
B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 5
 D o c u m e n t E d i t i o n 3 . 5 . 1

 J u n e 2 0 0 1

Migration Guide

BEA WebLogic Personalization Server
BEA WEbLogic Commerce Server

B E A W e b L o g i c C o m e r c e S e r v e r 3 . 5

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA Campaign Manager for WebLogic, E-Business
Control Center, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, and
BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

WebLogic Commerce Server Migration Guide

Document Edition Date Software Version

3.5.1 June 2001 BEA WebLogic Commerce Server 3.5
BEA Personalization Server 3.5

Migration Guide iii

Contents

1. Migrating WebLogic Commerce Server to Version 3.5
Support for WebLogic Server 6.0 ... 1-2

Changes to the WebLogic Commerce Server Directory Structure 1-2

All Pages Must Be in a Web Application .. 1-5

Introducing the E-Business Control Center... 1-5

Changes to the Rules Editor in Release 3.5... 1-6

Changes to the JSP Tag Libraries.. 1-10

Database Schema Migration Information.. 1-11

2. Migrating WebLogic Commerce Server to Version 3.2
New Java 2 SDK for Enhanced Performance.. 2-2

New Third-Party Integrations.. 2-2

International Tax Support from TAXWARE... 2-2

E-Marketing Analysis Using Broadbase .. 2-3

Content Management with Interwoven Content Express........................... 2-3

New Webflow and Pipeline Editor.. 2-3

Changes to the JSP Tag Libraries.. 2-3

Database Schema Migration Information.. 2-4

3. Migrating WebLogic Personalization Server to Version 3.1
Navigating with Flow Manager... 3-2

Deprecated Service Managers .. 3-2

Hot Deployment ... 3-3

Dynamic Flow Determination and Handling ... 3-3

Backward Compatibility ... 3-4

Property Set Usage ... 3-4

Go With the Flow: Migrating to the Flow Manager 3-5

iv Migration Guide

Accessing Your Application via the Flow Manager 3-7

Changes to the Personalization Advisor .. 3-8

JSP Tags Ported to Use the New Advisor .. 3-8

Deprecated Personalization Advisor Classes ... 3-9

Changes in Advisor APIs ... 3-9

Terminology Change: Agents Changed to Advislets 3-10

Changes to the Rules Editor in Release 3.1... 3-11

Relationship Between Rules and Property Sets.. 3-11

The Use of AND or OR to Connect Expressions 3-11

Change the Word ‘Rule Sheet’ to ‘Rule Set’ ... 3-12

Changes to Content Management.. 3-12

New Features in <cm:select> and <cm:selectById> Tags 3-12

Changes to EJB Deployment Descriptors .. 3-13

Document Schema EJB Deployment Descriptor 3-13

DocumentManager EJB Deployment Descriptor.............................. 3-14

Document EJB Deployment Descriptor (Deprecated) 3-14

Changes to Object Interfaces.. 3-15

Changes to the BulkLoader .. 3-16

Changes to the JSP Tag Library .. 3-16

Database Schema Migration Information.. 3-17

Updated User Management Schema Table .. 3-17

4. Upgrading Database Schemas from Prior Releases
Upgrading WebLogic Personalization Server Database Schemas from

2.0.1 to 3.1.1 ... 4-2

Upgrading WebLogic Personalization Server Database Schemas from
2.0.1 to 3.2 .. 4-4

Upgrading Database Schemas
from 3.1.1 to 3.2 ... 4-5

Upgrade the WebLogic Personalization Server Schema............................ 4-5

Step 1: Determine if Data Exceeds New Column Lengths and
Modify When Necessary.. 4-7

Step 2: Upgrade the Database Schema.. 4-8

Upgrade the WebLogic Commerce Server Schema................................... 4-9

Step 1: Determine if Data Exceeds New Column Lengths and
Modify When Necessary.. 4-10

Migration Guide v

Step 2: Upgrade the Database Schema ... 4-11

Verify the Upgrade... 4-12

To Start the Server .. 4-12

Remove Temporary Tables .. 4-13

Upgrading Database Schemas from 3.2 to 3.5 .. 4-14

Make a Backup... 4-14

Validate Data.. 4-15

Upgrade Current Tables to New Schema... 4-16

Drop Any Backup Tables ... 4-16

Add New Tables to Bring the Schema Current.. 4-17

Verify the Upgrade... 4-17

To Start the Server .. 4-18

5. Changes to WebLogic Personalization Server JSP Tag Library
 JSP Tag Changes in Version 3.5 .. 5-2

Removed Tags.. 5-3

<es:preparedStatement>.. 5-3

New Ads and Placeholder Tag ... 5-3

<ad:adTarget> ... 5-3

<ph:placeholder> .. 5-3

New Event Tracking Tags.. 5-3

<tr:clickContentEvent> Content Tag .. 5-4

<tr:displayContentEvent> Content Tag .. 5-4

<trp:clickProductEvent> Product Tag .. 5-4

<trp:displayProductEvent> Product Tag... 5-4

 <trc:clickCampaignEvent> Campaign Tag.. 5-4

New Webflow Tag ... 5-4

<webflow:setValidated Value> .. 5-5

New E-Business Tag .. 5-5

<eb:smnav>... 5-5

Changes to Personalization Tags.. 5-5

<pz:div> and <pz:contentSelector> .. 5-5

JSP Tag Changes in Version 3.2 ... 5-6

Changes to Content Management Tags in Release 3.2 5-7

<cm:getProperty> ... 5-7

vi Migration Guide

<cm:printDoc> .. 5-7

Changes to Utility Tags in Release 3.2 .. 5-7

<es:preparedStatement> .. 5-7

New Flow Manager Tags in Release 3.2 ... 5-7

<fm:getApplicationURI> .. 5-7

<fm:getCachedAttribute> ... 5-8

<fm:setCachedAttribute> .. 5-8

<fm:removeCachedAttribute> .. 5-8

<fm:getSessionAttribute> ... 5-8

<fm:setSessionAttribute>.. 5-8

<fm:removeSessionAttribute> .. 5-8

New JSP Tags Introduced in Release 3.1 .. 5-8

New Property Set Management Tags in Release 3.1 5-9

<ps:getPropertyNames> .. 5-9

<ps:getPropertySetNames>... 5-9

New Internationalization Tags in Release 3.1 .. 5-9

<i18n:localize>.. 5-10

<i18n:getMessage> ... 5-10

New WebLogic Utility Tag in Release 3.1 .. 5-10

<wl:repeat> ... 5-10

Changes to the JSP Tag Library in Release 3.1... 5-11

New JSP 1.1 Naming Conventions .. 5-11

Changes to Tag Attributes .. 5-12

The Content Management Tags Have Been Changed as Follows: ... 5-12

The User Management Tags Have Been Changed as Follows: 5-12

The WebLogic Personalization Server Utility tags Have Been
Changed as Follows: .. 5-12

Tag Attributes Require Camel Casing .. 5-13

New Library Descriptors ... 5-13

Global Changes .. 5-14

Tag Migration Roadmap... 5-15

Additional Notes About JSP Tags.. 5-22

Note 1: <pz:> Tags.. 5-22

Note 2: <es:condition>.. 5-23

Note 3: <es:counter> ... 5-23

Migration Guide vii

Note 4: <es:preparedStatement>... 5-23

Note 5: <es:usertransaction>... 5-24

Index

viii Migration Guide

Migration Guide 1-1

CHAPTER

1 Migrating WebLogic
Commerce Server to
Version 3.5

The WebLogic Personalization Server is bundled with the WebLogic Commerce
Server. This document uses “WebLogic Commerce Server” to refer to both servers.

Be sure to read the “What’s New” page on the e-docs.bea.com Web site for a preview
of the new features in this release:
http://e-docs.bea.com/wlcs/docs35/interm/whatsnew.htm

This chapter addresses the changes to WebLogic Commerce Server and WebLogic
Personalization Server since the 3.2 release.

This topic includes the following sections:

n Support for WebLogic Server 6.0

l Changes to the WebLogic Commerce Server Directory Structure

l All Pages Must Be in a Web Application

n Introducing the E-Business Control Center

n Changes to the Rules Editor in Release 3.5

n Changes to the JSP Tag Libraries

n Database Schema Migration Information

1 Migrating WebLogic Commerce Server to Version 3.5

1-2 Migration Guide

Support for WebLogic Server 6.0

The Campaign Manager for WebLogic, WebLogic Commerce Server, and WebLogic
Personalization Server products now support WebLogic Server 6.0. The support for
this new version of WebLogic Server includes a WebLogic Server domain, which
contains the WebLogic Server Administration Console and the sample Web
applications. A utility to migrate properties from the weblogic.commerce file to the
new WebLogic Server Administration Console is provided, and the sample Web
applications are reorganized and deployed in a single Enterprise Application.

Changes to the WebLogic Commerce Server Directory
Structure

New features and improvements to WebLogic Server 6.0 have caused changes in the
WebLogic Commerce Server 3.5 directory structure. This section shows the old and
new directory structures and points out key changes. Be sure to examine the
installation directory once you have installed WebLogic Commerce Server, to become
familiar with the changes.

Support for WebLogic Server 6.0

Migration Guide 1-3

Figure 1-1 WebLogic Commerce Server 3.2 Sample Directory Structure

1 Migrating WebLogic Commerce Server to Version 3.5

1-4 Migration Guide

Figure 1-2 WebLogic Commerce Server 3.5 Sample Directory Structure

Key changes in the 3.5 WebLogic Commerce Server include the following:

n The wlcsDomain directory is the domain directory; the
wlcsDomain\applications directory contains all other files and directories
listed here.

n The wlcsApp directory contains the WebLogic Commerce Server application,
including EJB JAR files.

n The wlcsApp\META-INF directory contains the application.xml file, the
J2EE application deployment descriptor.

n The WEB-INF directory in each Web application directory contains deployment
descriptors.

Introducing the E-Business Control Center

Migration Guide 1-5

n The wlcsApp\defaultWebApp directory replaces public_html as the default
Web application directory. You can specify one application as the default.

n Additional Web applications are stored at the same level as
wlcsApp\defaultWebApp. The tools and wlcs folders are shown as examples.

For information about migrating the WebLogic Server, refer to the documentation for
WebLogic Server 6.0.

All Pages Must Be in a Web Application

All Web-based pages are now required to be deployed as a Web application.

The direction of the product is to deploy one portal per Web application and use the
application deployment features enabled through the WLS console, instead of the hot
deployment portal model of the previous release. When migrating existing portals built
on previous releases of the product, convert your non-Web applications to Web
applications. This will result in one portal per Web application. You can use the
out-of-the-box exampleportal as a model.

WebLogic Server supplies a default Web application for simple pages that do not
require deployment descriptor properties.

For more information, see the section “Deploying New Portals as Web Applications”
in the Guide to Creating Portals and Portlets.

Introducing the E-Business Control Center

This release introduces the E-Business Control Center, a GUI tool designed to simplify
the way business professionals manage their online customer relationships. This 100%
Java client is a powerful desktop application that is easy to use and makes sense to
business users by interacting with them in their own terms.

The E-Business Control Center replaces the Rules Manager as the mechanism for
creating and editing rules. Using the tool, business users can now create their own
customer segments (classification rules) and content selectors (content selector rules).

1 Migrating WebLogic Commerce Server to Version 3.5

1-6 Migration Guide

Specialized versions of the E-Business Control Center are packaged with the
WebLogic Commerce Server and the WebLogic Personalization Server products. Or,
you may choose to license the new Campaign Manager for WebLogic product, which
includes the most comprehensive version of the E-Business Control Center currently
available.

Changes to the Rules Editor in Release 3.5

The new Personalization Rules Manager allows business users to fine-tune
user-system interactions using plain-English commands within easy-to-use rule
editing templates. The Personalization Rules Manager drives BEA’s embedded rules
engine and eliminates the need to master complex Boolean logic to create and edit
rules.

Note: This section assumes you are migrating from Release 3.2. If you are migrating
from Release 3.1 or earlier, begin with the section “Changes to the Rules
Editor in Release 3.1” in Chapter 3, “Migrating WebLogic Personalization
Server to Version 3.1.”

The XML format (expressed in XMLSchema) used to describe rule sets for the 3.2
release of WebLogic Commerce Server has been replaced by a more manageable XML
format designed to grow with future needs. A new tool, the E-Business Control Center,
has also been introduced to allow you to more easily enter rules. This change enables
you to specify a greater range of rules.

To use your existing Web Logic Commerce Server 3.2 rules with the new format,
follow the steps in this section.

Note: This procedure provides you with files listing all your rules, which you can
print and use as a reference to reenter them. As an alternative to steps 1-6, you
can view your rules from within the Rules Management JSP pages in
WebLogic Commerce Server 3.2, and use that display as the template for the
conversion. Then go to step 7 and follow the directions there.

1. Ensure that the correct systems are installed.

l WebLogic Server 5.1 and the required service pack. See
http://edocs.bea.com/wlcs/docs32/relnotes/relnotes.htm#platforms.

Changes to the Rules Editor in Release 3.5

Migration Guide 1-7

l WebLogic Commerce Server 3.2.

l WebLogic Server 6.0 and required service pack and rolling patch. See
http://edocs.bea.com/wlcs/docs35/install/platforms.htm.

l Campaign Manager for WebLogic, WebLogic Commerce Server, or
WebLogic Personalization Server 3.5.

l E-Business Control Center, which contains the correct rules parser.

