"."'

® s
: L
2, hea

WebLogic Commerce and Personalization
Servers

Order Package Extensions
Technical Article

WebLogic Commerce Server and
WebLogic Personalization Server

Document Edition: 3.1
October 2000

BEA WebLogic Commerce Server and Personalization Server Technical Article

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.
Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically alowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at
FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivaent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebL ogic, WebL ogic Enterprise,
WebL ogic Commerce Server, and WebL ogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Document Edition Date Software Version
Order Package Extension Octaober 2000 WebL ogic Commerce Server 3.1

BEA WebLogic Commerce Server and Personalization Server Technical Article

Order Package Extension

This document explains how to extend the Order Package data model. The following topics are discussed:
Extending the Data M odel
Persistence Architecture
Adding Runtime Attributes to Customer Data
Adding Runtime Attributesto Other Entities
Extending the Schema
Overview of Approach to Extending the WebL ogic Commerce Server (WLCS) Schema

Adding Attributes Against WLCS_CUSTOMER, WLCS ORDER, WLCS TRANSACTION
and WLCS SHIPPING_METHOD Tables

Adding Attributes Against the WLCS _ORDER_LINE Table

Adding Attributes Against the WLCS CREDIT_CARD and WLCS SHIPPING_ADDRESS
Tables

Transaction Management

Summary

Extending the Data Model

The User Registration and OrderProcessing packages are two of the core components of the WebL ogic
Commerce Server 3.1. These packages implement use-cases that deal with customer self-registration,
customer management, shopping cart experience, and order processing (including shipping, payment
and taxation).

These packages implement some of the most commonly required online commerce scenarios.
However, this does not preclude any extensions that are specific to your commerce site. Y ou can
extend functionality of the WebL ogic Commerce Server to provide more sophisticated and specialized
commerce scenarios to meet your business needs. The WebL ogic Commerce Server infrastructure
supports use-case driven extensibility in the form of thewebflow and pipelines. Thisinfrastructure
provides you with three forms of extensibility:

Y ou can rapidly modify the existing use-case flows, by changing the webflow and pipeline
configurations.

Y ou can customize use-cases by adding new input processors and pipelines.

Y ou can implement new use-cases by defining new webflows and pipelines that include custom input
processors and pipelines.

For more information on thewebflow and pipeline infrastructure, please refer to the topic “Webflow
and Pipeline Management” in the BEA product documentation Web site at
http://edocs.bea.com/wlcs310/wflopi pe/index.htm.

One of the common requirements for implementing such extensionsis the ability to access and extend
the WebL ogic Commerce Server data model and schema. For example, you may want to customize the
checkout process of your commerce site to collect a promotion code or gift coupon data, and process
the order and payment data accordingly. Similarly, you may like to capture additional shipping
instructions from your customers. In this case, apart from extending the checkout webflow/pipeline,
you'll be required to capture, store, and process additional data.

BEA WebLogic Commerce Server and Personalization Server Technical Article

This document presents some possible approaches and guidelines for extending the data model for the
User Registration and Order Processing packages of the WebL ogic Commerce Server. Whilethis
document does not guarantee automatic compatibility of such extensionswith future rel eases of the
WebL ogic Commerce Server, the approaches discussed in this document try to minimize potential
problems, by leveraging the webflow/pipeline infrastructure.

This document addresses the following:
The WebL ogic Commerce Server persistence architecture.
Adding runtime attributes to customer and order related entities.
Genera approach for extending the data model and the schema.

Extending WLCS CUSTOMER, WLCS ORDER, WLCS TRANSACTION and
WLCS_SHIPPING_METHOD tables.

Extending WLCS_ORDER_LINE table (the case of one-to-many associations).

How to persist and query additional attributes on entities such as customer, order, and payment
transaction?

How to demarcate transactions with such extensions.

