
WebLogic Commerce and Personalization
Servers

Order Package Extensions
Technical Article

WebLogic Commerce Server and
WebLogic Personalization Server

Document Edition: 3.1

October 2000

 BEA WebLogic Commerce Server and Personalization Server Technical Article

2

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at
FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Document Edition Date Software Version

Order Package Extension October 2000 WebLogic Commerce Server 3.1

 BEA WebLogic Commerce Server and Personalization Server Technical Article

3

Order Package Extension
This document explains how to extend the Order Package data model. The following topics are discussed:

• Extending the Data Model

• Persistence Architecture

• Adding Runtime Attributes to Customer Data

• Adding Runtime Attributes to Other Entities

• Extending the Schema

• Overview of Approach to Extending the WebLogic Commerce Server (WLCS) Schema

• Adding Attributes Against WLCS_CUSTOMER, WLCS_ORDER, WLCS_TRANSACTION
and WLCS_SHIPPING_METHOD Tables

• Adding Attributes Against the WLCS_ORDER_LINE Table

• Adding Attributes Against the WLCS_CREDIT_CARD and WLCS_SHIPPING_ADDRESS
Tables

• Transaction Management

• Summary

Extending the Data Model

The User Registration and OrderProcessing packages are two of the core components of the WebLogic
Commerce Server 3.1. These packages implement use-cases that deal with customer self-registration,
customer management, shopping cart experience, and order processing (including shipping, payment
and taxation).

These packages implement some of the most commonly required online commerce scenarios.
However, this does not preclude any extensions that are specific to your commerce site. You can
extend functionality of the WebLogic Commerce Server to provide more sophisticated and specialized
commerce scenarios to meet your business needs. The WebLogic Commerce Server infrastructure
supports use-case driven extensibility in the form of the webflow and pipelines. This infrastructure
provides you with three forms of extensibility:

• You can rapidly modify the existing use-case flows, by changing the webflow and pipeline
configurations.

• You can customize use-cases by adding new input processors and pipelines.

You can implement new use-cases by defining new webflows and pipelines that include custom input
processors and pipelines.

For more information on the webflow and pipeline infrastructure, please refer to the topic “Webflow
and PipeLine Management” in the BEA product documentation Web site at
http://edocs.bea.com/wlcs310/wflopipe/index.htm.

 One of the common requirements for implementing such extensions is the ability to access and extend
the WebLogic Commerce Server data model and schema. For example, you may want to customize the
checkout process of your commerce site to collect a promotion code or gift coupon data, and process
the order and payment data accordingly. Similarly, you may like to capture additional shipping
instructions from your customers. In this case, apart from extending the checkout webflow/pipeline,
you’ll be required to capture, store, and process additional data.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

4

This document presents some possible approaches and guidelines for extending the data model for the
User Registration and Order Processing packages of the WebLogic Commerce Server. While this
document does not guarantee automatic compatibility of such extensions with future releases of the
WebLogic Commerce Server, the approaches discussed in this document try to minimize potential
problems, by leveraging the webflow/pipeline infrastructure.

This document addresses the following:

• The WebLogic Commerce Server persistence architecture.

• Adding runtime attributes to customer and order related entities.

• General approach for extending the data model and the schema.

• Extending WLCS_CUSTOMER, WLCS_ORDER, WLCS_TRANSACTION and
WLCS_SHIPPING_METHOD tables.

• Extending WLCS_ORDER_LINE table (the case of one-to-many associations).

• How to persist and query additional attributes on entities such as customer, order, and payment
transaction?

• How to demarcate transactions with such extensions.

Note: This document does not cover extensions to other WebLogic Commerce Server packages (such
as extensions for catalog). You can periodically check the BEA product documentation Web site at
http://edocs.bea.com for future updates on how to extend other packages.

