
Using the BEA WebLogic

B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 2 . 0
D o c u m e n t E d i t i o n 2 . 0

A p r i l 2 0 0 0

Personalization Server

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the BEA WebLogic Personalization Server

Document Edition Date Software Version

1.0 January 2000 BEA WebLogic Personalization Server 1.7

1.1 February 2000 BEA WebLogic Personalization Server 1.7.1

2.0 April 2000 BEA WebLogic Personalization Server 2.0

Using the BEA WebLogic Personalization Server iii

Contents

About This Document
What You Need to Know ..x

e-docs Web Site ...x

How to Print the Document... xi

Contact Us! .. xi

Documentation Conventions .. xii

1. Overview of the Personalization Server
What is the Personalization Server? .. 1-1

Property Set Management ... 1-2

Personalization Advisor... 1-3

User Management.. 1-3

Content Management... 1-3

Rules Management .. 1-4

Portal Management.. 1-5

2. Creating and Managing Portals
Introduction to Portal Development .. 2-2

What is the difference between a portal and a portlet? 2-4

More about Personalization Server portals and portlets............................. 2-5

Pluggable Portlets ... 2-5

Portal-to-Go.. 2-6

Portal personalization... 2-6

The Acme Demo Portal.. 2-7

How to create a portal .. 2-7

Where to get more information .. 2-8

Getting Started with the BEA WebLogic Portal ... 2-9

iv Using the BEA WebLogic Personalization Server

Running the Portal-to-Go ... 2-9

Jar files.. 2-10

Developing Portlets ... 2-11

What is a portlet?.. 2-11

Creating a portlet application ... 2-13

Defining the Portlet JSP .. 2-14

Working Within the Portal Framework... 2-15

Using example portlets ... 2-21

Portlet JSP example .. 2-24

Creating and Administering Portals .. 2-26

Setting Up .. 2-27

Set the WebLogic Server document root.. 2-27

Configure the portal service manager to control portal access................. 2-28

Create a portal web site directory under the server document root.......... 2-30

Logging On to the Portal Administration Tool ... 2-31

Using the Portal Administration Tool .. 2-33

Administering portlets .. 2-33

Creating Portlets .. 2-36

Editing Portlets ... 2-38

Deleting Portlets ... 2-39

Administering portals ... 2-39

Creating Portals .. 2-40

Editing Portals ... 2-41

Deleting Portals .. 2-46

Administering portal groups... 2-46

Editing Portal Groups ... 2-47

Testing Your Portal ... 2-50

Creating a Portal Using the Demo Portal .. 2-50

Building the Acme Demo Portal components ... 2-51

Creating portlets for your demo portal ... 2-52

Associating portlets with your demo portal.. 2-55

Editing your demo portal layout... 2-56

Editing your demo portal color scheme.. 2-57

Testing Your Demo Portal... 2-58

BEA WebLogic Portal Framework Files... 2-59

Using the BEA WebLogic Personalization Server v

Internationalization.. 2-61

Properties Files ... 2-62

Static Text.. 2-62

Constructed Messages ... 2-63

3. Creating and Managing Property Sets
Overview of Property Sets... 3-1

Property Value Retrieval via ConfigurableEntity ... 3-5

Using the Property Set Management Tool .. 3-7

Creating Property Sets.. 3-7

Creating Properties within a Property Set .. 3-8

Editing Property Sets.. 3-10

Editing Properties within a Property Set .. 3-11

Deleting Property Sets.. 3-12

Deleting Properties ... 3-12

4. Creating and Managing Users
Overview of User Management... 4-2

Users and Groups .. 4-3

Unified User Profiles ... 4-4

Configuration 1 .. 4-5

Configuration 2 .. 4-6

Configuration 3 .. 4-7

Configuration 4 .. 4-7

Using WebLogic Realms... 4-18

Anonymous User Profiles.. 4-21

User Manager .. 4-21

Using the User Management Tool... 4-24

Creating groups .. 4-24

Deleting groups .. 4-25

Adding users to groups... 4-26

Removing users from groups ... 4-28

Editing group property values .. 4-29

Creating users ... 4-30

Editing user property values... 4-31

vi Using the BEA WebLogic Personalization Server

Deleting users ... 4-32

Creating Unified Profile Types .. 4-33

Editing Unified Profile Types .. 4-34

Deleting Unified Profile Types .. 4-35

Registering group attributes for retrieval from LDAP 4-35

Deleting user attributes from LDAP... 4-36

Adding group attributes in LDAP .. 4-36

Unregistering group attributes for retrieval in LDAP 4-37

Viewing LDAP configuration settings ... 4-38

Selecting groups for the Personalization Server from realm.................... 4-39

Mapping realm groups to the Personalization Server............................... 4-40

Deleting groups from your database... 4-41

Deleting user records from personalization database............................... 4-42

5. Creating and Managing Content
What is the Content Management Component? .. 5-2

Third-party tools and WLPS .. 5-4

Constructing queries using Java ... 5-4

Differences between content management and document management.... 5-4

Using the document servlet .. 5-5

JSP Tags ... 5-6

Configuring the Content Management component ... 5-7

Configuring the Document EJB deployment descriptor 5-7

Configuring the Document Schema EJB deployment descriptor............... 5-8

Configuring the DocumentManager EJB deployment descriptor 5-9

Example deployment descriptor file ... 5-10

Setting up Connection pools... 5-12

Example connection pool entry... 5-14

Using the Show Document Servlet... 5-14

Querying document content ... 5-15

Structuring a query ... 5-15

Using comparison operators to construct queries..................................... 5-17

Using the BulkLoader to load file-based content 5-18

Command line usage ... 5-18

How the BulkLoader finds files .. 5-19

Using the BEA WebLogic Personalization Server vii

How the BulkLoader finds metadata properties 5-20

Cleaning up the database... 5-22

Using Content Management JSP Tags ... 5-22

6. Creating and Managing Rules
What is the Rules Manager?.. 6-2

Well-known objects.. 6-2

What are Rulesheets? ... 6-3

Classifier rules.. 6-3

Content selector rules ... 6-4

Debugging rulesheets ... 6-5

What is the relationship between Property sets and rulesheets? 6-5

Content type and content selector rules .. 6-6

Using the Rules Management Administration Tool.. 6-6

Creating a rulesheet .. 6-7

Opening a rulesheet .. 6-7

Editing rulesheet properties.. 6-8

Saving a rulesheet... 6-8

Deleting a rulesheet .. 6-8

Navigating between rule types ... 6-9

Finding a rule ... 6-9

Creating a classifier rule... 6-10

Editing a rule .. 6-11

Editing rule properties .. 6-11

Adding an If user phrase to a rule .. 6-12

Editing an If user phrase... 6-14

Deleting a rule phrase... 6-15

Creating a content selector rule.. 6-16

Adding an If user classifier to a content selector rule phrase................... 6-17

Adding an And when phrase to a content selector rule............................ 6-17

Adding a Then display content phrase to a content selector rule............. 6-19

Editing a Then display content phrase ... 6-20

viii Using the BEA WebLogic Personalization Server

Using the BEA WebLogic Personalization Server ix

About This Document

This document explains how to use the BEA WebLogic Personalization Server to
create personalized applications for use in an e-Commerce site.

This document covers the following topics:

n Overview of the Personalization Server: An overview of all tools within
Personalization Server. See “Overview of the Personalization Server” on page
1-1.

n Creating and Managing Portals: Portal Management allows you to create
personalized application content on the Internet. See “Creating and Managing
Portals” on page 2-1.

n Creating and Managing Property Sets: Property Set Management allows you
to create property sets, the schema of personalization attributes, and the
properties that make up property sets. See “Creating and Managing Property
Sets” on page 3-1.

n Creating and Managing Users: User Management joins enterprise data about
users with profile data that is used to personalize the users’ view of the
application. See “Creating and Managing Users” on page 4-1.

n Creating and Managing Content: The Content Management component
provides content and document management capabilities for use in
personalization services. You can use the document management system (DMS)
provided as a reference implementation with WLPS Product Version: 2.0, or
you can use a third-party vendor’s DMS, including Interwoven
TeamSite/OpenDeploy product and Documentum 4i product. See “Creating and
Managing Content” on page 5-1.

n Creating and Managing Rules: The Rules Management component allows
developers to create business rules that turn on and off content and match

x Using the BEA WebLogic Personalization Server

content to users according to user profile information. See “Creating and
Managing Rules” on page 6-1.

What You Need to Know

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an eCommerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with the WebLogic Personalization
Server platform and related Web technologies as described below. The topics in this
document are organized primarily around development goals and the tasks needed to
accomplish them. Generally, a set of topics also speaks to a particular development
role and requires the basic knowledge with regard to the technology focus of that role:

n Java Server Page (JSP) developer creates JSPs using the tags provided or by
creating custom tags as needed.

n Application assembler, system analyst, or systems integrator writes rules, writes,
schemas, and monitors usage.

n System administrator installs, configures, deploys, and monitors the Web
application server.

n Java developer extend or modifies the Enterprise Java Bean (EJB) components
that make up the Commerce Server engine, if that level of customization is
needed.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Using the BEA WebLogic Personalization Server xi

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic
Personalization Server documentation Home page, click the PDF files button and
select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@beasys.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Personalization Server 2.0 release.