2. Install WebLogic Commerce Server 3.5. WLCS must be both installed and
running. Installing WebLogic Commerce Server 3.5 provides the files used
during the migration; verify that the files are there before you continue. The paths
to the files on your computer might be slightly different, but the filenames must
be the same.

<wlcs3.5 install dir>/bin/win/dumprules32.bat (Windows only)

<wlcs3.5 install dir>/bin/unix/dumprules32.sh (UNIX only)

<wlcs3.5 install dir>/classes/rules-tools-common.properties

<wlcs3.5 install
dir>/classes/rules-tools-query-32.properties

<wlcs3.5 install dir>/classes/rules-tools-dump.properties

<wlcs3.5 install
dir>/classes/com/bea/commerce/platform/rules
/tools/RuleSetProcessorHarness.class

<wlcs3.5 install dir>/classes/<supporting program classes>

3. Edit the files shown in Table 1-1 to let the migration script know where your
WLS installation, existing rules, and other relevant files are located.

Table 1-1 Files and Corresponding Variables for Rules Migration

File Variable Variable Value

dumprules32.bat or
dumprules32.bat

WLS_51_HOME The root directory of an existing WLS
5.1 installation, such as
/opt/bea/wlserver5.1

WLCS_35_TOOLS_
LIB_EXT

The <root>/lib/ext directory
of the Campaign Manager tool
installation, such as
/opt/bea/WebLogicCommerce
Server3.5/tools/lib/ext

1 Migrating WebLogic Commerce Server to Version 3.5

1-8 Migration Guide

4. Use the dumprules32 script to create files containing lists of your rules. This
script creates two files for each of your rule sets in your existing database.

You will use one of them as a reference to reenter the rules in the new format.

a. Determine a location (directory) on the local filesystem to write out 3.2 rule
sets, such as C:\rules32.

b. Manually create that directory. For example, in Windows on the command line
you would type C:\> mkdir rules32.

c. Run the dumprule32 script from within the home directory of the script, and
specify the directory you created in the previous step. For example, in Windows
you would run the following command from the command line:

C:\opt\bea\WebLogicCommerceServer3.5\bin\win32> dumprules32.bat C:\rules32

Two files are written for each rule set:

<rule set name>.ruleset—contains the rule sets in XML.

<rule set name>-txt.ruleset—contains the rule sets in a more readable
text format.

You will use the -txt.ruleset file for each rule set to reenter your rules.

rules-tools-query-32.
properties

t3-host The name of a running WLCS 3.2
installation host, in the following
format:

Syntax:
http://<t3-host>:<t3-port>

Example:
http://localhost:7501

t3-port The name of a running WLCS 3.2
installation port, in the following
format:

Syntax:
http://<t3-host>:<t3-port>

Example:
http://localhost:7501

Table 1-1 Files and Corresponding Variables for Rules Migration (Continued)

File Variable Variable Value

Changes to the Rules Editor in Release 3.5

Migration Guide 1-9

5. Go to the directory you specified when you ran the script. Print each
-txt.ruleset file that was created, or open them in a text application, so that
they are ready for you to use them.

6. Review the printed file so that you can easily determine what each rule states
from the printout. The following is a partial example of a -txt.ruleset file.

-- Begin File AcmeRules-txt.ruleset --
(RuleSet)
Name: SampleRuleSet
Description: Demonstrating And/or Logic in Rules Conversion
(Rule)

Name: SampleRule1
Type: classifier

(When)
REQUEST.DefaultRequestPropertySet.Authorization Scheme eq 1

(Or)
REQUEST.DefaultRequestPropertySet.Character Encoding eq 2
REQUEST.DefaultRequestPropertySet.Character Encoding gt 5

(Then)
(New)

ClassName: Classification
(Arguments)
(Constant)
Type: string
Value: RuleDemonstrated

You need to pay particular attention to the lines under the (When) heading in order to
recreate your rules correctly, if there are lines under (When) as well as (Or). Both the
line after the (When) and the first line after the (Or) must be true for the logic under
(Then) to be run.

Note: The rule set printout makes it seems as though either the (When) item or the
first (Or) item could be true to fulfill the condition; however, that is not the
case. As stated previously, both must be true.

For example, in the sample rule set given, the string “RuleDemonstrated” will be
displayed in either of the following situations:

If DefaultRequestPropertySet.Authorization Scheme equals 1 and
REQUEST.DefaultRequestPropertySet.Character Encoding equals 2

or

If DefaultRequestPropertySet.Authorization Scheme equals 1 and
REQUEST.DefaultRequestPropertySet.Character Encoding is greater than 5

1 Migrating WebLogic Commerce Server to Version 3.5

1-10 Migration Guide

The following would not fulfill the requirements for the condition (Then):

If DefaultRequestPropertySet.Authorization Scheme equals 1 or
REQUEST.DefaultRequestPropertySet.Character Encoding is greater than 5

7. Enter the new rules in the E-Business Control Center. For information about
using the E-Business Control Center, see Using the BEA E-Business Control
Center.

Note: Rules are created in the E-Business Control Center. This GUI tool is designed
to allow Business Analysts to develop their own content selector rules and
classifier rules. Because the Business Analysts are not exposed to the concept
of rules, you will see content selector rules called simply “content selectors”
and classifier rules referred to as “customer segments.”

For more information about rules, see the following chapters in the Guide to
Building Personalized Applications:
Creating Personalized Applications with the Advisor
Foundation Classes and Utilities
Introducing the Rules Manager
Working with Content Selectors

Changes to the JSP Tag Libraries

The following changes were made to JSP tag libraries in Release 3.5.

n Removed Tags

<es:preparedStatement>

n New Ads and Placeholder Tags

<ad:adTarget>

<ph:placeholder>

Database Schema Migration Information

Migration Guide 1-11

n New Event Tracking Tags

<tr:clickContentEvent> Content Tag

<tr:displayContentEvent> Content Tag

<trp:clickProductEvent> Product Tag

<trp:displayProductEvent> Product Tag

<trc:clickCampaignEvent> Campaign Tag

n New Webflow Tag

<webflow:setValidated Value>

n New E-Business Tag

<eb:smnav>

n Changes to Personalization Tags

<pz:div>

<pz:contentSelector>

For more information about these tags, see the section “JSP Tag Changes in Version
3.5,” in Chapter 5, “Changes to WebLogic Personalization Server JSP Tag Library.”

Database Schema Migration Information

Release 3.5 of WebLogic Commerce Server and WebLogic Personalization Server
provides enhancements and changes that require you to update the schemas and
migrate the data.

Note: If you are using the Oracle 8.0.5 or 8.1.5 database, you must upgrade to
Oracle 8.1.6 or greater before migrating to Release 3.5 of WebLogic
Commerce Server and WebLogic Personalization Server. Release 3.5 uses
CLOBs and BLOBs instead of LONG RAW characters. Oracle 8.0.5 and 8.1.5
do not support CLOBs and BLOBs.

For detailed migration information, refer to Chapter 4, “Upgrading Database Schemas
from Prior Releases.” The information specific to the 3.5 release can be found in the
section “Upgrading Database Schemas from 3.2 to 3.5.”

1 Migrating WebLogic Commerce Server to Version 3.5

1-12 Migration Guide

Note: If you are starting at a release earlier than Release 3.2 of WebLogic Commerce
Server and WebLogic Personalization Server, begin at the appropriate section
in that chapter.

Information about migrating specific databases is also provided in readme files.
Navigate to the readme file for your specific database using this directory path:

../db/<vendor>/<version>/migration/v320/readme.text

where <vendor> is the name of the database (for example, Oracle) and <version> is
the release number for that database. Figure 1-3 shows the directory structure on a
Windows system.

Figure 1-3 Navigate to the Database readme Files

Migration Guide 2-1

CHAPTER

2 Migrating WebLogic
Commerce Server to
Version 3.2

This chapter describes the changes between WebLogic Commerce Server and
WebLogic Personalization Server Release 3.2 and the previous release, 3.1.1.

The WebLogic Personalization Server is bundled with the WebLogic Commerce
Server. This document uses “WebLogic Commerce Server” to refer to both servers.

This topic includes the following sections:

n New Java 2 SDK for Enhanced Performance

n New Third-Party Integrations

l International Tax Support from TAXWARE

l E-Marketing Analysis Using Broadbase

l Content Management with Interwoven Content Express

n New Webflow and Pipeline Editor

n Changes to the JSP Tag Libraries

n Database Schema Migration Information

2 Migrating WebLogic Commerce Server to Version 3.2

2-2 Migration Guide

New Java 2 SDK for Enhanced Performance

The BEA WebLogic Commerce Server and WebLogic Personalization Server now
require the Java 2 SDK with the HotSpot Server Virtual Machine. Using the Java 2
SDK with HotSpot may enhance performance for your production environment.

New Third-Party Integrations

BEA WebLogic Commerce is now integrated with the following third-party products:

n International Tax Support from TAXWARE

n E-Marketing Analysis Using Broadbase

n Content Management with Interwoven Content Express

International Tax Support from TAXWARE

The WORLDTAX System from TAXWARE International, Inc. is the most
comprehensive calculation system for international taxes available in the industry. The
WORLDTAX System calculates and reports Value Added Tax (VAT), Goods and
Services Tax (GST), sales tax, and consumption tax in many countries. BEA has tested
the countries of France, Germany, Italy, South Korea, Spain, and the United Kingdom
for accuracy with the WebLogic Commerce Server.

New Webflow and Pipeline Editor

Migration Guide 2-3

E-Marketing Analysis Using Broadbase

This release of the BEA WebLogic Commerce and Personalization Server provides
integration with Broadbase for customer analysis. The user profile, customer, and
order information can be extracted from the WebLogic Commerce and Personalization
Server database and used to enable E-Marketing analysis within Broadbase. Please
contact Broadbase Software, Inc. for more information.

Content Management with Interwoven Content Express

In addition to the existing limited-user version of Documentum 4i, this release includes
Interwoven Content Express, an entry-level content management tool. These content
management products allow developers to quickly create personalized content
applications, using software from either of the leading content management vendors.

New Webflow and Pipeline Editor

The BEA WebLogic Commerce Server now includes the Webflow and Pipeline
Editor, a JSP-based administration tool specifically designed to help you modify the
default webflow.properties and pipeline.properties configuration files. It
also provides you with validation tools that enable you to check the syntax of your
Webflow and verify whether the necessary components exist within the Webflow. By
modifying and validating your Webflow with the Webflow and Pipeline Editor, you
can eliminate errors that may otherwise be difficult to track.

Changes to the JSP Tag Libraries

The following changes were made to JSP tag libraries in Release 3.2.

n New Content Management tag

2 Migrating WebLogic Commerce Server to Version 3.2

2-4 Migration Guide

<cm:getProperty>

n Changes to Content Management tags

<cm:printDoc> has a new attribute, baseHref

n New tags to support the Flow Manager

<fm:getApplicationURI>

<fm:getCachedAttribute>

<fm:setCachedAttribute>

<fm:removeCachedAttribute>

<fm:getSessionAttribute>

<fm:setSessionAttribute>

<fm:removeSessionAttribute>

n Changes to Utility tags

<es:preparedStatement> has a new attribute, transactionIsolationLevel

For more information about these tags, see the section “JSP Tag Changes in Version
3.2,” in Chapter 5, “Changes to WebLogic Personalization Server JSP Tag Library.”

Database Schema Migration Information

Release 3.2 of WebLogic Commerce Server and WebLogic Personalization Server
introduces scripts that you can use to create Oracle tablespaces and user accounts for
the WebLogic Commerce Server and WebLogic Personalization Server database
schema. It also introduces scripts that you can use to export the Oracle database objects
from a source environment and import them into a destination environment. With these
export/import scripts, you can move data from a staging environment into your
production environment without having to recreate all your content.

Release 3.2 introduces schema changes and restrictions for the length of data allowed
in various columns. To upgrade databases from Release 3.1.1 to Release 3.2, complete
the following tasks:

n Upgrade the WebLogic Personalization Server Schema

Database Schema Migration Information

Migration Guide 2-5

n Upgrade the WebLogic Commerce Server Schema (only if you use WebLogic
Commerce Server)

n Verify the Upgrade

n Remove Temporary Tables

For detailed migration information, refer to Chapter 4, “Upgrading Database Schemas
from Prior Releases.” The information specific to the 3.2 release can be found in the
section “Upgrading Database Schemas from 3.1.1 to 3.2.”

Note: If you are starting at a release earlier than Release 3.1.1 of WebLogic
Commerce Server and WebLogic Personalization Server, begin at the
appropriate section in that chapter. Database migration must be done
sequentially. You cannot skip a release.

Information about migrating specific databases is also provided in readme files.
Navigate to the readme file for your specific database using this directory path:

../db/<vendor>/<version>/migration/v320/readme.text

where <vendor> is the name of the database (for example, Oracle) and <version> is
the release number for that database.

2 Migrating WebLogic Commerce Server to Version 3.2

2-6 Migration Guide

Migration Guide 3-1

3 Migrating WebLogic
Personalization Server
to Version 3.1

This chapter describes the changes between WebLogic Personalization Server 2.0.1
and WebLogic Personalization Server 3.1. It includes specific information for
migrating existing code to WebLogic Personalization Server 3.1.

Note: Both the WebLogic Commerce Server and WebLogic Personalization Server
functionality now reside in a unified Java package hierarchy located at
com.beasys.commerce.

