
BEA WebLogic Personalization Server

B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 5
D o c u m e n t E d i t i o n 3 . 5

M a r c h 2 0 0 2

Guide to Building
 Personalized Applications

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Guide to Building Personalized Applications

Document Edition Date Software Version

3.5.2 March 2002 BEA WebLogic Commerce Server 3.5
BEA Weblogic Personalization Server 3.5

Guide to Building Personalized Applications iii

Contents

About This Document
What You Need to Know .. xviii
e-docs Web Site... xix
How to Print the Document... xix
Contact Us! ..xx
Documentation Conventions ... xxi

1. Overview of Personalization Development
Personalization Server Run-Time Architecture... 1-2

Advisor ... 1-3
Portal Management .. 1-3
User Management .. 1-3
Content Management ... 1-4
Rules Management... 1-4
Foundation Classes and Utilities .. 1-4

JSP Tags .. 1-4
Integration of External Components ... 1-10
Support for Native Types .. 1-11

2. Creating Personalized Applications with the Advisor
What Is the Advisor? ... 2-2

The Advisor Delivers Content to a Personalized Application 2-2
The Advisor Provides Information About User Classifications................. 2-3
You Can Use the Advisor in One of Two Ways .. 2-4

The WLPS Advisor Architecture .. 2-4
Writing Custom Advislets and Registering Them Using the Advislet Registry2-6

Writing a Custom Advislet... 2-6

iv Guide to Building Personalized Applications

Understanding the Advislet Registry.. 2-7
Registering a Single Advislet ... 2-7
Advislet Chaining... 2-8
Registering a Compound Advislet.. 2-8

Creating Personalized Applications
with the Advisor JSP Tags ... 2-9
Classifying Users with the JSP <pz:div> Tag .. 2-10

Example... 2-11
Selecting Content with the <pz:contentQuery> JSP Tag 2-11

Example... 2-11
Matching Content to Users with the <pz:contentSelector> JSP Tag 2-12

Example... 2-12
Creating Personalized Applications with the Advisor Session Bean 2-13

Classifying Users with the Advisor Session Bean 2-15
Querying a Content Management System with the Advisor Session Bean.....

2-16
Matching Content to Users with the Advisor Session Bean..................... 2-17

3. Introducing the Rules Manager
What Is the Rules Manager?.. 3-2

Well-known Objects... 3-2
How the Rules Engine Works .. 3-3
What Are Rule Sets? .. 3-4
Classifier Rules... 3-5

The AND and OR operators.. 3-6
Content Selector Rules ... 3-6
Debugging Rule Sets .. 3-7

What Is the Relationship Between Property Sets and Rules? 3-7
Content Type and Content Selector Rules .. 3-8

Configuring the Rules Framework .. 3-9
The RulesManager Deployment Descriptor... 3-9
The rules-common.properties file .. 3-10

Rules Framework Debugging.. 3-10
Rule Set TTL... 3-11
Rules Engine Listeners.. 3-11

Guide to Building Personalized Applications v

Rules Engine Expression Caching Optimizations 3-11
Rules Engine Error Handling and Reporting 3-12
JSP Tag Properties .. 3-12
Rules Manager Properties ... 3-13
Expression Evaluation Settings... 3-13

4. Working with Content Selectors
What Are Content Selectors? .. 4-2
Using Content-Selector Tags and Associated JSP Tags.................................... 4-3

Attributes of the <pz:contentSelector> Tag ... 4-3
Identify the Content Selector Definition... 4-3
Identify the JNDI Home for the Content Management System.......... 4-4
Define the Array That Contains Query Results 4-5
Create and Configure the Cache to Improve Performance 4-5

Associated Tags That Support Content Selectors 4-7
Common Uses of Content-Selector Tags and Associated Tags................. 4-8

To Retrieve and Display Text-Type Documents 4-8
To Retrieve and Display Image-Type Documents.............................. 4-9
To Retrieve and Display a List of Documents.................................. 4-11
To Access a Content-Selector Cache on a Different JSP.................. 4-12

How Content Selectors Select Documents .. 4-13

5. Foundation Classes and Utilities
Flow Manager.. 5-2

Dynamic Flow Determination and Handling ... 5-2
How the FlowManager Works .. 5-3

Property Set Usage ... 5-5
destinationdeterminer Property ... 5-5
destinatationhandler Property ... 5-5
 ttl (time-to-live) Property ... 5-6
Creating a New Property Set... 5-6
Set Parameters for Your Portal or Application 5-7

Webflow... 5-7
Accessing Your Application via the Flow Manager 5-8

Repository.. 5-8

vi Guide to Building Personalized Applications

HTTP Handling ... 5-9
Personalization Request Object ... 5-9

Default Request Property Set ... 5-10
Personalization Session Object ... 5-12

Default Session Property Set .. 5-12
Utilities .. 5-14

JspHelper .. 5-14
JspBase ... 5-14
P13NJSPHelper .. 5-15
P13NJspBase .. 5-15
ContentHelper... 5-15
CommercePropertiesHelper ... 5-15

Utilities in commerce.util Package .. 5-16
ExpressionHelper ... 5-16
TypesHelper ... 5-16

6. Creating and Managing Property Sets
Overview of Property Sets... 6-2
Property Value Retrieval via ConfigurableEntity ... 6-6
Using the Property Set Management Tool .. 6-9

Creating Property Sets.. 6-9
Creating Properties Within a Property Set ... 6-10

Setting Up the Property Default Value ... 6-11
Editing Property Sets.. 6-12
Editing Properties Within a Property Set ... 6-13
Deleting Property Sets.. 6-13
Deleting Properties ... 6-14

7. Creating and Managing Users
Overview of User Management... 7-2
Users and Groups... 7-3
Unified User Profiles ... 7-4

Configuration 1... 7-6
Configuration 2... 7-7
Configuration 3... 7-8

Guide to Building Personalized Applications vii

Configuration 4 .. 7-9
Setting Properties Explicitly or Implicitly ... 7-10

Using WebLogic Realms... 7-20
Ensure Properties Are Set in the BEA WebLogic Personalization

Server�s commerce.properties File .. 7-21
Verify That the Realm Is Active ... 7-21

Implementing a New Custom Realm ... 7-22
Anonymous User Profiles.. 7-23
Privacy Statement.. 7-24
User Manager .. 7-25
Using the User Management Tool... 7-27

Creating Groups ... 7-27
Deleting Groups ... 7-28
Adding Users to Groups ... 7-29
Removing Users from Groups.. 7-31
Editing Group Property Values .. 7-32
Creating User.. 7-33
Editing User Property Values... 7-35
Deleting Users .. 7-37
Creating Unified Profile Types .. 7-38
Editing Unified Profile Types .. 7-40
Deleting Unified Profile Types .. 7-40

Using the LDAP Realm... 7-41
Setting up LDAP in the WLS Administration Console 7-41

Creating the LDAP Realm .. 7-41
The General Tab.. 7-41
The LDAP Tab.. 7-41
The Users Tab ... 7-42
The Groups Tab .. 7-43

Specifying/Creating the Caching Realm .. 7-43
Verifying the LDAP Properties in config.xml ... 7-44

Example .. 7-45
Startup WebLogic Commerce Server .. 7-45
Registering User Attributes for Retrieval from LDAP 7-46

Registering LDAP Properties for Use With Rules............................ 7-47

viii Guide to Building Personalized Applications

Unregistering User Attributes for Retrieval from LDAP......................... 7-47
Registering Group Attributes for Retrieval from LDAP.......................... 7-48
Unregistering Group Attributes for Retrieval from LDAP 7-48
Viewing LDAP Configuration Settings.. 7-49

Using Other Realms... 7-50
Selecting Groups for Use in the WebLogic Personalization Server from the

Realm .. 7-50
Mapping Realm Groups to the WebLogic Personalization Server 7-51
Deleting Groups from Your Database.. 7-52
Deleting User Records That Do Not Exist in the Realm from the

Personalization Database... 7-53

8. Creating and Managing Content
What Is the Content Manager? .. 8-2

Choosing a Content Engine .. 8-2
Running Querys Against the Content Repository 8-3
Methods for Retrieving and Displaying Documents 8-4
Constructing Queries Using Java ... 8-7
Differences Between Content Management and Document Management. 8-7
Using the Document Servlet... 8-8

Example 1: Usage in a JSP.. 8-9
Example 2: Usage in a JSP.. 8-9

JSP Tags ... 8-10
Configuring the Content Manager .. 8-10

Configuring the DocumentSchema EJB Deployment Descriptor 8-11
Configuring the DocumentManager EJB Deployment Descriptor 8-12
Setting Up Connection Pools.. 8-13

Example Connection Pool Entry ... 8-15
Configuring WebLogic Commerce Properties... 8-16
Using the Show Document Servlet... 8-17
Querying Document Content.. 8-17
Structuring a Query .. 8-18
Using Comparison Operators to Construct Queries 8-20
Using the BulkLoader to Load File-based Content.................................. 8-21

Command-Line Usage... 8-22

Guide to Building Personalized Applications ix

How the BulkLoader Finds Files .. 8-24
How the BulkLoader Finds Metadata Properties 8-25
Cleaning Up the Database... 8-27
Loading Internationalized Documents .. 8-27
Generating Schema Files .. 8-28

Using Content Management JSP Tags ... 8-28
Content Cache ... 8-28
readOnly Content Tag... 8-29
Object Interfaces ... 8-30

9. Working with Ad Placeholders
What Are Ad Placeholders, Ad Attributes, and Placeholder Tags? 9-2

Ad Placeholders.. 9-2
Types of Queries That Ad Placeholders Run...................................... 9-3
Types of Documents That Ad Placeholders Display 9-3

Ad Attributes in the Content Management System.................................... 9-4
Ad Placeholder JSP Tags ... 9-8
The <ad:adTarget> JSP Tag... 9-9

Resolving Ad Query Conflicts .. 9-10
How Ad Placeholders Contain Multiple Queries..................................... 9-11
How the Ad Conflict Resolver Chooses a Query..................................... 9-12
How an Ad Placeholder Chooses from Ad Query Results....................... 9-13

Creating Ad Placeholder Tags... 9-14
To Create an Ad Placeholder Tag .. 9-14

Supporting Additional MIME Types... 9-18
Add the New Type to the Deployment Descriptor................................... 9-18
Create and Compile a Java Class to Generate HTML 9-20
Register the New Class in weblogiccommerce.properties 9-20

How Placeholders Select and Display Ads ... 9-22

10. Creating Localized
Applications with the Internationalization Tags

What Is the I18N Framework? .. 10-2
Localizing Your JSP.. 10-3

<i18n:getMessage> .. 10-4

x Guide to Building Personalized Applications

<i18n:localize>... 10-4
The JspMessageBundle ... 10-5
How the Localization Tag Works ... 10-5

Character Encoding .. 10-6
Displaying More Than One Character Set on a Page........................ 10-7
 Default Character Encodings ... 10-7

Steps for Localizing Your Application... 10-9
Code Examples... 10-10

Using the JSP Internationalization Framework with JavaScript 10-10
Using the JSP Internationalization Framework with Java Scriptlets

10-11
Localizing the BEA WebLogic Personalization Server 10-11

Static Text... 10-13
Constructed Messages .. 10-13
Resource Bundles Used in the

WebLogic Personalization Server Tools... 10-14
Localizing System Messages .. 10-14

11. The WebLogic Personalization Server Database Schema
The Entity-Relation Diagram .. 11-1
List of Tables Comprising the WebLogic Personalization Server 11-6
The Personalization Server Data Dictionary ... 11-7

The AD_BUCKET Database Table ... 11-8
The AD_COUNT Database Table.. 11-8
The PLACEHOLDER Database Table .. 11-9
The PLACEHOLDER _PREVIEW Database Table 11-10
The WLCS_BOOKMARKS Database Table .. 11-10
The WLCS_CATEGORIES Database Table ... 11-11
The WLCS_COLUMN_INFORMATION Database Table................... 11-11
The WLCS_DOCUMENT Database Table ... 11-12
The WLCS_DOCUMENT_METADATA Database Table................... 11-13
The WLCS_ENTITY_ID Database Table ... 11-14
The WLCS_GROUP Database Table .. 11-15
The WLCS_GROUP_HIERARCHY Database Table 11-15
The WLCS_GROUP_PERSONALIZATION Database Table.............. 11-16

Guide to Building Personalized Applications xi

The WLCS_IS_ALIVE Database Table .. 11-17
The WLCS_LDAP_CONFIG Database Table 11-18
The WLCS_PROP_BOOLEAN Database Table................................... 11-18
The WLCS_PROP_DATETIME Database Table 11-19
The WLCS_PROP_FLOAT Database Table... 11-19
The WLCS_PROP_ID Database Table.. 11-20
The WLCS_PROP_INTEGER Database Table..................................... 11-21
The WLCS_PROP_MD Database Table ... 11-21
The WLCS_PROP_MD_BOOLEAN Database Table 11-22
The WLCS_PROP_MD_DATETIME Database Table......................... 11-23
The WLCS_PROP_MD_FLOAT Database Table 11-23
The WLCS_PROP_MD_INTEGER Database Table 11-24
The WLCS_PROP_MD_TEXT Database Table 11-24
The WLCS_PROP_MD_USER_DEFINED Database Table 11-25
The WLCS_PROP_TEXT Database Table.. 11-25
The WLCS_PROP_USER_DEFINED Database Table 11-26
The RULESET Database Table ... 11-26
The WLCS_RULESET_DEFINITION Database Table........................ 11-27
The WLCS_SCHEMA Database Table ... 11-27
The WLCS_SEQUENCER Database Table .. 11-28
The WLCS_TODO Database Table... 11-28
The WLCS_UIDS Database Table .. 11-29
The WLCS_UNIFIED_PROFILE_TYPE Database Table.................... 11-29
The WLCS_USER Database Table.. 11-30
The WLCS_USER_GROUP_CACHE Database Table 11-31
The WLCS_USER_GROUP_HIERARCHY Database Table............... 11-31
The WLCS_USER_PERSONALIZATION Database Table................. 11-32
The WLCS_UUP_EXAMPLE Database Table..................................... 11-33

The SQL Scripts Used to Create the Database.. 11-34
Cloudscape ... 11-34
Oracle ... 11-35
SQL Server... 11-37

Defined Constraints ... 11-38

xii Guide to Building Personalized Applications

12. Personalization Server JSP Tag Library Reference
Ads... 12-4

<ad:adTarget> .. 12-4
Content Management... 12-6

<cm:getProperty>... 12-6
Example... 12-8

<cm:printDoc> ... 12-9
Example... 12-10

 <cm:printProperty> ... 12-11
Example... 12-12

<cm:select> .. 12-13
Example... 12-15

<cm:selectById> .. 12-16
Example... 12-18

Flow Manager.. 12-19
<fm:getApplicationURI> ... 12-19

Example... 12-20
<fm:getCachedAttribute>... 12-20

Example... 12-20
<fm:getSessionAttribute> .. 12-21

Example... 12-21
<fm:removeCachedAttribute>.. 12-22

Example... 12-22
<fm:removeSessionAttribute> ... 12-22

Example... 12-23
<fm:setCachedAttribute> ... 12-23

Example... 12-24
<fm:setSessionAttribute>... 12-24

Example... 12-25
Internationalization .. 12-25

<i18n:localize>... 12-25
Example... 12-27

<i18n:getMessage> .. 12-28
Example... 12-29

Personalization Tags.. 12-31

Guide to Building Personalized Applications xiii

<pz:contentQuery>... 12-31
Example .. 12-33

<pz:contentSelector>.. 12-34
Specify a Value for contentHome... 12-37
Example .. 12-38

<pz:div> ... 12-39
Example .. 12-39

Placeholders... 12-40
<ph:placeholder>.. 12-40

Property Sets.. 12-42
<ps:getPropertyNames>... 12-42

Example .. 12-43
<ps:getPropertySetNames>.. 12-43

User Management:
Profile Management Tags .. 12-44
<um:getProfile> ... 12-45

Example 1 ... 12-47
Example 2 ... 12-47
Example 3 ... 12-48

<um:getProperty> .. 12-48
Example 1 ... 12-49
Example 2 ... 12-49

<um:getPropertyAsString> .. 12-50
Example .. 12-50

<um:removeProperty> ... 12-51
Example .. 12-51

<um:setProperty>... 12-52
Example .. 12-52

User Management:
Group-User Management Tags .. 12-53
<um:addGroupToGroup> .. 12-53

Example .. 12-54
<um:addUserToGroup> ... 12-54

Example .. 12-55
<um:changeGroupName> .. 12-56

xiv Guide to Building Personalized Applications

Example... 12-56
<um:createGroup>.. 12-57

Example... 12-58
<um:createUser> .. 12-58

Example... 12-59
<um:getChildGroupNames> .. 12-60
<um:getChildGroups>.. 12-60

Example... 12-61
<um:getGroupNamesForUser> .. 12-61

Example... 12-61
<um:getParentGroupName> .. 12-62

Example... 12-62
<um:getTopLevelGroups> ... 12-63

Example... 12-63
<um:getUsernames>... 12-63

Example... 12-65
<um:getUsernamesForGroup>... 12-66

Example... 12-67
<um:removeGroup> ... 12-67

Example... 12-68
<um:removeGroupFromGroup> .. 12-68
<um:removeUser>.. 12-69

Example... 12-70
<um:removeUserFromGroup>... 12-70

User Management: Security Tags.. 12-71
<um:login> ... 12-72
<um:logout> ... 12-73
<um:setPassword>.. 12-73

Personalization Utilities... 12-75
<es:counter> ... 12-75

Example... 12-75
<es:date> .. 12-76

Example... 12-76
<es:forEachInArray>.. 12-76

Example... 12-77

Guide to Building Personalized Applications xv

<es:isNull> ... 12-77
Example .. 12-77

<es:monitorSession> .. 12-78
Example .. 12-78

<es:notNull>... 12-79
Example .. 12-79

<es:simpleReport> ... 12-79
Example .. 12-80

 <es:transposeArray> ... 12-80
Example .. 12-80

<es:uriContent>.. 12-81
Example .. 12-81

WebLogic Utilities .. 12-82
<wl:process> .. 12-82

Example .. 12-83
<wl:repeat> .. 12-84
<wl:cache> ... 12-84

Index

xvi Guide to Building Personalized Applications

Guide to Building Personalized Applications xvii

About This Document

This document explains how to use the BEA WebLogic Personalization ServerTM to
create personalized applications for use in an e-commerce site.

This document includes the following topics:

� Chapter 1, �Overview of Personalization Development,� provides developer
components and utilities that enable developers to create personalized
applications. The pieces documented in this guide include the Advisor,
Foundation classes and utilities, and JSP tag reference.

� Chapter 2, �Creating Personalized Applications with the Advisor,� recommends
content and performs several important functions in creating a personalized
application, including searching for content, tying the other core personalization
services together, and matching content to user profiles.

� Chapter 3, �Introducing the Rules Manager,� discusses how the Rules
Management component allows developers to create business rules that turn on
and off content and match content to users according to their profile information.

� Chapter 4, �Working with Content Selectors,� shows how a Business Analyst
(BA) can use content selectors to specify conditions under which WebLogic
Personalization Server retrieves one or more documents.

� Chapter 5, �Foundation Classes and Utilities,� describes the Foundation, a set of
miscellaneous utilities to aid JSP and Java developers in the development of
personalized applications using the WebLogic Personalization Server. Its utilities
include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to
Advisor services.

� Chapter 6, �Creating and Managing Property Sets,�discusses how Property Set
Management allows you to create property sets, the schema of personalization
attributes, and the properties that make up property sets.

xviii Guide to Building Personalized Applications

� Chapter 7, �Creating and Managing Users,� discusses how User Management
joins enterprise data about users with profile data that is used to personalize the
user�s view of the application.

� Chapter 8, �Creating and Managing Content,� documents how the Content
Manager provides content and document management capabilities for use in
personalization services. The Content Manager works with files or with content
managed by third-party vendor tools

� Chapter 9, �Working with Ad Placeholders,� shows how ad placeholders
display documents that advertise products or services (ads) and record customer
reactions to them.

� Chapter 10, �Creating Localized Applications with the Internationalization
Tags,� provides a simple framework that allows access to localized text and
messages. The internationalization (I18N) framework is accessible from JSP
through a small I18N tag library.

� Chapter 11, �The WebLogic Personalization Server Database Schema,�
documents the database schema for the WebLogic Personalization Server.

� Chapter 12, �Personalization Server JSP Tag Library Reference,� describes the
JSP tags included with WebLogic Personalization Server that allow developers
to create personalized applications without having to program using Java.

What You Need to Know

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an e-commerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with related Web technologies as
described below. The topics in this document are organized primarily around the
development goals and tasks needed to accomplish them, specifically for the:

� JavaServer Page (JSP) developer, who creates JSPs using the tags provided or by
creating custom tags as needed.

� System analyst, or database administrator, who writes rules, designs schemas,
optimizes SQL and monitors usage.

Guide to Building Personalized Applications xix

� System administrator , who installs, configures, deploys, and monitors the Web
application server.

� Java developer, who extends or modifies the Enterprise Java Bean (EJB)
components that make up the WebLogic Personalization Server engine, if that
level of customization is desired.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the �e-docs�
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File�>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic
Personalization Server documentation Home page, click the PDF files button and
select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

xx Guide to Building Personalized Applications

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Personalization Server release 3.5.

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSUPPORT at www.bea.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Guide to Building Personalized Applications xxi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

xxii Guide to Building Personalized Applications

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Guide to Building Personalized Applications 1-1

CHAPTER

1 Overview of
Personalization
Development

WebLogic Personalization Server provides developers with the ability to create
personalized applications for e-commerce Web sites. This topic provides a broad
overview of personalization development for Java and JSP developers.

This topic includes the following sections:

� Personalization Server Run-Time Architecture

� Advisor

� Portal Management

� User Management

� Content Management

� Rules Management

� Foundation Classes and Utilities

� JSP Tags

� Integration of External Components

� Support for Native Types

1 Overview of Personalization Development

1-2 Guide to Building Personalized Applications

Personalization Server Run-Time
Architecture

The WebLogic Personalization Server run-time architecture is designed to support a
variety of personalized applications. These applications can be built on the
portal/portlet infrastructure, on the tags and EJBs supplied by the Advisor, and on
select tags and EJBs supplied by other personalization server components.

The following high-level architecture picture may be used to visualize the
relationships between the components.

Personalization Server Run-Time Architecture

Guide to Building Personalized Applications 1-3

The personalized application is one built by the developer to use the personalization
components. It may consist of a portal instance with JSP portlets, a set of traditional
JSP pages or servlets, and/or code that accesses EJB objects directly.

Advisor

The Advisor component is the primary interface to the most common operations that
personalized applications will use. It provides access through tags or a single EJB
session bean. Specific functionality provided by the Advisor includes classifying
users, selecting content based on user properties, and querying content management
directly. The Advisor uses the Foundation, User Management, Rules Service, and
Content Management components.

Portal Management

The Portal Management component provides tags and EJB objects to support creating
a framework of portals and portlets. It is configured using the Portal Administration
Tools and has embedded JSP fragments built by the developer. For additional
information about Portal Management, see the Guide to Creating Portals and Portlets.

User Management

The User Management component supports the run-time access of users, groups, and
the relationships between them. The notion of property sets is embedded within the
user and group property access scheme. This component is set up using the User
Management Administration tools and supports access via JSP tags or direct access to
EJB objects. A Unified User Profile may be built by the developer, extending the User
EJB object, to provide custom data source access to user property values.

1 Overview of Personalization Development

1-4 Guide to Building Personalized Applications

Content Management

The Content Management component provides the run-time API by which content is
queried and retrieved. The functionality of this component is accessible via tags. The
content retrieval functionality is provided using either the provided reference
implementation or third-party content retrieval products.

Rules Management

The Rules Management component is the run-time service that runs the rules that are
built in the E-Business Control Center Adminstration Tool.

Foundation Classes and Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to Advisor
services.

JSP Tags

The JSP tags included with WebLogic Personalization Server (Table 1-1) allow
developers to create personalized applications without having to program using Java.

Table 1-1 JavaServer Page JSP Tags Overview

Library Tag Description

Ads <ad:adTarget> Queries the content management system
and displays ads.

JSP Tags

Guide to Building Personalized Applications 1-5

Content Management <cm:getProperty> Retrives the value of the specified content
metadata property.

<cm:printDoc> Inlines the raw bytes of a document object
into the JSP output stream.

<cm:printProperty> Inlines the value of the specified content
metadata property as a string.

<cm:select> Selects content based on a search
expression query syntax.

<cm:selectById> Retrieves content using the content�s
unique identifier.

Flow Manager <fm:getApplicationURI> Gets the Flow Manager.

<fm:getCachedAttribute> Gets an attribute out of the session/global
cache.

<fm:setCachedAttribute> Sets an attribute in the session/global
cache.

<fm:removeCachedAttribute> Removes an attribute from the
session/global cache.

<fm:getSessionAttribute> Gets an attribute out of the HttpSession.

<fm:setSessionAttribute> Sets an attribute in the HttpSession.

<fm:removeSessionAttribute> Removes an attribute from the
HttpSession.

Internationalization <i18n:localize> Defines the language, country, variant, and
base bundle name to be used throughout a
page when accessing resource bundles via
the <i18n:getmessage> tag. Also
allows a character encoding and content
type to be specified for a JSP.

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

1 Overview of Personalization Development

1-6 Guide to Building Personalized Applications

<i18n:getMessage> Used in conjunction with the
<i18:localize> tag to retrieve
localized static text or messages from a
JspMessageBundle.

Personalization <pz:contentQuery> Provides content based on search
expression query syntax.

<pz:contentSelector> Provides content based on results of a
content selector rule and subsequent
content query.

<pz:div> Turns a user-provided piece of content on
or off based on the results of a classifier
rule.

Placeholders <ph:placeholder> Implements a placeholder, which
describes the behavior for a location on a
JSP page.

Property Sets <ps:getPropertyNames> Used to get a list of property names given
a property set.

<ps:getPropertySetNames> Used to get a list of property sets given a
property set type.

User Management
(Profile)

<um:getProfile> Retrieves the Unified User Profile object.

<um:getProperty> Gets the value for the specified property
from the current user profile in the session.

<um:getPropertyAsString> Works exactly like the
<um:getProperty> tag above, but
ensures that the retrieved property value is
a String.

<um:removeProperty> Removes the property from the current
user profile in the session.

<um:setProperty> Sets a new value for the specified property
for the current user profile in the session.

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

JSP Tags

Guide to Building Personalized Applications 1-7

(Group-User
Management)

<um:addGroupToGroup> Adds the group corresponding to the
provided childGroupName to the group
corresponding to the provided
parentGroupName.

<um:addUserToGroup> Adds the user corresponding to the
provided userName to the group
corresponding to the provided
parentGroupName.

<um:changeGroupName> Adds the user corresponding to the
provided userName to the group
corresponding to the provided
parentGroupName.

<um:createGroup> Creates a new
com.beasys.commerce.axiom.con

tact.Group object.

<um:createUser> Creates a new persisted User object with
the specified username and password.

<um:getChildGroupNames> Returns the names of any groups that are
children of the given group.

<um:getChildGroups> Retrieves an array of
com.beasys.commerce.axiom.con

tact.Group objects that are children of
the Group corresponding to the provided
groupName.

<um:getGroupNamesForUser> Retrieves a String array that contains the
group names matching the provided search
expression and corresponding to groups to
which the provided user belongs.

<um:getParentGroupName> Retrieves the name of the parent of the
com.beasys.commerce.axiom.con

tact.Group object associated with the
provided groupName.

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

1 Overview of Personalization Development

1-8 Guide to Building Personalized Applications

<um:getTopLevelGroups> Retrieves an array of
com.beasys.commerce.axiom.con

tact.Group objects, each of which has
no parent group.

<um:getUsernames> Retrieves a String array that contains the
usernames matching the provided search
expression.

<um:getUsernamesForGroup> Retrieves a String array that contains
the usernames matching the provided
search expression and correspond to
members of the provided group.

<um:removeGroup> Removes the
com.beasys.commerce.axiom.con

tact.Group object corresponding to the
provided groupName.

<um:removeGroupFromGroup> Removes a child group from a parent
group.

<um:removeUser> Removes the
com.beasys.commerce.axiom.con

tact.User object corresponding to the
provided userName.

<um:removeUserFromGroup> Removes a user from a group.

(Security) <um:login> Authenticates a user/password
combination.

<um:logout> Ends the current user's WebLogic Server
session. This is independent of the
FlowManager's user session tracking, and
should be used in combination with the
<um:login> tag.

<um:setPassword> Updates the password for the user
corresponding to the provided username.

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

JSP Tags

Guide to Building Personalized Applications 1-9

Personalization Utilities <es:counter> Creates a for loop construct.

<es:date> Gets a date and time formatted string based
on the user�s time zone preference.

<es:forEachInArray> Iterates over an array.

<es:isNull> Checks to see if a value is null. If the value
type is a String, also checks to see if the
String is empty.

<es:monitorSession> Disallows access to a page if the session is
not valid or if the user is not logged in.

<es:notNull> Checks to see if a value is not null. If the
value type is a String, also checks to see
if the String is not empty.

<es:simpleReport> Creates a two-dimensional array out of a
simple query.

<es:transposeArray> Transposes a standard [row][column]
array to a [column][row] array.

<es:uriContent> Pulls content from a URL.

WebLogic Utilities <wl:process> Provides a attribute-based flow control
construct.

<wl:repeat> Used to iterate over a variety of Java
objects, as specified in the set attribute.

Table 1-1 JavaServer Page JSP Tags Overview (Continued)

Library Tag Description

1 Overview of Personalization Development

1-10 Guide to Building Personalized Applications

Integration of External Components

A range of external components either come already integrated into the WebLogic
Personalization Server, or can be integrated easily by a developer as extensions to the
core components. A specific set of components that are known to be widely useful are
described in Table 1-2. Other custom component integrations are possible given the
JSP and EJB basis for the WebLogic Personalization Server, but the entire range of
possibilities is not addressed here.

Table 1-2 Useful External Components the Personalization Server

External Component Out-of-the-Box
Support

Methods and Notes

DBMS Integrated and tested with
Cloudscape, Oracle 8.1.6,
and 8.1.7.

Uses standard WebLogic
Server JDBC connection
pools.

LDAP authentication Can be set up automatically
using administration tools
and property files.

Uses WebLogic Server
security realms.

LDAP retrieval of user and
group information

Can be set up automatically
using administration tools.

Built into EJB persistence
for User entity bean.

Legacy database of users None. Requires Unified User
Profile extension of User
entity bean.

Content Management
engine

Reference implementation
provided.

Provides API/SPI support
from third-party vendors.

Legacy content database None. Requires either extension
of Document entity bean or
custom implementation of
content management SPI.

Support for Native Types

Guide to Building Personalized Applications 1-11

Support for Native Types

WebLogic Personalization Server supports the native types shown in Table 1-3.

Any property can be a multi-value of a specific single native type as well. This is
implemented as a java.util.Collection. Comparators for multi-values are contains and
containsall, although the rules development tool will only allow the use of contains.
The values possible as part of a multi-value may be restricted to a valid set, using the
Property Set management tools.

Table 1-3 Native Types

Supported Type Java Class Notes

Boolean java.lang.Boolean Comparators: ==, !=

Integer java.lang.Number Comparators: ==, !=, <, >,
<=, >=

Float java.lang.Double Comparators: ==, !=, <, >,
<=, >=

Text java.lang.String Comparators: ==, !=, <, >,
<=, >=, like

Datetime java.sql.Timestamp Comparators: ==, !=, <, >,
<=, >=

UserDefined Defined by developer Comparators: N/A
User-defined properties
may be programmatically
set and gotten, but are not
supported in the tools,
rules, or content query
expressions.

1 Overview of Personalization Development

1-12 Guide to Building Personalized Applications

Guide to Building Personalized Applications 2-1

CHAPTER

2 Creating Personalized
Applications with the
Advisor

The WLPS Advisor is an easy-to-use and flexible access point for personalization
services�including personalized content, user segmentation and the underlying rules
engine.

This topic includes the following sections:

� What Is the Advisor?

� The Advisor Delivers Content to a Personalized Application

� The Advisor Provides Information About User Classifications

� You Can Use the Advisor in One of Two Ways

� The WLPS Advisor Architecture

� Writing a Custom Advislet

� Understanding the Advislet Registry

� Registering a Single Advislet

� Advislet Chaining

� Registering a Compound Advislet

� Creating Personalized Applications with the Advisor JSP Tags

� Classifying Users with the JSP <pz:div> Tag

2 Creating Personalized Applications with the Advisor

2-2 Guide to Building Personalized Applications

� Selecting Content with the <pz:contentQuery> JSP Tag

� Matching Content to Users with the <pz:contentSelector> JSP Tag

� Creating Personalized Applications with the Advisor Session Bean

� Classifying Users with the Advisor Session Bean

� Querying a Content Management System with the Advisor Session Bean

� Matching Content to Users with the Advisor Session Bean

What Is the Advisor?

Content personalization allows Web developers to tailor applications to users. Based
on data gathered from user profile, Request, and Session objects, the Advisor
coordinates the delivery of personalized content to the end user.

The Advisor Delivers Content to a Personalized
Application

The Advisor delivers content to a personalized application based on a set of rules and
user profile information. It can retrieve any type of content from a Document
Management system and display it in a JSP.

The Advisor ties together all the services and components in the system to deliver
personalized content. The Advisor component includes a JSP tag library and an
Advisor EJB (stateless session bean) that access the WebLogic Personalization
Server�s core personalization services including:

� User Profile Management

� Rules Manager

� Content Management

� Foundation Platform

What Is the Advisor?

Guide to Building Personalized Applications 2-3

The tag library and session bean contain personalization logic to access these services,
sequence personalization actions, and return personalized content to the application. It
is also possible to write your own adivslets and access them with JSP tags you create.

This architecture allows the JSP developer to take advantage of the personalization
services using the Advisor JSP tags. In addition, a Java developer can access the
underlying Personalization EJB and its features via the public Advisor bean interface.
(For more information, see the API documentation in theWebLogic Personalization
Server Javadoc.) Think of the Advisor as sitting on top of the core services to provide
a unified personalization API.

The Advisor recommends document content for the following items:

� Web content included or excluded as determined by a user�s classification using
rules-based matching against user profile information. For more information
about classifying users, see �Classifying Users with the JSP <pz:div> Tag� on
page 2-10 and �Classifying Users with the Advisor Session Bean� on page 2-15.

� Documents returned by document attribute searches. For more information about
searching for content, see �Selecting Content with the <pz:contentQuery> JSP
Tag� on page 2-11 and �Querying a Content Management System with the
Advisor Session Bean� on page 2-16.

� Documents returned by content selectors using rules-based matching against user
profile information or user�s classification. For more information about
rules-based matching, see �Matching Content to Users with the
<pz:contentSelector> JSP Tag� on page 2-12 and �Matching Content to Users
with the Advisor Session Bean� on page 2-17.

Note: User classification is done in the E-Business Control Center. You will see the
term �customer segmentation� used in the GUI tool to refer to user
classification and classifier rules.

The Advisor Provides Information About User
Classifications

In addition to supplying content to a personalized application, the Advisor can also
provide information about user classifications. For example, an application can ask the
Advisor if, based on predefined rules, the current user is classified as a Premier

2 Creating Personalized Applications with the Advisor

2-4 Guide to Building Personalized Applications

Customer or an Aggressive Investor, and take action accordingly. The Advisor
accomplishes this classification by gathering relevant user profile information,
submitting it to the Rules Manager, and returning the classification to the caller.

For more information about classifying users, see �Classifying Users with the JSP
<pz:div> Tag� on page 2-10 and �Classifying Users with the Advisor Session Bean�
on page 2-15.

You Can Use the Advisor in One of Two Ways

� Using the JSP tags. Developers will probably find it most useful to use the JSP
tags when building typical pages. The tags provide ways to switch content on
and off based on user classification, return content based on a static query, and
match content to users based on rules that execute a content query. The JSP tags
that perform these tasks are: <pz:div> , <pz:contentSelector>, and
<pz:contentQuery>.

� Using the Advisor session bean. The page or application developer may use the
Advisor session bean directly in place of the tags, if desired. The Advisor
session beans provide ways to switch content on and off based on user
classification, return content based on a static query, and match content to users
based on rules that execute a content query.

The WLPS Advisor Architecture

The Advisor is a stateless session EJB and has a simple interface with a getAdvice
method on it. The getAdvice method returns Advice objects that contain the detailed
result information that was returned from the personalization services.

The argument to the getAdvice method is an AdviceRequest object that contains a
number of name-value pairs that define the inputs to the Advisor. The AdviceRequest
has an interface very similar to the HttpSession object and allows predefined as well
as custom input parameters to be stored.

The WLPS Advisor Architecture

Guide to Building Personalized Applications 2-5

Each incoming AdviceRequest has a URI associated with it. The Advisor uses the
URI prefix (the part before the colon) to look up an Advislet using the
AdvisletRegistry. Advislets are typically simple Java classes that implement a
personalization function such as user segmentation or content retrieval. The
AdvisletRegistry maintains the deployment mappings from URI prefixes to Advislet
instances.

Note: The relationship between the Advisor and an Advislet is similar to the
relationship between the Server and a servlet (though an Advislet is
independent of HTTP). An Advislet is registered with a prefix with the
Advisor and will be invoked for all incoming AdviceRequests with that
prefix.

Figure 2-1 The Advisor Architecture

2 Creating Personalized Applications with the Advisor

2-6 Guide to Building Personalized Applications

Writing Custom Advislets and Registering
Them Using the Advislet Registry

At the core of the Advisor framework is the Advislet Registry. The Advislet uses the
Advislet Registry to determine which Advislets to invoke in the processing of a
request.

The WebLogic Commerce Server provides a number of Advislets which support the
three personalization JSP tags: <pz:classifier>, <pz:contentselector> and
<pz:contentquery>. To extend this functionality or to interface with third-party
systems, you can write a custom Advislet and register it with the Advislet Registry.

Writing a Custom Advislet

To write a custom Advislet a developer simply has to implement the Advisor interface,
providing implementations of these three methods: getAdvice,
getRequiredAttributes and validateAdviceRequest.

When the Advisor receives an AdviceRequest object, it calls
validateAdviceRequest before passing it to the registered Advislet�s getAdvice
method. The validateAdviceRequest method should throw an
IllegalArgumentException if some necessary attributes are missing or malformed.

In addition to the Advislet interface, an Advislet implementation must have a public
constructor with two parameters. The Advisor will use these parameters when it
creates instances of the Advislet.

� The first parameter is of type Advisor. It contains a reference to the Advisor
creating this Advislet.

� The second parameter is an implementation of the Metadata interface. It contains
the Advislet�s name, description, and versioning information as specified in the
Advislet Registry.

Note: Unless otherwise indicated, all classes referenced here reside in the
com.bea.commerce.platform.advisor package.

Writing Custom Advislets and Registering Them Using the Advislet Registry

Guide to Building Personalized Applications 2-7

A default implementation of Advislet is provided in the AbstractAdvislet abstract
class. Simply extend this class, override the getAdvice method and provide the
required constructor to create your own Advislet.

Understanding the Advislet Registry

We have already discussed how the Advislet Registry associates uri prefixes with
Advislet implementations. Once we look inside the Advislet Registry however, the
story becomes a bit more complicated.

In the case of the contentquery:// prefix, all of the work is done in one class�
com.bea.commerce.platform.content.advislets.ContentQueryAdvisletImpl

However, other prefixes (such as contentselector://) require a sequence of
Advislets to be chained together to produce the required advice. In these cases a
CompoundAdvislet is registered against the uri prefix to shield this complexity from
the user. The specification of which Advislets to register against which uri prefixes is
contained in the advislet-registry.xml which can be found in the WLCS root
directory. An understanding of the contents of this file is essential to any customization
of the Advislet framework.

Registering a Single Advislet

The following is an extract from the advislet-registry.xml file:

<!-- run a content query -->
<advislet>
<registration-key>contentquery</registration-key>
<metadata>

<name>ContentQuery</name>
<description>
Advislet that can retrieve content from the Content Management
System based on a content query.
</description>
<author>BEA Systems</author>

…
</metadata>
<implementation-class>com.bea.commerce.platform.content.advislets
.ContentQueryAdvisletImpl</implementation-class>
</advislet>

2 Creating Personalized Applications with the Advisor

2-8 Guide to Building Personalized Applications

The most important tags are <registration-key> and <implementation-class>.
In the case of an Advislet, <registration-key> should specify the uri prefix that this
Advislet is to be registered against and <implementation-class> should specify
the fully qualified class name of the implementing Advislet class. The metadata
information is useful for versioning Advislets and should be included.

Advislet Chaining

AdviceTransform objects are used to chain two Advislets together using a
CompoundAdvislet. An AdviceTransform object provides the mapping between the
outputs of one Advislet and the inputs of the next. The AdviceTransform interface
simply specifies one method transform (Advice input, AdviceRequest output).
which should be implemented to create the mapping required. AdviceTransforms
are also registered in the AdvisletRegistry.

Registering a Compound Advislet

The following is an extract from the advislet-registry.xml file:

<!-- compound advislet that calls the rules engine and passes
results to the content management system -->

<compound-advislet>
<registration-key>contentselector</registration-key>
<metadata>

<name>ContentSelector</name>
<description>
Advislet that retrieves Content from the Content Management
system based on the evaluation of a rule set.
</description>
<author>BEA Systems</author>
…

</metadata>
<sequence>

<advice-transform>RulesInputTransform</advice-transform>
<advislet>unmappedrulesClassifierIgnoreRuleName</advislet>
<advice-transform>

ClassifierToContentSelectorTransform
</advice-transform>
<advislet>unmappedrulesContentSelector</advislet>
<advice-transform>

Creating Personalized Applications with the Advisor JSP Tags

Guide to Building Personalized Applications 2-9

RulesToContentTransform
</advice-transform>
<advislet>contentquery</advislet>

</sequence>
</compound-advislet>

The <sequence> tag specifies the start of the sequence that makes up the compound.
Entries can be either Advislets or AdviceTransforms which can occur in any order. The
Advisor will invoke each element of the sequence in turn before proceeding to the next.
The final Advice object generated will be returned to the user. In this way the
implementation of the Advislet is hidden from the user who does not need to know
whether a simple Advislet or a compound Advislet was used to generate the advice.

Creating Personalized Applications
with the Advisor JSP Tags

The Advisor provides three JSP tags to help developers create personalized
applications. These tags provide a JSP view to the Advisor session bean and allow
developers to write pages that retrieve personalized data without writing Java source
code.

Note: You must insert the following JSP directive into your JSP code to use the
Advisor�s <pz:div> and <pz:contentSelector> tags. The
<pz:contentQuery> tag does not require that you extend the class.

<%@ page extends=”com.beasys.commerce.axiom.p13n.jsp.P13NJspBase”
%>

� The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns
the content on; if false, it turns the content off.

Note: The system turns on the content by inserting the content residing between
the start and end <pz:div> tags in the JSP code. This content can include
any valid JSP, including HTML tags, other JSP tags, and scriptlets. If the
classifier rule returns false, the system skips the content between the start
and end <pz:div> tags.

2 Creating Personalized Applications with the Advisor

2-10 Guide to Building Personalized Applications

� The <pz:contentQuery> tag provides content attribute searching for content in
a Content Manager. It returns an array of Content objects that a developer can
handle in numerous ways.

Note: For more information about how WebLogic Personalization Server
manages content, see Chapter 8, �Creating and Managing Content,� in this
guide.

� The <pz:contentSelector> tag recommends content if a user matches the
classification part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in the rule and returns
the content back to the JSP page.

For information about defining a content selector rule, see �Retrieving Documents
with Content Selectors� inUsing the E-Business Control Center.

In addition to using JSP tags to create personalized applications, you can work directly
with the Advisor bean. For more information about using the bean, see �Creating
Personalized Applications with the Advisor Session Bean� on page 2-13.

Classifying Users with the JSP <pz:div> Tag

The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns the
content on; if false, it turns the content off.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts (BAs) to develop their own classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you
will see classifer rules referred to as �customer segmentation.�

For information about creating classifier rules with the E-Business Control
Center, see the topic �Creating a New Customer Segment� in the chapter
�Using Customer Segments to Target High-Value Markets� inUsing the
E-Business Control Center.

You can also use the Advisor bean directly to classify users. For more
information, see �Classifying Users with the Advisor Session Bean� on page
2-15.

Creating Personalized Applications with the Advisor JSP Tags

Guide to Building Personalized Applications 2-11

Example

This example executes the PremierCustomer classifier rule and displays an alert to
premier customers in the HTML page�s output.

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div
rule="PremierCustomer">

<p>Please check out our new Premier Customer bonus program…<p>
</pz:div>

Selecting Content with the <pz:contentQuery> JSP Tag

The <pz:contentQuery> tag provides content attribute searching for content in a
Content Manager. It returns an array of Content objects that a developer can handle
in numerous ways.

Note: For information about using the <pz:contentQuery> JSP tag, see
�<pz:contentQuery>� on page 12-31. This tag provides similar functionality
to the <cm:select> tag.

Example

The following example executes a query against the content management system to
find all content where the author attribute is Hemingway and displays the Document
titles found:

<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ page import="com.beasys.commerce.content.ContentHelper"%>
.
.
.
<pz:contentQuery id="docs"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
query="author = 'Hemingway'" />

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printProperty id="aDoc"

2 Creating Personalized Applications with the Advisor

2-12 Guide to Building Personalized Applications

name="Title" encode="html" />
</es:forEachInArray>

Note: For more information about these JSP tags, see �<cm:printProperty>� on page
12-11 and �<es:forEachInArray>� on page 12-76.

You can also use the Advisor bean directly to select content. For more information, see
�Querying a Content Management System with the Advisor Session Bean� on page
2-16.

Matching Content to Users with the <pz:contentSelector>
JSP Tag

The <pz:contentSelector> recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Advisor
executes the query defined in the rule to retrieve content.

Notes: For more information about this tag, see �<pz:contentSelector>� on page
12-34.

For information about creating classifier rules, see the chapter �Using Customer
Segments to Target High-Value Markets� inUsing the E-Business Control Center.

Example

The following example asks the Advisor for content specific to premier customers and
then displays the Document titles as the results.

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentSelector id="docs"

rule="PremierCustomerSpotlight"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
DocumentManager" />

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printProperty id="aDoc"

Creating Personalized Applications with the Advisor Session Bean

Guide to Building Personalized Applications 2-13

name="Title" encode="html" />
</es:forEachInArray>

You can also use the Advisor bean directly to match content to users. For more
information, see �Matching Content to Users with the Advisor Session Bean� on page
2-17.

Creating Personalized Applications with the
Advisor Session Bean

Java developers can work directly against the Advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean.

Note: Refer to the API documentation in the Javadoc for more information about
using the session bean to create personalized applications.

The following steps provide a general overview of the process involved for an
application to get content recommendations from the Advisor.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an
AdviceRequest object.

Note: You must provide this method with the uri representing the request. The
Advisor uses the uri prefix to determine which Advislet to invoke to
recommend content.

3. Set the required and optional attributes for the AdviceRequest object.

4. Call the Advisor�s getAdvice method.

The Advisor calls the best Advislet to make the recommendation. The Advislet
determines the recommendations and the Advisor then passes the Advice object
back to the application.

The Advisor uses the Advislet Registry to choose the Advislet to invoke.

2 Creating Personalized Applications with the Advisor

2-14 Guide to Building Personalized Applications

5. The personalized application extracts the recommendation from the Advice
object and uses it in the application.

When a personalized application requests advice from the Advisor, the Advisor bean
delegates the request to a registered Advislet that can handle the request. The Advisor
uses the uri prefix to determine which registered Advislet will receive the advice
request. The Advislet then makes the recommendations and returns the Advice object
back to the Advisor. This design encapsulates all of the advice logic into the Advislet
and allows developers to create custom Advislets for more specialized purposes.

Attributes objects act as parameters for the request. Attributes objects can be set on the
AdviceRequest object and are associated with a String object representing the name
of the attribute.

Three Advislets are supplied with the sytem: Classifier Advislet, ContentQuery
Advislet and ContentSelector Advislet. Names for the attributes that need to be set on
the supplied Advislets are defined as static Strings in the AdviceRequestConstants
interface.

