
BEA WebLogic

B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 1 . 1
D o c u m e n t E d i t i o n 3 . 1 . 2

J u n e 2 0 0 1

Personalization Server
Developer’s Guide

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

WebLogic Personalization Server Developer’s Guide

Document Edition Date Software Version

3.1.2 June 2001 BEA WebLogic Commerce Server 3.1.1

BEA WebLogic Personalization Server Developer’s Guide iii

Contents

About This Document
What You Need to Know ... xii

e-docs Web Site ... xiii

How to Print the Document... xiii

Contact Us! .. xiii

Documentation Conventions ... xiv

1. Overview of Personalization Development
Personalization Server Run-Time Architecture... 1-2

Advisor ... 1-3

Portal Management .. 1-3

User Management .. 1-3

Content Management ... 1-4

Rules Management ... 1-4

Foundation Classes and Utilities .. 1-4

JSP Tags .. 1-4

Integration of External Components ... 1-10

Support for Native Types .. 1-11

2. Creating Personalized Applications with the Advisor
What Is the Advisor? ... 2-2

The Advisor Delivers Content to a Personalized Application 2-2

The Advisor Provides Information About User Classifications................. 2-3

You Can Use the Advisor in One of Two Ways .. 2-4

Creating Personalized Applications
with the Advisor JSP Tags ... 2-4

Classifying Users with the JSP <pz:div> Tag.. 2-5

iv BEA WebLogic Personalization Server Developer’s Guide

Selecting Content with the <pz:contentQuery> JSP Tag 2-6

Matching Content to Users with the <pz:contentSelector> JSP Tag 2-7

Creating Personalized Applications with the Advisor Session Bean 2-8

Classifying Users with the Advisor Session Bean 2-10

Selecting Content with the Advisor Session Bean 2-12

Matching Content to Users with the Advisor Session Bean..................... 2-13

3. Foundation Classes and Utilities
Flow Manager .. 3-2

Hot Deployment ... 3-2

 Dynamic Flow Determination and Handling .. 3-3

How the FlowManager Works .. 3-3

Property Set Usage ... 3-6

destinationdeterminer Property ... 3-6

destinatationhandler Property.. 3-6

 ttl (time to live) Property .. 3-7

Creating a New Property Set... 3-7

Set Parameters for Your Portal or Application 3-8

Webflow ... 3-8

Accessing Your Application via the Flow Manager 3-9

Using Flow Manager with a Web Application.................................... 3-9

Using Flow Manager with a non-Web Application 3-10

Repository.. 3-11

HTTP Handling ... 3-11

Personalization Request Object ... 3-12

Default Request Property Set ... 3-13

Personalization Session Object ... 3-14

Default Session Property Set .. 3-14

Utilities .. 3-16

JspHelper .. 3-16

JspBase ... 3-16

P13NJSPHelper .. 3-17

P13NJspBase .. 3-17

ContentHelper... 3-17

CommercePropertiesHelper ... 3-17

BEA WebLogic Personalization Server Developer’s Guide v

Utilities in commerce.util Package.. 3-18

ExpressionHelper ... 3-18

TypesHelper ... 3-18

4. Developing Portlets
Introduction ... 4-2

What is a portlet?.. 4-2

Creating a portlet application .. 4-4

Defining the Portlet JSP ... 4-5

Working Within the Portal Framework... 4-6

Extending the PortalJspBase Class .. 4-7

Accessing Portal Session Information.. 4-7

Sending Requests Through the Flow Manager .. 4-9

Using URL Links in Your Portlet .. 4-9

HTML Form Processing... 4-10

Retrieving the Home Page ... 4-11

Retrieving the Current Page .. 4-11

Setting the Request Destination ... 4-11

Tracking User Login Status.. 4-12

Loading Content from an External URL ... 4-12

Using example portlets... 4-13

HTML Tables vs. HTML Frames .. 4-15

5. Building a Custom Portal Step-by-Step
Introduction ... 5-2

Terminology ... 5-2

How to Use This Chapter ... 5-4

Creating the Framework for Your Custom Portal ... 5-5

Installing WebLogic Personalization Server.. 5-5

Setting up the Portal Framework.. 5-7

Troubleshooting .. 5-11

Repository Directory .. 5-12

Simple Customizations.. 5-13

Project 1: Customizing the Acme Logos.. 5-13

Project 2: Customizing the Choice of Portlets ... 5-15

vi BEA WebLogic Personalization Server Developer’s Guide

Project 3: Customizing the Layout of Portlets ... 5-15

Project 4: Describing Your Users... 5-16

Writing Your Own Portlets.. 5-17

Project 5: Building a Static Portlet ... 5-17

welcome.html .. 5-18

Project 6: Building a Simple Dynamic Portlet ... 5-19

isloggedon.jsp.. 5-20

Project 7: Building a Second Dynamic Portlet... 5-21

EmailList.jsp ... 5-22

Advanced Portlet Functionality ... 5-26

Project 8: Adding a Maximized URL... 5-26

EmailListMax.jsp .. 5-26

Project 9: Changing the Look of a Maximized Portlet...................... 5-30

EmailListMaxHeader.jsp... 5-30

EmailListMaxFooter.jsp.. 5-30

Project 10: Inter-portlet Communication.. 5-31

UserIndex.jsp... 5-32

UserIndexDetails.jsp ... 5-34

Using the HTTP request method to communicate between portlets 5-38

Parameter name collisions between portlets 5-38

Several sets of portlets using the HTTP request method at once 5-38

Other Customization Techniques .. 5-40

More Portlet Customization ... 5-40

Database Interaction ... 5-40

Java Beans Interaction .. 5-41

Personalization Advisor Functionality ... 5-41

Internationalization... 5-41

Using Webflow... 5-42

Commerce Functionality .. 5-42

Modifying the Portal Framework ... 5-42

Building Your Site Without the Portal Framework.................................. 5-43

 Framework Files ... 5-43

6. Using the Catalog Application in a Portal
Deploying a Portal as a Webapp.. 6-2

BEA WebLogic Personalization Server Developer’s Guide vii

Using e-Commerce Functionality Within a Portal .. 6-4

Using Webflow Within a Portal .. 6-6

Reusing Pieces of the Demo Catalog Application in a Portal 6-8

7. Creating Localized Applications with Internationalization
Tags

What Is the I18N Framework? .. 7-2

Localizing Your JSP.. 7-3

<i18n:getMessage> .. 7-3

<i18n:localize>... 7-3

The JspMessageBundle... 7-4

How the localization Tag Works .. 7-5

Character Encoding .. 7-6

Displaying More than One Character Set on a Page........................... 7-6

 Default Character Encodings ... 7-7

Steps for Localizing Your Application .. 7-9

Localizing the BEA WebLogic Personalization Server 7-10

Static Text .. 7-10

Constructed Messages .. 7-11

Resource Bundles Used in the
WebLogic Personalization Server Tools... 7-12

Localizing System Messages .. 7-12

8. WebLogic Personalization Server Schema
The Entity-Relationship Diagram.. 8-1

The Tables Comprising the WebLogic Personalization Server 8-6

The Schema Tables .. 8-7

The SQL Scripts Used to Create the Database .. 8-33

9. JSP Tag Library Reference
The Advisor ... 9-3

<pz:contentQuery>... 9-4

<pz:contentSelector>.. 9-7

<pz:div> ... 9-10

Content Management... 9-12

<cm:printDoc> ... 9-12

viii BEA WebLogic Personalization Server Developer’s Guide

<cm:printProperty> .. 9-14

<cm:select> .. 9-16

<cm:selectById> .. 9-20

Flow Manager .. 9-23

<fm:getApplicationURI> ... 9-23

<fm:getCachedAttribute>... 9-24

<fm:getSessionAttribute> .. 9-25

<fm:removeCachedAttribute>.. 9-25

<fm:removeSessionAttribute> ... 9-26

<fm:setCachedAttribute> ... 9-27

<fm:setSessionAttribute>... 9-28

Internationalization .. 9-29

<i18n:localize> ... 9-29

<i18n:getMessage> .. 9-31

Portal Management.. 9-34

<esp:eval> .. 9-34

<esp:get> .. 9-35

<esp:getGroupsForPortal> ... 9-36

<esp:monitorSession> .. 9-36

<esp:portalManager>.. 9-37

<esp:portletManager> .. 9-38

<esp:props> .. 9-41

Property Sets .. 9-42

<ps:getPropertyNames> ... 9-42

<ps:getPropertySetNames> .. 9-43

User Management.. 9-45

Profile Management Tags... 9-45

<um:getProfile> .. 9-45

<um:getProperty> ... 9-48

<um:getPropertyAsString> ... 9-49

<um:removeProperty> .. 9-50

<um:setProperty> .. 9-51

Group-User Management Tags .. 9-52

<um:addGroupToGroup> ... 9-52

<um:addUserToGroup> .. 9-53

BEA WebLogic Personalization Server Developer’s Guide ix

<um:changeGroupName>... 9-54

<um:createGroup> .. 9-55

<um:createUser>... 9-56

<um:getChildGroupNames>... 9-58

<um:getChildGroups> .. 9-58

<um:getGroupNamesForUser>... 9-59

<um:getParentGroupName> ... 9-59

<um:getTopLevelGroups>.. 9-60

<um:getUsernames> ... 9-61

<um:getUsernamesForGroup> ... 9-62

<um:removeGroup>.. 9-64

<um:removeGroupFromGroup>... 9-65

<um:removeUser> .. 9-65

<um:removeUserFromGroup> ... 9-66

Security Tags.. 9-68

<um:login>.. 9-68

<um:logout>.. 9-69

<um:setPassword> .. 9-69

Personalization Utilities... 9-70

<es:counter> ... 9-70

<es:date> .. 9-71

<es:forEachInArray>.. 9-71

<es:isNull> ... 9-72

<es:monitorSession> .. 9-72

<es:notNull>... 9-73

<es:preparedStatement> ... 9-73

<es:simpleReport> ... 9-74

<es:transposeArray> .. 9-75

<es:uriContent>.. 9-75

WebLogic Utilities .. 9-77

<wl:process> .. 9-77

<wl:repeat> .. 9-78

Index

x BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide xi

About This Document

This document explains how to use the BEA WebLogic Personalization ServerTM to
create personalized applications for use in an e-commerce site.

This document includes the following topics:

n Chapter 1, “Overview of Personalization Development,” provides developer
components and utilities that enable developers to create personalized
applications. The pieces documented in this guide include the Advisor,
Foundation classes and utilities, and JSP tag reference.

n Chapter 2, “Creating Personalized Applications with the Advisor,” recommends
content and performs several important functions in creating a personalized
application, including searching for content, tying the other core personalization
services together, and matching content to user profiles.

n Chapter 3, “Foundation Classes and Utilities,” describes the Foundation, a set of
miscellaneous utilites to aid JSP and Java developers in the development of
personalized applications using the WebLogic Personalization Server. Its utilities
include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to
Advisor services.

n Chapter 4, “Developing Portlets,”provides developers with in-depth information
about creating the portlets that are included in your portal.

n Chapter 5, “Building a Custom Portal Step-by-Step,” is a tutorial for building
your own custom e-commerce portal.

n Chapter 6, “Using the Catalog Application in a Portal,”describes how to add
some of the functionality of the WebLogic Commerce Server to tyour portal.
This chapter also discusses deploying your application as a webapp.

xii BEA WebLogic Personalization Server Developer’s Guide

n Chapter 7, “Creating Localized Applications with Internationalization
Tags,”provides a simple framework that allows access to localized text and
messages. The internationalization (I18N) framework is accessible from JSP
through a small I18N tag library.

n Chapter 8, “WebLogic Personalization Server Schema,” documents the database
schema for the WebLogic Personalization Server.

n Chapter 9, “JSP Tag Library Reference,” describes the JSP tags included with
WebLogic Personalization Server that allow developers to create personalized
applications without having to program using Java.

What You Need to Know

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an e-commerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with related Web technologies as
described below. The topics in this document are organized primarily around
development goals and the tasks needed to accomplish them., specifically:

n Java Server Page (JSP) developer creates JSPs using the tags provided or by
creating custom tags as needed.

n System analyst, or database administrator writes rules, designs schemas,
optimizes SQL and monitors usage.

n System administrator installs, configures, deploys, and monitors the Web
application server.

n Java developer extends or modifies the Enterprise Java Bean (EJB) components
that make up the WebLogic Personalization Server engine, if that level of
customization is desired.

e-docs Web Site

BEA WebLogic Personalization Server Developer’s Guide xiii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic
Personalization Server documentation Home page, click the PDF files button and
select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@beasys.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate the release number of the WebLogic
Personalization Server documentation you are using.

xiv BEA WebLogic Personalization Server Developer’s Guide

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Documentation Conventions

BEA WebLogic Personalization Server Developer’s Guide xv

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xvi BEA WebLogic Personalization Server Developer’s Guide

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

BEA WebLogic Personalization Server Developer’s Guide 1-1

CHAPTER

1 Overview of
Personalization
Development

WebLogic Personalization Server provides developers with the ability to create
personalized applications for e-commerce Web sites. This developer’s guide provides
information about the Advisor, Foundation Classes and Utilities, and JSP tags.

This section includes the following topics:

n Personalization Server Run-Time Architecture

l Advisor

l Portal Management

l User Management

l Content Management

l Rules Management

l Foundation Classes and Utilities

n JSP Tags

n Integration of External Components

n Support for Native Types

1 Overview of Personalization Development

1-2 BEA WebLogic Personalization Server Developer’s Guide

Personalization Server Run-Time
Architecture

The WebLogic Personalization Server (WLPS) run-time architecture is designed to
support a variety of personalized applications. These applications can be built on the
portal/portlet infrastructure, on the tags and EJBs supplied by the Advisor, and on
select tags and EJBs supplied by other personalization server components.

The following high-level architecture picture may be used to visualize the
relationships between the components.

Personalization Server Run-Time Architecture

BEA WebLogic Personalization Server Developer’s Guide 1-3

The personalized application is one built by the developer to use the personalization
components. It may consist of a portal instance with JSP portlets, a set of traditional
JSP pages or servlets, and/or code that accesses EJB objects directly.

Advisor

The Advisor component is the primary interface to the most common operations that
personalized applications will use. It provides access through tags or a single EJB
session bean. Specific functionality provided by the Advisor includes classifying
users, selecting content based on user properties, and querying content management
directly. The Advisor uses the Foundation, User Management, Rules Service, and
Content Management components.

Portal Management

The Portal Management component provides tags and EJB objects to support creating
a framework of portals and portlets. It is configured using the Portal Administration
Tools and has embedded JSP fragments built by the developer.

User Management

The User Management component supports the run-time access of users, groups, and
the relationships between them. The notion of property sets is embedded within the
user and group property access scheme. This component is set up using the User
Management Administration tools and supports access via JSP tags or direct access to
EJB objects. A Unified User Profile may be built by the developer, extending the User
EJB object, to provide custom data source access to user property values.

1 Overview of Personalization Development

1-4 BEA WebLogic Personalization Server Developer’s Guide

Content Management

The Content Management component provides the run-time API by which content is
queried and retrieved. The functionality of this component is accessible via tags. The
content retrieval functionality is provided using either the provided reference
implementation or Documentum content retrieval products.

Rules Management

The Rules Management component is the run-time service that runs the rule sets that
are built in the Rules Management Administration tool. This component is accessible
only via the functionality of the Advisor tags. This component uses the JRules run-time
library to make decisions.

Foundation Classes and Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to Advisor
services.

JSP Tags

The JSP tags included with WebLogic Personalization Server (Table 1-1) allow
developers to create personalized applications without having to program using Java.

JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 1-5

Table 1-1 Java Server Page (JSP) Tags Overview

Library Tag Description

Advisor <pz:contentQuery> Provides content based on search
expression query syntax.

<pz:contentSelector> Provides content based on results of a
content selector rule and subsequent
content query.

<pz:div> Turns a user-provided piece of content on
or off based on the results of a classifier
rule.

Content
Management

<cm:printDoc> Inlines the raw bytes of a document object
in to the JSP output stream.

<cm:printProperty> Inlines the value of the specified content
metadata property as a string.

<cm:select> Selects content based on a search
expression query syntax.

<cm:selectById> Retrieves content using the content’s
unique identifier.

Flow Manager <fm:getApplicationURI> Gets the Flow Manager.

<fm:getCachedAttribute> Gets an attribute out of the session/global
cache.

<fm:setCachedAttribute> Sets an attribute in the session/global
cache.

<fm:removeCachedAttribute> Removes an attribute from the
session/global cache.

<fm:getSessionAttribute> Gets an attribute out of the HttpSession.

<fm:setSessionAttribute> Sets an attribute in the HttpSession.

1 Overview of Personalization Development

1-6 BEA WebLogic Personalization Server Developer’s Guide

<fm:removeSessionAttribute> Removes an attribute from the
HttpSession.

Internationalization <i18n:localize> Defines the language, country, variant, and
base bundle name to be used throughout a
page when accessing resource bundles via
the <i18n:getmessage> tag. Also
allows a character encoding and content
type to be specified for a JSP.

<i18n:getMessage> Used in conjunction with the
<i18:localize> tag to retrieve
localized static text or messages from a
JspMessageBundle.

Portal Management <esp:eval> Evaluates a conditional attribute of a
portlet. An example of a conditional
attribute is isMinimizeable.

<esp:get> Retrieves a String attribute of a portlet.

<esp:getGroupsForPortal> Retrieves the names of the groups
associated with a Portal.

<esp:monitorSession> Disallows access to a page if the session is
not valid or if the user has not logged in.

<esp:portalManager> Provides the ability to do create, get,
getColumnInfo, update, and remove
actions on a Portal object.

<esp:portletManager> Provides the ability to do create, get,
getArranged, update, and remove
actions on a Portlet object.

<esp:props> Used to get a property from the Portal
Properties bean, whose deployment
descriptor contains default values used by
the Portal Administration Tool.

Property Sets <ps:getPropertyNames> Used to get a list of property names given
a property set.

Table 1-1 Java Server Page (JSP) Tags Overview (Continued)

JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 1-7

<ps:getPropertySetNames> Used to get a list of property sets given a
property set type.

User Management
(Profile)

<um:getProfile> Retrieves the Unified User Profile object.

<um:getProperty> Gets the value for the specified property
from the current user profile in the session.

<um:getPropertyAsString> Works exactly like the
<um:getProperty> tag above, but
ensures that the retrieved property value is
a String.

<um:removeProperty> Removes the property from the current
user profile in the session.

<um:setProperty> Sets a new value for the specified property
for the current user profile in the session.

(Group-User
Management)

<um:addGroupToGroup> Adds the group corresponding to the
provided childGroupName to the group
corresponding to the provided
parentGroupName.

<um:addUserToGroup> Adds the user corresponding to the
provided userName to the group
corresponding to the provided
parentGroupName.

<um:changeGroupName> Adds the user corresponding to the
provided userName to the group
corresponding to the provided
parentGroupName.

<um:createGroup> Creates a new
com.beasys.commerce.axiom.con

tact.Group object.

<um:createUser> Creates a new persisted User object with
the specified username and password.

Table 1-1 Java Server Page (JSP) Tags Overview (Continued)

1 Overview of Personalization Development

1-8 BEA WebLogic Personalization Server Developer’s Guide

<um:getChildGroupNames> Returns the names of any groups that are
children of the given group.

<um:getChildGroups> Retrieves an array of
com.beasys.commerce.axiom.con

tact.Group objects that are children of
the Group corresponding to the provided
groupName.

<um:getGroupNamesForUser> Retrieves a String array that contains the
group names matching the provided search
expression and corresponding to groups to
which the provided user belongs.

<um:getParentGroupName> Retrieves the name of the parent of the
com.beasys.commerce.axiom.con

tact.Group object associated with the
provided groupName.

<um:getTopLevelGroups> Retrieves an array of
com.beasys.commerce.axiom.con

tact.Group objects, each of which has
no parent group.

<um:getUsernames> Retrieves a String array that contains
the usernames matching the provided
search expression.

<um:getUsernamesForGroup> Retrieves a String array that contains
the usernames matching the provided
search expression and correspond to
members of the provided group.

<um:removeGroup> Removes the
com.beasys.commerce.axiom.con

tact.Group object corresponding to the
provided groupName.

<um:removeGroupFromGroup> Removes a child group from a parent
group.

Table 1-1 Java Server Page (JSP) Tags Overview (Continued)

JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 1-9

<um:removeUser> Removes the
com.beasys.commerce.axiom.con

tact.User object corresponding to the
provided userName.

<um:removeUserFromGroup> Removes a user from a group.

(Security) <um:login> Authenticates a user/password
combination.

<um:logout> Ends the current user’s WLS session. This
is independent of the FlowManager’s user
session tracking, and should be used in
combination with the <um:login> tag.

<um:setPassword> Updates the password for the user
corresponding to the provided username.

Personalization
Utilities

<es:counter> Creates a for loop construct.

<es:date> Gets a date and time formatted string based
on the user’s time zone preference.

<es:forEachInArray> Iterates over an array.

<es:isNull> Checks to see if a value is null. If the value
type is a String, also checks to see if the
String is empty.

<es:monitorSession> Disallows access to a page if the session is
not valid or if the user is not logged in.

<es:notNull> Checks to see if a value is not null. If the
value type is a String, also checks to see
if the String is not empty.

<es:preparedStatement> Creates a JDBC prepared statement.

<es:simpleReport> Creates a two-dimensional array out of a
simple query.

<es:transposeArray> Transposes a standard [row][column]
array to a [column][row] array.

Table 1-1 Java Server Page (JSP) Tags Overview (Continued)

1 Overview of Personalization Development

1-10 BEA WebLogic Personalization Server Developer’s Guide

Integration of External Components

A range of external components either come already integrated into the WebLogic
Personalization Server, or can be integrated easily by a developer as extensions to the
core components. A specific set of components that are known to be widely useful are
described in Table 1-2. Other custom component integrations are possible given the
JSP and EJB basis for the WebLogic Personalization Server, but the entire range of
possibilities is not addressed here.

<es:uriContent> Pulls content from a URL.

WebLogic Utilities <wl:process> Provides a attribute-based flow control
construct.

<wl:repeat> Used to iterate over a variety of Java
objects, as specified in the set attribute.

Table 1-1 Java Server Page (JSP) Tags Overview (Continued)

Table 1-2 Useful External Components the Personalization Server

External Component Out-of-the-Box
Support

Methods and Notes

DBMS Integrated and tested with
Cloudscape, Oracle 8.0.5,
and 8.1.5.

Uses standard WebLogic
Server JDBC connection
pools.

LDAP authentication Can be set up automatically
using administration tools
and property files.

Uses WebLogic Server
security realms.

LDAP retrieval of user and
group information

Can be set up automatically
using administration tools.

Built into EJB persistence
for User entity bean.

Legacy database of users None. Requires Unified User
Profile extension of User
entity bean.

Support for Native Types

BEA WebLogic Personalization Server Developer’s Guide 1-11

Support for Native Types

WebLogic Personalization Server supports the native types shown in Table 1-3.

Content Management
engine

Reference implementation
provided.

Provides API/SPI support
from Documentum.

Legacy content database None. Requires either extension
of Document entity bean or
custom implementation of
content management SPI.

Rules engine JRules engine provided. API/SPI with only JRules
supported at this time as a
valid service.

Table 1-2 Useful External Components the Personalization Server (Continued)

Table 1-3 Native Types

Supported Type Java Class Notes

Boolean java.lang.Boolean Comparators: ==, !=

Integer java.lang.Number Comparators: ==, !=, <, >,
<=, >=

Float java.lang.Double Comparators: ==, !=, <, >,
<=, >=

Text java.lang.String Comparators: ==, !=, <, >,
<=, >=, like

Datetime java.sql.Timestamp Comparators: ==, !=, <, >,
<=, >=

1 Overview of Personalization Development

1-12 BEA WebLogic Personalization Server Developer’s Guide

Any property can be a multivalue of a specific single native type as well. This is
implemented as a java.util.Collection. Comparators for multivalues are contains and
containsall, although the rules development tool will only allow the use of contains.
The values possible as part of a multivalue may be restricted to a valid set, using the
Property Set management tools.

UserDefined Defined by developer Comparators: N/A
User-defined properties
may be programmatically
set and gotten, but are not
supported in the tools,
rules, or content query
expressions.

Table 1-3 Native Types

BEA WebLogic Personalization Server Developer’s Guide 2-1

CHAPTER

2 Creating Personalized
Applications with the
Advisor

The Advisor recommends content by matching content to user profiles and producing
a personalized application for the user. In essence, the Advisor ties together all the
other services and components in the system to deliver personalized content.

This section includes the following topics:

n What Is the Advisor?

l The Advisor Delivers Content to a Personalized Application

l The Advisor Provides Information About User Classifications

l You Can Use the Advisor in One of Two Ways

n Creating Personalized Applications with the Advisor JSP Tags

l Classifying Users with the JSP <pz:div> Tag

l Selecting Content with the <pz:contentQuery> JSP Tag

l Matching Content to Users with the <pz:contentSelector> JSP Tag

n Creating Personalized Applications with the Advisor Session Bean

l Classifying Users with the Advisor Session Bean

l Selecting Content with the Advisor Session Bean

l Matching Content to Users with the Advisor Session Bean

2 Creating Personalized Applications with the Advisor

2-2 BEA WebLogic Personalization Server Developer’s Guide

What Is the Advisor?

Content personalization allows Web developers to tailor applications to users. Based
on data gathered from user profile, Request, and Session objects, the Advisor
coordinates the delivery of personalized content to the end-user.

The Advisor Delivers Content to a Personalized
Application

The Advisor delivers content to a personalized application based on a set of rules and
user profile informaton. It can retrieve any type of content from a Document
Management system and display it in a JSP or use it in a servlet.

The Advisor ties together all the services and components in the system to deliver
personalized content. The Advisor component includes a JSP tag library and an
Advisor EJB (stateless session bean) that access the WebLogic Personalization
Server’s core personalization services including:

n User Profile Management

n Rules Service

n Content Management

n Foundation

The tag library and session bean contain personalization logic to access these services,
sequence personalization actions, and return personalized content to the application.

This architecture allows the JSP developer to take advantage of the personalization
engine using the Advisor JSP tags. In addition, a Java developer can access the
underlying Personalization EJB and its features via the public Advisor bean interface.
(For more information, see the API documentation in the Javadoc.) Think of the
Advisor as sitting on top of the core services to provide a unified personalization API.

What Is the Advisor?

BEA WebLogic Personalization Server Developer’s Guide 2-3

The Advisor gathers information from the user profile provided by the User
Management component, submits that information to the Rules Service, runs the
resulting queries against the document management system used in the Content
Management component, and returns the content to the JSP.

The Advisor recommends document content for the following items:

n Web content included or excluded as determined by a user’s classification using
rules-based matching against user profile information. For more information
about classifying users, see “Classifying Users with the JSP <pz:div> Tag” on
page 2-5 and “Classifying Users with the Advisor Session Bean” on page 2-10.

n Documents returned by document attribute searches. For more information about
searching for content, see “Selecting Content with the <pz:contentQuery> JSP
Tag” on page 2-6 and “Selecting Content with the Advisor Session Bean” on
page 2-11.

n Documents returned by content selectors using rules-based matching against
user profile information. For more information about rules-based matching, see
“Matching Content to Users with the <pz:contentSelector> JSP Tag” on page
2-7 and “Matching Content to Users with the Advisor Session Bean” on page
2-13.

The Advisor Provides Information About User
Classifications

In addition to supplying content to a personalized application, the Advisor can also
provide information about user classifications. For example, an application can ask the
Advisor if, based on predefined rules, the current user is classified as a Premier
Customer or an Aggressive Investor, and take action accordingly. The Advisor
accomplishes this classification by gathering relevant user profile information,
submitting it to the Rules Service, and turning on or off the supplied content based on
the results of the rules execution.

2 Creating Personalized Applications with the Advisor

2-4 BEA WebLogic Personalization Server Developer’s Guide

You Can Use the Advisor in One of Two Ways

n Using the JSP tags. Developers will probably find it most useful to use the JSP
tags when building typical pages. The tags provide ways to switch content on
and off based on user classification, return content based on a static query, and
match content to users based on rules that execute a content query. The JSP tags
that perform these tasks are: <pz:div> , <pz:contentSelector>, and
<pz:contentQuery>.

n Using the Advisor session bean. The page or application developer may use the
Advisor session bean directly in place of the tags, if desired. The Advisor
session bean recommends content to personalized applications by matching
advice requests with registered advislets that perform recommendations.

Creating Personalized Applications
with the Advisor JSP Tags

The Advisor provides three JSP tags to help developers create personalized
applications. These tags provide a JSP view to the Advisor session bean and allow
developers to write pages that retrieve personalized data without writing Java source
code.

Note: You must insert the following JSP directive into your JSP code to use the
Advisor’s <pz:div> and <pz:contentSelector> tags. The
<pz:contentQuery> tag does not require that you extend the class.

<%@ page extends=”com.beasys.commerce.axiom.p13n.jsp.P13NJspBase”
%>

n The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns
the content on; if false, it turns the content off.

Note: The system turns on the content by inserting the content residing between
the start and end <pz:div> tags in the JSP code. This content can include
any valid JSP, including HTML tags, other JSP tags, and scriptlets. If the

Creating Personalized Applications with the Advisor JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 2-5

classifier rule returns false, the system skips the content between the start
and end <pz:div> tags.

n The <pz:contentQuery> tag provides content attribute searching for content in
a Content Manager. It returns an array of Content objects that a developer can
handle in numerous ways.

Note: For more information about how WebLogic Personalization Server
manages content, see the chapter “Creating and Managing Content.”

n The <pz:contentSelector> tag recommends content if a user matches the
classification part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in the rule and returns
the content back to the JSP page.

Note: For information about defining a content selector rule, see “Creating a
content selector rule” in the

In addition to using JSP tags to create personalized applications, you can work directly
with the Advisor bean. For more information about using the bean, see “Creating
Personalized Applications with the Advisor Session Bean” on page 2-8.

Classifying Users with the JSP <pz:div> Tag

The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns the
content on; if false, it turns the content off.

Note: For information about creating classifier rules, see the topic “Creating a
classifier rule” in the chapter Creating and Managing Rules in the WebLogic
Personalization Server User’s Guide.

This example executes the PremierCustomer classifier rule and displays an alert to
premier customers in the HTML page’s output.

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div
ruleSet="jdbc://com.beasys.commerce.axiom.reasoning.rules.RuleShe
etDefinitionHome/AcmeRules" rule="PremierCustomer">

2 Creating Personalized Applications with the Advisor

2-6 BEA WebLogic Personalization Server Developer’s Guide

 <p>Please check out our new Premier Customer bonus program…<p>
</pz:div>

You can also use the Advisor bean directly to classify users. For more information, see
the topic “Classifying Users with the Advisor Session Bean” on page 2-10 .

Selecting Content with the <pz:contentQuery> JSP Tag

The <pz:contentQuery> tag provides content attribute searching for content in a
Content Manager. It returns an array of Content objects that a developer can handle
in numerous ways.

Note: For information about using the <pz:contentQuery> JSP tag, see
“<pz:contentQuery>” on page 9-4. This tag provides similar functionality to
the <cm:select> tag.

The following example executes a query against the content management system to
find all content where the author attribute is Hemmingway and displays the Document
titles found:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentQuery id="docs"
contentHome="com.beasys.commerce.axiom.document.DocumentManager"
query="author = ’Hemmingway’" />

 <es:forEachInArray array="<%=docs%>" id="aDoc"
 type="com.beasys.commerce.axiom.content.Content">
 The document title is: <cm:printProperty id="aDoc"
 name="Title" encode="html" />
 </es:forEachInArray>

Note: For more information about these JSP tags, see “<cm:printProperty>” on page
9-14 and “<es:forEachInArray>” on page 9-71.

You can also use the Advisor bean directly to select content. For more information, see
“Selecting Content with the Advisor Session Bean” on page 2-12.

Creating Personalized Applications with the Advisor JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 2-7

Matching Content to Users with the <pz:contentSelector>
JSP Tag

The <pz:contentSelector> recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Advisor
executes the query defined in the rule to retrieve content.

Note: For more information about this tag, see “<pz:contentSelector>” on page 9-7.

Note: For information about creating classifier rules, see the topic “Creating a
classifier rule” in the chapter Creating and Managing Rules in the WebLogic
Personalization Server User’s Guide.

The following example asks the Advisor for content specific to premier customers and
then displays the Document titles as the results.

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentSelector id="docs" ruleSet="jdbc://com.beasys.
 commerce.axiom.reasoning.rules.
 RuleSheetDefinitionHome/AcmeRules"
 rule="PremierCustomerSpotlight"
 contentHome="com.beasys.commerce.axiom.document.
 DocumentManager" />

 <es:forEachInArray array="<%=docs%>" id="aDoc"
 type="com.beasys.commerce.axiom.content.Content">
 The document title is: <cm:printProperty id="aDoc"
 name="Title" encode="html" />
 </es:forEachInArray>

You can also use the Advisor bean directly to match content to users. For more
information, see “Matching Content to Users with the Advisor Session Bean” on page
2-13.

2 Creating Personalized Applications with the Advisor

2-8 BEA WebLogic Personalization Server Developer’s Guide

Creating Personalized Applications with the
Advisor Session Bean

Java developers can work directly against the Advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean.

Note: Refer to the API documentation in the Javadoc for more information about
using the session bean to create personalized applications.

The following steps and Figure 2-1 provide a general overview of the process involved
for an application to get advice from the Advisor.

1. Create an instance of the Advisor session bean.

2. Use the Advisor’s createTemplate factory method to create a Request object.

This method also determines the best advislet to use for the request by mapping
theKindOfRequest to the best fit advislet.

3. Set the required and optional inputs for the Request object.

4. Call the advise method.

The Advisor calls the best advislet to make the recommendation. The advislet
determines the recommendations and the Advisor then passes the
AdviceResults object back to the application.

5. The personalized application extracts the recommendation from the
AdviceResults object and uses it in the application.

When a personalized application requests advice from the Advisor, the Advisor bean
delegates the request to a registered advislet that can handle the request. The Advisor's
job is to determine which registered advislet is best suited for making
recommendations for the request, based on the advice request type.

The Advisor uses the advice request type to determine which registered advislet to
delegate the advice request to. The advislet then makes the recommendations and
returns the advice results back to the Advisor. This design encapsulates all of the
advice logic into the advislet and allows advislets to be specialized.

Creating Personalized Applications with the Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-9

Figure 2-1 Mapping a Request to an Adviselet

Table 2-1 shows the logic the Advisor uses to determine how to map a
recommendation request to an advislet. Note that some combinations are not valid. For
example, you cannot send a <pz:bea.rules> technique request with a
ContentQueryAdviceRequest.

Table 2-1 Mapping an Advise Request to an Advislet

Kind of Advice Request Inferred Advislet

ClassificationAdviceRequest ClassificationAdvislet

Uses rules-based matching with an inference engine that
classifies a user.

ContentSelectorAdviceRequest ContentSelectorAdvislet

n Uses rules-based matching with an inference engine
to classify a user.

n Determines if the user matches the classification.

n Selects content based on a content query.

ContentQueryAdviceRequest ContentQueryAdvislet

Performs a content attribute search with a content
management system.

2 Creating Personalized Applications with the Advisor

2-10 BEA WebLogic Personalization Server Developer’s Guide

Classifying Users with the Advisor Session Bean

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for a classification (refer to the
Javadoc for API details).

Note: All classes used here reside in the com.beasys.commerce.axiom.*
packages.

1. Create an instance of the Advisor session bean.

2. Call the Advisor’s createTemplate method to get the correct AdviceRequest
object. In this case, it should return a ClassificationAdviceRequest.

3. Set the required objects on the ClassificationAdviceRequest. These include
the:

n Session object (retrieved from
P13NJspHelper.createP13NSession(HttpServletRequest))

n User object (retrieved from
P13NJspHelper.createP13NProfile(HttpServletRequest))

n Request object (retrieved from
P13NJspHelper.createP13NRequest(HttpServletRequest))

n java.sql.Timestamp object representing now

n rule set name (For more information, see the topic “What are Rule
Sets?” in the chapter Creating and Managing Rules in the WebLogic
Personalization Server User’s Guide.)

n rule name (For more information, see the chapter Creating and
Managing Rules in the WebLogic Personalization Server User’s Guide.)

n Successor object (for example, the user’s group).

4. Call the advise method on the Advisor.

5. The Advisor returns a subclass of AdviceResults. In this case, it should return a
ClassificationAdviceResults object. If the classification object exists in the
results, the classification is true. If the object is null, the classification is not true.

