o®%%,

» F
: #
Oy e a

BEA WebLogic Personalization Server

Guide to Building
Personalized Applications

BEA WebLogic Personalization Server 3.5
Document Edition 3.5
March 2002

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Guide to Building Personalized Applications

Document Edition Date Software Version

352 March 2002 BEA WebLogic Commerce Server 3.5
BEA Weblogic Personalization Server 3.5

Contents

About This Document

What You Need t0 KNOWcoocuieiieriieiiiieeeieeee e Xviii
€-A0CS WD SIC....ouiieieiiiieieetete ettt ettt sttt st e et et eneenes xix
How to Print the DOCUMENL.........ccuiviiieeieeiterieeieciee et XiX
CONLACT US! ..ttt sttt sttt et e st e s b e et eneees XX
Documentation CONVENTIONScceeverierierieeriesiieieseessenseesseeseesseenseseessenseenes XXi

Overview of Personalization Development

Personalization Server Run-Time Architecture..........ocoooveveriniencenieneenenene. 1-2
AVISOT ..ottt ettt ettt eae st e st et sa e teenseeseensesseeneesnnensenneen 1-3
Portal Managementccceevieriveeiieenieesieeneeneeeieeeeeetaesaeeaeesreeeaeensae s 1-3
USET MaANAZEMENTvveieieeiieiieiiieette et esteeteeteeeereesseesnseessseesseesseeesesnseens 1-3
Content Managementc.c.eeveeriierieniieniie ettt seee st iae e 1-4
Rules Management........c.ccccveeuieieeeieenieesieesieesieeeieeseesseessseeseeseneensesnssens 1-4
Foundation Classes and Utilitiescecueririineiiieniiieceieeeeree e 1-4

TSP TAZS ettt st st 1-4

Integration of External COmMPONENtScceeevueereiirieerieeeieenieereeieeeneeeee e 1-10

SUppOort fOr NAtIVE TYPES ..eveevrieieerieiiieieenie et eeie et sre e e seeeveetreeaeesaee e 1-11

Creating Personalized Applications with the Advisor

What IS the AdVISOT? ...c..oviiiiiieiiiieei ettt 2-2
The Advisor Delivers Content to a Personalized Application 2-2
The Advisor Provides Information About User Classifications................. 2-3
You Can Use the Advisor in One of TWo Ways.......ccoccvevverireierceeieneenns 2-4
The WLPS Advisor ArChiteCturecccoverieriiiiniiiieieeiesiee e 2-4
Writing Custom Advislets and Registering Them Using the Advislet Registry2-6
Writing a Custom AdVISIet.......cc.coeoiririiniiinnececeeeee 2-6

Guide to Building Personalized Applications iii

Understanding the Advislet Registry........ocoeviveeniiieiiiiniiieceeee 2-7

Registering a Single AdVISIet.........ccvecverieieriiieeeeeeeeeee e 2-7
AdVislet ChaiNing.......cccveeuiiriieiie ettt see et teeeee e e sbeeseenes 2-8
Registering a Compound AdVISIet.........coeevuiereeriiienieniienee e 2-8
Creating Personalized Applications
With the AdVISOT JSP Tags ...c.eovveeeieiieiieiieeeeeeee e 2-9
Classifying Users with the JSP <pz:div> Tag.....c.cccceevvreviienieniieieeneens 2-10
EXAMPIC...oeiiiieieiieieee et 2-11
Selecting Content with the <pz:contentQuery> JSP Tag...........ccccueue.e. 2-11
EXAMPIC...oiiiiiiieiiieieee et 2-11
Matching Content to Users with the <pz:contentSelector> JSP Tag 2-12
EXAMPIC...oeiiiieieiieieee et 2-12
Creating Personalized Applications with the Advisor Session Bean 2-13
Classifying Users with the Advisor Session Beanc.ccccccceeeencnnnnnee 2-15
Querying a Content Management System with the Advisor Session Bean.....
2-16
Matching Content to Users with the Advisor Session Bean..................... 2-17

3. Introducing the Rules Manager

What Is the Rules Manager?..........ccoveieieerieniieieneeie e 3-2
WEIl-KNOWN ODJECLS ..c.uviiuviieiieciieeieeeteeieeite et et esee e e e ebe e snneenne 3-2
How the Rules Engine WOrKSccceeeviiiiieiieniiiieeee e 33
What Are Rule Sets?cooviriinieiinieieiitceeerese ettt 3-4
Classifier RULES.c.ooiiiieiiiieieie e 3-5

The AND and OR OPerators..........ccuvereercieerieeiieniieenieeniesreeseneenvee e 3-6
Content Selector RUIESccccoeriirieiinieiiiiccceteceee e 3-6
Debugging RUIE Setscccviviieiiieiiieiecieceeee e s 3-7

What Is the Relationship Between Property Sets and Rules? 3-7

Content Type and Content Selector Rulescocevveeiirienencennnen. 3-8

Configuring the Rules Frameworkcccccvvviieiiiniieciieiiiceece e 3-9
The RulesManager Deployment Descriptor...........ccvevveereveerivenvenveeneennne. 39
The rules-common.properties fileccocerirvieriniiinieciie e 3-10

Rules Framework Debugging..........ccceevvveviienieeciieniiciiecie e 3-10

Rule Set TTL ..ot 3-11

Rules Engine LiSteNers.......c.ecueeuierieeieriieieieeeiese e 3-11

iv Guide to Building Personalized Applications

Rules Engine Expression Caching Optimizationsccccceceevuenee. 3-11

Rules Engine Error Handling and Reportingcccccvevvenvriennnnnen. 3-12
JSP Tag Propertiescccveevieriieeieeiiecieeieeiee e esieesveeveeneeeesaeessnesenas 3-12
Rules Manager Propertiesceecveerveeieeciieeieereesieeieeneeeesieeseve s 3-13
Expression Evaluation Settings..........ccceeevveveverrienieesienieieeieee e 3-13

Working with Content Selectors

What Are Content SEIECtOrs?coeeiiriirenieienieee e 4-2
Using Content-Selector Tags and Associated JSP Tags.........cocceveeeeveenenennenne 4-3
Attributes of the <pz:contentSelector™> Tagccccceeveerieecieerienirereenenenn 4-3
Identify the Content Selector Definition..........cccceevveevieecienieereennne 4-3

Identify the INDI Home for the Content Management System.......... 4-4

Define the Array That Contains Query Resultsccceevveciieneennn. 4-5

Create and Configure the Cache to Improve Performance 4-5
Associated Tags That Support Content Selectorsccoecveververervennenen. 4-7
Common Uses of Content-Selector Tags and Associated Tags................. 4-8

To Retrieve and Display Text-Type Documentsc.cccceevveereennnnne 4-8

To Retrieve and Display Image-Type Documents..........c..cccceerennnee. 4-9

To Retrieve and Display a List of Documents..........ccccceeveerveennnennee. 4-11

To Access a Content-Selector Cache on a Different JSP.................. 4-12

How Content Selectors Select Documents...........cccceevereneneneneeeneeenenenes 4-13

Foundation Classes and Utilities

FIOW IMANAZET ... viiiiiiiieiie ettt ettt e s te ettt e esteesee e taessbeenseestaeenseensee s 5-2
Dynamic Flow Determination and Handlingc.ccocovecienniiininnnnnn. 5-2
How the FlowManager WOrks...........ccoovevereriienienieieeieie e 5-3
Property St USAZEccivvieiieeiiiiieeieeriee e et eireeteesee st saeesseesteesnaeennaens 5-5
destinationdeterminer Propertyocoocveeveveieieriesienieeeiee e 5-5
destinatationhandler Propertycococeveeeieriiecieniieieee e 5-5

tt] (HiMe-t0-1iVe) PTOPEILY ...oevvveeeiieiieeeieeeeecie et 5-6

Creating a New Property Set........cccovvevienenieiieeieieeeee e 5-6

Set Parameters for Your Portal or Applicationcceceereveveruennnnns 5-7
WEDTIOW ...t 5-7
Accessing Your Application via the Flow Manager............cccocceceverennnnnn. 5-8

LS 10T 1101 ST 5-8

Guide to Building Personalized Applications v

HTTP HaNAING ..oovvieiiiiieeiecieeieeee ettt ettt st eae e s eee 59
Personalization Request ODJECtc.evveviieiiriieiereeie e 5-9
Default Request Property Set.......cocvecverieiiienieeeeie e 5-10
Personalization Session ODJECtccvevviierieniieiiieeieee e 5-12
Default Session Property Set........ccecvecveviirienieiienie e 5-12
UBIEIES ettt ettt sttt ettt ettt e st st st esbe et ebeane 5-14
JSPHEIPET ..ottt nae e enae 5-14
TSPBASE ..ottt 5-14
PI3NISPHEIPET ..ottt ettt 5-15
PI3NISPBASE ...ceeviiiieiiieiie ettt e 5-15
CONtENtHEIPET.......eeeieiieieeeieie ettt 5-15
CommercePropertieSHEIPETcccvevviiiiieiieeie et 5-15
Utilities in commerce.util Package.........ccccvecvevieiininieciieee e 5-16
EXPressionHEIPETcvveiieieiieiee e 5-16
TYPESHEIPET ..ottt et s eraeens 5-16
Creating and Managing Property Sets
OVerview Of PrOPEItY SetS........coeieririeririiieriiniisiese sttt 6-2
Property Value Retrieval via ConfigurableEntitycocoooeiinniiniininnnne. 6-6
Using the Property Set Management Toolc.cccccevviieriiniiienieeieccieieeee e 6-9
Creating Property SetS......cveieririereeieie ettt 6-9
Creating Properties Within a Property Setcccoeevveieeciienieeniieeieenee 6-10
Setting Up the Property Default Valueccccoovveeciecieniiciieene 6-11
Editing Property SetS......c.ccvriererierierieie et ettt 6-12
Editing Properties Within a Property Setcccoeveveiierieecieeniecieeeeeneen 6-13
Deleting Property SetS......cc.iicieiieeciieiieeieeiee et 6-13
Deleting Propertiesccveveverieriieieeeeeeieeie st eseeseeve e e e e eee 6-14
Creating and Managing Users
Overview of User Management...........cceeeveerueeeieereenveesieenreeseessessnesveesseesens 7-2
USEIS QN0 GIOUPS. ... everviientenieteteiteneeit ettt ettt sttt sttt eseebe e e seesbenbesaens 7-3
Unified USer Profilescoeveiiiniiiniiineniecicctecceecne et 7-4
CONTIGUIALION L...viieieiiieiieeie ettt et e sreeseaessbe e saeenseesees 7-6
CoNfIGUIALION 2.....oiiiiiiiiniiieiet ettt st 7-7
ConfIgUIAtion 3.....c.eiiiiiiriiriiieieietet ettt sttt 7-8

Guide to Building Personalized Applications

ConfiUration 4coceoiereiieiieieeeeeeee ettt 7-9

Setting Properties Explicitly or Implicitlyccccoovcninininiiicnncninnnn 7-10
Using WebLogiC REaIMS.......cccciiiiiiiiiiieiieeiece e 7-20
Ensure Properties Are Set in the BEA WebLogic Personalization
Server’s commerce.properties Fileccocveviiicieeiieniinieenenn, 7-21
Verify That the Realm Is ACtiVEc.oovvviiiieieiieieeieeeeee e 7-21
Implementing a New Custom Realmcccoovveviieniiiiiienieiieeeeee, 7-22
Anonymous User Profiles.........ccooveririeiiiiiieiieiesceiere e 7-23
Privacy StatemeNt.......c.cccveuirieiieeieieeceie ettt 7-24
USET MANAGET ...eecvieiieeiiieiie et esteesie et eeeteeteesteebeessbeesseessaesnseesssessseenssesnseenns 7-25
Using the User Management TOOL..........c.cccoeeueririieniienienieieeiee e 7-27
Creating GTOUPS ...ecveeieeeieieeieesiesieeteseetesteestesseessesseasseessesesseensesseessesnns 7-27
Deleting GIOUPSecvieiieeiieeiieieeeee et e ste et e eteeseesaeeseaessseessaeenbeennes 7-28
Adding USErs t0 GIOUPScecvervieeiriierieeiieiesieiesieesesseessesseesseeseesseeneenes 7-29
Removing Users from Groups..........cceceeeeeeereierienieenienienieneeeeeeeeeeseeneas 7-31
Editing Group Property Valuescccvevvveeiieciienieeiiecieeieeee e 7-32
CreatiNg USCT......ccvieieiieeiesie ettt ettt et e e s eneessesneesseennas 7-33
Editing User Property Values.........ccccoeceerireiercenieieieseeeeee e 7-35
DeletiNg USETSccuveeviieieeieeeiieieeeeeeesteeste et esibeeveeseesseessaessseessaeenseennes 7-37
Creating Unified Profile TYPesccevevierierieieniieieeieeie e 7-38
Editing Unified Profile TYPESccccoervieeieririereeieieeieseeeeee e 7-40
Deleting Unified Profile TYPES ...c.cecveevieeieeriiiiieiee e 7-40
Using the LDAP Realm.......cccoeceiieieiieieceee e 7-41
Setting up LDAP in the WLS Administration Consolecc.ccecvenenen. 7-41
Creating the LDAP Realmccccoevviiviienieiieeieeeceeeee e 7-41
The General Tab........cccooviereeiieiieieeeeee e 7-41
The LDAP Tab...c.ooiiiiiiieiiieiisieiescccteeteeieeesese e 7-41
The USErs Tabcooeiuieiiiiiiieiee et 7-42
The Groups Tabccceecviecieriieieee e 7-43
Specifying/Creating the Caching Realm...........ccoocevveiieieninieiieee, 7-43
Verifying the LDAP Properties in config.xmlccceveviervenvieneennennne. 7-44
251111 o) LS 7-45
Startup WebLogic COMMEIce SEIVETcecvevveerieriieieeeieieeeeeeeeeeneeeenes 7-45
Registering User Attributes for Retrieval from LDAPc.covennnnee. 7-46
Registering LDAP Properties for Use With Rules........c.cccccceeecnnen. 7-47

Guide to Building Personalized Applications vii

viii

Unregistering User Attributes for Retrieval from LDAP..............c.......... 7-47

Registering Group Attributes for Retrieval from LDAP...........cccccceuee. 7-48
Unregistering Group Attributes for Retrieval from LDAP 7-48
Viewing LDAP Configuration Settings..........cccoceeverenienienienenienieecene. 7-49
Using Other Realms.........c.occveiiiieiiieieieieee et 7-50
Selecting Groups for Use in the WebLogic Personalization Server from the
REAIM .. e 7-50
Mapping Realm Groups to the WebLogic Personalization Server 7-51
Deleting Groups from Your Database............ceevrveeriirienieienieieseeeees 7-52
Deleting User Records That Do Not Exist in the Realm from the
Personalization Database...........ccccoeererieninieiiiiiceeeeeee 7-53

8. (reating and Managing Content

What Is the Content Manager?cceveevieriirienieeieneeienieeseeseeeee e saeseeenaens 8-2
Choosing a Content ENINe.........cceeceeiiienieniie e 8-2
Running Querys Against the Content Repositoryc.cceceeveeieneenenncnne. 8-3
Methods for Retrieving and Displaying Documents.............cccoecverieeeennenns 8-4
Constructing Queries USINg Javaccccoveviiiiiiienienenieieeeeeeeesce e 8-7
Differences Between Content Management and Document Management. 8-7
Using the Document ServIet.........c.ccveieriieieririene e 8-8

Example 1: Usage in @ JSP......coovieiiiiieiieeeeee e 8-9
Example 2: Usage in @ JSP......coovviiieiieeieeeeee e 8-9
TSP TAZS ettt 8-10

Configuring the Content Managerccceccveeveeerieiiieeneeeiieseeereesveesseesneeens 8-10
Configuring the DocumentSchema EJB Deployment Descriptor 8-11
Configuring the DocumentManager EJB Deployment Descriptor 8-12
Setting Up Connection PoOIS........c.cccvieiieneiiieiiieie e eiceeesve e 8-13

Example Connection Pool Entry........cccoccveviieiieiiiinicie e 8-15
Configuring WebLogic Commerce Properties.........cocevvvvereeveenieenenens 8-16
Using the Show Document Serviet..........c.occvevveereenieiieenieeie e 8-17
Querying Document CONENL........cc.eccvierreerieerieeriienieeieeereeseeesveeveeneneas 8-17
Structuring @ QUETYeeuvereeeieieeiese e eteete et e st eee e see e e sesseeeesseeseens 8-18
Using Comparison Operators to Construct QUEriesccccveeeveerverevenenenn 8-20
Using the BulkLoader to Load File-based Content...........c..cccceevveenrennnen. 8-21

Command-Line USAZE........c.ccerreerereieieiiieieeieeieieeiesieesee e see s 8-22

Guide to Building Personalized Applications

How the BulkLoader Finds Filescccoovvuviiiiiiiiiiiiieeieieeeeenee 8-24

How the BulkLoader Finds Metadata Properties............cccecvevrenenee. 8-25
Cleaning Up the Database...........cceecvvereeeriieiieeiieiie e e 8-27

Loading Internationalized Documentsccccceeereniecienienieencenne. 8-27
Generating Schema Filescooceoviiiiiiiieiieecee e 8-28

Using Content Management JSP Tagscccoeevvvevieerieeniienieeie e 8-28
Content CaChecoueuiiiiiiiriirereeece e 8-28
readOnly Content Tag.......c.ccvevierereereiiee et 8-29

ODbject INTETTACESvievveiiieiieceeee ettt s 8-30

9. Working with Ad Placeholders

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?.................. 9-2
Ad Placeholders.ccueiiiiiiieiiciieee et e 9-2
Types of Queries That Ad Placeholders Run..........c.ccccveeevvevvieieennnn. 9-3

Types of Documents That Ad Placeholders Displayccccocceennenee. 9-3

Ad Attributes in the Content Management SyStem...........ccceevveerveerueennnnns 9-4

Ad Placeholder JSP Tagscoecvieieeniieiieeiecteeteeeee e st 9-8

The <ad:adTarget> JSP Tag......c.cocevevieieirieinecenesescee et 9-9
Resolving Ad QUery CONTlICEScc.vivvierieiiieiieeiteie ettt 9-10
How Ad Placeholders Contain Multiple Queries...........ccceevverveereeennennne. 9-11
How the Ad Conflict Resolver Chooses a QUery........cccevvevvveveneevennnne. 9-12
How an Ad Placeholder Chooses from Ad Query Results....................... 9-13
Creating Ad Placeholder Tags.......ccccvevierieiiiieiieeiee e 9-14
To Create an Ad Placeholder Tagcccccvveeveiieiieeieieeeeee e 9-14
Supporting Additional MIME TYPES......cccevcviirieeiieieniiciee e eseeeveeiee e 9-18
Add the New Type to the Deployment Descriptor...........cccceevvveeveenneenne. 9-18
Create and Compile a Java Class to Generate HTMLcccccoeneenes 9-20
Register the New Class in weblogiccommerce.properties...........c.e......... 9-20
How Placeholders Select and Display AdScccccvvvveeveeeciienienieeiie e 9-22

10. Creating Localized
Applications with the Internationalization Tags

What Is the I18N Framework?cccooeivirinininininenencesecceeceeeeeeees 10-2
Localizing Your JSP.....cco i 10-3
<I18NIZEIMESSAZE™ ...ttt sttt 10-4

Guide to Building Personalized Applications ix

X

SEIL8MILOCANIZES ...t 10-4

The JspMessageBundlec.cceeveeeieiinieiiieieceieseee e 10-5
How the Localization Tag WOrKScccccceervieviienieeieeneecie e 10-5
Character ENCOAINGcoovieriiiiiieiieciieiieeee ettt e 10-6
Displaying More Than One Character Set on a Page...........c..cc.cu.... 10-7
Default Character EncCodingsccceeevvevieeneenieiiiienie e 10-7
Steps for Localizing Your Application............cceeceeeverieneesiesieiieseeeieiens 10-9
Code EXAMPIES.....ccviveieiereieie ettt ettt s 10-10
Using the JSP Internationalization Framework with JavaScript..... 10-10
Using the JSP Internationalization Framework with Java Scriptlets
10-11
Localizing the BEA WebLogic Personalization Servercocceeveveennnen. 10-11
STALIC TEXL.euveeteieeieteeie ettt ettt ettt sttt ene et eee e 10-13
ConStructed MESSAZEScvverveereerierietieieseeetesteeseeeeeesseeseesseessesseensennes 10-13
Resource Bundles Used in the
WebLogic Personalization Server ToOlS.........ccccceeverieveriieeeeenee. 10-14
Localizing System MeESSAZEScecverveerierreerieniieenieeniesveeseesenes 10-14

11. The WebLogic Personalization Server Database Schema

The Entity-Relation Diagramcccoeceeeieriecienierieneeie e 11-1
List of Tables Comprising the WebLogic Personalization Server 11-6
The Personalization Server Data Dictionaryccceeeeeeeieenvenieenieeseeeneennen. 11-7
The AD_BUCKET Database Tableccceceveerieeieciieieiieeereeie e 11-8
The AD_COUNT Database Table..........cccocereeienieiinieiiniencsceceeee 11-8
The PLACEHOLDER Database Tablecccceoevieiieniniinieenceneeee 11-9
The PLACEHOLDER PREVIEW Database Tablec..ccccocenuenneee. 11-10
The WLCS_BOOKMARKS Database Tablecccccecverieieniencennnnne. 11-10
The WLCS_CATEGORIES Database Table........cccccccevenienenneiennnnne 11-11
The WLCS _COLUMN _INFORMATION Database Table................... 11-11
The WLCS_DOCUMENT Database Tableccccevenievininnrnceenne. 11-12
The WLCS_DOCUMENT METADATA Database Table................... 11-13
The WLCS_ENTITY _ID Database Tablecccceecveveeieciinieieeeeee, 11-14
The WLCS_GROUP Database Tableccccceceevienienenieniiiieiiceeee 11-15
The WLCS_GROUP_HIERARCHY Database Table...........ccccceeenen.e. 11-15
The WLCS _GROUP_ PERSONALIZATION Database Table.............. 11-16

Guide to Building Personalized Applications

The WLCS_IS_ALIVE Database Tableccccceveerenienenieicecee
The WLCS LDAP CONFIG Database Tableccceceecerererinennnn
The WLCS_PROP_BOOLEAN Database Table..........cccceeerurrennnne.
The WLCS_PROP_DATETIME Database Tablec.ccccereevennns
The WLCS PROP FLOAT Database Table........c..cccevererinenenennenne.
The WLCS_PROP_ID Database Table.........ccccooereerenienenienieneens
The WLCS PROP INTEGER Database Table..........cccceceririnercnnnnne.
The WLCS_PROP_MD Database Tableccccceeveverienieieieeee
The WLCS_PROP_MD_ BOOLEAN Database Tablec..cccc........
The WLCS PROP_MD DATETIME Database Table...........c.cccoe...
The WLCS PROP MD FLOAT Database Tablecccocceceverennnne.
The WLCS_PROP_MD_ INTEGER Database Tableccccceeneeee.
The WLCS PROP MD TEXT Database Tablec..ccccocevenerenncnee.
The WLCS PROP_MD USER DEFINED Database Table..............
The WLCS_PROP_TEXT Database Table..........cccceooereererienennannenns
The WLCS PROP _USER DEFINED Database Tablecc.......
The RULESET Database Tablecccccccverenenieneiinnceineneneeeeee
The WLCS_RULESET DEFINITION Database Table.......................
The WLCS_SCHEMA Database Table........ccccccecvercinenrenincncncnene.
The WLCS_SEQUENCER Database Tablec.cccceverenincncncnnene.
The WLCS _TODO Database Table.........cccoocveveveerieicieeienieiieeeeenee.
The WLCS_UIDS Database Tableccccceeviriecenininenenenenieneeeneee
The WLCS UNIFIED PROFILE TYPE Database Table...................
The WLCS _USER Database Table..........cccccueevierieriienieeieeiee e
The WLCS USER_GROUP CACHE Database Tablec..c.......
The WLCS USER_GROUP HIERARCHY Database Table..............
The WLCS _USER PERSONALIZATION Database Table................
The WLCS UUP_EXAMPLE Database Table..........cccccccrcerenerennenne.
The SQL Scripts Used to Create the Database

SQL SEIVET ...oiiiiiieeciie ettt ettt s ae e e be e esatae e sreeeesaeeenens
Defined Constraints

Guide to Building Personalized Applications

xi

xii

12. Personalization Server JSP Tag Library Reference

S ettt ettt ettt e e 12-4
<AA:AATAIZEE™ ..o et 12-4
Content ManaZEMENT.........c.eeiveerieeieeesienreecteeeeeesteesreesseessreesseesseesseesseesseeas 12-6
<OML L PTOPEITY ™ .ottt e 12-6
EXAMPIC...eiiiiieieieie et 12-8
<CMEPTINEDOC™ it et e 12-9
EXAMPIC...oouiiiieiiiieie ettt 12-10
<CMEPIINtPIOPETLY™ ... e 12-11
EXAMPIC...oiiiiiiieiiieiece ettt et 12-12
CCIMSELECT™ .ttt s 12-13
EXAMPIC...oouiiiieiiiieit et 12-15
<CMESEIECTBYIA™ ..ot 12-16
EXAMPIC...oouiiiieieiieic et 12-18

FIOW MANAZETcoviiieiiiieieeiieste ettt sttt e enee e ens 12-19
<fm:getApplicatioNURI>oooiiviiiiieicciie e 12-19
EXAMPIC...ouiiiiiiiiieie ettt 12-20
<fm:getCached AttribULe™........ccoeieiiieieie e 12-20
EXAMPIC...oiiiieiiiiiieiiece e e e 12-20
<fm:getSesSIONAIIDULE™oovveeiiiieieiieeecee e 12-21
EXAMPIC...ocuiiiiiiiiieie et 12-21
<fim:removeCached Attribute™...........cccooiririiniinenicieeeecceee 12-22
EXAMPIC...ouiiiieieiieie e 12-22
<fm:removeSesSIONAITDULE™coccveriieieieiere e 12-22
EXAMPIC...oiiiiiiiieiiieieee e 12-23
<fm:setCached AttribULE™ccoeviiiieieieeee e 12-23
EXAMPIC...oouiiiiiiiiieie et 12-24
<fM:setSessIONAIIDULE™c.eoiiiiiiiiieiee e 12-24
EXAMPIC...oouiiiiiiiiieic et 12-25
InternationaliZationc.eeeecierieriirie et enae e 12-25
<AL8N10CALIZE™ ... 12-25
EXAMPIC...oouiiiiiieiieie ettt 12-27
<ILBNIGEtMESSAZE™veviieiiiirteiertet ettt ettt e 12-28
EXAMPIC...oiiiiieiieiiieiieee et 12-29
Personalization TagsS........ccevveierieieiieieetee ettt 12-31

Guide to Building Personalized Applications

<PZ:CONLENTQUETY ™oeeieieeieeiiieieesteeeee et esereeteesreeebeeseressseesseesseeseenes 12-31

251111 o) (<P 12-33
<PZ:CONLENESEIECTOT™....c.uvieieeciiecieetie ettt seaeeae s 12-34
Specify a Value for contentHome............cccoevceeviieiiencieeniieeieeieee, 12-37
EXAMPIC o..eieieiieiiceeeeee e 12-38
CPZIAIV ittt ettt ettt st ste e et e ta et eenbeeeaeerae e 12-39
251111 o) LT 12-39
PLacEhOlderS. .. .c.eeviiiriiiiieieteet e 12-40
<Ph:placeholder™........coccieeiieiiiiieee et 12-40
PrOPEILY SETS....iiiieiiieieet et 12-42
<ps:getPropertyNamMeS™coouviiiiiriiiieeiieeeee et 12-42
EXAMPIE ...eviiiiieiie et s 12-43
<ps:getPropertySetNAMES™......cccveviiirierieriieeeeeeeee e 12-43

User Management:
Profile Management Tagsccceeereerierieiienieieeiee et 12-44
<UM:ZEPTOTIIE™ ... 12-45
EXAMPIE 1 oo 12-47
EXAMPIE 2 oo 12-47
EXamMPIE 3 oo s e 12-48
<UMEZEtPTOPETLY™ ..oeiiiiiiiieiiie e 12-48
251111 o) (< PP 12-49
EXAMPIE 2 oottt s 12-49
<UM:gEetPrOPerty ASSEIING™ ..oveuviiiiiiiriiiiricee et 12-50
251111 o) LS 12-50
<UMTEMOVEPTOPEITY™ ..ottt sae e 12-51
251111 o) LR 12-51
<UMESEEPTOPEILY™ ..ot 12-52
EXAMPIE c..eviiiiieiie et s 12-52

User Management:
Group-User Management Tagsccoeveeveeriiiineeniinieenieeieenee e 12-53
<UM:addGroupTOGIOUP™cveeieriieieetieieeee ettt 12-53
EXAMPIL ..o 12-54
<UM:addUSETTOGTOUP™c.eiuiiiiriiiiiniinieniente sttt 12-54
EXAMPIE ..ot 12-55
<um:changeGroUPNAME™ccceiieriirieniirie ettt 12-56

Guide to Building Personalized Applications xiii

EXAMPIC...oiiiiiiieiiieiiece et 12-56

<UM:CTEALEGTOUP ™ ...ee ettt eiee st te it e ittt e satesbeesbbeebeesaeesbeesanenane 12-57
EXAMPIC...coiiieiiiiiieiieee et 12-58
SUMECTEATEUSET ...ttt sttt e e 12-58
EXAMPIC...ouiiiiiiieiieie ettt 12-59
<um:getChildGroupNames™ccceerieeiieiiieeieenee e eresveesreeeae e 12-60
<UM:ZEtChIlAGIOUPS™.....ociiieiieieiieieeteee e 12-60
EXAMPIC...oouiiiiiiieiieie et 12-61
<um:getGroupNamesFOrUSEr™cccocveriienieeieeiienieeiee e e 12-61
EXAMPIC...ouiiiieiiiieie et 12-61
<um:getParentGroupName™ccoevieriiriiiiiiienienie e 12-62
EXAMPIC...ooiiieiiiiiieiece et 12-62
<UM: ZEtTOPLEVEIGIOUPS™eeieiieeieiieeeeee ettt 12-63
EXAMPIC...oouiiiiiiiiieie ettt 12-63
<UM:GELUSEIMAMES™......eeivieiieeeieeieestiesieesteeesteesaeeteessseeseesneessnenssennns 12-63
EXAMPIC...oouiiiieiiiieie ettt 12-65
<um:getUsernamesForGroup™...........cccevieviiinienieiniienieeee e 12-66
EXAMPIC...ciiiieiiiiiieiiece et 12-67
<UMTEMOVEGTOUP™ ..oitiiiieeiiiesite et eiteeteeite et e satesbeesibeebeesneesaeesaneenne 12-67
EXAMPIC...oouiiiiiiiiieit ettt 12-68
<um:removeGroupFTOMGTIOUP™ccvivvieiiieiiieeieeiieree e 12-68
<UMETEMOVEUSEI™ ...ttt 12-69
EXAMPIC...ocuiiiieiiiieie ettt 12-70
<um:removeUSserFromGroup™..........ccevcveeeiieiiieenieniicieeeee e 12-70
User Management: SeCUrity Tags.......ccoovevevieeierieieninie e 12-71
SUMELOZIN L.ttt st nae e nbe e enseseense e 12-72
SUMETOZOUL™ ..ttt ettt steeeaeetaesnbeeseesnseessnesnseenns 12-73
<UM:SEEPASSWOIA™....oeiiiieiiiieeee e 12-73
Personalization ULIItIEScceeeerieieieiesieiieeee e et 12-75
CESICOUNEET™ ..ottt iteeetent ettt et ett et eae et seeesbesetenbesstebeeneenbeeseesaeens 12-75
EXAMPIC...oouiiiiiiiiieie et 12-75
CESIAALE™ Lottt enneens 12-76
EXAMPIC...oiiiiiiiiiiieiie ettt e 12-76
<eS:fOrEachINATITAY™........coiviieieeiieteee e 12-76
EXAMPIC...couiiiieiiiieit et 12-77

xiv Guide to Building Personalized Applications

ESISNUIL ..t e
EXAMPIC ...oieiiiieieeeee e e
<ESIMONITOTSESSION ™eiieiieiiieiieeite et e eieete et e eaeeseeebee e essseesseeennas
25211110 (TSRO PSS
<ESINOtNUII> ..
25211110 (TSR UUSS
<eS:SIMPIEREPOIE™ ..o
EXAMPIC ...eieiiiieiecieee e e
<ESITANSPOSCATITAY™ ...veviuvieinteteneeieneeeeseeseeteseeseeetesseseeseeneeneeneeneenas
251111 o) LSRRI
<ESIUTTCONIENES ...ttt sttt e st e e eneeenes
EXAMPIE ..o e e
WeEbLOZIC ULIILIES ..eouveeieiieeiecieeieeec et
S PIOCESS™ ..ottt ettt ettt ettt ae et e et e e eesseensesneenneenes
25 211110 (ST OUUU PSSR
g B (01T Y PR
SWLCACKHE™ ...t

Index

Guide to Building Personalized Applications

XV

xvi Guide to Building Personalized Applications

About This Document

This document explains how to use the BEA WebLogic Personalization Server™ to
create personalized applications for use in an e-commerce site.

This document includes the following topics:

m Chapter 1, “Overview of Personalization Development,” provides developer
components and utilities that enable developers to create personalized
applications. The pieces documented in this guide include the Advisor,
Foundation classes and utilities, and JSP tag reference.

m Chapter 2, “Creating Personalized Applications with the Advisor,” recommends
content and performs several important functions in creating a personalized
application, including searching for content, tying the other core personalization
services together, and matching content to user profiles.

m Chapter 3, “Introducing the Rules Manager,” discusses how the Rules
Management component allows developers to create business rules that turn on
and off content and match content to users according to their profile information.

m Chapter 4, “Working with Content Selectors,” shows how a Business Analyst
(BA) can use content selectors to specify conditions under which WebLogic
Personalization Server retrieves one or more documents.

m Chapter 5, “Foundation Classes and Utilities,” describes the Foundation, a set of
miscellaneous utilities to aid JSP and Java developers in the development of
personalized applications using the WebLogic Personalization Server. Its utilities
include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to
Advisor services.

m Chapter 6, “Creating and Managing Property Sets,”discusses how Property Set
Management allows you to create property sets, the schema of personalization
attributes, and the properties that make up property sets.

Guide to Building Personalized Applications xvil

Chapter 7, “Creating and Managing Users,” discusses how User Management
joins enterprise data about users with profile data that is used to personalize the
user’s view of the application.

Chapter 8, “Creating and Managing Content,” documents how the Content
Manager provides content and document management capabilities for use in
personalization services. The Content Manager works with files or with content
managed by third-party vendor tools

Chapter 9, “Working with Ad Placeholders,” shows how ad placeholders
display documents that advertise products or services (ads) and record customer
reactions to them.

Chapter 10, “Creating Localized Applications with the Internationalization

Tags,” provides a simple framework that allows access to localized text and

messages. The internationalization (I18N) framework is accessible from JSP
through a small 118N tag library.

Chapter 11, “The WebLogic Personalization Server Database Schema,”
documents the database schema for the WebLogic Personalization Server.

Chapter 12, “Personalization Server JSP Tag Library Reference,” describes the
JSP tags included with WebLogic Personalization Server that allow developers
to create personalized applications without having to program using Java.

What You Need to Know

Xviii

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an e-commerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with related Web technologies as
described below. The topics in this document are organized primarily around the
development goals and tasks needed to accomplish them, specifically for the:

JavaServer Page (JSP) developer, who creates JSPs using the tags provided or by
creating custom tags as needed.

System analyst, or database administrator, who writes rules, designs schemas,
optimizes SQL and monitors usage.

Guide to Building Personalized Applications

m System administrator , who installs, configures, deploys, and monitors the Web
application server.

m Java developer, who extends or modifies the Enterprise Java Bean (EJB)
components that make up the WebLogic Personalization Server engine, if that
level of customization is desired.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic
Personalization Server documentation Home page, click the PDF files button and
select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Guide to Building Personalized Applications xix

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Personalization Server release 3.5.

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSUPPORT at www.bea.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
® Your name, e-mail address, phone number, and fax number

® Your company name and company address

® Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

XX Guide to Building Personalized Applications

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item
boldface text Indicates terms defined in the glossary.
Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
nonospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chmod u+w *
\t ux\ dat a\ ap
. doc
t ux. doc
Bl TMAP
fl oat
nonospace Identifies significant words in code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR

Guide to Building Personalized Applications

XX1

Xxii

Convention

Item

{}

Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[]

Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

m That an argument can be repeated several times in a command line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Guide to Building Personalized Applications

CHAPTER

1

Overview of

Personalization
Development

WebLogic Personalization Server provides developers with the ability to create
personalized applications for e-commerce Web sites. This topic provides a broad
overview of personalization development for Java and JSP developers.

This topic includes the following sections:
m Personalization Server Run-Time Architecture
e Advisor
e Portal Management
e User Management
e Content Management
e Rules Management
e Foundation Classes and Utilities
m JSP Tags
m Integration of External Components

m Support for Native Types

Guide to Building Personalized Applications

1-1

1 overview of Personalization Development

Personalization Server Run-Time
Architecture

The WebLogic Personalization Server run-time architecture is designed to support a
variety of personalized applications. These applications can be built on the
portal/portlet infrastructure, on the tags and EJBs supplied by the Advisor, and on
select tags and EJBs supplied by other personalization server components.

The following high-level architecture picture may be used to visualize the
relationships between the components.

Personalized Application
Personalization Server

Portal Management Advisor

Personalization Engine

Content
Management

User

Foundation Rules Service

Management

J2EE Platform

Application Server {WLS}

1-2 Guide to Building Personalized Applications

Personalization Server Run-Time Architecture

Advisor

The personalized application is one built by the developer to use the personalization
components. It may consist of a portal instance with JSP portlets, a set of traditional
JSP pages or servlets, and/or code that accesses EJB objects directly.

The Advisor component is the primary interface to the most common operations that
personalized applications will use. It provides access through tags or a single EJB
session bean. Specific functionality provided by the Advisor includes classifying
users, selecting content based on user properties, and querying content management
directly. The Advisor uses the Foundation, User Management, Rules Service, and
Content Management components.

Portal Management

The Portal Management component provides tags and EJB objects to support creating
a framework of portals and portlets. It is configured using the Portal Administration
Tools and has embedded JSP fragments built by the developer. For additional
information about Portal Management, see the Guide to Creating Portals and Portlets.

User Management

The User Management component supports the run-time access of users, groups, and
the relationships between them. The notion of property sets is embedded within the
user and group property access scheme. This component is set up using the User
Management Administration tools and supports access via JSP tags or direct access to
EJB objects. A Unified User Profile may be built by the developer, extending the User
EJB object, to provide custom data source access to user property values.

Guide to Building Personalized Applications 1-3

1 Overview of Personalization Development

Content Management

The Content Management component provides the run-time API by which content is
queried and retrieved. The functionality of this component is accessible via tags. The
content retrieval functionality is provided using either the provided reference
implementation or third-party content retrieval products.

Rules Management

The Rules Management component is the run-time service that runs the rules that are
built in the E-Business Control Center Adminstration Tool.

Foundation Classes and Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to Advisor
services.

JSP Tags

The JSP tags included with WebLogic Personalization Server (Table 1-1) allow
developers to create personalized applications without having to program using Java.

Table 1-1 JavaServer Page JSP Tags Overview

Library Tag Description
Ads <ad: adTar get > Queries the content management system
and displays ads.

1-4 Guide to Building Personalized Applications

JSP Tags

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library

Tag

Description

Content Management

<cm get Property>

Retrives the value of the specified content
metadata property.

<cm print Doc>

Inlines the raw bytes of a document object
into the JSP output stream.

<cm print Property>

Inlines the value of the specified content
metadata property as a string.

<cm sel ect >

Selects content based on a search
expression query syntax.

<cm sel ect Byl d>

Retrieves content using the content’s
unique identifier.

Flow Manager

<f m get Appl i cati onURI >

Gets the Flow Manager.

<f m get CachedAttri but e>

Gets an attribute out of the session/global
cache.

<fm set CachedAt tri but e>

Sets an attribute in the session/global
cache.

<fmrenoveCachedAttri but e>

Removes an attribute from the
session/global cache.

<f m get Sessi onAttri bute>

Gets an attribute out of the HttpSession.

<f m set Sessi onAttri but e>

Sets an attribute in the HttpSession.

<fm renoveSessi onAttri bute>

Removes an attribute from the
HttpSession.

Internationalization

<i 18n:1local i ze>

Defines the language, country, variant, and
base bundle name to be used throughout a
page when accessing resource bundles via
the <i 18n: get nessage> tag. Also
allows a character encoding and content
type to be specified for a JSP.

Guide to Building Personalized Applications 1-5

1 overview of Personalization Development

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library

Tag

Description

<i 18n: get Message>

Used in conjunction with the

<i 18: 1 ocal i ze> tag to retrieve
localized static text or messages from a
JspMessageBundle.

Personalization

<pz:

cont ent Query>

Provides content based on search
expression query syntax.

<pz:

cont ent Sel ect or >

Provides content based on results of a
content selector rule and subsequent
content query.

<pz:

di v>

Turns a user-provided piece of content on
or off based on the results of a classifier
rule.

Placeholders

<ph:

pl acehol der >

Implements a placeholder, which
describes the behavior for a location on a
JSP page.

Property Sets

<ps:

get Pr opert yNanes>

Used to get a list of property names given
a property set.

<ps

. get PropertySet Names>

Used to get a list of property sets given a
property set type.

User Management
(Profile)

<um get Profil e>

Retrieves the Unified User Profile object.

<um get Property>

Gets the value for the specified property
from the current user profile in the session.

<um get PropertyAsStri ng>

Works exactly like the

<um get Pr opert y> tag above, but
ensures that the retrieved property value is
aString.

<um r enmovePr operty>

Removes the property from the current
user profile in the session.

<um set Property>

Sets a new value for the specified property
for the current user profile in the session.

1-6 Guide to Building Personalized Applications

JSP Tags

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library

Tag

Description

(Group-User
Management)

<um addG oupToG oup>

Adds the group corresponding to the
provided chi | dGr oupNane to the group
corresponding to the provided

par ent G oupNane.

<um addUser ToG oup>

Adds the user corresponding to the
provided user Narre to the group
corresponding to the provided

par ent G- oupNarne.

<um changeG oupNane>

Adds the user corresponding to the
provided user Nane to the group
corresponding to the provided

par ent G oupNane.

<um cr eat eG oup>

Creates a new
com beasys. comrer ce. axi om con
tact . G oup object.

<um cr eat eUser >

Creates a new persisted User object with
the specified username and password.

<um get Chi | dG oupNanes>

Returns the names of any groups that are
children of the given group.

<um get Chi | dG oups>

Retrieves an array of

com beasys. comrer ce. axi om con
t act . G oup objects that are children of
the Group corresponding to the provided
gr oupNane.

<um get G oupNanmesFor User >

Retrieves a St r i ng array that contains the
group names matching the provided search
expression and corresponding to groups to
which the provided user belongs.

<um get Par ent G oupNanme>

Retrieves the name of the parent of the
com beasys. commrer ce. axi om con
tact . G oup object associated with the
provided gr oupNane.

Guide to Building Personalized Applications 1-7

1 overview of Personalization Development

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag

Description

<um get TopLevel G oups>

Retrieves an array of

com beasys. comrer ce. axi om con
tact . & oup objects, each of which has
no parent group.

<um get User nanes>

Retrieves a String array that contains the
usernames matching the provided search
expression.

<um get User nanesFor G oup>

Retrieves a St r i ng array that contains
the usernames matching the provided
search expression and correspond to
members of the provided group.

<um remove& oup>

Removes the

com beasys. comrer ce. axi om con
tact . & oup object corresponding to the
provided gr oupNarre.

<um r enove& oupFr onr oup>

Removes a child group from a parent
group.

<um r enoveUser >

Removes the

com beasys. comrer ce. axi om con
tact. User object corresponding to the
provided user Nane.

<um r enoveUser Fr on3 oup>

Removes a user from a group.

(Security) <um | ogi n>

Authenticates a user/password
combination.

<um | ogout >

Ends the current user's WebLogic Server
session. This is independent of the
FlowManager's user session tracking, and
should be used in combination with the
<um | ogi n> tag.

<um set Passwor d>

Updates the password for the user
corresponding to the provided username.

1-8 Guide to Building Personalized Applications

JSP Tags

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description
Personalization Utilities <es: count er > Creates a f or | oop construct.
<es: dat e> Gets a date and time formatted string based
on the user’s time zone preference.
<es: for Eachl nArray> Iterates over an array.
<es:isNull > Checks to see if a value is null. If the value
typeis a St ri ng, also checks to see if the
Stri ng is empty.
<es: noni t or Sessi on> Disallows access to a page if the session is
not valid or if the user is not logged in.
<es: not Nul | > Checks to see if'a value is not nul | . If the
value typeisa St r i ng, also checks to see
if the St ri ng is not empty.
<es: si npl eReport > Creates a two-dimensional array out of a
simple query.
<es:transposeArray> Transposes a standard [row][column]
array to a [column][row] array.
<es: uri Cont ent > Pulls content from a URL.
WebLogic Utilities <wl : process> Provides a attribute-based flow control
construct.
<w : repeat > Used to iterate over a variety of Java

objects, as specified in the set attribute.

Guide to Building Personalized Applications 1-9

1 overview of Personalization Development

Integration of External Components

A range of external components either come already integrated into the WebLogic
Personalization Server, or can be integrated easily by a developer as extensions to the
core components. A specific set of components that are known to be widely useful are
described in Table 1-2. Other custom component integrations are possible given the
JSP and EJB basis for the WebLogic Personalization Server, but the entire range of

possibilities is not addressed here.

Table 1-2 Useful External Components the Personalization Server

External Component

Out-of-the-Box

Methods and Notes

Support

DBMS Integrated and tested with Uses standard WebLogic
Cloudscape, Oracle 8.1.6, Server JDBC connection
and 8.1.7. pools.

LDAP authentication Can be set up automatically Uses WebLogic Server

using administration tools
and property files.

security realms.

LDAP retrieval of user and
group information

Can be set up automatically
using administration tools.

Built into EJB persistence
for User entity bean.

Legacy database of users

None.

Requires Unified User
Profile extension of User
entity bean.

Content Management
engine

Reference implementation
provided.

Provides API/SPI support
from third-party vendors.

Legacy content database

None.

Requires either extension
of Document entity bean or
custom implementation of
content management SPI.

Guide to Building Personalized Applications

Support for Native Types

Support for Native Types

WebLogic Personalization Server supports the native types shown in Table 1-3.

Table 1-3 Native Types

Supported Type Java Class Notes

Boolean java.lang.Boolean Comparators: ==, |=

Integer java.lang. Number Comparators: ==, |=, <, >,
<=, >=

Float java.lang.Double Comparators: ==, I=, <, >,
<=’ >=

Text java.lang.String Comparators: ==, |=, <, >,
<=, >=, like

Datetime java.sql.Timestamp Comparators: ==, I=, <, >,
<=’ >=

UserDefined Defined by developer Comparators: N/A

User-defined properties
may be programmatically
set and gotten, but are not
supported in the tools,
rules, or content query

expressions.

Any property can be a multi-value of a specific single native type as well. This is
implemented as a java.util.Collection. Comparators for multi-values are contains and
containsall, although the rules development tool will only allow the use of contains.
The values possible as part of a multi-value may be restricted to a valid set, using the

Property Set management tools.

Guide to Building Personalized Applications 1-11

1 Overview of Personalization Development

1-12 Guide to Building Personalized Applications

CHAPTER

2

Creating Personalized
Applications with the

Advisor

The WLPS Advisor is an easy-to-use and flexible access point for personalization

services—including personalized content, user segmentation and the underlying rules
engine.

This topic includes the following sections:

m What Is the Advisor?

The Advisor Delivers Content to a Personalized Application
The Advisor Provides Information About User Classifications

You Can Use the Advisor in One of Two Ways

m The WLPS Advisor Architecture

Writing a Custom Advislet
Understanding the Advislet Registry
Registering a Single Advislet
Advislet Chaining

Registering a Compound Advislet

m Creating Personalized Applications with the Advisor JSP Tags

Classifying Users with the JSP <pz:div> Tag

Guide to Building Personalized Applications

2-1

2 Creating Personalized Applications with the Advisor

e Selecting Content with the <pz:contentQuery> JSP Tag

e Matching Content to Users with the <pz:contentSelector> JSP Tag

m Creating Personalized Applications with the Advisor Session Bean
e Classifying Users with the Advisor Session Bean
e Querying a Content Management System with the Advisor Session Bean

e Matching Content to Users with the Advisor Session Bean

What Is the Advisor?

Content personalization allows Web developers to tailor applications to users. Based
on data gathered from user profile, Request, and Session objects, the Advisor
coordinates the delivery of personalized content to the end user.

The Advisor Delivers Content to a Personalized
Application

The Advisor delivers content to a personalized application based on a set of rules and
user profile information. It can retrieve any type of content from a Document
Management system and display it in a JSP.

The Advisor ties together all the services and components in the system to deliver
personalized content. The Advisor component includes a JSP tag library and an
Advisor EJB (stateless session bean) that access the WebLogic Personalization
Server’s core personalization services including:

m User Profile Management
m Rules Manager
m Content Management

m Foundation Platform

2-2 Guide to Building Personalized Applications

What Is the Advisor?

The tag library and session bean contain personalization logic to access these services,
sequence personalization actions, and return personalized content to the application. It
is also possible to write your own adivslets and access them with JSP tags you create.

This architecture allows the JSP developer to take advantage of the personalization
services using the Advisor JSP tags. In addition, a Java developer can access the
underlying Personalization EJB and its features via the public Advisor bean interface.
(For more information, see the API documentation in theWebLogic Personalization
Server Javadoc.) Think of the Advisor as sitting on top of the core services to provide
a unified personalization API.

The Advisor recommends document content for the following items:

m Web content included or excluded as determined by a user’s classification using
rules-based matching against user profile information. For more information
about classifying users, see “Classifying Users with the JSP <pz:div> Tag” on
page 2-10 and “Classifying Users with the Advisor Session Bean” on page 2-15.

® Documents returned by document attribute searches. For more information about
searching for content, see “Selecting Content with the <pz:contentQuery> JSP
Tag” on page 2-11 and “Querying a Content Management System with the
Advisor Session Bean” on page 2-16.

m Documents returned by content selectors using rules-based matching against user
profile information or user’s classification. For more information about
rules-based matching, see “Matching Content to Users with the
<pz:contentSelector> JSP Tag” on page 2-12 and “Matching Content to Users
with the Advisor Session Bean” on page 2-17.

Note: User classification is done in the E-Business Control Center. You will see the
term “customer segmentation” used in the GUI tool to refer to user
classification and classifier rules.

The Advisor Provides Information About User
Classifications

In addition to supplying content to a personalized application, the Advisor can also
provide information about user classifications. For example, an application can ask the
Adpvisor if, based on predefined rules, the current user is classified as a Premier

Guide to Building Personalized Applications 2-3

2 Creating Personalized Applications with the Advisor

Customer or an Aggressive Investor, and take action accordingly. The Advisor
accomplishes this classification by gathering relevant user profile information,
submitting it to the Rules Manager, and returning the classification to the caller.

For more information about classifying users, see “Classifying Users with the JSP
<pz:div> Tag” on page 2-10 and “Classifying Users with the Advisor Session Bean”
on page 2-15.

You Can Use the Advisor in One of Two Ways

m Using the JSP tags. Developers will probably find it most useful to use the JSP
tags when building typical pages. The tags provide ways to switch content on
and off based on user classification, return content based on a static query, and
match content to users based on rules that execute a content query. The JSP tags
that perform these tasks are: <pz: di v>, <pz: cont ent Sel ect or >, and
<pz:content Query>.

m Using the Advisor session bean. The page or application developer may use the
Advisor session bean directly in place of the tags, if desired. The Advisor
session beans provide ways to switch content on and off based on user
classification, return content based on a static query, and match content to users
based on rules that execute a content query.

The WLPS Advisor Architecture

The Advisor is a stateless session EJB and has a simple interface with a get Advi ce
method on it. The get Advi ce method returns Advi ce objects that contain the detailed
result information that was returned from the personalization services.

The argument to the get Advi ce method is an Advi ceRequest object that contains a
number of name-value pairs that define the inputs to the Advisor. The Advi ceRequest
has an interface very similar to the Ht t pSessi on object and allows predefined as well
as custom input parameters to be stored.

24 Guide to Building Personalized Applications

The WLPS Advisor Architecture

Each incoming Advi ceRequest has a URI associated with it. The Advisor uses the
URI prefix (the part before the colon) to look up an Advislet using the
AdvisletRegistry. Advislets are typically simple Java classes that implement a
personalization function such as user segmentation or content retrieval. The
AdvisletRegistry maintains the deployment mappings from URI prefixes to Advislet

instances.

Note: The relationship between the Advisor and an Advislet is similar to the
relationship between the Server and a servlet (though an Advislet is
independent of HTTP). An Advislet is registered with a prefix with the
Advisor and will be invoked for all incoming Advi ceRequest s with that

prefix.

Figure 2-1 The Advisor Architecture

JSP

J5F Tag

Java Client

i The Advislet Registry maintains a mapping

i fram URI prefixes to implementation class es for
i Advislets, Compound Advislets

i and Advice Transforms.

The registry = described using the

; Fdvigel-regishy. il file,

The Advisor ks a stateless session EJB and
senres 3s dscaleable JZEE entny-point
into the Advisor architecture.

Advisor
Stateless
Session Bean

getAdvice . Business Personalization Sarvices

FddceRagaeny ™| Advise Fdthods

liun)d
Fi

Advislet Repistry

Advislet

Domain- s pecific Advislet contact

{underhying lw-18vel sennes. For example, the

{ Rul dvizlet uzes the Rulesh, to evaluate
irules and rulesets.

Compound Advislet

Advice Trarsforms

Guide to Building Personalized Applications 2-5

2 Creating Personalized Applications with the Advisor

Writing Custom Advislets and Registering
Them Using the Advislet Registry

At the core of the Advisor framework is the Advislet Registry. The Advislet uses the
Advislet Registry to determine which Advislets to invoke in the processing of a
request.

The WebLogic Commerce Server provides a number of Advislets which support the
three personalization JSP tags: <pz: cl assi fi er >, <pz: cont ent sel ect or > and
<pz: cont ent quer y>. To extend this functionality or to interface with third-party
systems, you can write a custom Advislet and register it with the Advislet Registry.

Writing a Custom Advislet

2-6

To write a custom Advislet a developer simply has to implement the Advisor interface,
providing implementations of these three methods: get Advi ce,
get Requi redAt tri but es and val i dat eAdvi ceRequest .

When the Advisor receives an Advi ceRequest object, it calls

val i dat eAdvi ceRequest before passing it to the registered Advislet’s get Advi ce
method. The val i dat eAdvi ceRequest method should throw an

Il egal Argunment Except i on if some necessary attributes are missing or malformed.

In addition to the Advislet interface, an Advislet implementation must have a public
constructor with two parameters. The Advisor will use these parameters when it
creates instances of the Advislet.

m The first parameter is of type Advi sor. It contains a reference to the Advisor
creating this Advislet.

m The second parameter is an implementation of the Metadata interface. It contains
the Advislet’s name, description, and versioning information as specified in the
Advislet Registry.

Note: Unless otherwise indicated, all classes referenced here reside in the
com bea. commer ce. pl at f or m advi sor package.

Guide to Building Personalized Applications

Writing Custom Advislets and Registering Them Using the Advislet Registry

A default implementation of Advislet is provided in the Abst r act Advi sl et abstract
class. Simply extend this class, override the get Advi ce method and provide the
required constructor to create your own Advislet.

Understanding the Advislet Registry

We have already discussed how the Advislet Registry associates uri prefixes with
Adpvislet implementations. Once we look inside the Advislet Registry however, the
story becomes a bit more complicated.

