
Performance Tuning Guide

W e b L o g i c C o m m e r c e S e r v e r 3 . 1

BEA WebLogic Commerce Server
BEA WebLogic Personalization Server

W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 1
D o c u m e n t E d i t i o n 1 . 0

N o v e m b e r 2 0 0 0

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, ObjectBroker, TOP END, and Tuxedo are
registered trademarks of BEA Systems, Inc. BEA Connect, M3, eSolutions, eLink, WebLogic, WebLogic
Enterprise, WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems,
Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Performance Tuning Guide

Document Edition Date Software Version

1.0 November 2000 WebLogic Commerce Server 3.1.1

Contents

Adjust the Intervals for Checking JSP and Servlet Modifications2
About the Page-Check Intervals Properties ..3
About the Reload-Servlet Interval Property..4
To Adjust the Intervals..4
For More Information ...4

Adjust Database Connections Available at Startup...5
Set the Reload Policy for Rules...6
Adjust Caching ..7

Adjust and Use the Session and Global Caches...7
Enabling the Caches..8
JSP Tags for Accessing HttpSession and the Session

and Global Caches ...9
An API for Accessing HttpSession and the Session

and Global Caches ...9
Guidelines for Placing Data in HttpSession, Session Cache,

or Global Cache ...10
Adjust Caching for Content Management..10
Enable Property Caching..13

Property Caching in a Clustered Environment13
To Enable Property Caching ...14

Enable Group Caching ...15
Group Caching in a Clustered Environment ...16
To Set Up the Group-Cache Table..16
To Enable and Configure the Group Cache ..17
To Access Data in the Group Cache Table ...17

Adjust Portal and Portlet Settings While Load Testing.......................................18
Display Metadata, Sort and Query Explicit Metadata...19
Performance Tuning Guide iii

Use LDAP for Authentication Only ... 19
Use the DocumentManager EJB... 20
iv Performance Tuning Guide

Performance Tuning Guide
When you first install BEA WebLogic Commerce Server and Personalization Server,
it is configured to support Web-site developers and administrators. For example some
caching mechanisms are disabled so developers can see the results of their
modifications immediately.

When you are ready to make your Web site available to customers, refer to WebLogic
Server Performance Tuning Guide for information about tuning WebLogic Server.

Then, for information about tuning WebLogic Commerce Server and Personalization
Server performance, refer to the following topics in this document:

� Adjust the Intervals for Checking JSP and Servlet Modifications

� Adjust Database Connections Available at Startup

� Set the Reload Policy for Rules

� Adjust Caching

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

� Enable Group Caching

� Adjust Portal and Portlet Settings While Load Testing

� Display Metadata, Sort and Query Explicit Metadata

� Use LDAP for Authentication Only

� Use the DocumentManager EJB
Performance Tuning Guide 1

Adjust the Intervals for Checking JSP and
Servlet Modifications

By default, each time a Web browser requests a JSP, Commerce Server checks for any
modifications to the JSP source file. Likewise, each time Commerce Server sends a
request to a servlet, it checks for any modifications to the servlet class files.

For your production Web site, you can decrease the amount of time in which
Commerce Server serves JSPs and processes requests to servlets by increasing the
intervals at which the server checks for modifications.

Although Commerce Server performs faster with higher values for the
modification-check intervals, the higher values reduce sensitivity to changes in your
source files. For example, you can set the server to check for JSP modifications every
10 minutes. After you change a JSP, it will take up to 10 minutes for the server to see
the modifications.

This section includes the following topics:

� About the Page-Check Intervals Properties

� About the Reload-Servlet Interval Property

� To Adjust the Intervals

� For More Information
2 Performance Tuning Guide

ADJUST THE INTERVALS FOR CHECKING JSP AND SERVLET MODIFICATIONS
About the Page-Check Intervals Properties

Two properties determine the interval at which WebLogic Server checks to see if JSP
files have changed and need recompiling:

� The pageCheckSeconds property in
WL_COMMERCE_HOME\weblogic.properties, which applies only to servlets
that WebLogic deploys in the default servlet context.