Table 2-1 shows the logic the Advisor uses to determine how to map a
recommendation request to an Advislet.

Table 2-1 Mapping a URI Prefix to an Advislet
Uri Prefix Inferred Advislet

classifier Uses a rules-based inference engine to classify a user
based on rules written using the E-Business Control
Center.

contentselector � Uses a rules-based inference engine to classify a
user.

� Determines if the user matches the classification.
� Uses a rules-based inference engine to obtain a

content query.
� Selects content based on the content query obtained.

contentquery Performs a content attribute search on a specified
content management system.

Creating Personalized Applications with the Advisor Session Bean

Guide to Building Personalized Applications 2-15

The following sections demonstrate how to directly access the Advisor to provide the
same functionality as that provided by the JSP tags.

Classifying Users with the Advisor Session Bean

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for a classification (refer to the
Javadoc for API details).

Note: Unless otherwise indicated, all classes used here reside in the
com.bea.commerce.platform.advisor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an
AdviceRequest object. In this case,the uri argument should be
�classifier://�.

3. Set the required attributes on the AdviceRequest object (see
AdviceRequestConstants). These include:

� HTTP_SESSION � the session object (retrieved from
P13NJspHelper.createP13NSession(HttpServletRequest)).

� USER � the user object (retrieved from
P13NJspHelper.createP13NProfile(HttpServletRequest)).

� HTTP_REQUEST � the request object (retrieved from
P13NJspHelper.createP13NRequest(HttpServletRequest)).

� NOW � a java.sql.Timestamp object representing now.

� RULES_RULESET_NAME � (optional) the name of the segmentation rule to fire.
(For more information about customer segment rules, see Chapter 3,
�Introducing the Rules Manager,� in this guide.)

4. Call the getAdvise method on the Advisor.

5. The Advisor returns an instance of Advice. The getResult method is called to
obtain the classification object. If a classification object is returned, then the
classification is considered to be true. If the return value is null, the
classification is considered to be not true.

2 Creating Personalized Applications with the Advisor

2-16 Guide to Building Personalized Applications

Note: If the optional Advise Request parameter RULES_RULESET_NAME is not
supplied, there may be multiple classifications returned for the user.

Querying a Content Management System with the
Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use Content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

Note: Unless otherwise indicated, all classes used here reside in the
com.bea.commerce.platform.advisor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an
AdviceRequest object In this case, the uri argument should be
�contentquery://�

3. Set the required attributes on the AdviceRequest object (see
AdviceRequestConstants). These include:

� CONTENT_MANAGER_HOME (required) � the JNDI name to find a content
manager home interface.

� CONTENT_QUERY_STRING (required) � the query to run against the system.

� CONTENT_QUERY_SORT_BY (optional) � the order in which to sort the
returned results.

� CONTENT_QUERY_MAX_ITEMS (optional) � the maximum instances to return.

4. Call the getAdvise method on the Advisor.

5. The Advisor returns an instance of Advice. The getResult method is called to
obtain the array of Content objects representing the recommendation.

Creating Personalized Applications with the Advisor Session Bean

Guide to Building Personalized Applications 2-17

Matching Content to Users with the Advisor Session
Bean

For content selection requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

Note: Unless otherwise indicated, all classes used here reside in the
com.bea.commerce.platform.advisor package.

1. Look up an instance of the Advisor session bean.

2. Use the AdvisorFactory�s static createAdviceRequest method to create an
AdviceRequest object. In this case the uri argument should be
�contentselector://�

3. Set the required attributes on the AdviceRequest object (see
AdviceRequestConstants). These include:

� HTTP_SESSION � the session object (retrieved from
P13NJspHelper.createP13NSession).

� USER � the user object (retrieved from
P13NJspHelper.createP13NProfile).

� HTTP_REQUEST � the request object (retrieved from
P13NJspHelper.createP13NRequest).

� NOW � a java.sql.Timestamp object representing now.

� RULES_RULESET_NAME � the name of the segmentation rule to fire. (For
more information about customer segments, see the chapter �Introducing the
Rules Manager� in this guide.)

� CONTENT_MANAGER_HOME (required) � the JNDI name to find a content
manager home interface.

� CONTENT_QUERY_STRING (required) � the query to run against the system.

� CONTENT_QUERY_SORT_BY (optional) � the order in which to sort the
returned results.

� CONTENT_QUERY_MAX_ITEMS (optional) � the maximum instances to return.

2 Creating Personalized Applications with the Advisor

2-18 Guide to Building Personalized Applications

4. Call the getAdvise method on the Advisor.

5. The Advisor returns an instance of Advice. The getResult method is called to
obtain the array of Content objects representing the recommendation.

Guide to Building Personalized Applications 3-1

CHAPTER

3 Introducing the Rules
Manager

Rules Management forms a key part of the personalization process by prescribing
custom content to fit individual user profiles. The business logic encompassed by these
rules allows robust delivery of personalized content marketed specifically to each end
user type.

This topic includes the following sections:

� What Is the Rules Manager?

� Well-known Objects

� How the Rules Engine Works

� What Are Rule Sets?

� Classifier Rules

� Content Selector Rules

� Debugging Rule Sets

� Configuring the Rules Framework

� The RulesManager Deployment Descriptor

� The rules-common.properties file

3 Introducing the Rules Manager

3-2 Guide to Building Personalized Applications

What Is the Rules Manager?

WebLogic Personalization Server offers a robust personalization solution through a set
of components that provide edit-time and run-time services for delivering personalized
content to end users while browsing a Web site. These personalization components use
business rules to match users and groups with appropriate content. The logic
encompassed by the rules forms a critical piece of the personalization process.

The Rules Manager component of WebLogic Personalization Server provides editing,
deploying, and run-time capabilities for providing personalized content based on
externalized rules. This component includes two major parts: an edit-time tool with a
graphical user interface (GUI) that allows Business Analysts to define classification
and content selection rules, and a run-time service that matches users with content
based on these rules.

Rules are created in the E-Business Control Center. This GUI tool is designed to allow
Business Analysts to develop their own content selector rules and classifier rules.
Because the Business Analysts are not exposed to the concept of rules, you will see
content selector rules called simply �content selectors� and classifier rules referred to
as �customer segments.�

Well-known Objects

The Rules Management component uses several well-known objects:

� ContentQuery: This object describes the parameters of a query that is executed
as a result of firing a content selector rule.

� Now: A well-known object in the rule editor, of type
(com.bea.commerce.platform.xml.schema)TimeInstant

 that corresponds to the instant of a user request.

� User: For each call to the rules component, a single User object will be
provided for use by the rules. User has a fixed schema, determined dynamically
at edit time by calling the User Management component. Given that the User
might have a Numeric schema attribute called age, a valid expression might be:
User.age > 35.

What Is the Rules Manager?

Guide to Building Personalized Applications 3-3

� Request: This object is used in the same way as the User object. The Request
properties are defined in a default property set. (For more information, see
�Default Request Property Set� on page 5-10 in the �Foundation Classes and
Utilities� chapter of this guide.)

� Session: This object is used in the same way as the User object. The Session
properties are defined in a default property set. (For more information, see the
�Default Session Property Set� on page 5-12 in the �Foundation Classes and
Utilities� chapter of this guide.)

Figure 3-2 The Rules Framework

How the Rules Engine Works

The Rules Engine functions with a set of rules operating on objects in working
memory. This working memory is first populated with input from the calling objects,
and contains the cached user profile bean, among other things. A representation of the
user�s profile exists in working memory before any rules are actually fired.

3 Introducing the Rules Manager

3-4 Guide to Building Personalized Applications

Rules can be executed only within a context. The context associates a rule set with
working memory. The context provides an interface to the Rules Engine that controls
the relationship between the rule part of the application and the working memory.

This working memory is operated on by the production rules, which are contained in
rule sets. The left-hand sides (LHS) of these rules are evaluated against the objects in
the working memory. If the patterns on the LHS are matched, then the actions
contained in the right-hand side (RHS) of the rules are performed. Some of these
actions may assert new objects into the working memory. For example, if our
Classifier rule tests for USER.age > 45, then we might assert a new Classification
object into working memory.

The production system is executed by performing the following operations:

1. Match: Evaluates the LHSs of the rules to determine which are satisfied given the
current contents of working memory.

2. Conflict resolution: Selects one rule with a satisfied LHS. If no rules have
satisfied the LHSs, halts the interpreter.

3. Act: Performs the actions in the RHS of the selected rule.

4. Go to step 1.

Rules will continue to operate on the working memory until the conflict resolution set
is zero (that is, no more rules can fire).

After the Rules Engine has halted, the rules manager component returns a list of
objects remaining in working memory. A likely scenario will have an object remaining
of the type �Classification� or �ContentQuery.�

The Rules Manager will then iterate over these remaining objects and filter them using
the optional Object Filter. The filter can selectively ignore objects or mutate them.

The resultant objects, if any, are then returned to the Advisor.

What Are Rule Sets?

The BEA WebLogic Personalization Server provides two rule sets that act as
containers for the rules created in the E-Business Control Center: the global
classifications rule set and the global content selectors rule set.

What Is the Rules Manager?

Guide to Building Personalized Applications 3-5

Rules within a rule set may refer to any properties. In general, you should not change
or delete properties if a rule refers to it. Adding properties does not affect existing
rules.

Classifier Rules

Classifier rules are created in the E-Business Control Center. For information and
instruction on creating classifier rules (called �customer segments� in the E-Business
Control Center), see the chapter �Using Customer Segments to Target High-Value
Markets� inUsing the E-Business Control Center.

Classifier rules dynamically categorize users into groups (user segments) using
Boolean logic. A classifier rule determines if a user profile meets a set of conditions
and places the user in a category based upon the result. Essentially, if the user profile
meets the conditions, it is classified according to the classifier rule; if it does not meet
the classification conditions, the user profile is not included in the classification group.

The following examples illustrate the logic involved in processing a classifier rule
(note the implicit and between the rule phrases):

Classifier MiddleAgeMan
If User has the following characteristics:

User.age > 35 AND User.age < 65
and User.gender == "M" OR "male"

Classifier HighEarner
If User has the following characteristics:

User.income > 100000

Classifier rules are the building blocks of more complicated rules. Content selector
rules can use classifier rules as they select personalized content to match a user or
group profile. (See �Content Selector Rules� below.)

Use the <pz:div> JSP tag to include a classifier rule in a JSP page. For a complete
listing, see �<pz:div>� on page 12-39 in the �JSP Tag Library Reference� chapter of
this guide.

3 Introducing the Rules Manager

3-6 Guide to Building Personalized Applications

The AND and OR operators

Figure 3-3 shows an example of clauses ANDed and ORed together. By default, all
clauses in a rule are ANDed together.The <or> operator is applied to nested (indented)
child clauses below the <or> operator. In that case, the nested statements are ORed,
and ANDed to clauses not nested around them.

Figure 3-3 AND and OR Example

Content Selector Rules

Content selectors are created in the E-Business Control Center. For instructions on
using the GUI tool to create content selectors, see the E-Business Control Center
online help. A copy of the information presented in online help is available on the
e-docs Web site�see the chapter �Retrieving Documents with Content Selectors� in
Using the E-Business Control Center.

Content selector rules construct queries on the fly and return content based on the user
profile. This type of rule adds time and content components to the basic classifier rule
and may use references to classifier rules to define it. It also produces dynamic queries
at runtime to select content from a document collection.

The power of producing dynamic queries that match content with user profiles allows
content selectors to deliver highly customized content to end users. Since content
selector rules can use queries to select content based on run-time parameters, they
allow the system to match personalized content to user profiles.

Note: Although a profile may meet the criteria of a content selector rule, the rule may
not return any content objects. Why? If no content matches the query�s criteria,
the query cannot return a content object.

What Is the Rules Manager?

Guide to Building Personalized Applications 3-7

You can use the <pz:contentSelector> JSP tag to include content selector rules in
JSP pages. (See <pz:contentSelector> in the chapter �JSP Tag Library Reference�
in this guide.)

For an in-depth look at using content selectors, refer to Chapter 4, �Working with
Content Selectors,� in this guide.

Debugging Rule Sets

Note: The underlying structure of the Rules Engine has been greatly enhanced for
WebLogic Personalization Server release 3.5. If you have created rules and
rule sets in previous versions of this product, please refer to the Migration
Guide for additional information.

What Is the Relationship Between Property Sets and Rules?

You might notice that a rule set you have used in the past begins functioning
incorrectly. This behavior is probably due to a change in the property set with which
the rule set has a relationship.

Rules rely on property sets to provide the properties they use to evaluate user and group
profiles. If a property is modified after a rule that uses it has been created, rules may
contain dangling references to properties that no longer exist or that have been
changed.

As much as possible, you should avoid modifying properties after defining rules that
rely upon them. Since the property set defines the schema for the properties the rules
act upon, any change to the properties the rules use will affect the schema and may alter
the validity of the rules. In general, be careful when modifying or deleting existing
properties.

Note: You can add properties without affecting existing rules.

3 Introducing the Rules Manager

3-8 Guide to Building Personalized Applications

Content Type and Content Selector Rules

Another problem can occur when you change a content�s metadata types after creating
a content selector rule based on that content type�s metadata. Remember that the
content selector rule relies upon metadata to locate content. If you change content
metadata and a content selector rule references the previous metadata, the rule will not
work correctly.

Configuring the Rules Framework

Guide to Building Personalized Applications 3-9

Configuring the Rules Framework

The set of components that use business rules to match users and groups with
appropriate content are known collectively as the rules framework. Two files configure
the properties of the rules framework:

� The RulesManager Deployment Descriptor

� The rules-common.properties file

The RulesManager Deployment Descriptor

Within the file
$WL_COMMERCE_HOME/config/wlscDomain/applications/wlscApp/rules.jar
is a file named ejb-jar.xml which specifies how WebLogic Personalization Server
deploys the rules EJB.

The following <env-entry> element in the ejb-jar.xml deployment descriptor
prevents differently deployed RulesManager beans from seeing each others� deployed
rulesets.

<env-entry>
<env-entry-name>namespace</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>default</env-entry-value>
</env-entry>

Rulesets are stored in the RULESET database table. Table 3-1 illustrates the contents of
the NAME and DOCUMENT columns in the RULESET database table.

Table 3-1 Columns in the RULESET Database Table

NAME DOCUMENT

default/MyRuleSetName XML data for the RuleSet (as a
CLOB)

default/MySecondRuleSet XML data

3 Introducing the Rules Manager

3-10 Guide to Building Personalized Applications

By default, the namespace for Rule Sets is default, which is prepended to the RuleSet
name. By modifying the value in the <env-entry-value> element that is described
in this section, you can change the composite name that a RulesManager EJB stores in
the database.

The rules-common.properties file

The rules-common.properties file is located in $WL_COMMERCE_HOME/classes. It
configures the following properties:

� Rules Framework Debugging

� Rule Set TTL (time-to-live expiration policy)

� Rules Engine Listeners

� Rules Engine Expression Caching Optimizations

� Rules Engine Error Handling and Reporting

� JSP Tag Properties

� Rules Manager Properties

� Expression Evaluation Settings

Rules Framework Debugging

This property should normally be set to false.

Rules framework debug flag:
#
Set this property to true for rules framework debugging. Defaults
to false.
##

rules.framework.debug=false

Configuring the Rules Framework

Guide to Building Personalized Applications 3-11

Rule Set TTL

This property determines the time-to-live (in milliseconds) of the cached rule sets. In
a single node deployment, this parameter should be set to -1 (no timeout); however, if
the rules manager is deployed in a clustered environment, this parameter will
determine the maximum elapsed time between updates of a rule set (via the E-Business
Control Center) and propagation of the changes throughout the cluster.

##
Rule set expiration TTL (in milliseconds):
#
Set this property to -1 for infinite TTL. Defaults to -1.
##

rule.set.expiration.ttl=-1

Rules Engine Listeners

This is an internal property, and should not be modified.

##
Rules engine startup rule event listeners (list of class names).
##

#rules.engine.startup.listeners=com.bea.commerce.platform.rules.i
nternal.engine.RulesEngineStatisticsListener

Rules Engine Expression Caching Optimizations

This is an internal property, and should not be modified.

##
Rules engine expression optimizations:
#
0 => No expression optimizations.
1 => Local expression optimizations.
2 => Global expression optimizations.
#
Defaults to 0.
##

rules.engine.expression.optimizations=2

3 Introducing the Rules Manager

3-12 Guide to Building Personalized Applications

Rules Engine Error Handling and Reporting

The following two properties determine the type of exceptions that will be propagated
to the user during rules engine execution. If the
rules.engine.throw.expression.exception parameter is set to false, no
exceptions will be propagated, and any expression condition that generates an
exception will evaluate to false. Otherwise, all exceptions, with the exception of those
listed by the rules.engine.ignorable.exceptions parameter, will be propagated
to the user.

Rules engine pattern expression execution error handling:
#
rules.engine.throw.expression.exceptions
#
If this property is set to true, pattern expression
execution exceptions will be thrown. Otherwise, a pattern
expression exception will cause the pattern condition to
evaluate to false.
#
Defaults to true.
#
rules.engine.throwable.exceptions (list of class names)
#
If the previous property is set to true, expression exceptions
with embedded exceptions of a type other than the listed classes
will be thrown. If no class types are specified, all expression
exceptions will be thrown.
#
Defaults to all exception class types.
##

rules.engine.throw.expression.exceptions=true

rules.engine.ignorable.exceptions=java.lang.NullPointerException

JSP Tag Properties

These are internal properties, and should not be modified.

##
JSP Tag settings
##
Filter class for ContentSelectorTag

contentselector.filter.class=com.bea.commerce.platform.content.ad
vislets.ContentQueryAdvice
Filter class for DivTag

Configuring the Rules Framework

Guide to Building Personalized Applications 3-13

divtag.filter.class=com.bea.commerce.platform.user.Classification

Rules Manager Properties

These are internal properties, and should not be modified.

#
RulesManager settings
#
RulesManager JNDI name.

rules.manager.home.jndi=com.bea.commerce.platform.rules.manager.R
ulesManager

RulesManager delegate class name.
#delegate.class.name=com.bea.commerce.qa.platform.rules.manager.i
nternal.RulesEvaluationDelegateStubImpl

Expression Evaluation Settings

The rules.framework.comparator.nullcheck property determines if an implicit
null check is added to all expression comparisons. It should remain true.

The rules.framework.comparator.epsilon property determines the epsilon
value for numeric equality and inequality comparisons. The epsilon value is an
absolute value (rather than a percentage, etc.) and may be adjusted in accordance to
equality precision requirements.

The rules.framework.introspector.method.array.cache property and
rules.framework.introspector.method.cache property are internal properties
and should not be modified.

##
Expression Comparator null handling
#
If the following property is set to true the Expression
Comparator will return false as the result of comparing
any non-null value to a null, regardless of the
comparison being performed.
#
Defaults to true.
##

rules.framework.comparator.nullcheck=true

3 Introducing the Rules Manager

3-14 Guide to Building Personalized Applications

##
Expression Comparator equality epsilon.
#
The following property determines the epsilon value for
numeric equality comparisons.
#
Defaults to 0.
##

rules.framework.comparator.epsilon=0.00001

##
Expression Introspector Method Array Caching
#
If the following property is set to true the Expression
Introspector will cache the array of Methods implemented by a
Java Class.
#
Defaults to true.
##

rules.framework.introspector.method.array.cache=true

##
Expression Introspector Method Caching
#
If the following property is set to true the Expression
Introspector will cache Methods by signature.
#
Defaults to true.
##

rules.framework.introspector.method.cache=true

Guide to Building Personalized Applications 4-1

CHAPTER

4 Working with Content
Selectors

A content selector is one of several mechanisms that WebLogic Personalization Server
provides for retrieving documents from a content management system. A document is
a graphic, a segment of HTML or plain text, or a file that must be viewed with a
plug-in. (We recommend that you store most of your Web site�s dynamic documents
in a content management system because it offers an effective way to store and manage
information.)

Using content selectors, a Business Analyst (BA) can specify conditions under which
WebLogic Personalization Server retrieves one or more documents. For example, a
BA can use a content selector to encapsulate the following conditions: between May 1
and May 10, if a Gold Customer views this page, find and retrieve any documents that
describe sailing along the Maine coast.

A BA uses the BEA E-Business Control Center to define the conditions that activate a
content selector and to define the query the content selector uses to find and retrieve
documents. Then, a Commerce Business Engineer (CBE) creates content selector JSP
tags and a set of other JSP tags that display the content the content selector retrieves in
JSPs.

This topic includes the following sections:

� What Are Content Selectors?

� Using Content-Selector Tags and Associated JSP Tags

� How Content Selectors Select Documents

For a comparison of content retrieval methods available with WebLogic
Personalization Server, refer to �Methods for Retrieving and Displaying Documents�
on page 8-4.

4 Working with Content Selectors

4-2 Guide to Building Personalized Applications

What Are Content Selectors?

Content selectors specify conditions under which they query the content management
system for documents. They consist of the following elements:

� A set of conditions that determine when the content selector queries the content
management system. The conditions can use the profile of the customer who is
currently viewing a JSP page, properties from the user or session objects, or an
event that occurs on the page or has occurred previously on some other page, or
the current date/time. For a complete list of conditions, refer to �Conditions That
Activate Content-Selector Queries,� under �Retrieving Documents with Content
Selectors� in Using the E-Business Control Center.

BAs create and modify the set of conditions in the E-Business Control Center.

� A query that searches the content management system for one or more
documents.

BAs create and modify the query in the E-Business Control Center.

� A JSP tag that triggers the content selector to evaluate its conditions. The
content selector JSP tag includes attributes that CBEs can use to tune the
performance of the content selection process. CBEs create the JSP tags.

� A data object that WebLogic Personalization Server creates to contain the results
of the query. Within the data object, WebLogic Personalization Server creates a
list of individual data items (an array); the contents of each document in the
data object is a separate item in the array. You can access the array only from
the current JSP page, and only for the customer request that created it.

To extend the availability of the data in the array, CBEs can add attributes to the
content selector JSP tag that cause WebLogic Personalization Server to store the
array in a cache. Then, CBEs specify whether the scope of the cache applies to
the application, session, page, or request.

To display the documents that are in the array (or the cache), a CBE must use the
<es:forEachInArray> tag. Depending on the scope of the cache, a
<es:forEachInArray> can access a content-selector cache that WebLogic
Personalization Server created for another page and for another user.

Using Content-Selector Tags and Associated JSP Tags

Guide to Building Personalized Applications 4-3

Using Content-Selector Tags and Associated
JSP Tags

To use the content selector features on a given JSP, a CBE must add calls to the content
selector JSP tag and a set of associated tags.

This section contains the following subsections:

� Attributes of the <pz:contentSelector> Tag

� Associated Tags That Support Content Selectors

� Common Uses of Content-Selector Tags and Associated Tags

Attributes of the <pz:contentSelector> Tag

While BAs use the E-Business Control Center to configure the dynamic properties of
a content selector, a CBE uses attributes of the content selector tag to do the following:

� Identify the Content Selector Definition

� Identify the JNDI Home for the Content Management System

� Define the Array That Contains Query Results

� Create and Configure the Cache to Improve Performance

For a complete list and description of all content-selector attributes, refer to
�<pz:contentSelector>� on page 12-34 in the �Personalization Server JSP Tag Library
Reference� chapter of this guide.

Identify the Content Selector Definition

The content selector definition that a BA creates in the E-Business Control Center
determines the conditions that activate a content selector and the query that the active
content selector runs.

To refer to this definition, you use the rule attribute:

4 Working with Content Selectors

4-4 Guide to Building Personalized Applications

<pz:contentSelector rule= { definition-name | scriptlet } >

You can use a scriptlet to determine the value of the rule attribute based on additional
criteria. For example, you use a content selector in a heading JSP (heading.inc),
which is included in other JSPs. A BA creates different content selectors for each page
that includes heading.inc.

The CBE uses a scriptlet in heading.inc to provide a value based on the page that
currently displays the included JSP file. For example,

<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "cs_top_generic" : banner;

%>

<!-- --- -->

<table width="100%" border="0" cellspacing="0" cellpadding="0" height="108">

<tr><td rowspan="2" width="147" height="108">
<pz:contentSelector rule="<%= banner %>" ... />

</td>

Identify the JNDI Home for the Content Management System

The content selector tag must use the contentHome attribute to specify the JNDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the ContentHelper class, you must first use the
following tag to import the class into the JSP:

<%@ page import="com.beasys.commerce.content.ContentHelper"%>

Then, when you use the content selector tag, specify the contentHome as follows:

<pz:contentSelector
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

... />

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

Using Content-Selector Tags and Associated JSP Tags

Guide to Building Personalized Applications 4-5

Define the Array That Contains Query Results

You can use the following attributes to configure the array that contains the results of
the content-selector query:

� id, which specifies a name for the array. This attribute is required.

For example, <pz:contentSelector id="docs" .../> places documents in
an array named docs.

� max, which limits the number of documents the content selector places in its
array.

For example, <pz:contentSelector max="10" .../> causes the content
selector to stop retrieving documents when the array contains 10 documents.

This attribute is optional and defaults to -1, which means no maximum.

� sortBy, which uses one or more document attribute to sort the documents in the
array. The syntax for sortBy follows the SQL order by clause syntax.

This attribute is optional. If you do not specify this attribute, the content selector
returns the query results in the order that the content management system returns
them.

For example, <pz:contentSelector sortBy="creationDate" .../>
places the documents that were created first at the beginning of the array.

The tag
<pz:contentSelector sortBy="creationDate ASC, title DESC" .../>
places older documents at the beginning of the array. If any documents were
created on the same day, it sorts those documents counter-alphabetically by title.

Create and Configure the Cache to Improve Performance

To extend accessibility to the array, and to improve performance, you can optionally
use content-selector attributes to create and configure a cache that contains the array
contents. Without the cache, you can access the content-selector array only from the
current JSP page, and only for the customer request that created it. In addition, each
time a customer requests a JSP that contains the content selector tag, the content
selector must run the query, potentially slowing the overall performance of WebLogic
Personalization Server. To cache the contents of the array, define the following
attributes:

4 Working with Content Selectors

4-6 Guide to Building Personalized Applications

� useCache, which determines whether the content selector places the array in a
cache. To activate the cache, set this attribute to true. For example,
<pz:contentSelector cache=true ...>.

To deactivate the cache, set the attribute to false or do not include it. For
example, the following statements are equivalent:
<pz:contentSelector cache=false .../> or
<pz:contentSelector .../>

� cacheID, which assigns a name to the cache. If you do not specify this attribute,
the cache uses the name of the array (which you must specify with the id
attribute). If you want to access the cache from a JSP or user session other than
the one that created the array, you must specify a cacheID.

� cacheTimeout, which specifies the number of milliseconds that WebLogic
Personalization Server maintains the cache. The content selector does not re-run
the query until the number of seconds expires.

For example, you create the following tag:
<pz:contentSelector cache=true cacheTimeout=”300000” .../>

A customer requests the page that contains this content selector tag. The user
leaves the page but, 2 minutes (120000 milliseconds) later, requests it again. The
content selector evaluates its conditions, but because only 120000 milliseconds
have expired since the content selector created the cache, it does not re-run the
query. Instead, it displays the documents in the cache.

� cacheScope, which determines from where the cache can be accessed. You can
provide the following values for this attribute:

� application. Any JSP page in the Web application that any customer
requests can access the cache.

� session (the default). Any JSP in the Web application that the current
customer requests can access the cache.

� page. Only the current JSP that any customer requests can access the cache.

� request. Only the current user request can access the cache. If a customer
re-requests the page, the content selector re-runs the query and recreates the
cache.

Using Content-Selector Tags and Associated JSP Tags

Guide to Building Personalized Applications 4-7

Associated Tags That Support Content Selectors

The following JSP tags support content-selector functions:

� <um:getProfile>, which retrieves the profile of the customer who is currently
viewing the page. A content selector uses the customer profile to evaluate any
conditions that involve customer properties.

For example, if you create a content selector that runs a query for all customers
in the Gold Customer customer segment, the content selector must access the
customer profile to determine if it matches the customer segment.

Even if a content selector does not currently use the customer profile for its
conditions, we recommend that you include the <um:getProfile> tag; its affect
on performance is minimal and with the tag, a BA can add customer-profile
conditions to the content selector without requiring a CBE to modify JSPs.

The tag must be located closer to the beginning of the JSP than the content
selector tag.

� <es:forEachInArray>, which iterates through the array that contains the
results of a content-selector query. With this tag, you can use the following to
work with the documents in the array:

� The System.out.println method to print each item in the array.

� The <cm:getProperty> tag to retrieve one or more attribute of the
documents in the array. You can use the attributes to construct the HTML
that a browser requires to display the documents. For example, you use the
<cm:getProperty> tag to determine the value of a MIME-type attribute. If
the MIME-type of a document in the array is an image, you print the HTML
 tag with the appropriate attributes.

You can also use attributes of the <pz:contentSelector> tag, such as
sortBy, to work with the attributes of documents in the array. For more
information, refer to �Attributes of the <pz:contentSelector> Tag� on page
4-3.

� The <cm:printProperty> to print one or more attribute of the documents
in the array. For example, you can use this tag to print a list of document
titles that the content selector retrieves.

4 Working with Content Selectors

4-8 Guide to Building Personalized Applications

Common Uses of Content-Selector Tags and Associated
Tags

The combination of content selector definitions, tag attributes, and associated JSP tags
creates a powerful set of tools for matching documents to customers in specific
contexts. The following tasks are the most common uses of content selectors and
associated tags:

� To Retrieve and Display Text-Type Documents

� To Retrieve and Display Image-Type Documents

� To Retrieve and Display a List of Documents

� To Access a Content-Selector Cache on a Different JSP

To Retrieve and Display Text-Type Documents

Note: This section assumes that the content selector query that the BA created in
E-Business Control Center includes a filter to retrieve only text documents.

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page import="com.beasys.commerce.content.ContentHelper"%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>

<%@ taglib uri="um.tld" prefix="um" %>

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um:getProfile>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz:contentSelector> tag, which you create in the next step.

4. Add the following tags, where SpringSailing is the name of the content
selector that a BA created in the E-Business Control Center:

Using Content-Selector Tags and Associated JSP Tags

Guide to Building Personalized Applications 4-9

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="textDocs"/>
<es:forEachInArray array="<%=textDocs%>" id="aTextDoc"
type="com.beasys.commerce.axiom.content.Content">

<% "<P>" + aTextDoc + "</P>" %>

</es:forEachInArray>

Note: The above tags assume that the content selector query that the BA created
in the E-Business Control Center includes a filter to retrieve only text
documents. To verify the content type before you display it, you can
surround the <% "<P>" + aTextDoc + "</P>" %> scriptlet with
another scriptlet. For example:

<% if (aTextDoc .getMimeType().contains("text"))
{
<% "<P>" + aTextDoc + "</P>" %>

}
%>

5. Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

To Retrieve and Display Image-Type Documents

1. Determine the name of the attribute that your content management system uses to
uniquely identify documents. This procedure assumes that your content
management system uses an attributed named docID.

2. Open a JSP in a text editor.

3. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page import="com.beasys.commerce.content.ContentHelper"%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>

4 Working with Content Selectors

4-10 Guide to Building Personalized Applications

<%@ taglib uri="um.tld" prefix="um" %>

<%@ taglib uri="cm.tld" prefix="cm" %>

4. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um:getProfile>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz:contentSelector> tag, which you create in the next step.

5. Add the following tags, where SpringSailing is the name of the content
selector that a BA created in the E-Business Control Center:
<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="ImageDocs"/>

<es:forEachInArray array="<%=ImageDocs%>" id="anImageDoc"
type="com.beasys.commerce.axiom.content.Content">

<img src="<cm:printProperty id="anImageDoc" rule="docID"
encode="URL">" >

</es:forEachInArray>

Note: The above tags assume that the content selector query that the BA created
in E-Business Control Center includes a filter to retrieve only image
documents. To verify the content type before you display it, you can
surround the tag with a scriptlet. For example:

<% if (anImageDoc .getMimeType().contains("image"))
{
<img src="<cm:printProperty id="anImageDoc" rule="docID"
encode="URL">" >

}
%>

6. Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

Using Content-Selector Tags and Associated JSP Tags

Guide to Building Personalized Applications 4-11

To Retrieve and Display a List of Documents

1. Open a JSP in a text editor.

2. Near the beginning of the JSP, add the following lines to import classes and tag
libraries if they are not already in the JSP:

<%@ page import="com.beasys.commerce.content.ContentHelper"%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="pz.tld" prefix="pz" %>

<%@ taglib uri="um.tld" prefix="um" %>

3. Add the following tag to get the customer profile, if the tag is not already in the
JSP:

<um:getProfile>

If the JSP already uses this tag for some other purpose, it probably includes
other attributes. Make sure that the tag is closer to the beginning of the JSP than
the <pz:contentSelector> tag, which you create in the next step.

4. Add the following tags, where SpringSailing is the name of the content
selector that a BA created in the E-Business Control Center:
<pz:contentSelector rule="SpringSailing" <pz:contentSelector
rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="docs"/>

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printProperty id="aDoc"
rule="Title" encode="html" />

</es:forEachInArray>

5. Save the JSP. If you deploy the Web application as a WAR file, re-jar the Web
application and deploy it.

WebLogic Personalization Server deploys the modifications. If you specified a
page-check rate for your Web application, WebLogic Personalization Server
waits for the page-check interval to expire before deploying any changes. For
more information on setting the page-check interval, refer to the Performance
Tuning Guide.

4 Working with Content Selectors

4-12 Guide to Building Personalized Applications

To Access a Content-Selector Cache on a Different JSP

1. In a text editor, open the JSP page that contains the content selector tag. For
example, you want to cache the results of the following tag:
<pz:contentSelector rule="SpringSailing" id="docs".../>

2. Add attributes to the content selector tag as follows:

<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

id="docs"
useCache=true cacheID="SpringSailingDocs" cacheTimeout="120000"

cacheScope="application" />

These attributes create a cache that WebLogic Personalization Server maintains
for 2 minutes (120000 milliseconds) and that can be accessed using the name
SpringSailingDocs by any user from any page in the Web application. For
more information about possible values for cacheScope, refer to �Create and
Configure the Cache to Improve Performance� on page 4-5.

3. Save and deploy the JSP.

4. In a text editor, open the JSP from which you want to access the cache.

5. Use a content-selector tag that is identical to the tag you created in step 2. For
example, on the current JSP, add the following tag:
<pz:contentSelector rule="SpringSailing"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

id="docs"
useCache=true cacheID="SpringSailingDocs" cacheTimeout="120000"

cacheScope="application" />

6. Add tags to retrieve the data from the cache. For example, the following lines
print a list of documents that are in the cache:
<%@ taglib uri="es.tld" prefix="es" %>

<es:forEachInArray array="<%=SpringSailingDocs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printProperty id="aDoc"
rule="Title" encode="html" />

</es:forEachInArray>

How Content Selectors Select Documents

Guide to Building Personalized Applications 4-13

7. Save and deploy the JSP.

How Content Selectors Select Documents

When a user requests a JSP that contains a content selector tag, the following process
occurs:

1. The content selector tag contacts the Advisor.

Note: For information about the Advisor, see Chapter 2, �Creating Personalized
Applications with the Advisor.�
For information about the Rules Engine, see Chapter 3, �Introducing the Rules
Manager.�

2. The Advisor forwards the content-selector request to the Rules Manager via the
Rules Advislet.

3. The Rules Manager finds the corresponding content-selector definition and
invokes the Rules Engine to evaluate the content selector�s conditions.

4. Depending on the conditions that are defined for the content selector, the Rules
Engine refers to any of the following:

� The profile of the user who requested the JSP to determine if the user
matches a customer segment or some other attribute that conditions in the
content selector specify.

� The Events Service to determine if any events that conditions in the content
selector specify have occurred.

� The system clock to determine if the current time or date matches any time
or date that conditions in the content selector specify.

5. If any of the conditions are met, the Rules Engine returns the content selector�s
query to the Advisor via the Rules Manager.

6. The Advisor forwards the query to the content management system via the
Content Query Advislet.

4 Working with Content Selectors

4-14 Guide to Building Personalized Applications

7. The Advisor stores any query results in an array that only the current JSP can
access. You can specify that the Advisor stores the results in a cache and that the
cache is accessible beyond the current JSP. For more information, see �Create
and Configure the Cache to Improve Performance� on page 4-5.

Note that you must use other tags to display the documents that are in the array.

How Content Selectors Select Documents

Guide to Building Personalized Applications 4-15

Figure 4-4 How Content Selectors Select Documents

4 Working with Content Selectors

4-16 Guide to Building Personalized Applications

For more information about using this tag, refer to �Using Content-Selector Tags and
Associated JSP Tags� on page 4-3.

Guide to Building Personalized Applications 5-1

CHAPTER

5 Foundation Classes and
Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that JSP developers can use to gain access
to functions provided by the server, and helpers for gaining access to the Advisor
services.

This topic includes the following sections:

� Flow Manager

� Dynamic Flow Determination and Handling

� Property Set Usage

� Webflow

� Accessing Your Application via the Flow Manager

� Repository

� HTTP Handling

� Personalization Request Object

� Default Request Property Set

� Personalization Session Object

� Default Session Property Set

� Utilities

� JspHelper

5 Foundation Classes and Utilities

5-2 Guide to Building Personalized Applications

� JspBase

� P13NJspBase

� ContentHelper

� CommercePropertiesHelper

� Utilities in commerce.util Package

� ExpressionHelper

� TypesHelper

Flow Manager

The Flow Manager is a servlet implementation that allows the hot deployment of
applications within the WebLogic Application Server. Flow Manager also adds
flexibility to navigation through the system by allowing navigation information to
move off the JSP page and into a single point of control. Using a destinationdeterminer
and a destinationhandler, the Flow Manager dynamically determines a destination for
a given page request and dynamically handles it.

Note: The Flow Manager replaces the functionality previously supplied by the Portal
Service Manager and JSP Service Manager. All the functionality of the service
managers now reside within the Flow Manager. The JSP Service Manager and
the Portal Service Manager have been deprecated.

Dynamic Flow Determination and Handling

The Flow Manager allows the determination of page routing to be centralized on the
server based on an application's needs. To define properties of your unique application,
you will create a property set of type APPLICATION_INIT. (See �Property Set Usage�
on page 5-5.) There are three required values:

� destinationdeterminer � an implementation of the
com.beasys.commerce.foundation.flow.DestinationDeterminer
interface.

Flow Manager

Guide to Building Personalized Applications 5-3

� destinationhandler � an implementation of the
com.beasys.commerce.foundation.flow.DestinationHandler interface.

� ttl � how long (in milliseconds) before reloading the application init property set.

How the FlowManager Works

When WebLogic Personalization Server is installed, the Flow Manager servlet is
registered with the WebLogic server in the web.xml file:
<servlet>

<servlet-name>application</servlet-name>

<servlet-class>com.beasys.commerce.foundation.flow.

FlowManager</servlet-class>

</servlet>

To access the servlet, a client browser makes an HTTP request. For example:
http://localhost:7501/application/exampleportal.

In this example, �application� is the registered servlet (the Flow Manager), and
�exampleportal� is the APPLICATION_INIT property set that you defined.

The following diagram illustrates how the Flow Manager handles the request.

5 Foundation Classes and Utilities

5-4 Guide to Building Personalized Applications

Let�s look at the diagram one step at a time, using our example.

1. A client browser makes an HTTP request via a form submission, hyperlink, etc.

In this example, the request is for the exampleportal at
http://localhost:7501/application/exampleportal.

WebLogic Server (WLS) routes the request to the servlet registered in web.xml
with the name �application,� which is the Flow Manager.

2. The request is analyzed within the servlet, and the path-info is pulled out. The
path-info is the name of the property set to retrieve.

In our example, the Flow Manager extracts the string �exampleportal� from the
URL.

The property set is retrieved from the database (or the cache).

Using the SchemaManager, the Flow Manager reads the Application Init
property set of that name from the database. The Flow Manager reads the
properties named �destinationdeterminer� and �destinationhandler� from the
property set and instantiates each class.

Note: Implementations of these classes are to be provided by the application
developer, as needed.

3. The Flow Manager then calls the destinationdeterminer defined in the property
set, using the DestinationDeterminer.determineDestination method.

In this example, the PortalDestinationDeterminer class does not find a
DESTINATION_URI in the request and the user is not logged in, so it retrieves the
“defaultdest” property and returns the destination string
“/portals/example/portal.jsp” to the Flow Manager.

4. The Flow Manager then calls the DestinationHandler.handleDestination
method. The destination returned from the previous call is passed on to the
destinationhandler defined in the property set.

5. In this example, the portal uses the ServletDestinationHandler which calls
the requestDispatcher.forward method, passing execution control to the
portal.jsp servlet.

6. Finally, application processing proceeds in the servlet which uses the response
object to return data to the client browser.

Flow Manager

Guide to Building Personalized Applications 5-5

Property Set Usage

The Property Set Management Administration Tools include a class of property sets
called Application Initialization Property Sets. To support non-portal based
personalized applications, the Flow Manager uses _DEFAULT_APP_INIT. For portals,
the Flow Manager uses the_DEFAULT_PORTAL_INIT property set. For more
information, see the topic �_DEFAULT_PORTAL_INIT Property Set� in the chapter
�Creating and Managing Portals� in the Guide to Creating Portals and Portlets.

The following three properties support the Flow Manager:

destinationdeterminer Property

The destinationdeterminer evaluates an HTTP request and determines which servlet to
route it to.

The value provided for this property should be the name of a class that implements the
com.beasys.commerce.foundation.flow.DestinationDeterminer interface.
If appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

destinatationhandler Property

Given a destination route, the destinationhandler is responsible for invoking the
requested processing.

Property Name Required Description

destinationdeterminer Yes Used by Flow Manager to determine JSP page
navigation.

destinationhandler Yes Used by Flow Manager to execute JSP page
navigation.

ttl Yes Time-to-live determines (in milliseconds) how
often the Flow Manager reloads the application
init property set from the database.

5 Foundation Classes and Utilities

5-6 Guide to Building Personalized Applications

The value provided for this property should be the name of a class that implements the
com.beasys.commerce.foundation.flow.DestinationHandler interface. If
appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

 ttl (time-to-live) Property

Time-to-live (ttl) represents how often (in milliseconds) the Flow Manager reloads the
application init property set from the database. This allows you to make property set
changes visible while the portal is running.

Note: To force immediate reloading of the property set, append the "flowReset"
argument to your URL, like this:
http://localhost:7001/application/exampleportal?flowReset=true

Creating a New Property Set

1. Open the Administration Tools Home page. Click the Property Set Management
icon to open the Property Set Management screen.

2. From the main Property Set Management screen, click Create.

3. Name the new property set you are creating (100 character maximum). The name
of the property set should be the same as the name you used to create the portal,
or the name you will use to access the application.

4. Enter a description of the property set (255 character maximum).

5. From the Copy Properties From drop-down list, select
APPLICATION_INIT._DEFAULT_PORTAL_INIT (for a portal)
or
APPLICATION_INIT._DEFAULT_APP_INIT (for a non-portal application).

6. From the Property Set Type drop-down list, select Application Init.

7. Click the Create button.

8. At the top of the page, in red, you will see the message �Property Set creation
was successful.� (Or, you will see an error message indicating why the property
set was not created.)

9. Click Back to return to the main Property Set Management screen.

Flow Manager

Guide to Building Personalized Applications 5-7

Set Parameters for Your Portal or Application

1. From the Property Set Management Home page, under the Application
Initialization Property Sets heading, click the name of the property set you just
created.

2. A Property Set page comes up, allowing you to set parameters.

3. Note: For non-portal applications, skip this step.
To edit the portal name, click the Edit button to the right of the �portal name�
property. Change the default value from UNKNOWN to the name of your portal, as
you created it in Portal Management.

4. Edit the destinationdeterminer property. Either accept the default, or edit to
provide your own implementation of these classes.

5. Edit the destinationhandler property. Either accept the default, or edit to
provide your own implementation of these classes.

6. Customize any other properties you choose. For information about customizing
properties in portals, see �Creating and Managing Portals� in the Guide to
Creating Portals and Portlets.

7. When you have finished setting properties, click the Finished button at the
bottom of the page.

Webflow

Webflow is a mechanism that controls the flow of a user session by determining which
pages are displayed in a browser. The Flow Manager provides the basic infrastructure
to support the Webflow functionality. On the WebLogic Personalization Server,
Webflow does a simple dispatch to a target destination. When a request comes in from
the browser, a destinationdeterminer looks for a dest parameter on the URL and grabs
what dest asks for.

The WebLogic Commerce Server extends the Flow Manager with the addition of a
Webflow properties file. By setting parameters, you can determine how Webflow
reacts to events and which pieces of business logic to execute. When a request comes
into WebLogic Commerce Server from a browser, Webflow looks for the origin and
event parameters in the webflow.properties file and grabs what the properties file
asks for.

5 Foundation Classes and Utilities

5-8 Guide to Building Personalized Applications

The Webflow scheme provides a good example of centralized routing information. It
provides an implementation of the destinationdeterminer which uses a properties file
resource as a state table to determine the routing destination. For more information
about the Webflow implementation in the WebLogic Commerce Server, see the guide
Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline.

Accessing Your Application via the Flow Manager

The URL for Acme Demo Portal accessed as a Web application is:
http://localhost:7501/exampleportal

The exampleportal portion of the URL is the context name for the Web application,
as defined through the WebLogic console in the config.xml file.

<WebAppComponent Name="exampleportal" Targets="wlcsServer"

URI="exampleportal" ServletReloadCheckSecs="300" />

Within the Web application, the web-inf/web.xml file includes <servlet> and
<servlet-mapping> entries for the Flow Manager, associating all URL accesses
starting with “application/*” with the Flow Manager�s class.

In the above URL example, the HTTP request defaults to index.jsp, as defined in the
<welcome-file-list> element in the Web application�s web.xml file. When the
HTTP request is routed to the Flow Manager, it extracts the path information
exampleportal from the URL and retrieves the property set of the same name from
the server (or cache.) The destinationdeterminer and destinationhandler
properties are used to instantiate the supporting implementations, and processing
proceeds as described above.

Repository

The repository feature allows you to specify a single directory to contain files that
otherwise would have to be replicated several times.

HTTP Handling

Guide to Building Personalized Applications 5-9

The administration pages for components take advantage of the repository feature to
store images shared between components. Each HTML reference to an image is
wrapped by the ToolsJspBase.fixupRelativeURL method. This method first looks
in the path-relative directory for the image specified in the argument. If not found
there, the repositorydir specified in the property set (for the admin Web
application) is searched for the image.

For portals, the default portal (Acme) implementation has its files contained in a folder
named repository and specifies a repositorydir=/portal/repository. In an
extreme example, a second portal which only differed from Acme in one file, say
portal.jsp, would be created by creating a new directory named extremeExample
and by adding one file (portal.jsp) to it. All files supporting the extremeExample
portal which were not found in its workingdir will be fetched from the repository
directory.

HTTP Handling

Both the <pz:div> and <pz:contentselector> tag implementations send
HttpRequest and Session information to the Advisor.

The tags utilize helper classes that transform an HttpRequest and Session into
serializable personalization surrogates for their HTTP counterparts. These surrogates
are compatible with the Personalization Rules Service which uses these objects to
execute classifier and content selector rules.

Personalization Request Object

In order to use HttpRequest parameters in requests to the rules service, they must be
wrapped in a Personalization Request object
(com.beasys.commerce.axiom.p13n.http.Request) before they can be set on the
appropriate AdviceRequest (see the Javadoc API documentation). While the
HttpRequest object can be wrapped by directly calling the Personalization Request
constructor, it is recommend that developers use the createP13NRequest helper

5 Foundation Classes and Utilities

5-10 Guide to Building Personalized Applications

method on P13NJspBase
(com.beasys.commerce.axiom.p13n.jsp.P13NJspBase) for this purpose. See the
Javadoc API documentation for more information.

Caution: The tag implementations for the <pz:div> and <pz:contentSelector>
tags create the Personalization Request surrogate for the HttpRequest
before calling the Advisor bean, so JSP developers need not worry about
the details of the Request object. Only developers accessing the Advisor
bean directly need to wrap the HttpRequest object explicitly.

