMCONFIG
sections (as shown in step 1).

Note: All output buffer fields are available in the input buffer unless the buffer is
cleared.

7. Continue your tmconfig session (by requesting more operations) or quit the
session.

l To continue requesting operations, return to step 2.

l To end your tmconfig session, select QUIT from the menu of operations
(shown in step 3).

8. After you end your tmconfig session, you are given a chance to make an
ASCII-format backup copy of your newly modified TUXCONFIG file. In the
following example, the administrator chooses the default response to the offer of
a backup (yes) and overrides the default name of the backup file (UBBCONFIG) by
specifying another name (backup).

Unload TUXCONFIG file into ASCII backup [y]?
Backup filename [UBBCONFIG]? backup
Configuration backed up in backup

Input Buffer Considerations

The following considerations apply to the input buffer used with tmconfig:

n If the value of a field you are typing extends beyond one line, you may continue
it on the next line if you insert one or more tabs at the beginning of the second
line. (The tab characters are dropped when your input is read into tmconfig.)

n An empty line consisting of a single newline character is ignored.

n If more than one line is provided for a particular field name, the first occurrence
is used and other occurrences are ignored.

n To enter an unprintable character as part of the value of a field, or to start a field
value with a tab, use a backslash followed by the two-character hexadecimal
representation of the desired character (see the ASCII(5) reference page in a
UNIX system reference manual). For example:

l To insert a blank space, type \20.

Procedures

Administration Guide 20-13

l To insert a backslash, type \\.

Procedures

This section provides procedures for dynamically reconfiguring your application by
making the following changes:

n Adding a new machine

n Adding a server to a running application

n Activating a newly configured server

n Adding a new group

n Changing the factory-based routing for an interface

n Changing the data-dependent routing (DDR) for the application

n Changing application-wide parameters

n Changing the application password

Adding a New Machine

To add a new machine, complete the following steps:

1. Start a tmconfig session.

2. Specify the MACHINE section of the configuration file (choice #2 in the list).

3. Request the FIRST operation; that is, request a display of the first entry in the
MACHINE section. (This operation is the default choice; press ENTER to select it.)

4. Request the ADD operation (choice #4 in the list).

5. Specify new values for four key fields:

l TLOG

l TA_LMID

20 Dynamically Reconfiguring Applications

20-14 Administration Guide

l TA_TYPE

l TA_PMID

Listing 20-2 illustrates a tmconfig session in which a machine is being added.

Listing 20-2 Adding a Machine

$ tmconfig
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]:

Enter editor to add/modify fields [n]?
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 4
TA_SECTION 1
TA_OCCURS 1
TA_PERM 432
TA_MAXACCESSERS 40
TA_MAXGTT 20
TA_MAXCONV 10
TA_MAXWSCLIENTS 0
TA_TLOGSIZE 100
TA_UID 4196
TA_GID 601
TA_TLOGOFFSET 0
TA_TUXOFFSET 0
TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
TA_PMID mchn1
TA_LMID SITE1
TA_TUXCONFIG /home/apps/bank/tuxconfig
TA_TUXDIR /home/tuxroot
TA_STATE ACTIVE
TA_APPDIR /home/apps/bank
TA_TYPE 3B2
TA_TLOGDEVICE /home/apps/bank/TLOG
TA_TLOGNAME TLOG
TA_ULOGPFX /home/apps/bank/ULOG
TA_ENVFILE /home/apps/bank/ENVFILE

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL

Procedures

Administration Guide 20-15

 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 4

Enter editor to add/modify fields [n]? y
491
g/home/s//usr/p
TA_TUXCONFIG /usr/apps/bank/tuxconfig
TA_TUXDIR /usr/tuxroot
TA_APPDIR /usr/apps/bank
TA_TLOGDEVICE /usr/apps/bank/TLOG
TA_ULOGPFX /usr/apps/bank/ULOG
TA_ENVFILE /usr/apps/bank/ENVFILE
g/TLOG/d
/SITE1/s//SITE3/p
TA_LMID SITE3
/3B2/s//SPARC/p
TA_TYPE SPARC
/mchn1/s//mchn2/p
TA_PMID mchn2
w
412
q

Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 2
TA_SECTION 1
TA_OCCURS 1
TA_PERM 432
TA_MAXACCESSERS 40
TA_MAXGTT 20
TA_MAXCONV 10
TA_MAXWSCLIENTS 0
TA_TLOGSIZE 100
TA_UID 4196
TA_GID 601
TA_TLOGOFFSET 0
TA_TUXOFFSET 0
TA_STATUS LIBTUX_CAT:1136: Update completed successfully
TA_PMID mchn2
TA_LMID SITE3
TA_TUXCONFIG /usr/apps/bank/tuxconfig
TA_TUXDIR /usr/tuxroot
TA_STATE NEW
TA_APPDIR /usr/apps/bank
TA_TYPE SPARC
TA_TLOGDEVICE

20 Dynamically Reconfiguring Applications

20-16 Administration Guide

TA_TLOGNAME TLOG
TA_ULOGPFX /usr/apps/bank/ULOG
TA_ENVFILE /usr/apps/bank/ENVFILE

Adding a Server

To add a server, complete the following steps:

1. Start a tmconfig session.

2. Specify the SERVERS section of the configuration file (choice #4 in the list).

3. Request the CLEAR BUFFER operation (choice #6 in the list).

4. Request the ADD operation (choice #4 in the list).

5. Enter the text editor.

6. Specify new values for three key fields:

l TA_SERVERNAME

l TA_SRVGRP

l TA_SRVID

Listing 20-3 illustrates a tmconfig session in which a server is added.

Listing 20-3 Adding a Server

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 4
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [4]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [6]: 4
Enter editor to add/modify fields [n]? y
1
c

Procedures

Administration Guide 20-17

TA_SERVERNAME XFER
TA_SRVGRP BANKB1
TA_SRVID 5
.
w
28
q
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 3
TA_SECTION 3
TA_OCCURS 1
TA_SRVID 5
TA_SEQUENCE 0
TA_MIN 1
TA_MAX 1
TA_RQPERM 432
TA_RPPERM 432
TA_MAXGEN 5
TA_GRACE 86400
TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
TA_SYSTEM_ACCESS FASTPATH
TA_ENVFILE
TA_SRVGRP BANKB1
TA_SERVERNAME XFER
TA_CLOPT -A
TA_CONV N
TA_RQADDR
TA_REPLYQ Y
TA_RCMD
TA_RESTART Y

Activating a Newly Configured Server

Complete the following steps to add a newly configured server.

1. Start a tmconfig session.

2. Select the MACHINES section.

3. Using the FIRST and NEXT operations, select the entry for which you want to
change the state from NEW to ACTIVE.

20 Dynamically Reconfiguring Applications

20-18 Administration Guide

4. Select the UPDATE operation (choice #5 in the list).

5. Enter y (for yes) when prompted to say whether you want to start editing.

6. Change the value of the TA_STATE field from NEW to ACTIVE.

7. tmconfig displays the revised entry for the specified machine so you can review
your change (and, if necessary, edit it).

8. If the revised entry is acceptable, select QUIT (choice #6 in the list) to end the
tmconfig session.

Adding a New Group

To add a group, complete the following steps:

1. Start a tmconfig session.

2. Select the GROUPS section of the configuration file (choice #3 in the list).

3. Request the CLEAR BUFFER operation (choice #6 in the list).

4. Request the ADD operation (choice #4 in the list).

5. Enter y (for yes) when prompted to say whether you want to start editing.

6. Specify new values for three key fields:

l TA_LMID

l TA_SRVGRP

l TA_GRPNO

Listing 20-4 illustrates a tmconfig session in which a group is added.

Listing 20-4 Adding a Group

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 3
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared

Procedures

Administration Guide 20-19

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [3]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [6]: 4
Enter editor to add/modify fields [n]? y
1
c
TA_LMID SITE3
TA_SRVGRP GROUP3
TA_GRPNO 3
.
w
42
q
Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 2
TA_SECTION 2
TA_OCCURS 1
TA_GRPNO 3
TA_TMSCOUNT 0
TA_STATUS LIBTUX_CAT:1136: Update completed successfully
TA_LMID SITE3
TA_SRVGRP GROUP3
TA_TMSNAME
TA_OPENINFO
TA_CLOSEINFO

Changing the Factory-based Routing (FBR) for an
Interface

To change the factory-based routing for an interface, complete the following steps:

1. Start a tmconfig session.

2. Select the ROUTING section of the configuration file (choice #7 on the menu of
configuration file sections).

3. Using the FIRST and NEXT operations, select the entry for which you want to
change the FBR.

20 Dynamically Reconfiguring Applications

20-20 Administration Guide

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

6. Change the relevant fields to values such as those shown in the middle column in
the following table:

:

The value of the TA_RANGES field is the routing criterion. For example, assume that our
modest student enrollment before the update allowed for a routing criterion of student
IDs between 100001-100005 to ORA_GRP1, and 100006-100010 to ORA_GRP2. In the
change shown in the preceding table, if the value of student_id is between 100001
and 100050 (inclusive), requests are sent to the servers in ORA_GRP1. Other requests
are sent to ORA_GRP2.

Note: Dynamic changes that you make to a routing parameter with tmconfig take
effect on subsequent invocations and do not affect outstanding invocations.

You can also dynamically change the TA_FACTORYROUTING assignment in the
INTERFACES section. For example:

1. Start a tmconfig session.

2. Select the INTERFACES section of the configuration file (choice #12 on the menu
of configuration file sections).

3. Using the FIRST and NEXT operations, select the interface entry for which you
want to change the FBR. For example, if you defined a new factory-based routing
criterion named CAMPUS in the ROUTING section, you could reassign a Registrar
interface to this criterion.

Field Sample Value Meaning

TA_ROUTINGNAME STU_ID Name of the routing section.

TA_FIELD student_id The value of this field is subject to the
criterion (specified in the TA_RANGES
field); that is, the value of this field
determines the routing result.

TA_RANGES 100001-100050:ORA_GRP1,
100051-*:ORA_GRP2

The routing criterion being used.

Procedures

Administration Guide 20-21

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

Changing the Data-dependent Routing (DDR) for the
Application

To change the data-dependent routing for an application., complete the following
steps:

1. Start a tmconfig session.

2. Select the ROUTING section of the configuration file (choice #7 in the list).

3. Using the FIRST and NEXT operations, select the entry for which you want to
change the DDR.

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

6. Change the relevant fields to values such as those shown in the middle column of
the following table.

:

Field Sample Value Meaning

TA_ROUTINGNAME account_routing Name of the routing section.

TA_BUFTYPE FML Buffer type.

