
B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 1
 D o c u m e n t E d i t i o n 1 . 0

 S e p t e m b e r 2 0 0 0

BEA WebLogic

Migrating to

Personalization Server

WebLogic Personalization Server 3.1

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Migrating to WebLogic Personalization Server 3.1

Document Edition Date Software Version

1.0 September 2000 WebLogic Personalization Server 3.1

Migrating to WebLogic Personalization Server 3.1 iii

Contents

1. Migrating WebLogic Personalization Server to Version 3.1
Navigating with Flow Manager... 1-2

Deprecated Service Managers .. 1-2

Hot Deployment ... 1-2

Dynamic Flow Determination and Handling ... 1-3

Property Set Usage ... 1-4

 Go with the Flow: Migrating to the Flow Manager 1-5

Accessing Your Application via the Flow Manager 1-6

Changes to the Personalization Advisor.. 1-7

JSP Tags Ported to Use the New Advisor .. 1-7

Deprecated Personalization Advisor Classes ... 1-7

Changes in Advisor APIs ... 1-8

Terminology Change: Agents Changed to Advislets 1-9

Changes to the Rules Editor .. 1-9

Relationship Between Rules and Property Sets 1-10

The Use of And or Or to Connect Expressions.. 1-10

Change the Word Rule Sheet to Rule Set .. 1-10

Changes to Content Management.. 1-11

New features in <cm:select> and <cm:selectById> tags 1-11

Changes to EJB Deployment Descriptors .. 1-11

Changes to Object Interfaces.. 1-14

Changes to the BulkLoader .. 1-14

Schema Tables... 1-15

Updated User Management Schema Table .. 1-15

2. Changes to the JSP Tag Library in Version 3.1
New JSP Tags in Version 3.1 .. 2-2

iv Migrating to WebLogic Personalization Server 3.1

New Property Set Management Tags ... 2-2

New Internationalization Tags ... 2-3

New WebLogic Utility Tag .. 2-3

Changes to the JSP Tag Library .. 2-4

New JSP 1.1 Naming Conventions .. 2-4

Changes to Tag Attributes .. 2-5

Global Changes .. 2-7

 Tag Migration Roadmap.. 2-8

Additional Notes About JSP Tags.. 2-14

Migrating to WebLogic Personalization Server 3.1 1-1

1 Migrating WebLogic
Personalization Server
to Version 3.1

This document describes the changes between WebLogic Personalization Server
(WLPS) 2.0.1 and WebLogic Personalization Server 3.1. It includes specific
information for migrating existing code to WebLogic Personalization Server 3.1.

Note: Both the Commerce Server and Personalization Server functionality now reside
in a unified Java package hierarchy located at com.beasys.commerce.

This section includes the following topics:

n Navigating with Flow Manager

n Changes to the Personalization Advisor

n Changes to the Rules Editor

n Changes to Content Management

n Schema Tables

Note: Changes to the JSP Tag Library in Version 3.1 are covered in the next chapter.

1 Migrating WebLogic Personalization Server to Version 3.1

1-2 Migrating to WebLogic Personalization Server 3.1

Navigating with Flow Manager

The Flow Manager is a servlet implementation that allows the hot-deployment of
applications within the WebLogic Application Server. Flow Manager also adds
flexibility to navigation through the system—it moves navigation information off the
JSP page and into a single point of control. Using a destination determiner and a
destination handler, the Flow Manager dynamically determines a destination for a
given page request and dynamically handles it.

This topic includes the following sections:

n Deprecated Service Managers

n Hot Deployment

n Dynamic Flow Determination and Handling

n Property Set Usage

n Go with the Flow: Migrating to the Flow Manager

n Accessing Your Application via the Flow Managers

For more information, see "Flow Manager" in the Foundation chapter in the WebLogic
Personalization Server Developer’s Guide.

Deprecated Service Managers

In WebLogic Personalization Server 3.1, all of the functionality of the JSP Service
Manager and the Portal Service Manager has been ported to the new Flow Manager.
The JSP Service Manager and the Portal Service Manager have been deprecated.

Hot Deployment

The Flow Manager is a servlet implementation that allows the hot-deployment of
applications within the WebLogic Application Server.

Navigating with Flow Manager

Migrating to WebLogic Personalization Server 3.1 1-3

Registering a new portal or a new application no longer requires restarting the server,
as it did in WebLogic Personalization Server 2.0.1. Instead of registering servlets in
the weblogic.properties file, the Flow Manager relies on a property set to obtain
information about a specific application or portal. You simply create a new instance
of a property set to hold the equivalent parameters that were in the properties file.
Default values are supplied during property set creation. Any changes become visible
according to a configurable refresh setting in the property set.

Dynamic Flow Determination and Handling

Flow Manager also provides the basic infrastructure to support the new Webflow
functionality. Webflow dynamically determines a destination for a given page request
and dynamically handles it. Using a destination determiner and a destination handler,
the Flow Manager moves navigation information off the JSP page and into a single
point of control.

The old service managers relied on a hidden form field in the current page to determine
where an HTTP request should be routed:

<input type="hidden" name="<%=DESTINATION_TAG%>"

value="<%=PortalJspBase.getRequestURI(request)%>">

This scheme required destination (or routing) information to be distributed across the
JSP/HTML pages. While this works fine, it can be cumbersome to modify if
destination values needs to change.

The Flow Manager, on the other hand, allows the determination of page routing to be
centralized on the server based on an application’s needs.