In order to avoid confusing results on getProperty method calls, developers need to
know the algorithm used in the getProperty method implementation for determining
the value of the property requested . When the Request's getProperty method is
called (for example, by a rules engine), the system uses the following algorithm to find
the property:

1. The getProperty method first looks in the HttpRequest’s attributes for the
property.

2. If not found, getProperty looks for the property in the HttpRequest
parameters.

3. If not found, getProperty looks in the HTTP headers.

4. If not found, getProperty looks in the Request methods (getContentType,
getLocale, etc.).

5. If not found, getProperty uses the scopeName parameter to find a schema
entity for a Request schema group name and, if the schema is found, uses the
default value in the schema.

6. If not found, getProperty uses the default value passed into the method call.

Default Request Property Set

For Rules developers to write rules for classifier rules that contain conditions based on
an HttpRequest, there must be a property set defined for the HttpRequest. By
default, WebLogic Personalization Server ships with a default request property set for
the standard HttpRequest properties. Developers adding properties to the request
programatically will need to add those properties to the default property set in order
for them to be available to the E-Business Control Center and the Rules Manager.

Personalization Request Object

Guide to Building Personalized Applications 5-11

The default Request properties include the following:

Request Property Name Associated Request Method

Request Method request.getMethod()

Request URI request.getRequestURI()

Request Protocol request.getProtocol()

Servlet Path request.getServletPath()

Path Info request.getPathInfo()

Path Translated request.getPathTranslated()

Locale request.getLocale()

Query String request.getQueryString()

Content Length request.getContentLength()

Content Type request.getContentType()

Server Name request.getServerName()

Server Port request.getServerPort()

Remote User request.getRemoteUser()

Remote Address request.getRemoteAddr()

Remote Host request.getRemoteHost()

Scheme request.getAuthType()

Authorization Scheme request.getScheme()

Context Path request.getContextPath()

Character Encoding request.getCharacterEncoding()

5 Foundation Classes and Utilities

5-12 Guide to Building Personalized Applications

Personalization Session Object

In order to use HTTP Session parameters in requests to the rules service, they must be
wrapped in a Personalization Session object
(com.beasys.commerce.axiom.p13n.http.Session) before they can be set on
the appropriate AdviceRequest (see the Javadoc API documentation). While the
HttpSession object can be wrapped by directly calling the Personalization Session
constructor, using the createP13NSession helper method on P13NJspBase
(com.beasys.commerce.axiom.p13n.jsp.P13NJspBase)is recommended. See
the Javadoc API documentation for more information.

The tag implementations for the <pz:div> and <pz:contentselector> tags create
the Personalization Session surrogate for the HTTP Session before calling the Advisor
bean, so JSP developers need not worry about the details of the HttpSession object.
Only developers accessing the PersonalizationAdvisor bean directly need to wrap
the HttpSession object explicitly.

Default Session Property Set

For Rules developers to write rules that contain conditions based on an HTTP session,
there must be a property set defined for the HTTP session. WebLogic Personalization
Server ships with a default session property that contains no values set as a
placeholder. There are no default Session property set values. Developers adding
properties to the session programatically will need to add those properties to the default
property set in order for them to be available to the E-Business Control Center and the
Rules Manager.

The Personalization Session object retrieves the session values from the Service
Manager (see �Repository� on page 3-11) for the current thread and clones them so
they can be used on a remote machine.

The Personalization Session uses the following algorithm to find a property:

1. It first looks in its own cloned HTTP Session properties.

2. If it does not find the property, it locates the schema for the Personalization
Session for the scopeName method parameter.

Personalization Session Object

Guide to Building Personalized Applications 5-13

3. If it still does not find the property, it uses the scopeName parameter to find a
schema entity for the Session schema group name and, if the schema is found,
uses the default value in the schema.

4. If it still does not find the property, it uses the default value passed into the
getProperty method call.

5 Foundation Classes and Utilities

5-14 Guide to Building Personalized Applications

Utilities

You can view more detailed documentation for the utilities listed here in the Javadoc
API documentation.

JspHelper

JspHelper provides get methods to the JspServiceManager URI, the working
directory, the home page, and the current page. It also provides set and get methods for
session values and JSP destinations.

Note: Some of these methods assume that the JspServiceManager model is being
used.

JspBase

JspBase acts as a base class for all JSP pages that use a Flow Manager. A wide variety
of important methods are provided:

� Get methods for the TrafficURI, working directory, repository directory, default
destination, RequestURI, default successor, home page, and current page.

� Methods to create URLs, and fixup (fully qualified) URLs.

� Methods to override the destination tag.

� Methods to set and get logged-in status.

� Methods to get, set, and remove session values.

� A method to convert HTML special characters to HTML entities.

� Methods to set the user and successor.

Utilities

Guide to Building Personalized Applications 5-15

P13NJSPHelper

P13NJspHelper provides convenience methods to developers writing JSP pages
(including but not limited to portals and portlets) that include personalized content. It
provides methods for wrapping HTTP Request and Session objects into their
personalization surrogates, and a method for retrieving the current Profile (User,
Group, and so on) for an application.

P13NJspBase

P13NJspBase acts as a base class for all personalized JSP pages. This class extends
JspBase.

ContentHelper

ContentHelper simplifies the life of the developer using the Content Management
component. Methods are provided to get an array of content given a search object, to
get the length of a piece of content. Constants for the default Content and Document
homes are also provided.

CommercePropertiesHelper

CommercePropertiesHelper allows easy access to the commerce.properties file's
properties. Methods are provided to return the values of a given keys as various data
types. Also provided is a method to return all keys that start with a given string as a
string array. For example, use the method to find all of the keys that start with
personalization.portal.

5 Foundation Classes and Utilities

5-16 Guide to Building Personalized Applications

Utilities in commerce.util Package

ExpressionHelper

ExpressionHelper handles dealing with Expression, Criteria, and Logical
objects. It contains methods for parsing query strings into Expressions, joining
Expressions into Logicals, normalizing Expressions, changing Expressions,
Logicals, and Criteria into Strings, and turning Expressions into String trees
for debugging purposes.

TypesHelper

TypesHelper provides a set of constants corresponding to the types and operators
used in the configurable entity properties. Methods are provided to get string
representations of the type names, to determine a type from a java.sql.Type, and to
get the list of comparison operators for a certain type.

Guide to Building Personalized Applications 6-1

CHAPTER

6 Creating and Managing
Property Sets

Property sets are the schemas for personalization attributes. Using the Property Set
Management tool, you can create property sets and define the properties that make up
these property sets.

This chapter includes the following topics:

� Overview of Property Sets

� Property Value Retrieval via ConfigurableEntity

� Using the Property Set Management Tool

� Creating Property Sets

� Creating Properties Within a Property Set

� Editing Property Sets

� Editing Properties Within a Property Set

� Deleting Property Sets

� Deleting Properties

6 Creating and Managing Property Sets

6-2 Guide to Building Personalized Applications

Overview of Property Sets

In the most general sense, a property can be considered a name/value pair. Property
sets serve as namespaces for properties so that properties can be conveniently grouped
and so that multiple properties with the same name can be defined.

For instance, Web site developers might want users to be able to specify different
background colors for each of their portals by requiring the property
�backgroundColor� for a user. By creating �portalA� and �portalB� property sets, the
property �backgroundColor� can exist for both portalA and portalB. While the two
�backgroundColor� properties have the same name, they could have the same or
different definitions. Figure 6-5 shows two property sets with redundant property
names, corresponding to unique definitions.

Figure 6-5 Property Sets Serving as Namespaces

Overview of Property Sets

Guide to Building Personalized Applications 6-3

A property definition includes the following information:

� Property Value Type: The data type of the property value, for example, Text,
Integer, Float, or Date/Time. A property called age might be an Integer type,
while lastName would be Text.

� Plurality: Whether the property can contain a single value, or multiple values. A
property called firstName might be a single-valued property, while
childrenNames would most likely be multivalued.

� Restriction: Whether the allowable values for a property are restricted. A
property called favoriteDayOfTheWeek would only have seven possible
values, while email would most likely be unrestricted.

� Default Property Value: Default values provided by the property set
corresponding to the property. A property called favoriteDayOfTheWeek might
have a default value of �Saturday.� A property called daysOff might have the
defaults �Saturday� and �Sunday.�

For Personalization Server purposes, property sets are applied to six major areas.

1. User and Group Profiles

The User/Group property set type is used for defining the property sets and
properties that apply to user and group profiles. For example, a property set of
this type might be created called portalA. Subsequent property retrieval for a
particular user or group can then be scoped with this property set name to
retrieve the user�s background color for the portal. See Chapter 7, �Creating and
Managing Users,� for an in-depth discussion of how property retrieval works for
users and groups.

2. HTTP Sessions

The Session property set type is used for defining the property sets and
properties that apply to HTTP sessions. Like the User/Group property set type, a
�Session� property set type might be called �portalA.� Properties available
through this property set can then be accessed via the Advisor.

3. HTTP Requests

The Request property set type is used for defining the property sets and
properties that apply to HTTP requests. Again, like the �User/Group� property
set type, a �Request� property set type might be called �portalA.� Properties
available through this property set can then be accessed via the Advisor.

6 Creating and Managing Property Sets

6-4 Guide to Building Personalized Applications

4. Content Management

The Content Management property set type is used for defining the
configuration and run-time use of the content management system. Content
Management property sets cannot be created or manipulated with the
Personalization Server Administration Tools. For more complete information on
this subject, see Chapter 8, �Creating and Managing Content,� in this guide.

5. Application Initialization

The Application Init property set type uses default values to define application
initialization parameters. These are the property sets used by the Flow Manager
in support of portal (DEFAULT_PORTAL_INIT) and non-portal
(DEFAULT_APP_INIT) based personalized applications. For more information
about the Flow Manager, see Chapter 5, �Foundation Classes and Utilities,� in
this guide.

6. Catalog Custom Attributes

You can define a property set that establishes custom attributes for a product
item in the WebLogic Commerce Server catalog. For a given product item, a
custom attribute that you define can be used in addition to the default attributes
provided by WebLogic Commerce Server in the catalog database tables. For
more information, see �Catalog Administration Tasks� in the Guide to Building
a Product Catalog.

Creating a property set is a simple task via the Property Set Management tools. A name
for the set must be provided as well as description. Properties can be copied from an
existing property set if a pre-existing property set defines similar properties.
Expanding the previous example, if portalA�s properties have been defined and
portalB is going to have the same (or similar) properties, then you can copy the
properties from portalA�s property set when creating portalB�s property set. Finally,
the type of property set (�User/Group�, �Session�, or �Request�) must be chosen.

When defining a property, specify the following:

� Property name � the name of the property, such as backgroundColor.

� Description � a textual description of the property, perhaps describing the
purpose of the property.

� Type � the data type of the property value. Data types supported by the
administration tools are Text, Integer (equivalent to Long in Java),

Overview of Property Sets

Guide to Building Personalized Applications 6-5

Floating-Point number (equivalent to Double in Java), Boolean, and Date/Time
(equivalent to java.sql.Timestamp).

� Selection option � determines whether the property is single-valued or
multi-valued.

� Creation category � determines whether the possible values are restricted.
Restricted property values are restricted to values listed in the property
definition. Unrestricted property values have no such limitation.

The following table lists the property definition attribute and value.

Once created, User/Group property values can be edited for a particular user or group
via the User Management user and group tools. For �Session� and �Request�
properties, the only editable values are the default values set in the property definitions
�run-time values are determined by values in the HTTP session or HTTP request,
respectively.

Property Definition Attribute Attribute Value

Name Text (100 character length maximum)

Description Text (255 character length maximum)

Type Text, Integer (equivalent to Long in Java),
Floating-Point Number (equivalent to Dou-
ble in Java), Boolean, or Date/Time

Selection Option Single-valued or multi-valued

Creation Category Restricted or unrestricted

Default Value Up to the user�can be null

6 Creating and Managing Property Sets

6-6 Guide to Building Personalized Applications

Property Value Retrieval via
ConfigurableEntity

Property Sets created with the administration tools are stored as
com.beasys.commerce.foundation.property.Schema components. The
component that acts as an �owner� of properties associated with Property Sets is the
com.beasys.commerce.foundation.ConfigurableEntity. During inspection of
the Javadoc for Schema and ConfigurableEntity, the reader may see the words
�schema� and �scope� used interchangeably with �Property Set.� Figure 6-6 shows a
simplified representation of property value retrieval through a ConfigurableEntity. For
the ConfigurableEntity, the value of backgroundColor for portalB has been
overridden. The value of backgroundColor for portalA has not. Therefore, when
backgroundColor is requested for the portalB property set, the overridden value, red,
will be returned. When backgroundColor is requested for the portalA property set, the
property set default value, white, will be returned.

Figure 6-6 backgroundColor Property Retrieval

Figure 6-7 shows another simple example of backgroundColor property retrieval to
demonstrate the notion of an explicit successor. A second ConfigurableEntity can be
specified in the ConfigurableEntity getProperty() API that acts as a �backup�
place to look for a particular property value. This second ConfigurableEntity is

Property Value Retrieval via ConfigurableEntity

Guide to Building Personalized Applications 6-7

considered an explicit property successor. In this example, a particular group is used
as an explicit successor, and the value for portalA�s background color, green, is
�inherited� from this successor.

Figure 6-7 Explicit Successor backgroundColor Property Retrieval

Figure 6-8 provides an example of an implicit successor. An implicit successor is a
successor tied to a particular Property Set. In this case, the user does not have a value
for portalA.backgroundColor, and no explicit successor is provided in the
getProperty() call. However, the group has already been associated with the user as
its successor for the portalA Property Set. Again, the user �inherits� the property value,
green, from the group.

Figure 6-8 Property Inheritance Through Property Set-related Successor

There also exists the notion of a default successor, which can be searched after an
explicit successor and a Property Set-related successor have failed to return a value for
the property. Figure 6-9 shows such a case. In this example, the Property Set-related
successor cannot produce the necessary property value for backgroundColor in
portalA, so the value must be retrieved from the default successor.

6 Creating and Managing Property Sets

6-8 Guide to Building Personalized Applications

Figure 6-9 Property Inheritance Through a Default Successor

Keep in mind that these examples have been considerably simplified for brevity and to
easily explain relevant concepts. More details of ConfigurableEntity property
inheritance are available in the topic �Users and Groups� in the chapter Creating and
Managing Users.

Using the Property Set Management Tool

Guide to Building Personalized Applications 6-9

Using the Property Set Management Tool

The Property Set Management tools allow you to create and manage sets of typed
properties. Property Sets may be defined to describe user and group, session, request,
and content properties.

Creating Property Sets

To create a property set:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click Create in the Property Sets banner. The Create Property Set page appears.

To enter a new property set:

a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.

c. Leave the Copy Properties From default as Don�t copy properties.

d. From the Property Set Type drop-down list, select a property set type.

To copy properties from an existing property set into the new one:

a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.

6 Creating and Managing Property Sets

6-10 Guide to Building Personalized Applications

c. From the Copy Properties From drop-down list, select the property set
containing the properties you want copied.

3. Click Create to create the property set.

4. Click Back to return to the Property Set Management Home page.

Note: At any time, you can click Back to return to the Property Set Management
Home page without saving the property set.

Creating Properties Within a Property Set

To create properties within a property set:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. From the Property Set list, click the title link for the property set to which you
will add a property. The Property Set view page appears.

3. Click Create on the Properties bar. The Create Properties page appears.

a. Enter the property name in the Property Name field.

b. Enter a description of the new property in the Description field.

c. Select the type from the Type drop-down list box.

d. Select option (single, multiple) from the Selection Option drop-down list box.

Note: The single option refers to those properties having only one option (for
example, Property: Color, Attribute: red). The multiple option refers to

Using the Property Set Management Tool

Guide to Building Personalized Applications 6-11

those properties having multiple options (for example, Property: Colors,
Attributes: red, green, blue, and so on).

e. Select the creation of category (Restricted, Unrestricted) from the Creation
Category drop-down box.

Note: Restricted categories refer to values that are selected via a list, radio
buttons, check boxes, and so on. Unrestricted categories refer to instances
in which users populate a form field.

4. Click Create.

5. Click Back to return to the Property Set view.

Setting Up the Property Default Value

Notes: Different steps are required for setting up default values, given your
option/category selection.

To set up the property default value for single/restricted categories:

1. From Property Set view, click Edit on the appropriate Property Description bar.

2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value(s) by selecting the appropriate radio button.

6. Click Create.

To set up the property default value for single/unrestricted categories:

1. From Property Set view, click Edit on the appropriate Property Set Description bar.

2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Create.

To set up the property default value for multiple/restricted categories:

6 Creating and Managing Property Sets

6-12 Guide to Building Personalized Applications

1. From Property Set view, click Edit on the appropriate Property Set Description bar.

2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value(s) by selecting the appropriate radio button(s).

6. Click Create.

To set up the property default value for multiple/unrestricted categories:

1. From Property Set view, click Edit on the appropriate Property Set Description bar.

2. Click Edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click Save.

Editing Property Sets

To edit a property set:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

To edit the Property Set Description:

1. Click Edit on the Property Set Description bar. The Edit Property Set page appears.

Using the Property Set Management Tool

Guide to Building Personalized Applications 6-13

2. Enter the new description in the Description field.

3. Click Save to save changes. The general Property Set view appears with the new
information. Alternately, click Back to return to Property Set view page without
saving your changes.

Editing Properties Within a Property Set

To edit properties within a property set:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

3. Click Edit on the appropriate property bar. The specific Property view page
appears, containing information specific to the property you wish to edit.

4. Click Edit on the appropriate Description or Property Values bar. The Edit
Property page appears.

5. Enter changes in the field(s) provided.

6. Click Save. The specific Property view returns. Alternatively, click Back. The
specific Property view appears and your changes are not saved.

Deleting Property Sets

To delete a property set:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Click the X to the right of the appropriate title link from the Property Sets list.

3. Click OK to confirm the deletion.

6 Creating and Managing Property Sets

6-14 Guide to Building Personalized Applications

Deleting Properties

To delete properties:

1. On the Administration Tools Home page, click the Property Set Management icon.
The Property Set Management Home page appears.

2. Select the appropriate title link from the Property Sets list. The general Property
Set view appears.

3. Click Delete on the Properties bar. The Delete Properties page appears.

4. Select a property from the Property Name list.

5. Click Delete.

6. Click OK to confirm the deletion. The specific Property view returns.
Alternatively, click Back. The Property view appears and the property is not
deleted.

Guide to Building Personalized Applications 7-1

CHAPTER

7 Creating and Managing
Users

This chapter discusses how User Management combines enterprise data about users
with profile data that is used to personalize the users� view of the application.

This topic includes the following sections:

� Overview of User Management

� Users and Groups

� Unified User Profiles

� Using WebLogic Realms

� Anonymous User Profiles

� Privacy Statement

� User Manager

� Using the User Management Tool

� Using the LDAP Realm

� Using Other Realms

Note: Throughout this chapter, the environment variable WL_COMMERCE_HOME is
used to indicate the directory in which you installed the WebLogic Commerce
Server and WebLogic Personalization Server software.

7 Creating and Managing Users

7-2 Guide to Building Personalized Applications

Overview of User Management

The User Management system is a set of JSP tags, EJBs, and tools that facilitate the
creation and persistence of user and group profile properties. It provides access to user
profile information within a larger personalization server solution. In addition, the
User Management system provides user-authentication mechanisms and user-to-group
associations.

The User Management system responsibilities include:

� User Authentication�the user management system is used to authenticate a
user against a persistent set of authentication information (typically a
username-password combination).

� User/Group Association Management�the association of a user with one or
more groups can play an essential role in determining user profile information
pertinent to the user's session. The User Management system can either provide
a default schema for user-group information persistence, or interface with
existing user databases via standardized interfaces (for example, LDAP) or
customized connectors.

� User Profile Management�the User Management system constructs the user
profile from persisted user and group attributes. User attributes can range from
statically-defined properties, such as a user's social security number, to
dynamically-created and persisted properties, such as Web site tracking
information for a particular user, or user preferences entered from a standard
input screen. The User Management system facilitates the creation and
persistence of user profile properties.

Note: The administration tools do not allow the creation of a user with username
�system� or �guest� or a group called �everyone,� as these are reserved
WebLogic Server terms.

Users and Groups

Guide to Building Personalized Applications 7-3

Users and Groups

The two primary components employed by the WebLogic Personalization Server�s
User Management system are the User and Group, which extend ConfigurableEntity.
It is from these components that User, and Group, and Unified User Profile
functionality stems. User and Group components are also referred to as �user profiles�
and �group profiles.�

The fully qualified name of each object is as follows:

� User: com.beasys.commerce.axiom.contact.User

� Group: com.beasys.commerce.axiom.contact.Group

� ConfigurableEntity:
com.beasys.commerce.foundation.ConfigurableEntity

The User Management system works in conjunction with the WebLogic Server�s
security realm. In this arrangement, the security realm provides a list of users and
groups, group membership information, and authentication. The User Management
system uses the security realm to authenticate users and to know which users and
groups exist and are valid, and which users are in a group. With this information from
the security realm, it is possible for the User Management system to accomplish its
primary duties: creating, retrieving, and managing user and group profiles complete
with property data. A default security realm (User Management RDBMSRealm) is
provided by the WebLogic Personalization Server as part of its �out-of-the-box�
configuration.

Property data can be anything that is relevant to a user or group profile in the context
of your personalized application. Things like age, gender, and favorite genres of music
could all be property data. Things like department, position, and office location could
also be property data. Much more is explained later about the actual and possible
implementation details of handling property data in user and group profiles.

Group hierarchies permit property inheritance. For example, if a user profile does not
yet have a �backgroundColor� property value, then the backgroundColor property
value might be inherited from an �engineering� group. Groups may have only one or
no parent group. As will be discussed later in this chapter, even if a realm for a
third-party data store (for example, LDAP server) is used to access users and groups,
any arbitrary group hierarchy may be configured for personalization purposes
(property inheritance) via the User Management tools.

7 Creating and Managing Users

7-4 Guide to Building Personalized Applications

Profile functionality for both the User and Group components is inherited from the
ConfigurableEntity implementation. Figure 7-10 shows a simplified representation of
the User-Group-ConfigurableEntity relationship.

Figure 7-10 The User-Group-ConfigurableEntity Relationship

Unified User Profiles

In the BEA WebLogic Personalization Server, system users are represented by user
profiles. A user profile provides an ID for a user and access to the properties of a user,
such as age or e-mail address. Property values can be single-valued or multi-valued,
and are requested via a getProperty() method which takes a property name as a key.

An advantage of the user profile is that it can be extended and customized to retrieve
user information from an existing data source. For example, the user profile that ships
with the WebLogic Personalization Server can combine user properties from the
Personalization Server database with user properties from an LDAP server into a
single user profile for use within an application. Developers and system users need not
worry about the different underlying data sources. To them there is just one place to go
for user information�the user profile.

The Unified User Profile (UUP) is the name used to describe this aggregation of
properties from an existing data source and the WebLogic Personalization Server
database tables into a single, customized user profile. More specifically, a UUP
marries existing user/customer data by extending BEA�s User component. By

Unified User Profiles

Guide to Building Personalized Applications 7-5

installing the WebLogic Personalization Server�s database tables into the existing
database instance and extending the provided
com.beasys.commerce.axiom.contact.User implementation, developers can
quickly create a customized UUP that retrieves and stores properties from/to the
existing database. This powerful flexibility is desirable because it allows access to
existing data without requiring data migration or disrupting existing applications that
also use the data. Conversely, if it is more desirable to migrate existing data into a
separate WebLogic Personalization Server database instance, this is also possible.

7 Creating and Managing Users

7-6 Guide to Building Personalized Applications

Configuration 1

Users and groups exist in some type of data store already, such as an LDAP directory.
Existing user property data must be incorporated into the Unified User Profile as
shown in Figure 7-11.

Figure 7-11 Configuration 1

Unified User Profiles

Guide to Building Personalized Applications 7-7

Configuration 2

Users and groups already exist in a data store such as an LDAP directory. No existing
user or group data must be incorporated into the Unified User Profile. All user and
group property data is stored in the WebLogic Personalization Server's database tables
as shown in Figure 7-12.

Figure 7-12 Configuration 2

7 Creating and Managing Users

7-8 Guide to Building Personalized Applications

Configuration 3

There is no existing store of users and groups. The WebLogic Personalization Server's
database tables contain all user and group data as shown in Figure 7-13.

Figure 7-13 Possible Configuration 3

Unified User Profiles

Guide to Building Personalized Applications 7-9

Configuration 4

User, group, and property data are in an existing database. Existing user property data
must be incorporated into the Unified User Profile. A custom realm must be created in
order to use the existing users and groups with the WebLogic Personalization Server
as shown in Figure 7-14.

Figure 7-14 Possible Configuration 4

The UnifiedUser example, found at
<install_dir>/config/wlcsDomain/applications/wlcsApp/defaultWebAp
p/examples/unifieduserprofile/index.html

demonstrates a fictitious company�s use of the UUP to take advantage of existing
customer data. The UnifiedUser extends
com.beasys.commerce.axiom.contact.User and retrieves data from a
pre-existing database. If you have existing user information that you wish to leverage
in your application, it is recommended that you study this example. The UnifiedUser
shows how, with relative ease, you can create a customized UUP that suits your
application�s persistence needs.

7 Creating and Managing Users

7-10 Guide to Building Personalized Applications

Table 7-1 explains exactly what must be extended in order to create your own custom
UUP.

Setting Properties Explicitly or Implicitly

The fact that UUPs are ConfigurableEntities means that user profiles have the notion
of setting and getting a property explicitly or implicitly. Explicitly setting a property
means calling a setter method for a property directly. Implicitly setting a property
means setting a property via the setProperty() method where no explicit setter
method is available. For example, if a UUP contains a �userPoints� property, calling
setUserPoints() directly would explicitly set the userPoints property, while
calling setProperty() with the �userPoints� key would implicitly set the
userPoints property. When it is called, setProperty() will first look for a
setUserPoints() setter method to call in the user profile. If such a setter method
exists, this method is called and is responsible for setting the property and doing
whatever else is necessary regarding that property�s change in value. Ultimately it is
the UUP implementation�s responsibility to persist explicitly-set property values�
even if they are implicitly called via setProperty(). ConfigurableEntity only
handles persisting implicitly set properties where no explicit setter method exists.

Figure 7-15 diagrams both an explicit and implicit call to setUserPoints(). In both
cases, it is the UUP bean�s responsibility to handle storing the userPoints value. If
no setUserPoints() method had existed in the UUP bean, the ConfigurableEntity
implementation would have handled storing the userPoints value.

Table 7-1 UUP Extensions

Object Must Extend

UUP Primary Key com.beasys.commerce.axiom.contact.UserPk--
with no key fields added.

UUP EJB Interface com.beasys.commerce.axiom.contact.User

UUP EJB Implementation com.beasys.commerce.axiom.contact.UserImpl

Unified User Profiles

Guide to Building Personalized Applications 7-11

Figure 7-15 Implicit and Explicit Calls to Set the userPoints Property

This notion of implicitly and explicitly setting properties allows for additional
flexibility in UUP implementation. If any special logic needs to happen during the
setting or getting of a property, such as the recalculation of some other value, it can
conveniently be done in a setter or getter method for that property. Functionality
external to the UUP can always count on having a setProperty() method and a
getProperty() method for access to properties, eliminating any need to know
whether a property has its own setter or getter. For example, the <um:getProperty>
JSP tag can always retrieve the userPoints property value even if a
getUserPoints() method is the only way provided by the UUP to retrieve
userPoints. This is because the UUP�s getProperty() method will first check to
see if it has a getUserPoints() method before checking elsewhere. Properties that
have an explicit set<PropertyName>() and get<PropertyName>() method are
referred to as �explicit properties,� while properties that can only be set through a call
to setProperty() are referred to as �implicit properties.�

When implementing a custom UUP EJB, you only need to worry about implementing
explicit getter and setter methods for the explicit properties you want the UUP to have.
The implementations of these setters and getters then do whatever is necessary to set
and retrieve the property values in the existing datastore.

There are a few important things to be aware of when creating a custom UUP. The
get<PropertyName>(), set<PropertyName>() convention must be followed for
all explicit property setting and getting in a UUP. This means if you have a UUP with
an explicit userPoints property, you must provide an explicit getUserPoints()

7 Creating and Managing Users

7-12 Guide to Building Personalized Applications

method�retrieveUserPoints() would not work. Similarly, setting userPoints
must be done with a setUserPoints() method. This is because the getProperty()
and setProperty() methods look for getters and setters that follow this convention
when getting and setting properties via implicit calls. Overriding setProperty() or
getProperty() is not permitted�all getting and setting of explicit properties must
be done through getter and setter methods. Explicit getters and setters must take and
return objects�primitives such as long and float must be wrapped in java.lang.Long
and java.lang.Float objects to be compatible with ConfigurableEntity�s
getProperty() and setProperty() methods.

Also, if you provide a getter method, it is a good idea to also provide a setter method
and vice versa. This is because you can never predict when someone will try to set or
get a property. For example, let�s say you provide a getter that retrieves a property from
a database table but no corresponding setter. If setProperty() is called for that
property it will be stored in a WebLogic Personalization Server table. This is messy
because you have the value being retrieved from one place and set in another. The next
time the property is retrieved, it would have its original value�not the value that was
set. If you want to provide a read-only property, you should implement an empty setter
method.

The definition of ConfigurableEntity�s getProperty() method is as follows:

public Object getProperty(String propertySet,
String propertyName,
ConfigurableEntity explicitSuccessor,
Object defaultValue);

The getProperty() method searches for properties in different places in a specific
order which is important to understand. For example, if a property is not found for a
User, perhaps a Group should be queried for the value. In this case the User would
inherit the property value from a Group. In ConfigurableEntity terms, the Group would
be the User�s �successor.� If a property is not found in a ConfigurableEntity, then the
ConfigurableEntity�s successor is queried for the value. This way ConfigurableEntities
can inherit and override values from a parent entity. Successors can be implicit or
explicit. An implicit successor is a ConfigurableEntity�s default successor or a
successor that is set for a specific Property Set. An explicit successor is a
ConfigurableEntity that is passed as a parameter to the getProperty() method.
Following is the order of the getProperty() property search as it exists in
ConfigurableEntity, and hence the User and Group objects as well as any UUP objects:

1. Look for an explicit getter method for that property.

2. Look in the entity for the property for the specified Property Set.

Unified User Profiles

Guide to Building Personalized Applications 7-13

3. Look in the entity for the property in the default (null) Property Set.

4. Look in the entity for the property in the Reserved Property Set (for properties
from LDAP if using the LDAPRealm).

Note: Properties to be retrieved from LDAP must be registered as LDAP
attributes. See �Registering User Attributes for Retrieval from LDAP� on
page 7-46.

5. Look for the property in the entity�s explicit successor (if specified).

6. Look for the property in the entity�s successor for the specified Property Set.

7. Look for the property in the entity�s default successor.

8. Look for a default value as defined in the Property Set if the Property Set is
specified (not null).

9. Return the deflectable passed into the getProperty() method.

The definition of ConfigurableEntity�s setProperty() method is as follows:

public Object setProperty(String propertySet,
String propertyName,
Object value);

This method has a few details that are also important to understand. If setProperty()
is used to set a property for a Property Set that is inconsistent with the property set�s
definition, an exception is thrown. For example, suppose we have defined a
�UnifiedUserExample� Property Set that has a userPoints property of type Integer.
If someone tries to set the userPoints property for the �UnifiedUserExample�
Property Set to be �foo,� an exception would be thrown because userPoints is
defined as being of type Integer and �foo� is text. Similarly, setting a Boolean property
value to �bar� would result in an exception because Boolean values are restricted to
Boolean objects.

If setProperty() is called and null is passed for the Property Set, the property value
is set in the null Property Set�referred to as the default Property Set. As described
previously in the search order of getProperty(), the default property set is searched
before looking for the property value in the �Reserved� Property Set and then a
successor.

The �Reserved� Property Set is a read-only Property Set that is used to hold property
values from an external datastore. The only time the �Reserved� Property Set is
currently used in the WebLogic Personalization Server is when properties are retrieved

7 Creating and Managing Users

7-14 Guide to Building Personalized Applications

from an LDAP directory. Attempting to set a property in the �Reserved� Property Set
will result in an exception being thrown. Properties in the �Reserved� Property Set and
the Reserved Property Set itself are not editable via the User Management tools. The
User Management tools allow the specification of attributes to be retrieved from an
LDAP server for users and groups.Only these attributes will be retrieved at run-time.

Properties can be set via setProperty() with a Property Set specified that does not
exist. This is allowed, but strongly discouraged. When this is done, a Property Set is
not created �on-the-fly� for the specified Property Set name. Rather, the specified
Property Set name serves only as a namespace for the property. Similarly, it is allowed
but strongly discouraged to set a property via setProperty() for an existing Property
Set specifying a property that does not exist for that Property Set. Properties set in
either of these ways are not editable through the User Management tools, but
properties in the �null� (�default�) property set are editable from the tools.

A couple of additional points about getProperty() and setProperty() that are
worth mentioning are as follow:

� getProperty() returns a java.lang.Long object if setProperty() is called
passing a java.lang.Integer object value. Code retrieving such a property should
be written as follows:

Object value = myUser.getProperty(“my_property_set”,
"my_integer_property",
null,
null);

Number tempNumber = (Number) value;
int realValue = tempNumber.intValue();

� getProperty() returns a java.lang.Double object if setProperty() is called
with a java.lang.Float object. Code retrieving such a property should be written
as follows:

Object value = myUser.getProperty(“my_property_set”,
“my_float_property”,
null,
null);

Number tempNumber = (Number) value;
float realValue = tempNumber.floatValue();

The com.beasys.commerce.axiom.contact.User object offers functionality for
EJB find operations that makes integrating a UUP with the WebLogic Personalization
Server easy. Once a UUP�s ejbFind() finds records in the existing data store, the call
to super.ejbFind()�the User object ejbFind()�will create the necessary
records for the UUP in the WebLogic Personalization Server tables if they do not yet

Unified User Profiles

Guide to Building Personalized Applications 7-15

exist and the following condition is met: If the User object ejbFind() fails, it checks
the underlying security realm to see if the username corresponds to a valid user. If so,
User�s ejbFind() creates the necessary records, thereby eliminating finder errors and
the need to spend time initially migrating user data into the WebLogic Personalization
Server�s User database tables (Figure 7-16).

Figure 7-16 Flow During an ejbFind() Operation

If your configuration is such that the realm cannot verify the existence of the user, but
the user must be created, it is the responsibility of your EJB to create the superclass
records if they are not found initially. The Unified User Example code demonstrates
such a situation. Please refer to the ejbFindByPrimaryKey() method in the file
UnifiedUserBean.java.

Six entries are required in the ejb-jar.xml file used when creating the unified user
profile bean�s descriptor. There entries are:

1. JNDIHomeName

This environment entry is not to be confused with the actual JNDI lookup name
of the extended EJB. Rather, it is used to relate profile entries for the UUP EJB
with those of com.beasys.commerce.axiom.contact.User. The value must
always be:

com.beasys.commerce.axiom.contact.User

Exact entry:

<env-entry>
<env-entry-name>JNDIHomeName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

7 Creating and Managing Users

7-16 Guide to Building Personalized Applications

<env-entry-value>
com.beasys.commerce.axiom.contact.User
</env-entry-value>

</env-entry>

2. SchemaGroupName

This environment entry is used to configure the EJB to pull property values from
a particular classification of Property Sets. The value must always be:

USER

Exact entry:

<env-entry>
<env-entry-name>SchemaGroupName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>USER</env-entry-value>

</env-entry>

3. SmartBMPClass

This environment entry specifies which SmartBMP class to use when creating,
refreshing, updating, and removing the EJB. If you have created a SmartBMP
for your class which extends
com.beasys.commerce.axiom.contact.UserSmartBMP, use the classname of
your SmartBMP for this entry. If you do not use a particular SmartBMP with
your class, use com.beasys.commerce.axiom.contact.UserSmartBMP as
the value.

Sample entry:

<env-entry>
<env-entry-name>SmartBMPClass</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

com.beasys.commerce.axiom.contact.UserSmartBMP
</env-entry-value>

</env-entry>

4. EntityPropertyManagerHome

This environment entry specifies which EntityPropertyManager bean to use
when accessing user and group properties. If using the LDAP configuration
(security realm is the LDAPRealm), the entry must be as follows.

Exact Entry:
<env-entry>
<env-entry-name>EntityPropertyManagerHome</env-entry-name>

Unified User Profiles

Guide to Building Personalized Applications 7-17

<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

com.beasys.commerce.foundation.property.EntityPropertyAggregator
</env-entry-value>

</env-entry>

For any other configuration the EntityPropertyManagerHome entry should be
specified as follows.

Exact Entry:
<env-entry>
<env-entry-name>EntityPropertyManagerHome</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>
com.beasys.commerce.foundation.property.EntityPropertyManager

</env-entry-value>
</env-entry>

The contents of the ejb-jar.xml file shipped with the Unified User Example
are shown below. Note that this bean was not paired with its own SmartBMP
implementation derived from UserSmartBMP.

5. PersistenceHelperPlugin

This entry specifies which persistence helper class should be used by the BMP.
If the standard UserSmartBMP is being used, the value should be
�com.beasys.commerce.foundation.plugin.bmp.BMPPersistenceHelperPlugin�.

Exact Entry:

<env-entry>
<env-entry-name>PersistenceHelperPlugin</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>
com.beasys.commerce.foundation.plugin.bmp.BMPPersistenceHelperPlugin

</env-entry-value>
</env-entry>

6. UnifiedProfileType

This entry specifies the type of Unified Profile that this class belongs to. It is
necessary to transparently create, edit, and delete UUP users through the admin
tools. In the Unified User Example, the value is �Unified Profile Example�.

Exact Entry:

<env-entry>
<env-entry-name>UnifiedProfileType</env-entry-name>

7 Creating and Managing Users

7-18 Guide to Building Personalized Applications

<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>Unified Profile Example</env-entry-value>

</env-entry>

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>examples.usermgmt.UnifiedUser</ejb-name>
<home>examples.usermgmt.UnifiedUserHome</home>
<remote>examples.usermgmt.UnifiedUser</remote>
<ejb-class>examples.usermgmt.UnifiedUserBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>examples.usermgmt.UnifiedUserPk</prim-key-class>
<reentrant>False</reentrant>

<env-entry>
<env-entry-name>JNDIHomeName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>com.beasys.commerce.axiom.contact.User</env-entry-value>
</env-entry>
<env-entry>
<env-entry-name>SchemaGroupName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>USER</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>SmartBMPClass</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-
value>com.beasys.commerce.axiom.contact.UserSmartBMP</env-entry-value>

</env-entry>
<env-entry>
<env-entry-name>EntityPropertyManagerHome</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-
value>com.beasys.commerce.foundation.property.EntityPropertyAggregator</env-entry-
value>

</env-entry>
<env-entry>

<env-entry-name>PersistenceHelperPlugin</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>

<env-entry-
value>com.beasys.commerce.foundation.plugin.bmp.BMPPersistenceHelperPlugin</env-en
try-value>

</env-entry>
<env-entry>

<env-entry-name>UnifiedProfileType</env-entry-name>

Unified User Profiles

Guide to Building Personalized Applications 7-19

<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>Unified Profile Example</env-entry-value>

</env-entry>

<resource-ref>
<res-ref-name>jdbc/commercePool</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

</entity>
</enterprise-beans>
<assembly-descriptor></assembly-descriptor>

</ejb-jar>

Additionally, the following entry must be added to the weblogic-ejb-jar.xml file
of the UUP so that it can access the commercePool database connection pool:

<weblogic-enterprise-bean>
[...]

<reference-descriptor>
<resource-description>

<res-ref-name>jdbc/commercePool</res-ref-name>
<jndi-name>weblogic.jdbc.jts.commercePool</jndi-name>

</resource-description>
</reference-descriptor>

[...]
</weblogic-enterprise-bean>

The last step in completing a custom UUP requires the UUP to be registered with the
WebLogic Personalization Server through the User Management tools. In order to
register the UUP, the User Management tools require the following:

Item Description

Profile Type Name Arbitrary name that is later used to refer to the profile type
through the User Management system's
<um:getProfile> JSP extension tag.

Profile Home Class The home class of the new profile type.

Profile Remote Interface The remote interface of the new profile type.

Profile Primary Key Class The primary key class of the new profile type.

Profile JNDI Name The JNDI lookup name of the new profile type.

7 Creating and Managing Users

7-20 Guide to Building Personalized Applications

By registering the UUP with the WebLogic Personalization Server, it becomes
possible to ask for the new profile type with the <um:getProfile> JSP tag:

<um:getProfile profileType=”UnifiedUserExample”
profileKey=”<%=username%>”/>

It is then possible to use the <um:getProperty> and <um:setProperty> JSP tags
with the UUP.

Using WebLogic Realms

A realm is a Java class that provides access to a store of Users, Groups, ACLs (access
control lists), and related services. WebLogic Server uses a realm as a service, calling
into the realm to retrieve Users, Groups, and ACLs as Java objects. WebLogic Server
provides realms that access the WebLogic Server properties file, Windows NT, or
UNIX networks, and LDAP servers for user, group, and ACL information. The
WebLogic Personalization Server provides an additional RDBMSRealm which uses
its own database tables containing user and group information as an out-of-the-box
option. It is also possible to create your own realm if your situation requires accessing
a datastore not supported by WebLogic Server.

The WebLogic Personalization Server must have access to a realm to retrieve
information about users and groups, determine a group�s members, and authenticate
users. By depending on realms, the WebLogic Personalization Server can use existing
stores of user and group information, allowing that information to remain in place. For
instance, if you already have users and groups defined in an LDAP directory, they can
be accessed by the WebLogic Personalization Server through the LDAPRealm without
requiring any redundant data entry.

If you are using the WebLogic Personalization Server without an external data store of
user and group information, then that information will be stored in the Personalization
Server�s database tables. In this case, the
com.beasys.commerce.axiom.contact.security.RDBMSRealm must be used to
access user and group information from the WebLogic Personalization Server tables.
For this configuration to work, the appropriate realm properties for your database type
must exist in the commerce.properties file.

Using WebLogic Realms

Guide to Building Personalized Applications 7-21

Ensure Properties Are Set in the BEA WebLogic Personalization Server’s
commerce.properties File

If Using the WebLogic Oracle OCI Driver:

commerce.usermgmt.RDBMSRealm.driver=weblogic.jdbc.oci.Driver
commerce.usermgmt.RDBMSRealm.dbUrl=jdbc:weblogic:oracle
commerce.usermgmt.RDBMSRealm.dbServer=<machine name>
commerce.usermgmt.RDBMSRealm.dbUser=<database user>
commerce.usermgmt.RDBMSRealm.dbPassword=<database user’s password>

If Using Cloudscape:

commerce.usermgmt.RDBMSRealm.driver=COM.cloudscape.core.
JDBCDriver
commerce.usermgmt.RDBMSRealm.dbUrl=jdbc:cloudscape:Commerce;\

create=true;autocommit=false
commerce.usermgmt.RDBMSRealm.dbUser=none
commerce.usermgmt.RDBMSRealm.dbPassword=none

config/wlcsDomain/applications/wlcsApp/defaultWebApp/examples/uni
fieduserprofile/index.html

Verify That the Realm Is Active

 To verify that WebLogic Server is configured to use this realm, follow these steps:

1. Open up the WebLogic Console in a browser.

2. Expand wlcsDomain->Security->Realms.

3. Verify that there is a realm (by default wlcsRealm) defined there. If not, create it.

4. Verify that the realm class name for that realm is
com.beasys.commerce.axiom.contact.security.RDBMSRealm.
 If not, update it and click apply.

5. Expand wlcsDomain->Security->Caching Realms.

6. Verify that there is a caching realm (by default wlcsCachingRealm) defined there.
If not, create it.

7. Verify that the basic realm for that caching realm is wlcsRealm. If not, update it
and click apply.

7 Creating and Managing Users

7-22 Guide to Building Personalized Applications

8. Expand wlcsDomain->Security.

9. Verify that the Caching Realm specified is wlcsCachingRealm. If not, update it
and click apply.

10. If any changes needed to be made in these steps, you must restart the server for
them to take effect.

Implementing a New Custom Realm

It is important to note that if a realm other than the WebLogic Personalization Server�s
RDBMSRealm is being used, the administration tools for creating users and groups
become inaccessible. This is because adding users and groups and administering
credentials must be done through tools provided by the external datastore.

For use within the WebLogic Personalization Server, a realm must be a subclass of
weblogic.security.acl.AbstractListableRealm. The WebLogic NTRealm,
LDAPRealm, and UnixRealm are all subclasses of AbstractListableRealm.

Tools are provided that allow a properly-configured realm to be set up for use by the
WebLogic Personalization Server. The realm configuration tools allow you to choose
which groups from the realm you wish to use in the WebLogic Personalization Server,
map group names that have changed in the realm to new group names, and clean up
Personalization Server records that no longer correspond to valid realm users or
groups.

Note: Changing the underlying realm can cause unpredictable behavior if the realm
configuration tools are not immediately used to map and remove groups and
clean up users as appropriate for the new realm.

In addition to user and group information, realms may also provide ACLs to determine
an authenticated user�s permissions within the system. An ACL guards an object or
service in WebLogic Server. ACLs can guard servlets and JSP pages, JMS queues and
topics, EJBs, JDBC connection pools, JNDI contexts, and ZAC packages. You can
also create custom ACLs for use in your applications, and these ACLs will be
supported by the WebLogic Personalization Server.

Anonymous User Profiles

Guide to Building Personalized Applications 7-23

An ACL holds a list of AclEntries, each with a set of permissions for a user or group.
A permission is an action that can be performed on the protected resource�for
example, �execute,� �lookup,� �read,� or �write.� The exact permissions available
depend on the type of resource the ACL protects. For example, a servlet requires
�execute� permission, and a JMS queue requires �read� or �write� permission.

For more information on realms, including how to configure and administer realms,
consult the WebLogic Server documentation for Using WebLogic Realms and ACLs.
Also, for more information on implementing a custom realm, see the WebLogic Server
documentation.

Anonymous User Profiles

Certain scenarios require an unidentified user to be able to use a system. While the
unidentified user is using the system, you may need to have a profile for that user in
order to set and get properties. For instance, a portal Web site might want to let new
users tour the Web site and configure a few things before they actually have an official
login name and password. The anonymous user profile allows for a user profile to be
created for such a user. An anonymous user profile can be treated just like a user profile
for a known user, but the anonymous user profile only lives for the life of the user
session. If the session is terminated without capturing an identity for the user, any
profile information accumulated during the life of the anonymous user profile is lost.
An anonymous user profile has no successor and will not retrieve default property
values from a Property Set.

The anonymous user profile is available only through JSP tags. An anonymous profile
is created when a <um:setProperty> or <um:getProperty> JSP tag is used before
a <um:getProfile> tag has been called. If during a session a persistent user profile
is created for the anonymous user, the <um:createUser> tag can be told to store the
values from the anonymous profile into the new user profile. This is done with the
saveAnonymous tag parameter set to true, as in <um:createUser
saveAnonymous=”true”>. For more information on these tags, see the topic �User
Management JSP tags� in Chapter 12, �Personalization Server JSP Tag Library
Reference.�

For an example, see
%WL_COMMERCE_HOME%/server/public_html/anonymousprofile/index.html

7 Creating and Managing Users

7-24 Guide to Building Personalized Applications

Privacy Statement

The Platform for Privacy Preferences Project (P3P) is an emerging industry standard
that is designed to provide an automated way to compare consumers' privacy
preferences with the privacy practices of the Web sites they visit. It lets Web sites
express their privacy practices in a format that can be retrieved automatically and
interpreted easily.

The P3P is a work-in-progress by the World Wide Web Consortium (W3C), a global
group drawn from industry, academia, and privacy groups as well as public policy
organizations. For more information about the World Wide Web Consortium�s
ongoing P3P effort, visit the P3P site at http://www.w3.org/P3P.