TA_FIELD account_ID The value of this field is subject to the criterion
(specified in the TA_RANGES field); that is, the
value of this field determines the routing result.

TA_RANGES 1-10:group1,*:* The routing criterion being used.

20 Dynamically Reconfiguring Applications

20-22 Administration Guide

The value of the TA_RANGES field is the routing criterion. If the value of
account_ID is between 1 and 10 (inclusive), requests are sent to the servers in
group 1. Otherwise, requests are sent to any other server in the configuration.

Note: For details, see the tmconfig(1) reference page in the BEA Tuxedo Reference
Manual.

Changing Application-wide Parameters

Some run-time parameters are relevant to all the components (machines, servers, and
so on) of your configuration. These parameters are listed in the RESOURCES section of
the configuration file.

An easy way to familiarize yourself with the parameters in the RESOURCES section is
to display the first entry in that section. To do so, complete the following steps:

1. Start a tmconfig session.

2. Select the RESOURCES section of the configuration file. (The RESOURCES section,
choice #1 on the menu of configuration file sections, is the default selection.)

3. Using the FIRST and NEXT operations, select the entry that you want to display.
(Because the first entry is the default selection, in this case you can simply accept
the default.)

4. Select the FIRST operation (the default selection).

5. Respond no (by accepting the default) when asked whether you want to edit.

Do you want to edit(n)?

6. Respond yes (by accepting the default) when asked whether you want the
specified operation (FIRST) to be performed.

Perform operation [y]?

Listing 20-5 illustrates a tmconfig session in which the first entry in the RESOURCES
section is displayed.

Procedures

Administration Guide 20-23

Listing 20-5 Displaying the First Entry in the RESOURCES Section

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [1]: 1
Enter editor to add/modify fields [n]?
Perform operation [y]?
Return value TAOK
Buffer contents:
TA_OPERATION 1
TA_SECTION 0
TA_STATUS Operation completed successfully
TA_OCCURS 1
TA_PERM 432
TA_BBLQUERY 30
TA_BLOCKTIME 6
TA_DBBLWAIT 2
TA_GID 10
TA_IPCKEY 80997
TA_LICMAXUSERS 1000000
TA_MAXACCESSERS 100
TA_MAXBUFSTYPE 32
TA_MAXBUFTYPE 16
TA_MAXCONV 10
TA_MAXDRT 0
TA_MAXGROUPS 100
TA_MAXGTT 25
TA_MAXMACHINES 256
TA_MAXQUEUES 36
TA_MAXRFT 0
TA_MAXRTDATA 8
TA_MAXSERVERS 36
TA_MAXSERVICES 100
TA_MIBMASK 0
TA_SANITYSCAN 12
TA_SCANUNIT 10
TA_UID 5469
TA_MAXACLGROUPS 16384
TA_MAXNETGROUPS 8
TA_MAXINTERFACES 150
TA_MAXOBJECTS 1000
TA_STATE ACTIVE
TA_AUTHSVC
TA_CMTRET COMPLETE
TA_DOMAINID
TA_LDBAL Y

20 Dynamically Reconfiguring Applications

20-24 Administration Guide

TA_LICEXPIRE 1998-09-15
TA_LICSERIAL 1234567890
TA_MASTER SITE1
TA_MODEL SHM
TA_NOTIFY DIPIN
TA_OPTIONS
TA_SECURITY NONE
TA_SYSTEM_ACCESS FASTPATH
TA_USIGNAL SIGUSR2
TA_PREFERENCES
TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,
EVENTS,WEBGUI,WSCOMPRESSION,TDOMCOMPRESSION

Changing an Application Password

To change an application password, complete the following steps:

1. Start a tmconfig session.

2. Select the RESOURCES section (#1, the default choice on the menu of sections).

3. Clear the buffer.

4. Enter (in the buffer):

TA_PASSWORD new_password

wq!

Listing 20-6 illustrates a tmconfig session in which an application password is
changed.

Listing 20-6 Changing an Application Password

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
 6) CLEAR BUFFER 7) QUIT [4]: 6
Buffer cleared
Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE

Procedures

Administration Guide 20-25

 6) CLEAR BUFFER 7) QUIT [6]: 5
Enter editor to add/modify fields [n]? y
1
c
TA_PASSWORD neptune
.
w
49
q
Perform operation [y]?
Return value TAUPDATED
Buffer contents:
TA_OPERATION 1
TA_SECTION 0
TA_STATUS Operation completed successfully
TA_OCCURS 1
TA_PERM 432
TA_BBLQUERY 30
TA_BLOCKTIME 6
TA_DBBLWAIT 2
TA_GID 10
TA_IPCKEY 80997
TA_LICMAXUSERS 1000000
TA_MAXACCESSERS 100
TA_MAXBUFSTYPE 32
TA_MAXBUFTYPE 16
TA_MAXCONV 10
TA_MAXDRT 0
TA_MAXGROUPS 100
TA_MAXGTT 25
TA_MAXMACHINES 256
TA_MAXQUEUES 36
TA_MAXRFT 0
TA_MAXRTDATA 8
TA_MAXSERVERS 36
TA_MAXSERVICES 100
TA_MIBMASK 0
TA_SANITYSCAN 12
TA_SCANUNIT 10
TA_UID 5469
TA_MAXACLGROUPS 16384
TA_MAXNETGROUPS 8
TA_MAXINTERFACES 150
TA_MAXOBJECTS 1000
TA_PASSWORD neptune
TA_STATE ACTIVE
TA_AUTHSVC
TA_CMTRET COMPLETE
TA_DOMAINID

20 Dynamically Reconfiguring Applications

20-26 Administration Guide

TA_LDBAL Y
TA_LICEXPIRE 1998-09-15
TA_LICSERIAL 1234567890
TA_MASTER SITE1
TA_MODEL SHM
TA_NOTIFY DIPIN
TA_OPTIONS
TA_SECURITY NONE
TA_SYSTEM_ACCESS FASTPATH
TA_USIGNAL SIGUSR2
TA_PREFERENCES
TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,EVENTS,WEBGUI,
 WSCOMPRESSION,TDOMCOMPRESSION

Final Advice About Dynamic
Reconfiguration

Keep in mind the following restrictions. Be careful about setting parameters that
cannot be changed easily.

n Associated with each section is a set of key fields that are used to identify the
record upon which to operate. (For details see the tmconfig(1) reference page
in the BEA Tuxedo Reference Manual.) Key field values cannot be changed
while an application is running. Normally, it is sufficient to add a new entry
(with a new key field value) and use it instead of the old entry. In this case, the
old entry in the configuration is not booted by the administrator; the new entry is
used, instead.

n Generally speaking, you cannot update a parameter while the configuration
component associated with it is booted. (For example, you cannot change an
entry in the MACHINES or NETWORK section while the machine associated with
that entry is booted.) Specifically:

l If any server in a group is booted, you cannot change the entry for that
group.

l If a server is booted, you cannot change its name, type (conversational or
not), or parameters related to its message queue. (You can change other

Final Advice About Dynamic Reconfiguration

Administration Guide 20-27

server parameters at any time but your changes will not take effect until the
next time the server is booted.)

l You can change a SERVICES entry at any time but your changes will not take
effect until the next time the service is advertised.

l Updates to the RESOURCES section are restricted by the following conditions.
The UID, GID, PERM, MAXACCESSERS, MAXGTT, and MAXCONV parameters
cannot be updated in the RESOURCES section but can be updated on a
per-machine basis. The IPCKEY, MASTER, MODEL, OPTIONS, USIGNAL,
MAXSERVERS, MAXSERVICES, MAXBUFTYPE, and MAXBUFSTYPE parameters
cannot be changed.

Note: Before shutting down the MASTER machine, make sure to migrate it to the
acting backup machine.

n Be sure to keep track of the section of the configuration file in which you are
working; tmconfig does not warn you if you try to perform an operation that is
wrong for the section currently available in the buffer. For example, if you try to
update the ENVFILE parameter (in the MACHINES section) while you are working
in the RESOURCES section, the operation will appear to succeed (that is,
tmconfig will return TAOK), but the change will not appear in your unloaded
UBBCONFIG file. The only way you can be sure that an update has been done is
by seeing the TAUPDATED status message displayed.

n With regard to interoperability, updates and additions are not allowed to any site
in an application if a Release 4.1 (R4.1) site is booted. You must shut down the
R4.1 site before updates can be done. When the updates are complete, you can
reboot the R4.1 site; the updated TUXCONFIG will be propagated to the R4.1
node automatically.

In a multimachine configuration, always do the following:

n Specify a backup for the MASTER machine, along with the MIGRATE option (even
if application server migration is not anticipated).

n Set MAXSERVERS, MAXSERVICES, and other “MAX” parameters high enough to
allow for sufficient growth. If your application is, initially, a single-machine
configuration but is expected to grow to a multimachine configuration, use the
MP model, specifying the LAN option and a network entry for the initial
machine.

20 Dynamically Reconfiguring Applications

20-28 Administration Guide

n Set the parameters in the MACHINES section carefully since updating them
requires shutting down the machine (and switching the MASTER to the backup in
the case of the MASTER machine).

Administraton Guide 21-1

CHAPTER

21 Event Broker/Monitor
(BEA Tuxedo Systems)

The BEA Tuxedo Event Broker/Monitor is a tool that enhances the tracking of events
in a running application.

This topic includes the following topics:

n Events

n Setting Up Event Detection

n Subscribing to Events

n Application-specific Event Broker/Monitors

n How an Event Broker/Monitor Might Be Deployed

n How the Event Broker/Monitor Works

Note: This chapter is specific to the BEA Tuxedo system. However, BEA WebLogic
Enterprise administrators should know that each BEA WebLogic Enterprise
application relies on the BEA Tuxedo System Event Broker. This event broker
must be started before any servers providing the NameManager service in a
BEA WebLogic Enterprise application’s UBBCONFIG file are started. For
details, see the section “Required Order in Which to Boot Servers (BEA
WebLogic Enterprise Servers)” on page 3-49 in Chapter 3, “Creating a
Configuration File.”

The BEA Tuxedo Event Broker/Monitor extends the usefulness of the USERLOG (in
which the BEA Tuxedo system records system events) by providing the following:

n A system-wide summary of events

21 Event Broker/Monitor (BEA Tuxedo Systems)

21-2 Administration Guide

n A tool that lets you set up various types of automatic notification when certain
events occur

The BEA Tuxedo Event Broker/Monitor is built on the AdminAPI, the administrative
programming interface to the BEA Tuxedo system. It is an example of administration
through programming.