Note: This document does not cover extensions to other WebL ogic Commerce Server packages (such
as extensions for catalog). Y ou can periodically check the BEA product documentation Web site at
http://edocs.bea.comfor future updates on how to extend other packages.

Persistence Architecture

Before we go into the approaches for extending the WebL ogic Commerce Server schema, let’s
consider the persistence architecture of WLCS, as shown in Figure 1. This figure shows the persistence
architecture for the Customer Registration and Order Processing packages. In this structure, the JSP,
Input Processor, and Pipeline Component layers are responsible for implementing the use-case flow.
For more information on the JSPs, input processors, and pipeline componentsin these layers, refer to
the topic “Order Processing Package” in the BEA product documentation Web site at
http://edocs.bea.com/wlcs310/order/index.htm.

BEA WebLogic Commerce Server and Personalization Server Technical Article

Figure 1: Persistence Architecturefor Customer Registration and Order Processing Packages

\
JSP JSP JSP JSP JSP
Input Input Input Implement use case
Processor Processor Processor > :Eg;lsst:gtri;rlljztr?dmer
order capture
Pipeline Pipeline Pipeline
Component Component Component
S
beans

~

Shipping Method ’

WLCS Schema for Customer,
Order, and Payment

WLCS schema for
Customer, Order and
Payment

The pipeline components rely on the following WebL ogic Commerce Server entity beans for persisting

customer, order, payment, and shipping method data respectively:

com beasys.
com beasys.
com beasys.

com beasys.

commer ce.

commer ce.

commer ce.

commer ce.

ebusi ness
ebusi ness
ebusi ness

ebusi ness

. cust oner . Cust omrer

.order. Order

. paynent . Paynent Tr ansact i on

. shi ppi ng. Shi ppi ngMet hod

These entities use the WebL ogic Commerce Server tables discussed in the Order Processing Package
documentation for persistence.

The following table describes the mapping between these entities and the corresponding WebL ogic

Commerce Server tables.

Entity: com beasys. conmer ce. ebusi ness. cust oner . Cust oner

WLCS_CUSTOMER

Customer description

WLCS CREDIT_CARD Credit cards
WLCS SHIPPING_ADDRESS Shipping address
Entity: com beasys. conmer ce. ebusi ness. order. Or der

WLCS_ORDER

Order description

WLCS_ORDER_LINES

Order lines

Entity: com beasys. conmer ce. ebusi ness. paynent . Paynent Transacti on

BEA WebLogic Commerce Server and Personalization Server Technical Article

WLCS TRANSACTION CyberCash transaction description
WLCS TRANSACTION_ENTRY CyberCash transaction entries

Entity: com beasys. conmer ce. ebusi ness. shi ppi ng. Shi ppi ngMet hod
WLCS _SHIPPING_METHOD Shipping method description

The pipeline componentsin the Customer Registration and Order Processing packages manipulate the
above tables viathe respective entities. The default deployment configuration of these beansis such
that all business methods are always executed within atransaction. Thisis established by setting the
<trans-attri but e>toRequi r ed inthe deployment descriptor. In the default configuration, the
pipelines that access these beans are transactional (withthei sTransact i onal property settotrue
in pipeline.properties). Therefore all database access occurs under transactions initiated by the pipeline
infrastructure, and the methods on these entities merely participate in those transactions.

Adding Runtime Attributes to Customer Data

The simplest possible extension isto add run-time attributes to the entities in the Customer
Registration and the Order Processing packages. In the WebL ogic Commerce Server, run-time
attributes can be added on these entities without having to change the underlying database schema.

Although all the above entities in the WebL ogic Commerce Server share the same basic structure,
there are some differencesin the way you can add run-time attributes to the customer entity, and the
other entities.