A basic example of using the bean for classification might look like the following:

Creating Personalized Applications with the Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-11

Note: This code is just a model and is not complete. The complete example
resides in the following files:
<WLPS_installation_directory>/server/public_html/portals
/repository/portlets/advisor_ejb_example.jsp
<WLPS_installation_directory>/src/examples/
advisor/ClassificationExample.java

try
{
 ClassificationAdviceRequest request = null;
 AdviceRequest arequest = anAdvisor.createRequestTemplate
 ("ClassificationAdviceRequest");
 request = (ClassificationAdviceRequest)arequest;
 HttpServletRequest someRequest = (HttpServletRequest)
 pageContext.getRequest();
 ConfigurableEntity user = P13NJspHelper.createP13NProfile(httpRequest);
 request.setUser(user);

 request.setHttpRequest(P13NJspHelper.createP13NRequest(httpRequest));
 request.setHttpSession(P13NJspHelper.createP13NSession(httpRequest));
 request.setNow(new Timestamp(System.currentTimeMillis()));
 request.setRuleSet(ruleset);
 request.setRule(rule);

 AdviceResults result = anAdvisor.advise(request);
 Classification classification = ((ClassificationAdviceResults)result).
 getClassification();
 return classification != null;
 }
catch(Exception e)
{
 e.printStackTrace();
}

Note: You can also use the JSP <pz:div> tag to classify users. (For more
information, see “Classifying Users with the JSP <pz:div> Tag” on page 2-5.

2 Creating Personalized Applications with the Advisor

2-12 BEA WebLogic Personalization Server Developer’s Guide

Selecting Content with the Advisor Session Bean

For content selection requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

1. Create an instance of the Advisor session bean.

2. Call the Advisor’s createTemplate method to get the correct AdviceRequest
object. In this case, it should return a ContentQueryAdviceRequest.

3. Set the parameters on the ContentQueryAdviceRequest, including:

n contentHome (required): the JNDI name to find a content home

n query (required): the query to run against the system

n sortBy (optional)

n max (optional)

4. Call the advise method on the Advisor.

5. The Advisor returns a subclass of AdviceResults. In this case, it should return a
ContentQueryAdviceResults object, from which you can retreive an array of
Content objects.

A basic example of using the bean for a content query might look like the following:

try
{
 AdviceRequest arequest = anAdvisor.createRequestTemplate(
 "ContentQueryAdviceRequest");

 request = (ContentQueryAdviceRequest)arequest;
 request.setQuery(query);
 request.setMax(max);
 request.setSortBy(sortby);
 request.setContentHome(home);

 AdviceResults result = anAdvisor.advise(request);
 Collection docs = ((ContentQueryAdviceResults)result).getContent();
 if (docs==null)
 {
 return new Content [0];

Creating Personalized Applications with the Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-13

 }
 return (Content[])docs.toArray(new Content[docs.size()]);

}
catch(Exception e)
{
 e.printStackTrace();
}

Note: You can also use the JSP <pz:contentQuery> tag to select content. (For
more information, see “Selecting Content with the <pz:contentQuery> JSP
Tag” on page 2-6.)

Matching Content to Users with the Advisor Session
Bean

For content matching requirements beyond what the JSP tags provide, or to use content
selection in a servlet, developers can use the Advisor EJB directly. The following
sequence describes the process of asking the Advisor for content (refer to the Javadoc
for API details).

Note: All classes used here reside in the com.beasys.commerce.axiom.p13n.*
packages.

1. Create an instance of the Advisor session bean.

2. Call the Advisor’s createTemplate method to get the correct AdviceRequest
object. In this case, it should return a ContentSelectorAdviceRequest.

3. Set the required objects on the ClassificationAdviceRequest. These include
the:

n Session object (retrieved from
P13NJspHelper.createP13NSession(HttpServletRequest))

n User object (retrieved from
P13NJspHelper.createP13NProfile(HttpServletRequest))

n Request object (retrieved from
P13NJspHelper.createP13NRequest(HttpServletRequest))

n java.sql.Timestamp object representing now

2 Creating Personalized Applications with the Advisor

2-14 BEA WebLogic Personalization Server Developer’s Guide

n rule set name (For more information, see the topic “What are Rule
Sets?” in the chapter Creating and Managing Rules in the WebLogic
Personalization Server User’s Guide.)

n rule name (For more information, see the chapter Creating and
Managing Rules in the WebLogic Personalization Server User’s Guide.)

n Successor object (that is, the user’s group)

n contentHome (required): the JNDI name to find a content home

n query (required): the query to run against the system

n sortBy (optional)

n max (optional)

4. Call the advise method on the Advisor.

5. The Advisor returns a subclass of AdviceResults. In this case, it should return a
ContentQueryAdviceResults object, from which you can retreive an array of
Content objects.

A basic example of using the bean for content selection might look like the following.

Note: This code is just a model and is not complete. The complete example resides
in the following files:
<WLPS_installation_directory>/server/public_html/portals/
repository/portlets/advisor_ejb_example.jsp
<WLPS_installation_directory>/src/examples/advisor/ContentS
electorExample.java

Creating Personalized Applications with the Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-15

try
{
 AdviceRequest arequest = anAdvisor.createRequestTemplate
 ("ContentSelectorAdviceRequest");

 request = (ContentSelectorAdviceRequest)arequest;
 HttpServletRequest someRequest =
 (HttpServletRequest)pageContext.getRequest();
 ConfigurableEntity user = P13NJspHelp.createP13NProfile(someRequest);

 request.setUser(user);
 request.setHttpRequest(P13NJspHelper.createP13NRequest(someRequest));
 request.setHttpSession(P13NJspHelper.createP13NSession(someRequest));
 request.setNow(new Timestamp(System.currentTimeMillis()));
 request.setRuleSet(ruleset);
 request.setRule(selector);
 request.setMax(max);
 request.setSortBy(sortby);
 request.setContentHome(home);
 request.setQuery(query);

 AdviceResults result = anAdvisor.advise(request);
 Collection docs = ((ContentQueryAdviceResults)result).getContent();
}
catch(Exception e)
{
 e.printStackTrace();
}

Note: You can also use the JSP <pz:contentSelector> tag to match content to
users. (For more information, see “Matching Content to Users with the
<pz:contentSelector> JSP Tag” on page 2-7.)

2 Creating Personalized Applications with the Advisor

2-16 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 3-1

CHAPTER

3 Foundation Classes and
Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that JSP developers can use to gain
access to functions provided by the server, and helpers for gaining access to the
Advisor services.

This topic includes the following sections:

n Flow Manager

l Hot Deployment

l Dynamic Flow Determination and Handling

l Property Set Usage

l Webflow

l Accessing Your Application via the Flow Manager

n Repository

n HTTP Handling

n Personalization Request Object

l Default Request Property Set

n Personalization Session Object

l Default Session Property Set

n Utilities

3 Foundation Classes and Utilities

3-2 BEA WebLogic Personalization Server Developer’s Guide

l JspHelper

l JspBase

l P13NJspBase

l ContentHelper

l CommercePropertiesHelper

n Utilities in commerce.util Package

l ExpressionHelper

l TypesHelper

Flow Manager

The Flow Manager is a servlet implementation that allows the hot-deployment of
applications within the WebLogic Application Server. Flow Manager also adds
flexibility to navigation through the system by allowing navigation information to
move off the JSP page and into a single point of control. Using a Destination
Determiner and a Destination Handler, the Flow Manager dynamically determines a
destination for a given page request and dynamically handles it.

Note: The Flow Manager replaces the functionality previously supplied by the Portal
Service Manager and JSP Service Manager. All the functionality of the service
managers now reside within the Flow Manager. The JSP Service Manager and
the Portal Service Manager have been deprecated.

Hot Deployment

Hot deployment allows you to register a portal or non-portal application without
restarting the server. To add a new portal with the Flow Manager, you simply create a
new instance of a property set. The changes become visible according to a
configurable refresh setting (ttl).

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 3-3

 Dynamic Flow Determination and Handling

The Flow Manager allows the determination of page routing to be centralized on the
server based on an application’s needs. To define properties of your unique application,
you will create a property set of type APPLICATION_INIT. (See “Property Set Usage”
on page 3-6.) There are three required values:

n destinationdeterminer—An implementation of the
com.beasys.commerce.foundation.flow.DestinationDeterminer
interface.

n destinationhandler—An implementation of the
com.beasys.commerce.foundation.flow.DestinationHandler interface.

n ttl—How long (in milliseconds) before reloading the application init property
set.

How the FlowManager Works

When WebLogic Personalization Server is installed, the Flow Manager servlet is
registered with the WebLogic Server in the weblogic.properties file:
weblogic.httpd.register.application=com.beasys.commerce.foundatio
n.flow.FlowManager

To access the servlet, a client browser makes an HTTP request. For example:
http://localhost:7501/application/exampleportal

In this example, “application” is the registered servlet (the Flow Manager), and
“exampleportal” is the APPLICATION_INIT property set that you defined.

3 Foundation Classes and Utilities

3-4 BEA WebLogic Personalization Server Developer’s Guide

The following diagram illustrates how the Flow Manager handles the request.

Let’s look at the diagram one step at a time, using our example.

1. A client browser makes an HTTP request via a form submission, hyperlink, etc.

In this example, the request is for the exampleportal at
http://localhost:7501/application/exampleportal.

WebLogic Server (WLS) routes the request to the servlet registered in
weblogic.properties with the name “application,” which is the Flow
Manager.

2. The request is analyzed within the servlet, and the path-info is pulled out. The
path-info is the name of the property set to retrieve.

In our example, the Flow Manager extracts the string “exampleportal” from the
URL.

The property set is retrieved from the database (or the cache).

Using the SchemaManager, the Flow Manager reads the Application Init
property set of that name from the database. The Flow Manager reads the
properties named “destinationdeterminer” and “destinationhandler” from the
property set and instantiates each class.

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 3-5

Note: Implementations of these classes are to be provided by the application
developer, as needed.

3. The Flow Manager then calls the destinationdeterminer defined in the property
set, using the DestinationDeterminer.determineDestination method.

In this example, the PortalDestinationDeterminer class does not find a
DESTINATION_URI in the request and the user is not logged in, so it retrieves the
“defaultdest” property and returns the destination string
“/portals/example/portal.jsp” to the Flow Manager.

4. The Flow Manager then calls the DestinationHandler.handleDestination
method. The destination returned from the previous call is passed on to the
destinationhandler defined in the property set.

5. In this example, the portal uses the ServletDestinationHandler which calls
the requestDispatcher.forward method, passing execution control to the
portal.jsp servlet.

6. Finally, application processing proceeds in the servlet which uses the response
object to return data to the client browser.

3 Foundation Classes and Utilities

3-6 BEA WebLogic Personalization Server Developer’s Guide

Property Set Usage

The Property Set Management admin tools include a class of property sets called
Application Initialization Property Sets. To support non-portal based personalized
applications, the Flow Manager uses _DEFAULT_APP_INIT. For portals, the Flow
Manager uses the_DEFAULT_PORTAL_INIT property set. For more information , see
the topic “_DEFAULT_PORTAL_INIT Property Set” in the chapter Creating and
Managing Portals in the WebLogic Personalization Server User’s Guide.

The following three properties support the Flow Manager:

destinationdeterminer Property

The destination determiner evaluates an HTTP request and determines which servlet
to route it to.

The value provided for this property should be the name of a class that implements the
com.beasys.commerce.foundation.flow.DestinationDeterminer interface.
If appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

destinatationhandler Property

Given a destination route, the DestinationHandler is responsible for envoking the
requested processing.

Property Name Required Description

destinationdeterminer Yes Used by Flow Manager to determine JSP page
navigation.

destinationhandler Yes Used by Flow Manager to execute JSP page
navigation.

ttl Yes Time to live determines (in milliseconds) how
often the Flow Manager reloads the application
init property set from the database.

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 3-7

The value provided for this property should be the name of a class that implements the
com.beasys.commerce.foundation.flow.DestinationHandler interface. If
appropriate, use a default implementation provided by WebLogic Personalization
Server or WebLogic Commerce Server. Otherwise, develop your own implementation
according to the needs of your application.

 ttl (time to live) Property

 ttl , which stands for time to live, represents how often (in milliseconds) the Flow
Manager reloads the application init property set from the database. This allows you to
make property set changes visible while the portal is running.

Note: To force immediate reloading of the property set, append the "flowReset"
argument to your URL, like this:
http://localhost:7001/application/exampleportal?flowReset=true

Creating a New Property Set

1. Open the Administration Tools Home page. Click the Property Set Management
icon to open the Property Set Management screen.

2. From the main Property Set Management screen, click Create.

3. Name the new property set you are creating (100 character maximum). The name
of the property set should be the same as the name you used to create the portal,
or the name you will use to access the application.

4. Enter a description of the property set (255 character maximum).

5. From the Copy Properties From drop-down list, select
APPLICATION_INIT._DEFAULT_PORTAL_INIT (for a portal)
or
APPLICATION_INIT._DEFAULT_APP_INIT (for a non-portal application).

6. From the Property Set Type drop-down list, select Application Init.

7. Click the Create button.

8. At the top of the page, in red, you will see the message “Property Set creation
was successful.” (Or, you will see an error message indicating why the property
set was not created.)

9. Click Back to return to the main Property Set Management screen.

3 Foundation Classes and Utilities

3-8 BEA WebLogic Personalization Server Developer’s Guide

Set Parameters for Your Portal or Application

1. From the Property Set Management Home page, under the Application
Initialization Property Sets heading, click the name of the property set you just
created.

2. A Property Set page comes up, allowing you to set parameters.

3. Note: For non-portal applications, skip this step.
To edit the portal name, click the Edit button to the right of the “portal name”
property. Change the default value from UNKNOWN to the name of your portal, as
you created it in Portal Management.

4. Edit the Destination Determiner property. Either accept the default, or edit to
provide your own implementation of these classes.

5. Edit the Destination Handler property. Either accept the default, or edit to provide
your own implementation of these classes.

6. Customize any other properties you choose. For information about customizing
properties in portals, see the chapter Creating and Managing Portals.in the
WebLogic Personalization Server User’s Guide.

7. When you have finished setting properties, click the Finished button at the
bottom of the page.

Webflow

Webflow is a mechanism that controls the flow of a user session by determining which
pages are displayed in a browser. The Flow Manager provides the basic infrastructure
to support the Webflow functionality. On the WebLogic Personalization Server,
Webflow does a simple dispatch to a target destination. When a request comes in from
the browser, a destinationdeterminer looks for a dest parameter on the URL and grabs
what dest asks for.

The WebLogic Commerce Server extends the Flow Manager with the addition of a
Webflow properties file. By setting parameters, you can determine how Webflow
reacts to events and which pieces of business logic to execute. When a request comes
into the Commerce Server from a browser, Webflow looks for the origin and event
parameters in the webflow.properties file and grabs what the properties file asks
for.

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 3-9

The Webflow scheme provides a good example of centralized routing information. It
provides an implementation of the DestinationDeterminer which uses a properties file
resource as a state table to determine the routing destination. For more information
about the Webflow implementation in the WebLogic Commerce Server, see Webflow
and Pipeline Management.

Accessing Your Application via the Flow Manager

The exact URL you use depends upon whether or not you have deployed your
application as a Web application. WebLogic Personalization Server includes two
sample configurations of the Acme Demo Portal, both as a Web application/Web
archive deployment and a non-Web application configuration. For more information,
see “Deploying a Portal as a Webapp” on page 6-2.

Using Flow Manager with a Web Application

The URL for Acme Demo Portal accessed as a WAR application is:
http://localhost:7501/portal .

The "portal" portion of the URL is the context name for the Web application as defined
in the weblogic properties file:

weblogic.httpd.webApp.portal=C:/WebLogicCommerceServer3.1/server/

webapps/examples/portal/portal.war

Within the portal.war, the web-inf/web.xml file includes <servlet> and
<servlet-mapping> entries for the Flow Manager, associating all URL accesses
starting with "application/*" with the Flow Manager's class.

Note: To use hot-deployment here, the additional portal code deployments must live
in the Web-application directory, so the same context name ("portal") can be
used to access them.

In the above URL example, the HTTP request defaults to index.jsp, as defined in the
<welcome-file-list> element in the Webapp web.xml file. When the HTTP
request is routed to the Flow Manager, it extracts the path information "exampleportal"
from the URL and retrieves the property set of the same name from the server (or
cache). The "destinationdeterminer" and "destinationhandler" properties are used to
instantiate the supporting implementations, and processing proceeds as described
above.

3 Foundation Classes and Utilities

3-10 BEA WebLogic Personalization Server Developer’s Guide

Using Flow Manager with a non-Web Application

The URL for Acme Demo Portal accessed as a non-Web application is:

http://localhost:7501/application/exampleportal

The Flow Manager accesses a non-Web application in almost the same way it accesses
a Webapp. There are two primary differences:

n There is no web-application context path

n The definition of the Flow Manager servlet is drawn from the WebLogic
properties file:
weblogic.httpd.register.application=com.beasys.commerce.foundat
ion.flow.FlowManager

Otherwise, processing proceeds as described above (see “Using Flow Manager with a
Web Application” on page 3-9).

Repository

BEA WebLogic Personalization Server Developer’s Guide 3-11

Repository

The repository feature allows you to specify a single directory to contain files that
otherwise would have to be replicated several times.

The administration pages for components take advantage of the repository feature to
store images shared between components. Each HTML reference to an image is
wrapped by the ToolsJspBase.fixupRelativeURL method. This method first looks
in the path-relative directory for the image specified in the argument. If not found
there, the repositorydir specified in the weblogic.properties file (for the
wlpsadmin servlet) is searched for the image.

For portals, the default portal (Acme) implementation has its files contained in a folder
named repository and specifies a repositorydir=/portal/repository. In an
extreme example, a second portal which only differed from Acme in one file, say
portal.jsp, would be created by creating a new directory named extremeExample
and by adding one file (portal.jsp) to it. All files supporting the extremeExample
portal which were not found in its workingdir will be fetched from the repository
directory.

For Webapps, the repository directory must reside inside the Webapp context.

HTTP Handling

Both the <pz:div> and <pz:contentselector> tag implementations send
HttpRequest and Session information to the Advisor.

The Advisor includes helper classes that transform an HttpRequest and Session into
Serializable personalization surrogates for their HTTP counterparts. These surrogates
are compatible with the Personalization Rules Service which uses these objects to
execute classifier and content selector rules.

3 Foundation Classes and Utilities

3-12 BEA WebLogic Personalization Server Developer’s Guide

Personalization Request Object

In order to use HttpRequest parameters in requests to the rules service, they must be
wrapped in a Personalization Request object
(com.beasys.commerce.axiom.p13n.http.Request) before they can be set on the
appropriate AdviceRequest (see the Javadoc API documentation). While the
HttpRequest object can be wrapped by directly calling the Personalization Request
constructor, it is recommend that developers use the createP13NRequest helper
method on P13NJspBase
(com.beasys.commerce.axiom.p13n.jsp.P13NJspBase) for this purpose. See the
Javadoc API documentation for more information.

Caution: The tag implementations for the <pz:div> and <pz:contentSelector>
tags create the Personalization Request surrogate for the HttpRequest
before calling the Advisor bean, so JSP developers need not worry about
the details of the Request object. Only developers accessing the
PersonalizationAdvisor bean directly need to wrap the HttpRequest
object explicitly.

In order to avoid confusing results on getProperty method calls, developers need to
know the algorithm used in the getProperty method implementation for determining
the value of the property requested . When the Request’s getProperty method is
called (for example, by a rules engine), the system uses the following algorithm to find
the property:

1. The getProperty method first looks in the HttpRequest’s attributes for the
property.

2. If not found, getProperty looks for the property in the HttpRequest
parameters.

3. If not found, getProperty looks in the HTTP headers.

4. If not found, getProperty looks in the Request methods (getContentType,
getLocale, etc.).

5. If not found, getProperty uses the scopeName parameter to find a schema
entity for a Request schema group name and, if the schema is found, uses the
default value in the schema.

6. If not found, getProperty uses the default value passed into the method call.

Personalization Request Object

BEA WebLogic Personalization Server Developer’s Guide 3-13

Default Request Property Set

For Rules developers to write rules for classifier rules that contain conditions based on
an HttpRequest, there must be a property set defined for the HttpRequest. By
default, WebLogic Personalization Server ships with a default request property set for
the standard HttpRequest properties. Developers adding properties to the request
programatically will need to add those properties to the default property set in order
for them to be available to the rules editor and service.

The default Request properties include the following

Request Property Name Associated Request Method

Request Method request.getMethod()

Request URI request.getRequestURI()

Request Protocol request.getProtocol()

Servlet Path request.getServletPath()

Path Info request.getPathInfo()

Path Translated request.getPathTranslated()

Locale request.getLocale()

Query String request.getQueryString()

Content Length request.getContentLength()

Content Type request.getContentType()

Server Name request.getServerName()

Server Port request.getServerPort()

Remote User request.getRemoteUser()

Remote Address request.getRemoteAddr()

Remote Host request.getRemoteHost()

Scheme request.getAuthType()

3 Foundation Classes and Utilities

3-14 BEA WebLogic Personalization Server Developer’s Guide

Personalization Session Object

In order to use HTTP Session parameters in requests to the rules service, they must be
wrapped in a Personalization Session object
(com.beasys.commerce.axiom.p13n.http.Session) before they can be set on the
appropriate AdviceRequest (see the Javadoc API documentation). While the
HttpSession object can be wrapped by directly calling the Personalization Session
constructor, it is recommend that developers use the createP13NSession helper
method on P13NJspBase
(com.beasys.commerce.axiom.p13n.jsp.P13NJspBase). See the Javadoc API
documentation for more information.

The tag implementations for the <pz:div> and <pz:contentselector> tags create
the Personalization Session surrogate for the HTTP Session before calling the Advisor
bean, so JSP developers need not worry about the details of the HttpSession object.
Only developers accessing the PersonalizationAdvisor bean directly need to wrap
the HttpSession object explicitly.

Default Session Property Set

For Rules developers to write rules that contain conditions based on an HTTP session,
there must be a property set defined for the HTTP session. WebLogic Personalization
Server ships with a default session property that contains no values set as a
placeholder. There are no default Session property set values. Developers adding
properties to the session programatically will need to add those properties to the default
property set in order for them to be available to the rules editor and service.

Request Property Name Associated Request Method

Authorization Scheme request.getScheme()

Context Path request.getContextPath()

Character Encoding request.getCharacterEncoding()

Personalization Session Object

BEA WebLogic Personalization Server Developer’s Guide 3-15

The Personalization Session object retrieves the session values from the Service
Manager (see “Repository” on page 3-11) for the current thread and clones them so
they can be used on a remote machine.

The Personalization Session uses the following algorithm to find a property:

1. It first looks in its own cloned HTTP Session properties.

2. If it does not find the property, it locates the schema for the Personalization
Session for the scopeName method parameter.

3. If it still does not find the property, it uses the scopeName parameter to find a
schema entity for the Session schema group name and, if the schema is found,
uses the default value in the schema.

4. If it still does not find the property, it uses the default value passed into the
getProperty method call.

3 Foundation Classes and Utilities

3-16 BEA WebLogic Personalization Server Developer’s Guide

Utilities

You can view more detailed documentation for the utilities listed here in the Javadoc
API documentation.

JspHelper

JspHelper provides get methods to the JspServiceManager URI, the working
directory, the home page, and the current page. It also provides set and get methods for
session values and JSP destinations.

Note: Some of these methods assume that the JspServiceManager model is being
used.

JspBase

JspBase acts as a base class for all JSP pages that use a JspServiceManager. A wide
variety of important methods are provided:

n Get methods for the TrafficURI, working directory, repository directory, default
destination, RequestURI, default successor, home page, and current page.

n Methods to create URLs, and fixup (fully qualified) URLs.

n Methods to override the destination tag.

n Methods to set and get logged-in status.

n Methods to get, set, and remove session values.

n A method to convert HTML special characters to HTML entities.

n Methods to set the user and successor.

Utilities

BEA WebLogic Personalization Server Developer’s Guide 3-17

P13NJSPHelper

P13NJspBase provides convenience methods to developers writing JSP pages
(including but not limited to portals and portlets) that include personalized content. It
provides methods for wrapping HTTP Request and Session objects into their
personalization surrogates, and a method for retrieving the current Profile (User,
Group, and so on) for an application.

P13NJspBase

P13NJspBase acts as a base class for all personalized JSP pages. This class extends
JspBase.

ContentHelper

ContentHelper simplifies the life of the developer using the Content Management
component. Methods are provided to get an array of content given a search object, to
get the length of a piece of content. Constants for the default Content and Document
homes are also provided.

CommercePropertiesHelper

CommercePropertiesHelper allows easy access to the commerce.properties file’s
properties. Methods are provided to return the values of a given keys as various data
types. Also provided is a method to return all keys that start with a given string as a
string array. For example, use the method to find all of the keys that start with
personalization.portal.

3 Foundation Classes and Utilities

3-18 BEA WebLogic Personalization Server Developer’s Guide

Utilities in commerce.util Package

ExpressionHelper

ExpressionHelper handles dealing with Expression, Criteria, and Logical
objects. It contains methods for parsing query strings into Expressions, joining
Expressions into Logicals, normalizing Expressions, changing Expressions,
Logicals, and Criteria into Strings, and turning Expressions into String trees
for debugging purposes.

TypesHelper

TypesHelper provides a set of constants corresponding to the types and operators
used in the configurable entity properties. Methods are provided to get string
representations of the type names, to determine a type from a java.sql.Type, and to
get the list of comparison operators for a certain type.

BEA WebLogic Personalization Server Developer’s Guide 4-1

CHAPTER

4 Developing Portlets

An integral part of any portal solution is the portlet application. This chapter explains
what you need to know to create a portlet application.

This topic includes the following sections:

n Introduction

n Creating a portlet application

l Defining the Portlet JSP

n Working Within the Portal Framework

l Extending the PortalJspBase Class

l Accessing Portal Session Information

l Sending Requests Through the Flow Manager

l Using URL Links in Your Portlet

l HTML Form Processing

l Retrieving the Home Page

l Retrieving the Current Page

l Setting the Request Destination

l Tracking User Login Status

l Loading Content from an External URL

l Using example portlets

l HTML Tables vs. HTML Frames

4 Developing Portlets

4-2 BEA WebLogic Personalization Server Developer’s Guide

Introduction

Generally, a main portal page is organized into smaller display areas. Using the
WebLogic Personalization Server, the portal developer can create a main page layout,
with flexible methods for determining custom headers, footers, look and feel elements,
and the primary content areas.

The most information-rich part of the main page consists of a set of portlets, laid out
in columns. Each portlet is a small content area, provided to display a particular type
of information. These portlets are developed especially for each portal and are written
in JSP, so there is great flexibility in what can be displayed. There is a standard set of
development guidelines, coupled with portal services, to ensure portal and portlets are
well-behaved.

The primary way dynamic functionality of the personalization components is made
available to portlets is via custom JSP tags resident in tag libraries. These tags hide
much of the internal runtime complexity of the Personalization Server, presenting a
small, well-defined interface to its functions. Portlets may also access certain types of
personalization EJBs directly, using embedded Java to access Personalization Server
functionality.

Each portlet may have a series of custom pages with specific functions associated with
it, accessed via button clicks on the portlet. An edit page may make available to the
user HTML input elements, in which the user can enter data on preferences specific to
that portlet. A full page (or pages) version may be brought up to show an arbitrary
amount of detail. A help page can be set up. The portlet may also be maximized,
minimized, or floated in its own window.

What is a portlet?

From the end-user point-of-view, a portlet is a specialized content area that occupies a
small “window” in the portal page. For example, a portlet can contain travel itineraries,
business news, local weather, or sports scores. The user can personalize the content,
appearance, and position of the portlet according to the profile preferences set by the
administrator and group to which the user belongs. The user can also edit, maximize,
minimize, or float the portlet window.

Introduction

BEA WebLogic Personalization Server Developer’s Guide 4-3

The following figure shows how portlets appear in a portal home page:

Figure 4-1 Portlet Homepage View

From a server application point-of-view, a portlet is a content component implemented
as a JSP that defines the static and dynamic content for a specific content subject
(weather, business news, etc.) in the portal page. The portlet JSP generates dynamic
HTML content from the server by accessing data entities or content adapters
implemented using the J2EE platform. The Portlet JSP then displays the content in the
portal.

Note: All of the portlets in a portal are included in a single HTML page, through the
use of the <jsp:include> action.

4 Developing Portlets

4-4 BEA WebLogic Personalization Server Developer’s Guide

Figure 4-2 Portal Application Programming Model

The diagram shown above defines the portal application programming model. This
programming model includes JSP, JSP tags, JavaBeans, EJBs, data stores, and content
management stores. The portlet JSP contains static HTML and JSP code. This JSP
code uses application or content specific JSP tags and/or JavaBeans to access dynamic
application data through EJBs, content adapters, and legacy system interfaces. Once
this data is retrieved, the portlet JSP applies HTML styling to it and the generated
HTML is returned in the HTTP request to the client HTTP client.

Creating a portlet application

To create a portlet application, you should be a J2EE developer with a background in
JavaServer Pages™ (JSP), JavaScript and HTML, and have a knowledge of Enterprise
Java Beans.

The portlet application is a JSP that contains code responsible for retrieving
personalized content and rendering it as HTML.

Once you have created your portlets, you can associate them with one or more portals.
Therefore, you must create your portlet applications before using the Portal
Administration Tool to create and define your portal.

Creating a portlet application

BEA WebLogic Personalization Server Developer’s Guide 4-5

Defining the Portlet JSP

The portal treats portlets as components or HTML fragments, not as entire HTML
documents. The portal relies on the portlet application to create an HTML fragment for
its portlet content. The portal renders the portlet’s content in the portal page according
to the personalization rules (the row and column position, colors, etc.) for the portal,
group, and user levels.

When creating a portlet application, keep the following items in mind to ensure that
your portlets run efficiently:

n Avoid using forms in a portlet that update the data within the portlet. This causes
the entire portal to refresh its data which can be very time consuming. For more
information on using an HTML form in a portlet, see HTML Form Processing.

n Place items that require heavy processing in an edit page or a maximized URL.
Otherwise, the portal must wait for the portlet to process which considerably
slows down the painting of the portal.

To define your portlet JSP:

1. Create a JSP for your portlet content.

2. Create JSPs for the portlet banner, header, footer, alternate header, alternate
footer, help page, and edit URL as needed.

Note: You do not need to create a JSP for the portlet title bar because it is included
in the WebLogic Personalization Server.
(public.html/portals/repository/titlebar.jsp). The portlet title bar
displays the appropriate portlet titlebar icons and the name of the portlet you
defined in the Portal Administration Tool.

Note: Avoid using the following HTML tags in your portlet content page. The
HTML generated by the portlet content page is an HTML fragment contained
in a larger portal HTML page, not a separate HTML document.

n <html></html>

n <header></header>

n <body></body>

n <meta></meta>

n <title></title>

4 Developing Portlets

4-6 BEA WebLogic Personalization Server Developer’s Guide

3. Use the following portlet layout guidelines.

Working Within the Portal Framework

The portal framework consists of JavaServer Pages, JSP tag libraries, EJBs, Java
servlets, and other supporting Java objects. The main Java servlet is the Flow Manager.
The Flow Manager receives all incoming HTTP requests and dispatches each request
to the appropriate destination URL. As a result, all access to your portal pages is
controlled by the Flow Manager. The following diagram shows where the Flow
Manager fits in the portal framework.

Table 4-1

Layout Attribute Recommendation

Content Height There are no restrictions on height as long as the content fits in
your portal page.

Column Width Take into account that the width of your portlet is controlled by
the portal(s) it is associated with. A portal lays out your portlet
content in a column based on portal, group, and user personal-
ization rules. As a result, the width of your portlet should be well
behaved.

Content Wrapping Allow wrapping for all portlet content. Do not use the NOW-
RAP attribute in table cells.

Titlebar Icon Height The image height attribute in titlebar.jsp is set to 20.

Titlebar Icon Width The image width in titlebar.jsp is set to 27.

Working Within the Portal Framework

BEA WebLogic Personalization Server Developer’s Guide 4-7

Figure 4-3 Portal Framework

Extending the PortalJspBase Class

It is recommended that your portlet JSP extend the framework’s PortalJspBase Java
class. This class contains many convenience methods which perform general tasks for
your portlet JSP page, such as accessing session information, the traffic uri, and user
login information.

To extend the PortalJspBase class, include the following code at the top of your
portlet JSP:

<%@ page
extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

Accessing Portal Session Information

The portal session information you can access from the PortalJspBase class are
listed in the following table which lists the name, type, and description for each session
value. For more information, see the Portal API Documentation.

Table 4-2

Session Value Name Type Description

PortalAdminConstants.PORTAL_NAME String The name of the portal associated with the
current request.

4 Developing Portlets

4-8 BEA WebLogic Personalization Server Developer’s Guide

You can retrieve the portal session information described above through the following
PortalJspBase methods:

n public Object getSessionAttribute(String aName,
HttpServletRequest aRequest)

n public void setSessionAttribute(String aName, Object aValue,
HttpServletRequest aRequest)

n public void removeSession(String aName, HttpServletRequest
aRequest)

You can set the portal session’s SERVICEMANAGER_USER and
SERVICEMANAGER_SUCCESSOR through the following JspBase methods:

n public static void setUser(String aUser, HttpServletRequest aRequest)

n public static void setSuccessor(String aSuccessor, HttpServletRequest
aRequest)

n public static void setUserAndSuccessor(String aUser, String aSuccessor,
HttpServletRequest aRequest)

JspConstants.SERVICEMANAGER_SUCCESSOR String The name of the successor associated with
the current session. The successor profile
properties are used for those properties not
specified by the user.

JspConstants.SERVICEMANAGER_USER String The name of the user associated with the
current session.

UserManagmentConstants.PROFILE_USER Config-
urable
Entity

The user profile associated with the current
request or the session.

UserManagmentConstants.PROFILE_SUCCESSOR Config-
urable
Entity

The group profile associated with the cur-
rent request or the session.

UserManagmentConstants.PROFILE_SUCCESSOR_UID Long Unique IDs for the configurable Entities.

UserManagmentConstants.PROFILE_USER_UID Long Unique IDs for the configurable Entities.

Table 4-2

Session Value Name Type Description

Working Within the Portal Framework

BEA WebLogic Personalization Server Developer’s Guide 4-9

Sending Requests Through the Flow Manager

Remember that all HTTP requests and responses are sent to the Flow Manager servlet.
Therefore, your portlet HTML must refer to the Flow Manager’s URL for URL links
and HTML form processing.

Using URL Links in Your Portlet

If your portlet contains links to a JSP page that is not a portlet, use the following
PortalJspBase method to create your URL and to guarantee that the HTTP request
is sent to the service manager URL:

public String createURL(HttpServletRequest aRequest, String
destination, String parameters)

The destination should be a relative or qualified file location in the form such as
example/mytodo.jsp, or /yourportal/example/mytodo.jsp. The path is
relative to the documentRoot, as specified in weblogic.properties. Parameters
should be a string such as column=4&row=5.

Note: Parameter values should already be encoded as you would for any HTTP
request. Example: String parms = "column=" +
java.net.URLEncoder.encode("4");

Because of the way the JSP engine handles jsp:forward and jsp:include, you
must fixup the relative URLs in your portlet, especially relative links to images. The
web browser thinks the root for relative links is the directory in which the Flow
Manager resides and not your portlet’s directory.

To fixup relative URLs use the following ToolsJspBase method:

public static String ToolsJspBase fixupRelativeURL(String aURL,
HttpServletRequest aRequest)

where aURL is the destination URL to fix up and aRequest is the current HTTP
request. In your JSP page, use the following method to code a ’fixup’:

<img src="<%=fixupRelativeURL("images/quote.gif",
request)%>"width="50" height="35" border="0">

4 Developing Portlets

4-10 BEA WebLogic Personalization Server Developer’s Guide

Note: For the repository feature to work with jsp:include and jsp:forward, use
reconcile file to determine the correct location of the file that is included or
forwarded.

Example: <jsp:forward page="<%=reconcileFile(request,
"login.jsp")%>" />

HTML Form Processing

If your portlet contains an HTML form, send all requests to the Flow Manager and set
the destination request parameter.

To process HTML forms:

1. Set the form action to action=getTrafficURI(request). This sends the form
action request to the Flow Manager. This calls the PortalJspBase method:

public String getTrafficURI(HttpServletRequest aRequest)

The following example shows the use of the HTML form action to send a form
request to the Flow Manager:

<form method="post" action="<%=getTrafficURI(request)%>">

2. Set the destination request parameter in the HTTP post request. This tells the
Flow Manager where to dispatch the request.

To set the request destination for HTML forms, enter the following code within your
form in your JSP page:

<input type="hidden" name="<%=DESTINATION_TAG%>"
value="example/mytodo.jsp">

Note: Do not go through the Flow Manager for HTTP requests to other servers.