The following excerpt from weblogic.properties shows the property in
boldface text with its default value:

weblogic.httpd.register.*.jsp=\
weblogic.servlet.JSPServlet

weblogic.httpd.initArgs.*.jsp=\
pageCheckSeconds=0,\

packagePrefix=jsp,\
compileCommand=d:/bin/jikes.exe,\
workingDir=d:/weblogic/myserver/classfiles,\
verbose=false,\
keepgenerated=true

� The weblogic.jsp.pageCheckSeconds context parameter in a web app’s
deployment descriptor (web.xml file), which applies only to the servlets that
WebLogic Server deploys in the context of the web app.
The following excerpt from
WL_COMMERCE_HOME\server\webapps\web-inf\web.xml shows the
weblogic.jsp.pageCheckSeconds context parameter in boldface text with the
default value:

<context-param>
<param-name>weblogic.jsp.pageCheckSeconds</param-name>
<param-value>0</param-value>

</context-param>

Note: Neither page-check interval determines the frequency with which Commerce
Server checks for updated content that is stored in the database and in a content
management system. Instead, the ttl (time to live) settings for various caches
determine the refresh rate for content. For example, if you set the page-check
intervals to once a second, and you set the ttl for the content cache to 10
minutes, it can take up to 10 minutes for the server to see the new content, even
though it is checking for new JSP source code every second. For information
on setting ttl properties for caches, refer to “Adjust Caching” on page 7.
Performance Tuning Guide 3

About the Reload-Servlet Interval Property

The weblogic.servlet.reloadCheckSecs context parameter in a web app’s
deployment descriptor (web.xml file) specifies the interval in seconds that the web app
checks for modified servlet classes.

The following excerpt from
WL_COMMERCE_HOME\server\webapps\web-inf\web.xml shows the
weblogic.servlet.reloadCheckSecs context parameter in boldface text with the
default value:

<context-param>
<param-name>weblogic.servlet.reloadCheckSecs</param-name>
<param-value>600</param-value>

</context-param>

To Adjust the Intervals

To determine the optimal page-check and reload-servlet intervals for your production
Web site do the following:

1. Establish performance baselines by testing Commerce Server performance with all
three intervals set to -1 (which specifies that the server never checks for
modifications).

2. Test the performance with the intervals set to various numbers of seconds. For
example, set the intervals to 600 seconds (10 minutes) and test the performance.
Then set the intervals to 900 seconds and test the performance.

3. Choose intervals that provide the best performance while checking for
modifications to JSP files and servlet classes at a satisfactory rate.

For More Information

For more information about configuring JSP and servlet options for WebLogic Server,
see the following topics on the WebLogic Server documentation Web site:

� “Writing a Web Application”

� “Using WebLogic JSP”
4 Performance Tuning Guide

ADJUST DATABASE CONNECTIONS AVAILABLE AT STARTUP
Adjust Database Connections Available at
Startup

To optimize the database pool performance for your production web site, open
$WL_COMMERCE_HOME/weblogic.properties and modify the values for the
following weblogic.jdbc.connectionPool.commercePool properties:

� loginDelaySecs. Change to 0

� initialCapacity. Change to maxCapacity

� allowShrinking. Change to false

� testConnsOnReserve. Change to false

For example:

weblogic.jdbc.connectionPool.commercePool=\
url=jdbc:oracle:thin:@server:port:instance,\
driver=oracle.jdbc.driver.OracleDriver,\
loginDelaySecs=0,\
initialCapacity=maxCapacity,\
maxCapacity=20,\
capacityIncrement=1,\
allowShrinking=false,\
shrinkPeriodMins=15,\
testConnsOnReserve=false,\
props=user=user;password=pwd,\
refreshMinutes=5

FOR MORE INFORMATION

For more information on database connection pools, see “Creating and Using
Connection Pools” on the WebLogic Server documentation Web site and “Setting Up
Connection Pools” under “Creating and Managing Content” in Personalization Server
User’s Guide.
Performance Tuning Guide 5

Set the Reload Policy for Rules

You can determine the frequency with which Personalization Server checks for
changes to rules by doing the following:

1. Open $WL_COMMERCE_HOME/lib/rulesservice.jar.

2. In ejb-jar.xml (which is in rulesservice.jar), modify the value for
rulesetReloadInterval. The value expresses the number of milliseconds that
Personalization Server waits before checking for changes to rules. For example:

<env-entry>
<env-entry-name>rulesetReloadInterval</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>300000</env-entry-value>
</env-entry>

Personalization Server performs faster with a higher value for the reload interval,
however, the higher reload value reduces sensitivity to rule changes.