This section includes the following topics:

n Navigating with Flow Manager

n Changes to the Personalization Advisor

n Changes to the Rules Editor in Release 3.1

n Changes to Content Management

n Changes to the JSP Tag Library

n Database Schema Migration Information

3 Migrating WebLogic Personalization Server to Version 3.1

3-2 Migration Guide

Navigating with Flow Manager

The Flow Manager is a servlet implementation that allows the hot deployment of
applications within the WebLogic Application Server. Flow Manager also adds
flexibility to navigation through the system—it moves navigation information off the
JSP page and into a single point of control. Using a destination determiner and a
destination handler, the Flow Manager dynamically determines a destination for a
given page request and dynamically handles it.

This topic includes the following sections:

n Deprecated Service Managers

n Hot Deployment

n Dynamic Flow Determination and Handling

n Property Set Usage

n Go With the Flow: Migrating to the Flow Manager

n Accessing Your Application via the Flow Manager

For more information, see “Flow Manager” in the Foundation chapter in the WebLogic
Personalization Server Developer’s Guide (in the release 3.1 documentation set).

Deprecated Service Managers

In WebLogic Personalization Server 3.1, all of the functionality of the JSP Service
Manager and the Portal Service Manager has been ported to the new Flow Manager.
The JSP Service Manager and the Portal Service Manager have been deprecated.

Navigating with Flow Manager

Migration Guide 3-3

Hot Deployment

The Flow Manager is a servlet implementation that allows the hot deployment of
applications within the WebLogic Application Server.

Registering a new portal or a new application no longer requires restarting the server,
as it did in WebLogic Personalization Server 2.0.1. Instead of registering servlets in
the weblogic.properties file, the Flow Manager relies on a property set to obtain
information about a specific application or portal. You simply create a new instance of
a property set to hold the equivalent parameters that were in the properties file. Default
values are supplied during property set creation. Any changes become visible
according to a configurable refresh setting in the property set.

Note: In Release 3.5, the direction of the product will be to deploy one portal per
Web application and use the application deployment features enabled through
the WLS console, instead of the hot deployment portal model. For more
information, see “All Pages Must Be in a Web Application” in Chapter 1,
“Migrating WebLogic Commerce Server to Version 3.5.”

Dynamic Flow Determination and Handling

Flow Manager also provides the basic infrastructure to support the new Webflow
functionality. Webflow dynamically determines a destination for a given page request
and dynamically handles it. Using a destination determiner and a destination handler,
the Flow Manager moves navigation information off the JSP page and into a single
point of control.

The old service managers relied on a hidden form field in the current page to determine
where an HTTP request should be routed:

<input type="hidden" name="<%=DESTINATION_TAG%>"

value="<%=PortalJspBase.getRequestURI(request)%>">

This scheme required destination (or routing) information to be distributed across the
JSP/HTML pages. While this works fine, it can be cumbersome to modify if
destination values need to change.

The Flow Manager, on the other hand, allows the determination of page routing to be
centralized on the server based on an application's needs.

3 Migrating WebLogic Personalization Server to Version 3.1

3-4 Migration Guide

Backward Compatibility

For backward compatibility, default implementations of the destination determiner and
the destination handler are provided which support destination information being
passed via the DESTINATION_TAG mentioned above. These implementations are:

com.beasys.commerce.portal.flow.PortalDestinationDeterminer
and
com.beasys.commerce.foundation.flow.ServletDestinationHandler

Also, for non-portal-based personalized applications, the following default
implementations may be used:

com.beasys.commerce.foundation.flow.jsp.DefaultDestinationDeterminer
and
com.beasys.commerce.foundation.flow.ServletDestinationHandler

Property Set Usage

A new class of property sets, “Application Initialization Property Sets” has been added
to the Property Set Management Administration Tools. These are the property sets
used by the Flow Manager in support of portal (_DEFAULT_PORTAL_INIT) and
non-portal-based (_DEFAULT_APP_INIT) personalized applications.

Three new properties have been added to support the Flow Manager:

n destinationdeterminer Property

The destination determiner is responsible for evaluating an HTTP request and
determining which servlet to route it to.

The value provided for this property should be the name of a class that
implements the
com.beasys.commerce.foundation.flow.DestinationDeterminer
interface. If appropriate, use a default implementation provided by WebLogic
Personalization Server or WebLogic Commerce Server. Otherwise, develop your
own implementation according to the needs of your application.

Navigating with Flow Manager

Migration Guide 3-5

n destinationhandler Property

Given a destination route, the destination handler is responsible for invoking the
requested processing.

The value provided for this property should be the name of a class that
implements the
com.beasys.commerce.foundation.flow.DestinationHandler interface.
If appropriate, use a default implementation provided by WebLogic
Personalization Server or WebLogic Commerce Server. Otherwise, develop your
own implementation according to the needs of your application.

n ttl (time-to-live) Property

ttl, which stands for time-to-live, represents how often (in milliseconds) the
Flow Manager reloads the _APPLICATION_INIT property set from the database.
This allows changes that you make to the _APPLICATION_INIT property set to
be visible while the application or portal is running.

Note: To force immediate reloading of the property set, append the "flowReset"
argument to your URL, like this:
http://localhost:7001/application/exampleportal?flowReset=true

Go With the Flow: Migrating to the Flow Manager

To migrate your portal or non-portal application to use the Flow Manager, do the
following:

To create a new property set:

1. Open the Administration Tools Home page. Click the Property Set Management
icon to open the Property Set Management screen.

2. From the main Property Set Management screen, click Create.

3. Name the new property set you are creating (100 character maximum). The name
of the property set should be the same as the name you used to create the portal,
or the name you will use to access the application.

4. Enter a description of the property set (255 character maximum).

3 Migrating WebLogic Personalization Server to Version 3.1

3-6 Migration Guide

5. From the Copy Properties From drop-down list, select
APPLICATION_INIT._DEFAULT_PORTAL_INIT (for a portal)
or
APPLICATION_INIT._DEFAULT_APP_INIT (for a non-portal application).

6. From the Property Set Type drop-down list, select Application Init.

7. Click the Create button.

8. At the top of the page, in red, you will see the message “Property Set creation
was successful.” (Or, you will see an error message indicating why the property
set was not created.)

9. Click Back to return to the main Property Set Management screen.

To set parameters for your portal or application:

1. From the Property Set Management Home page, under the Application
Initialization Property Sets heading, click the name of the property set you just
created.

2. A Property Set page comes up, allowing you to set parameters.

3. (Note: For non-portal applications, skip this step.) To edit the portal name, click
the Edit button to the right of the “portal name” property. Change the default
value from UNKNOWN to the name of your portal, as you created it in Portal
Management.

4. Edit the destinationdeterminer property. Either accept the default, or edit to
provide your own implementation of these classes.

5. Edit the destinationhandler property. Either accept the default, or edit to
provide your own implementation of these classes.

6. Customize any other properties you choose. For information about customizing
properties in portals, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide (in the release 3.1 documentation set) and
Building a Custom Portal Step-by-Step in theWebLogic Personalization Server
Developer’s Guide (in the release 3.1 documentation set).

7. When you have finished setting properties, click the Finished button at the
bottom of the page.

Navigating with Flow Manager

Migration Guide 3-7

Note: In WebLogic Personalization Server 2.0.1, you registered servlets in the
weblogic.properties file. This is not required for WebLogic
Personalization Server 3.1. You have the option to remove them, but it is not
required. The WebLogic Personalization Server will ignore them.

Accessing Your Application via the Flow Manager

The exact URL you use depends upon whether or not you have deployed your
application as a Web application. WebLogic Personalization Server 3.1 includes
sample configurations for both a Web application/Web archive deployment and a
non-Web application configuration. For more information, see the chapter “Using the
Catalog Application in a Portal” in the WebLogic Personalization Server Developer’s
Guide (in the release 3.1 documentation set).

3 Migrating WebLogic Personalization Server to Version 3.1

3-8 Migration Guide

Changes to the Personalization Advisor

For WebLogic Personalization Server 3.1, the Personalization Advisor has been
renamed to Advisor and has undergone some API changes. However, its functionality
remains the same. The Advisor has been improved to provide better error reporting and
to make use of the unified logging facility provided by WebLogic Commerce Server
3.1.

This topic includes the following sections:

n JSP Tags Ported to Use the New Advisor

n Deprecated Personalization Advisor Classes

n Changes in Advisor APIs

n Terminology Change: Agents Changed to Advislets

JSP Tags Ported to Use the New Advisor

The three pz library tags (pz:div, pz:contentQuery, and pz:contentSelector)
have been changed to use the new Advisor Session Bean. However, the tag usage
remains the same. For more information, see the JSP Tag Library Reference in the
WebLogic Personalization Server Developer’s Guide (in the release 3.1
documentation set).

To use the <pz:div> and <pz:contentSelector> tags, you are no longer required
to insert the following JSP directive into your JSP code:
<%@ page extends="com.beasys.commerce.axiom.p13n.jsp.P13NJspBase"
%>

 However if it is already in your code, you do not need to remove it.

Changes to the Personalization Advisor

Migration Guide 3-9

Deprecated Personalization Advisor Classes

All of the Java classes for the Personalization Advisor released in WebLogic
Personalization Server 2.0.1 have been deprecated. This includes all of the Java classes
in the following Java packages:
com.beasys.commerce.axiom.p13n.advisor
com.beasys.commerce.axiom.p13n.agents

In WebLogic Personalization Server 3.1, these deprecated classes are replaced by new
Advisor Java packages. They include:
com.beasys.commerce.axiom.advisor
com.beasys.commerce.axiom.advislets

The Personalization Advisor Bean has been replaced by the new Advisor Bean.

This change only affects the case when the Advisor API is used directly and is
transparent to JSP tag users.

Changes in Advisor APIs

The changes made while porting the WebLogic Personalization Server 2.0.1
Personalization Advisor interface to the new Advisor interface are as follows:

n The Personalization Advisor pzTechnique parameter is not supported in the
new Advisor implementation.

n The createRequestTemplate method parameters have been simplified to use a
single string lookup name for the advice request, instead of a fully qualified
class name. The three advice request lookup names supported for WebLogic
Personalization Server 3.1 are ClassificationAdviceRequest,
ContentSelectorAdviceRequest, and ContentQueryAdviceRequest.

3 Migrating WebLogic Personalization Server to Version 3.1

3-10 Migration Guide

The following example shows the difference in the createRequestTemplate method
between the Personalization Advisor and the Advisor.

Personalization Advisor Interface

public AdviceRequest createRequestTemplate(
 String adviceRequestClassName,
 String pzTechnique)
 throws IllegalArgumentException,
 PersonalizationAdvisorException,
 RemoteException;

Advisor Interface

public AdviceRequest createRequestTemplate(
 String theKindOfRequest)
 throws IllegalArgumentException,
 AdvisorException,
 RemoteException;

Terminology Change: Agents Changed to Advislets

The three WebLogic Personalization Server 2.0.1 Personalization Agents have been
renamed and repackaged to advislets. The following table defines the mapping
between the WebLogic Personalization Server 2.0.1 Agent Java classes to the
WebLogic Personalization Server 3.0 advislet Java classes.

2.0 Agent class com.beasys.commerce.axiom.p13n.agents.ClassificationAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ClassificationAdvisletImpl

2.0 Agent class com.beasys.commerce.axiom.p13n.agents. ContentSelectorAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ContentSelectorAdvisletImpl

2.0 Agent class com.beasys.commerce.axiom.p13n.agents. ContentQueryAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ContentQueryAdvisletImpl

Changes to the Rules Editor in Release 3.1

Migration Guide 3-11

Changes to the Rules Editor in Release 3.1

The WebLogic Personalization Server provides rule sets that include a set of classifier
and content selector rules. These rule sets act as containers for rules that match
personalized content with users.

This topic includes the following sections:

n Relationship Between Rules and Property Sets

n The Use of AND or OR to Connect Expressions

n Change the Word ‘Rule Sheet’ to ‘Rule Set’

For more information, see “Creating and Managing Rules” in the WebLogic
Personalization Server User’s Guide (in the release 3.1 documentation set).

Relationship Between Rules and Property Sets

In previous releases, the rule sets (also called rule sheets) were associated with
property sets that defined the attributes available for user and group profiles. Once
defined, this relationship between rules and property sets could not be undone.

In the current WebLogic Personalization Server 3.1 release, there is no longer an
association between a rule set and a property set. Rules within a rule set may refer to
any properties.

The Use of AND or OR to Connect Expressions

The Rules Editor now allows the use of “and” or “or” to connect expressions that
contain comparators.

3 Migrating WebLogic Personalization Server to Version 3.1

3-12 Migration Guide

Change the Word ‘Rule Sheet’ to ‘Rule Set’

For consistency, an effort has been made to change the word “rule sheet” to “rule set”
or ruleSet in all cases. However, the following legacy code continues to use
Rulesheet:
jdbc://com.beasys.commerce.axiom.reasoning.rules.RulesheetDefinit
ionHome

Changes to Content Management

This topic includes the following sections:

n New Features in <cm:select> and <cm:selectById> Tags

n Changes to EJB Deployment Descriptors

n Changes to Object Interfaces

n Changes to the BulkLoader

New Features in <cm:select> and <cm:selectById> Tags

To retrieve Content or Documents, use a ContentManager or DocumentManager with
<cm:select> or <cm:selectById>. The default DocumentManager is deployed at
com.beasys.commerce.axiom.document.DocumentManager. For more
information, see “Configuring WebLogic Commerce Properties” in the chapter
Creating and Managing Content in the WebLogic Personalization Server User’s Guide
(in the release 3.1 documentation set).