Working Within the Portal Framework

BEA WebLogic Personalization Server Developer’s Guide 4-11

Retrieving the Home Page

The Flow Manager sets the home page for each portal in the Portal Framework session
information. The home page is registered as an initial argument for Flow Manager
servlet in weblogic.properties. Use the following PortalJspBase method call to
retrieve the home page:

public String getHomePage(HttpServletRequest aRequest)

Retrieving the Current Page

You can also retrieve the current page from the Portal Framework session information
by using the following PortalJspBase method:

public String getCurrentPage(HttpServletRequest aRequest)

Note: When you maximize a portlet, the current page changes to
fullscreenportlet.jsp.

Setting the Request Destination

When routing a request through the Flow Manager, you must specify the destination
that should receive the request. The destination can be relative to the current page
(portal.jsp, full-screen portlet.jsp, etc.) or a fully qualified path from the document
root.

Note: The DESTINATION_TAG constant is available in PortalJspBase.

If your portlet contains links to other portal pages, use the following PortalJspBase
method to create your URL and to guarantee that the HTTP request is sent to the
service manager URL:

public String createURL(HttpServletRequest aRequest, String
destination, String parameters)

The destination should be a relative or qualified file location in the form such as
example/mytodo.jsp, or /yourportal/example/mytodo.jsp.

4 Developing Portlets

4-12 BEA WebLogic Personalization Server Developer’s Guide

In some cases, you may need to override the request parameter used by the Flow
Manager. For example, use an override destination if your page contains a form that
needs to be validated and forwarded elsewhere after validation. Use the following
PortalJspBase method in your JSP page:

public void setOverrideDestination(HttpServletRequest req, String
dest)

To set the request destination for HTML forms, enter the following code within your
form in your JSP page:

<input type="hidden" name="<%=DESTINATION_TAG%>"
value="example/mytodo.jsp">

Tracking User Login Status

You can log the user in or out and track whether a user is currently logged in.

Use the following PortalJspBase method to track the user login status of a portal
session:

public void setLoggedIn(HttpServletRequest aRequest,
HttpServletResponse aResponse, boolean aBool)

public Boolean getLoggedIn(HttpServletRequest aRequest)

Loading Content from an External URL

According to the JSP specification, a JSP processed by a JSP engine must be relative
to the server in which the JSP engine is running, requiring that all of your portlets
reside in your portal server and not on an external web site. However, you can use the
uricontent tag to download the contents of an external URL into your portlet. If you
download the contents of a URL into your portlet, you need to fully qualify the images
located on the remote server because the relative links contained within the remote
URL will not be found unless fully qualified.

Use the following method to load content from an external URL:

<es:uricontent id="uriContent"

Working Within the Portal Framework

BEA WebLogic Personalization Server Developer’s Guide 4-13

 uri="http://www.beasys.com/index.html">
<%
out.print(uriContent);
%>

</es:uricontent>

The sample <es:uricontent> tag is available in
public_html/portals/repository/portlets/_uri_example.jsp

Using example portlets

The /server/public_html/portals/repository/portlets directory of the
WebLogic Personalization Server contains example portlets. The following table lists
the name of each example portlet, its description, and its associated files.

Caution: The example portlets are intended for illustration purposes only and should
not be used for production code.

Table 4-3

Example Portlet Description

_uri_example.jsp Demonstrates how to implement the uricontent
tag to import contents from another URL on the
Internet.

bookmarks.jsp Displays the bookmarks associated to the cur-
rent user.

n bookmarks_edit.jsp – Edit screen for
the bookmarks.

n images/pt_bookmark.gif – Book-
mark icon for the portlet titlebar.

definedportals.jsp Displays the portals defined in the system. Uses
the <es:foreachinarray>, <es:sim-
plereport>, and <wl:sqlquery
tags>.

4 Developing Portlets

4-14 BEA WebLogic Personalization Server Developer’s Guide

definedportlets.jsp Displays the portlets defined in the system.
Uses the <es:foreachinarray>,
<es:simplereport>, and <wl:sqlque-
ry tags>.

dictionary.jsp Demonstrates how to redirect a portlet to an ex-
ternal site.

n images/pt_dictionary.gif – Dic-
tionary icon for the portlet titlebar

generic_todo.jsp For a complete generic_todo.jsp exam-
ple, see Using the Default Implementation.

news_index.jsp Demonstrate use of <cm:> tags.

news_viewer.jsp Display content driven from
content_index.jsp. (Use in conjunction
with content_index.jsp.).

grouptodo.jsp Displays a Group To Do List.

n todo.jsp – Statically included file that
does not run by itself. It requires user infor-
mation from grouptodo.jsp.

n grouptodo_edit.jsp – Edit URL for
grouptodo.jsp.

l todo_edit.jsp – Statically in-
cluded file that does not run by itself.
It requires user information from
grouptodo_edit.jsp.

n grouptodobanner.jsp – Banner for
the grouptodo.jsp.

n images/pt_group_list.gif – Group
To Do List icon for the portlet titlebar.

Table 4-3

Example Portlet Description

Working Within the Portal Framework

BEA WebLogic Personalization Server Developer’s Guide 4-15

HTML Tables vs. HTML Frames

BEA WebLogic Commerce Server does not prevent the use of any kind of HTML,
including HTML frames. You will see that the demos and examples that ship with the
product are all reference implementations which use HTML tables.This tabular style
is not a requirement of the product—you can write HTML however you like. If you
choose to use HTML frames, keep the following considerations in mind:

n When using frames, performance may be an issue, as each HTML frame is a
separate page request.

mytodo.jsp Displays a “My To Do List.”

n todo.jsp – Statically included file that
does not run by itself. It requires user infor-
mation from mytodo.jsp.

n mytodo_edit.jsp – ’Edit URL’ for
mytodo.jsp.

l todo_edit.jsp – Statically in-
cluded file that does not run by itself.
It requires user information from
mytodo_edit.jsp.

n images/pt_my_list.gif – ’My To
Do List’ icon for the portlet titlebar.

quote.jsp Demonstrates how to redirect a portlet to an ex-
ternal site.

n images/pt_quote.gif – ’Quote’ icon
for the portlet titlebar.

search.jsp Demonstrates how to redirect a portlet to an ex-
ternal site.

n images/pt_search.gif – ’Search’
icon for the portlet titlebar.

Table 4-3

Example Portlet Description

4 Developing Portlets

4-16 BEA WebLogic Personalization Server Developer’s Guide

n Since HTTP is stateless, managing state between HTML frames is difficult. In a
single application, using a table allows a single HTTP request to be made with
all the portlets gathered in one request.

 If you choose to use frames, you will need to write HTML code to layout the portlets.

BEA WebLogic Personalization Server Developer’s Guide 5-1

CHAPTER

5 Building a Custom
Portal Step-by-Step

This document is a tutorial for building your own custom e-commerce portal. It
assumes minimal knowledge of BEA products, and some knowledge of HTML and
JSP. If you are new to WebLogic Server 5.1 (WLS) and WebLogic Commerce Server
3.1 (WLCS), and want to get up to speed quickly, this document is for you.

It is recommended, but not required, that you review the Personalization Tour before
proceeding with this document.

This topic has the following sections:

n Introduction

n Setting Up the Framework for Your Custom Portal

n Simple Customizations

n Writing Your Own Portlets

n Advanced Portlet Functionality

n Other Customization Techniques

Note: Throughout this chapter, the environment variable
WL_COMMERCE_HOME is used to indicate the directory in which you
installed the WebLogic Commerce Server 3.1 and WebLogic Personalization
Server 3.1 software.

5 Building a Custom Portal Step-by-Step

5-2 BEA WebLogic Personalization Server Developer’s Guide

Introduction

Internet portals are a key part of many eCommerce applications. Portals provide an
entry point to the Internet as well as value-added services such as searching and
application integration. The WebLogic Personalization Server allows you to quickly
assemble both Business-to-Consumer and Business-to-Business portals that require
personalized application content on the Internet.

The WebLogic Personalization Server enables web developers to create portal web
pages and personalized application content for each portal user. The WebLogic
Personalization Server uses JSPs, a part of the J2EE specification, in conjunction with
a special library of JSP tags, standard HTML, Enterprise Java Beans (EJB), portal end
user and the portal administration tools, and a pre-configured database to store portal
component entities.

Terminology

Before you can begin building your portal, familiarize yourself with the following
terminology.

%WL_COMMERCE_HOME%
The folder in which you installed WebLogic Personalization Server 3.1.

portal
This word has a specific meaning when working with the WLCS product. A
portal is a page that is intended to be the starting point for a user on a site.
Furthermore, this chapter assumes that you will be using the “Portal
Framework” included with WebLogic Personalization Server to build your
portal.

Portal Framework
A collection of prebuilt JSP pages included with the WebLogic
Personalization Server distribution that provide the core functionality for
portals. They are located in
%WL_COMMERCE_HOME%/server/public_html/portals/repository.

When using the framework, your pages will have a common layout. In this
layout, a page’s real estate will be divided into three main areas: a header, a

Introduction

BEA WebLogic Personalization Server Developer’s Guide 5-3

content area, and a footer. The header resides at the top of the page and
typically contains a full-sized logo for the site plus some navigation features.
The footer resides at the bottom of the page and typically contains legal
notices, copyright information, and a small logo. The middle section, the
content area, contains any number of small independent components called
portlets. The JSPs included in the Portal Framework manage the layout of
these portlets on the page.

Note: You are not required to use the Portal Framework. You may build your site
from scratch, although, it is not recommended for new users of the system.

portlet
A JSP page that is displayed within a portal page. There is a one-to-many
relationship between a portal and its portlets. Each portlet should provide a
limited piece of functionality. For example, imagine an information portal
where one portlet gives the weather report, another provides a stock ticker,
another the top news stories, and another that shows yesterday’s sports scores.

administration tool
WebLogic Personalization Server ships with its own administration tool. The
focus of this chapter is on development; it will not provide detailed
instructions on how to use the tool. If you have questions on how to use the
administration tool, refer to Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

example portal
The name given to a sample portal implementation included with the
WebLogic Personalization Server distribution. This example is built on top of
the Portal Framework. If you took the Personalization Tour, you worked with
the example portal. It is branded with an “Acme” logo. The files for this
example portal coexist in the same folder with the files used for the Portal
Framework. The difference is the Portal Framework files are generic, while
the example portal files are specific to the example.

property set
WebLogic Personalization Server supports the storage of collections of data
called property sets. These sets may be associated with users, groups, or sites.
In this chapter, you will need to create and edit a property set that describes
your portal. This kind of property set is called an “Application Init” property
set and describes properties such as your portal’s name, its working directory,
and the Home page.

5 Building a Custom Portal Step-by-Step

5-4 BEA WebLogic Personalization Server Developer’s Guide

How to Use This Chapter

The WebLogic Personalization Server includes a Portal administration tool that allows
you to quickly build a basic portal using the Portal Framework. Techniques for using
the Portal administration tool are documented in the chapter Creating and Managing
Portals in the WebLogic Personalization Server User’s Guide. That chapter also
includes step-by-step instructions for building the Acme Demo Portal. This tutorial
will not repeat the information presented in the User’s Guide.

The goal of this chapter is to get you started building your own custom portal. It will
cover many techniques for customizing the Portal Framework. This chapter also
provides many small projects which will demonstrate how to use these techniques. The
code fragments used to build these projects are included.

However, this chapter does not explain what every line of code does in these samples.
It provides general guidance in understanding how an example works, but the details
are left as an exercise to the user. The reason for this is that the best way to learn how
to develop with WebLogic Personalization Server is to reverse engineer code written
by others. Once you get each example working, spend some time experimenting with
the code. A good rule of thumb is to not proceed to the next example until you know
what each line of code does in the previous example.

Creating the Framework for Your Custom Portal

BEA WebLogic Personalization Server Developer’s Guide 5-5

Creating the Framework for Your Custom
Portal

This section describes how to build a custom portal. At the end of this section, you will
have created a copy of the example portal (which uses the Portal Framework) which
you will alter as you build your custom site. It is important that you use the example
portal as a base since it does provide extensive functionality. Later, when you gain
familiarity with the product, you can re-engineer your custom site one piece at a time.

Note: It is not recommended for new WebLogic Personalization Server developers
to attempt to build a portal from scratch.

This section will walk you through the process one step at a time. It is primarily
intended to help you get the framework of your custom portal up and running and does
not attempt to explain the details of this process. In later sections, you will be
introduced to the details in a more rigorous way.

Installing WebLogic Personalization Server

If you have already installed WebLogic Personalization Server 3.1, begin this
procedure at step 14.

To install WebLogic Personalization Server, follow these steps:

1. Download and install JDK 1.2.1 or greater.

2. Restart your machine as required by the JDK installer.

3. Download the WebLogic 5.1 installer from the BEA Web site if you do not have
the WebLogic Server 5.1 CD.

4. Obtain a valid WebLogic Server license file. If your site does not already have
one, you can obtain an evaluation license from the BEA Web site. Rename it to
WebLogicLicense.xml.

5. Run the WebLogic Server 5.1 installer and complete the WLS installation.

5 Building a Custom Portal Step-by-Step

5-6 BEA WebLogic Personalization Server Developer’s Guide

6. Install Service Pack 6 or greater for WebLogic Server 5.1. You can download the
latest service pack from the BEA Web site. After unpacking it, you will need to
manually update certain files and your classpath. Do this carefully. Making a
mistake here can cause errors later in this process.

Note: There are two errors in the Service Pack 6 install instructions. 1) Be sure
to copy weblogic510sp6.jar and weblogic510sp6boot.jar to the
lib subfolder and not the root folder. 2) Copy weblogic-tags-510.jar
to the lib folder. For more information, consult the WebLogic Commerce
Server with WebLogic Personalization Server Installation Guide.

7. Copy your WebLogic Server license file into the license subfolder in your
WebLogic Server installation. WebLogic Server needs to verify that you have a
proper license before it will start up. It looks for the license in the classpath, and
the license folder is in the classpath.

8. Test WebLogic Server by clicking on startWebLogic.cmd
(startWebLogic.sh for UNIX users). It should start up and print “WebLogic
started.”

Note: It is very important to look at the console window and inspect the output
for exceptions. If any exceptions occurred during startup, you will need to
resolve the problem before WebLogic Server will work properly.

Note: Windows users should modify the properties of their console window to
extend the screen buffer to at least 500 lines. Accomplish this by
right-clicking on your console window’s title bar and choosing “Edit...”
from the pop-up menu. Go to the Layout tab and change the Screen Buffer
height to be at least 500. When you click OK, it will ask if you want to
apply these changes for future windows of the same title. Check this
option.

9. Shut down the server by attaching to the server using the WebLogic console and
issuing a Shutdown command.

Note: You may also shut down the server by pressing CTRL-C in the console
window in which the server is running. This method is not recommended
in production environments since it may cause database connections to be
consumed until a database server reboot.

10. Download the WebLogic Commerce Server installer if you do not have the
WebLogic Personalization Server 3.1 CD.

Creating the Framework for Your Custom Portal

BEA WebLogic Personalization Server Developer’s Guide 5-7

11. Obtain a valid WebLogic Personalization Server license file. If your site does not
already have one, you may obtain an evaluation license from the BEA Web site.
Rename it to WebLogicCommerceLicense.xml.

12. Run the WebLogic Personalization Server 3.1 installer and complete the
WebLogic Personalization Server installation.

13. Copy your WebLogic Personalization Server license file into the license
subfolder in your WebLogic Personalization Server installation. WebLogic
Personalization Server needs to verify that you have a proper license before it
will start up. It looks for the license in the classpath, and the license folder is in
the classpath.

14. Test WebLogic Personalization Server by clicking on StartCommerce.bat
(StartCommerce.sh for UNIX users). It should start up and print “WebLogic
started.” Do not shut down the server.

Note: It is very important to look at the console window and inspect the output
for Java exceptions. If any exceptions occurred during startup, you will
need to resolve the problem before WebLogic Personalization Server will
work properly.

Note: If you have errors related to foundation.jar not loading properly, your
WebLogic Server Service Pack update did not succeed. Go back and
reinstall the Service Pack.

You have completed the installation of WebLogic Personalization Server 3.1. Now
you will proceed with setting up the framework for your custom portal.

Setting up the Portal Framework

To set up the framework for your custom portal, follow these steps:

1. Create a new subfolder in
%WL_COMMERCE_HOME%/server/public_html/portals and give the folder the
name of your new portal. This new folder will contain the resources specific to your
portal. This chapter will assume you have named this folder eTestPortal. This name
will also refer to the name of the portal.

Note: Do not use spaces in this folder name or you will have complications in
step 20.

5 Building a Custom Portal Step-by-Step

5-8 BEA WebLogic Personalization Server Developer’s Guide

2. Create two new subfolders in your new portal folder. Name one images and the
other portlets.

3. Log into the WebLogic Personalization Server administration tool. If you
installed WebLogic Personalization Server with the default settings, you can use
this URL in a browser that is invoked on the same machine as the server:
http://localhost:7501/tools. The default username is administrator and
the default password is password.

4. Click the triple-can icon on the Property Set Management title bar. This will take
you into the Property Set Management Administration tool.

5. To register your eTestPortal, you need to create a new property set. Click the
Create button on the title bar.

6. You are presented with a form.

a. In the Name field, enter eTestPortal.

b. In the Description field, enter something like My test portal.

c. In the Copy Properties From drop-down list, select
APPLICATION_INIT._DEFAULT_PORTAL_INIT.

d. Finally, in the Property Set Type drop-down list, enter Application Init.

e. Once you have completed the form, click the Create button.

Note: Make sure you type this exactly as you see it. It is case sensitive and spaces
should not be used.

7. You have just created a property set that will be used to register your application.
Click the Back button.

Note: Clicking Back will fail with an “Authorization Failed” message if your
browser does not allow cookies. In this case, you must change your
browser settings to allow cookies for the administration tool to function
properly.

8. You now need to edit your new property set. Click the eTestPortal name in the
Application Initialization property set list. This will invoke the property set editor
for the eTestPortal property set.

Creating the Framework for Your Custom Portal

BEA WebLogic Personalization Server Developer’s Guide 5-9

9. Change the defaultdest, homepage and workingdir properties to point to
your portal’s folder. For example, /portals/example/... should be changed
to /portals/eTestPortal/.... This establishes the location of the files for
your portal.

Note: Do not change the repositorydir property.

10. Edit the portalName property. This must exactly match the name of the portal
you are creating; in this example it should be eTestPortal.

11. Return to the Home page. Click Finished, then click Home.

12. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management Administration tool.

13. Click the Create button on the Portals title bar. This will allow you to register
your new portal with the server.

14. A form will appear.

a. In the Portal Name form control, enter eTestPortal exactly as you did while
editing the property set. Leave the rest of the controls as they are by default.

b. Click Create. This should succeed. You have now successfully registered your
new portal.

c. Click Back to return to the Portal Manager page.

15. Click your portal's name underneath the portals title bar. This will take you to the
portal editor tool.

16. By default, no portlets will be included in your portal. You should add a few
portlets. Click the +/- icon on the associated portlets title bar. You will now be
directed to the portlet association page.

17. Make a few portlets available, and at least a couple of portlets visible. Click Save
and then Back when finished.

Note: Not all of the displayed portlets may be valid for your new portal. If any
portlets were added for another portal on the server, these portlets may
have a different relative path from
%WL_COMMERCE_HOME%/server/public_html/portals. Adding a
portlet located in another portal will give your users a run-time error. To
avoid this problem, use only the portlets located in the

5 Building a Custom Portal Step-by-Step

5-10 BEA WebLogic Personalization Server Developer’s Guide

%WL_COMMERCE_HOME%/server/public_html/portals/repository

/portlets subfolder (consult the list below).

The following list describes the available portlets.

Defined Portals—Displays the portals defined in the system. Uses the
<es:forEachInArray> and <es:simpleReport> tags.

Defined Portlets—Displays the portlets defined in the system. Uses the
<es:forEachInArray> and <es:simpleReport> tags.

News Index—Demonstrates the use of Content Management tags.

News Viewer—Displays content driven from content_index.jsp. Use in
conjunction with News Index.

Quote—Displays stock quotes. Demonstrates how to redirect a portlet to an
external site.

Dictionary—Demonstrates how to redirect a portal to an external site.

Search—Demonstrates how to redirect a portal to an extend site.

Group To Do List*—Displays a Group To Do list. Requires user to be logged
in.

My To Do List*—Displays a My To Do list. Requires user to be logged in.

Bookmarks*—Displays the bookmarks associated with the current user.
Requires user to be logged in.

18. Test your portal site as follows:

Open a browser window and type in
http://localhost:7501/application/eTestPortal.

a. Replace localhost in this URL with the name of the machine the server is
running on if it is different from the browser's machine.

b. Replace 7501 if you changed the listening port of WebLogic Server during the
WebLogic Personalization Server installation.

c. Replace eTestPortal with the name of the property set you created.

In your browser, you should see a Web page with an Acme logo. You should see
all the portlets which you defined as being visible in the Portlet Administration
page. Portlets that require a user login (marked with an * above) will not display
until you are logged in.

Creating the Framework for Your Custom Portal

BEA WebLogic Personalization Server Developer’s Guide 5-11

Note: It is important to look at the console window to make sure exceptions are
not being thrown.

Troubleshooting

If you do not see the portal page or have exceptions, make sure you have not
made the following common mistakes:

Problem: Server not responding

a. Server is not running—make sure you have a console window with the
commerce server running. It must output “WebLogic Server started.” before it
will accept connections.

b. Server is running on non-default port—this chapter assumes that your server is
running on port 7501. Check the weblogic.system.listenPort property in
your %WL_COMMERCE_HOME%/weblogic.properties file. The number
assigned to this property is the server’s port number.

c. Server is running on different machine—this chapter assumes that your server
is running on the same machine as your browser. If not, replace the name
localhost in your browser URLs with the name of the machine on which the
server is running.

 Problem: Server returns error

a. PORTAL_NAME not defined—when creating your property set, you must replace
the default value of the PORTAL_NAME property.

b. PORTAL_NAME does not match portal name—the PORTAL_NAME property in
your property set (step 6) must match exactly the name you give your portal
when creating the portal in the Portal Manager (step 27).

c. repositorydir incorrect—you should have modified several paths in your
property set (step 22) but not repositorydir. The repositorydir property
should be /portals/repository.

19. Explore your new site. Create a new user account by clicking on the key icon in
the top right-hand side of the page. Build a personalized Web page for your new
user.

You have completed the first step in building your own custom portal.

5 Building a Custom Portal Step-by-Step

5-12 BEA WebLogic Personalization Server Developer’s Guide

Repository Directory

An important concept to understand is the repository directory. The repository
directory (specified by your repositorydir property in your property set) is the
location where the server looks to find a resource if it cannot find it in your working
directory (specified by your workingdir property in your property set). If you
followed the previous instructions, you did not populate your working directory with
any files. Therefore, when you navigated to your site in “Setting up the Portal
Framework,” step 17, the server failed to find the files (specifically, your Home page
portal.jsp) in your working directory and so it found them in your repository
directory instead. It is important that you understand how this works.

Before you proceed, take a few moments now to read back through this section and
review the steps you followed. Although you may not understand why each step was
necessary, it is helpful to have a clear understanding of what the steps were. Also,
spend some time looking in the repository directory to see what resources are provided
by default. The repository directory contains the Portal Framework and resources
specific to the Acme portal and its portlets.

The rest of this chapter is devoted to making incremental changes to your copy of the
example portal so that it is transformed into your own custom portal. In the process,
you will replace many pieces of the example portal, though your site will still be based
on the Portal Framework.

Simple Customizations

BEA WebLogic Personalization Server Developer’s Guide 5-13

Simple Customizations

The previous section described how to establish a platform for your custom portal.
This section assumes that you successfully completed this process. Whereas the last
section had a strictly-defined process, the following sections are project based. It is
recommended that you do these projects in order, although it is not required. Each
project will list any prerequisite projects.

Note: Remember that your browser may cache pages. If you make modifications to
your site and they do not appear in your browser, then click Refresh. This will
circumvent the cache and get an updated page from the WebLogic
Personalization Server server. If this fails to work, you should flush your
browser’s disk cache, as follows:

n IE users: from the Tools menu, choose Internet Options. From the
General tab of the dialog box, click the Delete Files button.

n Netscape users: from the Edit menu, choose Preferences. From the
browse-tree, click Advanced, then Cache. Click the Clear Memory
Cache and Clear Disk Cache buttons.

If problems continue, try switching to a different browser (IE/Netscape) to
view the page.

Project 1: Customizing the Acme Logos

Start by removing the Acme logo and replacing it with your own brand image, as
follows:

1. Open the
%WL_COMMERCE_HOME%/server/public_html/portals/repository/images
folder using your preferred file system navigator. The file listing will show all of
the graphics used in your custom portal. Spend some time opening these graphics
so you gain familiarity with the graphical components of your site.

5 Building a Custom Portal Step-by-Step

5-14 BEA WebLogic Personalization Server Developer’s Guide

2. Copy the files logo.gif and logo_small.gif to the images subfolder in your
eTestPortal folder. By doing this, you are creating your own copy of these images
outside of the repository. Therefore, when these images are used in your portal,
they come from your working directory and not the repository.

3. Launch your preferred image editing application. This application must support
reading and writing the GIF file format.

4. Open the file called logo.gif located in your
%WL_COMMERCE_HOME%/server/public_html/portals/eTestPortal/image

s subfolder using your image editor application.

5. When the image opens, you will notice that it is the logo image that appears at
the top of your custom portal page.

6. Through whatever means is best for you, replace the Acme logo with your brand
image. You may do this either by authoring a new image in your image editing
application or using an existing GIF file with the same approximate dimensions
as the original Acme logo. Ultimately, you will need to have your GIF format
image named logo.gif in your /eTestPortal/images subfolder.

7. There is another image called logo_small.gif located in your images
subfolder that also needs to be updated. This is simply a smaller version of the
main logo and is used on the bottom of your portal pages. Update this image as
you did the first image.

8. Be sure you have updated the files in the /eTestPortal/images folder and that
the new GIFs have exactly the same name as the original GIFs.

9. Use your browser to display the first page of your custom portal (refer to the
previous section, “Setting up the Portal Framework,” step 18).

Note: WebLogic Personalization Server will automatically detect the new
images and load them in, so you do not need to restart the server.
Remember to click Refresh in your browser. If after clicking Refresh, you
do still do not see your new image, you may have to flush your browser’s
disk cache.

Simple Customizations

BEA WebLogic Personalization Server Developer’s Guide 5-15

Project 2: Customizing the Choice of Portlets

In the previous section, you were asked to randomly choose a set of portlets to assign
to your portal. Now that you are up and running, it is time to revisit the choice of
portlets you made. Log on to the administration tool. Go to the Portal Manager and
double click the name of your portal under the Portals title bar. You will see the portal
edit page. Click the +/- icon on the portlets title bar. The portlet selection editor will
appear.

Experiment with the controls and choose the portlets that you want to include. At this
time, you can choose from only the prebuilt portlets. In later sections you will be
building your own portlets. When choosing a portlet for your site, you may also specify
whether it is visible by default, not visible but available, or not available at all.

For more information, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

Project 3: Customizing the Layout of Portlets

If you look carefully at your portal, you will notice that your portal has three main
sections: a title bar, a container in the middle for a number of smaller components, and
a footer. The smaller components in the middle space are called “portlets.” Each portlet
is written as an independent JSP or HTML file. Each portlet is responsible for its own
contents, while the portal page is responsible for laying the portlets out in columns.

You can customize this layout in two ways:

1. You can specify how many columns the portal uses to arrange portlets (1, 2 or 3
columns are valid).

2. You can choose which portlets appear in each of the columns.

Note: As an administrator you may define how the layout appears by default, but the
user may override your choices.

Log on to the administration tool. Go to the Portal Manager and then click the name of
your portal under the Portals title bar. You will see the portal edit page. By editing the
portal definition, you may change the number of columns used to display your portal.
To change which portlets are in which column, you need to use the layout editor.

5 Building a Custom Portal Step-by-Step

5-16 BEA WebLogic Personalization Server Developer’s Guide

For more information, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

Project 4: Describing Your Users

Your portal site will most likely have a number of categories of users. WebLogic
Personalization Server recognizes this by supporting a feature called User Groups.
With this feature, you can define a hierarchical set of groups to which you can assign
users. Additionally, you will may have a number of predefined users that you would
like to initially set up. As part of this process, you will want to assign these people to
one or more of the groups you have set up. This project details how to build this into
your portal.

1. Log on to the administration tool.

2. Navigate into the User Manager.

3. Click Create on the Users title bar to create a number of new users.

4. Return to the User Manager and create a number of new groups by clicking
Create from the Groups title bar.

5. Return to the User Manager and click the text ‘Groups’ from the Groups title bar,
which will take you to the Group editor. Edit the groups you have created, and in
doing so assign some users to each of the groups.

6. Finally, go to the Portal Manager and edit your custom portal. In the Associated
Groups section, add your new groups to your portal.

For more information, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

Writing Your Own Portlets

BEA WebLogic Personalization Server Developer’s Guide 5-17

Writing Your Own Portlets

“Creating the Framework for Your Custom Portal” instructed you how to get up and
run with your custom portal by copying the example portal. “Simple Customizations”
showed you how to alter the logo images and use the administration tool to customize
your portal. Now, this section will show you how to build your own functionality into
your custom portal.

In this section, you will see how to build static portlets and portlets that change based
on state information retrieved from WebLogic Personalization Server. Once you have
mastered the essence of portlet writing, you will learn about advanced functionality
such as maximized porlets and inter-portlet communication in the next section,
Advanced Portlet Functionality.

Note: In the following projects, you will be registering your portlets and adding them
to your portal using the administration tool. When doing these activities or
when editing the portlet definition after creation, you may not see the changes
to your portal in your browser even after flushing the browser cache. This is
due to server-side caching. In order to force a rebuild of your portal page, you
must log in if you are logged out, or log out if already logged in to see your
changes take effect.

Project 5: Building a Static Portlet

The fundamentals of portlet writing are not difficult. As you will see, the construction
of a static portlet is quite easy. The complexity of portlets come when they become
dynamic. The first portlet project is a static portlet.

When you view your portal, your browser is displaying an HTML page to you. If you
“View Source” on your portal, you will not see any JavaServer Page tags, although JSP
was used to author the document. This is because the server processed the JSP input
and output the HTML to your browser. In exactly the same way, before your portlet is
placed on the portal page, it is processed and converted into HTML if it was not
already. With this in mind, think of a portlet as just a small Web page.

5 Building a Custom Portal Step-by-Step

5-18 BEA WebLogic Personalization Server Developer’s Guide

For this static portlet project, you are not going to use a JSP. You will build just an
HTML fragment that will get included into the portal page. What follows is your first
portlet.

welcome.html

<p align=center>
<h1>Welcome!</h1>

This portal contains the projects built by following the WLCS
tutorial.
</p>

Students of HTML will recognize this as just a simple static HTML fragment. There
really is nothing special about this HTML.

To make the HTML fragment above into a portlet, follow these steps:

1. With your file system navigation tool, navigate to your custom portal folder. Then,
enter the portlets subfolder. Here, create a new file called welcome.html with
a text editor. This HTML file you just created will hold your first portlet.

Note: Windows users using WordPad or MS-Word should Save As a text
document; otherwise, extra unwanted characters will be dumped into the
text stream.

2. Copy the HTML fragment above into welcome.html. This file should contain no
other text. Save this file to disk.

3. Log into the WebLogic Personalization Server administration tool. For more
information on completing this step, see Creating and Managing Portals in the
WebLogic Personalization Server User’s Guide.

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Click the Create button on the Portlets title bar. This will allow you to register
your new portlet with the server.

Note: Be sure to click the Create button on the Portlet title bar and not the one on
the Portal title bar.

Writing Your Own Portlets

BEA WebLogic Personalization Server Developer’s Guide 5-19

6. You are presented with a form. There are two required fields which you must fill
in, the rest you should leave with the defaults. For Portlet Name, enter Welcome.
For Content URL, enter portlets/welcome.html. Press the Create button, and
then press the Back button. You have now successfully registered your new
portlet with the server.

7. Add the portlet to your custom portal and make it visible. For more information
about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

8. Use your browser to display the first page of your custom portal, following the
procedure described in “Creating the Framework for Your Custom Portal” step
18. You should see your Welcome portlet.

You have now added new functionality to WebLogic Personalization Server.

Project 6: Building a Simple Dynamic Portlet

Now that you see how easy it is to build portlets, your next step is to add some dynamic
behavior to your portlet. For this, you will need to create a JavaServer Page file, not
HTML. With the power of JSP, you can query the WebLogic Personalization Server
for information, and vary the output depending on the results of your queries.

In this project, you will build a portlet that will detect if the user of the browser is
logged on to the portal. If not, this portlet will display a message to the user, asking the
user to log on. If the user is logged on, the portlet will instead display the user’s login
name.

You will also accomplish the dynamic functionality by using methods included in the
portlet JSP base class. All portlet JSPs should extend
com.beasys.commerce.portal.admin.PortalJspBase.This class contains many
convenience methods which perform general tasks for your portlet JSP page, such as
accessing session information and user login information. To achieve this, begin your
portlet JSP files with the following line:

 <%@ page
 extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

5 Building a Custom Portal Step-by-Step

5-20 BEA WebLogic Personalization Server Developer’s Guide

Once you have extended PortalJSPBase, you have access to many methods from
your JSP file, including getLoggedIn() and getSessionValue(). Instead of
explaining exactly what these methods do here, look instead at the following JSP
fragment

isloggedon.jsp

<%@ page extends="com.beasys.commerce.portal.admin.PortalJspBase"
%>

<p>
<%
 // getLoggedIn() returns true if the user is logged in
 if (getLoggedIn(request))
 {
%>

You are currently logged in as
<%= getSessionValue(

com.beasys.commerce.axiom.jsp.JspConstants.SERVICEMANAGER_USER,
request)

%>
. Please make yourself at home.

<%
 }
 else
 {
%>

You are not currently logged on. Please click the
key icon at the top right-hand corner of the page to
log onto this site.

<%
 }
%>
</p>

This code is the complete text for your first dynamic portlet.

To implement this project, follow these steps:

1. With your file system navigation tool, navigate to your custom portal folder. Then,
enter the portlets subfolder. Here, create a new file called isloggedon.jsp
with a text editor. This JSP file you just created will hold your first dynamic portlet.

2. Copy the JSP fragment above into isloggedon.jsp. This file should contain no
other text. Save this file to disk.

Writing Your Own Portlets

BEA WebLogic Personalization Server Developer’s Guide 5-21

3. Log into the WebLogic Personalization Server administration tool. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Click the Create button on the Portlets title bar. This will allow you to register
your new portlet with the server.

6. You are presented with a form. There are two required fields which you should
fill in, the rest you should leave with the defaults. For Portlet Name, enter
Logged on? For Content URL, enter portlets/isloggedon.jsp. Click
Create, then click Back. You have now successfully registered your new portlet
with the server.

7. Add the portlet to your custom portal and make it visible. For more information
about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

8. Use your browser to display the first page of your custom portal, following the
procedure described in “Creating the Framework for Your Custom Portal” step
18. You should see your “Logged on?” portlet. See how the text in the portlet
changes depending on whether you are logged into the portal or not.

You have now finished your first dynamic portlet.

Project 7: Building a Second Dynamic Portlet

In project 6, you built a simple dynamic portlet using functionality provided by
extending PortalJSPBase. Take some time to look at other functionality provided by
PortalJSPBase. Once you have done this, you are ready to begin working with another
dynamic technique available to your JavaServer Page portlets, JSP tags.

Included with the WebLogic Personalization Server is a set of tag libraries that enable
your JSPs access to the full power of the personalization engine. The five tag libraries
are as follows:

n Personalization Advisor: uri = “pz.tld”

n Content Management: uri = “cm.tld”

5 Building a Custom Portal Step-by-Step

5-22 BEA WebLogic Personalization Server Developer’s Guide

n Portal Management: uri = “esp.tld“

n User Management: uri = “um.tld“

n Personalization Utilities: uri = “es.tld“

For more information, see Chapter 9, “JSP Tag Library Reference.” For full details on
how tag libraries work in the JSP language, consult a JavaServer Page handbook. After
viewing this sample tag library portlet, you will see that tag libraries are quite easy to
use.

Each one of these tag libraries supports a number of tags. In this project, you will use
tags from the User Management and Personalization Utilities tag libraries. This portlet
will output the name of all users of your portal. Next to each username, it will output
the e-mail address of that user. A detailed description of how this code works is not
provided here. Hopefully, reading the code and consulting the WebLogic
Personalization Server Developer’s Guide is sufficient.