Persistence Architecture
Before we go into the approaches for extending the WebLogic Commerce Server schema, let’s
consider the persistence architecture of WLCS, as shown in Figure 1. This figure shows the persistence
architecture for the Customer Registration and Order Processing packages. In this structure, the JSP,
Input Processor, and Pipeline Component layers are responsible for implementing the use-case flow.
For more information on the JSPs, input processors, and pipeline components in these layers, refer to
the topic “Order Processing Package” in the BEA product documentation Web site at
http://edocs.bea.com/wlcs310/order/index.htm.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

5

Figure 1: Persistence Architecture for Customer Registration and Order Processing Packages

JSP JSP JSP

Input
Processor

JSP JSP

Input
Processor

Input
Processor

Pipeline
Component

Pipeline
Component

Pipeline
Component

WLCS Schema for Customer,
Order, and Payment

Implement use case
flows for customer
registration and
order capture

WLCS entity
beans

WLCS schema for
Customer, Order and
Payment

Customer

Shipping Method

Order

Payment

The pipeline components rely on the following WebLogic Commerce Server entity beans for persisting
customer, order, payment, and shipping method data respectively:

com.beasys.commerce.ebusiness.customer.Customer

com.beasys.commerce.ebusiness.order.Order

com.beasys.commerce.ebusiness.payment.PaymentTransaction

com.beasys.commerce.ebusiness.shipping.ShippingMethod

These entities use the WebLogic Commerce Server tables discussed in the Order Processing Package
documentation for persistence.

The following table describes the mapping between these entities and the corresponding WebLogic
Commerce Server tables.

Entity: com.beasys.commerce.ebusiness.customer.Customer

WLCS_CUSTOMER Customer description

WLCS_CREDIT_CARD Credit cards

WLCS_SHIPPING_ADDRESS Shipping address

Entity: com.beasys.commerce.ebusiness.order.Order

WLCS_ORDER Order description

WLCS_ORDER_LINES Order lines

Entity: com.beasys.commerce.ebusiness.payment.PaymentTransaction

 BEA WebLogic Commerce Server and Personalization Server Technical Article

6

WLCS_TRANSACTION CyberCash transaction description

WLCS_TRANSACTION_ENTRY CyberCash transaction entries

Entity: com.beasys.commerce.ebusiness.shipping.ShippingMethod

WLCS_SHIPPING_METHOD Shipping method description

The pipeline components in the Customer Registration and Order Processing packages manipulate the
above tables via the respective entities. The default deployment configuration of these beans is such
that all business methods are always executed within a transaction. This is established by setting the
<trans-attribute> to Required in the deployment descriptor. In the default configuration, the
pipelines that access these beans are transactional (with the isTransactional property set to true
in pipeline.properties). Therefore all database access occurs under transactions initiated by the pipeline
infrastructure, and the methods on these entities merely participate in those transactions.

Adding Runtime Attributes to Customer Data
The simplest possible extension is to add run-time attributes to the entities in the Customer
Registration and the Order Processing packages. In the WebLogic Commerce Server, run-time
attributes can be added on these entities without having to change the underlying database schema.

Although all the above entities in the WebLogic Commerce Server share the same basic structure,
there are some differences in the way you can add run-time attributes to the customer entity, and the
other entities.

The Customer entity of the WebLogic Commerce Server is a component that relies on the Unified User
Profile (UUP) technology of the WebLogic Commerce Server. A UUP for customer data allows the
abstraction of a customer to be seamlessly integrated into the WebLogic Personalization Server. Apart
from personalization, this approach allows you to use the user management tools of the WebLogic
Personalization Server to administer customer data, and maps the customer identity into a WebLogic
Personalization Server-administered groups and the RDMBS security realm. For more information on
unified user profiles, see the document “Creating and Managing Users” available online at
http://edocs.bea.com/wlcs310/p13n/users.htm.

In addition to the above information, the notion of unified user profile can be used to add run-time
attributes to customer data without having to modify the underlying schema.

You can find examples of adding attributes for customer data in the pipeline components under the
com.beasys.commerce.ebusiness.customer.pipeline package. To add attributes to
the customer data, the WebLogic Commerce Server customer registration package provides an abstract
pipeline component
com.beasys.commerce.ebusiness.customer.pipeline.UpdateUserPC with the
following method:

 public void setCustomerProperty(String key, Object value,
 Customer customer)

 throws java.rmi.RemoteException

This method takes a property name (“key”), the value of the property (“value”), and a reference to the
customer entity (“customer”). For instance, you may use the following pipeline component to add a
new attribute called “preference” for a given customer:

public class MyPC extends UpdateUserPC {

 public void updateCustomer(PipelineSession pSession,

 Customer customer,

 BEA WebLogic Commerce Server and Personalization Server Technical Article

7

 CustomerValue customerValue)
 throws PipelineFatalException

 {

 try {
 setCustomerProperty("preference", “Loves music”,

 customer);