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

xii Using the BEA WebLogic Personalization Server

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

Documentation Conventions

Using the BEA WebLogic Personalization Server xiii

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xiv Using the BEA WebLogic Personalization Server

Using the BEA WebLogic Personalization Server 1-1

1 Overview of the
Personalization Server

This overview covers the following topics:

What is the Personalization Server?

Property Set Management

Personalization Advisor

User Management

Content Management

Rules Management

Portal Management

What is the Personalization Server?

The Personalization Server is a complete solution for building personalized
e-commerce sites.

Personalization is the means by which Web content developers can tailor an
application to a particular individual or group based on any number of criteria. The
criteria can be predefined user attributes such as age and gender, or can be based on
behavioral information gathered as the user navigates a site.

1 Overview of the Personalization Server

1-2 Using the BEA WebLogic Personalization Server

Using the Personalization Server, you can build Java-based Internet pages and sites
with dynamic, personalized document content. You can customize what content gets
delivered based on individual user profiles. The Personalization Server has a built-in
rules editor that you use with Java Server Pages (JSP) tags to deliver a responsive,
customized experience for users.

With the Personalization Server you can build a wide range of portal types, from
business-to-consumer “megaportals” to business-to-business enterprise portals. What
this means for your e-Commerce enterprise is a flexible, personalized, Web presence
that listens and responds to your customers and partners based on what you define as
important factors.

The Personalization Server makes extensive use of J2EE mechanisms such as Java
Server Pages (JSP) with tag library extensions, session and entity Enterprise Java
Beans (EJBs), and Java Naming Directory Interface (JNDI).

The Personalization Server is a complete solution that enables rapid deployment of
adaptable and personalized applications, allowing your businesses to extend
competitive advantage and accelerate response time to customer and market demands.

Property Set Management

In the Property Set Management tool, you create property sets and define the properties
that make up those property sets. Property Set Management provides schema details to
personalization server subsystems such as User Management and Rules Management.
Group, user, request and session schemas can be created in Property Set Management.
Such profile schemas prescribe sets of profile attributes. A property can be considered
a name/value pair. Property sets serve as a namespaces for properties, so that properties
can be conveniently grouped, and so that multiple properties with the same name can
be defined. For more information on Property Sets, see Creating and Managing
Property Sets.

Personalization Advisor

Using the BEA WebLogic Personalization Server 1-3

Personalization Advisor

The Personalization Advisor provides content personalization capabilities by using an
embedded rules engine to classify a user and create a dynamic query into a content
database to return personalized content for that user. The Personalization Advisor is an
EJB that can be accessed directly, but is typically accessed through a set of JSP tags.
These JSP tags allow HTML developers to assemble dynamic pages without writing
any Java code. The personalization advisor was built to scale for large e-commerce
web sites. It uses a pooling and caching mechanism to keep rules engines ready for
rapid evaluation of Personalization rules. For more information about the
Personalization Advisor, see the Personalization Advisor documentation.

User Management

User Management for the product is provided through a set of tools in our
administration application and alternatively through any WebLogic Server Realm.
Typically, new sites that rely on self-registration will use the WLPS user management
tools. For sites with large collections of existing users in the form of customers or
employees, the WebLogic Realm support can provide added security through products
such as LDAP servers. For more information about User Management, see “Creating
and Managing Users” on page 4-1.

Content Management

Content displayed in web pages may be simple or complex, statically or dynamically
determined, and stored in a variety of ways. A simple type of content may be a GIF
file; a complex type might be a “parse and display” of financial data from an external
database query. A static piece of content may be an included HTML page with a
company logo; a dynamic type may be a set of data representing stock quotes based on

1 Overview of the Personalization Server

1-4 Using the BEA WebLogic Personalization Server

user preferences and the current quote value. Example sources of content might
include: JSP, static HTML, XML, and files in many other formats; queries of external
and internal database systems; HTTP and FTP results from other servers; or the content
management system built into the Personalization Server.

The Personalization Server provides a content management component. Content that
needs to be queried in a dynamic or complex way, and content that changes over time,
are good candidates for storage using this component. Content stored in the content
management component may be queried directly from JSP, through specialized query
tags, or may be used by other components.

The content types are determined by the developer, as are the metadata properties that
will be associated with the content type. The property set management scheme is not
used to manage content properties, because the content management system is
responsible for that functionality. A standard set of metadata properties, such as author,
creation date, and MIME type, are automatically associated with all content types.

A set of object types is provided to construct queries to be submitted to the content
management component. The page developer has tags available to do this, and other
components use this facility as well. A collection of content objects is returned.

For more information on Content Management, see “Creating and Managing Content”
on page 5-1.

Rules Management

A rule can be thought of as a stylized if-then construct. In the Personalization Server,
rules are used to do two things: 1) classify users and 2) select content for display from
the content management system based on the user. A rules service is provided to take
the appropriate inputs for a particular user and return results.

A classification rule may be employed to determine what the user logged in fits a
certain classification, given the user's and current group's property values or the
Request or Session properties. So, for example, if a user is over 35, under 65, and is
male, then the user is considered a middle age man. If a classifier rule evaluates to true,

Portal Management

Using the BEA WebLogic Personalization Server 1-5

it returns a Classification object with the same name as the classification. The results
of this rule can be used by a page developer to vary the content displayed based on one
or more classifications.

Content selector rules, if they evaluate to true, will result in a query that can be sent to
the content management component. The if parts of the content selectors can make
decisions based on all the same types of criteria as the classification rules, and also can
use the current time to constrain when the rule is in effect. They can also refer to
classifier rules, so fundamental categorizations can be reused. The result of a content
selector is a ContentQuery object, which contains a query expression that can be
directly submitted to the content management component.

Rules in the Personalization Server are organized and saved in rulesheets. A rulesheet
may have any combination of classifiers and content selectors, which can be called by
name using the JSP tags.

For more information on Rules, see “Creating and Managing Rules” on page 6-1.

Portal Management

Portal Management provides an HTML windowing toolkit for web site developers,
group administrators and actual end-users to personalize, customize and individualize
the layout, look, and content of an e-commerce site. It provides these features through
a set of JSP tags, EJBs and administration tools. If the customer chooses to use the
Portal product, they will develop portlets in JSP. These portlets are mini-windows on
to information, content or application services available in the portal. They can be
minimized, maximized in their own window, edited, and provided with help. Once
built, a Portal administrator selects portlets for availability in their portal. Once
available, a portal user controls the layout and visibility of these windows.For more
information on Portal management, see “Creating and Managing Portals” on page 2-1.

1 Overview of the Personalization Server

1-6 Using the BEA WebLogic Personalization Server

Using the BEA WebLogic Personalization Server 2-1

2 Creating and Managing
Portals

The following topics are covered here:

Introduction to Portal Development
What is the difference between a portal and a portlet?
More about Personalization Server portals and portlets
Portal-to-Go
Portal personalization
The Acme Demo Portal
How to create a portal
Where to get more information

Getting Started with the BEA WebLogic Portal
Running the Portal-to-Go
Jar files

Developing Portlets
What is a portlet?
Creating a portlet application
Using example portlets
Portlet JSP example

Creating and Administering Portals

Setting Up
Set the WebLogic Server document root
Configure the portal service manager to control portal access
Create a portal web site directory under the server document root

2 Creating and Managing Portals

2-2 Using the BEA WebLogic Personalization Server

Logging On to the Portal Administration Tool

Using the Portal Administration Tool
Administering portlets
Administering portals
Administering portal groups

Testing Your Portal

Creating a Portal Using the Demo Portal
Building the Acme Demo Portal components
Creating portlets for your demo portal
Associating portlets with your demo portal
Editing your demo portal layout
Editing your demo portal color scheme

Testing Your Demo Portal

BEA WebLogic Portal Framework Files

Internationalization

Properties Files

Static Text

Constructed Messages

Introduction to Portal Development

Internet portals are a key part of many eCommerce applications. They provide an entry
point to the Internet as well as value-added services such as searching and application
integration. Portals can be divided into two major categories:

n MegaPortals

n Enterprise Portals

Introduction to Portal Development

Using the BEA WebLogic Personalization Server 2-3

Examples of MegaPortals include Netcenter and Yahoo! These provide a window to
information on the Internet and represent Business-to-Consumer web applications that
can be personalized.

Enterprise portals use general-purpose applications in addition to applications specific
to the enterprise or industry. These are Business-to-Business web applications, and in
many cases share Business-to-Consumer functionality.

The BEA WebLogic Portal™ allows you to quickly assemble both
Business-to-Consumer and Business-to-Business portals that require personalized
application content on the Internet.