In the case of the content query:// prefix, all of the work is done in one class—
com bea. conmer ce. pl at f orm cont ent . advi sl et s. Cont ent Quer yAdvi sl et | npl
However, other prefixes (such as cont ent sel ector://) require a sequence of
Adpvislets to be chained together to produce the required advice. In these cases a
CompoundAdvislet is registered against the uri prefix to shield this complexity from
the user. The specification of which Advislets to register against which uri prefixes is
contained in the advi sl et - r egi st ry. xnl which can be found in the WLCS root
directory. An understanding of the contents of this file is essential to any customization
of the Advislet framework.

Registering a Single Advislet

The following is an extract from the advi sl et -regi stry. xnl file:

<l-- run a content query -->
<advi sl et >
<regi stration-key>contentquery</registration-key>
<net adat a>
<nane>Cont ent Quer y</ nane>
<descri ption>
Advi sl et that can retrieve content fromthe Content Managenent
System based on a content query.
</ description>
<aut hor >BEA Syst ens</ aut hor >

</ met adat a>

<i mpl erment at i on-cl ass>com bea. cormer ce. pl atf orm content. advi sl ets
. Cont ent Quer yAdvi sl et | npl </ i npl enent ati on-cl ass>

</ advi sl et >

Guide to Building Personalized Applications 2-7

2 Creating Personalized Applications with the Advisor

The most important tags are <r egi st rati on- key>and<i npl enent ati on- cl ass>.
In the case of an Advislet, <r egi st r at i on- key> should specify the uri prefix that this
Adpvislet is to be registered against and <i npl enent ati on- cl ass> should specify
the fully qualified class name of the implementing Advislet class. The metadata
information is useful for versioning Advislets and should be included.

Advislet Chaining

Advi ceTr ansf or m objects are used to chain two Advislets together using a
CompoundAdvislet. An Advi ceTr ansf or m object provides the mapping between the
outputs of one Advislet and the inputs of the next. The AdviceTransform interface
simply specifies one method transform (Advi ce input, Advi ceRequest output).
which should be implemented to create the mapping required. Advi ceTr ansf or ns
are also registered in the AdvisletRegistry.

Registering a Compound Advislet

2-8

The following is an extract from the advi sl et -regi stry. xm file:

<I'-- compound advislet that calls the rules engi ne and passes
results to the content managenent system -->

<conpound- advi sl et >

<regi strati on-key>content sel ector</regi strati on-key>

<met adat a>
<nanme>Cont ent Sel ect or </ name>
<descri ption>
Advi sl et that retrieves Content fromthe Content Minagenent
system based on the evaluation of a rule set.
</ description>
<aut hor >BEA Syst ens</ aut hor >

</ met adat a>
<sequence>
<advi ce-transf or npRul esl nput Tr ansf or nx/ advi ce-t r ansf or m»
<advi sl et >unmappedr ul esCl assi fi er | gnor eRul eNane</ advi sl et >
<advi ce-transfornme
Cl assi fi er ToCont ent Sel ect or Transf orm
</ advi ce-transf or np
<advi sl et >unmappedr ul esCont ent Sel ect or </ advi sl et >
<advi ce-transforne

Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor JSP Tags

Rul esToCont ent Tr ansf orm
</ advi ce-transf or np
<advi sl et >cont ent quer y</ advi sl et >
</ sequence>
</ conpound- advi sl et >

The <sequence> tag specifies the start of the sequence that makes up the compound.
Entries can be either Advislets or AdviceTransforms which can occur in any order. The
Advisor will invoke each element of the sequence in turn before proceeding to the next.
The final Advice object generated will be returned to the user. In this way the
implementation of the Advislet is hidden from the user who does not need to know
whether a simple Advislet or a compound Advislet was used to generate the advice.

Creating Personalized Applications
with the Advisor JSP Tags

The Advisor provides three JSP tags to help developers create personalized
applications. These tags provide a JSP view to the Advisor session bean and allow
developers to write pages that retrieve personalized data without writing Java source
code.

Note: You must insert the following JSP directive into your JSP code to use the
Advisor’s <pz: di v> and <pz: cont ent Sel ect or > tags. The
<pz: cont ent Quer y> tag does not require that you extend the class.

<% page extends="com beasys. conmer ce. axi om p13n.j sp. PL3NJspBase”
%

m The <pz: di v> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is t r ue, it turns
the content on; if f al se, it turns the content off.

Note: The system turns on the content by inserting the content residing between
the start and end <pz: di v> tags in the JSP code. This content can include
any valid JSP, including HTML tags, other JSP tags, and scriptlets. If the
classifier rule returns f al se, the system skips the content between the start
and end <pz: di v> tags.

Guide to Building Personalized Applications 2-9

2 Creating Personalized Applications with the Advisor

m The <pz: cont ent Quer y> tag provides content attribute searching for content in
a Content Manager. It returns an array of Cont ent objects that a developer can
handle in numerous ways.

Note: For more information about how WebLogic Personalization Server
manages content, see Chapter 8, “Creating and Managing Content,” in this

guide.

m The <pz: cont ent Sel ect or > tag recommends content if a user matches the
classification part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in the rule and returns
the content back to the JSP page.

For information about defining a content selector rule, see “Retrieving Documents
with Content Selectors” inUsing the E-Business Control Center.

In addition to using JSP tags to create personalized applications, you can work directly
with the Advisor bean. For more information about using the bean, see “Creating
Personalized Applications with the Advisor Session Bean” on page 2-13.

Classifying Users with the JSP <pz:div> Tag

The <pz: di v> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is t r ue, it turns the
content on; if f al se, it turns the content off.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts (BAs) to develop their own classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you
will see classifer rules referred to as “customer segmentation.”

For information about creating classifier rules with the E-Business Control
Center, see the topic “Creating a New Customer Segment” in the chapter
“Using Customer Segments to Target High-Value Markets” inUsing the
E-Business Control Center.

You can also use the Advisor bean directly to classify users. For more
information, see “Classifying Users with the Advisor Session Bean” on page
2-15.

2-10 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor JSP Tags

Example

This example executes the PremierCustomer classifier rule and displays an alert to
premier customers in the HTML page’s output.

<U@taglib uri="pz.tld" prefix="pz" %

<pz:div
rul e="Prem er Cust oner " >

<p>Pl ease check out our new Prem er Custoner bonus program.<p>
</ pz:div>

Selecting Content with the <pz:contentQuery> JSP Tag

Example

The <pz: cont ent Quer y> tag provides content attribute searching for content in a
Content Manager. It returns an array of Cont ent objects that a developer can handle
in numerous ways.

Note: For information about using the <pz: cont ent Quer y> JSP tag, see
“<pz:contentQuery>" on page 12-31. This tag provides similar functionality
to the <cm sel ect > tag.

The following example executes a query against the content management system to
find all content where the author attribute is Hemingway and displays the Docunent
titles found:

<U@taglib uri="pz.tld" prefix="pz" %
<% page i nport="com beasys. comrer ce. cont ent. Cont ent Hel per" %

<pz:content Query id="docs"
cont ent Hone="<%=Cont ent Hel per . DEF_DOCUMENT _NMANAGER_HOME %"
query="aut hor = ' Hem ngway'" />

<es:forEachl nArray array="<%docs%" id="aDoc"
t ype="com beasys. comrer ce. axi om cont ent. Cont ent " >
<l i >The docunent title is: <cmprintProperty id="aDoc"

Guide to Building Personalized Applications ~ 2-11

2 Creating Personalized Applications with the Advisor

nane="Title" encode="htm" />
</ es: forEachl nArray>

Note: For more information about these JSP tags, see “<cm:printProperty>"" on page
12-11 and “<es:forEachInArray>" on page 12-76.

You can also use the Advisor bean directly to select content. For more information, see
“Querying a Content Management System with the Advisor Session Bean” on page
2-16.

Matching Content to Users with the <pz:contentSelector>

JSP Tag

Example

The <pz: cont ent Sel ect or > recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Advisor
executes the query defined in the rule to retrieve content.

Notes: For more information about this tag, see “<pz:contentSelector>" on page
12-34.

For information about creating classifier rules, see the chapter “Using Customer
Segments to Target High-Value Markets” inUsing the E-Business Control Center.

The following example asks the Advisor for content specific to premier customers and
then displays the Docunent titles as the results.

<U@taglib uri="pz.tld" prefix="pz" %

<pz: cont ent Sel ect or id="docs"
rul e="Prem er Cust oner Spot | i ght*"
cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT _MANAGER_HOVE %"
Document Manager" />

<es:forEachl nArray array="<%docs%" id="aDoc"
t ype="com beasys. conmer ce. axi om cont ent . Content " >
<l i>The docunent title is: <cm printProperty id="aDoc"

2-12 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

name="Titl e" encode="htm" />
</ es: forEachl nArray>
</ ul >

You can also use the Advisor bean directly to match content to users. For more
information, see “Matching Content to Users with the Advisor Session Bean” on page
2-17.

Creating Personalized Applications with the
Advisor Session Bean

Java developers can work directly against the Advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean.

Note: Refer to the API documentation in the Javadoc for more information about
using the session bean to create personalized applications.

The following steps provide a general overview of the process involved for an
application to get content recommendations from the Advisor.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
AdviceRequest object.

Note: You must provide this method with the uri representing the request. The
Advisor uses the uri prefix to determine which Advislet to invoke to
recommend content.

3. Set the required and optional attributes for the AdviceRequest object.

4. Call the Advisor’s get Advi ce method.

The Advisor calls the best Advislet to make the recommendation. The Advislet
determines the recommendations and the Advisor then passes the Advi ce object
back to the application.

The Advisor uses the Advislet Registry to choose the Advislet to invoke.

Guide to Building Personalized Applications ~ 2-13

2 Creating Personalized Applications with the Advisor

2-14

5. The personalized application extracts the recommendation from the Advi ce
object and uses it in the application.

When a personalized application requests advice from the Advisor, the Advisor bean
delegates the request to a registered Advislet that can handle the request. The Advisor
uses the uri prefix to determine which registered Advislet will receive the advice
request. The Advislet then makes the recommendations and returns the Advi ce object
back to the Advisor. This design encapsulates all of the advice logic into the Advislet
and allows developers to create custom Advislets for more specialized purposes.

Attributes objects act as parameters for the request. Attributes objects can be set on the
Advi ceRequest object and are associated with a St ri ng object representing the name
of the attribute.

Three Advislets are supplied with the sytem: Classifier Advislet, ContentQuery
Advislet and ContentSelector Advislet. Names for the attributes that need to be set on
the supplied Advislets are defined as static Strings in the AdviceRequestConstants
interface.

Table 2-1 shows the logic the Advisor uses to determine how to map a
recommendation request to an Advislet.

Table 2-1 Mapping a URI Prefix to an Advislet

Uri Prefix Inferred Advislet
classifier Uses a rules-based inference engine to classify a user
based on rules written using the E-Business Control
Center.
cont ent sel ect or m Uses a rules-based inference engine to classify a
user.

m Determines if the user matches the classification.

m Uses a rules-based inference engine to obtain a
content query.

m Selects content based on the content query obtained.

cont ent query Performs a content attribute search on a specified
content management system.

Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

The following sections demonstrate how to directly access the Advisor to provide the
same functionality as that provided by the JSP tags.

Classifying Users with the Advisor Session Bean

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for a classification (refer to the
Javadoc for API details).

Note: Unless otherwise indicated, all classes used here reside in the
com bea. comrer ce. pl at f or m advi sor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object. In this case,the uri argument should be
“classifier://”.

3. Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

e HTTP_SESSI ON— the session object (retrieved from
P13NJspHel per . cr eat eP13NSessi on(Ht t pSer vl et Request)).

e USER- the user object (retrieved from
P13NJspHel per. creat eP13NProf i | e(Ht t pSer vl et Request)).

e HTTP_REQUEST — the request object (retrieved from
P13NJspHel per . cr eat eP13NRequest (Ht t pSer vl et Request)).

e NOW-—ajava. sql . Ti mest anp object representing now.

e RULES_RULESET_NAME — (optional) the name of the segmentation rule to fire.
(For more information about customer segment rules, see Chapter 3,
“Introducing the Rules Manager,” in this guide.)

4. Call the get Advi se method on the Advisor.

5. The Advisor returns an instance of Advi ce. The get Resul t method is called to
obtain the classification object. If a classification object is returned, then the
classification is considered to be t r ue. If the return value is nul | , the
classification is considered to be not true.

Guide to Building Personalized Applications 2-15

2 Creating Personalized Applications with the Advisor

Note: If the optional Advise Request parameter RULES_RULESET_NAME is not
supplied, there may be multiple classifications returned for the user.

Querying a Content Management System with the
Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use Content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

Note: Unless otherwise indicated, all classes used here reside in the
com bea. conmer ce. pl at f or m advi sor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object In this case, the uri argument should be
“contentquery://”

3. Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

e CONTENT_MANAGER HOVE (required) — the JNDI name to find a content
manager home interface.

e CONTENT_QUERY_STRI NG (required) — the query to run against the system.

e CONTENT_QUERY_SORT_BY (optional) — the order in which to sort the
returned results.

e CONTENT_QUERY_MAX_I| TEMS (optional) — the maximum instances to return.
4. Call the get Advi se method on the Advisor.

5. The Advisor returns an instance of Advi ce. The get Resul t method is called to
obtain the array of Cont ent objects representing the recommendation.

2-16 Guide to Building Personalized Applications

Creating Personalized Applications with the Advisor Session Bean

Matching Content to Users with the Advisor Session

Bean

For content selection requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

Note:

Unless otherwise indicated, all classes used here reside in the
com bea. commer ce. pl at f or m advi sor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory’s static cr eat eAdvi ceRequest method to create an
Advi ceRequest object. In this case the uri argument should be
“contentsel ector://”

3. Set the required attributes on the Advi ceRequest object (see
Advi ceRequest Const ant s). These include:

HTTP_SESSI ON— the session object (retrieved from
P13NJspHel per. creat eP13NSessi on).

USER — the user object (retrieved from
P13NJspHel per. creat eP13NProfil e).

HTTP_REQUEST - the request object (retrieved from
P13NJspHel per. creat eP13NRequest).

NOW-aj ava. sql . Ti mest anp object representing now.

RULES_RULESET_NAME — the name of the segmentation rule to fire. (For
more information about customer segments, see the chapter “Introducing the
Rules Manager” in this guide.)

CONTENT_MANAGER_HOME (required) — the JNDI name to find a content
manager home interface.

CONTENT_QUERY_STRI NG (required) — the query to run against the system.

CONTENT_QUERY_SORT_BY (optional) — the order in which to sort the
returned results.

CONTENT_QUERY_MAX_I| TEMS (optional) — the maximum instances to return.

Guide to Building Personalized Applications ~ 2-17

2 Creating Personalized Applications with the Advisor

4. Call the get Advi se method on the Advisor.

5. The Advisor returns an instance of Advi ce. The getResult method is called to
obtain the array of Cont ent objects representing the recommendation.

2-18 Guide to Building Personalized Applications

CHAPTER

3

Introducing the Rules

Manager

Rules Management forms a key part of the personalization process by prescribing

custom content to fit individual user profiles. The business logic encompassed by these
rules allows robust delivery of personalized content marketed specifically to each end
user type.

This topic includes the following sections:

m What Is the Rules Manager?

Well-known Objects

How the Rules Engine Works
What Are Rule Sets?
Classifier Rules

Content Selector Rules

Debugging Rule Sets

m Configuring the Rules Framework

The RulesManager Deployment Descriptor

The rules-common.properties file

Guide to Building Personalized Applications

3-1

3

Introducing the Rules Manager

What Is the Rules Manager?

WebLogic Personalization Server offers a robust personalization solution through a set
of components that provide edit-time and run-time services for delivering personalized
content to end users while browsing a Web site. These personalization components use
business rules to match users and groups with appropriate content. The logic
encompassed by the rules forms a critical piece of the personalization process.

The Rules Manager component of WebLogic Personalization Server provides editing,
deploying, and run-time capabilities for providing personalized content based on
externalized rules. This component includes two major parts: an edit-time tool with a
graphical user interface (GUI) that allows Business Analysts to define classification
and content selection rules, and a run-time service that matches users with content
based on these rules.

Rules are created in the E-Business Control Center. This GUI tool is designed to allow
Business Analysts to develop their own content selector rules and classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you will see
content selector rules called simply “content selectors” and classifier rules referred to
as “customer segments.”

Well-known Objects

3-2

The Rules Management component uses several well-known objects:

m Cont ent Query: This object describes the parameters of a query that is executed
as a result of firing a content selector rule.

m Now: A well-known object in the rule editor, of type
(com bea. conmer ce. pl at f orm xm . schema) Ti nel nst ant
that corresponds to the instant of a user request.

m User: For each call to the rules component, a single User object will be
provided for use by the rules. User has a fixed schema, determined dynamically
at edit time by calling the User Management component. Given that the User
might have a Nuner i ¢ schema attribute called age, a valid expression might be:
User.age > 35.

Guide to Building Personalized Applications

What Is the Rules Manager?

m Request : This object is used in the same way as the User object. The Request
properties are defined in a default property set. (For more information, see
“Default Request Property Set” on page 5-10 in the “Foundation Classes and
Utilities” chapter of this guide.)

m Sessi on: This object is used in the same way as the User object. The Sessi on
properties are defined in a default property set. (For more information, see the
“Default Session Property Set” on page 5-12 in the “Foundation Classes and
Utilities” chapter of this guide.)

Figure 3-2 The Rules Framework

JSP
getAdvice o | Advisor Staeless Session getAdvice - :
JEF Tag [AdviceRequest] = & Eean [AdviceRequest] RulesAdwisiet
al5 ¥ loadRuleset
o [toadRuteset |
1
s RulesMan ager
§ Stateless Session Bean
. Context Cach
Java Client evaluateRuleset . o L aohe RulesetlLoadar
i T input objects, filten - (per instance) Rulesets
Campaigns, E-BCC) P I . TTL Policy XML in R D BMS)

FRule Set Cacke
(oer)

F

¥

Context
(Rules Engine)

How the Rules Engine Works

The Rules Engine functions with a set of rules operating on objects in working
memory. This working memory is first populated with input from the calling objects,
and contains the cached user profile bean, among other things. A representation of the
user’s profile exists in working memory before any rules are actually fired.

Guide to Building Personalized Applications 3-3

3 Introducing the Rules Manager

Rules can be executed only within a context. The context associates a rule set with
working memory. The context provides an interface to the Rules Engine that controls
the relationship between the rule part of the application and the working memory.

This working memory is operated on by the production rules, which are contained in
rule sets. The left-hand sides (LHS) of these rules are evaluated against the objects in
the working memory. If the patterns on the LHS are matched, then the actions
contained in the right-hand side (RHS) of the rules are performed. Some of these
actions may assert new objects into the working memory. For example, if our
Classifier rule tests for USER. age > 45, then we might assert anew O assi fi cati on
object into working memory.

The production system is executed by performing the following operations:

1. Match: Evaluates the LHSs of the rules to determine which are satisfied given the
current contents of working memory.

2. Conflict resolution: Selects one rule with a satisfied LHS. If no rules have
satisfied the LHSs, halts the interpreter.

3. Act: Performs the actions in the RHS of the selected rule.
4. Gotostep 1.

Rules will continue to operate on the working memory until the conflict resolution set
is zero (that is, no more rules can fire).

After the Rules Engine has halted, the rules manager component returns a list of
objects remaining in working memory. A likely scenario will have an object remaining
of the type “Classification” or “ContentQuery.”

The Rules Manager will then iterate over these remaining objects and filter them using
the optional Object Filter. The filter can selectively ignore objects or mutate them.

The resultant objects, if any, are then returned to the Advisor.

What Are Rule Sets?

The BEA WebLogic Personalization Server provides two rule sets that act as
containers for the rules created in the E-Business Control Center: the global
classifications rule set and the global content selectors rule set.

34 Guide to Building Personalized Applications

What Is the Rules Manager?

Rules within a rule set may refer to any properties. In general, you should not change
or delete properties if a rule refers to it. Adding properties does not affect existing
rules.

Classifier Rules

Classifier rules are created in the E-Business Control Center. For information and
instruction on creating classifier rules (called “customer segments” in the E-Business
Control Center), see the chapter “Using Customer Segments to Target High-Value
Markets” inUsing the E-Business Control Center.

Classifier rules dynamically categorize users into groups (user segments) using
Boolean logic. A classifier rule determines if a user profile meets a set of conditions
and places the user in a category based upon the result. Essentially, if the user profile
meets the conditions, it is classified according to the classifier rule; if it does not meet
the classification conditions, the user profile is not included in the classification group.

The following examples illustrate the logic involved in processing a classifier rule
(note the implicit and between the rule phrases):

Cl assifier M ddl eAgeMan

If User has the follow ng characteristics:
User.age > 35 AND User.age < 65
and User.gender == "M OR "nal e"

Cl assifier H ghEarner
If User has the follow ng characteristics:
User.inconme > 100000

Classifier rules are the building blocks of more complicated rules. Content selector
rules can use classifier rules as they select personalized content to match a user or
group profile. (See “Content Selector Rules” below.)

Use the <pz: di v> JSP tag to include a classifier rule in a JSP page. For a complete
listing, see “<pz:div>" on page 12-39 in the “JSP Tag Library Reference” chapter of
this guide.

Guide to Building Personalized Applications 3-5

3

Introducing the Rules Manager

The AND and OR operators

Figure 3-3 shows an example of clauses ANDed and ORed together. By default, all
clauses in a rule are ANDed together.The <or > operator is applied to nested (indented)
child clauses below the <or > operator. In that case, the nested statements are ORed,
and ANDed to clauses not nested around them.

Figure 3-3 AND and OR Example

[Then)
TSER.Customer Properties.DefaultlihippinglddressPoBox =g 12345

or)
USER. DEFAULT PORTAL SCHEML.titlebar font color ne #FFFFFFFFF
USER. DEFAULT PORTAL SCHEMi.titlebar font _color eq #D

These two phrases are ORed.
By default, these clauses are AMDed:

Content Selector Rules

3-6

Content selectors are created in the E-Business Control Center. For instructions on
using the GUI tool to create content selectors, see the E-Business Control Center
online help. A copy of the information presented in online help is available on the
e-docs Web site—see the chapter “Retrieving Documents with Content Selectors” in
Using the E-Business Control Center.

Content selector rules construct queries on the fly and return content based on the user
profile. This type of rule adds time and content components to the basic classifier rule
and may use references to classifier rules to define it. It also produces dynamic queries
at runtime to select content from a document collection.

The power of producing dynamic queries that match content with user profiles allows
content selectors to deliver highly customized content to end users. Since content
selector rules can use queries to select content based on run-time parameters, they
allow the system to match personalized content to user profiles.

Note: Although a profile may meet the criteria of a content selector rule, the rule may
not return any content objects. Why? If no content matches the query’s criteria,
the query cannot return a content object.

Guide to Building Personalized Applications

What Is the Rules Manager?

You can use the <pz: cont ent Sel ect or > JSP tag to include content selector rules in
JSP pages. (See <pz: cont ent Sel ect or > in the chapter “JSP Tag Library Reference”
in this guide.)

For an in-depth look at using content selectors, refer to Chapter 4, “Working with
Content Selectors,” in this guide.

Debugging Rule Sets

Note: The underlying structure of the Rules Engine has been greatly enhanced for
WebLogic Personalization Server release 3.5. If you have created rules and
rule sets in previous versions of this product, please refer to the Migration
Guide for additional information.

What Is the Relationship Between Property Sets and Rules?

You might notice that a rule set you have used in the past begins functioning
incorrectly. This behavior is probably due to a change in the property set with which
the rule set has a relationship.

Rules rely on property sets to provide the properties they use to evaluate user and group
profiles. If a property is modified after a rule that uses it has been created, rules may
contain dangling references to properties that no longer exist or that have been
changed.

As much as possible, you should avoid modifying properties after defining rules that
rely upon them. Since the property set defines the schema for the properties the rules
act upon, any change to the properties the rules use will affect the schema and may alter
the validity of the rules. In general, be careful when modifying or deleting existing
properties.

Note: You can add properties without affecting existing rules.

Guide to Building Personalized Applications 3-7

3 Introducing the Rules Manager

Content Type and Content Selector Rules

Another problem can occur when you change a content’s metadata types after creating
a content selector rule based on that content type’s metadata. Remember that the
content selector rule relies upon metadata to locate content. If you change content
metadata and a content selector rule references the previous metadata, the rule will not
work correctly.

3-8 Guide to Building Personalized Applications

Configuring the Rules Framework

Configuring the Rules Framework

The set of components that use business rules to match users and groups with
appropriate content are known collectively as the rules framework. Two files configure
the properties of the rules framework:

m The RulesManager Deployment Descriptor

m The rules-common.properties file

The RulesManager Deployment Descriptor

Within the file

$W._ COMMERCE_HOVE/ conf i g/ W scDonai n/ appl i cati ons/w scApp/rul es.jar
is a file named ej b-j ar. xml which specifies how WebLogic Personalization Server
deploys the rules EJB.

The following <env-entry> element in the ej b-j ar. xm deployment descriptor
prevents differently deployed RulesManager beans from seeing each others’ deployed
rulesets.

<env-entry>

<env- ent ry- nanme>nanespace</ env-entry- nane>
<env-entry-type>java. |l ang. String</env-entry-type>
<env-entry-val ue>def aul t </ env-entry-val ue>

</ env-entry>

Rulesets are stored in the RULESET database table. Table 3-1 illustrates the contents of
the NAME and DOCUVENT columns in the RULESET database table.

Table 3-1 Columns in the RULESET Database Table

NAME DOCUMENT

default/MyRuleSetName XML data for the RuleSet (as a
CLOB)

default/MySecondRuleSet XML data

Guide to Building Personalized Applications 39

3

Introducing the Rules Manager

By default, the namespace for Rule Sets is def aul t , which is prepended to the RuleSet
name. By modifying the value in the <env- ent ry- val ue> element that is described
in this section, you can change the composite name that a RulesManager EJB stores in
the database.

The rules-common.properties file

The rules-common.properties file is located in $W._ COMVERCE_HOVE/ cl asses. It
configures the following properties:

Rules Framework Debugging

Rule Set TTL (time-to-live expiration policy)
Rules Engine Listeners

Rules Engine Expression Caching Optimizations
Rules Engine Error Handling and Reporting

JSP Tag Properties

Rules Manager Properties

Expression Evaluation Settings

Rules Framework Debugging

3-10

This property should normally be set to f al se.

Rul es framework debug fl ag:

#

Set this property to true for rul es framework debugging. Defaults
to fal se.

H#H#

rul es. framewor k. debug=f al se

Guide to Building Personalized Applications

Configuring the Rules Framework

Rule Set TTL

This property determines the time-to-live (in milliseconds) of the cached rule sets. In
a single node deployment, this parameter should be set to -1 (no timeout); however, if
the rules manager is deployed in a clustered environment, this parameter will
determine the maximum elapsed time between updates of a rule set (via the E-Business
Control Center) and propagation of the changes throughout the cluster.

##

Rule set expiration TTL (in nilliseconds):

#

Set this property to -1 for infinite TTL. Defaults to -1.
##t

rule.set.expiration.ttl=-1

Rules Engine Listeners

This is an internal property, and should not be modified.

H##
Rul es engine startup rule event listeners (list of class nanes).
H##

#rul es. engi ne. startup. | i steners=com bea. conmerce. platformrul es.i
nt er nal . engi ne. Rul esEngi neSt ati sti csLi st ener

Rules Engine Expression Caching Optimizations

This is an internal property, and should not be modified.

##
Rul es engi ne expressi on optim zati ons:

0 => No expression optinizations.
1 => Local expression optimzations.
2 => d obal expression optim zations.

Defaults to O.
#

H o HH R

rul es. engi ne. expressi on. optim zati ons=2

Guide to Building Personalized Applications ~ 3-11

3

Introducing the Rules Manager

Rules Engine Error Handling and Reporting

The following two properties determine the type of exceptions that will be propagated
to the user during rules engine execution. If the

rul es. engi ne. t hr ow. expr essi on. except i on parameter is set to f al se, no
exceptions will be propagated, and any expression condition that generates an
exception will evaluate to false. Otherwise, all exceptions, with the exception of those
listed by the r ul es. engi ne. i gnor abl e. except i ons parameter, will be propagated
to the user.

Rul es engi ne pattern expression execution error handling:

#

rul es. engi ne. t hrow. expressi on. excepti ons

#

If this property is set to true, pattern expression

execution exceptions will be throwmn. Oherwi se, a pattern

expression exception will cause the pattern condition to

evaluate to false.

#

Defaults to true.

#

rul es. engi ne. throwabl e. exceptions (list of class nanes)

#

|If the previous property is set to true, expression exceptions
wi th enbedded exceptions of a type other than the listed classes
will be thrown. If no class types are specified, all expression
exceptions will be thrown.

#

Defaults to all exception class types.

#it

rul es. engi ne. t hr ow. expr essi on. excepti ons=true

rul es. engi ne. i gnor abl e. excepti ons=j ava. | ang. Nul | Poi nt er Excepti on

JSP Tag Properties

3-12

These are internal properties, and should not be modified.

#it

JSP Tag settings

#it

Filter class for Content Sel ectorTag

contentselector.filter.class=com bea. conmerce. pl atform content. ad
vi sl et's. Cont ent Quer yAdvi ce
Filter class for DivTag

Guide to Building Personalized Applications

Configuring the Rules Framework

divtag.filter.class=com bea. comerce. pl atform user.d assification

Rules Manager Properties

These are internal properties, and should not be modified.

#

Rul esManager settings
#

Rul esManager JNDI narne.

rul es. manager . hone. j ndi =com bea. cormer ce. pl atf orm rul es. manager. R
ul esManager

Rul esManager del egate cl ass nane.
#del egat e. cl ass. nane=com bea. conmer ce. ga. pl atf or m rul es. manager. i
nt er nal . Rul esEval uat i onDel egat eSt ubl npl

Expression Evaluation Settings

The rul es. f ramewor k. conpar at or . nul | check property determines if an implicit
null check is added to all expression comparisons. It should remain t r ue.

The rul es. franewor k. conpar at or . epsi | on property determines the epsilon
value for numeric equality and inequality comparisons. The epsilon value is an
absolute value (rather than a percentage, etc.) and may be adjusted in accordance to
equality precision requirements.

The rul es. framewor k. i nt rospect or. net hod. array. cache property and
rul es. franewor k. i ntrospect or . net hod. cache property are internal properties
and should not be modified.

##

Expression Conparator null handling

#

If the following property is set to true the Expression
Conparator will return false as the result of conparing
any non-null value to a null, regardl ess of the

conpari son bei ng perforned.

#

Defaults to true.

#t

rul es. framewor k. conpar at or. nul | check=t rue

Guide to Building Personalized Applications ~ 3-13

3 Introducing the Rules Manager

#it

Expressi on Conparator equality epsilon.

#

The foll owing property determ nes the epsilon value for
nuneric equality conparisons.

#

Defaults to O.

#it

rul es. framewor k. conpar at or . epsi | on=0. 00001

#i#

Expression Introspector Method Array Caching

#

If the following property is set to true the Expression

Introspector will cache the array of Methods inplenented by a
Java C ass.

#

Defaults to true.

#it

rul es. framewor k. i ntrospect or. net hod. array. cache=true

#it
Expression Introspector Method Caching

If the following property is set to true the Expression
Introspector will cache Methods by signature.

Defaults to true.
#

HFEHRHFHFHR

rul es. framewor k. i ntrospect or. net hod. cache=true

3-14 Guide to Building Personalized Applications

CHAPTER

Working with Content
Selectors

A content selector is one of several mechanisms that WebLogic Personalization Server
provides for retrieving documents from a content management system. A document is
a graphic, a segment of HTML or plain text, or a file that must be viewed with a
plug-in. (We recommend that you store most of your Web site’s dynamic documents
in a content management system because it offers an effective way to store and manage
information.)

Using content selectors, a Business Analyst (BA) can specify conditions under which
WebLogic Personalization Server retrieves one or more documents. For example, a
BA can use a content selector to encapsulate the following conditions: between May 1
and May 10, if a Gold Customer views this page, find and retrieve any documents that
describe sailing along the Maine coast.

A BA uses the BEA E-Business Control Center to define the conditions that activate a
content selector and to define the query the content selector uses to find and retrieve
documents. Then, a Commerce Business Engineer (CBE) creates content selector JSP
tags and a set of other JSP tags that display the content the content selector retrieves in
JSPs.

This topic includes the following sections:

m What Are Content Selectors?

m Using Content-Selector Tags and Associated JSP Tags
m How Content Selectors Select Documents

For a comparison of content retrieval methods available with WebLogic
Personalization Server, refer to “Methods for Retrieving and Displaying Documents”
on page 8-4.

Guide to Building Personalized Applications 4-1

4 Working with Content Selectors

What Are Content Selectors?

4-2

Content selectors specify conditions under which they query the content management
system for documents. They consist of the following elements:

m A set of conditions that determine when the content selector queries the content
management system. The conditions can use the profile of the customer who is
currently viewing a JSP page, properties from the user or session objects, or an
event that occurs on the page or has occurred previously on some other page, or
the current date/time. For a complete list of conditions, refer to “Conditions That
Activate Content-Selector Queries,” under “Retrieving Documents with Content
Selectors” in Using the E-Business Control Center.

BAs create and modify the set of conditions in the E-Business Control Center.

m A query that searches the content management system for one or more
documents.

BAs create and modify the query in the E-Business Control Center.

m A JSP tag that triggers the content selector to evaluate its conditions. The
content selector JSP tag includes attributes that CBEs can use to tune the
performance of the content selection process. CBEs create the JSP tags.

m A data object that WebLogic Personalization Server creates to contain the results
of the query. Within the data object, WebLogic Personalization Server creates a
list of individual data items (an array); the contents of each document in the
data object is a separate item in the array. You can access the array only from
the current JSP page, and only for the customer request that created it.

To extend the availability of the data in the array, CBEs can add attributes to the
content selector JSP tag that cause WebLogic Personalization Server to store the
array in a cache. Then, CBEs specify whether the scope of the cache applies to
the application, session, page, or request.

To display the documents that are in the array (or the cache), a CBE must use the
<es: f or Eachl nAr r ay> tag. Depending on the scope of the cache, a

<es: f or Eachl nArr ay> can access a content-selector cache that WebLogic
Personalization Server created for another page and for another user.

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

Using Content-Selector Tags and Associated
JSP Tags

To use the content selector features on a given JSP, a CBE must add calls to the content
selector JSP tag and a set of associated tags.

This section contains the following subsections:
m Attributes of the <pz:contentSelector> Tag
m Associated Tags That Support Content Selectors

m Common Uses of Content-Selector Tags and Associated Tags

Attributes of the <pz:contentSelector> Tag

While BAs use the E-Business Control Center to configure the dynamic properties of
a content selector, a CBE uses attributes of the content selector tag to do the following:

m Identify the Content Selector Definition

m [dentify the INDI Home for the Content Management System
m Define the Array That Contains Query Results

m Create and Configure the Cache to Improve Performance

For a complete list and description of all content-selector attributes, refer to
“<pz:contentSelector>" on page 12-34 in the “Personalization Server JSP Tag Library
Reference” chapter of this guide.

Identify the Content Selector Definition

The content selector definition that a BA creates in the E-Business Control Center
determines the conditions that activate a content selector and the query that the active
content selector runs.

To refer to this definition, you use the r ul e attribute:

Guide to Building Personalized Applications 4-3

4 Working with Content Selectors

<pz:contentSel ector rule= { definition-name | scriptlet } >

You can use a scriptlet to determine the value of the r ul e attribute based on additional

criteria. For example, you use a content selector in a heading JSP (headi ng. i nc),

which is included in other JSPs. A BA creates different content selectors for each page

that includes headi ng. i nc.

The CBE uses a scriptlet in headi ng. i nc to provide a value based on the page that

currently displays the included JSP file. For example,
<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "cs_top_generic" : banner;

<tabl e wi dt h="100% border="0" cellspaci ng="0" cel | paddi ng="0" hei ght="108">

<tr><td rowspan="2" wi dt h="147" hei ght="108">
<pz:content Sel ector rul e="<% banner %" ... />

</td>

Identify the JNDI Home for the Content Management System

The content selector tag must use the cont ent Honre attribute to specify the JINDI home

of the content management system. If you use the reference content management

system or a third-party integration, you can use a scriptlet to refer to the default content

home. Because the scriptlet uses the Cont ent Hel per class, you must first use the
following tag to import the class into the JSP:

<%@ page i nport="com beasys. commer ce. cont ent . Cont ent Hel per" %
Then, when you use the content selector tag, specify the cont ent Hore as follows:

<pz: cont ent Sel ect or
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT_MANAGER HOMVE %"
/>

If you create your own content management system, you must specify the JNDI home

for your system instead of using the ContentHelper scriptlet. In addition, if your

content management system provides a JNDI home, you can specify that one instead

of using the ContentHelper scriptlet.

4-4 Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

Define the Array That Contains Query Results

You can use the following attributes to configure the array that contains the results of
the content-selector query:

i d, which specifies a name for the array. This attribute is required.

For example, <pz: cont ent Sel ector id="docs" .../>places documents in
an array named docs.

max, which limits the number of documents the content selector places in its
array.

For example, <pz: cont ent Sel ect or max="10" .../ > causes the content

selector to stop retrieving documents when the array contains 10 documents.

This attribute is optional and defaults to - 1, which means no maximum.

sort By, which uses one or more document attribute to sort the documents in the
array. The syntax for sor t By follows the SQL order by clause syntax.

This attribute is optional. If you do not specify this attribute, the content selector
returns the query results in the order that the content management system returns
them.

For example, <pz: cont ent Sel ector sortBy="creationDate" .../>
places the documents that were created first at the beginning of the array.

The tag

<pz:content Sel ector sortBy="creationDate ASC, title DESC' .../>
places older documents at the beginning of the array. If any documents were
created on the same day, it sorts those documents counter-alphabetically by title.

Create and Configure the Cache to Improve Performance

To extend accessibility to the array, and to improve performance, you can optionally
use content-selector attributes to create and configure a cache that contains the array
contents. Without the cache, you can access the content-selector array only from the
current JSP page, and only for the customer request that created it. In addition, each
time a customer requests a JSP that contains the content selector tag, the content
selector must run the query, potentially slowing the overall performance of WebLogic
Personalization Server. To cache the contents of the array, define the following
attributes:

Guide to Building Personalized Applications 4-5

4 Working with Content Selectors

4-6

m useCache, which determines whether the content selector places the array in a

cache. To activate the cache, set this attribute to t r ue. For example,
<pz:content Sel ector cache=true ...>.

To deactivate the cache, set the attribute to f al se or do not include it. For
example, the following statements are equivalent:

<pz:content Sel ector cache=false .../>or

<pz:content Sel ector .../>

cachel D, which assigns a name to the cache. If you do not specify this attribute,
the cache uses the name of the array (which you must specify with the i d
attribute). If you want to access the cache from a JSP or user session other than
the one that created the array, you must specify a cachel D.

cacheTi meout , which specifies the number of milliseconds that WebLogic
Personalization Server maintains the cache. The content selector does not re-run
the query until the number of seconds expires.

For example, you create the following tag:
<pz: content Sel ector cache=true cacheTi neout ="300000" .../>

A customer requests the page that contains this content selector tag. The user
leaves the page but, 2 minutes (120000 milliseconds) later, requests it again. The
content selector evaluates its conditions, but because only 120000 milliseconds
have expired since the content selector created the cache, it does not re-run the
query. Instead, it displays the documents in the cache.

cacheScope, which determines from where the cache can be accessed. You can
provide the following values for this attribute:

e application. Any JSP page in the Web application that any customer
requests can access the cache.

e sessi on (the default). Any JSP in the Web application that the current
customer requests can access the cache.

e page. Only the current JSP that any customer requests can access the cache.

e request . Only the current user request can access the cache. If a customer
re-requests the page, the content selector re-runs the query and recreates the
cache.

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

Associated Tags That Support Content Selectors

The following JSP tags support content-selector functions:

m <um get Profi | e>, which retrieves the profile of the customer who is currently
viewing the page. A content selector uses the customer profile to evaluate any
conditions that involve customer properties.

For example, if you create a content selector that runs a query for all customers
in the Gold Customer customer segment, the content selector must access the
customer profile to determine if it matches the customer segment.

Even if a content selector does not currently use the customer profile for its
conditions, we recommend that you include the <um get Pr of i | e> tag; its affect
on performance is minimal and with the tag, a BA can add customer-profile
conditions to the content selector without requiring a CBE to modify JSPs.

The tag must be located closer to the beginning of the JSP than the content
selector tag.

m <es: forEachl nAr ray>, which iterates through the array that contains the
results of a content-selector query. With this tag, you can use the following to
work with the documents in the array:

e The System out. pri nt| n method to print each item in the array.

e The <cm get Propert y> tag to retrieve one or more attribute of the
documents in the array. You can use the attributes to construct the HTML
that a browser requires to display the documents. For example, you use the
<cm get Proper t y> tag to determine the value of a M ME- t ype attribute. If
the MIME-type of a document in the array is an image, you print the HTML
<i ng> tag with the appropriate attributes.

You can also use attributes of the <pz: cont ent Sel ect or > tag, such as
sor t By, to work with the attributes of documents in the array. For more
information, refer to “Attributes of the <pz:contentSelector> Tag” on page
4-3.

e The <cm print Property> to print one or more attribute of the documents
in the array. For example, you can use this tag to print a list of document
titles that the content selector retrieves.

Guide to Building Personalized Applications 4-7

4 Working with Content Selectors

Common Uses of Content-Selector Tags and Associated
Tags

The combination of content selector definitions, tag attributes, and associated JSP tags
creates a powerful set of tools for matching documents to customers in specific
contexts. The following tasks are the most common uses of content selectors and
associated tags:

m To Retrieve and Display Text-Type Documents
m To Retrieve and Display Image-Type Documents
m To Retrieve and Display a List of Documents

m To Access a Content-Selector Cache on a Different JSP

To Retrieve and Display Text-Type Documents

Note: This section assumes that the content selector query that the BA created in
E-Business Control Center includes a filter to retrieve only text documents.

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page i nport="com beasys. commer ce. cont ent . Cont ent Hel per" %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="pz.tld" prefix="pz" %
<v@taglib uri="umtld" prefix="unl %

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um get Profil e>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you create in the next step.

4. Add the following tags, where Spri ngSai | i ng is the name of the content
selector that a BA created in the E-Business Control Center:

4-8 Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

<pz:content Sel ector rul e="SpringSailing"

cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT _MANAGER_HOMVE %"
i d="t ext Docs"/ >

<es: forEachl nArray array="<%textDocs%" i d="aTextDoc"
type="com beasys. conmer ce. axi om cont ent. Cont ent" >

<% "<P>" + aTextDoc + "</P>" %
</ es: forEachl nArray>

Note: The above tags assume that the content selector query that the BA created
in the E-Business Control Center includes a filter to retrieve only text
documents. To verify the content type before you display it, you can
surround the <% "<P>" + aTextDoc + "</P>" % scriptlet with
another scriptlet. For example:

<% if (aTextDoc .getM neType().contains("text"))
{

<% "<P>" + aTextDoc + "</P>" %

}
%

Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

To Retrieve and Display Image-Type Documents

1.

Determine the name of the attribute that your content management system uses to
uniquely identify documents. This procedure assumes that your content
management system uses an attributed named doc| D.

Open a JSP in a text editor.

Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page i nport="com beasys. commer ce. cont ent. Cont ent Hel per" %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="pz.tld" prefix="pz" %

Guide to Building Personalized Applications 4-9

4 Working with Content Selectors

4-10

<U@taglib uri="umtld" prefix="unt %
<U@taglib uri="cmtld" prefix="cnl %

. Add the following tag to get the customer profile, if the tag is not already in the

JSP:
<um get Profil e>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you create in the next step.

. Add the following tags, where Spri ngSai | i ng is the name of the content

selector that a BA created in the E-Business Control Center:

<pz: content Sel ector rul e="SpringSailing"
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT_MANAGER HOMVE %"
i d="1nageDocs"/ >

<es: forEachl nArray array="<%Il mageDocs%" i d="anl nageDoc"
type="com beasys. conmer ce. axi om cont ent. Content " >

<ing src="<cmprintProperty id="anl mageDoc" rul e="docl D"
encode="URL">" >

</ es:forEachl nArray>

Note: The above tags assume that the content selector query that the BA created
in E-Business Control Center includes a filter to retrieve only image
documents. To verify the content type before you display it, you can
surround the <i ng> tag with a scriptlet. For example:

<% if (anl mageDoc .getM nmeType().contains("inmage"))

{
<ing src="<cmprintProperty id="anl mageDoc" rul e="docl D"
encode="URL">" >

}
%

Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

Guide to Building Personalized Applications

Using Content-Selector Tags and Associated JSP Tags

To Retrieve and Display a List of Documents

1.
2.

Open a JSP in a text editor.

Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<% page i nport="com beasys. comrer ce. cont ent. Cont ent Hel per" %
<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="pz.tld" prefix="pz" %
<U@taglib uri="umtld" prefix="um %

Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um get Profil e>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz: cont ent Sel ect or > tag, which you create in the next step.

Add the following tags, where Spri ngSai | i ng is the name of the content
selector that a BA created in the E-Business Control Center:

<pz: content Sel ector rul e="SpringSailing" <pz:contentSel ector
rul e="SpringSailing"
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT _MANAGER_HOMVE %"
i d="docs"/ >

<es:forEachl nArray array="<%docs%" id="aDoc"

t ype="com beasys. conmer ce. axi om cont ent. Cont ent " >

<l i >The document title is: <cmprintProperty id="aDoc"
rule="Title" encode="htm" />

</ es: forEachl nArray>
</ ul >

Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

Guide to Building Personalized Applications ~ 4-11

4 Working with Content Selectors

To Access a Content-Selector Cache on a Different JSP

4-12

1.

In a text editor, open the JSP page that contains the content selector tag. For
example, you want to cache the results of the following tag:
<pz:content Sel ector rul e="SpringSailing" id="docs".../>

Add attributes to the content selector tag as follows:

<pz: content Sel ector rul e="SpringSailing"

cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_MANAGER HOME %"

i d="docs"

useCache=true cachel D="SpringSailingDocs" cacheTi neout="120000"
cacheScope="application" />

These attributes create a cache that WebLogic Personalization Server maintains
for 2 minutes (120000 milliseconds) and that can be accessed using the name
Spri ngSai | i ngDocs by any user from any page in the Web application. For
more information about possible values for cacheScope, refer to “Create and
Configure the Cache to Improve Performance” on page 4-5.

Save and deploy the JSP.
In a text editor, open the JSP from which you want to access the cache.

Use a content-selector tag that is identical to the tag you created in step 2. For
example, on the current JSP, add the following tag:

<pz: content Sel ector rul e="SpringSailing"

cont ent Hone="<%Cont ent Hel per. DEF_DOCUVMENT_MANAGER HOME %"

i d="docs"

useCache=true cachel D="SpringSailingDocs" cacheTi meout="120000"
cacheScope="application" />

Add tags to retrieve the data from the cache. For example, the following lines
print a list of documents that are in the cache:
<U@taglib uri="es.tld" prefix="es" %

<es:forEachl nArray array="<%SpringSailingDocs%" id="aDoc"
t ype="com beasys. conmer ce. axi om cont ent . Content " >

<l i >The docunent title is: <cmprintProperty id="aDoc"
rule="Title" encode="htm" />

</ es: forEachl nArray>

</ ul >

Guide to Building Personalized Applications

How Content Selectors Select Documents

7. Save and deploy the JSP.

How Content Selectors Select Documents

When a user requests a JSP that contains a content selector tag, the following process
occurs:

1. The content selector tag contacts the Advisor.

Note: For information about the Advisor, see Chapter 2, “Creating Personalized
Applications with the Advisor.”
For information about the Rules Engine, see Chapter 3, “Introducing the Rules
Manager.”

2. The Advisor forwards the content-selector request to the Rules Manager via the
Rules Advislet.

3. The Rules Manager finds the corresponding content-selector definition and
invokes the Rules Engine to evaluate the content selector’s conditions.

4. Depending on the conditions that are defined for the content selector, the Rules
Engine refers to any of the following:

e The profile of the user who requested the JSP to determine if the user
matches a customer segment or some other attribute that conditions in the
content selector specify.

e The Events Service to determine if any events that conditions in the content
selector specify have occurred.

e The system clock to determine if the current time or date matches any time
or date that conditions in the content selector specify.

5. If any of the conditions are met, the Rules Engine returns the content selector’s
query to the Advisor via the Rules Manager.

6. The Advisor forwards the query to the content management system via the
Content Query Advislet.

Guide to Building Personalized Applications 4-13

4 Working with Content Selectors

7. The Advisor stores any query results in an array that only the current JSP can
access. You can specify that the Advisor stores the results in a cache and that the
cache is accessible beyond the current JSP. For more information, see “Create
and Configure the Cache to Improve Performance” on page 4-5.

Note that you must use other tags to display the documents that are in the array.

4-14 Guide to Building Personalized Applications

How Content Selectors Select Documents

Figure 4-4 How Content Selectors Select Documents

J5F

<. pzicontentielector
name="3pringiailing
id="Springhocs"™ >

SpringDocs
array

1&/»——\\

Content Manageme
h System .‘

7
Advisar
el |Fules Content |
Advislet Cluery
Ay islet
5

!
b

Fules Manager

— i e

I
3
¥

Fules Engine

Springiailing

User Profile

Events Service

conditions
+

hehavior
+

user

Systern Clock

Guide to Building Personalized Applications 4-15

4 Working with Content Selectors

For more information about using this tag, refer to “Using Content-Selector Tags and
Associated JSP Tags” on page 4-3.

4-16 Guide to Building Personalized Applications

CHAPTER

S

Foundation Classes and
Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that JSP developers can use to gain access
to functions provided by the server, and helpers for gaining access to the Advisor
services.

This topic includes the following sections:

m Flow Manager

e Dynamic Flow Determination and Handling

Property Set Usage
e Webflow

e Accessing Your Application via the Flow Manager
m Repository
m HTTP Handling
m Personalization Request Object
e Default Request Property Set
m Personalization Session Object
e Default Session Property Set
m Utilities

e JspHelper

Guide to Building Personalized Applications 5-1

5

Foundation Classes and Utilities

JspBase
P13NJspBase
ContentHelper

CommercePropertiesHelper

m Utilities in commerce.util Package

ExpressionHelper

TypesHelper

Flow Manager

The Flow Manager is a servlet implementation that allows the hot deployment of
applications within the WebLogic Application Server. Flow Manager also adds
flexibility to navigation through the system by allowing navigation information to
move off the JSP page and into a single point of control. Using a destinationdeterminer
and a destinationhandler, the Flow Manager dynamically determines a destination for
a given page request and dynamically handles it.

Note:

The Flow Manager replaces the functionality previously supplied by the Portal
Service Manager and JSP Service Manager. All the functionality of the service
managers now reside within the Flow Manager. The JSP Service Manager and
the Portal Service Manager have been deprecated.

Dynamic Flow Determination and Handling

5-2

The Flow Manager allows the determination of page routing to be centralized on the
server based on an application's needs. To define properties of your unique application,
you will create a property set of type APPLI CATI ON_I NI T. (See “Property Set Usage”
on page 5-5.) There are three required values:

m destinationdeterminer — an implementation of the
com beasys. comer ce. f oundati on. f | ow. Desti nati onDet er m ner
interface.

Guide to Building Personalized Applications

Flow Manager

m destinationhandler — an implementation of the
com beasys. commer ce. f oundati on. f | ow. Desti nati onHandl er interface.

m ttl — how long (in milliseconds) before reloading the application init property set.

How the FlowManager Works

When WebLogic Personalization Server is installed, the Flow Manager servlet is
registered with the WebLogic server in the web. xni file:
<servl et>

<servl et - name>appl i cati on</ servl et - name>

<servl et -cl ass>com beasys. commer ce. foundati on. f| ow.
FI owManager </ servl et - cl ass>

</servlet>

To access the servlet, a client browser makes an HTTP request. For example:
http://localhost:7501/application/exampleportal.

In this example, “application” is the registered servlet (the Flow Manager), and
“exampleportal” is the APPLI CATI ON_I NI T property set that you defined.

The following diagram illustrates how the Flow Manager handles the request.

Databas
@~

O {3 determineDestination O

Floww Manager DestinstionDeterminer

4 handleoew
T
Q (5] forward request Q

Application DestinationHandler
[JSP =erviet)

(1) Hitp Request

Client () Hitp Response
Browser

Weblogic Commerce Server

Guide to Building Personalized Applications 5-3

5

Foundation Classes and Utilities

5-4

Let’s look at the diagram one step at a time, using our example.

1.

A client browser makes an HTTP request via a form submission, hyperlink, etc.

In this example, the request is for the exampleportal at
http://localhost:7501/application/exampleportal.

WebLogic Server (WLS) routes the request to the servlet registered in web. xm
with the name “application,” which is the Flow Manager.

The request is analyzed within the servlet, and the path-info is pulled out. The
path-info is the name of the property set to retrieve.

In our example, the Flow Manager extracts the string “exampleportal” from the
URL.

The property set is retrieved from the database (or the cache).

Using the SchemaManager, the Flow Manager reads the Application Init
property set of that name from the database. The Flow Manager reads the
properties named “destinationdeterminer” and “destinationhandler” from the
property set and instantiates each class.

Note: Implementations of these classes are to be provided by the application
developer, as needed.

The Flow Manager then calls the destinationdeterminer defined in the property
set, using the Dest i nat i onDet er mi ner . det er ni neDest i nati on method.

In this example, the PortalDestinationDeterminer class does not find a

DESTI NATI ON_UR! in the request and the user is not logged in, so it retrieves the
“def aul t dest” property and returns the destination string

“/ portal s/ exanpl e/ portal .jsp” tothe Flow Manager.

The Flow Manager then calls the Dest i nat i onHandl er . handl eDest i nati on
method. The destination returned from the previous call is passed on to the
destinationhandler defined in the property set.

In this example, the portal uses the Ser vl et Dest i nat i onHandl er which calls
the r equest Di spat cher . f or war d method, passing execution control to the
portal.jsp servlet.

Finally, application processing proceeds in the servlet which uses the response
object to return data to the client browser.

Guide to Building Personalized Applications

Flow Manager

Property Set Usage

The Property Set Management Administration Tools include a class of property sets
called Application Initialization Property Sets. To support non-portal based
personalized applications, the Flow Manager uses _DEFAULT_APP_I NI T. For portals,
the Flow Manager uses the DEFAULT_PORTAL_| NI T property set. For more
information, see the topic “_DEFAULT_PORTAL_I NI T Property Set” in the chapter
“Creating and Managing Portals” in the Guide to Creating Portals and Portlets.

The following three properties support the Flow Manager:

Property Name Required Description

destinationdeterminer Yes Used by Flow Manager to determine JSP page
navigation.

destinationhandler Yes Used by Flow Manager to execute JSP page
navigation.

ttl Yes Time-to-live determines (in milliseconds) how

often the Flow Manager reloads the application
init property set from the database.

destinationdeterminer Property

The destinationdeterminer evaluates an HTTP request and determines which servlet to
route it to.

The value provided for this property should be the name of a class that implements the
com beasys. commer ce. f oundati on. f | ow. Desti nati onDet er mi ner interface.
If appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

destinatationhandler Property

Given a destination route, the destinationhandler is responsible for invoking the
requested processing.

Guide to Building Personalized Applications 5-5

5

Foundation Classes and Utilities

The value provided for this property should be the name of a class that implements the
com beasys. comrer ce. f oundati on. f | ow. Dest i nati onHandl er interface. If
appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

ttl (time-to-live) Property

Time-to-live (ttl) represents how often (in milliseconds) the Flow Manager reloads the
application init property set from the database. This allows you to make property set
changes visible while the portal is running.

Note: To force immediate reloading of the property set, append the "flowReset"

argument to your URL, like this:
http://localhost:7001/application/exampleportal ?flowR eset=true

Creating a New Property Set

5-6

1.