 }

 }

}

Given a customer, you can use the following snippet in your JSPs to read such runtime attributes:

<um:getProfile profileKey="<%=request.getRemoteUser()%>"
profileType="WLCS_Customer" />

<!-- Get the “preference” -->

<um:getPropertyAsString propertyName="preference" />

In the above example, the request.getRemoteUser() method returns the login name of the
customer accessing the page. The profileType is a UUP name, and WebLogic Commerce Server
specifies the customer entity as a UUP of type “WLCS_Customer.” The
<um:getPropertyAsString> tag is one of the user management tags to extract user attributes in
JSP pages. For more documentation on user management tags, please refer to
http://edocs.bea.com/wlcs310/p13ndev/jsptags.htm.

Before you attempt to consider adding run-time attributes to the customer data, please bear in mind
that this approach is meant only for quickly adding attributes without changing the schema. The
WebLogic Commerce Server persists run-time attributes in tables that are internal to WebLogic
Commerce Server. Consequently, you cannot execute SQL level operations on such data.

Adding Runtime Attributes to Other Entities
For the entities the order-processing package (viz.,
com.beasys.commerce.ebusiness.shipping.Order,
com.beasys.commerce.ebusiness.shipping.PaymentTransaction, and
com.beasys.commerce.ebusiness.shipping.ShippingMethod), there exists a similar
mechanism for adding runtime attributes. All the entities in the order-processing package extend the
com.beasys.commerce.foundation.ConfigurableEntity interface, which provides the
following methods for adding and manipulating run-time attributes.

 public void setProperty(String key, Object value)

 throws java.rmi.RemoteException

Using this method you can set a new property on an entity. You can use the following method to
access attribute later:

 public Object getProperty(String key)

 throws java.rmi.RemoteException

This method returns a previously added property.

For more information, including the API, refer to
http://edocs.bea.com/wlcs310/javadoc/wlcs/index.html.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

8

Extending the Schema
The following are some of the common drivers for extending the WebLogic Commerce Server
schema:

• Extending the schema of the WebLogic Commerce Server to meet your existing schema.

• Enhancing the WebLogic Commerce Server to modify or add new functionality.

• Both these drivers manifest in the following:

• Modifying (or sometimes adding) the templates to render and/or collection additional data from
the user interface.

• Modifying the webflow to change the flow of user interaction.

• Extending the WebLogic Commerce Server schema.

Note: Almost all the data in the Order-Processing package is meaningful across your business, for you
may want to apply SQL level semantics for creating, updating and querying. Depending on the nature
and scale of your commerce site, the WebLogic Commerce Server and your backend applications may
depend on this data. Any extension to the schema of the order-processing package cannot be
represented with runtime attributes, as runtime attributes cannot be accessed directly via standard SQL.

Here is an example scenario. Consider a new attribute called “tracking number” on your Order.
Typically this is an attribute generated after order fulfillment by your backend order fulfillment
application. You may want to display this tracking number on WebLogic Commerce Server order
history pages for customers to view the tracking information. This is a domain specific attribute that
best be persisted in the WLCS_ORDER table (or another table that you created for this purpose).

In this section, let’s the consider the following cases, and discuss approaches that meet the above
needs:

1. Adding attributes against WLCS_CUSTOMER, WLCS_ORDER, WLCS_TRANSACTION and
WLCS_SHIPPING_METHOD

2. Adding attributes against WLCS_ORDER_LINE WLCS_SHIPPING_ADDRESS, and
WLCS_CREDIT_CARD tables

Note: These two cases are discussed separately because the tables in case 2 participate in a one-to-
many association with WLCS_ORDER and WLCS_CUSTOMER tables in case 1.

Overview of Approach to Extending the WebLogic Commerce Server
Schema
The following figure presents an overview of the approach for “extending the WebLogic Commerce
Server schema” and NOT for “integrating the WebLogic Commerce Server schema with your
existing schema” or for “mapping the WebLogic Commerce Server schema onto your existing
schema.”

