
Guide to Managing Presentation

B E A W e b L o g i c C o m m e r c e S e r v e r 3 . 5
D o c u m e n t E d i t i o n 3 . 5

A p r i l 2 0 0 1

BEA WebLogic Commerce Server

and Business Logic:
Using Webflow and Pipeline

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA Campaign
Manager for WebLogic, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
E-Business Control Center, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic
Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Document Edition Date Software Version

3.5 April 2001 BEA WebLogic Commerce Server 3.5

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... ix

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Overview of
Webflow and Pipeline Management

High-level Architecture ... 1-2

Architecture Categories.. 1-3

Development Roles ... 1-5

Next Steps.. 1-5

2. Customizing Webflow and Pipelines
Using Webflow.. 2-2

Customizing Webflow Using the webflow.properties File 2-2

Syntax of the webflow.properties File .. 2-3

Default Webflow... 2-5

Dynamically Modifying Your Site’s Webflow................................... 2-6

Using Webflow in Your Web Pages .. 2-7

Webflow Search Order... 2-8

Search Order Examples... 2-9

Using Input Processors with Webflow .. 2-10

Syntax of Input Processors in the webflow.properties File...................... 2-10

Chaining Input Processors.. 2-12

iv Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Further Customization of Input Processors .. 2-13

Using Pipelines with Webflow .. 2-13

Customizing Pipelines Using the pipeline.properties File 2-14

Syntax of the pipeline.properties File ... 2-15

Default Pipeline... 2-16

Dynamically Modifying Your Site’s Pipelines 2-17

Using Pipelines in the Webflow ... 2-20

Further Customization of Pipelines .. 2-21

3. Using the Webflow and Pipeline Editor
About the Webflow and Pipeline Editor.. 3-1

Starting the WebLogic Commerce Server Administration Tools 3-3

Global Origins ... 3-5

Viewing Global Origins ... 3-8

Adding a Global Origin .. 3-9

Editing a Global Origin .. 3-10

Adding an Event.. 3-10

Editing an Event .. 3-12

Deleting an Event .. 3-14

Deleting a Global Origin .. 3-15

Page Origins .. 3-15

Viewing Page Origins... 3-17

Adding a Page Origin ... 3-18

Editing a Page Origin ... 3-19

Modifying Information About a Page Origin.................................... 3-19

Modifying a Page Origin’s Events .. 3-20

Deleting a Page Origin ... 3-25

Inputprocessor Origins .. 3-25

Viewing Inputprocessor Origins... 3-27

Adding an Inputprocessor Origin ... 3-28

Editing an Inputprocessor Origin ... 3-29

Modifying Information About an Inputprocessor Origin.................. 3-29

Modifying an Inputprocessor Origin’s Events 3-30

Deleting an Inputprocessor Origin ... 3-36

Pipeline Origins ... 3-36

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline v

Viewing Pipeline Origins ... 3-38

Adding a Pipeline Origin.. 3-39

Editing a Pipeline Origin.. 3-40

Modifying Information About a Pipeline Origin 3-40

Modifying a Pipeline Origin’s Components 3-42

Modifying a Pipeline Origin’s Events .. 3-53

Deleting a Pipeline Origin.. 3-58

How to Validate Your Properties Files ... 3-58

Validating the Webflow ... 3-59

Validating the Webflow and Verifying the Existence of Components 3-61

Validator Message Descriptions... 3-63

4. Extending Webflow and Pipelines
Pipeline Sessions ... 4-2

What Is a Pipeline Session? ... 4-3

Attribute Scoping ... 4-3

Managing the Pipeline Session .. 4-4

Accessing the Pipeline Session ... 4-4

Storing the Pipeline Session in the HTTP Session 4-4

Extending Input Processors ... 4-5

Using the InputProcessor Interface .. 4-5

Input Processor Exceptions .. 4-5

The CommerceInputProcessor Base Class... 4-6

Input Processor Naming Conventions.. 4-6

Input Processors and Statelessness... 4-6

Other Development Guidelines .. 4-7

Extending Pipelines and Pipeline Components ... 4-7

Using the PipelineComponent Interface .. 4-8

Pipeline Component Exceptions .. 4-8

The CommercePipelineComponent Base Class ... 4-9

Pipeline Component Naming Conventions .. 4-9

Implementation of Pipeline Components as Stateless Session EJBs or Java
Objects .. 4-10

Stateful Versus Stateless Pipeline Components 4-10

Transactional Versus Nontransactional Pipelines 4-11

vi Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Other Development Guidelines .. 4-11

Handling Session Timeouts ... 4-12

Using the getPipelineSession() Method ... 4-12

The InvalidSessionStateException Exception in webflow.properties...... 4-13

PipelineComponent and Session Timeouts .. 4-13

The InvalidPipelineSessionStateException Exception in webflow.properites
4-14

About the sessiontimeout.jsp Template.. 4-14

5. Webflow and Pipeline JSP Tags Library Reference
Webflow JSP Tags... 5-1

<webflow:getValidatedValue> .. 5-2

Example 1.. 5-3

Example 2.. 5-3

<webflow:setValidatedValue>... 5-4

Example... 5-5

About the ValidatedValues Java Class... 5-5

Pipeline JSP Tags .. 5-6

<pipeline:getPipelineProperty>.. 5-6

Example... 5-7

<pipeline:setPipelineProperty> .. 5-7

Example... 5-8

Index

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline vii

About This Document

This document provides information about the Webflow and Pipeline mechanisms
included in the BEA WebLogic Commerce ServerTM. These mechanisms externalize
the page flow and business logic that comprise any e-commerce Web site, and can be
customized or extended to meet your business objectives.

This document includes the following topics:

n Chapter 1, “Overview of Webflow and Pipeline Management,” which describes
the high-level architecture and categories for the Webflow and Pipeline
mechanisms utilized in the BEA WebLogic Commerce Server product.

n Chapter 2, “Customizing Webflow and Pipelines,” which describes how a
commerce engineer/JSP developer could customize the default Webflow and
Pipeline mechanism to meet the requirements of their e-business.

n Chapter 3, “Using the Webflow and Pipeline Editor,” which describes how a
commerce engineer/JSP developer can use the Webflow and Pipeline Editor
Administration Tool to edit and validate the webflow.properties and
pipeline.properties files.

n Chapter 4, “Extending Webflow and Pipelines,” which describes how a Java/EJB
programmer can extend the default Webflow and Pipeline mechanisms to create
new functionality for their e-business.

n Chapter 5, “Webflow and Pipeline JSP Tags Library Reference,” which describes
the specialized JSP tags that are used in the provided WebLogic Commerce
Server Web application.

viii Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

What You Need to Know

This document is intended for the following audiences:

n The commerce engineer/JSP content developer, who uses JSP templates and tag
libraries to implement interactive Web pages to meet business requirements. This
user also maintains simple configuration files.

n The business analyst, who defines the company’s business protocols (processes
and rules) for a business-to-consumer Web site. This user may set pricing
policies and discounts, and may plan promotional advertising.

n The site administrator, who uses Commerce and Personalization Server
administration screens to configure the site’s rules, portals, property sets, user
profiles, content delivery, and product catalog.

n The Java/EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files and write new Pipeline
components or input processors.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

http://e-docs.bea.com.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline ix

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Commerce Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Commerce
Server documentation Home page, click the PDF files button and select the document
you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following WebLogic Commerce Server documents describe parts of an
e-commerce application built upon the Webflow and Pipeline infrastructure:

n Guide to Building a Product Catalog

n Guide to Managing Purchases and Processing Orders

n Guide to Registering Customers and Managing Customer Services

Contact Us!

Your feedback on the BEA WebLogic Commerce Server documentation is important
to us. Send us e-mail at docsupport@beasys.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the WebLogic Commerce Server documentation.

http://www.adobe.com/

x Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Commerce Server 3.5 release.

If you have any questions about this version of BEA WebLogic Commerce Server, or
if you have problems installing and running BEA WebLogic Commerce Server,
contact BEA Customer Support through BEA WebSUPPORT at www.beasys.com.
You can also contact Customer Support by using the contact information provided on
the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline xi

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xii Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-1

CHAPTER

1 Overview of
Webflow and Pipeline
Management

The Webflow and Pipeline are flexible mechanisms designed to help you manage both
the presentation and business logic in your e-commerce Web site, without the need for
advanced programming skills. This topic describes the high-level architecture of the
Webflow and Pipeline, and provides preliminary information about how you can use
these mechanisms to customize or extend the e-business site provided with BEA
WebLogic Commerce Server.

This topic includes the following sections:

n High-level Architecture

n Development Roles

n Next Steps

1 Overview of Webflow and Pipeline Management

1-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

High-level Architecture

The BEA WebLogic Commerce Server design model separates presentation (such as
HTML and JavaScript) from business logic (such as database updates and
implementation of business rules). To create and maintain this separation, the
WebLogic Commerce Server makes use of the following six technologies:

n HTML: Standard HTML supported by Netscape Navigator or Microsoft Internet
Explorer. Throughout this document, the term HTML refers to both HTML and
JavaScript.

n JSP Tags: Customized tags used in the J2EE platform. The WebLogic
Commerce Server uses JavaServer Page (JSP) tags to add dynamic display to the
HTML pages, such as displaying the name of a customer who is currently
logged in.

n Pipeline Components: Discrete units of server-side business logic, such as
calculating tax or commiting an order. Pipeline components can be combined
into a Pipeline.

n Pipeline Session: Storage location for information about the current session
(such as the current shopping cart) or more transient data (such as error
messages about a customer’s most recent input).

n Input Processors: Flexible mechanisms that handle form submission. Some
may perform validation of customer data, but the primary role of an input
processor is to store customer data into the Pipeline session for subsequent use
by a Pipeline component.

n Webflow: Controls the flow of a customer’s session through the pages displayed
in a browser, and execution of specific pieces of business logic. Pages generate
events (that is, which link or button the customer clicks) that result in the
invocation of input processors and Pipelines. These in turn either succeed or
generate exceptions, from which the Webflow decides which page to display or
which piece of business logic to execute next.

This separation between presentation and business logic is beneficial for a number of
reasons, but most importantly, it is helpful from a customization/maintenance
standpoint. Different people within your organization may perform different tasks,
and may specialize in a particular area. Keeping the user interface separate from the
business processes and the Java programming allows your development team to

High-level Architecture

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-3

accomplish more in less time, and makes it easier for members of the team to focus on
their areas of expertise or interest. For a description of typical roles, see “Development
Roles” on page 1-5.

Architecture Categories

The six technologies previously described can best be understood as belonging to four
categories: presentation, business logic, state maintenance, and flow of control.

HTML, JSP tags, and input processors consitute the presentation portion of the system.
HTML is the display language understood by most browsers. JSP tags translate
information from the Pipeline session to HTML, while input processors translate form
data from HTML to the Pipeline session.

The Pipeline components containing pieces of business logic have no knowledge of
HTML or any of the other presentation technologies. Instead, the Pipeline session can
maintain conversational state in the system. Similarly, the Webflow governs the flow
of control.

Figure 1-1 illustrates how the various technology categories interact to preserve the
WebLogic Commerce Server design model. Understanding this diagram is essential
to understanding how to customize and extend the Webflow and Pipeline mechanisms.

1 Overview of Webflow and Pipeline Management

1-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 1-1 Webflow and Pipeline High-level Architecture

As you learn more about the Webflow and Pipeline mechanisms, return to this
architecture diagram. Each time you review the diagram, you will have a better
understanding of the big picture.

Development Roles

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-5

Development Roles

This document is intended for the following audiences:

n The commerce engineer/JSP content developer, who uses JSP templates and tag
libraries to implement interactive Web pages to meet business requirements.
This user also maintains simple configuration files.

n The business analyst, who defines the company’s business protocols (processes
and rules) for a business-to-consumer Web site. This user may set pricing
policies and discounts, and may plan promotional advertising.

n The site administrator, who uses Commerce and Personalization Server
administration screens to configure the site’s rules, portals, property sets, user
profiles, content delivery, and product catalog.

n The Java/EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files and write new Pipeline
components or input processors.

Next Steps

The BEA WebLogic Commerce Server product ships with a working e-commerce site
that can easily be modified to meet your specific business requirements. Many
modifications, such as changes to page layout and presentation, can be completed
without any Java coding. It is expected that these changes will be performed by a
commerce engineer/JSP content developer or a site administrator, who consults with a
business analyst about business strategies. For detailed information about how the
Webflow and Pipeline mechanisms work, see Chapter 2, “Customizing Webflow and
Pipelines,” in this guide. Additionally, Chapter 3, “Using the Webflow and Pipeline
Editor,” describes how a commerce engineer/JSP developer can use the Webflow and
Pipeline Editor Administration Tool to customize and validate the
webflow.properties and pipeline.properties files.

1 Overview of Webflow and Pipeline Management

1-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Some of the more complex modifications, such as adding a Pipeline component to use
a different credit card authorization system, will require Java coding. It is expected
that these changes will be performed by a Java/EJB programmer. For information
about how to extend the Webflow and Pipeline, see Chapter 4, “Extending Webflow
and Pipelines.”

The WebLogic Commerce Server also contains a few JSP tags specifically designed to
work with the Webflow and Pipeline mechanisms. You will use these JSP tags
regardless of whether you are customizing or extending the Webflow and Pipeline.
For detailed information about how to use the Webflow and Pipeline JSP Tags, see
Chapter 5, “Webflow and Pipeline JSP Tags Library Reference.”

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-1

CHAPTER

2 Customizing Webflow
and Pipelines

The most important benefit of the Webflow and Pipeline mechanisms is that they allow
people with different levels of technical skill to customize both the presentation and
business logic within an e-commerce site.

Commerce engineers/JSP content developers, site administrators, and business
analysts can now divide Web site customization (and subsequent maintenance)
activities based on their own expertise, interests, and job responsibilities. While they
are working with the Webflow/Pipeline infrastructure, the Java/EJB programmers on
the development team can be extending the BEA WebLogic Commerce Server
packages to add functionality. Thus, some bottlenecks in the site development and
maintenance process are greatly reduced.

If the packages that the BEA WebLogic Commerce Server product provides
completely meet your requirements, all you may need to do to have a fully functioning
e-business is to customize some aspects of the Webflow and/or Pipeline. This topic
describes how to accomplish this.

This topic includes the following sections:

n Using Webflow

l Customizing Webflow Using the webflow.properties File

l Using Webflow in Your Web Pages

l Webflow Search Order

n Using Input Processors with Webflow

l Syntax of Input Processors in the webflow.properties File

l Chaining Input Processors

2 Customizing Webflow and Pipelines

2-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

l Further Customization of Input Processors

n Using Pipelines with Webflow

l Customizing Pipelines Using the pipeline.properties File

l Using Pipelines in the Webflow

l Further Customization of Pipelines

Using Webflow

Since every e-business is different, the BEA WebLogic Commerce Server product
utilizes an external properties file to manage the sequence (flow) in which Web pages
are displayed. The WebLogic Commerce Server provides a default Webflow
properties file to get you up and running quickly, and to provide you with a working
example of this concept. You can modify this file to change the order of your pages,
without having to edit each page individually.

This section provides information about the default Webflow and instructions for
customizing it. This section also describes how to invoke the Webflow mechanism
from your Web pages, and explains how missing transitions in the properties file are
resolved.

Customizing Webflow Using the webflow.properties File

The Webflow properties file (webflow.properties) controls the display of your
site’s Web pages and initiates execution of the business logic associated with these
pages. The Webflow properties file contains one section for each JavaServer Page
(JSP) and includes comments for increased readability.

Generically, each transition in the webflow.properties file can be written as:

<origin>.[<event>][(<eventName>)]=<target>

Table 2-1 lists the valid values for each of these elements.

Using Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-3

Notes: Valid characters for <page>, <inputprocessorName> and
<pipelineName> are limited to A-Z, a-z, and an underscore.

Transitions in the webflow.properties file should never contain spaces.
Including spaces can result in errors that are difficult to locate.

Text within the webflow.properties file is case sensitive.

Syntax of the webflow.properties File

Each transition in the webflow.properties file is comprised of a name/value pair,
separated by an equal sign (=).

The name consists of the current state and a named event, and the value is a result state.
In Listing 2-1, the current state is firstpage.jsp. The event is a button named Next,
and the result state is nextpage.jsp.

Listing 2-1 Webflow Properties Example

firstpage.jsp.button(next)=nextpage.jsp

Table 2-1 Valid Values for webflow.properties Elements

Element Valid Values

<origin> begin | <page>.<extension> |
<inputprocessorName> | <pipelineName>

<event> event = link(<linkName>) |
button(<buttonName>) | success |
exception(<exceptionName>)

<target> <page>.<extension> | <inputprocessorName>
| <pipelineName>

<extension> jsp | html | htm | inputprocessor |
pipeline

2 Customizing Webflow and Pipelines

2-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

When a customer clicks the Next button from firstpage.jsp, the Webflow will load
nextpage.jsp.

Note: The only exception to this syntax is the transition in the
webflow.properties file that defines the initial state for the Webflow, as
follows:

begin=home.jsp

Web pages used as current or result states in the Webflow may be .htm, .html, or .jsp
files. In addition to the button event shown in the previous example, there is also a
link event associated with these file types.

About Event Names

Events are given names because it is likely that a page has multiple events of the same
type associated with it (that is, there are both previous and next buttons on
firstpage.jsp, each requiring different result states). Event names are used to
differentiate between these events, as shown in Listing 2-2.