Open the Administration Tools Home page. Click the Property Set Management
icon to open the Property Set Management screen.

From the main Property Set Management screen, click Create.

Name the new property set you are creating (100 character maximum). The name
of the property set should be the same as the name you used to create the portal,
or the name you will use to access the application.

Enter a description of the property set (255 character maximum).

From the Copy Properties From drop-down list, select

APPLI CATI ON_I NI T. _DEFAULT_PORTAL_I NI T (for a portal)

or

APPLI CATI ON_I NI T. _DEFAULT_APP_I NI T (for a non-portal application).

From the Property Set Type drop-down list, select Application Init.
Click the Create button.

At the top of the page, in red, you will see the message “Property Set creation
was successful.” (Or, you will see an error message indicating why the property
set was not created.)

Click Back to return to the main Property Set Management screen.

Guide to Building Personalized Applications

Flow Manager

Set Parameters for Your Portal or Application

Webflow

1. From the Property Set Management Home page, under the Application
Initialization Property Sets heading, click the name of the property set you just
created.

2. A Property Set page comes up, allowing you to set parameters.

3. Note: For non-portal applications, skip this step.
To edit the portal name, click the Edit button to the right of the “portal name”
property. Change the default value from UNKNOWN to the name of your portal, as
you created it in Portal Management.

4. Edit the dest i nati ondet er mi ner property. Either accept the default, or edit to
provide your own implementation of these classes.

5. Edit the desti nat i onhandl er property. Either accept the default, or edit to
provide your own implementation of these classes.

6. Customize any other properties you choose. For information about customizing
properties in portals, see “Creating and Managing Portals” in the Guide to
Creating Portals and Portlets.

7. When you have finished setting properties, click the Finished button at the
bottom of the page.

Webflow is a mechanism that controls the flow of a user session by determining which
pages are displayed in a browser. The Flow Manager provides the basic infrastructure
to support the Webflow functionality. On the WebLogic Personalization Server,
Webflow does a simple dispatch to a target destination. When a request comes in from
the browser, a destinationdeterminer looks for adest parameter on the URL and grabs
what dest asks for.

The WebLogic Commerce Server extends the Flow Manager with the addition of a
Webflow properties file. By setting parameters, you can determine how Webflow
reacts to events and which pieces of business logic to execute. When a request comes
into WebLogic Commerce Server from a browser, Webflow looks for the or i gi n and
event parameters in the webf | ow. pr operti es file and grabs what the properties file
asks for.

Guide to Building Personalized Applications 5-7

5

Foundation Classes and Utilities

The Webflow scheme provides a good example of centralized routing information. It
provides an implementation of the destinationdeterminer which uses a properties file
resource as a state table to determine the routing destination. For more information
about the Webflow implementation in the WebLogic Commerce Server, see the guide
Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline.

Accessing Your Application via the Flow Manager

The URL for Acme Demo Portal accessed as a Web application is:
http://localhost:7501/exampleportal

The exanpl eport al portion of the URL is the context name for the Web application,
as defined through the WebLogic console in the confi g. xml file.

<WebAppConponent Name="exanpl eportal " Targets="w csServer"
URI =" exanpl eportal " Servl et Rel oadCheckSecs="300" />

Within the Web application, the web- i nf/ web. xm file includes <ser vl et > and
<ser vl et - mappi ng> entries for the Flow Manager, associating all URL accesses
starting with “appl i cati on/*” with the Flow Manager’s class.

In the above URL example, the HTTP request defaults to i ndex. j sp, as defined in the
<wel cone-fil e-1ist>element in the Web application’s web. xnl file. When the
HTTP request is routed to the Flow Manager, it extracts the path information

exanpl eport al from the URL and retrieves the property set of the same name from
the server (or cache.) The dest i nati ondet er mi ner and desti nati onhandl er
properties are used to instantiate the supporting implementations, and processing
proceeds as described above.

Repository

5-8

The repository feature allows you to specify a single directory to contain files that
otherwise would have to be replicated several times.

Guide to Building Personalized Applications

HTTP Handling

The administration pages for components take advantage of the repository feature to
store images shared between components. Each HTML reference to an image is
wrapped by the Tool sJspBase. fi xupRel at i veURL method. This method first looks
in the path-relative directory for the image specified in the argument. If not found
there, the r eposi t or ydi r specified in the property set (for the admi n Web
application) is searched for the image.

For portals, the default portal (Acme) implementation has its files contained in a folder
named r eposi t ory and specifies a r eposi t orydi r=/ portal / reposi tory. Inan
extreme example, a second portal which only differed from Acme in one file, say
portal . j sp, would be created by creating a new directory named ext r emeExanpl e
and by adding one file (port al . j sp) to it. All files supporting the ext r emeExanpl e
portal which were not found in its wor ki ngdi r will be fetched from the repository
directory.

HTTP Handling

Both the <pz: di v> and <pz: cont ent sel ect or > tag implementations send
Ht t pRequest and Sessi on information to the Advisor.

The tags utilize helper classes that transform an Ht t pRequest and Sessi on into
serializable personalization surrogates for their HTTP counterparts. These surrogates
are compatible with the Personalization Rules Service which uses these objects to
execute classifier and content selector rules.

Personalization Request Object

In order to use Ht t pRequest parameters in requests to the rules service, they must be
wrapped in a Personalization Request object

(com beasys. commer ce. axi om p13n. ht t p. Request) before they can be set on the
appropriate Advi ceRequest (see the Javadoc API documentation). While the

Ht t pRequest object can be wrapped by directly calling the Personalization Request
constructor, it is recommend that developers use the cr eat eP13NRequest helper

Guide to Building Personalized Applications 5-9

5

Foundation Classes and Utilities

method on P13NJspBase
(com beasys. comer ce. axi om p13n.j sp. PL3NJspBase) for this purpose. See the
Javadoc API documentation for more information.

Caution: The tag implementations for the <pz: di v>and <pz: cont ent Sel ect or >

tags create the Personalization Request surrogate for the Ht t pRequest
before calling the Advisor bean, so JSP developers need not worry about
the details of the Request object. Only developers accessing the Advi sor
bean directly need to wrap the Ht t pRequest object explicitly.

In order to avoid confusing results on get Pr oper t y method calls, developers need to
know the algorithm used in the get Pr oper t y method implementation for determining
the value of the property requested . When the Request ' s get Pr oper t y method is
called (for example, by a rules engine), the system uses the following algorithm to find
the property:

1.

The get Pr oper t y method first looks in the Ht t pRequest ' s attributes for the
property.

If not found, get Proper t y looks for the property in the Ht t pRequest
parameters.

If not found, get Property looks in the HTTP headers.

If not found, get Pr operty looks in the Request methods (get Cont ent Type,
get Local e, etc.).

If not found, get Pr oper t y uses the scopeNanme parameter to find a schema
entity for a Request schema group name and, if the schema is found, uses the
default value in the schema.

If not found, get Pr oper t y uses the default value passed into the method call.

Default Request Property Set

5-10

For Rules developers to write rules for classifier rules that contain conditions based on
an Ht t pRequest , there must be a property set defined for the Ht t pRequest . By
default, WebLogic Personalization Server ships with a default request property set for
the standard Ht t pRequest properties. Developers adding properties to the request
programatically will need to add those properties to the default property set in order
for them to be available to the E-Business Control Center and the Rules Manager.

Guide to Building Personalized Applications

Personalization Request Object

The default Request properties include the following:

Request Property Name Associated Request Method
Request Method request.getMethod()
Request URI request.getRequestURI()

Request Protocol

request.getProtocol()

Servlet Path request.getServletPath()
Path Info request.getPathInfo()

Path Translated request.getPathTranslated()
Locale request.getLocale()

Query String request.getQueryString()
Content Length request.getContentLength()
Content Type request.getContentType()

Server Name

request.getServerName()

Server Port

request.getServerPort()

Remote User

request.getRemoteUser()

Remote Address

request.getRemote Addr()

Remote Host

request.getRemoteHost()

Scheme

request.getAuthType()

Authorization Scheme

request.getScheme()

Context Path

request.getContextPath()

Character Encoding

request.getCharacterEncoding()

Guide to Building Personalized Applications 5-11

5

Foundation Classes and Utilities

Personalization Session Object

In order to use HTTP Session parameters in requests to the rules service, they must be
wrapped in a Personalization Sessi on object

(com beasys. conmer ce. axi om p13n. htt p. Sessi on) before they can be set on
the appropriate Advi ceRequest (see the Javadoc API documentation). While the

Ht t pSessi on object can be wrapped by directly calling the Personalization Sessi on
constructor, using the cr eat eP13NSessi on helper method on P13NJspBase

(com beasys. conmer ce. axi om p13n.j sp. PL3NJspBase) is recommended. See
the Javadoc API documentation for more information.

The tag implementations for the <pz: di v> and <pz: cont ent sel ect or > tags create
the Personalization Session surrogate for the HTTP Session before calling the Advisor
bean, so JSP developers need not worry about the details of the Ht t pSessi on object.
Only developers accessing the Per sonal i zat i onAdvi sor bean directly need to wrap
the Ht t pSessi on object explicitly.

Default Session Property Set

5-12

For Rules developers to write rules that contain conditions based on an HTTP session,
there must be a property set defined for the HTTP session. WebLogic Personalization
Server ships with a default session property that contains no values set as a
placeholder. There are no default Sessi on property set values. Developers adding
properties to the session programatically will need to add those properties to the default
property set in order for them to be available to the E-Business Control Center and the
Rules Manager.

The Personalization Sessi on object retrieves the session values from the Service
Manager (see “Repository” on page 3-11) for the current thread and clones them so
they can be used on a remote machine.

The Personalization Session uses the following algorithm to find a property:
1. Tt first looks in its own cloned HTTP Session properties.

2. Ifit does not find the property, it locates the schema for the Personalization
Session for the scopeNane method parameter.

Guide to Building Personalized Applications

Personalization Session Object

3. Ifit still does not find the property, it uses the scopeNane parameter to find a
schema entity for the Sessi on schema group name and, if the schema is found,
uses the default value in the schema.

4. If it still does not find the property, it uses the default value passed into the
get Pr oper t y method call.

Guide to Building Personalized Applications ~ 5-13

S5 Foundation Classes and Utilities

Utilities

You can view more detailed documentation for the utilities listed here in the Javadoc
API documentation.

JspHelper

JspHel per provides get methods to the JspSer vi ceManager URI, the working
directory, the home page, and the current page. It also provides set and get methods for
session values and JSP destinations.

Note: Some of these methods assume that the JspServiceManager model is being
used.

JspBase

JspBase acts as a base class for all JSP pages that use a Flow Manager. A wide variety
of important methods are provided:

m Get methods for the TrafficURI, working directory, repository directory, default
destination, RequestURI, default successor, home page, and current page.

m Methods to create URLs, and fixup (fully qualified) URLs.

m Methods to override the destination tag.

m Methods to set and get logged-in status.

m Methods to get, set, and remove session values.

m A method to convert HTML special characters to HTML entities.

m Methods to set the user and successor.

5-14 Guide to Building Personalized Applications

Utilities

P13NJSPHelper

P13NJspHel per provides convenience methods to developers writing JSP pages
(including but not limited to portals and portlets) that include personalized content. It
provides methods for wrapping HTTP Request and Sessi on objects into their
personalization surrogates, and a method for retrieving the current Profile (User,
Group, and so on) for an application.

P13NJspBase

P13NJspBase acts as a base class for all personalized JSP pages. This class extends
JspBase.

ContentHelper

Cont ent Hel per simplifies the life of the developer using the Content Management

component. Methods are provided to get an array of content given a search object, to
get the length of a piece of content. Constants for the default Cont ent and Docunent
homes are also provided.

CommercePropertiesHelper

Conmer cePr operti esHel per allows easy access to the commerce.properties file's
properties. Methods are provided to return the values of a given keys as various data
types. Also provided is a method to return all keys that start with a given string as a
string array. For example, use the method to find all of the keys that start with
personalization.portal.

Guide to Building Personalized Applications 5-15

S5 Foundation Classes and Utilities

Utilities in commerce.util Package

ExpressionHelper

Expr essi onHel per handles dealing with Expr essi on, Criteri a, and Logi cal
objects. It contains methods for parsing query strings into Expr essi ons, joining
Expr essi ons into Logi cal s, normalizing Expr essi ons, changing Expr essi ons,
Logi cal s,and Cri teri ainto St ri ngs, and turning Expr essi ons into St ri ng trees
for debugging purposes.

TypesHelper

TypesHel per provides a set of constants corresponding to the types and operators
used in the configurable entity properties. Methods are provided to get string
representations of the type names, to determine a type from aj ava. sql . Type, and to
get the list of comparison operators for a certain type.

5-16 Guide to Building Personalized Applications

CHAPTER

6

Creating and Managing
Property Sets

Property sets are the schemas for personalization attributes. Using the Property Set
Management tool, you can create property sets and define the properties that make up
these property sets.

This chapter includes the following topics:

m Overview of Property Sets

m Property Value Retrieval via ConfigurableEntity

m Using the Property Set Management Tool

Creating Property Sets

Creating Properties Within a Property Set
Editing Property Sets

Editing Properties Within a Property Set
Deleting Property Sets

Deleting Properties

Guide to Building Personalized Applications

6-1

6 Creating and Managing Property Sets

Overview of Property Sets

In the most general sense, a property can be considered a name/value pair. Property
sets serve as namespaces for properties so that properties can be conveniently grouped
and so that multiple properties with the same name can be defined.

For instance, Web site developers might want users to be able to specify different
background colors for each of their portals by requiring the property
“backgroundColor” for a user. By creating “portalA” and “portal B” property sets, the
property “backgroundColor” can exist for both portal A and portalB. While the two
“backgroundColor” properties have the same name, they could have the same or
different definitions. Figure 6-5 shows two property sets with redundant property
names, corresponding to unique definitions.

Figure 6-5 Property Sets Serving as Namespaces

— ~-
ﬁ Property Set: portalA (USER) finished
Property Set Description m
portal & properties
Properties create
edit
background color
v white
birthday
Default ¥alue: 01/01/1970 00:00:00 MST
stocks
VBEAS v IPM VAT
— ~-
ﬁ Property Set: portalB (USER) finished
Property Set Description @
portal B properties
Properties create
edit
background colar
¥ hlack
favorite authors
¥ ytilliam Faulkner ¥ Joseph Conrad

6-2 Guide to Building Personalized Applications

Overview of Property Sets

A property definition includes the following information:

m Property Value Type: The data type of the property value, for example, Text,
Integer, Float, or Date/Time. A property called age might be an Integer type,
while | ast Name would be Text.

m Plurality: Whether the property can contain a single value, or multiple values. A
property called f i r st Name might be a single-valued property, while
chi | dr enNarres would most likely be multivalued.

m Restriction: Whether the allowable values for a property are restricted. A
property called f avor i t eDayOf TheWeek would only have seven possible
values, while emai | would most likely be unrestricted.

m Default Property Value: Default values provided by the property set
corresponding to the property. A property called f avori t eDayOf TheWeek might
have a default value of “Saturday.” A property called daysOf f might have the
defaults “Saturday” and “Sunday.”

For Personalization Server purposes, property sets are applied to six major areas.

1. User and Group Profiles

The User/Group property set type is used for defining the property sets and
properties that apply to user and group profiles. For example, a property set of
this type might be created called portalA. Subsequent property retrieval for a
particular user or group can then be scoped with this property set name to
retrieve the user’s background color for the portal. See Chapter 7, “Creating and
Managing Users,” for an in-depth discussion of how property retrieval works for
users and groups.

2. HTTP Sessions

The Session property set type is used for defining the property sets and
properties that apply to HTTP sessions. Like the User/Group property set type, a
“Session” property set type might be called “portal A.” Properties available
through this property set can then be accessed via the Advisor.

3. HTTP Requests

The Request property set type is used for defining the property sets and
properties that apply to HTTP requests. Again, like the “User/Group” property
set type, a “Request” property set type might be called “portalA.” Properties
available through this property set can then be accessed via the Advisor.

Guide to Building Personalized Applications 6-3

6 Creating and Managing Property Sets

6-4

4. Content Management

The Content Management property set type is used for defining the
configuration and run-time use of the content management system. Content
Management property sets cannot be created or manipulated with the
Personalization Server Administration Tools. For more complete information on
this subject, see Chapter 8, “Creating and Managing Content,” in this guide.

5. Application Initialization

The Application Init property set type uses default values to define application
initialization parameters. These are the property sets used by the Flow Manager
in support of portal (DEFAULT_PORTAL_| NI T) and non-portal

(DEFAULT_APP_| NI T) based personalized applications. For more information
about the Flow Manager, see Chapter 5, “Foundation Classes and Utilities,” in
this guide.

6. Catalog Custom Attributes

You can define a property set that establishes custom attributes for a product
item in the WebLogic Commerce Server catalog. For a given product item, a
custom attribute that you define can be used in addition to the default attributes
provided by WebLogic Commerce Server in the catalog database tables. For
more information, see “Catalog Administration Tasks” in the Guide to Building
a Product Catalog.

Creating a property set is a simple task via the Property Set Management tools. A name
for the set must be provided as well as description. Properties can be copied from an
existing property set if a pre-existing property set defines similar properties.
Expanding the previous example, if portalA’s properties have been defined and
portalB is going to have the same (or similar) properties, then you can copy the
properties from portalA’s property set when creating portalB’s property set. Finally,
the type of property set (“User/Group”, “Session”, or “Request”) must be chosen.

When defining a property, specify the following:
m Property name — the name of the property, such as backgr oundCol or.

m Description — a textual description of the property, perhaps describing the
purpose of the property.

m Type — the data type of the property value. Data types supported by the
administration tools are Text, Integer (equivalent to Long in Java),

Guide to Building Personalized Applications

Overview of Property Sets

Floating-Point number (equivalent to Double in Java), Boolean, and Date/Time
(equivalent to java.sql.Timestamp).

m Selection option — determines whether the property is single-valued or
multi-valued.

m Creation category — determines whether the possible values are restricted.
Restricted property values are restricted to values listed in the property
definition. Unrestricted property values have no such limitation.

The following table lists the property definition attribute and value.

Property Definition Attribute Attribute Value

Name Text (100 character length maximum)
Description Text (255 character length maximum)
Type Text, Integer (equivalent to Long in Java),

Floating-Point Number (equivalent to Dou-
ble in Java), Boolean, or Date/Time

Selection Option Single-valued or multi-valued
Creation Category Restricted or unrestricted
Default Value Up to the user—can be nul |

Once created, User/Group property values can be edited for a particular user or group
via the User Management user and group tools. For “Session” and “Request”
properties, the only editable values are the default values set in the property definitions
—run-time values are determined by values in the HTTP session or HTTP request,
respectively.

Guide to Building Personalized Applications 6-5

6 Creating and Managing Property Sets

Property Value Retrieval via
ConfigurableEntity

6-6

Property Sets created with the administration tools are stored as

com beasys. commer ce. f oundat i on. property. Schema components. The
component that acts as an “owner” of properties associated with Property Sets is the
com beasys. comrer ce. f oundat i on. Confi gur abl eEnti t y. During inspection of
the Javadoc for Schema and Conf i gur abl eEnt i t y, the reader may see the words
“schema” and “scope” used interchangeably with “Property Set.” Figure 6-6 shows a
simplified representation of property value retrieval through a ConfigurableEntity. For
the Confi gur abl eEnti ty, the value of backgroundColor for portalB has been
overridden. The value of backgroundColor for portalA has not. Therefore, when
backgroundColor is requested for the portal B property set, the overridden value, red,
will be returned. When backgroundColor is requested for the portal A property set, the
property set default value, white, will be returned.

Figure 6-6 backgroundColor Property Retrieval

portald Schema (Property Set)

backgroundCalor: white

UseriGroup
ConfigurakbleEntity

portalB backgroundColar; red

portalB Schems (Propetty Set)

backgroundCalor: black

Figure 6-7 shows another simple example of backgroundColor property retrieval to
demonstrate the notion of an explicit successor. A second ConfigurableEntity can be
specified in the Conf i gur abl eEntity get Property() API that acts as a “backup”
place to look for a particular property value. This second Conf i gur abl eEntity is

Guide to Building Personalized Applications

Property Value Retrieval via ConfigurableEntity

considered an explicit property successor. In this example, a particular group is used
as an explicit successor, and the value for portalA’s background color, green, is
“inherited” from this successor.

Figure 6-7 Explicit Successor backgroundColor Property Retrieval

User Group
ConfigurableEntity \/L—'___——::_‘ ConfigurableEntity
portalB backgroundColor: red portald backgroundColor: green

Figure 6-8 provides an example of an implicit successor. An implicit successor is a
successor tied to a particular Property Set. In this case, the user does not have a value
for portal A.backgroundColor, and no explicit successor is provided in the

get Property() call. However, the group has already been associated with the user as
its successor for the portal A Property Set. Again, the user “inherits” the property value,
green, from the group.

Figure 6-8 Property Inheritance Through Property Set-related Successor

User

. Enginearing Group
ZonfigurableEntity qurableEntity
ConfigurableEnt ConfigurableEnti

portalB.backgroundColar: red

portald.successor Enginesring portals.backgroundCalor: green

There also exists the notion of a default successor, which can be searched after an
explicit successor and a Property Set-related successor have failed to return a value for
the property. Figure 6-9 shows such a case. In this example, the Property Set-related
successor cannot produce the necessary property value for backgroundColor in
portalA, so the value must be retrieved from the default successor.

Guide to Building Personalized Applications 6-7

6 Creating and Managing Property Sets

Figure 6-9 Property Inheritance Through a Default Successor

Engineering Group
ConfigurableErtity

User
ConfigurableErtity

portalB backgroundColor: red
portald successar: Engineering
successor R &D R & D Group
ConfigurableErtity

portald backgroundColor: blue

Keep in mind that these examples have been considerably simplified for brevity and to
easily explain relevant concepts. More details of Conf i gur abl eEnt i t y property

inheritance are available in the topic “Users and Groups” in the chapter Creating and
Managing Users.

6-8 Guide to Building Personalized Applications

Using the Property Set Management Tool

Using the Property Set Management Tool

Property Sets create

Click a titie link to edit and delete property sets and
properties, or click create to add new property sets,

The Property Set Management tools allow you to create and manage sets of typed
properties. Property Sets may be defined to describe user and group, session, request,
and content properties.

Creating Property Sets

To create a property set:

1. Onthe Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click Create in the Property Sets banner. The Create Property Set page appears.

To enter a new property set:

a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.
c. Leave the Copy Properties From default as Don t copy properties.

d. From the Property Set Type drop-down list, select a property set type.

To copy properties from an existing property set into the new one:
a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.

Guide to Building Personalized Applications 6-9

6 Creating and Managing Property Sets

¢. From the Copy Properties From drop-down list, select the property set
containing the properties you want copied.

3. Click Create to create the property set.

4. Click Back to return to the Property Set Management Home page.

Note: At any time, you can click Back to return to the Property Set Management

Home page without saving the property set.

Creating Properties Within a Property Set

To create properties within a property set:

1.

On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

From the Property Set list, click the title link for the property set to which you
will add a property. The Property Set view page appears.

. Click Create on the Properties bar. The Create Properties page appears.

] A
” Create Properties
AN
Enter the appropriate information and click create.
pprop!
Property Name: *
Description: I *
Type: Test b

Selection Option: Single ¥
Creation Category: Restricted -

back create

a. Enter the property name in the Property Name field.
b. Enter a description of the new property in the Description field.
c. Select the type from the Type drop-down list box.

d. Select option (single, multiple) from the Selection Option drop-down list box.

Note: The single option refers to those properties having only one option (for
example, Property: Color, Attribute: red). The multiple option refers to

6-10 Guide to Building Personalized Applications

Using the Property Set Management Tool

those properties having multiple options (for example, Property: Colors,
Attributes: red, green, blue, and so on).

e. Select the creation of category (Restricted, Unrestricted) from the Creation
Category drop-down box.

Note: Restricted categories refer to values that are selected via a list, radio
buttons, check boxes, and so on. Unrestricted categories refer to instances
in which users populate a form field.

4. Click Create.

5. Click Back to return to the Property Set view.

Setting Up the Property Default Value

Notes: Different steps are required for setting up default values, given your
option/category selection.

To set up the property default value for single/restricted categories:

1. From Property Set view, click Edit on the appropriate Property Description bar.
2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value(s) by selecting the appropriate radio button.

6. Click Create.

To set up the property default value for single/unrestricted categories:

1. From Property Set view, click Edit on the appropriate Property Set Description bar.
2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Create.

To set up the property default value for multiple/restricted categories:

Guide to Building Personalized Applications 6-11

6 Creating and Managing Property Sets

1. From Property Set view, click Edit on the appropriate Property Set Description bar.
2. Click Edit on the Properties Values bar.
3. Enter a new value to the property in the New Value field.

4. Click Create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value(s) by selecting the appropriate radio button(s).

6. Click Create.

To set up the property default value for multiple/unrestricted categories:

1. From Property Set view, click Edit on the appropriate Property Set Description bar.
2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Save.

Editing Property Sets

To edit a property set:

1. Onthe Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

To edit the Property Set Description:

1. Click Edit on the Property Set Description bar. The Edit Property Set page appears.

—_—
@l Property Set: portala

W Edit Property Set Description

Enter changes to the property set description and click save.

Description: IpDrIaIAperemes *

back save

6-12 Guide to Building Personalized Applications

Using the Property Set Management Tool

Enter the new description in the Description field.

Click Save to save changes. The general Property Set view appears with the new
information. Alternately, click Back to return to Property Set view page without
saving your changes.

Editing Properties Within a Property Set

To edit properties within a property set:

1.

On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

Click Edit on the appropriate property bar. The specific Property view page
appears, containing information specific to the property you wish to edit.

Click Edit on the appropriate Description or Property Values bar. The Edit
Property page appears.

Enter changes in the field(s) provided.

Click Save. The specific Property view returns. Alternatively, click Back. The
specific Property view appears and your changes are not saved.

Deleting Property Sets

To delete a property set:

1.

On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

Click the X to the right of the appropriate title link from the Property Sets list.

Click OK to confirm the deletion.

Guide to Building Personalized Applications 6-13

6 Creating and Managing Property Sets

Deleting Properties

To delete properties:

1. Onthe Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Select the appropriate title link from the Property Sets list. The general Property
Set view appears.

3. Click Delete on the Properties bar. The Delete Properties page appears.

@ Property Set: portala
Delete Properties

Select a property from the list and click delete.

Property Name: RermePoirts

back delete

4. Select a property from the Property Name list.
5. Click Delete.

6. Click OK to confirm the deletion. The specific Property view returns.
Alternatively, click Back. The Property view appears and the property is not
deleted.

6-14 Guide to Building Personalized Applications

CHAPTER

7 Creating and Managing
Users

This chapter discusses how User Management combines enterprise data about users
with profile data that is used to personalize the users’ view of the application.

This topic includes the following sections:
m Overview of User Management

m Users and Groups

m Unified User Profiles

m Using WebLogic Realms

® Anonymous User Profiles

m Privacy Statement

m User Manager

m Using the User Management Tool

m Using the LDAP Realm

m Using Other Realms

Note: Throughout this chapter, the environment variable W._ COMMERCE_HOVE is
used to indicate the directory in which you installed the WebLogic Commerce
Server and WebLogic Personalization Server software.

Guide to Building Personalized Applications 7-1

7

Creating and Managing Users

Overview of User Management

7-2

The User Management system is a set of JSP tags, EJBs, and tools that facilitate the
creation and persistence of user and group profile properties. It provides access to user
profile information within a larger personalization server solution. In addition, the
User Management system provides user-authentication mechanisms and user-to-group
associations.

The User Management system responsibilities include:

m User Authentication—the user management system is used to authenticate a
user against a persistent set of authentication information (typically a
username-password combination).

m User/Group Association Management—the association of a user with one or
more groups can play an essential role in determining user profile information
pertinent to the user's session. The User Management system can either provide
a default schema for user-group information persistence, or interface with
existing user databases via standardized interfaces (for example, LDAP) or
customized connectors.

m User Profile Management—the User Management system constructs the user
profile from persisted user and group attributes. User attributes can range from
statically-defined properties, such as a user's social security number, to
dynamically-created and persisted properties, such as Web site tracking
information for a particular user, or user preferences entered from a standard
input screen. The User Management system facilitates the creation and
persistence of user profile properties.

Note: The administration tools do not allow the creation of a user with username
“system” or “guest” or a group called “everyone,” as these are reserved
WebLogic Server terms.

Guide to Building Personalized Applications

Users and Groups

Users and Groups

The two primary components employed by the WebLogic Personalization Server’s
User Management system are the User and Group, which extend ConfigurableEntity.
It is from these components that User, and Group, and Unified User Profile
functionality stems. User and Group components are also referred to as “user profiles”
and “group profiles.”

The fully qualified name of each object is as follows:
m User: com beasys. comrer ce. axi om cont act . User
m Group: com beasys. comrer ce. axi om cont act . G oup

m ConfigurableEntity:
com beasys. commer ce. f oundat i on. Confi gurabl eEntity

The User Management system works in conjunction with the WebLogic Server’s
security realm. In this arrangement, the security realm provides a list of users and
groups, group membership information, and authentication. The User Management
system uses the security realm to authenticate users and to know which users and
groups exist and are valid, and which users are in a group. With this information from
the security realm, it is possible for the User Management system to accomplish its
primary duties: creating, retrieving, and managing user and group profiles complete
with property data. A default security realm (User Management RDBMSRealm) is
provided by the WebLogic Personalization Server as part of its “out-of-the-box”
configuration.

Property data can be anything that is relevant to a user or group profile in the context
of your personalized application. Things like age, gender, and favorite genres of music
could all be property data. Things like department, position, and office location could
also be property data. Much more is explained later about the actual and possible
implementation details of handling property data in user and group profiles.

Group hierarchies permit property inheritance. For example, if a user profile does not
yet have a “backgroundColor” property value, then the backgroundColor property
value might be inherited from an “engineering” group. Groups may have only one or
no parent group. As will be discussed later in this chapter, even if a realm for a
third-party data store (for example, LDAP server) is used to access users and groups,
any arbitrary group hierarchy may be configured for personalization purposes
(property inheritance) via the User Management tools.

Guide to Building Personalized Applications 7-3

7 Creating and Managing Users

Profile functionality for both the User and Group components is inherited from the
ConfigurableEntity implementation. Figure 7-10 shows a simplified representation of
the User-Group-ConfigurableEntity relationship.

Figure 7-10 The User-Group-ConfigurableEntity Relationship

ConfigurableEntity

User Group

Unified User Profiles

7-4

In the BEA WebLogic Personalization Server, system users are represented by user
profiles. A user profile provides an ID for a user and access to the properties of a user,
such as age or e-mail address. Property values can be single-valued or multi-valued,
and are requested via a get Pr opert y() method which takes a property name as a key.

An advantage of the user profile is that it can be extended and customized to retrieve
user information from an existing data source. For example, the user profile that ships
with the WebLogic Personalization Server can combine user properties from the
Personalization Server database with user properties from an LDAP server into a
single user profile for use within an application. Developers and system users need not
worry about the different underlying data sources. To them there is just one place to go
for user information—the user profile.

The Unified User Profile (UUP) is the name used to describe this aggregation of
properties from an existing data source and the WebLogic Personalization Server
database tables into a single, customized user profile. More specifically, a UUP
marries existing user/customer data by extending BEA’s User component. By

Guide to Building Personalized Applications

Unified User Profiles

installing the WebLogic Personalization Server’s database tables into the existing
database instance and extending the provided

com beasys. comrer ce. axi om cont act . User implementation, developers can
quickly create a customized UUP that retrieves and stores properties from/to the
existing database. This powerful flexibility is desirable because it allows access to
existing data without requiring data migration or disrupting existing applications that
also use the data. Conversely, if it is more desirable to migrate existing data into a
separate WebLogic Personalization Server database instance, this is also possible.

Guide to Building Personalized Applications 7-5

7 Creating and Managing Users

Configuration 1

Users and groups exist in some type of data store already, such as an LDAP directory.
Existing user property data must be incorporated into the Unified User Profile as
shown in Figure 7-11.

Figure 7-11 Configuration 1

T,

User Data Store
LDAF

Security
Realm

‘Wehlogic
Personalization Server
Datahase

+ Property Data ¢ Authentication
« List of Users
+ List of Groups

* group Membership

BEA Weblogic
Personalization

Server

Corporate
Database

Unified User
Profile

* Existing Property Data

7-6 Guide to Building Personalized Applications

Unified User Profiles

Configuration 2

Users and groups already exist in a data store such as an LDAP directory. No existing
user or group data must be incorporated into the Unified User Profile. All user and
group property data is stored in the WebLogic Personalization Server's database tables
as shown in Figure 7-12.

Figure 7-12 Configuration 2

e

User Data Store
Security LDAP
Realm

Weblogic
Personalization Server
Database

+ Authentication
+ List of Users

+ List of Groups
+ Group Membership

* Property Data

BEA Weblogic
Personalization
Server

Unified User
Profile

Guide to Building Personalized Applications 7-7

7 Creating and Managing Users

Configuration 3

There is no existing store of users and groups. The WebLogic Personalization Server's
database tables contain all user and group data as shown in Figure 7-13.

Figure 7-13 Possible Configuration 3

Security

Weblogic
Realm

Personalization Server
Database

+ Authentication
+ List of Users

+ List of Groups
+ Group Membership

+ Property Data

BEA Weblogic
Personalization
Server

Unified User
Profile

7-8 Guide to Building Personalized Applications

Unified User Profiles

Configuration 4

User, group, and property data are in an existing database. Existing user property data
must be incorporated into the Unified User Profile. A custom realm must be created in
order to use the existing users and groups with the WebLogic Personalization Server
as shown in Figure 7-14.

Figure 7-14 Possible Configuration 4

Personalization

Server & Corporate
Database

+ Authentication
+ List of Users

+ List of Groups
+ Group Membershif

* Property Data

BEA Weblogic
Personalization
Server

Unified User
Profile

The UnifiedUser example, found at

<install_dir>/config/w csDonai n/ appl i cati ons/w csApp/ def aul t WebAp
p/ exanpl es/ uni fi eduserprofile/index. htmn

demonstrates a fictitious company’s use of the UUP to take advantage of existing
customer data. The UnifiedUser extends

com beasys. commrer ce. axi om cont act . User and retrieves data from a
pre-existing database. If you have existing user information that you wish to leverage
in your application, it is recommended that you study this example. The UnifiedUser
shows how, with relative ease, you can create a customized UUP that suits your
application’s persistence needs.

Guide to Building Personalized Applications 7-9

Creating and Managing Users

Table 7-1 explains exactly what must be extended in order to create your own custom
UUP.

Table 7-1 UUP Extensions
Object Must Extend

UUP Primary Key com beasys. commer ce. axi om cont act . User Pk- -
with no key fields added.

UUP EJB Interface com beasys. conmmer ce. axi om cont act . User

UUP EJB Implementation com beasys. conmer ce. axi om cont act . User | npl

Setting Properties Explicitly or Implicitly

7-10

The fact that UUPs are ConfigurableEntities means that user profiles have the notion
of setting and getting a property explicitly or implicitly. Explicitly setting a property
means calling a setter method for a property directly. Implicitly setting a property
means setting a property via the set Propert y() method where no explicit setter
method is available. For example, if a UUP contains a “userPoints” property, calling
set User Poi nt s() directly would explicitly set the user Poi nt s property, while
calling set Property() with the “userPoints” key would implicitly set the

user Poi nt s property. When it is called, set Property() will first look for a

set User Poi nt s() setter method to call in the user profile. If such a setter method
exists, this method is called and is responsible for setting the property and doing
whatever else is necessary regarding that property’s change in value. Ultimately it is
the UUP implementation’s responsibility to persist explicitly-set property values—
even if they are implicitly called via set Propert y() . ConfigurableEntity only
handles persisting implicitly set properties where no explicit setter method exists.

Figure 7-15 diagrams both an explicit and implicit call to set User Poi nt s() . In both
cases, it is the UUP bean’s responsibility to handle storing the user Poi nt s value. If
no set User Poi nt s() method had existed in the UUP bean, the ConfigurableEntity

implementation would have handled storing the user Poi nt s value.

Guide to Building Personalized Applications

Unified User Profiles

Figure 7-15 Implicit and Explicit Calls to Set the userPoints Property

UnifiedUser UUP{=ubclass of
com.beasys.commerce. axiom.contact.User)

call
actlaceboinkaly

check to see i

Implicit Case there is &
et userPoines property call to setlagebuints (}
acbBeapeeby() method

continue executing
Mo astBcupecby(h
[property will be
stared in the
WWeblLogic
Personalization
Server database
tables)

Explicit Caze

_ call
et userPoints property callto seblagcBainks (3

aeblazcBoinka(}

This notion of implicitly and explicitly setting properties allows for additional
flexibility in UUP implementation. If any special logic needs to happen during the
setting or getting of a property, such as the recalculation of some other value, it can
conveniently be done in a setter or getter method for that property. Functionality
external to the UUP can always count on having a set Propert y() method and a
get Propert y() method for access to properties, eliminating any need to know
whether a property has its own setter or getter. For example, the <um get Pr oper t y>
JSP tag can always retrieve the user Poi nt s property value even if a

get User Poi nt s() method is the only way provided by the UUP to retrieve

user Poi nt s. This is because the UUP’s get Propert y() method will first check to
see if it has a get User Poi nt s() method before checking elsewhere. Properties that
have an explicit set <Pr oper t yName>() and get <Pr oper t yName>() method are
referred to as “explicit properties,” while properties that can only be set through a call
to set Property() are referred to as “implicit properties.”

When implementing a custom UUP EJB, you only need to worry about implementing
explicit getter and setter methods for the explicit properties you want the UUP to have.
The implementations of these setters and getters then do whatever is necessary to set
and retrieve the property values in the existing datastore.

There are a few important things to be aware of when creating a custom UUP. The
get <Pr opert yName>(), set <Propert yNane>() convention must be followed for
all explicit property setting and getting in a UUP. This means if you have a UUP with
an explicit user Poi nt s property, you must provide an explicit get User Poi nt s()

Guide to Building Personalized Applications 7-11

7 Creating and Managing Users

7-12

method—ret ri eveUser Poi nt s() would not work. Similarly, setting user Poi nt s
must be done with a set User Poi nt s() method. This is because the get Pr operty()
and set Proper t y() methods look for getters and setters that follow this convention
when getting and setting properties via implicit calls. Overriding set Property() or
get Property() is not permitted—all getting and setting of explicit properties must
be done through getter and setter methods. Explicit getters and setters must take and
return objects—primitives such as long and float must be wrapped in java.lang.Long
and java.lang.Float objects to be compatible with ConfigurableEntity’s

get Property() and set Property() methods.

Also, if you provide a getter method, it is a good idea to also provide a setter method
and vice versa. This is because you can never predict when someone will try to set or
get a property. For example, let’s say you provide a getter that retrieves a property from
a database table but no corresponding setter. If set Property() is called for that
property it will be stored in a WebLogic Personalization Server table. This is messy
because you have the value being retrieved from one place and set in another. The next
time the property is retrieved, it would have its original value—not the value that was
set. If you want to provide a read-only property, you should implement an empty setter
method.

The definition of ConfigurableEntity’s get Pr opert y() method is as follows:

public Object getProperty(String propertySet,
String propertyNane,
Configurabl eEntity explicitSuccessor,
bj ect def aul t Val ue);

The get Proper t y() method searches for properties in different places in a specific
order which is important to understand. For example, if a property is not found for a
User, perhaps a Group should be queried for the value. In this case the User would
inherit the property value from a Group. In ConfigurableEntity terms, the Group would
be the User’s “successor.” If a property is not found in a ConfigurableEntity, then the
ConfigurableEntity’s successor is queried for the value. This way ConfigurableEntities
can inherit and override values from a parent entity. Successors can be implicit or
explicit. An implicit successor is a ConfigurableEntity’s default successor or a
successor that is set for a specific Property Set. An explicit successor is a
ConfigurableEntity that is passed as a parameter to the get Pr oper t y() method.
Following is the order of the get Pr operty() property search as it exists in
ConfigurableEntity, and hence the User and Group objects as well as any UUP objects:

1. Look for an explicit get t er method for that property.

2. Look in the entity for the property for the specified Property Set.

Guide to Building Personalized Applications

Unified User Profiles

3. Look in the entity for the property in the default (null) Property Set.

4. Look in the entity for the property in the Reserved Property Set (for properties
from LDAP if using the LDAPRealm).

Note: Properties to be retrieved from LDAP must be registered as LDAP
attributes. See “Registering User Attributes for Retrieval from LDAP” on
page 7-46.

5. Look for the property in the entity’s explicit successor (if specified).

Look for the property in the entity’s successor for the specified Property Set.

S

Look for the property in the entity’s default successor.

8. Look for a default value as defined in the Property Set if the Property Set is
specified (not null).

9. Return the deflectable passed into the get Property() method.
The definition of ConfigurableEntity’s set Pr opert y() method is as follows:

public Object setProperty(String propertySet,
String propertyNane,
oj ect val ue);

This method has a few details that are also important to understand. If set Pr opert y()
is used to set a property for a Property Set that is inconsistent with the property set’s
definition, an exception is thrown. For example, suppose we have defined a
“UnifiedUserExample” Property Set that has a user Poi nt s property of type Integer.
If someone tries to set the user Poi nt s property for the “UnifiedUserExample”
Property Set to be “foo,” an exception would be thrown because user Poi nt s is
defined as being of type Integer and “foo” is text. Similarly, setting a Boolean property
value to “bar” would result in an exception because Boolean values are restricted to
Boolean objects.

Ifset Property() iscalled and nul | is passed for the Property Set, the property value
is set in the nul | Property Set—referred to as the default Property Set. As described
previously in the search order of get Pr oper t y(), the default property set is searched
before looking for the property value in the “Reserved” Property Set and then a
successor.

The “Reserved” Property Set is a read-only Property Set that is used to hold property
values from an external datastore. The only time the “Reserved” Property Set is
currently used in the WebLogic Personalization Server is when properties are retrieved

Guide to Building Personalized Applications ~ 7-13

7 Creating and Managing Users

7-14

from an LDAP directory. Attempting to set a property in the “Reserved” Property Set
will result in an exception being thrown. Properties in the “Reserved” Property Set and
the Reserved Property Set itself are not editable via the User Management tools. The
User Management tools allow the specification of attributes to be retrieved from an

LDAP server for users and groups.Only these attributes will be retrieved at run-time.

Properties can be set via set Property() with a Property Set specified that does not
exist. This is allowed, but strongly discouraged. When this is done, a Property Set is
not created “on-the-fly” for the specified Property Set name. Rather, the specified
Property Set name serves only as a namespace for the property. Similarly, it is allowed
but strongly discouraged to set a property via set Propert y() for an existing Property
Set specifying a property that does not exist for that Property Set. Properties set in
either of these ways are not editable through the User Management tools, but
properties in the “null” (“default”) property set are editable from the tools.

A couple of additional points about get Property() and set Property() that are
worth mentioning are as follow:

m get Property() returns a java.lang.Long object if set Property() is called
passing a java.lang.Integer object value. Code retrieving such a property should
be written as follows:

oj ect val ue = myUser. get Property(“ny_property_set”,
"my_i nteger_property",
nul I,
null);

Nunber tenpNunber
i nt real Val ue

(Nunmber) val ue;
t enpNunber . i nt Val ue() ;

m get Property() returns a java.lang.Double object if set Proper t y() is called
with a java.lang.Float object. Code retrieving such a property should be written
as follows:

bj ect val ue = myUser. get Property(“ny_property_set”,
“my_float_property”,
nul I,
null);
Nunber tenpNunber = (Nunber) val ue;
float real Value = tenpNunber.fl oatVal ue();

The com beasys. commer ce. axi om cont act . User object offers functionality for
EJB find operations that makes integrating a UUP with the WebLogic Personalization
Server easy. Once a UUP’s ej bFi nd() finds records in the existing data store, the call
to super . ej bFi nd() —the User object ej bFi nd() —will create the necessary
records for the UUP in the WebLogic Personalization Server tables if they do not yet

Guide to Building Personalized Applications

Unified User Profiles

exist and the following condition is met: If the User object ej bFi nd() fails, it checks
the underlying security realm to see if the username corresponds to a valid user. If so,
User’s ej bFi nd() creates the necessary records, thereby eliminating finder errors and
the need to spend time initially migrating user data into the WebLogic Personalization
Server’s User database tables (Figure 7-16).

Figure 7-16 Flow During an ejbFind() Operation

es

super ejbFind)

Create the necessary
succesds?

recards inthe

Return primary

Pce Rm,’.":f""g in Personslization Server * kery.
;:um ubmr]m databasze tables.
Extendecd UUP
ejbFindc) - _-_-ves

succeeds?

Uszer existz inthe
realm?

i
T o |

Fincler errar. i

If your configuration is such that the realm cannot verify the existence of the user, but
the user must be created, it is the responsibility of your EJB to create the superclass
records if they are not found initially. The Unified User Example code demonstrates
such a situation. Please refer to the ej bFi ndByPr i mar yKey() method in the file

Uni fi edUser Bean. j ava.

Six entries are required in the ejb-jar.xml file used when creating the unified user
profile bean’s descriptor. There entries are:

1. JNDIHomeName

This environment entry is not to be confused with the actual INDI lookup name
of the extended EJB. Rather, it is used to relate profile entries for the UUP EJB
with those of com beasys. commer ce. axi om cont act . User . The value must
always be:

com beasys. comrer ce. axi om cont act . User
Exact entry:

<env-entry>
<env- ent ry- name>JNDI HoneNane</ env- ent r y- name>
<env-entry-type>java.l ang. Stri ng</env-entry-type>

Guide to Building Personalized Applications 7-15

7 Creating and Managing Users

7-16

<env-entry-val ue>
com beasys. comer ce. axi om cont act . User
</ env-entry-val ue>

</ env-entry>

SchemaGroupName

This environment entry is used to configure the EJB to pull property values from
a particular classification of Property Sets. The value must always be:

USER
Exact entry:

<env-entry>
<env-ent ry- nane>SchenmaG oupNane</ env- ent ry- name>
<env-entry-type>java.lang. String</env-entry-type>
<env-entry-val ue>USER</ env-entry-val ue>

</ env-entry>

SmartBMPClass

This environment entry specifies which SmartBMP class to use when creating,
refreshing, updating, and removing the EJB. If you have created a SmartBMP

for your class which extends

com beasys. conmer ce. axi om cont act . User Smar t BMP, use the classname of
your SmartBMP for this entry. If you do not use a particular SmartBMP with
your class, use com beasys. commer ce. axi om cont act . User Snar t BVP as
the value.

Sample entry:

<env-entry>
<env-entry- nane>Smart BMWPC ass</ env-entry- nane>
<env-entry-type>java.lang. String</env-entry-type>
<env-entry-val ue>
com beasys. conmer ce. axi om cont act . User Snar t BMP
</ env-entry-val ue>
</ env-entry>

EntityPropertyManagerHome

This environment entry specifies which Enti t yPropertyManager bean to use
when accessing user and group properties. If using the LDAP configuration
(security realm is the LDAPRealm), the entry must be as follows.

Exact Entry:

<env-entry>
<env-ent ry- name>Ent it yPr oper t yManager Hone</ env- ent ry- name>

Guide to Building Personalized Applications

Unified User Profiles

<env-entry-type>j ava. |l ang. String</env-entry-type>
<env-entry-val ue>

com beasys. commer ce. f oundat i on. property. EntityPropertyAggregat or
</ env-entry-val ue>

</ env-entry>

For any other configuration the Ent i t yPr opert yManager Hone entry should be
specified as follows.

Exact Entry:

<env-entry>
<env- ent ry- nane>Ent i t yPr oper t yManager Hone</ env- ent r y- nanme>
<env-entry-type>j ava. |l ang. String</ env-entry-type>
<env-entry-val ue>
com beasys. conmer ce. foundat i on. property. EntityPropertyManager
</ env-entry-val ue>
</env-entry>

The contents of the ej b-j ar. xn file shipped with the Unified User Example
are shown below. Note that this bean was not paired with its own SmartBMP
implementation derived from UserSmartBMP.

5. PersistenceHelperPlugin

This entry specifies which persistence helper class should be used by the BMP.
If the standard UserSmartBMP is being used, the value should be
“com.beasys.commerce.foundation.plugin.bmp.BMPPersistenceHelperPlugin”.

Exact Entry:

<env-entry>
<env- ent r y- nane>Per si st encekel per Pl ugi n</ env- ent ry- nane>
<env-entry-type>j ava. |l ang. String</ env-entry-type>
<env-entry-val ue>
com beasys. conmer ce. foundat i on. pl ugi n. bnp. BMPPer si st enceHel per Pl ugi n
</ env-entry-val ue>
</env-entry>

6. UnifiedProfileType

This entry specifies the type of Unified Profile that this class belongs to. It is
necessary to transparently create, edit, and delete UUP users through the admin
tools. In the Unified User Example, the value is “Unified Profile Example”.

Exact Entry:
<env-entry>

<env-entry-nane>Uni fi edProf il eType</ env-entry- name>

Guide to Building Personalized Applications ~ 7-17

7 Creating and Managing Users

<env-entry-type>j ava. | ang. String</env-entry-type>
<env-entry-val ue>Unified Profil e Exanpl e</env-entry-val ue>
</env-entry>

<ej b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>exanpl es. user mgnt . Uni fi edUser </ ej b- nane>
<home>exanpl es. user ngnt . Uni fi edUser Hone</ hone>
<r enot e>exanpl es. userngmnt . Uni fi edUser </ r enot e>
<ej b- cl ass>exanpl es. user ngnt . Uni fi edUser Bean</ ej b- cl ass>
<per si st ence-t ype>Bean</ per si st ence-t ype>
<pri m key- cl ass>exanpl es. userngnt . Uni fi edUser Pk</ pri m key- cl ass>
<r eent r ant >Fal se</reentrant >
<env-entry>
<env-ent ry- nane>JNDl HonmeNare</ env- ent ry- nane>
<env-entry-type>j ava.l ang. String</env-entry-type>

<env-entry-val ue>com beasys. conmer ce. axi om cont act . User </ env- entry-val ue>
</ env-entry>
<env-entry>
<env- ent ry- nane>Schema& oupNane</ env- ent ry- name>
<env-entry-type>j ava.l ang. String</env-entry-type>
<env-entry-val ue>USER</ env-entry-val ue>

</ env-entry>

<env-entry>
<env- ent ry- nane>Smar t BWPQ ass</ env- ent ry- name>
<env-entry-type>j ava.l ang. String</env-entry-type>

<env-entry-
val ue>com beasys. conmer ce. axi om cont act . User Snar t BWP</ env- ent ry- val ue>
</ env-entry>
<env-entry>
<env-entry-nane>EntityPropertyManager Hone</ env- ent r y- name>
<env-entry-type>j ava.l ang. String</env-entry-type>

<env-entry-
val ue>com beasys. commer ce. f oundat i on. property. EntityPropertyAggregator</env-entry-
val ue>
</ env-entry>
<env-entry>
<env- ent r y- nane>Per si st enceHel per Pl ugi n</ env- ent ry- nane>
<env-entry-type>j ava.l ang. String</env-entry-type>

<env-entry-
val ue>com beasys. commer ce. f oundat i on. pl ugi n. bnp. BMPPer si st enceHel per Pl ugi n</ env- en
try-val ue>
</ env-entry>
<env-entry>
<env-entry-nane>Uni fi edProf i | eType</ env-entry- name>

7-18 Guide to Building Personalized Applications

Unified User Profiles

<env-entry-type>j ava. |l ang. String</env-entry-type>
<env-entry-val ue>Unified Profile Exanpl e</ env-entry-val ue>
</ env-entry>

<resource-ref>
<res-ref - nane>j dbc/ conmer cePool </ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</ res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</ resource-ref>

</entity>
</ enterprise-beans>
<assenbl y- descri pt or ></ assenbl y- descri pt or >
</ejb-jar>

Additionally, the following entry must be added to the webl ogi c- ej b-j ar. xm file
of the UUP so that it can access the commercePool database connection pool:

<webl ogi c-ent erpri se-bean>

(-]

<r ef er ence-descri pt or >
<r esour ce-descri pti on>
<res-r ef - nane>j dbc/ comrer cePool </ r es-r ef - nane>
<j ndi - name>webl ogi c. j dbc. j ts. comrer cePool </j ndi - narme>
</ resource-descri ption>
</ ref erence-descri ptor>
[.

</ webl ogi c-ent erpri se- bean>

The last step in completing a custom UUP requires the UUP to be registered with the
WebLogic Personalization Server through the User Management tools. In order to
register the UUP, the User Management tools require the following:

Item Description

Profile Type Name Arbitrary name that is later used to refer to the profile type
through the User Management system's
<um get Prof i | e> JSP extension tag.

Profile Home Class The home class of the new profile type.

Profile Remote Interface The remote interface of the new profile type.
Profile Primary Key Class The primary key class of the new profile type.
Profile JNDI Name The JNDI lookup name of the new profile type.

Guide to Building Personalized Applications ~ 7-19

7 Creating and Managing Users

By registering the UUP with the WebLogic Personalization Server, it becomes
possible to ask for the new profile type with the <um get Pr of i | e> JSP tag:

<um getProfile profil eType="Uni fi edUser Exanpl e”
prof il eKey="<%user nane%" / >

It is then possible to use the <um get Pr opert y> and <um set Pr opert y> JSP tags
with the UUP.

Using WebLogic Realms

7-20

A realm is a Java class that provides access to a store of Users, Groups, ACLs (access
control lists), and related services. WebLogic Server uses a realm as a service, calling
into the realm to retrieve Users, Groups, and ACLs as Java objects. WebLogic Server
provides realms that access the WebLogic Server properties file, Windows NT, or
UNIX networks, and LDAP servers for user, group, and ACL information. The
WebLogic Personalization Server provides an additional RDBMSRealm which uses
its own database tables containing user and group information as an out-of-the-box
option. It is also possible to create your own realm if your situation requires accessing
a datastore not supported by WebLogic Server.

The WebLogic Personalization Server must have access to a realm to retrieve
information about users and groups, determine a group’s members, and authenticate
users. By depending on realms, the WebLogic Personalization Server can use existing
stores of user and group information, allowing that information to remain in place. For
instance, if you already have users and groups defined in an LDAP directory, they can
be accessed by the WebLogic Personalization Server through the LDAPRealm without
requiring any redundant data entry.

If you are using the WebLogic Personalization Server without an external data store of
user and group information, then that information will be stored in the Personalization
Server’s database tables. In this case, the

com beasys. conmer ce. axi om cont act . securi t y. RDBVBReal mmust be used to
access user and group information from the WebLogic Personalization Server tables.
For this configuration to work, the appropriate realm properties for your database type
must exist in the conmer ce. properti es file.

Guide to Building Personalized Applications

Using WebLogic Realms

Ensure Properties Are Set in the BEA WebLogic Personalization Server’s
commerce.properties File

If Using the WebLogic Oracle OCI Driver:

comrer ce. user ngnt . RDBMSReal m dri ver =webl ogi c. j dbc. oci . Dri ver

comrer ce. user ngnt . RDBVSReal m dbUr | =j dbc: webl ogi c: oracl e

comrer ce. user ngnt . RDBMSReal m dbSer ver =<machi ne nane>

comer ce. user ngnt . RDBMSReal m dbUser =<dat abase user >

comrer ce. user ngnt . RDBVSReal m dbPasswor d=<dat abase user’s passwor d>

If Using Cloudscape:

comer ce. user ngnt . RDBVSReal m dri ver =COM cl oudscape. cor e.
JDBCDri ver
comrer ce. user ngnt . RDBMSReal m dbUr | =j dbc: cl oudscape: Commer ce; \

creat e=true; aut oconmi t =f al se

comrer ce. user ngnt . RDBMSReal m dbUser =none
comrer ce. user ngnt . RDBMSReal m dbPasswor d=none

confi g/ W csDonmi n/ appl i cati ons/ W csApp/ def aul t WebApp/ exanpl es/ uni
fieduserprofile/index. htm

Verify That the Realm Is Active

To verify that WebLogic Server is configured to use this realm, follow these steps:

1.
2.