The <cm:select> and <cm:selectById> tags now support a session-based, per-user
Content cache for content searches. For more information, see “Content Cache” in the
chapter Creating and Managing Content in the WebLogic Personalization Server
User’s Guide (in the release 3.1 documentation set).

Changes to Content Management

Migration Guide 3-13

The Content Manager now supports non-EJB context objects. The <cm:select> and
<cm:selectById> tags support an optional readOnly parameter. For more
information, see “readOnly Content Tag” in the chapter Creating and Managing
Content in the WebLogic Personalization Server User’s Guide (in the release 3.1
documentation set).

Changes to EJB Deployment Descriptors

Deployment descriptors handle the configuration for the Content Manager. This
section describes the changes to the deployment descriptors:

n Document Schema EJB Deployment Descriptor

n DocumentManager EJB Deployment Descriptor

n Document EJB Deployment Descriptor (Deprecated)

Document Schema EJB Deployment Descriptor

Two EJB variables have been removed:
SmartConnectionPoolClass
SmartBMP_URL

Five EJB variables have been added:
UseDataSource
DocPoolURL
DocPoolDriver
jdbc/docPool
jdbc/commercePool

One EJB variable remains the same:
SmartBMPUpdate

For more information, see “Configuring the Document Schema EJB Deployment
Descriptor” in the chapter Creating and Managing Content in the WebLogic
Personalization Server User’s Guide (in the release 3.1 documentation set).

3 Migrating WebLogic Personalization Server to Version 3.1

3-14 Migration Guide

DocumentManager EJB Deployment Descriptor

All the EJB variables have been removed:
UseDefaultHomeNames
ContentHome
SchemaHome

Six EJB variables have been added:
PropertyCase
jdbc/docPool
ejb/ContentHome
ejb/SchemaHome
UseDataSource
DocPoolURL
DocPoolDriver

For more information, see “Configuring the DocumentManager EJB Deployment
Descriptor” in the chapter Creating and Managing Content in the WebLogic
Personalization Server User’s Guide (in the release 3.1 documentation set).

Document EJB Deployment Descriptor (Deprecated)

Note: The Document EJB has been deprecated and should not be used. Use the
DocumentManager EJB instead.

To support legacy code, the Document EJB has been upgraded as follows:

Two EJB variables have been removed:
SmartConnectionPoolClass
SmartBMP_URL

Four EJB variables have been added:
UseDataSource
DocPoolURL
DocPoolDriver
jdbc/docPool

Two EJB variables remain the same:
SmartBMPUpdate
Propertycase

n SmartBMPUpdate: Set to false.

n UseDataSource: Controls whether jdbc/docPool (true) or DocPoolURL
(false) is used to get connections. Defaults to true.

Changes to Content Management

Migration Guide 3-15

n DocPoolURL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDataSource is false). Should point to a connection pool.
For example: jdbc:weblogic:pool:docPool

n DocPoolDriver: Specifies the JDBC driver class to use to connect to the
DocPoolURL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPoolURL.

n jdbc/docPool: A Data Source reference to the document JDBC connection
pool. This should correspond to the Data Source attached to the WebLogic
connection pool that uses the document reference implementation JDBC driver.

n PropertyCase: This sets how the DocumentImpl modifies incoming property
names. If this is lower, all property names are converted to lowercase. If this is
upper, all property names are converted to uppercase. If this is anything else or
not specified, property names are not modified. Use lower or upper if the
SmartBMP class expects everything in a certain case (for example, the
Documentum SmartBMP expects everything in lowercase). For the document
reference implementation, do not specify the PropertyCase.

Other SmartBMP classes for other document management systems will possibly
require more and/or different EJB environment variables.

Changes to Object Interfaces

The ConfigurableEntity, Content, Document, User and Group interfaces no
longer extend EJBObject. Instead, those interfaces are code-identical to the original
2.0.1 versions (same method signatures).

The interfaces ConfigurableEntityRemote, ContentRemote, DocumentRemote,
UserRemote and GroupRemote extend both EJBObject and their respective
non-EJBObject interfaces.

For more information, see “Object Interfaces” in the chapter “Creating and Managing
Content” in the WebLogic Personalization Server User’s Guide (in the release 3.1
documentation set).

3 Migrating WebLogic Personalization Server to Version 3.1

3-16 Migration Guide

Changes to the BulkLoader

The BulkLoader now accepts a -encoding <enc> and -schemaName option. For
more information, see “Command Line Usage” in the chapter Creating and Managing
Content in the WebLogic Personalization Server User’s Guide (in the release 3.1
documentation set).

Changes to the JSP Tag Library

Five new tags were introduced in WebLogic Personalization Server Release 3.1:

<ps:getPropertyNames>

<ps:getPropertySetNames>

<i18n:localize>

<i18n:getMessage>

<wl:repeat>

For information about these tags, see Chapter 5, “Changes to WebLogic
Personalization Server JSP Tag Library,” in this guide. Also refer to the following
sections in that chapter for information about changes to the tags:

n New JSP 1.1 Naming Conventions

n Changes to Tag Attributes

n Global Changes

n Tag Migration Roadmap

n Additional Notes About JSP Tags

Database Schema Migration Information

Migration Guide 3-17

Database Schema Migration Information

The WebLogic Personalization Server Schema is now documented in the WebLogic
Personalization Server Developer’s Guide (in the release 3.1 documentation set).

Updated User Management Schema Table

A new column called PROFILE_TYPE was added to the WLCS_USER table since
WebLogic Personalization Server Release 2.0.1. This column holds the name of the
Unified Profile Type of which the User is an instance.

For more information about migrating your database, refer to the section “Upgrading
WebLogic Personalization Server Database Schemas from 2.0.1 to 3.1.1” in Chapter 4,
“Upgrading Database Schemas from Prior Releases,” in this guide.

3 Migrating WebLogic Personalization Server to Version 3.1

3-18 Migration Guide

Migration Guide 4-1

CHAPTER

4 Upgrading Database
Schemas from Prior
Releases

If you are upgrading your WebLogic Commerce Server and WebLogic Personalization
Server installation from a prior release, you must also upgrade your database to the
corresponding schema. This chapter describes the following tasks:

n Upgrading WebLogic Personalization Server Database Schemas from 2.0.1 to
3.1.1

n Upgrading WebLogic Personalization Server Database Schemas from 2.0.1 to
3.2

n Upgrading Database Schemas from 3.1.1 to 3.2

n Upgrading Database Schemas from 3.2 to 3.5

You must upgrade databases in the sequence of the preceding list; you cannot skip a
Release in the migration path.

Note: For information on upgrading a WebLogic Commerce Server 2.0.1 database
to the WebLogic Commerce Server 3.1.1 or 3.2 database schemas, contact
BEA Customer Support.

4 Upgrading Database Schemas from Prior Releases

4-2 Migration Guide

Upgrading WebLogic Personalization Server
Database Schemas from 2.0.1 to 3.1.1

In WebLogic Personalization Server Release 3.1, a new column called PROFILE_TYPE
was added to the WLCS_USER table. This column contains the name of the Unified
Profile Type of which the User is an instance. (For more information about Unified
Profile Types, see the chapter “Creating and Managing Users”in the Guide to Building
Personalized Applications (in the release 3.5 documentation set.))

The PROFILE_TYPE column can be added to existing WLCS_USER tables with the
following statement:

ALTER TABLE WLCS_USER ADD PROFILE_TYPE VARCHAR2(100);

For User objects that are of the standard type
com.beasys.commerce.axiom.contact.User, this should be left as null. If the User is an
extended User type, such as the 'Unified Profile Example', the column should be set to
that type name. The example user for the Unified Profile Example should be updated
with the following statement:

UPDATE WLCS_USER SET PROFILE_TYPE = 'Unified Profile Example' WHERE
IDENTIFIER = 'unifieduser_bob';

Note: In this document, $WL_COMMERCE_HOME refers to the directory into which you
installed WebLogic Commerce Server and/or WebLogic Personalization
Server and database-type refers to the type and version of RDBMS that you
installed.

To upgrade a WebLogic Personalization Server database from release 2.0.1 to release
3.1, follow these steps:

1. Make a backup copy of the following file:
$WL_COMMERCE_HOME/db/database-type/staging /upgrade-to-310.sql

2. Open upgrade-to-310.sql in a text editor.

3. Move the cursor immediately below the following statement:

Upgrading WebLogic Personalization Server Database Schemas from 2.0.1 to 3.1.1

Migration Guide 4-3

ALTER TABLE WLCS_USER ADD (
 PROFILE_TYPE VARCHAR2(100)

);

4. For each user that is of an extended User type, add the following statement on a
single line:

UPDATE WLCS_USER SET PROFILE_TYPE = ’<profile-type>’ WHERE

IDENTIFIER = ’<user-name>’;

For example:

UPDATE WLCS_USER SET PROFILE_TYPE = ’Unified Profile Example’

WHERE IDENTIFIER = ’unifieduser_bob’;

5. Save your modifications and close update-to-310.sql.

6. Run the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/update-to-310.sql

For example, if you installed WebLogic Commerce Server in
~/WebLogicCommerceServer3.2, enter the following from SQL*Plus:
@
~/WebLogicCommerceServer3.2/db/database-type/update-to-310.sql

When the command successfully completes upgrading the database, it prints the
following message:

************ SCRIPT HAS FINISHED EXECUTING *************

****** PLEASE REVIEW UPDATE-TO-310.LOG FILE *****

4 Upgrading Database Schemas from Prior Releases

4-4 Migration Guide

Upgrading WebLogic Personalization Server
Database Schemas from 2.0.1 to 3.2

This section describes scripts that do the following:

n Update tables that were created for the WebLogic Personalization Server 2.0.1
schema to the WebLogic Personalization Server 3.2 schema.

n Copy existing WebLogic Personalization Server data to the new 3.2 tables.

n Create empty WebLogic Personalization Server tables that are new for 3.1.1 and
3.2.

n Create empty WebLogic Commerce Server tables that the release 3.2 schema
defines. The scripts do not copy existing WebLogic Commerce Server data into
the tables.

The following instructions also assume that you are working with an Oracle database
and will be using the scripts in either of the following:

n WL_COMMERCE_HOME/db/oracle (for Oracle versions 8.1.5 and below)

n WL_COMMERCE_HOME/db/oracle816 (for Oracle version 8.1.6)

To upgrade your Personalization Server database from 2.0.1, do the following:

1. In WL_COMMERCE_HOME/db/<oracle directory>/migration/v201, log into
SQL*Plus and execute the following:

SQL> @upgrade-to-310.sql

2. In WL_COMMERCE_HOME/db/<oracle directory>, log into SQL*Plus and
execute the following:

SQL> @create-wlcs-oracle.sql

At this point the database format should be WLCS 3.1.1 compliant.

3. Follow the steps in “Upgrading Database Schemas from 3.1.1 to 3.2” on page
4-5. Then return to these instructions and continue with step 4.

4. Start WebLogic Personalization Server and WebLogic Commerce Server if it is
not already running.

Upgrading Database Schemas from 3.1.1 to 3.2

Migration Guide 4-5

5. In WL_COMMERCE_HOME\bin\win32\ (Windows) or in
WL_COMMERCE_HOME/bin/unix/ (UNIX), run the following on a command line:

loadrules

6. Finally, in WL_COMMERCE_HOME\bin\win32\ (Windows) or in
WL_COMMERCE_HOME/bin/unix/ (UNIX), run the following on a command line:

loaddocs -delete -cleanup

Upgrading Database Schemas
from 3.1.1 to 3.2

Release 3.2 of WebLogic Commerce Server and WebLogic Personalization Server
introduces schema changes and restrictions for the length of data allowed in various
columns. To upgrade databases from Release 3.1.1 to Release 3.2, complete the
following tasks:

n Upgrade the WebLogic Personalization Server Schema

n Upgrade the WebLogic Commerce Server Schema (only if you use WebLogic
Commerce Server)

n Verify the Upgrade

n Remove Temporary Tables

Upgrade the WebLogic Personalization Server Schema

If you are upgrading WebLogic Personalization Server from Release 3.1.1 to Release
3.2, complete the tasks described in this section. The following diagram illustrates the
process for upgrading the WebLogic Personalization Server schema, and subsequent
topics provide more information about the process.

4 Upgrading Database Schemas from Prior Releases

4-6 Migration Guide

Figure 4-1 Upgrading the Personalization Server Schema from 3.1.1 to 3.2

Upgrading Database Schemas from 3.1.1 to 3.2

Migration Guide 4-7

Step 1: Determine if Data Exceeds New Column Lengths and Modify
When Necessary

Start the migration process by finding and correcting any columns in your existing
databases that contain data exceeding the new column length in Release 3.2.

To start the migration, do the following:

1. Make a backup copy of your database.

2. Run the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/check-wlps-lengths.sql

For example, if you installed WebLogic Commerce Server in
~/WebLogicCommerceServer3.2, enter the following command in SQL*Plus:
@
~/WebLogicCommerceServer3.2/db/database-type/check-wlps-lengths
.sql

3. To see the results of the script, open the following log file in a text editor:
$WL_COMMERCE_HOME/db/database-type/check-wlps-lengths.log

The log file lists each table for which the maximum number of characters has
changed. As Listing 4-1 illustrates, the log file states no rows selected for
tables that meet the new maximum-length requirements. For tables that exceed
requirements, the log file lists each row and describes the error condition.