The Customer entity of theWebL ogic Commerce Server is acomponent that relies on the Unified User
Profile (UUP) technology of the WebL ogic Commerce Server. A UUP for customer data allowsthe
abstraction of a customer to be seamlessly integrated into the WebL ogic Persondization Server. Apart
from personalization, this approach allows you to use the user management tools of the WebL ogic
Personalization Server to administer customer data, and maps the customer identity intoaWebL ogic
Personalization Server-administered groups and the RDMBS security realm. For more information on
unified user profiles, see the document “Creating and Managing Users’ available online at
http://edocs.bea.com/wlcs310/p13n/users.htm.

In addition to the above information, the notion of unified user profile can be used to add run-time
attributes to customer data without having to modify the underlying schema.

Y ou can find examples of adding attributes for customer dataiin the pipeline components under the
com beasys. comer ce. ebusi ness. cust oner. pi pel i ne package. To add attributesto

the customer data, the WebL ogic Commerce Server customer registration package provides an abstract
pipeline component
com beasys. commer ce. ebusi ness. cust oner. pi pel i ne. Updat eUser PCwith the
following method:
public void setCustonerProperty(String key, Object val ue,
Cust omer cust oner)
throws java.rm . Renot eException

This method takes a property name (“key”), the value of the property (“value”), and areference to the
customer entity (“customer”). For instance, you may use the following pipeline component to add a
new attribute called “ preference” for a given customer:

public class M/PC extends UpdateUser PC {
public voi d updat eCust oner (Pi pel i neSessi on pSessi on,

Cust oner custoner,

BEA WebLogic Commerce Server and Personalization Server Technical Article

Cust omrer Val ue cust oner Val ue)

t hrows Pi pel i neFat al Excepti on

try {
set Cust ormer Property("preference", “Loves nusic”,

cust omer) ;

}

Given a customer, you can use the following snippet in your JSPsto read such runtime attributes:

<umget Profile profil eKey="<%request. get Renot eUser () %"
profil eType="W.CS Custoner" />

<l-- CGet the “preference” -->
<um get PropertyAsStri ng propertyNanme="preference" />

In the above example, ther equest . get Renot eUser () method returnsthe login name of the
customer accessing the page. Thepr of i | eType isaUUP name, and WebL ogic Commerce Server
specifiesthe customer entity asa UUP of type“WL.CS_Cust oner .” The

<um get Pr opert yAsSt r i ng> tagisone of the user management tags to extract user attributesin

JSP pages. For more documentation on user management tags, please refer to
http://edocs.bea.com/wl cs310/p13ndev/jsptags.htm.

Before you attempt to consider adding run-time attributes to the customer data, please bear in mind
that this approach is meant only for quickly adding attributes without changing the schema. The
WebL ogic Commerce Server persists run-time attributes in tables that are internal to WebL ogic
Commerce Server. Consequently, you cannot execute SQL level operations on such data.

Adding Runtime Attributes to Other Entities

For the entities the order-processing package (viz.,
com beasys. commer ce. ebusi ness. shi ppi ng. O der,

com beasys. comer ce. ebusi ness. shi ppi ng. Paynent Tr ansact i on, and
com beasys. commer ce. ebusi ness. shi ppi ng. Shi ppi ngMet hod), there existsasimilar

mechanism for adding runtime attributes. All the entities in the order-processing package extend the
com beasys. comer ce. f oundat i on. Conf i gur abl eEnti t y interface, which providesthe

following methods for adding and manipulating run-time attributes.
public void setProperty(String key, Object val ue)
throws java.rm . Renot eException

Using this method you can set a new property on an entity. Y ou can use the following method to
access attribute later:

public Cbject getProperty(String key)
throws java.rm . Renot eException
This method returns a previoudly added property.

For more information, including the AP, refer to
http://edocs.bea.com/wlcs310/javadoc/wics/index.html.

BEA WebLogic Commerce Server and Personalization Server Technical Article

Extending the Schema

The following are some of the common drivers for extending the WebL ogic Commerce Server
schema:

Extending the schema of the WebL ogic Commerce Server to meet your existing schema.
Enhancing the WebL ogic Commerce Server to modify or add new functionality.
Both these drivers manifest in the following:

Modifying (or sometimes adding) the templates to render and/or collection additional datafrom
the user interface.