Note: This chapter demonstrates how you can use the BEA Tuxedo AdminAPI to
enhance your application. For an actual example that you can run as a demo
and copy from, see the bankapp application (distributed with the BEA Tuxedo
system) and the BEA Tuxedo Application Development Guide.

Events

An event is a change in a component of a running application. This change may be
harmless or it may cause a problem that requires work by the operator or administrator
(and, in some cases, particular software) to be resolved.

Event Classifications

The BEA Tuxedo Event Monitor keeps track of events in a running application and
classifies them on the basis of severity. The Event Monitor uses the same three severity
classifications used by the BEA Tuxedo system to sort system messages sent to the
USERLOG: information (INFO), warnings (WARN), and errors (ERROR).

n An INFO event is one of the following:

l A state change of a process

l The detection of a configuration change

n A WARN event is a configuration change that threatens the performance of the
application.

n An ERROR event is an abnormal occurrence, such as:

l A server dying

Setting Up Event Detection

Administration Guide 21-3

l A network connection being dropped

List of Events

Events affecting objects in the classes defined in TM_MIB(5) are tracked. The list is
published in the EVENTS(5) reference page in the BEA Tuxedo Reference Manual on
the online documenatation CD.

The designers of an Event Broker/Monitor need to decide which events to track. Users
of the system need to know the list of events being tracked.

Setting Up Event Detection

You can set the BEA Tuxedo system event detection logic to do two things:

n Post messages to a UNIX error message log (syslogd)

n Post events to the BEA Tuxedo event server

To activate event detection logic, set and export TMSYSLOGD_FACILITY to a numeric
value from 0 to 7.

For details, see syslogd(3c) in a UNIX system reference manual.

Subscribing to Events

Clients subscribe to events by calls to tpsubscribe(3c). A call to tpsubscribe has
a required argument, eventexpr, that points to a wildcard string. This string, in turn,
identifies the events about which the user wants to know. The wildcard string makes
use of the syntax described in recomp(3c) to apply the subscription to more than one
type of event. The wildcard string is used to match the message distributed when the
event is detected.

21 Event Broker/Monitor (BEA Tuxedo Systems)

21-4 Administration Guide

In the BEA Tuxedo System Monitor, the message includes the severity level, so a user
can subscribe accordingly. For example:

n A user who wants to be notified of all events related to BEA Tuxedo networking
sets the value of eventexpr to the following:

\.SysNetwork.*

n A user who wants to subscribe to all events with a severity level of ERROR sets
the value of eventexpr to the following:

\.*(ERR|err)\.*

When a client leaves an application (by calling tpterm) all of its subscriptions are
“canceled.” If the client later rejoins the application and wants those subscriptions, it
must subscribe again. A well-behaved client unsubscribes before calling tpterm. A
client that accepts notification via unsolicited messages should issue a
tpunsubscribe(3c) call before leaving the application.

Another argument of the tpsubscribe call (in addition to eventexpr) is a pointer to
a structure of type TPEVCTL (defined in atmi.h). Through the use of the TPEVCTL
structure (or non-use, if the argument is NULL), the user can select the notification
method to be used for sending information about subscribed events. If the argument is
NULL, the Event Broker sends an unsolicited message to the subscriber. The
subscriber can alternatively elect to have the notification sent to a service or to a queue
in stable storage. If a client wants to enter such a subscription, it must invoke a service
routine to subscribe on its behalf.

As a BEA Tuxedo system administrator, you can enter subscription requests on behalf
of a client or server process through calls to the EVENT_MIB(5). You may also use two
notification methods that are specified in entries in the EVENT_MIB (besides the three
available in tpsubscribe):

n A command can be invoked via the UNIX system(2) command.

n A message can be sent to the userlog.

Application-specific Event Broker/Monitors

Administration Guide 21-5

Application-specific Event Broker/Monitors

By “application-specific Event Broker/Monitor” we mean a monitor customized to
recognize events generated by application code. For example, a stock brokerage
system could be programmed to post an event when a stock trades at or above a certain
price. A banking application might be programmed to post an event when a withdrawal
or deposit above a specified amount is detected.

The function of an application-specific Event Broker/Monitor is similar to that of the
BEA Tuxedo System Event Broker/Monitor: when an event is posted, subscribers are
notified (or an action specified by the subscriber is initiated). This section describes the
same three areas that were described above, pointing out how the customized monitor
resembles and differs from the BEA Tuxedo system monitor.

Events
The real distinction between a BEA Tuxedo System Event Broker/Monitor
and an Event Broker/Monitor for a specific application is the way events are
defined. System events are defined in advance by the BEA Tuxedo system
code. For an application, designers must select application events to monitor.
Application programs must be written to a) detect when an event of interest
has occurred, and b) post the event to the Event Monitor via tppost.

Event List
There is no difference between the Event Lists generated and used on an
application-specific Event Broker/Monitor and a BEA Tuxedo System Event
Broker/Monitor. The BEA Tuxedo System Event Broker/Monitor makes a
list of monitored events available to interested users. (For details, see the
EVENTS(5) reference page in the BEA Tuxedo Reference Manual.) In the same
way, when an application-specific Event Broker/Monitor is being used,
interested users should have access to a list of monitored events. The names
of system events begin with a dot (.); application-specific event names may
not begin with a dot (.).

Subscriptions
The process of subscribing to an event in an application-specific Event
Monitor is the same as that of subscribing with the BEA Tuxedo system Event
Monitor. Subscriptions are made by calls to tpsubscribe using the
published list of events, so the application can identify the events to which
you are subscribing.

21 Event Broker/Monitor (BEA Tuxedo Systems)

21-6 Administration Guide

Note: For the BEA Tuxedo System Event Monitor, EVENTS(5) lists the notification message
generated by an event, as well as the event name. The event name is used as an
argument when tppost is called. Subscribers, on the other hand, can take advantage
of the wildcard capability of regular expressions to make a single call to
tpsubscribe to cover a whole category of events. We strongly recommend using the
same format for the published event list for an application-specific Event
Monitor/Broker.

How an Event Broker/Monitor Might Be
Deployed

The client interfaces with the Event Broker/Monitor through either of two servers
provided by the BEA Tuxedo system:

n TMSYSEVT(5)

n TMUSREVT(5)

These servers introduce the concept of a principal server and zero or more secondary
servers. Both types (principal and secondary) process events and trigger notification
actions.

To install the BEA Tuxedo system Event Broker/Monitor, configure:

n The principal server on the MASTER site

n Whatever secondary servers your installation might need on other machines on
your network

With an application-specific Event Broker/Monitor, the primary server may be on any
machine other than the MASTER; secondary servers may be located around your
network.

The reason for locating secondary servers on other nodes of your network is to reduce
the amount of network traffic caused by posting events and by distributing event
notifications to subscribers. The secondary server periodically polls the primary server
to get the latest version of the subscription list, which stores filtering and notification
rules.

How the Event Broker/Monitor Works

Administration Guide 21-7

You can configure the polling interval as needed. There may be a perception that event
messages are lost during this period between the time at which subscriptions are
initially added and the time at which all secondary servers are updated. If the
application cannot “lose” messages, the programs must wait, at least until the end of
the polling period, before tppost is called for the new event.

How the Event Broker/Monitor Works

The BEA Tuxedo Event Broker/Monitor is built with the following AdminAPI
components:

n ATMI Extensions—the Event Monitor uses three function calls in the ATMI
library:

l tppost

l tpsubscribe

l tpunsubscribe

These three functions appear in both the C library and the COBOL library. (For
details, see Sections (3c) and (3cbl) in the BEA Tuxedo Reference Manual.

n MIB component—the EVENT_MIB management information base is the control
file in which you can store subscription information and filtering rules. In your
own application, you cannot define new events for the BEA Tuxedo system
Event Broker/Monitor, but you can customize the Event Broker/Monitor to do
the following:

l Track events

l Distribute notifications of special interest to the application

21 Event Broker/Monitor (BEA Tuxedo Systems)

21-8 Administration Guide

Administraton Guide 22-1

CHAPTER

22 Troubleshooting
Applications

Other chapters of this document discuss many diagnostic tools provided by your BEA
WebLogic Enterprise or BEA Tuxedo system: commands and log files that help you
monitor a running system, identify potential problems while there is still time to
prevent them, and detect error conditions once they have occurred. This chapter
provides additional information to help you identify and recover from various system
errors.

This topic includes the following sections:

n Distinguishing Between Types of Failures

n Broadcasting Unsolicited Messages (BEA Tuxedo System)

n Performing System File Maintenance

n Repairing Partitioned Networks

n Restoring Failed Machines

n Replacing System Components (BEA Tuxedo System)

n Replacing Application Components

n Cleaning Up and Restarting Servers Manually

n Checking the Order in Which Servers Are Booted (BEA WebLogic Enterprise
Servers)

n Checking Hostname Format and Capitalization (BEA WebLogic Enterprise
Servers)

22 Troubleshooting Applications

22-2 Administration Guide

n Some Clients Fail to Boot (BEA WebLogic Enterprise Servers)

n Checking the Order in Which Servers Are Booted (BEA WebLogic Enterprise
Servers)

n Recovering from Failures When Transactions Are Used

Distinguishing Between Types of Failures

The first step in troubleshooting is to determine the area in which the problem has
occurred. In most applications, you must consider six possible sources of trouble:

n Application

n The BEA WebLogic Enterprise or BEA Tuxedo system

n Database management software

n Network

n Operating system

n Hardware

To resolve the trouble in most of these areas, you must work with the appropriate
administrator. If, for example, you determine that the trouble is being caused by a
networking problem, you must work with the network administrator.

Determining the Cause of an Application Failure

To detect the source of an application failure, complete the following steps:

1. Check any BEA WebLogic Enterprise or BEA Tuxedo system warnings and error
messages in the user log (ULOG).

2. Select the messages you think are most likely to reflect the current problem. Note
the catalog name and the message number of each of those messages and look
them up in the BEA WebLogic Enterprise System Messages or BEA Tuxedo
System Message Manual. The document entry provides:

Distinguishing Between Types of Failures

Administration Guide 22-3

l Details about the error condition flagged by the message

l Recommendations for actions you can take to recover

3. Check any application warnings and error messages in the ULOG.

4. Check any warnings and errors generated by application servers and clients. Such
messages are usually sent to the standard output and standard error files (named,
by default stdout and stderr, respectively).

l The stdout and stderr files are located in $APPDIR.

l The stdout and stderr files for your clients and servers may have been
renamed. (You can rename the stdout and stderr files by specifying -e
and -o in the appropriate client and server definitions in your configuration
file. For details, see the servopts(5) reference page in the BEA Tuxedo
Reference Manual.)