If you shut down and restart your production servers when you make changes to your
site, you can boost performance by setting the reload policy in ejb-jar.xml (which
is in rulesservice.jar) to reloadNever. For example:

<env-entry>
<env-entry-name>rulesetReloadPolicy</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>reloadNever</env-entry-value>
</env-entry>

If you set the reload policy to reloadNever, Personalization Server does not recognize
changes to rules until you restart the server.

FOR MORE INFORMATION

For more information about rules, see “Creating and Managing Rules” in
Personalization Server User’s Guide.
6 Performance Tuning Guide

ADJUST CACHING
Adjust Caching

To adjust caching for production Web site, complete the following tasks:

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

Adjust and Use the Session and Global Caches

In a clustered environment, you can improve scalability and performance by
minimizing the use of HttpSession objects. (HttpSession is part of the JDK
session-tracking mechanism, which servlets use to maintain state about a series of
requests from the same user.)

To minimize using HttpSession, each server in the WebLogic Commerce Server and
Personalization Server cluster provides the following caches:

� session cache, which stores data in memory about each session. The function
of the session cache is the same as HttpSession, however, unlike
HttpSession, it is not replicated across the cluster.

� global cache, which stores data in memory that multiple sessions can use. For
example, sessions for anonymous users can access data from the global cache.
Like the session cache, it is not replicated across the cluster.

This section discusses the following topics:

� Enabling the Caches

� JSP Tags for Accessing HttpSession and the Session and Global Caches

� An API for Accessing HttpSession and the Session and Global Caches

� Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache
Performance Tuning Guide 7

FOR MORE INFORMATION

For more information about how WebLogic Commerce Server and Personalization
server process HTTP requests, refer to “Foundation Classes and Utilities” in
Personalization Server Developer’s Guide. For more information about
HttpSession, see
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html.
For more information about WebLogic Server clusters, see Using WebLogic Server
Clusters.

Enabling the Caches

To enable the session and global caches, add the following properties to
$WL_COMMERCE_HOME/weblogiccommerce.properties:

_sessionCache.ttl=900000
_sessionCache.capacity=10000
_sessionCache.enabled=true

_globalCache.ttl=600000
_globalCache.capacity=1000
_globalCache.enabled=true

The ttl (time to live) property determines the number of milliseconds that the server
maintains the cache. The capacity property determines the maximum number of
objects in the cache. (Both session and global are in-memory caches.) The enabled
property determines whether the cache is activated. A false value deactivates the
cache and obviates the ttl and capacity properties; true activates it.

You can increase or decrease values for ttl and capacity based on the amount of
available memory and the level of performance you desire.

Note: Each server in a cluster maintains its own set of caches, each of which must be
configured separately by modifying the server’s
weblogiccommerce.properties file. Because the session and global caches
are not replicated across servers in the cluster, if a server fails, the data in its
caches is inaccessible. For guidelines about which types of data to place in the
session and global caches, see “Guidelines for Placing Data in HttpSession,
Session Cache, or Global Cache” on page 10.
8 Performance Tuning Guide

ADJUST CACHING
JSP Tags for Accessing HttpSession and the Session and Global Caches

Use the following JSP tags from the FlowManager tag library to place, retrieve, and
remove data from HttpSession as well as the session and global caches:

� <fm:getCachedAttribute>

� <fm:setCachedAttribute>

� <fm:removeCachedAttribute>

� <fm:getSessionAttribute>

� <fm:setSessionAttribute>

� <fm:removeSessionAttribute>

For information about these tags, refer to “JSP Tag Library Reference” in
Personalization Server Developer’s Guide.

An API for Accessing HttpSession and the Session and Global Caches

Use the following methods of the
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper API to
place, retrieve, and remove data from HttpSession and the session and global caches:

� getCachedValue

� setCachedValue

� removeCachedValue

� getGlobalCachedValue

� setGlobalCachedValue

� removeGlobalCachedValue

� getSessionAttribute

� setSessionAttribute

� removeSessionAttribute
Performance Tuning Guide 9

For information about these methods, refer to the documentation for
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper in
WebLogic Personalization Server Javadoc.

Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

In general, place only the following in HttpSession:

� Items that are required for replication across the cluster.

� Any keys that are required to look up information. When you enable session
replication for WebLogic Server, HttpSession is replicated on all machines in a
cluster. Placing information in HttpSession while session replication is enabled
provides a backup for data lookups. For example, you place query parameters
for a search in HttpSession and the search results in the session cache. While
returning the search results the server fails. Another server can recreate the
search by referring to the parameters that are stored in the HttpSession replica.