Modifying the webflow to change the flow of user interaction.
Extending the WebL ogic Commerce Server schema.

Note: Almost al the datain the Order-Processing package is meaningful across your business, for you
may want to apply SQL level semanticsfor creating, updating and querying. Depending on the nature
and scale of your commerce site, the WebL ogic Commerce Server and your backend applications may
depend on this data. Any extension to the schema of the order-processing package cannot be
represented with runtime attributes, as runtime attributes cannot be accessed directly via standard SQL.

Hereis an example scenario. Consider anew attribute called “tracking number” on your Order.
Typicaly thisis an attribute generated after order fulfillment by your backend order fulfillment
application. Y ou may want to display this tracking number on WebL ogic Commerce Server order
history pages for customersto view the tracking information. Thisisadomain specific attribute that
best be persisted in the WLCS_ORDER table (or another table that you created for this purpose).

In this section, let’ s the consider the following cases, and discuss approaches that meet the above
needs:

1. Adding attributes against WLCS CUSTOMER, WLCS_ORDER, WLCS TRANSACTION and
WLCS _SHIPPING._ METHOD

2. Adding attributes against WLCS_ORDER_LINE WLCS_SHIPPING_ADDRESS, and
WLCS CREDIT_CARD tables

Note: These two cases are discussed separately because the tablesin case 2 participate in aone-to-
many association with WLCS_ORDER and WLCS CUSTOMER tablesin case 1.

Overview of Approach to Extending the WebL ogic Commerce Server
Schema

The following figure presents an overview of the approach for “ extending the WebL ogic Commerce
Server schema’ and NOT for “integrating the WebL ogic Commerce Server schemawith your
existing schema’ or for “mapping the WebL ogic Commerce Server schema onto your existing
schema.”

BEA WebLogic Commerce Server and Personalization Server Technical Article

Figure 2: Extending the Data M odel

Webflow/Pipeline Processing

Il

Input Processor

Input Processor

Additional
I Input Processor I validation/preprocessing

Pipeline Component WLCS
o > WLCS Entities Tables
% Pipeline Component
Q.
o Custom Data Custom
I Pipeline Component Il— Access Tables

g

Figure 2 demonstrates how a given webflow/pipeline processing can be modified to process additional
data, without modifying existing input processors and pipeline components. In Figure 2, the blocks
with thick borders are new input processors and pipeline componentsinserted to process the additional
data. While the WebL ogic Commerce Server pipeline components manage the WebL ogic Commerce
Server data viathe WebL ogic Commerce Server entities, the new pipeline component in the pipeline
may directly access the dataviaplain JDBC, or indirectly viaanother layer of custom entity beans.
Alternatively, the new pipeline component may also delegate this data access to legacy data access
mechanisms.

Aswe shall discussin alater section, depending on whether the additional data should be processed
with in the same transaction, or in a new transaction, or no transaction at all, you can split the above
pipeline into more than one pipeline each of which will have its own transaction setting.

Adding Attributes Against WLCS CUSTOMER, WLCS_ORDER,
WLCS TRANSACTION and WLCS SHIPPING._ METHOD Tables

Let’snow consider the case of the customer, order, payment, and shipping method tables. The general
approach isasfollows:

Step 1: Design new tables

For each of the above tables, design new table(s) for the additiona attributes with the same primary
key. For instance, for extending order data, consider a new table with ORDER _ID asthe primary key.
Although it is tempting to extend the WebL ogic Commerce Server tables for such attributes, we
recommend against doing so, asit could lead to compatibility issues and potential name collision
issues with future releases of WebL ogic Commerce Server.