5. Look for any core dumps in $APPDIR. Use a debugger such as sdb to get a stack
trace. If you find core dumps, notify the application developer.

6. Check your system activity reports (by running the sar(1) command) to
determine why your system is not functioning properly. Consider the following
possible reasons:

l The system may be running out of memory.

l The kernel might not be tuned correctly.

Determining the Cause of a BEA WebLogic Enterprise or
BEA Tuxedo System Failure

To detect the source of a system failure, complete the following steps:

1. Check any BEA WebLogic Enterprise or BEA Tuxedo system warnings and error
messages in the user log (ULOG):

l TPEOS messages indicate errors in the operating system.

l TPESYSTEM messages indicate errors in the BEA WebLogic Enterprise or
BEA Tuxedo system.

22 Troubleshooting Applications

22-4 Administration Guide

2. Select the messages you think are most likely to reflect the current problem. Note
the catalog name and message number of each of those messages and locate the
messages in the BEA WebLogic Enterprise System Messages or the BEA Tuxedo
System Message Manual. The message manual provides the following
information about each system message:

l Details about the error condition flagged by the message

l Recommendations for actions you can take to recover

Broadcasting Unsolicited Messages (BEA
Tuxedo System)

To send an unsolicited message, enter the following command:

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]

By default, the message is sent to all clients. You have the choice, however, of limiting
distribution to one of the following recipients:

n One machine (-m machine)

n One client group (-c client_group)

n One user (-u user)

The text may not include more than 80 characters. The system sends the message in a
buffer of type STRING. This means that the client’s unsolicited message handling
function (specified by tpsetunsol(0)) must be able to handle a message of this type.
The tptypes() function may be useful in this case.

Performing System File Maintenance

Administration Guide 22-5

Performing System File Maintenance

This section provides instructions for the following tasks that you may need to perform
in the course of maintaining your file system:

n Creating a device list

n Destroying a device list

n Reinitializing a device

n Printing the Universal Device List

n Printing VTOC information

Creating a Device List

Complete the following steps to create a device list.

1. Start a tmadmin session.

2. Enter the following command:

crdl [-z devicename] [-b blocks]

l The value of devicename [devindx] is the desired device name. (Another
way to assign a name to a new device is by setting the FSCONFIG
environment variable to the desired device name.)

l The value of blocks is the number of blocks needed. The default value is
1000 pages.

Note: Because 35 blocks are needed for the administrative overhead associated with
a TLOG, be sure to assign a value higher than 35 when you create a TLOG.

22 Troubleshooting Applications

22-6 Administration Guide

Destroying a Device List

To destroy a device list with index devindx, enter the following command:

dsdl [-z devicename] [yes] [devindx]

n You can specify the device by:

l Entering its name after the -z option (as shown here), or

l Setting the environment variable FSCONFIG to the device name

n If you include the yes option on the command line, you will not be prompted to
confirm your intention to destroy the file before the file is actually destroyed.

n The value of devindx is the index to the file to be destroyed.

Reinitializing a Device

To reinitialize a device on a device list, enter the following command:

initdl [-z devicename] [-yes] devindx

n You can specify the device by:

l Entering its name after the -z option (as shown here), or

l Setting the environment variable FSCONFIG to the device name

n If you include the -yes option on the command line, you will not be prompted
to confirm your intention to destroy the file before the file is actually destroyed.

n The value of devindx is the index to the file to be destroyed.

Repairing Partitioned Networks

Administration Guide 22-7

Printing the Universal Device List (UDL)

To print a UDL, enter the following command:

lidl

To specify the device from which you want to obtain the UDL, you have a choice of
two methods:

n Specify the following on the lidl command line:

-z device name [devindx]

n Set the environment variable FSCONFIG to the name of the desired device.

Printing VTOC Information

To get information about all VTOC table entries, enter the following command:

livtoc

To specify the device from which you want to obtain the VTOC, you have a choice of
two methods:

n Specify the following on the lidl command line:

-z device name [devindx]

n Set the environment variable FSCONFIG to the name of the desired device.

Repairing Partitioned Networks

A network partition exists if one or more machines cannot access the master machine.
As the application administrator, you are responsible for detecting partitions and
recovering from them. This section provides instructions for troubleshooting a
partition, identifying its cause, and taking action to recover from it.

A network partition may be caused by the following:

22 Troubleshooting Applications

22-8 Administration Guide

n A network failure—one of two types:

l Transient failure, which corrects itself in minutes

l Severe failure, which requires you to take the partitioned machine out of the
network

n A machine failure on either:

l The master machine

l The nonmaster machine

n A BRIDGE failure

The procedure you follow to recover from a partitioned network depends on the cause
of the partition. Recovery procedures for these situations are provided in this section.

Detecting Partitioned Networks

There are several ways to detect a network partition:

n You can check the user log (ULOG) for messages that may shed light on the
origin of the problem.

n You can gather information about the network, server, and service by running the
tmadmin commands provided for this purpose.

Checking the ULOG

When things go wrong with the network, BEA WebLogic Enterprise or BEA Tuxedo
system administrative servers start sending messages to the ULOG. If the ULOG is set up
over a remote file system, all messages are written to the same log. In such a case you
can run the tail(1) command on one file and check the failure messages displayed on
the screen.

If, however, the remote file system is using the same network, the remote file system
may no longer be available.

Example

151804.gumby!DBBL.28446: ... : ERROR: BBL partitioned, machine=SITE2

Repairing Partitioned Networks

Administration Guide 22-9

Gathering Information about the Network, Server, and Service

Listing 22-1 provides an example of a tmadmin session in which information is being
collected about a partitioned network, and a server and a service on that network. Three
tmadmin commands are run:

n pnw (the printnetwork command)

n psr (the printserver command)

n psc (the printservice command)

Listing 22-1 Example of a tmadmin Session

$ tmadmin
> pnw SITE2
Could not retrieve status from SITE2

> psr -m SITE1
a.out Name Queue Name Grp Name ID Rq Done Load Done Current Service
BBL 30002.00000 SITE1 0 - - (-)
DBBL 123456 SITE1 0 121 6050 MASTERBB
simpserv 00001.00001 GROUP1 1 - - (-)
BRIDGE 16900672 SITE1 0 - - (DEAD)

>psc -m SITE1
Service Name Routine Name a.out Grp Name ID Machine # Done Status
------------ ------------ -------- -------- -- ------- ------------
ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 - PART
ADJUNCTBB ADJUNCTBB BBL SITE1 0 SITE1 - PART
TOUPPER TOUPPER simpserv GROUP1 1 SITE1 - PART
BRIDGESVCNM BRIDGESVCNM BRIDGE SITE1 1 SITE1 - PART

22 Troubleshooting Applications

22-10 Administration Guide

Restoring a Network Connection

This section provides instructions for recovering from transient and severe network
failures.

Recovering from Transient Network Failures

Because the BRIDGE tries, automatically, to recover from any transient network
failures and reconnects, transient network failures are usually not noticed. If, however,
you do need to perform a manual recovery from a transient network failure, complete
the following steps:

1. On the master machine, start a tmadmin(1) session.

2. Run the reconnect command (rco), specifying the names of nonpartitioned and
partitioned machines.

rco non-partioned_node1 partioned_node2

Recovering from Severe Network Failures

To recover from severe network failure, complete the following steps:

1. On the master machine, start a tmadmin session.

2. Run the pclean command, specifying the name of the partitioned machine.

pcl partioned_machine

3. Migrate the application servers or, once the problem has been corrected, reboot
the machine.

Restoring Failed Machines

Administration Guide 22-11

Restoring Failed Machines

The procedure you follow to restore a failed machine depends on whether that machine
was the master machine.

Restoring a Failed Master Machine

To restore a failed master machine, complete the following procedure.

1. Make sure that all IPC resources are removed for the BEA Tuxedo processes that
died.

2. Start a tmadmin session on the ACTING MASTER (SITE2):

tmadmin

3. Boot the BBL on the MASTER (SITE1) by entering the following command:

boot -B SITE1

The BBL will not boot if you have not executed pclean on SITE1.

4. Still in tmadmin, start a DBBL running again on the master site (SITE1) by
entering the following:

MASTER

5. If you have migrated application servers and data off the failed machine, boot
them or migrate them back.

Restoring a Failed Nonmaster Machine

To restore a failed nonmaster machine, complete the following steps:

1. On the master machine, start a tmadmin session.

2. Run pclean, specifying the partitioned machine on the command line.

3. Fix the machine problem.

22 Troubleshooting Applications

22-12 Administration Guide

4. Restore the failed machine by booting the Bulletin Board Listener (BBL) for it
from the master machine.

5. If you have migrated application servers and data off the failed machine, boot
them or migrate them back.

In Listing 22-2, SITE2, a nonmaster machine, is restored.

Listing 22-2 Example of Restoring a Failed Nonmaster Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved

> pclean SITE2
Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE2 servers removed from bulletin board

> boot -B SITE2
Booting admin processes ...

Exec BBL -A :

on SITE2 -> process id=22923 ... Started.
1 process started.
> q

Replacing System Components (BEA Tuxedo
System)

To replace BEA Tuxedo system components, complete the following steps:

1. Install the BEA Tuxedo system software that is being replaced.

2. Shut down those parts of the application that will be affected by the changes:

l The BEA Tuxedo system servers may need to be shut down if libraries are
being updated.

Replacing Application Components

Administration Guide 22-13

l Application clients and servers must be shut down and rebuilt if relevant
BEA Tuxedo system header files or static libraries are being replaced.
(Application clients and servers do not need to be rebuilt if the BEA Tuxedo
system message catalogs, system commands, administrative servers, or
shared objects are being replaced.)

3. If relevant BEA Tuxedo system header files and static libraries have been
replaced, rebuild your application clients and servers.

4. Reboot the parts of the application that you shut down.

Replacing Application Components

To replace components of your application, complete the following steps:

1. Install the application software. This software may consist of application clients,
application servers, and various administrative files, such as the FML field tables.

2. Shut down the application servers being replaced.

3. If necessary, build the new application servers.

4. Boot the new application servers.

Cleaning Up and Restarting Servers
Manually

By default, the BEA WebLogic Enterprise or BEA Tuxedo system cleans up resources
associated with dead processes (such as queues) and restarts restartable dead servers
from the Bulletin Board (BB) at regular intervals during BBL scans. You may,
however, request cleaning at other times.

22 Troubleshooting Applications

22-14 Administration Guide

Cleaning Up Resources

To request an immediate cleanup of resources associated with dead processes,
complete the following procedure.

1. Start a tmadmin session.

2. Enter bbclean machine.

The bbclean command takes one optional argument: the name of the machine to be
cleaned.