Listing 2-2 Event Names Example

firstpage.jsp.button(previous)=previouspage.jsp

firstpage.jsp.button(next)=nextpage.jsp

Note: Although event names are arbitrarily selected, duplication of names for events
of the same type would defeat their purpose and should be avoided. Because
duplicate names would produce unpredictable results, the Webflow and
Pipeline Editor’s validation tool will check for and notify you about any such
occurrences. For more information about using the Webflow and Pipeline
Editor to validate your webflow.properties file, see “How to Validate Your
Properties Files” on page 3-58.

Although all the states in the previous examples are JSPs, both current and result states
can also be input processors or Pipelines. For more information on input processors
and Pipelines, see “Using Input Processors with Webflow” on page 2-10 and “Using
Pipelines with Webflow” on page 2-13, respectively.

Using Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-5

Using the Wildcard Character

In cases where you want all your Web pages to reach a certain target page, you can
substitute the wildcard character (*) for a specific page name in the current state. For
example, if you want customers to be able to reach the home page from every page
within your Web site, a transition in the webflow.properties file would read:

*.jsp.link(home)=home.jsp

Default Webflow

Listing 2-3 shows the portion of the default Webflow that handles category browsing.
It can also be viewed in a simple text editor by opening
WL_COMMERCE_HOME/webflow.properties, where WL_COMMERCE_HOME is the
top-level directory where you installed Campaign Manager for WebLogic (which
includes WebLogic Commerce Server) or WebLogic Commerce Server.

Listing 2-3 Default Webflow for Category Browsing

###

Handle category browsing

Generic browse link gets browse parameters
*.jsp.link(browse)=BrowseCategory.inputprocessor

Move intermediate results
BrowseCategory.inputprocessor.success=MoveSiblingResults.inputprocessor

Get all category detail
MoveSiblingResults.inputprocessor.success=GetBrowseDetails.pipeline

Display category detail
GetBrowseDetails.pipeline.success=commerce/catalog/browse.jsp

Handle errors
BrowseCategory.inputprocessor.exception(ProcessingException)=commerce/catalog/
browse.jsp

MoveSiblingResults.inputprocessor.exception(ProcessingException)=commerce/
catalog/browse.jsp

GetBrowseDetails.pipeline.exception(PipelineFatalException)=commerce/catalog/
browse.jsp

2 Customizing Webflow and Pipelines

2-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Define the input processor classes
BrowseCategory.inputprocessor=com.beasys.commerce.ebusiness.catalog.webflow.
GetCategoryIP

MoveSiblingResults.inputprocessor=com.beasys.commerce.ebusiness.catalog.webflow
.MoveAttributeIP

Dynamically Modifying Your Site’s Webflow

To dynamically modify your site’s Webflow, consider the following:

n It is expected that a commerce engineer/JSP content developer (or someone with
similar technical knowledge and abilities) will update the webflow.properties
file.

n Be sure to modify the webflow.properties file in your development
environment until you achieve the desired outcome. Then move your changes to
a production environment.

To modify your site’s Webflow, use the Webflow and Pipeline Editor Administration
Tool. For more information about this tool, see Chapter 3, “Using the Webflow and
Pipeline Editor.”

Note: You can also modify the Webflow by editing the webflow.properties file
directly. However, this is not recommended. Once you edit the
webflow.properties file by hand, you may not be able to use the Webflow
and Pipeline Editor. If you are certain you want to edit the file directly, follow
these steps:

1. Start a simple text editor like Notepad.

2. Open the default Webflow properties file, which can be found in
WL_COMMERCE_HOME/webflow.properties, where WL_COMMERCE_HOME is the
top-level directory where you installed WebLogic Commerce Server.

3. Modify the file as necessary, using the syntax described in the previous sections.

4. Save the modified file. You do not need to restart the server to view your changes
if you have set the webflow.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

Using Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-7

Using Webflow in Your Web Pages

To utilize the Webflow mechanism, the URLs within your Web pages must include
information that corresponds to a transition in the webflow.properties file.
Specifically, the URL must contain a page name and an event that match a current state
in the webflow.properties file, as shown in Listing 2-4 and Listing 2-5.

Listing 2-4 URL Within a <FORM> Tag in the Web Page

<FORM method=”post”
action=”<%=WebflowJSPHelper.createWebflowURL(pageContext,
“login.jsp”, button(createUser), false)%>”>

Listing 2-5 Corresponding Transition in the webflow.properties File

login.jsp.button(createUser)=nextpage.jsp

These URLs are dynamically generated by a utility class called WebflowJSPHelper.

Note: In most cases, a Web page will use the WebflowJSPHelper class multiple
times. Therefore, it is a good idea to import the class at the beginning of your
Web page as shown in the following statement:

<%@ page import=”com.beasys.commerce.webflow.WebflowJSPHelper” %>

As shown in Listing 2-4, the WebflowJSPHelper class has a createWebflowURL()
method that takes four parameters: pageContext, the name of the current JSP with
extension (origin), the event type and name, and a URL type. A URL type of true
causes the returned string to include the origin and event parameters as query
parameters. Using the information from these four parameters, the
createWebflowURL() method returns an absolute URL.

Although the parameters of the createWebflowURL()method are always the same,
the way you specify these parameters depends on whether you are generating the URL
within a <FORM> tag or an <A> (anchor) tag.

2 Customizing Webflow and Pipelines

2-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

To incorporate a URL using the <FORM> tag, use the action attribute to construct the
URL as shown in Listing 2-4. To incorporate a URL using the <A> tag, call the
createWebflowURL() method as shown in Listing 2-6.

Listing 2-6 Dynamic URL Generation Within an <A> Tag

<a href=”<%=WebflowJSPHelper.createWebflowURL(pageContext,
“login.jsp”, button(createUser), false)%>”>

In both cases, these statements are translated into login.jsp.button(createUser),
which can be found in the webflow.properties file to the left of an equal sign, as
shown in Listing 2-5. The value to the right of this equal sign initiates the result state,
and thus allows the Webflow mechanism to continue.

Webflow Search Order

There may be times when a transition in the Webflow is missing (that is, no result state
has been specified). To prevent any problem from being visible to your customer, the
Webflow will attempt to resolve missing transitions by searching through several
possibilities to locate an alternate flow. These search possiblities are examined by the
Webflow mechanism in the following order:

n The Webflow substitutes the wildcard character for the specific page, input
processor, or Pipeline.

n If wildcard subsitution fails, the Webflow produces a configuration exception
relative to where it encountered the missing transition, and uses this contextual
exception as the result state.

n If contextual configuration exceptions do not allow the Webflow to continue, the
Webflow combines the wildcard substitution with a generic exception, which it
uses as the result state.

n If the previous attempts fail, the Webflow will simply load a configuration error
page.

Note: The configuration error page can be specified in the webflow.properties
file under the property configurationerrorpage.

Using Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-9

In summary, the search order attempts to prevent a missing transition in the Webflow
from interrupting a customer’s experience on your Web site. Rather, in the very worst
case, the Webflow would load the configuration error page. If for some reason this file
was missing, a predefined system error page (servererror.jsp), which is also
beyond the scope of the Webflow mechanism, would be used instead.

Note: Using the Validate option in the Webflow and Pipeline Editor Administration
Tool can help identify potential problems with your Webflow. For more
information about the Validate option, see “How to Validate Your Properties
Files” on page 3-58.

Search Order Examples

Suppose the Webflow mechanism is attempting to locate the missing transition
login.jsp.link(home)in the webflow.properties file. The following list
illustrates the alternate transitions that may be used by the Webflow:

n *.jsp.link(home)

n login.jsp.error(ConfigurationException)

n *.jsp.error(ConfigurationException)

n configurationerrorpage

The Webflow search order will also be performed for input processors and Pipelines
that are missing in the webflow.properties file. The following list illustrates the
alternate transitions that may be used by the Webflow for the missing transition
ShoppingCartIP.inputprocessor.success:

n *.inputprocessor.success

n ShoppingCartIP.inputprocessor.error(ConfigurationException)

n *.inputprocessor.error(ConfigurationException)

n configurationerrorpage

Similarly, the following list illustrates the alternate transitions that may be used by the
Webflow for the missing transition ShoppingCartPC.pipeline.success:

n *.pipeline.success

n ShoppingCartPC.pipeline.error(ConfigurationException)

n *.pipeline.error(ConfigurationException)

n configurationerrorpage

2 Customizing Webflow and Pipelines

2-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: For more information about input processors, see “Using Input Processors
with Webflow” on page 2-10. For more information about Pipelines, see
“Using Pipelines with Webflow” on page 2-13.

Using Input Processors with Webflow

States in the webflow.properties file are not restricted to other Web pages. Input
processors are predefined classes that provide a way to indirectly carry out more
complex tasks using the Webflow mechanism. Input processors reduce the need to
incorporate complex Java code into your JSPs, and help maintain the separation
between presentation and business logic.

The role of input processors is to read data from the HTTPServletRequest and use it
to create or update Java objects in a Pipeline session. In addition to working with this
data, some input processors may also validate information supplied by the customer.

Note: It is not required that you use input processors in your customized Webflow.
If you do not wish to use input processors, simply do not specify any input
processors in the webflow.properties file.

This section provides information about invoking input processors from theWebflow
and about chaining input processors. This section also points you to additional
information about extending or developing your own input processors.

Syntax of Input Processors in the webflow.properties
File

Input processors extend the syntax used for JSPs in the webflow.properties file.
For example, if you want to verify that the customer filled in the required form fields
for their address before sending the customer to the next page, you could use the
ValidateAddress input processor as shown in Listing 2-7.

Using Input Processors with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-11

Listing 2-7 Input Processor for Address Validation

#################################

ValidateAddress input processor

#################################

Invoke the input processor
addaddress.jsp.button(continue)=ValidateAddressIP.inputprocessor

Specify the fully qualified class name for the input processor
ValidateAddressIP.inputprocessor=com.beasys.commerce.ebusiness.
customer.webflow.ValidateAddressIP

Specify the result state for successful execution
ValidateAddressIP.inputprocessor.success=selectaddress.jsp

Specify the result state for unsuccessful execution
ValidateAddressIP.inputprocessor.exception(ProcessingException)=
addaddress.jsp

In the first transition, a customer who clicks the Continue button causes the flow to be
turned over to the input processor called ValidateAddressIP. The second line
defines the full class name of the ValidateAddressIP input processor, which will
validate the form fields. The transitions that follow make use of the event types defined
for input processors: success and exception. If the validation is successful, the
result state indicated by the success event is to load the selectaddress.jsp file. If
the validation is not successful, the ValidateAddressIP input processor directs the
customer back to addaddress.jsp to make corrections.

Notes: For the complete list of event types and more information on the syntax of
input processors in the Webflow, see Table 2-1.

If execution of an input processor is not successful, you may specify different
result states identified by more than one exception event.

2 Customizing Webflow and Pipelines

2-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Chaining Input Processors

In addition to using input processors between JSPs and Pipelines, you can also use
more than one input processor, or chain input processors. In a chaining arrangement,
the result state of one successfully executed input processor will be another input
processor, as shown in Listing 2-8.

Listing 2-8 Example of Input Processor Chaining

#####################################

Example of input processor chaining

#####################################

Invoke the first input processor
webpage.jsp.link(continue)=firstInputProcessor

Specify the fully qualified path name for the first input
processor
firstInputProcessor.inputprocessor=com.beasys.commerce.webflow.
firstInputProcessorIP

Invoke the second input processor if the execution of the first
input processor succeeds
firstInputProcessor.inputprocessor.success=secondInputProcessor

Specify the fully qualified class name for the second input
processor
secondInputProcessor.inputprocessor=com.beasys.commerce.webflow.
secondInputProcessorIP

Specify the result state for successful execution of the second
input processor
secondInputProcessor.inputprocessor.success=nextwebpage.jsp

Specify the result state for unsuccessful execution of the first
input processor
firstInputProcessor.inputprocessor.exception(ProcessingException)
=errorpage.jsp

Specify the result state for successful execution of the second
input processor
secondInputProcessor.inputprocessor.exception
(ProcessingException)=anothererrorpage.jsp

Using Pipelines with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-13

Further Customization of Input Processors

If you would like to customize your site even further, you might choose to create and
implement your own input processors or define your own exceptions for use with input
processors. However, there are some important rules you need to follow to accomplish
these tasks. For more information, see Chapter 4, “Extending Webflow and Pipelines.”

Note: Only Java/EJB programmers (or someone with similar technical knowledge
and abilities) should attempt to customize input processors.

Using Pipelines with Webflow

Your site would not be considered an e-business if you simply displayed pages and
performed some additional tasks with input processors. A customer’s entire experience
also relies upon the execution of back-end business processes that are related to where
the customer is on your site and what the customer is trying to accomplish.

A Pipeline is an advanced mechanism invoked by the Webflow that initiates execution
of specific tasks related to your business process. For example, if a customer attempts
to move to another page on your site but you want to save the customer’s identification
information to a database first, you could use a Pipeline.

All Pipelines are collections of individual Pipeline components, which can be
implemented as Java objects or stateless session EJBs. Pipeline components are the
parts of a Pipeline that actually perform the tasks associated with the underlying
business logic. When these tasks are complex, Pipeline components may also make
calls to external services (other business objects). As in the case of input processors,
the BEA Weblogic Commerce Server product provides predefined Pipeline
components that you can use, or you can customize your site further by creating your
own.

To successfully carry out business tasks, each Pipeline component must read attributes
from a Pipeline session and if necessary, write modified versions of these attributes
back to the Pipeline session. By default, attributes in the Pipeline session are available
for the life of the HTTP session.

2 Customizing Webflow and Pipelines

2-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

The WebLogic Commerce Server provides a default Pipeline properties file to get you
up and running quickly, and to provide you with a working example of this concept.
You can modify this file to change the business logic associated with your Web pages,
without having to edit each page individually.

Note: It is not required that you use Pipelines to execute business logic in your
customized Webflow. If you do not wish to use Pipelines, simply do not
specify any Pipelines in the webflow.properties file. However, eliminating
Pipelines and Pipeline components results in a less scalable, 2-tier architecture
instead of the 3-tier architecture provided by the Webflow/Pipeline
infrastructure.

This section provides information about the default Pipeline and instructions for
customizing it, and describes how to invoke Pipelines from the Webflow.

Customizing Pipelines Using the pipeline.properties File

Much like the webflow.properties file specifies the flow of Web pages presented
to a customer, the Pipeline properties file (pipeline.properties) specifies the flow
of business logic as the customer moves through each page of the site. This properties
file contains one section for each JavaServer Page (JSP) and includes comments for
increased readability.

Generically, Pipeline definitions can be written as:

 <pipelineName>.componentList
 <pipelineName>.isTransactional=<true|false>

where componentList is a comma-separated list of Pipeline components to be
executed in sequence.

Once all Pipeline definitions are complete, you must specify definitions for each
Pipeline component in the Pipeline. Each Pipeline component definition consists of
three properties: className, jndiName, and isEJBSessionBean.

Table 2-2 describes each of the Pipeline component properties in detail.

Using Pipelines with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-15

Notes: Lines in the pipeline.properties file should never contain spaces.
Including spaces can result in errors that are difficult to locate.

Text within the pipeline.properties file is case sensitive.

Syntax of the pipeline.properties File

The top portion of the pipeline.properties file should contain only Pipeline
definitions. Pipeline definitions include:

n A Pipeline name.

n A list of its associated Pipeline components in order of execution.

n A value for the isTransactional Pipeline property, indicating whether or not
all the Pipeline components in the Pipeline will participate in a transaction.

Listing 2-9 is a Pipeline definition that might be used in the pipline.properties
file.

Listing 2-9 Pipeline Definition Example

orderPipeline=CalculateTaxPC,CalculateDiscountPC,TotalCartCostPC
orderPipeline.isTransactional=true

Table 2-2 Pipeline Component Properties

Property Description Value

className Name of the class that implements the Pipeline
component, required if isEJBSessionBean=false

A fully qualified Java
class name

isEJBSessionBean Specifies whether or not the Pipeline component is a
session bean, and always requires a value

true | false

jndiName JNDI name of the session bean that implements the
Pipeline component, required only if
isEJBSessionBean=true

A string

2 Customizing Webflow and Pipelines

2-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

In this example, the Pipeline called orderPipeline consists of three Pipeline
components (CalculateTaxPC, CalculateDiscountPC, TotalCartCostPC).
The orderPipeline is also transactional.

Listing 2-10 shows the corresponding Pipeline component definitions that might be
used in the pipeline.properties file.

Listing 2-10 Pipeline Component Definition Example

CalculateTaxPC.classname=com.beasys.commerce.ebusiness.order.
pipeline.CalculateTaxPC
CalculateTaxPC.isEJBSessionBean=false
CalculateTaxPC.jndiName=

CalculateDiscountPC.classname=com.beasys.commerce.ebusiness.order
.pipeline.CalculateDiscountPC
CalculateDiscountPC.isEJBSessionBean=false
CalculateDiscountPC.jndiName=

TotalCartCostPC.classname=com.beasys.commerce.ebusiness.order
pipeline.TotalCartCostPC
TotalCartCostPC.isEJBSessionBean=true
TotalCartCostPC.jndiName=com.beasys.commerce.ebusiness.order.
pipeline.TotalCartCostPC

Default Pipeline

Listing 2-11 shows portions of the default Pipeline property file that handle obtaining
product categories (with Pipeline components implemented as Java objects) and
moving an item to a shopping cart (with a Pipeline component implemented as an EJB
session bean). These can also be viewed in a simple text editor by opening
WL_COMMERCE_HOME/pipeline.properties, where WL_COMMERCE_HOME is the
top-level directory where you installed WebLogic Commerce Server.