Backward Compatibility

For backward compatibility, default implementations of the destination determiner and
the destination handler are provided which support destination information being
passed via the DESTINATION_TAG mentioned above. These implementations are:

com.beasys.commerce.portal.flow.PortalDestinationDeterminer
and
com.beasys.commerce.foundation.flow.ServletDestinationHandler

1 Migrating WebLogic Personalization Server to Version 3.1

1-4 Migrating to WebLogic Personalization Server 3.1

Also, for non-portal based personalized applications, the following default
implementations may be used:

com.beasys.commerce.foundation.flow.jsp.DefaultDestinationDetermi
ner
and
com.beasys.commerce.foundation.flow.ServletDestinationHandler

Property Set Usage

A new class of property sets, "Application Initialization Property Sets" has been added
to the Property Set Management admin tools. These are the property sets used by the
Flow Manager in support of portal (_DEFAULT_PORTAL_INIT) and non-portal
(_DEFAULT_APP_INIT) based personalized applications.

Three new properties have been added to support the Flow Manager:

n destinationdeterminer Property

The destination determiner is responsible for evaluating an HTTP request and
determining which servlet to route it to.

The value provided for this property should be the name of a class that
implements the
com.beasys.commerce.foundation.flow.DestinationDeterminer
interface. If appropriate, use a default implementation provided by WebLogic
Personalization Server or WebLogic Commerce Server. Otherwise, develop your
own implementation according to the needs of your application.

n destinatationhandler Property

Given a destination route, the destination handler is responsible for envoking the
requested processing.

The value provided for this property should be the name of a class that
implements the
com.beasys.commerce.foundation.flow.DestinationHandler interface.
If appropriate, use a default implementation provided by WebLogic
Personalization Server or WebLogic Commerce Server. Otherwise, develop your
own implementation according to the needs of your application.

Navigating with Flow Manager

Migrating to WebLogic Personalization Server 3.1 1-5

n ttl (time to live) Property

ttl, which stands for time to live, represents how often (in milliseconds) the
Flow Manager reloads the _APPLICATION_INIT property set from the database.
This allows changes that you make to the _APPLICATION_INIT property set to
be visible while the application or portal is running.

Note: To force immediate reloading of the property set, append the "flowReset"
argument to your URL, like this:
http://localhost:7001/application/exampleportal?flowReset=true

 Go with the Flow: Migrating to the Flow Manager

To migrate your portal or non-portal application to use the Flow Manager, do the
following:

To create a new property set:

1. Open the Administration Tools Home page. Click the Property Set Management
icon to open the Property Set Management screen.

2. From the main Property Set Management screen, click Create.

3. Name the new property set you are creating (100 character maximum). The name
of the property set should be the same as the name you used to create the portal,
or the name you will use to access the application.

4. Enter a description of the property set (255 character maximum).

5. From the Copy Properties From drop-down list, select
APPLICATION_INIT._DEFAULT_PORTAL_INIT (for a portal)
or
APPLICATION_INIT._DEFAULT_APP_INIT (for a non-portal application).

6. From the Property Set Type drop-down list, select Application Init.

7. Click the Create button.

8. At the top of the page, in red, you will see the message “Property Set creation
was successful.” (Or, you will see an error message indicating why the property
set was not created.)

9. Click Back to return to the main Property Set Management screen.

1 Migrating WebLogic Personalization Server to Version 3.1

1-6 Migrating to WebLogic Personalization Server 3.1

To set parameters for your portal or application:

1. From the Property Set Management Home page, under the Application
Initialization Property Sets heading, click the name of the property set you just
created.

2. A Property Set page comes up, allowing you to set parameters.

3. Note: For non-portal applications, skip this step.
To edit the portal name, click the Edit button to the right of the “portal name”
property. Change the default value from UNKNOWN to the name of your portal, as
you created it in Portal Management.

4. Edit the destinationdeterminer property. Either accept the default, or edit to
provide your own implementation of these classes.

5. Edit the destinationhandler property. Either accept the default, or edit to
provide your own implementation of these classes.

6. Customize any other properties you choose. For information about customizing
properties in portals, see Creating and Managing Portals in the WebLogic
Personalization Server User’s Guide and Creating Custom Portals in the
WebLogic Personalization Server Developer’s Guide.

7. When you have finished setting properties, click the Finished button at the
bottom of the page.

Note: In WebLogic Personalization Server 2.0.1, you registered servlets in the
weblogic.properties file. This is not required for WebLogic
Personalization Server 3.1. You have the option to remove them, but it is not
required. The WebLogic Personalization Server will ignore them.

Accessing Your Application via the Flow Manager

The exact URL you use depends upon whether or not you have deployed your
application as a web application. WebLogic Personalization Server 3.1 includes
sample configurations for both a web application/web archive deployment and a
non-web application configuration. For more information, see the chapter Using the
Catalog Application in a Portal in the WebLogic Personalization Server Developer’s
Guide.

Changes to the Personalization Advisor

Migrating to WebLogic Personalization Server 3.1 1-7

Changes to the Personalization Advisor

For WebLogic Personalization Server 3.1, the Personalization Advisor has been
renamed to Advisor and has undergone some API changes. However, its functionality
remains the same. The Advisor has been improved to provide better error reporting and
to make use of the unified logging facility provided by the WLCS/PS 3.1.

This topic includes the following sections:

n JSP Tags Ported to Use the New Advisor

n Deprecated Personalization Advisor Classes

n Changes in Advisor APIs

n Terminology Change: Agents Changed to Advislets

JSP Tags Ported to Use the New Advisor

The three pz library tags (pz:div, pz:contentQuery, and pz:contentSelector)
have been changed to use the new Advisor Session Bean. However, the tag usage
remains the same. For more information, see the JSP Tag Library Reference in the
WebLogic Personalization Server Developer’s Guide.