One point about the code should be made. You will notice that for every username
retrieved by calling <um:getUsersnames>, there is a call to <um:getProfile>. It is
necessary to explain why this line of code is needed. At any time during the processing
of a portlet, exactly one user profile is in scope. Calls like <um:getProperty> and
<um:setProperty> refer to the user profile in scope. In this project the code must
iterate through the list of usernames and query the profile associated with each user.
Therefore, before a call to <um:getProperty> is made, the profile for the user must
be loaded into scope by calling <um:getProfile>. And at the end of this JSP, the
original user profile must be loaded back into scope to avoid causing problems with
other portlets.

EmailList.jsp

<%-- include the tag libraries we need --%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="um.tld" prefix="um" %>

<%-- extend PortalJSPBase to get some base functionality --%>
<%@ page

extends="com.beasys.commerce.portal.admin.PortalJspBase"
%>

<%
 // get the name of the current user
 String originalUserName = (String)getSessionValue(
com.beasys.commerce.axiom.jsp.JspConstants.SERVICEMANAGER_USER,

Writing Your Own Portlets

BEA WebLogic Personalization Server Developer’s Guide 5-23

 request);
 if (originalUserName == null) originalUserName = "";

 // get the name of the portal
 String portalName =

(String)getSessionValue(PORTAL_NAME, request);
 if (portalName == null) portalName = "";
%>

<%-- ask WLCS to put a list of the user names in string array
"userNameList" --%>
<um:getUsernames id="userNameList" result="namesResult"/>

<table border=1 cellspacing=1 align="center">

<tr>
<th colspan=2>Portal Users</th>

</tr>

<es:forEachInArray id="curUser" type="String"
array="<%=userNameList%>"
counterId="curIndex">

<tr>
<%-- This section is evaluated once for

every user in userNameList --%>

<%-- Output the name of the user for this row --%>
<td><%=curUser%></td>

<%-- Output the email address of the curUser --%>
<td>

<um:getProfile profileKey="<%=curUser%>"
 scope="request"

/>
<um:getProperty id="email"

propertySet="<%=portalName%>"
propertyName="<%=PROFILE_EMAIL%>"

/>
<%=email%>

</td>
</tr>
</es:forEachInArray>

<%
if (getLoggedIn(request)) {
%>

<um:getProfile
profileKey="<%=originalUserName%>" scope="request" />

5 Building a Custom Portal Step-by-Step

5-24 BEA WebLogic Personalization Server Developer’s Guide

<%
}
%>

</table>

This code is the complete text for your second dynamic portlet.

To implement this project, follow these steps:

1. With your favorite file system navigation tool, navigate to your custom portal
folder. Then, enter the portlets subfolder. Here, create a new file called
EmailList.jsp with a text editor. This JSP file you just created will hold your
first dynamic portlet.

2. Copy the JSP fragment above into EmailList.jsp. This file should contain no
other text. Save this file to disk.

3. Log into the WebLogic Personalization Server administration tool. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Click the Create button on the Portlets title bar. This will allow you to register
your new portlet with the server.

6. You are presented with a form. There are two required fields which you should
fill in, the rest you should leave with the defaults.

a. For Portlet Name, enter Email List.

b. For Content URL, enter portlets/EmailList.jsp.

Click Create, then click Back. You have now successfully registered your new
portlet with the server.

7. Add the portlet to your custom portal and make it visible. For more information
about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

8. Use your browser to display the first page of your custom portal, following the
procedure described in“Creating the Framework for Your Custom Portal”step 18.
You should see your “Email List” portlet.

Writing Your Own Portlets

BEA WebLogic Personalization Server Developer’s Guide 5-25

9. Now add some more users to your portal. Do this by clicking the key icon in the
upper right-hand corner of your portal. This will bring up the sign-on page.
Under the New User title bar, click Create. Follow the instructions to add new
users.

10. Return to your portal page and see the new users appear in the portlet.

You have now seen the three major techniques for building a portlet: static HTML,
dynamic behavior based on extending PortalJSPBase, and dynamic behavior based on
the WebLogic Personalization Server tag libraries.

5 Building a Custom Portal Step-by-Step

5-26 BEA WebLogic Personalization Server Developer’s Guide

Advanced Portlet Functionality

In the previous section, you learned how to build portlets. This section continues with
portlets and demonstrates how to use more portlet features.

Project 8: Adding a Maximized URL

This project will walk you through how to build a maximized version of your portlet.
In the default case, your portlet cannot be maximized. If you allow your portlet to be
maximized but do not provide a maximized URL, WebLogic Personalization Server
will simply use your normal-sized portlet content when maximized. In most cases, you
will want to take advantage of the extra space afforded by being maximized and alter
your portlet content to include more information. This project shows how to do this. It
assumes you completed “Project 7: Building a Second Dynamic Portlet”. You will not
change the portlet created in that project, but you will add a new maximized JSP.

The first step of this project is to create the new portlet content JSP for the maximized
state. Since in the maximized state your portlet has more screen real estate, you can
display more information. In this case, for each user displayed, you will show more
columns of information. The following is the maximized JSP:

EmailListMax.jsp

<%-- include the tag libraries we need --%>
<%@ taglib uri="es.tld" prefix="es" %>

<%@ taglib uri="um.tld" prefix="um" %>

<%-- extend PortalJSPBase to get some base functionality --%>
<%@ page
extends="com.beasys.commerce.portal.admin.PortalJspBase"
%>

<%
// get the name of the current user
String originalUserName = (String)getSessionValue(

com.beasys.commerce.axiom.jsp.JspConstants.SERVICEMANAGER_USER,
 request);

if (originalUserName == null) originalUserName = "";

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-27

// get the name of the portal
String portalName =
(String)getSessionValue(PORTAL_NAME,request);
if (portalName == null) portalName = "";

%>

<%-- ask WLCS to put a list of the user names in
string array "userNameList" --%>

<um:getUsernames id="userNameList" result="listresult" />

<table border=1 cellspacing=1 align="center">

<tr>
<th colspan=7>Portal Users</th>

</tr>

<es:forEachInArray id="curUser" type="String"
array="<%=userNameList%>" counterId="curIndex">

<tr>
<%-- This section is evaluated once for

every user in userNameList --%>

<%-- Output the name of the user for this row --%>
<td><%=curUser%></td>

<um:getProfile profileKey="<%=curUser%>" scope="request" />

<%-- Output the email address of the curUser --%>

<td>
<%-- Load curUser’s profile into scope -->
<um:getProperty id="email"

propertySet="<%=portalName%>"
propertyName="<%=PROFILE_EMAIL%>"/>

<%=email%>
</td>

<%-- Output the first name of the curUser --%>
<td>

<um:getProperty id="first"
propertySet="<%=portalName%>"
propertyName="<%=PROFILE_FIRST%>"/>

<%=first%>
</td>

<%-- Output the last name of the curUser --%>
<td>

<um:getProperty id="last"

5 Building a Custom Portal Step-by-Step

5-28 BEA WebLogic Personalization Server Developer’s Guide

propertySet="<%=portalName%>"
propertyName="<%=PROFILE_LAST%>"/>

<%=last%>
</td>

<%-- Output the address of the curUser --%>
<td>

<um:getProperty id="address"
propertySet="<%=portalName%>"
propertyName="<%=PROFILE_ADDRESS%>"/>

<%=address%>
</td>

<%-- Output the city of the curUser --%>
<td>

<um:getProperty id="city"
propertySet="<%=portalName%>"
propertyName="<%=PROFILE_CITY%>"/>

<%=city%>
</td>

<%-- Output the state of the curUser --%>
<td>

<um:getProperty id="state"
propertySet="<%=portalName%>"
propertyName="<%=PROFILE_STATE%>"/>

<%=state%>
</td>

<%-- Output the zip code of the curUser --%>
<td>

<um:getProperty id="zip"
propertySet="<%=portalName%>"
propertyName="<%=PROFILE_ZIP%>"/>

<%=zip%>
</td>

</tr>
</es:forEachInArray>

<%
if (getLoggedIn(request)) {
%>

<um:getProfile profileKey="<%=originalUserName%>"
 scope="request" />

<%
}
%>
</table>

To specify the above code as your maximized portlet content, follow these steps:

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-29

1. With your file system navigation tool, navigate to your custom portal folder. Then,
enter the portlets subfolder. Here, create a new file called EmailListMax.jsp
with a text editor. This JSP file you just created will hold your maximized portlet
code.

2. Copy the JSP fragment above into EmailListMax.jsp. This file should contain
no other text. Save this file to disk.

3. Log into the WebLogic Personalization Server administration tool. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Under the Portlets title bar, click the EmailList portlet you created in “Project 7:
Building a Second Dynamic Portlet”.

6. You will be presented with a form.

a. Change the state of the “Maximizable” check box so that it is checked.

b. In the “Maximized URL” edit field, enter the EmailListMax.jsp file you
created in step 1 (in this case: portlets/EmailListMax.jsp).

Click Save, then click Back.

7. Open another browser window and navigate to your portal, following the
procedure described in “Setting up the Portal Framework” step 18. Your portlet
should be visible, and will have a square-like icon on its title bar. This indicates
that it is maximizable.

Note: Remember to log out and log in to force the server to rebuild the portal
page.

8. Click the maximize icon, which will cause the portlet to be maximized. The
EmailListMax.jsp page will load, listing each user, plus more information per
user than what is displayed when the portlet is of normal size.

5 Building a Custom Portal Step-by-Step

5-30 BEA WebLogic Personalization Server Developer’s Guide

Project 9: Changing the Look of a Maximized Portlet

Project 9 assumes that you have completed “Project 8: Adding a Maximized URL.”
The goal of this example is to specify a non-default header and footer to be used when
your portlet is maximized. In Project 8, the portlet used the provided
alternateheader.jsp and alternatefooter.jsp since you did not override the
defaults. In some cases the defaults are sufficient, but for the purposes of
demonstration this project will define its own.

EmailListMaxHeader.jsp

<p>
<h1>Email List Portlet</h1>
<hr/>
</p>

EmailListMaxFooter.jsp

<p>
<hr/>
<i>Creating a Custom Portal</i> Tutorial
</p>

These code examples are just simple samples. You may elaborate on the design if you
wish.

To replace the alternate header and footer with the code above, follow these steps:

1. With your file system navigation tool, navigate to your custom portal folder. Create
two new files called EmailListMaxHeader.jsp and EmailListMaxFooter.jsp
with a text editor. This JSP files you just created will hold the header and footer for
your maximized portlet.

Note: Be sure to create these files in your portal’s root folder and not in your
portlets subfolder.

2. Copy the first JSP fragment above into EmailListMaxHeader.jsp, and the
second into EmailListMaxFooter.jsp. These files should contain no other text.
Save these files to disk.

3. Log into the WebLogic Personalization Server administration tool. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-31

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Under the Portlets title bar, find the EmailList portlet you created in Project 7 and
click on it.

6. You will presented with a form.

a. In the Alternate Header URL, enter EmailListMaxHeader.jsp.

b. In the Alternate Footer URL, enter EmailListMaxFooter.jsp.

Click Save, then click Back.

7. Open another browser window and navigate to your portal. Your portlet should
be visible, and will have a square-like icon on its title bar. Click the icon, which
will cause the portlet to be maximized.

8. EmailListMax.jsp will load, along with EmailListMaxHeader.jsp and
EmailListMaxFooter.jsp.

Note: Remember to log in and log out to force the server to rebuild the portal
page.

This concludes the customization of your portlet’s maximized state. You may also
experiment with creating an editable version of your portlet, and even a help window
associated with your portlet.

Project 10: Inter-portlet Communication

In some instances, you will want to have actions in one portlet affect the display of
another portlet. This is called inter-portlet communication. To implement this
functionality, imagine writing Java Beans or database calls where one portlet persists
data and another reads the data. This would work, but requires more effort than
necessary. Unless you need to pass large amounts of data between portlets, you should
follow a simpler approach. This approach is demonstrated here.

Before you read the code, you must understand that there is an object that is shared
between the Portal Framework and all of the portlets. This object can be used to pass
data between all of these entities. This object is the HTTP request. You may set
parameters in the request in one portlet, then forward the request back to the portal,

5 Building a Custom Portal Step-by-Step

5-32 BEA WebLogic Personalization Server Developer’s Guide

which will ultimately forward the request to all portlets. The end result is that the
HTTP request can serve as a message passing mechanism for portlets. This project
shows you how to exploit this.

The goal of this project is to create two portlets. The first portlet, called “User Index,”
displays a ranges of usernames in the system. For example, it will show “Allan to Carl,
Chuck to Elmer, Francis to Irene,...” If the user clicks on a name range, the second
portlet will refresh and show detailed information about each username in that range.
The second portlet is called “User Index Details.”

The following is the code for both portlets. Take special note of how the “href” is
constructed in UserIndex.jsp, and how the parameters are retrieved in
UserIndexDetails.jsp.

UserIndex.jsp

<%-- include the tag libraries we need --%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="um.tld" prefix="um" %>

<%-- extend PortalJSPBase to get some base functionality --%>
<%@ page
 extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

<%
 // get the name of the current user
 String originalUserName = (String)getSessionValue(
com.beasys.commerce.axiom.jsp.JspConstants.SERVICEMANAGER_USER,

 request);
 if (originalUserName == null) originalUserName = "";

 // get the name of the portal
 String portalName = (String)getSessionValue(PORTAL_NAME,

 request);
 if (portalName == null) portalName = "";
%>

<%-- ask WLCS to put a list of the user names in string
 array "userNameList" --%>

<um:getUsernames id="userNameList" result="listresult" />

<table border=1 cellspacing=1 align="center">

<tr>
<th>Portal Users Index</th>

</tr>

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-33

<%
int divisor = 5;
boolean isRowTerminated = true;
String persistCurUser = null;
%>

<es:forEachInArray id="curUser" type="String"
array="<%=userNameList%>" counterId="curIndex">
<%-- This section is evaluated once for every user in

userNameList --%>

<%
persistCurUser = curUser;

// start the cell if this is the first user in a range
if (curIndex.intValue()%divisor == 0)
{

// beginning of range
isRowTerminated = false;

%>
<%-- THIS IS WHERE THE DATA IS PASSED --%>
<tr><td>
<a href="<%=response.encodeURL(createURL(request,

getHomePage(request),
("userIndexStartIndex=" + curIndex
+ "&userIndexDivisor=" + divisor
)))%>"

>
<%=curUser%> to

<%
}

// finish cell if this is the last user in range or
// the last user in the list
if (curIndex.intValue()%divisor == divisor-1)
{

// end of range
isRowTerminated = true;

%>
<%-- Output the name of the user for this row --%>
<%=curUser%></td></tr>

<%
}

%>
</es:forEachInArray>
<%

if (!isRowTerminated)
{

5 Building a Custom Portal Step-by-Step

5-34 BEA WebLogic Personalization Server Developer’s Guide

// terminate the row if it ended on a
// non-divisor boundary

%>
<%-- Output the name of the user for this row --%>
<%=persistCurUser%></td></tr>

<%
}

%>
</table>

UserIndexDetails.jsp

<%-- include the tag libraries we need --%>
<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="um.tld" prefix="um" %>

<%-- extend PortalJSPBase to get some base functionality --%>
<%@ page
extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

<%
 // get the name of the current user
 String originalUserName = (String)getSessionValue(
com.beasys.commerce.axiom.jsp.JspConstants.SERVICEMANAGER_USER,

 request);
 if (originalUserName == null) originalUserName = "";

 // get the name of the portal
 String portalName =

(String)getSessionValue(PORTAL_NAME, request);
 if (portalName == null) portalName = "";
%>

<%
// GET THE PARAMETERS PASSED IN, if they exist

int startIndex = 0;
String startIndexString =

request.getParameter("userIndexStartIndex");
if (startIndexString != null)
{

try
{

startIndex =
Integer.parseInt(startIndexString);

}
catch (Exception e) {

System.out.println("UserIndexDetail.jsp - "+

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-35

"startIndex parse error: "+startIndexString);
}

}

int divisor = 0;
String divisorString =

 request.getParameter("userIndexDivisor");
if (divisorString != null)
{

try
{

divisor = Integer.parseInt(divisorString);
}
catch (Exception e) {

System.out.println("UserIndexDetail.jsp - "+
" divisor parse error: "+divisorString);

}
}

if (divisor == 0)
{

%>
Click a name range in the User Index portlet to display
information about each user in the range.

<%
}
else // divisor !=0
{

%>

<%-- ask WLCS to put a list of the user names in string array
"userNameList" --%>
<um:getUsernames id="userNameList" result="listresult" />

<table border=1 cellspacing=1 align="center">

<tr>
<th colspan=2>Portal Users</th>
</tr>

<es:forEachInArray id="curUser" type="String"
array="<%=userNameList%>" counterId="curIndex">

<%
if ((curIndex.intValue() >= startIndex) &&
 (curIndex.intValue() < startIndex+divisor))
{

%>
<tr>
<%-- This section is evaluated once for every user in

5 Building a Custom Portal Step-by-Step

5-36 BEA WebLogic Personalization Server Developer’s Guide

userNameList --%>

<%-- Output the name of the user for this row --%>
<td><%=curUser%></td>

<%-- Output the email address of the curUser --%>
<td>

<um:getProfile profileKey="<%=curUser%>"
scope="request" />

<um:getProperty id="email"
 propertySet="<%=portalName%>"
 propertyName="<%=PROFILE_EMAIL%>"
/>
<%=email%>

</td>
</tr>

<%
}

%>
</es:forEachInArray>

<%
if (getLoggedIn(request)) {

%>
<um:getProfile profileKey="<%=originalUserName%>"

scope="request" />
<%

}

} // from else clause of if (divisor == 0)
%>

</table>

To use the above code as your portlets, follow these steps:

1. With the file system navigation tool, navigate to your custom portal folder.
Navigate into your “portlets” subfolder. Here, create two new files called
UserIndex.jsp and UserIndexDetails.jsp with a text editor. These JSP files
you just created will hold the two portlets that will communicate with each other.

2. Copy the first JSP fragment above into UserIndex.jsp, and the second into
UserIndexDetails.jsp. These files should contain no other text. Save these
files to disk.

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-37

3. Log into the WebLogic Personalization Server administration tool. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

4. Click the blue and red monitor icon on the Portal Management title bar. This will
take you into the Portal Management administration tool.

5. Click the Create button on the Portlets title bar. This will allow you to register
your new portlets with the server.

6. You are presented with a form. There are two required fields which you should
fill in, the rest you should leave with the defaults.

a. For Portlet Name, enter User Index.

b. For Content URL, enter portlets/UserIndex.jsp.

Click Create. You have now successfully registered your first new portlet with
the server.

7. You still are presented with the form. You should now overwrite the values you
entered in Step 6.

a. For Portlet Name, and enter User Index Details.

b. For Content URL, enter portlets/UserIndexDetails.jsp.

Click Create. You have now successfully registered your second new portlet
with the server.

8. Add the portlets to your custom portal and make them visible. For more
information about this step, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide.

9. Test your portlets by directing your browser to your portal. Use your browser to
display the first page of your custom portal, following the procedure described in
“Setting up the Portal Framework”” step 18. You should see your “User Index”
and “User Index Details” portlets.

10. Now add some users to your portal. Do this by clicking on the key icon in the
upper right-hand corner of your portal. This will bring up the sign on page. Under
the New User title bar, click Create. Follow the instructions to add new users.

5 Building a Custom Portal Step-by-Step

5-38 BEA WebLogic Personalization Server Developer’s Guide

11. Go back to main portal page. Notice that username ranges are displayed in the
User Index portlet. Click on one of the ranges. Notice how the User Index Details
portlet now displays detailed information on the users in the name range you
selected.

You have now completed the advanced portlet creation projects.

Using the HTTP request method to communicate
between portlets

There are two issues that you should be aware of when using the HTTP request method
to communicate between portlets.

Parameter name collisions between portlets

Because the HTTP request is broadcast to all portlets within the portal, you must be
careful to avoid a parameter name collision between portlets. For example, suppose a
portlet appends a URL parameter such as src=/usr/local/src to the anchor tags
that it generates. If other portlets look for such a parameter, then they will all find it
when the user clicks the link. Unless all portlets looking for that parameter are
interpreting it the same way, confusing or bad parameters can be passed to the
receiving portlets.

To avoid name collisions, remember that the URL parameter names that get encoded
by using the URL string are global in nature.

Several sets of portlets using the HTTP request method at once

When a set of portlets communicates, the code does the following:

<a href="<%response.encodeURL(createURL(request,

getHomePage(request),...and so on.

When the getHomePage()method is called, it strips off any parameters that were
passed in from the last request. This is desirable when a single set of portlets
communicates using this method. However, if an unrelated set of portlets is employing
the same technique, then only one set can be “active” at any one time.

Advanced Portlet Functionality

BEA WebLogic Personalization Server Developer’s Guide 5-39

For example, one set of portlets (group A) includes a headline browser portlet and a
news story display portlet. When a user clicks a headline, the headline browser uses
the code above to generate a URL. The URL includes a parameter that tells the story
display portlet where to find the story. When these are the only two portlets using this
method, it works correctly.

Now lets add a second set of portlets to the example. Portlet group B includes a stock
quote portlet and a stock detail portlet.When a user clicks a stock quote, the portlet uses
the code above to generate a URL. The URL includes a parameter that tells its partner
portlet where to find the stock details. Again, this method works correctly when just
one set of portlets is communicating. However, what happens when both sets of
portlets are using the getHomePage()method?

In this scenario, first the user clicks a story headline to see the story. The story portlet
reads the parameter from the URL and displays the story. Then the user clicks a stock
symbol to get detailed stock information, and the stock quote portlet generates a new
anchor tag using a stock related parameter. The stock details display in the partner
stock portlet just fine, but what happens in the story portlet?

When the user clicks the stock symbol, this second event notifies all the portlets to poll
again. The URL generated by the stock quote portlet overwrote the news story
parameter with its own stock related parameter, and so the new URL contains no
parameters related to the story. If the story portlet does not find the parameter it
expects, it may just display a blank portlet page. You can easily avoid this problem
using the session cache. If the story portlet has already seen a parameter telling it where
to find the story, it could use the session cache to default to the previous story location
if there is no new information.

5 Building a Custom Portal Step-by-Step

5-40 BEA WebLogic Personalization Server Developer’s Guide

Other Customization Techniques

This tutorial has introduced you to the power of WebLogic Personalization Server and
the Portal Framework. With the techniques described in the previous sections, you can
now build a sophisticated portal.

However, there are more ways in which you can build your customized application.
Although this chapter will not cover these additional techniques in detail, this section
discusses each technique and provides pointers to other documentation that contains
more information.

More Portlet Customization

In Projects 8 and 9, you created a maximized version of your portlet. In the same
manner, you may create an editable version of your portlet. You may also specify a
help page for your portlet, mandate that it appear for all users, allow/disallow it to be
minimized, make it floatable, and make changes to the title bar appearance.

For more information, about the Portal Management administration tools, see Creating
and Managing Portals in the WebLogic Personalization Server User’s Guide.

Database Interaction

In many cases you will want to persist data or retrieve persisted data from within your
portal and portlets. In most cases, you will be using a database for this purpose.
WebLogic Personalization Server provides simple connectivity with your database via
Personalization Utility tags. Specifically, refer to the <es:preparedStatement> and
<es:simpleReport> tags.

For more information, see “Personalization Utilities” on page 9-70.

Alternatively, enterprise applications will likely want to use Enterprise Java Beans for
data persistence. WebLogic Commerce Server provides full support for the EJB
specification.

For more information, consult the WebLogic Server documentation.

Other Customization Techniques

BEA WebLogic Personalization Server Developer’s Guide 5-41

Java Beans Interaction

The Java Beans technology provides an easy way to remove the bulk of your code from
your JavaServer Page files. This will free your JSP files from clutter, and make that
code more maintainable and reusable. WebLogic Commerce Server provides full
support for calling Java Beans from your JSP files.

For more information, consult a JavaServer Page handbook.

Personalization Advisor Functionality

The Advisor delivers content to a personalized application based on a set of rules and
user profile information. It can retrieve any type of content from a Document
Management system and display it in a JSP or use it in a servlet. The Advisor ties
together all the services and components in the system to deliver personalized content.
The Advisor component includes a JSP tag library and an Advisor EJB (stateless
session bean) that access the WebLogic Personalization Server’s core personalization
services.

For more information, consult Chapter 2, “Creating Personalized Applications with
the Advisor.”

Internationalization

WebLogic Personalization Server provides a simple framework that allows access to
localized text labels and messages. The internationalization (I18N) framework is
accessible from JSP files through a small I18N tag library.

For more information, consult Chapter 7, “Creating Localized Applications with
Internationalization Tags.”

5 Building a Custom Portal Step-by-Step

5-42 BEA WebLogic Personalization Server Developer’s Guide

Using Webflow

In WebLogic Personalization Server, Webflow is a feature that allows you to string
together JSP files, input processors (IPs) and pipeline processors (PPs) without hard
coding the linkage between them. Instead, the linkage is defined in an external
Webflow properties file.

If you are considering using Webflow within the Portal Framework, see “Using
Webflow Within a Portal” on page 6-6.

Commerce Functionality

The process customers go through when making a purchase from your Web site is one
of the most common but complex aspects of an e-business. To help you get to market
faster than your competitors, the WebLogic Commerce Server product provides you
with an Order Processing package. This package contains default implementations for
the most common e-business order-related services (such as shopping cart
management, taxation, payment, and so on). Designed to be used out-of-the-box, the
Order Processing package allows your site designers to customize the order process
without the need for advanced programming skills. Additionally, it is easily extensible
for those with advanced technical knowledge.

For more information, consult the Order Processing Package documentation.

Modifying the Portal Framework

In some cases, the Portal Framework may be generally suitable for your needs, but
some aspects of it needs to be modified. A valid option in this case is to actually modify
the JSP files in the repository folder. You are encouraged to use the Portal Framework
files in any way to help you get to market quickly. Be aware that some changes you
make may be inconsistent with the administration tool, therefore you will need to
implement your own administration functionality in those cases.

To do this, you will need to read and understand the contents of the JSP files located
in the repository folder. Therefore you will need to be comfortable with JSP. Also, you
will need to be comfortable with the WebLogic Personalization Server custom JSP
tags and provided classes such as PortalJSPBase.

Framework Files

BEA WebLogic Personalization Server Developer’s Guide 5-43

For more information, see Chapter 9, “JSP Tag Library Reference.”

Building Your Site Without the Portal Framework

You may not want a portal metaphor when creating your site. Or, you may find that
your site design would require extensive changes to the Portal Framework. In both
cases, you may choose to build your site from scratch. In this case, you have the full
power of JSP and HTML at your disposal, as well as the commerce components
(shopping cart management, taxation, payment) and the personalization components
(rules, property sets, content management, user and group management) via the JSP
tag libraries.

For more information, see Chapter 9, “JSP Tag Library Reference.”

 Framework Files

The following table displays the names and functions of the template JSP files
provided with the WebLogic Personalization Server framework. Each of these files is
located in the root directory of the portal which it serves, such as
/portals/repository.

Table 5-1 Framework Templates

JSP File Name Function

_user_add_portlets.jsp The tool employed by the end user to add/remove
portlets.

_user_layout.jsp The tool employed by the end user to update portlet
layout.

_userlogin.jsp The user login page.

_userreg.jsp The new user registration page.

_userreg_summary.jsp The user profile summary page.

5 Building a Custom Portal Step-by-Step

5-44 BEA WebLogic Personalization Server Developer’s Guide

alternatefooter.jsp The footer displayed when a portlet is maximized or
detached.

alternateheader.jsp The header displayed when a portlet is maximized or
detached.

baseheader.jsp A stripped version header.jsp, intended for gener-
al use beyond the portal home page.

color_picker.jsp The color palette employed by the user color prefer-
ences tool.

error.jsp A general-purpose page used for displaying run-time
errors.

error_footer.jsp The footer displayed with error.jsp.

error_header.jsp The header displayed with error.jsp.

footer.jsp The footer displayed with the main portal page.

fullscreenportlet.jsp The page used to display a maximized or detached
portlet.

gen_prefs.jsp The tool employed by the end user to update general
user profile information.

header.jsp The header displayed with the main portal page.

help.jsp The end user help page.

layout_script.jsp The JavaScript used by the end user layout tool.

portal.jsp The main portal page.

portalcontent.jsp The page which prescribes portlet layout within the
main portal page.

portalerror.jsp The default error page displayed when an access at-
tempt to a portal page fails.

portalnotexist.jsp The page which displays a general message indicated
that the requested portal does not exist.

Table 5-1 Framework Templates (Continued)

JSP File Name Function

Framework Files

BEA WebLogic Personalization Server Developer’s Guide 5-45

portlet.jsp The page which constructs a portlet, combining port-
let title bar, banner, header, content, and footer.

privacy_policy.jsp A placeholder for a company privacy policy state-
ment.

status.jsp The page used to display end-user status messages.

suspended.jsp The page which provides a message indicating that the
requested portal is currently non-operational, typical-
ly for maintenance reasons.

titlebar.jsp The portlet title bar. Contains appropriate portlet icons
and portlet name.

user_colors.jsp The end user color preferences tool.

Table 5-1 Framework Templates (Continued)

JSP File Name Function

5 Building a Custom Portal Step-by-Step

5-46 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 6-1

CHAPTER

6 Using the Catalog
Application in a Portal

This chapter describes how to deploy your portal as a webapp, add e-commerce
features such as site security and user authorization, use Webflow within a portal,and
use pieces of the demo catalog application in a portal.

This topic includes the following sections:

n Deploying a Portal as a Webapp

n Using e-Commerce Functionality Within a Portal

n Using Webflow Within a Portal

n Reusing Pieces of the Demo Catalog Application in a Portal

Note: Throughout this chapter, the environment variable
WL_COMMERCE_HOME is used to indicate the directory in which you
installed the WebLogic Commerce Server 3.1 and WebLogic Personalization
Server 3.1 software.

6 Using the Catalog Application in a Portal

6-2 BEA WebLogic Personalization Server Developer’s Guide

Deploying a Portal as a Webapp

To build a portal webapp using the Portal Framework, follow these steps:

1. In the %WL_COMMERCE_HOME%/server/webapps folder, create a new folder. Give
it the name of your webapp. For this discussion, this new folder will be referred to
as “Example” in the webapps folder.

2. Create a subfolder in your new webapps/Example folder called WEB-INF. In this
folder put your web application’s web.xml file.

Note: If you do not already have a web.xml file, you may copy the one in
webapps/admin/WEB-INF. You must remove the
security-constraint and security-role elements from the
document.

If you are using tag libraries, copy the tag library descriptor files (*.tld) into
the WEB-INF directory. Also copy the portal framework .tld files from
portal/WEB-INF/*.tld.

3. Create a new file in your Example folder called index.jsp. In this file, put a
JavaServer Page (JSP) forward to your portal home page:

<jsp:forward page=”/application/Example” />

where Example should be replaced by the name of your property set.

4. Open your weblogic.properties file found in %WL_COMMERCE_HOME% for
editing. Search for the word “webapp.” You will find a line beginning as follows:

weblogic.httpd.webApp.wlcs=

Copy this line and paste the copy below the original. Change the word “wlcs” to
be the name of your webapp. There are two occurences of “wlcs”, you must
change both.

5. Start your WebLogic Commerce Server with WebLogic Personalization Server
server by executing StartCommerce.bat found in %WL_COMMERCE_HOME%.

6. Log on to the Administration Tool. Navigate to the Property Set Manager.

Deploying a Portal as a Webapp

BEA WebLogic Personalization Server Developer’s Guide 6-3

7. Create a new property set. Give it the same name as your webapp. Copy
properties from APPLICATION_INIT._DEFAULT_PORTAL_INIT. The property set
type is “Application Init.” Click Create and then Back.

Click on the property set name to edit it. You will need to change the following
properties:

defaultdest = your portal’s main page
homepage = your portal’s main page
workingdir = /
PORTAL_NAME = Example
TTL = set low during development, then restore when deploying for
service.

8. After you finish your changes, you must wait up to 5 minutes for the server to
recognize the new changes. This time period is dictated by the TTL (time to live)
property. Alternatively, you may eliminate this wait time by adding the parameter
flowReset=true to any URL for your web application, which will cause the
server to reload the property set.

9. Click Home, and then navigate to the Portal Manager.

10. On the Portal title bar, click the Create button. This displays a form that allows
you to create a new portal.

11. For the portal name, enter the exact same text as you did for the PORTAL_NAME
property in your property set. The rest of the form fields can be left as the default.
Click Create to create your portal.

12. Test your site by opening a browser window and navigate to
http://localhost:7501/Example where “Example” must match the name
you gave to your web application in the weblogic.properties file in step 4.

You have successfully deployed your portal as a webapp.

6 Using the Catalog Application in a Portal

6-4 BEA WebLogic Personalization Server Developer’s Guide

Using e-Commerce Functionality Within a
Portal

This section discusses the scenerio in which you want to have a portal as the entry point
for your users, but also wish to build e-Commerce functionality into your application.
An example of this case might be a portal with one portlet showing the user’s shopping
cart, another portlet allowing a search of the product catalog, and a third portlet
showing the user’s order history.

An immediate requirement of this type of site is that it be deployed as a web
application. This is a requirement of the Commerce components, and therefore this
requirement also applies to a portal that includes Commerce components. Before you
can begin adding e-Commerce features to your portal, you must deploy your portal as
a webapp. This involves a number of steps, including the creation of a web.xml file.
For more information, see the previous section “Deploying a Portal as a Webapp” on
page 6-2.

Once your portal is a web application, a major issue to consider is site security. The
Portal Framework includes its own security model. Portal page security constraints are
defined by personalization rules, the Portal Administrator tools, and the Portal end user
personalization tools. The declaritive security model of J2EE is much too simplistic for
a portal deployment. For instance, when a user who belongs to more than one group
logs onto a portal, the portal needs to be able to query the user on which group to use
for personalization. This query action cannot be implemented when declaritive
security is employed. Therefore, when working with portals, you should avoid creating
security constraints in the web application’s web.xml file.

Another security issue is user authentication. When implementing your site, you will
want single sign-on capabilities. To do this, the Portal Framework and Commerce
features will share the login. To this end, the Portal Framework must perform the login
request. Additionally, the Commerce features require the user’s unified user type to be
WLCS_Customer.

Finally, there are several configuration requirements when assembling your portal.
This includes deploying your site as a web application, and also the use of a special
Destination Determiner.

Using e-Commerce Functionality Within a Portal

BEA WebLogic Personalization Server Developer’s Guide 6-5

The purpose of this section is to guide you step-by-step through the issues discussed
previously. As you proceed through the steps, a brief explanation is given. For a more
thorough explanation of an individual step, consult the relevent documentation.

Follow these steps before employing Commerce features in your portal:

1. Deploy your portal as a web application. This process is described in the
previous section.

2. Construct a single unified Application_Init property set. You must use the
_DEFAULT_PORTAL_INIT template for your application initialization property
set.

3. Establish a single destination determiner. The destination determiner to use is
com.beasys.commerce.webflow.WLCSPortalDestinationDeterminer. It is
capable of handling both WebLogic Personalization Server and WebLogic
Commerce Server with WebLogic Personalization Server requests.

4. Establish a single destination handler. Establish this destination handler:
com.beasys.commerce.foundation.flow.ServletDestinationHandler

5. Configure your portal main page as the application home page. The
destination determiner is programmed to return the user to the home page if no
destination information is included in the HTTP request.

6. Use _userlogin.jsp for User Authentication. The login page included in the
Portal Framework is _userlogin.jsp. In order to satisfy the portal’s security
model, all logins must go through this JSP. This page performs the necessary
method calls (setUser, setLoggedIn, and setSucessor) required by the portal
security mechanism.

7. Ensure that the user has a unified profile type of WLCS_Customer. The
Commerce functionality requires an extension to the basic user type. This
extension is named WLCS_Customer, and is a unified profile type. Any user of
your portal with Commerce features must have a type of WLCS_Customer.

8. Avoid declaritive security in your site. To reduce the complexity of the portal
security model, try to avoid declaritive security in your site. Declaritive security
appears as security constraints in your web application’s web.xml file. This is not
a necessary step, but it makes security management easier.

6 Using the Catalog Application in a Portal

6-6 BEA WebLogic Personalization Server Developer’s Guide

Using Webflow Within a Portal

In WebLogic Commerce Server with WebLogic Personalization Server, Webflow is a
feature that allows you to string together JavaServer Page (JSP) files, input processors
(IPs) and pipeline processors (PPs) without hard coding the linkage between them.
Instead, the linkage is defined in an external Webflow properties file.

Something to consider is how Webflow works with portals. When using Webflow,
your users are conducted through a number of complete JSP pages as they work
through a process. The portal, on the other hand, generally keeps the user on a single
portal page, while the contents of that page (the portlets) change state. Due to this
difference, in the current implementation, you cannot use the Webflow feature of page
transitions while you employ the Portal Framework. But you can utilize the power of
input processors and pipeline processors from within a portlet. This section details how
to do this.