Place any information that multiple users require (either within the same application
or across multiple applications) in the global cache.

Place all other session-related information in the session cache.

Adjust Caching for Content Management

To optimize content-management performance for your production Web site,
configure Personalization Server as follows:

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, use the useCache attribute whenever possible.
Doing so avoids a call to DocumentManager and, in the case of
pz:ContentSelector, to the RuleService.

For information on using the useCache attribute, refer to “JSP Tag Library
Reference” in Personalization Server Developer’s Guide.
10 Performance Tuning Guide

ADJUST CACHING
To clear cached content when user and/or document attributes change, use the
remove method of com.beasys.commerce.content.ContentCache. For more
information, see the JavaDoc for
com.beasys.commerce.content.ContentCache.

For an example of a JSP file that uses the remove method, see
WL_COMMERCE_HOME/server/public_html/examples/content/cache-cont
rol.jsp

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, set the cacheScope attribute to application
whenever possible. For example:
<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up
queries by avoiding a call to the DocumentManager EJB.

Note: For pz:contentSelector, set the cacheScope attribute to application
only when you want to select shared content. For example, in exampleportal,
the Acme Promotion portlet uses an application-scoped cache to select content
for non-authenticated users. Because it uses the application scope, all
non-authenticated users see the same content. For authenticated users, Acme
Promotion provides personalized content by switching to a session scoped
cache.

� Whenever you can predict the next document that users will view based on the
document that they are currently viewing, load the next document into the cache
before users request it. This “forward caching” will greatly improve the speed at
which Personalization Server responds to user requests (assuming that your
prediction is correct; forward caching a document that no one requests will only
degrade performance and scalability).
Performance Tuning Guide 11

The following JSP fragment is an example of forward caching a document:
<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%>

<% String query = null; %>
<es:forEachInArray array="<%=myDocs%>" id="myDoc"
type="com.beasys.commerce.axiom.content.Content">

<% String relId = (String)myDoc.getProperty("relatedDocId",
null); %>
<es:notNull item="<%=relId%>">

<%
if (query != null)
query += " || ";
else
query = "";
query += "identifier = '" +
ExpressionHelper.toStringLiteral(relId) + "'";

%>

</es:notNull>
</es:forEachInArray>

<%-- Load the related content into the cache via cm:select
--%>

<es:notNull item="<%=query%>">

<cm:select query="<%=query%>" id="foo" useCache="true"
cacheId="relatedDocs"
cacheScope="session" max="10" cacheTimeout="300000" />

</es:notNull>

FOR MORE INFORMATION

For more information about content management, see “Creating and Managing
Content” in Personalization Server User’s Guide.

For more information about JSP tags for content management, see “JSP Tag Library
Reference” in Personalization Server Developer’s Guide.
12 Performance Tuning Guide

ADJUST CACHING
Enable Property Caching

The WebLogic Server Configurable Entity and Entity Property Manager provide
several in-memory caches that you can enable for WebLogic Commerce Server and
Personalization Server. The caches decrease the amount of time needed to access user,
group, and other properties, but introduce the possibility of stale data.

This section discusses the following topics:

� Property Caching in a Clustered Environment

� To Enable Property Caching

Property Caching in a Clustered Environment

With property caching enabled in a clustered environment, each server in a cluster
maintains its own cache; the cache is not replicated on other servers. In this
environment, when properties that are stored in the defaultPropertyCache,
entityPropertyCache, directPropertyManager, or ldapPropertyCache
change on one server, they may not change on another server in a timely fashion.

In most cases, immediate or quick access to properties on another server is not
necessary: user sessions are pinned to a single server, and even with caching enabled,
users immediately see changes they make to their own settings on the server.

However, if a server fails and loses the data in its caches, modifications to properties
may be lost, depending on the longevity of the property cache. In addition, if an
administrator changes a user's properties, the user may not see the changes during her
session if she and the administrator are pinned to different servers in the cluster.

You can mitigate these situations by specifying a small ttl (time-to-live) setting when
you enable the caches. The small ttl setting provides performance gains by caching
data, but the short-lived caches increase the rate at which property changes are
replicated across servers.

If you require multiple servers in a cluster to have immediate access to modified
properties, disable property caching by adding the entries described in “To Enable
Property Caching” and specifying false for the
unifiedProfileTypeCache.enabled value.
Performance Tuning Guide 13

To Enable Property Caching

To enable property caching, add the following entries to
WL_COMMERCE_HOME\weblogiccommerce.properties, adjusting the values based
on the number of properties in your property sets and the frequency with which you
want the data updated:

Note: These entries enable in-memory caching. Caches that grow exceedingly large
may degrade performance.