To use the <pz:div> and <pz:contentSelector> tags, you are no longer require to
insert the following JSP directive into your JSP code:
<%@ page extends="com.beasys.commerce.axiom.p13n.jsp.P13NJspBase"
%>

 However if it is already in your code, you do not need to remove it.

Deprecated Personalization Advisor Classes

All of the Java classes for the Personalization Advisor released in WebLogic
Personalization Server 2.0.1 have been deprecated. This includes all of the Java classes
in the following Java packages:
com.beasys.commerce.axiom.p13n.advisor
com.beasys.commerce.axiom.p13n.agents

1 Migrating WebLogic Personalization Server to Version 3.1

1-8 Migrating to WebLogic Personalization Server 3.1

In WebLogic Personalization Server 3.1, these deprecated classes are replaced by new
Advisor Java packages. They include:
com.beasys.commerce.axiom.advisor
com.beasys.commerce.axiom.advislets

The Personalization Advisor Bean has been replaced by the new Advisor Bean.

This change only affects the case when the Advisor API is used directly and is
transparent to JSP tag users.

Changes in Advisor APIs

The changes made while porting the WebLogic Personalization Server 2.0.1
Personalization Advisor interface to the new Advisor interface are as follows:

n The Personalization Advisor pzTechnique parameter is not supported in the
new Advisor implementation.

n The createRequestTemplate method parameters have been simplified to use a
single string lookup name for the advice request, instead of a fully qualified
class name. The three advice request lookup names supported for WebLogic
Personalization Server 3.1 are ClassificationAdviceRequest,
ContentSelectorAdviceRequest, and ContentQueryAdviceRequest.

The following example shows the difference in the createRequestTemplate method
between the Personalization Advisor and the Advisor.

Personalization Advisor Interface
public AdviceRequest createRequestTemplate(
 String adviceRequestClassName,
 String pzTechnique)
 throws IllegalArgumentException,
 PersonalizationAdvisorException,
 RemoteException;

Advisor Interface
public AdviceRequest createRequestTemplate(
 String theKindOfRequest)
 throws IllegalArgumentException,
 AdvisorException,
 RemoteException;

Changes to the Rules Editor

Migrating to WebLogic Personalization Server 3.1 1-9

Terminology Change: Agents Changed to Advislets

The three WebLogic Personalization Server 2.0.1 Personalization Agents have been
renamed and repackaged to advislets. The following table defines the mapping
between the WebLogic Personalization Server 2.0.1 Agent Java classes to the
WebLogic Personalization Server 3.0 advislet Java classes.

Changes to the Rules Editor

The WebLogic Personalization Server provides rule sets that include a set of classifier
and content selector rules. These rule sets act as containers for rules that match
personalized content with users.

This topic includes the following sections:

n Relationship Between Rules and Property Sets

n The Use of And or Or to Connect Expressions

n Change the Word Rule Sheet to Rule Set

For more information, see Creating and Managing Rules in the WebLogic
Personalization Server User’s Guide.

2.0 Agent class com.beasys.commerce.axiom.p13n.agents.ClassificationAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ClassificationAdvisletImpl

2.0 Agent class com.beasys.commerce.axiom.p13n.agents. ContentSelectorAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ContentSelectorAdvisletImpl

2.0 Agent class com.beasys.commerce.axiom.p13n.agents. ContentQueryAgentImpl

3.1 Advislet class com.beasys.commerce.axiom.advisor.advislets.ContentQueryAdvisletImpl

1 Migrating WebLogic Personalization Server to Version 3.1

1-10 Migrating to WebLogic Personalization Server 3.1

Relationship Between Rules and Property Sets

In previous releases, the rule sets (also called rule sheets) were associated with
property sets that defined the attributes available for user and group profiles. Once
defined, this relationship between rules and property sets could not be undone.

In the current WebLogic Personalization Server 3.1 release, there is no longer an
association between a rule set and a property set. Rules within a rule set may refer to
any properties.

The Use of And or Or to Connect Expressions

The Rules Editor now allows the use of "and" or "or" to connect expressions that
contain comparators.

Change the Word Rule Sheet to Rule Set

For consistency, an effort has been made to change the word "rule sheet" to "rule set"
or ruleSet in all cases. However, the following legacy code continues to use
Rulesheet:
jdbc://com.beasys.commerce.axiom.reasoning.rules.RulesheetDefinit
ionHome

Changes to Content Management

Migrating to WebLogic Personalization Server 3.1 1-11

Changes to Content Management

This topic includes the following sections:

n New features in <cm:select> and <cm:selectById> tags

n Changes to EJB Deployment Descriptors

n Changes to Object Interfaces

n Changes to the BulkLoader

New features in <cm:select> and <cm:selectById> tags

To retrieve Content or Documents, use a ContentManager or DocumentManager with
<cm:select> or <cm:selectById>. The default DocumentManager is deployed at
com.beasys.commerce.axiom.document.DocumentManager. For more
information, see “Configuring WebLogic Commerce Properties” in the chapter
Creating and Managing Content in the WebLogic Personalization Server User’s
Guide.

The <cm:select> and <cm:selectById> tags now support a session-based, per-user
Content cache for content searches. For more information, see "Content Cache" in the
chapter Creating and Managing Content in the WebLogic Personalization Server
User’s Guide.

The Content Manager now supports non-EJB context objects. The <cm:select> and
<cm:selectById> tags support an optional readOnly parameter. For more
information, see “readOnly Content Tag” in the chapter Creating and Managing
Content in the WebLogic Personalization Server User’s Guide.