Listing 2-11 Default Pipelines for Product Categories and Shopping Cart

###

Java class Pipeline for obtaining product categories

###

Using Pipelines with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-17

GetTopCategories Pipeline definition
GetTopCategories.componentList=GetCategoryPC,GetSubcategoriesPC
GetTopCategories.isTransactional=false

GetCategoryPC Pipeline component definition
GetCategoryPC.classname=com.beasys.commerce.ebusiness.catalog.
pipeline.GetCategoryPC
GetCategoryPC.jndiName=
GetCategoryPC.isEJBSessionBean=false

GetSubcategoriesPC Pipeline component definition
GetSubcategoriesPC.classname=com.beasys.commerce.ebusiness.
catalog.pipeline.GetSubcategoriesPC
GetSubcategoriesPC.jndiName=
GetSubcategoriesPC.isEJBSessionBean=false

###

EJB session bean Pipeline for moving items to shopping cart

###

MoveProductItemToShoppingCart Pipeline definition
MoveProductItemToShoppingCart.componentList=
MoveProductItemToShoppingCartPC
MoveProductItemToShoppingCart.isTransactional=true

MoveProductItemToShoppingCartPC Pipeline component definition
MoveProductItemToShoppingCartPC.classname=com.beasys.commerce.
ebusiness.shoppingcart.pipeline.MoveProductItemToShoppingCartPC
MoveProductItemToShoppingCartPC.jndiName=com.beasys.commerce.
ebusiness.shoppingcart.pipeline.MoveProductItemToShoppingCartPC
MoveProductItemToShoppingCartPC.isEJBSessionBean=true

Dynamically Modifying Your Site’s Pipelines

To dynamically modify your site’s Pipelines, consider the following:

n It is expected that a business analyst will work with the commerce engineer/JSP
content developer (or someone with similar technical knowledge and abilities) to
update the pipeline.properties file.

n Be sure to modify the pipeline.properties file in your development
environment until you achieve the desired outcome. Then move your changes to
a production environment.

2 Customizing Webflow and Pipelines

2-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

To modify your site’s Pipelines, use the Webflow and Pipeline Editor Administration
Tool. For more information about this tool, see Chapter 3, “Using the Webflow and
Pipeline Editor.”

Note: You can also modify Pipelines by editing the pipeline.properties file
directly. However, this is not recommended. Once you edit the
pipeline.properties file by hand, you may not be able to use the Webflow
and Pipeline Editor. If you are certain you want to edit the file directly, follow
these steps:

1. Start a simple text editor like Notepad.

2. Open the default Pipeline properties file, which can be found in
WL_COMMERCE_HOME/pipeline.properties, where WL_COMMERCE_HOME is the
top-level directory where you installed WebLogic Commerce Server.

3. Modify the file as necessary, using the syntax described in the previous sections.

4. Save the modified file. You do not need to restart the server to view your changes
if you have set the pipeline.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

Eliminating Pipeline Components

The pipeline.properties file provides an easy way to eliminate Pipeline
components without the need for advanced programming skills. For example, you
might want to eliminate a Pipeline component that performs your tax calculations in
the CommitOrder Pipeline. The definition in the default pipeline.properties file
for the CommitOrder Pipeline is shown in Listing 2-12.

Listing 2-12 Default CommitOrder Pipeline

CommitOrder
CommitOrder.componentList=CommitOrderPC, AuthorizePaymentPC,
TaxCalculateAndCommitLineLevelPC

To eliminate a Pipeline component using a text editor like Notepad, follow these steps:

Using Pipelines with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-19

Notes: Hand-editing the pipeline.properties file is not recommended. Instead,
you should utilize the Webflow and Pipeline Editor tool, described in
Chapter 3, “Using the Webflow and Pipeline Editor.” These instructions are
simply intended as an example for understanding how the content of the
Pipeline configuration file is structured.

These instructions assume that the WebLogic Commerce Server software is
installed and has been started.

You do not need to restart the server to view your changes if you have set the
pipeline.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

1. Open the pipeline.properties file and remove each reference to the Pipeline
component you want to eliminate. For example, if tax calculations are not required,
remove all tax calculation Pipeline components from the Pipeline definition, as
shown in Listing 2-13. Be sure to save your changes.

Listing 2-13 CommitOrder Pipeline Without Tax Calculation Component

CommitOrder
CommitOrder.componentList=CommitOrderPC, AuthorizePaymentPC

2. If necessary, edit the related JSPs to eliminate places in the user interface where
the information is gathered. Be sure to save your changes.

Note: There is no JSP that collects tax information. In the CommitOrder Pipeline
example, you would not need to make changes to the user interface.

3. If in step 2 you removed an entire JSP, you will also need to modify the
webflow.properties file and change any reference(s) to bypass it. Again, this
should be done using the Webflow and Pipeline Editor tool, but can technically
still be customized by hand.

Reordering Pipeline Components

The pipeline.properties file also provides an easy way for you to modify the
sequence of Pipeline components, without the need for advanced programming skills.

2 Customizing Webflow and Pipelines

2-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

To reorder a Pipeline component using a text editor like Notepad, all you need to do is
open the pipeline.properties file and change the order that the Pipeline
components are listed in the Pipeline definition. Be sure to save your changes.

Notes: Hand-editing the pipeline.properties file is not recommended. Instead,
you should utilize the Webflow and Pipeline Editor tool, described in
Chapter 3, “Using the Webflow and Pipeline Editor.” These instructions are
simply intended as an example for understanding how the content of the
Pipeline configuration file is structured.

Using the same CommitOrder Pipeline example, say you wanted to authorize the
payment after calculating the tax instead of before it (as in the default OrderCommit
Pipeline). Listing 2-14 shows how to do this.

Listing 2-14 CommitOrder Pipeline with Tax Component Reordered

CommitOrder
CommitOrder.componentList=CommitOrderPC,
TaxCalculateAndCommitLineLevelPC, AuthorizePaymentPC

Note: You do not need to restart the server to view your changes if you have set the
pipeline.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

Using Pipelines in the Webflow

Pipelines are used in the webflow.properties file to initiate execution of the
business logic required for a particular page. Each Pipeline must first be invoked by
the Webflow, and then followed by a success and exception path. For example, if a
customer were to submit their order for processing, the orderPipeline might be
represented in the webflow.properties file as shown in Listing 2-15.

Using Pipelines with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-21

Listing 2-15 Using a Pipeline in the Webflow

shoppingcart.jsp.button(submit)=orderPipeline.pipeline
orderPipeline.pipeline.success=commitorder.jsp
orderPipeline.pipeline.exception(PipelineFatalException)=shoppingcart.jsp

The first transition indicates that when a customer clicks on the Submit button, the
Webflow will turn control over to the Pipeline called orderPipeline. If the Pipeline
executes successfully (that is, if each component in the Pipeline executes without
error), the second transition sends the customer to a page that allows the customer to
commit the order. If the Pipeline does not execute successfully, the third transition
specifies the exception and directs the customer back to the shopping cart page.

Further Customization of Pipelines

If you would like to customize your site even further, you might choose to create and
implement your own Pipelines or define your own exceptions for use with Pipelines.
However, there are some important rules you need to follow to accomplish these tasks.
For a more information, see Chapter 4, “Extending Webflow and Pipelines.”

Note: Only Java/EJB programmers (or someone with similar technical knowledge
and abilities) should attempt to customize Pipelines.

2 Customizing Webflow and Pipelines

2-22 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-1

CHAPTER

3 Using the Webflow and
Pipeline Editor

The Webflow and Pipeline Editor is a JSP-based administration tool specifically
designed to help you modify and validate the webflow.properties and
pipeline.properties configuration files. This topic describes how to access the
Webflow and Pipeline Editor, and provides instructions for its use.

This topic includes the following sections:

n About the Webflow and Pipeline Editor

n Starting the WebLogic Commerce Server Administration Tools

n Global Origins

n Page Origins

n Inputprocessor Origins

n Pipeline Origins

n How to Validate Your Properties Files

About the Webflow and Pipeline Editor

The following list contains useful information for site administrators who are about to
use the Webflow and Pipeline Editor:

3 Using the Webflow and Pipeline Editor

3-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

n The Webflow and Pipeline features are available if you have downloaded or
purchased the full Campaign Manager for WebLogic licence, or the WebLogic
Commerce Server license. (The Campaign Manager for WebLogic license
includes the campaign service plus the WebLogic Commerce Server features and
WebLogic Personalization Server features.) The Webflow and Pipeline features
are not available if you are using the license for WebLogic Personalization
Server only.

n The Webflow and Pipeline Editor is designed to help you modify and validate
either the webflow.properties or pipeline.properties files. It does not
support the editing of arbitrary files or other WebLogic Commerce Server
properties files (such as weblogiccommerce.properties).

n The Webflow and Pipeline properties files are located in the root directory of the
server where WebLogic Commerce Server is installed. For example, if
WL_COMMERCE_HOME is the directory where you installed the WebLogic
Commerce Server, this is where you will find the webflow.properties and
pipeline.properties files.

n The Webflow and Pipeline Editor should not be used when properties files are
also modified by hand (that is, using a text editor such as Notepad). The
preferred editing method for these files is through the Webflow and Pipeline
Editor. If you create invalid entries outside of the Webflow and Pipeline Editor,
the behavior of the editor may be unpredictable. The Webflow and Pipeline
Editor will only work with a valid Webflow or Pipeline properties file.

n The Webflow and Pipeline Editor does not support multiple users, and will not
detect this behavior. Therefore, your organization must ensure that only one site
administrator is using the Webflow and Pipeline Editor at any given time.
Failure to do so can result in loss of changes or invalid Webflows.

n The Webflow and Pipeline Editor does not support role-based security. Any user
with access to other Administration Tools can access the Webflow and Pipeline
Editor tool and vice versa.

n If you are using a cluster without a shared file system, the Webflow and Pipeline
Editor will only update the property files associated with the server you are
currently logged into. In such cases, BEA recommends editing the Webflow on a
staging server and hand-copying the files to other servers as necessary.

n By default, changes made to the Webflow and Pipeline configurations while the
server is running will not take effect until a server restart. To override this
behavior, you must turn on Webflow’s hot-deploy feature. This can be done in

Starting the WebLogic Commerce Server Administration Tools

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-3

the weblogiccommerce.properties file with the
webflow.hotdeploy.enable and pipeline.hotdeploy.enable properties.

Starting the WebLogic Commerce Server
Administration Tools

Before you can use the Webflow and Pipeline Editor, you need to start the server and
load the WebLogic Commerce Server Administration Tools page in your Web
browser.

To start the server on a Windows system, you can either:

n Run StartCommerce.bat from the command line in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory where you installed the
WebLogic Commerce Server.

n From the Start menu, select Programs → BEA WebLogic E-Business Platform
→ BEA WebLogic Commerce Server 3.5 → Start BEA WebLogic Commerce
Server.

To start the server on a UNIX system, run StartCommerce.sh from the command line
in the WL_COMMERCE_HOME directory, where WL_COMMERCE_HOME is the directory
where you installed the WebLogic Commerce Server.

The Administration Tools page (shown in Figure 3-1) is an entry page into all of the
available WebLogic Commerce Server Administration Tools, including the Webflow
and Pipeline Editor. To load this page, use one of the following methods:

n Specify the URL for the page (http://localhost:7501/tools) in your Web browser.

Note: If you need to perform an administrative task on another node in the cluster,
specify the machine such as http://elvis:7501/tools.

n From the Start menu on a Windows system, select Programs → BEA WebLogic
E-Business Platform → BEA WebLogic Commerce Server 3.5 →
Administration Tools.

http://localhost:7501/tools
http://elvis:7501/tools

3 Using the Webflow and Pipeline Editor

3-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

You will be asked to supply the username and password for the Administration Tools
home page, which will provide you with access to all the administration tools,
including the Webflow and Pipeline Editor. The default username is administrator,
and the default password is password.

Figure 3-1 WebLogic Commerce Server Administration Tools

To load the Editor, click the pipe icon shown on the Webflow/Pipeline Management
title bar. The Webflow and Pipeline Management page appears, as shown in
Figure 3-2.

Global Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-5

Figure 3-2 Webflow and Pipeline Management

From the Webflow and Pipeline Management page, you can create, modify, and
remove global origins, page origins, inputprocessor origins, and Pipeline origins. Or,
you can choose to validate your Webflow.

Subsequent sections of this document provide instructions about how to perform these
tasks using the Webflow and Pipeline Editor.

Global Origins

Recall from Chapter 2, “Customizing Webflow and Pipelines,” that each transition in
the webflow.properties file contains a current state and a result state separated by
an equal sign. The current state is considered an origin, because it represents the page,
input processor, or Pipeline where the transition originated. A global origin is an
origin that can be used throughout the entire Webflow.

There are seven global origins that may be present in a Webflow. They are:

3 Using the Webflow and Pipeline Editor

3-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

n *.htm

n *.html

n *.inputprocessor

n *.jsp

n *.pipeline

n begin

n configurationerrorpage

Five of the seven global origins make use of the wildcard character, which indicates
that its associated transition is to be performed regardless of the current page, input
processor, or Pipeline. For more information about using the wildcard character in the
Webflow, see “Using the Wildcard Character” on page 2-5.

The begin origin, which specifies the initial state for the Webflow, is also considered
a global origin. For more information about the begin origin, see “Syntax of the
webflow.properties File” on page 2-3.

The configuration error page (configurationerrorpage.jsp), which is displayed
if a transition is missing and the Webflow search order cannot rectify it, is the last
global origin. For more information about the configuration error page, see “Webflow
Search Order” on page 2-8.

To work with global origins, click the Global Origins link (or its corresponding Edit
button). The Global Origins page appears, as shown in Figure 3-3.

Global Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-7

Figure 3-3 Global Origins

From this page, you can view, add, and delete global origins. You can also edit global
origins by modifying their associated events or by associating new events.

3 Using the Webflow and Pipeline Editor

3-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Viewing Global Origins

Before working with global origins, you may first want to see what global origins are
currently in the Webflow. When the Global Origins page is first loaded into your
browser, you will see a list of the current global origins, but no details about them. To
view a global origin’s associated events, click the solid arrow located to the left of the
global origin. The arrow changes to an open arrow, and the events currently associated
with the global origin appear with an open diamond, as shown in Figure 3-4.

Figure 3-4 Viewing Events for the Inputprocessor Global Origin

Note: The arrows to the left of each global origin are solid and point toward the
origin if it can be expanded to show associated events. If the event information
associated with a global origin can be collapsed, the arrow is open and points
away from the origin. The *.jsp global origin in Figure 3-4 is an example of

Global Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-9

an origin that can be expanded; the *.inputprocessor global origin is an
example of an origin that can be collapsed. Events are always represented by
open diamonds.

Adding a Global Origin

To add a global origin, follow these steps:

1. Click the plus (+) symbol located to the left of Add a Global Origin. (If the list of
global origins is long, you may need to use the scrollbar.) The Add Global Origin
page appears, as shown in Figure 3-5.

Figure 3-5 Add Global Origin

2. Select the type of origin (*.jsp, *.htm, *.html, begin,
configurationerrorpage) you want to add from the Global Origin pull-down
menu.

3 Using the Webflow and Pipeline Editor

3-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: You can only have one global origin per type (that is, one *.htm, *.html,
*.inputprocessor, *.jsp, begin, and configurationerrorpage) in a
webflow.properties file. If there are already some global origins present
in the Webflow, only the remaining options will appear in the Global Origin
pull-down menu.

3. Click the Save button to save the new global origin. You are returned to the
Global Origins page, and your new origin appears alphabetically in the list.

4. Click the solid arrow located to the right of the new global origin to view its
associated events. The arrow changes to an open arrow pointing in the opposite
direction. A default event (marked by an open diamond) and an option to Add an
Event are shown.

Note: For Web pages (*.htm, *.html, and *.jsp), the default event of
link(home)→ index.jsp is shown; For input processors and Pipelines, the
default event is success()→ index.jsp.

5. If you want to add a different event to the global origin, modify the default event,
or delete the default event, proceed to the appropriate section in “Editing a Global
Origin” below.

Editing a Global Origin

Editing a global origin is synonymous with modifying its associated events. You can
add, edit, or delete the events associated with a global origin as described in the
following sections.

Adding an Event

Note: For the begin and configurationerrorpage global origins, you can only
have one event.

To add a new event to a global origin, follow these steps:

1. Verify that the global origin to which you want to add the event is expanded (that
is, an open arrow is shown to the left of the global origin, and the Add an Event
option is shown). If the global origin is not expanded, click the solid arrow located
to the left of the global origin to expand it.

Global Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-11

2. Click the plus (+) sign located next to Add an Event. (If the list of events is long,
you may need to use the scrollbar.) The New Event page appears, as shown in
Figure 3-6.

Figure 3-6 Global Origin: New Event

3. Select the appropriate Event Type from the pull-down menu, and enter a name for
the event in the Event Name text field.

3 Using the Webflow and Pipeline Editor

3-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: For more information about event types and event names, see “Syntax of the
webflow.properties File” on page 2-3 and “About Event Names” on page 2-4,
respectively.