To clean up other resources, complete the following steps:

1. Start a tmadmin session.

2. Enter pclean machine.

Note: You must specify a value for machine; it is a required argument.

This command is useful for restoring order to a system after partitioning has occurred
unexpectedly.

If You Specify . . . Then . . .

No machine The resources on the default machine are cleaned.

A machine The resources on that machine are cleaned.

DBBL The resources on the Distinguished Bulletin Board Listener
(DBBL) and the Bulletin Boards at all sites are cleaned.

If the Specified Machine Is . . . Then . . .

Not partitioned pclean will invoke bbclean.

Partitioned pclean will remove all entries for servers and
services from all nonpartitioned Bulletin Boards.

Checking the Order in Which Servers Are Booted (BEA WebLogic Enterprise Servers)

Administration Guide 22-15

Checking the Order in Which Servers Are
Booted (BEA WebLogic Enterprise Servers)

If a BEA WebLogic Enterprise application fails to boot, open the application’s
UBBCONFIG file with a text editor and check whether the servers are booted in the
correct order in the SERVERS section. The following is the correct order in which to
boot the servers on a BEA WebLogic Enterprise system. A BEA WebLogic Enterprise
application will not boot if this order is not adhered to.

Boot the servers in the following order:

1. The system Event Broker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the
NameManager service (as a master). This service maintains a mapping of
application-supplied names to object references.

3. The TMFFNAME server with the -N option only, to start a slave NameManager
service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder.

5. The application servers that are advertising factories.

For a detailed example, see the section “Required Order in Which to Boot Servers
(BEA WebLogic Enterprise Servers)” on page 3-49 in Chapter 3, “Creating a
Configuration File.”

22 Troubleshooting Applications

22-16 Administration Guide

Checking Hostname Format and
Capitalization (BEA WebLogic Enterprise
Servers)

The network address that is specified by programmers in the Bootstrap object
constructor or in TOBJADDR must exactly match the network address in the server
application’s UBBCONFIG file. The format of the address as well as the capitalization
must match. If the addresses do not match, the call to the Bootstrap object constructor
will fail with a seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the ISL
command-line option string (in the server application’s UBBCONFIG file), specifying
either //192.12.4.6:3500 or //trixie:3500 in the Bootstrap object constructor or
in TOBJADDR will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows NT systems, see the host system's Network control
panel to determine the capitalization used.

Some Clients Fail to Boot (BEA WebLogic
Enterprise Servers)

You may want to perform the following steps on a Windows NT server that is running
a BEA WebLogic Enterprise application, if the following problem occurs: some
Internet Inter-ORB Protocol (IIOP) clients boot, but some clients fail to create a
Bootstrap object and return an InvalidDomain message, even though the
//host:port address is correctly specified. (For related information, see the section
“Checking Hostname Format and Capitalization (BEA WebLogic Enterprise Servers)”
on page 22-16.)

Aborting or Committing Transactions

Administration Guide 22-17

1. Start regedt32, the Registry Editor.

2. Go to the HKEY_LOCAL_MACHINE on Local Machine window.

3. Select:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Afd\Parameters

4. Add the following values by using the Edit —> Add Value menu option:

DynamicBacklogGrowthDelta: REG_DWORD : 0xa

EnableDynamicBacklog: REG_DWORD: 0x1

MaximumDynamicBacklog: REG_DWORD: 0x3e8

MinimumDynamicBacklog: REG_DWORD: 0x14

5. Restart the Windows NT system for the changes to take effect.

These values replace the static connection queue (that is, the backlog) of five pending
connections with a dynamic connection backlog, that will have at least 20 entries
(minimum 0x14), at most 1000 entries (maximum 0x3e8), and will increase from the
minimum to the maximum by steps of 10 (growth delta 0xa).

These settings only apply to connections that have been received by the system, but are
not accepted by an IIOP Listener. The minimum value of 20 and the delta of 10 are
recommended by Microsoft. The maximum value depends on the machine. However,
Microsoft recommends that the maximum value not exceed 5000 on a Windows NT
server.

Aborting or Committing Transactions

This section provides instructions for aborting and committing transactions.

Aborting a Transaction

To abort a transaction, enter the following command:

aborttrans (abort) [-yes] [-g groupname] tranindex

22 Troubleshooting Applications

22-18 Administration Guide

n To determine the value of tranindex, run the printtrans command (a
tmadmin command).

n If groupname is specified, a message is sent to the TMS of that group to mark as
“aborted” the transaction for that group. If a group is not specified, a message is
sent, instead, to the coordinating TMS, requesting an abort of the transaction.
You must send abort messages to all groups in the transaction to control the
abort.

This command is useful when the coordinating site is partitioned or when the client
terminates before calling a commit or an abort. If the timeout is large, the transaction
remains in the transaction table unless it is aborted.

Committing a Transaction

To commit a transaction, enter the following command:

committrans (commit) [-yes] [-g groupname] tranindex

n Both groupname and tranindex are required arguments.

n The operation fails if the transaction is not precommitted or has been marked
aborted.

n This message should be sent to all groups to fully commit the transaction.

Cautions

Be careful about using this command. The only time you should need to run it is when
both of the following conditions apply:

n The coordinating TMS has gone down before all groups got the commit
message.

n The coordinating TMS will not be able to recover the transaction for some time.

Also, a client may be blocked on tpcommit(), which will be timed out. If you are
going to perform an administrative commit, be sure to inform this client.

Recovering from Failures When Transactions Are Used

Administration Guide 22-19

Recovering from Failures When
Transactions Are Used

When the application you are administering includes database transactions, you may
need to apply an after-image journal (AIJ) to a restored database following a disk
corruption failure. Or you may need to coordinate the timing of this recovery activity
with your site’s database administrator (DBA). Typically, the database management
software automatically performs transaction rollback when an error occurs. When the
disk containing database files has become permanently corrupt, however, you or the
DBA may need to step in and perform the rollforward operation.

Assume that a disk containing portions of a database is corrupted at 3:00 P.M. on a
Wednesday. For this example, assume that a shadow volume does not exist.

1. Shut down the BEA WebLogic Enterprise or BEA Tuxedo application. For
instructions, see Chapter 4, “Starting and Shutting Down Applications.”

2. Get the last full backup of the database and restore the file. For example, restore
the full backup version of the database from last Sunday at 12:01 A.M.

3. Apply the incremental backup files, such as the incrementals from Monday and
Tuesday. For example, assume that this step restores the database up until 11:00
P.M. on Tuesday.

4. Apply the AIJ, or transaction journal file, that contains the transactions from
11:15 P.M. on Tuesday up to 2:50 P.M. on Wednesday.

5. Open the database again.

6. Restart the BEA WebLogic Enterprise or BEA Tuxedo applications.

Refer to the documentation for the resource manager (database product) for specific
instructions on the database rollforward process.

22 Troubleshooting Applications

22-20 Administration Guide

Administraton Guide I-1

Index

Symbols
/Q (Queued Message Facility) 13-2

A
access control in a configuration file

defining 3-14
AdminAPI 21-1
administration

configuration tools 2-2
using AdminAPI 2-4
using BEA Administration Console

2-3
using command-line interface 2-3

differences between BEA WebLogic
Enterprise and BEA TUXEDO
1-4

run-time tools 2-4
using AdminAPI 2-6
using BEA Administration Console

2-4
using command-line interface 2-6

tasks
configuration 2-1
run-time 2-1

tools 2-1–2-7
administration phases

groundwork 1-2
operational 1-3

APP_PW 11-5
APP_PW variable 11-6

application components
replacing 22-13

application failure 22-2
application type in a configuration file

setting 3-13
applications

starting 4-1
AUTOTRAN timeout value

changing 19-5

B
bankapp application 15-24
BEA WebLogic Enterprise and BEA

TUXEDO
differences 1-4

BEA WebLogic Enterprise factory-based
routing example 3-76

BEA WebLogic Enterprise hostname
capitalization

checking 22-16
BEA WebLogic Enterprise interface

repositories
managing 8-1

BLOCKTIME parameter 3-20
buffer type and subtype limits in a

configuration file
setting 3-19

buffer types allowed for a service
BUFTYPE parameter examples 3-68
specifying 3-68

I-2 Administraton Guide

BUFTYPE parameter 3-68
bulletin board 15-3

C
CLOPT parameter 12-9

command line options 11-8
format 11-7

configuration file
creating 3-1–3-85
GROUPS section

sample 3-32
identifying the location 3-27
MACHINES section

description of parameters in sample
MACHINES section 3-26

identifying machines 3-25
sample 3-25

NETGROUPS section
configuring information 3-81

SERVERS section
identifying server process

information 3-35
SERVICES section

sample 3-66, 3-67
setting domain-wide parameters 3-10

configuration file forms
TUXCONFIG file 3-3

configuration file parameters
APPDIR 3-28
AUTHSVC 3-22
AUTOTRAN 3-70
BLOCKTIME 3-21
BUFTYPE 3-68
CONV 3-55
ENVFILE 3-29
FACTORYROUTING 3-70
FASTPATH 3-24
GID 3-15, 3-30
GRACE 3-55
IPCKEY 3-12

LDBAL 3-66
LMID 3-27
LOAD 3-70
MASTER 3-13
MAX 3-49
MAXACCESSERS 3-18, 3-30
MAXBUFSTYPES 3-19
MAXBUFTYPE 3-19
MAXCONV 3-21
MAXGEN 3-55
MAXINTERFACES 3-18
MAXNETGROUPS 3-81, 3-82
MAXOBJECTS 3-18, 3-31
MAXPENDINGBYTES 3-81, 3-82
MAXSERVERS 3-18
MAXSERVICES 3-18
MIN 3-49
NETGROUP 3-81, 3-82
NETGRPNO 3-81
NETPRIO 3-81, 3-82
NOTIFY 3-23
PERM 3-15, 3-30
PRIO 3-67, 3-70, 3-73
PROTECTED 3-24
RCMD 3-55
REPLYQ 3-54, 3-56
RESTART 3-55
RPPERM 3-54
RQADDR 3-53, 3-56
RQPERM 3-54, 3-56
SANITYSCAN 3-20
SCANUNIT 3-20
SECURITY 3-22
SEQUENCE 3-49
SRVGRP 3-37, 3-70
SYSTEM_ACCESS 3-57
TIMEOUT 3-71
TRANTIME 3-71
TUXCONFIG 3-27
TUXDIR 3-28
UID 3-15, 3-30