The first requirement of Webflow is that your site must be deployed as a webapp. The
first step of this process is to create and deploy your portal as a webapp, as described
in the section “Using e-Commerce Functionality Within a Portal” on page 6-4.

Once you have deployed your portal as a webapp, follow these steps:

1. Start your server and log on to the administration client.

2. Navigate to the Property Set Manager. Click on your property set to edit it.

3. You need to use a special destination determiner. Edit your
destinationdeterminer property, and set it to be:
com.beasys.commerce.Webflow.WLCSPortalDestinationDeterminer.

4. In a text editor, open or create your Webflow.properties located in your
%WL_COMMERCE_HOME% folder.

In this folder, you need to create transitions from your portlet to input processors
and pipeline processors. It is important to understand that the
WLCSDestinationDeterminer will route the flow from your portlet to the input
processors and pipeline processors. Once Webflow has traversed through the IPs
and PPs, it will forward the request to the URL that you specify in the Webflow
method call in your portlet JSP (this will be discussed later). An example
Webflow property file is as follows:

Using Webflow Within a Portal

BEA WebLogic Personalization Server Developer’s Guide 6-7

myportlet.jsp.link(mylink) = myportlet.inputprocessor
myportlet.inputprocessor.success = myportlet.pipeline
myportlet.pipeline.success = myportlet2.pipeline

In this example, once Webflow has traversed through the second pipeline
processor, it will allow the default destionation determiner to forward to the
URL specified in the request.

In WebLogic Commerce Server with WebLogic Personalization Server, you may
have only one webapp that is Webflow enabled. You must identify the property
set to be used by Webflow. Do this by adding the following section to your
web.xml file located in your web-inf folder:

<context-param>
 <param-name>WLCS_APPLICATION_URL</param-name>
 <param-value>/application/commercewf</param-value>
</context-param>

Replace commercewf with the name of your property set.

Finally, you need to connect to Webflow from your portlet. In your portlet JSP,
you must make a call to createWebflowURL. In this call, you must specify two
parameters. Specify a parameter called portalized as true, and a parameter
called dest with the URL that Webflow should go to after it has finished. For
example:

myportlet.jsp

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page
extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

<form method=”POST”
 action="<%= WebflowJSPHelper.createWebflowURL(
 pageContext,
 "portlet.jsp",
 "link(mylink)",
 “&portalized=true&dest=/portal.jsp”,
 true) %>">
...
</form>

In this example, when the user clicks the Submit button the request will be
forwarded to the destination of the myportlet.jsp.link(mylink) transition. Once
Webflow has finished with all input processors and pipeline processors it has
found there, it will forward to portal.jsp. Your dest parameter should refer to
your portal page and not your portlet.

5. Test your portal.

6 Using the Catalog Application in a Portal

6-8 BEA WebLogic Personalization Server Developer’s Guide

If you successfully completed all the steps in this exercise, you should now have
Webflow working within your portal.

Reusing Pieces of the Demo Catalog
Application in a Portal

If you start your commerce server and use a browser to navigate to
http://localhost:7501/application/wlcs, you can experiment with the
WebLogic Commerce Server with WebLogic Personalization Server sample catalog
application. There are some useful pieces of functionality in this sample application
that you may want to build into your portal site as a portlet. This section explains how
to do this.

First, note that the WebLogic Commerce Server with WebLogic Personalization
Server catalog application relies on Webflow. Therefore, you must integrate Webflow
with your portal. See “Using Webflow Within a Portal” on page 6-6. Also, the Catalog
application uses Commerce features, so you must prepare your portal as described in
the section “Using e-Commerce Functionality Within a Portal” on page 6-4.

After you have followed those directions, complete the following steps.

1. Identify the JSP file in the catalog project that provides the functionality you wish
to have in your application. There is no better way to do this than to open JSP files
in the %WL_COMMERCE_HOME%/server/webapps/wlcs folder and track the code
down. Copy this file into your application folder.

2. Remove from this file any functionality you do not want in your portlet. This
includes both links to the WebLogic Commerce Server with WebLogic
Personalization Server catalog site and also page-scoped items such as the
WebLogic Commerce Server with WebLogic Personalization Server catalog
header and footers.

Make your portlet extend PortalJspBase by adding the following line to the top
of the JSP file:

<%@ page
extends=”com.beasys.commerce.portal.admin.PortalJspBase”%>

Reusing Pieces of the Demo Catalog Application in a Portal

BEA WebLogic Personalization Server Developer’s Guide 6-9

3. Identify the transitions in the default webflow.properties file that correspond
to your portlet JSP. Update as necessary.

4. Update the Webflow calls in your JSP (as explained in the previous section).

5. Register your portlet JSP with the server through the administration tool.

6. Add your new portlet to your portal.

7. Test your new portlet.

6 Using the Catalog Application in a Portal

6-10 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 7-1

CHAPTER

7 Creating Localized
Applications with
Internationalization
Tags

This section includes the following topics:

n What Is the I18N Framework?

n Localizing Your JSP

l <i18n:getMessage>

l <i18n:localize>

l Character Encoding

l Steps for Localizing Your Application

n Localizing the BEA WebLogic Personalization Server

l Static Text

l Constructed Messages

l Resource Bundles Used in the WebLogic Personalization Server Tools

7 Creating Localized Applications with Internationalization Tags

7-2 BEA WebLogic Personalization Server Developer’s Guide

What Is the I18N Framework?

WebLogic Personalization Server provides a simple framework that allows access to
localized text labels and messages. The internationalization (I18N) framework is
accessible from JavaServer Pages (JSPs) through a small I18N tag library. An example
is shown in Figure 7-1. The JSP extension tag library provides the following services:

1. Retrieves a static text label from a resource bundle (implemented as a properties
file).

2. Retrieves a message from a resource bundle (implemented as a properties file).

3. Initializes a page context with a particular language, country, and variant for label
and message retrieval throughout a page.

4. Properly sets the content type (text/html) and character encoding for a page.

Figure 7-1 An Example of Internationalization Code

Localizing Your JSP

BEA WebLogic Personalization Server Developer’s Guide 7-3

Localizing Your JSP

The conventions used in the I18N tag library are based on the more general
conventions used to internationalize Java applications. To understand the conceptual
foundations for the <i18n:getMessage> tag, see the Javadoc for
java.text.MessageFormat in the Sun Microsystem, Inc. Java 2 SDK, Standard
Edition documentation. To better understand the ideas that served as the foundation for
these tags, study the Javadoc for java.util.ResourceBundle and
java.util.Locale.

The following tags are included in the I18N framework:

<i18n:getMessage>

<i18n:localize>

<i18n:getMessage>

This tag retrieves a localized label or message (based on the absence/presence of an
args attribute). The tag optionally takes a bundle name, language, country, and variant
to aid in locating the appropriate properties file for resource bundle loading.

This tag is used in the localization of JSP pages. All pages that have an
internationalization requirement should use this tag.

For more information about the <i18n:getMessage> tag, see Chapter 9, “JSP Tag
Library Reference.”

<i18n:localize>

This tag allows you to specify a language, country, variant, and resource bundle name
to use throughout a page when accessing resource bundles via the
<i18n:getMessage> tag. This is a convenient way to specify these attributes once, so
that you do not have to specify them again each time you use <i18n:getMessage> to
retrieve localized static text or messages.

7 Creating Localized Applications with Internationalization Tags

7-4 BEA WebLogic Personalization Server Developer’s Guide

The <i18n:localize> tag also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible – before anything is written to the output stream – so that the bytes are
properly encoded. If you intend to display text in more than one language, pick a
character set that encompasses all the languages on the page.

When an HTML page is included in a larger page (for example, as portlets are included
in portal pages), only the larger page can use the <i18n:localize> tag. This is
because the <i18n:localize> tag sets the encoding for the page, and the encoding
must be set in the parent (including) page before any bytes are written to the response’s
output stream. Therefore, be careful that the encoding for the parent page is sufficient
for all the content on that page as well as any included pages. The child (included)
pages may continue to use the <i18n:getMessage tag>.

Note: Do not use the <i18n:localize> tag in conjunction with the <%@ page
contentType="<something>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong contentType declarations.

For more information about the <i18n:localize> tag, see Chapter 9, “JSP Tag Library
Reference.”

The JspMessageBundle

The <i18n:getMessage> tag uses the
com.beasys.commerce.i18n.jsp.JspMessageBundle class. Unlike a
ResourceBundle, the JspMessageBundle looks only for properties files (like the
PropertyResourceBundle) within the ServletContext (on the doc path). This means that
you can keep MessageBundle properties files relative to the associated JSP page,
instead of having to have them on the CLASSPATH.

Another difference is that JspMessageBundles are specified using the "/" character
instead of the ".". For instance, the path to a JspMessageBundle might look like this:
/jsp/ordersystem/placeOrder.

If a bundle name is specified, then it can be specified absolutely or relatively. Absolute
paths are treated as such if they begin with a "/". Paths not beginning with "/" are
searched for relative to the JSP page's location.

Localizing Your JSP

BEA WebLogic Personalization Server Developer’s Guide 7-5

If no bundle name is specified, then bundle name defaults to the name of the JSP page.
For instance, if you have a JSP page called placeOrder.jsp, then JspMessageBundle
would look in the same directory for a placeOrder.properties file to serve as the
JspMessageBundle for the placeOrder.jsp page.

When searching for a JspMessageBundle, both the doc root and repository directories
are searched, in that order. Repository directories are directories specified during
servlet registration and serve as a place to store common files such as images. If no
message bundle can be found, a MissingResourceException occurs. For a more
in-depth description of the repository directory convention, see “Repository” on page
3-11.

How the localization Tag Works

The <i18n:localize> tag first examines all provided attributes and default
attributes, and then performs the following three steps:

1. Determines the base bundle name.

If a base bundle name is not provided, the bundle name defaults to the name of
the JSP page with .properties appended.

For example, if the name of the JSP page is placeOrder.jsp, then the default
bundle name would be placeOrder.properties.

2. Determines the language to use.

The tag will first look for resource bundles that correspond to the language
parameter passed in to the tag.

If no match between bundle and language is found, then the tag will try to find a
match between resource bundles and languages defined in the request header.

If a match can be made, the first language that matches is the language that is
used.

If no language is specified, the default is US English (en_US).

If no message bundle can be found, then language is set to nothing ("") and
"UTF-8" encoding will be used unless otherwise specified.

3. Determines which character encoding (charset) to use.

If character encoding is not specified, a charset appropriate for the language
determined in step 2 is chosen.

7 Creating Localized Applications with Internationalization Tags

7-6 BEA WebLogic Personalization Server Developer’s Guide

If a character encoding is specified, then that will be the charset used by the
page, regardless of what language was chosen in step 2.

Once the charset is determined, it is specified for the page by calling the
setContentType() method on the servlet response. A call to
setContentType() might look like this:

response.setContentType("text/html; charset=ISO-8859-1");

Character Encoding

When specifying the encoding, it is important to note that some encodings may
not be supported for your particular operating system, virtual machine, or client
browsers. To see what Sun Microsystem, Inc. supports in the J2SE package, see
http://www.java.sun.com/products/jdk/1.2/docs/guide/internat/encoding.doc.html

If for any reason an encoding for a language cannot be determined and none is
specified, UTF-8 encoding is used.

Displaying More than One Character Set on a Page

In general, it is best is to leave the charsetc parameters unspecified since this is more
flexible and fault tolerant. An exception might be when two languages (such as Greek
and Japanese) need to be displayed in the same page. In that case, you can set the
charset to "UTF-8".

For a page with multiple charsets to display correctly, the end users must have the
appropriate fonts installed on their machines. If a font cannot be found, non-printable
characters will typically display in place of the missing characters. (Non-printable
characters often look like rows of empty boxes.)

Localizing Your JSP

BEA WebLogic Personalization Server Developer’s Guide 7-7

 Default Character Encodings

Figure 7-1 shows how the <i18n:localize> tag maps languages to character
encodings. These are the default settings.

You can override these defaults by providing any charset tag parameter you choose.
For example, in the table below, the default charset for Japanese is Shift_JIS, but you
could pass in x-sjis, EUC_JP, or iso-2022-jp instead. Or, as another example, to use
Chinese Taiwan locale in place of Chinese, override GB2312 with Big5.

Table 7-1 Default Character Encodings

Language
Code

Language
Name

Character
Encoding

ar Arabic ISO-8859-6

be Byelorussian ISO-8859-5

bg Bulgarian ISO-8859-5

ca Catalan ISO-8859-1

cs Czech ISO-8859-2

da Danish ISO-8859-1

de German ISO-8859-1

el Greek ISO-8859-7

en English ISO-8859-1

es Spanish ISO-8859-1

et Estonian ISO-8859-1

fi Finnish ISO-8859-1

fr French ISO-8859-1

hr Croatian ISO-8859-2

hu Hungarian ISO-8859-2

 is Icelandic ISO-8859-1

7 Creating Localized Applications with Internationalization Tags

7-8 BEA WebLogic Personalization Server Developer’s Guide

 it Italian ISO-8859-1

iw Hebrew ISO-8859-8

ja Japanese Shift_JIS

ko Korean EUC_KR

lt Lithuanian ISO-8859-2

lv Latvian (Lettish) ISO-8859-2

mk Macedonian ISO-8859-5

nl Dutch ISO-8859-1

no Norweigan ISO-8859-1

pl Polish ISO-8859-2

pt Portuguese ISO-8859-1

ro Romanian ISO-8859-2

ru Russian ISO-8859-5

sh Serbo-Croatian ISO-8859-5

sk Slovak ISO-8859-2

sl Slovenian ISO-8859-2

sq Albanian ISO-8859-2

sr Serbian ISO-8859-5

sv Swedish ISO-8859-1

th Thai TIS620

tr Turkish ISO-8859-9

uk Ukrainian ISO-8859-5

zh Chinese GB2312

other UTF-8

Localizing Your JSP

BEA WebLogic Personalization Server Developer’s Guide 7-9

Steps for Localizing Your Application

1. Familiarize yourself with the documentation for the Internationalization (i18n)
tags in the JSP Tag Library Reference. For sample code, see Figure 5-1 “An
Example of Internationalization Code” on page 7-2.

2. Include the <i18n:localize> tag in all pages with an internationalization
requirement. The tag should be used as early in the page as possible – before
anything is written to the output stream – so that the bytes are properly encoded.

For example: <%@ taglib uri=“i18n.tld” prefix=“i18n” %>

For example: <i18n:localize language=“<%=language%>”

Note: When HTML pages are being included inside a larger page, only the larger
page can use the <i18n:localize> tag.

3. Move all text that must be localized (including image URLs that must be
localized) to properties files that serve as resource bundles. Provide a resource
bundle (properties file) for each language you plan to support. One resource
bundle per JSP page per language is the recommended approach.

For example: Use <i18n:getMessaage messageName=“greeting”/> instead
of hardcoding “Welcome!”

4. Specify a directory path for the properties files (resource bundles). The bundle
location must be specified relative to the JSP location, or absolutely, under the
document root.

5. Refer to all localized text in a JSP page by using the <i18n:getMessage> tag.
Make sure the <i18n:getMessage> tag is referring to the correct resource
bundle location (relative or absolute path).

For example:
 If the JSP is in public_html\mypage.jsp, then the bundle location could be
(absolute) “/mypage/text_us.properties” or
(relative) “text_us.properties”.

6. Test the page for all languages that you support. Make sure that the localized text
and images display correctly and that the page layout is correct.

7 Creating Localized Applications with Internationalization Tags

7-10 BEA WebLogic Personalization Server Developer’s Guide

Localizing the BEA WebLogic
Personalization Server

Up to this point, this chapter has discussed localizing the application that you are
building with the BEA WebLogic Personalization Server.

In developing your application, you may be required to localize some of the portal
tools in the WebLogic Personalization Server. This section provides information for
developers who need to localize the administration tools that are provided with this
product, or who are deriving their application from examples that ship with the
WebLogic Personalization Server.

The WebLogic Personalization Server administration tool is supported by JSP bean
objects which employ Java internationalization conventions in the practice of
presenting error and status messages. These beans use a BEA utility object called
com.beasys.commerce.i18n.MessageBundle in conjunction with text-based
properties files to produce two types of locale-specific display text. The two types of
text are as follows:

n Static Text

n Constructed Messages

Static Text

WebLogic Personalization Server uses the following convention when naming static
text entries in the properties files:

propertyName.txt=propertyValue

For example: error.txt=Error Occurred

A static text property is acquired from a loaded MessageBundle using the following
method:

public String getString(String propertyName)

Localizing the BEA WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 7-11

For example:
System.out.printin(messageBundle.getString("error.txt"));

For more information, see the Javadoc for the Portal API documentation.

Constructed Messages

The localized display text generated at runtime often depends on one or more
variables, and the order of these variables in a text segment is locale-specific. In this
case, the WebLogic Personalization Server provides a means for constructing message
segments for display.

WebLogic Personalization Server uses the following convention when naming
message entries in properties files:

propertyName.msg=propertyValue

For example:

fieldRequired.msg={0} is a required field.

A constructed message is acquired from a loaded MessageBundle using the following
method:

public String getMessage(Object[] args, String propertyName)

For example:

Object[] args = new Object[] {“ContentURL”};

System.out.println(messageBundle.getMessage(args,
"fieldRequired.msg"));

For more information, see the Javadoc for the Portal API documentation..

Note: The MessageBundle’s getMessage() method internally uses a
java.text.MessageFormat object. To understand how the getMessage()
method works, look at the Javadoc for java.text.MessageFormat.

7 Creating Localized Applications with Internationalization Tags

7-12 BEA WebLogic Personalization Server Developer’s Guide

Resource Bundles Used in the
WebLogic Personalization Server Tools

Each properties file that supports a particular bean includes the bean name and a
properties extension. For example, the properties file that supports the
com.beasys.portal.admin.jspbeans.PortalJspBean bean resides in the i18n
directory beneath com/beasys/portal/admin/jspbeans, and is called
PortalJspBean.properties.

Localizing System Messages

You can localize the resource bundles that contain system messages related to the
WebLogic Personalization Server administration tools and sample applications.

Use the following properties files to localize system messages. These property files are
found under < WL_COMMERCE_HOME>/classes:

com/beasys/commerce/axiom/util.i18n/JSPBeanBase.properties

com/beasys/commerce/user/jsp/beans/i18n/LDAPConfigBean.properties

com/beasys/commerce/user/jsp/beans/i18n/ProfileTypeBean.properties

com/beasys/commerce/user/jsp/beans/i18n/PropertyBean.properties

com/beasys/commerce/user/jsp/beans/i18n/PropertySetBean.properties

com/beasys/commerce/user/jsp/beans/i18n/RealmConfigBean.properties

com/beasys/commerce/user/jsp/beans/i18n/UserBean.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalJspBean.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortletJspBean.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalPersonalization.properties

com/beasys/commerce/portal/admin/jspbeans/i18n/PortalRemoveJspBean.properties

com/beasys/commerce/portal.jspbeans/i18n/PortalAppearanceBean.properties

com/beasys/commerce/axiom.util/i18n/JspBeanBase.properties

BEA WebLogic Personalization Server Developer’s Guide 8-1

CHAPTER

8 WebLogic
Personalization Server
Schema

This chapter documents the database schema for the WebLogic Personalization Server
and includes the following sections:

n The Entity-Relationship (ER) Diagram

l The Schema Tables

n The Tables Comprising the WebLogic Personalization Server

n The SQL Scripts for Creating the WebLogic Personalization Server Database

The Entity-Relationship Diagram

The following four figures comprise the Entity-Relationship Diagram (ERD) for the
WebLogic Personalization Server database.

8 WebLogic Personalization Server Schema

8-2 BEA WebLogic Personalization Server Developer’s Guide

The Entity-Relationship Diagram

BEA WebLogic Personalization Server Developer’s Guide 8-3

8 WebLogic Personalization Server Schema

8-4 BEA WebLogic Personalization Server Developer’s Guide

The Entity-Relationship Diagram

BEA WebLogic Personalization Server Developer’s Guide 8-5

8 WebLogic Personalization Server Schema

8-6 BEA WebLogic Personalization Server Developer’s Guide

The Tables Comprising the WebLogic
Personalization Server

The WebLogic Personalization Server is comprised of the following tables. In
this list, the tables are sorted by functionality:

Documentation Management tables:
WLCS_DOCUMENT
WLCS_DOCUMENT_METADATA

Portal Management tables:
WLCS_PORTAL_DEFINITION
WLCS_COLUMN_INFORMATION
WLCS_PORTLET_DEFINITION
WLCS_PORTAL_PERSONALIZATION
WLCS_GROUP_PERSONALIZATION
WLCS_USER_PERSONALIZATION
WLCS_PORTAL_GROUP_HIERARCHY
 WLCS_PORTAL_HIERARCHY
WLCS_CATEGORIES

Rule Editor table:
WLCS_RULESET_DEFINITION

User Management tables:
WLCS_USER
WLCS_GROUP
WLCS_GROUP_HIERARCHY
WLCS_USER_GROUP_HIERARCHY
WLCS_UIDS

Tables used in the Sample Portal Application:
WLCS_BOOKMARKS
WLCS_TODO
WLCS_UUP_EXAMPLE

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-7

Common tables used by both WLPS and WLCS:
WLCS_IS_ALIVE
WLCS_SEQUENCER
WLCS_SCHEMA
WLCS_PROP_MD
WLCS_PROP_MD_BOOLEAN
WLCS_PROP_MD_INTEGER
WLCS_PROP_MD_TEXT
WLCS_PROP_MD_DATETIME
WLCS_PROP_MD_USER_DEFINED
WLCS_PROP_MD_FLOAT
WLCS_ENTITY_ID
WLCS_PROP_ID
WLCS_PROP_BOOLEAN
WLCS_PROP_INTEGER
WLCS_PROP_TEXT
WLCS_PROP_DATETIME
WLCS_PROP_USER_DEFINED
WLCS_PROP_FLOAT
WLCS_USER
WLCS_GROUP
WLCS_GROUP_HIERARCHY
WLCS_USER_GROUP_HIERARCHY
WLCS_UNIFIED_PROFILE_TYPE
WLCS_LDAP_CONFIG

The Schema Tables

In this section, the WebLogic Personalization Server schema tables are arranged
alphabetically as a data dictionary.

Note: Even though the following documentation references “foreign keys” to
various tables, these constraints do not currently exist in this release of
WebLogic Personalization Server. However, they will be (availabe in future
releases) in place in future versions of WebLogic Personalization Server and
we want you to be aware of these relationships now.

8 WebLogic Personalization Server Schema

8-8 BEA WebLogic Personalization Server Developer’s Guide

Table 8-1 describes the WLCS_BOOKMARKS table. This table is used by the
Example portal and is not used except for demonstration purposes. It contains
information used in the Bookmark portlet.

The Primary Key is comprised of NAME and OWNER.

Table 8-2 describes the WLCS_CATEGORIES table. This table is used to store
category information for the portal portion of the WebLogic Personalization
Server application.

Note: The CATEGORY feature has not been implemented at this time and,
therefore, this table is not being used/populated.

The Primary Key is NID.

Table 8-1 WLCS_BOOKMARKS

Column Name Data Type Description and Recommendations

URL VARCHAR2(50) The URL of the bookmark.

NAME VARCHAR2(150) The name of the bookmark.

OWNER VARCHAR2(150) The owner of the bookmark.

Table 8-2 WLCS_CATEGORIES

Column Name Data Type Description and Recommendations

NID NUMBER(15) Category Identifier.

PORTAL_NID NUMBER(15) The Portal Identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

NAME VARCHAR2(100) The name for the category.

ICON_URL VARCHAR2(100) The URL pointing to the icon associated with
the category. This may be null.

CATEGORY_ORDER NUMBER(5) The sequence number identifying the order of
display.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-9

Table 8-3 describes the WLCS_COLUMN_INFORMATION table. This table is used
to store column definition information for each portal and category.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID and
COLUMN_ORDER.

Table 8-4 describes the WLCS_DOCUMENT table. This table is used to store
information pertinent to each document used within the WebLogic Personalization
Server.

The Primary Key is ID.

Table 8-3 WLCS_COLUMN_INFORMATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The Portal identifier. This column is a foregin
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The Category identifier.

COLUMN_WIDTH NUMBER(5) The value entered here is a percentage of the
screen width. An example would be 30. This
represents how wide this particular portal
column is to be (30% of the screen).

COLUMN_ORDER NUMBER(5) A sequence number identifying the display
sequence for this column. Starting at the
left-most part of the screen the
COLUMN_ORDER would be 1.

Table 8-4 WLCS_DOCUMENT

Column Name Data Type Description and Recommendations

ID VARCHAR2(500) The identifier of the document. This specifies
the relative path (case sensitive using forward
slashes) to the actual file.

DOCUMENT_SIZE NUMBER(15) The size of the document in bytes.

VERSION NUMBER(15) The version of the document.

8 WebLogic Personalization Server Schema

8-10 BEA WebLogic Personalization Server Developer’s Guide

Table 8-5 describes the WLCS_DOCUMENT_METADATA table. This table is used
to store user-defined properties associated with each document.

The Primary Key is ID and NAME.

AUTHOR VARCHAR2(50) The author’s name of this document.

CREATION_DATE DATE The date this document was created in the
system.

LOCKED_BY VARCHAR2(50) This column identifies who has this document
locked for edits or updates.

MODIFIED_DATE DATE This tells you when this document record was
last modified.

MODIFIED_BY VARCHAR2(50) This column stores the name of the individual
who last modified the document record.

DESCRIPTION VARCHAR2(50) A description of the document.

COMMENTS VARCHAR2(50) An area to store miscellaneous notes about the
document.

MIME_TYPE VARCHAR2(100) This column identifies which mime type (or file
type) is associated with this document. This is
supposed to be MIME 1.0.

Table 8-4 WLCS_DOCUMENT (Continued)

Column Name Data Type Description and Recommendations

Table 8-5 WLCS_DOCUMENT_METADATA

Column Name Data Type Description and Recommendations

ID VARCHAR2(500) The document identifier. This is a foreign key to
the ID column of the WLCS_DOCUMENT
table.

NAME VARCHAR2(240) The metadata name.

VALUE VARCHAR2(2000) The value to be associated with the metadata
name (NAME).

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-11

Table 8-6 describes the WLCS_ENTITY_ID table. Any ConfigurableEntity within the
system will have an entry in this table.

The Primary Key is comprised of JNDI_HOME_NAME and PK_STRING.

Table 8-7 describes the WLCS_GROUPS table. This table is used to maintain each of
the various Group identifiers.

The Primary Key is comprised of IDENTIFIER.

STATE VARCHAR2(50) The current state of this metadata property. This
is used by Interwoven and can be set to null.

Table 8-5 WLCS_DOCUMENT_METADATA (Continued)

Column Name Data Type Description and Recommendations

Table 8-6 WLCS_ENTITY_ID

Column Name Data Type Description and Recommendations

JNDI_HOME_NAME VARCHAR2(100) Defines what type of ConfigurableEntity this is.

PK_STRING VARCHAR2(200) Unique identifier within the
ConfigurableEntity.

ENTITY_ID NUMBER(15) A sequence-generated number providing a
unique identifier used throughout the system (in
the Property tables and so on).

Table 8-7 WLCS_GROUP

Column Name Data Type Description and Recommendations

IDENTIFIER VARCHAR2(50) The group name. This column is a foreign key
to the PK_STRING column in the
WLCS_ENTITY_ID table.

8 WebLogic Personalization Server Schema

8-12 BEA WebLogic Personalization Server Developer’s Guide

Table 8-8 describes the WLCS_GROUP_HIERARCHY table. This table stores
relationship information between groups.

The Primary Key is comprised of PARENT_ID and CHILD_ID.

Table 8-9 describes the WLCS_GROUP_PERSONALIZATION table. Portals can be
associated to groups and this table helps establish those relationships and maintain
specific information for the group.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID,
PORTLET_NID and GROUP_NID.

Table 8-8 WLCS_GROUP_HIERARCHY

Column Name Data Type Description and Recommendations

PARENT_ID NUMBER(15) The parent group identifier. This column is a
foreign key to the ENTITY_ID column in the
WLCS_ENTITY_ID table.

CHILD_ID NUMBER(15) The child group identifier. This column is a
foreign key to the ENTITY_ID column in the
WLCS_ENTITY_ID table.

Table 8-9 WLCS_GROUP_PERSONALIZATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The category identifier. This column is a
foreign key to the NID column of the
WLCS_CATEGORIES table.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the
WLCS_PORTLET_DEFINITION table.

GROUP_NID NUMBER(15) The group identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-13

AVAILABLE NUMBER(5) A switch to identify whether or not this portlet
is available.

MANDATORY NUMBER(5) This flag, when set, overrides the VISIBLE flag
and requires the portlet be displayed.

EDITABLE NUMBER(5) This flag determines whether a user is allowed
to edit any content.

MOVEABLE NUMBER(5) This column is not being used.

MINIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to minimize the portlet.

MAXIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to maximize the portlet.

FLOATABLE NUMBER(5) This flag determines whether the portlet can
open up in its own browser window.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when initially displayed.

Table 8-9 WLCS_GROUP_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

8 WebLogic Personalization Server Schema

8-14 BEA WebLogic Personalization Server Developer’s Guide

Table 8-10 describes the WLCS_IS_ALIVE table. This table is used by the JDBC
connection pools to insure the connection to the database is still alive.

Table 8-11 describes the WLCS_LDAP_CONFIG table. This table holds
configuration information for LDAP functionality within the User Management
module.

The Primary Key is LDAP_PROPERTY.

Table 8-12 describes the WLCS_PORTAL_DEFINITION table.

The Primary Key is NID.

Table 8-10 WLCS_IS_ALIVE

Column Name Data Type Description and Recommendations

NAME VARCHAR2(100) Used by the JDBC connection pools to
insure the connection to the database is still
alive.

Table 8-11 WLCS_LDAP_CONFIG

Column Name Data Type Description and Recommendations

LDAP_PROPERTY VARCHAR2(100) The property name.

LDAP_VALUE VARCHAR2(256) The property value.

Table 8-12 WLCS_PORTAL_DEFINITION

Column Name Data Type Description and Recommendations

NID NUMBER(15) The identifier for the portal definition.

NAME VARCHAR2(500) The name of the portal definition. Any
combination of numbers and letters will be
accepted in this field.

HEADER_URL VARCHAR2(500) Enter a URL to display as the portal header. It
can be a JSP or HTML fragment.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-15

Table 8-13 describes the WLCS_PORTAL_GROUP_HIERARCHY table. This table
maintains records showing which groups are associated with each portal.

The Primary Key is comprised of PORTAL_NID and GROUP_NID.

CONTENT_URL VARCHAR2(500) Enter a URL relative to your portal working
directory.

FOOTER_URL VARCHAR2(500) Enter a URL to display as the portal footer. It
can be a JSP or HTML fragment.

CONTENT_COLUMN_COUNT NUMBER(5) Specifies the number of content columns. Valid
values at this time would be 1, 2, or 3.

SUSPENDED NUMBER(5) Set this flag to suspend the portal application
and replace the portal home page with an ’under
maintenance’ screen until service resumes.

SUSPENDED_URL VARCHAR2(500) When the SUSPENDED flag is set this URL
will point to the JSP page to be displayed while
the application is in suspend mode.

Table 8-12 WLCS_PORTAL_DEFINITION (Continued)

Column Name Data Type Description and Recommendations

Table 8-13 WLCS_PORTAL_GROUP_HIERARCHY

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

GROUP_NID NUMBER(15) The group identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

8 WebLogic Personalization Server Schema

8-16 BEA WebLogic Personalization Server Developer’s Guide

Table 8-14 describes the WLCS_PORTAL_HIERARCHY table. This table contains
records showing which portlets are associated with each portal.

The Primary Key is comprised of PORTAL_NID and PORTLET_NID.

Table 8-15 describes the WLCS_PORTAL_PERSONALIZATION table. This table
maintains information pertinent to each personalized portal definition.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID and
PORTLET_NID.

Table 8-14 WLCS_PORTAL_HIERARCHY

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the
WLCS_PORTLET_DEFINITION table.

Table 8-15 WLCS_PORTAL_PERSONALIZATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The category identifier. This column is a
foreign key to the NID column of the
WLCS_CATEGORIES table.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the
WLCS_PORTLET_DEFINITION table.

AVAILABLE NUMBER(5) This flag, when set, overrides the VISIBLE flag
and requires the portlet be displayed. 0 equates
to FALSE and 1 equates to TRUE.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-17

EDITABLE NUMBER(5) This flag determines whether a user is allowed
to edit the content of the portal. 0 equates to
FALSE and 1 equates to TRUE.

MOVEABLE NUMBER(5) This column is not being used. 0 equates to
FALSE and 1 equates to TRUE.

MINIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to minimize the portlet. 0
equates to FALSE and 1 equates to TRUE.

MAXIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to maximize the portlet. 0
equates to FALSE and 1 equates to TRUE.

FLOATABLE NUMBER(5) This flag determines whether the portlet can
open up in its own browser window. 0 equates
to FALSE and 1 equates to TRUE.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible. 0 equates to FALSE and 1 equates to
TRUE.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when displayed initially. 0 equates to FALSE
and 1 equates to TRUE.

Table 8-15 WLCS_PORTAL_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

8 WebLogic Personalization Server Schema

8-18 BEA WebLogic Personalization Server Developer’s Guide

Table 8-16 describes the WLCS_PORTLET_DEFINITION table. This table
maintains information pertinent to each portlet definition.

The Primary Key is comprised of NID.

Table 8-16 WLCS_PORTLET_DEFINITION

Column Name Data Type Description and Recommendations

NID NUMBER(15) The portlet identifier.

NAME VARCHAR2(500) The name of your portlet. Any combination of
numbers and letters will be accepted in this
field.

HEADER_URL VARCHAR2(500) Enter a URL to display as the portlet header. It
can be a JSP or HTML fragment.

FOOTER_URL VARCHAR2(500) Enter a URL to display as the portlet footer. It
can be a JSP or HTML fragment.

CONTENT_URL VARCHAR2(500) Enter a URL relative to your portal working
directory.

BANNER_URL VARCHAR2(500) Enter a URL to display as the portlet banner
under the portlet titlebar. It can be a JSP or
HTML fragment.

ALTERNATE_HEADER_URL VARCHAR2(500) Enter a URL to display as a Web page header
when the portlet is floated or maximized. If this
is null, the portal framework uses a default
called alternateheader.jsp.

ALTERNATE_FOOTER_URL VARCHAR2(500) Enter a URL to display as a Web page footer
when the portlet is floated or maximized. If this
is null, the portal framework uses a default
called alternatefooter.jsp.

TITLEBAR_URL VARCHAR2(500) Enter a URL to display as the portlet titlebar. It
can be a JSP or HTML fragment.

EDIT_URL VARCHAR2(500) If the EDITABLE flag has been set then a URL
will be stored here that enables the user to edit
the portlet content.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-19

HELP_URL VARCHAR2(500) If the HELP flag has been set then a URL must
be specified that opens a help topic related to the
portlet.

ICON_URL VARCHAR2(500) A URL to display an icon (GIF) on the left side
of the portlet titlebar. This image should be 27
pixels wide by 20 pixels high with 2 pixels of
transparency on the right.

HELP NUMBER(5) This flag determines whether users can access a
help screen in the portlet. If set, a Help icon
displays in the portlet titlebar.

MAXIMIZED_URL VARCHAR2(500) A URL for the content area of the maximized
page. The default URL is your portlet content
area URL.

MANDATORY NUMBER(5) This flag, when set, overrides the VISIBLE flag
and requires the portlet be displayed. 0 equates
to FALSE and 1 equates to TRUE.

EDITABLE NUMBER(5) This flag determines whether a user is allowed
to edit the content of a portlet. 0 equates to
FALSE and 1 equates to TRUE.

MOVEABLE NUMBER(5) This column is not being used. 0 equates to
FALSE and 1 equates to TRUE.

LOGIN_REQUIRED NUMBER(5) This flag determines whether or not security is
required for access to the portlet. 0 equates to
FALSE and 1 equates to TRUE.

MINIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to minimize the portlet. 0
equates to FALSE and 1 equates to TRUE.

MAXIMIZEABLE NUMBER(5) This flag determines whether or not the user
will be allowed to maximize the portlet. 0
equates to FALSE and 1 equates to TRUE.

Table 8-16 WLCS_PORTLET_DEFINITION (Continued)

Column Name Data Type Description and Recommendations

8 WebLogic Personalization Server Schema

8-20 BEA WebLogic Personalization Server Developer’s Guide

FLOATABLE NUMBER(5) This flag determines whether the portlet can
open up in its own browser window. 0 equates
to FALSE and 1 equates to TRUE.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible. 0 equates to FALSE and 1 equates to
TRUE.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when displayed initially. 0 equates to FALSE
and 1 equates to TRUE.