Changes to EJB Deployment Descriptors

Deployment descriptors handle the configuration for the Content Manager. This
section describes the changes to the deployment descriptors:

n Document Schema EJB Deployment Descriptor

1 Migrating WebLogic Personalization Server to Version 3.1

1-12 Migrating to WebLogic Personalization Server 3.1

n DocumentManager EJB Deployment Descriptor

n Document EJB Deployment Descriptor (Deprecated)

Document Schema EJB Deployment Descriptor

Two EJB variables have been removed:
SmartConnectionPoolClass
SmartBMP_URL

Five EJB variables have been added:
UseDataSource
DocPoolURL
DocPoolDriver
jdbc/docPool
jdbc/commercePool

One EJB variable remain the same:
SmartBMPUpdate

For more information, see “Configuring the Document Schema EJB Deployment
Descriptor” in the chapter Creating and Managing Content in the WebLogic
Personalization Server User’s Guide.

DocumentManager EJB Deployment Descriptor

All the EJB variables have been removed:
UseDefaultHomeNames
ContentHome
SchemaHome

Six EJB variables have been added:
PropertyCase
jdbc/docPool
ejb/ContentHome
ejb/SchemaHome
UseDataSource
DocPoolURL
DocPoolDriver

For more information, see “Configuring the DocumentManager EJB Deployment
Descriptor” in the chapter Creating and Managing Content in the WebLogic
Personalization Server User’s Guide.

Changes to Content Management

Migrating to WebLogic Personalization Server 3.1 1-13

Document EJB Deployment Descriptor (Deprecated)

Note: The Document EJB has been deprecated and should not be used. Use the
DocumentManager EJB instead.

To support legacy code, the Document EJB has been udgraded as follows:

Two EJB variables have been removed:
SmartConnectionPoolClass
SmartBMP_URL

Four EJB variables have been added:
UseDataSource
DocPoolURL
DocPoolDriver
jdbc/docPool

Two EJB variables remain the same:
SmartBMPUpdate
Propertycase

n SmartBMPUpdate: Set to false.

n UseDataSource: Controls whether jdbc/docPool (true) or DocPoolURL
(false) is used to get connections. Defaults to true.

n DocPoolURL: Specifies the JDBC URL to the document JDBC connection to use
(if UseDataSource is false.) Should point to a connection pool.
For example: jdbc:weblogic:pool:docPool

n DocPoolDriver: Specifies the JDBC driver class to use to connect to the
DocPoolURL. This is optional. If not specified, the EJB will try to determine the
appropriate JDBC driver class from the DocPoolURL.

n jdbc/docPool: A Data Source reference to the document JDBC connection
Pool. This should correspond to the Data Source attached to the WebLogic
connection pool that uses the document reference implementation JDBC driver.

n PropertyCase: This sets how the DocumentImpl modifies incoming property
names. If this is lower, all property names are converted to lower case. If this is
upper, all property names are converted to upper case. If this is anything else or
not specified, property names are not modified. Use lower or upper if the
SmartBMP class expects everything in a certain case (for example, the
Documentum SmartBMP expects everything in lower case). For the document
reference implementation, do not specify the PropertyCase.

1 Migrating WebLogic Personalization Server to Version 3.1

1-14 Migrating to WebLogic Personalization Server 3.1

Other SmartBMP classes for other document management systems will possibly
require more and/or different EJB environment variables.

Changes to Object Interfaces

The ConfigurableEntity, Content, Document, User and Group interfaces no longer
extend EJBObject. Instead, those interfaces are code-identical to the original 2.0.1
versions (same method signatures).

The interfaces ConfigurableEntityRemote, ContentRemote, DocumentRemote,
UserRemote and GroupRemote extend both EJBObject and their respective
non-EJBObject interfaces.

For more information, see “Object Interfaces” in the chapter Creating and Managing
Content in the WebLogic Personalization Server User’s Guide

Changes to the BulkLoader

The BulkLoader now accepts a -encoding <enc> and -schemaName option. For more
information, see “Command Line Usage” in the chapter Creating and Managing
Content in the WebLogic Personalization Server User’s Guide.

Schema Tables

Migrating to WebLogic Personalization Server 3.1 1-15

Schema Tables

The WebLogic Personalization Server Schema is now documented in the WebLogic
Personalization Server Developer’s Guide.

Updated User Management Schema Table

A new column called PROFILE_TYPE was added to the WLCS_USER table since
release 2.0.1. It can be added to existing WLCS_USER tables with the following
statement:

ALTER TABLE WLCS_USER ADD PROFILE_TYPE VARCHAR2(100);

This column holds the name of the Unified Profile Type that the User is an instance of.

For User objects that are of the standard type
com.beasys.commerce.axiom.contact.User, this should be left as null. If the User is an
extended User type, such as the ’Unified Profile Example’, the column should be set to
that type name. The example user for the Unified Profile Example should be updated
with the following statement:

UPDATE WLCS_USER SET PROFILE_TYPE = ’Unified Profile Example’ WHERE
IDENTIFIER = ’unifieduser_bob’;

1 Migrating WebLogic Personalization Server to Version 3.1

1-16 Migrating to WebLogic Personalization Server 3.1

Migrating to WebLogic Personalization Server 3.1 2-1

2 Changes to the JSP Tag
Library in Version 3.1

Note: Backward Compatibility Will Stop After Version 3.1. The tag libraries have
been updated in WebLogic Personalization Server (WLPS) version 3.1 to
comply with the JSP 1.1 specification. If you are upgrading from WebLogic
Personalization Server 2.0.1, you can continue to use your existing code with
WebLogic Personalization Server 3.1. However, future releases will no longer
be backward compatible, so you will need to migrate to the new tags if you
intend to continue to use your legacy code with the latest WebLogic
Personalization Server releases.