Essentially, P3P compliance means that your Web site presents a privacy policy to the
user. As put forth in the P3P specification, a privacy policy is a set of one or more
privacy statements that describe what personal user data a Web site will retrieve, and
how the data is to be used. The P3P specification currently defines three mechanisms
by which a Web site�s privacy policy information can be presented to the end user:

� By publishing the policy reference file at a well-known URL.
For complete information, see the P3P specification, section 2.2.1.
http://www.w3.org/TR/P3P/#mechanism_ref

� By injecting a special header in each HTTP response served up by the Web
server. For complete information, see the P3P specification, section 2.2.2.
http://www.w3.org/TR/P3P/#syntax_ext

� By using an embedded <link> tag in the body of an HTML page.
For complete information, see the P3P specification, section 2.2.3.
http://www.w3.org/TR/P3P/#syntax_link

BEA Systems applauds the efforts of the World Wide Web Consortium and other
organizations around the world working to empower users to control the use of their
personal information on the Web sites they visit. However, it is important to note that
WebLogic Personalization Server does not in any way enforce P3P compliance�that
option is left up to the Web site developer.

User Manager

Guide to Building Personalized Applications 7-25

User Manager

The UserManager Session EJB provides user management functionality in a
WebLogic Personalization Server-specific context. Services provided by the
UserManager include:

� Creating/removing users

� Creating/removing groups

� Adding users to groups/removing users from groups

� Adding groups to groups/removing groups from groups

� Retrieving usernames corresponding to a group

� Retrieving group names corresponding to a user

� Retrieving unique group and user IDs based on group/username

� Retrieving group/username based on unique ID

� Retrieving user/group objects based on name

For a complete list of UserManager services, please refer to the UserManager Javadoc.

Though it supplies the underlying functionality of the Group/User management JSP
extension tags, the UserManager can be accessed directly. However, the UserManager
is not intended for use outside the context of the WebLogic Personalization Server. To
emphasize this point, the general relationship between the UserManager and the
security realm support mechanism will be briefly explained, followed by a few
examples.

Figure 7-17 shows the relationship between the UserManager, the RealmLink, and the
security realm. The RealmLink is used to ensure that realm query results are consistent
with WebLogic Personalization Server user and group data. The RealmLink is the only
object aware of both the WebLogic Personalization Server data, and the Realm user
and group data. An example of RealmLink activity is the query for group names
associated with a particular user. Since the user manager administration tools allow for
group registration with the WebLogic Personalization Server, the RealmLink will only
return group names for a particular user that exist in both the security realm and in the
WebLogic Personalization Server tables.

7 Creating and Managing Users

7-26 Guide to Building Personalized Applications

Figure 7-17 UserManager/RealmLink Cooperation

To ensure behavior consistent with WebLogic Personalization Server purposes, the
UserManager employs two primary strategies:

1. For certain operations, the UserManager qualifies the security realm being used
before taking action. These operations can only be performed if the current security
realm class is
com.beasys.commerce.axiom.contact.security.RDBMSRealm. See
UserManager EJB in the Javadoc for details.

For example, the createGroup() method throws a
UserManagementException if the out-of-the-box RDBMSRealm is not being
used. The logic behind such an exception is that the UserManager is designed to
work with the default Personalization database schema. If another realm is being
used (for example, WebLogic LDAPRealm), it is assumed that the client has
another means, besides the WebLogic Personalization Server Administration
Tools, that should be used for adding and removing groups and users to/from the
realm.

2. For all operations, the UserManager works in conjunction with the
com.beasys.commerce.axiom.contact.security.RealmLink class to
ensure results consistent with both security realm and WebLogic Personalization
Server user and group data.

For example, the getGroupNamesForUser() method returns only group names
which exist in the current security realm and which are registered with the
WebLogic Personalization Server via the Realm Configuration tools.

Using the User Management Tool

Guide to Building Personalized Applications 7-27

Using the User Management Tool

The User Management Administration Tools allow you to create and associate users
and groups or to link to and use existing directories of users. A user or group may then
be personalized by overriding property values as defined in the Property Set
Management tool. The Unified Profile Types tool allows you to configure access
through User Management tag libraries to your existing application EJBs.

Note: If your system is configured for a third-party realm, the interface above would
contain a Realm banner in addition to the ones presented and an LDAP banner
if you are using the LDAPRealm. In addition, the Create buttons would not
appear on the Users or Groups banners.

Creating Groups

Note: The User Management tools do not allow the creation of a group called
�everyone,� because this is a reserved WebLogic Server group name.

To create groups:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Create in the Groups banner. The
Create a New Group page appears.

7 Creating and Managing Users

7-28 Guide to Building Personalized Applications

3. Within the Group Hierarchy tree view, expand the hierarchy as needed to display
the add icon (+) at the level you wish to add the group. Click on the plus sign.
The Create a Group page appears.

4. Enter the name of the new group in the Group Name field.

5. Click Create. A success or failure message appears.

6. Click Back to return to the Group Administration Tool or to enter another new
group name (step 4).

Note: The administration tools do not allow the creation of a user with username
�system� or �guest� or a group called �everyone,� as these are reserved
WebLogic Server terms.

Deleting Groups

To delete groups:

1. On the Administration Tool Home page, click the User Management icon. The
User Management Home page appears.

Using the User Management Tool

Guide to Building Personalized Applications 7-29

2. On the User Management Home page, click Groups in the Groups banner. The
Search for Groups tool appears.

a. To locate the group to delete by name, enter the group name in the Group Name
field, then click Search.

Note: The group name must be entered exactly.

b. To locate the group to delete within the Group Hierarchy, navigate the Group
Hierarchy tree view.

3. Click the X to the right of the group name. A confirmation box appears.

4. Select OK. The group is deleted.

Adding Users to Groups

To add users to groups:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

7 Creating and Managing Users

7-30 Guide to Building Personalized Applications

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

3. Select the group. The Group Properties view appears.

4. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see a list of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

5. Select the username, or a group of names, from the Search Results field.

Using the User Management Tool

Guide to Building Personalized Applications 7-31

6. Click the left-to-right directional arrow. The username(s) appears with the Group
Users field.

7. Click Save.

8. Click Back to return to the Group Properties view.

Note: The search applies both list boxes.

Removing Users from Groups

To remove users from groups:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Groups in the Groups banner. The
Search for Groups tool appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

3. Select the group. The Group Properties view appears.

4. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

To locate a user, do one of the following:

7 Creating and Managing Users

7-32 Guide to Building Personalized Applications

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see a list of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

5. Select the username, or a group of usernames, from the Group Users field.

6. Click the right-to-left directional arrow. The username(s) is removed from the
Group Users field and appears in Search Results.

7. Click Save.

8. Click Back to return to the Group Properties view.

Editing Group Property Values

To edit group property values:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group, do one of the following:

a. To locate the group by name, enter the group name in the Group Name field,
then click Search.

b. To locate the group within the Group Hierarchy, navigate the Group Hierarchy
tree view.

3. Select the group. The Group Properties view appears.

Using the User Management Tool

Guide to Building Personalized Applications 7-33

4. Select or search for a property set to view for this group. For specific instructions
on property set management, see Chapter 6, �Creating and Managing Property
Sets.� The group�s default property values appear if no other property set has
been accessed during the tools session.

5. Click Search.

6. Click Edit on the appropriate Property bar. The associated Edit Property Values
page appears.

7. Change the values on the Edit Property Values page.

8. Click Save.

9. Click Back to return to the Group Properties view.

10. Return to step 4 and edit other properties as necessary.

Notes: Non-default Property sets and properties not configured through the Property
Set Management tools are not editable here.

If you click the Reset button on the Property bar (instead of Edit as we did in
step 6), the property is set to null for that user. This will have one of three
results:

� First, if the property has a default value, the group will have that default
value. Note that the default value is not copied into the group's settings.
The group's value is just set to null so that the default value will be
returned when getProperty() is called for that property. If the default
value changes, calling getProperty() will return the new default value.

� Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

� Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Creating User

To create users:

7 Creating and Managing Users

7-34 Guide to Building Personalized Applications

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Create in the Users banner. The
Create New Users page appears.

3. Enter the username in the Username field.

Note: Limit usernames to 25 characters.

4. Enter the password associated with the Username in the Password field.

5. Re-enter the password provided in step 4 in the Verify Password field.

Note: Characters in password fields appear as asterisks.

6. From the User Type list, select a Unified Profile. The user will be an instance of
this Unified Profile. This allows the system to access explicit properties in a
Unified Profile type, and ensures proper data cleanup when the user is removed.

7. Click Create. The new user appears at the bottom of the page.
Alternatively, click Back to return to the User Management Home page without
creating the new user.

Note: The WLCS RDBMSrealm allows mixed case (for example: User, user) user
creation.

Note: The administration tools do not allow the creation of a user with username
�system� or �guest� or a group called �everyone,� as these are reserved
WebLogic Server terms.

Using the User Management Tool

Guide to Building Personalized Applications 7-35

Editing User Property Values

Note: Explicit properties of UUP are only editable from the administration tools if a
property set is created that mirrors those properties.

To edit user property values:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears.

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see a list of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

3. Select the user. The User Property view appears.

4. Select a property set to view for this user. For specific instructions on Property
Set Management, see Chapter 6, �Creating and Managing Property Sets.�

5. Click Search. The User Properties view appears.

7 Creating and Managing Users

7-36 Guide to Building Personalized Applications

6. Click Edit on the appropriate Property bar. The associated Edit Property Values
page appears.

7. Change the user�s values at the Edit Property Values page.

8. Click Save. A message appears indicating whether or not the edit was successful.
Alternatively, click Back to return to the User Properties view without saving
your changes.

9. Click Back to return to the User Properties view.

10. Return to step 4 and edit other properties as necessary.

Note: If you click the Reset button on the Property bar (instead of Edit as we did in
step 6), the property is set to null for that user. This will have one of three
results:

� First, if the property has a default value, the user will have that default
value. Note that the default value is not copied into the user's settings.
The user's value is just set to null so that the default value will be

Using the User Management Tool

Guide to Building Personalized Applications 7-37

returned when getProperty() is called for that property. If the default
value changes, calling getProperty() will return the new default value.

� Second, if the property is defined in a Property Set but does not have a
default value, the user will have a null for that property.

� Third, if the property was dynamically defined (that is, it does not
belong to a Property Set), resetting causes that property to be deleted.

Deleting Users

To delete users:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Users in the Users banner. The
Search for a User tool appears.

To locate a user, do one of the following:

a. To locate the user by name, enter the username in the Username field, then click
Search. The search results appear at the bottom of the page.

b. To see a list of all users within an alphabetized category, click the appropriate
letter corresponding to the first letter of the username. A list of users appear at
the bottom of the page.

c. To see a list of all users in the database, use the wildcard feature. Enter a partial
username immediately followed by an asterisk (*). The asterisk is a search
return variable.

3. Click the X to right of the username to delete the user. A confirmation dialog box
appears.

7 Creating and Managing Users

7-38 Guide to Building Personalized Applications

4. Click OK to confirm the deletion.

Note: When a use is deleted from the Delete Users screen, the corresponding User
component and its properties will be deleted, but the username will continue
to be returned from user searches.

Creating Unified Profile Types

To create unified profile types:

The Unified Profile Type tool facilitates the registration of profile types to be used as
Unified User Profile (UUP) objects.

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Create in the Unified Profile Types
banner. The Create New Unified Profile Type page appears.

Using the User Management Tool

Guide to Building Personalized Applications 7-39

The following table contains descriptions of the Create New Unified Profile Type
fields:

3. Enter the appropriate information in the fields provided.

4. Click Create and return to the Unified Profile Types list.
Alternatively, click Back to return to the User Management Home page without
saving your changes.

Field Description

Profile Type Name This is an arbitrary name that is used to refer to the profile type
through the User Management system's <um:getProfile>
JSP extension tag.

Profile Remote Interface The remote interface of the new profile type.

Home The home class of the new profile type.

PK Class The primary key class of the new profile type.

JNDI Name The JNDI lookup name of the new profile type.

7 Creating and Managing Users

7-40 Guide to Building Personalized Applications

Editing Unified Profile Types

To edit unified profile types:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click the Unified Profile Types list. The
Unified Profile Type page appears.

3. Click the appropriate link to edit a unified profile type. The Edit Unified Profile
Type page appears.

4. Edit the appropriate field(s) of the unified profile type.

5. Click Save and return to the Unified Profile Types list or click Back to return to
the User Management Home page without saving your changes.

Deleting Unified Profile Types

To delete unified profile types:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Unified Profile Types. The Unified
Profile Type page appears.

3. Click the X to right of the username to delete the user. A confirmation dialog box
appears.

4. Click OK to confirm the deletion.

Using the LDAP Realm

Guide to Building Personalized Applications 7-41

Using the LDAP Realm

The LDAP tools are accessible only if WebLogic�s LDAPRealm is used.

Setting up LDAP in the WLS Administration Console

Before you begin, WebLogic Commerce Server must be properly configured to start
up without throwing exceptions. You will start up WebLogic Commerce Server at the
end of these instructions.

Note: These instructions are for a Netscape Directory Server.

Creating the LDAP Realm

1. Start the LDAP server.

2. Bring up the WebLogic Server Administration Console by launching a browser to
the following URL: http://<server>:<port>\console

3. Click the Realms node of the tree in the left pane of the Administration Console.

4. Click the Create a new LDAPRealm link.

The General Tab

1. Enter a name for the LDAP realm you are creating (for example,
wlcsLDAPRealm).

2. Click the Create button.

The LDAP Tab

1. Enter the URL with the listen port for your LDAP server (for example,
ldap://mycomputer.beasys.com:389).

2. In the Principal field enter:
uid=admin,ou=Administrators,ou=TopologyManagement,o=NetscapeRoot

7 Creating and Managing Users

7-42 Guide to Building Personalized Applications

3. In the Credential field enter the password for the user you want to connect as.
For example, the LDAP administrator�s password might be admin.

4. Leave the Enable SSL checkbox unchecked. (See note below.)

5. In the Auth Protocol drop-down list or menu, select: simple

6. Click the Apply button.

Note: When you see an LDAP property in the console that is not set in config.xml,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the config.xml file. For example, setting the attribute�s
default value will not put it into config.xml because it is a default value.
Because WebLogic Commerce Server expects to see a default value in
config.xml, it will throw an exception if it is not there. Set the attribute to a
non-default value, then set it back to the default value, and you will see it
appear in config.xml.

In step 4. above, check the box for Enable SSL, click the Apply button, then
uncheck the box and click the Apply button again. This is to ensure that the
default value of �false� appears in config.xml.

The Users Tab

1. In the User Authentication drop-down list, select: local

2. In the User Password Attribute field, enter: userpassword. (See note below.)

3. In the User DN field enter: o=beasys.com, ou=People

4. In the User Name Attribute field, enter: uid

5. Click the Apply button.

Note: When you see an LDAP property in the console that is not set in config.xml,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the config.xml file. For example, setting the attribute�s
default value will not put it into config.xml because it is a default value.
Because WebLogic Commerce Server expects to see a default value in

Using the LDAP Realm

Guide to Building Personalized Applications 7-43

config.xml, it will throw an exception if it is not there. Set the attribute to a
non-default value, then set it back to the default value, and you will see it
appear in config.xml.

In the User Password Attribute field above, enter: x, click the Apply button,
enter: userpassword, and click the Apply button again. This is to ensure that
the default value of �userpassword� appears in config.xml.

The Groups Tab

1. In the Group DN field, enter: o=beasys.com, ou=Groups

2. In the Group Name Attribute field, enter: cn. (See note below.)

3. Ensure that the Group is Context checkbox is unchecked.

4. In the Group Username Attribute field, enter: uniquemember

5. Click the Apply button.

Note: When you see an LDAP property in the console that is not set in config.xml,
enter a value different than the default and apply the change. Then enter the
correct value and apply that change. You should then see the property set
correctly within the config.xml file. For example, setting the
GroupNameAttribute=“cn” will not put it into config.xml because it is a
default value. WebLogic Commerce Server expects to see a
GroupNameAttribute in config.xml and will throw an exception if it is not
there. Set the GroupNameAttribute to a non-default value, “xx”, and then
set it to “cn”, and you will see it appear in config.xml.

In the Group Name Attribute field above, enter: x, click the Apply button,
enter: cn, and click the Apply button again. This is to ensure that the default
value of �cn� appears in config.xml.

Specifying/Creating the Caching Realm

1. Click the Caching Realms node of the tree in the left pane.

7 Creating and Managing Users

7-44 Guide to Building Personalized Applications

2. Most likely you will see a caching realm already created named
wlcsCachingRealm. If this realm exists, click it. If no caching realm exists, skip
to step 5.

3. In the Basic Realm list, select the name of the newly created LDAP realm (e.g.,
wlcsLDAPRealm).

4. Click the Apply button.

5. If a caching realm has not been created, click the Create a new Caching Realm
link.

6. In the Name field, enter a name for the caching realm (for example,
wlcsCachingRealm).

7. In the Basic Realm list, select the name of the newly created LDAP realm (for
example, wlcsLDAPRealm)

8. Click the Create button.

Verifying the LDAP Properties in config.xml

1. Open the $WL_COMMERCE_HOME/config/wlcsdomain/config.xml file using
an editor (not a browser).

2. Verify that the LDAP properties that were set using the WebLogic Server console
are correctly set in config.xml.

� You should see an LDAP realm element (<LDAPRealm />) with many
attributes. Each attribute is a property that was set using the WLS console.

Note: If you see an LDAP property in the console that is not set in config.xml, enter
a value different than the default and apply the change. Then enter the correct
value and apply that change. You should then see the property set correctly
within the config.xml file. For example, setting the attribute�s default value
will not put it into config.xml because it is a default value. Because
WebLogic Commerce Server expects to see a default value in config.xml, it
will throw an exception if it is not there. Set the attribute to a non-default value,
then set it back to the default value, and you will see it appear in config.xml.

Using the LDAP Realm

Guide to Building Personalized Applications 7-45

� You should see a caching realm element (<CachingRealm />) with three
attributes. Verify that the BasicRealm attribute is set to your LDAP realm
name.

� You should see a realm element (<Realm />) with three attributes. Verify
that the CachingRealm attribute is set to the realm you specified in the
Specifying/Creating the Caching Realm section of this document.

Note: Avoid editing the config.xml file manually. WebLogic Server prefers that
config.xml is edited using the console. However, if you must make manual
edits, WLS will accept them.

Example

<LDAPRealm AuthProtocol="simple" Credential="admin"

GroupDN="o=beasys.com, ou=Groups" GroupIsContext="false"

GroupNameAttribute="cn" GroupUsernameAttribute="uniquemember"

LDAPURL="ldap://myLDAPserver:389" Name="wlcsLDAPRealm"

Principal="uid=admin,ou=Administrators,

ou=TopologyManagment,o=NetscapeRoot"

SSLEnable="false" UserAuthentication="local"

UserDN="o=beasys.com, ou=People" UserNameAttribute="uid"

UserPasswordAttribute=”userpassword”/>

Startup WebLogic Commerce Server

1. WebLogic Commerce Server should now be set up to use the specified LDAP
server. Start WebLogic Commerce Server.

2. If you are using the WebLogic Commerce Server Administation Tools, a login
dialog box will display. Enter the username and password for an LDAP
administrative user.

7 Creating and Managing Users

7-46 Guide to Building Personalized Applications

Registering User Attributes for Retrieval from LDAP

The LDAP Configuration screen is used to register user attribute names for run-time
retrieval via the group profile.

Note: For the LDAP features to appear in the User Management tool, you must first
install and configure the WebLogic LDAP security realm for your WebLogic
Server, as described in the sections above.

Note: Your WebLogic Commerce Server Administration Tool is set up to allow
access to the group called �admin.� To access your WebLogic Commerce
Server Administration Tool after you start your server with the alternate
security realm, you will need to create a group called �admin� with an
administrative user in it. By default, the exampleportal application is set to the
AcmeUsers group profile when not authenticated. To use the exampleportal
application with another security realm such as LDAP, you need to create a
group called �AcmeUsers.� Without this group, an exception is thrown to the
console complaining about its absence. Another solution is to change the
default group for exampleportal from AcmeUsers to another group being used
within the security realm.

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

Using the LDAP Realm

Guide to Building Personalized Applications 7-47

3. Click Create on the Enabled User Attributes bar. The Add User Attribute page
appears.

4. Enter a new attribute to retrieve from LDAP in the User Attribute Name field.

5. Click Save. Alternatively, click Back to return to LDAP Configuration view
without saving your changes.

6. Repeat steps 4 and 5 as necessary.

7. When finished, click Back.

Registering LDAP Properties for Use With Rules

To use LDAP properties in rules, the rules need to know that the properties exist. For
any properties that are registered for retrieval from LDAP, create a property set with
the LDAP properties in it, and give each property the same name as the property that
is registered in LDAP.

You cannot use the User Management Administration Tool or the WebLogic
Personalization Server framework to modify properties that are stored in LDAP, but
you can use the fact that other property sets are searched before LDAP if you want to
override the LDAP value.

Unregistering User Attributes for Retrieval from LDAP

To unregister user attributes for retrieval from LDAP:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. In the Enabled User Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

4. Click OK to confirm the deletion.

5. Repeat steps 3 and 4 as necessary.

6. When finished, click Back.

7 Creating and Managing Users

7-48 Guide to Building Personalized Applications

Registering Group Attributes for Retrieval from LDAP

To register group attributes for retrieval from LDAP:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. Click Create on the Enabled Group Attributes bar. The Add Group Attribute tool
appears.

4. Enter a new attribute in the Group Attribute Name field to retrieve from LDAP.

5. Click Save to add the attribute or click Back to return to LDAP Configuration
view without saving your changes.

6. Repeat steps 4 and 5 as necessary.

Unregistering Group Attributes for Retrieval from LDAP

To unregister group attributes for retrieval from LDAP:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

Using the LDAP Realm

Guide to Building Personalized Applications 7-49

2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. In the Enabled Group Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

4. Click OK to confirm the deletion.

5. Repeat steps 3 and 4 as necessary.

Viewing LDAP Configuration Settings

To view LDAP configuration settings:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. View the status of the parameters listed in the following table from the LDAP
Configuration Parameters field

Parameter Description

Groups Location Distinguished name for the hierarchical parent of all relevant
groups.

Group Name Attribute The name of the attribute that uniquely identifies a group.

Group Username
Attribute

The name of the attribute in group objects that has as its value
the group members.

Users Location Distinguished name for the hierarchical parent of all relevant
users.

Username Attribute The name of the attribute that uniquely identifies users in the
system.
Example: login name or unique ID.

7 Creating and Managing Users

7-50 Guide to Building Personalized Applications

Note: The values above are �read only� and are specified when configuring the
LDAPRealm.

Using Other Realms

The remaining tools are accessible only if a realm other than WebLogic
Personalization Server�s RDBMSRealm is used.

Selecting Groups for Use in the WebLogic
Personalization Server from the Realm

To select groups for use in the WebLogic Personalization Server from the realm:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

LDAP System Principal Distinguished name for a system level user. This user has read
access to all information in the LDAP directory accessed by the
application.

LDAP URL The Universal Resource Locator (URL) of the LDAP directory
server you are running.

SSL Indicates whether communication from the WebLogic
Personalization Server to the LDAP directory should be
encrypted over SSL.

Parameter Description

Using Other Realms

Guide to Building Personalized Applications 7-51

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

4. Select the group(s) you wish to use.

5. Click Save.

Mapping Realm Groups to the WebLogic Personalization
Server

When a name changes in the realm, you must change it in the WebLogic
Personalization Server too. Use this tool when a group name changes in the realm.
Mapping works by changing the records in the WebLogic Personalization Server to
reflect the new group name.

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

7 Creating and Managing Users

7-52 Guide to Building Personalized Applications

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

4. Click Map in the Status description of the corresponding group name. The Map
Group tool appears.

Note: You are only given the option of mapping those groups that have been found
in your database but are missing from the realm.

5. Select the appropriate group name from the Map To Group field.

6. Click Save. Alternatively, click Back to return to the Realm Configuration page
without saving your changes.

Note: Group mapping works by simply changing the name of the group in the
personalization tables to the group name in the realm. All property data is
retained.

Deleting Groups from Your Database

To delete groups from your database:

1. On the Administration Tools Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
Realm Configuration page appears.

3. Click Edit in the Groups bar. The Edit Group Information tool appears.

Using Other Realms

Guide to Building Personalized Applications 7-53

4. Click Remove in the Status description of the corresponding group name.

Note: You are only given the option of deleting those groups that are found in
your database but are missing from the realm. A confirmation dialog box
appears.

5. Click OK to confirm the deletion.

Deleting User Records That Do Not Exist in the Realm
from the Personalization Database

To delete user records that do not exist in the realm from the Personalization database:

1. On the Administration Tool Home page, click the User Management icon. The
User Management Home page appears.

2. On the User Management Home page, click Realm in the Realm banner. The
LDAP Configuration view appears.

3. Click Edit in the Users bar. The Clean Up Users tools appears with a count of
users found in the personalization database but not in the realm.

4. Click Clean Up if the usernames are no longer needed. All associated records are
removed.

7 Creating and Managing Users

7-54 Guide to Building Personalized Applications

Guide to Building Personalized Applications 8-1

CHAPTER

8 Creating and Managing
Content

The Content Manager provides content and document management capabilities for use
in personalization services. The Content Manager works with files or with content
managed by third-party vendor tools.

This topic includes the following sections:

� What Is the Content Manager?

� Choosing a Content Engine

� Running Querys Against the Content Repository

� Methods for Retrieving and Displaying Documents

� Constructing Queries Using Java

� Differences Between Content Management and Document Management

� Using the Document Servlet

� JSP Tags

� Configuring the Content Manager

� Configuring the DocumentSchema EJB Deployment Descriptor

� Configuring the DocumentManager EJB Deployment Descriptor

� Setting Up Connection Pools

� Configuring WebLogic Commerce Properties

� Using the Show Document Servlet

� Querying Document Content

8 Creating and Managing Content

8-2 Guide to Building Personalized Applications

� Structuring a Query

� Using Comparison Operators to Construct Queries

� Using the BulkLoader to Load File-based Content

� Using Content Management JSP Tags

What Is the Content Manager?

The Content Manager run-time subsystem provides access to content through tags and
EJBs. The Content Management tags allow a JSP developer to receive an enumeration
of Content objects by querying the content database directly using a search expression
syntax. The Content Manager component works alongside the other components to
deliver personalized content, but does not have a GUI-based tool for edit-time
customization.

Choosing a Content Engine

The content engine behind the ContentManager can be set up to be the reference
implementation that BEA provideds out-of-the-box, or a third-party content engine.

For sites with limited content personalization needs and existing metatagged HTML,
WebLogic Personalization Server includes a command-line utility called the
BulkLoader. The BulkLoader can parse a directory of HTML files and store their URL
address and metadata attributes in a JDBC store. The BulkLoader automatically
creates the schema for these attributes.

For customers who have larger amounts of content and want more control over the
publishing and tagging of content, BEA partners with third-party vendors to add
flexibility to the WebLogic Personalization Server. Third-party content engines
provide robust, content-creation management solutions while the Content Manager
personalizes and serves the content to the end user.

What Is the Content Manager?

Guide to Building Personalized Applications 8-3

Running Querys Against the Content Repository

The Content Management component supports querying that returns content from a
content repository using several methods:

� Search for content by metadata�Boolean logic searching evaluates content
that matches a metadata/operator/value criteria.

� Retrieve content by ID�the system allows retrieval of raw bytes of content
data�either in blocks or in its entirety�through the content�s known identifier.

� Query content metadata by ID�the system, through the known identifier of a
content piece, can query the metadata describing the content piece. Several
metadata attributes provide information about the content. The query language
maps some attribute names onto explicit attributes of the Content or Document
objects the query searches. Queries searching for Content objects support the
following case-sensitive explicit attribute names:

� identifier: Corresponds to the unique String identifier of the Content (that
is, the getIdentifier method).

� mimeType: Corresponds to the String MIME type of the Content (that is,
the getMimeType method).

� Queries searching for Document objects support the following additional
case-sensitive explicit attribute names:

� size: Corresponds to the Long size of the document in bytes (that is, the
getSize method). Documents without file bytes will have a size of 0 or less.

� version: Corresponds to the Integer version number of the document (that
is, the getVersion method).

� author: Corresponds to the String identifier of the author of the document
(that is, the getAuthor method).

� creationDate: Corresponds to the Timestamp of when the document was
created (that is, the getTimestamp method).

� modifiedBy: Corresponds to the String identifier of the individual who last
modified the document (that is, the getModifiedBy method).

� modifiedDate: Corresponds to the Timestamp of when the document was last
modified (that is, the getModifiedDate method).

8 Creating and Managing Content

8-4 Guide to Building Personalized Applications

� lockedBy: Corresponds to the String identifier of the individual who has the
document locked (that is, the getLockedBy method).

� description: Corresponds to the String description of the document (that is,
the getDescription method).

� comments: Corresponds to any String comments about the document (that
is, the getComments method).

Note: All other attribute names in queries are considered implicit metadata
properties.

� Get content schema by name�the document management system (DMS)
contains a set of named schemas that describe a set of non-standard metadata
attributes. Each piece of content in the DMS is associated with one of these
schemas and each schema specifies valid attributes

� Get content schema names�a user can query the system for a list of all
schema names a DMS supports.

Note: See �Querying Document Content� on page 8-17 for more information about
queries.

Methods for Retrieving and Displaying Documents

WebLogic Personalization Server provides several methods for retrieving documents
from a content management system and displaying them on your Web site.

A document is a graphic, a segment of HTML or plain text, or a file that must be
viewed with a plug-in. We recommend that you store most of your web site�s dynamic
documents in a content management system because it offers an effective way to store
and manage information.

The following table compares the methods of content retrieval that WebLogic
Personalization Server provides.

What Is the Content Manager?

Guide to Building Personalized Applications 8-5

Table 8-1 Methods for Retrieving and Displaying Documents

Use This Method... When You Want To...

Content selectors and
<pz:contentSelector> tags

� Use a centrally maintained infrastructure for matching Web site content
with events, customer profiles, or customer segments. CBEs develop the
infrastructure, then BAs use the E-Business Control Center to define and
modify conditions under which content selectors query the content
management system for documents.

� Retrieve any type of content that your content management system
contains (and that a browser supports).

� Display each document that a content-management query returns.
Content selectors store the results of a query in an array. You can use
other JSP tags to display some or all of the documents that are in the
array.

� Place the results of the query in a cache.
Content selectors require you to determine the MIME-type of the documents
and to supply the appropriate HTML that the browser requires to display
them.

<pz:contentQuery> tag � Run a static, narrowly-defined query to display a document only in a
specific JSP.

You must modify each occurrence of this tag if you want to modify its query.
If you want this tag to display contents for specific customers or in response
to an event, you must surround it with additional tags that evaluate the
display condition.

Ad placeholders and
<ph:placeholder> tags

� Use a centrally maintained infrastructure for matching advertising
documents with events, customer profiles, or customer segments. CBEs
develop the infrastructure, then BAs use the E-Business Control Center
to define and modify the queries that each placeholder can run.

� Run queries as part of a scenario action in a campaign (available only
with Campaign Manager for WebLogic).

� Use a single infrastructure to support multiple, concurrent advertising
agenda. Ad placeholders use an Ad Conflict Resolver to select a single
query if multiple agenda request to run multiple queries in the same
location at the same time.

� Automatically generate the HTML that the browser requires to display
the query results.

Without customization, ad placeholders support only HTML, image, and
Shockwave documents.

8 Creating and Managing Content

8-6 Guide to Building Personalized Applications

<ad:adTarget> tag � Make sure that a specific ad query runs in a specific location.
� Automatically generate the HTML that the browser requires to display

the query results.
The <ad:adTarget> tag is not part of the infrastructure for supporting
multiple advertising agenda. It cannot run a query as part of a scenario
action. You must modify each occurrence of this tag if you want to modify
its query. If you want this tag to display contents for specific customers or
in response to an event, you must surround it with additional tags that
evaluate the display condition.
Without customization, the <ad:adTarget> tag supports only HTML,
image, and Shockwave documents.

<cm:printDoc> tag � Use the content management system�s document ID to include
non-personalized content in a HTML-based page.

The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

<cm:getProperty> tag � Retrives the value of the specified content metadata property into a
variable specified by resultId. If resultId is not specified, the value will
be inlined into the page, similar to the <cm:printProperty> tag.
This tag operates on any ConfigurableEntity, not just the Content object.
However, it does not support ConfigurableEntity successors.

<cm:printProperty> tag � Display the value of a document attribute as a string. You can use this
tag to display the value of any content object�s attribute, not just
document-type objects in a content management system.

<cm:select> tag � Use a query to include non-personalized content in a HTML-based page.
� Place the results of the query in a cache.
The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

Table 8-1 Methods for Retrieving and Displaying Documents (Continued)

Use This Method... When You Want To...

What Is the Content Manager?

Guide to Building Personalized Applications 8-7

Constructing Queries Using Java

To construct queries using Java syntax instead of using the query language supplied
with the Content Management component, refer to the Javadoc API documentation.

Note: Use the constants in TypesHelper when calling Logical.setLogical and
Criteria.setComparator.

The ContentManager session bean is the primary interface to the functionality of the
Content Management component. Using a ContentManager instance, content is
returned based on a Search object with an embedded Expression. An Expression is
a Boolean tree of arbitrary depth, with other sub-Expressions as nodes. The
Expression interface is meant to be abstract, where the actual instances are Logical
or Criteria interfaces. As an example, the expression color == 'red' && price

> 50 would consist of a Logical with the value and that has as children two
Criteria.

Differences Between Content Management and
Document Management

Content objects include metadata about the content. Metadata provides a means to
query and match content with users by allowing the system to retrieve content based
on the metadata that describes the content. In general, some kind of content
management system provides services such as retrieval of content and content
authoring services including creation, editing, versioning, and workflow.

<cm:selectById> tag � Use the content management system�s document ID to include
non-personalized content in a HTML-based page.

� Place the document in a cache.
The tag does not generate HTML to support the content it retrieves; it inserts
the document into the JSP page exactly as it is stored in the content
management system. CBEs must modify each occurrence of this tag if you
want to change the document that it retrieves.

Table 8-1 Methods for Retrieving and Displaying Documents (Continued)

Use This Method... When You Want To...

8 Creating and Managing Content

8-8 Guide to Building Personalized Applications

Documents are a specialized type of Content that provide two methods for retrieval:
a metadata-searching mechanism and retrieval of the pure bytes of the document's file.
Documents should include additional explicit metadata properties related to the file
and its versioning, including its size, name, path, author, and version. A document
management system usually provides document-based services for documents that
reside in the system�s repository.

WebLogic Personalization Server provides the entire Content object model; however,
it only provides the Document object as a concrete implementation (subclass) of the
Content class.

Using the Document Servlet

The Content Management component includes a servlet capable of outputting the
contents of a Document object. This servlet is useful when streaming the contents of
an image that resides in a content management system or to stream a document�s
contents that are stored in a content management system when an HTML link is
selected. The servlet supports the following Request/URL parameters:

The servlet only supports Documents, not other subclasses of Content. It sets the
Content-Type to the Document's mimeType and, the Content-Length to the
Document's size, and correctly sets the Content-Disposition, which should
present the correct filename when the file is saved from a browser.

Request
Parameter

Required Description

contentHome Maybe If the contentHome initialization
parameter is not specified, then this is
required and will be used as the JNDI name
of the DocumentHome. If the
contentHome initialization parameter is
specified, this is ignored.

contentId No The string identifier of the Document to
retrieve. If not specified, the servlet looks in
the PATH_INFO.

blockSize No The size of the data blocks to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

What Is the Content Manager?

Guide to Building Personalized Applications 8-9

Example 1: Usage in a JSP

This example searches for news items that are to be shown in the evening, and displays
them in a bulleted list.

<cm:select
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>" max="5"
sortBy="creationDate ASC, title ASC"
query="type = 'News' && timeOfDay = 'Evening' && mimetype like
'text/*' " id="newsList" />

<es:forEachInArray array="<%=newsList%>" id="newsItem"
type="com.beasys.commerce.axiom.content.Content">

<a href="/showDocServlet/<cm:printProperty
id="newsItem" name="identifier" encode="url"/>
&contentHome=<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>">
<cm:printProperty id="newsItem" name="title"
encode="html"/>

</es:forEachInArray>

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and
displays the image in a bulleted list.

<cm:select
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%">"
max=”5” sortBy="name” id="list" query="Keywords like ‘*birds*’ &&
mimeType like ‘image/*’" />

<es:forEachInArray array="<%=list%>" id="img"
type="com.beasys.commerce.axiom.content.Content">

<img src="/showDocServlet?contentId=<cm:printproperty
id="img" name="identifier" encode="url"/>
&contentHome=<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>">

</es:forEachInArray>

8 Creating and Managing Content

8-10 Guide to Building Personalized Applications

JSP Tags

The Content Management component includes the following four JSP tags. These tags
allow a JSP developer to include non-personalized content in a HTML-based page.
Note that none of the tags support or use a body.

� The <cm:select> tag uses only the search expression query syntax to select
content.

� The <cm:selectById> tag retrieves content using the content�s unique
identifier.

� The <cm:printProperty> tag inlines the value of the specified Content
metadata property as a string.

� The <cm:printDoc> tag inlines the raw bytes of a Document object into the JSP
output stream.

See Chapter 12, �Personalization Server JSP Tag Library Reference,� for more
information on any of these tags.

Configuring the Content Manager

The DocumentSchema EJB and DocumentManager EJB deployment descriptors
handle the configuration for the Content Management component. To use the reference
implementation document repository, you need to configure the EJB deployment
descriptors and also set up two WebLogic Server JDBC connection pools.

Once the deployment descriptor has been written, just build the EJBs as you normally
would, then add the JAR file to your application through the WebLogic console.

Configuring the Content Manager

Guide to Building Personalized Applications 8-11

Configuring the DocumentSchema EJB Deployment
Descriptor

The logic for loading DocumentSchema EJBs is handled via a SmartBMP. The Schema
EJB implementation loads the SmartBMP object from a class name specified in the EJB
environment in the EJB's deployment descriptor. The EJB environment variable is
SmartBMPClass. The value must be the fully qualified class name of the SmartBMP to
use. This SmartBMP must be capable of populating a SchemaImpl object with
PropertyMetaData objects.

To use the reference implementation document management system, set
SmartBMPClass to
com.beasys.commerce.axiom.document.SPISchemaSmartBMP and specify the
following EJB environment variables in the document EJB deployment descriptor:

� SmartBMPUpdate: Set to false.

� UseDataSource: Controls whether jdbc/docPool (true) or DocPoolURL

(false) is used to get connections. Defaults to true.

� DocPoolURL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDataSource is false). Should point to a connection pool.
For example: jdbc:weblogic:pool:docPool.

� DocPoolDriver: Specifies the JDBC driver class to use to connect to the
DocPoolURL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPool URL.

� jdbc/docPool: A Data Source reference to the document JDBC connection
Pool (see the topic �Setting Up Connection Pools� on page 8-13). This should
correspond to the Data Source attached to the WebLogic connection pool that
uses the document reference implementation JDBC driver.

� jdbc/commercePool: A DataSource reference to the
weblogic.jdbc.jts.commercePool, which should be attached to the
WebLogic connection pool commercePool.

Other SmartBMP classes for other document management systems will possibly
require more and/or different EJB environment variables.

8 Creating and Managing Content

8-12 Guide to Building Personalized Applications

Configuring the DocumentManager EJB Deployment
Descriptor

The DocumentManagerSession EJB simply hides the details of getting to the
Document and DocumentSchema EJBs. It understands the following environment
variables in its deployment descriptor:

� PropertyCase: This sets how the DocumentImpl modifies incoming property
names. If this is lower, all property names are converted to lowercase. If this is
upper, all property names are converted to uppercase. If this is anything else or
not specified, property names are not modified. Use lower or upper if the
SmartBMP class expects everything in a certain case. For the document reference
implementation, do not specify the PropertyCase.

� jdbc/docPool: A Data Source reference to the document JDBC connection
Pool (see the topic �Setting Up Connection Pools� on page 8-13). This should
correspond to the Data Source attached to the WebLogic connection pool that
uses the document reference implementation JDBC driver.

� ejb/ContentHome: EJB reference to the Document Home to which this should
delegate for non-readOnly access.

Note: Since the Document EJB is deprecated for read access, this will eventually no
longer be required.

� ejb/SchemaHome: EJB reference to the Schema Home to which this should
delegate for Schema information.

� UseDataSource: Controls whether jdbc/docPool (true) or DocPoolURL

(false) is used to get connections. Defaults to true.

� DocPoolURL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDataSource is false). Should point to a connection pool.
For example: jdbc:weblogic:pool:docPool.

� DocPoolDriver: Specifies the JDBC driver class to use to connect to the
DocPoolURL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPoolURL.

Configuring the Content Manager

Guide to Building Personalized Applications 8-13

Setting Up Connection Pools

For the document reference implementation, set up a specialized WebLogic
connection pool and DataSource which will be used by the DocumentManager via the
jdbc/docPool reference. (See the topic �Configuring the DocumentManager EJB
Deployment Descriptor� on page 8-12.)

For example, if the connection pool name is docPool:

� The URL should be
jdbc:beasys:docmgmt:com.beasys.commerce.axiom.document.ref.RefD

ocumentProvider.

� The driver should be
com.beasys.commerce.axiom.document.jdbc.Driver. It should not be
configured to use a test_table, although it can be allowed to shrink. The driver
supports the following properties:

� jdbc.url: (Required) Specifies the JDBC URL of the database. The
connection in this pool opens a connection to this JDBC URL. This property
probably should refer to another, non-specialized JDBC connection pool,
although it can be any JDBC URL.

� jdbc.driver: Specifies a JDBC driver class name to load.

� jdbc.isPooled: If true, then the system assumes the JDBC URL in
jdbc.url is a pooling connection URL and connections will open and close
as needed. If false, then this connection opens one connection via the
jdbc.url and uses that for its lifetime. If the jdbc.url starts with
jdbc:weblogic:pool or jdbc:weblogic:jts, then this property
automatically becomes true.

� docBase: (Required) Specifies the document base of the document files. The
IDs in the database use file paths relative to this directory and must exist
when the connection is created. To operate in a cluster or a multi-server
environment, you must either replicate the files on the machines or the put
the docBase directory on a shared volume.

� schemaXML: Specifies the file or directory where the XML schema
(following the doc-schemas.dtd) resides. Either the schemaXML property or
the iw.schemaBase property is required, although the schemas under
schemaXML take precedence if both are specified. The schemaXML property
has the same constraints as the docBase property when used in a cluster.

8 Creating and Managing Content

8-14 Guide to Building Personalized Applications

Note: If schemaXML is a directory, the connection will recurse under it and load
all files ending in .xml (*.xml).

Note: If schemaXML is a file, the connection loads it.

� iw.schemaBase: Specifies the directory in which the InterWoven
datacapture.cfg files reside. The connection recurses through this
directory, loading all datacapture.cfg files it finds. Either the
iw.schemaBase or schemaXML property is required, although you can
specify both. The iw.schemaBase property has the same constraints as the
docBase property when used in a cluster.

� Set up a non-transactional DataSource pointing to the pool. The name of the
DataSource should be the same as that configured with the DocumentManager
and Schema.

All other properties are passed with jdbc.url when the Driver Manager opens a
database connection.

Configuring the Content Manager

Guide to Building Personalized Applications 8-15

Example Connection Pool Entry

Figure shows a sample configuration in the WebLogic Server Administration
Console.

Figure 8-18 The docPool Screen in the WebLogic Server Console

8 Creating and Managing Content

8-16 Guide to Building Personalized Applications

Configuring WebLogic Commerce Properties

Use a ContentManager or DocumentManager with <cm:select> or
<cm:selectById> to retrieve Content or Documents. The default DocumentManager
is deployed at com.beasys.commerce.axiom.document.DocumentManager.

To help with the JNDI names, the ContentHelper class has the following six constants:

DEF_CONTENT_HOME

 Specifies the default deployed ContentHome.

DEF_CONTENT_MANAGER_HOME

Specifies the default deployed ContentManagerHome.

DEF_CONTENT_SCHEMA_HOME

Specifies the default deployed SchemaHome for Content.

DEF_DOCUMENT_HOME

Specifies the default deployed DocumentHome.

DEF_DOCUMENT_MANAGER_HOME

Specifies the default deployed DocumentManagerHome.

DEF_DOCUMENT_SCHEMA_HOME

Specifies the default deployed SchemaHome for Document.

The values of those constants are read from the weblogiccommerce.properties
file from the values for the following properties:

DEF_CONTENT_HOME

commerce.home.content.ContentHome

DEF_CONTENT_MANAGER_HOME

 commerce.home.content.ContentManagerHome

DEF_CONTENT_SCHEMA_HOME

commerce.home.content.ContentSchemaHome

DEF_DOCUMENT_HOME

commerce.home.document.DocumentHome

DEF_DOCUMENT_MANAGER_HOME

commerce.home.document.DocumentManagerHome

DEF_DOCUMENT_SCHEMA_HOME
commerce.home.document.DocumentSchemaHome

Configuring the Content Manager

Guide to Building Personalized Applications 8-17

Therefore, in any <cm:select>, <cm:selectById>, <pz:contentQuery> or
<pz:contentSelector> tags, define the contentHome (or contenthome) parameter
to use a ContentManagerHome or DocumentManagerHome.

Example:

The News Index and News Viewer portlets use the default deployed
DocumentManager and can be used as a reference. The JSPs are located in the
server/public_html/portals/repository/portlets directory in the
news_index.jsp, news_viewer.jsp and content_titlebar.jsp files.

Using the Show Document Servlet

To operate the Show Document servlet, it should be registered with WebLogic Server.
The class name of the servlet is
com.beasys.commerce.content.ShowDocServlet. To registerthe servlet with
WebLogic, add the following XML to your Web application�s web.xml file:

<servlet>
<servlet-name>ShowDocServlet</servlet-name>
<servlet-class>com.beasys.commerce.content.ShowDocServlet</servle
t-class>
</servlet>
<servlet-mapping>
<servlet-name>ShowDocServlet</servlet-name>
<url-pattern>/ShowDocServlet/*</url-pattern>
</servlet-mapping>

Reference the class in the URL as /<webapp-name>/ShowDocServlet.

To change the URL reference, change the <url-pattern></url-pattern> setting.

Querying Document Content

There are several way to query the document management system. To query the
system, you construct a query expression, then pass the expression to any one of these:

� JSP tags (see �Using Content Management JSP Tags� on page 8-28.)

� ContentHelper (see the Javadoc API documentation)

8 Creating and Managing Content

8-18 Guide to Building Personalized Applications

� ContentManager (see the Javadoc API documentation)

� ContentHome (see the Javadoc API documentation)

Structuring a Query

WebLogic Personalization Server queries use a syntax similar to the SQL string syntax
that supports basic Boolean-type comparison expressions, including nested
parenthetical queries. In general, the template for use includes a metadata property
name, a comparison operator, and a literal value. The basic query uses the following
template:

attribute_name comparison_operator literal_value

Note: Consult the Javadoc API documentation on
com.beasys.commerce.util.ExpressionHelper for more
information about the query syntax.

Several constraints apply to queries constructed using this syntax:

� String literals must be enclosed in single quotes.
� ‘WebLogic Server’

� ‘football’

� Date literals can be created via a simplistic toDate method that takes one or two
String arguments (enclosed in single quotes). The first, if two arguments are
supplied, is the SimpleDateFormat format string; the second argument is the
date string. If only one argument is supplied, it should include the date string in
�MM/dd/yyyy HH:mm:ss z� format.
� toDate(‘EE dd MMM yyyy HH:mm:ss z’, ‘Thr 06 Apr 2000

16:56:00 MDT’)

� toDate(‘02/23/2000 13:57:43 MST’)

� Use the toProperty method to compare properties whose names include spaces
or other special characters. In general, use toProperty when the property name
does not comply with the Java variable-naming convention that uses
alphanumeric characters.
� toProperty (‘My Property’) = ‘Content’

Configuring the Content Manager

Guide to Building Personalized Applications 8-19

� To include a scope into the property name, use either scope.propertyName or
the toProperty method with two arguments.

� toProperty (‘myScope’, ‘myProperty’)

Note: The reference document management system ignores property scopes.

� Use \ along with the appropriate character(s) to create an escape sequence that
includes special characters in string literals.
� toProperty (‘My Property\’s Contents’) = ‘Content’

� Additionally, use Java-style Unicode escape sequences to embed non-ASCII
characters in string literals.