To take full advantage of the BEA WebLogic Portal functionality, you need to know
how to:

n Run the WebLogic Server

n Create Java Server Pages (JSP)

n Set up database connections

n Set up portal service manager

The BEA WebLogic Portal is a set of Java Server Page (JSP) templates, JSP tag
libraries, Enterprise Java Beans (EJB), and tools that allow:

n A Java 2 Enterprise Edition (J2EE) portal web developer to build and assemble
the components for a portal page

n A portal group administrator to personalize a portal page for all the members of
a group

n A portal user to personalize a portal page

The BEA WebLogic Portal enables web developers to create portal web pages and
personalized application content for each portal user. The BEA WebLogic Portal uses
JSPs, a part of the J2EE specification, in conjunction with a special library of JSP tags,
standard HTML, Enterprise Java Beans (EJB), portal end user and the portal
administration tools, and a pre-configured database to store portal component entities.

2 Creating and Managing Portals

2-4 Using the BEA WebLogic Personalization Server

Portal applications, referred to as portlets, are JSP or HTML pages that create dynamic
content that can be personalized for your portal application. This content is organized
and displayed in the portal page according to the personalization information stored in
the portal’s personalization components.

Intelligent portals can act as tour guides to points of interest, tailored for individual
user preferences. For example, there are portals that concentrate on collecting and
delivering specialized areas of information such as stock trading and finances,
emerging technologies, or corporate information. For example, www.boston.com is a
specialized news portal and www.schwab.com is a specialized financial portal. Other
megaportals provide general channels of information such as health, weather, sports,
news, E-mail services, chat rooms, news groups, and so on.

Internet portals are an efficient way to exchange large volumes of information with
large groups of people. From the users’ perspective, most portals are organized as a
hierarchical web site where the main page provides an overview of or links to a set of
pages that provide a more detailed view of the data.

Static portals, like many corporate home pages, provide a standard set of information
to everyone who visits the site. In contrast, dynamic personalized portals, where the
information presented may differ based on who is viewing the portal, represent a far
more efficient and targeted way to do business. Well-known examples of dynamic
portals include www.amazon.com, www.ebay.com, www.excite.com, and
my.yahoo.com. With the Personalization Server, you can quickly build powerful,
dynamic portals like these, as well as static ones.

To deploy the BEA WebLogic Portal in a production environment, place the portal
database on any SQL-based DBMS for which you have a Java database connectivity
(JDBC) driver. SQL scripts are provided to create the necessary tables. For more
information, see “Getting Started with the BEA WebLogic Portal” on page 2-9.

What is the difference between a portal and a portlet?

A portlet is a highly focused channel of information served up by a portal. A portal can
contain many of these information channels. For example, an online retail portal could
provide a variety of interactive merchandise portlets, each presenting a different
specialty category such as mystery books, classical music CDs, and baseball
memorabilia.Unlike a static portal page, the deployment of portlets via the

Introduction to Portal Development

Using the BEA WebLogic Personalization Server 2-5

Personalization Server gives our online retailer the ability to dynamically respond to
customers based on profiles. With this technology, not only can the retailer provide
dynamic content, but also the customer can easily select and arrange their e-Commerce
portlets.

For example, a returning customer, Samantha, who loves mystery novels and ghost
stories could select the “mystery” portlet as central to her standard view of the
retailer’s home page. This would be done by means of an edit page made available by
the retailer. At the same time, the retailer could determine that Sam’s purchase choices
and portlet selections convey a taste for the unexplained. The Personalization Server
lets you incorporate sophisticated rules technology to automatically generate
responses to user profiles. A response could be the delivery of specialized information
via a portlet. In the case of the mystery hound, our fictitious retailer could offer up
recommendations about the latest thrillers and whodunnits on video.

More about Personalization Server portals and portlets

Generally, a main portal page is organized into smaller display areas. Using the
Personalization Server, the portal developer can create a main page layout, with
flexible methods for determining custom headers, footers, look and feel elements, and
the primary content areas.

Pluggable Portlets

The most information-rich part of the main page consists of a set of portlets, laid out
in columns. Each portlet is a small content area, provided to display a particular type
of information. These portlets are developed especially for each portal and are written
in JSP, so there is great flexibility in what can be displayed. There is a standard set of
development guidelines, coupled with portal services, to ensure portal and portlets are
well-behaved.

The primary way dynamic functionality of the personalization components is made
available to portlets is via custom JSP tags resident in tag libraries. These tags hide
much of the internal runtime complexity of the Personalization Server, presenting a
small, well-defined interface to its functions. Portlets may also access certain types of
personalization EJBs directly, using embedded Java to access Personalization Server
functionality.

2 Creating and Managing Portals

2-6 Using the BEA WebLogic Personalization Server

Each portlet may have a series of custom pages with specific functions associated with
it, accessed via button clicks on the portlet. An edit page may make available to the
user HTML input elements, in which the user can enter data on preferences specific to
that portlet. A full page (or pages) version may be brought up to show an arbitrary
amount of detail. A help page can be set up. The portlet may also be maximized,
minimized, or floated in its own window.

Portal-to-Go

When you install the BEA WebLogic Portal, a complete demo portal is set up for you
and ready to run. This ready-made portal-to-go uses the Cloudscape Database
Management System (DBMS) to store the Portal Demo data. Use the portal-to-go to
quick start your portal development. The Cloudscape database is included with
WebLogic Server under a limited evaluation license. Because of the limitations of the
Cloudscape database, other databases should be considered. The database stores all of
the portal framework information needed to support the portal components.

Portal personalization

Personalization allows you to customize your portals and portlets to serve a specific
audience and purpose. The BEA WebLogic Portal supports three levels of
personalization, all of which can be administered with web-based tools. The three
levels or personalization are as follow:

n Portal

n Group

n User

Personalization includes web-based forms for adding and removing portal content,
editing the content layout, and customizing the portal content color schemes. The user
personalization information includes user information and general user preferences.

Introduction to Portal Development

Using the BEA WebLogic Personalization Server 2-7

The Acme Demo Portal

The BEA WebLogic Portal includes a fully operational demo portal called the Acme
Portal. The demo portal includes the following:

n Portal page JSP templates - header, footer, and portal content layout JSP pages

n Sample portlet applications including portlet JSP pages

n A complete set of end-user portal personalization tools, including:

l User login and new user registration web forms

l Change-password and forgot-password web forms

l End-user personalization tools for customizing portal content

l Help pages

All of JSP pages for the Demo Portal are located in the following installed product
directory, public_html/portals/repository.

For the Cloudscape demo portal, you are ready to run this demo immediately after you
complete the BEA WebLogic Portal installation.

How to create a portal

1. Create portlet applications for your portal.

A portlet is a JSP page that represents portlet application content displayed in
the portal page. The portlet JSP page is responsible for creating the content
which is displayed in the portal page.The BEA WebLogic Portal provides
several sample portlet applications for practice.

2. Create a new portal directory.

a. Create a new directory in the PORTALS directory.

b. Copy any new or updated JSP files into your new directory.

c. Add a new Portal Service Manager to the weblogic.properties file.

2 Creating and Managing Portals

2-8 Using the BEA WebLogic Personalization Server

d. Use the Portal Administration Tool to create a new portal.

3. Use the Portal Administration Tool to assemble and personalize the portal.

This is done by first adding portlets and portal groups to the portal and then
personalizing them.

4. In the BEA WebLogic Portal demo pages, replace the Acme logo with your own
portal logo.

The graphic images for the demo portal are located in the installed product
directory, server/public_html/portals/repository/images.

For more information on portals or portlets, refer to the following:

For information on creating a portal, see “Creating and Administering Portals” on page
2-26”.

For information on building and running a Demo Portal, see the “Creating a Portal
Using the Demo Portal” on page 2-50.

For information on creating a portlet application, see “Creating a portlet application”
on page 2-13.

Where to get more information

You may need to consult the following documentation when using the BEA WebLogic
Portal:

n http://edocs.beas.com/wlcs/index.htm

n Using WebLogic JSP

n Using the Cloudscape database with WebLogic

n Using WebLogic JDBC

n JSP documentation from JavaSoft at http://java.sun.com/products/jsp

Getting Started with the BEA WebLogic Portal

Using the BEA WebLogic Personalization Server 2-9

Getting Started with the BEA WebLogic
Portal

The BEA WebLogic Portal™ is used in conjunction with WebLogic Server 5.1 The
JavaServer™ Pages (JSP) tag libraries, portal database, class files, and documentation
for the BEA WebLogic Portal are distributed and installed by the BEA Commerce
Server setup program and scripts. This document describes the steps you should follow
upon completion of the installation process.

When you install the BEA WebLogic CommerceServer, a complete demo portal is set
up for you and ready to run. For running the demo portal, see Running the
Portal-to-Go.