4. Next, you need to specify a destination for the event. The destination could be an
existing page (.htm, .html, or .jsp), input processor, or Pipeline, or the
destination could be an entirely new page, input processor, or Pipeline. To
specify the destination, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the new event. You are returned to the Global
Origins page, and the new event (marked by an open diamond) appears beneath
the appropriate global origin in an alphabetic list.

Editing an Event

To edit an event already associated with a global origin, follow these steps:

1. Verify that the global origin for which you want to edit an event is expanded (that
is, an open arrow is shown to the left of the global origin, and the event you want
to modify is shown). If the global origin is not expanded, click the solid arrow
located to the left of the global origin to expand it.

2. Click a hyperlinked event to edit it (for example, click link(home) →
index.jsp). The Edit Event page appears, containing the original values for
each field, as shown in Figure 3-7.

Global Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-13

Figure 3-7 Global Origin: Edit Event

Note: The Edit Event page does not allow you to modify the event type or event
name. To do so, you must first delete the event using the instructions provided
in “Deleting an Event” on page 3-14 and then recreate it using the instructions
provided in “Adding an Event” on page 3-10.

3. Recall that an event destination could be an existing page (.htm, .html, .jsp),
input processor, or Pipeline, or an entirely new page, input processor, or Pipeline.
To change the destination for the event, follow these steps:

3 Using the Webflow and Pipeline Editor

3-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the changes to the event. You are returned to the
Global Origins page, and the modified event (marked by an open diamond)
appears beneath the appropriate global origin in an alphabetic list.

Deleting an Event

To delete an event currently associated with a global origin, follow these steps:

1. Verify that the global origin for which you want to delete an event is expanded (that
is, an open arrow is shown to the left of the global origin, and the event you want
to delete is shown). If the global origin is not expanded, click the solid arrow
located to the left of the global origin to expand it.

2. To delete the event, click the red X located to the right of the event.

3. Click the OK button in the confirmation pop-up window.

Note: If you delete all the events associated with a global origin and then leave the
Global Origins page (or click the arrow next to the origin to collapse it), the
origin itself will also be deleted. This is done to prevent error conditions in the
Webflow. However, if you just delete all the events associated with a global
origin and immediately start to add new events to the global origin, the origin
itself will remain. This way, you do not always have to recreate the origin after
deleting all of its events.

Page Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-15

Deleting a Global Origin

To delete a global origin, click the red X located to the right of the origin. Confirm the
deletion by clicking the OK button.

Warning: Deleting a global origin means that the origin and all of its associated
events will be deleted.

Page Origins

A page is any file with a .htm, .html, or .jsp extension. When a page appears to the
left-hand side of the equal sign in the Webflow syntax, the page represents the current
state and is considered an origin. Page origins require a result (destination) state to be
defined for a link or button event, which is specified to the right-hand side of the equal
sign in the Webflow syntax. Together, the complete line is referred to as a page
Webflow transition.

Note: For more information about page origins and the Webflow syntax, see
“Customizing Webflow Using the webflow.properties File” on page 2-2.

The Page Origins portion of the Webflow and Pipeline Editor allows you to provide all
relevant information about the pages in your Web site. To work with page origins,
click the Page Origins link (or its corresponding Edit button). The Page Origins page
appears, as shown in Figure 3-8.

3 Using the Webflow and Pipeline Editor

3-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-8 Page Origins

From this page, you can view, add, and delete page origins. You can also edit page
origins by modifying their name, type, and associated events, or by associating new
events.

Page Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-17

Viewing Page Origins

Before working with page origins, you may first want to see what page origins are
currently in the Webflow. When the Page Origins page is first loaded into your
browser, you will see a list of the current page origins, but no details about them. To
view a page origin’s associated events, click the solid arrow located to the left of the
page origin. The arrow changes to an open arrow, and the events currently associated
with the global origin appear with an open diamond, as shown in Figure 3-9.

Figure 3-9 Viewing Events for the addaddress.jsp Page Origin

3 Using the Webflow and Pipeline Editor

3-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: The arrows to the left of each page origin are solid and point toward the origin
if it can be expanded to show associated events. If the event information
associated with a page origin can be collapsed, the arrow is open and points
away from the origin. The addaddress.jsp page origin shown in Figure 3-9
can be collapsed. Events are always represented by open diamonds.

Adding a Page Origin

To add a page origin, follow these steps:

1. Click the plus (+) symbol located to the left of Add a Page Origin. (If the list of
page origins is long, you may need to use the scrollbar.) The Add Page Origin page
appears, as shown in Figure 3-10.

Figure 3-10 Add Page Origin

2. Enter the origin (page) name in the Origin Name text field. Do not include the
file extension (type) in this field.

Page Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-19

3. Select the type of page origin (jsp, html, htm) you want to add from the Type
pull-down menu.

4. Click the Save button to save the new page origin. You are returned to the Page
Origins page, and the new origin appears alphabetically in the list.

5. Click the solid arrow located to the right of the new page origin to view its
associated events. The arrow changes to an open arrow pointing in the opposite
direction. The default event of link(home) → index.jsp (marked by an open
diamond) and an option to Add an Event are shown.

6. If you want to add a different event to the page origin, modify the default event,
or delete the default event, proceed to the appropriate section in “Modifying a
Page Origin’s Events” on page 3-20.

Editing a Page Origin

You can edit a page origin in two ways:

n By modifying information about the page origin itself (that is, its name or file
extension/type).

n By modifying the page origin’s associated events.

Modifying Information About a Page Origin

To modify information about a page origin, follow these steps:

1. Click a hyperlinked page origin to edit it (for example, click addaddress.jsp).
The Edit Page Origin page appears, containing the original values for each field, as
shown in Figure 3-11.

3 Using the Webflow and Pipeline Editor

3-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-11 Edit Page Origin

2. Change the origin (page) name or type of page origin using the form fields.

3. Click the Save button to save your changes. You are returned to the Page Origins
page, and the modified page origin is shown alphabetically in the list.

Note: Modifications made to the page origin name and type could potentially affect
other areas of the Webflow that utilize it. Be sure your modifications take this
into account, and be sure to verify your modified properties file with the
validation tool. For more information about the validation tool, see “How to
Validate Your Properties Files” on page 3-58.

Modifying a Page Origin’s Events

You can also edit a page origin by modifying its associated events. You can add, edit,
or delete events associated with a page origin as described in the following sections.

Adding an Event

To add an event to a page origin, follow these steps:

Page Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-21

1. Verify that the page origin to which you want to add the event is expanded (that is,
an open arrow is shown to the left of the page origin, and the Add an Event option
is shown). If the page origin is not expanded, click the solid arrow located to the
left of the page origin to expand it.

2. Click the plus (+) sign located next to Add an Event. (If the list of events is long,
you may need to use the scrollbar.) The New Event page appears, as shown in
Figure 3-12.

Figure 3-12 Page Origin: New Event

3 Using the Webflow and Pipeline Editor

3-22 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

3. Select the appropriate Event Type from the pull-down menu, and enter a name for
the event in the Event Name text field.

Note: For more information about event types and event names, see “Syntax of the
webflow.properties File” on page 2-3 and “About Event Names” on page 2-4,
respectively.

4. Next, you need to specify a destination for the event. The destination could be an
existing page (.htm, .html, or .jsp), input processor, or Pipeline, or the
destination could be an entirely new page, input processor, or Pipeline. To
specify the destination, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the new event. You are returned to the Page
Origins page, and the new event (marked by an open diamond) appears beneath
the appropriate page origin in an alphabetic list.

Editing an Event

To edit an event already associated with a page origin, follow these steps:

1. Verify that the page origin for which you want to edit an event is expanded (that is,
an open arrow is shown to the left of the page origin, and the event you want to
modify is shown). If the page origin is not expanded, click the solid arrow located
to the left of the page origin to expand it.

Page Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-23

2. Click a hyperlinked event to edit it (for example, click button(back) →
commerce/order/selectaddress.jsp). The Edit Event page appears,
containing the original values for each field, as shown in Figure 3-13.

Figure 3-13 Page Origin: Edit Event

Note: The Edit Event page does not allow you to modify the event type or event
name. To do so, you must first delete the event using the instructions provided
in “Deleting an Event” on page 3-24 and then recreate it using the instructions
provided in “Adding an Event” on page 3-20.

3 Using the Webflow and Pipeline Editor

3-24 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

3. Recall that an event destination could be an existing page (.htm, .html, .jsp),
input processor, or Pipeline, or an entirely new page, input processor, or Pipeline.
To change the destination for the event, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the changes to the event. You are returned to the
Page Origins page, and the modified event (marked by an open diamond)
appears beneath the appropriate page origin in an alphabetic list.

Deleting an Event

To delete an event currently associated with a page origin, follow these steps:

1. Verify that the page origin for which you want to delete an event is expanded (that
is, an open arrow is shown to the left of the page origin, and the event you want to
delete is shown). If the page origin is not expanded, click the solid arrow located
to the left of the page origin to expand it.

2. To delete the event, click the red X located to the right of the event.

3. Click the OK button in the confirmation pop-up window.

Note: If you delete all the events associated with a page origin and then leave the
Page Origins page (or click the arrow next to the origin to collapse it), the
origin itself will also be deleted. This is done to prevent error conditions in the
Webflow. However, if you just delete all the events associated with a page

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-25

origin and immediately start to add new events to the page origin, the origin
itself will remain. This way, you do not always have to recreate the origin after
deleting all of its events.

Deleting a Page Origin

To delete a page origin, click the red X located to the right of the origin. Confirm the
deletion by clicking the OK button.

Warning: Deleting a page origin means that the origin and all of its associated events
will be deleted.

Inputprocessor Origins

Input processors are classes that validate customer-supplied information within a form.
When a customer submits a form, an input processor decides whether to reload the
form and point out errors, or allow the customer to continue. Therefore, an input
processor often appears to the left-hand side of the equal sign in the Webflow syntax.
When this is the case, the input processor represents the current state and is considered
an origin. Input processor origins require a result (destination) state to be defined for
the success event, which is specified to the right-hand side of the equal sign. Together,
the complete line is referred to as an input processor transition.

Notes: It is suggested that you also provide a result state for the exception event.

For more information about input processor origins and Webflow syntax, see
“Syntax of Input Processors in the webflow.properties File” on page 2-10.

The Inputprocessor Origins portion of the Webflow and Pipeline Editor allows you to
provide all relevant information about your input processors. To work with input
processor origins, click the Inputprocessor Origins link (or its corresponding Edit
button). The Inputprocessor Origins page appears, as shown in Figure 3-14.

3 Using the Webflow and Pipeline Editor

3-26 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-14 Inputprocessor Origins

From this page, you can view, add, and delete input processor origins. You can also
edit input processor origins by modifying their name, class name, and associated
events, or by associating new events.

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-27

Viewing Inputprocessor Origins

Before working with input processor origins, you may first want to see what input
processor origins are currently in the Webflow. When the Inputprocessor Origins page
is first loaded into your browser, you will see a list of the current input processor
origins, but no details about them. To view an input processor origin’s associated
events, click the solid arrow located to the left of the input processor origin. The arrow
changes to an open arrow, and the events currently associated with the input processor
origin appear with an open diamond, as shown in Figure 3-15.

Figure 3-15 Viewing Events for the AuthorizePayment.inputprocessor Origin

3 Using the Webflow and Pipeline Editor

3-28 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: The arrows to the left of each input processor origin are solid and point toward
the origin if it can be expanded to show associated events. If the event
information associated with an input processor origin can be collapsed, the
arrow is open and points away from the origin. The
AddProductItemToShoppingCart.inputprocessor input processor
origin in Figure 3-15 is an example of an origin that can be expanded; the
AuthorizePayment.inputprocessor input processor origin is an example
of an origin that can be collapsed. Events are always represented by open
diamonds.

Adding an Inputprocessor Origin

To add an input processor origin, follow these steps:

1. Click the plus (+) symbol located to the left of Add an Inputprocessor Origin. (If
the list of input processor origins is long, you may need to use the scrollbar.) The
Add Inputprocessor Origin page appears, as shown in Figure 3-16.

Figure 3-16 Add Inputprocessor Origin

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-29

2. Enter the origin (input processor) name in the Origin Name text field.

3. Enter the full class name for the input processor in the Classname text field.

4. Click the Save button to save the new input processor origin. You are returned to
the Inputprocessor Origins page, and the new origin appears alphabetically in the
list.

5. Click the solid arrow located to the right of the new input processor origin to
view its associated events. The arrow changes to an open arrow pointing in the
opposite direction. The default event of success() → index.jsp (marked by
an open diamond) and an option to Add an Event are shown.

6. If you want to add a different event to the input processor origin, modify the
default event, or delete the default event, proceed to the appropriate section in
“Modifying an Inputprocessor Origin’s Events” on page 3-30.

Editing an Inputprocessor Origin

You can edit an input processor origin in two ways:

n By modifying information about the input processor origin itself (that is, its
name or class name).

n By modifying the input processor origin’s associated events.

Modifying Information About an Inputprocessor Origin

To modify information about an input processor origin, follow these steps:

1. Click a hyperlinked input processor origin to edit it (for example, click
AuthorizePayment.inputprocessor). The Edit Inputprocessor Origin page
appears, containing the original values for each field, as shown in Figure 3-17.

3 Using the Webflow and Pipeline Editor

3-30 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-17 Edit Inputprocessor Origin

2. Change the origin (input processor) name or class name using the form fields.

3. Click the Save button to save your changes. You are returned to the
Inputprocessor Origins page, and the modified input processor origin is shown
alphabetically in the list.

Note: Modifications made to the input processor origin name and class name could
potentially affect other areas of the Webflow that utilize it. Be sure your
modifications take this into account, and be sure to verify your modified
properties file with the validation tool. For more information about the
validation tool, see “How to Validate Your Properties Files” on page 3-58.

Modifying an Inputprocessor Origin’s Events

You can also edit an input processor origin by modifying its associated events. You
can add, edit, or delete events associated with an input processor origin as described in
the following sections.

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-31

Adding an Event

To add an event to an input processor origin, follow these steps:

1. Verify that the input processor origin to which you want to add the event is
expanded (that is, an open arrow is shown to the left of the input processor origin,
and the Add an Event option is shown). If the input processor origin is not
expanded, click the solid arrow located to the left of the input processor origin to
expand it.

2. Click the plus (+) sign located next to Add an Event. (If the list of events is long,
you may need to use the scrollbar.) The New Event page appears, as shown in
Figure 3-18.

3 Using the Webflow and Pipeline Editor

3-32 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-18 Inputprocessor Origin: New Event

3. Select the appropriate Event Type from the pull-down menu, and enter a name for
the event in the Event Name text field.

Note: For more information about event types and event names, see “Syntax of the
webflow.properties File” on page 2-3 and “About Event Names” on page 2-4,
respectively.

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-33

4. Next, you need to specify a destination for the event. The destination could be an
existing page (.htm, .html, or .jsp), input processor, or Pipeline, or the
destination could be an entirely new page, input processor, or Pipeline. To
specify the destination, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the new event. You are returned to the
Inputprocessor Origins page, and the new event (marked by an open diamond)
appears beneath the appropriate input processor origin in an alphabetic list.

Editing an Event

To edit an event already associated with an input processor origin, follow these steps:

1. Verify that the input processor origin for which you want to edit an event is
expanded (that is, an open arrow is shown to the left of the input processor origin,
and the event you want to modify is shown). If the input processor origin is not
expanded, click the solid arrow located to the left of the input processor origin to
expand it.

2. Click a hyperlinked event to edit it (for example, click
exception(ProcessingException) → commerce/order/payment.jsp).
The Edit Event page appears, containing the original values for each field, as
shown in Figure 3-19.

3 Using the Webflow and Pipeline Editor

3-34 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-19 Inputprocessor Origin: Edit Event

Note: The Edit Event page does not allow you to modify the event type or event
name. To do so, you must first delete the event using the instructions provided
in “Deleting an Event” on page 3-35 and then recreate it using the instructions
provided in “Adding an Event” on page 3-31.

3. Recall that an event destination could be an existing page (.htm, .html, .jsp),
input processor, or Pipeline, or an entirely new page, input processor, or Pipeline.
To change the destination for the event, follow these steps:

Inputprocessor Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-35

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the changes to the event. You are returned to the
Inputprocessor Origins page, and the modified event (marked by an open
diamond) appears beneath the appropriate input processor origin in an
alphabetic list.

Deleting an Event

To delete an event currently associated with an input processor origin, follow these
steps:

1. Verify that the input processor origin for which you want to delete an event is
expanded (that is, an open arrow is shown to the left of the input processor origin,
and the event you want to delete is shown). If the input processor origin is not
expanded, click the solid arrow located to the left of the input processor origin to
expand it.

2. To delete the event, click the red X located to the right of the event.

3. Click the OK button in the confirmation pop-up window.

Note: Unlike the other origins (global, page, and Pipeline), if you delete all the
events associated with an input processor origin and then leave the
Inputprocessor Origins page (or click the arrow next to the origin to collapse

3 Using the Webflow and Pipeline Editor

3-36 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

it), the origin itself will not be deleted. This is because an input processor
origin with no events will not cause an error condition in the Webflow, as the
other origins would.

Deleting an Inputprocessor Origin

To delete an input processor origin, click the red X located to the right of the origin.
Confirm the deletion by clicking the OK button.

Warning: Deleting an input processor origin means that the origin and all of its
associated events will be deleted.