Administraton Guide I-3

ULOGPFX 3-29
USIGNAL 3-23

configuring a local and remote domain 10-5
configuring a networked application

assigning priorities to each network
group 6-8

example 6-5
steps 6-2
UBBCONFIG file 6-7

NETGROUPS section 6-7
configuring BEA WebLogic Enterprise

interfaces
controlling data flow by interface

priority 3-73
configuring groups 3-31

defining server groups in GROUPS
section 3-31

configuring interfaces
enabling load balancing 3-73
specifying CORBA interfaces in the

INTERFACES section 3-69
specifying different service parameters

for different server groups 3-74
specifying FACTORYROUTING

criteria 3-71
configuring JDBC connection pools 3-60
configuring machines 3-24

identifying locations of BEA WebLogic
Enterprise or BEA TUXEDO
system software and
application servers 3-28

identifying log file location 3-28
identifying machines in the MACHINES

section 3-25
identifying the location of the

configuration file 3-27
overriding system-wide parameters 3-30
reserving the physical address and

machine ID 3-26
specifying environment variable settings

for processes 3-29

configuring network information
network groups configuration 3-83
specifying information in NETGROUPS

section 3-81
configuring routing

BEA WebLogic Enterprise factory-
based routing example 3-76

defining routing criteria in ROUTING
section 3-74

specifying range criteria in sample
ROUTING section 3-76

configuring servers
command-line options 3-39
defining server access to shared memory

3-56
defining server name, group, ID 3-37
defining server restart information 3-54
identifying server environment file

location 3-52
identifying server process information in

SERVERS section 3-35
identifying server queues 3-52
setting order in which servers are booted

3-48
specifying a TUXEDO server as

conversational 3-55
using server command-line options 3-37

configuring the UBBCONFIG with
netgroups 3-85

configuring TUXEDO services
controlling data flow by service priority

3-67
enabling load balancing 3-66
identifying services in the SERVICES

section 3-65
sample SERVICES section 3-66, 3-67
specifying a list of allowable buffer

types for a service 3-68
specifying different service parameters

for different server groups 3-67
configuring workstation listener (WSL) 11-7

I-4 Administraton Guide

using the CLOPT parameter 11-7
configuring your system

determining your server needs 1-8
planning the overall design 1-7

CORBA interfaces in a configuration file
specifying 3-69

crdl command
creating a TLOG device 4-6

customer support contact information xviii

D
data

dynamic 15-4
static 15-4

data flow in a configuration file
controlling by interface priority 3-73
controlling by service priority 3-67

device
reinitializing a 22-6

device list
creating 22-5
destroying 22-6

DLL 12-2
DLL (Dynamic Link Libraries) 11-2
documentation, where to find it xvii
domain access control list, creating 10-15
domains

benefits of using BEA TUXEDO system
10-2

components of DMCONFIG file 10-4
configuring a local and remote domain

10-5
creating domain access control list

(ACL) 10-15
defining addressing 10-10
defining exported services 10-13
defining imported and exported services

10-10
defining local and remote domains 10-10
defining remote domain environment

10-11
defining the local domain environment

10-8
domain gateway configuration file 10-3
ensuring security 10-14
example of /DOMAINS 10-7
illustration of /DOMAINS 10-7
local application configuration file

example 10-9
local domain configuration file example

10-11
remote application configuration file

example 10-12
remote domain gateway configuration

file example 10-13
routing service requests to remote

domains 10-15
working with multiple 10-1–10-17

E
encryption, link-level 6-15
environment variable settings in a

configuration file
specifying 3-29

environment variables, setting
ROOTDIR 11-5

errors
identifying using log files 16-1

Event Broker/Monitor 21-1

F
factory-based BEA WebLogic Enterprise

routing example 3-76
failback 6-12
failover 6-12
failure

determining cause of application 22-2
determining cause of system 22-3

failure types 22-2

Administraton Guide I-5

figures
assigning network group priorities 6-9
bank application with remote clients 12-

6
bank application with two workstation

clients 11-4
BEA Administration Console screen 2-5
BEA TUXEDO /DOMAIN gateway 10-

4
example of a network grouping 3-83, 6-6
flow of data over the BRIDGE 6-11
local and remote application (simpapp)

10-8
sample NETGROUPS and NETWORK

sections 3-85
TUXEDO message queueing illustration

13-5
file system maintenance 22-5

G
GRACE parameter 3-55

I
IIOP (Internet Inter-ORB Protocol) 12-2
interface repositories

administering 8-2
creating and populating 8-4
deleting 8-5
displaying or extracting content 8-4
managing

prerequisites 8-3
using administrative commands 8-3

IPC limits in a configuration file
defining 3-15

IPCKEY parameter 3-12
ISH (IIOP Handler) 12-2
ISL (IIOP Listener) 12-2

J
Java Server options 3-48
JavaServer

additional services advertized by 3-17
BEA WebLogic Enterprise-noredirect

option 3-45
configuration options 3-39
enabling multithreading 3-39
nonstandard Java options 3-46
standard Java options 3-44

JDBC connection pools
attributes of 3-60
configuring 3-60
encrypting passwords used with 3-64

L
listings

bbsread output 15-27
canceling a server group migration 18-

10
configuration file for bankapp (MP

version) 15-24
local application configuration file 10-9
local domain gateway configuration file

10-11
migrating a machine when an alternate

machine is accessible 18-8
migrating a machine when an alternate

machine is not accessible 18-9
migration when a master machine is

accessible 18-3
migration when a master machine is not

accessible 18-4
migration when an alternate machine is

accessible 18-6
migration when an alternate machine is

not accessible 18-6
remote application configuration file 10-

12
remote domain gateway configuration

I-6 Administraton Guide

file 10-13
TMADMIN default output 15-11
tmadmin session example 22-9

load balancing BEA WebLogic Enterprise
interfaces in a configuration file

enabling 3-73
load balancing in a configuration file

enabling 3-19
load balancing TUXEDO services in a

configuration file
enabling 3-66

locations of BEA WebLogic Enterprise or
BEA TUXEDO system software
and application servers

identifying 3-28
log file in a configuration file

identifying location 3-28
log files 15-3

using to detect failures 16-13–16-15

M
MAX parameter 3-49
MAXACCESSERS

threads 3-16
MAXENCRYPTBITS parameter 6-18
MAXGEN parameter 3-55
MAXWSCLIENTS parameter 11-6
migrating applications 18-1–18-11

examples of switching master and
backup machines 18-3

when the master machine is
accessible from the backup
machine 18-3

when the master machine is not
accessible from the backup
machine 18-4

how to switch master and backup
machines 18-3, 18-10

migration options 18-2
canceling a migration 18-9

example of canceling a migration
canceling a server group migration

for a server group
GROUP1 18-10

example of migrating a machine
when the alternate machine is

accessible from the
primary machine 18-8

when the alternate machine is not
accessible from the
primary machine 18-9

example of migrating a server group
when the alternate machine is

accessible from the
primary machine 18-6

when the alternate machine is not
accessible from the
primary machine 18-6

migrating a server group 18-4
how to migrate a server group when

the alternate machine is
accessible from the
primary machine 18-5

how to migrate a server group when
the alternate machine is not
accessible from the
primary machine 18-5

migrating machines 18-7
how to migrate machines when the

alternate machine is
accessible from the
primary machine 18-7

how to migrate machines when the
alternate machine is not
accessible from the
primary machine 18-8

migrating transaction logs to a backup
site 18-10

switching master and backup machines
18-2

MIN parameter 3-49

Administraton Guide I-7

MINENCRYPTBITS parameter 6-18
modifying systems, dynamically 19-1–19-5

procedures 19-2
advertising services 19-4
changing AUTOTRAN timeout

value 19-5
changing service parameters 19-5
resuming BEA TUXEDO services

19-3
suspending BEA TUXEDO services

19-3
unadvertising services 19-4

monitoring a running system 15-1–15-28
bankapp configuration file 15-24
checking local IPC resources 15-26
checking system-wide parameters 15-28
data repositories

bulletin board 15-3
log files 15-3
UBBCONFIG file 15-2

methods 15-5
output from TMADMIN commands

PRINTJDBCCONNPOOL 15-22
PRINTNET 15-20
PRINTTRANS 15-21

running TMADMIN commands 15-12
sample bankapp application 15-24
sample bankapp application output 15-

26–??
sample bankapp applicatiooutput 15-28
TMADMIN meta-commands 15-9
TMADMIN operating modes 15-8
types of administrative data 15-3
using AdminAPI 15-5
using statistics 15-3

monitoring log files 16-1–16-15
Multithreaded JavaServers

enabling 3-39
MAXACCESSERS parameter 3-16

N
NETGROUPS section 6-7
NETLOAD parameter 6-14
network data flow

advantages of data compression 6-13
failback 6-12
failover 6-12
using data compression

setting the compression level 6-12
network failures

recovering from severe 22-10
recovering from transient 22-10

network groups configuration
sample 3-83

networked application
balancing request loads 6-14
changing network configuration

parameters 6-18
negotiating encryption key size 6-16
running a 6-10
scheduling network data over parallel

circuits 6-10
specifying encryption key bits 6-18
using link-level encryption 6-15

networked applications 6-1–6-18
node

restoring a failed nonmaster 22-11

O
Outbound IIOP

bi-directional 12-13
outbound IIOP

asymetric 12-14
Asymmetric 12-12
Bi-directional 12-12
dual-paired 12-12, 12-15

overriding system-wide parameters 3-30

I-8 Administraton Guide

P
partitioned networks

detecting 22-8
repairing 22-7

passwords
encrypting 4-5

physical address and machine ID
reserving 3-26

PRINTCONN command 15-19
printing product documentation xvii
PRINTJDBCPOOL command 15-22
PRINTNET command 15-20
PRINTNETWORK command 22-9
PRINTQUEUE command 15-17
PRINTSERVER command 22-9
PRINTSERVICE command 22-9
PRINTTRANS command 15-21

Q
QMADMIN

using to create message queues 13-8
QMCONFIG 13-2
QMCONFIG environment variable

setting 13-7
queue 13-2
queue space 13-2
queued BEA TUXEDO messages

managing 13-1–13-11
queued messages

associating queue with group 13-10
creating application queue space and

queues 13-8
listing /Q servers in SERVER section

13-11
modifying the configuration file 13-10
setting the QMCONFIG environment

variable 13-7
using QMADMIN 13-8

R
range criteria in a configuration file

specifying 3-76
RCMD parameter 3-55
related information xvii
remote clients

configuring a listener for 12-9
using the CLOPT parameter 12-9

defined 12-5
how it connects to application 12-6
illustrated 12-6
managing 12-1–12-10
setting environment variables 12-7
setting maximum number of 12-8

remote domains
routing service requests 10-15

REPLYQ parameter 3-53
request queue 13-2
resources

cleaning up 22-14
cleaning up those associated with dead

processes 22-14
RESTART parameter 3-55
RPPERM parameter 3-53
RQADDR parameter 3-53
RQPERM parameter 3-53