The WebLogic Personalization Server 3.1 documentation has been revised to reflect
the changes to the tag libraries. Until you migrate to the new tags, you can continue to
use the WebLogic Personalization Server 2.0 JSP Tag Reference found at
http://e-docs.bea.com/wlcs/p13ndev/jsptags.htm.

This topic includes the following sections:

n New JSP Tags in Version 3.1

l New Property Set Management Tags

l New Internationalization Tags

l New WebLogic Utility Tag

n Changes to the JSP Tag Library

l New JSP 1.1 Naming Conventions

l Changes to Tag Attributes

l Global Changes

2 Changes to the JSP Tag Library in Version 3.1

2-2 Migrating from WLPS 2.0.1 to WLPS 3.1

l Tag Migration Roadmap

l Additional Notes About JSP Tags

New JSP Tags in Version 3.1

WebLogic Personalization Server 3.1 introduces five new tags:

<ps:getPropertyNames>

<ps:getPropertySetNames>

<i18n:localize>

<i18n:getMessage>

<wl:repeat>

New Property Set Management Tags

Two new Property Set Management JSP extension tags provide the following services:

n Lists all properties associated with a property set.

n Lists all property set names for a property set group name (for example, USER or
CONTENT).

The two new Property Set tags are:

<ps:getPropertyNames>

Returns a list of property names for a given property set in a String array.

<ps:getPropertySetNames>

Returns a list of property set names for a given schema group name in a String array.

New JSP Tags in Version 3.1

Migrating to WebLogic Personalization Server 3.1 2-3

New Internationalization Tags

In earlier releases of WebLogic Personalization Server, Internationalization (I18N)
was applied from JSP beans that supported sample portal pages, and administration
tools pages. The JSP beans employed a simple MessageBundle Java class that allowed
access to localized text labels and messages.

For this release, this basic MessageBundle has been extended using a simple
framework that is accessible from JSPs via a small I18N extension tag library. The JSP
extension tag library provides the following services:

n Retrieves a static text label or a message from a resource bundle (implemented
as a property file).

n Initializes a page context with a particular language, country, and variant for
label and message retrieval throughout a page.

n Properly sets the content type (text/html) and character encoding for a page.

The following new tags are included in the I18N framework:

<i18n:localize>

Allows you to define the language, content type, and character encoding to be used in
a page. It also allows you to specify a country, variant, and resource bundle name to
use throughout a page when accessing resource bundles via the <i18n:getMessage>
tag described below.

<i18n:getMessage>

Retrieves a localized label, or message (based on the absence/presence of an “args”
attribute). This tag optionally takes a bundle name, language, country, and variant to
aid in locating the appropriate properties file for resource bundle loading.

New WebLogic Utility Tag

<wl:repeat>

This WebLogic Server tag is used to iterate over a variety of Java objects that includes:

n Enumerations

2 Changes to the JSP Tag Library in Version 3.1

2-4 Migrating from WLPS 2.0.1 to WLPS 3.1

n Iterators

n Collections

n Arrays

n Vectors

n Result Sets

n Result Set MetaData

n Hashtable keys

Changes to the JSP Tag Library

The tag libraries have been updated in WebLogic Personalization Server version 3.1
to comply with the JSP 1.1 specification. If you are upgrading from WebLogic
Personalization Server 2.0.1, you can continue to use your existing code with
WebLogic Personalization Server 3.1. However, future releases will no longer be
backward compatible, so you will need to migrate to the new tags if you intend to
continue to use your legacy code with the latest WebLogic Personalization Server
releases.

The WebLogic Personalization Server 3.1 documentation has been revised to reflect
the changes to the tag libraries. Until you migrate to the new tags, you can continue to
use the WebLogic Personalization Server 2.0 JSP Tag Reference located at
http://e-docs.bea.com/wlcs/p13ndev/jsptags.htm.

New JSP 1.1 Naming Conventions

Beginning with WebLogic Personalization Server version 3.1, all tags use the JSP 1.1
naming conventions. Old style tags that were used in previous WebLogic
Personalization Server releases have been changed to reflect the new camel case
naming conventions.

For example, the old-style tag <um:getgroupnamesforusers> is now
<um:getGroupNamesForUsers>.

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-5

Old tag names can still be used in the WebLogic Personalization Server 3.1 release.
However, old style tag names will not be supported in future releases of WebLogic
Personalization Server.

Note: Each time you use a deprecated tag, a message is logged to WebLogic Server.
To turn off the deprecation messages, add the following property to
weblogiccommerce.properties:
commerce.log.display.deprecated=false

For consistency, the Portal Management tags <pt:*> have a new esp: prefix. For
example, the old-style tag <pt:eval> is now called <esp:eval>, and the old
<pt:portalmanager> is now <esp:portalManager>. When you change to the new
prefix, you will need to update each Portal Management tag invocation in the page to
use the new prefix.

Note: The es: prefix stands for e-commerce services.
The esp: prefix stands for e-commerce services portal.
The pz: prefix stands for personalization.

Changes to Tag Attributes

The User Management and WebLogic Personalization Server Utility tags have been
changed as follows:

n For the User Management <um:*> tags, the resultId attribute has been
changed to result, and is now an Integer instead of an int. Usage and
functionality remain the same.

n For the User Management tags <um:getProperty> and <um:setProperty>,
the usecache attribute has been dropped.

n For the WebLogic Personalization Server Utility tags <es:isNull> and
<es:notNull>, the id attribute has been changed to item.

n For the WebLogic Personalization Server Utility tag
<es:preparedStatement>, the pool attribute has been dropped. (See “Note 4:
<es:preparedStatement>” on page 2-15.)