For development and production systems, the BEA WebLogic Portal components
require a SQL-based database to store the portal personalization data. A DBMS such
as Oracle 8.0.5 database can be used to store this information. To set up a DBMS, see
Running the DBMS.

Running the Portal-to-Go

When you install the BEA WebLogic Portal, a complete demo portal is set up for you
and ready to run. This portal-to-go uses the Cloudscape Database Management System
(DBMS) to store the Portal Demo data. Use the portal-to-go to quick start your portal
development.

To start the portal-to-go demo:

1. Start the WebLogic server by executing the StartCommerce command file in your
installation directory.

2. Open a web browser window.

3. Enter the following demo portal page URL,
http://hostname:port/exampleportal in your web browser where
'hostname' is the name of the host running your WebLogic Server, 'port' is the

2 Creating and Managing Portals

2-10 Using the BEA WebLogic Personalization Server

port number at which the WebLogic Server is listening for requests, and
exampleportal is the name of the Portal Service Manager servlet for the demo
portal in the weblogic.properties file. The installed weblogic.properties file
provides defaults for the port (7601) and the Portal Service Provider
(exampleportal).

Example: http://mybigbox:7601/exampleportal

You can now use the BEA WebLogic Portal Administration Tool to view the Demo
Portal or assemble your own portal as described in “Creating and Administering
Portals” on page 2-26.

Jar files

The following table lists the installed jar files used by the BEA WebLogic Portal.
Additional jars support other Personalization Server functionality. These files can be
found in the installation lib directory.

Table 2-1 Jar Files Used by BEA WebLogic Portal

Jar File Description

.\lib\wljsp.jar WebLogic JSP

.\lib\esportal.jar BEA Portal Tag Library

.\lib\pt_admin.jar BEA Portal Tag Library

.\lib\esjsp.jar BEA Utility Tag Library

.\lib\ BEA User (um_-tags.jar)

.\ejb\portal.jar BEA Portal Components

.\ejb\axiom.jar BEA P13n Components

.\ejb\bridge.jar BEA P13n Components

.\ejb\foundation.jar BEA P13n Components

Developing Portlets

Using the BEA WebLogic Personalization Server 2-11

Developing Portlets

The BEA WebLogic Portal™ enables you to create your own Business-to-Business or
Business-to-Consumer Internet portal solution. An integral part of any portal solution
is the portlet application. This guide explains what you need to know to create a portlet
application including:

n The definition of a portlet application

n The steps necessary to develop a portlet application

n Portlet examples

n The code necessary to create a portlet application

To create a portlet application, you should be a J2EE developer with a background in
JavaServer Pages™ (JSP), JavaScript and HTML, and have a knowledge of Enterprise
Java Beans. Also, as a portlet developer, you need to read this document to learn about
the BEA WebLogic Portal framework and you should have experience with
configuring and running the WebLogic Server.

What is a portlet?

From the end-user point-of-view, a portlet is a specialized content area that occupies a
small 'window' in the portal page. For example, a portlet can contain travel itineraries,
business news, local weather, or sports scores. The user can personalize the content,
appearance, and position of the portlet according to the profile preferences set by the
administrator and group to which the user belongs. The user can also edit, maximize,
minimize, or float the portlet window.

2 Creating and Managing Portals

2-12 Using the BEA WebLogic Personalization Server

The following figure shows how portlets appear in a portal home page:

Figure 2-1 Portlet Homepage View

From a server application point-of-view, a portlet is a content component implemented
as a JSP that defines the static and dynamic content for a specific content subject
(weather, business news, etc.) in the portal page. The portlet JSP generates dynamic
HTML content from the server by accessing data entities or content adapters
implemented using the J2EE platform. The Portlet JSP then displays the content in the
portal.

Note: All of the portlets in a portal are included in a single HTML page, through the
use of the <jsp:include> action.

Developing Portlets

Using the BEA WebLogic Personalization Server 2-13

Figure 2-2 Portal Application Programming Model

The diagram shown above defines the portal application programming model. This
programming model includes JSP, JSP tags, JavaBeans, EJBs, data stores, and content
management stores. The portlet JSP contains static HTML and JSP code. This JSP
code uses application or content specific JSP tags and/or JavaBeans to access dynamic
application data through EJBs, content adapters, and legacy system interfaces. Once
this data is retrieved, the portlet JSP applies HTML styling to it and the generated
HTML is returned in the HTTP request to the client HTTP client.

Creating a portlet application

The portlet application is a JSP that contains code responsible for retrieving
personalized content and rendering it as HTML.

Once you have created your portlets, you can associate them with one or more portals.
Therefore, you must create your portlet applications before using the Portal
Administration Tool to create and define your portal.

2 Creating and Managing Portals

2-14 Using the BEA WebLogic Personalization Server

Defining the Portlet JSP

The portal treats portlets as components or HTML fragments, not as entire HTML
documents. The portal relies on the portlet application to create an HTML fragment for
its portlet content. The portal renders the portlet’s content in the portal page according
to the personalization rules (the row and column position, colors, etc.) for the portal,
group, and user levels.

When creating a portlet application, keep the following items in mind to ensure that
your portlets run efficiently:

n Avoid using forms in a portlet that update the data within the portlet. This causes
the entire portal to refresh its data which can be very time consuming. For more
information on using an HTML form in a portlet, see HTML Form Processing.

n Place items that require heavy processing in an edit page or a maximized URL.
Otherwise, the portal must wait for the portlet to process which considerably
slows down the painting of the portal.

To define your portlet JSP:

1. Create a JSP for your portlet content.

2. Create JSPs for the portlet banner, header, footer, alternate header, alternate
footer, help page, and edit URL as needed.

Note: You do not need to create a JSP for the portlet title bar because it is included
in the BEA WebLogic Portal
(public.html/portals/repository/titlebar.jsp). The portlet title bar
displays the appropriate portlet titlebar icons and the name of the portlet you
defined in the Portal Administration Tool.

Note: Avoid using the following HTML tags in your portlet content page. The
HTML generated by the portlet content page is an HTML fragment contained
in a larger portal HTML page, not a separate HTML document.

n <html></html>

n <header></header>

n <body></body>

n <meta></meta>

Developing Portlets

Using the BEA WebLogic Personalization Server 2-15

n <title></title>

3. Use the following portlet layout guidelines.

Working Within the Portal Framework

The portal framework consists of JavaServer Pages, JSP tag libraries, EJBs, Java
servlets, and other supporting Java objects. The main Java servlet is the Portal Service
Manager, referred to as the traffic cop. The Portal Service Manager receives all
incoming HTTP requests and dispatches each request to the appropriate destination
URL. As a result, all access to your portal pages is controlled by the Portal Service
Manager. The following diagram shows where the Portal Service Manager fits in the
portal framework.

Table 2-2

Layout Attribute Recommendation

Content Height There are no restrictions on height as long as the content fits in
your portal page.

Column Width Take into account that the width of your portlet is controlled by
the portal(s) it is associated with. A portal lays out your portlet
content in a column based on portal, group, and user
personalization rules. As a result, the width of your portlet
should be well behaved.

Content Wrapping Allow wrapping for all portlet content. Do not use the
NOWRAP attribute in table cells.

Titlebar Icon Height The image height attribute in titlebar.jsp is set to 20.

Titlebar Icon Width The image width in titlebar.jsp is set to 27.

2 Creating and Managing Portals

2-16 Using the BEA WebLogic Personalization Server

Figure 2-3 Portal Framework

Extending the PortalJspBase Class

It is recommended that your portlet JSP extend the framework’s PortalJspBase Java
class. This class contains many convenience methods which perform general tasks for
your portlet JSP page, such as accessing session information, the traffic uri, and user
login information.

To extend the PortalJspBase class, include the following code at the top of your
portlet JSP:

<%@ page
extends="com.beasys.commerce.portal.admin.PortalJspBase"%>

Accessing Portal Session Information

The portal session information you can access from the PortalJspBase class are
listed in the following table which lists the name, type, and description for each session
value. For more information, see the Portal API Documentation.

Table 2-3

Session Value Name Type Description

PortalAdminConstants.PORTAL_NAME String The name of the portal associated with the
current request.

JspConstants.SERVICEMANAGER_SUCCESSOR String The name of the successor associated with
the current session. The successor profile
properties are used for those properties not
specified by the user.

Developing Portlets

Using the BEA WebLogic Personalization Server 2-17

You can retrieve the portal session information described above through the following
PortalJspBase methods:

n public Object getSessionValue(String aName, HttpServletRequest
aRequest)

n public void setSessionValue(String aName, Object aValue,
HttpServletRequest aRequest)

n public void removeSessionValue(String aName,
HttpServletRequest aRequest)

You can set the portal session’s SERVICEMANAGER_USER and
SERVICEMANAGER_SUCCESSOR through the following JspBase methods:

n public static void setUser(String aUser, HttpServletRequest aRequest)

n public static void setSuccessor(String aSuccessor, HttpServletRequest
aRequest)

n public static void setUserAndSuccessor(String aUser, String aSuccessor,
HttpServletRequest aRequest)

JspConstants.SERVICEMANAGER_USER String The name of the user associated with the
current session.