Pipeline Origins

Pipelines are classes that handle the business logic or back-end processes of an
e-business Web site. Therefore, a Pipeline often appears to the left-hand side of the
equal sign in the Webflow syntax. When this is the case, the Pipeline represents the
current state and is considered an origin. Pipeline origins require a result (destination)
state to be defined for the success event, which is specified to the right-hand side of the
equal sign in the Webflow syntax. Together, the complete line is referred to as a
Pipeline transition.

Notes: It is suggested that you also provide a result state for the exception event.

For more information about Pipeline origins and the Webflow syntax see
“Using Pipelines in the Webflow” on page 2-20.

The Pipeline Origins portion of the Webflow and Pipeline Editor allows you to provide
all relevant information about your Pipelines. To work with Pipeline origins, click the
Pipeline Origins link (or its corresponding Edit button). The Pipeline Origins page
appears, as shown in Figure 3-20.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-37

Figure 3-20 Pipeline Origins

From this page, you can view, add, and delete Pipeline origins. You can also edit
Pipeline origins by modifying their name or class name, working with the Pipeline’s
associated Pipeline components, or by modifying the Pipeline origin’s associated
events.

3 Using the Webflow and Pipeline Editor

3-38 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Viewing Pipeline Origins

Before working with Pipeline origins, you may first want to see what Pipeline origins
are currently in the Webflow. When the Pipeline Origins page is first loaded into your
browser, you will see a list of the current Pipeline origins, but no details about them.
To view an Pipeline origin’s associated events, click the solid arrow located to the left
of the Pipeline origin. The arrow changes to an open arrow, and the events currently
associated with the Pipeline origin appear with an open diamond, as shown in
Figure 3-21.

Figure 3-21 Viewing Events for the AuthorizePayment.inputprocessor Origin

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-39

Note: The arrows to the left of each Pipeline origin are solid and point toward the
origin if it can be expanded to show associated events. If the event information
associated with an Pipeline origin can be collapsed, the arrow is open and
points away from the origin. The AddShippingAddress.pipeline Pipeline
origin in Figure 3-21 is an example of an origin that can be expanded; the
CalculateShippingCost.pipeline Pipeline origin is an example of an
origin that can be collapsed. Events are always represented by open diamonds.

Adding a Pipeline Origin

To add a Pipeline origin, follow these steps:

1. Click the plus (+) symbol located to the left of Add a Pipeline Origin. (If the list
of Pipeline origins is long, you may need to scroll to the bottom of the page.) The
Add Pipeline Origin page appears, as shown in Figure 3-22.

Figure 3-22 Add Pipeline Origin

2. Enter the origin (Pipeline) name in the Origin Name text field.

3. If the Pipeline should be transactional, click the Is Transactional check box.

3 Using the Webflow and Pipeline Editor

3-40 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Notes: For more information about transactional and nontransactional Pipelines, see
“Transactional Versus Nontransactional Pipelines” on page 4-11.

Initially, the Component List will be empty. You must add Pipeline
components to the Pipeline separately, as described in “Adding a Pipeline
Component” on page 3-42.

4. Click the Save button to save the new Pipeline origin. You are returned to the
Pipeline Origins page, and the new origin appears alphabetically in the list.

5. Click the solid arrow located to the right of the new Pipeline origin to view its
associated events. The arrow changes to an open arrow pointing in the opposite
direction. The default event of success() → index.jsp (marked by an open
diamond) and an option to Add an Event are shown.

6. If you want to add a different event to the Pipeline origin, modify the default
event, or delete the default event, proceed to the appropriate section in
“Modifying a Pipeline Origin’s Events” on page 3-53.

Note: Be sure to add components to the Pipeline origin, as described in “Adding a
Pipeline Component” on page 3-42.

Editing a Pipeline Origin

You can edit a Pipeline origin in three ways:

n By modifying information about the Pipeline origin itself (that is, its name or
transactional status).

n By modifying the Pipeline origin’s components.

n By modifying the Pipeline origin’s associated events.

Modifying Information About a Pipeline Origin

To modify information about a Pipeline origin, follow these steps:

1. Click a hyperlinked Pipeline origin to edit it (for example, click
CalculateShippingCost.pipeline). The Edit Pipeline Origin page appears,
containing the original values for each field, as shown in Figure 3-23.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-41

Figure 3-23 Edit Pipeline Origin

2. Change the origin (Pipeline) name or transactional state using the form fields.

3. Click the Save button to save your changes. You are returned to the Pipeline
Origins page, and the modified Pipeline origin is shown alphabetically in the list.

4. If you want to modify the Pipeline origin’s components, see “Modifying a
Pipeline Origin’s Components” on page 3-42.

Note: Modifications made to the Pipeline origin name and transaction status could
potentially affect other areas of the Webflow that utilize it. Be sure your
modifications take this into account, and be sure to verify your modified
properties file with the validation tool. For more information about the
validation tool, see “How to Validate Your Properties Files” on page 3-58.

3 Using the Webflow and Pipeline Editor

3-42 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Modifying a Pipeline Origin’s Components

Recall that a Pipeline consists of a number of Pipeline components that perform
specific tasks related to business processes. Pipeline components can be reordered,
added, edited, or removed from the Pipeline.

Notes: For more information about Pipeline components, see “Customizing Pipelines
Using the pipeline.properties File” on page 2-14.

Pipeline components can never be completely deleted from the Webflow and
Pipeline Editor. They can only be removed from a Pipeline.

Adding a Pipeline Component

Once you have created a new Pipeline, you will want to add components to the
Pipeline. To add Pipeline components to a Pipeline, follow these steps:

Note: If you just created a new Pipeline, you can begin at step 2.

1. Click a hyperlinked Pipeline origin to edit it (for example, click
CalculateShippingCost.pipeline). The Edit Pipeline page appears,
containing the original values for each field, as shown in Figure 3-24.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-43

Figure 3-24 Edit Pipeline

2. Click the Select Components button. The Select Pipeline Components page
appears, as shown in Figure 3-25.

3 Using the Webflow and Pipeline Editor

3-44 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-25 Select Pipeline Components

3. If you want to add an existing Pipeline component to the Pipeline, select the
component from the Available list and click the left arrow button to move it to
the Selected list.

4. If you want to add a new Pipeline component to the Pipeline instead, follow these
steps:

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-45

a. Click the Add Component button. The New Pipeline Component page appears,
as shown in Figure 3-26.

Figure 3-26 New Pipeline Component

b. Enter the Pipeline component name in the Name text field.

c. If the Pipeline component is implemented as an EJB session bean, click the EJB
Session Bean check box.

d. If you checked the EJB Session Bean check box in the previous step, provide
the JNDI name in the JNDI/Class Name text field. If you did not check the EJB
Session Bean check box, enter the class name in the field instead.

e. Click the Save button to save your changes. You are returned to the Select
Pipeline Components page, and the new Pipeline component is shown at the
bottom of the Available List.

f. Select the new Pipeline component from the Available list and click the left
arrow button to move it to the Selected list.

3 Using the Webflow and Pipeline Editor

3-46 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

5. Click the Save button to save your changes. You are returned to the Edit Pipeline
page, and the Pipeline component you added appears as a hyperlink to the left of
the Component List label.

Notes: Pipeline components appear on the Edit Pipeline page in the order they will be
executed in the Pipeline. For information about reordering components in the
Pipeline, see “Reordering Pipeline Components” on page 3-46.

If you make other changes to the Pipeline on the Edit Pipeline page, you will
need to click the Save button on this page as well.

Reordering Pipeline Components

Occasionally, you may want to reorder the components in a Pipeline. To reorder
Pipeline components within a Pipeline, follow these steps:

1. Click a hyperlinked Pipeline origin to edit it (for example, click
CalculateShippingCost.pipeline). The Edit Pipeline page appears,
containing the original values for each field, as shown in Figure 3-27.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-47

Figure 3-27 Edit Pipeline

2. Click the Select Components button. The Select Pipeline Components page
appears, as shown in Figure 3-28.

3 Using the Webflow and Pipeline Editor

3-48 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-28 Select Pipeline Components

3. Click the Pipeline component in the Selected list to highlight it.

4. Use the up or down arrow buttons to move the Pipeline component up or down in
the Selected list.

Note: You can add a Pipeline component to more than one Pipeline, so the Pipeline
component you moved to the Selected list will still appear in the Available list.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-49

5. Click the Save button to save your changes. You are returned to the Edit Pipeline
page, and the Pipeline component appears as a hyperlink to the left of the
Component List label, in the order you specified.

Note: If you make other changes to the Pipeline on the Edit Pipeline page, you will
need to click the Save button on this page as well.

Editing a Pipeline Component

Occasionally, you may want to edit a component that already exists within a Pipeline.
To edit a Pipeline component, follow these steps:

1. Click a hyperlinked Pipeline origin to edit it (for example, click
CalculateShippingCost.pipeline). The Edit Pipeline page appears,
containing the original values for each field, as shown in Figure 3-29.

Figure 3-29 Edit Pipeline

3 Using the Webflow and Pipeline Editor

3-50 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

2. Click the hyperlinked Pipeline component name, which appears in a list to the
left of the Component List label. The Edit Pipeline Component page appears, as
shown in Figure 3-30.

Figure 3-30 Edit Pipeline Component

3. Use the Name text field, EJB Session Bean check box, and JNDI/Class Name
text field to make your modifications.

4. Click the Save button to save your changes. You are returned to the Edit Pipeline
page, and the Pipeline component you edited still appears as a hyperlink to the
left of the Component List label.

Note: If you make other changes to the Pipeline on the Edit Pipeline page, you will
need to click the Save button on this page as well.

Removing a Pipeline Component

Occasionally, you may want to remove a component from a Pipeline. To remove a
Pipeline component from a Pipeline, follow these steps:

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-51

1. Click a hyperlinked Pipeline origin to edit it (for example, click
CalculateShippingCost.pipeline). The Edit Pipeline page appears,
containing the original values for each field, as shown in Figure 3-31.

Figure 3-31 Edit Pipeline

2. Click the Select Components button. The Select Pipeline Components page
appears, as shown in Figure 3-32.

3 Using the Webflow and Pipeline Editor

3-52 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-32 Select Pipeline Components

3. Click the Pipeline component in the Selected list to highlight it.

4. Use the right arrow button to move the Pipeline component from the Selected list
to the Available list.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-53

5. Click the Save button to save your changes. You are returned to the Edit Pipeline
page, and the Pipeline component you removed no longer appears as a hyperlink
to the left of the Component List label.

Note: If you make other changes to the Pipeline on the Edit Pipeline page, you will
need to click the Save button on this page as well.

Modifying a Pipeline Origin’s Events

You can also edit a Pipeline origin by modifying its associated events. You can add,
edit, or delete events associated with a Pipeline origin as described in the following
sections.

Adding an Event

To add an event to a Pipeline origin, follow these steps:

1. Verify that the Pipeline origin to which you want to add the event is expanded (that
is, an open arrow is shown to the left of the Pipeline origin, and the Add an Event
option is shown). If the Pipeline origin is not expanded, click the solid arrow
located to the left of the Pipeline origin to expand it.

2. Click the plus (+) sign located next to Add an Event. (If the list of events is long,
you may need to use the scrollbar.) The New Event page appears, as shown in
Figure 3-33.

3 Using the Webflow and Pipeline Editor

3-54 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-33 Pipeline Origin: New Event

3. Select the appropriate Event Type from the pull-down menu, and enter a name for
the event in the Event Name text field.

Note: For more information about event types and event names, see “Syntax of the
webflow.properties File” on page 2-3 and “About Event Names” on page 2-4,
respectively.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-55

4. Next, you need to specify a destination for the event. The destination could be an
existing page (.htm, .html, or .jsp), input processor, or Pipeline, or the
destination could be an entirely new page, input processor, or Pipeline. To
specify the destination, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the new event. You are returned to the Pipeline
Origins page, and the new event (marked by an open diamond) appears beneath
the appropriate Pipeline origin in an alphabetic list.

Editing an Event

To edit an event already associated with a Pipeline origin, follow these steps:

1. Verify that the Pipeline origin for which you want to edit an event is expanded (that
is, an open arrow is shown to the left of the Pipeline origin, and the event you want
to modify is shown). If the Pipeline origin is not expanded, click the solid arrow
located to the left of the Pipeline origin to expand it.

2. Click a hyperlinked event to edit it (for example, click success() →
TaxCalculateLineLevel.pipeline). The Edit Event page appears,
containing the original values for each field, as shown in Figure 3-34.

3 Using the Webflow and Pipeline Editor

3-56 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-34 Pipeline Origin: Edit Event

Note: The Edit Event page does not allow you to modify the event type or event
name. To do so, you must first delete the event using the instructions provided
in “Deleting an Event” on page 3-57 and then recreate it using the instructions
provided in “Adding an Event” on page 3-53.

Pipeline Origins

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-57

3. Recall that an event destination could be an existing page (.htm, .html, .jsp),
input processor, or Pipeline, or an entirely new page, input processor, or Pipeline.
To change the destination for the event, follow these steps:

a. Select the destination type from the Destination Type pull-down menu (one of
Page, Input Processor, Pipeline, or Specify New Destination).

Note: Selecting a destination type in this menu disables form fields that are not
required for the chosen destination type. To enable unavailable form fields,
choose a different destination type.

b. If you selected Page from the Destination Type pull-down menu, select an
existing page (.htm, .html, or .jsp) from the Page (JSP) Destination
pull-down menu. If you selected Input Processor, select an existing input
processor from the Input Processor Destination pull-down menu. If you
selected Pipeline, select an existing Pipeline from the Pipeline Destination
pull-down menu. If you selected Specify New Destination from the
Destination Type pull-down menu, enter the name of the destination in the
Specify New Destination text field, and select the destination type from the Of
Type pull-down menu (jsp, htm, html, inputprocessor, or pipeline).

c. Click the Save button to save the changes to the event. You are returned to the
Pipeline Origins page, and the modified event (marked by an open diamond)
appears beneath the appropriate Pipeline origin in an alphabetic list.

Deleting an Event

To delete an event currently associated with a Pipeline origin, follow these steps:

1. Verify that the Pipeline origin for which you want to delete an event is expanded
(that is, an open arrow is shown to the left of the Pipeline origin, and the event you
want to delete is shown). If the Pipeline origin is not expanded, click the solid
arrow located to the left of the Pipeline origin to expand it.

2. To delete the event, click the red X located to the right of the event.

3. Click the OK button in the confirmation pop-up window.

Note: If you delete all the events associated with a Pipeline origin and then leave the
Pipeline Origins page (or click the arrow next to the origin to collapse it), the
origin itself will also be deleted. This is done to prevent an error condition in
the Webflow. However, if you just delete all the events associated with a

3 Using the Webflow and Pipeline Editor

3-58 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipeline origin and immediately start to add new events to the Pipeline origin,
the origin itself will remain. This way, you do not always have to recreate the
origin after deleting all of its events.

Deleting a Pipeline Origin

To delete a Pipeline origin, click the red X located to the right of the origin. Confirm
the deletion by clicking the OK button.

Warning: Deleting a Pipeline origin means that the origin and all of its associated
events will be deleted.

How to Validate Your Properties Files

The Webflow and Pipeline Editor provides you with two methods for validating your
Webflow and Pipeline properties files. Using the validation tool in the Webflow and
Pipeline Editor, you can either:

n Validate the Webflow, or

n Validate the Webflow and verify the existence of various Webflow components
(that is, input processors, Pipeline components, and so on).

To open the Webflow and Pipeline Editor validation tool, click the Validate link (or its
corresponding Validate button). The Validation Tool page appears, as shown in
Figure 3-35.

How to Validate Your Properties Files

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-59

Figure 3-35 Validation Tool

The remainder of this section describes how to use the two options in the Webflow and
Pipeline Editor validation tool, and provides some helpful information about
interpreting reported errors.

Validating the Webflow

Validation of Webflow syntax includes checks for the following:

n Missing states (that is, success, exception).

n Wildcards (in the case of missing states).

n Proper configuration of the configurationerrorpage property.

3 Using the Webflow and Pipeline Editor

3-60 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

n Validity of extensions (valid extensions are .jsp, .htm, .html,
.inputprocessor and .pipeline).

n Missing configurations (for example, references to nonexistent
home.jsp.link(browse)).

n Missing class names for Inputprocessors.

n Validity of Pipeline definitions (that is, a Pipeline’s isTransactional property
and component list).

To validate only the Webflow syntax, click the Validate Webflow link. Any problems
with the Webflow will appear at the bottom of the page under the Reported Errors
label, as shown in Figure 3-36.

Figure 3-36 Webflow Validation

How to Validate Your Properties Files

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-61

Note: In addition to errors, the output produced by the validation tool may contain
notes or warnings. These are not error conditions per se, but are informational
in nature. For more information about the validation tool’s output, see
“Validator Message Descriptions” on page 3-63.

If any errors are shown, use the other options in the Webflow and Pipeline Editor to
make modifications. It is a good idea to run the validation tool until there are no errors
in your Webflow.

Validating the Webflow and Verifying the Existence of
Components

Validation of Webflow syntax with verification of components includes checks for the
following:

n Missing states (that is, success, exception).

n Wildcards (in the case of missing states).

n Proper configuration of the configurationerrorpage property.

n Validity of extensions (valid extensions are .jsp, .htm, .html,
.inputprocessor and .pipeline).

n Missing configurations (for example, references to non-existent
home.jsp.link(browse)).

n Missing class names for Inputprocessors.

n Validity of Pipeline definitions (that is, a Pipeline’s isTransactional property
and component list).

n Deployment (existence) of InputProcessors and PipelineComponents.