S
sanity checks and timeouts in a configuration

file
BLOCKTIME parameter 3-20
example 3-20
SANITYSCAN parameter 3-20
SCANUNIT parameter 3-20
setting the number of 3-19

SANITYSCAN parameter 3-20
SCANUNIT parameter 3-20
scheduling network data 6-10
security level in a configuration file

setting 3-21

Administraton Guide I-9

SEQUENCE parameter 3-49
server access to shared memory

characteristics of SYSTEM_ACCESS
parameter 3-56

server command-line options 3-39
server environment file

identifying location 3-52
server groups

defining 3-31
encrypting passwords for 3-34
sample GROUPS section 3-32
specifying group name, number, and

LMID 3-31
server process information

identifying 3-35
server queue information

characteristics of RQADDR, RQPERM,
REPLYQ, and RPPERM
parameters 3-53

example 3-53
identifying 3-52

server restart information
characteristics of RESTART, RCMD,

MAXGEN, and GRACE
parameters 3-55

defining 3-54
servers boot order in a configuration file

characteristics of SEQUENCE, MIN,
and MAX parameters 3-49

setting 3-48
service parameters

changing 19-5
service parameters specification in a

configuration file
sample INTERFACES section 3-74

services
advertising 19-4
unadvertising 19-4

setting domain-wide parameters
buffer type and subtype limits 3-19
defining access control 3-14

defining IPC limits 3-15
enabling load balancing 3-19
enabling unsolicited notification 3-22
identifying the master machine 3-13
protecting shared memory 3-24
setting conversation limits 3-21
setting parameters of unsolicited

notification 3-22
setting the address of shared memory 3-

12
setting the application type 3-13
setting the number of sanity checks and

timeouts 3-19
setting the security level 3-21

shared memory
defining server access to 3-56
protecting 3-24
setting the address of 3-12

simpapp application illustrated 10-8
Single-threaded JavaServers 3-39
SPINCOUNT parameter 6-14
standard Java options 3-44
starting applications 4-1
support

technical xviii
system components

replacing 22-12
system-wide parameters

overriding 3-30

T
tables

commands for monitoring TMADMIN
tasks 15-14

TMADMIN meta-commands 15-9
TAGENT log

analyzing 16-13
threads 3-40
TLISTEN log

analyzing 16-14

I-10 Administraton Guide

TLOG 16-1
analyzing 16-15
creating 16-7–16-12
how to use 16-5
location 16-5
maintaining 16-12
purpose 16-5

TMADMIN command 15-6
TMADMIN meta-commands 15-9
tmloadcf

prompts for entering passwords 3-34
prompts for passwords 4-5

TMNETLOAD parameter 6-14
TMPDIR 11-5
TMPDIR variable 11-6
TMQFORWARD 13-2
TMQUEUE 13-2
TMS_QM 13-2
tmunloadcf

encrypting passwords with 3-34, 4-5
transactions

aborting 22-17
committing 22-18
recovering from failures when using 22-

19
transactions, configuring 7-1–??
troubleshooting applications 22-1–22-19

aborting a transaction 22-17
application failure 22-2
BEA WebLogic Enterprise or BEA

TUXEDO system failure 22-3
broadcasting unsolicited messages 22-4
checking BEA WebLogic Enterprise

hostname capitalization 22-16
checking the ULOG 22-8
cleaning up and restarting servers 22-13
cleaning up resources 22-14
cleaning up resources associated with

dead processes 22-14
committing a transaction 22-18
detecting partitioned networks 22-8

gathering information about network,
server, and service 22-9

maintaining system files 22-5
creating device list 22-5
destroying device list 22-6
printing the UDL 22-7
printing the VTOC 22-7
reinitializing a device 22-6

recovering from severe network failures
22-10

recovering from transient network
failures 22-10

recovering when using transactions 22-
19

repairing partitioned networks 22-7
replacing application components 22-13
restoring failed master node 22-11
restoring failed nonmaster node 22-11
restoring failed nonmaster node example

22-12
types of failures 22-2

tuning applications 17-1–??
TUXCONFIG file 3-3
TUXDIR variable 11-5
TUXEDO and BEA WebLogic Enterprise

differences 1-4
TUXEDO conversation limits in a

configuration file
setting 3-21

TUXEDO queued message facility
administrative tasks 13-3–13-7
overview 13-3–??

TUXEDO queued messages
associating queue with group 13-10
creating application queue space and

queues 13-8
listing /Q servers in SERVER section

13-11
managing 13-1–13-11
modifying the configuration file 13-10
setting the QMCONFIG environment

Administraton Guide I-11

variable 13-7
using QMADMIN 13-8

TUXEDO services
resuming 19-3
suspending 19-3

TUXEDO services in a configuration file
identifying 3-65
sample SERVICES section 3-66

U
UBBCONFIG file 15-2

configuring with netgroups 3-85
UDL 13-7

printing 22-7
ULOG 16-1, 22-8

analyzing 16-13
assigning a location for 16-6
how to use 16-3
location 16-4
maintaining 16-6
message format 16-3
purpose 16-2
when created 16-2

unsolicited messages
broadcasting 22-4

unsolicited notification in a configuration file
setting parameters of 3-22

V
VTOC

printing 22-7

W
worker threads 3-16
workstation clients

defined 11-2
how to connect to an application 11-5
illustration of a 2-workstation client

application 11-3
managing 11-1–11-9
modifying MACHINES section to

support 11-9
sample UBBCONFIG file 11-9

setting environment variables 11-5
setting number of

MAXACCESSERS parameter 11-6
MAXWSCLIENTS parameter 11-6

workstation listener (WSL), configuring 11-7
WSC (workstation client) 11-2
WSDEVICE variable 11-5
WSENFILE 11-5
WSENFILE variable 11-5
WSH (workstation handler) 11-2
WSL (workstation listener) 11-2
WSNADDR

WSDEVICE 11-5
WSNADDR variable 11-5
WSREPLYMAX variable 11-6
WSRPLYMAX 11-5
WSTYPE 11-5
WSTYPE variable 11-5

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to Administration
	The Administrator’s Job
	The Groundwork Phase
	The Operational Phase
	Differences Between the BEA WebLogic Enterprise and BEA Tuxedo Systems

	Roadmap for Your Responsibilities
	Planning Your Configuration
	Questions About the Design
	Questions About Server Applications

	2 Administration Tools
	Configuration and Run-Time Administration
	Tools for Configuration
	Tools for Run-Time Administration

	BEA Administration Console
	Command-line Interface
	AdminAPI

	3 Creating a Configuration File
	About the Configuration File
	Build Environment
	Forms of the Configuration File
	Configuration File Content
	Section Names and Functions
	Arrangement of Sections in the Configuration File
	Sample UBBCONFIG File

	Administrative Requirements and Performance
	Configuring NameManager
	Reliability Requirements
	Managing Factory Entries
	Configuring Multiple NameManagers and FactoryFinders
	Designating a Master NameManager

	Performance Hint

	Configuring Resources
	Setting the Shared Memory Address
	Specifying the Master Machine
	Setting the Application Type
	Defining Access Control (BEA Tuxedo Servers)
	Defining IPC Limits
	Enabling Load Balancing
	Setting Buffer Type and Subtype Limits
	Setting the Number of Sanity Checks and Timeouts
	Example: Setting Sanity Checks and Timeouts
	Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters

	Setting Conversation Limits (BEA Tuxedo Servers)
	Setting the Security Level
	Setting Parameters of Unsolicited Notification (BEA Tuxedo Servers)
	Protecting Shared Memory

	Configuring Machines
	Identifying Machines in the MACHINES Section
	Example: MACHINES Section
	Parameters in a Sample MACHINES Section

	Reserving the Physical Address and Machine ID
	Identifying the Location of the Configuration File
	Identifying the Locations of the System and Application Software
	Identifying the User Log File Location
	Specifying Environment Variable Settings for Processes
	Overriding System-wide Parameters

	Configuring Groups
	Specifying a Group Name, Number, and LMID
	Sample GROUPS Section
	Encrypting Passwords in OPENINFO

	Configuring Servers
	Identifying Server Information in the SERVERS Section
	Defining Server Name, Group, and ID
	Using Server Command-Line Options
	Server Command-Line Options

	Starting JavaServer
	Threading Options
	JavaServer Parameters
	Example of CORBA JavaServer Entry
	Example of EJB JavaServer Entry
	Using the EJB Cache Size for Tuning and Scaling
	Standard Java Virtual Machine Options
	BEA WebLogic Enterprise JavaServer Options
	Nonstandard Java Virtual Machine Options
	JavaServer Options

	Setting the Server Boot Order
	Characteristics of the SEQUENCE, MIN, and MAX Parameters
	Required Order in Which to Boot Servers (BEA WebLogic Enterprise Servers)

	Identifying Server Environment File Location
	Identifying Server Queue Information
	MSSQ Example (BEA Tuxedo Servers)
	Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	Defining Server Restart Information
	Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	Specifying a Conversational Server (BEA Tuxedo Servers)
	Setting Security Parameters for ISL Servers
	Defining Server Access to Shared Memory

	Configuring Modules
	Example of a MODULES Section for an EJB JavaServer

	Configuring JDBC Connection Pools (BEA WebLogic Enterprise System)
	Encrypting DBPASSWORD and PROPS

	Configuring Services (BEA Tuxedo System)
	Identifying BEA Tuxedo Services in the SERVICES Section
	Sample SERVICES Section

	Enabling Load Balancing
	Controlling the Flow of Data by Service Priority
	Specifying Different Service Parameters for Different Server Groups
	Sample SERVICES Section

	Specifying a List of Allowable Buffer Types for a Service
	Examples of the BUFTYPE Parameter

	Configuring Interfaces (BEA WebLogic Enterprise Servers)
	Specifying CORBA Interfaces in the INTERFACES Section
	Specifying FACTORYROUTING Criteria (CORBA only)
	University Sample
	Bankapp Sample

	Enabling Load Balancing
	Controlling the Flow of Data by Interface Priority
	Specifying Different Interface Parameters for Different Server Groups

	Configuring Routing
	Defining Routing Criteria in the ROUTING Section
	Specifying Range Criteria in the ROUTING Section
	Example: Factory-based Routing (BEA WebLogic Enterprise Servers)
	Example: Factory-based Routing in the Bankapp Sample Application (BEA WebLogic Enterprise Servers)

	Configuring Network Information
	Specifying Information in the NETGROUPS Section
	Sample NETGROUPS Configuration
	Configuring the UBBCONFIG File with Netgroups