Open up the WebLogic Console in a browser.
Expand wlesDomain->Security->Realms.
Verify that there is a realm (by default wicsRealm) defined there. If not, create it.

Verify that the realm class name for that realm is
com beasys. conmer ce. axi om cont act. security. RDBMSReal m
If not, update it and click apply.

Expand wlesDomain->Security->Caching Realms.

Verify that there is a caching realm (by default wicsCachingRealm) defined there.
If not, create it.

Verify that the basic realm for that caching realm is wlcsRealm. If not, update it
and click apply.

Guide to Building Personalized Applications ~ 7-21

Creating and Managing Users

8. Expand wlcsDomain->Security.

9. Verify that the Caching Realm specified is wlcsCachingRealm. If not, update it
and click apply.

10. If any changes needed to be made in these steps, you must restart the server for
them to take effect.

Implementing a New Custom Realm

7-22

It is important to note that if a realm other than the WebLogic Personalization Server’s
RDBMSRealm is being used, the administration tools for creating users and groups
become inaccessible. This is because adding users and groups and administering
credentials must be done through tools provided by the external datastore.

For use within the WebLogic Personalization Server, a realm must be a subclass of
webl ogi c. security. acl . AbstractLi st abl eReal m The WebLogic NTRealm,
LDAPRealm, and UnixRealm are all subclasses of AbstractListableRealm.

Tools are provided that allow a properly-configured realm to be set up for use by the
WebLogic Personalization Server. The realm configuration tools allow you to choose
which groups from the realm you wish to use in the WebLogic Personalization Server,
map group names that have changed in the realm to new group names, and clean up
Personalization Server records that no longer correspond to valid realm users or
groups.

Note: Changing the underlying realm can cause unpredictable behavior if the realm
configuration tools are not immediately used to map and remove groups and
clean up users as appropriate for the new realm.

In addition to user and group information, realms may also provide ACLs to determine
an authenticated user’s permissions within the system. An ACL guards an object or
service in WebLogic Server. ACLs can guard servlets and JSP pages, IMS queues and
topics, EJBs, JDBC connection pools, JNDI contexts, and ZAC packages. You can
also create custom ACLs for use in your applications, and these ACLs will be
supported by the WebLogic Personalization Server.

Guide to Building Personalized Applications

Anonymous User Profiles

An ACL holds a list of AclEntries, each with a set of permissions for a user or group.
A permission is an action that can be performed on the protected resource—for
example, “execute,” “lookup,” “read,” or “write.” The exact permissions available
depend on the type of resource the ACL protects. For example, a servlet requires
“execute” permission, and a JMS queue requires “read” or “write” permission.

For more information on realms, including how to configure and administer realms,
consult the WebLogic Server documentation for Using WebLogic Realms and ACLs.
Also, for more information on implementing a custom realm, see the WebLogic Server
documentation.

Anonymous User Profiles

Certain scenarios require an unidentified user to be able to use a system. While the
unidentified user is using the system, you may need to have a profile for that user in
order to set and get properties. For instance, a portal Web site might want to let new
users tour the Web site and configure a few things before they actually have an official
login name and password. The anonymous user profile allows for a user profile to be
created for such a user. An anonymous user profile can be treated just like a user profile
for a known user, but the anonymous user profile only lives for the life of the user
session. If the session is terminated without capturing an identity for the user, any
profile information accumulated during the life of the anonymous user profile is lost.
An anonymous user profile has no successor and will not retrieve default property
values from a Property Set.

The anonymous user profile is available only through JSP tags. An anonymous profile
is created when a <um set Property> or <um get Pr operty> JSP tag is used before
a <um get Prof i | e> tag has been called. If during a session a persistent user profile
is created for the anonymous user, the <um cr eat eUser > tag can be told to store the
values from the anonymous profile into the new user profile. This is done with the
saveAnonynous tag parameter set to t r ue, as in <um cr eat eUser
saveAnonynous="tr ue” >. For more information on these tags, see the topic “User
Management JSP tags” in Chapter 12, “Personalization Server JSP Tag Library
Reference.”

For an example, see
9N, COWERCE_HOVEY% ser ver/ public_htm /anonynousprofil e/index. htm

Guide to Building Personalized Applications 7-23

7 Creating and Managing Users

Privacy Statement

7-24

The Platform for Privacy Preferences Project (P3P) is an emerging industry standard
that is designed to provide an automated way to compare consumers' privacy
preferences with the privacy practices of the Web sites they visit. It lets Web sites
express their privacy practices in a format that can be retrieved automatically and
interpreted easily.

The P3P is a work-in-progress by the World Wide Web Consortium (W3C), a global
group drawn from industry, academia, and privacy groups as well as public policy
organizations. For more information about the World Wide Web Consortium’s
ongoing P3P effort, visit the P3P site at http://www.w3.org/P3P.

Essentially, P3P compliance means that your Web site presents a privacy policy to the
user. As put forth in the P3P specification, a privacy policy is a set of one or more
privacy statements that describe what personal user data a Web site will retrieve, and
how the data is to be used. The P3P specification currently defines three mechanisms
by which a Web site’s privacy policy information can be presented to the end user:

m By publishing the policy reference file at a well-known URL.
For complete information, see the P3P specification, section 2.2.1.
http://www.w3.org/TR/P3P/#mechanism_ref

m By injecting a special header in each HTTP response served up by the Web
server. For complete information, see the P3P specification, section 2.2.2.
http://www.w3.org/TR/P3P/#syntax_ext

m By using an embedded <link> tag in the body of an HTML page.
For complete information, see the P3P specification, section 2.2.3.
http://www.w3.org/TR/P3P/#syntax_link

BEA Systems applauds the efforts of the World Wide Web Consortium and other
organizations around the world working to empower users to control the use of their
personal information on the Web sites they visit. However, it is important to note that
WebLogic Personalization Server does not in any way enforce P3P compliance—that
option is left up to the Web site developer.

Guide to Building Personalized Applications

User Manager

User Manager

The UserManager Session EJB provides user management functionality in a
WebLogic Personalization Server-specific context. Services provided by the
UserManager include:

m Creating/removing users

m Creating/removing groups

m Adding users to groups/removing users from groups

®m Adding groups to groups/removing groups from groups

m Retrieving usernames corresponding to a group

m Retrieving group names corresponding to a user

m Retrieving unique group and user IDs based on group/username

m Retrieving group/username based on unique ID

m Retrieving user/group objects based on name

For a complete list of UserManager services, please refer to the UserManager Javadoc.

Though it supplies the underlying functionality of the Group/User management JSP
extension tags, the UserManager can be accessed directly. However, the UserManager
is not intended for use outside the context of the WebLogic Personalization Server. To
emphasize this point, the general relationship between the UserManager and the
security realm support mechanism will be briefly explained, followed by a few
examples.

Figure 7-17 shows the relationship between the UserManager, the RealmLink, and the
security realm. The RealmLink is used to ensure that realm query results are consistent
with WebLogic Personalization Server user and group data. The RealmLink is the only
object aware of both the WebLogic Personalization Server data, and the Realm user
and group data. An example of RealmLink activity is the query for group names
associated with a particular user. Since the user manager administration tools allow for
group registration with the WebLogic Personalization Server, the RealmLink will only
return group names for a particular user that exist in both the security realm and in the
WebLogic Personalization Server tables.

Guide to Building Personalized Applications 7-25

7

Creating and Managing Users

7-26

Figure 7-17 UserManager/RealmLink Cooperation

Realm Link access
(getGrouphlames, etc.)
Peripheral personalizstion
activiies (setting roup
SUCCESSOrS, eto.)

Conzolidation of Realm and
Personalization Server
information

User Data Store

UserManager — RealmLink ———1 Seaurity LDAP
Realm i

Personalization Server
&

Corporate
Database

To ensure behavior consistent with WebLogic Personalization Server purposes, the
UserManager employs two primary strategies:

1.

For certain operations, the UserManager qualifies the security realm being used
before taking action. These operations can only be performed if the current security
realm class is

com beasys. comrer ce. axi om cont act. security. RDBMBReal m See
UserManager EJB in the Javadoc for details.

For example, the cr eat eG oup() method throws a

User Managenent Except i on if the out-of-the-box RDBMSRealm is not being
used. The logic behind such an exception is that the UserManager is designed to
work with the default Personalization database schema. If another realm is being
used (for example, WebLogic LDAPRealm), it is assumed that the client has
another means, besides the WebLogic Personalization Server Administration
Tools, that should be used for adding and removing groups and users to/from the
realm.

For all operations, the UserManager works in conjunction with the

com beasys. conmer ce. axi om cont act . securi ty. Real nLi nk class to
ensure results consistent with both security realm and WebLogic Personalization
Server user and group data.

For example, the get G oupNamesFor User () method returns only group names
which exist in the current security realm and which are registered with the
WebLogic Personalization Server via the Realm Configuration tools.

Guide to Building Personalized Applications

Using the User Management Tool

Using the User Management Tool

BEA WebLogic Personalization Server

Groups Users create

Click Groups to edit and delete groups, click Greate to Glick Users to edit and delete users, click Create to add
add new groups. REW Users.

create

Unified Profile Types create

Click Unified Profile Types to edit and delete profiie
types, click Create to add new profile types.

The User Management Administration Tools allow you to create and associate users
and groups or to link to and use existing directories of users. A user or group may then
be personalized by overriding property values as defined in the Property Set
Management tool. The Unified Profile Types tool allows you to configure access
through User Management tag libraries to your existing application EJBs.

Note: Ifyour system is configured for a third-party realm, the interface above would
contain a Realm banner in addition to the ones presented and an LDAP banner
if you are using the LDAPRealm. In addition, the Create buttons would not
appear on the Users or Groups banners.

Creating Groups

Note: The User Management tools do not allow the creation of a group called
“everyone,” because this is a reserved WebLogic Server group name.

To create groups:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Create in the Groups banner. The
Create a New Group page appears.

Guide to Building Personalized Applications 7-27

7 Creating and Managing Users

Groups finished

Search the Group Hierarchy

Click through the group hierarchy to view all groups and levels. To create a group, click the H
that appears at the appropriate level

Group Hierarchy
Top Level: Everyone

P acmelsers

H Add a subgroup to top level

&

3. Within the Group Hierarchy tree view, expand the hierarchy as needed to display
the add icon (+) at the level you wish to add the group. Click on the plus sign.
The Create a Group page appears.

4. Enter the name of the new group in the Group Name field.
5. Click Create. A success or failure message appears.

/, 1 Create New Group below top level
~-\\ Enter the appropriate information then click Create,

Group Name:

& &

6. Click Back to return to the Group Administration Tool or to enter another new
group name (step 4).

Note: The administration tools do not allow the creation of a user with username
“system” or “guest” or a group called “everyone,” as these are reserved
WebLogic Server terms.

Deleting Groups

To delete groups:

1. On the Administration Tool Home page, click the User Management icon. The
User Management Home page appears.

7-28 Guide to Building Personalized Applications

Using the User Management Tool

2. On the User Management Home page, click Groups in the Groups banner. The
Search for Groups tool appears.

Groups finished

Search for Groups

Click through the group hierarchy to find a group,

ar search for the group by name. Once found, you Group Name: @

can click the group title link to edit it, or click X' to
delete the group.

Group Hierarchy
Top Level: Everyone

AcmeUsers X

groupname X

&

a. To locate the group to delete by name, enter the group name in the Group Name
field, then click Search.

Note: The group name must be entered exactly.

b. To locate the group to delete within the Group Hierarchy, navigate the Group
Hierarchy tree view.

3. Click the X to the right of the group name. A confirmation box appears.

4. Select OK. The group is deleted.

Adding Users to Groups

To add users to groups:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

Guide to Building Personalized Applications 7-29

7 Creating and Managing Users

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

3. Select the group. The Group Properties view appears.

4. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

Group: AcmeUsers

\EG]‘ Add/Remove Group Search Results

Search for the user you want to add or remove from this group. The search results and current group users will appear
at the bottom of the page. To add a user, select the user name and click the right arrow. To remove a user, select the
user name and click the left arrow. You must click the "save" button to commit any changes to the group before
performing a new search or leaving this page.

Username: | @ EEE
nofelofr]s]Tlulvlw]x]vfz

Search Results: Group Search Results:
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr H [———=H
Ld|

{ J
| | | |

&

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

5. Select the username, or a group of names, from the Search Results field.

7-30 Guide to Building Personalized Applications

Using the User Management Tool

7.
8.

Search Results: Group Search Results:
acme = JESS———
ausername

4

4

Click the left-to-right directional arrow. The username(s) appears with the Group
Users field.

Click Save.

Click Back to return to the Group Properties view.

Note: The search applies both list boxes.

Removing Users from Groups

To remove users from groups:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Groups in the Groups banner. The
Search for Groups tool appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

Select the group. The Group Properties view appears.

Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

To locate a user, do one of the following:

Guide to Building Personalized Applications ~ 7-31

7 Creating and Managing Users

a. Tolocate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. Tosee alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

5. Select the username, or a group of usernames, from the Group Users field.

6. Click the right-to-left directional arrow. The username(s) is removed from the
Group Users field and appears in Search Results.

7. Click Save.

8. Click Back to return to the Group Properties view.

Editing Group Property Values

7-32

To edit group property values:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

3. Select the group. The Group Properties view appears.

Guide to Building Personalized Applications

Using the User Management Tool

8.
9.

Select or search for a property set to view for this group. For specific instructions
on property set management, see Chapter 6, “Creating and Managing Property
Sets.” The group’s default property values appear if no other property set has
been accessed during the tools session.

Click Search.

Click Edit on the appropriate Property bar. The associated Edit Property Values
page appears.

Change the values on the Edit Property Values page.
Click Save.

Click Back to return to the Group Properties view.

10. Return to step 4 and edit other properties as necessary.

Notes: Non-default Property sets and properties not configured through the Property

Set Management tools are not editable here.

If you click the Reset button on the Property bar (instead of Edit as we did in
step 6), the property is set to null for that user. This will have one of three
results:

m First, if the property has a default value, the group will have that default
value. Note that the default value is not copied into the group's settings.
The group's value is just set to null so that the default value will be
returned when getProperty() is called for that property. If the default
value changes, calling getProperty() will return the new default value.

m Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

m Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Creating User

To create users:

Guide to Building Personalized Applications 7-33

7 Creating and Managing Users

7-34

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Create in the Users banner. The
Create New Users page appears.

Users

y Create New Users
il

k\ Enter the appropriate information then click Create. New users will display in the list below,

Username: I

*
Password: I *
*

Verify Password: I

User
Unified Frofile Example @ @
WLCS_ Custormer

Enter the username in the Username field.

User Type:

Note: Limit usernames to 25 characters.

Enter the password associated with the Username in the Password field.

. Re-enter the password provided in step 4 in the Verify Password field.

Note: Characters in password fields appear as asterisks.

. From the User Type list, select a Unified Profile. The user will be an instance of

this Unified Profile. This allows the system to access explicit properties in a
Unified Profile type, and ensures proper data cleanup when the user is removed.

Click Create. The new user appears at the bottom of the page.
Alternatively, click Back to return to the User Management Home page without
creating the new user.

Note: The WLCS RDBMSrealm allows mixed case (for example: User, user) user

creation.

Note: The administration tools do not allow the creation of a user with username

“system” or “guest” or a group called “everyone,” as these are reserved
WebLogic Server terms.

Guide to Building Personalized Applications

Using the User Management Tool

Editing User Property Values

Note: Explicit properties of UUP are only editable from the administration tools if a

property set is created that mirrors those properties.

To edit user property values:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears.

To locate a user, do one of the following:

a. Tolocate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. Tosee alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

Select the user. The User Property view appears.

Select a property set to view for this user. For specific instructions on Property
Set Management, see Chapter 6, “Creating and Managing Property Sets.”

Click Search. The User Properties view appears.

Guide to Building Personalized Applications 7-35

7 Creating and Managing Users

7-36

Users: acme finished

Select a property set to view for this user : @
exampleportal j

User Information
Username: acme

Properties
FavoriteCharacter (Text, Single, Restricted)
Favorite Cartoon Character, Coyote or RoadRunner

edit reset

¥ RoadRunner bugs
Wile E. Coyote

banner_color (Text, Single, Unrestricted) edit reset

banner_calor
Yalue= #666666

6. Click Edit on the appropriate Property bar. The associated Edit Property Values
page appears.

Property Set: Property Set Name
Property: Property Name

“ Edit Property Values
— Select a default property value for this user and click save.
& True
© False

7. Change the user’s values at the Edit Property Values page.

8. Click Save. A message appears indicating whether or not the edit was successful.
Alternatively, click Back to return to the User Properties view without saving
your changes.

9. Click Back to return to the User Properties view.

10. Return to step 4 and edit other properties as necessary.

Note: If you click the Reset button on the Property bar (instead of Edit as we did in
step 6), the property is set to null for that user. This will have one of three
results:

m First, if the property has a default value, the user will have that default
value. Note that the default value is not copied into the user's settings.
The user's value is just set to null so that the default value will be

Guide to Building Personalized Applications

Using the User Management Tool

returned when getProperty() is called for that property. If the default
value changes, calling getProperty() will return the new default value.

m Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

m Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Deleting Users

To delete users:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears.

Users

Search for a User or See a List of All Users that Start with...

Enter a user name then click Search, EE
wenene: | @ NEDADEEMOMEANA

&

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. Tosee alist of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

Click the X to right of the username to delete the user. A confirmation dialog box
appears.

Guide to Building Personalized Applications 7-37

Creating and Managing Users

4. Click OK to confirm the deletion.

Note: When a use is deleted from the Delete Users screen, the corresponding User
component and its properties will be deleted, but the username will continue
to be returned from user searches.

Creating Unified Profile Types

7-38

To create unified profile types:

The Unified Profile Type tool facilitates the registration of profile types to be used as
Unified User Profile (UUP) objects.

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Create in the Unified Profile Types
banner. The Create New Unified Profile Type page appears.

Unified Profile Types
//,1 Create New Unified Profile Type
N

Enter the appropriate information then click Create.

Profile Type Name:

Profile Class:

PK Class:

I
I
Home: |
|
|

INDI Name:

Guide to Building Personalized Applications

Using the User Management Tool

The following table contains descriptions of the Create New Unified Profile Type
fields:

Field Description

Profile Type Name This is an arbitrary name that is used to refer to the profile type
through the User Management system's <um get Pr of i | e>
JSP extension tag.

Profile Remote Interface ~ The remote interface of the new profile type.

Home The home class of the new profile type.
PK Class The primary key class of the new profile type.
JNDI Name The JNDI lookup name of the new profile type.

3. Enter the appropriate information in the fields provided.

4. Click Create and return to the Unified Profile Types list.
Alternatively, click Back to return to the User Management Home page without
saving your changes.

Guide to Building Personalized Applications 7-39

7 Creating and Managing Users

Editing Unified Profile Types

To edit unified profile types:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click the Unified Profile Types list. The
Unified Profile Type page appears.

Click the appropriate link to edit a unified profile type. The Edit Unified Profile
Type page appears.

Edit the appropriate field(s) of the unified profile type.

Click Save and return to the Unified Profile Types list or click Back to return to
the User Management Home page without saving your changes.

Deleting Unified Profile Types

7-40

To delete unified profile types:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Unified Profile Types. The Unified
Profile Type page appears.

. Click the X to right of the username to delete the user. A confirmation dialog box

appears.

Click OK to confirm the deletion.

Guide to Building Personalized Applications

Using the LDAP Realm

Using the LDAP Realm

The LDAP tools are accessible only if WebLogic’s LDAPRealm is used.

Setting up LDAP in the WLS Administration Console

Before you begin, WebLogic Commerce Server must be properly configured to start
up without throwing exceptions. You will start up WebLogic Commerce Server at the
end of these instructions.

Note: These instructions are for a Netscape Directory Server.

Creating the LDAP Realm

1. Start the LDAP server.

2. Bring up the WebLogic Server Administration Console by launching a browser to
the following URL: http://<server>:<port>\console

3. Click the Realms node of the tree in the left pane of the Administration Console.

4. Click the Create a new LDAPRealm link.

The General Tab

1. Enter a name for the LDAP realm you are creating (for example,
wlcsLDAPRealm).

2. Click the Create button.

The LDAP Tab

1. Enter the URL with the listen port for your LDAP server (for example,
ldap://mycomputer.beasys.com:389).

2. In the Principal field enter:
uid=admin,ou=Administrators,ou=TopologyManagement,o=NetscapeRoot

Guide to Building Personalized Applications 7-41

7 Creating and Managing Users

3. In the Credential field enter the password for the user you want to connect as.
For example, the LDAP administrator’s password might be adni n.

4. Leave the Enable SSL checkbox unchecked. (See note below.)
5. In the Auth Protocol drop-down list or menu, select: simple

6. Click the Apply button.

Note: When you see an LDAP property in the console that is not setin conf i g. xm ,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the confi g. xnl file. For example, setting the attribute’s
default value will not put it into confi g. xm because it is a default value.
Because WebLogic Commerce Server expects to see a default value in
confi g. xn , it will throw an exception if it is not there. Set the attribute to a
non-default value, then set it back to the default value, and you will see it
appear in confi g. xni .

In step 4. above, check the box for Enable SSL, click the Apply button, then
uncheck the box and click the Apply button again. This is to ensure that the
default value of “false” appears in config.xml.

The Users Tab

1. Inthe User Authentication drop-down list, select: local

2. Inthe User Password Attribute field, enter: userpassword. (See note below.)
3. Inthe User DN field enter: o=beasys.com, ou=People

4. In the User Name Attribute field, enter: uid

5. Click the Apply button.

Note: When you see an LDAP property in the console that is not setin conf i g. xm ,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the confi g. xnl file. For example, setting the attribute’s
default value will not put it into conf i g. xn because it is a default value.
Because WebLogic Commerce Server expects to see a default value in

7-42 Guide to Building Personalized Applications

Using the LDAP Realm

The Groups Tab

confi g. xnl, it will throw an exception if it is not there. Set the attribute to a
non-default value, then set it back to the default value, and you will see it
appear in confi g. xni .

In the User Password Attribute field above, enter: x, click the Apply button,
enter: userpassword, and click the Apply button again. This is to ensure that
the default value of “userpassword” appears in config.xml.

1. Inthe Group DN field, enter: o=beasys.com, ou=Groups

2. In the Group Name Attribute field, enter: cn. (See note below.)

3. Ensure that the Group is Context checkbox is unchecked.

4. In the Group Username Attribute field, enter: uniquemember

5. Click the Apply button.

Note:

When you see an LDAP property in the console that is not set in conf i g. xn ,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the confi g. xm file. For example, setting the

G oupNaneAt t ri but e=*cn” will not put it into conf i g. xm because it is a
default value. WebLogic Commerce Server expects to see a

G oupNaneAttri buteinconfig. xml and will throw an exception if it is not
there. Set the G oupNaneAt t ri but e to a non-default value, “ xx” , and then
set it to “cn”, and you will see it appear in confi g. xn .

In the Group Name Attribute field above, enter: x, click the Apply button,
enter: cn, and click the Apply button again. This is to ensure that the default
value of “cn” appears in config.xml.

Specifying/Creating the Caching Realm

1. Click the Caching Realms node of the tree in the left pane.

Guide to Building Personalized Applications ~ 7-43

7 Creating and Managing Users

2. Most likely you will see a caching realm already created named
w csCachi ngReal m If this realm exists, click it. If no caching realm exists, skip
to step 5.

3. In the Basic Realm list, select the name of the newly created LDAP realm (e.g.,
w csLDAPReal m).

4. Click the Apply button.

5. Ifa caching realm has not been created, click the Create a new Caching Realm
link.

6. In the Name field, enter a name for the caching realm (for example,
w csCachi ngReal m).

7. 1In the Basic Realm list, select the name of the newly created LDAP realm (for
example, W csLDAPReal m)

8. Click the Create button.

Verifying the LDAP Properties in config.xml

1. Openthe $W._COMVERCE HOVE/ confi g/ W csdomai n/ confi g. xm file using
an editor (not a browser).

2. Verify that the LDAP properties that were set using the WebLogic Server console
are correctly set in config.xml.

e You should see an LDAP realm element (<LDAPReal m / >) with many
attributes. Each attribute is a property that was set using the WLS console.

Note: Ifyou see an LDAP property in the console that is not set in config.xml, enter
a value different than the default and apply the change. Then enter the correct
value and apply that change. You should then see the property set correctly
within the config.xml file. For example, setting the attribute’s default value
will not put it into conf i g. xm because it is a default value. Because
WebLogic Commerce Server expects to see a default value in confi g. xni , it
will throw an exception if it is not there. Set the attribute to a non-default value,
then set it back to the default value, and you will see it appear in confi g. xni .

7-44 Guide to Building Personalized Applications

Using the LDAP Realm

e You should see a caching realm element (<Cachi ngReal m / >) with three
attributes. Verify that the Basi cReal mattribute is set to your LDAP realm
name.

e You should see a realm element (<Real m / >) with three attributes. Verify
that the Cachi ngReal mattribute is set to the realm you specified in the
Specifying/Creating the Caching Realm section of this document.

Note: Avoid editing the config.xml file manually. WebLogic Server prefers that

Example

config.xml is edited using the console. However, if you must make manual
edits, WLS will accept them.

<LDAPReal m Aut hProt ocol ="si npl e" Credenti al ="adni n"

G oupDN="0=beasys. com ou=G oups" G oupl sContext="fal se"
G oupNaneAttri bute="cn" G oupUsernanmeAttri bute="uni quenmenber"
LDAPURL="1 dap: / / myLDAPser ver: 389" Name="w csLDAPReal nt
Princi pal =" ui d=adm n, ou=Admi ni strat ors,
ou=Topol ogyManagnent , o=Net scapeRoot "
SSLEnabl e="f al se" User Aut henti cati on="| ocal "
User DN=" o=beasys. com ou=Peopl e" User NameAttri bute="ui d"
User Passwor dAt t ri but e="user password”/ >

Startup WebLogic Commerce Server

1.

2.

WebLogic Commerce Server should now be set up to use the specified LDAP
server. Start WebLogic Commerce Server.

If you are using the WebLogic Commerce Server Administation Tools, a login
dialog box will display. Enter the username and password for an LDAP
administrative user.

Guide to Building Personalized Applications 7-45

7 Creating and Managing Users

Registering User Attributes for Retrieval from LDAP

7-46

The LDAP Configuration screen is used to register user attribute names for run-time
retrieval via the group profile.

Note: Forthe LDAP features to appear in the User Management tool, you must first

install and configure the WebLogic LDAP security realm for your WebLogic
Server, as described in the sections above.

Note: Your WebLogic Commerce Server Administration Tool is set up to allow

1.

access to the group called “admin.” To access your WebLogic Commerce
Server Administration Tool after you start your server with the alternate
security realm, you will need to create a group called “admin” with an
administrative user in it. By default, the exampleportal application is set to the
AcmeUsers group profile when not authenticated. To use the exampleportal
application with another security realm such as LDAP, you need to create a
group called “AcmeUsers.” Without this group, an exception is thrown to the
console complaining about its absence. Another solution is to change the
default group for exampleportal from AcmeUsers to another group being used
within the security realm.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click LDAP in the LDAP banner. The

LDAP Configuration view appears.

LDAP Configuration finished

create

Enabled Group Attributes
List the group attributes that you want to be retrieved from LDAP by name,

create

Enabled User Attributes
List the user attributes that you want to be retrieved from LDAP by name.

LDAP Configuration Parameters - from the WebLogic LDAP Realm
Groups Location

Groups Location is the DN for the hierarchical parent of all relevant groups.

Location: ou=Groups,o=heasys.com

Group Name Attribute
Group Mame Attribute is the name of the attribute which uniquely identifies groups.

Attribute: cn

Guide to Building Personalized Applications

Using the LDAP Realm

Click Create on the Enabled User Attributes bar. The Add User Attribute page
appears.

Enter a new attribute to retrieve from LDAP in the User Attribute Name field.

Click Save. Alternatively, click Back to return to LDAP Configuration view
without saving your changes.

Repeat steps 4 and 5 as necessary.

When finished, click Back.

Registering LDAP Properties for Use With Rules

To use LDAP properties in rules, the rules need to know that the properties exist. For
any properties that are registered for retrieval from LDAP, create a property set with
the LDAP properties in it, and give each property the same name as the property that
is registered in LDAP.

You cannot use the User Management Administration Tool or the WebLogic
Personalization Server framework to modify properties that are stored in LDAP, but
you can use the fact that other property sets are searched before LDAP if you want to
override the LDAP value.

Unregistering User Attributes for Retrieval from LDAP

To unregister user attributes for retrieval from LDAP:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

In the Enabled User Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

Click OK to confirm the deletion.
Repeat steps 3 and 4 as necessary.

When finished, click Back.

Guide to Building Personalized Applications 7-47

7 Creating and Managing Users

Registering Group Attributes for Retrieval from LDAP

To register group attributes for retrieval from LDAP:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

LDAP Configuration finished

create

Enabled Group Attributes
List the group attributes that you want to be retrieved from LDAP by name.

create

Enabled User Attributes
List the user attributes that you want to be retrieved from LDAP by name.

LDAP Configuration Parameters - from the Weblogic LDAP Realm
Groups Location
Groups Location is the DM for the hierarchical parent of all relevant groups.

Location: ou=Groups,o=heasys.com

Group Name Attribute
Group Name attribute is the name of the attribute which uniquely identifies groups.

Attribute: cn

Click Create on the Enabled Group Attributes bar. The Add Group Attribute tool
appears.

. Enter a new attribute in the Group Attribute Name field to retrieve from LDAP.

Click Save to add the attribute or click Back to return to LDAP Configuration
view without saving your changes.

Repeat steps 4 and 5 as necessary.

Unregistering Group Attributes for Retrieval from LDAP

To unregister group attributes for retrieval from LDAP:

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

7-48 Guide to Building Personalized Applications

Using the LDAP Realm

On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

In the Enabled Group Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

Click OK to confirm the deletion.

Repeat steps 3 and 4 as necessary.

Viewing LDAP Configuration Settings

To view LDAP configuration settings:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.
2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.
3. View the status of the parameters listed in the following table from the LDAP
Configuration Parameters field
Parameter Description
Groups Location Distinguished name for the hierarchical parent of all relevant
groups.
Group Name Attribute The name of the attribute that uniquely identifies a group.
Group Username The name of the attribute in group objects that has as its value
Attribute the group members.
Users Location Distinguished name for the hierarchical parent of all relevant
users.
Username Attribute The name of the attribute that uniquely identifies users in the
system.

Example: login name or unique ID.

Guide to Building Personalized Applications 7-49

7 Creating and Managing Users

Parameter Description

LDAP System Principal ~ Distinguished name for a system level user. This user has read
access to all information in the LDAP directory accessed by the
application.

LDAP URL The Universal Resource Locator (URL) of the LDAP directory
server you are running.

SSL Indicates whether communication from the WebLogic

Personalization Server to the LDAP directory should be
encrypted over SSL.

Note: The values above are “read only” and are specified when configuring the

LDAPRealm.

Using Other Realms

The remaining tools are accessible only if a realm other than WebLogic
Personalization Server’s RDBMSRealm is used.

Selecting Groups for Use in the WebLogic
Personalization Server from the Realm

To select groups for use in the WebLogic Personalization Server from the realm:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

7-50 Guide to Building Personalized Applications

Using Other Realms

Realm Configuration

Groups
There are 11 groups currently defined.

There are 2 users currently defined.,

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

W Edit Group Information
@ Select the groups you wish to use in the Personalization Server and click Save.
‘Grnup Name ‘Status
. E Found in the datal bu g in the realm. Map
? HR Managers ; Properly Configured.
¥ |PD Managers # |Properly Configured.
W |Accounting Managers # |Properly Configured.
¥ |Qa Managers # |Properly Configured.
I |everyone Found in Realm, but not selected for use.
FrazD Found in Realm, but not selected for use.

4. Select the group(s) you wish to use.

5. Click Save.

Mapping Realm Groups to the WebLogic Personalization

Server

When a name changes in the realm, you must change it in the WebLogic
Personalization Server too. Use this tool when a group name changes in the realm.

Mapping works by changing the records in the WebLogic Personalization Server to
reflect the new group name.

1.

On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

Guide to Building Personalized Applications ~ 7-51

7 Creating and Managing Users

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

4. Click Map in the Status description of the corresponding group name. The Map
Group tool appears.

Note: You are only given the option of mapping those groups that have been found
in your database but are missing from the realm.

5. Select the appropriate group name from the Map To Group field.

6. Click Save. Alternatively, click Back to return to the Realm Configuration page
without saving your changes.

Note: Group mapping works by simply changing the name of the group in the
personalization tables to the group name in the realm. All property data is
retained.

Deleting Groups from Your Database

To delete groups from your database:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

Edit Group Information
a Select the groups you wish to use in the Personalization Server and click Save.

. .

F HR Managers ; Properly Configured.

¥ |PD Managers # |Properly Configured,

¥ |sccounting Managers # |Properly Configured,

W |qa Managers # |Properly Configured,

r Bveryone Found in Realm, but not selected for use.
MNreo Found in Realm, but not selected for use.

7-52 Guide to Building Personalized Applications

Using Other Realms

Click Remove in the Status description of the corresponding group name.

Note: You are only given the option of deleting those groups that are found in
your database but are missing from the realm. A confirmation dialog box
appears.

Click OK to confirm the deletion.

Deleting User Records That Do Not Exist in the Realm
from the Personalization Database

To delete user records that do not exist in the realm from the Personalization database:

1.

On the Administration Tool Home page, click the User Management icon. The
User Management Home page appears.

On the User Management Home page, click Realm in the Realm banner. The
LDAP Configuration view appears.

Click Edit in the Users bar. The Clean Up Users tools appears with a count of
users found in the personalization database but not in the realm.

Click Clean Up if the usernames are no longer needed. All associated records are
removed.

Guide to Building Personalized Applications 7-53

7 Creating and Managing Users

7-54 Guide to Building Personalized Applications

CHAPTER

3

Creating and Managing
Content

The Content Manager provides content and document management capabilities for use
in personalization services. The Content Manager works with files or with content
managed by third-party vendor tools.

This topic includes the following sections:

m What Is the Content Manager?

Choosing a Content Engine

Running Querys Against the Content Repository

Methods for Retrieving and Displaying Documents

Constructing Queries Using Java

Differences Between Content Management and Document Management
Using the Document Servlet

JSP Tags

m Configuring the Content Manager

Configuring the DocumentSchema EJB Deployment Descriptor
Configuring the DocumentManager EJB Deployment Descriptor
Setting Up Connection Pools

Configuring WebLogic Commerce Properties

Using the Show Document Servlet

Querying Document Content

Guide to Building Personalized Applications 8-1

8 Creating and Managing Content

e Structuring a Query

e Using Comparison Operators to Construct Queries
e Using the BulkLoader to Load File-based Content
e Using Content Management JSP Tags

What Is the Content Manager?

The Content Manager run-time subsystem provides access to content through tags and
EJBs. The Content Management tags allow a JSP developer to receive an enumeration
of Content objects by querying the content database directly using a search expression
syntax. The Content Manager component works alongside the other components to
deliver personalized content, but does not have a GUI-based tool for edit-time
customization.

Choosing a Content Engine

8-2

The content engine behind the Cont ent Manager can be set up to be the reference
implementation that BEA provideds out-of-the-box, or a third-party content engine.

For sites with limited content personalization needs and existing metatagged HTML,
WebLogic Personalization Server includes a command-line utility called the
BulkLoader. The BulkLoader can parse a directory of HTML files and store their URL
address and metadata attributes in a JDBC store. The BulkLoader automatically
creates the schema for these attributes.

For customers who have larger amounts of content and want more control over the
publishing and tagging of content, BEA partners with third-party vendors to add
flexibility to the WebLogic Personalization Server. Third-party content engines
provide robust, content-creation management solutions while the Content Manager
personalizes and serves the content to the end user.

Guide to Building Personalized Applications

What Is the Content Manager?

Running Querys Against the Content Repository

The Content Management component supports querying that returns content from a
content repository using several methods:

m Search for content by metadata—Boolean logic searching evaluates content
that matches a metadata/operator/value criteria.

m Retrieve content by ID—the system allows retrieval of raw bytes of content
data—either in blocks or in its entirety—through the content’s known identifier.

® Query content metadata by ID—the system, through the known identifier of a
content piece, can query the metadata describing the content piece. Several
metadata attributes provide information about the content. The query language
maps some attribute names onto explicit attributes of the Cont ent or Docunent
objects the query searches. Queries searching for Cont ent objects support the
following case-sensitive explicit attribute names:

e identifier: Corresponds to the unique St ri ng identifier of the Cont ent (that
is, the get I dent i fi er method).

o mimeType: Corresponds to the St ri ng MIME type of the Cont ent (that is,
the get M meType method).

m Queries searching for Document objects support the following additional
case-sensitive explicit attribute names:

e size: Corresponds to the Long size of the document in bytes (that is, the
get Si ze method). Documents without file bytes will have a size of 0 or less.

e version: Corresponds to the | nt eger version number of the document (that
is, the get Ver si on method).

e qauthor: Corresponds to the St ri ng identifier of the author of the document
(that is, the get Aut hor method).

e creationDate: Corresponds to the Ti nest anp of when the document was
created (that is, the get Ti mest anp method).

e modifiedBy: Corresponds to the St ri ng identifier of the individual who last
modified the document (that is, the get Modi f i edBy method).

e modifiedDate: Corresponds to the Ti mest anp of when the document was last
modified (that is, the get Modi f i edDat e method).

Guide to Building Personalized Applications 8-3

8 Creating and Managing Content

e JockedBy: Corresponds to the St ri ng identifier of the individual who has the
document locked (that is, the get LockedBy method).

e description: Corresponds to the St ri ng description of the document (that is,
the get Descri pti on method).

e comments: Corresponds to any St ri ng comments about the document (that
is, the get Conment s method).

Note: All other attribute names in queries are considered implicit metadata
properties.

m Get content schema by name—the document management system (DMS)
contains a set of named schemas that describe a set of non-standard metadata
attributes. Each piece of content in the DMS is associated with one of these
schemas and each schema specifies valid attributes

m Get content schema names—a user can query the system for a list of all
schema names a DMS supports.

Note: See “Querying Document Content” on page 8-17 for more information about
queries.

Methods for Retrieving and Displaying Documents

WebLogic Personalization Server provides several methods for retrieving documents
from a content management system and displaying them on your Web site.

A document is a graphic, a segment of HTML or plain text, or a file that must be
viewed with a plug-in. We recommend that you store most of your web site’s dynamic
documents in a content management system because it offers an effective way to store
and manage information.

The following table compares the methods of content retrieval that WebLogic
Personalization Server provides.

8-4 Guide to Building Personalized Applications

What Is the Content Manager?

Table 8-1 Methods for Retrieving and Displaying Documents

Use This Method...

When You Want To...

Content selectors and
<pz: cont ent Sel ect or > tags

m Use a centrally maintained infrastructure for matching Web site content
with events, customer profiles, or customer segments. CBEs develop the
infrastructure, then BAs use the E-Business Control Center to define and
modify conditions under which content selectors query the content
management system for documents.

m Retrieve any type of content that your content management system
contains (and that a browser supports).

m Display each document that a content-management query returns.
Content selectors store the results of a query in an array. You can use
other JSP tags to display some or all of the documents that are in the
array.

m Place the results of the query in a cache.

Content selectors require you to determine the MIME-type of the documents
and to supply the appropriate HTML that the browser requires to display
them.

<pz: cont ent Query> tag

m Run a static, narrowly-defined query to display a document only in a
specific JSP.

You must modify each occurrence of this tag if you want to modity its query.
If you want this tag to display contents for specific customers or in response
to an event, you must surround it with additional tags that evaluate the
display condition.

Ad placeholders and
<ph: pl acehol der > tags

m Use a centrally maintained infrastructure for matching advertising
documents with events, customer profiles, or customer segments. CBEs
develop the infrastructure, then BAs use the E-Business Control Center
to define and modify the queries that each placeholder can run.

m Run queries as part of a scenario action in a campaign (available only
with Campaign Manager for WebLogic).

m Use a single infrastructure to support multiple, concurrent advertising
agenda. Ad placeholders use an Ad Conflict Resolver to select a single

query if multiple agenda request to run multiple queries in the same
location at the same time.

m Automatically generate the HTML that the browser requires to display
the query results.

Without customization, ad placeholders support only HTML, image, and
Shockwave documents.

Guide to Building Personalized Applications 8-5

8 Creating and Managing Content

Table 8-1 Methods for Retrieving and Displaying Documents (Continued)

Use This Method...

When You Want To...

<ad: adTar get > tag

m Make sure that a specific ad query runs in a specific location.

m Automatically generate the HTML that the browser requires to display
the query results.

The <ad: adTar get > tag is not part of the infrastructure for supporting
multiple advertising agenda. It cannot run a query as part of a scenario
action. You must modify each occurrence of this tag if you want to modify
its query. If you want this tag to display contents for specific customers or
in response to an event, you must surround it with additional tags that
evaluate the display condition.

Without customization, the <ad: adTar get > tag supports only HTML,
image, and Shockwave documents.

<cm print Doc> tag

m Use the content management system’s document ID to include
non-personalized content in a HTML-based page.

The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

<cm get Property> tag

m Retrives the value of the specified content metadata property into a
variable specified by resultld. If resultld is not specified, the value will
be inlined into the page, similar to the <cm pri nt Property> tag.
This tag operates on any ConfigurableEntity, not just the Content object.
However, it does not support ConfigurableEntity successors.

<cm print Property>tag

m Display the value of a document attribute as a string. You can use this
tag to display the value of any content object’s attribute, not just
document-type objects in a content management system.

<cm sel ect > tag

m Use a query to include non-personalized content in a HTML-based page.
m Place the results of the query in a cache.

The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

8-6 Guide to Building Personalized Applications

What Is the Content Manager?

Table 8-1 Methods for Retrieving and Displaying Documents (Continued)

Use This Method... When You Want To...

<cm sel ect Byl d> tag m Use the content management system’s document ID to include
non-personalized content in a HTML-based page.

m Place the document in a cache.

The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

Constructing Queries Using Java

To construct queries using Java syntax instead of using the query language supplied
with the Content Management component, refer to the Javadoc API documentation.

Note: Use the constants in TypesHelper when calling Logi cal . set Logi cal and
Criteria.setConparator.

The Cont ent Manager session bean is the primary interface to the functionality of the
Content Management component. Using a Cont ent Manager instance, content is
returned based on a Search object with an embedded Expr essi on. An Expr essi on is
a Boolean tree of arbitrary depth, with other sub-Expr essi ons as nodes. The

Expr essi on interface is meant to be abstract, where the actual instances are Logi cal

or Criteriainterfaces. As an example, the expression col or == 'red' && price
> 50 would consist of a Logi cal with the value and that has as children two
Criteria.

Differences Between Content Management and
Document Management

Cont ent objects include metadata about the content. Metadata provides a means to
query and match content with users by allowing the system to retrieve content based
on the metadata that describes the content. In general, some kind of content
management system provides services such as retrieval of content and content
authoring services including creation, editing, versioning, and workflow.

Guide to Building Personalized Applications 8-7

8 Creating and Managing Content

Docurent s are a specialized type of Cont ent that provide two methods for retrieval:
a metadata-searching mechanism and retrieval of the pure bytes of the document's file.
Docurent s should include additional explicit metadata properties related to the file
and its versioning, including its size, name, path, author, and version. A document
management system usually provides document-based services for documents that
reside in the system’s repository.

WebLogic Personalization Server provides the entire Cont ent object model; however,
it only provides the Docunent object as a concrete implementation (subclass) of the
Cont ent class.

Using the Document Serviet

8-8

The Content Management component includes a servlet capable of outputting the
contents of a Docunent object. This servlet is useful when streaming the contents of
an image that resides in a content management system or to stream a document’s
contents that are stored in a content management system when an HTML link is
selected. The servlet supports the following Request/URL parameters:

Request Required Description
Parameter
contentHome Maybe If the cont ent Hore initialization

parameter is not specified, then this is
required and will be used as the INDI name
of the DocumentHome. If the

cont ent Honre initialization parameter is
specified, this is ignored.

contentld No The string identifier of the Document to
retrieve. If not specified, the servlet looks in
the PATH_| NFO.

blockSize No The size of the data blocks to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

The servlet only supports Docunent s, not other subclasses of Cont ent . It sets the
Cont ent - Type to the Docunent ' s mimeType and, the Cont ent - Lengt h to the
Docurent ' s size, and correctly sets the Cont ent - Di sposi ti on, which should
present the correct filename when the file is saved from a browser.

Guide to Building Personalized Applications

What Is the Content Manager?

Example 1: Usage in a JSP

This example searches for news items that are to be shown in the evening, and displays
them in a bulleted list.

<cm sel ect

cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_MANAGER_HOVEY" max="5"
sortBy="creati onDate ASC, title ASC'

query="type = 'News' && tinmeOfDay = 'Evening' && mnetype |ike
"text/*' " id="newsList" />

<es: forEachl nArray array="<%newsLi st %" id="newsltent
type="com beasys. commer ce. axi om cont ent. Cont ent " >
<l i><a href="/showDocServl et/ <cmprintProperty
i d="newsl tenm name="identifier" encode="url"/>
&cont ent Home=<%=Cont ent Hel per. DEF_DOCUVENT_MANAGER HOVEY%" >
<cmprintProperty id="newsltent name="title"
encode="htm "/ >
</ es: forEachl nArray>
</ ul >

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and
displays the image in a bulleted list.

<cm sel ect
cont ent Hone="<%=Cont ent Hel per. DEF_DOCUMENT _NMANAGER_HOVE% >"

max="5" sortBy="nane” id="list" query="Keywords like ‘*birds* &&
m meType |ike ‘image/*’ " [>

<es:forEachl nArray array="<%list%" id="ing"
type="com beasys. conmer ce. axi om cont ent. Content " >
<inmg src="/showbDocServl et ?content|d=<cm printproperty
id="ing" nane="identifier" encode="url"/>
&cont ent Home=<%-Cont ent Hel per. DEF_DOCUVENT_MANAGER HOVEY%®" >
</ es: forEachl nArray>
</ ul >

Guide to Building Personalized Applications 8-9

8 Creating and Managing Content

JSP Tags

The Content Management component includes the following four JSP tags. These tags
allow a JSP developer to include non-personalized content in a HTML-based page.
Note that none of the tags support or use a body.

m The <cm sel ect > tag uses only the search expression query syntax to select
content.

m The <cm sel ect Byl d> tag retrieves content using the content’s unique
identifier.

m The <cm pri nt Propert y> tag inlines the value of the specified Content
metadata property as a string.

m The <cm pri nt Doc> tag inlines the raw bytes of a Document object into the JSP
output stream.

See Chapter 12, “Personalization Server JSP Tag Library Reference,” for more
information on any of these tags.

Configuring the Content Manager

The DocumentSchema EJB and DocumentManager EJB deployment descriptors
handle the configuration for the Content Management component. To use the reference
implementation document repository, you need to configure the EJB deployment
descriptors and also set up two WebLogic Server JDBC connection pools.

Once the deployment descriptor has been written, just build the EJBs as you normally
would, then add the JAR file to your application through the WebLogic console.

8-10 Guide to Building Personalized Applications

Configuring the Content Manager

Configuring the DocumentSchema EJB Deployment
Descriptor

The logic for loading DocumentSchema EJBs is handled via a Smar t BMP. The Schema
EJB implementation loads the Smar t BMP object from a class name specified in the EJB
environment in the EJB's deployment descriptor. The EJB environment variable is
Smar t BVPA ass. The value must be the fully qualified class name of the Smar t BMP to
use. This Snmar t BMP must be capable of populating a Schemal npl object with

Pr oper t yMet aDat a objects.

To use the reference implementation document management system, set

Smar t BWPd ass to

com beasys. commer ce. axi om docunent . SPI SchemaSmar t BVP and specify the
following EJB environment variables in the document EJB deployment descriptor:

® Smart BMPUpdat e: Set to f al se.

m UseDat aSour ce: Controls whether j dbc/ docPool (true) or DocPool URL
(f al se) is used to get connections. Defaults to t r ue.

®m DocPool URL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDat aSour ce is f al se). Should point to a connection pool.
For example: j dbc: webl ogi c: pool : docPool .

®m DocPool Dri ver : Specifies the JDBC driver class to use to connect to the
DocPool URL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPool URL.

m j dbc/ docPool : A Data Source reference to the document JDBC connection
Pool (see the topic “Setting Up Connection Pools” on page 8-13). This should
correspond to the Data Source attached to the WebLogic connection pool that
uses the document reference implementation JDBC driver.

m j dbc/ commer cePool : A DataSource reference to the
webl ogi c. j dbc. j ts. conmer cePool , which should be attached to the
WebLogic connection pool commer cePool .

Other Smar t BVP classes for other document management systems will possibly
require more and/or different EJB environment variables.

Guide to Building Personalized Applications 8-11

8 Creating and Managing Content

Configuring the DocumentManager EJB Deployment
Descriptor

8-12

The Docunent Manager Sessi on EJB simply hides the details of getting to the
Docunent and Docunent Schena EJBs. It understands the following environment
variables in its deployment descriptor:

m PropertyCase: This sets how the Docunment | npl modifies incoming property
names. If this is lower, all property names are converted to lowercase. If this is
upper, all property names are converted to uppercase. If this is anything else or
not specified, property names are not modified. Use lower or upper if the
Smar t BMP class expects everything in a certain case. For the document reference
implementation, do not specify the Propert yCase.

m j dbc/ docPool : A Data Source reference to the document JDBC connection
Pool (see the topic “Setting Up Connection Pools” on page 8-13). This should
correspond to the Data Source attached to the WebLogic connection pool that
uses the document reference implementation JDBC driver.

m e b/ Cont ent Horre: EJB reference to the Document Home to which this should
delegate for non-readOnly access.

Note: Since the Document EJB is deprecated for read access, this will eventually no
longer be required.

m ej b/ SchemaHome: EJB reference to the Schema Home to which this should
delegate for Schema information.

m UseDat aSour ce: Controls whether j dbc/ docPool (true)or DocPool URL
(f al se) is used to get connections. Defaults to t r ue.

m DocPool URL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDat aSour ce is f al se). Should point to a connection pool.
For example: j dbc: webl ogi ¢: pool : docPool .

m DocPool Dri ver: Specifies the JDBC driver class to use to connect to the
DocPool URL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPoolURL.

Guide to Building Personalized Applications

Configuring the Content Manager

Setting Up Connection Pools

For the document reference implementation, set up a specialized WebLogic
connection pool and DataSource which will be used by the DocumentManager via the
j dbc/ docPool reference. (See the topic “Configuring the DocumentManager EJB
Deployment Descriptor” on page 8-12.)

For example, if the connection pool name is docPool :

m The URL should be
j dbc: beasys: docngnt : com beasys. comer ce. axi om docurnent . ref . Ref D
ocunent Provi der.

m Thedriver should be
com beasys. conmer ce. axi om docunent . j dbc. Dri ver. It should not be
configured to use a test_table, although it can be allowed to shrink. The driver
supports the following properties:

j dbc. url : (Required) Specifies the JDBC URL of the database. The
connection in this pool opens a connection to this JDBC URL. This property
probably should refer to another, non-specialized JDBC connection pool,
although it can be any JDBC URL.

j dbc. driver: Specifies a JDBC driver class name to load.

j dbc. i sPool ed: Ift r ue, then the system assumes the JDBC URL in

j dbc. url is a pooling connection URL and connections will open and close
as needed. If f al se, then this connection opens one connection via the

j dbc. url and uses that for its lifetime. If the j dbc. ur | starts with

j dbc: webl ogi c: pool orj dbc: webl ogi c: jts, then this property
automatically becomes t r ue.

docBase: (Required) Specifies the document base of the document files. The
IDs in the database use file paths relative to this directory and must exist
when the connection is created. To operate in a cluster or a multi-server
environment, you must either replicate the files on the machines or the put
the docBase directory on a shared volume.

schemaXM.: Specifies the file or directory where the XML schema
(following the doc-schemas.dtd) resides. Either the schemaXM. property or
the i w. schemaBase property is required, although the schemas under
schemaXM take precedence if both are specified. The schemaXM property
has the same constraints as the docBase property when used in a cluster.

Guide to Building Personalized Applications 8-13

8 Creating and Managing Content

Note: If schemaXM is a directory, the connection will recurse under it and load
all files ending in . xml (*. xn).

Note: IfschemaXM is a file, the connection loads it.

e iw schemaBase: Specifies the directory in which the InterWoven
dat acapt ur e. cf g files reside. The connection recurses through this
directory, loading all dat acapt ur e. cf g files it finds. Either the
i w. schemaBase or schemaXM. property is required, although you can
specify both. The i w. schenaBase property has the same constraints as the
docBase property when used in a cluster.

m Set up a non-transactional DataSource pointing to the pool. The name of the
DataSource should be the same as that configured with the DocumentManager
and Schema.

All other properties are passed with j dbc. ur| when the Driver Manager opens a
database connection.

8-14 Guide to Building Personalized Applications

Configuring the Content Manager

Example Connection Pool Entry

Figure shows a sample configuration in the WebLogic Server Administration
Console.

Figure 8-18 The docPool Screen in the WebLogic Server Console

wlcsDomain> JDBC

Connection Pools> A=?

& Name: docPoal

& URL: |jd.bc:beasys:docmg‘mt:com.beasys.corﬂmerce.
Driver

& |com.beasys.commerce.axiom.docu.ment,.jd.bc.
Classhame:

Jdbe.url=jdbe:weblogic:pool:commercePool &
schemaXML=D: /bea/WebLogicCommercel . 5/ dms
docBase=D:/bea/WeblogicCommerced . 5/ dmsEa

i Jjdbe.isPooled=true

m weblogic.t3d.waitForConnection=true
{key=value): |werlogic.t3.waitSecondsForConnection=999
documentProvider=com.beasys.commerce, axi
weblogic, jts.wait3econdsForConnectionSec =

J of
Reset | Apply

Guide to Building Personalized Applications 8-15

8 Creating and Managing Content

Configuring WebLogic Commerce Properties

Use a ContentManager or DocumentManager with <cm sel ect > or
<cm sel ect Byl d> to retrieve Content or Documents. The default DocumentManager
is deployed at com beasys. commer ce. axi om docunent . Docunent Manager .

To help with the INDI names, the ContentHelper class has the following six constants:

DEF_CONTENT_HOME
Specifies the default deployed ContentHome.

DEF_CONTENT _MANAGER HOVE
Specifies the default deployed ContentManagerHome.

DEF_CONTENT _SCHEMA HOVE
Specifies the default deployed SchemaHome for Content.

DEF_DOCUMENT _HOME
Specifies the default deployed DocumentHome.

DEF_DOCUVENT _MANAGER HOMVE
Specifies the default deployed DocumentManagerHome.

DEF_DOCUMENT _SCHEMA HOVE
Specifies the default deployed SchemaHome for Document.
The values of those constants are read from the webl ogi ccommer ce. properties

file from the values for the following properties:

DEF_CONTENT _HOMVE
comer ce. hone. cont ent . Cont ent Hone

DEF_CONTENT _MANAGER HOVE
conmer ce. hone. cont ent . Cont ent Manager Hone

DEF_CONTENT_SCHEMA HOVE
comer ce. hone. cont ent . Cont ent SchemaHone

DEF_DOCUMENT _HOVE
comer ce. hone. docunent . Docunent Hone

DEF_DOCUVENT _MANAGER HOVE
comer ce. honme. docunent . Docunent Manager Hone

DEF_DOCUMENT _SCHEMA HOVE
comer ce. hone. docunent . Docunent SchemaHone

8-16 Guide to Building Personalized Applications

Configuring the Content Manager

Therefore, in any <cm sel ect >, <cm sel ect Byl d>, <pz: cont ent Query> or
<pz: cont ent Sel ect or > tags, define the cont ent Hore (or cont ent hone) parameter
to use a Cont ent Manager Hone or Document Manager Hone.