Listing 4-1 Output of check-wlps-lengths.sql

***** WLCS_DOCUMENT.ID *****
no rows selected

***** WLCS_DOCUMENT_METADATA.ID *****
no rows selected

4 Upgrading Database Schemas from Prior Releases

4-8 Migration Guide

4. For any table containing data that exceeds a row’s maximum length requirement:

a. For information on length requirements for the table, see the schema chapters
in the WebLogic Commerce Server and WebLogic Personalization Server
documentation.

b. Modify the data in the row to meet the new requirements.

5. Repeat steps 2-4 until the log file reports “no rows selected” for all tables.

Step 2: Upgrade the Database Schema

After correcting any rows that do not conform to new column length requirements, you
must upgrade the Release 3.1.1 schema to the Release 3.2 schema by doing the
following:

1. Make backup copies of your database and the following file:
$WL_COMMERCE_HOME/db/database-type/upgrade-wlps-to-320.sql

2. Open upgrade-wlps-to-320.sql in a text editor.

3. Make sure that the following lines assign values that match your tablespace:

define DATA_TABLESPACE=WLCS_DATA

define INDEX_TABLESPACE=WLCS_INDEX

By default, WebLogic Commerce Server and WebLogic Personalization Server
place data in WLCS_DATA and indexes in WLCS_INDEX. If you are using other
tablespaces, you must modify upgrade-wlps-to-320.sql to specify your
tablespaces instead.

4. Save your modifications to upgrade-wlps-to-320.sql.

5. Run the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/upgrade-wlps-to-320.sql

Note: Enter this command only once and only after you have modified all rows that
contain data exceeding new length requirements.

When the command successfully completes updating tables, it prints the following
message:

************ SCRIPT HAS FINISHED EXECUTING *************

****** PLEASE REVIEW UPDATE-TO-320.LOG FILE *****

Upgrading Database Schemas from 3.1.1 to 3.2

Migration Guide 4-9

Upgrade the WebLogic Commerce Server Schema

To upgrade WebLogic Commerce Server from Release 3.1.1 to Release 3.2, complete
the tasks described in this section. The following diagram illustrates the process for
upgrading the WebLogic Commerce Server schema, and subsequent topics provide
more information about the process.

Figure 4-2 Upgrading the Commerce Server Schema from 3.1.1 to 3.2

4 Upgrading Database Schemas from Prior Releases

4-10 Migration Guide

Step 1: Determine if Data Exceeds New Column Lengths and Modify
When Necessary

Start the migration process by finding and correcting any columns in your existing
databases that contain data exceeding the new column length in Release 3.2.

To start the migration, do the following:

1. Make a backup copy of your database.

2. Run the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/check-wlcs-lengths.sql

3. To see the results of the script, open the following log file in a text editor:
$WL_COMMERCE_HOME/db/database-type/check-wlcs-lengths.log

The log file lists each table for which the maximum number of characters has
changed. As Listing 4-2 illustrates, the log file states no rows selected for
tables that meet the new maximum-length requirements. For tables that exceed
requirements, the log file lists each row and describes the error condition.

Listing 4-2 Output of check-wlcs-lengths.sql

***** WLCS_CATEGORY *****
no rows selected

***** WLCS_PRODUCT *****
no rows selected

4. For any table containing data that exceeds a row’s maximum length requirement:

a. For information on length requirements for the table, see the schema chapters
in the WebLogic Commerce Server and WebLogic Personalization Server
documentation.

b. Modify the data in the row to meet the new requirements.

5. Repeat steps 2-4 until the log file reports no rows selected for all tables.

Upgrading Database Schemas from 3.1.1 to 3.2

Migration Guide 4-11

Step 2: Upgrade the Database Schema

After correcting any rows that do not conform to new column length requirements, you
must upgrade the Release 3.1.1 schema to the Release 3.2 schema by doing the
following:

1. Make backup copies of your database and the following file:
$WL_COMMERCE_HOME/db/database-type/upgrade-wlcs-to-320.sql

2. Open upgrade-wlcs-to-320.sql in a text editor.

3. Make sure that the following lines assign values that match your tablespace:

define DATA_TABLESPACE=WLCS_DATA

define INDEX_TABLESPACE=WLCS_INDEX

By default, WebLogic Commerce Server and WebLogic Personalization Server
place data in WLCS_DATA and indexes in WLCS_INDEX. If you are using other
tablespaces, you must modify upgrade-wlps-to-320.sql to specify your
tablespaces instead.

4. Save your modifications to upgrade-wlcs-to-320.sql.

5. Run the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/upgrade-wlcs-to-320.sql.

Note: Enter this command only once and only after you have modified all rows that
contain data exceeding new length requirements.

When the command successfully completes updating tables, it prints the following
message:

************ SCRIPT HAS FINISHED EXECUTING *************

****** PLEASE REVIEW UPDATE-TO-320.LOG FILE *****

4 Upgrading Database Schemas from Prior Releases

4-12 Migration Guide

Verify the Upgrade

After you upgrade the schema for each server that you are using, verify the upgrade by
starting the server and Administration Tool and testing the application. For example,
if you use both WebLogic Commerce Server and WebLogic Personalization Server,
open the Administration Tool to verify that the users and groups you upgraded are
available under User Administration, and all items and categories that you upgraded
are available under Catalog Administration. Then access the server through a Web
browser to verify that data transferred successfully.

To Start the Server

To start WebLogic Commerce Server and/or WebLogic Personalization Server on
UNIX, enter the following command from a WebLogic Commerce Server and
WebLogic Personalization Server host:
$WL_COMMERCE_HOME/StartCommerce.sh

To start WebLogic Commerce Server and/or WebLogic Personalization Server on
Windows, on a WebLogic Commerce Server and WebLogic Personalization Server
host, do one of the following:

n Click Start → Programs → WebLogic Commerce Server 3.2 → Start Commerce
Server.

n From a command prompt, enter the following command:
%WL_COMMERCE_HOME%\StartCommerce.bat

Upgrading Database Schemas from 3.1.1 to 3.2

Migration Guide 4-13

Remove Temporary Tables

Note: Do not complete this step until you have successfully upgraded the schema for
both servers (if you use both servers) to Release 3.2 and started the
application and verified the data migration.

After you have verified that WebLogic Commerce Server and WebLogic
Personalization Server function properly with the imported data, remove the
temporary BEA_table-name tables by running the following SQL command:
@ $WL_COMMERCE_HOME/db/database-type/drop_bea_tables.sql

When the command successfully completes removing BEA_ tables, it prints the
following message:

************ SCRIPT HAS FINISHED EXECUTING *************

****** PLEASE REVIEW DROP_BEA_TABLES.LOG FILE *****

4 Upgrading Database Schemas from Prior Releases

4-14 Migration Guide

Upgrading Database Schemas from 3.2 to
3.5

Release 3.5 of WebLogic Commerce Server and WebLogic Personalization Server
provides enhancements and changes that require you to update the schemas and
migrate the data.

Note: If you are using the Oracle 8.0.5 or 8.1.5 database, you must upgrade to
Oracle 8.1.6 or greater before migrating to Release 3.5 of WebLogic
Commerce Server and WebLogic Personalization Server. Release 3.5 uses
CLOBs and BLOBs instead of LONG RAW characters. Oracle 8.0.5 and 8.1.5
do not support CLOBs and BLOBs.

To upgrade databases from Release 3.2 to Release 3.5, complete the following tasks:

n Make a Backup

n Validate Data

n Upgrade Current Tables to New Schema

n Drop Any Backup Tables (Optional)

n Add New Tables to Bring the Schema Current

n Verify the Upgrade

Make a Backup

We strongly recommend that you make a complete backup of the WebLogic
Personalization Server/WebLogic Commerce Server database before beginning the
process to migrate the database to a more current schema.

Upgrading Database Schemas from 3.2 to 3.5

Migration Guide 4-15

Validate Data

To validate the data before beginning the upgrade, run the following scripts. These
scripts are used to check which WebLogic Commerce Server tables have column
values exceeding 254 characters, or whatever the new length for the specific column
in question is.

1. From a command prompt, type the following:

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/check_common_lengths.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/check_wlps_lengths.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/check_wlcs_lengths.sql

For example, if you are using Oracle 8.1.6 and installed WebLogic Commerce Server
in ~/WebLogicCommerceServer3.5, enter the following command in SQL*Plus:

@ $WL_COMMERCE_HOME/db/oracle/8.1.6/migration/v320/check_common_lengths.sql

2. To see the results of the script, open the following log file in a text editor:

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/check_common_lengths.log

There will also be check_wlps_lengths.log and
check_wlcs_lengths.log.

The log file lists each table for which the maximum number of characters has
changed. As Listing 4-2 illustrates, the log file states no rows selected for
tables that meet the new maximum-length requirements. For tables that exceed
requirements, the log file lists each row and describes the error condition.

Listing 4-3 Output of check-wlcs-lengths.sql

***** WLCS_CATEGORY *****
no rows selected

***** WLCS_PRODUCT *****
no rows selected

3. For any table containing data that exceeds a row’s maximum length requirement:

4 Upgrading Database Schemas from Prior Releases

4-16 Migration Guide

a. For information on length requirements for the table, see the schema chapters
in the WebLogic Commerce Server and WebLogic Personalization Server
documentation.

b. Modify the data in the row to meet the new requirements.

4. Repeat the previous steps until the log file for each script reports no rows
selected for all tables.

Upgrade Current Tables to New Schema

Once you have successfully verified the current tables, you can run the upgrade scripts.
These scripts make backup copies of current tables, drop the existing table, recreate
each table with current column definitions, and populate the new table with data from
the backup table.

From a command prompt, type the following:

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/upgrade_common_to_350.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/upgrade_wlps_to_350.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/upgrade_wlcs_to_350.sql

Drop Any Backup Tables

Note: This step is optional and should not be executed until you are certain that all
data has been retained. Only when you are comfortable with the state of your
data should you consider running this script.

The script in this step is used to drop the temporary tables that held your original data.
During the upgrade process, the data contained in the original table (named with the
WLCS_ prefix) was copied to a backup table using the BEA_ prefix and renamed with
BEA_ prefix.

1. Restart the WebLogic Commerce Server before executing this script, to test data
accuracy and to ensure the application(s) are working as intended.

2. From a command prompt, type the following:

Upgrading Database Schemas from 3.2 to 3.5

Migration Guide 4-17

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/drop_bea_tables.sql

Add New Tables to Bring the Schema Current

Run the following scripts to create the necessary new tables.

n insert_event_properties.sql is used to populate the property management
tables with records of various Behavior Tracking events.

n upgrade_wlcs_add_tables_350.sql is used to create new tables used by the
WebLogic Commerce Server. It is involved in making changes to the existing
database objects: adding columns, dropping columns, resizing columns, and so
on.

n create_campaign.sql and create_mail_ad.sql are used in the new
WebLogic Campaign Manager component. Each script is involved in creating
new database objects such as tables and indexes.

From a command prompt, type the following:

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/
upgrade_wlcs_add_tables_350.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/migration/v320/
insert_event_properties.sql

Note: The path from which to run the next two scripts is different from where you
ran previous scripts.

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/create_campaign.sql

@ $WL_COMMERCE_HOME/db/db-vendor/db-version/create_mail_ad.sql

Verify the Upgrade

After you upgrade the schema for each server that you are using, verify the upgrade by
starting the server and Administration Tool and testing the application. For example,
if you use both WebLogic Commerce Server and WebLogic Personalization Server,
open the Administration Tool to verify that the users and groups you upgraded are

4 Upgrading Database Schemas from Prior Releases

4-18 Migration Guide

available under User Administration, and all items and categories that you upgraded
are available under Catalog Administration. Then access the server through a Web
browser to verify that data transferred successfully.

To Start the Server

To start WebLogic Commerce Server and/or WebLogic Personalization Server on
UNIX, enter the following command from a WebLogic Commerce Server and
WebLogic Personalization Server host:
$WL_COMMERCE_HOME/StartCommerce.sh

To start WebLogic Commerce Server and/or WebLogic Personalization Server on
Windows, on a WebLogic Commerce Server and WebLogic Personalization Server
host, do one of the following:

n Click Start → Programs → WebLogic Commerce Server 3.5 → Start Commerce
Server.

n From a command prompt, enter the following command:
%WL_COMMERCE_HOME%\StartCommerce.bat

Migration Guide 5-1

5 Changes to WebLogic
Personalization Server
JSP Tag Library

This topic includes the following sections:

n JSP Tag Changes in Version 3.5

l New Ads and Placeholder Tag

l New Event Tracking Tags

l New Webflow Tag

l New E-Business Tag

l Changes to Personalization Tags

n JSP Tag Changes in Version 3.2

l Changes to Content Management Tags in Release 3.2

l Changes to Utility Tags in Release 3.2

l New Flow Manager Tags in Release 3.2

n New JSP Tags Introduced in Release 3.1

l New Property Set Management Tags in Release 3.1

l New Internationalization Tags in Release 3.1

l New WebLogic Utility Tag in Release 3.1

n Changes to the JSP Tag Library in Release 3.1

5 Changes to WebLogic Personalization Server JSP Tag Library

5-2 Migration Guide

l New JSP 1.1 Naming Conventions

l Changes to Tag Attributes

l Global Changes

l Tag Migration Roadmap

l Additional Notes About JSP Tags

 JSP Tag Changes in Version 3.5

This section covers the tags that have been removed from and added to the WebLogic
Commerce Server and WebLogic Personalization Server tag libraries.

n Removed Tags

l <es:preparedStatement>

n New Ads and Placeholder Tag

l <ad:adTarget>

l <ph:placeholder>

n New Event Tracking Tags

l <tr:clickContentEvent> Content Tag

l <tr:displayContentEvent> Content Tag

l <trp:clickProductEvent> Product Tag

l <trp:displayProductEvent> Product Tag

l <trc:clickCampaignEvent> Campaign Tag

n New Webflow Tag

l <webflow:setValidated Value>

n New E-Business Tag

l <eb:smnav>

n Changes to Personalization Tags

JSP Tag Changes in Version 3.5

Migration Guide 5-3

Removed Tags

One tag has been removed in this release.