UserManagerConstants.PROFILE_USER Configu
rable
Entity

The user profile associated with the current
request or the session.

UserManagerConstants.PROFILE_SUCCESSOR Configu
rableEn
tity

The group profile associated with the
current request or the session.

UserManagerConstantsPROFILE_SUCCESSOR_UI
D

Long Unique IDs for the configurable Entities.

UserManagerConstantsPROFILE_USER_UID Long Unique IDs for the configurable Entities.

SERVICEMANAGER_USER String The name of the user associated with
the current request.

Table 2-3

Session Value Name Type Description

2 Creating and Managing Portals

2-18 Using the BEA WebLogic Personalization Server

Sending Requests Through the Portal Service Manager

Remember that all HTTP requests and responses are sent to the Portal Service Manager
servlet. Therefore, your portlet HTML must refer to the Portal Service Manager’s URL
for URL links and HTML form processing.

Using URL Links in Your Portlet

If your portlet contains links to a JSP page that is not a portlet, use the following
PortalJspBase method to create your URL and to guarantee that the HTTP request
is sent to the service manager URL:

public String createURL(HttpServletRequest aRequest, String
destination, String parameters)

The destination should be a relative or qualified file location in the form such as
example/mytodo.jsp, or /yourportal/example/mytodo.jsp. The path is
relative to the documentRoot, as specified in weblogic.properties. Parameters
should be a string such as column=4&row=5.

Note: Parameter values should already be encoded as you would for any HTTP
request. Example: String parms = "column=" +
java.net.URLEncoder.encode("4");

Because of the way the JSP engine handles jsp:forward and jsp:include, you
must fixup the relative URLs in your portlet, especially relative links to images. The
web browser thinks the root for relative links is the directory in which the Portal
Service Manager resides and not your portlet’s directory.

To fixup relative URLs use the following ToolsJspBase method:

public static String ToolsJspBase fixupRelativeURL(String aURL,
HttpServletRequest aRequest)

where aURL is the destination URL to fix up and aRequest is the current HTTP
request. In your JSP page, use the following method to code a ’fixup’:

<img src="<%=fixupRelativeURL("images/quote.gif",
request)%>"width="50" height="35" border="0">

Developing Portlets

Using the BEA WebLogic Personalization Server 2-19

Note: For the repository feature to work with jsp:include and jsp:forward, use
reconcile file to determine the correct location of the file that is included or
forwarded.

Example: jsp:forward page=<reconcileFile(“login.jsp”)%>

HTML Form Processing

If your portlet contains an HTML form, send all requests to the Portal Service Manager
and set the destination request parameter.

To process HTML forms:

1. Set the form action to action=getTrafficURI(request). This sends the form
action request to the Portal Service Manager. This calls the PortalJspBase
method:

public String getTrafficURI(HttpServletRequest aRequest)

The following example shows the use of the HTML form action to send a form
request to the Portal Service Manager:

<form method="post" action="<%=getTrafficURI(request)%>">

2. Set the destination request parameter in the HTTP post request. This tells the
Portal Service Manager where to dispatch the request.

To set the request destination for HTML forms, enter the following code within your
form in your JSP page:

<input type="hidden" name="<%=DESTINATION_TAG%>"
value="example/mytodo.jsp">

Note: Do not go through the Portal Service Manager for HTTP requests to other
servers.

Retrieving the Home Page

The Portal Service Manager sets the home page for each portal in the Portal
Framework session information. The home page is registered as an initial argument for
Portal Service Manager servlet in weblogic.properties. Use the following
PortalJspBase method call to retrieve the home page:

public String getHomePage(HttpServletRequest aRequest)

2 Creating and Managing Portals

2-20 Using the BEA WebLogic Personalization Server

Retrieving the Current Page

You can also retrieve the current page from the Portal Framework session information
by using the following PortalJspBase method:

public String getCurrentPage(HttpServletRequest aRequest)

Note: When you maximize a portlet, the current page changes to
fullscreenportlet.jsp.

Setting the Request Destination

When routing a request through the Portal Service Manager, you must specify the
destination that should receive the request. The destination can be relative to the
current page (portal.jsp, full-screen portlet.jsp, etc.) or a fully qualified path from the
document root.

Note: The DESTINATION_TAG constant is available in PortalJspBase.

If your portlet contains links to other portal pages, use the following PortalJspBase
method to create your URL and to guarantee that the HTTP request is sent to the
service manager URL:

public String createURL(HttpServletRequest aRequest, String
destination, String parameters)

The destination should be a relative or qualified file location in the form such as
example/mytodo.jsp, or /yourportal/example/mytodo.jsp.

In some cases, you may need to override the request parameter used by the Portal
Service Manager. For example, use an override destination if your page contains a
form that needs to be validated and forwarded elsewhere after validation. Use the
following PortalJspBase method in your JSP page:

public void setOverrideDestination(HttpServletRequest req, String
dest)

To set the request destination for HTML forms, enter the following code within your
form in your JSP page:

<input type="hidden" name="<%=DESTINATION_TAG%>"
value="example/mytodo.jsp">

Developing Portlets

Using the BEA WebLogic Personalization Server 2-21

Tracking User Login Status

You can log the user in or out and track whether a user is currently logged in.

Use the following PortalJspBase method to track the user login status of a portal
session:

public void setLoggedIn(HttpServletRequest aRequest,
HttpServletResponse aResponse, boolean aBool)

public Boolean getLoggedIn(HttpServletRequest aRequest)

Loading Content from an External URL

According to the JSP specification, a JSP processed by a JSP engine must be relative
to the server in which the JSP engine is running, requiring that all of your portlets
reside in your portal server and not on an external web site. However, you can use the
uricontent tag to download the contents of an external URL into your portlet. If you
download the contents of a URL into your portlet, you need to fully qualify the images
located on the remote server because the relative links contained within the remote
URL will not be found unless fully qualified.

Use the following method to load content from an external URL:

<es:uricontent id="uriContent"

 uri="http://www.beasys.com/index.html">
<%
out.print(uriContent);
%>

</es:uricontent>

The sample <es:uricontent> tag is available in
public_html/portals/repository/portlets/_uri_example.jsp

Using example portlets

The /server/public_html/portals/repository/portlets directory of the
BEA WebLogic Portal contains example portlets. The following table lists the name
of each example portlet, its description, and its associated files.

2 Creating and Managing Portals

2-22 Using the BEA WebLogic Personalization Server

Caution: The example portlets are intended for illustration purposes only and should
not be used for production code.

Table 2-4

Example Portlet Description

_uri_example.jsp Demonstrates how to implement the uricontent
tag to import contents from another URL on the
Internet.

bookmarks.jsp Displays the bookmarks associated to the
current user.

n bookmarks_edit.jsp – Edit screen for
the bookmarks.

n images/pt_bookmark.gif –
Bookmark icon for the portlet titlebar.

definedportals.jsp Displays the portals defined in the system. Uses
the <es:foreachinarray>,
<es:simplereport>, and
<wl:sqlquery tags>.

definedportlets.jsp Displays the portlets defined in the system.
Uses the <es:foreachinarray>,
<es:simplereport>, and
<wl:sqlquery tags>.

dictionary.jsp Demonstrates how to redirect a portlet to an
external site.

n images/pt_dictionary.gif –
Dictionary icon for the portlet titlebar

generic_todo.jsp For a complete generic_todo.jsp
example, see Using the Default
Implementation.

news_index.jsp Demonstrate use of <cm:> tags.

news_viewer.jsp Display content driven from
content_index.jsp. (Use in conjunction
with content_index.jsp.).

Developing Portlets

Using the BEA WebLogic Personalization Server 2-23

grouptodo.jsp Displays a Group To Do List.

n todo.jsp – Statically included file that
does not run by itself. It requires user
information from grouptodo.jsp.

n grouptodo_edit.jsp – Edit URL for
grouptodo.jsp.

l todo_edit.jsp – Statically
included file that does not run by
itself. It requires user information
from grouptodo_edit.jsp.

n grouptodobanner.jsp – Banner for
the grouptodo.jsp.

n images/pt_group_list.gif – Group
To Do List icon for the portlet titlebar.

mytodo.jsp Displays a “My To Do List.”

n todo.jsp – Statically included file that
does not run by itself. It requires user
information from mytodo.jsp.

n mytodo_edit.jsp – ’Edit URL’ for
mytodo.jsp.

l todo_edit.jsp – Statically
included file that does not run by
itself. It requires user information
from mytodo_edit.jsp.

n images/pt_my_list.gif – ’My To
Do List’ icon for the portlet titlebar.

quote.jsp Demonstrates how to redirect a portlet to an
external site.

n images/pt_quote.gif – ’Quote’ icon
for the portlet titlebar.