Example:

The News Index and News Viewer portlets use the default deployed
DocumentManager and can be used as a reference. The JSPs are located in the
server/public_htm /portal s/repository/portlets directory in the
news_i ndex. jsp, news_viewer.jsp and content _titlebar.jsp files.

Using the Show Document Serviet

To operate the Show Document servlet, it should be registered with WebLogic Server.
The class name of the servlet is

com beasys. comrer ce. cont ent . ShowDocSer vl et . To registerthe servlet with
WebLogic, add the following XML to your Web application’s web. xni file:

<servl et>

<ser vl et - name>ShowDoc Ser vl et </ ser vl et - nane>

<servl et -cl ass>com beasys. conmer ce. cont ent. ShowDocSer vl et </ servl e
t-cl ass>

</ servl et>

<ser vl et - mappi ng>

<ser vl et - nane>ShowbDoc Ser vl et </ ser vl et - nane>

<url - pattern>/ ShowDocServl et/ *</url -pattern>

</ servl et - mappi ng>

Reference the class in the URL as / <webapp- nane>/ ShowDocSer vl et .

To change the URL reference, change the <ur | - pat t er n></ ur | - pat t er n> setting.

Querying Document Content

There are several way to query the document management system. To query the
system, you construct a query expression, then pass the expression to any one of these:

m JSP tags (see “Using Content Management JSP Tags” on page 8-28.)

m ContentHelper (see the Javadoc API documentation)

Guide to Building Personalized Applications 8-17

8 Creating and Managing Content

m ContentManager (see the Javadoc API documentation)

m ContentHome (see the Javadoc API documentation)

Structuring a Query

8-18

WebLogic Personalization Server queries use a syntax similar to the SQL string syntax
that supports basic Boolean-type comparison expressions, including nested
parenthetical queries. In general, the template for use includes a metadata property
name, a comparison operator, and a literal value. The basic query uses the following
template:

attribute_nanme conparison_operator literal _val ue

Note: Consult the Javadoc API documentation on
com beasys. commer ce. uti | . Expressi onHel per for more
information about the query syntax.

Several constraints apply to queries constructed using this syntax:

m String literals must be enclosed in single quotes.
e ‘'\WeblLogic Server’
e ‘football’

m Date literals can be created via a simplistic t oDat e method that takes one or two
St ri ng arguments (enclosed in single quotes). The first, if two arguments are
supplied, is the Si npl eDat eFor mat format string; the second argument is the

date string. If only one argument is supplied, it should include the date string in
‘MM/dd/yyyy HH:mm:ss z’ format.

e toDate('EE dd MW yyyy HH nmss z', ‘Thr 06 Apr 2000
16: 56: 00 MDT')

e toDate('02/23/2000 13:57:43 MST')
m Use the t oPropert y method to compare properties whose names include spaces
or other special characters. In general, use t oPr oper t y when the property name

does not comply with the Java variable-naming convention that uses
alphanumeric characters.

e toProperty (‘M Property’) = ‘Content’

Guide to Building Personalized Applications

Configuring the Content Manager

m To include a scope into the property name, use either scope. pr opert yNanme or
the t oPr oper t y method with two arguments.

e toProperty (‘myScope’, ‘nyProperty’)
Note: The reference document management system ignores property scopes.

m Use \ along with the appropriate character(s) to create an escape sequence that
includes special characters in string literals.

e toProperty (‘M Property\’s Contents’) = ‘Content’

m Additionally, use Java-style Unicode escape sequences to embed non-ASCII
characters in string literals.

e Description like * *\ u65e5\ u672c\ u8a9e*’

Note: The query syntax can only contain ASCII and extended ASCII characters
(0-255).

Note: Use Expressi onHel per.toStringLiteral toconvertan arbitrary
string to a fully quoted and escaped string literal which can be put in a

query.

m The now keyword—only used on the literal value side of the expression—refers
to the current date and time.

m Boolean literals are either t r ue or f al se.

m Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms (for
example, 1. 24e4 and 1. 24E- 4).

®m An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression.

e ! (keywords contains ‘football’) || (size >= 256)

m The Boolean and operator is represented by the literal &&.

e author == ‘james’ && age < 55

m The Boolean or operator is represented by the literal | | .

e creationbDate > now || expireDate < now
The following examples illustrate full expressions:

Example 1:

Guide to Building Personalized Applications ~ 8-19

8 Creating and Managing Content

((color="red && size <=1024) || (keywords contains ‘red &&
creationDate < now))

Example 2:

creationDate > toDate (‘ M dd/yyyy HH mm ss’, * 2/22/ 2000 14:51:00")
&& expireDate <= now && mnetype like ‘text/*’

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. Table 8-2 summarizes the comparison
operators available for each metadata type. (For more information about the native
types supported in WebLogic Personalization Server, see “Support for Native Types’
on page 1-11.)

>

Table 8-2 Comparison Operators Available for Each Metadata Type

Operator Type Characteristics

Boolean (==, |=) Boolean attributes support an equality check against Boolean. TRUE or
Boolean. FALSE.

Numeric (==, I=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than
checks against a j ava. | ang. Nunber.

Text (==, !=, >, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus

lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (that is, the | i ke
operator), similar to the SQL LIKE operator or DOS prompt file matching. In
this situation, the wildcards will be * (asterisk) to match any string of
characters and ? (question mark) to match any single character. Interval
matching (for example, using []) is not supported. To match * or ? exactly,
the quote character will be \ (backslash).

Datetime (==, |=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than

checks against a j ava. sql . Ti mest anp.

8-20 Guide to Building Personalized Applications

Configuring the Content Manager

Table 8-2 Comparison Operators Available for Each Metadata Type (Continued)

Operator Type

Characteristics

Multi-valued Comparison Multi-valued attributes support a cont ai ns operator that takes an object of
Operators (contains, containsall) | the attribute's subtype and checks that the attribute's value contains it.

Additionally, multi-valued attributes support a cont ai nsal | operator,
which takes another collection of objects of the attribute's subtype and checks
that the attribute's value contains all of them.

Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute's collection of values. Any value that
matches the operator and operand should return t r ue. For example, if the

multi-valued text attribute keywor ds has the values BEA, Computer, and

WebLogic and the operand is BEA, then the < operator returns t r ue (BEA is
less than Computer), the > operator returns f al se (BEA is not greater than
any of the values), and the == operator returns t r ue (BE4 is equal to BEA).

User Defined Comparison Currently, no operators can be applied to a user-defined attribute.

Operators

Note: The search parameters and expression objects support negation of expressions
via a bit flag (!).

Note: The reference document management system has only single-value Text and
Number properties. All implicit properties are single-value Text.

Using the BulkLoader to Load File-based Content

WebLogic Personalization Server provides no run-time tools to load metadata
information from a content database. However, the server provides a command-line
utility, the BulkLoader, that descends a directory hierarchy, parses the HTML-style
<met a> tags, reverses the metadata content contained within the <nmet a> tags into
schema information, and loads the resulting documents into the reference
implementation database.

The BulkLoader is a command-line application that is capable of loading document
metadata into the reference implementation database from a directory and file
structure. The BulkLoader parses the document base and loads all the document
metadata so that the Content Management component can search for documents. The
BulkLoader supports all document types, not just HTML documents.

Guide to Building Personalized Applications ~ 8-21

8 Creating and Managing Content

Command-Line Usage

The BulkLoader class allows a number of command-line switches:

java com beasys. commer ce. axi om docunent . | oader. Bul kLoader
[-/+verbose] [-/+recurse] [-/+delete] [-/+metaparse] [-/+cleanup]
[-/+hidden] [-/+inheritProps] [-schemaNane <nane>] [-encoding <encodi ng>]
[-properties <nane>] -conPool <nane> [-schenma <nane>] [+schena]
[-match <pattern>] [-ignore <pattern>] [-html Pat <pattern>]
[-d <dir>] [-ndext <ext>] [--]
[files... directories...] [-filter <filter class>] [+filters]
-verbose
Emits verbose messages.

+ver bose
Runs quietly [default].

-recurse
Recurses into directories [default].

+recurse
Does not recurse into directories.

-del ete
Removes document from database.

+del ete
Inserts documents into database [default].

- et apar se
Parses HTML files for <net a> tags [default].

+net apar se
Does not parse HTML files for <net a> tags.

- cl eanup
If specified, this only performs a table cleanup using the - d argument as the
document base. (All files will need to be under that directory.)

+cl eanup
Turns off table cleanup (do a document load) [default].

- hi dden
Specifies to ignore hidden files and directories [default].

+hi dden
Specifies to include hidden files and directories.

8-22 Guide to Building Personalized Applications

Configuring the Content Manager

-inheritProps
Specifies to have metadata properties be inherited when recursing [default].

+i nherit Props
Specifies to have metadata properties not be inherited when recursing.

-htm Pat <pattern>
Specifies a pattern for determining which files are HTML files when
determining whether to do the <net a> tag parse. This can be specified
multiple times. If none are specified, *. ht mand *. ht i are used.

-properties <nane>
Specifies the location of the | oaddocs. properti es file which should
contain the connect i onPool definition.

-conPool <nane>
Specifies the connect i onPool name from the properties file from which the
BulkLoader should get the connection information.

-schema <nane>
Specifies the path to the schema file the BulkLoader will generate (defaults
to docunent - schema. xml).

+schema
If specified, then no schema file will be created.

- schenaNane <name>
Specifies the name of the schema generated by the BulkLoader. Defaults to
“LoadedData”.

-encodi ng <nane>
Specifies the file encoding to use. Defaults to your system’s default
encoding. (See your JDK documentation for the valid encoding names.)

-mat ch <pattern>
Specifies a file pattern the BulkLoader should include. This can be specified
multiple times. If none are specified, all files and directories are included.

-ignore <pattern>
Specifies a file pattern the BulkLoader should not include. This can be
specified multiple times.

-d <dir>
Specifies the docBase that non-absolute paths will be relative to. If not
specified, ". " (current directory) is used.

Guide to Building Personalized Applications 8-23

8 Creating and Managing Content

- mdext <ext>
Specifies the filename extension for metadata property files. The value
should starts with a ". " (defaults to . nd. properties).

-filter <filter class>
Specifies the class name of a Loader Fi | t er to run files through. This can be
specified multiple times to add to the list of Loader Filters.

+Hilters
Clears the current list of Loader Filters. (This will clear the default filters as
well.)

Everything after this is considered a file or directory.

How the BulkLoader Finds Files

The following sequence describes how the BulkLoader locates files:

1. The BulkLoader starts by looking at the list of files and directories specified from
the command line.

e Ifno files or directory are specified, it uses only the docBase specified by
the - d option. It then loops over the list of files and directories.

e [fit finds a directory and +r ecur se is specified, then it stops.

e [fit finds a directory and recursion is turned on (the default or with
-r ecur se), then the BulkLoader loops over the files and directories
contained within that directory.

Note: If the file or directory is not an absolute path, then it is assumed to be
relative to the docBase specified by the -d option.

2. To determine if the BulkLoader should process a file or directory, it checks to see
if the file is marked as a hidden file.

Note: Ifitis a hidden file (or directory) and the +hi dden option was not
specified, then the file or directory is ignored.

3. Ifthe file or directory does not exist or is not readable by the user executing the
BulkLoader, a warning is displayed and the file or directory is ignored.

4. TIf the file or directory is a file, then it is loaded.

8-24 Guide to Building Personalized Applications

Configuring the Content Manager

5. If'the loaded object is a directory and recursion is enabled, then the files and
directories under the directory are retrieved by filtering against the -mat ch and
-i gnor e options.

Note: The -mat ch and -i gnor e options only apply to files and directories not
listed on the command line; in other words, they apply only to those found
by recursing into a directory. The patterns specified with the -nat ch and
-i gnor e options (and the -ht ml Pat options, for that matter) should be
DOS-style patterns: '*' matches any set of characters, '?' matches any one
character. Sets of characters (for example, /aceg]) are not supported.

6. If the subfile or directory name matches any of the patterns specified by a
-i gnor e option, the subfile or directory is ignored.

7. If the subfile or directory is a directory, then it is included.

8. If the subfile or directory is a file and no -nat ch options were specified, then it
will be included; if at least one -mat ch option is supplied, then the filename must
match at least one of -mat ch patterns.

Note: Files with an extension matching the extension specified by -ndext
(.md.properties by default) are always ignored.

How the BulkLoader Finds Metadata Properties

As the BulkLoader is finding files and directories, it will also attempt to load metadata
property files. Whenever the BulkLoader encounters a directory that it will process, it
looks for a file called di r. <ndext > where <ntext > is the extension specified by the
- mdext option. Therefore, the default filename it looks foris di r. nd. properti es.If
this file exists and is readable by the user, the BulkLoader loads it as a Java-style
properties file of name=val ue properties. If the directory is actually a subdirectory
entered because +r ecur se was not specified and the +i nher i t Pr ops option is not
specified, then the properties from di r. nd. pr operti es will be added to the
properties from the parent directories. All files in the directory gain these metadata
properties.

When the BulkLoader finds a file which is to be included and loaded, it looks for a file
whose name is the original filename appended with the - ndext extension. So, by
default, if the file is called i mage. gi f , the BulkLoader looks for a file called

i mage. gi f. nd. properti es. If that file exists and is readable, the BulkLoader loads
those properties into the directory's properties (and possibly the parent directories’ as
well).

Guide to Building Personalized Applications 8-25

8 Creating and Managing Content

8-26

Next, if the file is an HTML file and the +met apar se option was not specified, then
the BulkLoader will parse the HTML, looking for <net a>tags and <t i t | e> tags. The
BulkLoader determines if a file is an HTML file by using the filename patterns
specified by the - ht ml Pat options. Ifno - ht nl Pat patterns are specified, then *. ht m
and *. ht nl are used. The BulkLoader will load into the file’s properties any <nmet a>
tags that contain name and content values found anywhere in the file (not just in the
HTML head section). Additionally, it will pull the title from the <ti tl e></titl e>
and setitas “title”.

Finally, the BulkLoader will pass the file to the | oadPr operti es method of each
registered LoaderFilter (the - f i | t er option). The LoaderFilter may assign additional
metadata to the file. When the BulkLoader starts up, it looks for a

cond beasys/ commer ce/ axi onf docunent /| oader /| oader . properties filein
the classpath. From that, it looks for a | oader . def Fi | t er s property. This is the
colon-separated list of Loader Fi | t er class names the BulkLoader should always
load. Unless that file is modified, the BulkLoader will load an | mageLoader Fi | ter,
which will pull the width and height from *. gi f, *. j pg, *. png, and *. xbmimage
files.

In summary, the BulkLoader gathers metadata for a document from the following
sources (in this order):

1. The parent directories di r. nd. properti es file.

2. The file's directory's di r . md. properti es file.

3. The file's. nd. properti es file.

4. If'the file is an HTML file, then it uses <nmet a> tags.
5. The list of LoaderFilters.

From there, the ID of the document in the database will be the file path, relative to the
docBase specified by the -d option. If the file path is not relative to the docBase, then
it will be relative to the path from the command line. The file size will be retrieved
from the file. The m neType will be determined by the file's extension. The

nmodi fi edDat e in the database will become the current time (since that is when the
document is being modified in the database).

Guide to Building Personalized Applications

Configuring the Content Manager

Cleaning Up the Database

If the -cl eanup option is specified, the BulkLoader will not actually load any
documents. Instead, it will attempt to clean up and update the database tables. It will
first query the database, looking for any metadata entries that do not have
corresponding document entries. For each of those, it will create a document entry. It
will then go over each document entry and update the size, modified date, and possibly
the MIME type (if the MIME type is not in the database) based upon the files in the
docBase specified with the -d option.

Loading Internationalized Documents

The BulkLoader accepts a - encodi ng <enc> option. When this is specified, the
BulkLoader will use that encoding to open all HTML files to find <met a> tags.

For example, if the files under the Unicode files directory were saved in the Unicode
encoding, you could do:

java com beasys. commer ce. axi om docunent . | oader . Bul kLoader -verbose
-properties | oaddocs. properties -conPool comrercePool -schema
dnsBase\ schemas\ uni code-files.xm -d dnsBase uni code-files

-encodi ng Uni code. When - encodi ng is specified, the generated schema XML file
will be in the UTF-8 encoding (since some metadata property names might not be
ASCII), which the run-time engine can read in. (Note: UTF-8 is a superset of ASCII
and can be mostly read by common text editors.)

When - encodi ng is specified, all HTML files the BulkLoader encounters will be
opened with the specified encoding. Therefore, either the encoding must be a superset
of all the files’ encodings (for example, ISO8859 1 is a superset of ASCII, where as
Unicode is not) or the BulkLoader might not be able to correctly pull out the <net a>
tag information. It is recommended to either save all documents in a single encoding
or to run the BulkLoader against only certain directories at a time (for example, put all
the Big5 files in one directory).

The list of available encoding names is contained in the documentation for your JDK,
or the documentation for the tool which created the file. If you are not creating files
containing non-ASCII characters, this should not affect you. If you want to check if the
BulkLoader is correctly parsing your HTML file, you can use the

com beasys. conmer ce. axi om docunent . | oader . Met aPar ser class. For
example:

java com beasys. conmer ce. axi om docunent . | oader . Met aPar ser

Guide to Building Personalized Applications 8-27

8 Creating and Managing Content

uni code. ht m uni code would print out the <met a> tags found in the uni code. ht m
file, assumed to be Unicode encoded. Of course, any non-ASCII character probably
will not print correctly to your console window, but you can tell what it thinks it found.

Generating Schema Files

Additionally, the BulkLoader supports a - schenaNane <name> argument which
controls the name of the schema in the generated XML file; this in turn affects the
name of the Content Property Sets which appear in the rules editor. If not specified, it
defaults to “LoadedData.”

After loading all the documents on the list, if the +schena option is not specified, the
BulkLoader will output a XML file containing the schema information and following
the doc-schemas DTD. The BulkLoader will output a single schema which contains
entries for all the metadata attributes it finds over the entire load.

If +schenm i s specified, then no schema file will be created.

Using Content Management JSP Tags

To use the Content Management JSP tags, ensure that the cm t | d file resides in the
VEEB- | NF directory of your WAR files or in your document root.

Content Cache

The <cm sel ect > and <cm sel ect Byl d> tags support a session-based, per-user
Content cache for content searches. To enable this, both tags support the following
parameters. All three tag parameters can be JSP run-time expressions.

useCache
Setto true or f al se. The default is f al se. If't r ue, then the ContentCache
will be used (it will be stored in the user's HttpSession).

cachel d
The ID name to use to cache the Content under. Internally, the cache is
implemented as a Map; this will become the key. If this is not specified, than
the i d parameter of the tag will be used.

8-28 Guide to Building Personalized Applications

Configuring the Content Manager

cacheTi meout
The time, in milliseconds, for which the cached Content is valid. If more than
this amount of time has passed since the Content was cached, the cached
Content will be cleared, retrieved, and placed back in the cache. Use -1 for no
timeout (always use the cached Content); 0 to immediately timeout the
cached Content.

Additionally, the comrer ce. cont ent . cache. useSof t HashMap property in the
webl ogi ccommer ce. properti es controls whether the ContentCaches internally use
SoftReferences to cache the Content. SoftReferences should allow the garbage
collector to clear portions of the caches as memory is needed. This defaults to f al se.

Note: The Windows NT 1.2.2 JVM supports SoftReference quite well; however, the
Solaris Production 1.2.1 04 JVM always immediately clears SoftReferences,
thereby eliminating their usefulness as a caching mechanism. It is
recommended that conmer ce. cont ent . cache. useSof t HashMap be set to
t r ue under Windows NT, but set to f al se under Solaris.

Example:

The News Index and News Viewer portlets use content caching and can be used as a
reference. The JSPs are located in the

server/public_htm /portal s/repository/portlets directory in the

news_i ndex. j sp, news_viewer.jsp and content _titlebar.jsp files.

readOnly Content Tag

The <cm sel ect > and <cm sel ect Byl d> tags support an optional r eadOnl y
parameter.

If not specified, the default value (from Cont ent Hel per . DEF_CONTENT_READONLY,
which is loaded from the conmer ce. cont ent . def aul t ReadOnl y property in the
webl ogi ccommer ce. properti es file) is used. Additionally, a

Cont ent Hel per . get Cont ent () method and a Cont ent Manager . get Cont ent ()
method take areadOnl y flag.

In the reference implementation, invoking the get Cont ent () method without the
readOnl y parameter invokes the new get Cont ent () method, passing in

Cont ent Hel per . DEF_CONTENT_READONLY. If readOnl y is t r ue, then non-EJB
instances of Content and Document objects can be returned; with the reference
implementation, non-EJB instances will be returned.

Guide to Building Personalized Applications 8-29

8 Creating and Managing Content

Note: This can help performance and prevent deadlocks. It is highly recommended
that commer ce. cont ent . def aul t ReadOnl y be set to t r ue, and that, if
readOnl y is specified, it be specified t r ue.

Object Interfaces

The interfaces Conf i gur abl eEnti t yRenot e, Cont ent Renot e, Docunent Renot e,
User Renpt e and G- oupRenot e extend both EJBObject and their respective
non-EJBObject interfaces. For example:

Conf i gur abl eEnt i t yRenot e extends EJBObj ect and Confi gurabl eEntity.
Docunent Renot e extends Cont ent Renot e, which extends

Confi gurabl eEnti t yRenot e.

User Renot e and Gr oupRenot e extend Conf i gur abl eEnt i t yRenot e.

In this fashion, session beans, tags and utility methods can return either lightweight
objects or the EJB instances, depending upon usage and parameters.

Note: In general, you should only typecast to the non-EJB interfaces (that is,
Confi gur abl eEnti ty, not Confi gur abl eEnti t yRenot e).

8-30 Guide to Building Personalized Applications

CHAPTER

9

Working with Ad
Placeholders

An ad placeholder is one of several mechanisms that WebLogic Personalization Server
provides for retrieving documents from a content management system. A document is
a graphic, a segment of HTML or plain text, or a file that must be viewed with a
plug-in. (We recommend that you store most of your Web site’s dynamic content as
documents in a content management system because it offers an effective way to store
and manage information.)

Ad placeholders are intended to display documents that advertise products or services
(ads) and to record customer reactions to them. You can use a single set of ad
placeholders to support multiple advertising projects that change over time. If you use
Campaign Manager for WebLogic, you can use ad placeholders to display ads for
campaigns.

A Business Analyst (BA) uses the BEA E-Business Control Center to define the
behavior of an ad placeholder. Then, a Commerce Business Engineer (CBE) creates ad
placeholder JSP tags in JSPs.

Similar to ad placeholders, the <ad: adTar get > JSP tag also provides services for
displaying ads. However, as described later in this topic, the <ad: adTar get > JSP tag
provides a subset of the ad placeholder services.

This topic includes the following sections:

m What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?
m Resolving Ad Query Conflicts

m Creating Ad Placeholder Tags

m Supporting Additional MIME Types

Guide to Building Personalized Applications 9-1

9 Working with Ad Placeholders

m How Placeholders Select and Display Ads

To learn more about using a content management system with WebLogic
Personalization Server, refer to Chapter 8, “Creating and Managing Content,” in this
guide. For a comparison of content retrieval methods available with WebLogic
Personalization Server, refer to “Methods for Retrieving and Displaying Documents”
on page 8-4.

What Are Ad Placeholders, Ad Attributes,
and Placeholder Tags?

This section describes the following items:

m Ad Placeholders

m Ad Attributes in the Content Management System
m Ad Placeholder JSP Tags

m The <ad:adTarget> JSP Tag

Ad Placeholders

An ad placeholder is a named entity that contains one or more queries. When a
customer requests a JSP that contains an ad placeholder tag, the placeholder selects a
single ad query to run and generates the HTML that the browser requires to display the
results of the query.

For example, you want to display ads in the top banner of your Web site’s home page.
You define an ad placeholder and create ad queries for the placeholder. Then you
create an ad placeholder JSP tag in the top banner of the home page. When a customer
requests the home page, the placeholder selects a query, runs the query, and displays
the results in the banner.

This section includes the following subsections:

9-2 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

m Types of Queries That Ad Placeholders Run

m Types of Documents That Ad Placeholders Display

Types of Queries That Ad Placeholders Run

Ad placeholders can run a default query or a query that is associated with a specific
scenario in a campaign.

You create default ad queries when you define the ad placeholder in the E-Business
Control Center. A placeholder runs a default query each time a customer loads a page
that includes the placeholder. For example, you define a default query for a top banner
placeholder and the placeholder runs the query each time a customer loads a page with
the top banner.

You create scenario queries when you define scenario actions in the E-Business
Control Center. (Scenario actions, which are available only with Campaign Manager
for WebLogic, specify a list of actions to take in response to a chain of events.) A
placeholder contains a scenario query only if a customer or an event triggers the
scenario action. For example, you create a scenario that does the following:

When a customer places a handsaw product in the shopping cart, the scenario places
an ad for miter boxes in the ad placeholder on the shopping cart page. When the
customer requests the shopping cart page, the shopping cart ad placeholder runs the
query for miter box ads and displays the results.

You can prevent a placeholder from running default queries if any scenario actions
have specified a query for the placeholder, or you can allow the Ad Conflict Resolver
to choose a default query or a scenario query. For more information, refer to
“Resolving Ad Query Conflicts” on page 9-10 in this guide.

Types of Documents That Ad Placeholders Display

Placeholders use a document’s MIME-type attribute to generate the appropriate
HTML tags that the browser requires. By default, ad placeholders generate the
appropriate HTML tags only for the following MIME types:

e XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

e Images. For this type of document, a placeholder generates an <i ng> tag
with attributes that the browser needs to display the image. If you want
images to be clickable, you must specify the target URL and other
link-related information as ad attributes in your content management system.

Guide to Building Personalized Applications 9-3

9 Working with Ad Placeholders

e Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to
display the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in used to display the file. In your content
management system, you can specify attributes for the <OBJECT> and
<EMBED> tags.

For information on setting up placeholders to support additional MIME types, refer to
“Supporting Additional MIME Types” on page 9-18 in this guide.

Ad Attributes in the Content Management System

Ad placeholders use a set of document attributes that you define in your content
management system to support the following features:

m Choosing a single document if a query returns multiple documents
m Making an image ad clickable
m Supplying movie preferences for a Shockwave file

For information about associating attributes with documents, refer to the
documentation for your content management system. If you use the reference
BulkLoader, refer to Chapter 8, “Creating and Managing Content,” in this guide.

Table 9-1 describes the adWei ght attribute, which you can associate with XHTML,
image, and Shockwave documents.

9-4 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Table 9-1 Attributes for All Document Types

Attribute Name

Value Type

Description and Recommendations

adWeight

Integer

Provides an integer that is used to select a document if a query
returns multiple documents. Assign a high number to ads that you
want to have a greater chance of being selected. For more
information, refer to “How an Ad Placeholder Chooses from Ad
Query Results” on page 9-13 in this guide.

The default value for this attribute is 1.

Note: Inthe E-Business Control Center, you can assign a priority
to a query for a scenario action. The priority, which bears
no relation to the ad\Wei ght attribute, gives a greater or
lesser chance that a placeholder runs a query. The
adWei ght attribute is used to choose an ad after a query
has run. For more information, refer to “How the Ad
Conflict Resolver Chooses a Query” on page 9-12 in this

guide.

Table 9-2 describes attributes in addition to the adWei ght attribute that you can
associate with image files.

Table 9-2 Attributes for Image Files

Attribute Name

Value Type

Description and Recommendations

adTargetUrl

String

Makes an image clickable and provides a target for the clickthrough,
expressed as a URL. The Events Service records the clickthrough.

Use either adTar get Ur | , adTar get Cont ent , or adMapNane,
depending on how you want to identify the destination of the ad
clickthrough.

adTargetContent

String

Makes an image clickable and provides a target for the clickthrough,
expressed as the content management system’s content ID. The
Events Service records the clickthrough.

Use either adTar get Ur | , adTar get Cont ent , or adMapNane,
depending on how you want to identify the destination of the ad
clickthrough.

Guide to Building Personalized Applications 9-5

9 Working with Ad Placeholders

Table 9-2 Attributes for Image Files (Continued)

Attribute Name Value Type Description and Recommendations

adMapName String Makes an image clickable, using an image map to specify one or
more targets.
The value for this attribute is used in two locations:
m In the anchor tag that makes the image clickable,

 <i ng> </ a>

m In the map definition, <map nane=val ue>
Use either adTar get Ur | , adTar get Cont ent , or adMapNarnre,
depending on how you want to identify the destination of the ad
clickthrough.
If you specify a value for adMapNane, you must also specify a
value for adMap.

adMap String Supplies the XHTML definition of an image map.
If you specify a value for adMap, you must also specify a value for
adMapNane.

adWinTarget String Displays the target in a new pop-up window, using JavaScript to
define the pop-up window.
The only value supported for this attribute is newwi ndow.

adWinClose String Specifies the name of a link that closes a pop-up window. The link
appears at the end of the window content.
For example, if you provide “Close this window” as the value for
this attribute, then “Close this window” appears as a hyperlink in the
last line of the pop-up window. If a customer clicks the link, the
window closes.

adAltText String Specifies a text string for the al t attribute of the <i ng> tag. If you
do not include this attribute, the <i nmg> tag does not specify an al t
attribute.

adBorder Integer Specifies the value for the bor der attribute of the <i mg> tag. If

you do not include this attribute, the bor der attribute is given a
value of " 0" .

9-6 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Table 9-3 describes attributes in addition to the adWei ght attribute that you can
associate with Shockwave files. Ad placeholders and the <ad: adTar get > tag format
these values as attributes of the <OBJECT> tag, which Microsoft Internet Explorer on
Windows uses to display the file, and the <EMBED> tag, which browsers that support
the Netscape-compatible plug-in used to display the file.

For more information about these attributes, refer to your Shockwave developer

documentation.

Table 9-3 Attributes for Shockwave Files

Attribute Name Value Type

Description and Recommendations

swfLoop

String

Specifies whether the movie repeats indefinitely (t r ue) or stops
when it reaches the last frame (f al se).

Valid values are t r ue or f al se. If you do not define this attribute,
the default value is t r ue.

swfQuality

String

Determines the quality of visual image. Lower qualities can result in
faster playback times, depending on the client’s Internet
connection.

Valid values are | ow, hi gh, aut ol ow, aut ohi gh, best .

swiPlay

String

Specifies whether the movie begins playing immediately on loading
in the browser.

Valid values are t r ue or f al se. If you do not define this attribute,
the default value is t r ue.

swfBGColor

String

Specifies the background color of the movie. This attribute does not
affect the background color of the HTML page.

Valid value syntax is #RRGGBB.

swfScale

String

Determines the dimensions of the movie in relation to the area that
the HTML page defines for the movie.

Valid values are showal | , nobor der,exact fit.

swfAlign

String

Determines whether the movie aligns with the center, left, top, right,
or bottom of the browser window.

If you do not specify a value, the movie is aligned in the center of
the browser.

Valid values are | ,t ,r, b.

Guide to Building Personalized Applications 9-7

9 Working with Ad Placeholders

Table 9-3 Attributes for Shockwave Files (Continued)

Attribute Name Value Type Description and Recommendations
swfSAlign String Determines the movie’s alignment in relation to the browser
window.

Valid values are | ,t,r, b, tl tr, bl br.

swiBase String Specifies the directory or URL used to resolve relative pathnames in
the movie.

Valid values are . (peri od), di rectory-nane, URL.

swifMenu String Determines whether the movie player displays the full menu.

Valid values are t r ue or f al se.

Ad Placeholder JSP Tags

An ad placeholder JSP tag refers to the placeholder definition that you create in the
E-Business Control Center. Then it displays the results of the query that the
placeholder runs. You can create multiple placeholder tags that refer to a single
placeholder definition. (See Figure 9-19.)

For more information about placeholder tags, refer to <ph:placeholder> in Chapter 12,
“Personalization Server JSP Tag Library Reference,” in this guide.

9-8 Guide to Building Personalized Applications

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Figure 9-19 Multiple Tags Using a Single Definition

JEP 1

<ph:placeholder name="top-banner™>

\‘_—_4/"_—__“&

'm Editor [top-banner =] _ O] x|

Marme:

. |tn:np-banner |

Description:

The primary ad position on the site

W

JEP 2

Kph:placeholder name="top-banner™:-

\v/—‘\

The <ad:adTarget> JSP Tag

The <ad: adTar get > JSP tag is an additional mechanism for selecting and displaying
ads. Use <ad: adTar get > if it is essential that a specific query run in a specific
location.

Like an ad placeholder, <ad: adTar get > can do the following:

m Generate the HTML that a browser requires to display the types of documents
that are described in “Types of Documents That Ad Placeholders Display” on
page 9-3.

m Use the document attributes that are described in “Ad Attributes in the Content
Management System” on page 9-4.

Guide to Building Personalized Applications 9-9

9 Working with Ad Placeholders

m Use the Ad Service to choose an ad if a query returns multiple documents, as
described in “How an Ad Placeholder Chooses from Ad Query Results” on page
9-13.

However, the <ad: adTar get > is unlike ad placeholders in the following ways:

m [t contains its own query; it does not refer to a definition that a BA creates in the
E-Business Control Center. If you want to change the query, you modify the tag
in the JSP.

m A campaign scenario cannot specify a query to run in an <ad: adTar get > tag.
Scenarios can only use ad placeholders to run queries.

m Because it contains only a single query, it does not need to use the Ad Conflict
Resolver as described in “How the Ad Conflict Resolver Chooses a Query” on
page 9-12.

For a more information about <ad: adTar get >, refer to Chapter 12, “Personalization
Server JSP Tag Library Reference,” in this guide.

Resolving Ad Query Conflicts

9-10

A placeholder can contain many ad queries: you can define multiple default queries
and if you use Campaign Manager for WebLogic, multiple scenarios can send queries
to a placeholder. To determine which ad query to run, a placeholder uses the Ad
Conflict Resolver.

In addition, an ad query can return multiple documents. To determine which ad to
display, a placeholder uses the adWei ght document attribute.

This section includes the following subsections:

m How Ad Placeholders Contain Multiple Queries

m How the Ad Conflict Resolver Chooses a Query

m How an Ad Placeholder Chooses from Ad Query Results

If you need to make sure that a given ad query runs in a specific location, use an
<ad: adTar get > tag, which can contain only a single query. For more information,
refer to “The <ad:adTarget> JSP Tag” on page 9-9 in this guide.

Guide to Building Personalized Applications

Resolving Ad Query Conflicts

How Ad Placeholders Contain Multiple Queries

In addition to containing default queries, an ad placeholder can contain queries that
scenarios define. Depending on customers’ profiles and the events that customers
trigger, a placeholder can contain different queries for different customers. (See
Figure 9-20.)

Figure 9-20 Different Ad Queries for Different Customers

For Customer 7 For Customer Y

J-’fF'Ian::ehnIn:ier.f_ f ,n"F'Ian::ehnlder.f_ f

Default Cluery 1 Default Cluery 1

Default Cluery 2 Default Cluery 2

» » »
Scenario A Scenario B Scenario A
Cluery AT Cluery B1 Cluery A2
Cuers B2

For example, you create placeholder L at the top of a portlet to display ads for any of
the following products:

m Handsaws and miter boxes. You want ads for handsaws and miter boxes to
display for any customer, anonymous or authenticated. When you define
placeholder L, you include default queries for ads about handsaws and miter
boxes.

m FElectric drills. You use Campaign Manager for WebLogic and you want ads for
electric drills, which are part of the Hardware 2001 campaign, to display when a
Bronze Customer or Gold Customer logs in. When you define the Hardware
2001 campaign, you include a scenario that places ad queries for electric drills in
placeholder L when a Bronze Customer or Gold Customer logs in.

m Circular saws. You want ads for circular saws, which are part of the Hardware
2001 campaign, to display when a Gold Customer logs in. When you define the
Hardware 2001 campaign, you define a scenario that recognizes when a Gold

Guide to Building Personalized Applications ~ 9-11

Working with Ad Placeholders

Customer logs in. For that scenario, you specify an action that places ad queries
for pneumatic hammers in placeholder L.

When the Bronze Customer Pat Gomes logs in and accesses the portlet, WebLogic
Personalization Server adds queries for handsaws (which applies to all customers) and
electric drills (which applies to Bronze Customers) to ad placeholder L. Then it uses
the Ad Conflict Resolver to determine which ad query to run.

How the Ad Conflict Resolver Chooses a Query

9-12

When you define an ad placeholder in the E-Business Control Center, you can assign
a priority to the default ad queries; when you define scenario actions that specify ad
queries, you can assign a priority to the scenario’s ad query. The priority affects the
probability that an ad query will run relative to other ad queries in the placeholder.

For example, ad placeholder L contains three ad queries:

m Campaign Ad query X, which has a medium priority. The Ad Conflict Resolver
gives all medium-priority ads 2 points

m Default Ad Y, which has a low priority and receives 1 point
m Default Ad Z, which also has a low priority and receives 1 point

The total number of points in ad placeholder L is 4. To determine which of the three ad
queries to run, the Ad Conflict Resolver does the following:

1. Itcreates 4 slots in the ad placeholder. The number of slots corresponds to the total
number of points currently in the ad placeholder.

2. It places campaign ad query X, which has 2 points into 2 slots. Each of the other
ad queries, with 1 point, gets a single slot:

a. Slot 1 = campaign ad query X
b. Slot 2 = campaign ad query X
c. Slot 3 = default ad query Y
d. Slot 4 = default ad query Z

3. It generates a random number between 1 and 4, which is equal to the number of
slots in the ad placeholder.

Guide to Building Personalized Applications

Resolving Ad Query Conflicts

4. Tt matches the generated number with a slot in the placeholder. Because

campaign ad query X occupies two of four slots, it has a 50% chance of being
run. Default ad queries Y and Z each have a 25% chance of being run.

If a query does not find any documents, the placeholder chooses another query
and runs it.

If the campaign associated with ad query X ends, then the total number of points in ad
placeholder L is reduced to 2. To determine which ad query to run, the Ad Conflict
Resolver does the following:

1.

It creates two slots in the ad placeholder and assigns ad query Y and ad query Z
each to a single slot.

It generates a random number between 1 and 2.

It matches the generated number with a slot in the placeholder. Now, each ad
query has a 50% chance of running.

How an Ad Placeholder Chooses from Ad Query Results

Depending on how broadly you define an ad query and on the number of documents
in your content management system, an ad query could return multiple documents. In
your content management system, you can add the adWei ght attribute to documents
that display as ads.

If a placeholder or <ad: adTar get > query returns multiple documents, the ad
placeholder or the <ad: adTar get > tag does the following:

1.

It determines the adWei ght values for all documents that the query returns and
adds them together.

For example, an ad query returns the following three ads:
e AdX, with an adWei ght value of 2
e AdY, with an adWei ght value of 1
e AdZ, with an adWei ght value of 1

The total weight for the documents that the query returns is 4.

It creates 4 slots, corresponding to the total weight in the query.

Guide to Building Personalized Applications ~ 9-13

9 Working with Ad Placeholders

3. It places ad X, with a weight of 2 into 2 slots. Each of the other ads, with weights
of 1, gets a single slot:

a. Slotl=adX
b. Slot2=ad X
c. Slot3=adyY
d. Slot4=adZ

4. Tt generates a random number between 1 and 4, which is equal to the total weight
in the query.

5. It matches the generated number with a slot. Because ad X occupies two of four
slots, it has a 50% chance of being displayed. Ads Y and Z each have a 25%
chance of being displayed.

Creating Ad Placeholder Tags

After a BA uses the E-Business Control Center to create ad placeholders, a CBE
creates ad placeholder tags in the Web site’s JSPs. The placeholder definition
determines the behavior of the placeholder tag.

You can create placeholders in JSPs that directly display content to a customer (for
example, i ndex. j sp) or in JSPs that are included in other JSPs (for example,
headi ng. j sp).

To Create an Ad Placeholder Tag

1. In a text editor, open a JSP.

2. Import the tag library by adding the following tag near the top of the JSP:
<Y@taglib uri="ph.tld" prefix="ph" %

3. Find the location in which the Business Analyst wants to display the ad.

4. Use the following syntax to create the placeholder tag:

9-14 Guide to Building Personalized Applications

Creating Ad Placeholder Tags

<ph: placehol der= “{ pl acehol der-name | scriptlet }” >

where pl acehol der - nane refers to the name of an existing placeholder
definition (see Figure 9-21) or where scri pt | et returns the name of an existing
placeholder.

Figure 9-21 Placeholder Names Must Match

J=F

<ph:placeholder name="top-banner™>
1

¥w E ditor [top-banner =] M=l E3

Mame:

- - - == |tu:up-t:uanner |

Description;

The primary ad position on the site
Located in heading. inc

-

Listing 9-1 shows an example from the heading include file of the e-commerce sample
JSP templates

($W._COWVERCE_HOME\ conf i g\ W csDonmi n\ appl i cati ons\w csApp\w cs\com
mer ce\ i ncl udes\ headi ng. i nc).

Guide to Building Personalized Applications ~ 9-15

9 Working with Ad Placeholders

All JSP files in the e-commerce sample Web application include headi ng. i nc to
create consistency in the top banner. Instead of requiring that the banner on each page
use the same placeholder, the placeholder in headi ng. i nc uses a scriptlet to
determine the value of the nane attribute. A JSP can use the default value for the nane
attribute (which is cs_t op_generi c¢), or it can define a variable named banner and
specify a placeholder name as the value for the variable.

Listing 9-1 Using a Scriptlet for the Placeholder Name

<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "cs_top_generic" : banner;

<tabl e wi dt h="100% border="0" cell spacing="0" cel | paddi ng="0" hei ght="108">

<tr><td rowspan="2" wi dt h="147" hei ght="108">
<i ng src="<%Wbfl owJSPHel per. creat ed FURL(request, response,
"/ commer ce/ i mages/ header _| ogo. gi f") %" wi dt h="147" hei ght ="108"></td>

<td col span="7" hei ght="75" align="center" valign="m ddl e">

<ph: pl acehol der nane="<% banner %" />

</td>

Figure 9-22 illustrates how WebLogic Commerce Server renders the placeholder in
the mai n. j sp file, which is the home page for the e-commerce JSP templates.

9-16 Guide to Building Personalized Applications

Creating Ad Placeholder Tags

From heading

Figure 9-22 Placeholder in the E-Commerce JSP Templates

W OLA Webd guper Crusemeers Gan

. inc

o ——

<ph:placeholder nawme="cs_top generic’™:

g - Wi ol |edaarasd E

[

Fa [Yow Fieoher Joow Heo

LR = RE e - e~ 1 T
o L T e TSy Sp— =] P ||t
Commerce Termsplates
Experence (= S
AR PG RS | e tee s e s g
Homa Buwarch Wiisrr Cort Lixg
Quick Look-wp:
Uiloekup: | Store Catalog
= Hardwan
Wi = Pover Toods
= Mg Toels
CReg I it‘grw, : m
; save $10 = Qihar
i on your order |
:of at least 450 |
: placed todayll |
%';:.'5: 4 courteny of
, whare
Hpply mesrs
dermipred.”
- Copyright © 1999-3001,
- &Y
BEA Suztems (nc.,
e d
£l T Lo rivart

For more information about the <ph: pl acehol der
“Personalization Server JSP Tag Library Reference

Guide to Building Personalized Applications

> tag, refer to Chapter 12,

,” in this guide.

9-17

9 Working with Ad Placeholders

Supporting Additional MIME Types

To display an ad, placeholders refer to a document’s MIME type and then generate the
HTML tags that a browser requires for the specific document type. For example, to
display an image-type document, an ad placeholder must generate the <i ng> tag that
a browser requires for images. By default, ad placeholders can generate the appropriate
HTML only for the following MIME types:

m XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

m Images. For this type of document, a placeholder generates an <i ng> tag with
attributes that the browser needs to display the image. If you want images to be
clickable, you must specify the target URL and other link-related information as
ad attributes in your content management system.

m Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to display
the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in use to display the file. In your content management
system, you can specify attributes for the <OBJECT> and <EMBED> tags.

If you are familiar with basic Java programming, you can write classes that enable
placeholders to generate HTML for additional MIME types. To support additional
MIME types, you must complete the following tasks:

m Add the New Type to the Deployment Descriptor
m Create and Compile a Java Class to Generate HTML

m Register the New Class in weblogiccommerce.properties

Add the New Type to the Deployment Descriptor

9-18

Each Campaign Manager for WebLogic Web application must specify its deployment
requirements in an XML file called a deployment descriptor. To add a new MIME type
for ad placeholders, you must modify the deployment descriptor for your WebLogic
Personalization Server Web application. You can use a text editor to modify the
deployment descriptor.

Guide to Building Personalized Applications

Supporting Additional MIME Types

If you use the example portal as a framework for developing your own Web
application, then the deployment descriptor is located at the following pathname:

$W._ COWERCE_HOME/ confi g/ wl csDomai n/ appl i cati ons/w csApp/ exanpl eport al / VVEB- | NF/
web. xm

where $W._ COMVERCE_HOME is the location in which you installed Campaign Manager
for WebLogic. Your Web application might be in another location. Contact your
Campaign Manager for WebLogic administrator for information on which deployment
descriptor to modify.

The deployment descriptor for your WebLogic Personalization Server Web
application already contains a set of mappings for MIME type. Before you add a new
type, review the existing mappings. Listing 9-2 illustrates a single MIME mapping
from the example portal’s deployment descriptor.

Listing 9-2 MIME Mapping in exampleportal/ WEB-INF/web.xml

<m me- mappi ng>
<ext ensi on>

j peg
</ ext ensi on>
<m ne-type>
i mage/ j peg
</ m ne-type>

</ m nme- mappi ng>

To add a new mapping, use the following syntax:
<m me- mappi ng>

<ext ensi on>
file-extension
</ ext ensi on>

<m ne-type>
type/ subt ype
</ m ne-type>

</ m nme- mappi ng>

Guide to Building Personalized Applications ~ 9-19

9 Working with Ad Placeholders

where fi | e- ext ensi on is the extension of the file type you want to map and
t ype/ subt ype is a recognized MIME type and subtype.

Make sure that you provide end-tags for each of the XML elements.

When you save the modified deployment descriptor, you must restart the server to
deploy the modifications. However, we recommend that you do not restart the server
until you have registered the new Java class in webl ogi ccomrer ce. properti es as
described in “Register the New Class in weblogiccommerce.properties” on page 9-20.

Create and Compile a Java Class to Generate HTML

To generate the HTML that the browser requires to display the MIME type, create and
compile a Java class that implements the

bea/ commer ce/ pl at f or mf ad/ AdCont ent Provi der interface. For information on
the bea/ commer ce/ pl at f or mi ad/ AdCont ent Pr ovi der interface, refer to
Campaign Manager for WebLogic Javadoc.

After you compile the class, you must save it in or below a directory that is specified
in the system’s CLASSPATH environment variable. For example
$W._COMMERCE_HOME/ cl asses is in the classpath. For more information about the
CLASSPATH environment variable, refer to “Setting Environment Variables,” under
“Starting and Shutting Down the Server” in theDeployment Guide.

Register the New Class in weblogiccommerce.properties

9-20

After you save the class in a directory that is in your classpath, you must notify
Campaign Manager for WebLogic of its existence and purpose by adding a line to
webl ogi cconmer ce. properti es. Youcan use a text editor to modify this file, which
is located at the following pathname:

$W._ COMMVERCE_HOME/ webl ogi cconmer ce. properties

where $W._ COMVERCE_HOVE is the location in which you installed Campaign Manager
for WebLogic.

To register your new class in the webl ogi ccommer ce. properti es file, find the
section that Listing 9-3 illustrates. Then add a line that conforms to the following
syntax:

Guide to Building Personalized Applications

Supporting Additional MIME Types

adt argettag. renderi ng.m nme-t ype.m me- ext ensi on=your - cl assnanme
Provide the following values for the variables in the previous syntax statement:
m i ne-type. The name of the MIME type that you want to support.

® i ne- ext ensi on. The filename extension that Campaign Manager for
WebLogic uses to associate the file with the MIME type.

m your - cl assnane. The name of the compiled Java file. If you saved the file
below a directory that your CLASSPATH environment variable names, you must
include the file’s pathname, starting one directory level below the directory in
the classpath.

For example, $W._ COMMERCE_HOME/ ¢l asses is in the classpath. You saved your
class to support AVI files as

$W._ COWERCE_HOME/ cl asses/ nycl asses/ M neAvi . cl ass

To register your classname, add the following line to

webl ogi ccomrer ce. properties:

adt ar get t ag. renderi ng. vi deo. avi =nycl asses. M neAvi

Listing 9-3 Rendering Classes in weblogiccommerce.properties

HHHHHH R HHH
AdTarget Tag Properties

adt ar get t ag. render i ng=com bea. commer ce. pl atf orm ad. AdCl i ckThr uSer
vl et

This is the class that inplenents the AdEvent Tracker interface
and is used to raise events

adt argett ag. eventtracki ng=com bea. conmer ce. canpai gn. AdTr acki ng

Additional classes to render content based upon mne type
To use replace the "text.html" with the minme type, replacing any
"/'" characters with '."'

Place the name of the java class that handl es the nmime type after
the ' =

#adt argettag. rendering.text. htnl =

Guide to Building Personalized Applications ~ 9-21

9 Working with Ad Placeholders

How Placeholders Select and Display Ads

9-22

Placeholders use the following process to select and display ads in a given JSP (see
Figure 9-23):

1. Any of the following activities place ad queries in an ad placeholder:

e You use the E-Business Control Center to define default queries for a
placeholder.

e As part of carrying out a campaign action, the Campaign Service adds
queries to the placeholder.

2. When a user requests a JSP that contains a placeholder, if the ad placeholder
contains more than one ad query, the Ad Service calls the Ad Conflict Resolver
to select an ad query.

For more information, refer to “How the Ad Conflict Resolver Chooses a
Query” on page 9-12 in this guide.

3. The Ad Service does the following:

a. It forwards the query to the content management system. If the query returns
more than one ad, the ad placeholder uses the adWei ght attribute of each ad to
determine which one to retrieve.

b. Ifthe ad is associated with an active campaign, it determines whether the
campaign has fulfilled its goal of displaying the ad a specific number of times.
If the ad has already been displayed the specified number of times, the Ad
Service selects another ad.

c. Itsends data to the Events Service indicating that the placeholder has displayed
the ad.

For more information, refer to “How an Ad Placeholder Chooses from Ad Query
Results” on page 9-13 in this guide, and “Campaign Service Properties” under
“The Server Configuration” in the Deployment Guide.

4. The ad placeholder renders the ad content and places it in the JSP at the location
of the placeholder tag.

5. If a customer clicks on the ad, the Ad Service redirects the URL and notifies the
Event Service that a customer clicked the ad.

Guide to Building Personalized Applications

How Placeholders Select and Display Ads

Figure 9-23 How Placeholders Display Ads

Campaign Service

Hardware 2001

B

1 1

L ¥

E-Business
Control
Center

Ad Placeholder L

Campaign guery 1
Campaign query 2
Default query 3

JSP

== ph: L =

4t
T

Events Service

3...

A Conflict
Fesolver

| i
2 4
: I
Ad Service
|

Content Management
h System ’l

Guide to Building Personalized Applications

9-23

9 Working with Ad Placeholders

9-24 Guide to Building Personalized Applications

CHAPTER

10 Creating Localized

Applications with the
Internationalization
Tags

This topic includes the following sections:
m What Is the I18N Framework?
m Localizing Your JSP
e <il8n:getMessage>
e <il8n:localize>
e Character Encoding
e Steps for Localizing Your Application
e Code Examples
m Localizing the BEA WebLogic Personalization Server
e Static Text
e Constructed Messages

e Resource Bundles Used in the WebLogic Personalization Server Tools

Guide to Building Personalized Applications 10-1

10 Creating Localized Applications with the Internationalization Tags

What Is the 118N Framework?

WebLogic Personalization Server provides a simple framework that allows access to
localized text labels and messages. The internationalization ([18N) framework is
accessible from JavaServer Pages (JSPs) through a small I18N tag library. An example
is shown in Figure 10-24. The JSP extension tag library provides the following
services:

1. Retrieves a static text label from a resource bundle (implemented as a properties
file).

2. Retrieves a message from a resource bundle (implemented as a properties file).

3. Initializes a page context with a particular language, country, and variant for label
and message retrieval throughout a page.

4. Properly sets the content type (text/html) and character encoding for a page.

Figure 10-24 An Example of Internationalization Code

10-2 BEA WebLogic Personalization Server Developer’s Guide

Localizing Your JSP

Before Internationalization
<htmle

<hodys

Hello: :|~Ha.rd coded text
< /bodys

</html>

After Internationalization

:?@ taglib uri="il8n.tld" prefix="118n" %> }ans to 4 tag Horary
S
J4 Array that defines two langquages preferences -]
/7 English and 3panish in that order of preference.
String[] lancuages = new String[] { "en™, "es™ }:
I Scriptlet defines language
A4 Definition of a single langquage preference
String language = "en';
5= _
<ilfn:localize lanmage="<%=langquages>" 77 Thas tag sets the language
bundleNane="il8nExampleResourceBundle” /> and encoding for the page.
<htmlx>
<hady> Page body
<ilén: getMessage messageNane=""greeting” /> ' ' This tag gets the text out of
< /bodys J the resourze bundle, instead
</htnls of hard coding,

Localizing Your JSP

The conventions used in the 18N tag library are based on the more general
conventions used to internationalize Java applications. To understand the conceptual
foundations for the <i 18n: get Message>tag, see the Javadoc for

j ava.t ext. MessageFor mat in the Sun Microsystem, Inc. Java 2 SDK, Standard
Edition documentation. To better understand the ideas that served as the foundation for
these tags, study the Javadoc for j ava. uti| . Resour ceBundl e and
java.util.Local e.

The following tags are included in the I18N framework:
<i 18n: get Message>

<i 18n:1ocal i ze>

BEA WebLogic Personalization Server Developer’s Guide 10-3

10 Creating Localized Applications with the Internationalization Tags

<i18n:getMessage>

This tag retrieves a localized label or message (based on the absence/presence of an
ar gs attribute). The tag optionally takes a bundle name, language, country, and variant
to aid in locating the appropriate properties file for resource bundle loading.

This tag is used in the localization of JSP pages. All pages that have an
internationalization requirement should use this tag.

For more information about the <i 18n: get Message> tag, see Chapter 12,
“Personalization Server JSP Tag Library Reference.”

<i18n:localize>

This tag allows you to specify a language, country, variant, and resource bundle name
to use throughout a page when accessing resource bundles via the

<i 18n: get Message> tag. This is a convenient way to specify these attributes once, so
that you do not have to specify them again each time you use <i 18n: get Message> to
retrieve localized static text or messages.

Note: Changes to the resource bundles will not be recognized until the server is
restarted.

The <i 18n: | ocal i ze> tag also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded. If you intend to display text in more than one language, pick a
character set that encompasses all the languages on the page.

When an HTML page is included in a larger page (for example, as portlets are included
in portal pages), only the larger page can use the <i 18n: | ocal i ze> tag. This is
because the <i 18n: | ocal i ze> tag sets the encoding for the page, and the encoding
must be set in the parent (including) page before any bytes are written to the response’s
output stream. Therefore, be careful that the encoding for the parent page is sufficient
for all the content on that page as well as any included pages. The child (included)
pages may continue to use the <i 18n: get Message> tag.

10-4 BEA WebLogic Personalization Server Developer’s Guide

Localizing Your JSP

Note: Do not use the <i 18n: | ocal i ze> tag in conjunction with the <%@ page
cont ent Type="<sonet hi ng>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong cont ent Type declarations.

For more information about the <i 18n: | ocal i ze> tag, see Chapter 12,
“Personalization Server JSP Tag Library Reference.”

The JspMessageBundle

The <i 18n: get Message> tag uses the

com beasys. commer ce. i 18n. j sp. JspMessageBundl e class. Unlike a
ResourceBundle, the JspMessageBundle looks only for properties files (like the
PropertyResourceBundle) within the ServletContext (on the doc path). This means that
you can keep MessageBundle properties files relative to the associated JSP page,
instead of having to have them on the CLASSPATH.