 BEA WebLogic Commerce Server and Personalization Server Technical Article

9

Figure 2: Extending the Data Model

Input Processor

Pipeline Component

Additional
validation/preprocessing

WLCS Entities

Input Processor

Input Processor

P
ip

el
in

e

Pipeline Component

Pipeline Component

WLCS
Tables

Custom
Tables

Webflow/Pipeline Processing

Custom Data
Access

Figure 2 demonstrates how a given webflow/pipeline processing can be modified to process additional
data, without modifying existing input processors and pipeline components. In Figure 2, the blocks
with thick borders are new input processors and pipeline components inserted to process the additional
data. While the WebLogic Commerce Server pipeline components manage the WebLogic Commerce
Server data via the WebLogic Commerce Server entities, the new pipeline component in the pipeline
may directly access the data via plain JDBC, or indirectly via another layer of custom entity beans.
Alternatively, the new pipeline component may also delegate this data access to legacy data access
mechanisms.

As we shall discuss in a later section, depending on whether the additional data should be processed
with in the same transaction, or in a new transaction, or no transaction at all, you can split the above
pipeline into more than one pipeline each of which will have its own transaction setting.

Adding Attributes Against WLCS_CUSTOMER, WLCS_ORDER,
WLCS_TRANSACTION and WLCS_SHIPPING_METHOD Tables
Let’s now consider the case of the customer, order, payment, and shipping method tables. The general
approach is as follows:

Step 1: Design new tables

For each of the above tables, design new table(s) for the additional attributes with the same primary
key. For instance, for extending order data, consider a new table with ORDER_ID as the primary key.
Although it is tempting to extend the WebLogic Commerce Server tables for such attributes, we
recommend against doing so, as it could lead to compatibility issues and potential name collision
issues with future releases of WebLogic Commerce Server.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

10

Step 2: Modify corresponding JSP templates

If the new data is user-entered, modify the corresponding JSP templates to add new fields in the forms.

Step 3: Implement new input processor

Implement a new input processor to read validate/preprocess the new data. Since input processors can
be chained against a webflow event, adding a new input processor gives you more flexibility when
compared to modifying an existing input processor for the same input processor chain. After validating
the data, add the collected data to the pipeline session for further processing in the pipeline. Depending
on whether such data is required beyond the scope of the current HTTP request or not, use the
appropriate scope (session scope or request scope) while adding data to the pipeline session.

Step 4: Include the new input processor.

Modify the webflow.properties to include the new input processor.

Step 5: Implement a new pipeline component.

Implement a new pipeline component to extract the additional data from the pipeline session, and write
to the new tables. Obtain the primary key from the respective entity. For example, for storing
additional attributes for the order entity, call the getIdentifier() method on the order entity.
This method returns the primary key for the WLCS_ORDER table for the current order.

Step 6: Obtain a database connection.

To obtain a database connection, use the getConnection() method in the abstract base class
com.beasys.commerce.foundation.pipeline.CommercePipelineComponent. You
may recall that all pipeline components extend this abstract class. This method returns a connection
from the commercePool setup in the weblogic.properties file. However, if you want to use
a different connection pool, modify the property commerce.jdbc.pool.url property in the
weblogiccommerce.properties file to point to a different data source wrapping the new
connection pool.

Step 7: Include the new pipeline component.

Modify the pipeline.properties to include the new pipeline component.

To query for such additional data, you may follow a similar procedure.

Adding Attributes Against the WLCS_ORDER_LINE Table
In the WebLogic Commerce Server, an Order entity aggregates a collection of OrderLine objects,
with each OrderLine object representing an order line in the database in the WLCS_ORDER_LINE
table, with ORDER_LINE_ID as the primary key.

These collections are internally based on the Java collections API, with primary keys generated while
storing the order entity.

The following procedure applies in case you want to extend the WLCS_ORDER_LINE table.

Step 1: Design a new table.

Design a new table for the additional attributes with the same primary key. For extending the
ORDER_LINE table, consider a new table with ORDER_LINE_ID as the primary key.

Step 2: Modify the corresponding JSP template.

If the new data is user-entered, modify the corresponding JSP templates to add new fields in the forms.