All tags that were deprecated in previous releases have now been removed. For more
information, see the Note at the top of the section “JSP Tag Changes in Version 3.2”
on page 5-6.

<es:preparedStatement>

The <es:preparedStatement> tag has been removed in this release.

New Ads and Placeholder Tag

Two new tags have been added to create placeholders and query for ad content.

These tags are documented in the “Personalization Server JSP Tag Library Reference”
chapter in the Guide to Building Personalized Applications.

<ad:adTarget>

The <ad:adTarget> tag uses the Ad Service to send an ad query to the content
management system. Unlike the tag, the query in the <ad:adTarget> tag does not
compete with other queries in an ad placeholder.

<ph:placeholder>

The <ph:placeholder> tag implements a placeholder, which describes the behavior
for a location on a JSP page.

New Event Tracking Tags

Five new JSP tags have been added to track events.

5 Changes to WebLogic Personalization Server JSP Tag Library

5-4 Migration Guide

These <tr*:> tags are documented in the chapter “Events and Behavior Tracking JSP
Tag Library Reference” in the Guide to Events and Behavior Tracking.

<tr:clickContentEvent> Content Tag

The <tr:clickContentEvent> tag is used to generate a behavior event when a user
has clicked (through) on an ad impression.

<tr:displayContentEvent> Content Tag

The <tr:displayContentEvent> tag is used to generate a behavior event when a
user has received (viewed) an ad impression, (typically a .gif image).

<trp:clickProductEvent> Product Tag

The <trp:clickProductEvent> tag is used to generate a behavior event when a user
has clicked (through) on a product impression. This tag will return a URL query string
containing event parameters. It is then used when forming the complete URL that
hyperlinks the content.

<trp:displayProductEvent> Product Tag

The <trp:displayProductEvent> tag is used to generate a behavior event when a
user has received (viewed) a product impression (typically a .gif image).

 <trc:clickCampaignEvent> Campaign Tag

The <trc:clickCampaignEvent> tag is used to explicitly generate a clickthrough
event relevant to a campaign.

New Webflow Tag

One new tag has been added to the Webflow feature set.

The Pipeline and Webflow tags are documented in the chapter “Webflow and Pipeline
JSP Tag Library Reference” in the Guide to Managing Presentation and Business
Logic: Using Webflow and Pipeline.

JSP Tag Changes in Version 3.5

Migration Guide 5-5

<webflow:setValidated Value>

The tag <webflow:setValidatedValue> is used in a JSP to configure the display
of fields in a form that a customer must correct.

Several previously undocumented attributes have been added to the documentation for
the <webflow:getValidatedValue> tag.

New E-Business Tag

One tag has been created for the new E-Business tag library.

See the chapter “Product Catalog JSP Tag Library Reference” in the Guide to Building
a Product Catalog.

<eb:smnav>

The <eb:> preface stands for E-Business. The Scrollable Model can be use throughout
the E-Business package to iterate through a list of objects. It can be used in conjunction
with transaction, shopping cart, order history, or shipping services.

Changes to Personalization Tags

<pz:div> and <pz:contentSelector>

The ruleSet attribute has been removed from the <pz:div> tag and the
<pz:contentSelector> tag. This attribute was used to define the URI for the
rulesets. In code that already used the ruleSet attribute, the attribute is no longer
required and will be ignored.

It is no longer necessary for programmers to define rule sets (or rulesheets) because
rule set names are no longer controlled through the tags. Rules are created using the
new GUI tool, E-Business Control Center. The tool saves rules into predefined rule
sets in the advislet registry. User classifier rules are saved into the
GlobalClassification.xml file. Content selectors are saved into the
GlobalContentSelectors.xml file.

5 Changes to WebLogic Personalization Server JSP Tag Library

5-6 Migration Guide

JSP Tag Changes in Version 3.2

Note: Backward Compatibility Will Stop After Version 3.2. The tag libraries
were updated in WebLogic Personalization Server (WLPS) version 3.1 to
comply with the JSP 1.1 Specification. If you are upgrading from WebLogic
Personalization Server 2.0.1, you can continue to use your existing code with
WebLogic Personalization Server 3.2. However, future releases will no longer
be backward compatible, so you will need to migrate to the new tags if you
intend to continue to use your legacy code with the latest WebLogic
Personalization Server releases.

The WebLogic Personalization Server documentation has been revised to reflect the
changes to the tag libraries. Until you migrate to the new tags, you can continue to use
the WebLogic Personalization Server 2.0 JSP Tag Reference found at
http://e-docs.bea.com/wlcs/docs20/p13ndev/jsptags.htm.

WebLogic Personalization Server 3.2 introduces eight new tags:

<cm:getProperty>

<fm:getApplicationURI>

<fm:getCachedAttribute>

<fm:setCachedAttribute>

<fm:removeCachedAttribute>

<fm:getSessionAttribute>

<fm:setSessionAttribute>

<fm:removeSessionAttribute>

JSP Tag Changes in Version 3.2

Migration Guide 5-7

Changes to Content Management Tags in Release 3.2

A new Content Management tag has been added in WebLogic Personalization Server
3.2. In addition, a new attribute has been added to the <cm:printDoc> tag.

<cm:getProperty>

Retrieves the value of the specified content metadata property into a variable specified
by resultId. This tag is similar to the <cm:printProperty> tag, with the addition
of two new parameters, resultId and resultType.

<cm:printDoc>

A new attribute, baseHref, has been added to the <cm:printDoc> tag. This attribute
provides the URL of the document’s BASE HREF.

Changes to Utility Tags in Release 3.2

<es:preparedStatement>

The Personalization Utility tag <es:preparedStatement> has a new attribute,
transactionIsolationLevel.

Note: This tag is removed from the tag library in WLPS Release 3.5.

New Flow Manager Tags in Release 3.2

Seven new tags have been added to support the Flow Manager:

<fm:getApplicationURI>

Gets the Flow Manager.

5 Changes to WebLogic Personalization Server JSP Tag Library

5-8 Migration Guide

<fm:getCachedAttribute>

Gets an attribute out of the session/global cache.

<fm:setCachedAttribute>

Sets an attribute in the session/global cache.

<fm:removeCachedAttribute>

Removes an attribute from the session/global cache.

<fm:getSessionAttribute>

Gets an attribute out of the HttpSession.

<fm:setSessionAttribute>

Sets an attribute in the HttpSession.

<fm:removeSessionAttribute>

Removes an attribute from the HttpSession.

New JSP Tags Introduced in Release 3.1

Five new tags were introduced in WebLogic Personalization Server Release 3.1:

<ps:getPropertyNames>

<ps:getPropertySetNames>

<i18n:localize>

<i18n:getMessage>

<wl:repeat>

New JSP Tags Introduced in Release 3.1

Migration Guide 5-9

New Property Set Management Tags in Release 3.1

Two new Property Set Management JSP extension tags provide the following services:

n Lists all properties associated with a property set.

n Lists all property set names for a property set group name (for example, USER or
CONTENT).

The two new Property Set tags are:

<ps:getPropertyNames>

Returns a list of property names for a given property set in a String array.

<ps:getPropertySetNames>

Returns a list of property set names for a given schema group name in a String array.

New Internationalization Tags in Release 3.1

In earlier releases of WebLogic Personalization Server, Internationalization (I18N)
was applied from JSP beans that supported sample portal pages, and administration
tools pages. The JSP beans employed a simple MessageBundle Java class that allowed
access to localized text labels and messages.

For this release, this basic MessageBundle has been extended using a simple
framework that is accessible from JSPs via a small I18N extension tag library. The JSP
extension tag library provides the following services:

n Retrieves a static text label or a message from a resource bundle (implemented
as a property file).

n Initializes a page context with a particular language, country, and variant for
label and message retrieval throughout a page.

n Properly sets the content type (text/html) and character encoding for a page.

5 Changes to WebLogic Personalization Server JSP Tag Library

5-10 Migration Guide

The following new tags are included in the I18N framework:

<i18n:localize>

Allows you to define the language, content type, and character encoding to be used in
a page. It also allows you to specify a country, variant, and resource bundle name to
use throughout a page when accessing resource bundles via the <i18n:getMessage>
tag described below.

<i18n:getMessage>

Retrieves a localized label, or message (based on the absence/presence of an “args”
attribute). This tag optionally takes a bundle name, language, country, and variant to
aid in locating the appropriate properties file for resource bundle loading.

New WebLogic Utility Tag in Release 3.1

<wl:repeat>

This WebLogic Server tag is used to iterate over a variety of Java objects that includes:

n Enumerations

n Iterators

n Collections

n Arrays

n Vectors

n Result Sets

n Result Set Metadata

n Hashtable keys

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-11

Changes to the JSP Tag Library in Release 3.1

The tag libraries have been updated in WebLogic Personalization Server version 3.1
to comply with the JSP 1.1 Specification. If you are upgrading from WebLogic
Personalization Server 2.0.1, you can continue to use your existing code with
WebLogic Personalization Server 3.1. However, future releases will no longer be
backward compatible, so you will need to migrate to the new tags if you intend to
continue to use your legacy code with the latest WebLogic Personalization Server
releases.

The WebLogic Personalization Server 3.1 documentation has been revised to reflect
the changes to the tag libraries. Until you migrate to the new tags, you can continue to
use the WebLogic Personalization Server 2.0 JSP Tag Reference located at
http://e-docs.bea.com/wlcs/docs20/p13ndev/jsptags.htm.

New JSP 1.1 Naming Conventions

Beginning with WebLogic Personalization Server version 3.1, all tags use the JSP 1.1
naming conventions. Old style tags that were used in previous WebLogic
Personalization Server releases have been changed to reflect the new camel case
naming conventions.

For example, the old-style tag <um:getgroupnamesforusers> is now
<um:getGroupNamesForUsers>.

Old tag names can still be used in the WebLogic Personalization Server 3.1 release.
However, old style tag names will not be supported in future releases of WebLogic
Personalization Server.

Note: Each time you use a deprecated tag, a message is logged to WebLogic Server.
To turn off the deprecation messages, add the following property to
weblogiccommerce.properties:
commerce.log.display.deprecated=false

5 Changes to WebLogic Personalization Server JSP Tag Library

5-12 Migration Guide

For consistency, the Portal Management tags <pt:*> have a new esp: prefix. For
example, the old-style tag <pt:eval> is now called <esp:eval>, and the old
<pt:portalmanager> is now <esp:portalManager>. When you change to the new
prefix, you will need to update each Portal Management tag invocation in the page to
use the new prefix.

Note: The es: prefix stands for e-commerce services.
The esp: prefix stands for e-commerce services portal.
The pz: prefix stands for personalization.

Changes to Tag Attributes

The Content Management Tags Have Been Changed as Follows:

n For the Content Management <cm:printDoc> tag, a new attribute, baseHref,
has been added. This attribute provides the URL of the document’s BASE
HREF.

The User Management Tags Have Been Changed as Follows:

n For the User Management <um:*> tags, the resultId attribute has been
changed to result, and is now an Integer instead of an int. Usage and
functionality remain the same.

n For the User Management tags <um:getProperty> and <um:setProperty>,
the usecache attribute has been dropped.

The WebLogic Personalization Server Utility tags Have Been Changed as
Follows:

n For the WebLogic Personalization Server Utility tags <es:isNull> and
<es:notNull>, the id attribute has been changed to item.

n For the WebLogic Personalization Server Utility tag
<es:preparedStatement>, the pool attribute has been dropped (see “Note 4:
<es:preparedStatement>” on page 5-23) and a new attribute,
transactionIsolationLevel, has been added.

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-13

Tag Attributes Require Camel Casing

 All of the tag attributes used in previous WebLogic Personalization Server releases
already use the camel-case convention, with a few exceptions. The tags that do not
already use camel-cased attributes are the three Advisor tags (formerly called
Personalization Advisor) <pz:*>, and the single WebLogic utility <wl:process>.

Table 5-1 lists the attributes that you will need to camel case. Note that all of these
attributes are optional, so it is possible that you did not use them in your existing code.

New Library Descriptors

Any JSP migrating from old-style tags to new-style tags will need to point to new
library descriptors.

n For Portal Management <pt:*> tags, change "lib/esportal.jar" to
"esp.tld".(Also, change prefix="pt" to prefix= "esp". Update each
invocation of a Portal Management tag on the page to use the "esp" prefix.)

n For User Management <um:*> tags, change "lib/um_tags.jar" to
"um.tld".

n For Personalization Utilities <es:*> tags, change "lib/esjsp.jar" to
"es.tld".

n For the WebLogic Utility <wl:process> tag, change "lib/wljsp.jar" to
"weblogic.tld".