Another difference is that JspMessageBundles are specified using the "/ " character
instead of the ". ". For instance, the path to a JspMessageBundle might look like this:
/j sp/ ordersystent pl aceOrder.

If a bundle name is specified, then it can be specified absolutely or relatively. Absolute
paths are treated as such if they begin with a "/ ". Paths not beginning with "/ " are
searched for relative to the JSP page's location.

If no bundle name is specified, then bundle name defaults to the name of the JSP page.
For instance, if you have a JSP page called placeOrder.jsp, then JspMessageBundle
would look in the same directory for a placeOrder.properties file to serve as the
JspMessageBundle for the placeOrder.jsp page.

When searching for a JspMessageBundle, both the doc root and repository directories
are searched, in that order. Repository directories are directories specified during
servlet registration and serve as a place to store common files such as images. If no
message bundle can be found, a MissingResourceException occurs. For a more
in-depth description of the repository directory convention, see “Repository” on page
5-8.

How the Localization Tag Works

The <i 18n: | ocal i ze> tag first examines all provided attributes and default
attributes, and then performs the following three steps:

BEA WebLogic Personalization Server Developer’s Guide — 10-5

10 Creating Localized Applications with the Internationalization Tags

1. Determines the base bundle name.

If a base bundle name is not provided, the bundle name defaults to the name of
the JSP page with .properties appended.

For example, if the name of the JSP page is placeOrder.jsp, then the default
bundle name would be placeOrder.properties.

2. Determines the language to use.

The tag will first look for resource bundles that correspond to the language
parameter passed in to the tag.

If no match between bundle and language is found, then the tag will try to find a
match between resource bundles and languages defined in the request header.

If a match can be made, the first language that matches is the language that is
used.

If no language is specified, the default is U.S. English (en_US).

If no message bundle can be found, then language is set to nothing ("") and
"UTF-8" encoding will be used unless otherwise specified.

3. Determines which character encoding (charset) to use.

If character encoding is not specified, a charset appropriate for the language
determined in step 2 is chosen.

If a character encoding is specified, then that will be the charset used by the
page, regardless of what language was chosen in step 2.

Once the charset is determined, it is specified for the page by calling the
set Cont ent Type() method on the servlet response. A call to
set Cont ent Type() might look like this:

response. set Content Type("text/htm ; charset=I SO 8859-1");

Character Encoding

When specifying the encoding, it is important to note that some encodings may not be
supported for your particular operating system, virtual machine, or client browsers. To
see what Sun Microsystems, Inc. supports in the J2SE package, see
http://www.java.sun.com.

10-6 BEA WebLogic Personalization Server Developer’s Guide

Localizing Your JSP

If for any reason an encoding for a language cannot be determined and none is
specified, UTF-8 encoding is used.

Displaying More Than One Character Set on a Page

In general, it is best is to leave the charset parameters unspecified since this is more
flexible and fault tolerant. An exception might be when two languages (such as Greek
and Japanese) need to be displayed in the same page. In that case, you can set the
charset to "UTF-8".

For a page with multiple charsets to display correctly, the end users must have the
appropriate fonts installed on their machines. If a font cannot be found, non-printable
characters will typically display in place of the missing characters. (Non-printable
characters often look like rows of empty boxes.)

Default Character Encodings

Figure 10-1 shows how the <i 18n: | ocal i ze> tag maps languages to character
encodings. These are the default settings.

You can override these defaults by providing any charset tag parameter you choose.
For example, in the table below, the default charset for Japanese is Shift JIS, but you
could pass in x-sjis, EUC _JP, or is0-2022-jp instead. Or, as another example, to use
Chinese Taiwan locale in place of Chinese, override GB2312 with Big5.

Table 10-1 Default Character Encodings

Language Language Character
Code Name Encoding

ar Arabic ISO-8859-6
be Byelorussian ISO-8859-5
bg Bulgarian ISO-8859-5
ca Catalan ISO-8859-1
cs Czech ISO-8859-2
da Danish ISO-8859-1
de German ISO-8859-1

BEA WebLogic Personalization Server Developer’s Guide 10-7

10 Creating Localized Applications with the Internationalization Tags

el Greek ISO-8859-7
en English ISO-8859-1
es Spanish 1SO-8859-1
et Estonian ISO-8859-1
fi Finnish ISO-8859-1
fr French ISO-8859-1
hr Croatian ISO-8859-2
hu Hungarian ISO-8859-2
is Icelandic ISO-8859-1
it Ttalian 1SO-8859-1
iw Hebrew ISO-8859-8
ja Japanese Shift JIS
ko Korean EUC KR
It Lithuanian ISO-8859-2
v Latvian (Lettish) 1SO-8859-2
mk Macedonian ISO-8859-5
nl Dutch ISO-8859-1
no Norweigan ISO-8859-1
pl Polish ISO-8859-2
pt Portuguese ISO-8859-1
ro Romanian ISO-8859-2
ru Russian ISO-8859-5
sh Serbo-Croatian ISO-8859-5
sk Slovak ISO-8859-2

10-8 BEA WebLogic Personalization Server Developer’s Guide

Localizing Your JSP

sl Slovenian ISO-8859-2
sq Albanian ISO-8859-2
st Serbian ISO-8859-5
sV Swedish ISO-8859-1
th Thai TIS620

tr Turkish ISO-8859-9
uk Ukrainian ISO-8859-5
zh Chinese GB2312
other UTF-8

Steps for Localizing Your Application

1.

Familiarize yourself with the documentation for the Internationalization <i 18n: *>
tags in Chapter 12, “Personalization Server JSP Tag Library Reference.”. For
sample code, see Figure 10-24 “An Example of Internationalization Code” on page
10-2.

Include the <i 18n: | ocal i ze> tag in all pages with an internationalization
requirement. The tag should be used as early in the page as possible—before
anything is written to the output stream—so that the bytes are properly encoded.

For example: <¥@taglib uri="i 18n.tl1d” prefix="i18n" %

For example: <i 18n: | ocal i ze | anguage=" <%l anguage%"

Note: When HTML pages are being included inside a larger page, only the larger

3.

page can use the <i 18n: | ocal i ze> tag.

Move all text that must be localized (including image URLs that must be
localized) to property files that serve as resource bundles. Provide a resource
bundle (property file) for each language you plan to support. One resource bundle
per JSP page per language is the recommended approach.

BEA WebLogic Personalization Server Developer’s Guide ~ 10-9

10 Creating Localized Applications with the Internationalization Tags

Note: Changes to the property files will not be recognized until the server is
restarted.

For example: Use <i 18n: get Messaage nmessageName="greeting”/> instead
of hardcoding “Welcome!”

4. Specify a directory path for the property files (resource bundles). The bundle
location must be specified relative to the JSP location, or absolutely, under the
document root.

5. Refer to all localized text in a JSP page by using the <i 18n: get Message> tag.
Make sure the <i 18n: get Message> tag is referring to the correct resource
bundle location (relative or absolute path).

For example:

If the JSP is in publ i c_ht nl \ nypage. j sp, then the bundle location could be
(absolute) “/ mypage/ t ext _us. properties” or

(relative) “text _us. properties”.

6. Test the page for all languages that you support. Make sure that the localized text
and images display correctly and that the page layout is correct.

Code Examples

The following examples show how to use the JSP internationalization framework with
JavaScript and Java scriptlets.

Using the JSP Internationalization Framework with JavaScript

This example displays a JavaScript dialog with a localized message in it.

<U@taglib uri="i18n.tld" prefix="i18n" %

<%

String | anguage="en";

%>

<i 18n: 1 ocal i ze | anguage="<%l anguage%"

bundl eNanme="i 18nJavaScri pt Exanpl eResour ceBundl e"/ >

<script |anguage="JavaScri pt">
function popDial og() {
al ert ("<i 18n: get Message nessageNane="greeting"/>")

10-10 BEA WebLogic Personalization Server Developer’s Guide

Localizing the BEA WebLogic Personalization Server

}

</script>

<htm >

<body>

Cick here to see |ocalized
text!

</ body>

</htm >

Using the JSP Internationalization Framework with Java Scriptlets

This example gets a localized message, and uses that message in two Java scriptlets.
One scriptlet prints to system out, the other inlines it into the page.

<%@taglib uri="i18n.tld" prefix="i1l8n" %

<%

String | anguage="en";

%

<i 18n: 1 ocal i ze | anguage="<%Il anguage%"

bundl eNarme="i 18nJavaScri pt Exanpl eResour ceBundl e"/ >

<ht i >

<body>

<i 18n: get Message nmessageNane="greeting" id="theGreeting"/>
<p>

<%"Local i zed text for 'greeting': " + theGeeting%

<p>

<%

Systemout.println("Localized text for 'greeting': " +
theGreeting);

%

</ body>
</htm >

Localizing the BEA WebLogic
Personalization Server

Up to this point, this chapter has discussed localizing the application that you are
building with the BEA WebLogic Personalization Server.

BEA WebLogic Personalization Server Developer’s Guide 10-11

10 Creating Localized Applications with the Internationalization Tags

In developing your application, you may be required to localize some of the portal
tools in the WebLogic Personalization Server. This section provides information for
developers who need to localize the administration tools that are provided with this
product, or who are deriving their application from examples that ship with the
WebLogic Personalization Server.

The WebLogic Personalization Server Administration Tool is supported by JSP bean
objects which employ Java internationalization conventions in the practice of
presenting error and status messages. These beans use a BEA utility object called
com beasys. commer ce. i 18n. MessageBundl e in conjunction with text-based
properties files to produce two types of locale-specific display text. The two types of
text are as follows:

m Static Text

m Constructed Messages

10-12 BEA WebLogic Personalization Server Developer’s Guide

Localizing the BEA WebLogic Personalization Server

Static Text

WebLogic Personalization Server uses the following convention when naming static
text entries in the properties files:

propertyNane. t xt =pr opertyVal ue

For example: error. txt=Error Occurred

A static text property is acquired from a loaded MessageBundle using the following
method:

public String getString(String propertyNane)

For example:
System out . printin(messageBundl e.getString("error.txt"));

For more information, see the Javadoc for the Portal API documentation.

Constructed Messages

The localized display text generated at run time often depends on one or more
variables, and the order of these variables in a text segment is locale-specific. In this
case, the WebLogic Personalization Server provides a means for constructing message
segments for display.

WebLogic Personalization Server uses the following convention when naming
message entries in properties files:

propertyNane. msg=pr opertyVal ue
For example:
fiel dRequi red. nsg={0} is a required field.

A constructed message is acquired from a loaded MessageBundle using the following
method:

public String get Message(Cbject[] args, String propertyNane)
For example:

Ooj ect[] args = new Cbject[] {“ContentURL"};

BEA WebLogic Personalization Server Developer’s Guide 10-13

10 Creating Localized Applications with the Internationalization Tags

System out . printl n(messageBundl| e. get Message(ar gs,
"fiel dRequired. nsg"));

For more information, see the Javadoc for the Portal API documentation.

The MessageBundle’s get Message() method internally uses a
j ava. t ext . MessageFor mat object. To understand how the get Message() method
works, look at the Javadoc for j ava. t ext. MessageFor mat .

Resource Bundles Used in the
WebLogic Personalization Server Tools

Each properties file that supports a particular bean includes the bean name and a
property extension. For example, the property file that supports the

com beasys. portal . admi n. j spbeans. Port al JspBean bean resides in the i 18n
directory beneath comf beasys/ port al / adni n/ j spbeans, and is called

Por t al JspBean. properties.

Localizing System Messages

You can localize the resource bundles that contain system messages related to the
WebLogic Personalization Server Administration Tools and sample applications.
Changes to the resource bundles will be recognized when the server is restarted.

Use the following properties files to localize system messages. These property files are
found under <W._ COMMERCE_HOVE>/ cl asses:

com beasys/ comrerce/ axi onf util.i 18n/ JSPBeanBase. properties

com beasys/ comrer ce/ user/j sp/ beans/i 18n/ LDAPConf i gBean. properties
com beasys/ comrer ce/ user/j sp/ beans/i 18n/ Prof i | eTypeBean. properti es
com beasys/ comrer ce/ user/j sp/ beans/i 18n/ Pr opert yBean. properties
com beasys/ comrer ce/ user/j sp/ beans/i 18n/ Pr opertySet Bean. properti es
com beasys/ comer ce/ user/j sp/ beans/i 18n/ Real nConf i gBean. properti es
com beasys/ comer ce/ user/j sp/ beans/i 18n/ User Bean. properties

com beasys/ comer ce/ portal /adm n/j spbeans/i 18n/ Port al JspBean. properties

10-14 BEA WebLogic Personalization Server Developer’s Guide

Localizing the BEA WebLogic Personalization Server

com beasys/ conmmer ce/ portal /admi n/j spbeans/i 18n/ Port| et JspBean. properti es

com beasys/ conmmer ce/ portal /admi n/j spbeans/i 18n/ Port al Per sonal i zati on. properties
com beasys/ commrer ce/ portal /admi n/j spbeans/i 18n/ Port al RenoveJspBean. properti es
com beasys/ conmer ce/ portal . j spbeans/i 18n/ Port al Appear anceBean. properti es

com beasys/ conmmer ce/ axi om util /i 18n/ JspBeanBase. properties

BEA WebLogic Personalization Server Developer’s Guide 10-15

10 Creating Localized Applications with the Internationalization Tags

10-16 BEA WebLogic Personalization Server Developer’s Guide

CHAPTER

11 The WebLogic

Personalization Server
Database Schema

This chapter documents the database schema for the WebLogic Personalization
Server. This topic includes the following sections:

m The Entity-Relation Diagram

m List of Tables Comprising the WebLogic Personalization Server
m The Personalization Server Data Dictionary

m The SQL Scripts Used to Create the Database

m SQL Server

The Entity-Relation Diagram

Figure 11-25 shows the logical Entity-Relation diagram for the WebLogic
Personalization Server database. See the subsequent sections in this chapter for
information about the data type syntax.

Guide to Building Personalized Applications 11-1

11 The WebLogic Personalization Server Database Schema

Figure 11-25 Entity-Relation Diagram for the WebLogic Personalization Server

WLCS_USER_PERSONALIZATION WLCS_GROUP_PERSONALIZATION

&, PORTAL_NID: Murber &, PORTAL_NID: Murber
&, CATEGORY_NID: Nurnber &, CATEGORY_NID: Nurnber
&, GROUP_MID: Murnber &, PORTLET_NID: Muriber
&, USER_NID: Nurnber &, GROUP_MID: Murnber
&, PORTLET_MID: Mumber AVAILAGLE Nomper
YISIBLE: Number MAMNDATORY: Mumber
Mumber EDITABLE: Mumber
Y: Murnber MOWEABLE: Murnber
MINIMIZED: Mumber MINIMIZEABLE: Murnber
MAKIMIZEABLE: Number
WLCS_UIDS FLOATABLE: Mumber
&, 5ID: String WISIBLE: Mumber
Mumber
NEXT_SEQUENCE: Number Y- Mumber

MINIMIZED: Mumber

WLCS_CATEGORIES

€ NID: Nurber WLCS_UNIFIED_PROFILE_TYPE
PORTAL_NID: Mumber
MNAME: String
ICOM_URL: String TYPE_MAME: String
CATEGORY_ORDER: Murber CLASS NAME: String
HOME: String
WLCS_USER_GROUP_CACHE PIC String

JNDI_MAME: String

&, USER_NAME: String SUCCESSO0R: String

&, GROUP_NAME: String

WLCS_COLUMN_INFORMATION
WLCS SEQUENCER &, PORTAL_NID: Murber

&, CATEGORY_NID: Nurnber
&, COLUMN_ORDER: Murmiber

SEQUENCE_NAME: String :
CURRENT VALUE: Number COLUMN_WIDTH: Number
1S_LOCKED: Mumber

WLCS_TODO
&, ITEM: String
&, OWNER: String

DOME: Mumber
PRIORITY: Mumber

WLCS_IS_ALIVE WLCS_BOOKMARKS

&, NAME: String
NAME: String &, OWNER: String

URL: String

WLCS_LDAP_CONFIG

WLCS_UUP_EXAMPLE

LDARP_PROPERTY: String -
LDAP _WALUE: String NAME: String
POIMNTS: Murmber

WLCS_SCHEMA

&, SCHEMA_GROUP_NAME: Strin -
&, SCOPE MAME: St_ring 8 &, JMDI_HOME_MAME: String

&, PK_STRING: String
DESCRIPTION: String :
SCHEMA_ID: Number ENTITY_ID: Number

WLCS_ENTITY_ID

11-2 Guide to Building Personalized Applications

The Entity-Relation Diagram

WLCS_PROP_MD

€, SCHEMA_ID: Number
€, PROPERTY_MAME: String

DESCRIPTION: String
|5_RESTRICTED: Mumber
I1S_EXPLICIT: Murnber
15_MULTIALUED: Mumber
PROPERTY_TYPE: Murnber
PROPERTY _META_DATA_ID: Mumber

WLCS_PROP_MD_BOOLEAN

PROPERTY_META_DATA_ID: Mumber
WALUE: Mumber
I1S_DEFAULT: Murnber

PROFERTY_TYPE's:

0=Boolean
1=Integer
2=Float

3=Text
4=Datetime
5=User Defined
B=Multi Valued

WLCS_PROP_ID

ENTITY_ID: Murnber

SCOPE_MAME: String

PROPERTY _MAME: String
PROPERTY_TYPE: Murnber
PROPERTY _META_DATA_ID: Mumber
SCHEMA_HAS CHAMGED: Murmber
PROPERTY_ID: Murnber

WLCS_PROP_BOOLEAN

PROPERTY _ID: Mumber
WALUE: Murmber

WLCS_PROP_MD_INTEGER

PROPERTY_META_DATA_ID: Mumber
WALUE: Mumber
I1S_DEFAULT: Murnber

WLCS_PROP_MD_FLOAT

PROPERTY_META_DATA_ID: Mumber
WALUE: Mumber
I1S_DEFAULT: Murnber

WLCS_PROP_MD_TEXT

WLCS_PROP_INTEGER

PROPERTY _ID: Mumber
WALUE: Murnber

WLCS_PROP_FLOAT

PROPERTY _ID: Mumber
WALUE: Murmber

WLCS_PROP_TEXT

PROPERTY_META_DATA_ID: Mumber
WALUE: String
I1S_DEFAULT: Murnber

PROPERTY _ID: Mumber
WALLUE: String

WLCS_PROP_DATETIME

PROPERTY_META_DATA_ID: Mumber
WALUE: Datetime
I1S_DEFAULT: Murnber

PROPERTY _ID: Mumber
WALLE: Datetime

WLCS_PROP_MD_USER_DEFINED

WLCS_PROP_USER_DEFINED

PROPERTY _META_DATA_ID: Mumber
WALLE: Blob
I1S_DEFAULT: Murnber

WALLIE: Blob

PROPERTY _ID: Mumber

Guide to Building Personalized Applications

11-3

11 The WebLogic Personalization Server Database Schema

11-4

WLCS_GROUP

WLCS_USER

&, IDENTIFIER: String

&, IDENTIFIER: String

PASSWORD: String
I1S_EXTERMAL: Mumber
PROFILE_TYPE: String

WLCS_USER_GROUP_HIERARCHY

USER_ID: Mumber
GROUP_ID: Murnber

WLCS_USER_GROUP_CACHE

&, USER_NAME: String
&, GROUP_NAME: String

WLCS_GROUP_HIERARCHY

PAREMT_ID: Murmber
CHILD_ID: Murnber

PLACEHOLDER
€, PLACEHOLDER_MAME: String

COMTENT_TYPE: String
MIx_GLOBALS: Mumber
DESCRIPTION: String

HML_DEFIMITION: Clab

PLACEHOLDER_PREVIEW

&, PREVIEW_ID: Mumber

*ML_DEFIMITION: Clob

AD_BUCKET

@, AD_BUCKET_ID: Number

USER_ID: String

CONTEXT_UID: String
CONTAINER_UID: String
CONTAINER_TYPE: String
YWEIGHT: Mumber
WIEWY_COUNT: Mumber
CREATION_DATE: Datetime
AD_QUERY: Clob

PLACEHOLDER_NAME: String (FK)

AD_COUNT

@, AD_IDENTIFIER: String
€, CONTAINER_UID: String

DISPLAY_COUNT: Number
CLICK_THRU_COUMT: Number

WLCS_RULESET_DEFINITION

RULESET

&, NAME: String

&, NAME: String

DOCUMENT: Blob

DOCUMENT: Blob

Guide to Building Personalized Applications

The Entity-Relation Diagram

WLCS_DOCUMENT
&, D: String

DOCUMENT_SIZE: Mumber
WERSION: Number
AUTHOR: String
CREATION_DATE: Datetirne
LOCKED_BY: String
MODIFIED_DATE: Datetirne
MODIFIED_BY: String
DESCRIPTION: String
COMMENTS: String
MIME_TYPE: String

WLCS_DOCUMENT_METADATA
&, |D: String (FK)
&, NAME: String

WALUE: String
STATE: String

Guide to Building Personalized Applications 11-5

11 The WebLogic Personalization Server Database Schema

List of Tables Comprising the WebLogic
Personalization Server

The WebLogic Personalization Server is comprised of the following tables. In
this list, the tables are sorted by functionality:

Ads and Placeholders tables
The AD BUCKET Database Table
The AD_COUNT Database Table
The PLACEHOLDER Database Table
The PLACEHOLDER PREVIEW Database Table

Documentation Management tables
The WLCS_COLUMN_INFORMATION Database Table
The WLCS_DOCUMENT Database Table
The WLCS DOCUMENT METADATA Database Table

Rule Editor tables
The RULESET Database Table
The WLCS_RULESET DEFINITION Database Table

User Management tables
The WLCS GROUP Database Table
The WLCS _GROUP_HIERARCHY Database Table
The WLCS GROUP_PERSONALIZATION Database Table
The WLCS UNIFIED PROFILE TYPE Database Table
The WLCS USER Database Table
The WLCS USER_GROUP CACHE Database Table
The WLCS USER_GROUP HIERARCHY Database Table
The WLCS USER PERSONALIZATION Database Table
The WLCS_UIDS Database Table

Common tables used by both WebLogic Personalization Server and WebLogic
Commerce Server

The WLCS_CATEGORIES Database Table

The WLCS_SCHEMA Database Table

The WLCS_ENTITY _ID Database Table

The WLCS_BOOKMARKS Database Table

11-6 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS_IS ALIVE Database Table

The WLCS_LDAP_ CONFIG Database Table

The WLCS_SEQUENCER Database Table

The WLCS_TODO Database Table

The WLCS_USER PERSONALIZATION Database Table
The WLCS_UUP_EXAMPLE Database Table

The WLCS PROP_ MD Database Table

The WLCS PROP MD BOOLEAN Database Table

The WLCS PROP MD INTEGER Database Table

The WLCS PROP MD FLOAT Database Table

The WLCS PROP MD TEXT Database Table

The WLCS PROP MD DATETIME Database Table

The WLCS PROP MD USER DEFINED Database Table

The WLCS PROP_ID Database Table

The WLCS PROP BOOLEAN Database Table

The WLCS PROP INTEGER Database Table

The WLCS PROP FLOAT Database Table

The WLCS PROP TEXT Database Table

The WLCS PROP DATETIME Database Table

The WLCS PROP USER DEFINED Database Table

The Personalization Server Data Dictionary

In this section, the WebLogic Personalization Server schema tables are arranged
alphabetically as a data dictionary.

Note: Even though the following documentation references “foreign keys” to
various tables, these constraints do not currently exist in this release of
WebLogic Personalization Server. However, they will be (available in future
releases) in place in future versions of WebLogic Personalization Server and
we want you to be aware of these relationships now.

Guide to Building Personalized Applications 11-7

11 The WebLogic Personalization Server Database Schema

The AD BUCKET Database Table

Table 11-1 describes the AD_BUCKET table. This table maintains content queries for

ads.

The Primary Key is AD_BUCKET_I D.

Table 11-1 AD_BUCKET Table Metadata

Column Name Data Type Description and Recommendations
AD BUCKET | D NUMBER(15) PK—a unique, system-generated number used
as the record identifier.
USER_I D VARCHAR(50) FK—foreign key to the
WLCS_USER. | DENTI FI ER column.
PLACEHOLDER _NAME VARCHAR(50) FK—foreign key to
PLACEHOLDER. PLACEHOLDER _NAME.
CONTEXT_UI D VARCHAR(50) The scenario unique identifier.
CONTAI NER_UI D VARCHAR(50) The campaign unique identifier.
CONTAI NER_TYPE VARCHAR(50) Identifies the service associated with the
CONTAI NER_UI D.
VEI GHT NUVBER(15) A weighting scheme used in prioritizing one
placeholder over another.
VI EW COUNT NUVMBER(15) Disabled. Reserved for future use.
CREATI ON_DATE DATE The date and time this record was created.
AD_QUERY CLOB The actual content query.

The AD_COUNT Database Table

Table 11-2 describes the AD COUNT table. This table tracks the number of times the

ads are displayed and clicked through.

The Primary Keys are AD_| DENTI FI ER and CONTAI NER_UI D.

11-8 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 11-2 AD_COUNT Table Metadata

Column Name Data Type Description and Recommendations

AD_| DENTI FI ER NUVBER(15) A unique, system-generated number used as a
record identifier.

CONTAI NER_UI D VARCHAR(50) The campaign unique identifier.

DI SPLAY_COUNT NUVBER(15) The number of times the ad has been displayed.

CLI CK_THROUGH_ COUNT NUMBER(15) The number of times the ad has been clicked on.

The PLACEHOLDER Database Table

Table 11-3 describes the PLACEHOLDER table. This table maps placeholder and
content bucket services (e.g., ad bucket service).

The Primary Key is PLACEHOLDER_NAME.

Table 11-3 PLACEHOLDER Table Metadata

Column Name Data Type Description and Recommendations

PLACEHOLDER_NAME VARCHAR(50) PK—a textual name given to the
placeholder to uniquely identify it from other
placeholders.

CONTENT_TYPE VARCHAR(20) Identifies the type of service to work with (e.g.,
ad).

M X_GLOBALS NUMBER(1) Determines whether or not this placeholder is to

be used with a specific campaign or not.

0 = do not mix with other adshis placeholder is
specific to certain campaign(s).

1 = mix with all ads.

DESCRI PTI ON VARCHAR(254) A description of the placeholder and its
purpose.
XM__DEFI NI TI ON CLOB The content used to define the placeholder.

Guide to Building Personalized Applications 11-9

11 The WebLogic Personalization Server Database Schema

The PLACEHOLDER PREVIEW Database Table

Table 11-4 describes the PLACEHOLDER PREVIEW table. This table is used as a
mechanism to hold the placeholder for previewing purposes only.

The Primary Key is PPREVI EW | D.

Table 11-4 PLACEHOLDER_PREVIEW Table Metadata

Column Name Data Type Description and Recommendations

PREVI EW | D NUMBER(15) PK—a unique, system-generated number used
as the record identifier.

XM__DEFI NI TI ON CLOB The representation of the expression to be
previewed.

The WLCS BOOKMARKS Database Table

Table 11-5 describes the WLCS BOOKMARKS table. This table is used by the
Example portal and is not used except for demonstration purposes. It contains
information used in the Bookmark portlet.

The Primary Key is NAME and ONNER.

Table 11-5 WLCS_BOOKMARKS Table Metadata

Column Name Data Type Description and Recommendations
NAVE VARCHAR(150) The name of the bookmark.

OWNER VARCHAR(150) The owner of the bookmark.

URL VARCHAR(50) The URL of the bookmark.

11-10 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS CATEGORIES Database Table

Table 11-6 describes the WLCS CATEGORIES table. This table is used to
store category information for the portal portion of the WebLogic
Personalization Server application.

Note: The CATEGORY feature has not been implemented at this time and, therefore,
this table is not being used/populated.

The Primary Key is NI D.

Table 11-6 WLCS_CATEGORIES

Column Name Data Type Description and Recommendations
NI D NUMBER(15) Category identifier.
PORTAL_NI D NUMBER(15) The Portal identifier. This column is a foreign

key to the NI D column of the
WLCS_PORTAL_DEFI NI TI ONtable.

NAME VARCHAR(100) The name for the category.

| CON_URL VARCHAR(100) The URL pointing to the icon associated with
the category. This may be null.

CATEGORY_ORDER NUVBER(5) The sequence number identifying the order of
display.

The WLCS COLUMN_INFORMATION Database Table

Table 11-7 describes the WLCS COLUMN_ INFORMATION table. This table is
used to store column definition information for each portal and category.

The Primary Key is comprised of PORTAL_NI D, CATEGORY_NI D and COLUMN_ORDER.

Guide to Building Personalized Applications 11-11

11 The WebLogic Personalization Server Database Schema

Table 11-7 WLCS_COLUMN_INFORMATION

Column Name Data Type Description and Recommendations

PORTAL_NI D NUMBER(15) The Portal identifier. This column is a foreign
key to the NI D column of the
W.CS_PORTAL_DEFI NI TI ON table.

CATEGORY_NI D NUMBER(15) The Category identifier.

COLUMN_ORDER NUMBER(5) A sequence number identifying the display
sequence for this column. Starting at the
left-most part of the screen the
COLUWN_ORDER would be 1.

COLUWMN_W DTH NUMBER(5) The value entered here is a percentage of the

screen width. An example would be 30. This
represents how wide this particular portal
column is to be (30% of the screen).

The WLCS DOCUMENT Database Table

Table 11-8 describes the WLCS DOCUMENT table. This table is used to store
information pertinent to each document used within the WebLogic Personalization

Server.

The Primary Key is | D.

Table 11-8 WLCS_DOCUMENT Table Metadata

Column Name Data Type Description and Recommendations

1D VARCHAR(500) The identifier of the document. This specifies
the relative path (case sensitive using forward
slashes) to the actual file.

DOCUMENT_SI ZE NUMBER(15) The size of the document in bytes.

VERSI ON NUMBER(15) The version of the document.

AUTHOR VARCHAR(50) The author’s name of this document.

11-12 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 11-8 WLCS_DOCUMENT Table Metadata (Continued)

Column Name Data Type Description and Recommendations

CREATI ON_DATE DATE The date this document was created in the
system.

LOCKED_BY VARCHAR(50) This column identifies who has this document
locked for edits or updates.

MODI FI ED_DATE DATE This tells you when this document record was
last modified.

MODI FI ED_BY VARCHAR(50) This column stores the name of the individual
who last modified the document record.

DESCRI PTI ON VARCHAR(50) A description of the document.

COWMENTS VARCHAR(50) An area to store miscellaneous notes about the
document.

M ME_TYPE VARCHAR(100) This column identifies which MIME type (or

file type) is associated with this document. This
is supposed to be MIME 1.0.

The WLCS DOCUMENT METADATA Database Table

Table 11-9 describes the WLCS DOCUMENT METADATA table. This table is
used to store user-defined properties associated with each document.

The Primary Key is | D and NAME.

Table 11-9 WLCS_DOCUMENT_METADATA Table Metadata

Column Name Data Type Description and Recommendations

I D VARCHAR(500) The document identifier. This is a foreign key to
the | D column of the W.CS_DOCUMENT table.

NAMVE VARCHAR(240) The metadata name.

VALUE VARCHAR(2000) The value to be associated with the metadata
name (NAVE).

Guide to Building Personalized Applications 11-13

11 The WebLogic Personalization Server Database Schema

Table 11-9 WLCS_DOCUMENT_METADATA Table Metadata (Continued)

Column Name Data Type Description and Recommendations

STATE VARCHAR(50) The current state of this metadata property. This
is used by Interwoven and can be set to null.

The WLCS _ENTITY_ ID Database Table

Table 11-10 describes the WLCS_ENTITY ID table. Any ConfigurableEntity within
the system will have an entry in this table.

The Primary Key is comprised of JNDI _HOVE_NANE and PK_STRI NG,

Table 11-10 WLCS_ENTITY_ID Table Metadata

Column Name Data Type Description and Recommendations

JNDI _HOVE_NAME VARCHAR(100) Defines what type of ConfigurableEntity this is.

PK_STRI NG VARCHAR(200) Unique identifier within the
ConfigurableEntity.

ENTI TY_I D NUVBER(15) A sequence-generated number providing a

unique identifier used throughout the system (in
the Property tables and so on).

11-14 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS GROUP Database Table

Table 11-11 describes the WLCS GROUP table. This table is used to maintain each
of the various Group identifiers.

The Primary Key is comprised of | DENTI FI ER.

Table 11-11 WLCS_GROUP Table Metadata

Column Name Data Type Description and Recommendations

| DENTI FI ER VARCHAR(50) The group name. This column is a foreign key
to the PK_STRI NGcolumn in the
WL.CS_ENTI TY_I Dtable.

The WLCS_GROUP_HIERARCHY Database Table

Table 11-12 describes the WLCS_GROUP_HIERARCHY table. This table stores
relationship information between groups.

The Primary Key is comprised of PARENT_I Dand CHI LD_| D.

Table 11-12 WLCS_GROUP_HIERARCHY Table Metadata

Column Name Data Type Description and Recommendations

PARENT_I D NUVBER(15) The parent group identifier. This column is a
foreign key to the ENTI TY_| D column in the
W.CS_ENTI TY_| Dtable.

CH LD ID NUMBER(15) The child group identifier. This column is a
foreign key to the ENTI TY_| D column in the
WLCS_ENTI TY_| Dtable.

Guide to Building Personalized Applications 11-15

11 The WebLogic Personalization Server Database Schema

The WLCS GROUP_PERSONALIZATION Database Table

Table 11-13 WLCS_GROUP_PERSONALIZATION

Table 11-13 describes the WLCS GROUP_ PERSONALIZATION table. Portals can
be associated to groups and this table helps establish those relationships and maintain

specific information for the group.

The Primary Key is comprised of PORTAL_NI D, CATEGORY_NI D, PORTLET_NI D and

GROUP_NI D.

Column Name Data Type Description and Recommendations

PORTAL_NI D NUMBER(15) The portal identifier. This column is a foreign
key to the NI D column of the
WL.CS_PORTAL_DEFI NI Tl ONtable.

CATEGORY_NI D NUMBER(15) The category identifier. This column is a
foreign key to the NI D column of the
WLCS_CATEGORI ES table.

PORTLET_NI D NUVBER(15) The portlet identifier. This column is a foreign
key to the NI D column of the
WLCS_PORTLET_DEFI NI TI ON table.

GROUP_NI D NUVMBER(15) The group identifier. This column is a foreign
key to the ENTI TY_I D column of the
WLCS_ENTI TY_I Dtable.

AVAI LABLE NUVBER(5) A switch to identify whether or not this portlet
is available.

MANDATORY NUMBER(5) This flag, when set, overrides the VI SI BLE flag
and requires the portlet be displayed.

EDI TABLE NUMBER(5) This flag determines whether a user is allowed
to edit any content.

MOVEABLE NUMBER(5) This column is not being used.

M NI M ZEABLE NUMBER(5) This flag determines whether or not the user

11-16 Guide to Building Personalized Applications

will be allowed to minimize the portlet.

The Personalization Server Data Dictionary

Table 11-13 WLCS_GROUP_PERSONALIZATION (Continued)

Column Name

Data Type

Description and Recommendations

MAXI M ZEABLE

NUVBER(5)

This flag determines whether or not the user
will be allowed to maximize the portlet.

FLOATABLE

NUVBER(5)

This flag determines whether the portlet can
open up in its own browser window.

VI SI BLE

NUMBER(5)

This flag determines whether or not the portlet
is visible.

NUVBER(5)

The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (O=column 1,
1=column 2 and so on).

NUVBER(5)

The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (O=row 1, 1=row 2 and so on).

M NI M ZED

NUVBER(5)

This flag determines whether or not the portlet
should be displayed in a minimized format
when initially displayed.

The WLCS IS ALIVE Database Table

Table 11-14 WLCS_IS_ALIVE Table Metadata

Table 11-14 describes the WLCS IS ALIVE table. This table is used by the JDBC
connection pools to insure the connection to the database is still alive.

Column Name

Data Type

Description and Recommendations

NAME

VARCHAR(100)

Used by the JDBC connection pools to insure
the connection to the database is still alive.

Guide to Building Personalized Applications 11-17

11 The WebLogic Personalization Server Database Schema

The WLCS LDAP CONFIG Database Table

Table 11-15 describes the WLCS_LDAP CONFIG table. This table holds
configuration information for LDAP functionality within the User Management
module.

The Primary Key is LDAP_PROPERTY.

Table 11-15 WLCS_LDAP_CONFIG Table Metadata

Column Name Data Type Description and Recommendations
LDAP_PROPERTY VARCHAR(100) The property name.
LDAP_VALUE VARCHAR(254) The property value.

The WLCS_PROP_BOOLEAN Database Table

Table 11-16 describes the WLCS PROP_BOOLEAN table. This table stores property
values for boolean properties.

The Primary Key is PROPERTY_I D.

Table 11-16 WLCS_PROP_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations
PROPERTY_I D NUVMBER(15) The identifier for each boolean property.
VALUE NUMBER(3) The value for each boolean property identifier.

11-18 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS PROP DATETIME Database Table

Table 11-17 describes the WLCS PROP_DATETIME table. This table stores
property values for date and time properties.

The Primary Key is PROPERTY_I D.

Table 11-17 WLCS_PROP_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_I D NUMBER(15) The identifier for each date and time property.

VALUE DATE The value for each date and time property
identifier.

The WLCS PROP_FLOAT Database Table

Table 11-18 describes the LCS PROP_FLOAT table. This table stores property
values for float properties.

The Primary Key is PROPERTY_I D.

Table 11-18 WLCS_PROP_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_I D NUVBER(15) The identifier for each float property.

VALUE NUVBER The value associated with each float property
identifier.

Guide to Building Personalized Applications 11-19

11 The WebLogic Personalization Server Database Schema

The WLCS PROP _ID Database Table

Table 11-19 describes the WLCS PROP_ID table. Any property assigned to a
ConfigurableEntity has a unique PROPERTY ID. This identifier and associated
information is stored here.

The Primary Key is ENTI TY_I D, PROPERTY_NAME and SCOPE_NANE.

Table 11-19 WLCS_PROP_ID Table Metadata

Column Name

Data Type

Description and Recommendations

ENTITY_I D

NUMBER(15)

A system generated value and foreign key to the
WL.CS_ENTI TY_I D column.

SCOPE_NAVE

VARCHAR(100)

This column may be null. If this property is
defined in a property set, then the
SCOPE_NAME will match the SCHEMA_NAME
for that property set in the W.CS_SCHEVA
table.

PROPERTY_NAME

VARCHAR(100)

The name of the property.

PROPERTY_TYPE

NUVBER(3)

This column identifies the type of property we
are dealing with (for example, boolean, integer,
float, text, and so on).

PROPERTY_NMETA DATA | D

NUVBER(15)

The identifier for the Property metadata
information. Again, we use the
PROPERTY_TYPE column to identify which
type of Property metadata we are looking at (for
example, boolean, integer, and so on).

SCHEMA_HAS_CHANGED

NUVBER(3)

A flag informing to identify whether anything in
the WL.CS_SCHEMA or W.CS_PROP_MD_XxXxX
tables has changed. If so, then certain cleanup
activities must be performed prior to using this
property next time.

PROPERTY_| D

NUVBER(15)

The property identifier is a unique
system-generated number.

11-20

Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS PROP _INTEGER Database Table

Table 11-20 describes the WLCS PROP_INTEGER table. This table stores property
values for integer properties.

The Primary Key is PROPERTY_I D.

Table 11-20 WLCS_PROP_INTEGER Table Metadata

Column Name Data Type Description and Recommendations
PROPERTY_I D NUMBER(15) The identifier of the integer property.
VALUE NUVBER(20) The value associated with the integer property.

The WLCS PROP_MD Database Table

Table 11-21 describes the WLCS PROP_MD table. This table stores information
about defined properties in a property set.

The Primary Keys are SCHEMA | Dand PROPERTY_NANE.

Table 11-21 WLCS_PROP_MD Table Metadata

Column Name Data Type Description and Recommendations
SCHEMA_| D NUVBER(15) A foreign key to the W.CS_SCHEMA table.
PROPERTY_NAME VARCHAR(100) The name of a property.

DESCRI PTI ON VARCHAR(254) A description of the property.

I' S RESTRI CTED NUMBER(3) If set TRUE, the value of the property is

constrained to a set of values. 0 equates to
FALSE and 1 equates to TRUE.

IS EXPLICT NUMBER(3) If set TRUE, the property value may be coming
from an external source. 0 equates to FALSE
and 1 equates to TRUE.

Guide to Building Personalized Applications 11-21

11 The WebLogic Personalization Server Database Schema

Table 11-21 WLCS_PROP_MD Table Metadata (Continued)

Column Name Data Type Description and Recommendations

I'S_MULTI VALUED NUMBER(3) Some properties may have more than one value.
0 equates to FALSE and 1 equates to TRUE.

PROPERTY_TYPE NUMBER(3) Defines the property type (boolean, text and so
on).

PROPERTY_META DATA I D NUMBER(15) The primary key is a unique, system-generated
value.

The WLCS PROP _MD BOOLEAN Database Table

Table 11-22 describes the WLCS PROP_MD BOOLEAN table. This table stores
property set definitions for the boolean property type.

The Primary Key is PROPERTY_META_DATA I D.

Table 11-22 WLCS_PROP_MD_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META DATA I D NUMBER(15) A unique identifier for this Property metadata
and foreign key to the W.CS_PROP_MD table.

VALUE NUMBER(3) The value associated with the Property
metadata.

I'S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

11-22 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS PROP_MD DATETIME Database Table

Table 11-23 describes the WLCS PROP_MD_ DATETIME table. This table stores
property set definitions for the date and time property type.

The Primary Key is PROPERTY_META_DATA_I D.

Table 11-23 WLCS_PROP_MD_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META DATA I D NUMBER(20) A unique identifier for this Property metadata.

VALUE DATE The value associated with the Property
metadata.

| S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The WLCS_PROP_MD_FLOAT Database Table

Table 11-24 describes the WLCS PROP _MD_ FLOAT table. This table stores
property set definitions for the float property type.

The Primary Key is PROPERTY_META_DATA | D.

Table 11-24 WLCS_PROP_MD_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA | D NUVBER(15) A unique identifier for this Property metadata.

VALUE NUVBER The value associated with the Property
metadata.

| S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Guide to Building Personalized Applications 11-23

11 The WebLogic Personalization Server Database Schema

The WLCS PROP_MD INTEGER Database Table

Table 11-25 describes the WLCS PROP_MD_ INTEGER table. This table stores
property set definitions for the Integer property type.

The Primary Key is PROPERTY_META_DATA_| D.

Table 11-25 WLCS_PROP_MD_INTEGER Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META DATA | D NUMBER(15) A unique identifier for this Property metadata.

VALUE NUVMBER(20) The value associated with the Property
metadata.

I S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The WLCS PROP_MD TEXT Database Table

Table 11-26 describes the WLCS PROP_MD TEXT table. This table stores property
set definitions for the text property type.

The Primary Key is PROPERTY_META _DATA_I D.

Table 11-26 WLCS_PROP_MD_TEXT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA | D NUVBER(15) A unique identifier for this Property metadata.

VALUE VARCHAR(254) The value associated with the Property
metadata.

I S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

11-24 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS PROP _MD USER DEFINED Database Table

Table 11-27 describes the WLCS_PROP_MD_ USER DEFINED table. This table
stores property set definitions for any user defined property type.

The Primary Key is PROPERTY_META_DATA_I D.

Table 11-27 WLCS_PROP_MD_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META DATA I D NUMBER(15) A unique identifier for this Property metadata.

VALUE BLOB The value associated with the Property
metadata.

| S DEFAULT NUMBER(3) This flag tells us whether or not the VALUE

column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The WLCS PROP_TEXT Database Table

Table 11-28 describes the WLCS PROP_TEXT table. This table stores property
values for the text for the text property type.

The Primary Key is PROPERTY_I D.

Table 11-28 WLCS_PROP_TEXT Table Metadata

Column Name Data Type Description and Recommendations
PROPERTY_I D NUVBER(15) The identifier of the text property.
VALUE VARCHAR(254) The value associated with the text property.

Guide to Building Personalized Applications 11-25

11 The WebLogic Personalization Server Database Schema

The WLCS PROP _USER_DEFINED Database Table

Table 11-29 describes the WLCS PROP_USER DEFINED table. This table stores
property values for any user-defined property type.

The Primary Key is PROPERTY_| D.

Table 11-29 WLCS_PROP_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_| D NUMBER(15) The identifier of the user-defined property.

VALUE BLOB The value associated with the user-defined
property.

The RULESET Database Table

Table 11-30 describes the RULESET table. This table contains all of the rule sets.

The Primary Key is NAME.

Table 11-30 RULESET Table Metadata

Column Name Data Type Description and Recommendations

NAVE VARCHAR(50) PK—the rule name. A unique name to
differentiate it from other rules.

DOCUMENT CLOB The XML document containing the rule set
definition.

11-26 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS RULESET DEFINITION Database Table

Table 11-31 describes the WLCS RULESET DEFINITION table. This table contains

all rule sets.

The Primary Key is NAME.

Table 11-31 WLCS_RULESET_DEFINITION Table Metadata

Column Name Data Type Description and Recommendations
NANMVE VARCHAR(50) The identifier, or name, of the rule set.
DOCUMENT BLOB The XML document containing the rule set

definition.

The WLCS SCHEMA Database Table

Table 11-32 describes the WLCS_SCHEMA table. This table stores property set

definitions.

The Primary Keys are SCHEMA_GROUP_NANE and SCOPE_NANE.

Table 11-32 WLCS_SCHEMA Table Metadata

Column Name Data Type Description and Recommendations

SCHENMA_GROUP_NAME VARCHAR(100) The type of object this schema is used for.

SCOPE_NAME VARCHAR(100) The application name since it is defining names
for the application.

DESCRI PTI ON VARCHAR(254) A description of the schema.

SCHEMA_| D NUVBER(15) A system-generated number used throughout

the application.

Guide to Building Personalized Applications 11-27

11 The WebLogic Personalization Server Database Schema

The WLCS SEQUENCER Database Table

Table 11-33 describes the WLCS SEQUENCER table. The WLCS_SEQUENCER
table is used to maintain all of the sequence identifiers (for example,
property meta data_id sequence, and so on) used in the application.

The Primary Key is SEQUENCE_NAME.

Table 11-33 WLCS_SEQUENCER Table Metadata

Column Name Data Type Description and Recommendations
SEQUENCE _NAME VARCHAR(50) A unique name used to identify the sequence.
CURRENT_VALUE NUMBER(15) The current value of the sequence.

I'S LOCKED NUMBER(1) This flag identifies whether or not the particular

SEQUENCE | Dhas been locked for update.
This column is being used as a generic locking
mechanism that can be used for multiple
database environments.

The WLCS _TODO Database Table

Table 11-34 describes the WLCS TODO table. This table is used by the Example
portal and is not used except for demonstration purposes. It contains information used
in the To Do portlet.

The Primary Key is | TEMand OANER.

Table 11-34 WLCS_TODO Table Metadata

Column Name Data Type Description and Recommendations
| TEM VARCHAR(50) The activity to be accomplished.
OMNER VARCHAR(150) The individual who owns, or is responsible for,

this activity.

DONE NUMBER(5) The status identifying whether this item has
been completed.

11-28 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

Table 11-34 WLCS_TODO Table Metadata (Continued)

Column Name Data Type Description and Recommendations

PRI ORI TY NUVBER(5) The priority of the activity.

The WLCS UIDS Database Table

Table 11-35 describes the WLCS_UIDS table. This table stores sequence information
in a generic database independent format.

The Primary Key is SI D.

Table 11-35 WLCS_UIDS Table Metadata

Column Name Data Type Description and Recommendations

SID VARCHAR(100) The name of the sequence.

NEXT _SEQUENCE NUMBER(15) The next value available for use with the
sequence.

The WLCS UNIFIED PROFILE _TYPE Database Table

Table 11-36 describes the WLCS UNIFIED PROFILE TYPE table. This table
allows registration of classes which extend the ProvidedUser class.

The Primary Key is TYPE_NAME.

Table 11-36 WLCS_UNIFIED PROFILE_TYPE Table Metadata

Column Name Data Type Description and Recommendations
TYPE_NAMVE VARCHAR(100) Any unique name used for easy lookup.
CLASS_NAME VARCHAR(100) The name of the remote interface class.
HOVE VARCHAR(100) The name of the home class.

Guide to Building Personalized Applications 11-29

11 The WebLogic Personalization Server Database Schema

Table 11-36 WLCS_UNIFIED PROFILE_TYPE Table Metadata (Continued)

Column Name Data Type Description and Recommendations

PK VARCHAR(100) The name of the primary key class.

JNDI _NAMVE VARCHAR(100) The name to look up in the JNDI tree.
SUCCESSCR VARCHAR(100) This column allows you to define another class

should the TYPE_NAME not exist. This column
is a foreign key to TYPE_NAME of the
WLCS_UNI FI ED_PROFI LE_TYPE table.

The WLCS USER Database Table

Table 11-37 describes the WLCS_USER table. This table stores all user
login/password combinations.

The Primary Key is | DENTI FI ER.

Table 11-37 WLCS_USER Table Metadata

Column Name Data Type Description and Recommendations

| DENTI FI ER VARCHAR(50) The user login. This column is a foreign key to
the PK_STRI NG column of the
WL.CS_ENTI TY_I Dtable.

PASSWORD VARCHAR(50) The encrypted password.

I'S_EXTERNAL NUMBER(3) This flag determines whether a user came from
an external realm as opposed to the internal
database realm.

PROFI LE_TYPE VARCHAR(100) A foreign key to the TYPE_NAME in the
W.CS_UNI FI ED_PROFI LE_TYPE table.

11-30 Guide to Building Personalized Applications

The Personalization Server Data Dictionary

The WLCS USER_GROUP_CACHE Database Table

Table 11-38 describes the WLCS USER_GROUP_CACHE table. In the event of a
deep group hierarchy, this table will flatten the group hierarchy and enables quick
group membership searches.

Note: The startup process GroupCache is disabled by default. This table will only be
used if enabled.

The Primary Key is comprised of both USER_NAME and GROUP_NANME.

Table 11-38 WLCS_USER_GROUP_CACHE Table Metadata

Column Name Data Type Description and Recommendations

USER_NAVE VARCHAR(100) FK—foreign key to
W.CS_USER. | DENTI FI ER,

GROUP_NANE (VARCHAR(100) FK—foreign key to
W.CS_GROUP. | DENTI FI ER.

The WLCS_USER_GROUP_HIERARCHY Database Table

Table 11-39 describes the WLCS USER_GROUP HIERARCHY table. This table
allows you to store associated users and groups.

The Primary Key is comprised of USER_| D and GROUP_I D.

Table 11-39 WLCS_USER_GROUP_HIERARCHY Table Metadata

Column Name Data Type Description and Recommendations

USER_I D NUMBER(15) The ENTI TY_I Dof a user. This column is a
foreign key to the USER_| D column of the
WLCS_ENTI TY_I Dtable.

GROUP_I D NUVBER(15) The ENTI TY_I D of a group. This column is a
foreign key to the USER _| D column of the
W.CS_ENTI TY_| D table.

Guide to Building Personalized Applications 11-31

11 The WebLogic Personalization Server Database Schema

The WLCS USER PERSONALIZATION Database Table

Table 11-40 WLCS_USER_PERSONALIZATION

Table 11-40 describes the WLCS _USER PERSONALIZATION table.This table
contains personalized portal information for the user.

The Primary Key is comprised of PORTAL_NI D, CATEGORY_NI D, GROUP_NI D,

USER_NI Dand PORTLET_NI D.

Column Name

Data Type

Description and Recommendations

PORTAL_NI D

NUMBER(15)

The portal identifier. This column is a foreign
key to the NI D column of the
WL.CS_PORTAL_DEFI NI Tl ONtable.

CATEGORY_NI D

NUVBER(15)

The category identifier. This column is a
foreign key to the NI D column of the
WLCS_CATEGORI ES table.

GROUP_NI D

NUVBER(15)

The group identifier. This column is a foreign
key to the ENTI TY_I D column of the
WLCS_ENTI TY_I Dtable.

USER_NI D

NUVBER(15)

The user identifier. This column is a foreign key
to the ENTI TY_I D column of the
WL.CS_ENTI TY_| Dtable.

PORTLET_NI D

NUVBER(15)

The portlet identifier. This column is a foreign
key to the NI D column of the W.CS_PORTLET
table.

VI SI BLE

NUMBER(5)

This flag determines whether or not the portlet
is visible. 0 equates to FALSE and 1 equates to
TRUE.

11-32 Guide to Building Personalized Applications

NUMBER(5)

The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (O=column 1,
1=column 2 and so on).

The Personalization Server Data Dictionary

Table 11-40 WLCS_USER_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (O=row 1, 1=row 2 and so on).

M NI M ZED NUVBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when displayed initially. 0 equates to FALSE
and 1 equates to TRUE.

The WLCS UUP_EXAMPLE Database Table

Table 11-41 describes the WLCS UUP_EXAMPLE table. This is an example of how
to use the Unified Profile Types.

The Primary Key is NAME.

Table 11-41 WLCS_UUP_EXAMPLE Table Metadata

Column Name Data Type Description and Recommendations
NAMVE VARCHAR(100) A username.
PO NTS NUMBER(15) A point accumulator based on various actions

taken by the user.

Guide to Building Personalized Applications 11-33

11 The WebLogic Personalization Server Database Schema

The SQL Scripts Used to Create the Database

The database schemas for the WebLogic Personalization Server, WebLogic
Commerce Server and BEA's Campaign Manager for WebLogic are all created by
executing the creat e_al | script for the target database environment.

Cloudscape

For Cloudscape, execute one of the following:
m W _COWERCE HOME\ db\ cl oudscape\ 3. 5. 1\ creat e_al | . bat (Windows)

m W._COWERCE_HOVE/ db/ cl oudscape/ 3. 5. 1/ creat e_al | . sh (UNIX)

Seript Name Description

create_al |l . bat The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_all.sh The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

creat e_canpai gn. sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

creat e_common. sql Creates the database objects which are common to WLPS and
WLCS.

create_mail _ad. sql Creates all the database objects used by the mail messaging
component.

create_w cs. sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_w ps. sql Creates all the database object for WLPS.

dr op_canpai gn. sql Drops all database objects associated with Campaign Manager.

dr op_common. sql Drops the database objects which are common between WLPS
and WLCS.

11-34 Guide to Building Personalized Applications

The SQL Scripts Used to Create the Database

Script Name

Description

drop_mai | _ad. sql

Drops the database objects used by the mail messaging
component.

drop_w cs. sql

Drops the database objects associated with WLCS.

drop_w ps. sql

Drops the database objects associated with WLPS.

i nsert _common. sql

Inserts core data into the common tables between WLPS and
WLCS.

nsert_w cs. sql

Inserts core data into some of the WLCS tables.

nsert_w cs_sanpl e_cat al og. sql

Inserts sample data into the product catalog.

nsert_w cs_sanpl e_cust oner. sql

Inserts sample customer information into WLCS tables.

nsert_w cs_sanpl e_dat a. sql

Inserts sample data into various WLCS tables.

nsert_w ps. sql

Inserts core data into WLPS tables.

nsert_w ps_sanpl e_dat a. sql

Inserts sample data into various WLPS tables.

Oracle

For Oracle, from the command line, move to the following directory:

W._ COMWERCE_HOVE/ db/ oracl e/ 8. 1. 6

After logging into SQL*Plus, simply execute the create_all.sql script(e.g.,

@reate_all).

Script Name

Description

create_canpai gn. sql

Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

creat e_common. Sq|

Creates the database objects which are common to WLPS and
WLCS.