Table 8-16 WLCS_PORTLET_DEFINITION (Continued)

Column Name Data Type Description and Recommendations

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-21

Table 8-17 describes the WLCS_PROP_BOOLEAN table. This table stores property
values for boolean properties.

The Primary Key is PROPERTY_ID.

Table 8-18 describes the WLCS_PROP_DATETIME table. This table stores property
values for date and time properties.

The Primary Key is PROPERTY_ID.

Table 8-19 describes the WLCS_PROP_FLOAT table. This table stores property
values for float properties.

The Primary Key is PROPERTY_ID.

Table 8-17 WLCS_PROP_BOOLEAN

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each boolean property.

VALUE NUMBER(3) The value for each boolean property identifier.

Table 8-18 WLCS_PROP_DATETIME

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each date and time property.

VALUE DATE The value for each data and time property
identifier.

Table 8-19 WLCS_PROP_FLOAT

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each float property.

VALUE NUMBER The value associated with each float property
identifier.

8 WebLogic Personalization Server Schema

8-22 BEA WebLogic Personalization Server Developer’s Guide

Table 8-20 describes the WLCS_PROP_ID table. Any property assigned to a
ConfigurableEntity has a unique PROPERTY_ID. This identifier and associated
information is stored here.

The Primary Key is ENTITY_ID, PROPERTY_NAME and SCOPE_NAME.

Table 8-20 WLCS_PROP_ID

Column Name Data Type Description and Recommendations

ENTITY_ID NUMBER(15) A system generated value and foreign key to the
WLCS_ENTITY_ID column.

SCOPE_NAME VARCHAR2(100) This column may be null. If this property is
defined in a property set, then the
SCOPE_NAME will match the
SCHEMA_NAME for that property set in the
WLCS_SCHEMA table.

PROPERTY_NAME VARCHAR2(100) The name of the property.

PROPERTY_TYPE NUMBER(3) This column identifies the type of property we
are dealing with (for example, boolean, integer,
float, text, and so on).

PROPERTY_META_DATA_ID NUMBER(15) The identifier for the Property Meta Data
information. Again, we use the
PROPERTY_TYPE column to identify which
type of Property Meta Data we are looking at
(for example, boolean, integer, and so on).

SCHEMA_HAS_CHANGED NUMBER(3) A flag informing to identify whether anything in
the WLCS_SCHEMA or
WLCS_PROP_MD_xxx tables has changed. If
so, then certain cleanup activities must be
performed prior to using this property next time.

PROPERTY_ID NUMBER(15) The property identifier is a unique system
generated number.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-23

Table 8-21 describes the WLCS_PROP_INTEGER table. This table stores property
values for integer properties.

The Primary Key is PROPERTY_ID.

Table 8-22 describes the WLCS_PROP_MD table. This table stores information about
defined properties in a property set.

The Primary Key is SCHEMA_ID.

Table 8-21 WLCS_PROP_INTEGER

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the integer property.

VALUE NUMBER(20) The value associated with the integer property.

Table 8-22 WLCS_PROP_MD

Column Name Data Type Description and Recommendations

SCHEMA_ID NUMBER(15) A foreign key to the WLCS_SCHEMA table.

PROPERTY_NAME VARCHAR2(100) The name of a property.

DESCRIPTION VARCHAR2(256) A description of the property.

IS_RESTRICTED NUMBER(3) If set TRUE, the value of the property is
constrained to a set of values. 0 equates to
FALSE and 1 equates to TRUE.

IS_EXPLICIT NUMBER(3) If set TRUE, the property value may be coming
from an external source. 0 equates to FALSE
and 1 equates to TRUE.

IS_MULTIVALUED NUMBER(3) Some properties may have more than one value.
0 equates to FALSE and 1 equates to TRUE.

PROPERTY_TYPE NUMBER(3) Defines the property type (boolean, text and so
on).

PROPERTY_META_DATA_ID NUMBER(15) The primary key is a unique, system-generated
value.

8 WebLogic Personalization Server Schema

8-24 BEA WebLogic Personalization Server Developer’s Guide

Table 8-23 describes the WLCS_PROP_MD_BOOLEAN table. This table stores
property set definitions for the boolean property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-24 describes the WLCS_PROP_MD_DATETIME table. This table stores
property set definitions for the date and time property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-23 WLCS_PROP_MD_BOOLEAN

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property Meta Data
and foreign key to the WLCS_PROP_MD
table.

VALUE NUMBER(3) The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

Table 8-24 WLCS_PROP_MD_DATETIME

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(20) A unique identifier for this Property Meta Data.

VALUE DATE The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-25

Table 8-25 describes the WLCS_PROP_MD_FLOAT table. This table stores property
set definitions for the float property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-26 describes the WLCS_PROP_MD_INTEGER table. This table stores
property set definitions for the Integer property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-25 WLCS_PROP_MD_FLOAT

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property Meta Data.

VALUE NUMBER The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

Table 8-26 WLCS_PROP_MD_INTEGER

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property Meta Data.

VALUE NUMBER(20) The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

8 WebLogic Personalization Server Schema

8-26 BEA WebLogic Personalization Server Developer’s Guide

Table 8-27 describes the WLCS_PROP_MD_TEXT table. This table stores property
set definitions for the text property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-28 describes the WLCS_PROP_MD_USER_DEFINED table. This table
stores property set definitions for any user defined property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 8-27 WLCS_PROP_MD_TEXT

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property Meta Data.

VALUE VARCHAR2(256) The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

Table 8-28 WLCS_PROP_MD_USER_DEFINED

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property Meta Data.

VALUE LONG RAW The value associated with the Property Meta
Data.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property Meta Data. 0 equates to FALSE and 1
equates to TRUE.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-27

Table 8-29 describes the WLCS_PROP_TEXT table. This table stores property values
for the text for the text property type.

The Primary Key is PROPERTY_ID.

Table 8-30 describes the WLCS_PROP_USER_DEFINED table. This table stores
property values for any user defined property type.

The Primary Key is PROPERTY_ID.

Table 8-31 describes the WLCS_RULESET_DEFINITION table. This table contains
all rule sets.

The Primary Key is NAME.

Table 8-29 WLCS_PROP_TEXT

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the text property.

VALUE VARCHAR2(256) The value associated with the text property.

Table 8-30 WLCS_PROP_USER_DEFINED

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the user-defined property.

VALUE LONG RAW The value associated with the user-defined
property.

Table 8-31 WLCS_RULESET_DEFINITION

Column Name Data Type Description and Recommendations

NAME VARCHAR2(50) The identifier, or name, of the rule set.

DOCUMENT LONG RAW The XML document containing the rule set
definition.

8 WebLogic Personalization Server Schema

8-28 BEA WebLogic Personalization Server Developer’s Guide

Table 8-32 describes the WLCS_SCHEMA table. This table stores property set
definitions.

The Primary Key is comprised of SCHEMA_GROUP_NAME and SCOPE_NAME.

Table 8-33 describes the WLCS_SEQUENCER table. The WLCS_SEQUENCER
table is used to maintain all of the sequence identifiers (for example,
property_meta_data_id_sequence, and so on) used in the application.

The Primary Key is SEQUENCE_NAME.

Table 8-32 WLCS_SCHEMA

Column Name Data Type Description and Recommendations

SCHEMA_GROUP_NAME VARCHAR2(100) The type of object this schema is used for.

SCOPE_NAME VARCHAR2(100) The application name since it is defining names
for the application.

DESCRIPTION VARCHAR2(256) A description of the schema.

SCHEMA_ID NUMBER(15) A system generated number used throughout
the application.

Table 8-33 WLCS_SEQUENCER

Column Name Data Type Description and Recommendations

SEQUENCE_NAME VARCHAR2(50) A unique name used to identify the sequence.

CURRENT_VALUE NUMBER(15) The current value of the sequence.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-29

Table 8-34 describes the WLCS_TODO table. This table is used by the Example portal
and is not used except for demonstration purposes. It contains information used in the
To Do portlet.

The Primary Key is ITEM and OWNER.

Table 8-35 describes the WLCS_UIDS table. This table stores sequence information
in a generic database independent format.

The Primary Key is SID.

Table 8-34 WLCS_TODO

Column Name Data Type Description and Recommendations

ITEM VARCHAR2(50) The activity to be accomplished.

DONE NUMBER(5) The status identifying whether this item has
been completed.

PRIORITY NUMBER(5) The priority of the activity.

OWNER VARCHAR2(150) The individual who owns, or is responsible, for
this activity.

Table 8-35 WLCS_UIDS

Column Name Data Type Description and Recommendations

SID VARCHAR2(100) The name of the sequence.

NEXT_SEQUENCE NUMBER(15) The next value available for use with the
sequence.

8 WebLogic Personalization Server Schema

8-30 BEA WebLogic Personalization Server Developer’s Guide

Table 8-36 describes the WLCS_UNIFIED_PROFILE_TYPE table. This table allows
registration of classes which extend the ProvidedUser class.

The Primary Key is TYPE_NAME.

Table 8-37 describes the WLCS_USER table. This table stores all user login/password
combinations.

The Primary Key is IDENTIFIER.

Table 8-36 WLCS_UNIFIED_PROFILE_TYPE

Column Name Data Type Description and Recommendations

TYPE_NAME VARCHAR2(100) Any unique name used for easy lookup.

CLASS_NAME VARCHAR2(100) The name of the remote interface class.

HOME VARCHAR2(100) The name of the home class.

PK VARCHAR2(100) The name of the primary key class.

JNDI_NAME VARCHAR2(100) The name to lookup in the JNDI tree.

SUCCESSOR VARCHAR2(100) This column allows you to define another class
should the TYPE_NAME not exist. This
column is a foreign key to TYPE_NAME of the
WLCS_UNIFIED_PROFILE_TYPE table.

Table 8-37 WLCS_USER

Column Name Data Type Description and Recommendations

IDENTIFIER VARCHAR2(50) The user login. This column is a foreign key to
the PK_STRING column of the
WLCS_ENTITY_ID table.

PASSWORD VARCHAR2(50) The encrypted password.

IS_EXTERNAL NUMBER(3) This flag determines whether a user came from
an external realm as opposed to the internal
database realm.

PROFILE_TYPE VARCHAR2(100) A foreign key to the TYPE_NAME in the
WLCS_UNIFIED_PROFILE_TYPE table.

The Tables Comprising the WebLogic Personalization Server

BEA WebLogic Personalization Server Developer’s Guide 8-31

Table 8-38 describes the WLCS_USER_GROUP_HIERARCHY table. This table
allows you to store associated users and groups.

The Primary Key is comprised of USER_ID and GROUP_ID.

Table 8-39 describes the WLCS_USER_PERSONALIZATION table.This table
contains personalized portal information for the user.

The Primary Key is comprised of PORTAL_NID, CATEGORY_NID, GROUP_NID,
USER_NID and PORTLET_NID.

Table 8-38 WLCS_USER_GROUP_HIERARCHY

Column Name Data Type Description and Recommendations

USER_ID NUMBER(15) The ENTITY_ID of a user. This column is a
foreign key to the USER_ID column of the
WLCS_ENTITY_ID table.

GROUP_ID NUMBER(15) The ENTITY_ID of a group. This column is a
foreign key to the USER_ID column of the
WLCS_ENTITY_ID table.

Table 8-39 WLCS_USER_PERSONALIZATION

Column Name Data Type Description and Recommendations

PORTAL_NID NUMBER(15) The portal identifier. This column is a foreign
key to the NID column of the
WLCS_PORTAL_DEFINITION table.

CATEGORY_NID NUMBER(15) The category identifier. This column is a
foreign key to the NID column of the
WLCS_CATEGORIES table.

GROUP_NID NUMBER(15) The group identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

USER_NID NUMBER(15) The user identifier. This column is a foreign
key to the ENTITY_ID column of the
WLCS_ENTITY_ID table.

8 WebLogic Personalization Server Schema

8-32 BEA WebLogic Personalization Server Developer’s Guide

Table 8-40 describes the WLCS_UUP_EXAMPLE table. This is an example of how
to use the Unified Profile Types.

The Primary Key is NAME.

PORTLET_NID NUMBER(15) The portlet identifier. This column is a foreign
key to the NID column of the
WLCS_PORTLET table.

VISIBLE NUMBER(5) This flag determines whether or not the portlet
is visible. 0 equates to FALSE and 1 equates to
TRUE.

X NUMBER(5) The X coordinate determines the placement of
the portlet on the screen. This is zero based and
refers to the column placement (0=column 1,
1=column 2 and so on).

Y NUMBER(5) The Y coordinate determines placement of the
portlet on the screen. Like the X coordinate, it is
zero based. The Y coordinate refers to the row
placement (0=row 1, 1=row 2 and so on).

MINIMIZED NUMBER(5) This flag determines whether or not the portlet
should be displayed in a minimized format
when displayed initially. 0 equates to FALSE
and 1 equates to TRUE.

Table 8-39 WLCS_USER_PERSONALIZATION (Continued)

Column Name Data Type Description and Recommendations

Table 8-40 WLCS_UUP_EXAMPLE

Column Name Data Type Description and Recommendations

NAME VARCHAR2(100) A username.

POINTS NUMBER(15) A point accumulator based on various actions
taken by the user.

The SQL Scripts Used to Create the Database

BEA WebLogic Personalization Server Developer’s Guide 8-33

The SQL Scripts Used to Create the Database

WebLogic Personalization Server is installed as part of the WebLogic Commerce
Server installation. If you install WebLogic Commerce Server into an NT environment
and accept the defaults, you will have a directory path that looks like this:

C:\WebLogicCommerce\

Under this main directory you will find a database directory:

C:\WebLogicCommerce\db\

Under the database directory you will find several directories for each database
currently supported:

n C:\WebLogicCommerce\db\cloudscape

n C:\WebLogicCommerce\db\oracle

At this particular level, you will find scripts which are common to both WebLogic
Commerce Server and WebLogic Personalization Server.

Table 8-41 Scripts Common to Commerce Server and Personalization Server

Create-all-oracle.sql
This script executes all of the Oracle scripts. It will
create tables, indexes, constraints and populate tables
as well.

Create-common-oracle.sql
This script creates tables, indexes, and constraints
common to both servers (Commerce and
Personalization).

Create-wlcs-oracle.sql This script calls all of the appropriate scripts used to
build and populate the Commerce Server database.

Create-wlps-oracle.sql
This script calls all of the appropriate scripts used to
build and populate the Personalization Server
database.

Insert-common-oracle.sql
This script populates the common tables used by
both servers (Commerce and Personalization).

8 WebLogic Personalization Server Schema

8-34 BEA WebLogic Personalization Server Developer’s Guide

Finally, under each database directory you will also find a WLCS and a WLPS
directory:

For example, under the Oracle database directory you would find:

C:\WebLogicCommerce\db\oracle\wlcs

C:\WebLogicCommerce\db\oracle\wlps

These directories contain scripts which are specific to the individual server
(Commerce and Personalization).

The SQL Scripts Used to Create the Database

BEA WebLogic Personalization Server Developer’s Guide 8-35

Under C:\WebLogicCommerce\db\oracle\wlcs you will find the scripts listed in
Table 8-42.

Table 8-42 Scripts Specific to WebLogic Commerce Server

Create-catalog-oracle.sql
Creates tables, indexes and constraints related to the
Catalog portion of the Commerce Server.

Create-order-oracle.sql
Creates tables, indexes and constraints related to the
Order Management portion of the Commerce Server.

Insert-catalog-data-oracle.sql Populates the Catalog portion of the Commerce
Server database with preliminary data.

Insert-order-data-oracle.sql
Populates the Order Management portion of the
Commerce Server database with preliminary data.

Insert-wlcs-common-oracle.sql
Populates the database with preliminary data in the
tables shared by both the Catalog and Order
Management pieces of the Commerce Server.

8 WebLogic Personalization Server Schema

8-36 BEA WebLogic Personalization Server Developer’s Guide

Under C:\WebLogicCommerce\db\oracle\wlps you will find the scripts listed in
Table 8-43:

Table 8-43 Scripts Specific to WebLogic Personalization Server

Create-app-oracle.sql
Creates tables associated with the example
application.

Create-document-oracle.sql
Creates tables, indexes and constraints associated
with the Document Management portion of the
Personalization Server.

Create-portal-oracle.sql
Creates tables, indexes and constraints associated
with the Portal Management portion of the
Personalization Server.

Create-ruleeditor-oracle.sql Creates the tables associated with the Rule Set
Engine portion of the Personalization Server.

Insert-pzsamples-oracle.sql
Populates the Personalization Server database with
preliminary data.

BEA WebLogic Personalization Server Developer’s Guide 9-1

CHAPTER

9 JSP Tag Library
Reference

The JSP tags included with WebLogic Personalization Server allow developers to
create personalized applications without having to program using Java.

Note: The es: prefix stands for e-commerce services.
The esp: prefix stands for e-commerce services portal.
The pz: prefix stands for personalization.

This topic includes the following sections:

n The Advisor
<pz:contentQuery>
<pz:contentSelector>
<pz:div>

n Content Management
<cm:printDoc>
<cm:printProperty>
<cm:select>
<cm:selectById>

n Flow Manager
<fm:getApplicationURI>
<fm:getCachedAttribute>
<fm:getSessionAttribute>
<fm:setCachedAttribute>
<fm:setSessionAttribute>
<fm:removeCachedAttribute>
<fm:removeSessionAttribute>

9 JSP Tag Library Reference

9-2 BEA WebLogic Personalization Server Developer’s Guide

n Internationalization
<i18n:localize>
<i18n:getMessage>

n Portal Management
<esp:eval>
<esp:get>
<esp:getGroupsForPortal>
<esp:monitorSession>
<esp:portalManager>
<esp:portletManager>
<esp:props>

n Property Sets
<ps:getPropertyNames>
<ps:getPropertySetNames>

n User Management
Profile Management Tags

<um:getProfile>
<um:getProperty>
<um:getPropertyAsString>
<um:removeProperty>
<um:setProperty>

Group-User Management Tags
<um:addGroupToGroup>
<um:addUserToGroup>
<um:changeGroupName>
<um:createGroup>
<um:createUser>
<um:getChildGroupNames>
<um:getChildGroups>
<um:getGroupNamesForUser>
<um:getParentGroupName>
<um:getTopLevelGroups>
<um:getUsernames>
<um:getUsernamesForGroup>
<um:removeGroup>
<um:removeGroupFromGroup>
<um:removeUser>
<um:removeUserFromGroup>

Security Tags

The Advisor

BEA WebLogic Personalization Server Developer’s Guide 9-3

<um:login>
<um:logout>
<um:setPassword>

n Utility Tags: Personalization Utilities
<es:counter>
<es:date>
<es:forEachInArray>
<es:isNull>
<es:monitorSession>
<es:notNull>
<es:preparedStatement>
<es:simpleReport>
<es:transposeArray>
<es:uriContent>

n Utility Tags: WebLogic Utilities
<wl:process>
<wl:repeat>

The Advisor

By matching content to information contained in the user profile, the Advisor ties
together all the other services and components in the system to deliver personalized
content.

To import the Advisor JSP tags, use the following code:
<%@ taglib uri="pz.tld" prefix="pz" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or optional
(no). In the R/C column, C means that the attribute is a Compile time expression, and
R means that the attribute can be either a Request time expression or a Compile time
expression.

9 JSP Tag Library Reference

9-4 BEA WebLogic Personalization Server Developer’s Guide

<pz:contentQuery>

The <pz:contentQuery> tag (Table 9-1) performs a content attribute search for
content in a content manager. If the useCache attribute is set to true, the results of a
content management query will be cached. The tag only has a begin tag and does not
have a body or end tag. It returns an array of Content objects as determined by the
Advisor.

Personalization content tags required for JSP developers to access the Content object
returned might include:

n An object array iterator tag. This tag provides a way to iterate over the Content
objects in the array. Use the <es:forEachInArray> tag to iterate over an array
of Objects. (See “<es:forEachInArray>” on page 9-71 for more information.)

n Content access tags. Content tags access metadata attributes in the content,
retrieve content, and put it into the HTTP response output stream. (See “Content
Management” on page 9-12 for more information.)

Table 9-1 <pz:contentQuery>

Tag Attribute Req’d Type Description R/C

max No String, long Limits the maximum number of content
items returned. If not present, it returns all
of the content items found.

R

sortBy No String A list of document attributes by which to
sort the content. The syntax follows the
SQL order by clause. The sort
specification is limited to a list of the
metadata attribute names and the
keywords ASC and DESC.

Examples:

sortBy=“creationDate”

sortBy=“creationDate ASC, title DESC”

R

query Yes String A content query string used to search for
content.

Example: query="mimetype contains 'text'
&& author=’Proulx’”

R

The Advisor

BEA WebLogic Personalization Server Developer’s Guide 9-5

contentHome Yes String The JNDI name of the ContentManager
EJB Home to use to find content. The
object in JNDI at this name must
implement a create method which
returns an object which implements the
ContentManager interface. If not
specified, the system searches the default
content home.

R

id Yes String The array variable name that contains the
content objects found. If it finds no objects,
it returns an empty array (not null) of
Content objects.

C

useCache No String, Boolean Determines whether Content is cached.

This attribute can have one of two values:

False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.

True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key. If not specified, the id attribute of
the tag is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.

Use -1 for no-timeout (always use the
cached Content). Default = -1.

R

Table 9-1 <pz:contentQuery> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-6 BEA WebLogic Personalization Server Developer’s Guide

Example:

<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="cm.tld" prefix="cm" %>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ page input="com.beasys.commerce.content.ContentHelper" %>
.
.
.
<pz:contentQuery id="docs"
contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>"
query="author = ’Hemingway’" />

 <es:forEachInArray array="<%=docs%>" id="aDoc"
 type="com.beasys.commerce.axiom.content.Content">
 The document title is: <cm:printProperty id="aDoc"
 name="Title" encode="html" />
 </es:forEachInArray>

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.

Possible values:

n application

n session (the default)

n page

n request

R

Table 9-1 <pz:contentQuery> (Continued)

Tag Attribute Req’d Type Description R/C

The Advisor

BEA WebLogic Personalization Server Developer’s Guide 9-7

<pz:contentSelector>

The <pz:contentSelector> tag allows arbitrary personalized content to be
recommended based on a content selector rule. These rules are created and defined
using the WebLogic Personalization Server rules editor. A content selector rule first
determines whether a user fits the specified classification (for example, high income),
and then selects content based on another qualifier (such as productType = diamond
jewelry.)

To cache the results of the content selector rule, set the useCache attribute to true. If
the cache has not timed out, subsequent calls to the contentSelector tag will return
the cached results without re-executing the rule.

The ruleSet URI protocol is as follows:

protocol://RuleSetDefinition-home-JNDI-name/RuleSet-name

n Where protocol is JDBC,

n RuleSetDefinition-home-JNDI-name is
com.beasys.commerce.axiom.reasoning.rules.RuleSheetDefinitionHome

which is the EJB home name of the RuleSet definition home, and

n ruleset-name is the unique identifier for the rule set, that is, the name given in
the rules editor.

Example:

jdbc://com.beasys.commerce.axiom.reasoning.rules.RuleSheetDefinit
ionHome/AcmeRules

The <pz:contentSelector> tag (Table 9-2) only has a begin tag and does not have
a body or end tag. It returns an array of Content objects as determined by the Advisor.

Tags possibly required for JSP developers to access the Content objects returned
might include:

n An object array iterator tag. This tag provides a way to iterate over the Content
objects in the array. Use the <es:forEachInArray> tag to iterate over an array
of Objects.

n Content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See “Content
Management” on page 9-12 for more information.)

9 JSP Tag Library Reference

9-8 BEA WebLogic Personalization Server Developer’s Guide

Table 9-2 <pz:contentSelector>

Tag Attribute Req’d Type Description R/C

ruleSet Yes String The URI for the rule set that contains the
ContentSelector rule.

R

rule Yes String The rule is the name of the classifier rule in
the ruleSet that the rules advislet uses to
classify the user.

R

max No String, long Limits the maximum number of content
items returned. If not present, or if equal to
-1L, it returns all of the content items
found.

R

sortBy No String A list of document attributes by which to
sort the content. The syntax follows the
SQL order by clause. The sort
specification is limited to a list of the
metadata attribute names and the
keywords ASC and DESC.

Examples:

sortBy=“creationDate”

sortBy=“creationDate ASC, title DESC”

R

query No String A content query string used to search for
content.

Example: query="mimetype contains 'text'
&& author=’Proulx’”

R

contentHome

Yes String The JNDI name of the ContentManager
EJB Home to use to find content. The
object in JNDI at this name must
implement a create method which
returns an object which implements the
ContentManager interface. If not
specified, the system searches the default
content home.

R

The Advisor

BEA WebLogic Personalization Server Developer’s Guide 9-9

id Yes String The array variable name that contains the
content objects found. If it finds no objects,
it returns an empty array (not null) of
Content objects.

C

useCache No String, Boolean Determines whether Content is cached.

This attribute can have one of two values:

False (default value): ContentCache is not
used. If false (not specified), the cacheId,
cacheScope and cacheTimeout settings are
ignored.

True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key. If not specified, the id attribute of
the tag is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.

Use -1 for no-timeout (always use the
cached Content). Default = -1.

R

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.

Possible values:

n application

n session (the default)

n page

n request

R

Table 9-2 <pz:contentSelector> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-10 BEA WebLogic Personalization Server Developer’s Guide

Example:

<%@ taglib uri="es.tld" prefix="es" %>
<%@ taglib uri="cm.tld" prefix="cm" %>
<%@ taglib uri="pz.tld" prefix="pz" %>
<%@ page input="com.beasys.commerce.content.ContentHelper" %>
.
.
.
<pz:contentSelector id="docs" ruleSet="jdbc://com.beasys.
 commerce.axiom.reasoning.rules.
 RuleSheetDefinitionHome/AcmeRules"
 rule="PremierCustomerSpotlight"
 contentHome="<%=ContentHelper.DEF_DOCUMENT_MANAGER_HOME%>"

 <es:forEachInArray array="<%=docs%>" id="aDoc"
 type="com.beasys.commerce.axiom.content.Content">
 The document title is: <cm:printproperty id="aDoc"
 name="Title" encode="html" />
 </es:forEachInArray>

Note: The sortBy attribute, when used in conjunction with the max attribute, works
differently for explicit (system-defined) and implicit (user-defined) attributes.
If you sort on explicit attributes (identifier, mimeType, size,
version, author, creationDate, modifiedBy, modifiedDate,

lockedBy, description, or comments) the sort is done on the database;
therefore if you combine max="10" and sortBy, the system will perform the
sort and then get the first 10 items. If you sort on implicit attributes, the sort is
done after the max have been selected.

<pz:div>

The <pz:div> tag (Table 9-3) allows a user-provided piece of content to be turned on
or off as a result of a classifier rule being executed by a rules advislet. If the result is
true, the content is turned on; if false it is turned off. This tag has a begin tag, a body,
and an end tag. If it evaluates true, the tag returns the Classification object
determined by the rules engine.

The Advisor

BEA WebLogic Personalization Server Developer’s Guide 9-11

Example:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div ruleSet="jdbc://com.beasys.commerce.axiom.reasoning.rules.
RuleSheetDefinitionHome/AcmeRules" rule="PremierCustomer">
 <p>Please check out our new Premier Customer bonus program.<p>
</pz:div>

Table 9-3 <pz:div>

Tag Attribute Req’d Type Description R/C

ruleSet Yes String The URI for the rule set that contains the
Classifier rule.

R

rule Yes String The rule is the name of the classifier rule in
the ruleSet that the rules advislet uses to
classify the user.

R

id No String The variable name that will be placed in
the classification object.

C

9 JSP Tag Library Reference

9-12 BEA WebLogic Personalization Server Developer’s Guide

Content Management

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. The
cm:select and cm:selectbyid tags support content caching for content searches.
Note that none of the tags support or use a body.

To import the Content Management JSP tags, use the following code:
<%@ taglib uri="cm.tld" prefix="cm" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<cm:printDoc>

The <cm:printDoc> tag (Table 9-4) inlines the raw bytes of a Document object into
the JSP output stream. This tag does not support a body and only supports Document
objects. It does not differentiate between text and binary data.

Table 9-4 <cm:printDoc>

Tag Attribute Req’d Type Description R/C

id No String The JSP script variable name which
contains the Content instance from which
to get the properties.

R

blockSize No String, int The size of the blocks of data to read. The
default is 8K. Use 0 or less to read the
entire block of bytes in one operation.

R

start No String, int Specifies the index in the bytes where to
start reading. Defaults to 0.

R

Content Management

BEA WebLogic Personalization Server Developer’s Guide 9-13

end No String, int Specifies the index in the bytes where to
stop reading. The default is to read to the
end of the bytes.

R

encode No String Either html, url, or none:

n If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

n If url, then it is encoded to
x-www-form-urlencoded format via
the java.net.URLEncoder.

n If none or unspecified, no encoding is
performed.

R

document No Document Specifies the
com.beasys.commerce.axiom.document.D
ocument to use. If this is specified and
non-null, id will be ignored. Otherwise,
id will be used.

R

failOnError No String, Boolean This attribute can have one of two values:

False (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

True: Throws an exception. You can
handle the exception in the code, let the
page proceed to the normal error page, or
let the application server handle it less
gracefully.

R

Table 9-4 <cm:printDoc> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-14 BEA WebLogic Personalization Server Developer’s Guide

Example:

To get a Document object from an id in the request attributes and inline the
Document’s text:

<cm:selectById contentHome=”<%=contentHome%>”
contentId=”<%=contentId%>” id=”doc”/>
<cm:printDoc id=”doc” blockSize=”1000” />

<cm:printProperty>

The <cm:printProperty> tag (Table 9-5) inlines the value of the specified content
metadata property as a string. It does not have a body. This tag operates on any
ConfigurableEntity, not just the Content object. However, it does not support
ConfigurableEntity successors.

Table 9-5 <cm:printProperty>

Tag Attribute Req’d Type Description R/C

id No String The JSP script variable name which
contains the Content instance from which
to get the properties.

R

name Yes String The name of the property to print. R

entity

No

ConfigurableEntity Specifies the
com.beasys.commerce.foundation.
ConfigurableEntity object from which to
get the property. If this is specified and
non-null, id is ignored. Otherwise, id will
be used.

R

scope No String The scope name for the property to get. If
not specified, null is passed in, which is
what Document objects expect.

R

Content Management

BEA WebLogic Personalization Server Developer’s Guide 9-15

encode No String Either html, url, or none:

n If html, then the value will be html
encoded so that it appears in HTML as
expected (& becomes &, <
becomes <, > becomes >, and ”
becomes ").

n If url, then it is encoded to
x-www-form-urlencoded format via
the java.net.URLEncoder.

n If none or unspecified, no encoding is
performed.

R

default No String The value to print if the property is not
found or has a null value. If this is not
specified and the property value is null,
nothing is printed.

R

maxLength No String, int The maximum length of the property’s
value to print. If specified, values longer
than this will be truncated.

R

failOnError No String, Boolean This attribute can have one of two values:

False (default value): Handles JSP
processing errors gracefully and prints
nothing if an error occurs.

True: Throws an exception. You can
handle the exception in the code, let the
page proceed to the normal error page, or
let the application server handle it less
gracefully.

R

dateFormat No String The java.text.SimpleDateFormat string to
use to print the property, if it is a
java.util.Date. If the property is not a Date,
this is ignored. If this is not set, the Date's
default toString method is used.

R

Table 9-5 <cm:printProperty> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-16 BEA WebLogic Personalization Server Developer’s Guide

Example:

To have a text input field’s default value be the first 75 characters of the subject of a
Content object stored at doc:

<form action=”javascript:void(0)”>
 Subject: <input type=”text” size=”75” name=”subject”
 value=”<cm:printProperty id=”doc” name=”Subject” maxLength=”75”
 encode=”html”/>” >
</form>

<cm:select>

This tag uses only the search expression query syntax to select content. It does not
support or use a body. After this tag has returned the <es:forEachInArray> tag (see
“<es:forEachInArray>” on page 9-71), zero can be used to iterate over the array of
Content objects. This tag (Table 9-6) supports generic Content via a
ContentManager interface.

numFormat No String The java.text.DecimalFormat string to use
to print the property, if it is a
java.lang.Number. If the property is not a
Number, this is ignored. If this is not set,
the Number’s default toString method
is used.

R

Table 9-5 <cm:printProperty> (Continued)

Tag Attribute Req’d Type Description R/C

Content Management

BEA WebLogic Personalization Server Developer’s Guide 9-17

Table 9-6 <cm:select>

Tag Attribute Req’d Type Description R/C

contentHome No String The JNDI name of the ContentManager
EJB Home to use to find content. The
object in JNDI at this name must
implement a create method which
returns an object which implements the
ContentManager interface. If not
specified, the system searches the default
content home.

R

max No String, long Limits the maximum number of content
items returned. If not present, or zero or
less, it returns all of the content items
found.

R

sortBy No String A list of document attributes by which to
sort the content. The syntax follows the
SQL order by clause. The sort
specification is limited to a list of the
metadata attribute names and the
keywords ASC and DESC.

Examples:

sortBy=“creationDate”

sortBy=“creationDate ASC, title DESC”

R

failOnError No String, Boolean This attribute can have one of two values:

False (default value): Handles JSP
processing errors gracefully and returns an
empty array if an error occurs.

True: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed
to the normal error page, or let the
application server handle it less gracefully.

R

id Yes String The JSP script variable name that will
contain the array of Content objects after
this tag finishes.

C

9 JSP Tag Library Reference

9-18 BEA WebLogic Personalization Server Developer’s Guide

query No String A content query string used to search for
content.

Example: query="mimetype contains ’text’
&& author=’Proulx’"

R

expr No Expression The
com.beasys.commerce.foundation.express
ion.Expression object to use to search for
content.�If this is null or not specified, then
query must be specified. Otherwise,
query is ignored.

R

useCache No String, Boolean Determines whether Content is cached.

This attribute can have one of two values:

False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.

True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key. If not specified, the id attribute of
the tag is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.

Use -1 for no-timeout (always use the
cached Content). Default = -1.

R

Table 9-6 <cm:select> (Continued)

Tag Attribute Req’d Type Description R/C

Content Management

BEA WebLogic Personalization Server Developer’s Guide 9-19

Example:

To find the first five text Content objects that are marked as news items for the
evening using the ContentCache, and print out the titles in a list:

<cm:select
contentHome="<%=ContentHelper.DEF_CONTENT_MANAGER_HOME%>" max="5"
useCache="true" cacheTimeout="300000" cacheId="Evening News"
sortBy="creationDate ASC, title ASC" query="
 type = ‘News’ && timeOfDay = ‘Evening’ && mimetype like
 ‘text/*’ " id="newsList"/>

 <es:forEachInArray array="<%=newsList%>" id="newsItem"
 type="com.beasys.commerce.axiom.content.Content">
 <cm:printProperty id="newsItem" name="Title"
 encode="html" />

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.

Possible values:

n application

n session (the default)

n page

n request

R

readOnly No String, Boolean This attribute can have one of two values:

If true, the ContentManager (specified via
the ContentHome attribute) will try to
return only lightweight (non-EJB) objects
where possible.

If false (not specified), the default value is
used.

Default=
ContentHelper.DEF_CONTENT_REA
DONLY (which is loaded from the
commerce.content.defaultReadO
nly property in the
weblogiccommerce.properties file).

R

Table 9-6 <cm:select> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-20 BEA WebLogic Personalization Server Developer’s Guide

 </es:forEachInArray>

<cm:selectById>

The <cm:selectById> tag (Table 9-7) retrieves content using the Content’s unique
identifier. This tag does not have a body. This tag is basically a wrapper around the
select tag. It works against any Content object which has a string-capable primary
key.

Table 9-7 <cm:selectById>

Tag Attribute Req’d Type Description R/C

contentHome No String The JNDI name of the ContentManager
EJB Home to use to find content. The
object in JNDI at this name must
implement a create method which
returns an object that implements the
ContentManager interface. If not
specified, the system searches the default
content home.

R

contentId Yes String The string identifier of the piece of
content.

R

failOnError No String, Boolean This attribute can have one of two values:

False (default value): Handles JSP
processing errors gracefully and returns
null if an error occurs.

True: Throws an exception that causes the
JSP page to stop. You can handle the
exception in the code, let the page proceed
to the normal error page, or let the
application server handle it less gracefully.

R

id Yes String The JSP script variable name that contains
the Content object after this tag finishes. If
the Content object with the specified
identifier does not exist, it contains null.

C

Content Management

BEA WebLogic Personalization Server Developer’s Guide 9-21

useCache No String, Boolean Determines whether Content is cached.

This attribute can have one of two values:

False (default value): ContentCache is not
used. If false (not specified), the
cacheId, cacheScope and
cacheTimeout settings are ignored.

True: ContentCache is used.