Table 5-1 Camel-Cased Attributes

Tag Attribute

<pz:div> ruleSet

<pz:contentQuery> sortBy

contentHome

<pz:contentSelector> ruleSet

sortBy

contentHome

<wl:process> notName

notValue

5 Changes to WebLogic Personalization Server JSP Tag Library

5-14 Migration Guide

For example:

In the JSP page, <%@ taglib uri="lib/um_tags.jar" prefix="um" %>
would change to <%@ taglib uri="um.tld" prefix="um" %>.

Note: The Personalization Advisor is now simply called the Advisor.
The Advisor <pz:*> tags already use taglib uri="pz.tld", so these do not
need to be changed.

The Content Management <cm:*> tags already use taglib uri="cm.tld",
so these do not need to be changed.

Global Changes

Tags no longer return primitive types, they only return objects. For example,
<es:counter> used to return an int, and now it returns an Integer object.

Any tags (es, um, wl, etc.) with a <jsp:include page=.../> in their body must be
replaced with their scriptlet equivalent. (See Section 5.4.5 of the JSP 1.1
Specification.)

Old Usage:

<es:notNull item="renderer">
 <jsp:include page="<%=reconcileFile(request, renderer)%>"/>
</es:notNull>

New Usage:

<% if (renderer != null) { %>
 <jsp:include page="<%=reconcileFile(request, renderer)%>"/>
<% } %>

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-15

Tag Migration Roadmap

Table 5-2 maps the old tag names to the new JSP 1.1 camel-cased tag names. In
addition, changes made to the tags in the WebLogic Personalization Server 3.1 release
are noted in the Change column.

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1

Library Old Style Tag Name Change New JSP 1.1 Tag

Advisor <pz:contentquery> Camel case

Attribute sortby =
sortBy

Attribute contenthome
= contentHome

It is no longer necessary to
extend the JSP. See below -
Note 1: <pz:> tags.

<pz:contentQuery>

<pz:contentselector> Camel case

Attribute ruleset =
ruleSet

Attribute sortby =
sortBy

Attribute contenthome
= contentHome

<pz:contentSelector>

<pz:div> ruleset = ruleSet

It is no longer necessary to
extend the JSP. See below -
Note 1: <pz:> tags.

<pz:div>

Content
Mngmt

 --- New <cm:getProperty>

<cm:printproperty> Camel case <cm:printProperty>

<cm:printdoc> Camel case

New attribute: baseHref

<cm:printDoc>

<cm:select> No change <cm:select>

5 Changes to WebLogic Personalization Server JSP Tag Library

5-16 Migration Guide

<cm:selectbyid> Camel case <cm:selectById>

Flow
Manager

 --- New <fm:getApplicationURI>

 --- New <fm:getCachedAttribute>

 --- New <fm:setCachedAttribute>

 --- New <fm:removeCachedAttribute>

 --- New <fm:getSessionAttribute>

 --- New <fm:setSessionAttribute>

 --- New <fm:removeSessionAttribute>

I18N --- New <i18n:initialize>

 --- New <i18n:getMessage>

Property
Set

 --- New <ps:getPropertyName>

 --- New <ps:setPropertyName>

Portal <pt:eval> taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:eval>

<pt:get> taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:get>

<pt:getgroupsforportal> Camel case

Change preface pt: to
esp:

taglib
uri="esp.tld"

<esp:getGroupsForPortal>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-17

<pt:monitorsession> Camel case

taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:monitorSession>

<pt:portalmanager> Camel case

taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:portalManager>

<pt:portletmanager> Camel case

taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:portletManager>

<pt:props> taglib
uri="esp.tld"

Change preface pt: to
esp:

<esp:props>

User/
Profile

<um:getprofile> Camel case

taglib uri="um.tld"

<um:getProfile>

<um:getproperty> Camel case

taglib
uri="um.tldv"

<um:getProperty>

<um:getpropertyasstring> Camel case

taglib uri="um.tld"

<um:getPropertyAsString>

<um:removeproperty> Camel case

taglib uri="um.tld"

<um:removeProperty>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

5 Changes to WebLogic Personalization Server JSP Tag Library

5-18 Migration Guide

<um:setproperty> Camel case

taglib uri="um.tld"

<um:setProperty>

User/
Group

<um:addgrouptogroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:addGroupToGroup>

<um:addusertogroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:addUserToGroup>

<um:changegroupname> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:changeGroupName>

<um:creategroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:createGroup>

<um:createuser> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:createUser>

<um:getchildgroupnames>

(previously undocumented)

Camel case

taglib uri="um.tld"

<um:getChildGroupNames>

<um:getchildgroups> Camel case

taglib uri="um.tld"

<um:getChildGroups>

<um:getgroupnamesforuser> Camel case

taglib uri="um.tld"

<um:getGroupNamesForUser>

<um:getparentgroupname> Camel case

taglib uri="um.tld"

<um:getParentGroupName>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-19

<um:gettoplevelgroups> Camel case

taglib uri="um.tld"

<um:getTopLevelGroups>

<um:getusernames> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:getUsernames>

<um:getusernamesforgroup> Camel case

taglib uri="um.tld"

<um:getUsernamesForGroup>

<um:removegroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:removeGroup>

<um:removegroupfromgroup>

(previously undocumented)

Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:removeGroupFromGroup>

<um:removeuser> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:removeUser>

<um:removeuserfromgroup>

(previously undocumented)

Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:removeUserFromGroup>

User /
Security

<um:login> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:login>

 --- New <um:logout>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

5 Changes to WebLogic Personalization Server JSP Tag Library

5-20 Migration Guide

<um:setpassword> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:setPassword>

 WLPS
Utilities

<es:condition> Tag no longer supported.
Requires manual
replacement. See below -
Note 2: <es:condition>.

<es:counter> taglib uri="es.tld"

Attribute id returns an
Integer or Long object.

You can no longer change
the value of the counter
variable "id". See below
- Note 3: <es:counter>.

Optional attribute type
can be long or Long or
Integer or if not
specified is assumed to be
Integer.

<es:counter>

<es:date> taglib uri="es.tld" <es:date>

<es:foreachinarray> Camel case

taglib uri="es.tld"

Attribute array must be a
run-time expression
(<%=expression%>).

Attribute counterId
returns an Integer object
(use id.intValue()).

<es:forEachInArray>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-21

<es:isnull> Camel case

taglib uri="es.tld"

Attribute id = item

Attribute item must be a
run-time expression.

An empty string is now
treated as a value. (An
empty string is not null.)

<es:isNull>

<es:monitorsession> Camel case

taglib uri="es.tld"

<es:monitorSession>

<es:notnull> Camel case

taglib uri="es.tld"

Attribute id = item

Attribute item must be a
run-time expression.

An empty string is now
treated as a value. (An
empty string is not null.)

<es:notNull>

<es:preparedstatement> Camel case

taglib uri="es.tld"

Add two new scriptlets.
 See below - Note 4:
<es:preparedStatement>.

Attribute pool no longer
supported.
 See below - Note 4:
<es:preparedStatement>.

<es:preparedStatement>

<es:simplereport> Camel case

taglib uri="es.tld"

Attribute resultSet
must be a run-time
expression.

<es:simpleReport>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

5 Changes to WebLogic Personalization Server JSP Tag Library

5-22 Migration Guide

Additional Notes About JSP Tags

Note 1: <pz:> Tags

To use the <pz:div> and <pz:contentSelector> tags, you no longer need to have
the JSP extended. You are no longer required to insert the following directive into your
code:

 <%@ page extends="com.beasys.commerce.axiom.p13n.jsp.P13NJspBase"
%>.

(If you have already added this code, it does no harm to leave it.)

<es:transposearray> Camel case

taglib uri="es.tld"

Attribute array must be a
run-time expression.

<es:transposeArray>

<es:usertransaction> Tag no longer supported.
Replace with new
scriptlets. See below - Note
5: <es:usertransaction>.

<es:uricontent> Camel case

taglib uri="es.tld"

<es:uriContent>

WLS
Utilities

<wl:process> taglib
uri="weblogic.tld"

notname = notName

notvalue = notValue

<wl:process>

--- New <wl:repeat>

Table 5-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Library Old Style Tag Name Change New JSP 1.1 Tag

Changes to the JSP Tag Library in Release 3.1

Migration Guide 5-23

Note 2: <es:condition>

The <es:condition> tag is no longer supported. Replace it manually with a scriptlet,
creating your own if statement.

Old Usage

<es:condition test="schemaPortletNames.length>0"> </es:condition>

New Usage

<% if (schemaPortletNames.length>0) { %>
<% } %>

Note 3: <es:counter>

If you were manipulating the counter variable within the <es:counter> tag, you
will now need to use a scriptlet instead.

Old Usage

<es:counter id="colIter" minCount="0"
maxCount="<%=numOfCols%>">
colIter++;
</es:counter>

New Usage

<%
for (int colIter = 0; colIter<numOfCols; colIter++) {
colIter++;
}
%>

Note 4: <es:preparedStatement>

The new <es: preparedStatement> tag includes two new scriptlets. In addition,
this tag no longer supports the “pool” attribute. (The pool defined in
commerce.propeties as “commerce.jdbc.pool.name” is used for connections.)

Old Usage

<es:preparedstatement id="ps" sql"<%=bookmarkBean.QUERY%>"
pool="commercePool">
<%

5 Changes to WebLogic Personalization Server JSP Tag Library

5-24 Migration Guide

 bookmarkBean.createQuery(ps, owner);
 java.sql.ResultSet resultSet = ps.executeQuery();
 bookmarkBean.load(resultSet);
%>
</es:preparedstatement>

New Usage

<es:preparedStatement id="ps" sql="<%=bookmarkBean.QUERY%>">
<%@ include file="startPreparedStatement.inc" %>
<%
 bookmarkBean.createQuery(ps, owner);
 java.sql.ResultSet resultSet = ps.executeQuery();
 bookmarkBean.load(resultSet);
%>
<%@ include file="endPreparedStatement.inc" %>
</es:preparedStatement>

Note 5: <es:usertransaction>

The old <es:usertransaction> tag is no longer supported. The following code
illustrates how to create equivalent functionality.

Old Usage

<es:usertransaction>
---- body of page --------
</es:usertransaction>

New Usage

<%
setSessionValue(com.beasys.commerce.axiom.jsp.JspConstants.
USER_TRANS_TIMEOUT, "500",request);
// tx timeout defaults to 600 sec. without above line
%>
<%@ include file="startUserTransaction.inc" %>
---- body of page --------
<%@ include file="endUserTransaction.inc" %>

Migration Guide I-1

Index

 DeploymentDescriptors ??–3-15
 tag, changes in 3.1 3-16, 5-9
 tag, changes in 3.2 2-4, 5-7
 tag, changes in 3.5 1-10, 1-11, 5-2, 5-3
 tag, new attribute in 3.2 2-4, 5-7
 tag, new in 3.2 5-7
 tags, changes in 3.1 3-16
 tags, changes in 3.1 3-8
 tags, changes in 3.2 2-4
 tags, changes in 3.5 1-11
 tags, changes in 3.5 1-11, 5-2

Symbols
<il8n> tags, changes in 3.1 3-16

A
advice request lookup names supported in 3.1

3-9
advislets

added in 3.1 3-10
Advisor

overview for 3.1 3-8
Advisor APIs

changes in 3.1 3-9
Advisor Session Bean, new in 3.1 3-8
AND in Rules Editor in 3.1 3-11
Application Initialization Property Sets 3-4
application.xml file in 3.5 1-4
_APPLICATION_INIT property set 3-5
attributes for tags changed in 3.1 5-12

B
baseHref attribute in 3.2 5-7
BLOBS

migration issues 1-11
Broadbase 2-3
BulkLoader

changes in 3.1 3-16

C
camel-case attributes in 3.1 5-13
classifier rules

new in 3.1 3-11
CLOBS, migration issues 1-11
<cm:getProperty> tag 5-7
<cm:printDoc> tag 5-7, 5-12
<cm:select> tag 3-12
<cm:selectById> tag 3-12
compatibility of tag libraries between

versions 5-6
ConfigurableEntity interface, changes in 3.1

3-15
connection pools in 3.1 3-13
Content interface, changes in 3.1 3-15
Content Management

changes in 3.1 3-12
changes to tag attributes in 3.1 5-12
content cache 3-12
Interwoven Content Express 2-3
new features 3-12
new tag libraries in 3.2 2-4

I-2 Migration Guide

readOnly content tag in 3.1 3-13
retrieve Content 3-12
retrieve Documents 3-12
support for non-EJB context objects in

3.1 3-13
tag changes in 3.2 5-7

content selector rules
new in 3.1 3-11

createRequestTemplate method
parameter changes in 3.1 3-9
Personalization Adviser versus Adviser

3-10

D
Database Schemas

upgrading 4-1
databases

migrating schemas for 3.1 3-17
migrating schemas for 3.2 2-4
migrating schemas for 3.5 1-11
migrating schemas from 2.0.1 to 3.1.1 4-

2
migrating schemas from 2.0.1 to 3.2 4-4
migrating schemas from 3.1.1 to 3.1.2 4-

5
migrating schemas from 3.2 to 3.5 4-14

_DEFAULT_APP_INIT 3-4, 3-6
_DEFAULT_PORTAL_INIT 3-4, 3-6
defaultWebApp directory changes in 3.5 1-5
Deployment Descriptor

DocumentManager EJB 3-14
deployment descriptor locations in 3.5 1-4
Deployment Descriptors

changes in 3.1 3-13
Document EJB deprecated in 3.1 3-14
DocumentManager EJB usage in 3.1 3-