� Description like ‘*\u65e5\u672c\u8a9e*’

Note: The query syntax can only contain ASCII and extended ASCII characters
(0-255).

Note: Use ExpressionHelper.toStringLiteral to convert an arbitrary
string to a fully quoted and escaped string literal which can be put in a
query.

� The now keyword�only used on the literal value side of the expression�refers
to the current date and time.

� Boolean literals are either true or false.

� Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms (for
example, 1.24e4 and 1.24E-4).

� An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression.
� !(keywords contains ‘football’) || (size >= 256)

� The Boolean and operator is represented by the literal &&.
� author == ‘james’ && age < 55

� The Boolean or operator is represented by the literal ||.
� creationDate > now || expireDate < now

The following examples illustrate full expressions:

Example 1:

8 Creating and Managing Content

8-20 Guide to Building Personalized Applications

((color=‘red’ && size <=1024) || (keywords contains ‘red’ &&
creationDate < now))

Example 2:

creationDate > toDate (‘MM/dd/yyyy HH:mm:ss’, ‘2/22/2000 14:51:00’)
&& expireDate <= now && mimetype like ‘text/*’

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. Table 8-2 summarizes the comparison
operators available for each metadata type. (For more information about the native
types supported in WebLogic Personalization Server, see �Support for Native Types�
on page 1-11.)

Table 8-2 Comparison Operators Available for Each Metadata Type

Operator Type Characteristics

Boolean (==, !=) Boolean attributes support an equality check against Boolean.TRUE or
Boolean.FALSE.

Numeric (==, !=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than
checks against a java.lang.Number.

Text (==, !=, >, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus
lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (that is, the like
operator), similar to the SQL LIKE operator or DOS prompt file matching. In
this situation, the wildcards will be * (asterisk) to match any string of
characters and ? (question mark) to match any single character. Interval
matching (for example, using []) is not supported. To match * or ? exactly,
the quote character will be \ (backslash).

Datetime (==, !=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than
checks against a java.sql.Timestamp.

Configuring the Content Manager

Guide to Building Personalized Applications 8-21

Note: The search parameters and expression objects support negation of expressions
via a bit flag (!).

Note: The reference document management system has only single-value Text and
Number properties. All implicit properties are single-value Text.

Using the BulkLoader to Load File-based Content

WebLogic Personalization Server provides no run-time tools to load metadata
information from a content database. However, the server provides a command-line
utility, the BulkLoader, that descends a directory hierarchy, parses the HTML-style
<meta> tags, reverses the metadata content contained within the <meta> tags into
schema information, and loads the resulting documents into the reference
implementation database.

The BulkLoader is a command-line application that is capable of loading document
metadata into the reference implementation database from a directory and file
structure. The BulkLoader parses the document base and loads all the document
metadata so that the Content Management component can search for documents. The
BulkLoader supports all document types, not just HTML documents.

Multi-valued Comparison
Operators (contains, containsall)

Multi-valued attributes support a contains operator that takes an object of
the attribute's subtype and checks that the attribute's value contains it.
Additionally, multi-valued attributes support a containsall operator,
which takes another collection of objects of the attribute's subtype and checks
that the attribute's value contains all of them.
Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute's collection of values. Any value that
matches the operator and operand should return true. For example, if the
multi-valued text attribute keywords has the values BEA, Computer, and
WebLogic and the operand is BEA, then the < operator returns true (BEA is
less than Computer), the > operator returns false (BEA is not greater than
any of the values), and the == operator returns true (BEA is equal to BEA).

User Defined Comparison
Operators

Currently, no operators can be applied to a user-defined attribute.

Table 8-2 Comparison Operators Available for Each Metadata Type (Continued)

Operator Type Characteristics

8 Creating and Managing Content

8-22 Guide to Building Personalized Applications

Command-Line Usage

The BulkLoader class allows a number of command-line switches:

java com.beasys.commerce.axiom.document.loader.BulkLoader
[-/+verbose] [-/+recurse] [-/+delete] [-/+metaparse] [-/+cleanup]
[-/+hidden] [-/+inheritProps] [-schemaName <name>] [-encoding <encoding>]
[-properties <name>] -conPool <name> [-schema <name>] [+schema]
[-match <pattern>] [-ignore <pattern>] [-htmlPat <pattern>]
[-d <dir>] [-mdext <ext>] [--]
[files... directories...] [-filter <filter class>] [+filters]

-verbose

Emits verbose messages.

+verbose

Runs quietly [default].

-recurse

Recurses into directories [default].

+recurse

Does not recurse into directories.

-delete

Removes document from database.

+delete

Inserts documents into database [default].

-metaparse

Parses HTML files for <meta> tags [default].

+metaparse

Does not parse HTML files for <meta> tags.

-cleanup

If specified, this only performs a table cleanup using the -d argument as the
document base. (All files will need to be under that directory.)

+cleanup

Turns off table cleanup (do a document load) [default].

-hidden

Specifies to ignore hidden files and directories [default].

+hidden

Specifies to include hidden files and directories.

Configuring the Content Manager

Guide to Building Personalized Applications 8-23

-inheritProps

Specifies to have metadata properties be inherited when recursing [default].

+inheritProps

Specifies to have metadata properties not be inherited when recursing.

-htmlPat <pattern>

Specifies a pattern for determining which files are HTML files when
determining whether to do the <meta> tag parse. This can be specified
multiple times. If none are specified, *.htm and *.html are used.

-properties <name>

Specifies the location of the loaddocs.properties file which should
contain the connectionPool definition.

-conPool <name>

Specifies the connectionPool name from the properties file from which the
BulkLoader should get the connection information.

-schema <name>

Specifies the path to the schema file the BulkLoader will generate (defaults
to document-schema.xml).

+schema

If specified, then no schema file will be created.

-schemaName <name>

Specifies the name of the schema generated by the BulkLoader. Defaults to
�LoadedData�.

-encoding <name>

Specifies the file encoding to use. Defaults to your system�s default
encoding. (See your JDK documentation for the valid encoding names.)

-match <pattern>

Specifies a file pattern the BulkLoader should include. This can be specified
multiple times. If none are specified, all files and directories are included.

-ignore <pattern>

Specifies a file pattern the BulkLoader should not include. This can be
specified multiple times.

-d <dir>
Specifies the docBase that non-absolute paths will be relative to. If not
specified, "." (current directory) is used.

8 Creating and Managing Content

8-24 Guide to Building Personalized Applications

-mdext <ext>

Specifies the filename extension for metadata property files. The value
should starts with a "." (defaults to .md.properties).

-filter <filter class>

Specifies the class name of a LoaderFilter to run files through. This can be
specified multiple times to add to the list of Loader Filters.

+filters

Clears the current list of Loader Filters. (This will clear the default filters as
well.)

--
Everything after this is considered a file or directory.

How the BulkLoader Finds Files

The following sequence describes how the BulkLoader locates files:

1. The BulkLoader starts by looking at the list of files and directories specified from
the command line.

� If no files or directory are specified, it uses only the docBase specified by
the -d option. It then loops over the list of files and directories.

� If it finds a directory and +recurse is specified, then it stops.

� If it finds a directory and recursion is turned on (the default or with
-recurse), then the BulkLoader loops over the files and directories
contained within that directory.

Note: If the file or directory is not an absolute path, then it is assumed to be
relative to the docBase specified by the -d option.

2. To determine if the BulkLoader should process a file or directory, it checks to see
if the file is marked as a hidden file.

Note: If it is a hidden file (or directory) and the +hidden option was not
specified, then the file or directory is ignored.

3. If the file or directory does not exist or is not readable by the user executing the
BulkLoader, a warning is displayed and the file or directory is ignored.

4. If the file or directory is a file, then it is loaded.

Configuring the Content Manager

Guide to Building Personalized Applications 8-25

5. If the loaded object is a directory and recursion is enabled, then the files and
directories under the directory are retrieved by filtering against the -match and
-ignore options.

Note: The -match and -ignore options only apply to files and directories not
listed on the command line; in other words, they apply only to those found
by recursing into a directory. The patterns specified with the -match and
-ignore options (and the -htmlPat options, for that matter) should be
DOS-style patterns: '*' matches any set of characters, '?' matches any one
character. Sets of characters (for example, [aceg]) are not supported.

6. If the subfile or directory name matches any of the patterns specified by a
-ignore option, the subfile or directory is ignored.

7. If the subfile or directory is a directory, then it is included.

8. If the subfile or directory is a file and no -match options were specified, then it
will be included; if at least one -match option is supplied, then the filename must
match at least one of -match patterns.

Note: Files with an extension matching the extension specified by -mdext
(.md.properties by default) are always ignored.

How the BulkLoader Finds Metadata Properties

As the BulkLoader is finding files and directories, it will also attempt to load metadata
property files. Whenever the BulkLoader encounters a directory that it will process, it
looks for a file called dir.<mdext> where <mdext> is the extension specified by the
-mdext option. Therefore, the default filename it looks for is dir.md.properties. If
this file exists and is readable by the user, the BulkLoader loads it as a Java-style
properties file of name=value properties. If the directory is actually a subdirectory
entered because +recurse was not specified and the +inheritProps option is not
specified, then the properties from dir.md.properties will be added to the
properties from the parent directories. All files in the directory gain these metadata
properties.

When the BulkLoader finds a file which is to be included and loaded, it looks for a file
whose name is the original filename appended with the -mdext extension. So, by
default, if the file is called image.gif, the BulkLoader looks for a file called
image.gif.md.properties. If that file exists and is readable, the BulkLoader loads
those properties into the directory's properties (and possibly the parent directories� as
well).

8 Creating and Managing Content

8-26 Guide to Building Personalized Applications

Next, if the file is an HTML file and the +metaparse option was not specified, then
the BulkLoader will parse the HTML, looking for <meta> tags and <title> tags. The
BulkLoader determines if a file is an HTML file by using the filename patterns
specified by the -htmlPat options. If no -htmlPat patterns are specified, then *.htm
and *.html are used. The BulkLoader will load into the file�s properties any <meta>
tags that contain name and content values found anywhere in the file (not just in the
HTML head section). Additionally, it will pull the title from the <title></title>
and set it as “title”.

Finally, the BulkLoader will pass the file to the loadProperties method of each
registered LoaderFilter (the -filter option). The LoaderFilter may assign additional
metadata to the file. When the BulkLoader starts up, it looks for a
com/beasys/commerce/axiom/document/loader/loader.properties file in
the classpath. From that, it looks for a loader.defFilters property. This is the
colon-separated list of LoaderFilter class names the BulkLoader should always
load. Unless that file is modified, the BulkLoader will load an ImageLoaderFilter,
which will pull the width and height from *.gif, *.jpg, *.png, and *.xbm image
files.

In summary, the BulkLoader gathers metadata for a document from the following
sources (in this order):

1. The parent directories dir.md.properties file.

2. The file's directory's dir.md.properties file.

3. The file's.md.properties file.

4. If the file is an HTML file, then it uses <meta> tags.

5. The list of LoaderFilters.

From there, the ID of the document in the database will be the file path, relative to the
docBase specified by the -d option. If the file path is not relative to the docBase, then
it will be relative to the path from the command line. The file size will be retrieved
from the file. The mimeType will be determined by the file's extension. The
modifiedDate in the database will become the current time (since that is when the
document is being modified in the database).

Configuring the Content Manager

Guide to Building Personalized Applications 8-27

Cleaning Up the Database

If the -cleanup option is specified, the BulkLoader will not actually load any
documents. Instead, it will attempt to clean up and update the database tables. It will
first query the database, looking for any metadata entries that do not have
corresponding document entries. For each of those, it will create a document entry. It
will then go over each document entry and update the size, modified date, and possibly
the MIME type (if the MIME type is not in the database) based upon the files in the
docBase specified with the -d option.

Loading Internationalized Documents

The BulkLoader accepts a -encoding <enc> option. When this is specified, the
BulkLoader will use that encoding to open all HTML files to find <meta> tags.

For example, if the files under the Unicode files directory were saved in the Unicode
encoding, you could do:
java com.beasys.commerce.axiom.document.loader.BulkLoader -verbose
-properties loaddocs.properties -conPool commercePool -schema
dmsBase\schemas\unicode-files.xml -d dmsBase unicode-files

-encoding Unicode. When -encoding is specified, the generated schema XML file
will be in the UTF-8 encoding (since some metadata property names might not be
ASCII), which the run-time engine can read in. (Note: UTF-8 is a superset of ASCII
and can be mostly read by common text editors.)

When -encoding is specified, all HTML files the BulkLoader encounters will be
opened with the specified encoding. Therefore, either the encoding must be a superset
of all the files� encodings (for example, ISO8859_1 is a superset of ASCII, where as
Unicode is not) or the BulkLoader might not be able to correctly pull out the <meta>
tag information. It is recommended to either save all documents in a single encoding
or to run the BulkLoader against only certain directories at a time (for example, put all
the Big5 files in one directory).

The list of available encoding names is contained in the documentation for your JDK,
or the documentation for the tool which created the file. If you are not creating files
containing non-ASCII characters, this should not affect you. If you want to check if the
BulkLoader is correctly parsing your HTML file, you can use the
com.beasys.commerce.axiom.document.loader.MetaParser class. For
example:
java com.beasys.commerce.axiom.document.loader.MetaParser

8 Creating and Managing Content

8-28 Guide to Building Personalized Applications

unicode.htm unicode would print out the <meta> tags found in the unicode.htm
file, assumed to be Unicode encoded. Of course, any non-ASCII character probably
will not print correctly to your console window, but you can tell what it thinks it found.

Generating Schema Files

Additionally, the BulkLoader supports a -schemaName <name> argument which
controls the name of the schema in the generated XML file; this in turn affects the
name of the Content Property Sets which appear in the rules editor. If not specified, it
defaults to �LoadedData.�

After loading all the documents on the list, if the +schema option is not specified, the
BulkLoader will output a XML file containing the schema information and following
the doc-schemas DTD. The BulkLoader will output a single schema which contains
entries for all the metadata attributes it finds over the entire load.

If +schema is specified, then no schema file will be created.

Using Content Management JSP Tags

To use the Content Management JSP tags, ensure that the cm.tld file resides in the
WEB-INF directory of your WAR files or in your document root.

Content Cache

The <cm:select> and <cm:selectById> tags support a session-based, per-user
Content cache for content searches. To enable this, both tags support the following
parameters. All three tag parameters can be JSP run-time expressions.

useCache

Set to true or false. The default is false. If true, then the ContentCache
will be used (it will be stored in the user's HttpSession).

cacheId

The ID name to use to cache the Content under. Internally, the cache is
implemented as a Map; this will become the key. If this is not specified, than
the id parameter of the tag will be used.

Configuring the Content Manager

Guide to Building Personalized Applications 8-29

cacheTimeout

The time, in milliseconds, for which the cached Content is valid. If more than
this amount of time has passed since the Content was cached, the cached
Content will be cleared, retrieved, and placed back in the cache. Use -1 for no
timeout (always use the cached Content); 0 to immediately timeout the
cached Content.

Additionally, the commerce.content.cache.useSoftHashMap property in the
weblogiccommerce.properties controls whether the ContentCaches internally use
SoftReferences to cache the Content. SoftReferences should allow the garbage
collector to clear portions of the caches as memory is needed. This defaults to false.

Note: The Windows NT 1.2.2 JVM supports SoftReference quite well; however, the
Solaris Production 1.2.1_04 JVM always immediately clears SoftReferences,
thereby eliminating their usefulness as a caching mechanism. It is
recommended that commerce.content.cache.useSoftHashMap be set to
true under Windows NT, but set to false under Solaris.

Example:

The News Index and News Viewer portlets use content caching and can be used as a
reference. The JSPs are located in the
server/public_html/portals/repository/portlets directory in the
news_index.jsp, news_viewer.jsp and content_titlebar.jsp files.

readOnly Content Tag

The <cm:select> and <cm:selectById> tags support an optional readOnly
parameter.

If not specified, the default value (from ContentHelper.DEF_CONTENT_READONLY,
which is loaded from the commerce.content.defaultReadOnly property in the
weblogiccommerce.properties file) is used. Additionally, a
ContentHelper.getContent() method and a ContentManager.getContent()
method take a readOnly flag.

In the reference implementation, invoking the getContent() method without the
readOnly parameter invokes the new getContent() method, passing in
ContentHelper.DEF_CONTENT_READONLY. If readOnly is true, then non-EJB
instances of Content and Document objects can be returned; with the reference
implementation, non-EJB instances will be returned.

8 Creating and Managing Content

8-30 Guide to Building Personalized Applications

Note: This can help performance and prevent deadlocks. It is highly recommended
that commerce.content.defaultReadOnly be set to true, and that, if
readOnly is specified, it be specified true.

Object Interfaces

The interfaces ConfigurableEntityRemote, ContentRemote, DocumentRemote,
UserRemote and GroupRemote extend both EJBObject and their respective
non-EJBObject interfaces. For example:

ConfigurableEntityRemote extends EJBObject and ConfigurableEntity.
DocumentRemote extends ContentRemote, which extends
ConfigurableEntityRemote.
UserRemote and GroupRemote extend ConfigurableEntityRemote.

In this fashion, session beans, tags and utility methods can return either lightweight
objects or the EJB instances, depending upon usage and parameters.

Note: In general, you should only typecast to the non-EJB interfaces (that is,
ConfigurableEntity, not ConfigurableEntityRemote).

Guide to Building Personalized Applications 9-1

CHAPTER

9 Working with Ad
Placeholders

An ad placeholder is one of several mechanisms that WebLogic Personalization Server
provides for retrieving documents from a content management system. A document is
a graphic, a segment of HTML or plain text, or a file that must be viewed with a
plug-in. (We recommend that you store most of your Web site�s dynamic content as
documents in a content management system because it offers an effective way to store
and manage information.)

Ad placeholders are intended to display documents that advertise products or services
(ads) and to record customer reactions to them. You can use a single set of ad
placeholders to support multiple advertising projects that change over time. If you use
Campaign Manager for WebLogic, you can use ad placeholders to display ads for
campaigns.

A Business Analyst (BA) uses the BEA E-Business Control Center to define the
behavior of an ad placeholder. Then, a Commerce Business Engineer (CBE) creates ad
placeholder JSP tags in JSPs.

Similar to ad placeholders, the <ad:adTarget> JSP tag also provides services for
displaying ads. However, as described later in this topic, the <ad:adTarget> JSP tag
provides a subset of the ad placeholder services.

This topic includes the following sections:

� What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

� Resolving Ad Query Conflicts

� Creating Ad Placeholder Tags

� Supporting Additional MIME Types

9 Working with Ad Placeholders

9-2 Guide to Building Personalized Applications

� How Placeholders Select and Display Ads

To learn more about using a content management system with WebLogic
Personalization Server, refer to Chapter 8, �Creating and Managing Content,� in this
guide. For a comparison of content retrieval methods available with WebLogic
Personalization Server, refer to �Methods for Retrieving and Displaying Documents�
on page 8-4.

What Are Ad Placeholders, Ad Attributes,
and Placeholder Tags?

This section describes the following items:

� Ad Placeholders

� Ad Attributes in the Content Management System

� Ad Placeholder JSP Tags

� The <ad:adTarget> JSP Tag

Ad Placeholders

An ad placeholder is a named entity that contains one or more queries. When a
customer requests a JSP that contains an ad placeholder tag, the placeholder selects a
single ad query to run and generates the HTML that the browser requires to display the
results of the query.

For example, you want to display ads in the top banner of your Web site�s home page.
You define an ad placeholder and create ad queries for the placeholder. Then you
create an ad placeholder JSP tag in the top banner of the home page. When a customer
requests the home page, the placeholder selects a query, runs the query, and displays
the results in the banner.

This section includes the following subsections:

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Guide to Building Personalized Applications 9-3

� Types of Queries That Ad Placeholders Run

� Types of Documents That Ad Placeholders Display

Types of Queries That Ad Placeholders Run

Ad placeholders can run a default query or a query that is associated with a specific
scenario in a campaign.

You create default ad queries when you define the ad placeholder in the E-Business
Control Center. A placeholder runs a default query each time a customer loads a page
that includes the placeholder. For example, you define a default query for a top banner
placeholder and the placeholder runs the query each time a customer loads a page with
the top banner.

You create scenario queries when you define scenario actions in the E-Business
Control Center. (Scenario actions, which are available only with Campaign Manager
for WebLogic, specify a list of actions to take in response to a chain of events.) A
placeholder contains a scenario query only if a customer or an event triggers the
scenario action. For example, you create a scenario that does the following:
When a customer places a handsaw product in the shopping cart, the scenario places
an ad for miter boxes in the ad placeholder on the shopping cart page. When the
customer requests the shopping cart page, the shopping cart ad placeholder runs the
query for miter box ads and displays the results.

You can prevent a placeholder from running default queries if any scenario actions
have specified a query for the placeholder, or you can allow the Ad Conflict Resolver
to choose a default query or a scenario query. For more information, refer to
�Resolving Ad Query Conflicts� on page 9-10 in this guide.

Types of Documents That Ad Placeholders Display

Placeholders use a document�s MIME-type attribute to generate the appropriate
HTML tags that the browser requires. By default, ad placeholders generate the
appropriate HTML tags only for the following MIME types:

� XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

� Images. For this type of document, a placeholder generates an tag
with attributes that the browser needs to display the image. If you want
images to be clickable, you must specify the target URL and other
link-related information as ad attributes in your content management system.

9 Working with Ad Placeholders

9-4 Guide to Building Personalized Applications

� Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to
display the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in used to display the file. In your content
management system, you can specify attributes for the <OBJECT> and
<EMBED> tags.

For information on setting up placeholders to support additional MIME types, refer to
�Supporting Additional MIME Types� on page 9-18 in this guide.

Ad Attributes in the Content Management System

Ad placeholders use a set of document attributes that you define in your content
management system to support the following features:

� Choosing a single document if a query returns multiple documents

� Making an image ad clickable

� Supplying movie preferences for a Shockwave file

For information about associating attributes with documents, refer to the
documentation for your content management system. If you use the reference
BulkLoader, refer to Chapter 8, �Creating and Managing Content,� in this guide.

Table 9-1 describes the adWeight attribute, which you can associate with XHTML,
image, and Shockwave documents.

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Guide to Building Personalized Applications 9-5

Table 9-2 describes attributes in addition to the adWeight attribute that you can
associate with image files.

Table 9-1 Attributes for All Document Types

Attribute Name Value Type Description and Recommendations

adWeight Integer Provides an integer that is used to select a document if a query
returns multiple documents. Assign a high number to ads that you
want to have a greater chance of being selected. For more
information, refer to �How an Ad Placeholder Chooses from Ad
Query Results� on page 9-13 in this guide.
The default value for this attribute is 1.

Note: In the E-Business Control Center, you can assign a priority
to a query for a scenario action. The priority, which bears
no relation to the adWeight attribute, gives a greater or
lesser chance that a placeholder runs a query. The
adWeight attribute is used to choose an ad after a query
has run. For more information, refer to �How the Ad
Conflict Resolver Chooses a Query� on page 9-12 in this
guide.

Table 9-2 Attributes for Image Files

Attribute Name Value Type Description and Recommendations

adTargetUrl String Makes an image clickable and provides a target for the clickthrough,
expressed as a URL. The Events Service records the clickthrough.
Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.

adTargetContent String Makes an image clickable and provides a target for the clickthrough,
expressed as the content management system�s content ID. The
Events Service records the clickthrough.
Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.

9 Working with Ad Placeholders

9-6 Guide to Building Personalized Applications

adMapName String Makes an image clickable, using an image map to specify one or
more targets.
The value for this attribute is used in two locations:
� In the anchor tag that makes the image clickable,

� In the map definition, <map name=value>
Use either adTargetUrl, adTargetContent, or adMapName,
depending on how you want to identify the destination of the ad
clickthrough.
If you specify a value for adMapName, you must also specify a
value for adMap.

adMap String Supplies the XHTML definition of an image map.
If you specify a value for adMap, you must also specify a value for
adMapName.

adWinTarget String Displays the target in a new pop-up window, using JavaScript to
define the pop-up window.
The only value supported for this attribute is newwindow.

adWinClose String Specifies the name of a link that closes a pop-up window. The link
appears at the end of the window content.
For example, if you provide �Close this window� as the value for
this attribute, then �Close this window� appears as a hyperlink in the
last line of the pop-up window. If a customer clicks the link, the
window closes.

adAltText String Specifies a text string for the alt attribute of the tag. If you
do not include this attribute, the tag does not specify an alt
attribute.

adBorder Integer Specifies the value for the border attribute of the tag. If
you do not include this attribute, the border attribute is given a
value of "0".

Table 9-2 Attributes for Image Files (Continued)

Attribute Name Value Type Description and Recommendations

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Guide to Building Personalized Applications 9-7

Table 9-3 describes attributes in addition to the adWeight attribute that you can
associate with Shockwave files. Ad placeholders and the <ad:adTarget> tag format
these values as attributes of the <OBJECT> tag, which Microsoft Internet Explorer on
Windows uses to display the file, and the <EMBED> tag, which browsers that support
the Netscape-compatible plug-in used to display the file.

For more information about these attributes, refer to your Shockwave developer
documentation.

Table 9-3 Attributes for Shockwave Files

Attribute Name Value Type Description and Recommendations

swfLoop String Specifies whether the movie repeats indefinitely (true) or stops
when it reaches the last frame (false).
Valid values are true or false. If you do not define this attribute,
the default value is true.

swfQuality String Determines the quality of visual image. Lower qualities can result in
faster playback times, depending on the client�s Internet
connection.
Valid values are low, high, autolow, autohigh, best.

swfPlay String Specifies whether the movie begins playing immediately on loading
in the browser.
Valid values are true or false. If you do not define this attribute,
the default value is true.

swfBGColor String Specifies the background color of the movie. This attribute does not
affect the background color of the HTML page.
Valid value syntax is #RRGGBB.

swfScale String Determines the dimensions of the movie in relation to the area that
the HTML page defines for the movie.
Valid values are showall, noborder, exact fit.

swfAlign String Determines whether the movie aligns with the center, left, top, right,
or bottom of the browser window.
If you do not specify a value, the movie is aligned in the center of
the browser.
Valid values are l, t, r, b.

9 Working with Ad Placeholders

9-8 Guide to Building Personalized Applications

Ad Placeholder JSP Tags

An ad placeholder JSP tag refers to the placeholder definition that you create in the
E-Business Control Center. Then it displays the results of the query that the
placeholder runs. You can create multiple placeholder tags that refer to a single
placeholder definition. (See Figure 9-19.)

For more information about placeholder tags, refer to <ph:placeholder> in Chapter 12,
�Personalization Server JSP Tag Library Reference,� in this guide.

swfSAlign String Determines the movie�s alignment in relation to the browser
window.
Valid values are l, t, r, b, tl, tr, bl, br.

swfBase String Specifies the directory or URL used to resolve relative pathnames in
the movie.
Valid values are .(period), directory-name, URL.

swfMenu String Determines whether the movie player displays the full menu.
Valid values are true or false.

Table 9-3 Attributes for Shockwave Files (Continued)

Attribute Name Value Type Description and Recommendations

What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?

Guide to Building Personalized Applications 9-9

Figure 9-19 Multiple Tags Using a Single Definition

The <ad:adTarget> JSP Tag

The <ad:adTarget> JSP tag is an additional mechanism for selecting and displaying
ads. Use <ad:adTarget> if it is essential that a specific query run in a specific
location.

Like an ad placeholder, <ad:adTarget> can do the following:

� Generate the HTML that a browser requires to display the types of documents
that are described in �Types of Documents That Ad Placeholders Display� on
page 9-3.

� Use the document attributes that are described in �Ad Attributes in the Content
Management System� on page 9-4.

9 Working with Ad Placeholders

9-10 Guide to Building Personalized Applications

� Use the Ad Service to choose an ad if a query returns multiple documents, as
described in �How an Ad Placeholder Chooses from Ad Query Results� on page
9-13.

However, the <ad:adTarget> is unlike ad placeholders in the following ways:

� It contains its own query; it does not refer to a definition that a BA creates in the
E-Business Control Center. If you want to change the query, you modify the tag
in the JSP.

� A campaign scenario cannot specify a query to run in an <ad:adTarget> tag.
Scenarios can only use ad placeholders to run queries.

� Because it contains only a single query, it does not need to use the Ad Conflict
Resolver as described in �How the Ad Conflict Resolver Chooses a Query� on
page 9-12.

For a more information about <ad:adTarget>, refer to Chapter 12, �Personalization
Server JSP Tag Library Reference,� in this guide.

Resolving Ad Query Conflicts

A placeholder can contain many ad queries: you can define multiple default queries
and if you use Campaign Manager for WebLogic, multiple scenarios can send queries
to a placeholder. To determine which ad query to run, a placeholder uses the Ad
Conflict Resolver.

In addition, an ad query can return multiple documents. To determine which ad to
display, a placeholder uses the adWeight document attribute.

This section includes the following subsections:

� How Ad Placeholders Contain Multiple Queries

� How the Ad Conflict Resolver Chooses a Query

� How an Ad Placeholder Chooses from Ad Query Results

If you need to make sure that a given ad query runs in a specific location, use an
<ad:adTarget> tag, which can contain only a single query. For more information,
refer to �The <ad:adTarget> JSP Tag� on page 9-9 in this guide.

Resolving Ad Query Conflicts

Guide to Building Personalized Applications 9-11

How Ad Placeholders Contain Multiple Queries

In addition to containing default queries, an ad placeholder can contain queries that
scenarios define. Depending on customers� profiles and the events that customers
trigger, a placeholder can contain different queries for different customers. (See
Figure 9-20.)

Figure 9-20 Different Ad Queries for Different Customers

For example, you create placeholder L at the top of a portlet to display ads for any of
the following products:

� Handsaws and miter boxes. You want ads for handsaws and miter boxes to
display for any customer, anonymous or authenticated. When you define
placeholder L, you include default queries for ads about handsaws and miter
boxes.

� Electric drills. You use Campaign Manager for WebLogic and you want ads for
electric drills, which are part of the Hardware 2001 campaign, to display when a
Bronze Customer or Gold Customer logs in. When you define the Hardware
2001 campaign, you include a scenario that places ad queries for electric drills in
placeholder L when a Bronze Customer or Gold Customer logs in.

� Circular saws. You want ads for circular saws, which are part of the Hardware
2001 campaign, to display when a Gold Customer logs in. When you define the
Hardware 2001 campaign, you define a scenario that recognizes when a Gold

9 Working with Ad Placeholders

9-12 Guide to Building Personalized Applications

Customer logs in. For that scenario, you specify an action that places ad queries
for pneumatic hammers in placeholder L.

When the Bronze Customer Pat Gomes logs in and accesses the portlet, WebLogic
Personalization Server adds queries for handsaws (which applies to all customers) and
electric drills (which applies to Bronze Customers) to ad placeholder L. Then it uses
the Ad Conflict Resolver to determine which ad query to run.

How the Ad Conflict Resolver Chooses a Query

When you define an ad placeholder in the E-Business Control Center, you can assign
a priority to the default ad queries; when you define scenario actions that specify ad
queries, you can assign a priority to the scenario�s ad query. The priority affects the
probability that an ad query will run relative to other ad queries in the placeholder.

For example, ad placeholder L contains three ad queries:

� Campaign Ad query X, which has a medium priority. The Ad Conflict Resolver
gives all medium-priority ads 2 points

� Default Ad Y, which has a low priority and receives 1 point

� Default Ad Z, which also has a low priority and receives 1 point

The total number of points in ad placeholder L is 4. To determine which of the three ad
queries to run, the Ad Conflict Resolver does the following:

1. It creates 4 slots in the ad placeholder. The number of slots corresponds to the total
number of points currently in the ad placeholder.

2. It places campaign ad query X, which has 2 points into 2 slots. Each of the other
ad queries, with 1 point, gets a single slot:

a. Slot 1 = campaign ad query X

b. Slot 2 = campaign ad query X

c. Slot 3 = default ad query Y

d. Slot 4 = default ad query Z

3. It generates a random number between 1 and 4, which is equal to the number of
slots in the ad placeholder.

Resolving Ad Query Conflicts

Guide to Building Personalized Applications 9-13

4. It matches the generated number with a slot in the placeholder. Because
campaign ad query X occupies two of four slots, it has a 50% chance of being
run. Default ad queries Y and Z each have a 25% chance of being run.

5. If a query does not find any documents, the placeholder chooses another query
and runs it.

If the campaign associated with ad query X ends, then the total number of points in ad
placeholder L is reduced to 2. To determine which ad query to run, the Ad Conflict
Resolver does the following:

1. It creates two slots in the ad placeholder and assigns ad query Y and ad query Z
each to a single slot.

2. It generates a random number between 1 and 2.

3. It matches the generated number with a slot in the placeholder. Now, each ad
query has a 50% chance of running.

How an Ad Placeholder Chooses from Ad Query Results

Depending on how broadly you define an ad query and on the number of documents
in your content management system, an ad query could return multiple documents. In
your content management system, you can add the adWeight attribute to documents
that display as ads.

If a placeholder or <ad:adTarget> query returns multiple documents, the ad
placeholder or the <ad:adTarget> tag does the following:

1. It determines the adWeight values for all documents that the query returns and
adds them together.

For example, an ad query returns the following three ads:

� Ad X, with an adWeight value of 2

� Ad Y, with an adWeight value of 1

� Ad Z, with an adWeight value of 1

The total weight for the documents that the query returns is 4.

2. It creates 4 slots, corresponding to the total weight in the query.

9 Working with Ad Placeholders

9-14 Guide to Building Personalized Applications

3. It places ad X, with a weight of 2 into 2 slots. Each of the other ads, with weights
of 1, gets a single slot:

a. Slot 1 = ad X

b. Slot 2 = ad X

c. Slot 3 = ad Y

d. Slot 4 = ad Z

4. It generates a random number between 1 and 4, which is equal to the total weight
in the query.

5. It matches the generated number with a slot. Because ad X occupies two of four
slots, it has a 50% chance of being displayed. Ads Y and Z each have a 25%
chance of being displayed.

Creating Ad Placeholder Tags

After a BA uses the E-Business Control Center to create ad placeholders, a CBE
creates ad placeholder tags in the Web site�s JSPs. The placeholder definition
determines the behavior of the placeholder tag.

You can create placeholders in JSPs that directly display content to a customer (for
example, index.jsp) or in JSPs that are included in other JSPs (for example,
heading.jsp).

To Create an Ad Placeholder Tag

1. In a text editor, open a JSP.

2. Import the tag library by adding the following tag near the top of the JSP:

<%@ taglib uri="ph.tld" prefix="ph" %>

3. Find the location in which the Business Analyst wants to display the ad.

4. Use the following syntax to create the placeholder tag:

Creating Ad Placeholder Tags

Guide to Building Personalized Applications 9-15

<ph: placeholder= “{ placeholder-name | scriptlet }” >

where placeholder-name refers to the name of an existing placeholder
definition (see Figure 9-21) or where scriptlet returns the name of an existing
placeholder.

Figure 9-21 Placeholder Names Must Match

Listing 9-1 shows an example from the heading include file of the e-commerce sample
JSP templates
($WL_COMMERCE_HOME\config\wlcsDomain\applications\wlcsApp\wlcs\com
merce\includes\heading.inc).

9 Working with Ad Placeholders

9-16 Guide to Building Personalized Applications

All JSP files in the e-commerce sample Web application include heading.inc to
create consistency in the top banner. Instead of requiring that the banner on each page
use the same placeholder, the placeholder in heading.inc uses a scriptlet to
determine the value of the name attribute. A JSP can use the default value for the name
attribute (which is cs_top_generic), or it can define a variable named banner and
specify a placeholder name as the value for the variable.

Listing 9-1 Using a Scriptlet for the Placeholder Name

<%

String banner = (String)pageContext.getAttribute("bannerPh");
banner = (banner == null) ? "cs_top_generic" : banner;

%>

<!-- --- -->

<table width="100%" border="0" cellspacing="0" cellpadding="0" height="108">

<tr><td rowspan="2" width="147" height="108">
<img src="<%=WebflowJSPHelper.createGIFURL(request, response,
"/commerce/images/header_logo.gif")%>" width="147" height="108"></td>

<td colspan="7" height="75" align="center" valign="middle">

<ph:placeholder name="<%= banner %>" />

</td>

Figure 9-22 illustrates how WebLogic Commerce Server renders the placeholder in
the main.jsp file, which is the home page for the e-commerce JSP templates.

Creating Ad Placeholder Tags

Guide to Building Personalized Applications 9-17

Figure 9-22 Placeholder in the E-Commerce JSP Templates

For more information about the <ph:placeholder> tag, refer to Chapter 12,
�Personalization Server JSP Tag Library Reference,� in this guide.

9 Working with Ad Placeholders

9-18 Guide to Building Personalized Applications

Supporting Additional MIME Types

To display an ad, placeholders refer to a document�s MIME type and then generate the
HTML tags that a browser requires for the specific document type. For example, to
display an image-type document, an ad placeholder must generate the tag that
a browser requires for images. By default, ad placeholders can generate the appropriate
HTML only for the following MIME types:

� XHTML (a fragment or an entire document). For this type of document, a
placeholder passes the text directly to the JSP.

� Images. For this type of document, a placeholder generates an tag with
attributes that the browser needs to display the image. If you want images to be
clickable, you must specify the target URL and other link-related information as
ad attributes in your content management system.

� Shockwave files. For this type of document, a placeholder generates the
<OBJECT> tag, which Microsoft Internet Explorer on Windows uses to display
the file, and the <EMBED> tag, which browsers that support the
Netscape-compatible plug-in use to display the file. In your content management
system, you can specify attributes for the <OBJECT> and <EMBED> tags.

If you are familiar with basic Java programming, you can write classes that enable
placeholders to generate HTML for additional MIME types. To support additional
MIME types, you must complete the following tasks:

� Add the New Type to the Deployment Descriptor

� Create and Compile a Java Class to Generate HTML

� Register the New Class in weblogiccommerce.properties

Add the New Type to the Deployment Descriptor

Each Campaign Manager for WebLogic Web application must specify its deployment
requirements in an XML file called a deployment descriptor. To add a new MIME type
for ad placeholders, you must modify the deployment descriptor for your WebLogic
Personalization Server Web application. You can use a text editor to modify the
deployment descriptor.

Supporting Additional MIME Types

Guide to Building Personalized Applications 9-19

If you use the example portal as a framework for developing your own Web
application, then the deployment descriptor is located at the following pathname:

$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/exampleportal/WEB-INF/
web.xml

where $WL_COMMERCE_HOME is the location in which you installed Campaign Manager
for WebLogic. Your Web application might be in another location. Contact your
Campaign Manager for WebLogic administrator for information on which deployment
descriptor to modify.

The deployment descriptor for your WebLogic Personalization Server Web
application already contains a set of mappings for MIME type. Before you add a new
type, review the existing mappings. Listing 9-2 illustrates a single MIME mapping
from the example portal�s deployment descriptor.

Listing 9-2 MIME Mapping in exampleportal/WEB-INF/web.xml

<mime-mapping>

<extension>
jpeg

</extension>

<mime-type>
image/jpeg

</mime-type>

</mime-mapping>

To add a new mapping, use the following syntax:

<mime-mapping>

<extension>
file-extension

</extension>

<mime-type>
type/subtype

</mime-type>

</mime-mapping>

9 Working with Ad Placeholders

9-20 Guide to Building Personalized Applications

where file-extension is the extension of the file type you want to map and
type/subtype is a recognized MIME type and subtype.

Make sure that you provide end-tags for each of the XML elements.

When you save the modified deployment descriptor, you must restart the server to
deploy the modifications. However, we recommend that you do not restart the server
until you have registered the new Java class in weblogiccommerce.properties as
described in �Register the New Class in weblogiccommerce.properties� on page 9-20.

Create and Compile a Java Class to Generate HTML

To generate the HTML that the browser requires to display the MIME type, create and
compile a Java class that implements the
bea/commerce/platform/ad/AdContentProvider interface. For information on
the bea/commerce/platform/ad/AdContentProvider interface, refer to
Campaign Manager for WebLogic Javadoc.

After you compile the class, you must save it in or below a directory that is specified
in the system�s CLASSPATH environment variable. For example
$WL_COMMERCE_HOME/classes is in the classpath. For more information about the
CLASSPATH environment variable, refer to �Setting Environment Variables,� under
�Starting and Shutting Down the Server� in theDeployment Guide.

Register the New Class in weblogiccommerce.properties

After you save the class in a directory that is in your classpath, you must notify
Campaign Manager for WebLogic of its existence and purpose by adding a line to
weblogiccommerce.properties. You can use a text editor to modify this file, which
is located at the following pathname:

$WL_COMMERCE_HOME/weblogiccommerce.properties

where $WL_COMMERCE_HOME is the location in which you installed Campaign Manager
for WebLogic.

To register your new class in the weblogiccommerce.properties file, find the
section that Listing 9-3 illustrates. Then add a line that conforms to the following
syntax:

Supporting Additional MIME Types

Guide to Building Personalized Applications 9-21

adtargettag.rendering.mime-type.mime-extension=your-classname

Provide the following values for the variables in the previous syntax statement:

� mime-type. The name of the MIME type that you want to support.

� mime-extension. The filename extension that Campaign Manager for
WebLogic uses to associate the file with the MIME type.

� your-classname. The name of the compiled Java file. If you saved the file
below a directory that your CLASSPATH environment variable names, you must
include the file�s pathname, starting one directory level below the directory in
the classpath.

For example, $WL_COMMERCE_HOME/classes is in the classpath. You saved your
class to support AVI files as
$WL_COMMERCE_HOME/classes/myclasses/MimeAvi.class
To register your classname, add the following line to
weblogiccommerce.properties:

adtargettag.rendering.video.avi=myclasses.MimeAvi

Listing 9-3 Rendering Classes in weblogiccommerce.properties

###

AdTargetTag Properties

adtargettag.rendering=com.bea.commerce.platform.ad.AdClickThruSer
vlet
This is the class that implements the AdEventTracker interface
and is used to raise events
adtargettag.eventtracking=com.bea.commerce.campaign.AdTracking

Additional classes to render content based upon mime type
To use replace the "text.html" with the mime type, replacing any
'/' characters with '.'

Place the name of the java class that handles the mime type after
the '='

#adtargettag.rendering.text.html=

9 Working with Ad Placeholders

9-22 Guide to Building Personalized Applications

How Placeholders Select and Display Ads

Placeholders use the following process to select and display ads in a given JSP (see
Figure 9-23):

1. Any of the following activities place ad queries in an ad placeholder:

� You use the E-Business Control Center to define default queries for a
placeholder.

� As part of carrying out a campaign action, the Campaign Service adds
queries to the placeholder.

2. When a user requests a JSP that contains a placeholder, if the ad placeholder
contains more than one ad query, the Ad Service calls the Ad Conflict Resolver
to select an ad query.

For more information, refer to �How the Ad Conflict Resolver Chooses a
Query� on page 9-12 in this guide.

3. The Ad Service does the following:

a. It forwards the query to the content management system. If the query returns
more than one ad, the ad placeholder uses the adWeight attribute of each ad to
determine which one to retrieve.

b. If the ad is associated with an active campaign, it determines whether the
campaign has fulfilled its goal of displaying the ad a specific number of times.
If the ad has already been displayed the specified number of times, the Ad
Service selects another ad.

c. It sends data to the Events Service indicating that the placeholder has displayed
the ad.

For more information, refer to �How an Ad Placeholder Chooses from Ad Query
Results� on page 9-13 in this guide, and �Campaign Service Properties� under
�The Server Configuration� in the Deployment Guide.

4. The ad placeholder renders the ad content and places it in the JSP at the location
of the placeholder tag.

5. If a customer clicks on the ad, the Ad Service redirects the URL and notifies the
Event Service that a customer clicked the ad.

How Placeholders Select and Display Ads

Guide to Building Personalized Applications 9-23

Figure 9-23 How Placeholders Display Ads

9 Working with Ad Placeholders

9-24 Guide to Building Personalized Applications

Guide to Building Personalized Applications 10-1

CHAPTER

10 Creating Localized
Applications with the
Internationalization
Tags

This topic includes the following sections:

� What Is the I18N Framework?

� Localizing Your JSP

� <i18n:getMessage>

� <i18n:localize>

� Character Encoding

� Steps for Localizing Your Application

� Code Examples

� Localizing the BEA WebLogic Personalization Server

� Static Text

� Constructed Messages

� Resource Bundles Used in the WebLogic Personalization Server Tools

10 Creating Localized Applications with the Internationalization Tags

10-2 BEA WebLogic Personalization Server Developer�s Guide

What Is the I18N Framework?

WebLogic Personalization Server provides a simple framework that allows access to
localized text labels and messages. The internationalization (I18N) framework is
accessible from JavaServer Pages (JSPs) through a small I18N tag library. An example
is shown in Figure 10-24. The JSP extension tag library provides the following
services:

1. Retrieves a static text label from a resource bundle (implemented as a properties
file).

2. Retrieves a message from a resource bundle (implemented as a properties file).

3. Initializes a page context with a particular language, country, and variant for label
and message retrieval throughout a page.

4. Properly sets the content type (text/html) and character encoding for a page.

Figure 10-24 An Example of Internationalization Code

Localizing Your JSP

BEA WebLogic Personalization Server Developer�s Guide 10-3

Localizing Your JSP

The conventions used in the I18N tag library are based on the more general
conventions used to internationalize Java applications. To understand the conceptual
foundations for the <i18n:getMessage>tag, see the Javadoc for
java.text.MessageFormat in the Sun Microsystem, Inc. Java 2 SDK, Standard
Edition documentation. To better understand the ideas that served as the foundation for
these tags, study the Javadoc for java.util.ResourceBundle and
java.util.Locale.

The following tags are included in the I18N framework:

<i18n:getMessage>

<i18n:localize>

10 Creating Localized Applications with the Internationalization Tags

10-4 BEA WebLogic Personalization Server Developer�s Guide

<i18n:getMessage>

This tag retrieves a localized label or message (based on the absence/presence of an
args attribute). The tag optionally takes a bundle name, language, country, and variant
to aid in locating the appropriate properties file for resource bundle loading.

This tag is used in the localization of JSP pages. All pages that have an
internationalization requirement should use this tag.

For more information about the <i18n:getMessage> tag, see Chapter 12,
�Personalization Server JSP Tag Library Reference.�

<i18n:localize>

This tag allows you to specify a language, country, variant, and resource bundle name
to use throughout a page when accessing resource bundles via the
<i18n:getMessage> tag. This is a convenient way to specify these attributes once, so
that you do not have to specify them again each time you use <i18n:getMessage> to
retrieve localized static text or messages.

Note: Changes to the resource bundles will not be recognized until the server is
restarted.

The <i18n:localize> tag also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible�before anything is written to the output stream�so that the bytes are
properly encoded. If you intend to display text in more than one language, pick a
character set that encompasses all the languages on the page.

When an HTML page is included in a larger page (for example, as portlets are included
in portal pages), only the larger page can use the <i18n:localize> tag. This is
because the <i18n:localize> tag sets the encoding for the page, and the encoding
must be set in the parent (including) page before any bytes are written to the response�s
output stream. Therefore, be careful that the encoding for the parent page is sufficient
for all the content on that page as well as any included pages. The child (included)
pages may continue to use the <i18n:getMessage> tag.

Localizing Your JSP

BEA WebLogic Personalization Server Developer�s Guide 10-5

Note: Do not use the <i18n:localize> tag in conjunction with the <%@ page

contentType="<something>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong contentType declarations.

For more information about the <i18n:localize> tag, see Chapter 12,
�Personalization Server JSP Tag Library Reference.�

The JspMessageBundle

The <i18n:getMessage> tag uses the
com.beasys.commerce.i18n.jsp.JspMessageBundle class. Unlike a
ResourceBundle, the JspMessageBundle looks only for properties files (like the
PropertyResourceBundle) within the ServletContext (on the doc path). This means that
you can keep MessageBundle properties files relative to the associated JSP page,
instead of having to have them on the CLASSPATH.

Another difference is that JspMessageBundles are specified using the "/" character
instead of the ".". For instance, the path to a JspMessageBundle might look like this:
/jsp/ordersystem/placeOrder.

If a bundle name is specified, then it can be specified absolutely or relatively. Absolute
paths are treated as such if they begin with a "/". Paths not beginning with "/" are
searched for relative to the JSP page's location.