BEA WebLogic Commerce Server and Personalization Server Technical Article

Step 2: Modify corresponding JSP templates
If the new datais user-entered, modify the corresponding JSP templates to add new fieldsin the forms.
Step 3: Implement new input processor

Implement a new input processor to read validate/preprocess the new data. Since input processors can
be chained against a webflow event, adding a new input processor gives you more flexibility when
compared to modifying an existing input processor for the same input processor chain. After validating
the data, add the collected data to the pipeline session for further processing in the pipeline. Depending
on whether such dataiis required beyond the scope of the current HTTP request or not, use the
appropriate scope (session scope or request scope) while adding data to the pipeline session.

Step 4: Includethe new input processor.
Modify the webflow.properties to include the new input processor.
Step 5: Implement a new pipeline component.

Implement a new pipeline component to extract the additional datafrom the pipeline session, and write
to the new tables. Obtain the primary key from the respective entity. For example, for storing
additional attributesfor the order entity, call theget | dent i fi er () method on the order entity.
This method returns the primary key for the WLCS_ORDER table for the current order.

Step 6: Obtain a database connection.

To obtain a database connection, usetheget Connect i on() method in the abstract base class
com beasys. commer ce. f oundat i on. pi pel i ne. Conmer cePi pel i neConponent . You

may recall that al pipeline components extend this abstract class. This method returns a connection
from thecommrer cePool setup inthewebl ogi c. properti es file. However, if you want to use

adifferent connection pool, modify the property conmer ce. j dbc. pool . ur| property inthe
webl ogi ccommer ce. properti es fileto point to adifferent data source wrapping the new
connection pool.

Step 7: Include the new pipeline component.
Modify the pipeline.propertiesto include the new pipeline component.

To query for such additional data, you may follow asimilar procedure.

Adding Attributes Against the WLCS_ORDER_LINE Table

In the WebL ogic Commerce Server, an Order entity aggregates a collection of Or der Li ne objects,
with each Or der Li ne object representing an order line in the database in the WLCS ORDER_LINE
table, with ORDER_LINE_ID asthe primary key.

These collections are internally based on the Java collections API, with primary keys generated while
storing the order entity.

The following procedure appliesin case you want to extend the WLCS_ORDER_LINE table.
Step 1: Design anew table.

Design anew table for the additiona attributes with the same primary key. For extending the
ORDER_LINE table, consider anew table with ORDER_LINE_ID asthe primary key.

Step 2: Modify the corresponding JSP template.
If the new datais user-entered, modify the corresponding JSP templates to add new fieldsin the forms.
Step 3: Implement a new input processor.

Implement a new input processor to read validate/preprocess the new data. The procedure is similar to
that of step 3 of the previous section.

10

BEA WebLogic Commerce Server and Personalization Server Technical Article

Step 4: Includethe new input processor.
Modify the webflow.properties to include the new input processor.
Step 5: Implement a new pipeline component.

Implement a new pipeline component to extract the additional datafrom the pipeline session, and write
to the new tables. However, since the primary key for the WLCS _ORDER_LINE tableisinterna to
the WebL ogic Commerce Server, consider the following code snippet in your new pipeline component
for obtaining the ORDER_LINE_ID for agiven order line:

String orderld = null;

order.getldentifier();

String sku = ...; // Get the sku fromthe corresponding |ine

/1 in the shopping cart.

try {
Connection ¢ = get Connection();
String statement = "SELECT ORDER LINE I D FROM \

W.CS_ORDER LI NE WHERE ORDER | D = ? AND PRODUCT_ID = ?";
Pr epar edSt at ement preparedStatenent = null;
prepar edSt at enent = c. prepar eSt at enent (st at enent) ;
pr epar edSt at enent . set Qoj ect (1, ordereld);
pr epar edSt at enent . set Gbj ect (2, sku);
Result Set rs = preparedSt at enent . execut eQuery();
/1 The result set should now have a row contai ni ng
/1 the ORDER LINE ID. Add your custom JDBC here to
/1 persist the additional data for the order I|ine.
Step 6: Update the deployment descriptor.