Table 2-4

Example Portlet Description

2 Creating and Managing Portals

2-24 Using the BEA WebLogic Personalization Server

Portlet JSP example

The following example shows many of the defined method calls and tags mentioned
in this document. Each tag is a file in the default implementation directory
portals/repository/portlets, named generic_todo.jsp. The bean
associated with this file is example.portlet.bean.TodoBean. The source of the
bean is in <install-dir>/src/. Using these files, you can recreate each example in
your JSP file.

<%--
Set up the tag libraries for tag references. Also have the page extends
PortalJspBase, so that you can have access to helper methods.
--%>

<%@ taglib uri="lib/esjsp.jar" prefix="es" %>
<%@ page extends="com.beasys.portal.admin.PortalJspBase"%>
<jsp:useBean id="todoBean" class="example.portlet.bean.TodoBean"
scope="request"/>
<jsp:setProperty name="todoBean" property="*"/>

<%
// Get the user name out of the session
String owner =
(String)getSessionValue(com.beasys.portal.tags.PortalTagConstants.PORTAL_USER,
request);
%>

<%-- Use the preparedstatement tag to execute a query --%>
<es:preparedstatement id="ps" sql="<%=todoBean.QUERY%>" pool="jdbcPool">
<%
todoBean.createQuery(ps, owner);
java.sql.ResultSet resultSet = ps.executeQuery();
todoBean.load(resultSet);
%>

search.jsp Demonstrates how to redirect a portlet to an
external site.

n images/pt_search.gif – ’Search’
icon for the portlet titlebar.

Table 2-4

Example Portlet Description

Developing Portlets

Using the BEA WebLogic Personalization Server 2-25

</es:preparedstatement>
<%
String target = request.getParameter("target");
// Use this method to validate that the request that is being
// processed is actually for this jsp page.
if (target != null && target.equals(getRequestURI(request)))
{
%>
<es:preparedstatement id="ps" SQL="<%=todoBean.UPDATE%>" pool="jdbcPool">
<%
todoBean.process(request, owner, ps);
%>
</es:preparedstatement>
<%

}

// Get the enclosing window out of the session
// Get the current page out of the session.
// For this example, this value will be the
// fullscreenportlet.jsp (with args) or portal.jsp.

String value = getCurrentPage(request);
%>
<%--
set the action on the form to send the post back to the ’traffic cop’
--%>
<form method="post" action="<%=getTrafficURI(request)%>">
<table width="100%" border="1">
<tr>
<td>
<table width="100%" border="0">
<%
String[][] results = todoBean.asTable();
%>
<%--
Use the foreachinarray tag to iterate over the query results.
--%>
<es:foreachinarray id="nextRow" array="results" type="String[]">
<TR>
<td width="10%">
<div align="center">
<input type="checkbox" <%=nextRow[0]%> name="<%=todoBean.CHECKBOX+nextRow[2]%>"
value="ON">
</div>
</td>
<td width="10%" align="center"><%=nextRow[1]%></td>

2 Creating and Managing Portals

2-26 Using the BEA WebLogic Personalization Server

<td width="80%"> <%=nextRow[2]%></td>
</TR>
</es:foreachinarray>
</table>
</td>
</tr>
<tr>
<td>
<div align="center">
<input type="submit" name="updateButton" value="Update">
</div>
</td>
</tr>
</table>
<input type="hidden" name="owner" value="<%=owner%>">
<%--
Tell the ’traffic cop’ that you want the post to come back to this page.
--%>
<input type="hidden" name="<%=DESTINATION_TAG%>" value="<%=value%>">
<%--
Use getRequestURI(request)to get this page’s name and location.
Also use it if you want to verify that the request is for this page,
by setting a param for the target.
--%>
<input type="hidden" name="target" value="<getRequestURI(request)%>">

</form>

Creating and Administering Portals

The BEA WebLogic Portal Administration Tool contains a complete set of functions
that enable Portal Administrators to easily create and update BEA WebLogic Portal
database schema entities. With the HTML-based, graphical user interface tool, you can
build and assemble the components of a portal page and personalize the portal’s
content, layout, and appearance.

To properly create and administer a portal using the Portal Administration Tool, you
should know how to configure and run the WebLogic Server, set up database
connections, and set up portal service providers.

Setting Up

Using the BEA WebLogic Personalization Server 2-27

The following topics explain how to create and administer a portal using the BEA
WebLogic Portal Administration Tool.

Setting Up

Before using the Portal Administration Tool to create and administer a portal, you must
install and setup the BEA WebLogic Portal software.

You must also complete the following three tasks before you can to log on to and use
the tool:

n Set the WebLogic Server document root

n Configure the portal service manager to control portal access

n Create a portal web site directory under the server document root

Set the WebLogic Server document root

In the weblogic.properties file, set a WebLogic server document root in your
preferred Web publishing root directory. Example:

weblogic.httpd.documentRoot=yourDocumentRoot

Following is an example of the weblogic.properties file:

weblogic.httpd.register.exampleportal=com.beasys.commerce.portal.
admin.PortalServiceManager

weblogic.httpd.initArgs.exampleportal=\
portalname=exampleportal,\
homepage=/portals/repository/portal.jsp,\
defaultdest=/portals/repository/portal.jsp,\
workingdir=/portals/repository/,\
groupname=AcmeUsers,\

sessioncomparator=com.beasys.commerce.portal.admin.PortalSessionC

2 Creating and Managing Portals

2-28 Using the BEA WebLogic Personalization Server

omparator,\

refreshworkingdir=120,\
repositorydir=/portals/repository/,\
timeout=99999,\
allowautologin=false

Configure the portal service manager to control portal
access

The Portal Service Manager (PSM) controls user access to your portal. It is a Java
servlet that all portal framework HTTP requests must be sent to. Among other
functions, the PSM:

n Restricts unauthorized access to your portal and the JSP pages they control

n Cleans up the URL shown in the browser

n Creates a routing framework on which the program can rely

You must register an instance of this servlet in the weblogic.properties file for
each portal you deploy. The following is a sample PSM servlet registration for a portal
named myPortal.

weblogic.httpd.register.myPortal=com.beasys.portal.admin.PortalServiceManager
weblogic.httpd.initArgs.myPortal=\
portalname=myPortal,\
homepage=/portals/myPortal/portal.jsp,\
groupname=everyone,\
defaultdest=/portals/myPortal/_userlogin.jsp,\
timeout=999999,\
workingdir=/portals/myPortal/,\
allowautologin=true
refresh working dir =-1,\
repositorydir=/portal/Repository/,\
sessioncomparator=com.beasys.commerce.portal.admin.Portalsessioncomparator,\

The table below lists valid parameters for your initial registration of the PSM servlet.

Setting Up

Using the BEA WebLogic Personalization Server 2-29

Table 2-5 Valid Portal Service Manager Servlet Parameters

Parameter Name Required Description

portalname Yes The name given to the portal you created in the Portal
Administration Tool. Example: Demo Portal

homepage Yes The home page JSP returned by the system in auto-login
or from the portal home button. (This page is qualified
from yourDocumentRoot as defined in the
weblogic.properties file.) Example:
homepage=/portals/myPortal/portal.jsp

groupname Yes The default group name for this portal instance. (When
new users register, they are added to this group. This
parameter allows you to register two Portal Service
Managers that are alike except for the groups that they
service.) This value defaults to everyone.

defaultdest Yes The default destination page JSP if there is not a valid
session for the user. (This page is qualified from
yourDocumentRoot as defined in the
weblogic.properties file.)

To display a default portal page for anonymous users,
use:
defaultdest=/portals/myPortal/portal.j
sp

or

to force anonymous users to the login page instead of the
portal page use:
defaultdest=/portals/myPortal/_userlog
in.jsp

timeout No Timeout for the cookies or session valued in seconds and
defaulting to (-1).

If set to (-1), the cookies expire upon exiting the
browser. If cookies are disabled, the session invalidates
upon browser exit. To retain user login information
between browser sessions, set the timeout to a large
positive number, such as 999999, and set autologin=true.

2 Creating and Managing Portals

2-30 Using the BEA WebLogic Personalization Server

For more information on weblogic.properties servlet registration, see
http://www.weblogic.com/docs/admindocs/properties.html#http.

Create a portal web site directory under the server
document root

As a final step before using the Portal Administration Tool, create a web site directory
for your portal pages under your WebLogic server document root. Then copy all the
files from the portal ’quick start’ directory to your portal web site directory.

To copy files from the portal ’quick start’ directory to your web site directory:

1. Using the myPortal example in the preceding section, copy the files and
subdirectories from:

yourDocumentRoot/portals/repository

to

workingdir Yes The working directory JSP for the portal implementation
that tells the portal framework where to find your portal
pages and the BEA WebLogic Portal pages.(This page is
qualified from yourDocumentRoot as defined in the
weblogic.properties file.) Example:
workingdir=/portals/myPortal/

allowautologin No Determines whether a client with valid cookies can
automatically login. The default is false.

repositorydir Yes Location of default files, (gifs, JSP, etc.)

refresh workingdir No Number of seconds, defaults to -1, which means check
every time.

sessioncomparator Yes How to determine if the session is valid.