	4 Starting and Shutting Down Applications
	Starting Applications
	Prerequisite Checklist
	Set Environment Variables
	Create TUXCONFIG
	Creating Encrypted Passwords
	Propagate the Software
	Create a TLOG Device
	Start tlisten at All Sites

	Booting the Application
	Using tmboot
	Default Boot Sequence for a Small Application
	Optimized Boot Sequence for Large Applications

	Shutting Down Applications
	Using tmshutdown
	Clearing Common Problems
	Common Startup Problems
	TLOG Not Created
	Server Not Built Correctly
	Incorrect OPENINFO String
	Unable to Propagate BEA WebLogic Enterprise System

	Common Shutdown Problems

	5 Distributing Applications
	6 Building Networked Applications
	Terms and Definitions
	Configuring Networked Applications
	Example: A Network Configuration
	Example: A Network Configuration with Multiple Netgroups
	The UBBCONFIG File for the Network Example
	Assigning Priorities for Each Network Group
	The UBBCONFIG Example Considerations

	Running a Networked Application
	Scheduling Network Data Over Parallel Data Circuits
	Network Data in Failover and Failback
	Using Data Compression for Network Data
	Taking Advantage of Data Compression
	Setting the Compression Level

	Balancing Network Request Loads
	NETLOAD
	SPINCOUNT

	Using Link-level Encryption (BEA Tuxedo Servers)
	How LLE Works
	Encryption Key Size Negotiation
	MINENCRYPTBITS/MAXENCRYPTBITS
	How to Change Network Configuration Parameters

	7 Configuring Transactions
	8 Managing Interface Repositories (BEA WebLogic Enterprise Systems)
	Administration Considerations
	Using Administration Commands to Manage Interface Repositories
	Prerequisites
	Creating and Populating an Interface Respository
	Displaying or Extracting the Content of an Interface Repository
	Deleting an Object from an Interface Repository

	Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

	9 Configuring Multiple Domains (BEA WebLogic Enterprise Systems)
	Overview of Multiple Domains
	Interdomain Communication
	Functions of Multiple-domain Configuration Elements
	Configuring Multiple Domains
	The UBBCONFIG File
	Domain Name
	Gateway Group and Service

	The Domain Configuration (DMCONFIG) File
	DM_RESOURCES
	DM_LOCAL_DOMAINS
	DM_REMOTE_DOMAINS
	DM_TDOMAIN
	DM_REMOTE_SERVICES
	DM_LOCAL_SERVICES
	DM_ACCESS_CONTROL

	The factory_finder.ini File
	DM_REMOTE_FACTORIES
	DM_LOCAL_FACTORIES

	Local Factories

	Types of Domain Configurations
	Directly Connected Domains
	Indirectly Connected Domains

	Examples: Configuring Multiple Domains
	Sample UBBCONFIG Files
	Sample DMCONFIG File
	Sample factory_finder.ini File

	10 Working with Multiple Domains (BEA Tuxedo Systems)
	Benefits of Using BEA Tuxedo System Domains
	What Is the Domains Gateway Configuration File?
	Components of the DMCONFIG File

	Configuring Local and Remote Domains
	Setting Environment Variables
	Examples

	Building a Local Application Configuration File and a Local Domains Gateway Configuration File
	Building a Remote Application Configuration File and a Remote Domains Gateway Configuration File
	Example of a Domains-based Configuration
	Defining the Local Domains Environment
	Defining the Local and Remote Domains, Addressing, and Imported and Exported Services
	Defining the Remote Domains Environment
	Defining the Exported Services

	Using Data Compression Between Domains
	Ensuring Security in Domains
	Creating a Domain Access Control List (ACL)

	Routing Service Requests to Remote Domains

	11 Managing Workstation Clients (BEA Tuxedo Systems)
	Workstation Terms
	What Is a Workstation Client?
	Illustration of an Application with Two Workstation Clients
	How the Workstation Client Connects to an Application

	Setting Environment Variables
	Setting the Maximum Number of Workstation Clients
	Configuring a Workstation Listener (WSL)
	Format of the CLOPT Parameter
	Command-line Options of the CLOPT Parameter

	Modifying the MACHINES Section to Support Workstation Clients

	12 Managing Remote Client Applications (BEA WebLogic Enterprise Systems)
	Terms and Definitions
	Remote Client Overview
	Illustration of an Application with Remote Clients
	How the Remote Client Connects to an Application

	Setting Environment Variables
	Setting the Maximum Number of Remote Clients
	Configuring a Listener for a Remote Client
	Format of the CLOPT Parameter

	Modifying the UBBCONFIG File to Support Remote Clients
	Configuring Outbound IIOP for Remote Joint Client/Servers
	Functional Description
	Bidirectional Outbound IIOP
	Asymmetric Outbound IIOP
	Dual-paired Connection Outbound IIOP
	How the Routing Code Finds an ISL

	Using the ISL Command to Configure Outbound IIOP Support
	Types of Object References
	User Interface

	13 Managing Queued Messages (BEA Tuxedo System)
	Terms and Definitions
	Overview of the BEA Tuxedo Queued Message Facility
	Administrative Tasks
	Setting the QMCONFIG Environment Variable
	Using qmadmin, the /Q Administrative Interface
	Creating an Application Queue Space and Queues
	Modifying the Configuration File
	Associating a Queue with a Group
	Listing the /Q Servers in the SERVERS Section

	14 Securing Application
	15 Monitoring a Running System
	Overview of System and Application Data
	Components and Activities for Which Data Is Available
	Where the Data Resides
	How You Can Use the Data
	Static and Dynamic Data
	Static Data
	Dynamic Data

	Monitoring Methods
	Using the tmadmin Command Interpreter
	How a tmadmin Session Works
	tmadmin Options
	tmadmin Metacommands

	Running tmadmin Commands
	Monitoring a Running System with tmadmin
	Example: Output from tmadmin Commands
	printqueue Output
	printconn Data
	printnet Command Output
	printtrans Command Output
	printjdbcconnpool Command Output

	Case Study: Monitoring Run-time bankapp
	Configuration File for bankapp
	Output from Checking the Local IPC Resources
	Output from Checking System-wide Parameter Settings

	16 Monitoring Log Files
	What is the ULOG?
	Purpose
	How Is the ULOG created?
	How Is the ULOG Used?
	Message Format
	Location

	What Is the Transaction Log (TLOG)?
	How Is the TLOG Created?
	How Is the TLOG Used?
	Location

	Creating and Maintaining Logs
	How to Assign a Location for the ULOG
	Creating a Transaction Log (TLOG)
	Step 1: Assign Values to MACHINES Section Parameters
	Step 2: Create a UDL Entry
	Step 3 (optional): Allocate Space for a New Device on an Existing System
	Step 4: Create the Log
	Maintaining a TLOG

	Using Logs to Detect Failures
	Analyzing the User Log (ULOG)
	Analyzing tlisten Messages
	Example

	Analyzing a Transaction Log (TLOG)

	17 Tuning Applications
	18 Migrating Applications
	About Migration
	Migration Options
	Switching Master and Backup Machines
	How to Switch the Master and Backup Machines
	Examples: Switching Master and Backup Machines

	Migrating a Server Group
	Migrating a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	Migrating a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples: Migrating a Server Group

	Migrating Machines
	Migrating Machines When the Alternate Machine Is Accessible from the Primary Machine
	Migrating Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples: Migrating a Machine

	Canceling a Migration
	Example: A Migration Cancellation

	Migrating Transaction Logs to a Backup Machine

	19 Dynamically Modifying Systems
	Dynamic Modification Methods
	Procedures for Dynamically Modifying Your System
	Suspending and Resuming Services (BEA Tuxedo Servers)
	Suspending Services
	Resuming Services

	Advertising and Unadvertising Services (BEA Tuxedo Servers)
	Advertising Services
	Unadvertising Services

	Changing Service Parameters (BEA Tuxedo Servers) or Interface Parameters (BEA WebLogic Enterprise...
	Changing the AUTOTRAN Timeout Value
	Suspending and Resuming Interfaces (BEA WebLogic Enterprise System)
	Suspending an Interface
	Resuming an Interface

	20 Dynamically Reconfiguring Applications
	Introduction to Dynamic Reconfiguration
	Overview of the tmconfig Command Interpreter
	What tmconfig Does
	Implications of Running as a Client

	How tmconfig Works
	Sections of the Configuration File
	tmconfig Operations

	Output from tmconfig Operations

	General Instructions for Running tmconfig
	Preparing to Run tmconfig
	Running tmconfig: A High-level Walk-through
	Input Buffer Considerations

	Procedures
	Adding a New Machine
	Adding a Server
	Activating a Newly Configured Server
	Adding a New Group
	Changing the Factory-based Routing (FBR) for an Interface
	Changing the Data-dependent Routing (DDR) for the Application
	Changing Application-wide Parameters
	Changing an Application Password

	Final Advice About Dynamic Reconfiguration

	21 Event Broker/Monitor (BEA Tuxedo Systems)
	Events
	Event Classifications
	List of Events

	Setting Up Event Detection
	Subscribing to Events
	Application-specific Event Broker/Monitors
	How an Event Broker/Monitor Might Be Deployed
	How the Event Broker/Monitor Works

	22 Troubleshooting Applications
	Distinguishing Between Types of Failures
	Determining the Cause of an Application Failure
	Determining the Cause of a BEA WebLogic Enterprise or BEA Tuxedo System Failure

	Broadcasting Unsolicited Messages (BEA Tuxedo System)
	Performing System File Maintenance
	Creating a Device List
	Destroying a Device List
	Reinitializing a Device
	Printing the Universal Device List (UDL)
	Printing VTOC Information

	Repairing Partitioned Networks
	Detecting Partitioned Networks
	Checking the ULOG
	Gathering Information about the Network, Server, and Service

	Restoring a Network Connection
	Recovering from Transient Network Failures
	Recovering from Severe Network Failures

	Restoring Failed Machines
	Restoring a Failed Master Machine
	Restoring a Failed Nonmaster Machine

	Replacing System Components (BEA Tuxedo System)
	Replacing Application Components
	Cleaning Up and Restarting Servers Manually
	Cleaning Up Resources

	Checking the Order in Which Servers Are Booted (BEA WebLogic Enterprise Servers)
	Checking Hostname Format and Capitalization (BEA WebLogic Enterprise Servers)
	Some Clients Fail to Boot (BEA WebLogic Enterprise Servers)
	Aborting or Committing Transactions
	Aborting a Transaction
	Committing a Transaction
	Cautions

	Recovering from Failures When Transactions Are Used

	Index