Step 3: Implement a new input processor.

Implement a new input processor to read validate/preprocess the new data. The procedure is similar to
that of step 3 of the previous section.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

11

Step 4: Include the new input processor.

Modify the webflow.properties to include the new input processor.

Step 5: Implement a new pipeline component.

Implement a new pipeline component to extract the additional data from the pipeline session, and write
to the new tables. However, since the primary key for the WLCS_ORDER_LINE table is internal to
the WebLogic Commerce Server, consider the following code snippet in your new pipeline component
for obtaining the ORDER_LINE_ID for a given order line:

 String orderId = null;
 order.getIdentifier();

 String sku = ...; // Get the sku from the corresponding line

 // in the shopping cart.

 try {

 Connection c = getConnection();

 String statement = "SELECT ORDER_LINE_ID FROM \

 WLCS_ORDER_LINE WHERE ORDER_ID = ? AND PRODUCT_ID = ?";

 PreparedStatement preparedStatement = null;

 preparedStatement = c.prepareStatement(statement);

 preparedStatement.setObject(1, ordereId);

 preparedStatement.setObject(2, sku);

 ResultSet rs = preparedStatement.executeQuery();

 // The result set should now have a row containing
 // the ORDER_LINE_ID. Add your custom JDBC here to

 // persist the additional data for the order line.

Step 6: Update the deployment descriptor.

Before you deploy the new pipeline component, there is one additional step to be perfomed – that is to
update the deployment descriptor of the order entity as follows:

• Unjar the lib\ebusiness.jar into a temporary directory

• Open the weblogic-ejb-jar.xml file. You can find it under the META-INF subdirectory
from where you unjared.

• In this file, search for the following entry, and add the text marked in bold.

 <weblogic-enterprise-bean>

 <ejb-name>

 com.beasys.commerce.ebusiness.order.Order

 </ejb-name>

 <persistence-descriptor>

 <is-modified-method-name>

 isModified

 </is-modified-method-name>
 <delay-updates-until-end-of-tx>

 BEA WebLogic Commerce Server and Personalization Server Technical Article

12

 false

 </delay-updates-until-end-of-tx>

 </persistence-descriptor>

 <reference-descriptor>

 ...

 </reference-descriptor>

 <enable-call-by-reference>true</enable-call-by-
reference>

 <jndi-name>

 com.beasys.commerce.ebusiness.order.Order

 </jndi-name>

 </weblogic-enterprise-bean>

• Jar the contents of the temporary directory, and run the ejbc to create a new ebusiness.jar

• Replace the lib\ebusiness.jar with the newly created ebusiness.jar.

Step 6 ensures that the order and order-line data is available for executing queries in the new pipeline
component.

Step 7: Include the new pipeline component.

Modify the pipeline.properties to include the new pipeline component.

Adding Attributes Against the WLCS_CREDIT_CARD and
WLCS_SHIPPING_ADDRESS Tables
The following procedure applies in case you want to extend the WLCS_ORDER_LINE table.

Step 1: Design new tables.

For each of the above tables, design new table(s) for the additional attributes with the same primary
key. For extending the WLCS_CREDIT_CARD table, consider a new table with CREDIT_CARD_ID
as the primary key. Similarly for the WLCS_SHIPPING_ADDRESS table, consider a new table with
SHIPPING_ADDRESS_ID as the primary key.

Step 2: Modify corresponding JSP templates.
If the new data is user-entered, modify the corresponding JSP templates to add new fields in the forms.

Step 3: Add “mapKey” attribute to the Pipeline Session.

Modify the com.beasys.commerce.ebusiness.customer.webflow.UpdatePaymentInfoIP to add the
“mapKey” attribute to the PipelineSession. Similarly, in the case of shipping address, add the
“ShippingAddressMapKey” attribute to the PipelineSession in the
com.beasys.commerce.ebusiness.customer.webflow.UpdateShippingInfoIP

Step 4: Implement new input processor.

Implement a new input processor to read validate/preprocess the new data. Reconfigure
webflow.properties to include the new input processor.

Step 5: Implement new pipeline component.