Table 2-5 Valid Portal Service Manager Servlet Parameters

Parameter Name Required Description

Logging On to the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-31

yourDocumentRoot/portals/myPortal

2. Verify that the Portal Service Manager workingdir property value in the
weblogic.properties file matches the name of the web site directory to which you
just copied the quick-start files. See the Quick-Start Directory and Subdirectories
table.

For example, if your server document root is public_html and your portal
working directory is /portals/myPortal/, create the following workingdir:

public_html/portals/myPortal/

Logging On to the Portal Administration
Tool

Once you have prepared the WebLogic server document root, configured the Portal
Service Manager, and created web site directory, you can log on to the Portal
Administration Tool.

Table 2-6 ’Quick-Start’ Directory and Subdirectories

Directory Description

/portals/repository The portal root directory that contains pages such as header.jsp,
footer.jsp, and portalcontent.jsp.

See Appendix A, BEA WebLogic Portal Framework Files, for an
explanation of these and other JSP files provided with the portal
framework.

/portals/repository/images A directory of images that support your portal and BEA WebLogic
Portal components.

/portals/repository/portlets The directory of all portal JSP and HTML pages and the BEA
WebLogic Portal sample portlet applications.

/portals/repository/portlets/
images

A directory of images that supports your portlets and BEA
WebLogic Portal portlets.

2 Creating and Managing Portals

2-32 Using the BEA WebLogic Personalization Server

To log on to the P13N Administration Tool:

1. Start the WebLogic server configured for portal use.

2. Access http://hostname:port/wlpsadmin in your web browser where
’hostname’ is the name of the host running your WebLogic Server, ’port’ is the
port number at which the WebLogic Server is listening for requests, and
portaladmin is the name of the Portal Service Manager servlet for the Portal
Administration Tool in the weblogic.properties file.

Note: All administration tools must be accessed through the JSP Service
Manager servlet.

A dialog box appears and prompts you to enter a username and password.

3. Enter the username system and use the password weblogic.password.system
property in WebLogic Commerce’s weblogic.properties file.

4. Click Ok to display the P13N Administration Tool home page.

5. Click the Portal Administration page icon.

Figure 2-4 shows the Administration Tool home page.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-33

Using the Portal Administration Tool

Figure 2-4 Administration Tool Home Page

Now that you have access to the Portal Administration Tool, you can use it to
administer portlets, portals, and business-to-business portal groups. Administrative
functions available in the tool include:

n Creating, editing, and deleting portals

n Creating, editing, and deleting portlets

n Personalizing a portal’s content, layout, and color scheme at the portal and group
levels

Administering portlets

To the portal framework, a portlet is a JSP page that knows how to retrieve specialized
content and display it in the portal application. To users, a portlet is one of many
content modules on a portal page that can be personalized to reflect appearance,
content, and layout preferences. Once a portlet is created in the Portal Administration
Tool, it can be associated with multiple portals.

2 Creating and Managing Portals

2-34 Using the BEA WebLogic Personalization Server

You can create, edit, and delete portlets in the Portlets section of the Portal
Administration Tool home page. All screens in the Administration Tool related to
portlet functions are color-coded with teal banners and command buttons. Screens
related to portal functions display tan banners and command buttons.

A portlet includes two required components, a titlebar and content area, and several
optional components including the banner, header, footer, edit URL, alternate header,
alternate footer, maximized URL, and help URL as shown in the following graphic:

Figure 2-5 Portlet Application Decomposed by Components

You can define each portlet application to include any of the following attributes:

n Editable—Enables the user to customize a portlet's content. For example, in a
stock portfolio portlet application users can click the Edit icon on the portlet
titlebar to access a page that enables them to add or remove stock symbols. If
you select this attribute, you must provide an Edit URL.

n Maximizable—Allows the portlet to be viewed fullscreen in the browser
window. This enables you to provide additional portlet content in the Maximized
URL.

The fullscreen page uses:

l An alternate header—If no alternate header is specified, the framework
uses the default alternate header.

l A maximize URL—If no maximize URL is specified, the framework uses
the portlet content area URL as a default.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-35

l An alternate footer—If no alternate footer is specified, the framework uses
the default alternate footer.

n When the user clicks the edit or maximize icons in a portlet, the portal
framework calls upon its fullscreen.jsp page to display in fullscreen mode.
The diagram below explains how the fullscreen.jsp page determines which
content to display.

Figure 2-6 Content Display Criteria

n Floatable—Allows the portlet to float on top of the portal screen in a separate
browser window. This attribute uses the same header and footer rules as the
maximized URL, but displays the content URL instead of the maximized URL.

n Minimizable—Reduces the portlet display to the titlebar to minimize the
amount of space the portlet occupies on the portal page.

n Helpable—Provides a Help icon in the portlet title bar that users can click to
access a URL that assists them with the portlet application. If you select this
attribute, you must provide a Help URL.

n Login Required—Requires the user to be logged on to the portal to view the
portlet. For example, if your portal contains a portlet that displays a user's
favorite bookmarks, the user must be logged on before the Bookmark’s portlet is
visible on the portal screen. This attribute helps maintain a secure portal and
allows users to retrieve personalized information.

2 Creating and Managing Portals

2-36 Using the BEA WebLogic Personalization Server

n Mandatory —A portlet can now be personalized to be mandatory. A mandatory
portlet is one that is always available and visible. The portlet can be made
mandatory at the definition, portal personalization, and group personalization
levels.

n titlebar URL — A URL can display as the portlet titlebar. It can be a JSP or
HTML fragment.

Creating Portlets

Before you use the Portal Administration Tool to create a portlet, place all your portlet
application files in the following directory:

yourDocumentRoot/portals/repository/portlets

You create a portlet in the Administration Tool by creating a portlet definition entity
(referred to in this document as a portlet) and associating portlet JSP URLs that have
been created by a portlet developer with the portlet entity. When a portlet is created, it
is not automatically associated with a portal. You need to add portlets to a portal later
from the portal view-page.

To create a portlet:

1. On the Portal Administration Tool home page, click create in the Portlets banner.
The Create a New Portlet tool displays.

2. Enter the appropriate information in the following required fields:

l Portlet Name — Any combination of numbers and letters will be accepted
in this field.

l Content URL — Enter a URL relative to your portal workingdir.

3. If desired, enter the appropriate information in the following optional fields:

l Header URL — Enter a URL to display as the portlet header. It can be a
JSP or HTML fragment.

l Footer URL — Enter a URL to display as the portlet footer. It can be a JSP
or HTML fragment.

l Titlebar URL — Enter a URL to display as the portlet titlebar. It can be a
JSP or HTML fragment.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-37

l Banner URL — Enter a URL to display as the portlet banner under the
portlet titlebar. It can be a JSP or HTML fragment. The following shows a
sample banner JSP page:

<%@ page extends="com.beasys.portal.admin.PortalJspBase"%>

<%@ page
import="com.beasys.portal.tags.PortalTagConstants"%>

<center>

To Do’s for

<%@
(String)getSessionValue(PortalTagConstants.PORTAL_GROUP,requ
est)%>

</center>

l Mandatory — A portlet can now be personalized to be mandatory. A
mandatory portlet is one that is always available and visible. The portlet can
be made mandatory at the definition, portal personalization, and group
personalization levels.

l Alternate Header URL — Enter a URL to display as a web page header
when the portlet is floated or maximized. If no alternate header exists, the
portal framework uses a default called alternateheader.jsp.

l Alternate Footer URL — Enter a URL to display as a web page footer
when the portlet is floated or maximized. If no alternate footer exists, the
portal framework uses a default called alternatefooter.jsp.

l Editable — Select the check box to enable users to edit a portlet's content.
An Edit icon displays in the portlet titlebar. The attribute default is
deselected.

l Edit URL — If you selected the Editable check box, enter a URL that
enables the user to edit the portlet content.

l Maximizable — Select the check box to enable users to maximize the
portlet in the current browser window. A Maximize icon displays in the
portlet titlebar. The attribute default is deselected.

l Maximized URL — If you selected the Maximizable check box, enter a
URL for the content area of the maximized page. The default URL is your
portlet content area URL.

2 Creating and Managing Portals

2-38 Using the BEA WebLogic Personalization Server

l Helpable — Select the check box to enable users to access a help screen. A
Help icon displays in the portlet titlebar. The attribute default is deselected.

l Help URL — If you selected the Helpable check box, enter a URL that
opens a help topic related to the portlet.

l Icon URL — Enter a URL to display an icon (GIF) on the left side of the
portlet titlebar. This image should be 27 pixels wide by 20 pixels high with 2
pixels of transparency on the right.

l Minimizable — Select the check box to enable users to minimize the portlet
in the portal screen. A Minimize icon displays in the portlet titlebar. The
attribute default is deselected.

l Floatable — Select the check box to enable users to float the portlet in a
new browser window. A Float icon displays in the portlet titlebar. The
attribute default is deselected.

l Login Required — Select the check box to require a user to be logged on to
the portal to view the portlet. The attribute default is deselected.