2 Changes to the JSP Tag Library in Version 3.1

2-6 Migrating from WLPS 2.0.1 to WLPS 3.1

Tag attributes also require camel casing. All of the tag attributes used in previous
WebLogic Personalization Server releases already use the camel-case convention,
with a few exceptions. The tags that do not already use camel-cased attributes are the
three Advisor tags (formerly called Personalization Advisor) <pz:*>, and the single
WebLogic utility <wl:process>.

Table 2-1 lists the attributes that you will need to camel case. Note that all of these
attributes are optional, so it is possible that you did not use them in your existing code.

Any JSP migrating from old-style tags to new-style tags will need to point to new
library descriptors.

n For Portal Management <pt:*> tags, change "lib/esportal.jar" to
"esp.tld".(Also, change prefix="pt" to prefix= "esp". Update each
invocation of a Portal Management tag on the page to use the "esp" prefix.)

n For User Management <um:*> tags, change "lib/um_tags.jar" to
"um.tld".

n For Personalization Utilities <es:*> tags, change "lib/esjsp.jar" to
"es.tld".

n For the WebLogic Utility <wl:process> tag, change "lib/wljsp.jar"
to "weblogic.tld".

For example:

In the JSP page, <%@ taglib uri="lib/um_tags.jar" prefix="um" %>
would change to <%@ taglib uri="um.tld" prefix="um" %>.

Table 2-1 Camel-cased Attributes

Tag Property

<pz:div> ruleSet

<pz:contentQuery> sortBy

contentHome

<pz:contentSelector> ruleSet

sortBy

contentHome

<wl:process> notName

notValue

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-7

Note: The Personalization Advisor is now simply called the Advisor.
The Advisor <pz:*> tags already use taglib uri="pz.tld", so these do
not need to be changed.

The Content Management <cm:*> tags already use taglib uri="cm.tld",
so these do not need to be changed.

Global Changes

Tags no longer return primitive types, they only return objects.
For example, <es:counter> used to return an int, and now it returns an Integer object.

Any tags (es, um, wl, etc.) with a <jsp:include page=.../> in their body must be
replaced with their scriptlet equivalent. (See Section 5.4.5 of the JSP 1.1 specification.)

Old Usage:

<es:notNull item="renderer">
 <jsp:include page="<%=reconcileFile(request, renderer)%>"/>
</es:notNull>

New Usage:

<% if (renderer != null) { %>
 <jsp:include page="<%=reconcileFile(request, renderer)%>"/>
<% } %>

2 Changes to the JSP Tag Library in Version 3.1

2-8 Migrating from WLPS 2.0.1 to WLPS 3.1

 Tag Migration Roadmap

Table 2-2 maps the old tag names to the new JSP 1.1 camel-cased tag names. In
addition, changes made to the tags in the WebLogic Personalization Server 3.1 release
are noted in the Change column.

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1

Library Old Style Tag Name Change New JSP 1.1 Tag

Advisor <pz:contentquery> Camel case

Attribute sortby =
sortBy

Attribute contenthome =
contentHome

It is no longer necessary to
extend the JSP. See below -
Note 1: <pz:> tags.

<pz:contentQuery>

<pz:contentselector> Camel case

Attribute ruleset =
ruleSet

Attribute sortby =
sortBy

Attribute contenthome =
contentHome

<pz:contentSelector>

<pz:div> ruleset = ruleSet

It is no longer necessary to
extend the JSP. See below -
Note 1: <pz:> tags.

<pz:div>

Content
Mngmt

<cm:printproperty> Camel case <cm:printProperty>

<cm:printdoc> Camel case <cm:printDoc>

<cm:select> No change <cm:select>

<cm:selectbyid> Camel case <cm:selectById>

I18N --- New <i18n:initialize>

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-9

 --- New <i18n:getMessage>

Property
Set

 --- New <ps:getPropertyName>

 --- New <ps:setPropertyName>

Portal <pt:eval> taglib uri="esp.tld"

Change preface pt: to esp:

<esp:eval>

<pt:get> taglib uri="esp.tld"

Change preface pt: to esp:

<esp:get>

<pt:getgroupsforportal> Camel case

Change preface pt: to esp:

taglib uri="esp.tld"

<esp:getGroupsForPortal>

<pt:monitorsession> Camel case

taglib uri="esp.tld"

Change preface pt: to esp:

<esp:monitorSession>

<pt:portalmanager> Camel case

taglib uri="esp.tld"

Change preface pt: to esp:

<esp:portalManager>

<pt:portletmanager> Camel case

taglib uri="esp.tld"

Change preface pt: to esp:

<esp:portletManager>

<pt:props> taglib uri="esp.tld"

Change preface pt: to esp:

<esp:props>

User/
Profile

<um:getprofile> Camel case

taglib uri="um.tld"

<um:getProfile>

<um:getproperty> Camel case

taglib uri="um.tldv"

<um:getProperty>

<um:getpropertyasstring> Camel case

taglib uri="um.tld"

<um:getPropertyAsString>

<um:removeproperty> Camel case

taglib uri="um.tld"

<um:removeProperty>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

2 Changes to the JSP Tag Library in Version 3.1

2-10 Migrating from WLPS 2.0.1 to WLPS 3.1

<um:setproperty> Camel case

taglib uri="um.tld"

<um:setProperty>

User/
Group

<um:addgrouptogroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:addGroupToGroup>