If no bundle name is specified, then bundle name defaults to the name of the JSP page.
For instance, if you have a JSP page called placeOrder.jsp, then JspMessageBundle
would look in the same directory for a placeOrder.properties file to serve as the
JspMessageBundle for the placeOrder.jsp page.

When searching for a JspMessageBundle, both the doc root and repository directories
are searched, in that order. Repository directories are directories specified during
servlet registration and serve as a place to store common files such as images. If no
message bundle can be found, a MissingResourceException occurs. For a more
in-depth description of the repository directory convention, see �Repository� on page
5-8.

How the Localization Tag Works

The <i18n:localize> tag first examines all provided attributes and default
attributes, and then performs the following three steps:

10 Creating Localized Applications with the Internationalization Tags

10-6 BEA WebLogic Personalization Server Developer�s Guide

1. Determines the base bundle name.

If a base bundle name is not provided, the bundle name defaults to the name of
the JSP page with .properties appended.

For example, if the name of the JSP page is placeOrder.jsp, then the default
bundle name would be placeOrder.properties.

2. Determines the language to use.

The tag will first look for resource bundles that correspond to the language
parameter passed in to the tag.

If no match between bundle and language is found, then the tag will try to find a
match between resource bundles and languages defined in the request header.

If a match can be made, the first language that matches is the language that is
used.

If no language is specified, the default is U.S. English (en_US).

If no message bundle can be found, then language is set to nothing ("") and
"UTF-8" encoding will be used unless otherwise specified.

3. Determines which character encoding (charset) to use.

If character encoding is not specified, a charset appropriate for the language
determined in step 2 is chosen.

If a character encoding is specified, then that will be the charset used by the
page, regardless of what language was chosen in step 2.

Once the charset is determined, it is specified for the page by calling the
setContentType() method on the servlet response. A call to
setContentType() might look like this:
response.setContentType("text/html; charset=ISO-8859-1");

Character Encoding

When specifying the encoding, it is important to note that some encodings may not be
supported for your particular operating system, virtual machine, or client browsers. To
see what Sun Microsystems, Inc. supports in the J2SE package, see
http://www.java.sun.com.

Localizing Your JSP

BEA WebLogic Personalization Server Developer�s Guide 10-7

If for any reason an encoding for a language cannot be determined and none is
specified, UTF-8 encoding is used.

Displaying More Than One Character Set on a Page

In general, it is best is to leave the charset parameters unspecified since this is more
flexible and fault tolerant. An exception might be when two languages (such as Greek
and Japanese) need to be displayed in the same page. In that case, you can set the
charset to "UTF-8".

For a page with multiple charsets to display correctly, the end users must have the
appropriate fonts installed on their machines. If a font cannot be found, non-printable
characters will typically display in place of the missing characters. (Non-printable
characters often look like rows of empty boxes.)

 Default Character Encodings

Figure 10-1 shows how the <i18n:localize> tag maps languages to character
encodings. These are the default settings.

You can override these defaults by providing any charset tag parameter you choose.
For example, in the table below, the default charset for Japanese is Shift_JIS, but you
could pass in x-sjis, EUC_JP, or iso-2022-jp instead. Or, as another example, to use
Chinese Taiwan locale in place of Chinese, override GB2312 with Big5.

Table 10-1 Default Character Encodings

Language
Code

Language
Name

Character
Encoding

ar Arabic ISO-8859-6

be Byelorussian ISO-8859-5

bg Bulgarian ISO-8859-5

ca Catalan ISO-8859-1

cs Czech ISO-8859-2

da Danish ISO-8859-1

de German ISO-8859-1

10 Creating Localized Applications with the Internationalization Tags

10-8 BEA WebLogic Personalization Server Developer�s Guide

el Greek ISO-8859-7

en English ISO-8859-1

es Spanish ISO-8859-1

et Estonian ISO-8859-1

fi Finnish ISO-8859-1

fr French ISO-8859-1

hr Croatian ISO-8859-2

hu Hungarian ISO-8859-2

 is Icelandic ISO-8859-1

 it Italian ISO-8859-1

iw Hebrew ISO-8859-8

ja Japanese Shift_JIS

ko Korean EUC_KR

lt Lithuanian ISO-8859-2

lv Latvian (Lettish) ISO-8859-2

mk Macedonian ISO-8859-5

nl Dutch ISO-8859-1

no Norweigan ISO-8859-1

pl Polish ISO-8859-2

pt Portuguese ISO-8859-1

ro Romanian ISO-8859-2

ru Russian ISO-8859-5

sh Serbo-Croatian ISO-8859-5

sk Slovak ISO-8859-2

Localizing Your JSP

BEA WebLogic Personalization Server Developer�s Guide 10-9

Steps for Localizing Your Application

1. Familiarize yourself with the documentation for the Internationalization <i18n:*>
tags in Chapter 12, �Personalization Server JSP Tag Library Reference.�. For
sample code, see Figure 10-24 �An Example of Internationalization Code� on page
10-2.

2. Include the <i18n:localize> tag in all pages with an internationalization
requirement. The tag should be used as early in the page as possible�before
anything is written to the output stream�so that the bytes are properly encoded.

For example: <%@ taglib uri=“i18n.tld” prefix=“i18n” %>

For example: <i18n:localize language=“<%=language%>”

Note: When HTML pages are being included inside a larger page, only the larger
page can use the <i18n:localize> tag.

3. Move all text that must be localized (including image URLs that must be
localized) to property files that serve as resource bundles. Provide a resource
bundle (property file) for each language you plan to support. One resource bundle
per JSP page per language is the recommended approach.

sl Slovenian ISO-8859-2

sq Albanian ISO-8859-2

sr Serbian ISO-8859-5

sv Swedish ISO-8859-1

th Thai TIS620

tr Turkish ISO-8859-9

uk Ukrainian ISO-8859-5

zh Chinese GB2312

other UTF-8

10 Creating Localized Applications with the Internationalization Tags

10-10 BEA WebLogic Personalization Server Developer�s Guide

Note: Changes to the property files will not be recognized until the server is
restarted.

For example: Use <i18n:getMessaage messageName=“greeting”/> instead
of hardcoding �Welcome!�

4. Specify a directory path for the property files (resource bundles). The bundle
location must be specified relative to the JSP location, or absolutely, under the
document root.

5. Refer to all localized text in a JSP page by using the <i18n:getMessage> tag.
Make sure the <i18n:getMessage> tag is referring to the correct resource
bundle location (relative or absolute path).

For example:
 If the JSP is in public_html\mypage.jsp, then the bundle location could be
(absolute) “/mypage/text_us.properties” or
(relative) “text_us.properties”.

6. Test the page for all languages that you support. Make sure that the localized text
and images display correctly and that the page layout is correct.

Code Examples

The following examples show how to use the JSP internationalization framework with
JavaScript and Java scriptlets.

Using the JSP Internationalization Framework with JavaScript

This example displays a JavaScript dialog with a localized message in it.

<%@ taglib uri="i18n.tld" prefix="i18n" %>
<%
String language="en";
%>
<i18n:localize language="<%=language%>"
bundleName="i18nJavaScriptExampleResourceBundle"/>

<script language="JavaScript">
function popDialog() {
alert("<i18n:getMessage messageName="greeting"/>")

Localizing the BEA WebLogic Personalization Server

BEA WebLogic Personalization Server Developer�s Guide 10-11

}
</script>

<html>
<body>
Click here to see localized
text!
</body>
</html>

Using the JSP Internationalization Framework with Java Scriptlets

This example gets a localized message, and uses that message in two Java scriptlets.
One scriptlet prints to system out, the other inlines it into the page.

<%@ taglib uri="i18n.tld" prefix="i18n" %>
<%
String language="en";
%>
<i18n:localize language="<%=language%>"
bundleName="i18nJavaScriptExampleResourceBundle"/>

<html>
<body>
<i18n:getMessage messageName="greeting" id="theGreeting"/>
<p>
<%="Localized text for 'greeting': " + theGreeting%>
<p>
<%
System.out.println("Localized text for 'greeting': " +
theGreeting);
%>

</body>
</html>

Localizing the BEA WebLogic
Personalization Server

Up to this point, this chapter has discussed localizing the application that you are
building with the BEA WebLogic Personalization Server.

10 Creating Localized Applications with the Internationalization Tags

10-12 BEA WebLogic Personalization Server Developer�s Guide

In developing your application, you may be required to localize some of the portal
tools in the WebLogic Personalization Server. This section provides information for
developers who need to localize the administration tools that are provided with this
product, or who are deriving their application from examples that ship with the
WebLogic Personalization Server.

The WebLogic Personalization Server Administration Tool is supported by JSP bean
objects which employ Java internationalization conventions in the practice of
presenting error and status messages. These beans use a BEA utility object called
com.beasys.commerce.i18n.MessageBundle in conjunction with text-based
properties files to produce two types of locale-specific display text. The two types of
text are as follows:

� Static Text

� Constructed Messages

Localizing the BEA WebLogic Personalization Server

BEA WebLogic Personalization Server Developer�s Guide 10-13

Static Text

WebLogic Personalization Server uses the following convention when naming static
text entries in the properties files:

propertyName.txt=propertyValue

For example: error.txt=Error Occurred

A static text property is acquired from a loaded MessageBundle using the following
method:

public String getString(String propertyName)

For example:
System.out.printin(messageBundle.getString("error.txt"));

For more information, see the Javadoc for the Portal API documentation.

Constructed Messages

The localized display text generated at run time often depends on one or more
variables, and the order of these variables in a text segment is locale-specific. In this
case, the WebLogic Personalization Server provides a means for constructing message
segments for display.

WebLogic Personalization Server uses the following convention when naming
message entries in properties files:

propertyName.msg=propertyValue

For example:

fieldRequired.msg={0} is a required field.

A constructed message is acquired from a loaded MessageBundle using the following
method:

public String getMessage(Object[] args, String propertyName)

For example:

Object[] args = new Object[] {“ContentURL”};

10 Creating Localized Applications with the Internationalization Tags

10-14 BEA WebLogic Personalization Server Developer�s Guide

System.out.println(messageBundle.getMessage(args,
"fieldRequired.msg"));

For more information, see the Javadoc for the Portal API documentation.

The MessageBundle�s getMessage() method internally uses a
java.text.MessageFormat object. To understand how the getMessage() method
works, look at the Javadoc for java.text.MessageFormat.

Resource Bundles Used in the
WebLogic Personalization Server Tools

Each properties file that supports a particular bean includes the bean name and a
property extension. For example, the property file that supports the
com.beasys.portal.admin.jspbeans.PortalJspBean bean resides in the i18n
directory beneath com/beasys/portal/admin/jspbeans, and is called
PortalJspBean.properties.

Localizing System Messages

You can localize the resource bundles that contain system messages related to the
WebLogic Personalization Server Administration Tools and sample applications.
Changes to the resource bundles will be recognized when the server is restarted.

Use the following properties files to localize system messages. These property files are
found under <WL_COMMERCE_HOME>/classes:

com/beasys/commerce/axiom/util.i18n/JSPBeanBase.properties

com/beasys/commerce/user/jsp/beans/i18n/LDAPConfigBean.properties

com/beasys/commerce/user/jsp/beans/i18n/ProfileTypeBean.properties

com/beasys/commerce/user/jsp/beans/i18n/PropertyBean.properties

com/beasys/commerce/user/jsp/beans/i18n/PropertySetBean.properties

com/beasys/commerce/user/jsp/beans/i18n/RealmConfigBean.properties

com/beasys/commerce/user/jsp/beans/i18n/UserBean.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalJspBean.properties

Localizing the BEA WebLogic Personalization Server

BEA WebLogic Personalization Server Developer�s Guide 10-15

com/beasys/commerce/portal/admin/jspbeans/i18n/PortletJspBean.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalPersonalization.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalRemoveJspBean.properties

com/beasys/commerce/portal.jspbeans/i18n/PortalAppearanceBean.properties

com/beasys/commerce/axiom.util/i18n/JspBeanBase.properties

10 Creating Localized Applications with the Internationalization Tags

10-16 BEA WebLogic Personalization Server Developer�s Guide

Guide to Building Personalized Applications 11-1

CHAPTER

11 The WebLogic
Personalization Server
Database Schema

This chapter documents the database schema for the WebLogic Personalization
Server. This topic includes the following sections:

� The Entity-Relation Diagram

� List of Tables Comprising the WebLogic Personalization Server

� The Personalization Server Data Dictionary

� The SQL Scripts Used to Create the Database

� SQL Server

The Entity-Relation Diagram

Figure 11-25 shows the logical Entity-Relation diagram for the WebLogic
Personalization Server database. See the subsequent sections in this chapter for
information about the data type syntax.

11 The WebLogic Personalization Server Database Schema

11-2 Guide to Building Personalized Applications

Figure 11-25 Entity-Relation Diagram for the WebLogic Personalization Server

The Entity-Relation Diagram

Guide to Building Personalized Applications 11-3

11 The WebLogic Personalization Server Database Schema

11-4 Guide to Building Personalized Applications

The Entity-Relation Diagram

Guide to Building Personalized Applications 11-5

11 The WebLogic Personalization Server Database Schema

11-6 Guide to Building Personalized Applications

List of Tables Comprising the WebLogic
Personalization Server

The WebLogic Personalization Server is comprised of the following tables. In
this list, the tables are sorted by functionality:

Ads and Placeholders tables
The AD_BUCKET Database Table
The AD_COUNT Database Table
The PLACEHOLDER Database Table
The PLACEHOLDER _PREVIEW Database Table

Documentation Management tables
The WLCS_COLUMN_INFORMATION Database Table
The WLCS_DOCUMENT Database Table
The WLCS_DOCUMENT_METADATA Database Table

Rule Editor tables
The RULESET Database Table
The WLCS_RULESET_DEFINITION Database Table

User Management tables
The WLCS_GROUP Database Table
The WLCS_GROUP_HIERARCHY Database Table
The WLCS_GROUP_PERSONALIZATION Database Table
The WLCS_UNIFIED_PROFILE_TYPE Database Table
The WLCS_USER Database Table
The WLCS_USER_GROUP_CACHE Database Table
The WLCS_USER_GROUP_HIERARCHY Database Table
The WLCS_USER_PERSONALIZATION Database Table
The WLCS_UIDS Database Table

Common tables used by both WebLogic Personalization Server and WebLogic
Commerce Server

The WLCS_CATEGORIES Database Table
The WLCS_SCHEMA Database Table
The WLCS_ENTITY_ID Database Table
The WLCS_BOOKMARKS Database Table

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-7

The WLCS_IS_ALIVE Database Table
The WLCS_LDAP_CONFIG Database Table
The WLCS_SEQUENCER Database Table
The WLCS_TODO Database Table
The WLCS_USER_PERSONALIZATION Database Table
The WLCS_UUP_EXAMPLE Database Table

The WLCS_PROP_MD Database Table
The WLCS_PROP_MD_BOOLEAN Database Table
The WLCS_PROP_MD_INTEGER Database Table
The WLCS_PROP_MD_FLOAT Database Table
The WLCS_PROP_MD_TEXT Database Table
The WLCS_PROP_MD_DATETIME Database Table
The WLCS_PROP_MD_USER_DEFINED Database Table

The WLCS_PROP_ID Database Table
The WLCS_PROP_BOOLEAN Database Table
The WLCS_PROP_INTEGER Database Table
The WLCS_PROP_FLOAT Database Table
The WLCS_PROP_TEXT Database Table
The WLCS_PROP_DATETIME Database Table
The WLCS_PROP_USER_DEFINED Database Table

The Personalization Server Data Dictionary

In this section, the WebLogic Personalization Server schema tables are arranged
alphabetically as a data dictionary.

Note: Even though the following documentation references �foreign keys� to
various tables, these constraints do not currently exist in this release of
WebLogic Personalization Server. However, they will be (available in future
releases) in place in future versions of WebLogic Personalization Server and
we want you to be aware of these relationships now.

11 The WebLogic Personalization Server Database Schema

11-8 Guide to Building Personalized Applications

The AD_BUCKET Database Table

Table 11-1 describes the AD_BUCKET table. This table maintains content queries for
ads.

The Primary Key is AD_BUCKET_ID.

The AD_COUNT Database Table

Table 11-2 describes the AD_COUNT table. This table tracks the number of times the
ads are displayed and clicked through.

The Primary Keys are AD_IDENTIFIER and CONTAINER_UID.

Table 11-1 AD_BUCKET Table Metadata

Column Name Data Type Description and Recommendations

AD_BUCKET_ID NUMBER(15) PK�a unique, system-generated number used
as the record identifier.

USER_ID VARCHAR(50) FK�foreign key to the
WLCS_USER.IDENTIFIER column.

PLACEHOLDER_NAME VARCHAR(50) FK�foreign key to
PLACEHOLDER.PLACEHOLDER_NAME.

CONTEXT_UID VARCHAR(50) The scenario unique identifier.

CONTAINER_UID VARCHAR(50) The campaign unique identifier.

CONTAINER_TYPE VARCHAR(50) Identifies the service associated with the
CONTAINER_UID.

WEIGHT NUMBER(15) A weighting scheme used in prioritizing one
placeholder over another.

VIEW_COUNT NUMBER(15) Disabled. Reserved for future use.

CREATION_DATE DATE The date and time this record was created.

AD_QUERY CLOB The actual content query.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-9

The PLACEHOLDER Database Table

Table 11-3 describes the PLACEHOLDER table. This table maps placeholder and
content bucket services (e.g., ad bucket service).

The Primary Key is PLACEHOLDER_NAME.

Table 11-2 AD_COUNT Table Metadata

Column Name Data Type Description and Recommendations

AD_IDENTIFIER NUMBER(15) A unique, system-generated number used as a
record identifier.

CONTAINER_UID VARCHAR(50) The campaign unique identifier.

DISPLAY_COUNT NUMBER(15) The number of times the ad has been displayed.

CLICK_THROUGH_COUNT NUMBER(15) The number of times the ad has been clicked on.

Table 11-3 PLACEHOLDER Table Metadata

Column Name Data Type Description and Recommendations

PLACEHOLDER_NAME VARCHAR(50) PK�a textual name given to the
placeholder to uniquely identify it from other
placeholders.

CONTENT_TYPE VARCHAR(20) Identifies the type of service to work with (e.g.,
ad).

MIX_GLOBALS NUMBER(1) Determines whether or not this placeholder is to
be used with a specific campaign or not.
 0 = do not mix with other adshis placeholder is
specific to certain campaign(s).
1 = mix with all ads.

DESCRIPTION VARCHAR(254) A description of the placeholder and its
purpose.

XML_DEFINITION CLOB The content used to define the placeholder.

11 The WebLogic Personalization Server Database Schema

11-10 Guide to Building Personalized Applications

The PLACEHOLDER _PREVIEW Database Table

Table 11-4 describes the PLACEHOLDER_PREVIEW table. This table is used as a
mechanism to hold the placeholder for previewing purposes only.

The Primary Key is PPREVIEW_ID.

The WLCS_BOOKMARKS Database Table

Table 11-5 describes the WLCS_BOOKMARKS table. This table is used by the
Example portal and is not used except for demonstration purposes. It contains
information used in the Bookmark portlet.

The Primary Key is NAME and OWNER.

Table 11-4 PLACEHOLDER_PREVIEW Table Metadata

Column Name Data Type Description and Recommendations

PREVIEW_ID NUMBER(15) PK�a unique, system-generated number used
as the record identifier.

XML_DEFINITION CLOB The representation of the expression to be
previewed.

Table 11-5 WLCS_BOOKMARKS Table Metadata

Column Name Data Type Description and Recommendations

NAME VARCHAR(150) The name of the bookmark.

OWNER VARCHAR(150) The owner of the bookmark.

URL VARCHAR(50) The URL of the bookmark.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-11

The WLCS_CATEGORIES Database Table

Table 11-6 describes the WLCS_CATEGORIES table. This table is used to
store category information for the portal portion of the WebLogic
Personalization Server application.

Note: The CATEGORY feature has not been implemented at this time and, therefore,
this table is not being used/populated.

The Primary Key is NID.

The WLCS_COLUMN_INFORMATION Database Table

Table 11-7 describes the WLCS_COLUMN_INFORMATION table. This table is
used to store column definition information for each portal and category.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID and COLUMN_ORDER.

Table 11-6 WLCS_CATEGORIES

Column Name Data Type Description and Recommendations

NID NUMBER(15) Category identifier.

PORTAL_NID NUMBER(15) The Portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

NAME VARCHAR(100) The name for the category.

ICON_URL VARCHAR(100) The URL pointing to the icon associated with
the category. This may be null.

CATEGORY_ORDER NUMBER(5) The sequence number identifying the order of
display.

11 The WebLogic Personalization Server Database Schema

11-12 Guide to Building Personalized Applications

The WLCS_DOCUMENT Database Table

Table 11-8 describes the WLCS_DOCUMENT table. This table is used to store
information pertinent to each document used within the WebLogic Personalization
Server.

The Primary Key is ID.

Table 11-7 WLCS_COLUMN_INFORMATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The Portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The Category identifier.

COLUMN_ORDER NUMBER(5) A sequence number identifying the display
sequence for this column. Starting at the
left-most part of the screen the
COLUMN_ORDER would be 1.

COLUMN_WIDTH NUMBER(5) The value entered here is a percentage of the
screen width. An example would be 30. This
represents how wide this particular portal
column is to be (30% of the screen).

Table 11-8 WLCS_DOCUMENT Table Metadata

Column Name Data Type Description and Recommendations

ID VARCHAR(500) The identifier of the document. This specifies
the relative path (case sensitive using forward
slashes) to the actual file.

DOCUMENT_SIZE NUMBER(15) The size of the document in bytes.

VERSION NUMBER(15) The version of the document.

AUTHOR VARCHAR(50) The author�s name of this document.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-13

The WLCS_DOCUMENT_METADATA Database Table

Table 11-9 describes the WLCS_DOCUMENT_METADATA table. This table is
used to store user-defined properties associated with each document.

The Primary Key is ID and NAME.

CREATION_DATE DATE The date this document was created in the
system.

LOCKED_BY VARCHAR(50) This column identifies who has this document
locked for edits or updates.

MODIFIED_DATE DATE This tells you when this document record was
last modified.

MODIFIED_BY VARCHAR(50) This column stores the name of the individual
who last modified the document record.

DESCRIPTION VARCHAR(50) A description of the document.

COMMENTS VARCHAR(50) An area to store miscellaneous notes about the
document.

MIME_TYPE VARCHAR(100) This column identifies which MIME type (or
file type) is associated with this document. This
is supposed to be MIME 1.0.

Table 11-8 WLCS_DOCUMENT Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 11-9 WLCS_DOCUMENT_METADATA Table Metadata

Column Name Data Type Description and Recommendations

ID VARCHAR(500) The document identifier. This is a foreign key to
the ID column of the WLCS_DOCUMENT table.

NAME VARCHAR(240) The metadata name.

VALUE VARCHAR(2000) The value to be associated with the metadata
name (NAME).

11 The WebLogic Personalization Server Database Schema

11-14 Guide to Building Personalized Applications

The WLCS_ENTITY_ID Database Table

Table 11-10 describes the WLCS_ENTITY_ID table. Any ConfigurableEntity within
the system will have an entry in this table.

The Primary Key is comprised of JNDI_HOME_NAME and PK_STRING.

STATE VARCHAR(50) The current state of this metadata property. This
is used by Interwoven and can be set to null.

Table 11-9 WLCS_DOCUMENT_METADATA Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 11-10 WLCS_ENTITY_ID Table Metadata

Column Name Data Type Description and Recommendations

JNDI_HOME_NAME VARCHAR(100) Defines what type of ConfigurableEntity this is.

PK_STRING VARCHAR(200) Unique identifier within the
ConfigurableEntity.

ENTITY_ID NUMBER(15) A sequence-generated number providing a
unique identifier used throughout the system (in
the Property tables and so on).

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-15

The WLCS_GROUP Database Table

Table 11-11 describes the WLCS_GROUP table. This table is used to maintain each
of the various Group identifiers.

The Primary Key is comprised of IDENTIFIER.

The WLCS_GROUP_HIERARCHY Database Table

Table 11-12 describes the WLCS_GROUP_HIERARCHY table. This table stores
relationship information between groups.

The Primary Key is comprised of PARENT_ID and CHILD_ID.

Table 11-11 WLCS_GROUP Table Metadata

Column Name Data Type Description and Recommendations

IDENTIFIER VARCHAR(50) The group name. This column is a foreign key
to the PK_STRING column in the
WLCS_ENTITY_ID table.

Table 11-12 WLCS_GROUP_HIERARCHY Table Metadata

Column Name Data Type Description and Recommendations

PARENT_ID NUMBER(15) The parent group identifier. This column is a
foreign key to the ENTITY_ID column in the
WLCS_ENTITY_ID table.

CHILD_ID NUMBER(15) The child group identifier. This column is a
foreign key to the ENTITY_ID column in the
WLCS_ENTITY_ID table.

11 The WebLogic Personalization Server Database Schema

11-16 Guide to Building Personalized Applications

The WLCS_GROUP_PERSONALIZATION Database Table

Table 11-13 describes the WLCS_GROUP_PERSONALIZATION table. Portals can
be associated to groups and this table helps establish those relationships and maintain
specific information for the group.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID, PORTLET_NID and
GROUP_NID.

Table 11-13 WLCS_GROUP_PERSONALIZATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The category identifier. This column is a
foreign key to the NID column of the
WLCS_CATEGORIES table.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the
WLCS_PORTLET_DEFINITION table.

GROUP_NID NUMBER(15) The group identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

AVAILABLE NUMBER(5) A switch to identify whether or not this portlet
is available.

MANDATORY NUMBER(5) This flag, when set, overrides the VISIBLE flag
and requires the portlet be displayed.

EDITABLE NUMBER(5) This flag determines whether a user is allowed
to edit any content.

MOVEABLE NUMBER(5) This column is not being used.

MINIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to minimize the portlet.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-17

The WLCS_IS_ALIVE Database Table

Table 11-14 describes the WLCS_IS_ALIVE table. This table is used by the JDBC
connection pools to insure the connection to the database is still alive.

MAXIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to maximize the portlet.

FLOATABLE NUMBER(5) This flag determines whether the portlet can
open up in its own browser window.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when initially displayed.

Table 11-13 WLCS_GROUP_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

Table 11-14 WLCS_IS_ALIVE Table Metadata

Column Name Data Type Description and Recommendations

NAME VARCHAR(100) Used by the JDBC connection pools to insure
the connection to the database is still alive.

11 The WebLogic Personalization Server Database Schema

11-18 Guide to Building Personalized Applications

The WLCS_LDAP_CONFIG Database Table

Table 11-15 describes the WLCS_LDAP_CONFIG table. This table holds
configuration information for LDAP functionality within the User Management
module.

The Primary Key is LDAP_PROPERTY.

The WLCS_PROP_BOOLEAN Database Table

Table 11-16 describes the WLCS_PROP_BOOLEAN table. This table stores property
values for boolean properties.

The Primary Key is PROPERTY_ID.

Table 11-15 WLCS_LDAP_CONFIG Table Metadata

Column Name Data Type Description and Recommendations

LDAP_PROPERTY VARCHAR(100) The property name.

LDAP_VALUE VARCHAR(254) The property value.

Table 11-16 WLCS_PROP_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each boolean property.

VALUE NUMBER(3) The value for each boolean property identifier.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-19

The WLCS_PROP_DATETIME Database Table

Table 11-17 describes the WLCS_PROP_DATETIME table. This table stores
property values for date and time properties.

The Primary Key is PROPERTY_ID.

The WLCS_PROP_FLOAT Database Table

Table 11-18 describes the LCS_PROP_FLOAT table. This table stores property
values for float properties.

The Primary Key is PROPERTY_ID.

Table 11-17 WLCS_PROP_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each date and time property.

VALUE DATE The value for each date and time property
identifier.

Table 11-18 WLCS_PROP_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each float property.

VALUE NUMBER The value associated with each float property
identifier.

11 The WebLogic Personalization Server Database Schema

11-20 Guide to Building Personalized Applications

The WLCS_PROP_ID Database Table

Table 11-19 describes the WLCS_PROP_ID table. Any property assigned to a
ConfigurableEntity has a unique PROPERTY_ID. This identifier and associated
information is stored here.

The Primary Key is ENTITY_ID, PROPERTY_NAME and SCOPE_NAME.

Table 11-19 WLCS_PROP_ID Table Metadata

Column Name Data Type Description and Recommendations

ENTITY_ID NUMBER(15) A system generated value and foreign key to the
WLCS_ENTITY_ID column.

SCOPE_NAME VARCHAR(100) This column may be null. If this property is
defined in a property set, then the
SCOPE_NAME will match the SCHEMA_NAME
for that property set in the WLCS_SCHEMA
table.

PROPERTY_NAME VARCHAR(100) The name of the property.

PROPERTY_TYPE NUMBER(3) This column identifies the type of property we
are dealing with (for example, boolean, integer,
float, text, and so on).

PROPERTY_META_DATA_ID NUMBER(15) The identifier for the Property metadata
information. Again, we use the
PROPERTY_TYPE column to identify which
type of Property metadata we are looking at (for
example, boolean, integer, and so on).

SCHEMA_HAS_CHANGED NUMBER(3) A flag informing to identify whether anything in
the WLCS_SCHEMA or WLCS_PROP_MD_xxx
tables has changed. If so, then certain cleanup
activities must be performed prior to using this
property next time.

PROPERTY_ID NUMBER(15) The property identifier is a unique
system-generated number.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-21

The WLCS_PROP_INTEGER Database Table

Table 11-20 describes the WLCS_PROP_INTEGER table. This table stores property
values for integer properties.

The Primary Key is PROPERTY_ID.

The WLCS_PROP_MD Database Table

Table 11-21 describes the WLCS_PROP_MD table. This table stores information
about defined properties in a property set.

The Primary Keys are SCHEMA_ID and PROPERTY_NAME.

Table 11-20 WLCS_PROP_INTEGER Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the integer property.

VALUE NUMBER(20) The value associated with the integer property.

Table 11-21 WLCS_PROP_MD Table Metadata

Column Name Data Type Description and Recommendations

SCHEMA_ID NUMBER(15) A foreign key to the WLCS_SCHEMA table.

PROPERTY_NAME VARCHAR(100) The name of a property.

DESCRIPTION VARCHAR(254) A description of the property.

IS_RESTRICTED NUMBER(3) If set TRUE, the value of the property is
constrained to a set of values. 0 equates to
FALSE and 1 equates to TRUE.

IS_EXPLICIT NUMBER(3) If set TRUE, the property value may be coming
from an external source. 0 equates to FALSE
and 1 equates to TRUE.

11 The WebLogic Personalization Server Database Schema

11-22 Guide to Building Personalized Applications

The WLCS_PROP_MD_BOOLEAN Database Table

Table 11-22 describes the WLCS_PROP_MD_BOOLEAN table. This table stores
property set definitions for the boolean property type.

The Primary Key is PROPERTY_META_DATA_ID.

IS_MULTIVALUED NUMBER(3) Some properties may have more than one value.
0 equates to FALSE and 1 equates to TRUE.

PROPERTY_TYPE NUMBER(3) Defines the property type (boolean, text and so
on).

PROPERTY_META_DATA_ID NUMBER(15) The primary key is a unique, system-generated
value.

Table 11-21 WLCS_PROP_MD Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 11-22 WLCS_PROP_MD_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata
and foreign key to the WLCS_PROP_MD table.

VALUE NUMBER(3) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-23

The WLCS_PROP_MD_DATETIME Database Table

Table 11-23 describes the WLCS_PROP_MD_DATETIME table. This table stores
property set definitions for the date and time property type.

The Primary Key is PROPERTY_META_DATA_ID.

The WLCS_PROP_MD_FLOAT Database Table

Table 11-24 describes the WLCS_PROP_MD_FLOAT table. This table stores
property set definitions for the float property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 11-23 WLCS_PROP_MD_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(20) A unique identifier for this Property metadata.

VALUE DATE The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Table 11-24 WLCS_PROP_MD_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE NUMBER The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

11 The WebLogic Personalization Server Database Schema

11-24 Guide to Building Personalized Applications

The WLCS_PROP_MD_INTEGER Database Table

Table 11-25 describes the WLCS_PROP_MD_INTEGER table. This table stores
property set definitions for the Integer property type.

The Primary Key is PROPERTY_META_DATA_ID.

The WLCS_PROP_MD_TEXT Database Table

Table 11-26 describes the WLCS_PROP_MD_TEXT table. This table stores property
set definitions for the text property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 11-25 WLCS_PROP_MD_INTEGER Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE NUMBER(20) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Table 11-26 WLCS_PROP_MD_TEXT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE VARCHAR(254) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-25

The WLCS_PROP_MD_USER_DEFINED Database Table

Table 11-27 describes the WLCS_PROP_MD_USER_DEFINED table. This table
stores property set definitions for any user defined property type.

The Primary Key is PROPERTY_META_DATA_ID.

The WLCS_PROP_TEXT Database Table

Table 11-28 describes the WLCS_PROP_TEXT table. This table stores property
values for the text for the text property type.

The Primary Key is PROPERTY_ID.

Table 11-27 WLCS_PROP_MD_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE BLOB The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Table 11-28 WLCS_PROP_TEXT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the text property.

VALUE VARCHAR(254) The value associated with the text property.

11 The WebLogic Personalization Server Database Schema

11-26 Guide to Building Personalized Applications

The WLCS_PROP_USER_DEFINED Database Table

Table 11-29 describes the WLCS_PROP_USER_DEFINED table. This table stores
property values for any user-defined property type.

The Primary Key is PROPERTY_ID.

The RULESET Database Table

Table 11-30 describes the RULESET table. This table contains all of the rule sets.

The Primary Key is NAME.

Table 11-29 WLCS_PROP_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the user-defined property.

VALUE BLOB The value associated with the user-defined
property.

Table 11-30 RULESET Table Metadata

Column Name Data Type Description and Recommendations

NAME VARCHAR(50) PK�the rule name. A unique name to
differentiate it from other rules.

DOCUMENT CLOB The XML document containing the rule set
definition.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-27

The WLCS_RULESET_DEFINITION Database Table

Table 11-31 describes the WLCS_RULESET_DEFINITION table. This table contains
all rule sets.

The Primary Key is NAME.

The WLCS_SCHEMA Database Table

Table 11-32 describes the WLCS_SCHEMA table. This table stores property set
definitions.

The Primary Keys are SCHEMA_GROUP_NAME and SCOPE_NAME.

Table 11-31 WLCS_RULESET_DEFINITION Table Metadata

Column Name Data Type Description and Recommendations

NAME VARCHAR(50) The identifier, or name, of the rule set.

DOCUMENT BLOB The XML document containing the rule set
definition.

Table 11-32 WLCS_SCHEMA Table Metadata

Column Name Data Type Description and Recommendations

SCHEMA_GROUP_NAME VARCHAR(100) The type of object this schema is used for.

SCOPE_NAME VARCHAR(100) The application name since it is defining names
for the application.

DESCRIPTION VARCHAR(254) A description of the schema.

SCHEMA_ID NUMBER(15) A system-generated number used throughout
the application.

11 The WebLogic Personalization Server Database Schema

11-28 Guide to Building Personalized Applications

The WLCS_SEQUENCER Database Table

Table 11-33 describes the WLCS_SEQUENCER table. The WLCS_SEQUENCER
table is used to maintain all of the sequence identifiers (for example,
property_meta_data_id_sequence, and so on) used in the application.

The Primary Key is SEQUENCE_NAME.

The WLCS_TODO Database Table

Table 11-34 describes the WLCS_TODO table. This table is used by the Example
portal and is not used except for demonstration purposes. It contains information used
in the To Do portlet.

The Primary Key is ITEM and OWNER.

Table 11-33 WLCS_SEQUENCER Table Metadata

Column Name Data Type Description and Recommendations

SEQUENCE_NAME VARCHAR(50) A unique name used to identify the sequence.

CURRENT_VALUE NUMBER(15) The current value of the sequence.

IS_LOCKED NUMBER(1) This flag identifies whether or not the particular
SEQUENCE_ID has been locked for update.
This column is being used as a generic locking
mechanism that can be used for multiple
database environments.

Table 11-34 WLCS_TODO Table Metadata

Column Name Data Type Description and Recommendations

ITEM VARCHAR(50) The activity to be accomplished.

OWNER VARCHAR(150) The individual who owns, or is responsible for,
this activity.

DONE NUMBER(5) The status identifying whether this item has
been completed.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-29

The WLCS_UIDS Database Table

Table 11-35 describes the WLCS_UIDS table. This table stores sequence information
in a generic database independent format.

The Primary Key is SID.

The WLCS_UNIFIED_PROFILE_TYPE Database Table

Table 11-36 describes the WLCS_UNIFIED_PROFILE_TYPE table. This table
allows registration of classes which extend the ProvidedUser class.

The Primary Key is TYPE_NAME.

PRIORITY NUMBER(5) The priority of the activity.

Table 11-34 WLCS_TODO Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 11-35 WLCS_UIDS Table Metadata

Column Name Data Type Description and Recommendations

SID VARCHAR(100) The name of the sequence.

NEXT_SEQUENCE NUMBER(15) The next value available for use with the
sequence.

Table 11-36 WLCS_UNIFIED_PROFILE_TYPE Table Metadata

Column Name Data Type Description and Recommendations

TYPE_NAME VARCHAR(100) Any unique name used for easy lookup.

CLASS_NAME VARCHAR(100) The name of the remote interface class.

HOME VARCHAR(100) The name of the home class.

11 The WebLogic Personalization Server Database Schema

11-30 Guide to Building Personalized Applications

The WLCS_USER Database Table

Table 11-37 describes the WLCS_USER table. This table stores all user
login/password combinations.

The Primary Key is IDENTIFIER.

PK VARCHAR(100) The name of the primary key class.

JNDI_NAME VARCHAR(100) The name to look up in the JNDI tree.

SUCCESSOR VARCHAR(100) This column allows you to define another class
should the TYPE_NAME not exist. This column
is a foreign key to TYPE_NAME of the
WLCS_UNIFIED_PROFILE_TYPE table.

Table 11-36 WLCS_UNIFIED_PROFILE_TYPE Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 11-37 WLCS_USER Table Metadata

Column Name Data Type Description and Recommendations

IDENTIFIER VARCHAR(50) The user login. This column is a foreign key to
the PK_STRING column of the
WLCS_ENTITY_ID table.

PASSWORD VARCHAR(50) The encrypted password.

IS_EXTERNAL NUMBER(3) This flag determines whether a user came from
an external realm as opposed to the internal
database realm.

PROFILE_TYPE VARCHAR(100) A foreign key to the TYPE_NAME in the
WLCS_UNIFIED_PROFILE_TYPE table.

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-31

The WLCS_USER_GROUP_CACHE Database Table

Table 11-38 describes the WLCS_USER_GROUP_CACHE table. In the event of a
deep group hierarchy, this table will flatten the group hierarchy and enables quick
group membership searches.

Note: The startup process GroupCache is disabled by default. This table will only be
used if enabled.

The Primary Key is comprised of both USER_NAME and GROUP_NAME.

The WLCS_USER_GROUP_HIERARCHY Database Table

Table 11-39 describes the WLCS_USER_GROUP_HIERARCHY table. This table
allows you to store associated users and groups.

The Primary Key is comprised of USER_ID and GROUP_ID.

Table 11-38 WLCS_USER_GROUP_CACHE Table Metadata

Column Name Data Type Description and Recommendations

USER_NAME VARCHAR(100) FK�foreign key to
WLCS_USER.IDENTIFIER.

GROUP_NAME (VARCHAR(100) FK�foreign key to
WLCS_GROUP.IDENTIFIER.

Table 11-39 WLCS_USER_GROUP_HIERARCHY Table Metadata

Column Name Data Type Description and Recommendations

USER_ID NUMBER(15) The ENTITY_ID of a user. This column is a
foreign key to the USER_ID column of the
WLCS_ENTITY_ID table.

GROUP_ID NUMBER(15) The ENTITY_ID of a group. This column is a
foreign key to the USER_ID column of the
WLCS_ENTITY_ID table.

11 The WebLogic Personalization Server Database Schema

11-32 Guide to Building Personalized Applications

The WLCS_USER_PERSONALIZATION Database Table

Table 11-40 describes the WLCS_USER_PERSONALIZATION table.This table
contains personalized portal information for the user.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID, GROUP_NID,
USER_NID and PORTLET_NID.

Table 11-40 WLCS_USER_PERSONALIZATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The category identifier. This column is a
foreign key to the NID column of the
WLCS_CATEGORIES table.

GROUP_NID NUMBER(15) The group identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

USER_NID NUMBER(15) The user identifier. This column is a foreign key
to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the WLCS_PORTLET
table.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible. 0 equates to FALSE and 1 equates to
TRUE.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

The Personalization Server Data Dictionary

Guide to Building Personalized Applications 11-33

The WLCS_UUP_EXAMPLE Database Table

Table 11-41 describes the WLCS_UUP_EXAMPLE table. This is an example of how
to use the Unified Profile Types.

The Primary Key is NAME.

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when displayed initially. 0 equates to FALSE
and 1 equates to TRUE.

Table 11-40 WLCS_USER_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

Table 11-41 WLCS_UUP_EXAMPLE Table Metadata

Column Name Data Type Description and Recommendations

NAME VARCHAR(100) A username.

POINTS NUMBER(15) A point accumulator based on various actions
taken by the user.

11 The WebLogic Personalization Server Database Schema

11-34 Guide to Building Personalized Applications

The SQL Scripts Used to Create the Database

The database schemas for the WebLogic Personalization Server, WebLogic
Commerce Server and BEA's Campaign Manager for WebLogic are all created by
executing the create_all script for the target database environment.

Cloudscape

For Cloudscape, execute one of the following:

� WL_COMMERCE_HOME\db\cloudscape\3.5.1\create_all.bat (Windows)

� WL_COMMERCE_HOME/db/cloudscape/3.5.1/create_all.sh (UNIX)

Script Name Description

create_all.bat The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_all.sh The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

The SQL Scripts Used to Create the Database

Guide to Building Personalized Applications 11-35

Oracle

For Oracle, from the command line, move to the following directory:

WL_COMMERCE_HOME/db/oracle/8.1.6

After logging into SQL*Plus, simply execute the create_all.sql script (e.g.,
@create_all).

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

Script Name Description

Script Name Description

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

11 The WebLogic Personalization Server Database Schema

11-36 Guide to Building Personalized Applications

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

install_report.sql This script is used to summarize the database installation.
Information such as the number of tables, indexes, etc., is
displayed.

statistics.sql This script is used in computing statistics on various database
objects (e.g., tables and indexes) in an Oracle environment.

Script Name Description

The SQL Scripts Used to Create the Database

Guide to Building Personalized Applications 11-37

SQL Server

For SQL Server, you must first edit the create_all.bat file and properly identify
the values for the variables used in identifying the target database environment (for
example, user_id, password and server). Once the variables have been set
properly, execute create_all.bat from the command line.

Script Name Description

create_all.bat The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

11 The WebLogic Personalization Server Database Schema

11-38 Guide to Building Personalized Applications

Defined Constraints

For some of the database tables described earlier in this chapter, the SQL files define
constraints. Table 11-42 shows the table name and describes the constraint(s) defined
for it.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

readme.txt Documentation outlining the appropriate steps necessary for
proper installation of the WLPS, WLCS and Campaign Manager
database schema.

Script Name Description

Table 11-42 Constraints Defined on Campaign Manager Database Tables

Table Name Constraints as Defined in create-catalog-oracle.sql

PLACEHOLDER A check constraint (CK_MIX_GLOBALS) ensures the column
MIX_GLOBALS is populated with either a 0 or 1.

AD_BUCKET A referential integrity constraint (FL_PLACEHOLDER_AD) ensures
that a PLACEHOLDER exists.

Guide to Building Personalized Applications 12-1

CHAPTER

12 Personalization Server
JSP Tag Library
Reference

The JSP tags included with WebLogic Personalization Server allow developers to
create personalized applications without having to program using Java.

Note: The es: prefix stands for e-commerce services.
The esp: prefix stands for e-commerce services portal.
The pz: prefix stands for personalization.

This topic includes the following sections:

� Ads
<ad:adTarget>

� Content Management
<cm:getProperty>
<cm:printDoc>
<cm:printProperty>
<cm:select>
<cm:selectById>

� Flow Manager
<fm:getApplicationURI>
<fm:getCachedAttribute>
<fm:getSessionAttribute>
<fm:setCachedAttribute>
<fm:setSessionAttribute>

12 Personalization Server JSP Tag Library Reference

12-2 Guide to Building Personalized Applications

<fm:removeCachedAttribute>
<fm:removeSessionAttribute>

� Internationalization
<i18n:localize>
<i18n:getMessage>

� Personalization Tags
<pz:contentQuery>
<pz:contentSelector>
<pz:div>

� Placeholders
<ph:placeholder>

� Property Sets
<ps:getPropertyNames>
<ps:getPropertySetNames>

� User Management: Profile Management Tags
<um:getProfile>
<um:getProperty>
<um:getPropertyAsString>
<um:removeProperty>
<um:setProperty>

� User Management: Group-User Management Tags
<um:addGroupToGroup>
<um:addUserToGroup>
<um:changeGroupName>
<um:createGroup>
<um:createUser>
<um:getChildGroupNames>
<um:getChildGroups>
<um:getGroupNamesForUser>
<um:getParentGroupName>
<um:getTopLevelGroups>
<um:getUsernames>
<um:getUsernamesForGroup>
<um:removeGroup>
<um:removeGroupFromGroup>
<um:removeUser>
<um:removeUserFromGroup>

Guide to Building Personalized Applications 12-3

� User Management: Security Tags
<um:login>
<um:logout>
<um:setPassword>

� Utility Tags: Personalization Utilities
<es:counter>
<es:date>
<es:forEachInArray>
<es:isNull>
<es:monitorSession>
<es:notNull>
<es:simpleReport>
<es:simpleReport>
<es:transposeArray>
<es:uriContent>

� Utility Tags: WebLogic Utilities
<wl:process>
<wl:repeat>
<wl:cache>

12 Personalization Server JSP Tag Library Reference

12-4 Guide to Building Personalized Applications

Ads

The Ad tag queries the content management system and displays ads.

Use the following code to import the utility tag library:
<%@ taglib uri="ad.tld" prefix="ad" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ad:adTarget>

The <ad:adTarget> (Table 12-1) uses the Ad Service to send an ad query to the
content management system. Unlike the <ph:placeholder> tag, the query in the
<ad:adTarget> tag does not compete with other queries in an ad placeholder.

Use this tag if you need to make sure that a given ad displays to customers in a specific
location. Depending on how narrowly you construct the query, you might have to
remove or modify this tag when you want to display a different ad.

If the ad query returns more than one ad, the Ad Service uses the adWeight attribute
of each ad to determine which ad to display.

Table 12-1 <ad:adTarget>

Tag Attribute Req�d Type Description R/C

query Yes String Contains a query that the Ad Service uses
to find content. Use the query syntax
described in the Javadoc API
documentation for
com.beasys.commerce.util.Expr
essionHelper

R

Ads

Guide to Building Personalized Applications 12-5

height No int Specifies the height (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.
The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.
If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

R

width No int Specifies the width (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.
The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.
If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

R

Table 12-1 <ad:adTarget> (Continued)

Tag Attribute Req�d Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-6 Guide to Building Personalized Applications

Content Management

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. The
cm:select and cm:selectbyid tags support content caching for content searches.
Note that none of the tags support or use a body.

To import the Content Management JSP tags, use the following code:
<%@ taglib uri="cm.tld" prefix="cm" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<cm:getProperty>

The <cm:get Property> tag (Table 12-2) retrives the value of the specified content
metadata property into a variable specified by resultId. It does not have a body. If
resultId is not specified, the value will be inlined into the page, similar to the
<cm:printProperty> tag. This tag operates on any ConfigurableEntity, not just the
Content object. However, it does not support ConfigurableEntity successors.

Table 12-2 <cm:getProperty>

Tag Attribute Required Type Description R/C

id No String The JSP script variable name which
contains the Content instance from which
to get the properties.

R

entity No ConfigurableEntity Specifies the
com.beasys.commerce.foundation.
ConfigurableEntity object from which to
get the property. If this is specified and
non-null, id is ignored. Otherwise, id will
be used.