To validate the Webflow and verify the existence of components, click the Validate
Webflow and Verify Existence of Components link. Any problems with the Webflow
and its components will appear at the bottom of the page under the Reported Errors
label, as shown in Figure 3-37.

3 Using the Webflow and Pipeline Editor

3-62 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 3-37 Webflow Validation and Verification of Components

Note: In addition to errors, the output produced by the validation tool may contain
notes or warnings. These are not error conditions per se, but are informational
in nature. For more information about the validation tool’s output, see
“Validator Message Descriptions” on page 3-63.

If any errors are shown, use the other options in the Webflow and Pipeline Editor to
make modifications. It is a good idea to run the validation tool until there are no errors
in your Webflow.

How to Validate Your Properties Files

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-63

Validator Message Descriptions

The message descriptions should assist you in resolving issues identified by the
Webflow and Pipeline Editor validation tool.

Notes
A message with a NOTE is displayed if a wildcard is used in place of a
missing configuration.

Warnings
A WARNING is displayed when there are missing states or missing
exceptions for an InputProcessor or a Pipeline.

Errors
An ERROR is displayed when there are: missing or invalid extensions;
missing configurations, Pipeline definitions, classNames (for
InputProcessors) or jndiNames (for PipelineComponents).
Additionally, an ERROR can be displayed if the validation tool is unable to
verify the existence of either an InputProcessor or a
PipelineComponent.

3 Using the Webflow and Pipeline Editor

3-64 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-1

CHAPTER

4 Extending Webflow
and Pipelines

Although the BEA WebLogic Commerce Server product provides default Webflow
and Pipeline mechanisms that you can customize, the Webflow and Pipelines have also
been designed for easy extensibility. For example, if your organizational requirements
dictate the use of a new business process, the Java/EJB programmers on your
development team can utilize the existing Webflow and Pipeline infrastructure to
create and incorporate these components into the system. This topic describes how to
accomplish this.

This topic includes the following sections:

n Pipeline Sessions

l What Is a Pipeline Session?

l Attribute Scoping

l Managing the Pipeline Session

n Extending Input Processors

l Using the InputProcessor Interface

l Input Processor Exceptions

l The CommerceInputProcessor Base Class

l Input Processor Naming Conventions

l Input Processors and Statelessness

l Other Development Guidelines

n Extending Pipelines and Pipeline Components

4 Extending Webflow and Pipelines

4-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

l Using the PipelineComponent Interface

l Pipeline Component Exceptions

l The CommercePipelineComponent Base Class

l Pipeline Component Naming Conventions

l Implementation of Pipeline Components as Stateless Session EJBs or Java
Objects

l Stateful Versus Stateless Pipeline Components

l Transactional Versus Nontransactional Pipelines

l Other Development Guidelines

n Handling Session Timeouts

l Using the getPipelineSession() Method

l The InvalidSessionStateException Exception in webflow.properties

l PipelineComponent and Session Timeouts

l The InvalidPipelineSessionStateException Exception in webflow.properites

l About the sessiontimeout.jsp Template

Pipeline Sessions

Although Pipelines and their components are reusable, they must relate to a particular
customer’s experience on your e-commerce site to make their execution relevant. For
this reason, Pipeline components always operate on a Pipeline session. This section
provides you with information about the Pipeline session, and provides instructions for
configuring the Pipeline session to meet your own needs.

Pipeline Sessions

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-3

What Is a Pipeline Session?

Clearly, it is necessary to keep track of information gathered from your customers and
the data modified by Pipeline components as a customer moves through your site. To
maintain this state of the business process, the BEA WebLogic Commerce Server
product makes use of a Pipeline session. A Pipeline session is an object that is created
and stored within the HTTP session, with the goal of providing a single point of
communication for all Pipeline components in a given Pipeline. Additionally, Pipeline
sessions provide central access and storage for all external classes that may also need
to update the Pipeline session.

The Pipeline session is comprised of many name/value pairs called attributes. Pipeline
components act on particular attributes that exist within the Pipeline session, and may
also add new attributes as necessary.

Attribute Scoping

The Pipeline session provides an API that allows you to add Pipeline session attributes.
All attributes in the Pipeline session can have one of two scopes: Pipeline Session
scope or Request scope. The method signature for creating Pipeline session attributes
is:

public void setAttribute(String key, Object attribute, int scope);

where scope is either PipelineConstants.PIPELINE_SESSION_SCOPE or
PipelineConstants.REQUEST_SCOPE.

In the Pipeline Session scope, the attribute exists in the Pipeline session until the end
of the current HTTP session. Pipeline Session scope is the default scope for Pipeline
session attributes, and will be used if the third parameter to the setAttribute()
method is not specified. In the Request scope, the attributes are made available in the
HTTPServletRequest, and these attributes should be accessed via the
getPipelineProperty JSP tag (that is, the attributes exist only for the life of an
HTTP request).

Basically, Pipeline Session and Request scoping differ by how long the attribute is
retained. When an attribute is specified with the Request scope, it is available from the
time it is set, up to and including the display of the next JSP. The attribute is
automatically deleted when a new request starts. Therefore, Request scope is useful for
temporary objects that will only be needed for one page. For example, search results

4 Extending Webflow and Pipelines

4-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

from the product catalog are stored as Request-scoped attributes. Attributes that must
live longer should be specified as Pipeline Session scope, which will cause them to be
retained throughout the customer’s session. If you know that a Pipeline session
attribute is only required for the current request, use the Request scope.

Note: All attributes added to the Pipeline session should be serializable. If they are
not, the server will generate an error when trying to serialize the Pipeline
session, and thus no Pipelines will be executed. To assist in debugging, set the
pipelineSession.debug property in the
weblogiccommerce.properties file to true. Then, when a Pipeline
session setAttribute() method is called, the server console will indicate
whether the attribute is serializable or not.

Managing the Pipeline Session

It is important that the Pipeline and HTTP sessions are associated with each other and
that they are updated in parallel. This section contains information about accessing and
storing the Pipeline session that is important to maintaining this relationship.

Accessing the Pipeline Session

It is highly recommended that clients requiring access to the Pipeline session use one
of the APIs of the CommerceInputProcessor base class. The
CommerceInputProcessor class is responsible for creating a new Pipeline session (if
required), and for associating the Pipeline session with the HTTP session.

Note: For more information about CommerceInputProcessor, see “The
CommerceInputProcessor Base Class” on page 4-6.

Storing the Pipeline Session in the HTTP Session

Each time the Pipeline session is updated, the HTTP session also needs to be updated
so that the Pipeline session is replicated across all the nodes in a cluster. Because the
Webflow infrastructure is responsible for setting the Pipeline session to the HTTP
session at appropriate times, it is highly recommended that none of the
InputProcessors directly store the Pipeline session in the HTTP session.

Extending Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-5

Note: For more information about InputProcessors, see “Using the
InputProcessor Interface” on page 4-5.

Extending Input Processors

In addition to using the input processors provided in the BEA WebLogic Commerce
Server product, you can create your own input processors. This section describes the
conventions you must follow when creating new input processors.

Note: It is expected that a Java/EJB programmer (or someone with similar technical
knowledge and abilities) will develop new input processors.

Using the InputProcessor Interface

New input processors must implement the InputProcessor interface and must
supply an implementation for the process method. The process method accepts an
HTTPServletRequest object as a parameter and returns a string (such as success) if
execution is successful, as shown in the following method signature:

public String process (HTTPServletRequest request) throws ProcessingException

Notes: For more information about the InputProcessor interface, see the Javadoc.

For information about how the InputProcessor interface can be used to
handle session time outs, see “Handling Session Timeouts” on page 4-12.

Input Processor Exceptions

All input processors must throw the ProcessingException exception, or one of its
subclasses. To obtain the ProcessingException exception’s exception message, use
the scriptlet shown in Listing 4-1.

4 Extending Webflow and Pipelines

4-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Listing 4-1 Obtaining the ProcessingException Exception Message

<% String errorMsg =
(String)request.getAttribute(HttpRequestConstants.PIPELINE_MESSAGE); %>

Note: For more information about the ProcessingException exception, see the
Javadoc.

The CommerceInputProcessor Base Class

CommerceInputProcessor is the abstract base class for all the BEA WebLogic
Commerce Server classes that implement the InputProcessor interface. This class
has a number of utility methods for all the derived classes to use, some of which allow
you to:

n Get the PipelineSession object associated with the current session.

n Get the PipelineSession object only if the HttpSession is a valid session.

Note: For more information on the CommerceInputProcessor base class, see the
Javadoc.

Input Processor Naming Conventions

The name of an input processor should end with the suffix IP. For example, an input
processor that is responsible for deleting a shipping address might be called
DeleteShippingAddressIP.

Input Processors and Statelessness

Because the Webflow controls the life cycle of input processors, the Webflow may
create and destroy input processors without regard for the data that may be contained
within them. Therefore, input processors should always be stateless, and it is
recommended that you do not define any instance variables in an input processor.

Extending Pipelines and Pipeline Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-7

Other Development Guidelines

Execution of business (application) logic should not be done within input processors.
Specifically, input processors should not call EJBs or attempt to access a database. All
such logic should be implemented in Pipeline components. Although it is possible to
execute this logic within an input processor, doing so would defeat the purpose of the
Webflow/Pipeline infrastructure and would not easily lend itself to modification.

By separating business logic from the presentation logic, your e-commerce site is
inherently flexible in nature. Modifying or adding functionality can be as simple as
creating and plugging in new Pipelines and/or input processors.

n For more information about input processors, see “Using Input Processors with
Webflow” on page 2-10.

n For more information about Pipeline components, see “Using Pipelines with
Webflow” on page 2-13.

Extending Pipelines and Pipeline
Components

In addition to using the Pipelines and Pipeline components provided in the BEA
WebLogic Commerce Server product, you can create your own Pipelines and Pipeline
components. This section describes the conventions you must follow when creating
new Pipelines and Pipeline components.

Note: It is expected that a Java/EJB programmer (or someone with similar technical
knowledge and abilities) will develop new Pipelines and Pipeline components.

4 Extending Webflow and Pipelines

4-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Using the PipelineComponent Interface

New Pipeline components must implement the PipelineComponent interface and
must supply an implementation for the process method. The process method
accepts a PipelineSession object as a parameter, and returns updated
PipelineSession objects if the execution is successful, as shown in the following
method signature:

public PipelineSession process(PipelineSession session) throws RemoteException,
PipelineNonFatalException, PipelineFatalException

Notes: For more information about the PipelineComponent interface, see the
Javadoc.

For information about how the PipelineComponent interface can be used to
handle session timeouts, see “Handling Session Timeouts” on page 4-12.

Pipeline Component Exceptions

Pipeline components may throw a PipelineFatalException to signify that the
component has failed. When this occurs, no further Pipeline components are executed
and if the Pipeline is transactional, the transaction will be rolled back.

To obtain the PipelineFatalException exception’s exception message, use the
scriptlet shown in Listing 4-2.

Listing 4-2 Obtaining the PipelineFatalException Exception Message

<% String errorMsg =
(String)request.getAttribute(HttpRequestConstants.PIPELINE_MESSAGE); %>

Note: For more information about fatal Pipeline exceptions in a transactional
Pipeline, see “Transactional Versus Nontransactional Pipelines” on page 4-11.

Pipeline components may also throw a PipelineNonFatalException to indicate
that the component has failed, but that subsequent Pipeline components should be
executed. Lastly, a Pipeline component may throw a RemoteException.

Extending Pipelines and Pipeline Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-9

The Webflow integrates with these exceptions as follows:

n PipelineFatalException: If any component in a Pipeline throws a
PipelineFatalException or a class derived from
PipelineFatalException, besides aborting the Pipeline and the transaction,
the Webflow will perform an exception search on the exception thrown.

Note: For a detailed description about how Webflow searches transitions, see
“Webflow Search Order” on page 2-8.

n RemoteException: If the Pipeline throws a RemoteException, it is treated as
a server error and the servererror.jsp is displayed.

When an exception search is performed, the Webflow looks for the exact exception
found as the event. If this exception is not found, the Webflow will begin looking
through the search order, as decribed in “Webflow Search Order” on page 2-8.

The CommercePipelineComponent Base Class

CommercePipelineComponent is an abstract base class for all the BEA WebLogic
Commerce Server classes that implement the PipelineComponent interface. This
class provides a utility method that allows you to obtain database connections from the
commercePool (set up in the WebLogic Server console).

Note: For more information about the CommercePipelineComponent base class,
see the Javadoc.

Pipeline Component Naming Conventions

The name of a Pipeline component should end with the suffix PC. For example, a
Pipeline component that is responsible for saving a shopping cart might be called
SaveCartPC.

4 Extending Webflow and Pipelines

4-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Implementation of Pipeline Components as Stateless
Session EJBs or Java Objects

Pipeline components can be implemented as either stateless session EJBs or as Java
objects. Table 4-1 describes the differences between the two implementations.

An implementing class that is a stateless session EJB must meet the following
requirements:

n It must declare and implement a create() method in the bean’s Home interface
that takes no arguments and returns the appropriate Remote interface.

n It must declare and implement the process() method as part of its Remote
interface.

Stateful Versus Stateless Pipeline Components

Whether Pipeline components are implemented as stateless session EJBs or as Java
objects, Pipeline components themselves should be stateless. The business logic
implemented in Pipeline components should only depend upon the PipelineSession

Table 4-1 Comparison of Pipeline Component Implementations

Stateless Session EJBs Java Objects

Heavier in weight and more complex to
implement due to EJB overhead.

Lightweight, low overhead.

Server-provided instance caching. No instance caching, possibly degrading
performance.

Server-provided load balancing. No load balancing, always executes on the
node in the cluster where the Pipeline started
execution.

Can use ACL-based security according to
EJB specification.

Must manage security.

Extending Pipelines and Pipeline Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-11

object, the database, and other external resources. Should you define any instance
variables, static variables, or static initializers within a Pipeline component, the results
may be unpredictable.

Transactional Versus Nontransactional Pipelines

If all Pipeline components within the Pipeline will be invoked under one transaction,
the respective Pipeline’s isTransactional property should be set to true in the
Pipeline definition (within pipeline.properties file). Transactional Pipelines
provide support for rolling back the database transaction and for making changes to the
Pipeline session. If a transactional Pipeline fails, any database operations made by each
of its Pipeline components are rolled back.

If a Pipeline component in a transactional Pipeline is implemented as a stateless
session EJB, then its transaction attribute must be Required. Also, be sure that each
of the Pipeline components in a transactional Pipeline has the correct transaction flag.
Transaction flags indicate whether or not each bean will participate in the transaction.
If the Pipeline’s isTransactional property is true and the participating Pipeline
components (beans) have their transaction flag set to never, the Pipeline will fail to
execute. Similarly, if the Pipeline’s isTransactional property is false and the
Pipeline components have the transaction flag set to mandatory, the Pipeline will also
fail to execute.

If a Pipeline component in a transactional Pipeline is implemented as a simple Java
object, then for all database operations, the Pipeline component must use the
Transactional DataSource associated with the connection pool, as defined in the
WebLogic Server console. A transactional Pipeline containing Pipeline components
implemented as simple Java objects commits the transaction upon success, and rolls
back the transaction upon failure.

Other Development Guidelines

All server-side coding guidelines apply for development of new Pipeline components.
Specifically:

n Avoid using threads.

n Avoid accessing the filesystem, since these operations are not thread-safe.

4 Extending Webflow and Pipelines

4-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

n Program all Pipeline components that are implemented as Java objects to be
thread-safe.

Handling Session Timeouts

In any Web application, the HttpSession is usually short-lived. Therefore, every time
the HttpSession is accessed, it must be evaluated to determine whether the session is
new or whether the client has joined the current session. If the session is new and an
attempt is made to access the PipelineSession from the HttpSession, then a null
value will be returned unless it is recreated. This section describes in more detail how
to handle session timeouts using the InputProcessor base classes.

Using the getPipelineSession() Method

The CommerceInputProcessor provides an overloaded getPipelineSession()
method to help you handle session timeouts.

The first version of the getPipelineSession() method attempts to get the
PipelineSession from the HttpSession. If the method is not able to locate the
PipelineSession, then it will create a new instance and return a reference to the
PipelineSession, as shown in the following method signature:

public PipelineSession getPipelineSession(HttpServletRequest request)

The second version of the getPipelineSession() method has an extra parameter,
checkValidity, as shown in the following method signature. If checkValidity is
true and the HttpSession is new, then the getPipelineSession() method throws
an InvalidSessionStateException exception.

public PipelineSession getPipelineSession(HttpServletRequest
request, Boolean checkValidity) throws InvalidSessionStateException

Note: For more information about the InvalidSessionStateException
exception, see “The InvalidSessionStateException Exception in
webflow.properties” below.

Handling Session Timeouts

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-13

The InvalidSessionStateException Exception in
webflow.properties

The InvalidSessionStateException exception can be used for input processors.
In the webflow.properties file, you can either provide the input processor name (as
shown in the first line of Listing 4-3), or use the wildcard character (as shown in the
second line of Listing 4-3).