<um:addusertogroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:addUserToGroup>

<um:changegroupname> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:changeGroupName>

<um:creategroup> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:createGroup>

<um:createuser> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:createUser>

<um:getchildgroupnames>

(previously undocumented)

Camel case

taglib uri="um.tld"

<um:getChildGroupNames>

<um:getchildgroups> Camel case

taglib uri="um.tld"

<um:getChildGroups>

<um:getgroupnamesforuser> Camel case

taglib uri="um.tld"

<um:getGroupNamesForUser>

<um:getparentgroupname> Camel case

taglib uri="um.tld"

<um:getParentGroupName>

<um:gettoplevelgroups> Camel case

taglib uri="um.tld"

<um:getTopLevelGroups>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-11

<um:getusernames> Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:getUsernames>

<um:getusernamesforgroup> Camel case

taglib uri="um.tld"

<um:getUsernamesForGroup>

<um:removegroup> Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:removeGroup>

<um:removegroupfromgroup>

(previously undocumented)

Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:removeGroupFromGroup>

<um:removeuser> Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:removeUser>

<um:removeuserfromgroup>

(previously undocumented)

Camel case

taglib uri="um.tld"

attribute resultId =
result

<um:removeUserFromGroup>

User /
Security

<um:login> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:login>

 --- New <um:logout>

<um:setpassword> Camel case

taglib uri="um.tld"

Attribute resultId =
result

<um:setPassword>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

2 Changes to the JSP Tag Library in Version 3.1

2-12 Migrating from WLPS 2.0.1 to WLPS 3.1

 WLPS
Utilities

<es:condition> Tag no longer supported.
Requires manual
replacement. See below -
Note 2: <es:condition>.

<es:counter> taglib uri="es.tld"

Attribute id returns an
Integer or Long object.

You can no longer change the
value of the counter
variable "id".See below -
Note 3: <es:counter>.

Optional attribute type can
be ’long’ or ’Long’ or ’Integer’
or if not specified is assumed

to be ’Integer’.

<es:counter>

<es:date> taglib uri="es.tld" <es:date>

<es:foreachinarray> Camel case

taglib uri="es.tld"

Attribute array must be a
runtime expression
(<%=expression%>)

Attribute counterId
returns an Integer object (use
id.intValue())

<es:forEachInArray>

<es:isnull> Camel case

taglib uri="es.tld"

Attribute id = item

Attribute item must be a
runtime expression.

An empty string is now
treated as a value. (An empty
string is not null.)

<es:isNull>

<es:monitorsession> Camel case

taglib uri="es.tld"

<es:monitorSession>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-13

<es:notnull> Camel case

taglib uri="es.tld"

Attribute id = item

Attribute item must be a
runtime expression.

An empty string is now
treated as a value. (An empty
string is not null.)

<es:notNull>

<es:preparedstatement> Camel case

taglib uri="es.tld"

Add two new scriptlets.
 See below - Note 4:
<es:preparedStatement>.

Attribute pool no longer
supported.
 See below - Note 4:
<es:preparedStatement>.

<es:preparedStatement>

<es:simplereport> Camel case

taglib uri="es.tld"

Attribute resultSet must
be a runtime expression.

<es:simpleReport>

<es:transposearray> Camel case

taglib uri="es.tld"

Attribute array must be a
runtime expression.

<es:transposeArray>

<es:usertransaction> Tag no longer supported.
Replace with new scriptlets.
See below - Note 5:
<es:usertransaction>.

<es:uricontent> Camel case

taglib uri="es.tld"

<es:uriContent>

WLS
Utilities

<wl:process> taglib
uri="weblogic.tld"

notname = notName

notvalue = notValue

<wl:process>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

2 Changes to the JSP Tag Library in Version 3.1

2-14 Migrating from WLPS 2.0.1 to WLPS 3.1

Additional Notes About JSP Tags

Note 1: <pz:> tags

To use the <pz:div> and <pz:contentSelector> tags, you no longer need to have
the JSP extended. You are no longer required to insert the following directive into your
code:

 <%@ page extends="com.beasys.commerce.axiom.p13n.jsp.P13NJspBase"
%>.

(If you have already added this code, it does no harm to leave it.)

Note 2: <es:condition>

The <es:condition> tag is no longer supported. Replace it manually with a scriptlet,
creating your own if statement.

Old Usage

<es:condition test="schemaPortletNames.length>0"> </es:condition>

New Usage

<% if (schemaPortletNames.length>0) { %>
<% } %>

Note 3: <es:counter>

If you were manipulating the counter variable within the <es:counter> tag, you
will now need to use a scriptlet instead.

Old Usage

<es:counter id="colIter" minCount="0"
maxCount="<%=numOfCols%>">
colIter++;
</es:counter>

--- New <wl:repeat>

Table 2-2 Tag Changes for WebLogic Personalization Server 3.1 (Continued)

Changes to the JSP Tag Library

Migrating to WebLogic Personalization Server 3.1 2-15

New Usage

<%
for (int colIter = 0; colIter<numOfCols; colIter++) {
colIter++;
}
%>

Note 4: <es:preparedStatement>

The new <es: preparedStatement> tag includes two new scriptlets. In addition,
this tag no longer supports the "pool" attribute. (The pool defined in
commerce.propeties as "commerce.jdbc.pool.name" is used for connections.)