R

Content Management

Guide to Building Personalized Applications 12-7

name Yes String The name of the property to print. R

scope No String The scope name for the property to get. If
not specified, null is passed in, which is
what Document objects expect.

R

resultId no String The name of the JSP script variable which
will be populated with the value of the
property. If this is not specified, then the
value of the property will be inlined into
the body of the JSP. If this is specified,
then encode, default, maxLength,
dateFormat, and numFormat are
ignored.

C

resultType no String The Java type of the property. If this is not
specified, then java.lang.Object is
used.

C

encode No String Either html, url, or none:
� If html, then the value will be html

encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and �
becomes ").

� If url, then it is encoded to
x-www-form-urlencoded format via
the java.net.URLEncoder.

� If none or unspecified, no encoding is
performed.

R

default No String The value to print if the property is not
found or has a null value. If this is not
specified and the property value is null,
nothing is printed.

R

maxLength No String, int The maximum length of the property�s
value to print. If specified, values longer
than this will be truncated.

R

Table 12-2 <cm:getProperty> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-8 Guide to Building Personalized Applications

Example

Get the String value of the name property from the Content object stored at doc and
place it in the contentName variable:

<%@ taglib uri="cm.tld" prefix="cm" %>

.

.

.
<cm:getProperty resultId="contentName" resultType="String"
id="content" name="name" />
<es:notNull item="<%=contentName%>">
The name is not null.
</es:notNull>

failOnError No String, Boolean This attribute can have one of two values:
False (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.
True: Throws an exception. You can
handle the exception in the code, let the
page proceed to the normal error page, or
let the application server handle it less
gracefully.

R

dateFormat No String The java.text.SimpleDateFormat string to
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
default toString method is used.

R

numFormat No String The java.text.DecimalFormat string to use
to print the property, if it is a
java.lang.Number. If the property is not a
Number, this is ignored. If this is not set,
the Number's default toString method
is used.

R

Table 12-2 <cm:getProperty> (Continued)

Tag Attribute Required Type Description R/C

Content Management

Guide to Building Personalized Applications 12-9

<cm:printDoc>

The <cm:printDoc> tag (Table 12-3) inlines the raw bytes of a Document object into
the JSP output stream. This tag does not support a body and only supports Document
objects. It does not differentiate between text and binary data.

Table 12-3 <cm:printDoc>

Tag Attribute Required Type Description R/C

id No String The JSP script variable name which contains
the Content instance from which to get the
properties.

R

blockSize No String, int The size of the blocks of data to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

R

start No String, int Specifies the index in the bytes where to start
reading. Defaults to 0.

R

end No String, int Specifies the index in the bytes where to stop
reading. The default is to read to the end of
the bytes.

R

encode No String Either html, url, or none:
� If html, then the value will be html

encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and �
becomes ").

� If url, then it is encoded to
x-www-form-urlencoded format via the
java.net.URLEncoder.

� If none or unspecified, no encoding is
performed.

R

document No Document Specifies the
com.beasys.commerce.axiom.document.Do
cument to use. If this is specified and
non-null, id will be ignored. Otherwise, id
will be used.

R

12 Personalization Server JSP Tag Library Reference

12-10 Guide to Building Personalized Applications

Note: If baseHref is provided, then the <cm:printDoc> tag will output a starting
<BASE HREF> using the value of the baseHref parameter. If baseHref is
not a fully complete URL, the missing parts will be filled in based upon the
URL of the outermost page. Additionally, the <cm:printDoc> will use the
FlowManagerHelper.getAppliactionFlowManager() method to
determine if the tag is operating under a FlowManager instance (a
personalized application, a WebFlowed application, a portal).

Additionally, if baseHref is provided, then, after printing the document, the
<cm:printDoc> tag will output a <BASE HREF> based upon the URL of the
outermost page.

Example

To get a Document object from an id in the request attributes and inline the
Document's text (which might contain relative links):

<%@ taglib uri="cm.tld" prefix="cm" %>
.
.
.
.<% String contentId = request.getParameter("contentId"); %>
<cm:selectById contentId="<%=contentId%>" id="doc" />
<cm:printDoc id="doc" blockSize="1000" baseHref="/ShowDocServlet"
/>

failOnError No String, Boolean This attribute can have one of two values:
False (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.
True: Throws an exception. You can handle
the exception in the code, let the page
proceed to the normal error page, or let the
application server handle it less gracefully.

R

baseHref No String The URL of the document�s BASE HREF.
This can be either an absolute URL or a
relative URL.

R

Table 12-3 <cm:printDoc> (Continued)

Tag Attribute Required Type Description R/C

Content Management

Guide to Building Personalized Applications 12-11

 <cm:printProperty>

The <cm:printProperty> tag (Table 12-4) inlines the value of the specified content
metadata property as a string. It does not have a body. This tag operates on any
ConfigurableEntity, not just the Content object. However, it does not support
ConfigurableEntity successors.

Table 12-4 <cm:printProperty>

Tag Attribute Required Type Description R/C

id No String The JSP script variable name which contains
the Content instance from which to get the
properties.

R

name Yes String The name of the property to print. R

entity
No

ConfigurableEnti
ty

Specifies the
com.beasys.commerce.foundation.
ConfigurableEntity object from which to get
the property. If this is specified and non-null,
id is ignored. Otherwise, id will be used.

R

scope No String The scope name for the property to get. If not
specified, null is passed in, which is what
Document objects expect.

R

encode No String Either html, url, or none:
� If html, then the value will be html

encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and �
becomes ").

� If url, then it is encoded to
x-www-form-urlencoded format via the
java.net.URLEncoder.

� If none or unspecified, no encoding is
performed.

R

default No String The value to print if the property is not found
or has a null value. If this is not specified and
the property value is null, nothing is printed.

R

12 Personalization Server JSP Tag Library Reference

12-12 Guide to Building Personalized Applications

Example

To have a text input field�s default value be the first 75 characters of the subject of a
Content object stored at doc:

<%@ taglib uri="cm.tld" prefix="cm" %>
.
.
.
<form action=”javascript:void(0)”>

Subject: <input type=”text” size=”75” name=”subject”
value=”<cm:printProperty id=”doc” name=”Subject” maxLength=”75”
encode=”html”/>” >

</form>

maxLength No String, int The maximum length of the property�s value
to print. If specified, values longer than this
will be truncated.

R

failOnError No String, Boolean This attribute can have one of two values:
False (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.
True: Throws an exception. You can handle
the exception in the code, let the page
proceed to the normal error page, or let the
application server handle it less gracefully.

R

dateFormat No String The java.text.SimpleDateFormat string to
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
default toString method is used.

R

numFormat No String The java.text.DecimalFormat string to use to
print the property, if it is a java.lang.Number.
If the property is not a Number, this is
ignored. If this is not set, the Number's
default toString method is used.

R

Table 12-4 <cm:printProperty> (Continued)

Tag Attribute Required Type Description R/C

Content Management

Guide to Building Personalized Applications 12-13

<cm:select>

This tag uses only the search expression query syntax to select content. It does not
support or use a body. After this tag has returned the <es:forEachInArray> tag (see
�<es:forEachInArray>� on page 12-76), zero can be used to iterate over the array of
Content objects. This tag (Table 12-5) supports generic Content via a
ContentManager interface.

Table 12-5 <cm:select>

Tag Attribute Required Type Description R/C

contentHome No String The JNDI name of the ContentManager EJB
Home to use to find content. The object in
JNDI at this name must implement a
create method which returns an object
which implements the ContentManager
interface. If not specified, the system
searches the default content home.

R

max No String, long Limits the maximum number of content
items returned. If not present, or zero or less,
it returns all of the content items found.

R

sortBy No String A list of document attributes by which to sort
the content. The syntax follows the SQL
order by clause. The sort specification is
limited to a list of the metadata attribute
names and the keywords ASC and DESC.
Examples:
sortBy=�creationDate�
sortBy=�creationDate ASC, title DESC�

R

12 Personalization Server JSP Tag Library Reference

12-14 Guide to Building Personalized Applications

failOnError No String, Boolean This attribute can have one of two values:
False (default value): Handles JSP
processing errors gracefully and returns an
empty array if an error occurs.
True: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

R

id Yes String The JSP script variable name that will
contain the array of Content objects after this
tag finishes.

C

query No String A content query string used to search for
content.
Example: query="mimetype contains 'text'
&& author='Proulx'"

R

expr No Expression The
com.beasys.commerce.foundation.expressio
n.Expression object to use to search for
content. If this is null or not specified, then
query must be specified. Otherwise,
query is ignored.

R

useCache No String, Boolean Determines whether Content is cached.
This attribute can have one of two values:
False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.
True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key. If not specified, the id attribute of the
tag is used.

R

Table 12-5 <cm:select> (Continued)

Tag Attribute Required Type Description R/C

Content Management

Guide to Building Personalized Applications 12-15

Example

To find the first five text Content objects that are marked as news items for the
evening using the ContentCache, and print out the titles in a list:

<%@ taglib uri="cm.tld" prefix="cm" %>
.

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.
Use -1 for no-timeout (always use the cached
Content). Default = -1.

R

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.
Possible values:
� application

� session (the default)
� page

� request

R

readOnly No String, Boolean This attribute can have one of two values:
If true, the ContentManager (specified via
the ContentHome attribute) will try to
return only lightweight (non-EJB) objects
where possible.
If false (not specified), the default value is
used.
Default=
ContentHelper.DEF_CONTENT_READ
ONLY (which is loaded from the
commerce.content.defaultReadOn
ly property in the
weblogiccommerce.properties file).

R

Table 12-5 <cm:select> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-16 Guide to Building Personalized Applications

.

.
<cm:select
contentHome="<%=ContentHelper.DEF_CONTENT_MANAGER_HOME%>" max="5"
useCache="true" cacheTimeout="300000" cacheId="Evening News"
sortBy="creationDate ASC, title ASC" query="

type = ‘News’ && timeOfDay = ‘Evening’ && mimetype like
‘text/*’ " id="newsList"/>

<es:forEachInArray array="<%=newsList%>" id="newsItem"
type="com.beasys.commerce.axiom.content.Content">

<cm:printProperty id="newsItem" name="Title"
encode="html" />

</es:forEachInArray>

<cm:selectById>

The <cm:selectById> tag (Table 12-6) retrieves content using the Content’s
unique identifier. This tag does not have a body. This tag is basically a wrapper around
the select tag. It works against any Content object which has a string-capable
primary key.

Table 12-6 <cm:selectById>

Tag Attribute Required Type Description R/C

contentHome No String The JNDI name of the ContentManager EJB
Home to use to find content. The object in
JNDI at this name must implement a
create method which returns an object that
implements the ContentManager interface. If
not specified, the system searches the default
content home.

R

contentId Yes String The string identifier of the piece of content. R

Content Management

Guide to Building Personalized Applications 12-17

failOnError No String, Boolean This attribute can have one of two values:
False (default value): Handles JSP
processing errors gracefully and returns null
if an error occurs.
True: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed to
the normal error page, or let the application
server handle it less gracefully.

R

id Yes String The JSP script variable name that contains
the Content object after this tag finishes. If
the Content object with the specified
identifier does not exist, it contains null.

C

useCache No String, Boolean Determines whether Content is cached.
This attribute can have one of two values:
False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.
True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key.
If not specified, the id attribute of the tag is
used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.
Use -1 for no-timeout (always use the cached
Content). Default = -1.

R

Table 12-6 <cm:selectById> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-18 Guide to Building Personalized Applications

Example

To fetch the Document (using ContentCaching) with an identifier of 1234 and inline
its content:

<%@ taglib uri="cm.tld" prefix="cm" %>
.
.
.
<cm:selectById
contentHome="<%=ContentHelper.DEF_CONTENT_MANAGER_HOME%>"
contentId="contentportlet/sports1.htm"
id="doc" useCache="true" cacheTimeout="300000" cacheId="1234" />
<cm:printDoc id="doc" />

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.
Possible values:
� application

� session (the default)
� page

� request

R

readOnly No String, Boolean This attribute can have one of two values:
If true, the ContentManager (specified via
the ContentHome attribute) will try to
return only lightweight (non-EJB) objects
where possible.
If false (not specified), the default value is
used.
Default=
ContentHelper.DEF_CONTENT_READ

ONLY (which is loaded from the
commerce.content.defaultReadOn
ly property in the
weblogiccommerce.properties file).

R

Table 12-6 <cm:selectById> (Continued)

Tag Attribute Required Type Description R/C

Flow Manager

Guide to Building Personalized Applications 12-19

Flow Manager

Thr Flow Manager tags are used for accessing the session, session cache, or the global
cache. For scalability reasons, it is best to limit what gets placed into the session. For
large sessions, session replication across servers is very costly. This tag library will
give the user the ability to write to data that can be scoped to the application or across
applications.

<fm:getApplicationURI>

The <fm:getApplicationURI> tag (Table 12-7) gets the application
 from the URL: http://localhost:7001/portals/application/exampleportal.

When includeContext="true", the tag returns /context/path/pathinfo, for
example: /portals/application/exampleportal. This is required when a client
browser needs to address the Web application context, for example, when using a
form.

When includeContext="false", the tag returns /path/pathinfo, for example
/application/exampleportal. This is required when using Web applications and
server side processing.

Table 12-7 <fm:getApplicationURI>

Tag Attribute Required Type Description R/C

id Yes String The application as referenced by the Flow
Manager. It can either get the value with the
context or without. When used within a Web
application, you must get the value without
the context when using <jsp:forward>.

C

includeContext No boolean Determines whether or not to include the
servlet context with the application name.
Defaults to true.

R

12 Personalization Server JSP Tag Library Reference

12-20 Guide to Building Personalized Applications

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>
.
.
.
<wl:process name="formSubmit">

<fm:getApplicationURI id="uri" includeContext="false"/>
<jsp:forward page="<%=uri%>"/>

</wl:process>

<fm:getCachedAttribute>

The <fm:getCachedAttribute> tag (Table 12-8) gets an attribute out of the
session/global cache. This value can be scoped to the application or not.

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
.
.
.

<%Portal portal = null;%>
<fm:getCachedAttribute id="tportal"

Table 12-8 <fm:getCachedAttribute>

Tag Attribute Required Type Description R/C

id Yes Object The variable to store the retrieved value. C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

global No boolean The value scoped to the session or the global
scope.
Defaults to false.

R

Flow Manager

Guide to Building Personalized Applications 12-21

name="<%=PortalTagConstants.CACHED_PORTAL%>"
global="true" />

<es:isNull item="<%=tportal%>" >
<esp:portalManager action="get" id="myPortal"

portalName="<%=portalName%>"/>
<%tportal=myPortal;%>
<fm:setCachedAttribute

name="<%=PortalTagConstants.CACHED_PORTAL%>"
value="<%=myPortal%>" global="true" />

</es:isNull>
<%portal=(Portal)tportal;%>

<fm:getSessionAttribute>

The <fm:getSessionAttribute> tag (Table 12-9) gets an attribute out of the
HttpSession. The attribute may be scoped to the application (by default).

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
.
.
.
<fm:getSessionAttribute id="username" name="portal.username"

scoped="true" />

The name is: <%=username%>

Table 12-9 <fm:getSessionAttribute>

Tag Attribute Required Type Description R/C

id Yes Object The variable to store the retrieved value. C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

12 Personalization Server JSP Tag Library Reference

12-22 Guide to Building Personalized Applications

<fm:removeCachedAttribute>

The <fm:removeCachedAttribute> tag (Table 12-10) removes an attribute from
the session/global cache. This value can be scoped to the application or not.

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
.
.
.
<fm:removeCachedAttribute

name="<%=PortalTagConstants.CACHED_PORTAL%>" global="true" />

<fm:removeSessionAttribute>

The <fm:removeSessionAttribute> tag (Table 12-11) removes an attribute from
the HttpSession. The attribute may be scoped to the application (by default).

Table 12-10 <fm:removeCachedAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

global No boolean The value scoped to the session or the global
scope.
Defaults to false.

R

Table 12-11 <fm:removeSessionAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

Flow Manager

Guide to Building Personalized Applications 12-23

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
.
.
.
<fm:removeSessionAttribute name="portal.username" scoped="true" />

<fm:setCachedAttribute>

The <fm:setCachedAttribute> tag (Table 12-12) sets an attribute in the
session/global cache. This value can be scoped to the application or not.

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

Table 12-11 <fm:removeSessionAttribute> (Continued)

Tag Attribute Required Type Description R/C

Table 12-12 <fm:setCachedAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

global No boolean The value scoped to the session or the global
scope.
Defaults to false.

R

value Yes Object The value to set. R

12 Personalization Server JSP Tag Library Reference

12-24 Guide to Building Personalized Applications

Example

<%@ taglib uri="fm.tld" prefix="fm" %
.
.
.
<%Portal portal = null;%>
<fm:getCachedAttribute id="tportal"

name="<%=PortalTagConstants.CACHED_PORTAL%>"
global="true" />
<es:isNull item="<%=tportal%>" >

<esp:portalManager action="get" id="myPortal"
portalName="<%=portalName%>"/>

<%tportal=myPortal;%>
<fm:setCachedAttribute

name="<%=PortalTagConstants.CACHED_PORTAL%>"
value="<%=myPortal%>" global="true" />
</es:isNull>
<%portal=(Portal)tportal;%>

<fm:setSessionAttribute>

The <fm:setSessionAttribute> tag (Table 12-13) sets an attribute in the
HttpSession. The attribute may be scoped to the application (by default).

Table 12-13 <fm:setSessionAttribute>

Tag Attribute Required Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.
Defaults to true.

R

value Yes Object The value to set. R

Internationalization

Guide to Building Personalized Applications 12-25

Example

<%@ taglib uri="fm.tld" prefix="fm" %>
.
.
.
<% String val = “joe developer”; %>
<fm:setSessionAttribute name=“portal.username”

value=“<%= val %>” scoped=“true” />

Internationalization

These tags are used in the localization of JSP pages that have an internationalization
requirement.

Use the following code to import the utility tag library:
<%@ taglib uri="i18n.tld" prefix="i18n" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<i18n:localize>

This tag allows you to define the language, country, variant, and base bundle name to
be used throughout a page when accessing resource bundles via the
<i18n:getmessage> tag.

This tag (Table 12-14) also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible�before anything is written to the output stream�so that the bytes are
properly encoded.

Note: When an HTML page is included in a larger page, only the larger page can use
the <i18n:localize> tag. This is because the <i18n:localize> tag sets the
encoding for the page, and the encoding must be set in the parent (including)

12 Personalization Server JSP Tag Library Reference

12-26 Guide to Building Personalized Applications

page before any bytes are written to the response�s output stream. The parent
page must set an encoding that is sufficient for all the content on that page as
well as any included pages.

Note: Do not use the <i18n:localize> tag in conjunction with the <%@ page

contentType="<something>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong contentType declarations.

Table 12-14 <i18n:localize>

Tag Attribute Required Type Description R/C

bundleName No String The base name of the MessageBundle is used
to retrieve localized text for a JSP page.

R

language No String
or
String []

A String�two character ISO Language
Code�denoting the user's preferred
language, or a String[] containing a list of
preferred language codes for a user, with
stronger preferences indexed lower (earlier)
in the array.

R

country No String The two character ISO Country Code for a
country. For example, this code would be
used to look for a MessageBundle containing
text localized to English speaking users in
the U.S. as opposed to English speaking
users in the U.K.

R

variant No String A String representing a locale's variant. The
variant is used when localization demands a
more specific locale than can be denoted by
having just language and a country.

R

locale No java.util.Locale Instead of specifying language, country, and
variant as Strings, a java.util.Locale
object can be provided. If provided, the
values in the Locale's language, country, and
variant fields will negate any of the other
language, country, and variant values passed
to the tag as Strings.

R

Internationalization

Guide to Building Personalized Applications 12-27

Example

<%@ taglib uri="i18n.tld" prefix="i18n" %>

.

.

.
<%

// Array that defines two languages preferences - English and

// Spanish in that order of preference.

String[] languages = new String[] { "en", "es" };

// Definition of a single language preference
String language = "en";
%>

<i18n:localize language="<%=language%>"
bundleName="i18nExampleResourceBundle"/>
<html>
<body>
<i18n:getMessage messageName="greeting"/>
</body>
</html>

charset No String The name of the character encoding set to
use for this page. Defaults to "UTF-8" if no
encoding can be determined for the chosen
language, otherwise an encoding approprite
for the chosen language is used.

R

contentType No String The type of content contained in the page,
defaults to "text/html".

R

Table 12-14 <i18n:localize> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-28 Guide to Building Personalized Applications

<i18n:getMessage>

This tag (Table 12-15) is used in conjunction with the <i18:localize> tag to retrieve
localized static text or messages from a JspMessageBundle.

Table 12-15 <i18n:getMessage>

Tag Attribute Required Type Description R/C

id No String Holds the value of the label (or message) in
the JSP page.

C

messageName Yes String The key for the message bundle. R

messageArgs No Object [] The arguments to the message bundle. If no
args are provided, it is assumed that static
text (not a message) is to be returned.
For example, {"Wednesday", "78"}; might
be used to construct the message "Today is
Wednesday, and the temperature is 78
degrees Fahrenheit."

R

bundleName No String If properly initialized in the
<i18n:localize> tag, there is no need to
pass this tag attribute unless it is desired to
use a different bundle for a particular tag
invocation

R

language No String If properly initialized in the
<i18n:localize> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different language for a particular tag
invocation.

R

country No String If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different country for a particular tag
invocation.

R

Internationalization

Guide to Building Personalized Applications 12-29

Example

JSP File

This code produces this output:
Welcome To This Page! 14 out of 100 files have been saved.

<%@ taglib uri="i18n.tld" prefix="i18n" %>
.
.
.
<%
// Definition of a single language preference
String language = "en";

// Creation of message arguments
Object[] args = new Object[]
{
new Integer(14),
new Integer(100)
};
%>

<i18n:localize language="<%=language%>"
bundleName="i18nExampleResourceBundle"/>
<html>
<body>
<i18n:getMessage messageName="greeting"/>

variant No String If properly initialized in the
<i18n:localize> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different variant for a particular tag
invocation.

R

locale No java.util.Locale If properly initialized in the
<i18n:localize> tag, there is no need to
pass this tag attribute, unless it is desired to
use a different locale (language, country, and
variant) for a particular tag invocation.

R

Table 12-15 <i18n:getMessage> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-30 Guide to Building Personalized Applications

<i18n:getMessage messageName="message" messageArgs="<%=args%>"/>
</body>
</html>

Properies file

Here are the entries in the properties file named
“i18nExampleResourceBundle.properties”:
 greeting=Welcome To This Page!
 message={0} out of {1} files have been saved.

Personalization Tags

Guide to Building Personalized Applications 12-31

Personalization Tags

The <pz:div> tag, <pz:contentSelector> tag, and <pz:contentQuery> tag use the
Advisor to classify the user, select content, and retreive content, respectively.

To import the Personalization JSP tags, use the following code:
<%@ taglib uri="pz.tld" prefix="pz" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<pz:contentQuery>

The <pz:contentQuery> tag (Table 12-16) performs a content attribute search for
content in a content manager. If the useCache attribute is set to true, the results of a
content management query will be cached. The tag only has a begin tag and does not
have a body or end tag. It returns an array of Content objects as determined by the
Advisor.

Personalization content tags required for JSP developers to access the Content object
returned might include:

An object array iterator tag. This tag provides a way to iterate over the Content objects
in the array. Use the <es:forEachInArray> tag to iterate over an array of Objects.
(See �<es:forEachInArray>� on page 12-76 for more information.)

� Content access tags. Content tags access metadata attributes in the content,
retrieve content, and put it into the HTTP response output stream. (See the
section �Content Management� on page 12-6 for more information.)

12 Personalization Server JSP Tag Library Reference

12-32 Guide to Building Personalized Applications

Table 12-16 <pz:contentQuery>

Tag Attribute Required Type Description R/C

max No String, long Limits the maximum number of content
items returned. If not present, it returns all of
the content items found.

R

sortBy No String A list of document attributes by which to sort
the content. The syntax follows the SQL
order by clause. The sort specification is
limited to a list of the metadata attribute
names and the keywords ASC and DESC.
Examples:
sortBy=�creationDate�
sortBy=�creationDate ASC, title DESC�

R

query Yes String A content query string used to search for
content.
Example:
query= �mimetype contains �text� &&
author=�Proulx��

R

contentHome Yes String The JNDI name of the ContentManager EJB
Home. The object in the JNDI at this name
must implement a create method which
returns an object which implements the
ContentManager interface.
For more information, see the section
�Specify a Value for contentHome� on
page 12-37.

R

id Yes String The array variable name that contains the
content objects found. If it finds no objects,
it returns an empty array (not null) of
Content objects.

C

Personalization Tags

Guide to Building Personalized Applications 12-33

Example

<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="cm.tld" prefix="cm" %>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ page input="com.beasys.commerce.content.ContentHelper" %>
.

useCache No String, Boolean Determines whether Content is cached.
This attribute can have one of two values:
False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.
True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become the
key. If not specified, the id attribute of the
tag is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the Content
was cached, the cached Content will be
cleared, retrieved, and placed back into the
cache.
Use -1 for no-timeout (always use the cached
Content). Default = -1.

R

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.
Possible values:
� application

� session (the default)
� page

� request

R

Table 12-16 <pz:contentQuery> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-34 Guide to Building Personalized Applications

.

.
<pz:contentQuery id="docs"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>"

query="author = 'Hemingway'" />

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printProperty id="aDoc"
name="Title" encode="html" />

</es:forEachInArray>

<pz:contentSelector>

The <pz:contentSelector> tag (Table 12-17) allows arbitrary personalized content
to be recommended based on a content selector rule.

A content selector rule first determines whether a user fits the specified classification
(for example, high income), and then selects content based on another qualifier (such
as productType = sports cars.) It then evaluates a set of conditions that you define in
the E-Business Control Center.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts to develop their own segmentation. Because the
Business Analysts are not exposed to the concept of rules, you will see content
selector rules called simply �content selectors� and classifer rules referred to
as �customer segmentation.�

To cache the results of the content selector rule, set the useCache attribute to true. If
the cache has not timed out, subsequent calls to the contentSelector tag will return the
cached results without re-evaluating the rule and content query.

The <pz:contentSelector> tag only has a begin tag and does not have a body or
end tag. It returns an array of Content objects as determined by the Advisor.

Personalization Tags

Guide to Building Personalized Applications 12-35

Tags possibly required for JSP developers to access the Content objects returned
might include:

� An object array iterator tag. This tag provides a way to iterate over the Content
objects in the array. Use the <es:forEachInArray> tag to iterate over an array
of Objects.

� Content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See the
section �Content Management� on page 12-6 for more information.)

Table 12-17 <pz:contentSelector>

Tag Attribute Req�d Type Description R/C

rule Yes String The name of the content selector in the
content selector definitions created in the
E-Business Control Center.

R

contentHome Yes String The JNDI name of the ContentManager
EJB Home. The object in the JNDI at this
name must implement a create method
which returns an object which implements
the ContentManager interface.
For more information, see the section
�Specify a Value for contentHome� on
page 12-37.

R

max No String, long Limits the maximum number of content
items returned. If not present, or if equal to
-1L, it returns all of the content items
found.

R

sortBy No String A list of document attributes by which to
sort the content. The syntax follows the
SQL order by clause. The sort
specification is limited to a list of the
metadata attribute names and the
keywords ASC and DESC.
Examples:
sortBy=�creationDate�
sortBy=�creationDate ASC, title DESC�

R

12 Personalization Server JSP Tag Library Reference

12-36 Guide to Building Personalized Applications

query No String A content query string used to search for
content. This query overrides any query
that a Business Analyst creates in the
E-Business Control Center.
Example: query="mimetype contains 'text'
&& author='Salinger'"

R

id Yes String The array variable name that contains the
content objects found. If it finds no objects,
it returns an empty array (not null) of
Content objects.

C

useCache No String, Boolean Determines whether Content is cached.
This attribute can have one of two values:
False (default value): ContentCache is
not used. If false (not specified), the
cacheId, cacheScope and cacheTimeout
settings are ignored.
True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key. If not specified, the id attribute of
the tag is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.
Use -1 for no-timeout (always use the
cached Content). Default = -1.

R

Table 12-17 <pz:contentSelector> (Continued)

Tag Attribute Req�d Type Description R/C

Personalization Tags

Guide to Building Personalized Applications 12-37

Specify a Value for contentHome

The content selector tag must use the contentHome attribute to specify the JNDI home
of the content management system. If you use the reference content management
system or a third-party integration, you can use a scriptlet to refer to the default content
home. Because the scriptlet uses the ContentHelper class, you must first use the
following tag to import the class into the JSP:

<%@ page import="com.beasys.commerce.content.ContentHelper"%>

Then, when you use the content selector tag, specify the contentHome as follows:

<pz:contentSelector
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"

... />

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.
Possible values:
� application. Any JSP page in the

web application that any customer
requests can access the cache.

� session (the default). Any JSP in the
web application that the current
customer requests can access the
cache.

� page. Only the current JSP that any
customer requests can access the
cache.

� request. Only the current user
request can access the cache. If a
customer re-requests the page, the
content selector re-runs the query and
recreates the cache.

R

Table 12-17 <pz:contentSelector> (Continued)

Tag Attribute Req�d Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-38 Guide to Building Personalized Applications

If you create your own content management system, you must specify the JNDI home
for your system instead of using the ContentHelper scriptlet. In addition, if your
content management system provides a JNDI home, you can specify that one instead
of using the ContentHelper scriptlet.

Example

<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="cm.tld" prefix="cm" %>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ page input="com.beasys.commerce.content.ContentHelper" %>
.
.
.
<pz:contentSelector rule="PremierCustomerSpotlight"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME %>"
id="docs" />

<es:forEachInArray array="<%=docs%>" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printproperty id="aDoc"
name="Title" encode="html" />

</es:forEachInArray>

Note: The sortBy attribute, when used in conjunction with the max attribute, works
differently for explicit (system-defined) and implicit (user-defined) attributes.
If you sort on explicit attributes (identifier, mimeType, size,
version, author, creationDate, modifiedBy, modifiedDate,

lockedBy, description, or comments) the sort is done on the database;
therefore if you combine max="10" and sortBy, the system will perform the
sort and then get the first 10 items. If you sort on implicit attributes, the sort is
done after the max have been selected.

For more information about using this tag, see the section �Using Content-Selector
Tags and Associated JSP Tags� in Chapter 4, �Working with Content Selectors,� in
this guide.

Personalization Tags

Guide to Building Personalized Applications 12-39

<pz:div>

The <pz:div> tag (Table 12-18) allows a piece of content to be conditionally included
as a result of a classifier rule being executed by a rules advislet. If the user�s profile
matches the classification specified in the E-Business Control Center, then the
conditional content is included. This tag has a begin tag, a body, and an end tag. The
tag returns a list of Classification objects that the user belongs to.

Example

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div id=”classifications” rule="PremierCustomer">

<%
//if the user is classified as a Premier Customer, a list with one
entry should be returned//

java.util.Iterator iterator=classifications.iterator();
while (iterator.hasNext())
{
Classification classification=(Classification) iterator.next();
out.println (classification.getName());
}

%>

<p>Please check out our new Premier Customer bonus program.<p>
</pz:div>

Table 12-18 <pz:div>

Tag Attribute Required Type Description R/C

rule Yes String The name of the classifier rule in the
customer segment definitions created in the
E-Business Control Center.

R

id No String A collection that contains the Classification
objects that apply to the user.

C

12 Personalization Server JSP Tag Library Reference

12-40 Guide to Building Personalized Applications

Placeholders

The placeholder tag is a named location on a JSP. You use the E-Business Control
Center to define the behavior of a placeholder.

Use the following code to import the utility tag library:
<%@ taglib uri="ph.tld" prefix="ph" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ph:placeholder>

The <ph:placeholder> tag (Table 12-19) implements a placeholder, which
describes the behavior for a location on a JSP page.

You use the E-Business Control Center to define a placeholder. For more information,
see �Displaying Ads� in Using the E-Business Control Center.

Multiple placeholder tags can refer to the same placeholder. Each instance of a
placeholder tag invokes its placeholder definition separately. If the placeholder
definition specifies multiple queries, each placeholder tag instance can display
different ads, even though each instance shares the same definition.

When WebLogic Personalization Server receives a request for a JSP that contains an
ad placeholder, the placeholder tag contacts the Ad Service, a session EJB that invokes
business logic to determine which ad to display. For more information, see the section
�How Placeholders Select and Display Ads� in Chapter 4, �Working with Content
Selectors,� in this guide.

For information on a related tag, see <ad:adTarget>.

Placeholders

Guide to Building Personalized Applications 12-41

Table 12-19 <ph:placeholder>

Tag Attribute Req�d Type Description R/C

name Yes String A string that refers to a placeholder
definition.

R

height No int Specifies the height (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.
The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.
If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

R

width No int Specifies the width (in pixels) that the
placeholder uses when generating the
HTML that the browser requires to display
a document.
The placeholder uses this value only for
content types to which display dimensions
apply and only if other attributes have not
already defined dimensions for a given
document.
If you do not specify this value and other
attributes have not already been defined,
the browser behavior determines the
height of the document.

R

12 Personalization Server JSP Tag Library Reference

12-42 Guide to Building Personalized Applications

Property Sets

The Property Set tags allow access to the list of available properties and property sets.
Manipulation of property sets can be done either programatically or through the
administration tools.

Use the following code to import the utility tag library:
<%@ taglib uri="ps.tld" prefix="ps" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<ps:getPropertyNames>

The <ps:getPropertyNames> tag (Table 12-20) is used to get a list of property
names given a property set.

Table 12-20 <ps:getPropertyNames>

Tag Attribute Required Type Description R/C

propertySet Yes String The name of the property set to add the new
search.

R

schemaGroupName Yes String Type of property set to search (as defined in
com.beasys.commerce.foundation.property.
SchemaManagerConstants).

R

id Yes String The id of the variable to hold the list of
property names, as a String array.

C

Property Sets

Guide to Building Personalized Applications 12-43

Example

<%@ taglib uri="ps.tld" prefix="ps" %>
.
.
.
<ps:getPropertyNames propertySet="<%myPropertySet%>"

schemaGroupName="<%SchemaManagerConstants.USER_TYPE%>"
id="propertyNames" result="myResult"/>

<ps:getPropertySetNames>

The <ps:getPropertySetNames> tag (Table 12-21) is used to get a list of property
sets given a property set type.

result no String The identifier of an Integer variable that will
be created and initialized with the result of
the operation.
Possible values:
Query is successful:
PropertySetTagConstants.PROPER
TY_SEARCH_OK

Problem getting the list of property names:
PropertySetTagConstants.PROPER
TY_SEARCH_FAILED

Property set named by propertySetName
and schemaGroupName could not be
found:
PropertySetTagConstants.INVALI
D_PROPERTY_SET

C

Table 12-20 <ps:getPropertyNames> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-44 Guide to Building Personalized Applications

User Management:
Profile Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

Table 12-21 <ps:getPropertySetNames>

Tag Attribute Required Type Description R/C

schemaGroupName Yes String The type of the property set to search (as
defined in
com.beasys.commerce.foundation.property.
SchemaManagerConstants).

R

id Yes String The identifier of the variable to hold the list
of property names, as a String array.

C

result No String The identifier of an Integer variable that will
be created and initialized with the result of
the operation.
Possible values:
Query is successful:
PropertySetTagConstants.PROPER
TY_SET_SEARCH_OK

Problem getting the list of property names:
PropertySetTagConstants.PROPER
TY_SET_SEARCH_FAILED

Property set named by propertySetName
and schemaGroupName could not be
found:
PropertySetTagConstants.INVALI
D_PROPERTY_SET

C

User Management: Profile Management Tags

Guide to Building Personalized Applications 12-45

To import the User Management JSP tags, use the following code:
<%@ taglib uri="um.tld" prefix="um" %>

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:
<%@ page
import="com.beasys.commerce.user.jsp.tags.UserManagerTagConstants"
%>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:getProfile>

The <um:getProfile> tag (Table 12-22) retrieves the profile corresponding to the
provided profile key and profile type. The tag has no enclosed body. The retrieved
profile can be treated simply as a
com.beasys.commerce.foundation.ConfigurableEntity, or can be cast to the
particular implementation of ConfigurableEntity that it is. Along with the profile
key and profile, an explicit successor key and successor type can be specified, as
specified by the profileType attribute. This successor will then be used, along with
the retrieved profile, in subsequent invocations of the <um:getProperty> tag to
ensure property inheritance from the successor. If no successor is retrieved, standard
ConfigurableEntity successor search patterns will apply to retrieved properties.

Table 12-22 <um:getProfile>

Tag Attribute Required Type Description R/C

profileKey Yes String A unique identifier that can be used to
retrieve the profile which is sought.
Example: �<%=username%>�

R

successorKey No String A unique identifier that can be used to
retrieve the profile successor.
Example: �<%=defaultGroup%>�

R

12 Personalization Server JSP Tag Library Reference

12-46 Guide to Building Personalized Applications

successorType No String The profile successor type to be retrieved. If
specified, this profile type must correspond
to a profile type registered via the Unified
Profile Type tool in the User Management
suite of administration tools, and its bean
must conform to the rules of Unified User
Profile creation.
By default, the tag retrieves a profile of type
com.beasys.commerce.axiom.cont
act.Group, unless otherwise specified.
Example: �AcmeGroup�

C

scope No String The HTTP scope of the retreived profile.
Pass "request" or "session" as the
values.
Defaults to session.

C

groupOnly No String Specifies to retrieve a
com.beasys.commerce.axiom.cont
act.Group, rather than
com.beasys.commerce.axiom.cont
act.User, for the default profile type. No
successor will be retrieved when this value is
true.
Defaults to false.

C

profileId No String A variable name from which the retrieved
profile is available for the duration of the
JSP�s page scope.

C

profileType No String Allows theJSP developer to specify what
type of User profile object to return. If the
given profileKey refers to a baseUser object,
this attribute should be left blank. Otherwise,
if it returns to an extended User object
defined by a Unified Profile Type, the name
of the Unified Profile Type should be
supplied in this field.

C

Table 12-22 <um:getProfile> (Continued)

Tag Attribute Required Type Description R/C

User Management: Profile Management Tags

Guide to Building Personalized Applications 12-47

Example 1

This example shows a profile of type AcmeUser being retrieved with no successor
specified, and an explicitly-supplied session scope.

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getProfile profileKey="bob" profileType="AcmeUser"
profileId="myProfile" scope="session"/>

Example 2

This example shows a default profile type
(com.beasys.commerce.axiom.contact.User) being retrieved with a default
successor type (com.beasys.commerce.axiom.contact.Group), and an
explicitly-supplied request scope.

successorId No String A variable name from which the retrieved
successor is available for the duration of the
JSP�s page scope.

C

result No String A variable name from which the result of the
operation is available.
Possible values:
Success:
UserManagerTagConstants.GET_PROFILE
_OK
Error encountered:
UserManagerTagConstants.GET_PROFILE
_FAILED
UserManagerTagConstants.NO_SUCH_PR
OFILE
UserManagerTagConstants.NO_SUCH_SU
CCESSOR

C

Table 12-22 <um:getProfile> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-48 Guide to Building Personalized Applications

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getProfile profileKey="bob" successorKey="engineering"
scope="request"/>

Example 3

This example shows a profile type of AcmeUser being retrieved with a successor type
of AcmeGroup, and an implicitly-supplied session scope.

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getProfile profileKey="bob" profileType="AcmeUser"

successorKey="engineering" successorType="AcmeGroup"
profileId="myProfile"/>

<um:getProperty>

The <um:getProperty> tag (Table 12-23) retrieves the property value for a specified
property set-property name pair. The tag has no enclosed body. The value returned is
an Object. In typical cases, this tag is used after the <um:getProfile> tag is invoked
to retrieve a profile for session use. The property to be retrieved is retrieved from the
session profile. If the <um:getProfile> tag has not been used upon invoking the
<um:getProperty> tag, the specified property value is retrieved from the
Anonymous User Profile. For more information, see Chapter 7, �Creating and
Managing Users,� in this guide.

User Management: Profile Management Tags

Guide to Building Personalized Applications 12-49

Example 1

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getProperty id="myTitlebarBGColor" propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>
My titlebar bg color is <%=myTitlebarBGColor%>.

Example 2

My titlebar bg color is <um:getProperty propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>.

Table 12-23 <um:getProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property�s
value is to be retrieved.
Example: �Demo Portal�

Note: If no property set is provided, the
property is retrieved from the
profile�s default (unscoped)
properties.

R

propertyName Yes String The name of the property to be retrieved.
Example: �background_color�

R

id No String If the id attribute is supplied, the value of
the retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

C

12 Personalization Server JSP Tag Library Reference

12-50 Guide to Building Personalized Applications

<um:getPropertyAsString>

The <um:getPropertyAsString> tag (Table 12-24) works exactly like the
<um:getProperty> tag above, but ensures that the retrieved property value is a
String. The following example shows a multi-valued property which returns a
Collection, but presents a list of favorite colors.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getPropertyAsString id=”myFaveColors”
propertySet=”exampleportal” propertyName=”fave_colors”/>
My favorite colors are <%=myFaveColors%>.

Table 12-24 <um:getPropertyAsString>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property�s
value is to be retrieved.
Example: �Demo Portal�

Note: If no property set is provided, the
property is retrieved from the
profile�s default (unscoped)
properties.

R

propertyName Yes String The name of the property to be retrieved.
Example: �background_color�

R

id No String If the id attribute is supplied, the value of
the retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

C

User Management: Profile Management Tags

Guide to Building Personalized Applications 12-51

<um:removeProperty>

The <um:removeProperty> tag (Table 12-25) removes the specified property from
the current session�s profile or from the Anonymous User Profile. The tag has no
enclosed body. Subsequent calls to <um:getProperty> for a removed property
would result in the default value for the property as prescribed by the property set, or
from the Profile�s successor.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:removeProperty propertySet="<%=thePropertySet%>"
propertyName="<%=thePropertyName%>"/>

Table 12-25 <um:removeProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set from which the property's
value is to be retrieved.
Example: "Demo Portal"

Note: The property is removed from the
profile's default (unscoped)
properties if no property set is
provided.

R

propertyName Yes String The name of the property to be removed.
Example: "background_color"

R

12 Personalization Server JSP Tag Library Reference

12-52 Guide to Building Personalized Applications

<um:setProperty>

The <um:setProperty> tag (Table 12-26) updates a property value for either the
session�s current profile, or for the Anonymous User Profile. This tag has no enclosed
body.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<% String myName = request.getParameter("name"); %>
<um:setProperty propertySet="exampleportal" propertyName="name"
value="<%=myName%>"/>

Table 12-26 <um:setProperty>

Tag Attribute Required Type Description R/C

propertySet No String The Property Set in which the property�s
value is to be set.
Example: �Demo Portal�

Note: The property is set for the profile�s
default (unscoped) properties if no
property set is provided.

R

propertyName Yes String The name of the property to be set.
Example: �background_color�

R

value Yes Object The new property value. R

result No String The name of an Integer object to which the
result of the set property operation is
assigned.
Success:
UserManagerTagConstants.SET_PROPER
TY_OK
Error encountered:
UserManagerTagConstants.SET_PROPER
TY_FAILED

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-53

User Management:
Group-User Management Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<%@ taglib uri="um.tld" prefix="um" %>

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:
<%@ page
import="com.beasys.commerce.user.jsp.tags.UserManagerTagConstants"
%>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:addGroupToGroup>

The <um:addGroupToGroup> tag (Table 12-27) adds the group corresponding to the
provided childGroupName to the group corresponding to the provided groupName.
Since a group can only have one parent, any previous database records which reflect
the group belonging to another parent will be destroyed. Both the parent group and the
child group must previously exist for proper tag behavior. The tag has no enclosed
body.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

12 Personalization Server JSP Tag Library Reference

12-54 Guide to Building Personalized Applications

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:addGroupToGroup childGroupName=“<%=childGroupName%>”
parentGroupName=”<%=parentGroupName%>” result=”result”/>

<um:addUserToGroup>

The <um:addUserToGroup> tag (Table 12-28) adds the user corresponding to the
provided username to the group corresponding to the provided groupName. Both the
specified user and the specified group must previously exist for proper tag behavior.
The tag has no enclosed body.

Table 12-27 <um:addGroupToGroup>

Tag Attribute Required Type Description R/C

childGroupName Yes String The name of the child group.
Example: �<%=childGroupName%>�

R

parentGroupName No String The name of the parent group.
Example: �<%=parentGroupName%>�

R

result Yes String The name of an Integer variable to which the
result of the add group to group operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.ADD_GROUP_
OK
Error encountered:
UserManagerTagConstants.ADD_GROUP_
FAILED

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-55

Note: This tag should only be invoked when the customRealm element in

config.xml is
com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:addUserToGroup userName=“<%=userName%>”
groupName=”<%=groupName%>” result=”result”/>

Table 12-28 <um:addUserToGroup>

Tag Attribute Required Type Description R/C

username Yes String The name of the user to be added to the
group.
Example: �<%=username%>�

R

groupName Yes String The name of the group to which the user is
being added.
Example: �<%=groupName%>�

R

result Yes String The name of an Integer variable to which the
result of the add user to group operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.ADD_USER_O
K
Error encountered:
UserManagerTagConstants.ADD_USER_F
AILED

C

12 Personalization Server JSP Tag Library Reference

12-56 Guide to Building Personalized Applications

<um:changeGroupName>

The <um:changeGroupName> tag (Table 12-29) changes the name of the group
corresponding to the specified oldGroupName to the specified newGroupName. This
tag has no enclosed body.

Note: This tag should only be invoked when the customRealm element in

config.xml is
com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:changeGroupname oldGroupName=“<%=oldGroupName%>”
newGroupName=”<%=changeGroupName%>” result=”result”/>

Table 12-29 <um:changeGroupName>

Tag Attribute Required Type Description R/C

oldGroupName Yes String The old group name.
Example: �<%=oldGroupName%>�

R

newGroupName Yes String The new group name.
Example: �<%=newGroupName%>�

R

result Yes String The name of an Integer variable to which the
result of the change group name operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.GROUP_CHA
NGE_OK
Error encountered:
UserManagerTagConstants.GROUP_CHA
NGE_FAILED

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-57

<um:createGroup>

The <um:createGroup> tag (Table 12-30) creates a new
com.beasys.commerce.axiom.contact.Group object. This tag has no enclosed
body.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Administration Console.

Table 12-30 <um:createGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the new group.
Example: �<%=groupName%>�

R

id No String A variable name to which the created Group
object is available for the duration of the
page�s scope.

C

parentName No String The name of the group to set as the parent of
the new group.

R

result Yes String The name of an Integer variable to which the
result of the create group operation is
assigned.
Possible Values:
Success:
UserManagerTagConstants.CREATE_GRO
UP_OK
Error encountered:
UserManagerTagConstants.CREATE_GRO
UP_FAILED
A group with the specified group name
already exists:
UserManagerTagConstants.GROUP_EXIS
TS

C

12 Personalization Server JSP Tag Library Reference

12-58 Guide to Building Personalized Applications

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:creategroup groupName=”<%=groupName%>” result=”result”/>

<um:createUser>

The <um:createUser> tag (Table 12-31) creates a new
com.beasys.commerce.axiom.contact.User object. This tag has no enclosed
body. Although classified as a Group-User management tag, this tag can be used in
conjunction with run-time activities, in that it will persist any properties associated
with a current Anonymous User Profile if specified.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Administration Console.

Table 12-31 <um:createUser>

Tag Attribute Required Type Description R/C

username Yes String The name of the new user.
Example: �<%=username%>�

R

password Yes String The password for the new user.
Example: �<%=password%>�

R

profileType No String Specifies the extended type of user (for
example, WLCS_Customer) to create a user
of that type.

R

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-59

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:createUser userName="<%=username%>" password="<%=password"%>
result="result"/>

saveAnonymous No String Whether to persist current anonymous user
profile attributes in the newly-created user�s
profile.
Defaults to false.
Example: �false�

R

id No String A variable name to which the created User
object is available for the duration of the
page�s scope.