Listing 4-3 Using InvalidSessionStateException in webflow.properties

InputprocessorName.inputprocessor.exception
(InvalidSessionStateException)= sessiontimeout.jsp

*.inputprocessor.exception(InvalidSessionStateException)=
sessiontimeout.jsp

The second option indicates that all input processors experiencing session timeout
(throwing an InvalidSessionStateException) should load the
sessiontimeout.jsp file.

Note: For more information about using the wildcard character in the
webflow.properties file, see “Using the Wildcard Character” on page 2-5.

PipelineComponent and Session Timeouts

As part of handling session timeouts, each class that implements the
PipelineComponent interface should determine whether or not a required attribute
exists in the PipelineSession object. If the attribute does not exist, the subclass
should throw an InvalidPipelineSessionStateException exception.

Note: For more information about the
InvalidPipelineSessionStateException exception, see “The
InvalidPipelineSessionStateException Exception in webflow.properites”
below.

4 Extending Webflow and Pipelines

4-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

The InvalidPipelineSessionStateException Exception in
webflow.properites

The InvalidPipelineSessionStateException exception can be used for
Pipelines. In the webflow.properties file, you can either provide the Pipeline name
(as shown in the first line of Listing 4-4), or use the wildcard character (as shown in
the second line of Listing 4-4).

Listing 4-4 Using InvalidPipelineSessionStateException in webflow.properties

PipelineName.pipeline.exception
(InvalidPipelineSessionStateException)= sessiontimeout.jsp

*.pipeline.exception(InvalidPipelineSessionStateException)=
sessiontimeout.jsp

The second option indicates that all Pipelines experiencing session timeout (throwing
an InvalidPipelineSessionStateException) should load the
sessiontimeout.jsp file.

Note: For more information about using the wildcard character in the
webflow.properties file, see “Using the Wildcard Character” on page 2-5.

About the sessiontimeout.jsp Template

The sessiontimeout.jsp template (shown in Figure 4-1) that ships with the BEA
WebLogic Commerce Server product contains a link that calls the Webflow with the
initial state, thereby giving the user a chance to start all over again.

Handling Session Timeouts

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-15

Figure 4-1 The sessiontimeout.jsp Template

4 Extending Webflow and Pipelines

4-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-1

CHAPTER

5 Webflow and Pipeline
JSP Tags Library
Reference

The BEA WebLogic Commerce Server product provides JSP tags specifically related
to the Webflow and Pipeline mechanisms. This topic explains how to import each set
of tags into your Web pages, and describes what each of these tags can do.

This topic includes the following sections:

n Webflow JSP Tags

l <webflow:getValidatedValue>

l <webflow:setValidatedValue>

n Pipeline JSP Tags

l <pipeline:getPipelineProperty>

l <pipeline:setPipelineProperty>

Webflow JSP Tags

The Webflow JSP tags are utility tags that simplify the implementation of JSPs that
utilize the Webflow mechanism. To import the Webflow JSP tags, use the following
code:

5 Webflow and Pipeline JSP Tags Library Reference

5-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

 <%@ taglib uri=”webflow.tld” prefix=”webflow” %>

Note: For more information about the Webflow mechanism, see Chapter 1,
“Overview of Webflow and Pipeline Management,” in this guide.

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<webflow:getValidatedValue>

The <webflow:getValidatedValue> tag (Table 5-1) is used in a JSP to display the
fields in a form that a customer must correct. The <webflow:getValidatedValue>
tag is used in tandem with the<webflow:setValidatedValue> tag.

Table 5-1 <webflow:getValidatedValue>

Tag Attribute Required Type Description R/C

fieldName Yes String The name of the field for which the status is
desired.

R

fieldValue Yes String The value as entered by the user. R

fieldDefaultValue No String The default value to use if the field value is
missing.

R

fieldStatus Yes String The status of the field.

Valid values are:
unspecified—Field was left blank; user must
enter some data.
invalid—User data is wrong.
valid—User data is okay.

R

invalidColor No String The color with which the label for an invalid
field is to be marked. Defaults to red.

R

validColor No String The color with which the label for a valid
field is to be marked. Defaults to black.

R

Webflow JSP Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-3

These fields are determined and marked by an input processor after performing its
validation activities. All InputProcessors use a ValidatedValues object to
communicate which fields were successfully processed as well as those that were
determined to be invalid.

Example 1

When used in a JSP, this sample code will obtain the current value and processing
status of the <field_name> form field.

<webflow:getValidatedValue fieldName=”<field_name>”
fieldValue=”<field_value>” fieldStatus=”status” />

Example 2

The <webflow:getValidatedValue> tag refers to the webflow.tld tag library to
retrieve available elements/attributes. In this example, a request is being made to
obtain the following values from the HTTP session:

fieldName

fieldValue

fieldStatus

validColor

invalidColo

unspecifiedColor

fieldColor

unspecifiedColor No String If the user leaves a required field blank, this
will be the color of the label for that field.
Defaults to red.

R

fieldColor No String The background color of the field. R

fieldMessage No String Specific message fo the current field. R

Table 5-1 <webflow:getValidatedValue> (Continued)

Tag Attribute Required Type Description R/C

5 Webflow and Pipeline JSP Tags Library Reference

5-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

These attributes are used for display purposes. (In this case, indicate that this field is
required and mark it in red). The overall goal is to display values back to the user
indicating which pieces are valid/invalid as returned from the input processor.

<webflow:getValidatedValue
fieldName="<%=HttpRequestConstants.CUSTOMER_FIRST_NAME%>"
fieldValue="customerFirstName" fieldStatus="status"
validColor="black"
invalidColor="red" unspecifiedColor="black" fieldColor="fontColor"
/>

<webflow:setValidatedValue>

The <webflow:setValidatedValue> tag (Table 5-2) is used in a JSP to configure
the display of fields in a form that a customer must correct. Usually this is done within
an Inputprocessor, but it can also be done from a JSP by using this tag. The
<webflow:setValidatedValue> is used in tandem with the
<webflow:getValidatedValue> tag.

Table 5-2 <webflow:setValidatedValue>

Tag Attribute Required Type Description R/C

fieldName Yes String The name of the field for which the status is
desired.

C

fieldValue Yes String The new value of the field. C

fieldStatus No String The processing status of the field.

Valid values are:
unspecified—Field was left blank; user must enter
some data.
invalid—User data is wrong.
valid—User data is okay.

C

Webflow JSP Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-5

Example

When used in a JSP, this sample code will obtain the current value and processing
status of the <field_name> form field.

<webflow:setValidatedValue fieldName=”<field_name>”
fieldValue=”<field_value>” fieldStatus=”status” />

About the ValidatedValues Java Class

The ValidatedValues class allows a Java/EJB programmer who writes an
InputProcessor to report the status of processed form fields back to the commerce
engineer/JSP content developer.

The constructor for the ValidatedValues class takes an HTTPServletRequest as a
parameter, as shown in the following method signature:

public ValidatedValues (javax.servlet.http.HttpServletRequest s)

The public methods used to convey the status of the validation through the
getValidatedValue and setValidatedValue JSP tags are shown in Table 5-3.

Table 5-3 ValidatedValues Public Methods

Method Signature Description

public String getStatus (String name) Retrieves the status for the specified
field, which may be unspecified,
invalid, or valid.

public void setStatus (String name, String value) Sets the status for the specified field.

public String getValue (String name) Retrieves the current value for the
specified field.

public void setValue (String name, String value) Sets the value for the specified field.

5 Webflow and Pipeline JSP Tags Library Reference

5-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipeline JSP Tags

The Pipeline JSP tags are used to store and retrieve attributes in a Pipeline session. To
import the Pipeline JSP tags, use the following code:

<%@ taglib uri=“pipeline.tld” prefix=“pipeline” %>

Note: For more information about the Webflow mechanism, see Chapter 1,
“Overview of Webflow and Pipeline Management,” in this guide.

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<pipeline:getPipelineProperty>

The <pipeline:getPipelineProperty> tag (Table 5-4) retrieves a named attribute
(property) from the Pipeline session object, from a property of one of the objects that
has been retrieved from the Pipeline session, or from the request. Objects that are
stored as attributes of the Pipeline session must conform to the standard bean interface
and implement a get<Attribute>() method for each publicly accessible attribute.
If propertyName does not exist in the Pipeline session, then returnName contains
null.

Table 5-4 <pipeline:getPipelineProperty>

Tag Attribute Required Type Description R/C

propertyName No String The key in the PipelineSession hash table
that identifies what property value to get.

If omitted, the PipelineSession itself is
returned.

R

pipelineObject No Object Name of the object in which to search for the
key specified as propertyName. If no
object is specified, the default is to look in
Pipeline session.

R

Pipeline JSP Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-7

Example

When used in a JSP, this sample code will retrieve an attribute named
<property_name> and store it in a variable named <return_name>. The type of this
variable will be <return_type>, and the scope to which this attribute belongs is
specified by <attribute_scope>.

<pipeline:getPipelineProperty propertyName=”<property_name>”
returnName=”<return_name>” returnType=”<return_type>”
attributeScope=”<%=<attribute_scope>%>”/>

Note: For more information about the scope of Pipeline session attributes, see the
section “Attribute Scoping” on page 4-3 in this guide.

<pipeline:setPipelineProperty>

The <pipeline:setPipelineProperty> tag (Table 5-5) sets a named attribute
(property) to the Pipeline session object or to a property of one of the objects that has
been retrieved from the Pipeline session. Objects that are stored as attributes of the

returnName No String Name of the variable that will contain the
value of the attribute.

If omitted, the tag is created inline (that is,
the variable is not returned but the
toString() method is called and the
results are displayed to the browser).

R

returnType No String A valid type for the returned attribute. If this
is not specified, the value is returned as an
object.

R

attributeScope No Int The scope in which to look for the key
specified as propertyName.

Valid values are:

PipelineConstants.SESSION_SCOPE

PipelineConstants.REQUEST_SCOPE

R

Table 5-4 <pipeline:getPipelineProperty> (Continued)

Tag Attribute Required Type Description R/C

5 Webflow and Pipeline JSP Tags Library Reference

5-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipeline session must conform to the standard bean interface and implement a
set<propertyName>() method for each publicly accessible attribute. Scope defaults
to PipelineConstants.SESSION_SCOPE.

If pipelineObject is not specified, then the given property and its value will be set
to the Pipeline session. If the pipelineObject is specified, then the object must
implement the set<PropertyName>() method, which takes two parameters: a
property name (String) and a property value (Object), as shown in the following
method signature:

public void set<PropertyName>(String propertyName,java.lang.Object
propertyValue);

Note: If the set<PropertyName>()method is not implemented, an exception will
be thrown during the processing of the JSP that has the
setPipelineProperty tag in it.

Example

 When used in a JSP, this sample code will set the property named <property_name>
of the <pipeline_object_name> with the value specified in <property_value>.

<pipeline:setPipelineProperty propertyName=”<property_name>”
propertyValue=”<property_value>”
pipelineObject=”<pipeline_object_name>”/>

Note: The <pipeline_object_name> must be a fully qualified class name.

Table 5-5 <pipeline:setPipelineProperty>

Tag Attribute Required Type Description R/C

propertyName Yes String Name of the key with which the given
property is to be associated.

R

propertyValue Yes Object The value to associate with the
propertyName.

R

pipelineObject No Object Name of the object in the Pipeline session in
which to store the given key and value pair.

R

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-1

Index

A
absolute URL 2-7
abstract class 4-6, 4-9
accessing the filesystem 4-11
action attribute, of form tag 2-8
adding origins

global 3-9
InputProcessor 3-28
page 3-18
Pipeline 3-39

Administration Tools
loading 3-3
sample page 3-4
username and password 3-4
Webflow and Pipeline Editor 3-1

anchor tag, using to generate URLs 2-8
API for adding Pipeline session attributes 4-3
architecture, high-level of Webflow/Pipeline

1-1, 1-2, 1-4, 2-14
categories 1-3
diagram 1-4

attributes
Pipeline session 2-13, 4-3, 5-6, 5-7

retaining 4-3
serializable 4-4
storing and retrieving 5-6

transaction
Required 4-11

B
base class

CommerceInputProcessor 4-6
CommercePipelineComponent 4-9
InputProcessor 4-12
PipelineComponent 4-12

begin state, in Webflow 3-6
business logic 1-5

and input processors 4-7
and Pipelines 3-36
and Webflow 2-2, 2-20
architecture category 1-3
flow of 2-14
implementation of 1-2, 2-13, 4-10
separate from presentation 1-1, 1-2, 2-1,

2-10
state of 4-3

C
catalog, product 1-5, 4-4
categories, of high-level architecture 1-3
chaining input processors 2-10, 2-12
class names, input processor 2-11
className property, Pipeline component 2-

14, 3-45, 3-50
commerce pool 4-9
communication among Pipeline components

4-3
component, Pipeline 1-2, 4-11

adding to Pipeline 3-42

I-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

and business logic 1-3, 4-7
and data modification 4-3
and threads 4-11
association with Pipeline session 4-2
communication 4-3
creating 3-44, 4-7, 4-11
customizing 1-6, 2-13, 3-49
definition of 1-2, 2-13, 2-14, 3-42
eliminating a 2-14, 3-50
exceptions 1-2, 4-8

PipelineFatalException 4-8
PipelineNonFatalException 4-8
RemoteException 4-8

execution 4-8
order of 2-15, 3-46
successful 2-21

implementation
as Java objects 2-13, 2-16, 4-10, 4-

11
as stateless session EJBs 2-16, 4-10

predefined 2-13
properties

className 2-14, 3-45, 3-50
isEJBSessionBean 2-14
jndiName 2-14

stateless versus stateful 4-10
transactions 4-11

configuration error page 2-8, 2-9, 3-6
configuration exception

contextual 2-8
generic 2-8

configuring the Pipeline session 4-2
connection pool 4-11
constructor

for getPipelineSession() method 4-12
for ValidatedValues class 5-5

conventions, naming
input processors 4-6
Pipeline components 4-9

conversational state 1-3
create() method, of Home interface 4-10

createWebflowURL() method, of
WebflowJSPHelper utility class 2-7

creating
input processors 4-5
Pipeline components 4-7
Pipelines 4-7

current state, in Webflow 2-3, 2-4, 2-7, 3-5,
3-15, 3-25

customer data 1-2, 2-10
customer support contact information ix
customizing

input processors 2-13
Pipeline 1-1, 1-6, 2-1, 2-14, 2-21
Pipeline components 2-13
Webflow 1-1, 1-3, 1-5, 1-6, 2-1, 2-2, 2-

14

D
data

contained within input processors 4-6
customer-supplied 1-2, 2-10
dynamic display of 1-2, 5-2
form field 1-2, 1-3, 2-10, 2-11

status 5-5
modified by Pipeline components 4-3
transient 1-2
validation of 1-2, 2-10, 2-11, 3-25, 5-3

database 1-2, 2-13, 4-11
calls in input processors 4-7
connections 4-9
operations 4-11
transactions and rollback 4-11

Datasource, transactional 4-11
default event 3-10, 3-19, 3-29, 3-40
definitions

Pipeline 2-15, 4-11
Pipeline components 2-14

deleting origins
global 3-15
InputProcessor 3-36

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-3

page 3-25
Pipeline 3-58

design model 1-2, 1-3
destination, of events 3-12, 3-22, 3-33, 3-55
development

guidelines 4-7, 4-11
roles 1-2, 1-5

documentation, where to find it viii
dynamic data display 1-2
dynamic modification

of Pipeline 2-17
of Webflow 2-6

E
editing origins

global 3-10
InputProcessor 3-29
page 3-19
Pipeline 3-40

Editor, Webflow and Pipeline
and role-based security 3-2
definition 3-1
hot-deploy feature 3-2
starting 3-4
support for multiple users 3-2
useful information 3-1
validation tool 3-58, 3-60, 3-61

message descriptions 3-63
EJBs 4-7

stateless session 4-11
Pipeline components implemented

as 2-13, 2-16, 3-45, 3-50
eliminating Pipelines and Pipeline

components 2-14, 3-50
error

messages 1-2
page

configuration 2-8, 2-9
system 2-9

server 4-9

event(s), in Webflow 1-2, 2-7
associated with Global origins

adding 3-10
deleting 3-14
editing 3-12
viewing 3-8

associated with InputProcessor origins
adding 3-31
deleting 3-35
editing 3-33
viewing 3-27

associated with Page origins
adding 3-20
deleting 3-24
editing 3-22
viewing 3-17

associated with Pipeline origins
adding 3-53
deleting 3-57
editing 3-55
viewing 3-38

default 3-10, 3-19, 3-29, 3-40
destination 3-12, 3-22, 3-33, 3-55
input processors

exception 2-11, 3-25
success 2-11, 3-25

JSP
button 2-3, 3-15
link 2-4, 3-15

names 2-3, 2-4, 2-7, 3-11, 3-22, 3-32, 3-
54

Pipeline
exception 2-20, 3-36
success 2-20, 3-36

type 2-7, 2-11
exceptions 5-8

and session timeouts 4-12
configuration, in Webflow search order

contextual 2-8
generic 2-8

input processors 1-2, 2-13, 4-5

I-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipeline 2-21, 4-9
Pipeline component 1-2, 4-8, 4-13
search 4-9

execution
of input processors 2-11, 4-5, 4-7
of Pipeline components 4-8

order 2-15
of Pipelines 2-13, 2-20, 4-4, 4-10

extending
input processors 2-10, 4-5
Pipeline 1-6, 4-1, 4-7
Pipeline components 4-7
Webflow 1-3, 1-6, 4-1

external services 4-11
Pipeline component calls to 2-13

F
filesystem access 4-11
flag, transaction

and Pipeline components 4-11
set to mandatory 4-11
set to never 4-11

flow of control 1-3, 2-11, 2-14, 2-21, 4-6
form field data 1-3

display 5-2
required 2-10
status of 5-5
submission 1-2
validation 2-11

form tag
action attribute 2-8
using to generate URLs 2-7

G
getPipelineProperty JSP tag 4-3, 5-6

example 5-7
getPipelineSession() method 4-12
getValidatedValues JSP tag 5-2

example 5-3, 5-5

global origins
adding 3-9
associated events 3-8
definition 3-5
deleting 3-15
editing 3-10
events

adding 3-10
deleting 3-14
editing 3-12

type 3-9
viewing 3-8

guidelines, for development
of input processors 4-7
of Pipeline components 4-11
server-side coding 4-11