� To create a cache of unified profile types that lives for 1 hour and contains 100
entries, add:

unifiedProfileTypeCache.ttl=3600000
unifiedProfileTypeCache.capacity=100
unifiedProfileTypeCache.enabled=true

� To create a cache of default schema properties that lives for 10 minutes and
contains 500 entries, add:

defaultPropertyCache.ttl=600000
defaultPropertyCache.capacity=500
defaultPropertyCache.enabled=true

� To create a cache of entity properties that lives for 10 minutes and contains 500
entries, add:

entityPropertyCache.ttl=600000
entityPropertyCache.capacity=500
entityPropertyCache.enabled=true

� To create a cache of LDAP entity properties that lives for 10 minutes and
contains 500 entries, add:

ldapEntityPropertyCache.ttl=600000
ldapEntityPropertyCache.capacity=500
ldapEntityPropertyCache.enabled=true

� To create a cache of entity ids that lives for 1 hour and contains 500 entries, add:

entityIdCache.ttl=3600000
entityIdCache.capacity=500
entityIdCache.enabled=true
14 Performance Tuning Guide

ADJUST CACHING
� To create a cache of explicit properties that lives for 10 minutes and contains
100 entries, add:

directPropertyManager.ttl=600000
directPropertyManager.capacity=100
directPropertyManager.enabled=true

� To create a cache of ConfigurableEntity methods that lives for 1 hour and
contains 100 entries, add:

ConfigurableEntityMethodCache.ttl=3600000
ConfigurableEntityMethodCache.capacity=100
ConfigurableEntityMethodCache.enabled=true

FOR MORE INFORMATION

For more information about property sets, see “Creating and Managing Property Sets”
in Personalization Server User’s Guide.

For more information about JSP tags for managing property sets, see “JSP Tag Library
Reference” in Personalization Server Developer’s Guide.

Enable Group Caching

In systems with a deep group hierarchies, you can improve performance using group
caching, which precalculates group membership information and stores the calculation
results in a new database table, WLCS_USER_GROUP_CACHE. Any queries that are
submitted while group caching is recalculating data return the old, previously
committed data.

With group caching, you exchange faster performance for the risk of stale or
inconsistent data. To balance performance with data consistency, you can configure
the interval at which the caching mechanism recalculates and updates the table.
Performance Tuning Guide 15

This section contains the following topics:

� Group Caching in a Clustered Environment

� To Set Up the Group-Cache Table

� To Enable and Configure the Group Cache

� To Access Data in the Group Cache Table

Group Caching in a Clustered Environment

To improve performance of group caching in a cluster, you can establish one cache as
the master. The server with the master cache periodically updates its
WLCS_USER_GROUP_CACHE table. All other servers in the cluster read this
master table; they do not update the table or maintain their own copy. For information
on setting up a master cache, refer to “To Enable and Configure the Group Cache” on
page 17.

To Set Up the Group-Cache Table

To set up the table for group caching, issue the following SQL commands:

CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,

GROUP_NAME VARCHAR2(100) NOT NULL);

ALTER TABLE WLCS_USER_GROUP_CACHE

ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,

GROUP_NAME);
16 Performance Tuning Guide

ADJUST CACHING
To Enable and Configure the Group Cache

To enable the group cache, add all of the following lines to
$WL_COMMERCE_HOME/weblogic.properties:

� weblogic.system.startupClass.GroupCache=com.beasys.commerce.axio

m.contact.security.GroupCache

� weblogic.system.startupArgs.GroupCache=updateDb=true

In a clustered environment, to create a master cache, specify
weblogic.system.startupArgs.GroupCache=updateDb=true for one server and
weblogic.system.startupArgs.GroupCache=updateDb=false for all other
servers in the cluster.

To configure the number of seconds that the server waits before calculating and
updating the table, change the value for following WebLogic Server property:
weblogic.security.realm.cache.group.ttl.positive

Note: You do not need to specify the size of the group cache.The depth of the group
hiearchies determines the size of the group cache table.