C

result Yes String The name of an Integer variable to which the
result of the create user operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.CREATE_USE
R_OK
Error encountered:
UserManagerTagConstants.CREATE_USE
R_FAILED
A user with the specified username already
exists:
UserManagerTagConstants.USER_EXISTS

C

Table 12-31 <um:createUser> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-60 Guide to Building Personalized Applications

<um:getChildGroupNames>

The <um:getChildGroupNames> tag (Table 12-32) returns the names of any groups
that are children of the given group.

<um:getChildGroups>

The <um:getChildGroups> tag (Table 12-33) retrieves an array of
com.beasys.commerce.axiom.contact.Group objects that are children of the
Group corresponding to the provided groupName. The information is taken from the
personalization database tables, and reflects the group hierarchy information as set up
from the Group Administration and Realm Configuration Administration Tools. This
tag has no enclosed body.

Table 12-32 <um:getChildGroupNames>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group to search for child
groups.

R

id Yes String The name of the identfier which will be
assigned the String array of child group
names.

C

Table 12-33 <um:getChildGroups>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group whose children are
sought.
Example: �<%=groupName%>�

R

id Yes String A variable name to which the child Group
objects are available for the duration of the
page�s scope.
Example: �childGroups�

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-61

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getchildgroups groupName=”<%=groupName%>” id=”childGroups”/>

<um:getGroupNamesForUser>

The <um:getGroupNamesForUser> tag (Table 12-34) retrieves a String array that
contains the group names corresponding to groups to which the provided user
immediately belongs. This tag has no enclosed body.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getGroupNamesForUser userName=”<%=username%>” id=”myGroups”/>

Table 12-34 <um:getGroupNamesForUser>

Tag Attribute Required Type Description R/C

username Yes String The name of the user whose matching groups
are sought.
Example: �<%=username%>�

R

id Yes String A variable name to which the resultant group
names are assigned.
Example: �myGroups�

C

12 Personalization Server JSP Tag Library Reference

12-62 Guide to Building Personalized Applications

<um:getParentGroupName>

The <um:getParentGroupName> tag (Table 12-35) retrieves the name of the parent
of the com.beasys.commerce.axiom.contact.Group object associated with the
provided groupName. The information is taken from the personalization database
tables, and reflects the group hierarchy information as set up from the Group
Administration and Realm Configuration Administration Tools. This tag has no
enclosed body.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getParentGroupName groupName="<%=groupName%>"
id="parentGroupName"/>

Table 12-35 <um:getParentGroupName>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group whose parent group
name is sought.
Example: �<%=groupName%>�

R

id Yes String A variable name to which the name of the
parent is available for the duration of the
page�s scope.
Example: �parentGroupName�

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-63

<um:getTopLevelGroups>

The <um:getTopLevelGroups> tag (Table 12-36) retrieves an array of
com.beasys.commerce.axiom.contact.Group objects, each of which has no
parent group. The information is taken from the personalization database tables, and
reflects the group hierarchy information as set up from the Group Administration and
Realm Configuration Administration Tools. This tag has no enclosed body.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getTopLevelGroups id=”topLevelGroups”/>

<um:getUsernames>

The <um:getUsernames> tag (Table 12-38) retrieves a String array that contains the
usernames matching the provided search expression. The search expression supports
only the asterisk (*) wildcard character, and is case insensitive. As many asterisks as
desired may be used in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Administration Console.

Table 12-36 <um:getTopLevelGroups>

Tag Attribute Required Type Description R/C

id Yes String A variable name to which the top-level
Group objects are available for the duration
of the page�s scope.
Example: �topLevelGroups�

C

12 Personalization Server JSP Tag Library Reference

12-64 Guide to Building Personalized Applications

Table 12-37 <um:createGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the new group.
Example: �<%=groupName%>�

R

id No String A variable name to which the created Group
object is available for the duration of the
page�s scope.

C

parentName No String The name of the group to set as the parent of
the new group.

R

result Yes String The name of an Integer variable to which the
result of the create group operation is
assigned.
Possible Values:
Success:
UserManagerTagConstants.CREATE_GRO
UP_OK
Error encountered:
UserManagerTagConstants.CREATE_GRO
UP_FAILED
A group with the specified group name
already exists:
UserManagerTagConstants.GROUP_EXIS
TS

C

Table 12-38 <um:getUsernames>

Tag Attribute Required Type Description R/C

searchExp No String The search expression to apply to the user
name search. Defaults to �*�
Example: �t*�

R

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-65

Note: The USER_SEARCH_FAILED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
UserManagerTagConstants.USER_SEARCH_FAILED, but the length returned
by the array in id will be zero.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getUsernames userLimit="500" searchExp="t*" id="myUsers"/>
<%System.out.println("I found " + myUsers.length + " users.");%>

userLimit No String
(representing
an Integer)

The maximum number of users to be
returned from the search. (String which has a
particular Integer.valueOf.) Defaults
to 100.
If user count exceeds userLimit, the length of
the array in id is truncated to the length of
userLimit.
Example: �500�

R

id Yes String A variable name to which the resultant user
names are assigned.
Example: �myUsers�

C

result

No String The name of an Integer variable to which the
result of the getUsernames operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.USER_SEARC
H_OK
General error:
UserManagerTagConstants.USER_SEARC
H_FAILED

C

Table 12-38 <um:getUsernames> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-66 Guide to Building Personalized Applications

<um:getUsernamesForGroup>

The <um:getUsernamesForGroup> tag (Table 12-39) retrieves a String array that
contains the usernames matching the provided search expression and correspond to
members of the provided group. The search expression supports only the asterisk (*)
wildcard character, and is case insensitive. As many asterisks as desired may be used
in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the WLS
administration console.

Table 12-39 <um:getUsernamesForGroup>

Tag Attribute Required Type Description R/C

searchExp No String The search expression to apply to the user
name search.
Defaults to" *".
Example: "t*"

R

groupName Yes String The name of the group whose matching
members are sought.
Example: �engineering�

R

userLimit No String
(representing
an Integer)

The maximum number of users to be
returned from the search. (String which has a
particular Integer.valueOf.) Defaults
to 100.
If user count exceeds userLimit, the length of
the array in id is truncated to the length of
userLimit.
Example: �500�

R

id Yes String A variable name to which the resultant user
names are assigned.
Example: �myUsers�

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-67

Note: The USER_SEARCH_FAILED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
UserManagerTagConstants.USER_SEARCH_FAILED, but the length
returned by the array in id will be zero.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:getUsernamesForGroup groupName="engineering" userLimit="500"
searchExp="t*" id="myUsers"/>
<%System.out.println("I found " + myUsers.length + " users in my
group.");%>

<um:removeGroup>

The <um:removeGroup> tag (Table 12-40) removes the
com.beasys.commerce.axiom.contact.Group object corresponding to the
provided groupName. This tag has no enclosed body.

result No String The name of an Integer variable to which the
result of the get usernames for group
operation is assigned.
Possible values:
Success:
UserManagerTagConstants.USER_SEARC
H_OK
General error:
UserManagerTagConstants.USER_SEARC
H_FAILED

C

Table 12-39 <um:getUsernamesForGroup> (Continued)

Tag Attribute Required Type Description R/C

12 Personalization Server JSP Tag Library Reference

12-68 Guide to Building Personalized Applications

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:removeGroup groupName=”<%=groupName%>” result=”result”/>

<um:removeGroupFromGroup>

The <um:removeGroupFromGroup> tag (Table 12-41) removes a child group from a
parent group.

Table 12-40 <um:removeGroup>

Tag Attribute Required Type Description R/C

groupName Yes String The name of the group to be removed.
Example: �<%=groupName%>�

R

result Yes String The name of an Integer variable to which the
result of the remove group operation is
assigned.
Possible Values:
Success:
UserManagerTagConstants.REMOVE_GR
OUP_OK
Error encountered:
UserManagerTagConstants.REMOVE_GR
OUP_FAILED

C

User Management: Group-User Management Tags

Guide to Building Personalized Applications 12-69

<um:removeUser>

The <um:removeUser> tag (Table 12-42) removes the
com.beasys.commerce.axiom.contact.User object corresponding to the
provided username. It can remove any type of extended user that has its profileType
set in the database. This tag has no enclosed body.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Table 12-41 <um:removeGroupFromGroup>

Tag Attribute Required Type Description R/C

childGroupName Yes String The name of the child group to remove from
its parent.

R

parentGroupName Yes String The name of the parent group from which the
child group will be removed.

R

result Yes String The name of an Integer variable to which the
result of the remove group from group
operation is assigned.
Possible values:
Success:
UserManagerTagConstants.REMOVE_GR
OUP_OK
Failure:
UserManagerTagConstants.REMOVE_GR
OUP_FAILED

C

12 Personalization Server JSP Tag Library Reference

12-70 Guide to Building Personalized Applications

Example

<%@ taglib uri="um.tld" prefix="um" %>
.
.
.
<um:removeUser userName=”<%=username%>” result=”result”/>

<um:removeUserFromGroup>

The <um:removeUserFromGroup> tag (Table 12-43) removes a user from a group.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Table 12-42 <um:removeUser>

Tag Attribute Required Type Description R/C

username Yes String The username of the user to be removed.
Example: �<%=username%>�

R

result Yes String The name of an Integer variable to which the
result of the remove user operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.REMOVE_US
ER_OK
Error encountered:
UserManagerTagConstants.REMOVE_US
ER_FAILED

C

User Management: Security Tags

Guide to Building Personalized Applications 12-71

User Management: Security Tags

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<%@ taglib uri="um.tld" prefix="um" %>

All User Management tags send results to the same file. If you are checking for results,
include this import directive at the top of the page:
<%@ page
import="com.beasys.commerce.user.jsp.tags.UserManagerTagConstants"
%>

Table 12-43 <um:removeUserFromGroup>

Tag Attribute Required Type Description R/C

username Yes String The username of the user to remove from the
given group.

R

groupName Yes String The name of the group from which the given
user will be removed.

R

result Yes String The name of an Integer variable to which the
result of the remove user from group
operation is assigned.
Possible values:
Success:
UserManagerTagConstants.REMOVE_US
ER_OK
Failure:
UserManagerTagConstants.REMOVE_US
ER_FAILED

C

12 Personalization Server JSP Tag Library Reference

12-72 Guide to Building Personalized Applications

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<um:login>

The <um:login> tag (Table 12-44) provides weak authentication (username,
password) against the current security realm, and sets the authenticated user as the
current WebLogic user. This tag has no enclosed body.

Note: The login tag requires a username parameter and a password parameter to
be present in the HTTP request.

Table 12-44 <um:login>

Tag Attribute Required Type Description R/C

result Yes String The name of an Integer variable to which the
result of the login operation is assigned.
Possible values:
Success:
UserManagerTagConstants.LOGIN_OK
General error when performing
authentication:
UserManagerTagConstants.LOGIN_ERRO
R
Authentication failed because of invalid
username/password combination:
UserManagerTagConstants.LOGIN_FAILE
D

C

User Management: Security Tags

Guide to Building Personalized Applications 12-73

<um:logout>

The <um:logout> tag (Table 12-45) ends the current user's WebLogic Server session.
This is independent of the FlowManager's user session tracking, and should be used in
combination with the <um:login> tag.

.

<um:setPassword>

The <um:setPassword> tag (Table 12-46) updates the password for the user
corresponding to the provided username.

Note: This tag should only be invoked when the class
com.beasys.commerce.axiom.contact.security.RDBMSRealm is
defined as the active security realm. This can be verified through the
WebLogic Server Administration Console.

Table 12-45 <um:logout>

Tag Attribute Required Type Description R/C

No attributes

Table 12-46 <um:setPassword>

Tag Attribute Required Type Description R/C

username Yes String The username of the user whose password is
to be changed.

R

password Yes String The new user password. R

12 Personalization Server JSP Tag Library Reference

12-74 Guide to Building Personalized Applications

result Yes String The name of an Integer variable to which the
result of the set password operation is
assigned.
Possible values:
Success:
UserManagerTagConstants.SET_PASSWO
RD_OK
Failure:
UserManagerTagConstants.SET_PASSWO
RD_FAILED

C

Table 12-46 <um:setPassword>

Tag Attribute Required Type Description R/C

Personalization Utilities

Guide to Building Personalized Applications 12-75

Personalization Utilities

The <es:jsptaglib> tag contains generic tags you can use to create JSP pages.

Use the following code to import the utility tag library:
<%@ taglib uri="es.tld" prefix="es" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<es:counter>

The <es:counter> tag (Table 12-47) is used to create a for loop.

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:counter id="iterator" minCount="0" maxCount="10">

<% System.out.println(iterator);%>
</es:counter>

Table 12-47 <es:counter>

Tag Attribute Required Type Description R/C

type No String The type of the counter. Possible values are
int or long. Default is int.

R

id Yes String A unique name for the variable. R

minCount Yes Int The start position for the loop. R

maxCount Yes Int The end position for the loop. R

12 Personalization Server JSP Tag Library Reference

12-76 Guide to Building Personalized Applications

<es:date>

The <es:date> tag (Table 12-48) is used to get a date- and time-formatted String
based on the user's time zone preference.

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:date formatStr="MMMM dd yyyy" timeZoneId="MST" />

<es:forEachInArray>

The <es:forEachInArray> tag (Table 12-49) is used to iterate over an array.

Table 12-48 <es:date>

Tag Attribute Required Type Description R/C

timeZoneId No String Defaults to the time zone on the server. R

formatStr No String A date and time format string that adheres to
the java.text.SimpleDateFormat. The default
value is MM/dd/yyyy HH:mmss:z.

R

Table 12-49 <es:forEachInArray>

Tag Attribute Required Type Description R/C

id Yes String The variable for each value in the array. R

type Yes String The type of each value in the array. R

array Yes Object [] The array to iterate over. R

counterId No String The position in the array. R

Personalization Utilities

Guide to Building Personalized Applications 12-77

Example

<es:forEachInArray id="item" array="<%=items%>" type="String"
counterId="i">

<% System.out.println("items[" + i + "]: " + item);%>
</es:forEachInArray>

<es:isNull>

The <es:isNull> tag (Table 12-50) is used to check if a value is null. In the case of
a String, the <es:isNull> tag is used to check if the String is null or has a value.
An empty string will cause isNull to be false. (An empty string is not null.)

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:isNull item="<%=value%>">

Error: the value is null.
</es:isNull>

Table 12-50 <es:isNull>

Tag Attribute Required Type Description R/C

item Yes Object The variable to evaluate. R

12 Personalization Server JSP Tag Library Reference

12-78 Guide to Building Personalized Applications

<es:monitorSession>

The <es:monitorSession> tag (Table 12-51) can be added to the beginning of any
JSP page to disallow access to the page if the session is not valid or if the user is not
logged in.

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:monitorSession loginRequired="true" />

Table 12-51 <es:monitorSession>

Tag Attribute Required Type Description R/C

goToPage No String The error page that you want displayed if the
page is not accessible.
The default value is portalerror.jsp.

R

loginRequired No String Indicates whether the user is required to be
logged in to access the JSP page including
the tag.
The default value is false.

R

Personalization Utilities

Guide to Building Personalized Applications 12-79

<es:notNull>

The <es:notNull> tag (Table 12-52) is used to check if a value is not null. In the case
of a String, the <es:notNull> tag is used to check if the String is not null or has a
value. An empty string will cause notNull to be true. (An empty string is treated as
a value.)

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:notNull item="<%=value%>">

The value is not null.
</es:notNull>

<es:simpleReport>

The <es:simpleReport> tag (Table 12-53) is used to create two-dimensional array
out of a simple query.

Table 12-52 <es:notNull>

Tag Attribute Required Type Description R/C

item Yes Object The variable to evaluate. R

Table 12-53 <es:simpleReport>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the resultant
two-dimensional array converted from the
java.sql.ResultSet specified by the
resultSet tag attribute.

R

resultSet Yes java.sql.ResultSet The result set that holds the
java.sql.ResultSet.

R

12 Personalization Server JSP Tag Library Reference

12-80 Guide to Building Personalized Applications

Example

<es:simpleReport id="report" resultSet="<%=resultSet%>">
<%

for (int i=0; i<report.length; i++)
{

for (int j=0; j<report[i].length; j++)
{

...
}

}
%>

 <es:transposeArray>

The <es:transposeArray> tag (Table 12-54) is used to transpose a standard
[row][column] array to a [column][row] array.

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:transposeArray id="byColumnRow" array="<%=byRowColumn%>"
type="String">

...
</es:transposeArray>

Table 12-54 <es:transposeArray>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the [c][r] array. R

type Yes String The type of variable in the [r][c] array, such
as String.

R

array Yes Object[][] The variable that holds the [r][c] array. R

Personalization Utilities

Guide to Building Personalized Applications 12-81

<es:uriContent>

The <es:uriContent> tag (Table 12-55) is used to pull content from a URL. It is best
used for grabbing text-heavy pages.

Example

<%@ taglib uri="es.tld" prefix="es" %>
.
.
.
<es:uriContent id="uriContent"
uri="http://www.beasys.com/index.html">
<%

out.print(uriContent);
%>
</es:uriContent>

Note: If you combine HTML pages with relative URL�s, you must fully qualify them
to the correct host in each URL, or else images (on other resources) may not
be retrieved properly by the browser.

Table 12-55 <es:uriContent>

Tag Attribute Required Type Description R/C

id Yes String The variable that holds the downloaded
content of the URI.

R

uri Yes String The fully qualified URI from which to get
the content.

R

12 Personalization Server JSP Tag Library Reference

12-82 Guide to Building Personalized Applications

WebLogic Utilities

The <wl:jsptaglib> tag library contains custom JSP extension tags which are
supplied as a part of the WebLogic Server platform.

To import the WebLogic Utilities JSP tags, use the following code:
<%@ taglib uri="weblogic.tld" prefix="wl" %>

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

Note: See the Javadoc for further descriptions of the wl tags.

<wl:process>

The <wl:process> tag (Table 12-56) is used for query attribute-based flow control.
By using a combination of the four attributes, you can selectively execute the
statements between the <wl:process> and </wl:process> tags.

Statements between the <wl:process> tags will be executed according to the matrix
below:

Table 12-56 <wl:process>

Tag Attribute Required Type Description R/C

name No String The name of a query attribute. R

notName No String The name of a query attribute. R

value No String The value of a query attribute. R

notValue No String The value of a query attribute. R

WebLogic Utilities

Guide to Building Personalized Applications 12-83

Example

<%@ taglib uri="weblogic.tld" prefix="wl" %>
.
.
.
<wl:process name="lastBookRead" value="A Man in Full">
<!-- This section of code will be executed

if lastBookRead exists and the value of lastBookRead is
"A Man in Full" -->

</wl:process>

Value notValue Neither "value" nor
"notValue"

name Named attribute
is equal to the
value.

Named attribute does not
equal the value.

Name attribute�s value is not
null.

not Name notName attribute�s value is
null.

12 Personalization Server JSP Tag Library Reference

12-84 Guide to Building Personalized Applications

<wl:repeat>

The <wl:repeat> tag (Table 12-57) is used to iterate over a variety of Java objects,
as specified in the set attribute.

<wl:cache>

The <wl:cache> tag specifies that its contents do not necessarily need to be updated
every time it is displayed.

Table 12-57 <wl:repeat>

Tag Attribute Required Type Description R/C

set No Object The set of objects that includes:
� Enumerations
� Iterators
� Collections
� Arrays
� Vectors
� Result Sets
� Result Set MetaData
� Hashtable keys

R

count No Int Iterate over first "count" entries in the set. R

id No String Variable to contain current object being
iterated over.

C

type No String Type of object that results from iterating
over the set you passed in. Defaults to
Object. This type must be fully qualified.

C

WebLogic Utilities

Guide to Building Personalized Applications 12-85

Table 12-58 <wl:cache>

Tag Attribute Required Type Description R/C

timeout No Integer Controls the time-to-live of the data, or how
often the data must be updated independent
of all other controls. This value is in seconds.

R

scope No String Controls the time-to-live of the data, or how
often the data must be updated independent
of all other controls. This value is in seconds

C

name No String Uniquely identifies this cache. If you do not
specify a name a random name will be
generated.

C

size No Integer The maximum number of entries that can be
in the cache. It defaults to an unlimited
cache. It is only relevant for when there is an
associated key.

R

vars No String In addition to caching the transformed output
of the cache, you can also cache calculated
values within the block. These variables are
specified exactly the same way as the cache
keys. This type of caching is called Input
caching.

C

key No String Specifies a comma separated list of values
accessible from the current page that the data
depends on. These values act as additional
keys into the cache.

C

async No String If the async parameter is set to true, the
cache will be updated asynchronously, if
possible. The user that initiates the cache hit
sees the old data.

C

12 Personalization Server JSP Tag Library Reference

12-86 Guide to Building Personalized Applications

Guide to Building Personalized Applications 1

Index

A
AD_BUCKET Database Table 11-8
AD_COUNT Database Table 11-8
adding

group attribute 7-48
user to group 7-29

administration tool
support 10-12

adviselet
mapping an Advise request 2-14

Advisor
architecture 2-3
description 2-2
document content 2-3
functionality 1-3
JSP tags

creating personalized applications
2-9

reference 12-31
using 2-4

mapping an Advise request to an advislet
2-14

overview 1-3
providing information about user

classifications 2-3
using Advisor session bean 2-4

Advisor session bean 2-13
classifying users 2-15
creating personalized applications 2-13
matching content 2-17
selecting content 2-16

anonymous user profile 7-23
application

creating 2-13
setting parameters 5-7

Application Initialization Property Sets 5-5
ApplicationInitialization Property Sets 6-4
associating

user with group 7-2
attribute

adding for group 7-48
deleting for user 7-47
registering for group 7-46
unregistering for group 7-48

authenticating user 7-2

B
BulkLoader 8-21

C
character encoding 10-6

default settings 10-7
diplaying more than one charset per page

10-7
charset

displaying more than one on a page 10-7
multiple 10-7
parameters 10-7

classifier rule
introduction 3-5

classifying user

Guide to Building Personalized Applications 2

with Advisor session bean 2-15
with JSP tag 2-10

<cm:getProperty>
description 1-5
reference 12-6

<cm:printDoc>
description 1-5
reference 12-9

<cm:printProperty>
description 1-5
reference 12-11

<cm:selectById>
description 1-5
reference 12-16

<cm:select>
description 1-5
reference 12-13

commerce.util package 5-16
CommercePropertiesHelper utility 5-15
comparison operators in query 8-20
component, external 1-10
ConfigurableEntity 6-6
configuring

Content Management system 8-10
DocumentManager EJB 8-12
DocumentSchema EJB 8-11

connection pool
example 8-15
setting up 8-13

constructed messages 10-13
examples 10-13

constructing query 8-7
contact information 1-xx
content

loading with BulkLoader 8-21
managing

(versus document management) 8-7
managing (property set) 6-4

Content Management
about 1-4
JSP tags descriptions 1-5

JSP tags reference 12-6
Content Management system

configuring 8-10
description 8-2

Content object 3-2
content selector rule 3-6
content, matching

with Advisor session bean 2-17
with JSP tag 2-12

content, selecting
with Advisor session bean 2-16

ContentHelper utility 5-15
creating

group 7-27
property set, procedure 6-9
property within property set 6-10
unified profile 7-38
user 7-33

customer support 1-xx

D
database

deleting group 7-52
deleting user record 7-53

database schema tables
Ads and Placeholders tables 11-6
common to WLCS and WLPS 11-6
defined constraints 11-38
Documentation Management tables 11-6
Rule Editor tables 11-6
User Management tables 11-6

debugging rulesheet 3-7
define 11-38
deleting

group 7-28
group from database 7-52
property 6-14
property set 6-13
record from database 7-53
unified profile 7-40

Guide to Building Personalized Applications 3

user 7-37
user attributes 7-47

DestinationDeterminer
described 5-5
Flow Manager value 5-2

DestinationHandler
described 5-5
Flow Manager value 5-3

Diagram, Entity-Relation 11-1
document content, querying 8-17
document servlet 8-8
documentation, where to find it- 1-xix
DocumentManager EJB, configuring 8-12
DocumentSchema EJB, configuring 8-11

E
editing

group property 7-32
property set 6-12
property within property set 6-13
unified profile 7-40
user property 7-35

Entity-Relation Diagram 11-1
<es:counter>

description 1-9
reference 12-75

<es:date>
description 1-9
reference 12-76

<es:forEachInArray>
description 1-9
reference 12-76

<es:isNull>
description 1-9
reference 12-77

<es:monitorSession>
description 1-9
reference 12-78

<es:notNull>
description 1-9

reference 12-79
<es:simpleReport>

description 1-9
reference 12-79

<es:transposeArray>
description 1-9
reference 12-80

<es:uriContent>
description 1-9
reference 12-81

ExpressionHelper utility 5-16
external component 1-10

Content Management engine 1-10
DBMS 1-10
LDAP 1-10
legacy database 1-10

F
Flow Manager

Application Init property set type 6-4
described 5-2
determination and handling values 5-2
diagram 5-3
how it works 5-3

<fm:getApplicationURI>
description 1-5
reference 12-19

<fm:getCachedAttribute>
description 1-5
reference 12-20

<fm:getSessionAttribute>
description 1-5
reference 12-21

<fm:removeCachedAttribute>
description 1-5
reference 12-22

<fm:removeSessionAttribute>
description 1-5
reference 12-22

<fm:setCachedAttribute>

Guide to Building Personalized Applications 4

description 1-5
reference 12-23

<fm:setSessionAttribute>
description 1-5
reference 12-24

Foundation Classes and Utilities
about 1-4
described 5-1

G
<i18n:getMessage>

description 1-6
reference 12-28

group
adding attribute 7-48
adding user 7-29
associating with user 7-2
creating 7-27
deleting 7-28
deleting from database 7-52
editing property 7-32
mapping 7-51
registering attribute 7-46
removing user 7-31
selecting 7-50
unregistering attribute 7-48

Group component 7-3
group profile property set 6-3
Group-User Management

JSP tags descriptions 1-7
JSP tags reference 12-53

H
HTTP handling 5-9
HTTP request property set 6-3
HTTP session property set 6-3

I
<i18n:getMessage>

JspMessageBundle 10-5
localizing JSP pages 10-4

<i18n:localize>
description 1-5
how it works 10-5
localizing JSP pages 10-4
reference 12-25

Internationalization
code example 10-2
framework 10-2
included framework tags 10-3
JSP tags descriptions 1-5
JSP tags reference 12-25
localizing your application 10-9
non-ASCII characters 8-19

J
JavaServer Page (JSP)

localizing 10-3
tags provided with Advisor 2-9

JSP extension tag library 10-2
JSP tag

Advisor, reference 12-31
Content Management 12-6
creating personalized application 2-9
included with WLPS 1-4
matching content 2-12
overview 1-4
Profile Management 12-44
security 12-71

JSP tags 8-10
JspBase utility 5-14
JspHelper utility 5-14
JspMessageBundle 10-5

L
LDAP, viewing settings 7-49

Guide to Building Personalized Applications 5

loading
content with BulkLoader 8-21

localizing
how the tag works 10-5
system messages 10-14
the BEA WLPS 10-11
your application steps 10-9
your JSP 10-3

M
managing

rule (details) 3-2
user 7-1
user profile 7-2

mapping groups 7-51
matching content

with Advisor session bean 2-17
with JSP tag 2-12

message, constructed 10-13

N
native types 1-11

boolean 1-11
comparators 1-11
datetime 1-11
float 1-11
integer 1-11
Java classes 1-11
text 1-11
UserDefined 1-11

Now object 3-2

O
object

Content 3-2
Now 3-2
Request 3-3, 5-9
Session 3-3, 5-12

User 3-2

P
P13NJspBase utility 5-15
package, commerce.util 5-16
Personalization Request object 5-9
Personalization Session object 5-12
Personalization Utilities

JSP tags descriptions 1-9
JSP tags reference 12-75

personalized application
creating 2-13
JSP tags 2-9

PLACEHOLDER _PREVIEW Database
Table 11-10

PLACEHOLDER Database Table 11-9
portal management overview 1-3
portal, setting parameters 5-7
printing product documentation 1-xix
profile

creating (unified) 7-38
deleting (unified) 7-40
editing (unified) 7-40
for user 7-4
property set 6-3
user (anonymous) 7-23

Profile Management 12-44
profile management 7-2
property

creating within property set 6-10
deleting 6-14
editing for group 7-32
editing for user 7-35
editing within property set 6-13
Request 5-10
Session 5-12

property set
and rulesheet 3-7
application initialization 6-4
content management 6-4

Guide to Building Personalized Applications 6

creating 5-6, 6-9
creating property 6-10
deleting 6-13
DestinationDeterminer 5-5
DestinationHandler 5-5
editing 6-12
editing property 6-13
HTTP request 6-3
HTTP session 6-3
overview 6-2
usage 5-5
user and group profile 6-3

Property Set Management tool 5-5
Property Sets

JSP tags descriptions 1-6
JSP tags reference 12-42

property value, retrieving 6-6
<ps:getPropertyNames>

description 1-6
reference 12-42

<ps:getPropertySetNames>
description 1-6
reference 12-43

<pz:contentQuery>
creating personalized applications 2-10
description 1-6
reference 12-31
selecting content 2-11

<pz:contentSelector>
creating personalized applications 2-10
description 1-6
matching content 2-12
matching content to users 2-12
Personalization Request object 5-10
reference 12-34

<pz:div>
classifying users 2-10
creating personalized applications 2-9
description 1-6
Personalization Request object 5-10
reference 12-39

Q
query

comparison operators 8-20
constructing 8-7
structuring 8-18

querying
document content 8-17

R
realm

mapping group 7-51
selecting group 7-50
WebLogic 7-20

record, deleting from database 7-53
registering group attribute 7-46
removing

user from group 7-31
Repository 5-8
repository directories

about 10-5
Request

object 5-9
property 5-10

request
property set 6-3

Request object 3-3
Request Property Set

associated request methods 5-11
described 5-10
request property names 5-11

resouce bundles
localizing system messages 10-14
used in WLPS server tools 10-14

retrieving
property value 6-6

rule
classifier 3-5
content selector 3-6

Rules Management
about 1-4

Guide to Building Personalized Applications 7

component 3-2
RULESET Database Table 11-26
rulesheet

and property set 3-7
debugging 3-7
description 3-4

S
Security

JSP tags descriptions 1-8
JSP tags reference 12-71

selecting content
with Advisor session bean 2-16
with JSP tag 2-11
with Personalization Advisor Session

Bean 2-11
selecting group 7-50
servlet, document 8-8
Session

object 5-12
property 5-12

session
property set 6-3

session bean, Advisor
classifying user 2-15
creating personalized application 2-13
matching content 2-17
selecting content 2-16

Session object 3-3
Session Property Set 5-12
setting up

connection pool 8-13
Show Document servlet 8-17
SQL Scripts 11-34

Cloudscape 11-34
Oracle 11-35
SQL Serve 11-37

static text 10-13
examples 10-13

structuring query 8-18

support
for native types 1-11
technical 1-xx

T
tags, JSP 8-10
text, static 10-13
tool

User Management 7-27
ttl (time-to-live)

Flow Manager value 5-3
TypesHelper utility 5-16

U
<um:addGroupToGroup>

description 1-7
reference 12-53

<um:addUserToGroup>
description 1-7
reference 12-54

<um:changeGroupName>
description 1-7
reference 12-56

<um:createGroup>
description 1-7
reference 12-57

<um:createUser>
description 1-7
reference 12-58

<um:getChildGroupNames>
description 1-7
reference 12-60

<um:getChildGroups>
description 1-7
reference 12-60

<um:getGroupNamesForUser>
description 1-7
reference 12-61

<um:getParentGroupName>

Guide to Building Personalized Applications 8

description 1-7
reference 12-62

<um:getProfile>
description 1-6
reference 12-45

<um:getPropertyAsString>
description 1-6
reference 12-50

<um:getProperty>
description 1-6
reference 12-48

<um:getTopLevelGroups>
description 1-8
reference 12-63

<um:getUsernamesForGroup>
description 1-8
reference 12-66

<um:getUsernames>
reference 12-63

<um:login>
description 1-8
reference 12-72

<um:logout>
description 1-8
reference 12-73

<um:removeGroup>
description 1-8

<um:removeGroupFromGroup>
description 1-8
reference 12-68

<um:removeGroup>
reference 12-67

<um:removeProperty>
description 1-6
reference 12-51

<um:removeUser>
description 1-8

<um:removeUserFromGroup>
description 1-8
reference 12-70

<um:removeUser>

reference 12-69
<um:setPassword>

description 1-8
reference 12-73

<um:setProperty>
description 1-6
reference 12-52

unified profile
creating 7-38
deleting 7-40
editing 7-40

unregistering group attribute 7-48
user

adding to group 7-29
associating with group 7-2
authenticating 7-2
creating 7-33
deleting 7-37
deleting attributes 7-47
deleting record from database 7-53
editing property 7-35
profile 7-4
profile management 7-2
profile property set 6-3
profile, anonymous 7-23
removing from group 7-31

User component 7-3
User Management

Group-User Management tags 12-53
overview 1-3
Profile

JSP tags descriptions 1-6
Profile Management tags 12-44
Security tags 12-71

User Management system
overview 7-2

User Management tool 7-27
User object 3-2
user, classifying

with Advisor session bean 2-15
UserManager EJB 7-25

Guide to Building Personalized Applications 9

utility
CommercePropertiesHelper 5-15
ContentHelper 5-15
ExpressionHelper 5-16
JspBase 5-14
JspHelper 5-14
P13NJspBase 5-15
personalization 12-75
TypesHelper 5-16
WebLogic 12-82

V
viewing LDAP settings 7-49

W
WebLogic

realm 7-20
WebLogic Personalization Server (WLPS)

external components 1-10
localizing administration tools 10-11
native types supported 1-11
run-time architecture 1-2
schema 11-1
schema tables 11-6

WebLogic Utilities
JSP tags descriptions 1-9
JSP tags reference 12-82

WLCS_BOOKMARKS Database Table
11-10

WLCS_CATEGORIES Database Table
11-11

WLCS_COLUMN_INFORMATION
Database Table 11-11

WLCS_DOCUMENT Database Table 11-12
WLCS_DOCUMENT_METADATA

Database Table 11-13
WLCS_ENTITY_ID Database Table 11-14
WLCS_GROUP Database Table 11-15
WLCS_GROUP_HIERARCHY Database

Table 11-15
WLCS_GROUP_PERSONALIZATION

Database Table 11-16
WLCS_IS_ALIVE Database Table 11-17
WLCS_LDAP_CONFIG Database Table

11-18
WLCS_PROP_BOOLEAN Database Table

11-18
WLCS_PROP_DATETIME Database Table

11-19
WLCS_PROP_FLOAT Database Table

11-19
WLCS_PROP_ID Database Table 11-20
WLCS_PROP_INTEGER Database Table

11-21
WLCS_PROP_MD Database Table 11-21
WLCS_PROP_MD_BOOLEAN Database

Table 11-22
WLCS_PROP_MD_DATETIME Database

Table 11-23
WLCS_PROP_MD_FLOAT Database Table

11-23
WLCS_PROP_MD_INTEGER Database

Table 11-24
WLCS_PROP_MD_TEXT Database Table

11-24
WLCS_PROP_MD_USER_DEFINED

Database Table 11-25
WLCS_PROP_TEXT Database Table 11-25
WLCS_PROP_USER_DEFINED Database

Table 11-26
WLCS_RULESET_DEFINITION Database

Table 11-27
WLCS_SCHEMA Database Table 11-27
WLCS_SEQUENCER Database Table 11-28
WLCS_TODO Database Table 11-28
WLCS_UIDS Database Table 11-29
WLCS_UNIFIED_PROFILE_TYPE

Database Table 11-29
WLCS_USER Database Table 11-30
WLCS_USER_GROUP_CACHE Database

Guide to Building Personalized Applications 10

Table 11-31
WLCS_USER_GROUP_HIERARCHY

Database Table 11-31
WLCS_USER_PERSONALIZATION

Database Table 11-32
WLCS_UUP_EXAMPLE Database Table

11-33
<wl:process>

description 1-9
reference 12-82

<wl:repeat>
description 1-9
reference 12-84

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Personalization Development
	Personalization Server Run-Time Architecture
	Advisor
	Portal Management
	User Management
	Content Management
	Rules Management
	Foundation Classes and Utilities

	JSP Tags
	Integration of External Components
	Support for Native Types

	2 Creating Personalized Applications with the Advisor
	What Is the Advisor?
	The Advisor Delivers Content to a Personalized Application
	The Advisor Provides Information About User Classifications
	You Can Use the Advisor in One of Two Ways

	The WLPS Advisor Architecture
	Writing Custom Advislets and Registering Them Using the Advislet Registry
	Writing a Custom Advislet
	Understanding the Advislet Registry
	Registering a Single Advislet
	Advislet Chaining
	Registering a Compound Advislet

	Creating Personalized Applications with the Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Example

	Selecting Content with the <pz:contentQuery> JSP Tag
	Example

	Matching Content to Users with the <pz:contentSelector> JSP Tag
	Example

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Querying a Content Management System with the Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	3 Introducing the Rules Manager
	What Is the Rules Manager?
	Well-known Objects
	How the Rules Engine Works
	What Are Rule Sets?
	Classifier Rules
	The AND and OR operators

	Content Selector Rules
	Debugging Rule Sets
	What Is the Relationship Between Property Sets and Rules?
	Content Type and Content Selector Rules

	Configuring the Rules Framework
	The RulesManager Deployment Descriptor
	The rules-common.properties file
	Rules Framework Debugging
	Rule Set TTL
	Rules Engine Listeners
	Rules Engine Expression Caching Optimizations
	Rules Engine Error Handling and Reporting
	JSP Tag Properties
	Rules Manager Properties
	Expression Evaluation Settings

	4 Working with Content Selectors
	What Are Content Selectors?
	Using Content-Selector Tags and Associated JSP Tags
	Attributes of the <pz:contentSelector> Tag
	Identify the Content Selector Definition
	Identify the JNDI Home for the Content Management System
	Define the Array That Contains Query Results
	Create and Configure the Cache to Improve Performance

	Associated Tags That Support Content Selectors
	Common Uses of Content-Selector Tags and Associated Tags
	To Retrieve and Display Text-Type Documents
	To Retrieve and Display Image-Type Documents
	To Retrieve and Display a List of Documents
	To Access a Content-Selector Cache on a Different JSP

	How Content Selectors Select Documents

	5 Foundation Classes and Utilities
	Flow Manager
	Dynamic Flow Determination and Handling
	How the FlowManager Works

	Property Set Usage
	destinationdeterminer Property
	destinatationhandler Property
	ttl (time-to-live) Property
	Creating a New Property Set
	Set Parameters for Your Portal or Application

	Webflow
	Accessing Your Application via the Flow Manager

	Repository
	HTTP Handling
	Personalization Request Object
	Default Request Property Set

	Personalization Session Object
	Default Session Property Set

	Utilities
	JspHelper
	JspBase
	P13NJSPHelper
	P13NJspBase
	ContentHelper
	CommercePropertiesHelper

	Utilities in commerce.util Package
	ExpressionHelper
	TypesHelper

	6 Creating and Managing Property Sets
	Overview of Property Sets
	Property Value Retrieval via ConfigurableEntity
	Using the Property Set Management Tool
	Creating Property Sets
	Creating Properties Within a Property Set
	Setting Up the Property Default Value

	Editing Property Sets
	Editing Properties Within a Property Set
	Deleting Property Sets
	Deleting Properties

	7 Creating and Managing Users
	Overview of User Management
	Users and Groups
	Unified User Profiles
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4
	Setting Properties Explicitly or Implicitly

	Using WebLogic Realms
	Ensure Properties Are Set in the BEA WebLogic Personalization Server’s commerce.properties File
	Verify That the Realm Is Active
	Implementing a New Custom Realm

	Anonymous User Profiles
	Privacy Statement
	User Manager
	Using the User Management Tool
	Creating Groups
	Deleting Groups
	Adding Users to Groups
	Removing Users from Groups
	Editing Group Property Values
	Creating User
	Editing User Property Values
	Deleting Users
	Creating Unified Profile Types
	Editing Unified Profile Types
	Deleting Unified Profile Types

	Using the LDAP Realm
	Setting up LDAP in the WLS Administration Console
	Creating the LDAP Realm
	The General Tab
	The LDAP Tab
	The Users Tab
	The Groups Tab

	Specifying/Creating the Caching Realm
	Verifying the LDAP Properties in config.xml
	Example

	Startup WebLogic Commerce Server
	Registering User Attributes for Retrieval from LDAP
	Registering LDAP Properties for Use With Rules

	Unregistering User Attributes for Retrieval from LDAP
	Registering Group Attributes for Retrieval from LDAP
	Unregistering Group Attributes for Retrieval from LDAP
	Viewing LDAP Configuration Settings

	Using Other Realms
	Selecting Groups for Use in the WebLogic Personalization Server from the Realm
	Mapping Realm Groups to the WebLogic Personalization Server
	Deleting Groups from Your Database
	Deleting User Records That Do Not Exist in the Realm from the Personalization Database

	8 Creating and Managing Content
	What Is the Content Manager?
	Choosing a Content Engine
	Running Querys Against the Content Repository
	Methods for Retrieving and Displaying Documents
	Constructing Queries Using Java
	Differences Between Content Management and Document Management
	Using the Document Servlet
	Example 1: Usage in a JSP
	Example 2: Usage in a JSP

	JSP Tags

	Configuring the Content Manager
	Configuring the DocumentSchema EJB Deployment Descriptor
	Configuring the DocumentManager EJB Deployment Descriptor
	Setting Up Connection Pools
	Example Connection Pool Entry

	Configuring WebLogic Commerce Properties
	Using the Show Document Servlet
	Querying Document Content
	Structuring a Query
	Using Comparison Operators to Construct Queries
	Using the BulkLoader to Load File-based Content
	Command-Line Usage
	How the BulkLoader Finds Files
	How the BulkLoader Finds Metadata Properties
	Cleaning Up the Database
	Loading Internationalized Documents
	Generating Schema Files

	Using Content Management JSP Tags
	Content Cache
	readOnly Content Tag
	Object Interfaces

	9 Working with Ad Placeholders
	What Are Ad Placeholders, Ad Attributes, and Placeholder Tags?
	Ad Placeholders
	Types of Queries That Ad Placeholders Run
	Types of Documents That Ad Placeholders Display

	Ad Attributes in the Content Management System
	Ad Placeholder JSP Tags
	The <ad:adTarget> JSP Tag

	Resolving Ad Query Conflicts
	How Ad Placeholders Contain Multiple Queries
	How the Ad Conflict Resolver Chooses a Query
	How an Ad Placeholder Chooses from Ad Query Results

	Creating Ad Placeholder Tags
	To Create an Ad Placeholder Tag

	Supporting Additional MIME Types
	Add the New Type to the Deployment Descriptor
	Create and Compile a Java Class to Generate HTML
	Register the New Class in weblogiccommerce.properties

	How Placeholders Select and Display Ads

	10 Creating Localized Applications with the Internationalization Tags
	What Is the I18N Framework?
	Localizing Your JSP
	<i18n:getMessage>
	<i18n:localize>
	The JspMessageBundle
	How the Localization Tag Works

	Character Encoding
	Displaying More Than One Character Set on a Page
	Default Character Encodings

	Steps for Localizing Your Application
	Code Examples
	Using the JSP Internationalization Framework with JavaScript
	Using the JSP Internationalization Framework with Java Scriptlets

	Localizing the BEA WebLogic Personalization Server
	Static Text
	Constructed Messages
	Resource Bundles Used in the WebLogic Personalization Server Tools
	Localizing System Messages

	11 The WebLogic Personalization Server Database Schema
	The Entity-Relation Diagram
	List of Tables Comprising the WebLogic Personalization Server
	The Personalization Server Data Dictionary
	The AD_BUCKET Database Table
	The AD_COUNT Database Table
	The PLACEHOLDER Database Table
	The PLACEHOLDER _PREVIEW Database Table
	The WLCS_BOOKMARKS Database Table
	The WLCS_CATEGORIES Database Table
	The WLCS_COLUMN_INFORMATION Database Table
	The WLCS_DOCUMENT Database Table
	The WLCS_DOCUMENT_METADATA Database Table
	The WLCS_ENTITY_ID Database Table
	The WLCS_GROUP Database Table
	The WLCS_GROUP_HIERARCHY Database Table
	The WLCS_GROUP_PERSONALIZATION Database Table
	The WLCS_IS_ALIVE Database Table
	The WLCS_LDAP_CONFIG Database Table
	The WLCS_PROP_BOOLEAN Database Table
	The WLCS_PROP_DATETIME Database Table
	The WLCS_PROP_FLOAT Database Table
	The WLCS_PROP_ID Database Table
	The WLCS_PROP_INTEGER Database Table
	The WLCS_PROP_MD Database Table
	The WLCS_PROP_MD_BOOLEAN Database Table
	The WLCS_PROP_MD_DATETIME Database Table
	The WLCS_PROP_MD_FLOAT Database Table
	The WLCS_PROP_MD_INTEGER Database Table
	The WLCS_PROP_MD_TEXT Database Table
	The WLCS_PROP_MD_USER_DEFINED Database Table
	The WLCS_PROP_TEXT Database Table
	The WLCS_PROP_USER_DEFINED Database Table
	The RULESET Database Table
	The WLCS_RULESET_DEFINITION Database Table
	The WLCS_SCHEMA Database Table
	The WLCS_SEQUENCER Database Table
	The WLCS_TODO Database Table
	The WLCS_UIDS Database Table
	The WLCS_UNIFIED_PROFILE_TYPE Database Table
	The WLCS_USER Database Table
	The WLCS_USER_GROUP_CACHE Database Table
	The WLCS_USER_GROUP_HIERARCHY Database Table
	The WLCS_USER_PERSONALIZATION Database Table
	The WLCS_UUP_EXAMPLE Database Table

	The SQL Scripts Used to Create the Database
	Cloudscape
	Oracle
	SQL Server

	Defined Constraints

	12 Personalization Server JSP Tag Library Reference
	Ads
	<ad:adTarget>

	Content Management
	<cm:getProperty>
	Example

	<cm:printDoc>
	Example

	<cm:printProperty>
	Example

	<cm:select>
	Example

	<cm:selectById>
	Example

	Flow Manager
	<fm:getApplicationURI>
	Example

	<fm:getCachedAttribute>
	Example

	<fm:getSessionAttribute>
	Example

	<fm:removeCachedAttribute>
	Example

	<fm:removeSessionAttribute>
	Example

	<fm:setCachedAttribute>
	Example

	<fm:setSessionAttribute>
	Example

	Internationalization
	<i18n:localize>
	Example

	<i18n:getMessage>
	Example

	Personalization Tags
	<pz:contentQuery>
	Example

	<pz:contentSelector>
	Specify a Value for contentHome
	Example

	<pz:div>
	Example

	Placeholders
	<ph:placeholder>

	Property Sets
	<ps:getPropertyNames>
	Example

	<ps:getPropertySetNames>

	User Management: Profile Management Tags
	<um:getProfile>
	Example 1
	Example 2
	Example 3

	<um:getProperty>
	Example 1
	Example 2

	<um:getPropertyAsString>
	Example

	<um:removeProperty>
	Example

	<um:setProperty>
	Example

	User Management: Group-User Management Tags
	<um:addGroupToGroup>
	Example

	<um:addUserToGroup>
	Example

	<um:changeGroupName>
	Example

	<um:createGroup>
	Example

	<um:createUser>
	Example

	<um:getChildGroupNames>
	<um:getChildGroups>
	Example

	<um:getGroupNamesForUser>
	Example

	<um:getParentGroupName>
	Example

	<um:getTopLevelGroups>
	Example

	<um:getUsernames>
	Example

	<um:getUsernamesForGroup>
	Example

	<um:removeGroup>
	Example

	<um:removeGroupFromGroup>
	<um:removeUser>
	Example

	<um:removeUserFromGroup>

	User Management: Security Tags
	<um:login>
	<um:logout>
	<um:setPassword>

	Personalization Utilities
	<es:counter>
	Example

	<es:date>
	Example

	<es:forEachInArray>
	Example

	<es:isNull>
	Example

	<es:monitorSession>
	Example

	<es:notNull>
	Example

	<es:simpleReport>
	Example

	<es:transposeArray>
	Example

	<es:uriContent>
	Example

	WebLogic Utilities
	<wl:process>
	Example

	<wl:repeat>
	<wl:cache>
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