Old Usage

<es:preparedstatement id="ps" sql"<%=bookmarkBean.QUERY%>"
pool="commercePool">
<%
 bookmarkBean.createQuery(ps, owner);
 java.sql.ResultSet resultSet = ps.executeQuery();
 bookmarkBean.load(resultSet);
%>
</es:preparedstatement>

New Usage

<es:preparedStatement id="ps" sql="<%=bookmarkBean.QUERY%>">
<%@ include file="startPreparedStatement.inc" %>
<%
 bookmarkBean.createQuery(ps, owner);
 java.sql.ResultSet resultSet = ps.executeQuery();
 bookmarkBean.load(resultSet);
%>
<%@ include file="endPreparedStatement.inc" %>
</es:preparedStatement>

 Note 5: <es:usertransaction>

The old <es:usertransaction> tag is no longer supported. The following code
illustrates how to create equivalent functionality.

2 Changes to the JSP Tag Library in Version 3.1

2-16 Migrating from WLPS 2.0.1 to WLPS 3.1

Old Usage

<es:usertransaction>
---- body of page --------
</es:usertransaction>

New Usage

<%
setSessionValue(com.beasys.commerce.axiom.jsp.JspConstants.
USER_TRANS_TIMEOUT, "500",request);
// tx timeout defaults to 600 sec. without above line
%>
<%@ include file="startUserTransaction.inc" %>
---- body of page --------
<%@ include file="endUserTransaction.inc" %>

Migrating to WebLogic Personalization Server 3.1 I-1

Index

A
Advisor APIs

changes 1-8
Advisor overview 1-7
Advisor Session Bean 1-7

B
BulkLoader

changes 1-14

C
camel-case attributes 2-6
Content Management

new features 1-11

D
Deployment Descriptor

Document EJB (deprecated) 1-13
Document Schema EJB 1-12
DocumentManager EJB 1-12

Destination Determiner
backward compatibility 1-3
dynamic flow determination 1-3
overview 1-4
setting parameters for portal or

application 1-6
Destination Handler

backward compatibility 1-3
dynamic flow handling 1-3

overview 1-4
setting parameters for portal or

application 1-6
DocPoolDriver 1-13
DocPoolURL 1-13

E
EJB Deployment Descriptors

new features 1-11
<es:preparedStatement> 2-15
<es:condition> 2-14
<es:counter> 2-14
<es:usertransaction> 2-15

F
Flow Manager

hot-deployment 1-2
migration 1-5
overview 1-2
property sets used 1-4
registering a new portal 1-3
web application deployment 1-6
Webflow support 1-3

I
<i18n:getMessage>

defined 2-3
<i18n:localize>

defined 2-3

I-2 Migrating to WebLogic Personalization Server 3.1

J
JavaServer Page (JSP)

changes to tag libraries 2-4
new naming conventions 2-4

jdbc/docPool 1-13
JSP Service Manager

deprecated 1-2

O
object interfaces

changes 1-14

P
Personalization Advisor

changes 1-7
Java classes deprecated 1-7

Personalization Agents
changes 1-9

portal
registering 1-3
setting parameters 1-6

Portal Service Manager
deprecated 1-2

primitive types 2-7
property sets

creating a new one 1-5
relationship with rule sets 1-10

PropertyCase 1-13
<pz:> 2-14

R
rule sets

relationship with property sets 1-10
rule sheet

changes 1-10
Rules Editor

changes 1-9
using And or Or as connectors 1-10

S
Schema tables

changes 1-15
SmartBMP class 1-13

T
tag libraries

migration issues 2-1
tags

attribute changes 2-5
camel-case attributes 2-6
changes to JSP tag library 2-4
migration roadmap 2-8
new Internationalization 2-3
new JSP tags for version 3.1 2-2
new Property Set Management 2-2
new WebLogic Utility 2-3

ttl (time to live)
overview 1-5

U
UseDataSource 1-13
User Management

changes to tag attributes 2-5
User Management Schema tables

updated 1-15

W
WebLogic Utilities

changes to tag attributes 2-5
new tags 2-3

WLCS_USER table 1-15
<wl:repeat> 2-3

	Copyright
	1 Migrating WebLogic Personalization Server to Version 3.1
	Navigating with Flow Manager
	Deprecated Service Managers
	Hot Deployment
	Dynamic Flow Determination and Handling
	Backward Compatibility

	Property Set Usage
	Go with the Flow: Migrating to the Flow Manager
	Accessing Your Application via the Flow Manager

	Changes to the Personalization Advisor
	JSP Tags Ported to Use the New Advisor
	Deprecated Personalization Advisor Classes
	Changes in Advisor APIs
	Terminology Change: Agents Changed to Advislets

	Changes to the Rules Editor
	Relationship Between Rules and Property Sets
	The Use of And or Or to Connect Expressions
	Change the Word Rule Sheet to Rule Set

	Changes to Content Management
	New features in <cm:select> and <cm:selectById> tags
	Changes to EJB Deployment Descriptors
	Document Schema EJB Deployment Descriptor
	DocumentManager EJB Deployment Descriptor
	Document EJB Deployment Descriptor (Deprecated)

	Changes to Object Interfaces
	Changes to the BulkLoader

	Schema Tables
	Updated User Management Schema Table

	2 Changes to the JSP Tag Library in Version 3.1
	New JSP Tags in Version 3.1
	New Property Set Management Tags
	New Internationalization Tags
	New WebLogic Utility Tag

	Changes to the JSP Tag Library
	New JSP 1.1 Naming Conventions
	Changes to Tag Attributes
	Global Changes
	Tag Migration Roadmap
	Additional Notes About JSP Tags
	Note 1: <pz:> tags
	Note 2: <es:condition>
	Note 3: <es:counter>
	Note 4: <es:preparedStatement>
	Note 5: <es:usertransaction>

	Index