Before you deploy the new pipeline component, there is one additional step to be perfomed —that isto
update the deployment descriptor of the order entity asfollows:

Unjar thel i b\ ebusi ness. j ar into atemporary directory

Open thewebl ogi c-ej b-j ar. xm file. You can find it under the META-INF subdirectory
from where you unjared.

In thisfile, search for the following entry, and add the text marked in bold.
<webl ogi c- ent er pri se- bean>

<ej b- nanme>

com beasys. comrmer ce. ebusi ness. order. O der
</ ej b- name>
<per si st ence-descri pt or >

<i s-nodi fi ed- met hod- nane>

i sModi fied
</is-nodi fi ed- net hod- nane>

<del ay- updat es-unti | - end- of -t x>

11

BEA WebLogic Commerce Server and Personalization Server Technical Article

fal se
</ del ay- updat es-unti |l - end- of -t x>
</ per si stence-descri pt or >

<ref erence-descri pt or>

</reference-descriptor>

<enabl e-cal | - by-r ef er ence>t rue</ enabl e-cal | - by-
ref erence>

<j ndi - name>
com beasys. comrmer ce. ebusi ness. order. O der
</j ndi - name>
</ webl ogi c-ent er pri se- bean>
Jar the contents of the temporary directory, and run theebc to create anew ebusiness.jar
Replacethel i b\ ebusi ness. j ar withthe newly created ebusi ness. j ar.

Step 6 ensuresthat the order and order-line datais available for executing queriesin the new pipeline
component.

Step 7: Include the new pipeline component.

Modify the pipeline.propertiesto include the new pipeline component.

Adding Attributes Against the WLCS CREDIT_CARD and
WLCS SHIPPING_ADDRESS Tables

The following procedure appliesin case you want to extend the WLCS_ORDER_LINE table.
Step 1: Design new tables.

For each of the above tables, design new table(s) for the additiona attributes with the same primary
key. For extending the WLCS_CREDIT_CARD table, consider anew table with CREDIT_CARD_ID
asthe primary key. Similarly for the WLCS_SHIPPING_ADDRESS table, consider a new table with
SHIPPING_ADDRESS |D asthe primary key.

Step 2: Modify corresponding JSP templates.
If the new datais user-entered, modify the corresponding JSP templates to add new fieldsin the forms.

Step 3: Add “mapKey” attributetothe Pipeline Session.

Modify the com.beasys.commerce.ebusiness.customer.webflow.UpdatePaymentinfol P to add the
“mapKey” attributetothePi pel i neSessi on. Similarly, in the case of shipping address, add the

“Shi ppi ngAddr essMapKey” attribute to thePi pel i neSessi on inthe
com beasys. commer ce. ebusi ness. cust oner . webf | ow. Updat eShi ppi ngl nf ol P

Step 4: Implement new input processor .

Implement anew input processor to read validate/preprocess the new data. Reconfigure
webflow.properties to include the new input processor.

Step 5: Implement new pipeline component.

Implement a new pipeline component to extract the additional datafrom thePi pel i neSessi on,
and write to the new tables. However, since the primary keysfor the WLCS CREDIT_CARD and

12

BEA WebLogic Commerce Server and Personalization Server Technical Article

WLCS _SHIPPING_ADDRESS tables are internal to the WebL ogic Commerce Server, consider the
following code snippet in your new pipeline component for obtaining the primary keys. Although the
following snippet describesthe steps for credit card data, the same procedure appliesto shipping
address data.

/[l Get the custoner ID
String custonerld = null;

custoner.getldentifier();

[l Get the map key for the credit card fromthe
[l pipeline session. Refer to Step 3.
String mapKey = pipelineSession.getAttribute(“nmpKey”);

try {
Connection ¢ = getConnection();
String statenent = "SELECT CREDI T_CARD | D FROM \

W.CS_CREDI T_CARD WHERE CUSTOMVER | D = ? AND MAP_KEY =
?" .