Guide to Building Personalized Applications 11-35

11 The WebLogic Personalization Server Database Schema

Script Name

Description

create_mail _ad. sql

Creates all the database objects used by the mail messaging
component.

create_w cs. sql

Creates all the database objects for WLCS (including Catalog and
Order Management).

create_w ps. sql

Creates all the database object for WLPS.

dr op_canpai gn. sql

Drops all database objects associated with Campaign Manager.

dr op_conmon. sql

Drops the database objects which are common between WLPS
and WLCS.

drop_mai | _ad. sql

Drops the database objects used by the mail messaging
component.

drop_w cs. sql

Drops the database objects associated with WLCS.

drop_w ps. sql

Drops the database objects associated with WLPS.

i nsert _conmon. sql

Inserts core data into the common tables between WLPS and
WLCS.

nsert_w cs. sql

Inserts core data into some of the WLCS tables.

nsert_w cs_sanpl e_cat al og. sql

Inserts sample data into the product catalog.

nsert_w cs_sanpl e_cust oner. sql

Inserts sample customer information into WLCS tables.

nsert_w cs_sanpl e_dat a. sql

Inserts sample data into various WLCS tables.

nsert_w ps. sql

Inserts core data into WLPS tables.

nsert_w ps_sanpl e_dat a. sql

Inserts sample data into various WLPS tables.

nstall _report. sql

This script is used to summarize the database installation.
Information such as the number of tables, indexes, etc., is
displayed.

statistics. sql

This script is used in computing statistics on various database
objects (e.g., tables and indexes) in an Oracle environment.

11-36 Guide to Building Personalized Applications

The SQL Scripts Used to Create the Database

SQL Server

For SQL Server, you must first edit the create_al | . bat file and properly identify
the values for the variables used in identifying the target database environment (for
example, user _i d, passwor d and ser ver). Once the variables have been set
properly, execute creat e_al | . bat from the command line.

Script Name

Description

create_all. bat

The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_canpai gn. sql

Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

creat e_common. Sq|

Creates the database objects which are common to WLPS and
WLCS.

create_mail _ad. sql

Creates all the database objects used by the mail messaging
component.

create_w cs. sql

Creates all the database objects for WLCS (including Catalog and
Order Management).

create_w ps. sql

Creates all the database object for WLPS.

dr op_canpai gn. sql

Drops all database objects associated with Campaign Manager.

dr op_common. sql

Drops the database objects which are common between WLPS
and WLCS.

drop_mai | _ad. sql

Drops the database objects used by the mail messaging
component.

drop_w cs. sql

Drops the database objects associated with WLCS.

drop_w ps. sql

Drops the database objects associated with WLPS.

i nsert _common. sql

Inserts core data into the common tables between WLPS and
WLCS.

insert_w cs. sql

Inserts core data into some of the WLCS tables.

insert_w cs_sanpl e_cat al og. sql

Inserts sample data into the product catalog.

Guide to Building Personalized Applications 11-37

11 The WebLogic Personalization Server Database Schema

Script Name

Description

insert_w cs_sanpl e_cust oner. sql

Inserts sample customer information into WLCS tables.

insert _w cs_sanpl e_dat a. sql

Inserts sample data into various WLCS tables.

i nsert_w ps. sql

Inserts core data into WLPS tables.

i nsert _w ps_sanpl e_dat a. sql

Inserts sample data into various WLPS tables.

readne. t xt

Documentation outlining the appropriate steps necessary for
proper installation of the WLPS, WLCS and Campaign Manager
database schema.

Defined Constraints

For some of the database tables described earlier in this chapter, the SQL files define
constraints. Table 11-42 shows the table name and describes the constraint(s) defined

for it.

Table 11-42 Constraints Defined on Campaign Manager Database Tables

Table Name Constraints as Defined in create-catalog-oracle.sql
PLACEHOLDER A check constraint (CK_M X_GLOBALS) ensures the column

M X_GLOBALS is populated with either a 0 or 1.
AD_BUCKET A referential integrity constraint (FL_PLACEHOLDER_AD) ensures

that a PLACEHOLDER exists.

11-38 Guide to Building Personalized Applications

CHAPTER

12 Personalization Server

JSP Tag Library
Reference

The JSP tags included with WebLogic Personalization Server allow developers to
create personalized applications without having to program using Java.

Note: The es: prefix stands for e-commerce services.
The esp: prefix stands for e-commerce services portal.
The pz: prefix stands for personalization.

This topic includes the following sections:

m Ads
<ad:adTarget>

m Content Management
<cm:getProperty>
<cm:printDoc>
<cm:printProperty>
<cm:select>
<cm:selectByld>

m Flow Manager
<fm:getApplicationURI>
<fm:getCachedAttribute>
<fm:getSessionAttribute>
<fm:setCachedAttribute>
<fm:setSessionAttribute>

Guide to Building Personalized Applications ~ 12-1

12 Personalization Server JSP Tag Library Reference

<fm:removeCachedAttribute>
<fm:removeSessionAttribute>

m Internationalization
<118n:localize>
<il8n:getMessage>

m Personalization Tags
<pz:contentQuery>
<pz:contentSelector>
<pz:div>

m Placeholders
<ph:placeholder>

m Property Sets
<ps:getPropertyNames>
<ps:getPropertySetNames>

m User Management: Profile Management Tags
<um:getProfile>
<um:getProperty>
<um:getProperty AsString>
<um:removeProperty>
<um:setProperty>

m User Management: Group-User Management Tags
<um:addGroupToGroup>
<um:addUserToGroup>
<um:changeGroupName>
<um:createGroup>
<um:createUser>
<um:getChildGroupNames>
<um:getChildGroups>
<um:getGroupNamesForUser>
<um:getParentGroupName>
<um:getTopLevel Groups>
<um:getUsernames>
<um:getUsernamesForGroup>
<um:removeGroup>
<um:removeGroupFromGroup>
<um:removeUser>
<um:removeUserFromGroup>

12-2 Guide to Building Personalized Applications

m User Management: Security Tags
<um:login>
<um:logout>
<um:setPassword>

m Utility Tags: Personalization Utilities
<es:counter>
<es:date>
<es:forEachInArray>
<es:isNull>
<es:monitorSession>
<esmotNull>
<es:simpleReport>
<es:simpleReport>
<es:transposeArray>
<es:uriContent>

m Utility Tags: WebLogic Utilities
<wl:process>
<wl:repeat>
<wl:cache>

Guide to Building Personalized Applications ~ 12-3

12 Personalization Server JSP Tag Library Reference

Ads

The Ad tag queries the content management system and displays ads.

Use the following code to import the utility tag library:
<U@taglib uri="ad.tld" prefix="ad" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ad:adTarget>

The <ad: adTar get > (Table 12-1) uses the Ad Service to send an ad query to the
content management system. Unlike the <ph:placeholder> tag, the query in the
<ad: adTar get > tag does not compete with other queries in an ad placeholder.

Use this tag if you need to make sure that a given ad displays to customers in a specific
location. Depending on how narrowly you construct the query, you might have to
remove or modify this tag when you want to display a different ad.

If the ad query returns more than one ad, the Ad Service uses the adWei ght attribute
of each ad to determine which ad to display.

Table 12-1 <ad:adTarget>

Tag Attribute

Req’d Type Description R/C

query

Yes String Contains a query that the Ad Service uses R
to find content. Use the query syntax
described in the Javadoc API
documentation for
com beasys. comrerce. util . Expr
essi onHel per

12-4 Guide to Building Personalized Applications

Ads

Table 12-1 <ad:adTarget> (Continued)

Tag Attribute Req’d Type

Description R/C

height No int

Specifies the height (in pixels) that the R
placeholder uses when generating the

HTML that the browser requires to display

a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

width No int

Specifies the width (in pixels) that the R
placeholder uses when generating the

HTML that the browser requires to display

a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

Guide to Building Personalized Applications ~ 12-5

12 Personalization Server JSP Tag Library Reference

Content Management

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. The

cm sel ect and cm sel ect byi d tags support content caching for content searches.
Note that none of the tags support or use a body.

To import the Content Management JSP tags, use the following code:
<U@taglib uri="cmtld" prefix="cni %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<cm:getProperty>

The <cm get Property> tag (Table 12-2) retrives the value of the specified content
metadata property into a variable specified by r esul t | d. It does not have a body. If
resul t1d is not specified, the value will be inlined into the page, similar to the

<cm print Propert y> tag. This tag operates on any ConfigurableEntity, not just the
Content object. However, it does not support ConfigurableEntity successors.

Table 12-2 <cm:getProperty>

Tag Attribute Required Type Description R/C
id No String The JSP script variable name which R
contains the Content instance from which
to get the properties.
entity No ConfigurableEntity ~Specifies the R

com.beasys.commerce.foundation.
ConfigurableEntity object from which to
get the property. If this is specified and
non-null,i d isignored. Otherwise, i d will
be used.

12-6 Guide to Building Personalized Applications

Content Management

Table 12-2 <cm:getProperty> (Continued)

Tag Attribute Required Type

Description R/C

name Yes String

The name of the property to print. R

scope No String

The scope name for the property to get. If R
not specified, null is passed in, which is
what Document objects expect.

resultld no String

The name of the JSP script variable which C
will be populated with the value of the
property. If this is not specified, then the
value of the property will be inlined into

the body of the JSP. If this is specified,

then encode, def aul t, maxLengt h,

dat eFor mat , and nunfor mat are

ignored.

resultType no String

The Java type of the property. If thisisnot C
specified, then j ava. | ang. Obj ect is
used.

encode No String

Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and
becomes ").

m Ifurl, then it is encoded to
x-www-form-urlencoded format via
the java.net. URLEncoder.

m If none or unspecified, no encoding is
performed.

default No String

The value to print if the property is not R
found or has a null value. If this is not
specified and the property value is null,
nothing is printed.

maxLength No String, int

The maximum length of the property’s R
value to print. If specified, values longer
than this will be truncated.

Guide to Building Personalized Applications ~ 12-7

12 Personalization Server JSP Tag Library Reference

Table 12-2 <cm:getProperty> (Continued)

Tag Attribute Required Type Description R/C

failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

Tr ue: Throws an exception. You can
handle the exception in the code, let the
page proceed to the normal error page, or
let the application server handle it less
gracefully.

dateFormat No String The java.text.SimpleDateFormat string to R
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
defaultt oSt r i ng method is used.

numFormat No String The java.text.DecimalFormat string touse R
to print the property, if it is a
java.lang.Number. If the property is not a
Number, this is ignored. If this is not set,
the Number's default t oSt r i ng method
is used.

Example

Get the String value of the nane property from the Content object stored at doc and
place it in the cont ent Nane variable:

<U@taglib uri="cmtld" prefix="cni %

<cm get Property resul tld="content Nanme" resultType="String"
i d="content" nane="nanme" />

<es: notNul |l item" <% cont ent Nane%" >

The nanme is not null.

</ es: not Nul | >

12-8 Guide to Building Personalized Applications

Content Management

<cm:printDoc>

The <cm pri nt Doc> tag (Table 12-3) inlines the raw bytes of a Docunent object into
the JSP output stream. This tag does not support a body and only supports Docunent
objects. It does not differentiate between text and binary data.

Table 12-3 <cm:printDoc>

Tag Attribute Required Type Description R/C

id No String The JSP script variable name which contains R
the Content instance from which to get the
properties.

blockSize No String, int The size of the blocks of data to read. The R

default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

start No String, int Specifies the index in the bytes where to start R
reading. Defaults to 0.

end No String, int Specifies the index in the bytes where to stop R
reading. The default is to read to the end of
the bytes.

encode No String Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

m Ifurl, then it is encoded to
x-www-form-urlencoded format via the
java.net. URLEncoder.

m Ifnone or unspecified, no encoding is
performed.

document No Document Specifies the R
com.beasys.commerce.axiom.document.Do
cument to use. If this is specified and
non-null, i d will be ignored. Otherwise, i d
will be used.

Guide to Building Personalized Applications ~ 12-9

12 Personalization Server JSP Tag Library Reference

Table 12-3 <cm:printDoc> (Continued)

Tag Attribute Required Type Description R/C
failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP

processing errors gracefully and prints

nothing if an error occurs.

Tr ue: Throws an exception. You can handle

the exception in the code, let the page

proceed to the normal error page, or let the

application server handle it less gracefully.
baseHref No String The URL of the document’s BASE HREF. R

This can be either an absolute URL or a

relative URL.

Note: IfbaseHref is provided, then the <cm pri nt Doc> tag will output a starting
<BASE HREF> using the value of the baseHr ef parameter. If baseHr ef is
not a fully complete URL, the missing parts will be filled in based upon the
URL of the outermost page. Additionally, the <cm pri nt Doc> will use the
FI omvanager Hel per . get Appl i acti onFl owManager () method to
determine if the tag is operating under a FlowManager instance (a
personalized application, a WebFlowed application, a portal).

Additionally, if baseHr ef is provided, then, after printing the document, the
<cm pri nt Doc> tag will output a <BASE HREF> based upon the URL of the
outermost page.

Example

To get a Document object from an i d in the r equest attributes and inline the
Document's text (which might contain relative links):

<U@taglib uri="cmtld" prefix="cni %

<% String contentld = request.getParameter("contentld"); %

<cm sel ect Byl d contentld="<%contentl|d%" id="doc" />

<cm printDoc id="doc" bl ockSi ze="1000" baseHref="/ShowbDocServl et"
/>

12-10 Guide to Building Personalized Applications

Content Management

<cm:printProperty>

The <cm pri nt Propert y>tag (Table 12-4) inlines the value of the specified content
metadata property as a string. It does not have a body. This tag operates on any

Conf i gur abl eEnti ty, not just the Cont ent object. However, it does not support
Confi gurabl eEnti ty successors.

Table 12-4 <cm:printProperty>

Tag Attribute Required Type Description R/C
id No String The JSP script variable name which contains R
the Content instance from which to get the
properties.
name Yes String The name of the property to print. R
entity ConfigurableEnti Specifies the R
No ty com.beasys.commerce.foundation.

ConfigurableEntity object from which to get
the property. Ifthis is specified and non-null,
i d is ignored. Otherwise, i d will be used.

scope No String The scope name for the property to get. [fnot R
specified, null is passed in, which is what
Document objects expect.

encode No String Either html, url, or none: R

m If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

m Ifurl, then it is encoded to
x-www-form-urlencoded format via the

java.net. URLEncoder.
m If none or unspecified, no encoding is
performed.
default No String The value to print if the property is not found R

or has a null value. If this is not specified and
the property value is null, nothing is printed.

Guide to Building Personalized Applications 12-11

12 Personalization Server JSP Tag Library Reference

Table 12-4 <cm:printProperty> (Continued)

Tag Attribute Required Type Description R/C

maxLength No String, int The maximum length of the property’s value R
to print. If specified, values longer than this
will be truncated.

failOnError No String, Boolean This attribute can have one of two values: R

Fal se (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

Tr ue: Throws an exception. You can handle
the exception in the code, let the page
proceed to the normal error page, or let the
application server handle it less gracefully.

dateFormat No String The java.text.SimpleDateFormat string to R
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
defaultt oSt r i ng method is used.

numFormat No String The java.text.DecimalFormat stringtouseto R
print the property, if it is a java.lang. Number.
If the property is not a Number, this is
ignored. If this is not set, the Number's
defaultt oSt r i ng method is used.

Example

To have a text input field’s default value be the first 75 characters of the subject of a
Cont ent object stored at doc:

<U@taglib uri="cmtld" prefix="cni %

<form action="j avascri pt:voi d(0)">
Subj ect: <input type="text” size="75" nanme="subject”
val ue="<cm printProperty id="doc” name="Subject” nmaxLength="75"
encode="htm "/>" >

</ fornm

12-12 Guide to Building Personalized Applications

Content Management

<cm:select>

This tag uses only the search expression query syntax to select content. It does not
support or use a body. After this tag has returned the <es: f or Eachl nAr r ay> tag (see
“<es:forEachInArray>" on page 12-76), zero can be used to iterate over the array of
Cont ent objects. This tag (Table 12-5) supports generic Cont ent via a

Cont ent Manager interface.

Table 12-5 <cm:select>

Tag Attribute Required Type

Description R/C

contentHome No String

The JNDI name of the ContentManager EJB R
Home to use to find content. The object in

INDI at this name must implement a

cr eat e method which returns an object

which implements the ContentManager
interface. If not specified, the system

searches the default content home.

max No String, long

Limits the maximum number of content R
items returned. If not present, or zero or less,
it returns all of the content items found.

sortBy No String

A list of document attributes by whichtosort R
the content. The syntax follows the SQL

order by clause. The sort specification is

limited to a list of the metadata attribute

names and the keywords ASC and DESC.

Examples:
sortBy="creationDate”
sortBy="creationDate ASC, title DESC”

Guide to Building Personalized Applications 12-13

12 Personalization Server JSP Tag Library Reference

Table 12-5 <cm:select> (Continued)

Tag Attribute

Required

Type

Description

R/C

failOnError

No

String, Boolean

This attribute can have one of two values:

Fal se (default value): Handles JSP
processing errors gracefully and returns an
empty array if an error occurs.

Tr ue: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

id

Yes

String

The JSP script variable name that will
contain the array of Content objects after this
tag finishes.

query

String

A content query string used to search for
content.

Example: query="mimetype contains 'text’
&& author="Proulx""

expr

Expression

The
com.beasys.commerce.foundation.expressio
n.Expression object to use to search for
content. If this is null or not specified, then
quer y must be specified. Otherwise,

query is ignored.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi meout settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key. If not specified, the i d attribute of the
tag is used.

12-14 Guide to Building Personalized Applications

Content Management

Table 12-5 <cm:select> (Continued)

Tag Attribute Required Type Description R/C

cacheTimeout No String, long The time, in milliseconds, for which the R
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default = -1.

cacheScope No String Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:
m application

m session (the default)
m page
m request
readOnly No String, Boolean This attribute can have one of two values: R

Ift r ue, the ContentManager (specified via
the Cont ent Hone attribute) will try to
return only lightweight (non-EJB) objects
where possible.

Iff al se (not specified), the default value is
used.

Default=

Cont ent Hel per. DEF_CONTENT_READ
ONLY (which is loaded from the

commer ce. cont ent . def aul t ReadOn
|'y property in the
weblogiccommerce.properties file).

Example

To find the first five text Cont ent objects that are marked as news items for the
evening using the ContentCache, and print out the titles in a list:

<U@taglib uri="cmtld" prefix="cm %

Guide to Building Personalized Applications 12-15

12 Personalization Server JSP Tag Library Reference

<cm sel ect
cont ent Hone="<%Cont ent Hel per. DEF_CONTENT_MANAGER_HOVE%>" max="5"
useCache="true" cacheTi neout ="300000" cachel d="Eveni ng News"
sortBy="creati onDate ASC, title ASC' query="
type = ‘News’ && tineOfDay = ‘Evening' && minetype |like
‘text/* " id="newsList"/>

<es:for Eachl nArray array="<%newsLi st %" id="newsltent
t ype="com beasys. commer ce. axi om cont ent . Cont ent " >
<cmprintProperty id="newsltent nane="Title"
encode="htm" />
</ es: forEachl nArray>

<cm:selectByld>

The <cm sel ect Byl d> tag (Table 12-6) retrieves content using the Content’ s
unique identifier. This tag does not have a body. This tag is basically a wrapper around
the sel ect tag. It works against any Cont ent object which has a string-capable
primary key.

Table 12-6 <cm:selectByld>

Tag Attribute Required Type Description R/C

contentHome No String The INDI name of the ContentManager EJB R
Home to use to find content. The object in
JNDI at this name must implement a
cr eat e method which returns an object that
implements the ContentManager interface. If
not specified, the system searches the default
content home.

contentld Yes String The string identifier of the piece of content. R

12-16 Guide to Building Personalized Applications

Content Management

Table 12-6 <cm:selectByld> (Continued)

Tag Attribute

Required

Type

Description

R/C

failOnError

No

String, Boolean

This attribute can have one of two values:

Fal se (default value): Handles JSP
processing errors gracefully and returns null
if an error occurs.

Tr ue: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

String

The JSP script variable name that contains
the Content object after this tag finishes. If
the Content object with the specified
identifier does not exist, it contains null.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi meout settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key.

If not specified, the i d attribute of the tag is
used.

cacheTimeout

String, long

Guide to Building Personalized Applications

The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default = -1.

12-17

12 Personalization Server JSP Tag Library Reference

Table 12-6 <cm:selectByld> (Continued)

Tag Attribute Required Type Description R/C

cacheScope No String Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:
m application
m session (the default)

m page
m request
readOnly No String, Boolean This attribute can have one of two values: R

If't r ue, the ContentManager (specified via
the Cont ent Hone attribute) will try to
return only lightweight (non-EJB) objects
where possible.

Iff al se (not specified), the default value is
used.

Default=

Cont ent Hel per. DEF_CONTENT_READ
ONLY (which is loaded from the

commer ce. cont ent . def aul t ReadOn
|y property in the
weblogiccommerce.properties file).

Example

To fetch the Docunent (using ContentCaching) with an identifier of 1234 and inline
its content:

<U@taglib uri="cmtld" prefix="cnl %

<cm sel ect Byl d

cont ent Hone="<%=Cont ent Hel per. DEF_CONTENT_MANAGER_HOVEY%>"
contentld="contentportlet/sportsl. htnt

i d="doc" useCache="true" cacheTi neout ="300000" cachel d="1234" />
<cm printDoc id="doc" />

12-18 Guide to Building Personalized Applications

Flow Manager

Flow Manager

Thr Flow Manager tags are used for accessing the session, session cache, or the global
cache. For scalability reasons, it is best to limit what gets placed into the session. For
large sessions, session replication across servers is very costly. This tag library will
give the user the ability to write to data that can be scoped to the application or across
applications.

<fm:getApplicationURI>

The <f m get Appl i cati onURI > tag (Table 12-7) gets the application
from the URL: http://localhost:7001/portals/application/exampleportal.

When i ncl udeCont ext ="t rue", the tag returns / cont ext / pat h/ pat hi nf o, for
example: / port al s/ appl i cati on/ exanpl eport al . This is required when a client
browser needs to address the Web application context, for example, when using a
form.

When i ncl udeCont ext ="f al se", the tag returns/ pat h/ pat hi nfo, for example
[appl i cati on/ exanpl eport al . This is required when using Web applications and
server side processing.

Table 12-7 <fm:getApplicationURI>

Tag Attribute

Required Type Description R/C

id

Yes String The application as referenced by the Flow C
Manager. It can either get the value with the
context or without. When used within a Web
application, you must get the value without
the context when using <j sp: f or war d>.

includeContext

No boolean Determines whether or not to include the R
servlet context with the application name.
Defaults to t r ue.

Guide to Building Personalized Applications 12-19

12 Personalization Server JSP Tag Library Reference

Example

<fm:getCachedAttribute>

<U@taglib uri="fmtld" prefix="fni %
<U@taglib uri="weblogic.tld" prefix="w" %

<w : process nane="fornSubmt">
id="uri" includeContext="fal se"/>

<f m get Appl i cati onURI
<jsp:forward page="<%uri %"/>
</w : process>

The <f m get CachedAt t ri but e> tag (Table 12-8) gets an attribute out of the
session/global cache. This value can be scoped to the application or not.

Table 12-8 <fm:getCachedAttribute>

Tag Attribute Required Type Description R/C
id Yes Object The variable to store the retrieved value. C
name Yes String The name of the name/value pair. R
scoped No boolean The name/value pair scoped to the R
application.
Defaults to t r ue.
global No boolean The value scoped to the session or the global R
scope.
Defaults to f al se.
Example

<U@taglib uri="fmtld" prefix="fnl %

portal

nul | ; %
<f m get CachedAttribute id="tportal"

12-20 Guide to Building Personalized Applications

Flow Manager

name="<%-Por t al TagConst ant s. CACHED_PORTAL%>"
gl obal ="true" />
<es:isNull item="<%tportal %" >
<esp: portal Manager action="get" id="nyPortal"
port al Name="<%port al Nane%"/ >
<% portal =nyPortal ; %
<f m set CachedAttri bute
nanme="<%Por t al TagConst ant s. CACHED_PORTAL%"
val ue="<%nyPortal %" gl obal ="true" />
</es:isNull>
<Y%portal =(Portal)tportal; %

<fm:getSessionAttribute>

The <f m get Sessi onAt t ri but e>tag (Table 12-9) gets an attribute out of the
HttpSession. The attribute may be scoped to the application (by default).

Table 12-9 <fm:getSessionAttribute>

Tag Attribute Required Type Description R/C

id Yes Object The variable to store the retrieved value. C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the R
application.

Defaults tot r ue.

Example

<v@taglib uri="fmtld" prefix="fm' %

<f m get Sessi onAttribute id="usernanme" name="portal.usernane"
scoped="true" />

The name is: <%user name%

Guide to Building Personalized Applications 12-21

12 Personalization Server JSP Tag Library Reference

<fm:removeCachedAttribute>

The <fm renoveCachedAttri but e>tag (Table 12-10) removes an attribute from
the session/global cache. This value can be scoped to the application or not.

Table 12-10 <fm:removeCachedAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the R
application.

Defaults to t r ue.

=

global No boolean The value scoped to the session or the global
scope.

Defaults to f al se.

Example

<g@taglib uri="fmtld" prefix="fni %

<f m renmoveCachedAttri bute
name="<%Por t al TagConst ant s. CACHED_PORTAL%" gl obal ="true" />

<fm:removeSessionAttribute>

The <f m r enoveSessi onAt t ri but e> tag (Table 12-11) removes an attribute from
the HttpSession. The attribute may be scoped to the application (by default).

Table 12-11 <fm:removeSessionAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

12-22 Guide to Building Personalized Applications

Flow Manager

Table 12-11 <fm:removeSessionAttribute> (Continued)

Tag Attribute Required Type Description R/C
scoped No boolean The name/value pair scoped to the R
application.

Defaults to t r ue.

Example

<U@taglib uri="fmtld" prefix="fm %

<fmrenoveSessi onAttribute name="portal .usernane" scoped="true" />

<fm:setCachedAttribute>

The <f m set CachedAt tri but e> tag (Table 12-12) sets an attribute in the
session/global cache. This value can be scoped to the application or not.

Table 12-12 <fm:setCachedAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the R
application.

Defaults to t r ue.

global No boolean The value scoped to the session or the global R
scope.

Defaults to f al se.

value Yes Object The value to set. R

Guide to Building Personalized Applications 12-23

12 Personalization Server JSP Tag Library Reference

Example

<g@taglib uri="fmtld" prefix="fnl' %

<%Portal portal = null; %
<f m get CachedAttribute id="tportal"

name="<%-Por t al TagConst ant s. CACHED PORTAL%"
gl obal ="true" />
<es:isNull iten¥"<%tportal %" >
<esp: portal Manager action="get" id="nyPortal"
port al Name="<%port al Nane%"/ >
<% portal =myPort al ; %
<fm set CachedAttribute

name="<%-Por t al TagConst ant s. CACHED _PORTAL%"
val ue="<%nyPortal %" gl obal ="true" />
</es:isNull>
<Y%portal =(Portal)tportal; %

<fm:setSessionAttribute>

The <f m set Sessi onAt t ri but e> tag (Table 12-13) sets an attribute in the
HttpSession. The attribute may be scoped to the application (by default).

Table 12-13 <fm:setSessionAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the R
application.

Defaults to t r ue.

value Yes Object The value to set. R

12-24 Guide to Building Personalized Applications

Internationalization

Example

<U@taglib uri="fmtld" prefix="fm %

<% String val = “joe devel oper”; %
<f m set Sessi onAttri bute nane="portal.usernane”
val ue="<% val %" scoped=“true” />

Internationalization

These tags are used in the localization of JSP pages that have an internationalization
requirement.

Use the following code to import the utility tag library:
<U@taglib uri="i18n.tld" prefix="i1l8n" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<i18n:localize>

This tag allows you to define the language, country, variant, and base bundle name to
be used throughout a page when accessing resource bundles via the
<i 18n: get message> tag.

This tag (Table 12-14) also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded.

Note: When an HTML page is included in a larger page, only the larger page can use
the <i 18n: | ocal i ze>tag. This is because the <i 18n: | ocal i ze> tag sets the
encoding for the page, and the encoding must be set in the parent (including)

Guide to Building Personalized Applications 12-25

12 Personalization Server JSP Tag Library Reference

page before any bytes are written to the response’s output stream. The parent
page must set an encoding that is sufficient for all the content on that page as
well as any included pages.

Note: Do not use the <i 18n: | ocal i ze> tag in conjunction with the <%@ page
cont ent Type="<sonet hi ng>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong cont ent Type declarations.

Table 12-14 <il8n:localize>

Tag Attribute Required Type Description R/C

bundleName No String The base name of the MessageBundleisused R
to retrieve localized text for a JSP page.

language No String A String—two character ISO Language R
or Code—denoting the user's preferred
String [] language, or a String[] containing a list of

preferred language codes for a user, with
stronger preferences indexed lower (earlier)
in the array.

country No String The two character ISO Country Code fora R
country. For example, this code would be
used to look for a MessageBundle containing
text localized to English speaking users in
the U.S. as opposed to English speaking
users in the U.K.

variant No String A String representing a locale's variant. The R
variant is used when localization demands a
more specific locale than can be denoted by
having just language and a country.

locale No java.util.Locale Instead of specifying language, country,and R
variant as Strings, aj ava. util . Local e
object can be provided. If provided, the
values in the Locale's language, country, and
variant fields will negate any of the other
language, country, and variant values passed
to the tag as Strings.

12-26 Guide to Building Personalized Applications

Internationalization

Table 12-14 <il8n:localize> (Continued)

Tag Attribute Required Type Description R/C

charset No String The name of the character encoding set to R
use for this page. Defaults to "UTF-8" if no
encoding can be determined for the chosen
language, otherwise an encoding approprite
for the chosen language is used.

contentType No String The type of content contained in the page, R
defaults to "text/html".

Example

<U@taglib uri="i18n.tld" prefix="i1l8n" %

<%

/1 Array that defines two | anguages preferences - English and
/1 Spanish in that order of preference.

String[] |anguages = new String[] { "en", "es" };

/1 Definition of a single |anguage preference
String | anguage = "
%

en";

<i 18n:1ocal i ze | anguage=" <%l anguage%"
bundl eName="i 18nExanpl eResour ceBundl e"/ >
<ht i >

<body>

<i 18n: get Message nessageNane="greeting"/>
</ body>

</htm >

Guide to Building Personalized Applications = 12-27

12 Personalization Server JSP Tag Library Reference

<i18n:getMessage>

This tag (Table 12-15) is used in conjunction with the <i 18: | ocal i ze>tag to retrieve
localized static text or messages from a JspMessageBundle.

Table 12-15 <il8n:getMessage>

Tag Attribute Required Type

Description

R/C

id No String

Holds the value of the label (or message) in
the JSP page.

messageName Yes String

The key for the message bundle.

messageArgs No Object []

The arguments to the message bundle. If no
args are provided, it is assumed that static
text (not a message) is to be returned.

For example, {"Wednesday", "78"}; might
be used to construct the message "Today is
Wednesday, and the temperature is 78
degrees Fahrenheit."

bundleName No String

If properly initialized in the

<i 18n: | ocal i ze> tag, there is no need to
pass this tag attribute unless it is desired to
use a different bundle for a particular tag
invocation

language No String

If properly initialized in the

<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different language for a particular tag

invocation.

country No String

If properly initialized in the

<i 18n: 1 ocal i ze> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different country for a particular tag
invocation.

12-28 Guide to Building Personalized Applications

Internationalization

Table 12-15 <il8n:getMessage> (Continued)

Tag Attribute Required Type Description R/C

variant No String If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different variant for a particular tag
invocation.

locale No java.util.Locale If properly initialized in the R
<i 18n: 1 ocal i ze> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different locale (language, country, and
variant) for a particular tag invocation.

Example

JSP File

This code produces this output:
Welcome To This Page! 14 out of 100 files have been saved.

<U@taglib uri="i18n.tld" prefix="i1l8n" %

<%

/1 Definition of a single |anguage preference
String | anguage = "en";

/1 Creation of nessage argunents
Ohj ect[] args = new Cbject[]

new | nteger (14),
new | nt eger (100)
}s
%

<i 18n:1ocal i ze | anguage="<%Il anguage%"
bundl eName="i 18nExanpl eResour ceBundl e"/ >
<htm >

<body>

<i 18n: get Message nmessageNane="greeting"/>

Guide to Building Personalized Applications 12-29

12 Personalization Server JSP Tag Library Reference

<i 18n: get Message nmessageNane="nessage" nessageAr gs="<%args%"/>
</ body>
</htm >

Properies file

Here are the entries in the properties file named

“i 18nExanpl eResour ceBundl e. properties”:
greeting=Welcome To This Page!
message={0} out of {1} files have been saved.

12-30 Guide to Building Personalized Applications

Personalization Tags

Personalization Tags

The <pz:div> tag, <pz:contentSelector> tag, and <pz:contentQuery> tag use the
Advisor to classify the user, select content, and retreive content, respectively.

To import the Personalization JSP tags, use the following code:
<U@taglib uri="pz.tld" prefix="pz" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<pz.contentQuery>

The <pz: cont ent Quer y> tag (Table 12-16) performs a content attribute search for
content in a content manager. If the useCache attribute is set to t r ue, the results of a
content management query will be cached. The tag only has a begin tag and does not
have a body or end tag. It returns an array of Cont ent objects as determined by the
Advisor.

Personalization content tags required for JSP developers to access the Cont ent object
returned might include:

An object array iterator tag. This tag provides a way to iterate over the Cont ent objects
in the array. Use the <es: f or Eachl nAr r ay> tag to iterate over an array of Obj ect s.
(See “<es:forEachInArray>" on page 12-76 for more information.)

m Content access tags. Content tags access metadata attributes in the content,
retrieve content, and put it into the HTTP response output stream. (See the
section “Content Management” on page 12-6 for more information.)

Guide to Building Personalized Applications 12-31

12 Personalization Server JSP Tag Library Reference

Table 12-16 <pz:contentQuery>

Tag Attribute

Required

Type

Description

R/C

max

No

String, long

Limits the maximum number of content
items returned. If not present, it returns all of
the content items found.

sortBy

String

A list of document attributes by which to sort
the content. The syntax follows the SQL
order by clause. The sort specification is
limited to a list of the metadata attribute
names and the keywords ASC and DESC.

Examples:
sortBy="creationDate”
sortBy="creationDate ASC, title DESC”

query

Yes

String

A content query string used to search for
content.

Example:
query= “mimetype contains ‘text’ &&
author=‘Proulx’”

contentHome

Yes

String

The JNDI name of the ContentManager EJB
Home. The object in the JNDI at this name
must implement a cr eat e method which
returns an object which implements the
ContentManager interface.

For more information, see the section

“Specify a Value for contentHome™ on
page 12-37.

id

Yes

String

The array variable name that contains the
content objects found. If it finds no objects,
it returns an empty array (not null) of
Content objects.

12-32 Guide to Building Personalized Applications

Personalization Tags

Table 12-16 <pz:contentQuery> (Continued)

Tag Attribute Required Type

Description R/C

useCache No String, Boolean

Determines whether Content is cached. R
This attribute can have one of two values:

Fal se (default value): ContentCache is not
used. If f al se (not specified), the

cachel d, cacheScope and

cacheTi meout settings are ignored.

Tr ue: ContentCache is used.

cacheld No String

The identifier name used to cache the R
Content. Internally, the cache is

implemented as a Map; this will become the

key. If not specified, the i d attribute of the

tag is used.

cacheTimeout No String, long

The time, in milliseconds, for which the R
cached Content is valid. If more than this
amount of time has passed since the Content

was cached, the cached Content will be

cleared, retrieved, and placed back into the
cache.

Use -1 for no-timeout (always use the cached
Content). Default =-1.

cacheScope No String

Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:

m application

m session (the default)
m page

m request

Example

<v@taglib uri
<v@taglib uri

"es.tld" prefix="es" %
"cmtld" prefix="cnl %

<U@taglib uri="pz.tld" prefix="pz" %
<% page i nput ="com beasys. conmer ce. cont ent. Cont ent Hel per" %

Guide to Building Personalized Applications

12-33

12 Personalization Server JSP Tag Library Reference

<pz:content Query i d="docs"
cont ent Hone=" <%Cont ent Hel per. DEF_DOCUMENT_MANAGER HOVEY"
guery="aut hor = ' Hem ngway'" />

<es:forEachl nArray array="<%docs%" id="aDoc"
t ype="com beasys. conmer ce. axi om cont ent . Content " >

The docunent title is: <cmprintProperty id="aDoc"
name="Title" encode="htm" />

</ es: forEachl nArray>

</ ul >

<pz:contentSelector>

The <pz: cont ent Sel ect or > tag (Table 12-17) allows arbitrary personalized content
to be recommended based on a content selector rule.

A content selector rule first determines whether a user fits the specified classification
(for example, high income), and then selects content based on another qualifier (such
as productType = sports cars.) It then evaluates a set of conditions that you define in
the E-Business Control Center.

Note:

Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts to develop their own segmentation. Because the
Business Analysts are not exposed to the concept of rules, you will see content
selector rules called simply “content selectors” and classifer rules referred to
as “customer segmentation.”

To cache the results of the content selector rule, set the useCache attribute to t r ue. If
the cache has not timed out, subsequent calls to the contentSelector tag will return the
cached results without re-evaluating the rule and content query.

The <pz: cont ent Sel ect or > tag only has a begin tag and does not have a body or
end tag. It returns an array of Cont ent objects as determined by the Advisor.

12-34 Guide to Building Personalized Applications

Personalization Tags

Tags possibly required for JSP developers to access the Cont ent objects returned

might include:

®m An object array iterator tag. This tag provides a way to iterate over the Cont ent
objects in the array. Use the <es: f or Eachl nAr r ay> tag to iterate over an array

of vj ect s.

m Content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See the
section “Content Management” on page 12-6 for more information.)

Table 12-17 <pz:contentSelector>

Tag Attribute Req’d Type

Description R/C

rule Yes String

The name of the content selector in the R
content selector definitions created in the
E-Business Control Center.

contentHome Yes String

The JNDI name of the ContentManager R
EJB Home. The object in the JNDI at this
name must implement a cr eat € method
which returns an object which implements

the ContentManager interface.

For more information, see the section
“Specity a Value for contentHome” on

page 12-37.

max No String, long

Limits the maximum number of content R
items returned. If not present, or if equal to

-1L, it returns all of the content items

found.

sortBy No String

A list of document attributes by whichto R
sort the content. The syntax follows the

SQL order by clause. The sort

specification is limited to a list of the
metadata attribute names and the

keywords ASC and DESC.

Examples:

sortBy="creationDate”
sortBy="creationDate ASC, title DESC”

Guide to Building Personalized Applications 12-35

12 Personalization Server JSP Tag Library Reference

Table 12-17 <pz:contentSelector> (Continued)

Tag Attribute

Req’d

Type

Description

R/C

query

No

String

A content query string used to search for
content. This query overrides any query
that a Business Analyst creates in the
E-Business Control Center.

]

Example: query="mimetype contains 'text'
&& author="Salinger"

id

Yes

String

The array variable name that contains the
content objects found. Ifit finds no objects,
it returns an empty array (not null) of
Content objects.

useCache

String, Boolean

Determines whether Content is cached.
This attribute can have one of two values:

Fal se (default value): ContentCache is
not used. If f al se (not specified), the
cacheld, cacheScope and cacheTimeout
settings are ignored.

Tr ue: ContentCache is used.

cacheld

String

The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key. If not specified, the i d attribute of
the tag is used.

cacheTimeout

String, long

The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.

Use -1 for no-timeout (always use the
cached Content). Default = -1.

12-36 Guide to Building Personalized Applications

Personalization Tags

Table 12-17 <pz:contentSelector> (Continued)

Tag Attribute

Req’d

Type

Description R/C

cacheScope

No

String

Specifies the lifecycle scope of the content R
cache. Similar to <j sp: useBean>.

Possible values:

appl i cati on. Any JSP page in the
web application that any customer
requests can access the cache.

sessi on (the default). Any JSP in the
web application that the current
customer requests can access the
cache.

page. Only the current JSP that any
customer requests can access the
cache.

request . Only the current user
request can access the cache. If a
customer re-requests the page, the
content selector re-runs the query and
recreates the cache.

Specify a Value for contentHome

/>

<pz: cont ent Sel ect or
cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_NMANAGER _HOME %"

The content selector tag must use the cont ent Horre attribute to specify the JNDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the Cont ent Hel per class, you must first use the
following tag to import the class into the JSP:

<%@ page i nport="com beasys. commer ce. cont ent. Cont ent Hel per" %

Then, when you use the content selector tag, specify the cont ent Horre as follows:

Guide to Building Personalized Applications 12-37

12 Personalization Server JSP Tag Library Reference

Example

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

<U@taglib uri="es.tld" prefix="es" %
<U@taglib uri="cmtld" prefix="cni %
<U@taglib uri="pz.tld" prefix="pz" %
<%@ page i nput ="com beasys. comrer ce. cont ent. Cont ent Hel per" %

<pz: content Sel ector rul e="Prem er Cust oner Spot | i ght"
cont ent Hone="<%Cont ent Hel per. DEF_DOCUMENT_MANAGER HOME %"
i d="docs" />

<es:forEachl nArray array="<%docs%" id="aDoc"
t ype="com beasys. conmer ce. axi om cont ent . Content " >
The docunment title is: <cmprintproperty id="aDoc"
name="Titl e" encode="htm" />
</ es: forEachl nArray>
</ ul >

Note: The sort By attribute, when used in conjunction with the max attribute, works
differently for explicit (system-defined) and implicit (user-defined) attributes.
If you sort on explicit attributes (i denti fi er, mi meType, size,
version, author, creationDate, nodifiedBy, nodifiedDate,
| ockedBy, description, or comments) the sort is done on the database;
therefore if you combine max="10" and sor t By, the system will perform the
sort and then get the first 10 items. If you sort on implicit attributes, the sort is
done after the max have been selected.

For more information about using this tag, see the section “Using Content-Selector
Tags and Associated JSP Tags” in Chapter 4, “Working with Content Selectors,” in
this guide.

12-38 Guide to Building Personalized Applications

Personalization Tags

<pz.div>

The <pz: di v>tag (Table 12-18) allows a piece of content to be conditionally included
as a result of a classifier rule being executed by a rules advislet. If the user’s profile
matches the classification specified in the E-Business Control Center, then the
conditional content is included. This tag has a begin tag, a body, and an end tag. The
tag returns a list of G assi fi cat i on objects that the user belongs to.

Table 12-18 <pz:div>

Tag Attribute Required Type Description R/C
rule Yes String The name of the classifier rule in the R
customer segment definitions created in the
E-Business Control Center.
id No String A collection that contains the Classification C
objects that apply to the user.
Example

<U@taglib uri="pz.tld" prefix="pz" %

<pz:div id="classifications” rule="Prem erCustoner">

<%
//if the user is classified as a Premier Custoner, a list with one
entry should be returned//
java.util.lterator iterator=classifications.iterator();
while (iterator.hasNext())
{
Classification classification=(Cassification) iterator.next();
out.println (classification.getNane());

%

<p>Pl ease check out our new Prem er Custoner bonus program <p>
</ pz:div>

Guide to Building Personalized Applications 12-39

12 Personalization Server JSP Tag Library Reference

Placeholders

The placeholder tag is a named location on a JSP. You use the E-Business Control
Center to define the behavior of a placeholder.

Use the following code to import the utility tag library:
<U@taglib uri="ph.tld" prefix="ph" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ph:placeholder>

The <ph: pl acehol der > tag (Table 12-19) implements a placeholder, which
describes the behavior for a location on a JSP page.

You use the E-Business Control Center to define a placeholder. For more information,
see “Displaying Ads” in Using the E-Business Control Center.

Multiple placeholder tags can refer to the same placeholder. Each instance of a
placeholder tag invokes its placeholder definition separately. If the placeholder
definition specifies multiple queries, each placeholder tag instance can display
different ads, even though each instance shares the same definition.

When WebLogic Personalization Server receives a request for a JSP that contains an
ad placeholder, the placeholder tag contacts the Ad Service, a session EJB that invokes
business logic to determine which ad to display. For more information, see the section
“How Placeholders Select and Display Ads” in Chapter 4, “Working with Content
Selectors,” in this guide.

For information on a related tag, see <ad: adTar get >.

12-40 Guide to Building Personalized Applications

Placeholders

Table 12-19 <ph:placeholder>

Tag Attribute Req’d

Type

Description R/C

name Yes

String

A string that refers to a placeholder R
definition.

height No

int

Specifies the height (in pixels) that the R
placeholder uses when generating the

HTML that the browser requires to display

a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

width No

int

Specifies the width (in pixels) that the R
placeholder uses when generating the

HTML that the browser requires to display

a document.

The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.

If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

Guide to Building Personalized Applications 12-41

12 Personalization Server JSP Tag Library Reference

Property Sets

The Property Set tags allow access to the list of available properties and property sets.
Manipulation of property sets can be done either programatically or through the

administration tools.

Use the following code to import the utility tag library:
<U@taglib uri="ps.tld" prefix="ps" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ps:getPropertyNames>

The <ps: get Propert yNanes> tag (Table 12-20) is used to get a list of property

names given a property set.

Table 12-20 <ps:getPropertyNames>

Tag Attribute Required Type Description R/C

propertySet Yes String The name of the property set to add the new R
search.

schemaGroupName Yes String Type of property set to search (as definedin R
com.beasys.commerce.foundation.property.
SchemaManagerConstants).

id Yes String The i d of the variable to hold the list of C

12-42 Guide to Building Personalized Applications

property names, as a String array.

Property Sets

Table 12-20 <ps:getPropertyNames> (Continued)

Tag Attribute Required Type Description R/C

result no String The identifier of an Integer variable that will C
be created and initialized with the result of
the operation.

Possible values:

Query is successful:

Pr opert ySet TagConst ant s. PROPER
TY_SEARCH K

Problem getting the list of property names:

Pr opert ySet TagConst ant s. PROPER
TY_SEARCH_FAI LED

Property set named by pr oper t ySet Nanme
and schemaG oupNane could not be
found:

Pr opert ySet TagConst ant s. | NVALI
D_PROPERTY_SET

Example

<U@taglib uri="ps.tld" prefix="ps" %

<ps: get PropertyNanmes propertySet ="<%yPropertySet %"
schemaG oupNane=" <%sSchermaManager Const ant s. USER_TYPEY%"
i d="propertyNames" result="nyResult"/>

<ps:getPropertySetNames>

The <ps: get Pr oper t ySet Nanes> tag (Table 12-21) is used to get a list of property
sets given a property set type.

Guide to Building Personalized Applications 12-43

12 Personalization Server JSP Tag Library Reference

Table 12-21 <ps:getPropertySetNames>

Tag Attribute Required Type Description R/C
schemaGroupName Yes String The type of the property set to search (as R
defined in

com.beasys.commerce.foundation.property.
SchemaManagerConstants).

id Yes String The identifier of the variable to hold the list C
of property names, as a String array.

result No String The identifier of an Integer variable that will C
be created and initialized with the result of
the operation.

Possible values:

Query is successful:

Propert ySet TagConst ant s. PROPER
TY_SET_SEARCH K

Problem getting the list of property names:

Propert ySet TagConst ant s. PROPER
TY_SET_SEARCH_FAI LED

Property set named by pr oper t ySet Nanme
and schemaG oupNane could not be
found:

PropertySet TagConst ant's. | NVALI
D_PROPERTY_SET

User Management:
Profile Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

12-44 Guide to Building Personalized Applications

User Management: Profile Management Tags

To import the User Management JSP tags, use the following code:
<U@taglib uri="umtld" prefix="um %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i nport ="com beasys. commer ce. user. j sp. t ags. User Manager TagConst ant s"
%

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:getProfile>

The <um get Prof i | e> tag (Table 12-22) retrieves the profile corresponding to the
provided profile key and profile type. The tag has no enclosed body. The retrieved
profile can be treated simply as a

com beasys. commrer ce. f oundat i on. Confi gur abl eEntity, or can be cast to the
particular implementation of Conf i gur abl eEnt i t y that it is. Along with the profile
key and profile, an explicit successor key and successor type can be specified, as
specified by the pr of i | eType attribute. This successor will then be used, along with
the retrieved profile, in subsequent invocations of the <um get Pr oper t y> tag to
ensure property inheritance from the successor. If no successor is retrieved, standard
Conf i gur abl eEnt ity successor search patterns will apply to retrieved properties.

Table 12-22 <um:getProfile>

Tag Attribute Required Type Description R/C
profileKey Yes String A unique identifier that can be used to R
retrieve the profile which is sought.
Example: “<%=username%>"
successorKey No String A unique identifier that can be used to R

retrieve the profile successor.

Example: “<%=defaultGroup%>"

Guide to Building Personalized Applications 12-45

12 Personalization Server JSP Tag Library Reference

Table 12-22 <um:getProfile> (Continued)

Tag Attribute Required

Type

Description

R/C

successorType No

String

The profile successor type to be retrieved. If
specified, this profile type must correspond
to a profile type registered via the Unified
Profile Type tool in the User Management
suite of administration tools, and its bean
must conform to the rules of Unified User
Profile creation.

By default, the tag retrieves a profile of type
com beasys. comrer ce. axi om cont
act . G oup, unless otherwise specified.

Example: “AcmeGroup”

C

scope No

String

The HTTP scope of the retreived profile.
Pass "r equest " or "sessi on" as the
values.

Defaults to sessi on.

groupOnly No

String

Specifies to retrieve a

com beasys. comrer ce. axi om cont
act . Group, rather than

com beasys. commrer ce. axi om cont
act . User, for the default profile type. No
successor will be retrieved when this value is
true.

Defaults to f al se.

profileld No

String

A variable name from which the retrieved
profile is available for the duration of the
JSP’s page scope.

profileType No

String

Allows theJSP developer to specify what
type of User profile object to return. If the
given profileKey refers to a baseUser object,
this attribute should be left blank. Otherwise,
if it returns to an extended User object
defined by a Unified Profile Type, the name
of the Unified Profile Type should be
supplied in this field.

12-46 Guide to Building Personalized Applications

User Management: Profile Management Tags

Table 12-22 <um:getProfile> (Continued)

Tag Attribute

Required Type Description R/C

successorld

No String A variable name from which the retrieved C
successor is available for the duration of the
JSP’s page scope.

result

No String A variable name from which the result of the C
operation is available.

Possible values:
Success:

UserManagerTagConstants. GET _PROFILE
_OK

Error encountered:
UserManagerTagConstants. GET _PROFILE
_FAILED

UserManagerTagConstants. NO_SUCH_PR
OFILE

UserManagerTagConstants. NO_SUCH_SU
CCESSOR

Example 1

Example 2

This example shows a profile of type AcnmeUser being retrieved with no successor
specified, and an explicitly-supplied sessi on scope.

<U@taglib uri="umtld" prefix="um %

<um getProfile profil eKey="bob" profil eType="AcnmeUser"
profileld="nyProfile" scope="session"/>

This example shows a default profile type

(com beasys. commer ce. axi om cont act . User) being retrieved with a default
successor type (com beasys. commer ce. axi om cont act . G oup), and an
explicitly-supplied r equest scope.

Guide to Building Personalized Applications 12-47

12 Personalization Server JSP Tag Library Reference

Example 3

<9@taglib uri="umtld" prefix="unt %

<um get Profile profil eKey="bob" successorKey="engi neeri ng"
scope="request"/>

This example shows a profile type of AcneUser being retrieved with a successor type
of AcmeG oup, and an implicitly-supplied sessi on scope.

<9@taglib uri="umtld" prefix="unt %

<um getProfile profil eKey="bob" profil eType="AcnmeUser"
successor Key="engi neeri ng" successor Type="AcnmeG oup"
profileld="myProfile"/>

<um:getProperty>

The <um get Proper t y>tag (Table 12-23) retrieves the property value for a specified
property set-property name pair. The tag has no enclosed body. The value returned is
an Obj ect . In typical cases, this tag is used after the <um get Pr of i | e>tag is invoked
to retrieve a profile for session use. The property to be retrieved is retrieved from the
session profile. If the <um get Pr of i | e> tag has not been used upon invoking the
<um get Propert y> tag, the specified property value is retrieved from the
Anonymous User Profile. For more information, see Chapter 7, “Creating and
Managing Users,” in this guide.

12-48 Guide to Building Personalized Applications

User Management: Profile Management Tags

Table 12-23 <um:getProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property’s R
value is to be retrieved.

Example: “Demo Portal”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

propertyName Yes String The name of the property to be retrieved. R

Example: “background_color”

id No String Ifthe i d attribute is supplied, the value of C
the retrieved property will be available in the
variable name to which i d is assigned.
Otherwise, the value of the property is
inlined.

Example 1
<U@taglib uri="umtld" prefix="um %
<um get Property i d="nyTi t| ebar BGCol or" propertySet="exanpl eportal "
propertyNane="titl ebar_bgcol or"/ >
My titlebar bg color is <%nyTitl ebar BGCol or %.
Example 2

My titlebar bg color i s <umgetProperty propertySet="exanpl eportal "
propertyNane="titl ebar_bgcol or"/ >.

Guide to Building Personalized Applications = 12-49

12 Personalization Server JSP Tag Library Reference

<um:getPropertyAsString>

The <um get Proper t yAsSt ri ng> tag (Table 12-24) works exactly like the
<um get Pr oper t y> tag above, but ensures that the retrieved property value is a
St ri ng. The following example shows a multi-valued property which returns a
Col | ecti on, but presents a list of favorite colors.

Table 12-24 <um:getPropertyAsString>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property’s R
value is to be retrieved.

Example: “Demo Portal”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

propertyName Yes String The name of the property to be retrieved. R

Example: “background color”

id No String Ifthe i d attribute is supplied, the value of C
the retrieved property will be available in the
variable name to which i d is assigned.
Otherwise, the value of the property is
inlined.

Example

<g@taglib uri="umtld" prefix="unl %

<um get PropertyAsString i d="nyFaveCol ors”
propertySet =" exanpl eportal ” propertyName="fave_col ors”/>
My favorite colors are <% nyFaveCol or s%.

12-50 Guide to Building Personalized Applications

User Management: Profile Management Tags

<um:removeProperty>

The <um renovePr opert y> tag (Table 12-25) removes the specified property from
the current session’s profile or from the Anonymous User Profile. The tag has no
enclosed body. Subsequent calls to <um get Pr oper t y> for a removed property
would result in the default value for the property as prescribed by the property set, or
from the Profile’s successor.

Table 12-25 <um:removeProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property's R
value is to be retrieved.

Example: "Demo Portal"

Note: The property is removed from the
profile's default (unscoped)
properties if no property set is
provided.

propertyName Yes String The name of the property to be removed. R

Example: "background_color"

Example

<v@taglib uri="umtld" prefix="um %

<um renoveProperty propertySet="<%thePropertySet %"
propertyNane=" <%t hePr oper t yName%"/ >

Guide to Building Personalized Applications 12-51

12 Personalization Server JSP Tag Library Reference

<um:setProperty>

The <um set Proper t y> tag (Table 12-26) updates a property value for either the
session’s current profile, or for the Anonymous User Profile. This tag has no enclosed
body.

Table 12-26 <um:setProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set in which the property’s R
value is to be set.

Example: “Demo Portal”
Note: The property is set for the profile’s

default (unscoped) properties if no
property set is provided.

propertyName Yes String The name of the property to be set. R

Example: “background color”

value Yes Object The new property value. R

result No String The name of an Integer object to whichthe C
result of the set property operation is
assigned.

Success:
UserManagerTagConstants. SET_PROPER
TY_OK

Error encountered:
UserManagerTagConstants. SET_PROPER
TY_FAILED

Example

<g@taglib uri="umtld" prefix="unt %

<% String myName = request.get Paraneter("nanme"); %
<um set Property propertySet="exanpl eportal " propertyNane="narme"
val ue=" <% nyNane%"/ >

12-52 Guide to Building Personalized Applications

User Management: Group-User Management Tags

User Management:
Group-User Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<U@taglib uri="umtld" prefix="um %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i nport ="com beasys. cormer ce. user. j sp. t ags. User Manager TagConst ant s"
%

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:addGroupToGroup>

The <um addG oupToG oup> tag (Table 12-27) adds the group corresponding to the
provided chi | dG oupNane to the group corresponding to the provided gr oupNare.
Since a group can only have one parent, any previous database records which reflect
the group belonging to another parent will be destroyed. Both the parent group and the
child group must previously exist for proper tag behavior. The tag has no enclosed
body.