R

cacheId No String The identifier name used to cache the
Content. Internally, the cache is
implemented as a Map; this will become
the key.

If not specified, the id attribute of the tag
is used.

R

cacheTimeout No String, long The time, in milliseconds, for which the
cached Content is valid. If more than this
amount of time has passed since the
Content was cached, the cached Content
will be cleared, retrieved, and placed back
into the cache.

Use -1 for no-timeout (always use the
cached Content). Default = -1.

R

cacheScope No String Specifies the lifecycle scope of the content
cache. Similar to <jsp:useBean>.

Possible values:

n application

n session (the default)

n page

n request

R

Table 9-7 <cm:selectById> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-22 BEA WebLogic Personalization Server Developer’s Guide

Example:

To fetch the Document (using ContentCaching) with an identifier of 1234 and inline
its content:

<cm:selectById
contentHome="<%=ContentHelper.DEF_CONTENT_MANAGER_HOME%>" id="doc"
useCache="true" cacheTimeout="300000" cacheId="1234" />
<cm:printDoc id="doc" />

readOnly No String, Boolean This attribute can have one of two values:

If true, the ContentManager (specified via
the ContentHome attribute) will try to
return only lightweight (non-EJB) objects
where possible.

If false (not specified), the default value is
used.

Default=
ContentHelper.DEF_CONTENT_REA

DONLY (which is loaded from the
commerce.content.defaultReadO
nly property in the
weblogiccommerce.properties file).

R

Table 9-7 <cm:selectById> (Continued)

Tag Attribute Req’d Type Description R/C

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 9-23

Flow Manager

Thr Flow Manager tags are used for accessing the session, session cache, or the global
cache. For scalability reasons, it is best to limit what gets placed into the session. For
large sessions, session replication across servers is very costly. This tag library will
give the user the ability to write to data that can be scoped to the application or across
applications.

<fm:getApplicationURI>

The <fm:getApplicationURI> tag (Table 9-8) gets the application
 from the url: http://localhost:7001/portals/application/exampleportal

When includeContext="true", the tag returns /context/path/pathinfo, for
example: /portals/application/exampleportal. This is required when a client
browser needs to address the webapp context, for example, when using a form.

When includeContext="false", the tag returns /path/pathinfo, for example
/application/exampleportal. This is required when using webapps and server
side processing.

Table 9-8 <fm:getApplicationURI>

Tag Attribute Req’d Type Description R/C

id Yes String The application as referenced by the Flow
Manager. It can either get the value with
the context or without. When used within
a WebApp, you must get the value without
the context when using <jsp:forward>.

C

includeContext No boolean Determines whether or not to include the
servlet context with the application name.
 Defaults to true.

R

9 JSP Tag Library Reference

9-24 BEA WebLogic Personalization Server Developer’s Guide

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>

<wl:process name="formSubmit">
<fm:getApplicationURI id="uri" includeContext="false"/>

 <jsp:forward page="<%=uri%>"/>
</wl:process>

<fm:getCachedAttribute>

The <fm:getCachedAttribute> tag (Table 9-9) gets an attribute out of the
session/global cache. This value can be scoped to the application or not.

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

 <%Portal portal = null;%>
 <fm:getCachedAttribute id="tportal"
 name="<%=PortalTagConstants.CACHED_PORTAL%>"
 global="true" />
 <es:isNull item="<%=tportal%>" >
 <esp:portalManager action="get" id="myPortal"
 portalName="<%=portalName%>"/>
 <%tportal=myPortal;%>

Table 9-9 <fm:getCachedAttribute>

Tag Attribute Req’d Type Description R/C

id Yes Object The variable to store the retrieved value. C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

global No boolean The value scoped to the session or the
global scope.

Defaults to false.

R

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 9-25

 <fm:setCachedAttribute
 name="<%=PortalTagConstants.CACHED_PORTAL%>"
value="<%=myPortal%>" global="true" />
 </es:isNull>
 <%portal=(Portal)tportal;%>

<fm:getSessionAttribute>

The <fm:getSessionAttribute> tag (Table 9-10) gets an attribute out of the
HttpSession. The attribute may be scoped to the application (by default).

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

<fm:getSessionAttribute id="username" name="portal.username"
 scoped="true" />

The name is: <%=username%>

<fm:removeCachedAttribute>

The <fm:removeCachedAttribute> tag (Table 9-11) removes an attribute from the
session/global cache. This value can be scoped to the application or not.

Table 9-10 <fm:getSessionAttribute>

Tag Attribute Req’d Type Description R/C

id Yes Object The variable to store the retrieved value. C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

9 JSP Tag Library Reference

9-26 BEA WebLogic Personalization Server Developer’s Guide

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

<fm:removeCachedAttribute
 name="<%=PortalTagConstants.CACHED_PORTAL%>" global="true" />

<fm:removeSessionAttribute>

The <fm:removeSessionAttribute> tag (Table 9-12) removes an attribute from the
HttpSession. The attribute may be scoped to the application (by default).

Table 9-11 <fm:removeCachedAttribute>

Tag Attribute Req’d Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

global No boolean The value scoped to the session or the
global scope.

Defaults to false.

R

Table 9-12 <fm:removeSessionAttribute>

Tag Attribute Req’d Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

Flow Manager

BEA WebLogic Personalization Server Developer’s Guide 9-27

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

<fm:removeSessionAttribute name="portal.username" scoped="true" />

<fm:setCachedAttribute>

The <fm:setCachedAttribute> tag (Table 9-13) sets an attribute in the
session/global cache. This value can be scoped to the application or not.

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

 <%Portal portal = null;%>
 <fm:getCachedAttribute id="tportal"
 name="<%=PortalTagConstants.CACHED_PORTAL%>"
global="true" />
 <es:isNull item="<%=tportal%>" >
 <esp:portalManager action="get" id="myPortal"
 portalName="<%=portalName%>"/>
 <%tportal=myPortal;%>
 <fm:setCachedAttribute
 name="<%=PortalTagConstants.CACHED_PORTAL%>"
value="<%=myPortal%>" global="true" />

Table 9-13 <fm:setCachedAttribute>

Tag Attribute Req’d Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

global No boolean The value scoped to the session or the
global scope.

Defaults to false.

R

value Yes Object The value to set. R

9 JSP Tag Library Reference

9-28 BEA WebLogic Personalization Server Developer’s Guide

 </es:isNull>
 <%portal=(Portal)tportal;%>

<fm:setSessionAttribute>

The <fm:setSessionAttribute> tag (Table 9-14) sets an attribute in the
HttpSession. The attribute may be scoped to the application (by default).

Example:

<%@ taglib uri="fm.tld" prefix="fm" %>

<fm:setSessionAttribute name="portal.username"
 value="joe developer" scoped="true" />

Table 9-14 <fm:setSessionAttribute>

Tag Attribute Req’d Type Description R/C

name Yes String The name of the name/value pair. R

scoped No boolean The name/value pair scoped to the
application.

Defaults to true.

R

value Yes Object The value to set. R

Internationalization

BEA WebLogic Personalization Server Developer’s Guide 9-29

Internationalization

These tags are used in the localization of JSP pages that have an internationalization
requirement.

Use the following code to import the utility tag library:
<%@ taglib uri="i18n.tld" prefix="i18n" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<i18n:localize>

This tag allows you to define the language, country, variant, and base bundle name to
be used throughout a page when accessing resource bundles via the
<i18n:getmessage> tag.

This tag (Table 9-15) also specifies a character encoding and content type to be
specified for a JSP page. Because of this, the tag should be used as early in the page as
possible—before anything is written to the output stream—so that the bytes are
properly encoded.

Note: When an HTML page is included in a larger page, only the larger page can use
the <i18n:localize> tag. This is because the <i18n:localize> tag sets the
encoding for the page, and the encoding must be set in the parent (including)
page before any bytes are written to the response’s output stream. The parent
page must set an encoding that is sufficient for all the content on that page as
well as any included pages.

Note: Do not use the <i18n:localize> tag in conjunction with the <%@ page
contentType="<something>" > page directive defined in the JSP
specification. The directive is unnecessary if you are using this tag, and can
result in inconsistent or wrong contentType declarations.

9 JSP Tag Library Reference

9-30 BEA WebLogic Personalization Server Developer’s Guide

Table 9-15 <i18n:localize>

Tag Attribute Req’d Type Description R/C

bundleName No String The base name of the MessageBundle is to
use to retrieve localized text for a JSP
page.

R

language No String
or
String []

A String - two character ISO Language
Code - denoting the user’s preferred
language, or a String[] containing a list of
preferred language codes for a user, with
stronger preferences indexed lower
(earlier) in the array.

R

country No String The two character ISO Country Code for a
country. For example, this code would be
used to look for a MessageBundle
containing text localized to English
speaking users in the U.S. as opposed to
English speaking users in the U.K.

R

variant No String A String representing a locale’s variant.
The variant is used when localization
demands a more specific locale than can be
denoted by having just language and a
country.

R

locale No java.util.Locale Instead of specifying language, country,
and variant as Strings, a
java.util.Locale object can be
provided. If provided, the values in the
Locale’s language, country, and variant
fields will negate any of the other
language, country, and variant values
passed to the tag as Strings.

R

charset No String The name of the character encoding set to
use for this page – defaults to "UTF-8" if
no encoding can be determined for the
chosen language, otherwise an encoding
approprite for the chosen language is used.

R

Internationalization

BEA WebLogic Personalization Server Developer’s Guide 9-31

Example:

<%@ taglib uri="i18n.tld" prefix="i18n" %>

<%

// Array that defines two languages preferences - English and

// Spanish in that order of preference.

String[] languages = new String[] { "en", "es" };

// Definition of a single language preference
String language = "en";
%>

<i18n:localize language="<%=language%>"
bundleName="i18nExampleResourceBundle"/>
<html>
<body>
<i18n:getMessage messageName="greeting"/>
</body>
</html>

<i18n:getMessage>

This tag (Table 9-16) is used in conjunction with the <i18:localize> tag to retrieve
localized static text or messages from a JspMessageBundle.

contentType No String The type of content contained in the page,
defaults to "text/html".

R

Table 9-15 <i18n:localize> (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-16 <i18n:getMessage>

Tag Attribute Req’d Type Description R/C

id No String Holds the value of the label (or message) in
the JSP page.

C

messageName Yes String The key for the message bundle. R

9 JSP Tag Library Reference

9-32 BEA WebLogic Personalization Server Developer’s Guide

messageArgs No Object [] The arguments to the message bundle. If
no args are provided, it is assumed that
static text (not a message) is to be returned.

For example, {"Wednesday", "78"}; might
be used to construct the message "Today is
Wednesday, and the temperature is 78
degrees Fahrenheit."

R

bundleName No String If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute unless it is desired
to use a different bundle for a particular tag
invocation

R

language No String If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different language for a particular
tag invocation.

R

country No String If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different country for a particular
tag invocation.

R

variant No String If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different variant for a particular tag
invocation.

R

locale No java.util.Locale If properly initialized in the
<i18n:localize> tag, there is no need
to pass this tag attribute, unless it is desired
to use a different locale (language,
country, and variant) for a particular tag
invocation.

R

Table 9-16 <i18n:getMessage> (Continued)

Tag Attribute Req’d Type Description R/C

Internationalization

BEA WebLogic Personalization Server Developer’s Guide 9-33

Example:

<%@ taglib uri="i18n.tld" prefix="i18n" %>

<%
// Definition of a single language preference
String language = "en";

// Creation of message arguments
Object[] args = new Object[]
{
new Integer(14),
new Integer(100)
};
%>

<i18n:localize language="<%=language%>"
bundleName="i18nExampleResourceBundle"/>
<html>
<body>
<i18n:getMessage messageName="greeting"/>
<i18n:getMessage messageName="message" messageArgs="<%=args%>"/>
</body>
</html>

This code would produce this output:

Welcome To This Page! 14 out of 100 files have been saved.

9 JSP Tag Library Reference

9-34 BEA WebLogic Personalization Server Developer’s Guide

Portal Management

The Portal Management component includes JSP tags for access to the fundamental
data comprising a portal, such as portal and portlet properties.

To import the Portal Management JSP tags, use the following code:
<%@ taglib uri="esp.tld" prefix="esp" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<esp:eval>

The <esp:eval> tag (Table 9-17) is used to evaluate a conditional attribute of a
portlet, for example, isMinimizeable. The tag expects a
com.beasys.portal.Portlet to be accessible in the session with the key
PortalTagConstants.PORTLET. If the conditional attribute evaluates to true, the
body of the <esp:eval> tag is processed. Otherwise, it is not.

Table 9-17 <esp:eval>

Tag Attribute Req’d Type Description R/C

tag Yes String The name of the portlet attribute to
evaluate.

The following attributes can be retrieved:

n isEditable

n isVisible

n hasHelp

n isMandatory

n isMoveable

n isMinimizeable

n isMaximizeable

n isFloatable

n isMinimized

R

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 9-35

Example:

<esp:eval tag="isMinimizable">
 <% titleBar.include(minimizeButton); %>
</esp:eval>

<esp:get>

The <esp:get> tag (Table 9-18) retrieves a String attribute of a portlet. This tag
expects a com.beasys.portal.Portlet to be accessible in the session with the key
PortalTagConstants.PORTLET.

Example:

<tr>
 <td>
 <esp:get tag="title"/>

target No Portlet The com.beasys.portal.Portlet to be
evaluated.

R

Table 9-17 <esp:eval> (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-18 <esp:get>

Tag Attribute Req’d Type Description R/C

tag Yes String The name of the portlet attribute to retrieve.

The following attributes can be retrieved:

n editURL

n maximizedURL

n headerURL

n footerURL

n contentURL

n title

R

target No Portlet The com.beasys.portal.Portlet to be evaluated. R

9 JSP Tag Library Reference

9-36 BEA WebLogic Personalization Server Developer’s Guide

 </td>
</tr>

<esp:getGroupsForPortal>

The <esp:getGroupsForPortal> tag (Table 9-19) retrieves the names of the groups
associated with a Portal. The results are put into the variable declared in the id attribute
of the tag, which is a String array.

Example:

<esp:getGroupsForPortal id ="groups" portalName="<%=portalName%>">
for (i=0;i<groups.length;i++)
{

String groupName = groups[i];
}
</esp:getGroupsForPortal>

<esp:monitorSession>

The <esp:monitorSession> tag (Table 9-20) can be added to the beginning of any
JSP page to disallow access to the page if the session is not valid or if the user is not
logged in.

Table 9-19 <esp:getGroupsForPortal>

Tag Attribute Req’d Type Description R/C

id Yes String A resulting string array containing the
names of the groups associated with the
given Portal.

R

portalName Yes String The name of the Portal to be checked for
associated groups.

R

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 9-37

Example:

<esp:monitorSession loginRequired="true" />

<esp:portalManager>

The <esp:portalManager> tag (Table 9-21) is used to perform create, get,
getColumnInfo, update, and remove actions on com.beasys.portal.Portal
objects. This tag is an empty tag.

Table 9-20 <esp:monitorSession>

Tag Attribute Req’d Type Description R/C

goToPage No String The error page that you want displayed if
the page is not accessible.

The default value is portalerror.jsp.

R

loginRequired No String Indicates whether the user is required to be
logged in to access the JSP page including
the tag.

The default value is false.

R

Table 9-21 <esp:portalManager>

Tag Attribute Req’d Type Description R/C

id When action
equals get or
getColumnInfo

String The name to which resultant
information is assigned for subsequent
use in the JSP page.

R

9 JSP Tag Library Reference

9-38 BEA WebLogic Personalization Server Developer’s Guide

Example:

<esp:portalManager id="portal" action="get"
portalName="BEAPortal"/>

<esp:portletManager>

The <esp:portletManager> tag (Table 9-22) is used to perform create, get,
getArranged, update, and remove actions on com.beasys.portal.Portlet objects.
This tag is an empty tag.

action No String The action to perform. Allowed values
include:

create: Creates a new portal.

get: (default value) Retrieves an object
of type com.beasys.portal.Portal.

getColumnInfo: Retrieves a
com.beasys.portal.PortalColumnInform
ation[]

update: Updates the provided target
com.beasys.portal.Portal.

remove: Removes the provided target
com.beasys.portal.Portal.

R

portalName

No String The name of the portal to retrieve, or
whose column information is to be
retrieved. The default value is
session.getValue(com.beasys
.commerce.portal.admin.Port
alAdminHelper.qualifiedName
(PortalTagConstants.PORTAL_
NAME, request))

R

target When action
equals create,
update, or
remove

Portal The com.beasys.portal.Portal to be
created, updated, or removed.

R

Table 9-21 <esp:portalManager> (Continued)

Tag Attribute Req’d Type Description R/C

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 9-39

Table 9-22 <esp:portletManager>

Tag Attribute Req’d Type Description R/C

id When action
 equals get or
getArranged

String The name to which resultant information is
assigned for subsequent use in the JSP
page.

R

action No String The action to perform. Allowed values
include:

create: Creates a new portlet.

get: Retrieves an object of type
com.beasys.portal.Portlet.

getArranged: Retrieves a
com.beasys.portal.Portlet[][] that
prescribes the row-column layout of
portlets for the provided portal-user-group
combination.

update (default value): Updates the
provided target com.beasys.portal.Portlet.

remove: Removes the provided target
com.beasys.portal.Portlet.

R

portalName No String The name of the portal corresponding to
the target portlet or to the portlet(s) to be
retrieved. The default value is
session.getValue(com.beasys.c
ommerce.portal.admin.PortalAd
minHelper.qualifiedName(Porta
lTagConstants.PORTAL_NAME,
request)).

R

portletName No String The name of the portlet corresponding to
the target portlet or to the portlet(s) to be
retrieved.

There is no default value.

R

9 JSP Tag Library Reference

9-40 BEA WebLogic Personalization Server Developer’s Guide

groupId No Long The name of the group corresponding to
the target portlet or to the portlet(s) to be

retrieved. The default value is
com.beasys.commerce.axiom.jsp
.JspHelper.getSessionValue(co
m.beasys.commerce.user.tags.U
serManagerTagConstants.PROFIL

E_SUCCESSOR_UID, request)

R

userId No Long The name of the user corresponding to the
target portlet or to the portlet(s) to be
retrieved. The default value is
com.beasys.commerce.axiom.jsp
.JspHelper.getSessionValue(co
m.beasys.commerce.user.tags.U
serManagerTagConstants.PROFIL
E_USER_UID, request)

R

target When action
equals
create,
update, or
remove

Portlet The com.beasys.portal.Portlet to be
created, updated, or removed.

R

scope No String The scope to be applied to the provided
action. Allowed values include:

global (default value): Specifies that
portlet creation, removal, retrieval, or
update should apply across all portals,
groups, and users.

portal: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal.

group: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal-group combination.

user: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal-group-user combination.

R

Table 9-22 <esp:portletManager> (Continued)

Tag Attribute Req’d Type Description R/C

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 9-41

Example:

<esp:portletManager id="arrangedPortlets" action="getArranged"
userId="myUser" portalName="myPortal"/>

<esp:props>

The <esp:props> tag (Table 9-23) is used to get a property from the Portal Properties
bean. The Portal Properties bean’s deployment descriptor contains default values used
by the Portal Administration tool.

Example:
<esp:props id="headerURL" propertyName="default.portal.headerURL"
/>

Table 9-23 <esp:props>

Tag Attribute Req’d Type Description R/C

id Yes String A java.lang.String variable name for the
property value.

R

propertyName Yes String The name of the property to get in the
Portal Property Bean.

R

9 JSP Tag Library Reference

9-42 BEA WebLogic Personalization Server Developer’s Guide

Property Sets

The Property Set tags allow access to the list of available properties and property sets.
Manipulation of property sets can be done either programatically or through the
administration tools.

Use the following code to import the utility tag library:
<%@ taglib uri="ps.tld" prefix="ps" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<ps:getPropertyNames>

The <ps:getPropertyNames> tag (Table 9-24) is used to get a list of property names
given a property set.

Table 9-24 <ps:getPropertyNames>

Tag Attribute Req’d Type Description R/C

propertySet Yes String The name of the property set to add the new
search.

R

schemaGroupName Yes String Type of property set to search (as defined in
com.beasys.commerce.foundation.property.
SchemaManagerConstants).

R

id Yes String The id of the variable to hold the list of
property names, as a String array.

C

Property Sets

BEA WebLogic Personalization Server Developer’s Guide 9-43

Example:

<ps:getPropertyNames propertySet="<%myPropertySet%>"
 schemaGroupName="<%SchemaManagerConstants.USER_TYPE%>"
 id="propertyNames" result="myResult"/>

<ps:getPropertySetNames>

The <ps:getPropertySetNames> tag (Table 9-25) is used to get a list of property sets
given a property set type.

result Yes String The identifier of an Integer variable that will
be created and initialized with the result of
the operation.

Possible values:

Query is successful:
PropertySetTagConstants.PROPERT
Y_SEARCH_OK

Problem getting the list of property names:
PropertySetTagConstants.PROPERT
Y_SEARCH_FAILED

Property set named by propertySetName
and schemaGroupName could not be
found:
PropertySetTagConstants.INVALID
_PROPERTY_SET

C

Table 9-24 <ps:getPropertyNames> (Continued) (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-25 <ps:getPropertySetNames>

Tag Attribute Req’d Type Description R/C

schemaGroupName Yes String The type of the property set to search (as
defined in
com.beasys.commerce.foundation.property.
SchemaManagerConstants).

R

9 JSP Tag Library Reference

9-44 BEA WebLogic Personalization Server Developer’s Guide

id Yes String The identifier of the variable to hold the list
of property names, as a String array.

C

result Yes String The identifier of an Integer variable that will
be created and initialized with the result of
the operation.

Possible values:

Query is successful:
PropertySetTagConstants.PROPERT
Y_SET_SEARCH_OK

Problem getting the list of property names:
PropertySetTagConstants.PROPERT
Y_SET_SEARCH_FAILED

Property set named by propertySetName
and schemaGroupName could not be
found:
PropertySetTagConstants.INVALID
_PROPERTY_SET

C

Table 9-25 <ps:getPropertySetNames> (Continued) (Continued)

Tag Attribute Req’d Type Description R/C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-45

User Management

User Management tags allow access to user and group profile information, as well as
operations such as creating and deleting users and groups, and managing user-group
relationships.

To import the User Management JSP tags, use the following code:
<%@ taglib uri="um.tld" prefix="um" %>

Profile Management Tags

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<um:getProfile>

The <um:getProfile> tag (Table 9-26) retrieves the profile corresponding to the
provided profile key and profile type. The tag has no enclosed body. The retrieved
profile can be treated simply as a
com.beasys.commerce.foundation.ConfigurableEntity, or can be cast to the
particular implementation of ConfigurableEntity that it is. Along with the profile
key and profile, an explicit successor key and successor type can be specified, as
specified by the profileType attribute. This successor will then be used, along with
the retrieved profile, in subsequent invocations of the <um:getProperty> tag to
ensure property inheritance from the successor. If no successor is retrieved, standard
ConfigurableEntity successor search patterns will apply to retrieved properties.

Table 9-26 <um:getProfile>

Tag Attribute Req’d Type Description R/C

profileKey Yes String A unique identifier that can be used to
retrieve the profile which is sought.

Example: “<%=username%>”

R

9 JSP Tag Library Reference

9-46 BEA WebLogic Personalization Server Developer’s Guide

successorKey No String A unique identifier that can be used to
retrieve the profile successor.

Example: “<%=defaultGroup%>”

R

successorType No String The profile successor type to be retrieved. If
specified, this profile type must correspond to
a profile type registered via the Unified
Profile Type tool in the User Management
suite of administration tools, and its bean
must conform to the rules of Unified User
Profile creation.

By default, the tag retrieves a profile of type
com.beasys.commerce.axiom.conta
ct.Group, unless otherwise specified.

Example: “AcmeGroup”

C

scope No String The HTTP scope of the retreived profile. Pass
"request" or "session" as the values.

Defaults to session.

C

groupOnly No String Specifies to retrieve a
com.beasys.commerce.axiom.conta
ct.Group, rather than
com.beasys.commerce.axiom.conta
ct.User, for the default profile type. No
successor will be retrieved when this value is
true.

Defaults to false.

C

profileId No String A variable name from which the retrieved
profile is available for the duration of the
JSP’s page scope.

C

Table 9-26 <um:getProfile> (Continued)

Tag Attribute Req’d Type Description R/C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-47

Example 1:

This example shows a profile of type AcmeUser being retrieved with no successor
specified, and an explicitly-supplied session scope.

<um:getProfile profileKey="bob" profileType="AcmeUser"
profileId="myProfile" scope="session"/>

profileType No String Allows the jsp developer to specify what type
of User profile object to return. If the given
profileKey refers to a baseUser object, this
attribute should be left blank. Otherwise, if it
returns to an extended User object defined by
a Unified Profile Type, the name of the
Unified Profile Type should be supplied in
this field.

C

successorId No String A variable name from which the retrieved
successor is available for the duration of the
JSP’s page scope.

C

result No String A variable name from which the result of the
operation is available.

Possible values:

Success:
userManagerTagConstants.GET_PROFILE_
OK

Error encountered:
userManagerTagConstants.GET_PROFILE_
FAILED

userManagerTagConstants.NO_SUCH_PR
OFILE

userManagerTagConstants.NO_SUCH_SU
CCESSOR

C

Table 9-26 <um:getProfile> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-48 BEA WebLogic Personalization Server Developer’s Guide

Example 2:

This example shows a default profile type
(com.beasys.commerce.axiom.contact.User) being retrieved with a default
successor type (com.beasys.commerce.axiom.contact.Group), and an
explicitly-supplied request scope.

<um:getProfile profileKey="bob" successorKey="engineering"
scope="request"/>

Example 3:

This example shows a profile type of AcmeUser being retrieved with a successor type
of AcmeGroup, and an implicitly-supplied session scope.

<um:getProfile profileKey="bob" profileType="AcmeUser"
 successorKey="engineering" successorType="AcmeGroup"
 profileId="myProfile"/>

<um:getProperty>

The <um:getProperty> tag (Table 9-27) retrieves the property value for a specified
property set-property name pair. The tag has no enclosed body. The value returned is
an Object. In typical cases, this tag is used after the <um:getProfile> tag is invoked
to retrieve a profile for session use. The property to be retrieved is retrieved from the
session profile. If the <um:getProfile> tag has not been used upon invoking the
<um:getProperty> tag, the specified property value is retrieved from the
Anonymous User Profile. See the chapter Creating and Managing Users in the
WebLogic Personalization Server User’s Guide for more information.

Table 9-27 <um:getProperty>

Tag Attribute Req’d Type Description R/C

propertySet No String The Property Set from which the property’s
value is to be retrieved.

Example: “Demo Portal”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

R

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-49

Example 1:

<um:getProperty id="myTitlebarBGColor" propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>
My titlebar bg color is <%=myTitlebarBGColor%>.

Example 2:

My titlebar bg color is <um:getProperty propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>.

<um:getPropertyAsString>

The <um:getPropertyAsString> tag (Table 9-28) works exactly like the
<um:getProperty> tag above, but ensures that the retrieved property value is a
String. The following example shows a multivalued property which returns a
Collection, but presents a list of favorite colors.

propertyName Yes String The name of the property to be retrieved.

Example: “background_color”

R

id No String If the id attribute is supplied, the value of the
retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

C

Table 9-27 <um:getProperty> (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-28 <um:getPropertyAsString>

Tag Attribute Req’d Type Description R/C

propertySet No String The Property Set from which the property’s
value is to be retrieved.

Example: “Demo Portal”

Note: If no property set is provided, the
property is retrieved from the
profile’s default (unscoped)
properties.

R

9 JSP Tag Library Reference

9-50 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:getPropertyAsString id=”myFaveColors”
propertySet=”exampleportal” propertyName=”fave_colors”/>
My favorite colors are <%=myFaveColors%>.

<um:removeProperty>

The <um:removeProperty> tag (Table 9-29) removes the specified property from
the current session’s profile or from the Anonymous User Profile. The tag has no
enclosed body. Subsequent calls to <um:getProperty> for a removed property
would result in the default value for the property as prescribed by the property set, or
from the Profile’s successor.

propertyName Yes String The name of the property to be retrieved.

Example: “background_color”

R

id No String If the id attribute is supplied, the value of the
retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

C

Table 9-28 <um:getPropertyAsString> (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-29 <um:removeProperty>

Tag Attribute Req’d Type Description R/C

propertySet No String The Property Set from which the property’s
value is to be retrieved.

Example: "Demo Portal"

Note: The property is removed from the
profile’s default (unscoped)
properties if no property set is
provided.

R

propertyName Yes String The name of the property to be removed.

Example: "background_color"

R

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-51

Example:

<um:removeProperty propertySet="<%=thePropertySet%>"
propertyName="<%=thePropertyName%>"/>

<um:setProperty>

The <um:setProperty> tag (Table 9-30) updates a property value for either the
session’s current profile, or for the Anonymous User Profile. This tag has no enclosed
body.

Example:

<% String myName = request.getParameter("name"); %>
<um:setproperty propertySet="exampleportal" propertyName="name"
value="<%=myName%>"/>

Table 9-30 <um:setProperty>

Tag Attribute Req’d Type Description R/C

propertySet No String The Property Set in which the property’s
value is to be set.

Example: “Demo Portal”

Note: The property is set for the
profile’s default (unscoped)
properties if no property set is
provided.

R

propertyName Yes String The name of the property to be set.

Example: “background_color”

R

value Yes Object The new property value. C

9 JSP Tag Library Reference

9-52 BEA WebLogic Personalization Server Developer’s Guide

Group-User Management Tags

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<um:addGroupToGroup>

The <um:addGroupToGroup> tag (Table 9-31) adds the group corresponding to the
provided childGroupName to the group corresponding to the provided groupName.
Since a group can only have one parent, any previous database records which reflect
the group belonging to another parent will be destroyed. Both the parent group and the
child group must previously exist for proper tag behavior. The tag has no enclosed
body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-31 <um:addGroupToGroup>

Tag Attribute Req’d Type Description R/C

childGroupName Yes String The name of the child group.

Example: “<%=childGroupName%>”

R

parentGroupName Yes String The name of the parent group.

Example: “<%=parentGroupName%>”

R

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-53

Example:

<um:addGroupToGroup childGroupName=“<%=childGroupName%>”
parentGroupName=”<%=parentGroupName%>” result=”result”/>

<um:addUserToGroup>

The <um:addUserToGroup> tag (Table 9-32) adds the user corresponding to the
provided username to the group corresponding to the provided groupName. Both the
specified user and the specified group must previously exist for proper tag behavior.
The tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

result Yes String The name of an Integer variable to which
the result of the add group to group
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.ADD_GROU
P_OK

Error encountered:
UserManagerTagConstants.ADD_GROU
P_FAILED

C

Table 9-31 <um:addGroupToGroup>

Tag Attribute Req’d Type Description R/C

Table 9-32 <um:addUserToGroup>

Tag Attribute Req’d Type Description R/C

username Yes String The name of the user to be added to the
group.

Example: “<%=username%>”

R

9 JSP Tag Library Reference

9-54 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:addUserToGroup userName=“<%=userName%>”
groupName=”<%=groupName%>” result=”result”/>

<um:changeGroupName>

The <um:changeGroupName> tag (Table 9-33) changes the name of the group
corresponding to the specified oldGroupName to the specified newGroupName. This
tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

groupName Yes String The name of the group to which the user is
being added.

Example: “<%=groupName%>”

R

result Yes String The name of an Integer variable to which
the result of the add user to group
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.ADD_USER_
OK

Error encountered:
UserManagerTagConstants.ADD_USER_
FAILED

C

Table 9-32 <um:addUserToGroup> (Continued)

Tag Attribute Req’d Type Description R/C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-55

Example:

<um:changeGroupname oldGroupName=“<%=oldGroupName%>”
newGroupName=”<%=changeGroupName%>” result=”result”/>

<um:createGroup>

The <um:createGroup> tag (Table 9-34)creates a new
com.beasys.commerce.axiom.contact.Group object. This tag has no enclosed
body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-33 <um:changeGroupName>

Tag Attribute Req’d Type Description R/C

oldGroupName Yes String The old group name.

Example: “<%=oldGroupName%>”

R

newGroupName Yes String The new group name.

Example: “<%=newGroupName%>”

R

result Yes String The name of an Integer variable to which
the result of the change group name
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.GROUP_CH
ANGE_OK

Error encountered:
UserManagerTagConstants.GROUP_CH
ANGE_FAILED

C

9 JSP Tag Library Reference

9-56 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:creategroup groupName=”<%=groupName%>” result=”result”/>

<um:createUser>

The <um:createUser> tag (Table 9-35) creates a new
com.beasys.commerce.axiom.contact.User object. This tag has no enclosed body.
Although classified as a Group-User management tag, this tag can be used in conjunction with
run-time activities, in that it will persist any properties associated with a current Anonymous
User Profile if specified.

Table 9-34 <um:createGroup>

Tag Attribute Req’d Type Description R/C

groupName Yes String The name of the new group.

Example: “<%=groupName%>”

R

id No String A variable name to which the created
Group object is available for the duration
of the page’s scope.

C

parentName No String The name of the group to set as the parent
of the new group.

R

result Yes String The name of an Integer variable to which
the result of the create group operation is
assigned.

Possible Values:

Success:
UserManagerTagConstants.CREATE_GR
OUP_OK

Error encountered:
UserManagerTagConstants.CREATE_GR
OUP_FAILED

A group with the specified group name
already exists:
UserManagerTagConstants.GROUP_EXI
STS

C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-57

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-35 <um:createUser>

Tag Attribute Req’d Type Description R/C

username Yes String The name of the new user.

Example: “<%=username%>”

R

password No String The password for the new user.

Example: “<%=password%>”

R

profileType No String Specifies the extended type of user (for
example, WLCS_Customer) to create a
user of that type.

R

saveAnonymous No String Whether to persist current anonymous user
profile attributes in the newly-created
user’s profile.

Defaults to false.

Example: “false”

R

id No String A variable name to which the created User
object is available for the duration of the
page’s scope.

C

result Yes String The name of an Integer variable to which
the result of the create user operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.CREATE_US
ER_OK

Error encountered:
UserManagerTagConstants.CREATE_US
ER_FAILED

A user with the specified username already
exists:
UserManagerTagConstants.USER_EXIS
TS

C

9 JSP Tag Library Reference

9-58 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:createUser userName="<%=username%>" password="<%=password"%>
result="result"/>

<um:getChildGroupNames>

The <um:getChildGroupNames> tag (Table 9-36) returns the names of any groups
that are children of the given group.

<um:getChildGroups>

The <um:getChildGroups> tag (Table 9-37) retrieves an array of
com.beasys.commerce.axiom.contact.Group objects that are children of the
Group corresponding to the provided groupName. The information is taken from the
personalization database tables, and reflects the group hierarchy information as set up
from the Group administration and Realm Configuration administration tools. This tag
has no enclosed body.

Table 9-36 <um:getChildGroupNames>

Tag Attribute Req’d Type Description R/C

groupName Yes String The name of the group to search for child
groups.

R

id Yes String The name of the identfier which will be
assigned the String array of child group
names.

C

Table 9-37 <um:getChildGroups>

Tag Attribute Req’d Type Description R/C

groupName Yes String The name of the group whose children are
sought.

Example: “<%=groupName%>”

R

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-59

Example:

<um:getchildgroups groupName=”<%=groupName%>” id=”childGroups”/>

<um:getGroupNamesForUser>

The <um:getGroupNamesForUser> tag (Table 9-38) retrieves a String array that
contains the group names corresponding to groups to which the provided user
immediately belongs. This tag has no enclosed body.

Example:

<um:getGroupNamesForUser userName=”<%=username%>” id=”myGroups”/>

<um:getParentGroupName>

The <um:getParentGroupName> tag (Table 9-39) retrieves the name of the parent of
the com.beasys.commerce.axiom.contact.Group object associated with the
provided groupName. The information is taken from the personalization database

id Yes String A variable name to which the child Group
objects are available for the duration of the
page’s scope.

Example: “childGroups”

C

Table 9-37 <um:getChildGroups> (Continued)

Tag Attribute Req’d Type Description R/C

Table 9-38 <um:getGroupNamesForUser>

Tag Attribute Req’d Type Description R/C

username Yes String The name of the user whose matching
groups are sought.

Example: “<%=username%>”

R

id Yes String A variable name to which the resultant
group names are assigned.

Example: “myGroups”

C

9 JSP Tag Library Reference

9-60 BEA WebLogic Personalization Server Developer’s Guide

tables, and reflects the group hierarchy information as set up from the Group
administration and Realm Configuration administration tools. This tag has no enclosed
body.