To Access Data in the Group Cache Table

To access data in the group cache table, use any of the following:

� The new UserManager method of getCachedGroupNamesForUser

� The static method of the GroupCache object

For more information about these methods, refer to WebLogic Personalization Server
Javadoc.
Performance Tuning Guide 17

Adjust Portal and Portlet Settings While
Load Testing

If you are testing the performance of the portal framework, do the following:

� Enable session and global caches as described in “Adjust and Use the Session
and Global Caches” on page 7. (You do not need to add JSP tags or API
methods that access the caches when testing the portal framework; the
framework includes them by default.)

� Because slow portlets can severely slow a portal’s performance, remove all of
the portlets from the portal except for Dictionary, Search, and Quote. These
portlets do not invoke external activities such as database connections.

� Modify the framework’s Application Initialization Property Set as follows:

� For refreshWorkingDir, increase the default number of seconds to prevent
Personalization Sever from refreshing the working directory every five
minutes (300 seconds) during a long load test.

The working directory is the root of the portal pages and WebLogic
Personalization Server pages hierarchy. You define the working directory in a
JSP, and you can change it as needed without restarting the server. The
refreshWorkingDir property determines how frequently the server checks
to see if you have changed the working directory.

The Application Initialization Property Set for the exampleportal defines the
refreshWorkingDir property. If you base your portal on the exampleportal,
it too will define the refreshWorkingDir property.

� For ttl, increase the default number of milliseconds to prevent
Personalization Sever from reloading properties every five minutes (300000
milliseconds) during a long load test.

FOR MORE INFORMATION

For more information about managing portals, see “Creating and Managing Portals” in
Personalization Server User’s Guide.
18 Performance Tuning Guide

DISPLAY METADATA, SORT AND QUERY EXPLICIT METADATA
For more information about developing portlets, see “Developing Portlets” in
Personalization Server Developer’s Guide.

Display Metadata, Sort and Query Explicit
Metadata

If you used the BulkLoader to load document metadata into the reference
implementation document database, you can improve document management
performance when retrieving documents by doing the following:

� Display a document’s metadata instead of the full document.

� Sort on explicit (system-defined) metadata attributes instead of implicit
(user-defined) metadata attributes.

� Query on explicit metadata attributes instead of implicit metadata attributes.

FOR MORE INFORMATION

For more information about content management, see “Creating and Managing
Content” in Personalization Server User’s Guide.

Use LDAP for Authentication Only

For improved performance, use LDAP for authentication only; do not use it to retrieve
user and group properties. Instead of retrieving properties from LDAP servers,
configure your system to use properties stored in the RDBMS by minimizing the
number of properties registered for retrieval from LDAP in the user management tools.

FOR MORE INFORMATION

For more information about changing LDAP settings, see “Using Other Realms” under
“Creating and Managing Users” in Personalization Server User’s Guide.
Performance Tuning Guide 19

Use the DocumentManager EJB

Always use a DocumentManager EJB instead of Document EJB. Document EJBs are
deprecated.
20 Performance Tuning Guide

	Performance Tuning Guide
	Adjust the Intervals for Checking JSP and Servlet Modifications
	About the Page-Check Intervals Properties
	About the Reload-Servlet Interval Property
	To Adjust the Intervals
	1. Establish performance baselines by testing Commerce Server performance with all three interval...
	2. Test the performance with the intervals set to various numbers of seconds. For example, set th...
	3. Choose intervals that provide the best performance while checking for modifications to JSP fil...

	For More Information

	Adjust Database Connections Available at Startup
	Set the Reload Policy for Rules
	1. Open $WL_COMMERCE_HOME/lib/rulesservice.jar.
	2. In ejb-jar.xml (which is in rulesservice.jar), modify the value for rulesetReloadInterval. The...

	Adjust Caching
	Adjust and Use the Session and Global Caches
	Enabling the Caches
	JSP Tags for Accessing HttpSession and the Session and Global Caches
	An API for Accessing HttpSession and the Session and Global Caches
	Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

	Adjust Caching for Content Management
	Enable Property Caching
	Property Caching in a Clustered Environment
	To Enable Property Caching

	Enable Group Caching
	Group Caching in a Clustered Environment
	To Set Up the Group-Cache Table
	CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,
	GROUP_NAME VARCHAR2(100) NOT NULL);
	ALTER TABLE WLCS_USER_GROUP_CACHE
	ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,
	GROUP_NAME);

	To Enable and Configure the Group Cache
	To Access Data in the Group Cache Table

	Adjust Portal and Portlet Settings While Load Testing
	Display Metadata, Sort and Query Explicit Metadata
	Use LDAP for Authentication Only
	Use the DocumentManager EJB