14
EJB deployment descriptor changes in

3.1 3-13
Destination Determiner

backward compatibility 3-4
dynamic flow determination in 3.1 3-3

Destination Determiner property
overview 3-4
setting parameters for portal or

application 3-6
Destination Handler

backward compatibility 3-4
dynamic flow handling in 3.1 3-3
overview 3-5
setting parameters for portal or

application in 3.1 migration 3-6
destination values, changing 3-3
directory structure changes to 3.5 1-2
docPool in 3.1 3-13
DocPoolDriver changes in 3.1 3-15
DocPoolURL changes in 3.1 3-15
Document EJB deployment descriptor

changes in 3.1 3-14
Document interface, changes in 3.1 3-15
Document Manager, EJB deployment

descriptor changes in 3.1 3-14
Documentum and Interwoven Content

Express 2-3
dumprules32 script, migrating rules to 3.5 1-

8

E
E-Business Control Center overview for 3.5

1-5
EJB Deployment Descriptors, changes in 3.1

3-13
EJB JAR file location in 3.5 1-4
EJB variables

document changes in 3.1 3-14
document manager changes in 3.1 3-14
document schema changes in 3.1 3-13

e-marketing with Broadbase 2-3
<es:> prefix 5-12
<es:isNull> tag 5-12

Migration Guide I-3

<es:notNull> tag 5-12
esp: prefix 5-12
<es:preparedStatement> tag 5-7, 5-23, 5-12
<es:condition> tag 5-23
<es:counter> tag 5-23
<es:usertransaction> tag 5-24

F
Flow Manager

features in 3.1 3-2
hot-deployment 3-3
migration to 3.1 3-5
new tag libraries in 3.2 2-4
overview, 3.1 3-2
property sets used in 3.1 3-4
registering a new portal 3-3
tag changes in 3.2 5-7
web application deployment for 3.1

migration 3-7
Webflow support in 3.1 3-3

<fm:getApplicationURI> tag 5-7
<fm:getCachedAttribute> tag 5-8
<fm:getSessionAttribute> tag 5-8
<fm:removeCachedAttribute> tag 5-8
<fm:removeSessionAttribute> tag 5-8
<fm:setCachedAttribute> tag 5-8
<fm:setSessionAttribute> tag 5-8

G
Group interface, changes in 3.1 3-15

H
hot deployment in Flow Manager 3-3
HotSpot and JDK version 2-2
HTTP request, evaluating 3-4

I
<i18n:getMessage> tag 5-10

<i18n:localize> tag 5-10
in 3.1 3-12
internationalization, new tags in 3.1 5-9
Interwoven Content Express 2-3

J
JAR file location in 3.5 1-4
Java classes deprecated in 3.1 3-9
JavaServer Page (JSP)

changes to tag libraries 5-11
new naming conventions 5-11

jdbc/docPool changes in 3.1 3-15
JDK version and HotSpot Server 2-2
JSP Service Manager

deprecated in 3.1 3-2
JSPs, see tag libraries 5-2

L
lookup names supported in 3.1 3-9

M
marketing with Broadbase 2-3

N
naming conventions for tags in 3.1 5-11

O
object interfaces

changes in 3.1 3-15
OR in Rules Editor in 3.1 3-11
Oracle

migrating schemas for 3.1 3-17
migrating schemas for 3.2 2-4
migrating schemas for 3.5 1-11
migrating schemas from 2.0.1 to 3.1.1 4-

2
migrating schemas from 2.0.1 to 3.2 4-4

I-4 Migration Guide

migrating schemas from 3.1.1 to 3.1.2 4-
5

migrating schemas from 3.2 to 3.5 4-14
migration issues with BLOBs and

CLOBs 1-11
upgrading database schemas 4-1

P
performance

JDK and HotSpot Server 2-2
Personalization Advisor

changes in 3.1 3-8
Java classes deprecated in 3.1 3-9

Personalization Agents
changes in 3.1 3-10

Pipeline and Webflow Editor 2-3
pipeline.properties file, modifying 2-3
portal

registering 3-3
setting parameters 3-6

Portal Service Manager
deprecated in 3.1 3-2

prefix
es: 5-12
esp: 5-12
pz: 5-12

primitive type changes to tags in 3.1 5-14
processing, invoking using Destination

Handler property 3-5
property sets

added in 3.1 3-4
creating new in 3.1 migration 3-5
forcing reload 3-5
new tags in 3.1 5-9
relationship with rule sets 3-11

PropertyCase changes in 3.1 3-15
<ps:getPropertySetNames> tag 5-9
<pt:*> tags 5-12, 5-13
public_html changes in 3.5 1-5
<pz:*> tags 5-22, 5-13, 5-22

pz: prefix 5-12
pzTechnique parameter, changes in 3.1 3-9

R
result attribute 5-12
resultId and resultType parameters 5-7
resultId attribute 5-12
rule sets

changes in 3.1 3-11
relationship with property sets 3-11
terminology changes in 3.1 3-12

rule sheet
terminology changes in 3.1 3-12

rules
AND/OR issues for migration to 3.5 1-9
migrating 3.2 to 3.5 1-6

Rules Editor
changes in 3.1 3-11
using And or Or as connectors in 3.1 3-

11
Rules Editors, changes in 3.5 1-6
Rules Manager

replacement in 3.5 1-5

S
schemas

migrating schemas for 3.1 3-17
migrating schemas for 3.2 2-4
migrating schemas for 3.5 1-11
migrating schemas from 2.0.1 to 3.1.1 4-

2
migrating schemas from 2.0.1 to 3.2 4-4
migrating schemas from 3.1.1 to 3.1.2 4-

5
migrating schemas from 3.2 to 3.5 4-14

SmartBMP class changes in 3.1 3-15

Migration Guide I-5

T
tables

migrating schemas for 3.1 3-17
migrating schemas for 3.2 2-4
migrating schemas for 3.5 1-11
migrating schemas from 2.0.1 to 3.1.1 4-

2
migrating schemas from 2.0.1 to 3.2 4-4
migrating schemas from 3.1.1 to 3.1.2 4-

5
migrating schemas from 3.2 to 3.5 4-14

tag attributes and camel casing in 3.1 5-13
tag libraries

attribute changes in 3.1 5-12
changes in 3.1 3-16, 5-11
changes in 3.2 5-6
changes in 3.5 1-10, 5-2
compatibility between versions 5-6
migration issues 5-6
migration roadmap for 3.1 5-15
naming conventions in 3.1 5-11
new in 3.1 5-8
new in 3.2 5-6
primitive type changes in 3.1 5-14

tag library descriptors
cm.tld 5-14
es.tld 5-13
esp.tld 5-13
pz.tld 5-14
um.tld 5-13
weblogic.tld 5-13

tag library descriptors, new in 3.1 5-13
tags

attribute changes 5-12
camel-case attributes 5-13
changes to JSP tag library 5-11
migration roadmap for 3.1 5-15
new Internationalization 5-9
new JSP tags for version 3.1 5-8
new Property Set Management 5-9

new WebLogic Utility 5-10
TAXWARE 2-2
terminology for tags in 3.1 5-11
transactionIsolationLevel attribute in 3.2 2-4,

5-7
ttl (time-to-live) property

overview 3-5

U
<um:*> tags 5-12
<um:getProperty> tag 5-12
 5-12
UseDataSource changes in 3.1 3-14
User interface

changes in 3.1 3-15
User Management Schema tables updated in

3.1 3-17
User Management, changes to tag attributes

in 3.1 5-12
Utility tag libraries

changes in 3.2 2-4, 5-7

V
version of WebLogic Server

supported for 3.5 1-2

W
web pages, requirements for in 3.5 1-5
Webflow and Pipeline Editor 2-3
Webflow functionality in 3.1 3-3
webflow.properties file, modifying 2-3
WEB-INF contents in 3.5 1-4
WebLogic Commerce Server

directory structure changes in 3.5 1-2
WebLogic Server

version supported for 3.5 1-2
WebLogic Utilities

changes to tag attributes in 3.1 5-12

I-6 Migration Guide

new tags 5-10
weblogic.properties file 3-3
WLCS_USER table

migrating from 2.0.1 to 3.1.1 4-2
WLCS_USER table, changes in 3.1 3-17
wlcsApp directory changes in 3.5 1-4
wlcsDomain directory changes in 3.5 1-4
<wl:process> tag 5-13
<wl:repeat> 5-10
<wl:repeat> tag 5-10

	1 Migrating WebLogic Commerce Server to Version 3.5
	Support for WebLogic Server 6.0
	Changes to the WebLogic Commerce Server Directory Structure
	All Pages Must Be in a Web Application

	Introducing the E-Business Control Center
	Changes to the Rules Editor in Release 3.5
	Changes to the JSP Tag Libraries
	Database Schema Migration Information

	2 Migrating WebLogic Commerce Server to Version 3.2
	New Java 2 SDK for Enhanced Performance
	New Third-Party Integrations
	International Tax Support from TAXWARE
	E-Marketing Analysis Using Broadbase
	Content Management with Interwoven Content Express

	New Webflow and Pipeline Editor
	Changes to the JSP Tag Libraries
	Database Schema Migration Information

	3 Migrating WebLogic Personalization Server to Version 3.1
	Navigating with Flow Manager
	Deprecated Service Managers
	Hot Deployment
	Dynamic Flow Determination and Handling
	Backward Compatibility

	Property Set Usage
	Go With the Flow: Migrating to the Flow Manager
	Accessing Your Application via the Flow Manager

	Changes to the Personalization Advisor
	JSP Tags Ported to Use the New Advisor
	Deprecated Personalization Advisor Classes
	Changes in Advisor APIs
	Terminology Change: Agents Changed to Advislets

	Changes to the Rules Editor in Release 3.1
	Relationship Between Rules and Property Sets
	The Use of AND or OR to Connect Expressions
	Change the Word ‘Rule Sheet’ to ‘Rule Set’

	Changes to Content Management
	New Features in <cm:select> and <cm:selectById> Tags
	Changes to EJB Deployment Descriptors
	Document Schema EJB Deployment Descriptor
	DocumentManager EJB Deployment Descriptor
	Document EJB Deployment Descriptor (Deprecated)

	Changes to Object Interfaces
	Changes to the BulkLoader

	Changes to the JSP Tag Library
	Database Schema Migration Information
	Updated User Management Schema Table

	4 Upgrading Database Schemas from Prior Releases
	Upgrading WebLogic Personalization Server Database Schemas from 2.0.1 to 3.1.1
	Upgrading WebLogic Personalization Server Database Schemas from 2.0.1 to 3.2
	Upgrading Database Schemas from 3.1.1 to 3.2
	Upgrade the WebLogic Personalization Server Schema
	Step 1: Determine if Data Exceeds New Column Lengths and Modify When Necessary
	Step 2: Upgrade the Database Schema

	Upgrade the WebLogic Commerce Server Schema
	Step 1: Determine if Data Exceeds New Column Lengths and Modify When Necessary
	Step 2: Upgrade the Database Schema

	Verify the Upgrade
	To Start the Server

	Remove Temporary Tables

	Upgrading Database Schemas from 3.2 to 3.5
	Make a Backup
	Validate Data
	Upgrade Current Tables to New Schema
	Drop Any Backup Tables
	Add New Tables to Bring the Schema Current
	Verify the Upgrade
	To Start the Server

	5 Changes to WebLogic Personalization Server JSP Tag Library
	JSP Tag Changes in Version 3.5
	Removed Tags
	<es:preparedStatement>

	New Ads and Placeholder Tag
	<ad:adTarget>
	<ph:placeholder>

	New Event Tracking Tags
	<tr:clickContentEvent> Content Tag
	<tr:displayContentEvent> Content Tag
	<trp:clickProductEvent> Product Tag
	<trp:displayProductEvent> Product Tag
	<trc:clickCampaignEvent> Campaign Tag

	New Webflow Tag
	<webflow:setValidated Value>

	New E-Business Tag
	<eb:smnav>

	Changes to Personalization Tags
	<pz:div> and <pz:contentSelector>

	JSP Tag Changes in Version 3.2
	Changes to Content Management Tags in Release 3.2
	<cm:getProperty>
	<cm:printDoc>

	Changes to Utility Tags in Release 3.2
	<es:preparedStatement>

	New Flow Manager Tags in Release 3.2
	<fm:getApplicationURI>
	<fm:getCachedAttribute>
	<fm:setCachedAttribute>
	<fm:removeCachedAttribute>
	<fm:getSessionAttribute>
	<fm:setSessionAttribute>
	<fm:removeSessionAttribute>

	New JSP Tags Introduced in Release 3.1
	New Property Set Management Tags in Release 3.1
	<ps:getPropertyNames>
	<ps:getPropertySetNames>

	New Internationalization Tags in Release 3.1
	<i18n:localize>
	<i18n:getMessage>

	New WebLogic Utility Tag in Release 3.1
	<wl:repeat>

	Changes to the JSP Tag Library in Release 3.1
	New JSP 1.1 Naming Conventions
	Changes to Tag Attributes
	The Content Management Tags Have Been Changed as Follows:
	The User Management Tags Have Been Changed as Follows:
	The WebLogic Personalization Server Utility tags Have Been Changed as Follows:
	Tag Attributes Require Camel Casing
	New Library Descriptors

	Global Changes
	Tag Migration Roadmap
	Additional Notes About JSP Tags
	Note 1: <pz:> Tags
	Note 2: <es:condition>
	Note 3: <es:counter>
	Note 4: <es:preparedStatement>
	Note 5: <es:usertransaction>

	Index