Prepar edSt at enment preparedSt atenment = nul |
prepar edSt at enent = c. prepareSt atenent (st atenent);
pr epar edSt at enent . set Obj ect (1, custonerld);

pr epar edSt at enent . set Obj ect (2, mapKey);

Resul t Set rs = preparedSt at enent. execut eQuery();
/1l The result set should now have a row contai ni ng
/1 the CREDI T_CARD _CARD I D.
/1 Add your custom JDBC for your tables here.
Step 6: Modify deployment descriptor.
Similar to the case of order-line attributes, modify the deployment descriptor for the Customer entity.
Unjar thelib\ebusiness.jar into atemporary directory, say for instance,
jar —=xvf lib\ebusiness.jar c:\tenp\ebusiness
Goto c:\temp\ebusinessMETA-INF, and open webl ogic-gjb-jar.xml file.
Inthisfile, search for the following entry, and add the text marked in bold.
<webl ogi c-enterpri se-bean>
<ej b- nane>
com beasys. commer ce. ebusi ness. cust oner . Cust oner
</ ej b- nanme>
<persi stence-descri ptor>

<i s-nodi fi ed- net hod- nane>

13

BEA WebLogic Commerce Server and Personalization Server Technical Article

i sModi fied
</i s-nodi fi ed- net hod- nane>
<del ay- updat es-until - end- of -t x>
fal se
</ del ay- updat es-until - end- of - t x>
</ per si st ence-descri ptor>
<r ef erence-descri pt or>

</reference-descriptor>

<enabl e-cal | - by-reference>true</enabl e-cal | - by-
ref erence>

<j ndi - nanme>
com beasys. commer ce. ebusi ness. cust oner . Cust oner
</j ndi - name>
</ webl ogi c-ent erpri se- bean>
Jar the contents of the temporary directory, and run the gjbc to create anew ebusiness.jar
Replace thelib\ebusiness.jar with the newly created ebusiness.jar.
Step 7: Include new pipeline component.

Modify the pipeline.propertiesto include the new pipeline component.

Transaction Management

In the webflow/pipeline infrastructure, you can declaratively demarcate pipelines within transactions.
Although the default pipeline configuration has certain default settings on the pipelines, you should
reconsider your options while deploying your extensions on the WebL ogic Commerce Server.

Depending on how you' re customizing a use case flow, consider if the new pipeline component should
participate in a preexisting pipeline? The answer depends on whether the database accessin the new
pipeline component is part of another unit of work or not.

In cases such as capturing additional order/order line information, add the new pipeline component to
CommitOrder pipeline. Thisisatransactional pipeline, and therefore the updates made in the new
pipeline component would happen in the same transaction as that of the CommitOrder pipeline.

If the database access new pipeline component isindependent of any existing pipelines, define anew
pipeline with the new pipeline component. Note that, you can chain multiple pipelines. For instance,
consider four pipeline components A, B, C, and D. If A, B, and C are required to execute within a
single transaction, while D is not, define two different pipelines (one consisting of A, B, and C), and
the other consisting of D. Set the first pipeline to be transactional, and depending on whether D should
execute in its own transaction or no transaction at all, specify the second pipeline to be transactional or
not.

14

BEA WebLogic Commerce Server and Personalization Server Technical Article

Summary

This document discusses on the data extensibility mechanismsfor the customer registration and order
processing packages of the WebL ogic Commerce Server 3.1 product. The approaches suggested in this
document leverage the webflow/pipeline infrastructure to extend the out-of-the-box datamodel to meet
your business-specific commerce scenarios. The goa of these approaches has been to minimize the
code dependency impact on the out-of-the-box functionality of the WebL ogic Commerce Server.

15