H
high-level architecture, Webflow/Pipeline 1-

1, 1-2, 1-4, 2-14
categories 1-3
diagram 1-4

Home interface 4-10
hot-deploy feature of Webflow 3-2
HTML 1-2, 1-3
HTTP

request 5-6
session 4-3, 4-12, 5-5

HTTPServletRequest 2-10, 4-3, 4-5

I
importing, JSP tags 5-1

Pipeline 5-6
Webflow 5-1

infrastructure, Webflow/Pipeline 4-1, 4-7
initial state, in Webflow 2-4, 3-6, 4-14
initializers, static 4-11
input processor(s) 2-8, 2-10, 2-11, 2-13, 5-3

and instance variables 4-6

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-5

and statelessness 4-6
chaining 2-10, 2-12
class names 2-11
creating 4-5
customizing 2-13
data contained within 4-6
definition 1-2, 1-3, 2-10, 3-25
development guidelines 4-7
events 2-11
exceptions 1-2, 4-5, 4-13, 4-14
extending 2-10, 4-5
interface 4-5, 4-6, 5-3, 5-5
invocation 1-2, 2-10
life cycle of 4-6
naming conventions 4-6
success 1-2, 2-11
syntax in Webflow properties file 2-10
Webflow 2-4, 4-6

InputProcessor origins 3-25
adding 3-28
associated events 3-27
deleting 3-36
editing 3-29
events

adding 3-31
deleting 3-35
editing 3-33

modifying associated events 3-30
modifying information about 3-29
viewing 3-27

instance variables 4-6, 4-11
interface(s)

Home 4-10
InputProcessor 4-5, 4-6, 5-3, 5-5
PipelineComponent 4-8, 4-9, 4-13
Remote 4-10
standard bean 5-6, 5-7

isEJBSessionBean Pipeline component
property 2-14, 3-45, 3-50

isTransactional property 2-15, 4-11

J
J2EE 1-2
Java class(es)

ValidatedValues 5-3, 5-5
Java objects 2-10

Pipeline components implemented as 2-
13, 2-16, 4-10, 4-11

JavaScript 1-2
JavaServer Pages (JSPs) 2-14, 4-3

and input processors 2-10, 2-12
implementation of 5-1
in Webflow 2-2, 2-10

jndiName property, Pipeline component 2-
14, 3-45

JSP tags 1-2, 1-3, 1-5, 1-6
importing 5-1, 5-6
Pipeline 1-6, 5-1, 5-6

getPipelineProperty 4-3, 5-6
example 5-7

setPipelineProperty 5-7, 5-8
example 5-8

Webflow 1-6, 5-1
getValidatedValues 5-2

example 5-3, 5-5
setValidatedValues 5-4

L
life cycle of input processors 4-6

M
method(s)

for editing properties files 3-2
of Home interface 4-10
of ValidatedValues class 5-5
process()

of InputProcessor interface 4-5
of PipelineComponent interface 4-8
of Remote interface 4-10

signatures 5-8

I-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

for process() method 4-5, 4-8
for setAttribute() method 4-3
getPipelineSession() 4-12
ValidatedValues class 5-5

utility 4-6, 4-9
modifying components

in a Pipeline origin 3-42
modifying events

associated with a global origin 3-10
associated with a page origin 3-20
associated with a Pipeline origin 3-53
associated with an InputProcessor origin

3-30
modifying information

about a page origin 3-19
about a Pipeline origin 3-40
about an InputProcessor origin 3-29

N
name, Pipeline 2-15
name/value pairs 4-3

in Webflow properties file 2-3
names, event 2-3, 2-4, 3-11, 3-22, 3-32, 3-54
naming conventions

input processor 4-6
Pipeline component 4-9

O
objects

Java 2-10, 2-13, 2-16, 4-10, 4-11
PipelineSession 4-8, 4-10
temporary 4-3

operations
database 4-11
thread-safe 4-11

order of execution, Pipeline components 2-15
origins, in Webflow

global
adding 3-9

associated events 3-8
definition 3-5
deleting 3-15
editing 3-10
type 3-9
viewing 3-8

InputProcessor 3-25
adding 3-28
associated events 3-27
deleting 3-36
editing 3-29
modifying associated events 3-30
modifying information about 3-29
viewing 3-27

page
adding 3-18
associated events 3-17
definition 3-15
deleting 3-25
editing 3-19
modifying associated events 3-20
modifying information about 3-19
type 3-19
viewing 3-17

Pipeline 3-36
adding 3-39
associated events 3-38
deleting 3-58
editing 3-40
modifying associated events 3-53
modifying components 3-42
modifying information about 3-40
viewing 3-38

P
page

configuration error 3-6
Page origins

events
adding 3-20

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-7

deleting 3-24
editing 3-22

page origins
adding 3-18
associated events 3-17
definition 3-15
deleting 3-25
editing 3-19
modifying associated events 3-20
modifying information about 3-19
type 3-19
viewing 3-17

parameters
of createWebflowURL() method 2-7
of getPipelineSession() method 4-12
of process() method

InputProcessor 4-5
PipelineComponent 4-8

of ValidatedValues class 5-5
Pipeline 2-4, 2-8, 2-12

benefits 2-1
component(s) 1-2, 4-11

adding to Pipeline 3-42
and business logic 1-3, 4-7
and data modification 4-3
and threads 4-11
communication 4-3
creating 3-44, 4-7, 4-11
customizing 1-6, 2-13, 3-49
definition 1-2, 2-13, 2-14, 3-42
eliminating 2-14, 3-50
exceptions 1-2, 4-8, 4-13
execution 1-2, 4-8
implementation 2-13, 2-16, 4-10, 4-

11
interface 4-8, 4-9
invocation 1-2
naming conventions 4-9
order of execution 2-15, 3-46
predefined 2-13
properties 2-14

stateless versus stateful 4-10
success 2-21
transactions 4-11

creating 4-7
customizing 1-1, 1-6, 2-1, 2-14, 2-21
default 2-14, 4-1

property file 2-16
definition 1-1, 1-2, 2-13, 2-15, 4-11

example 2-15
dynamic modification of 2-17
eliminating 2-14
exceptions 2-20, 2-21
execution of 4-4

failure 4-11
success 2-20

extending 1-6, 4-1, 4-7
high-level architecture 1-1, 1-2, 1-4, 2-

14
diagram 1-4

in Webflow 2-13, 2-20
invocation 2-20
isTransactional property 2-15
JSP tags 5-1, 5-6

getPipelineProperty 5-6
setPipelineProperty 5-7, 5-8

name 2-15
property

file 2-14, 2-15, 2-17, 3-2, 4-11
isTransactional 4-11

session 1-2, 1-3, 2-10, 2-13, 4-2, 4-11, 5-
6, 5-7, 5-8

attributes 2-13, 4-3, 4-13, 5-6, 5-7
configuring 4-2
definition of 4-3
object 4-8, 4-10, 4-13
scope 4-3

transactional 4-8, 4-11
Pipeline origins 3-36

adding 3-39
associated events 3-38
deleting 3-58

I-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

editing 3-40
events

adding 3-53
deleting 3-57
editing 3-55

modifying associated events 3-53
modifying components 3-42
modifying information about 3-40
viewing 3-38

pool
commerce 4-9
connection 4-11

printing product documentation ix
process() method

of InputProcessor interface 4-5
of PipelineComponent interface 4-8
of Remote interface 4-10

product catalog 1-5, 4-4
property

Pipeline
isTransactional 2-15, 4-11

Pipeline component 2-14
ClassName 3-45, 3-50
className 2-14
isEJBSessionBean 2-14, 3-45, 3-50
jndiName 2-14

property file
Pipeline 2-14, 2-17, 4-11

location 3-2
preferred editing method 3-2
syntax of 2-15

validation of 3-58, 3-60, 3-61
Webflow 2-2, 2-10, 2-14, 2-20, 4-13, 4-

14
input processors in 2-10
location 3-2
preferred editing method 3-2
syntax of 2-3, 2-5

WebLogic 4-9, 4-11
public methods, of ValidatedValues class 5-5

R
related information ix
Remote interface 4-10
RemoteException, of Pipeline component 4-

8
Request scope, of Pipeline session attributes

4-3
request, HTTP 4-3, 5-6
Required transaction attribute 4-11
requirements for stateless session EJBs 4-10
resources, external 4-11
result state, in Webflow 2-3, 2-4, 2-8, 2-11, 3-

5, 3-15, 3-25
roles, development 1-2, 1-5

S
scope

Pipeline session 4-3
Request 4-3

search
exception 4-9
order 2-8, 3-6

serializable Pipeline session attributes 4-4
server error 4-4, 4-9
server-side coding guidelines 4-11
services, external 2-13
session, Pipeline 1-3, 4-11, 5-6, 5-7

and input processors 2-10
attributes 2-13, 4-3, 5-6, 5-7

retaining 4-3
scope 4-3
serializable 4-4

configuring 4-2
definition of 4-2, 4-3
timeouts 4-12

setPipelineProperty JSP tag 5-7, 5-8
example 5-8

setValidatedValues JSP tag 5-4
standard bean interface 5-6, 5-7
StartCommerce.bat 3-3

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-9

StartCommerce.sh 3-3
starting the Webflow and Pipeline Editor 3-4
state 2-4

conversational 1-3
current 2-3, 2-4, 2-7, 3-5, 3-15, 3-25
initial 2-4, 3-6, 4-14
maintenance 1-3
of business process 4-3
result 2-3, 2-4, 2-8, 3-5, 3-15, 3-25

stateless session EJBs 2-13, 2-16, 3-45, 3-50,
4-10, 4-11

statelessness, and input processors 4-6
static

initializers 4-11
variables 4-11

storing and retrieving Pipeline session
attributes 5-6

support
technical x

system error page 2-9

T
tag library, JSP 1-2, 1-3, 1-5, 1-6
temporary objects 4-3
threads and Pipeline components 4-11
thread-safe operations 4-11
timeouts, session 4-12, 4-13, 4-14
Tools, Administration

loading 3-3
sample page 3-4
username and password 3-4
Webflow and Pipeline Editor 3-1

validation for property files 3-58, 3-
60, 3-61

transactional
Pipelines 2-15, 4-8, 4-11

versus non-transactional 4-11
transient data 1-2
transitions

Webflow 3-5, 3-15, 3-25

and wildcard character 3-6
missing in 2-8, 2-9

type
event 2-7, 2-11
URL 2-7

U
URLs, and Webflow 2-7

absolute 2-7
type 2-7

user interface 1-2
utility class

importing 2-7
WebflowJSPHelper 2-7

utility methods 4-6, 4-9

V
ValidatedValues Java class 5-3, 5-5

constructor 5-5
method signature 5-5
parameters 5-5
public methods 5-5

validation
data 1-2, 2-10, 2-11, 3-25, 5-3
Webflow 3-58

existence of components 3-61
message descriptions 3-63
syntax only 3-60

variables
instance 4-6, 4-11
static 4-11

viewing origins
global 3-8
InputProcessor 3-27
page 3-17
Pipeline 3-38

I-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

W
Web pages, using Webflow in 2-7
Webflow 2-14, 4-6

and events 2-4, 2-11, 3-11, 3-22, 3-32, 3-
54

and input processors 2-10
and Pipelines 2-13, 2-20, 4-1, 4-7, 4-9
and URLs 2-7

using the anchor tag 2-8
using the form tag 2-7

benefits 2-1
customizing 1-1, 1-3, 1-5, 1-6, 2-1, 2-2,

2-6, 2-14
default 2-2, 2-5, 4-1
definition 1-2, 2-2
extending 1-3, 1-6, 4-1
high-level architecture 1-1, 1-2, 1-3, 1-4,

2-14
diagram 1-4

hot-deploy feature 3-2
JSP tags 1-6, 5-1

getValidatedValues 5-2
setValidatedValues 5-4

missing transitions 2-8, 2-9
property file 2-2, 2-5, 2-6, 2-10, 2-14, 2-

20, 4-13, 4-14
location 3-2
preferred editing method 3-2
syntax of 2-3

search order 2-8, 3-6
state 2-4, 2-10

current 2-3, 2-4, 2-7, 3-5, 3-15, 3-25
initial 2-4, 3-6, 4-14
result 2-3, 2-4, 2-8, 2-11, 3-5, 3-15,

3-25
transitions 3-5, 3-15, 3-25

and wildcard character 3-6
using in Web pages 2-7
validation 3-58

existence of components 3-61

message descriptions 3-63
of syntax 3-60

Webflow and Pipeline Editor
and role-based security 3-2
definition 3-1
hot-deploy feature 3-2
starting 3-4
support for multiple users 3-2
useful information 3-1
validation

message descriptions 3-63
validation tool 3-58, 3-60, 3-61

WebflowJSPHelper utility class 2-7
WebLogic property file 4-9, 4-11
wildcard character

subsitution in Webflow search order 2-8
use in Webflow properties file 2-5, 3-6

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of Webflow and Pipeline Management
	High-level Architecture
	Architecture Categories

	Development Roles
	Next Steps

	2 Customizing Webflow and Pipelines
	Using Webflow
	Customizing Webflow Using the webflow.properties File
	Syntax of the webflow.properties File
	Default Webflow
	Dynamically Modifying Your Site’s Webflow

	Using Webflow in Your Web Pages
	Webflow Search Order
	Search Order Examples

	Using Input Processors with Webflow
	Syntax of Input Processors in the webflow.properties File
	Chaining Input Processors
	Further Customization of Input Processors

	Using Pipelines with Webflow
	Customizing Pipelines Using the pipeline.properties File
	Syntax of the pipeline.properties File
	Default Pipeline
	Dynamically Modifying Your Site’s Pipelines

	Using Pipelines in the Webflow
	Further Customization of Pipelines

	3 Using the Webflow and Pipeline Editor
	About the Webflow and Pipeline Editor
	Starting the WebLogic Commerce Server Administration Tools
	Global Origins
	Viewing Global Origins
	Adding a Global Origin
	Editing a Global Origin
	Adding an Event
	Editing an Event
	Deleting an Event

	Deleting a Global Origin

	Page Origins
	Viewing Page Origins
	Adding a Page Origin
	Editing a Page Origin
	Modifying Information About a Page Origin
	Modifying a Page Origin’s Events

	Deleting a Page Origin

	Inputprocessor Origins
	Viewing Inputprocessor Origins
	Adding an Inputprocessor Origin
	Editing an Inputprocessor Origin
	Modifying Information About an Inputprocessor Origin
	Modifying an Inputprocessor Origin’s Events

	Deleting an Inputprocessor Origin

	Pipeline Origins
	Viewing Pipeline Origins
	Adding a Pipeline Origin
	Editing a Pipeline Origin
	Modifying Information About a Pipeline Origin
	Modifying a Pipeline Origin’s Components
	Modifying a Pipeline Origin’s Events

	Deleting a Pipeline Origin

	How to Validate Your Properties Files
	Validating the Webflow
	Validating the Webflow and Verifying the Existence of Components
	Validator Message Descriptions

	4 Extending Webflow and Pipelines
	Pipeline Sessions
	What Is a Pipeline Session?
	Attribute Scoping
	Managing the Pipeline Session
	Accessing the Pipeline Session
	Storing the Pipeline Session in the HTTP Session

	Extending Input Processors
	Using the InputProcessor Interface
	Input Processor Exceptions
	The CommerceInputProcessor Base Class
	Input Processor Naming Conventions
	Input Processors and Statelessness
	Other Development Guidelines

	Extending Pipelines and Pipeline Components
	Using the PipelineComponent Interface
	Pipeline Component Exceptions
	The CommercePipelineComponent Base Class
	Pipeline Component Naming Conventions
	Implementation of Pipeline Components as Stateless Session EJBs or Java Objects
	Stateful Versus Stateless Pipeline Components
	Transactional Versus Nontransactional Pipelines
	Other Development Guidelines

	Handling Session Timeouts
	Using the getPipelineSession() Method
	The InvalidSessionStateException Exception in webflow.properties
	PipelineComponent and Session Timeouts
	The InvalidPipelineSessionStateException Exception in webflow.properites
	About the sessiontimeout.jsp Template

	5 Webflow and Pipeline JSP Tags Library Reference
	Webflow JSP Tags
	<webflow:getValidatedValue>
	Example 1
	Example 2

	<webflow:setValidatedValue>
	Example

	About the ValidatedValues Java Class

	Pipeline JSP Tags
	<pipeline:getPipelineProperty>
	Example

	<pipeline:setPipelineProperty>
	Example

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