Note: This tag should only be invoked when the class
com beasys. conmer ce. axi om cont act . securi ty. RDBVSReal mis
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Guide to Building Personalized Applications 12-53

12 Personalization Server JSP Tag Library Reference

Table 12-27 <um:addGroupToGroup>

Tag Attribute Required Type

Description

R/C

childGroupName Yes String

The name of the child group.
Example: “<%=childGroupName%>"

parentGroupName No String

The name of the parent group.

Example: “<%=parentGroupName%>"

result Yes String

The name of an Integer variable to which the
result of the add group to group operation is
assigned.

Possible values:

Success:

UserManagerTagConstants. ADD GROUP _

OK

Error encountered:

UserManagerTagConstants. ADD GROUP _

FAILED

Example

<v@taglib uri="umtld" pref

i x="um' %

<um addG oupToG oup chi | dG oupName="<%-chi | dG oupName%”"

par ent G oupNanme="<%par ent &

<um:addUserToGroup>

oupNanme%" result="result”/>

The <um addUser ToG oup> tag (Table 12-28) adds the user corresponding to the
provided user nane to the group corresponding to the provided gr oupNane. Both the
specified user and the specified group must previously exist for proper tag behavior.

The tag has no enclosed body.

12-54 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Note: This tag should only be invoked when the cust onReal m el enent in
config.xm is
com beasys. conmer ce. axi om cont act. security. RDBMSReal m

Table 12-28 <um:addUserToGroup>

Tag Attribute Required Type Description R/C
username Yes String The name of the user to be added to the R
group.

Example: “<%=username%o>"

groupName Yes String The name of the group to which the useris R
being added.

Example: “<%=groupName%>"

result Yes String The name of an Integer variable to whichthe C
result of the add user to group operation is
assigned.

Possible values:
Success:

UserManagerTagConstants. ADD USER O
K

Error encountered:
UserManagerTagConstants. ADD USER _F
AILED

Example

<v@taglib uri="umtld" prefix="um %

<um addUser ToGr oup user Name=" <% user Nane%"
gr oupName="<%-gr oupNane%" result="result”/>

Guide to Building Personalized Applications 12-55

12 Personalization Server JSP Tag Library Reference

<um:changeGroupName>

The <um changeG oupNane> tag (Table 12-29) changes the name of the group
corresponding to the specified ol dG oupNane to the specified newG oupName. This
tag has no enclosed body.

Note: This tag should only be invoked when the cust onReal m el enent i n
config.xm is
com beasys. comer ce. axi om cont act. security. RDBMSReal m

Table 12-29 <um:changeGroupName>

Tag Attribute Required Type Description R/C

oldGroupName Yes String The old group name. R

Example: “<%=0ldGroupName%>"

newGroupName Yes String The new group name. R

Example: “<%=newGroupName%>"

result Yes String The name of an Integer variable to whichthe C
result of the change group name operation is
assigned.

Possible values:
Success:

UserManagerTagConstants. GROUP_CHA
NGE_OK

Error encountered:
UserManagerTagConstants. GROUP_CHA
NGE_FAILED

Example

<U@taglib uri="umtld" prefix="unt %

<um changeG oupnane ol dG oupNane="<%ol dG oupNane%"
newG oupNane=" <% changeG oupNane%" result="result”/>

12-56 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:createGroup>

The <um cr eat eG oup> tag (Table 12-30) creates a new
com beasys. conmer ce. axi om cont act . G oup object. This tag has no enclosed
body.

Note: This tag should only be invoked when the class
com beasys. conmmer ce. axi om cont act . security. RDBVBReal mis
defined as the active security realm. This can be verified through the
WebLogic Administration Console.

Table 12-30 <um:createGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the new group. R

Example: “<%=groupName%>"

id No String A variable name to which the created Group C
object is available for the duration of the
page’s scope.

parentName No String The name of the group to set as the parent of R
the new group.

result Yes String The name of an Integer variable to whichthe C
result of the create group operation is
assigned.

Possible Values:

Success:
UserManagerTagConstants. CREATE_GRO
UP_OK

Error encountered:
UserManagerTagConstants. CREATE_GRO
UP_FAILED

A group with the specified group name
already exists:

UserManagerTagConstants. GROUP_EXIS
TS

Guide to Building Personalized Applications 12-57

12 Personalization Server JSP Tag Library Reference

Example

<U@taglib uri="umtld" prefix="unt %

<um cr eat egroup groupName="<%gr oupName%" result="result”/>

<um:createUser>

The <um cr eat eUser > tag (Table 12-31) creates a new
com beasys. commer ce. axi om cont act . User object. This tag has no enclosed

body. Although classified as a Group-User management tag, this tag can be used in
conjunction with run-time activities, in that it will persist any properties associated
with a current Anonymous User Profile if specified.

Note: This tag should only be invoked when the class
com beasys. comrer ce. axi om cont act. security. RDBVMSReal mis

defined as the active security realm. This can be verified through the

WebLogic Administration Console.

Table 12-31 <um:createUser>

Tag Attribute Required Type Description R/C

username Yes String The name of the new user. R
Example: “<%=username%>"

password Yes String The password for the new user. R
Example: “<%=password%>"

profileType No String Specifies the extended type of user (for R

example, WLCS_Customer) to create a user
of that type.

12-58 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 12-31 <um:createUser> (Continued)

Tag Attribute Required Type Description R/C

saveAnonymous No String Whether to persist current anonymous user R
profile attributes in the newly-created user’s
profile.

Defaults to f al se.
Example: “f al se”

id No String A variable name to which the created User C
object is available for the duration of the
page’s scope.

result Yes String The name of an Integer variable to whichthe C
result of the create user operation is
assigned.

Possible values:

Success:
UserManagerTagConstants. CREATE USE
R_OK

Error encountered:
UserManagerTagConstants. CREATE USE
R_FAILED

A user with the specified username already
exists:
UserManagerTagConstants. USER_EXISTS

Example

<v@taglib uri="umtld" prefix="um %

<um cr eat eUser user Nane="<%user nane%" password="<%password" %
result="result"/>

Guide to Building Personalized Applications 12-59

12 Personalization Server JSP Tag Library Reference

<um:getChildGroupNames>

The <um get Chi | dG oupNanes> tag (Table 12-32) returns the names of any groups
that are children of the given group.

Table 12-32 <um:getChildGroupNames>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group to search for child R
groups.

id Yes String The name of the identfier which will be C
assigned the String array of child group
names.

<um:getChildGroups>

The <um get Chi | dGr oups> tag (Table 12-33) retrieves an array of

com beasys. comrer ce. axi om cont act . G oup objects that are children of the
Group corresponding to the provided gr oupNane. The information is taken from the
personalization database tables, and reflects the group hierarchy information as set up
from the Group Administration and Realm Configuration Administration Tools. This
tag has no enclosed body.

Table 12-33 <um:getChildGroups>

Tag Attribute Required Type Description R/C
groupName Yes String The name of the group whose children are R
sought.

Example: “<%=groupName%>"

id Yes String A variable name to which the child Group C
objects are available for the duration of the
page’s scope.

Example: “childGroups”

12-60 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Example

<U@taglib uri="umtld" prefix="um %

<um get chi | dgr oups gr oupNanme="<%-gr oupNane%" id="chil dG oups”/>

<um:getGroupNamesForUser>

The <um get Gr oupNamesFor User > tag (Table 12-34) retrieves a St ri ng array that
contains the group names corresponding to groups to which the provided user
immediately belongs. This tag has no enclosed body.

Table 12-34 <um:getGroupNamesForUser>

Tag Attribute Required Type Description R/C
username Yes String The name of the user whose matching groups R
are sought.

Example: “<%=username%o>"

id Yes String A variable name to which the resultant group C
names are assigned.

Example: “myGroups”

Example

<U@taglib uri="umtld" prefix="um %

<um get Gr oupNamesFor User user Nane=" <% user nane%" i d="nyG oups”/ >

Guide to Building Personalized Applications 12-61

12 Personalization Server JSP Tag Library Reference

<um:getParentGroupName>

The <um get Par ent G oupNane> tag (Table 12-35) retrieves the name of the parent
of the com beasys. comrmer ce. axi om cont act . G oup object associated with the
provided gr oupNane. The information is taken from the personalization database
tables, and reflects the group hierarchy information as set up from the Group
Administration and Realm Configuration Administration Tools. This tag has no
enclosed body.

Table 12-35 <um:getParentGroupName>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group whose parent group R
name is sought.

Example: “<%=groupName%>"

id Yes String A variable name to which the name of the C
parent is available for the duration of the
page’s scope.

Example: “parentGroupName”

Example

<U@taglib uri="umtld" prefix="unl %

<um get Par ent G oupName gr oupNanme="<%-gr oupNane%"
i d=" par ent G oupNane"/ >

12-62 Guide to Building Personalized Applications

User Management: Group-User Management Tags

<um:getTopLevelGroups>

The <um get TopLevel G oups> tag (Table 12-36) retrieves an array of

com beasys. commer ce. axi om cont act . Gr oup objects, each of which has no
parent group. The information is taken from the personalization database tables, and
reflects the group hierarchy information as set up from the Group Administration and
Realm Configuration Administration Tools. This tag has no enclosed body.

Table 12-36 <um:getTopLevelGroups>

Tag Attribute Required Type Description R/C

id Yes String A variable name to which the top-level C
G oup objects are available for the duration
of the page’s scope.

Example: “topLevelGroups”

Example

<U@taglib uri="umtld" prefix="um %

;um get TopLevel Groups i d="topLevel Groups”/ >
<um:getUsernames>

The <um get User nanes>tag (Table 12-38) retrieves a St r i ng array that contains the
usernames matching the provided search expression. The search expression supports
only the asterisk (*) wildcard character, and is case insensitive. As many asterisks as
desired may be used in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com beasys. conmmer ce. axi om cont act . security. RDBVBReal mis
defined as the active security realm. This can be verified through the
WebLogic Administration Console.

Guide to Building Personalized Applications 12-63

12 Personalization Server JSP Tag Library Reference

Table 12-37 <um:createGroup>

Tag Attribute Required Type

Description

R/C

groupName Yes String

The name of the new group.

Example: “<%=groupName%>"

id No String

A variable name to which the created Group
object is available for the duration of the
page’s scope.

parentName No String

The name of the group to set as the parent of
the new group.

result Yes String

The name of an Integer variable to which the
result of the create group operation is
assigned.

Possible Values:

Success:
UserManagerTagConstants. CREATE GRO
UP_OK

Error encountered:
UserManagerTagConstants. CREATE GRO
UP_FAILED

A group with the specified group name
already exists:

UserManagerTagConstants. GROUP_EXIS
TS

Table 12-38 <um:getUsernames>

Tag Attribute Required Type

Description

R/C

searchExp No String

The search expression to apply to the user
name search. Defaults to “*’

Example: “t*”

12-64 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 12-38 <um:getUsernames> (Continued)

Tag Attribute Required Type Description R/C
userLimit No String The maximum number of users to be R
(representing returned from the search. (String which has a
an Integer) particular | nt eger . val ueCf .) Defaults
to 100.

Ifuser count exceeds userLimit, the length of
the array in i d is truncated to the length of
userLimit.

Example: “500”

id Yes String A variable name to which the resultant user C
names are assigned.

Example: “myUsers”

result No String The name of an Integer variable to which the C
result of the get User nanmes operation is
assigned.

Possible values:
Success:

UserManagerTagConstants. USER_SEARC
H_OK
General error:

UserManagerTagConstants. USER_SEARC
H_FAILED

Note: The USER_SEARCH FAI LED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
User Manager TagConst ant s. USER_SEARCH_FAI LED, but the length returned
by the array in i d will be zero.

Example

<U@taglib uri="umtld" prefix="um %

<um get User nanmes userLimt="500" searchExp="t*" id="nyUsers"/>
<USystemout.printin("l found " + nyUsers.length + " users."); %

Guide to Building Personalized Applications 12-65

12 Personalization Server JSP Tag Library Reference

<um:getUsernamesForGroup>

The <um get User nanesFor Gr oup> tag (Table 12-39) retrieves a St ri ng array that
contains the usernames matching the provided search expression and correspond to
members of the provided group. The search expression supports only the asterisk (*)
wildcard character, and is case insensitive. As many asterisks as desired may be used
in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com beasys. comrer ce. axi om cont act. security. RDBVMSReal mis
defined as the active security realm. This can be verified through the WLS
administration console.

Table 12-39 <um:getUsernamesForGroup>

Tag Attribute Required Type Description R/C

searchExp No String The search expression to apply to the user R
name search.

Defaults to" *".

Example: "t *"

groupName Yes String The name of the group whose matching R
members are sought.

Example: “engineering”

userLimit No String The maximum number of users to be R
(representing returned from the search. (String which has a
an Integer) particular | nt eger . val ueCf .) Defaults
to 100.

Ifuser count exceeds userLimit, the length of
the array in id is truncated to the length of
userLimit.

Example: “500”

id Yes String A variable name to which the resultant user C
names are assigned.

Example: “myUsers”

12-66 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 12-39 <um:getUsernamesForGroup> (Continued)

Tag Attribute Required Type Description R/C

result No String The name of an Integer variable to whichthe C
result of the get usernames for group
operation is assigned.

Possible values:
Success:

UserManagerTagConstants. USER_SEARC
H_OK
General error:

UserManagerTagConstants. USER_SEARC
H_FAILED

Note: The USER_SEARCH FAI LED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
User Manager TagConst ant s. USER_SEARCH_FAI LED, but the length
returned by the array in i d will be zero.

Example
<v@taglib uri="umtld" prefix="um %
<um get User nanmesFor Gr oup gr oupName="engi neeri ng" userLin t="500"
sear chExp="t*" id="nyUsers"/>
<USystemout.printin("l found " + nyUsers.length + " users in ny
group."); %

<um:removeGroup>

The <um r enoveG& oup> tag (Table 12-40) removes the
com beasys. conmer ce. axi om cont act . G oup object corresponding to the
provided gr oupNane. This tag has no enclosed body.

Guide to Building Personalized Applications 12-67

12 Personalization Server JSP Tag Library Reference

Note: This tag should only be invoked when the class
com beasys. comrer ce. axi om cont act. security. RDBVMSReal mis

defined as the active security realm. This can be verified through the

WebLogic Server Administration Console.

Table 12-40 <um:removeGroup>

Tag Attribute Required Type

Description

R/C

groupName Yes String

The name of the group to be removed.

Example: “<%=groupName%>"

result Yes String

The name of an Integer variable to which the
result of the remove group operation is
assigned.

Possible Values:
Success:

UserManagerTagConstants. REMOVE_GR
OUP_OK

Error encountered:
UserManagerTagConstants. REMOVE_GR
OUP_FAILED

Example

<Ug@taglib uri="umtld" prefix="uni %

<um r enoveG oup gr oupNanme="<%gr oupName%” result="result”/>

<um:removeGroupFromGroup>

The <um r enoveQ& oupFr onGr oup> tag (Table 12-41) removes a child group from a

parent group.

12-68 Guide to Building Personalized Applications

User Management: Group-User Management Tags

Table 12-41 <um:removeGroupFromGroup>

Tag Attribute Required Type

Description

R/C

childGroupName Yes String

The name of the child group to remove from
its parent.

parentGroupName Yes String

The name of the parent group from which the
child group will be removed.

result Yes String

The name of an Integer variable to which the
result of the remove group from group
operation is assigned.

Possible values:
Success:

UserManagerTagConstants. REMOVE_GR
OUP_OK

Failure:
UserManagerTagConstants. REMOVE_GR
OUP_FAILED

<um:removelUser>

The <um r enobveUser > tag (Table 12-42) removes the

com beasys. conmer ce. axi om cont act . User object corresponding to the

provided user nane. It can remove any type of extended user that has its profileType
set in the database. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com beasys. conmer ce. axi om cont act . securi ty. RDBVSReal mis

defined as the active security realm. This can be verified through the

WebLogic Server Administration Console.

Guide to Building Personalized Applications

12-69

12 Personalization Server JSP Tag Library Reference

Table 12-42 <um:removeUser>

Tag Attribute Required Type

Description

R/C

username Yes String

The username of the user to be removed.

Example: “<%=username%>"

result Yes String

The name of an Integer variable to which the
result of the remove user operation is
assigned.

Possible values:

Success:
UserManagerTagConstants. REMOVE_US
ER_OK

Error encountered:
UserManagerTagConstants. REMOVE_US
ER_FAILED

Example

<U@taglib uri="umtld" prefix="unt %

<um renoveUser user Name="<%usernane%"” result="result”/>

<um:removeUserFromGroup>

The <um r enoveUser Fr onGr oup> tag (Table 12-43) removes a user from a group.

Note: This tag should only be invoked when the class
com beasys. comrer ce. axi om cont act. security. RDBVMSReal mis

defined as the active security realm. This can be verified through the

WebLogic Server Administration Console.

12-70 Guide to Building Personalized Applications

User Management: Security Tags

Table 12-43 <um:removeUserFromGroup>

Tag Attribute Required Type Description R/C

username Yes String The username of the user to remove fromthe R
given group.

groupName Yes String The name of the group from which the given R
user will be removed.

result Yes String The name of an Integer variable to whichthe C
result of the remove user from group
operation is assigned.

Possible values:
Success:

UserManagerTagConstants. REMOVE_US
ER_OK

Failure:
UserManagerTagConstants. REMOVE_US
ER_FAILED

User Management: Security Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<U@taglib uri="umtld" prefix="um %

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:

<%@ page

i mport="com beasys. conmer ce. user.jsp.tags. User Manager TagConst ant s"
%

Guide to Building Personalized Applications 12-71

12 Personalization Server JSP Tag Library Reference

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:login>

The <um | ogi n> tag (Table 12-44) provides weak authentication (username,

password) against the current security realm, and sets the authenticated user as the
current WebLogic user. This tag has no enclosed body.

Note: The login tag requires a user nane parameter and a passwor d parameter to
be present in the HTTP request.

Table 12-44 <um:login>

Tag Attribute Required Type

Description

R/C

result Yes String

The name of an Integer variable to which the
result of the login operation is assigned.

Possible values:

Success:
UserManagerTagConstants. LOGIN OK

General error when performing
authentication:

UserManagerTagConstants. LOGIN_ERRO
R

Authentication failed because of invalid
username/password combination:
UserManagerTagConstants. LOGIN_FAILE
D

12-72 Guide to Building Personalized Applications

User Management: Security Tags

<um:logout>

The <um | ogout >tag (Table 12-45) ends the current user's WebLogic Server session.
This is independent of the FlowManager's user session tracking, and should be used in
combination with the <um | ogi n> tag.

Table 12-45 <um:logout>

Tag Attribute Required Type Description R/C

No attributes

<um:setPassword>

The <um set Passwor d> tag (Table 12-46) updates the password for the user
corresponding to the provided username.

Note: This tag should only be invoked when the class
com beasys. conmer ce. axi om cont act . securi ty. RDBVSReal mis
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Table 12-46 <um:setPassword>

Tag Attribute Required Type Description R/C

username Yes String The username of the user whose passwordis R
to be changed.

password Yes String The new user password. R

Guide to Building Personalized Applications 12-73

12 Personalization Server JSP Tag Library Reference

Table 12-46 <um:setPassword>

Tag Attribute Required Type Description

result Yes String The name of an Integer variable to which the
result of the set password operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.SET PASSWO
RD_OK

Failure:
UserManagerTagConstants.SET PASSWO
RD_FAILED

12-74 Guide to Building Personalized Applications

Personalization Utilities

Personalization Utilities

The <es: j spt agl i b> tag contains generic tags you can use to create JSP pages.

Use the following code to import the utility tag library:
<U@taglib uri="es.tld" prefix="es" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<es:counter>

The <es: count er > tag (Table 12-47) is used to create a f or loop.

Table 12-47 <es:counter>

Tag Attribute Required Type Description R/C
type No String The type of the counter. Possible values are R
i nt orl ong. Defaultisi nt.
id Yes String A unique name for the variable. R
minCount Yes Int The start position for the loop. R
maxCount Yes Int The end position for the loop. R
Example
<U@taglib uri="es.tld" prefix="es" %
<es:counter id="iterator" m nCount="0" maxCount="10">
<% Systemout.println(iterator); %
</ es: count er>
Guide to Building Personalized Applications 12-75

12 Personalization Server JSP Tag Library Reference

<es:date>

The <es: dat e> tag (Table 12-48) is used to get a date- and time-formatted String
based on the user's time zone preference.

Table 12-48 <es:date>

Tag Attribute Required Type Description R/C
timeZoneld No String Defaults to the time zone on the server. R
formatStr No String A date and time format string that adheresto R

the java.text.SimpleDateFormat. The default
value is MM dd/ yyyy HH: nmss: z.

Example

<U@taglib uri="es.tld" prefix="es" %

;es: date format Str="MVWM dd yyyy" tinmeZonel d="MsT" />
<es:forEachInArray>

The <es: f or Eachl nAr r ay> tag (Table 12-49) is used to iterate over an array.

Table 12-49 <es:forEachInArray>

Tag Attribute Required Type Description R/C
id Yes String The variable for each value in the array. R
type Yes String The type of each value in the array. R
array Yes Object [] The array to iterate over. R
counterld No String The position in the array. R

12-76 Guide to Building Personalized Applications

Personalization Utilities

Example
<es:forEachlnArray id="item' array="<%itenms%" type="String"
counterld="i">
<% Systemout.printin("items[" +i + "]: " +item;%

</ es: forEachl nArray>

<es:isNull>

The <es: i sNul | > tag (Table 12-50) is used to check if a value is null. In the case of
a String, the <es:isNul | >tag is used to check if the St ri ng is null or has a value.
An empty string will cause i sNul | to be f al se. (An empty string is not null.)

Table 12-50 <es:isNull>

Tag Attribute Required Type Description R/C
item Yes Object The variable to evaluate. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:isNull itenE"<%val ue%">
Error: the value is null.
</es:isNull>

Guide to Building Personalized Applications 12-77

12 Personalization Server JSP Tag Library Reference

<es:monitorSession>

The <es: noni t or Sessi on> tag (Table 12-51) can be added to the beginning of any
JSP page to disallow access to the page if the session is not valid or if the user is not

logged in.

Table 12-51 <es:monitorSession>

Tag Attribute Required Type Description R/C
goToPage No String The error page that you want displayed ifthe R
page is not accessible.
The default value is portal error. j sp.
loginRequired No String Indicates whether the user is required tobe R
logged in to access the JSP page including
the tag.
The default value is f al se.
Example

<U@taglib uri="es.tld"

prefix="es" %

<es: noni t or Sessi on | ogi nRequi red="true" />

12-78 Guide to Building Personalized Applications

Personalization Utilities

<es:notNull>

The <es: not Nul | >tag (Table 12-52) is used to check if a value is not null. In the case
of a String, the <es: not Nul | > tag is used to check if the St ri ng is not null or has a
value. An empty string will cause not Nul | to be t r ue. (An empty string is treated as
a value.)

Table 12-52 <es:notNull>
Tag Attribute Required Type Description R/C
item Yes Object The variable to evaluate. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:notNull itenm"<%val ue%">
The value is not null.
</ es: not Nul | >

<es:simpleReport>

The <es: si npl eRepor t > tag (Table 12-53) is used to create two-dimensional array
out of a simple query.

Table 12-53 <es:simpleReport>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the resultant R
two-dimensional array converted from the
java.sql.ResultSet specified by the
resultSet tag attribute.

resultSet Yes java.sql.ResultSet ~ The result set that holds the R
java.sql.ResultSet.

Guide to Building Personalized Applications 12-79

12 Personalization Server JSP Tag Library Reference

Example
<es:sinpleReport id="report" resultSet="<%resultSet%">
<%
for (int i=0; i<report.length; i++)
{
for (int j=0; j<report[i].length; j++)
{
}
}
%
<es:transposeArray>

The <es: t ransposeArr ay> tag (Table 12-54) is used to transpose a standard
[row][column] array to a [column][row] array.

Table 12-54 <es:transposeArray>

Tag Attribute Required Type Description R/C
id Yes String The variable that holds the [c][r] array. R
type Yes String The type of variable in the [r][c] array, such R
as String.
array Yes Object[][] The variable that holds the [r][c] array. R
Example

<U@taglib uri="es.tld" prefix="es" %

<es:transposeArray id="byCol umRow' array="<%byRowCol um%"
type="String">

</ es: transposeArray>

12-80 Guide to Building Personalized Applications

Personalization Utilities

<es:uriContent>

The <es: uri Cont ent >tag (Table 12-55) is used to pull content from a URL. It is best
used for grabbing text-heavy pages.

Table 12-55 <es:uriContent>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the downloaded R
content of the URL.

uri Yes String The fully qualified URI from which to get R
the content.

Example

<U@taglib uri="es.tld" prefix="es" %

<es:uri Content id="uriContent"
uri="http://ww. beasys. conf i ndex. htm ">
<%

out.print(uriContent);
%
</ es:uri Content >

Note: Ifyoucombine HTML pages with relative URL’s, you must fully qualify them
to the correct host in each URL, or else images (on other resources) may not
be retrieved properly by the browser.

Guide to Building Personalized Applications 12-81

12 Personalization Server JSP Tag Library Reference

WebLogic Utilities

The <wl : j spt agl i b> tag library contains custom JSP extension tags which are
supplied as a part of the WebLogic Server platform.

To import the WebLogic Utilities JSP tags, use the following code:
<U@taglib uri="weblogic.tld" prefix="w" %

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

Note: See the Javadoc for further descriptions of the w tags.

<wl:process>

The <wl : pr ocess> tag (Table 12-56) is used for query attribute-based flow control.
By using a combination of the four attributes, you can selectively execute the
statements between the <wl : process> and </ W : pr ocess> tags.

Table 12-56 <wl:process>

Tag Attribute Required Type Description R/C
name No String The name of a query attribute. R
notName No String The name of a query attribute. R
value No String The value of a query attribute. R
notValue No String The value of a query attribute. R

Statements between the <wl : pr ocess> tags will be executed according to the matrix
below:

12-82 Guide to Building Personalized Applications

WebLogic Utilities

Example

Value notValue Neither "value' nor
"notValue"
name Named attribute ~ Named attribute does not Name attribute’s value is not
is equal to the equal the value. null.
value.
not Name notName attribute’s value is
null.

<%@taglib uri="weblogic.tld" prefix="w" %

<w : process name="| ast BookRead" val ue="A Man in Full">

<l-- This section of code will be executed
if | ast BookRead exists and the val ue of |astBookRead is
"A Man in Full" -->

</W : process>

Guide to Building Personalized Applications 12-83

12 Personalization Server JSP Tag Library Reference

<wl:repeat>

The <w : r epeat > tag (Table 12-57) is used to iterate over a variety of Java objects,

as specified in the set attribute.

Table 12-57 <wl:repeat>

Tag Attribute Required

Type

Description

R/C

set No

Object

The set of objects that includes:
Enumerations

Iterators

Collections

Arrays

Vectors

Result Sets

Result Set MetaData
Hashtable keys

count No

Int

Iterate over first "count" entries in the set.

id No

String

Variable to contain current object being
iterated over.

type No

String

Type of object that results from iterating
over the set you passed in. Defaults to
Object. This type must be fully qualified.

<wl:cache>

The <wl : cache> tag specifies that its contents do not necessarily need to be updated

every time it is displayed.

12-84 Guide to Building Personalized Applications

WebLogic Utilities

Table 12-58 <wl:cache>

Tag Attribute Required Type Description R/C

timeout No Integer Controls the time-to-live of the data, orhow R
often the data must be updated independent
of all other controls. This value is in seconds.

scope No String Controls the time-to-live of the data, orhow C
often the data must be updated independent
of all other controls. This value is in seconds

name No String Uniquely identifies this cache. [f youdonot C
specify a name a random name will be
generated.

size No Integer The maximum number of entries that canbe R

in the cache. It defaults to an unlimited
cache. It is only relevant for when there is an
associated key.

vars No String In addition to caching the transformed output C
of the cache, you can also cache calculated
values within the block. These variables are
specified exactly the same way as the cache
keys. This type of caching is called Input
caching.

key No String Specifies a comma separated list of values C
accessible from the current page that the data
depends on. These values act as additional
keys into the cache.

async No String If the async parameter is set to t r ue, the C
cache will be updated asynchronously, if
possible. The user that initiates the cache hit
sees the old data.

Guide to Building Personalized Applications 12-85

12 Personalization Server JSP Tag Library Reference

12-86 Guide to Building Personalized Applications

Index

A

AD BUCKET Database Table 11-8
AD_COUNT Database Table 11-8
adding
group attribute 7-48
user to group 7-29
administration tool
support 10-12
adviselet
mapping an Advise request 2-14
Advisor
architecture 2-3
description 2-2
document content 2-3
functionality 1-3
JSP tags
creating personalized applications
2-9
reference 12-31
using 2-4
mapping an Advise request to an advislet
2-14
overview 1-3
providing information about user
classifications 2-3
using Advisor session bean 2-4
Advisor session bean 2-13
classifying users 2-15
creating personalized applications 2-13
matching content 2-17
selecting content 2-16

anonymous user profile 7-23
application
creating 2-13
setting parameters 5-7
Application Initialization Property Sets 5-5
ApplicationInitialization Property Sets 6-4
associating
user with group 7-2
attribute
adding for group 7-48
deleting for user 7-47
registering for group 7-46
unregistering for group 7-48
authenticating user 7-2

B
BulkLoader 8-21

C

character encoding 10-6
default settings 10-7
diplaying more than one charset per page
10-7
charset
displaying more than one on a page 10-7
multiple 10-7
parameters 10-7
classifier rule
introduction 3-5
classifying user

Guide to Building Personalized Applications 1

with Advisor session bean 2-15

with JSP tag 2-10
<cm:getProperty>

description 1-5

reference 12-6
<cm:printDoc>

description 1-5

reference 12-9
<cm:printProperty>

description 1-5

reference 12-11
<cm:selectByld>

description 1-5

reference 12-16
<cm:select>

description 1-5

reference 12-13
commerce.util package 5-16
CommercePropertiesHelper utility 5-15
comparison operators in query 8-20
component, external 1-10
ConfigurableEntity 6-6
configuring

Content Management system 8-10

DocumentManager EJB 8-12

DocumentSchema EJB 8-11
connection pool

example 8-15

setting up 8-13
constructed messages 10-13

examples 10-13
constructing query 8-7
contact information 1-xx
content

loading with BulkLoader 8-21

managing

(versus document management) 8-7

managing (property set) 6-4
Content Management

about 1-4

JSP tags descriptions 1-5

JSP tags reference 12-6
Content Management system
configuring 8-10
description 8-2
Content object 3-2
content selector rule 3-6
content, matching
with Advisor session bean 2-17
with JSP tag 2-12
content, selecting
with Advisor session bean 2-16
ContentHelper utility 5-15
creating
group 7-27
property set, procedure 6-9
property within property set 6-10
unified profile 7-38
user 7-33
customer support 1-xx

D

database
deleting group 7-52
deleting user record 7-53
database schema tables
Ads and Placeholders tables 11-6
common to WLCS and WLPS 11-6
defined constraints 11-38
Documentation Management tables 11-6
Rule Editor tables 11-6
User Management tables 11-6
debugging rulesheet 3-7
define 11-38
deleting
group 7-28
group from database 7-52
property 6-14
property set 6-13
record from database 7-53
unified profile 7-40

Guide to Building Personalized Applications 2

user 7-37

user attributes 7-47
DestinationDeterminer

described 5-5

Flow Manager value 5-2
DestinationHandler

described 5-5

Flow Manager value 5-3
Diagram, Entity-Relation 11-1
document content, querying 8-17
document servlet 8-8
documentation, where to find it- 1-xix
DocumentManager EJB, configuring 8-12
DocumentSchema EJB, configuring 8-11

E
editing
group property 7-32
property set 6-12
property within property set 6-13
unified profile 7-40
user property 7-35
Entity-Relation Diagram 11-1
<es:counter>
description 1-9
reference 12-75
<es:date>
description 1-9
reference 12-76
<es:forEachInArray>
description 1-9
reference 12-76
<es:isNull>
description 1-9
reference 12-77
<es:monitorSession>
description 1-9
reference 12-78
<es:notNull>
description 1-9

reference 12-79
<es:simpleReport>

description 1-9

reference 12-79
<es:transposeArray>

description 1-9

reference 12-80
<es:uriContent>

description 1-9

reference 12-81
ExpressionHelper utility 5-16
external component 1-10

Content Management engine 1-10

DBMS 1-10

LDAP 1-10

legacy database 1-10

F

Flow Manager

Application Init property set type 6-4

described 5-2

determination and handling values 5-2

diagram 5-3

how it works 5-3
<fm:getApplicationURI[>

description 1-5

reference 12-19
<fm:getCachedAttribute>

description 1-5

reference 12-20
<fm:getSessionAttribute>

description 1-5

reference 12-21
<fm:removeCachedAttribute>

description 1-5

reference 12-22
<fm:removeSessionAttribute>

description 1-5

reference 12-22
<fm:setCachedAttribute>

Guide to Building Personalized Applications

description 1-5

reference 12-23
<fm:setSessionAttribute>

description 1-5

reference 12-24
Foundation Classes and Utilities

about 1-4

described 5-1

G

<il8n:getMessage>
description 1-6
reference 12-28

group
adding attribute 7-48
adding user 7-29
associating with user 7-2
creating 7-27
deleting 7-28
deleting from database 7-52
editing property 7-32
mapping 7-51
registering attribute 7-46
removing user 7-31
selecting 7-50
unregistering attribute 7-48

Group component 7-3

group profile property set 6-3

Group-User Management
JSP tags descriptions 1-7
JSP tags reference 12-53

H

HTTP handling 5-9
HTTP request property set 6-3
HTTP session property set 6-3

<il8n:getMessage>
JspMessageBundle 10-5
localizing JSP pages 10-4
<il8n:localize>
description 1-5
how it works 10-5
localizing JSP pages 10-4
reference 12-25
Internationalization
code example 10-2
framework 10-2
included framework tags 10-3
JSP tags descriptions 1-5
JSP tags reference 12-25
localizing your application 10-9
non-ASCII characters 8-19

J

JavaServer Page (JSP)
localizing 10-3
tags provided with Advisor 2-9

JSP extension tag library 10-2

JSP tag
Advisor, reference 12-31
Content Management 12-6
creating personalized application 2-9
included with WLPS 1-4
matching content 2-12
overview 1-4
Profile Management 12-44
security 12-71

JSP tags 8-10

JspBase utility 5-14

JspHelper utility 5-14

JspMessageBundle 10-5

L
LDAP, viewing settings 7-49

Guide to Building Personalized Applications

loading
content with BulkLoader 8-21
localizing
how the tag works 10-5
system messages 10-14
the BEA WLPS 10-11
your application steps 10-9
your JSP 10-3

M
managing
rule (details) 3-2
user 7-1
user profile 7-2
mapping groups 7-51
matching content
with Advisor session bean 2-17
with JSP tag 2-12
message, constructed 10-13

N

native types 1-11
boolean 1-11
comparators 1-11
datetime 1-11
float 1-11
integer 1-11
Java classes 1-11
text 1-11
UserDefined 1-11

Now object 3-2

0

object
Content 3-2
Now 3-2
Request 3-3, 5-9
Session 3-3, 5-12

User 3-2

P

P13NJspBase utility 5-15
package, commerce.util 5-16
Personalization Request object 5-9
Personalization Session object 5-12
Personalization Utilities

JSP tags descriptions 1-9

JSP tags reference 12-75
personalized application

creating 2-13

JSP tags 2-9
PLACEHOLDER PREVIEW Database

Table 11-10

PLACEHOLDER Database Table 11-9
portal management overview 1-3
portal, setting parameters 5-7
printing product documentation 1-xix
profile

creating (unified) 7-38

deleting (unified) 7-40

editing (unified) 7-40

for user 7-4

property set 6-3

user (anonymous) 7-23
Profile Management 12-44
profile management 7-2
property

creating within property set 6-10

deleting 6-14

editing for group 7-32

editing for user 7-35

editing within property set 6-13

Request 5-10

Session 5-12
property set

and rulesheet 3-7

application initialization 6-4

content management 6-4

Guide to Building Personalized Applications

creating 5-6, 6-9

creating property 6-10
deleting 6-13
DestinationDeterminer 5-5
DestinationHandler 5-5
editing 6-12

editing property 6-13
HTTP request 6-3

HTTP session 6-3
overview 6-2

usage 5-5

user and group profile 6-3

Property Set Management tool 5-5
Property Sets

JSP tags descriptions 1-6
JSP tags reference 12-42

property value, retrieving 6-6

<ps:

<ps:

<pz:

<pz:

<pz:

getPropertyNames>

description 1-6

reference 12-42
getPropertySetNames>

description 1-6

reference 12-43

contentQuery>

creating personalized applications 2-10
description 1-6

reference 12-31

selecting content 2-11
contentSelector>

creating personalized applications 2-10
description 1-6

matching content 2-12

matching content to users 2-12
Personalization Request object 5-10
reference 12-34

div>

classifying users 2-10

creating personalized applications 2-9
description 1-6

Personalization Request object 5-10
reference 12-39

Q

query
comparison operators 8-20
constructing 8-7
structuring 8-18

querying
document content 8-17

R

realm
mapping group 7-51
selecting group 7-50
WebLogic 7-20
record, deleting from database 7-53
registering group attribute 7-46
removing
user from group 7-31
Repository 5-8
repository directories
about 10-5
Request
object 5-9
property 5-10
request
property set 6-3
Request object 3-3
Request Property Set
associated request methods 5-11
described 5-10
request property names 5-11
resouce bundles
localizing system messages 10-14
used in WLPS server tools 10-14
retrieving
property value 6-6
rule
classifier 3-5
content selector 3-6
Rules Management
about 1-4

Guide to Building Personalized Applications

component 3-2
RULESET Database Table 11-26
rulesheet
and property set 3-7
debugging 3-7
description 3-4

S

Security
JSP tags descriptions 1-8
JSP tags reference 12-71
selecting content
with Advisor session bean 2-16
with JSP tag 2-11
with Personalization Advisor Session
Bean 2-11
selecting group 7-50
servlet, document 8-8
Session
object 5-12
property 5-12
session
property set 6-3
session bean, Advisor
classifying user 2-15
creating personalized application 2-13
matching content 2-17
selecting content 2-16
Session object 3-3
Session Property Set 5-12
setting up
connection pool 8-13
Show Document servlet 8-17
SQL Scripts 11-34
Cloudscape 11-34
Oracle 11-35
SQL Serve 11-37
static text 10-13
examples 10-13
structuring query 8-18

support
for native types 1-11
technical 1-xx

T
tags, JSP 8-10
text, static 10-13
tool

User Management 7-27
ttl (time-to-live)

Flow Manager value 5-3
TypesHelper utility 5-16

U

<um:addGroupToGroup>
description 1-7
reference 12-53
<um:addUserToGroup>
description 1-7
reference 12-54
<um:changeGroupName>
description 1-7
reference 12-56
<um:createGroup>
description 1-7
reference 12-57
<um:createUser>
description 1-7
reference 12-58
<um:getChildGroupNames>
description 1-7
reference 12-60
<um:getChildGroups>
description 1-7
reference 12-60
<um:getGroupNamesForUser>
description 1-7
reference 12-61
<um:getParentGroupName>

Guide to Building Personalized Applications

description 1-7
reference 12-62
<um:getProfile>
description 1-6
reference 12-45
<um:getProperty AsString>
description 1-6
reference 12-50
<um:getProperty>
description 1-6
reference 12-48
<um:getTopLevel Groups>
description 1-8
reference 12-63
<um:getUsernamesForGroup>
description 1-8
reference 12-66
<um:getUsernames>
reference 12-63
<um:login>
description 1-8
reference 12-72
<um:logout>
description 1-8
reference 12-73
<um:removeGroup>
description 1-8
<um:removeGroupFromGroup>
description 1-8
reference 12-68
<um:removeGroup>
reference 12-67
<um:removeProperty>
description 1-6
reference 12-51
<um:removeUser>
description 1-8
<um:removeUserFromGroup>
description 1-8
reference 12-70
<um:removeUser>

reference 12-69
<um:setPassword>

description 1-8

reference 12-73
<um:setProperty>

description 1-6

reference 12-52
unified profile

creating 7-38

deleting 7-40

editing 7-40
unregistering group attribute 7-48
user

adding to group 7-29

associating with group 7-2

authenticating 7-2

creating 7-33

deleting 7-37

deleting attributes 7-47

deleting record from database 7-53

editing property 7-35
profile 7-4
profile management 7-2
profile property set 6-3
profile, anonymous 7-23
removing from group 7-31
User component 7-3
User Management

Group-User Management tags 12-53

overview 1-3
Profile
JSP tags descriptions 1-6
Profile Management tags 12-44
Security tags 12-71
User Management system
overview 7-2
User Management tool 7-27
User object 3-2
user, classifying
with Advisor session bean 2-15
UserManager EJB 7-25

Guide to Building Personalized Applications

utility
CommercePropertiesHelper 5-15
ContentHelper 5-15
ExpressionHelper 5-16
JspBase 5-14
JspHelper 5-14
P13NJspBase 5-15
personalization 12-75
TypesHelper 5-16
WebLogic 12-82

Vv
viewing LDAP settings 7-49

W
WebLogic
realm 7-20
WebLogic Personalization Server (WLPS)
external components 1-10
localizing administration tools 10-11
native types supported 1-11
run-time architecture 1-2
schema 11-1
schema tables 11-6
WebLogic Utilities
JSP tags descriptions 1-9
JSP tags reference 12-82
WLCS BOOKMARKS Database Table
11-10
WLCS CATEGORIES Database Table
11-11
WLCS COLUMN INFORMATION
Database Table 11-11
WLCS_DOCUMENT Database Table 11-12
WLCS DOCUMENT METADATA
Database Table 11-13
WLCS _ENTITY ID Database Table 11-14
WLCS_GROUP Database Table 11-15
WLCS _GROUP _HIERARCHY Database

Table 11-15

WLCS_GROUP_PERSONALIZATION

Database Table 11-16

WLCS IS ALIVE Database Table 11-17
WLCS LDAP_CONFIG Database Table

11-18

WLCS PROP _BOOLEAN Database Table

11-18

WLCS PROP DATETIME Database Table

11-19
WLCS PROP _FLOAT Database Table
11-19

WLCS PROP_ID Database Table 11-20
WLCS PROP_INTEGER Database Table

11-21

WLCS PROP_MD Database Table 11-21
WLCS PROP MD BOOLEAN Database

Table 11-22

WLCS PROP MD DATETIME Database

Table 11-23

WLCS PROP MD FLOAT Database Table

11-23

WLCS_PROP_MD INTEGER Database

Table 11-24

WLCS PROP MD TEXT Database Table

11-24
WLCS_PROP_MD USER DEFINED
Database Table 11-25

WLCS PROP_TEXT Database Table 11-25
WLCS PROP USER DEFINED Database

Table 11-26

WLCS RULESET DEFINITION Database

Table 11-27

WLCS_SCHEMA Database Table 11-27
WLCS_SEQUENCER Database Table 11-28

WLCS_TODO Database Table 11-28
WLCS _UIDS Database Table 11-29
WLCS_UNIFIED PROFILE TYPE
Database Table 11-29
WLCS_USER Database Table 11-30

WLCS USER GROUP_CACHE Database

Guide to Building Personalized Applications

Table 11-31
WLCS_USER GROUP_HIERARCHY
Database Table 11-31
WLCS_USER PERSONALIZATION
Database Table 11-32
WLCS UUP _EXAMPLE Database Table
11-33
<wl:process>
description 1-9
reference 12-82
<wl:repeat>
description 1-9
reference 12-84

Guide to Building Personalized Applications

10

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Personalization Development
	Personalization Server Run-Time Architecture
	Advisor
	Portal Management
	User Management
	Content Management
	Rules Management
	Foundation Classes and Utilities

	JSP Tags
	Integration of External Components
	Support for Native Types

	2 Creating Personalized Applications with the Advisor
	What Is the Advisor?
	The Advisor Delivers Content to a Personalized Application
	The Advisor Provides Information About User Classifications
	You Can Use the Advisor in One of Two Ways

	The WLPS Advisor Architecture
	Writing Custom Advislets and Registering Them Using the Advislet Registry
	Writing a Custom Advislet
	Understanding the Advislet Registry
	Registering a Single Advislet
	Advislet Chaining
	Registering a Compound Advislet

	Creating Personalized Applications with the Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Example

	Selecting Content with the <pz:contentQuery> JSP Tag
	Example

	Matching Content to Users with the <pz:contentSelector> JSP Tag
	Example

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Querying a Content Management System with the Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	3 Introducing the Rules Manager
	What Is the Rules Manager?
	Well-known Objects
	How the Rules Engine Works
	What Are Rule Sets?
	Classifier Rules
	The AND and OR operators

	Content Selector Rules
	Debugging Rule Sets
	What Is the Relationship Between Property Sets and Rules?
	Content Type and Content Selector Rules

	Configuring the Rules Framework
	The RulesManager Deployment Descriptor
	The rules-common.properties file
	Rules Framework Debugging
	Rule Set TTL
	Rules Engine Listeners
	Rules Engine Expression Caching Optimizations
	Rules Engine Error Handling and Reporting
	JSP Tag Properties
	Rules Manager Properties
	Expression Evaluation Settings

	4 Working with Content Selectors
	What Are Content Selectors?
	Using Content-Selector Tags and Associated JSP Tags
	Attributes of the <pz:contentSelector> Tag
	Identify the Content Selector Definition
	Identify the JNDI Home for the Content Management System
	Define the Array That Contains Query Results
	Create and Configure the Cache to Improve Performance

	Associated Tags That Support Content Selectors
	Common Uses of Content-Selector Tags and Associated Tags
	To Retrieve and Display Text-Type Documents
	To Retrieve and Display Image-Type Documents
	To Retrieve and Display a List of Documents
	To Access a Content-Selector Cache on a Different JSP

	How Content Selectors Select Documents

	5 Foundation Classes and Utilities
	Flow Manager
	Dynamic Flow Determination and Handling
	How the FlowManager Works

	Property Set Usage
	destinationdeterminer Property
	destinatationhandler Property
	ttl (time-to-live) Property
	Creating a New Property Set
	Set Parameters for Your Portal or Application

	Webflow
	Accessing Your Application via the Flow Manager

	Repository
	HTTP Handling
	Personalization Request Object
	Default Request Property Set

	Personalization Session Object
	Default Session Property Set

	Utilities
	JspHelper
	JspBase
	P13NJSPHelper
	P13NJspBase
	ContentHelper
	CommercePropertiesHelper

	Utilities in commerce.util Package
	ExpressionHelper
	TypesHelper

	6 Creating and Managing Property Sets
	Overview of Property Sets
	Property Value Retrieval via ConfigurableEntity
	Using the Property Set Management Tool
	Creating Property Sets
	Creating Properties Within a Property Set
	Setting Up the Property Default Value

	Editing Property Sets
	Editing Properties Within a Property Set
	Deleting Property Sets
	Deleting Properties

	7 Creating and Managing Users
	Overview of User Management
	Users and Groups
	Unified User Profiles
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4
	Setting Properties Explicitly or Implicitly

	Using WebLogic Realms
	Ensure Properties Are Set in the BEA WebLogic Personalization Server’s commerce.properties File
	Verify That the Realm Is Active
	Implementing a New Custom Realm

	Anonymous User Profiles
	Privacy Statement
	User Manager
	Using the User Management Tool
	Creating Groups
	Deleting Groups
	Adding Users to Groups
	Removing Users from Groups
	Editing Group Property Values
	Creating User
	Editing User Property Values
	Deleting Users
	Creating Unified Profile Types
	Editing Unified Profile Types
	Deleting Unified Profile Types

	Using the LDAP Realm
	Setting up LDAP in the WLS Administration Console
	Creating the LDAP Realm
	The General Tab
	The LDAP Tab
	The Users Tab
	The Groups Tab

	Specifying/Creating the Caching Realm
	Verifying the LDAP Properties in config.xml
	Example

	Startup WebLogic Commerce Server
	Registering User Attributes for Retrieval from LDAP
	Registering LDAP Properties for Use With Rules

	Unregistering User Attributes for Retrieval from LDAP
	Registering Group Attributes for Retrieval from LDAP
	Unregistering Group Attributes for Retrieval from LDAP
	Viewing LDAP Configuration Settings

	Using Other Realms
	Selecting Groups for Use in the WebLogic Personalization Server from the Realm
	Mapping Realm Groups to the WebLogic Personalization Server
	Deleting Groups from Your Database
	Deleting User Records That Do Not Exist in the Realm from the Personalization Database

	8 Creating and Managing Content
	What Is the Content Manager?
	Choosing a Content Engine
	Running Querys Against the Content Repository
	Methods for Retrieving and Displaying Documents
	Constructing Queries Using Java
	Differences Between Content Management and Document Management
	Using the Document Servlet
	Example 1: Usage in a JSP
	Example 2: Usage in a JSP

	JSP Tags

	Configuring the Content Manager
	Configuring the DocumentSchema EJB Deployment Descriptor
	Configuring the DocumentManager EJB Deployment Descriptor
	Setting Up Connection Pools
	Example Connection Pool Entry

	Configuring WebLogic Commerce Properties
	Using the Show Document Servlet
	Querying Document Content
	Structuring a Query
	Using Comparison Operators to Construct Queries
	Using the BulkLoader to Load File-based Content
	Command-Line Usage
	How the BulkLoader Finds Files
	How the BulkLoader Finds Metadata Properties
	Cleaning Up the Database
	Loading Internationalized Documents
	Generating Schema Files

	Using Content Management JSP Tags
	Content Cache
	readOnly Content Tag
	Object Interfaces

	9 Working with Ad Placeholders
	What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?
	Ad Placeholders
	Types of Queries That Ad Placeholders Run
	Types of Documents That Ad Placeholders Display

	Ad Attributes in the Content Management System
	Ad Placeholder JSP Tags
	The <ad:adTarget> JSP Tag

	Resolving Ad Query Conflicts
	How Ad Placeholders Contain Multiple Queries
	How the Ad Conflict Resolver Chooses a Query
	How an Ad Placeholder Chooses from Ad Query Results

	Creating Ad Placeholder Tags
	To Create an Ad Placeholder Tag

	Supporting Additional MIME Types
	Add the New Type to the Deployment Descriptor
	Create and Compile a Java Class to Generate HTML
	Register the New Class in weblogiccommerce.properties

	How Placeholders Select and Display Ads

	10 Creating Localized Applications with the Internationalization Tags
	What Is the I18N Framework?
	Localizing Your JSP
	<i18n:getMessage>
	<i18n:localize>
	The JspMessageBundle
	How the Localization Tag Works

	Character Encoding
	Displaying More Than One Character Set on a Page
	Default Character Encodings

	Steps for Localizing Your Application
	Code Examples
	Using the JSP Internationalization Framework with JavaScript
	Using the JSP Internationalization Framework with Java Scriptlets

	Localizing the BEA WebLogic Personalization Server
	Static Text
	Constructed Messages
	Resource Bundles Used in the WebLogic Personalization Server Tools
	Localizing System Messages

	11 The WebLogic Personalization Server Database Schema
	The Entity-Relation Diagram
	List of Tables Comprising the WebLogic Personalization Server
	The Personalization Server Data Dictionary
	The AD_BUCKET Database Table
	The AD_COUNT Database Table
	The PLACEHOLDER Database Table
	The PLACEHOLDER _PREVIEW Database Table
	The WLCS_BOOKMARKS Database Table
	The WLCS_CATEGORIES Database Table
	The WLCS_COLUMN_INFORMATION Database Table
	The WLCS_DOCUMENT Database Table
	The WLCS_DOCUMENT_METADATA Database Table
	The WLCS_ENTITY_ID Database Table
	The WLCS_GROUP Database Table
	The WLCS_GROUP_HIERARCHY Database Table
	The WLCS_GROUP_PERSONALIZATION Database Table
	The WLCS_IS_ALIVE Database Table
	The WLCS_LDAP_CONFIG Database Table
	The WLCS_PROP_BOOLEAN Database Table
	The WLCS_PROP_DATETIME Database Table
	The WLCS_PROP_FLOAT Database Table
	The WLCS_PROP_ID Database Table
	The WLCS_PROP_INTEGER Database Table
	The WLCS_PROP_MD Database Table
	The WLCS_PROP_MD_BOOLEAN Database Table
	The WLCS_PROP_MD_DATETIME Database Table
	The WLCS_PROP_MD_FLOAT Database Table
	The WLCS_PROP_MD_INTEGER Database Table
	The WLCS_PROP_MD_TEXT Database Table
	The WLCS_PROP_MD_USER_DEFINED Database Table
	The WLCS_PROP_TEXT Database Table
	The WLCS_PROP_USER_DEFINED Database Table
	The RULESET Database Table
	The WLCS_RULESET_DEFINITION Database Table
	The WLCS_SCHEMA Database Table
	The WLCS_SEQUENCER Database Table
	The WLCS_TODO Database Table
	The WLCS_UIDS Database Table
	The WLCS_UNIFIED_PROFILE_TYPE Database Table
	The WLCS_USER Database Table
	The WLCS_USER_GROUP_CACHE Database Table
	The WLCS_USER_GROUP_HIERARCHY Database Table
	The WLCS_USER_PERSONALIZATION Database Table
	The WLCS_UUP_EXAMPLE Database Table

	The SQL Scripts Used to Create the Database
	Cloudscape
	Oracle
	SQL Server

	Defined Constraints

	12 Personalization Server JSP Tag Library Reference
	Ads
	<ad:adTarget>

	Content Management
	<cm:getProperty>
	Example

	<cm:printDoc>
	Example

	<cm:printProperty>
	Example

	<cm:select>
	Example

	<cm:selectById>
	Example

	Flow Manager
	<fm:getApplicationURI>
	Example

	<fm:getCachedAttribute>
	Example

	<fm:getSessionAttribute>
	Example

	<fm:removeCachedAttribute>
	Example

	<fm:removeSessionAttribute>
	Example

	<fm:setCachedAttribute>
	Example

	<fm:setSessionAttribute>
	Example

	Internationalization
	<i18n:localize>
	Example

	<i18n:getMessage>
	Example

	Personalization Tags
	<pz:contentQuery>
	Example

	<pz:contentSelector>
	Specify a Value for contentHome
	Example

	<pz:div>
	Example

	Placeholders
	<ph:placeholder>

	Property Sets
	<ps:getPropertyNames>
	Example

	<ps:getPropertySetNames>

	User Management: Profile Management Tags
	<um:getProfile>
	Example 1
	Example 2
	Example 3

	<um:getProperty>
	Example 1
	Example 2

	<um:getPropertyAsString>
	Example

	<um:removeProperty>
	Example

	<um:setProperty>
	Example

	User Management: Group-User Management Tags
	<um:addGroupToGroup>
	Example

	<um:addUserToGroup>
	Example

	<um:changeGroupName>
	Example

	<um:createGroup>
	Example

	<um:createUser>
	Example

	<um:getChildGroupNames>
	<um:getChildGroups>
	Example

	<um:getGroupNamesForUser>
	Example

	<um:getParentGroupName>
	Example

	<um:getTopLevelGroups>
	Example

	<um:getUsernames>
	Example

	<um:getUsernamesForGroup>
	Example

	<um:removeGroup>
	Example

	<um:removeGroupFromGroup>
	<um:removeUser>
	Example

	<um:removeUserFromGroup>

	User Management: Security Tags
	<um:login>
	<um:logout>
	<um:setPassword>

	Personalization Utilities
	<es:counter>
	Example

	<es:date>
	Example

	<es:forEachInArray>
	Example

	<es:isNull>
	Example

	<es:monitorSession>
	Example

	<es:notNull>
	Example

	<es:simpleReport>
	Example

	<es:transposeArray>
	Example

	<es:uriContent>
	Example

	WebLogic Utilities
	<wl:process>
	Example

	<wl:repeat>
	<wl:cache>
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