Example:

<um:getParentGroupName groupName="<%=groupName%>"
id="parentGroupName"/>

<um:getTopLevelGroups>

The <um:getTopLevelGroups> tag (Table 9-40) retrieves an array of
com.beasys.commerce.axiom.contact.Group objects, each of which has no
parent group. The information is taken from the personalization database tables, and
reflects the group hierarchy information as set up from the Group administration and
Realm Configuration administration tools. This tag has no enclosed body.

Table 9-39 <um:getParentGroupName>

Tag Attribute Req’d Type Description R/C

groupName Yes String The name of the group whose parent group
name is sought.

Example: “<%=groupName%>”

R

id Yes String A variable name to which the name of the
parent is available for the duration of the
page’s scope.

Example: “parentGroupName”

C

Table 9-40 <um:getTopLevelGroups>

Tag Attribute Req’d Type Description R/C

id Yes String A variable name to which the top-level
Group objects are available for the
duration of the page’s scope.

Example: “topLevelGroups”

C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-61

Example:

<um:getTopLevelGroups id=”topLevelGroups”/>

<um:getUsernames>

The <um:getUsernames> tag (Table 9-41) retrieves a String array that contains the
usernames matching the provided search expression. The search expression supports
only the asterisk (*) wildcard character, and is case insensitive. As many asterisks as
desired may be used in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-41 <um:getUsernames>

Tag Attribute Req’d Type Description R/C

searchExp No String The search expression to apply to the user
name search. Defaults to ‘*’

Example: “t*”

R

userLimit No String
(representing
an Integer)

String
The maximum number of users to be
returned from the search. (String which has
a particular Integer.valueOf.)
Defaults to 100.

If user count exceeds userLimit, the length
of the array in id is truncated to the length of
userLimit.

Example: “500”

R

id Yes String A variable name to which the resultant user
names are assigned.

Example: “myUsers”

C

9 JSP Tag Library Reference

9-62 BEA WebLogic Personalization Server Developer’s Guide

Note: The USER_SEARCH_FAILED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
UserManagerTagConstants.USER_SEARCH_FAILED, but the length returned
by the array in id will be zero.

Example:

<um:getUsernames userLimit="500" searchExp="t*" id="myUsers"/>
<%System.out.println("I found " + myUsers.length + " users.");%>

<um:getUsernamesForGroup>

The <um:getUsernamesForGroup> tag (Table 9-42) retrieves a String array that
contains the usernames matching the provided search expression and correspond to
members of the provided group. The search expression supports only the asterisk (*)
wildcard character, and is case insensitive. As many asterisks as desired may be used
in the search expression. This tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

result

No String The name of an Integer variable to which the
result of the getUsernames operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.USER_SEARC
H_OK

General error:
UserManagerTagConstants.USER_SEARC
H_FAILED

C

Table 9-41 <um:getUsernames> (Continued)

Tag Attribute Req’d Type Description R/C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-63

Table 9-42 <um:getUsernamesForGroup>

Tag Attribute Req’d Type Description R/C

searchExp No String The search expression to apply to the user
name search.

Defaults to" *".

Example: "t*"

R

groupName Yes String The name of the group whose matching
members are sought.

Example: “engineering”

R

userLimit No String
(representing
an Integer)

The maximum number of users to be
returned from the search. (String which has
a particular Integer.valueOf.)
Defaults to 100.

If user count exceeds userLimit, the length
of the array in id is truncated to the length of
userLimit.

Example: “500”

R

id Yes String A variable name to which the resultant user
names are assigned.

Example: “myUsers”

C

result No String The name of an Integer variable to which the
result of the get usernames for group
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.USER_SEARC
H_OK

General error:
UserManagerTagConstants.USER_SEARC
H_FAILED

C

9 JSP Tag Library Reference

9-64 BEA WebLogic Personalization Server Developer’s Guide

Note: The USER_SEARCH_FAILED value is returned only when a general error
occurs while searching for the user, such as a database connection failure. If
no user matches the search criteria, the result will not be equal to
UserManagerTagConstants.USER_SEARCH_FAILED, but the length returned
by the array in id will be zero.

Example:

<um:getUsernamesForGroup groupName="engineering" userLimit="500"
searchExp="t*" id="myUsers"/>
<%System.out.println("I found " + myUsers.length + " users in my
group.");%>

<um:removeGroup>

The <um:removeGroup> tag (Table 9-43) removes the
com.beasys.commerce.axiom.contact.Group object corresponding to the
provided groupName. This tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-43 <um:removeGroup>

Tag Attribute Req’d Type Description R/C

groupName Yes String The name of the user to be removed.

Example: “<%=groupName%>”

R

result Yes String The name of an Integer variable to which
the result of the remove group operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.REMOVE_G
ROUP_OK

Error encountered:
UserManagerTagConstants.REMOVE_G
ROUP_FAILED

C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-65

Example:

<um:removeGroup groupName=”<%=groupName%>” result=”result”/>

<um:removeGroupFromGroup>

The <um:removeGroupFromGroup> tag (Table 9-44) removes a child group from a
parent group.

<um:removeUser>

The <um:removeUser> tag (Table 9-45) removes the
com.beasys.commerce.axiom.contact.User object corresponding to the
provided username. It can remove any type of extended user that has its profileType
set in the database. This tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-44 <um:removeGroupFromGroup>

Tag Attribute Req’d Type Description R/C

childGroupName Yes String The name of the child group to remove
from its parent.

R

parentGroupName Yes String The name of the parent group from which
the child group will be removed.

R

result Yes String The name of an Integer variable to which
the result of the remove group from group
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.REMOVE_G
ROUP_OK

Failure:
UserManagerTagConstants.REMOVE_G
ROUP_FAILED

C

9 JSP Tag Library Reference

9-66 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:removeUser userName=”<%=username%>” result=”result”/>

<um:removeUserFromGroup>

The <um:removeUserFromGroup> tag (Table 9-46) removes a user from a group.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-45 <um:removeUser>

Tag Attribute Req’d Type Description R/C

username Yes String The username of the user to be removed.

Example: “<%=username%>”

R

result Yes String The name of an Integer variable to which the
result of the remove user operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.REMOVE_US
ER_OK

Error encountered:
UserManagerTagConstants.REMOVE_US
ER_FAILED

C

Table 9-46 <um:removeUserFromGroup>

Tag Attribute Req’d Type Description R/C

username Yes String The username of the user to remove from the
given group.

R

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-67

groupName Yes String The name of the group from which the given
user will be removed.

R

result Yes String The name of an Integer variable to which the
result of the remove user from group
operation is assigned.

Possible values:

Success:
UserManagerTagConstants.REMOVE_US
ER_OK

Failure:
UserManagerTagConstants.REMOVE_US
ER_FAILED

C

Table 9-46 <um:removeUserFromGroup> (Continued)

Tag Attribute Req’d Type Description R/C

9 JSP Tag Library Reference

9-68 BEA WebLogic Personalization Server Developer’s Guide

Security Tags

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<um:login>

The <um:login> tag (Table 9-47) provides weak authentication (username,
password) against the current security realm, and sets the authenticated user as the
current WebLogic user. This tag has no enclosed body.

Note: The login tag requires a username attribute and a password attribute to be
present in the HTTP request.

Table 9-47 <um:login>

Tag Attribute Req’d Type Description R/C

result Yes String The name of an Integer variable to which
the result of the login operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.LOGIN_OK

General error when performing
authentication:
UserManagerTagConstants.LOGIN_ERR
OR

Authentication failed because of invalid
username/password combination:
UserManagerTagConstants.LOGIN_FAI
LED

C

User Management

BEA WebLogic Personalization Server Developer’s Guide 9-69

<um:logout>

The <um:logout> tag (Table 9-48) ends the current user’s WebLogic Server session.
This is independent of the FlowManager’s user session tracking, and should be used in
combination with the <um:login> tag.

.

<um:setPassword>

The <um:setPassword> tag (Table 9-49) updates the password for the user
corresponding to the provided username.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Table 9-48 <um:logout>

Tag Attribute Req’d Type Description R/C

No attributes

Table 9-49 <um:setPassword>

Tag Attribute Req’d Type Description R/C

username Yes String The username of the user whose password
is to be changed.

R

password Yes String The new user password. R

result No String The name of an Integer variable to which
the result of the set password operation is
assigned.

Possible values:

Success:
UserManagerTagConstants.SET_PASSW
ORD_OK

Failure:
UserManagerTagConstants.SET_PASSW
ORD_FAILED

C

9 JSP Tag Library Reference

9-70 BEA WebLogic Personalization Server Developer’s Guide

Personalization Utilities

The <es:jsptaglib> tag contains generic tags you can use to create JSP pages.

Use the following code to import the utility tag library:
<%@ taglib uri="es.tld" prefix="es" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

<es:counter>

The <es:counter> tag (Table 9-50) is used to create a for loop.

Example:

<es:counter id="iterator" minCount="0" maxCount="10">
 <% System.out.println(iterator);%>
</es:counter>

Table 9-50 <es:counter>

Tag Attribute Req’d Type Description R/C

type No String The type of the counter. Possible values
are int or long. Default is int.

R

id Yes String A unique name for the variable. R

minCount Yes Int The start position for the loop. R

maxCount Yes Int The end position for the loop. R

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 9-71

<es:date>

The <es:date> tag (Table 9-51) is used to get a date- and time-formatted String based
on the user’s time zone preference.

Example:

<es:date formatStr="MMMM dd yyyy" timeZoneId="MST" />

<es:forEachInArray>

The <es:forEachInArray> tag (Table 9-52) is used to iterate over an array.

Example:

<es:forEachInArray id="item" array="<%=items%>" type="String"
counterId="i">

Table 9-51 <es:date>

Tag Attribute Req’d Type Description R/C

timeZoneId No String Defaults to the time zone on the server. R

formatStr No String A date and time format string that adheres
to the java.text.SimpleDateFormat. The
default value is MM/dd/yyyy
HH:mmss:z.

R

Table 9-52 <es:forEachInArray>

Tag Attribute Req’d Type Description R/C

id Yes String The variable for each value in the array. R

type Yes String The type of each value in the array. R

array Yes Object [] The array to iterate over. R

counterId No String The position in the array. R

9 JSP Tag Library Reference

9-72 BEA WebLogic Personalization Server Developer’s Guide

 <% System.out.println("items[" + i + "]: " + item);%>
</es:forEachInArray>

<es:isNull>

The <es:isNull> tag (Table 9-53) is used to check if a value is null. In the case of a
String, the <es:isNull> tag is used to check if the String is null or has a value. An
empty string will cause isNull to be false. (An empty string is not null.)

Example:

<es:isNull item="<%=value%>">
 Error: the value is null.
</es:isNull>

<es:monitorSession>

The <es:monitorSession> tag (Table 9-54) can be added to the beginning of any
JSP page to disallow access to the page if the session is not valid or if the user is not
logged in.

Table 9-53 <es:isNull>

Tag Attribute Req’d Type Description R/C

item Yes Object The variable to evaluate. R

Table 9-54 <es:monitorSession>

Tag Attribute Req’d Type Description R/C

goToPage No String The error page that you want displayed if
the page is not accessible.

The default value is portalerror.jsp.

R

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 9-73

Example:

<es:monitorSession loginRequired="true" />

<es:notNull>

The <es:notNull> tag (Table 9-55) is used to check if a value is not null. In the case
of a String, the <es:notNull> tag is used to check if the String is not null or has a
value. An empty string will cause notNull to be true. (An empty string is treated as
a value.)

Example:

<es:notNull item="<%=value%>">
 The value is not null.
</es:notNull>

<es:preparedStatement>

The <es:preparedStatement> tag (Table 9-56) is used to create a JDBC prepared
statement.

loginRequired No String Indicates whether the user is required to be
logged in to access the JSP page including
the tag.

The default value is false.

R

Table 9-54 <es:monitorSession>

Tag Attribute Req’d Type Description R/C

Table 9-55 <es:notNull>

Tag Attribute Req’d Type Description R/C

item Yes Object The variable to evaluate. R

9 JSP Tag Library Reference

9-74 BEA WebLogic Personalization Server Developer’s Guide

Example:

<es:preparedStatement id="ps" sql="<%=bookmarkBean.QUERY%>">
<%@ include file="startPreparedStatement.inc" %>
<%
bookmarkBean.createQuery(ps, owner);
java.sql.ResultSet resultSet = ps.executeQuery();
bookmarkBean.load(resultSet);
%>
<%@ include file="endPreparedStatement.inc" %>
</es:preparedStatement>

<es:simpleReport>

The <es:simpleReport> tag (Table 9-57) is used to create two-dimensional array out
of a simple query.

Table 9-56 <es:preparedStatement>

Tag Attribute Req’d Type Description R/C

id Yes String The variable in which the
PreparedStatement is returned.

R

sql Yes String The SQL query statement. R

Table 9-57 <es:simpleReport>

Tag Attribute Req’d Type Description R/C

id Yes String The variable that holds the resultant
two-dimensional array converted from the
java.sql.ResultSet specified by the
resultSet tag attribute.

R

resultSet Yes java.sql.ResultSet The result set that holds the
java.sql.ResultSet.

R

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 9-75

Example:

<es:simpleReport id="report" resultSet="<%=resultSet%>">
 <%
 for (int i=0; i<report.length; i++)
 {
 for (int j=0; j<report[i].length; j++)
 {
 ...
 }
 }
 %>

<es:transposeArray>

The <es:transposeArray> tag (Table 9-58) is used to transpose a standard
[row][column] array to a [column][row] array.

Example:

<es:transposeArray id="byColumnRow" array="<%=byRowColumn%>"
type="String">
 ...
</es:transposeArray>

<es:uriContent>

The <es:uriContent> tag (Table 9-59) is used to pull content from a URL. It is best
used for grabbing text-heavy pages.

Table 9-58 <es:transposeArray>

Tag Attribute Req’d Type Description R/C

id Yes String The variable that holds the [c][r] array. R

type Yes String The type of variable in the [r][c] array,
such as String.

R

array Yes Object[][] The variable that holds the [r][c] array. R

9 JSP Tag Library Reference

9-76 BEA WebLogic Personalization Server Developer’s Guide

Example:

<es:uriContent id="uriContent"
uri="http://www.beasys.com/index.html">
<%
 out.print(uriContent);
%>
</es:uriContent>

Note: If you combine HTML pages with relative URL’s, you must fully qualify them
to the correct host in each URL, or else images (on other resources) may not
be retrieved properly by the browser.

Table 9-59 <es:uriContent>

Tag Attribute Req’d Type Description R/C

id Yes String The variable that holds the downloaded
content of the URI.

R

uri Yes String The fully qualified URI from which to get
the content.

R

WebLogic Utilities

BEA WebLogic Personalization Server Developer’s Guide 9-77

WebLogic Utilities

The <wl:jsptaglib> tag library contains custom JSP extension tags which are
supplied as a part of the WebLogic server platform.

To import the WebLogic Utilities JSP tags, use the following code:
<%@ taglib uri="weblogic.tld" prefix="wl" %>

Note: In the following tables, Req’d specifies if the attribute is required (yes) or
optional (no). In the R/C column, C means that the attribute is a Compile time
expression, and R means that the attribute can be either a Request time
expression or a Compile time expression.

Note: Refer to the Javadoc for further descriptions of the wl tags.

<wl:process>

The <wl:process> tag (Table 9-60) is used for query attribute-based flow control. By
using a combination of the four attributes, you can selectively execute the statements
between the <wl:process> and </wl:process> tags.

Statements between the <wl:process> tags will be executed according to the matrix:

Table 9-60 <wl:process>

Tag Attribute Req’d Type Description R/C

name No String The name of a query attribute. R

notName No String The name of a query attribute. R

value No String The value of a query attribute. R

notValue No String The value of a query attribute. R

9 JSP Tag Library Reference

9-78 BEA WebLogic Personalization Server Developer’s Guide

Example:

<wl:process name="lastBookRead" value="A Man in Full">
<!-- This section of code will be executed
 if lastBookRead exists and the value of lastBookRead is
 "A Man in Full" -->
</wl:process>

<wl:repeat>

The <wl:repeat> tag (Table 9-61) is used to iterate over a variety of Java objects, as
specified in the set attribute.

Value notValue Neither "value" nor
"notValue"

name Named attribute
is equal to the
value.

Named attribute does not
equal the value.

Name attribute’s value is not
null.

not
Name

notName attribute’s value is
null.

WebLogic Utilities

BEA WebLogic Personalization Server Developer’s Guide 9-79

Table 9-61 <wl:repeat>

Tag Attribute Req’d Type Description R/C

set No Object The set of objects that includes:

n Enumerations

n Iterators

n Collections

n Arrays

n Vectors

n Result Sets

n Result Set MetaData

n Hashtable keys

R

counter No Int Iterate over first "count" entries in the set. R

id No String Variable to contain current object being
iterated over.

C

type No String Type of object that results from iterating
over the set you passed in. Defaults to
Object. This type must be fully qualified.

C

9 JSP Tag Library Reference

9-80 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide I-1

Index

Symbols
%WL_COMMERCE_HOME% 5-2

A
administration tool

support 7-10
administration tool,defined 5-3
adviselet

ClassificationAdvislet 2-9
ContentQueryAdviselet 2-9
ContentSelectorAdviselet 2-9
mapping an Advise request 2-9

Advisor
architecture 2-2
description 2-2
document content 2-3
functionality 1-3
JSP tags

creating personalized applications
2-4

descriptions 1-5
reference 9-3
using 2-4

mapping an Advise request to an advislet
2-9

overview 1-3
providing information about user

classifications 2-3
using Advisor session bean 2-4

Advisor session bean 2-8

classifying users 2-10
creating personalized applications 2-8
matching content 2-13
selecting content 2-12

application
creating 2-8
setting parameters 3-8

Application Initialization Property Sets 3-6

B
building

a custom portal 5-5
a second dynamic portlet 5-21
a simple dynamic portlet 5-19
a static portlet 5-17

C
character encoding 7-6

default settings 7-7
diplaying more than one charset per page

7-6
charset

displaying more than one on a page 7-6
multiple 7-6
parameters 7-6

class, PortalJspBase 4-7
classifying user

with Advisor session bean 2-10
with JSP tag 2-5

<cm:printDoc>

I-2 BEA WebLogic Personalization Server Developer’s Guide

description 1-5
reference 9-12

<cm:printProperty>
description 1-5
reference 9-14

<cm:selectById>
description 1-5
reference 9-20

<cm:select>
description 1-5
reference 9-16

commerce.util package 3-18
CommercePropertiesHelper utility 3-17
component, external 1-10
constructed messages 7-11

examples 7-11
contact information xiii
content

loading from URL 4-12
Content Management

about 1-4
JSP tags descriptions 1-5
JSP tags reference 9-12

content, matching
with Advisor session bean 2-13
with JSP tag 2-7

content, selecting
with Advisor session bean 2-12

ContentHelper utility 3-17
creating

portlet application 4-4
current page, retrieving 4-11
custom Web site

building xi, 5-1
customer support xiii

D
defining portlet JSP 4-5
DestinationDeterminer

described 3-6

Flow Manager value 3-3
DestinationHandler

described 3-6
Flow Manager value 3-3

developing portlet 4-1
documentation, where to find it xiii

E
Entity-Relationship Diagram 8-1
<es:counter>

description 1-9
reference 9-70

<es:date>
description 1-9
reference 9-71

<es:forEachInArray>
description 1-9
reference 9-71

<es:isNull>
description 1-9
reference 9-72

<es:monitorSession>
description 1-9
reference 9-72

<es:notNull>
description 1-9
reference 9-73

<esp:eval>
description 1-6
reference 9-34

<esp:get>
description 1-6

<esp:getGroupsForPortal>
description 1-6
reference 9-36

<esp:get>
reference 9-35

<esp:monitorSession>
description 1-6
reference 9-36

BEA WebLogic Personalizaton Server Developer’s Guide I-3

<esp:portalManager>
description 1-6
reference 9-37

<esp:portletManager>
description 1-6
reference 9-38

<esp:props>
description 1-6
reference 9-41

<es:preparedStatement>
description 1-9
reference 9-73

<es:simpleReport>
description 1-9
reference 9-74

<es:transposeArray>
description 1-9
reference 9-75

<es:uriContent>
description 1-10
reference 9-75

example portlet
introduction 4-13

ExpressionHelper utility 3-18
external component 1-10

Content Management engine 1-11
DBMS 1-10
LDAP 1-10
legacy database 1-10
rules engine (JRules) 1-11

F
file

portal framework 5-43
Flow Manager

described 3-2
determination and handling values 3-3
diagram 3-4
how it works 3-3

<fm:getApplicationURI>

description 1-5
reference 9-23

<fm:getCachedAttribute>
description 1-5
reference 9-24

<fm:getSessionAttribute>
description 1-5
reference 9-25

<fm:removeCachedAttribute>
description 1-5
reference 9-25

<fm:removeSessionAttribute>
description 1-6
reference 9-26

<fm:setCachedAttribute>
description 1-5
reference 9-27

<fm:setSessionAttribute>
description 1-5
reference 9-28

form processing 4-10
Foundation Classes and Utilities

about 1-4
described 3-1

framework
file 5-43
portal 4-6

G
<i18n:getMessage>

description 1-6
reference 9-31

Group-User Management
JSP tags descriptions 1-7
JSP tags reference 9-52

H
home page, retrieving 4-11
hot deployment 3-2

I-4 BEA WebLogic Personalization Server Developer’s Guide

HTML form processing 4-10
http

//localhost
7501/application/exampleportal

3-10
HTTP handling 3-11

I
<i18n:getMessage>

JspMessageBundle 7-4
localizing JSP pages 7-3

<i18n:localize>
description 1-6
how it works 7-5
localizing JSP pages 7-3
reference 9-29

Internationalization
code example 7-2
framework 7-2
included framework tags 7-3
JSP tags descriptions 1-6
JSP tags reference 9-29
localizing your application 7-9

inter-portlet communication 5-31

J
JavaServer Page (JSP)

localizing 7-3
tags provided with Advisor 2-4

JSP extension tag library 7-2
JSP tag

Advisor, reference 9-3
Content Management 9-12
creating personalized application 2-4
included with WLPS 1-4
matching content 2-7
overview 1-4
Portal Management 9-34
Profile Management 9-45

security 9-68
User Management 9-45

JSP, defining 4-5
JspBase utility 3-16
JspHelper utility 3-16
JspMessageBundle 7-4

L
loading

content with URL 4-12
localizing

how the tag works 7-5
system messages 7-12
the BEA WLPS 7-10
your application steps 7-9
your JSP 7-3

login status 4-12

M
matching content

with Advisor session bean 2-13
with JSP tag 2-7

maximized URL,adding 5-26
message, constructed 7-11

N
native types 1-11

boolean 1-11
comparators 1-11
datetime 1-11
float 1-11
integer 1-11
Java classes 1-11
text 1-11
UserDefined 1-12

O
object

BEA WebLogic Personalizaton Server Developer’s Guide I-5

Request 3-12
Session 3-14

P
P13NJspBase utility 3-17
package, commerce.util 3-18
Personalization Request object 3-12
Personalization Session object 3-14
Personalization Utilities

JSP tags descriptions 1-9
JSP tags reference 9-70

personalized application
creating 2-8
JSP tags 2-4

portal
custom

building 5-5
customizations 5-13
setting up framework 5-7

defined 5-2
example portal 5-3
framework 4-6
framework file 5-43
session information 4-7
webapp 6-2

Portal Framework
defined 5-2

Portal Management
JSP tags descriptions 1-6
JSP tags reference 9-34
overview 1-3

Portal Service Manager 4-9
portal, setting parameters 3-8
PortalJspBase class 4-7
portlet

application 4-4
definition 4-2
developing 4-1
examples, introduction 4-13
JSP, defining 4-5

URL link 4-9
portlets

adding a maximized URL 5-26
adding dynamic behavior 5-19
advanced functionality 5-26
building a second dynamic portlet 5-21
building a static portlet 5-17
choices 5-15
customizing the layout 5-15
defined 5-3
inter-portlet communication 5-31
maximized 5-30
writing your own 5-17

printing product documentation xiii
processing HTML form 4-10
Profile Management 9-45
property

Request 3-13
Session 3-14

property set
creating 3-7
defined 5-3
DestinationDeterminer 3-6
DestinationHandler 3-6
ttl 3-7
usage 3-6

Property Set Management tool 3-6
Property Sets

JSP tags descriptions 1-6
JSP tags reference 9-42

<ps:getPropertyNames>
description 1-6
reference 9-42

<ps:getPropertySetNames>
description 1-7
reference 9-43

<pz:contentQuery>
creating personalized applications 2-5
description 1-5
reference 9-4
selecting content 2-6

I-6 BEA WebLogic Personalization Server Developer’s Guide

<pz:contentSelector>
creating personalized applications 2-5
description 1-5
matching content 2-7
matching content to users 2-7
Personalization Request object 3-12
reference 9-7

<pz:div>
classifying users 2-5
creating personalized applications 2-4
description 1-5
Personalization Request object 3-12
reference 9-10

R
Repository 3-11
repository directories

about 7-5
repository directory 5-12
Request

object 3-12
property 3-13

request
destination 4-11

Request Property Set
associated request methods 3-13
described 3-13
request property names 3-13

resouce bundles
localizing system messages 7-12
used in WLPS server tools 7-12

retrieving
current page 4-11
home page 4-11

Rules Management
about 1-4

S
Security

JSP tags descriptions 1-9
JSP tags reference 9-68

selecting content
with Advisor session bean 2-12
with JSP tag 2-6
with Personalization Advisor Session

Bean 2-6
Session

object 3-14
property 3-14

session
information 4-7

session bean, Advisor
classifying user 2-10
creating personalized application 2-8
matching content 2-13
selecting content 2-12

Session Property Set 3-14
SQL Scripts 8-33
static text 7-10

examples 7-10
status, user login 4-12
support

for native types 1-11
technical xiv

T
text, static 7-10
The 5-2
ttl (time to live)

described 3-7
Flow Manager value 3-3

TypesHelper utility 3-18

U
<um:addGroupToGroup>

description 1-7
reference 9-52

<um:addUserToGroup>

BEA WebLogic Personalizaton Server Developer’s Guide I-7

description 1-7
reference 9-53

<um:changeGroupName>
description 1-7
reference 9-54

<um:createGroup>
description 1-7
reference 9-55

<um:createUser>
description 1-7
reference 9-56

<um:getChildGroupNames>
description 1-8
reference 9-58

<um:getChildGroups>
description 1-8
reference 9-58

<um:getGroupNamesForUser>
description 1-8
reference 9-59

<um:getParentGroupName>
description 1-8
reference 9-59

<um:getProfile>
description 1-7
reference 9-45

<um:getPropertyAsString>
description 1-7
reference 9-49

<um:getProperty>
description 1-7
reference 9-48

<um:getTopLevelGroups>
description 1-8
reference 9-60

<um:getUsernames>
description 1-8

<um:getUsernamesForGroup>
description 1-8
reference 9-62

<um:getUsernames>

reference 9-61
<um:login>

description 1-9
reference 9-68

<um:logout>
description 1-9
reference 9-69

<um:removeGroup>
description 1-8

<um:removeGroupFromGroup>
description 1-8
reference 9-65

<um:removeGroup>
reference 9-64

<um:removeProperty>
description 1-7
reference 9-50

<um:removeUser>
description 1-9

<um:removeUserFromGroup>
description 1-9
reference 9-66

<um:removeUser>
reference 9-65

<um:setPassword>
description 1-9
reference 9-69

<um:setProperty>
description 1-7
reference 9-51

URL link in portlet 4-9
user

login status 4-12
User Management

JSP tags reference 9-45
overview 1-3
Profile

JSP tags descriptions 1-7
user, classifying

with Advisor session bean 2-10
utility

I-8 BEA WebLogic Personalization Server Developer’s Guide

CommercePropertiesHelper 3-17
ContentHelper 3-17
ExpressionHelper 3-18
JspBase 3-16
JspHelper 3-16
P13NJspBase 3-17
personalization 9-70
TypesHelper 3-18
WebLogic 9-77

W
web application

deploying a portal as 6-2
WebLogic Personalization Server (WLPS)

external components 1-10
localizing administration tools 7-10
native types supported 1-11
run-time architecture 1-2
schema 8-1
schema tables 8-6

WebLogic Utilities
JSP tags descriptions 1-10
JSP tags reference 9-77

welcome.html 5-18
WLCS_BOOKMARKS 8-8
WLCS_CATEGORIES 8-8
WLCS_COLUMN_INFORMATION 8-9
WLCS_DOCUMENT 8-9
WLCS_DOCUMENT_METADATA 8-10
WLCS_ENTITY_ID 8-11
WLCS_GROUP_HIERARCHY 8-12
WLCS_GROUP_PERSONALIZATION

8-12
WLCS_GROUPS 8-11
WLCS_IS_ALIVE 8-14
WLCS_LDAP_CONFIG 8-14
WLCS_PORTAL_DEFINITION 8-14
WLCS_PORTAL_GROUP_HIERARCHY

8-15
WLCS_PORTAL_HIERARCHY 8-16

WLCS_PORTAL_PERSONALIZATION
8-16

WLCS_PORTLET_DEFINITION 8-18
WLCS_PROP_BOOLEAN 8-21
WLCS_PROP_DATETIME 8-21
WLCS_PROP_FLOAT 8-21
WLCS_PROP_ID 8-22
WLCS_PROP_INTEGER 8-23
WLCS_PROP_MD 8-23
WLCS_PROP_MD_BOOLEAN 8-24
WLCS_PROP_MD_DATETIME 8-24
WLCS_PROP_MD_FLOAT 8-25
WLCS_PROP_MD_INTEGER 8-25
WLCS_PROP_MD_TEXT 8-26
WLCS_PROP_MD_USER_DEFINED 8-26
WLCS_PROP_TEXT 8-27
WLCS_PROP_USER_DEFINED 8-27
WLCS_RULESET_DEFINITION 8-27
WLCS_SCHEMA 8-28
WLCS_SEQUENCER 8-28
WLCS_TODO 8-29
WLCS_UIDS 8-29
WLCS_UNIFIED_PROFILE_TYPE 8-30
WLCS_USER 8-30
WLCS_USER_GROUP_HIERARCHY

8-31
WLCS_USER_PERSONALIZATION 8-31
WLCS_UUP_EXAMPLE 8-32
<wl:process>

description 1-10
reference 9-77

<wl:repeat>
description 1-10
reference 9-78

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Personalization Development
	Personalization Server Run-Time Architecture
	Advisor
	Portal Management
	User Management
	Content Management
	Rules Management
	Foundation Classes and Utilities

	JSP Tags
	Integration of External Components
	Support for Native Types

	2 Creating Personalized Applications with the Advisor
	What Is the Advisor?
	The Advisor Delivers Content to a Personalized Application
	The Advisor Provides Information About User Classifications
	You Can Use the Advisor in One of Two Ways

	Creating Personalized Applications with the Advisor JSP Tags
	Classifying Users with the JSP <pz:div> Tag
	Selecting Content with the <pz:contentQuery> JSP Tag
	Matching Content to Users with the <pz:contentSelector> JSP Tag

	Creating Personalized Applications with the Advisor Session Bean
	Classifying Users with the Advisor Session Bean
	Selecting Content with the Advisor Session Bean
	Matching Content to Users with the Advisor Session Bean

	3 Foundation Classes and Utilities
	Flow Manager
	Hot Deployment
	Dynamic Flow Determination and Handling
	How the FlowManager Works

	Property Set Usage
	destinationdeterminer Property
	destinatationhandler Property
	ttl (time to live) Property
	Creating a New Property Set
	Set Parameters for Your Portal or Application

	Webflow
	Accessing Your Application via the Flow Manager
	Using Flow Manager with a Web Application
	Using Flow Manager with a non-Web Application

	Repository
	HTTP Handling
	Personalization Request Object
	Default Request Property Set

	Personalization Session Object
	Default Session Property Set

	Utilities
	JspHelper
	JspBase
	P13NJSPHelper
	P13NJspBase
	ContentHelper
	CommercePropertiesHelper

	Utilities in commerce.util Package
	ExpressionHelper
	TypesHelper

	4 Developing Portlets
	Introduction
	What is a portlet?

	Creating a portlet application
	Defining the Portlet JSP

	Working Within the Portal Framework
	Extending the PortalJspBase Class
	Accessing Portal Session Information
	Sending Requests Through the Flow Manager
	Using URL Links in Your Portlet
	HTML Form Processing
	Retrieving the Home Page
	Retrieving the Current Page
	Setting the Request Destination
	Tracking User Login Status
	Loading Content from an External URL
	Using example portlets
	HTML Tables vs. HTML Frames

	5 Building a Custom Portal Step-by-Step
	Introduction
	Terminology
	How to Use This Chapter

	Creating the Framework for Your Custom Portal
	Installing WebLogic Personalization Server
	Setting up the Portal Framework
	Troubleshooting

	Repository Directory

	Simple Customizations
	Project 1: Customizing the Acme Logos
	Project 2: Customizing the Choice of Portlets
	Project 3: Customizing the Layout of Portlets
	Project 4: Describing Your Users

	Writing Your Own Portlets
	Project 5: Building a Static Portlet
	welcome.html

	Project 6: Building a Simple Dynamic Portlet
	isloggedon.jsp

	Project 7: Building a Second Dynamic Portlet
	EmailList.jsp

	Advanced Portlet Functionality
	Project 8: Adding a Maximized URL
	EmailListMax.jsp
	Project 9: Changing the Look of a Maximized Portlet
	EmailListMaxHeader.jsp
	EmailListMaxFooter.jsp

	Project 10: Inter-portlet Communication
	UserIndex.jsp
	UserIndexDetails.jsp

	Using the HTTP request method to communicate between portlets
	Parameter name collisions between portlets
	Several sets of portlets using the HTTP request method at once

	Other Customization Techniques
	More Portlet Customization
	Database Interaction
	Java Beans Interaction
	Personalization Advisor Functionality
	Internationalization
	Using Webflow
	Commerce Functionality
	Modifying the Portal Framework
	Building Your Site Without the Portal Framework

	Framework Files

	6 Using the Catalog Application in a Portal
	Deploying a Portal as a Webapp
	Using e-Commerce Functionality Within a Portal
	Using Webflow Within a Portal
	Reusing Pieces of the Demo Catalog Application in a Portal

	7 Creating Localized Applications with Internationalization Tags
	What Is the I18N Framework?
	Localizing Your JSP
	<i18n:getMessage>
	<i18n:localize>
	The JspMessageBundle
	How the localization Tag Works

	Character Encoding
	Displaying More than One Character Set on a Page
	Default Character Encodings

	Steps for Localizing Your Application

	Localizing the BEA WebLogic Personalization Server
	Static Text
	Constructed Messages
	Resource Bundles Used in the WebLogic Personalization Server Tools
	Localizing System Messages

	8 WebLogic Personalization Server Schema
	The Entity-Relationship Diagram
	The Tables Comprising the WebLogic Personalization Server
	The Schema Tables

	The SQL Scripts Used to Create the Database

	9 JSP Tag Library Reference
	The Advisor
	<pz:contentQuery>
	<pz:contentSelector>
	<pz:div>

	Content Management
	<cm:printDoc>
	<cm:printProperty>
	<cm:select>
	<cm:selectById>

	Flow Manager
	<fm:getApplicationURI>
	<fm:getCachedAttribute>
	<fm:getSessionAttribute>
	<fm:removeCachedAttribute>
	<fm:removeSessionAttribute>
	<fm:setCachedAttribute>
	<fm:setSessionAttribute>

	Internationalization
	<i18n:localize>
	<i18n:getMessage>

	Portal Management
	<esp:eval>
	<esp:get>
	<esp:getGroupsForPortal>
	<esp:monitorSession>
	<esp:portalManager>
	<esp:portletManager>
	<esp:props>

	Property Sets
	<ps:getPropertyNames>
	<ps:getPropertySetNames>

	User Management
	Profile Management Tags
	<um:getProfile>
	<um:getProperty>
	<um:getPropertyAsString>
	<um:removeProperty>
	<um:setProperty>

	Group-User Management Tags
	<um:addGroupToGroup>
	<um:addUserToGroup>
	<um:changeGroupName>
	<um:createGroup>
	<um:createUser>
	<um:getChildGroupNames>
	<um:getChildGroups>
	<um:getGroupNamesForUser>
	<um:getParentGroupName>
	<um:getTopLevelGroups>
	<um:getUsernames>
	<um:getUsernamesForGroup>
	<um:removeGroup>
	<um:removeGroupFromGroup>
	<um:removeUser>
	<um:removeUserFromGroup>

	Security Tags
	<um:login>
	<um:logout>
	<um:setPassword>

	Personalization Utilities
	<es:counter>
	<es:date>
	<es:forEachInArray>
	<es:isNull>
	<es:monitorSession>
	<es:notNull>
	<es:preparedStatement>
	<es:simpleReport>
	<es:transposeArray>
	<es:uriContent>

	WebLogic Utilities
	<wl:process>
	<wl:repeat>

	Index