Implement a new pipeline component to extract the additional data from the PipelineSession,
and write to the new tables. However, since the primary keys for the WLCS_CREDIT_CARD and

 BEA WebLogic Commerce Server and Personalization Server Technical Article

13

WLCS_SHIPPING_ADDRESS tables are internal to the WebLogic Commerce Server, consider the
following code snippet in your new pipeline component for obtaining the primary keys. Although the
following snippet describes the steps for credit card data, the same procedure applies to shipping
address data.

 // Get the customer ID

 String customerId = null;

 customer.getIdentifier();

 // Get the map key for the credit card from the

 // pipeline session. Refer to Step 3.

 String mapKey = pipelineSession.getAttribute(“mapKey”);

 try {

 Connection c = getConnection();

 String statement = "SELECT CREDIT_CARD_ID FROM \

 WLCS_CREDIT_CARD WHERE CUSTOMER_ID = ? AND MAP_KEY =
?";

 PreparedStatement preparedStatement = null;

 preparedStatement = c.prepareStatement(statement);

 preparedStatement.setObject(1, customerId);

 preparedStatement.setObject(2, mapKey);

 ResultSet rs = preparedStatement.executeQuery();

 // The result set should now have a row containing

 // the CREDIT_CARD_CARD_ID.

 // Add your custom JDBC for your tables here.

Step 6: Modify deployment descriptor.

Similar to the case of order-line attributes, modify the deployment descriptor for the Customer entity.

• Unjar the lib\ebusiness.jar into a temporary directory, say for instance,

• jar –xvf lib\ebusiness.jar c:\temp\ebusiness

• Goto c:\temp\ebusiness\META-INF, and open weblogic-ejb-jar.xml file.

• In this file, search for the following entry, and add the text marked in bold.

 <weblogic-enterprise-bean>

 <ejb-name>

 com.beasys.commerce.ebusiness.customer.Customer

 </ejb-name>

 <persistence-descriptor>

 <is-modified-method-name>

 BEA WebLogic Commerce Server and Personalization Server Technical Article

14

 isModified

 </is-modified-method-name>

 <delay-updates-until-end-of-tx>

 false

 </delay-updates-until-end-of-tx>

 </persistence-descriptor>

 <reference-descriptor>

 ...

 </reference-descriptor>

 <enable-call-by-reference>true</enable-call-by-
reference>

 <jndi-name>

 com.beasys.commerce.ebusiness.customer.Customer

 </jndi-name>

 </weblogic-enterprise-bean>

• Jar the contents of the temporary directory, and run the ejbc to create a new ebusiness.jar

• Replace the lib\ebusiness.jar with the newly created ebusiness.jar.

Step 7: Include new pipeline component.

Modify the pipeline.properties to include the new pipeline component.

Transaction Management
In the webflow/pipeline infrastructure, you can declaratively demarcate pipelines within transactions.
Although the default pipeline configuration has certain default settings on the pipelines, you should
reconsider your options while deploying your extensions on the WebLogic Commerce Server.

Depending on how you’re customizing a use case flow, consider if the new pipeline component should
participate in a preexisting pipeline? The answer depends on whether the database access in the new
pipeline component is part of another unit of work or not.

In cases such as capturing additional order/order line information, add the new pipeline component to
CommitOrder pipeline. This is a transactional pipeline, and therefore the updates made in the new
pipeline component would happen in the same transaction as that of the CommitOrder pipeline.

If the database access new pipeline component is independent of any existing pipelines, define a new
pipeline with the new pipeline component. Note that, you can chain multiple pipelines. For instance,
consider four pipeline components A, B, C, and D. If A, B, and C are required to execute within a
single transaction, while D is not, define two different pipelines (one consisting of A, B, and C), and
the other consisting of D. Set the first pipeline to be transactional, and depending on whether D should
execute in its own transaction or no transaction at all, specify the second pipeline to be transactional or
not.

 BEA WebLogic Commerce Server and Personalization Server Technical Article

15

Summary
This document discusses on the data extensibility mechanisms for the customer registration and order
processing packages of the WebLogic Commerce Server 3.1 product. The approaches suggested in this
document leverage the webflow/pipeline infrastructure to extend the out-of-the-box data model to meet
your business-specific commerce scenarios. The goal of these approaches has been to minimize the
code dependency impact on the out-of-the-box functionality of the WebLogic Commerce Server.