4. Click create.

If the portlet was successfully created, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

5. Click back to return to the home page. The new portlet name displays under the
Portlets banner.

Editing Portlets

After creating a portlet, you can redefine it at any time by adding or removing
attributes.

To edit a portlet:

1. On the home page, click a portlet title link to display the Edit Properties tool. The
name of the portlet you selected to edit displays at the top of the screen.

2. Enter the appropriate changes.

3. Click save.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-39

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

4. Click back to return to the home page.

Deleting Portlets

You can delete portlets that you no longer need. However, you must first remove (mark
as unavailable) the portlet from any portals it is associated with.

To delete a portlet:

1. On the home page, click delete in the Portlets banner. The Delete a Portlet tool
displays.

2. Select the portlet from the Portlet Name drop-down list.

3. Click delete. A confirmation window displays.

4. Click OK to confirm your deletion.

5. Click back to return to the home page. The portlet name is no longer listed under
the Portlets banner.

Administering portals

You can create, edit, or delete portals from the Portals section of the Portal
Administration Tool home page. All screens in the Administration Tool related to
portal functions are color-coded with tan banners and command buttons. Screens
related to portlet functions display teal banners and command buttons.

For procedures on using the Demo Portal components to quick-start your portal
development, see “Creating a Portal Using the Demo Portal” on page 2-50.

2 Creating and Managing Portals

2-40 Using the BEA WebLogic Personalization Server

Creating Portals

To create a new portal:

1. On the Portal Administration Tool home page, click create in the Portals banner to
display the Create a New Portal tool.

2. Complete the following required fields:

l Portal Name — Any combination of numbers and letters will be accepted in
this field.

l Content URL — Enter a portal content JSP relative to workingdir.

l Number of Content Columns - Enter 1, 2 or 3.

3. Customize your portal display by entering the optional URL files. Make all URLs
relative to workingdir:

l Header URL — Enter a header JSP for the default header page.

l Footer URL — Enter a footer JSP for the default footer page.

l Suspended — Select the check box to suspend the portal application and
replace the portal home page with an 'under maintenance' screen until service
resumes. To resume service, deselect the Suspended check box on the Edit
Portal Definition tool.

l Suspended URL — Enter the default suspended.jsp to display the 'under
maintenance' URL to end-users while the application is in Suspended mode.

4. Click create to create the portal definition.

If the portal was successfully created, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

5. Click back to return to the home page. The new portal name displays under the
Portals banner.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-41

Editing Portals

After creating a portal, you can edit it to associate portlets, groups, and users. You can
also personalize the portal’s layout and color scheme, and make changes to the
definition.

To edit a portal:

1. On the Portal Administration Tool home page, click a portal title link to see the
portal view-page. The name of the portal you selected displays at the top of the
screen. Colored banners separate each portal property and contain a command
button for that property. See the following procedures for more information on
editing portal properties.

The following image shows the portal view-page.

Figure 2-7 Portal View Page

2. When you are done viewing and editing the portal, click finished at the top or
bottom of the portal view-page to return to the home page.

Editing Portal Definitions

You can edit the portal definition you created to reflect any changes to the associated
URLs or number of portal columns.

2 Creating and Managing Portals

2-42 Using the BEA WebLogic Personalization Server

To edit a portal definition:

1. On the portal view-page, click edit in the Definition banner to display the Edit
Portal Definition tool.

2. Enter the appropriate changes.

3. Click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

4. Click back to return to the portal view-page.

Adding and Removing Portlets

You can choose which portlets are available to a portal by adding and removing them
from the system’s list of all established portlets. From the narrowed list of portlets you
associate with a portal, group, and end-users further define which portlets they want
available and visible on their personalized portal page.

To associate portlets with a portal:

1. On the portal view-page, click +/- in the Associated Portlets banner to display the
Add or Remove Portlets tool.

2. To add a portlet to the portal, select Avail. The portlet is associated with the
portal. It doesn’t appear on the portal page until it is made visible by you, the
Group Administrator or the end-user.

3. To make a portlet visible, select Visible. The portlet is associated with the portal
and now appears on the portal page.

4. To remove a portlet from the portal, select Unavail. The portlet becomes
disassociated with the portal and unavailable to new groups and end-users
(including anonymous users). However, if the portlet has been personalized at a
group or user level, it remains associated with those levels.

5. Click save.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-43

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

6. Click back to return to the portal view-page. Available portlets appear in the
Associated Portlets section of the screen with a gray background. Visible portlets
are marked with an check mark.

Editing Portlet Display Attributes

Portlet titles, associated with a portal, display as hot links in the Associated Portlets
section of the portal view-page. These links open a tool that enables you to further
specify how the portlet displays in the portal, overriding the display attributes
established when the portlet was created. Group Administrators can further
personalize these attributes.

To edit an associated portlet’s display attributes:

1. Click the portlet title link in the Associated Portlets section of the portal view-page.

2. Enter the appropriate changes in the Edit Portlet Display Attributes tool.

3. Click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

4. Click back to return to the portal view-page.

Editing the Portal Layout

You can move a portal’s associated portlets left and right between columns and up and
down within columns depending on the column layout you selected when you created
the portal. You can also change the percentage of the portal page that each column
occupies. Group Administrators and end-users can further personalize the portal
layout.

2 Creating and Managing Portals

2-44 Using the BEA WebLogic Personalization Server

To edit the layout of portlets in a portal:

1. On the portal view-page, click edit in the Layout banner to display the Edit Portal
Layout tool. This layout tool shows each portal column, its span percentage, and
the portlets that display within those columns.

2. Select the portlet you want to move by clicking on it. The portlet name is
highlighted.

3. Click an arrow to move the portlet up or down within a column, or right or left
between columns.

To change the column spans of a portal layout:

1. Click in the percentage field associated with a column and enter a new percentage.
The sum of all column spans should equal 100%. For single column portals, you
may specify from 1% to 100%.

2. When you are done editing the portal layout, click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

3. Click back to return to the portal view-page. A table in the Portal Layout section
lists the portlets as you arranged them within each column.

Editing the Portal Color Scheme

You can edit the overall appearance of a portal by changing its background color as
well as the portlets’ component colors, title colors, and border appearance.

To edit portal colors:

1. On the portal view-page, click edit in the Colors banner to display the Edit Color
Schemes tool. This tool provides five preset color schemes and a Custom Scheme
tool.

2. In the Portlet Color Schemes section of the screen, select a preset color scheme or
the custom color scheme. If you selected the custom color scheme, enter a hex
color code in each text field, or click the color palette icon to select a color for
each field from the Color Picker.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-45

3. Select on to display portlet borders, or off to omit portlet borders.

4. Select Black, White, or Other to choose the color of the text that displays in the
portlet titlebar. If you selected Other, enter a hex color code in the text field, or
click the color palette icon to select a color from the Color Picker.

5. In the Portal Background Color section of the screen, select Gray, White, or
Other to choose a background color for the entire portal page. If you selected
Other, enter a hex color code in the text field, or click the color palette icon to
select a color from the Color Picker.

6. To preview your color selections, click the Click here to save changes and
preview colors link. Your color changes are saved and the Edit Color Schemes
tool redisplays the example portlet at the bottom of the screen to reflect your
color preferences.

7. To save your color preferences without previewing them, click save. The portal
view-page displays the new colors associated with the portal in the Colors section
of the screen.

8. To revert the portal appearance to its original color scheme, click restore
defaults. The portal view-page displays the default colors associated with the
portal in the Colors section of the screen.

Associating Groups with a Portal

You can only associate portal groups from the portal view page. For more information
on associating users with a group and personalizing portal groups, see “Administering
portal groups” on page 2-46.

To associate a group with a portal:

1. On the portal view-page, click +/- in the Associated Groups banner.

2. Expand the hierarchy (or search) to find the desired group.

3. Check the group.

4. Click save to return to the portal view-page. The new group name displays in the
Associated Groups section of the portal view-page.

2 Creating and Managing Portals

2-46 Using the BEA WebLogic Personalization Server

To disassociated with a group:

1. On the portal view-page, click +/- in the Associated Groups banner.

2. Expand the hierarchy (or search) to find the desired group.

3. Uncheck the group.

4. Click save to return to the portal view-page. The group name no longer displays
in the Associated Groups section of the portal view page.

Deleting Portals

You can delete an existing portal from the Portal Administration Tool home page.
However, you must first disassociate all portal groups and users from that portal.

To delete a portal:

1. On the home page, click delete in the Portals banner to display the Delete a Portal
tool.

2. Select the portal from the Portal Name drop-down list.

3. Click delete. A confirmation window displays.

4. Click OK to confirm the deletion.

5. Click back to return to the home page. The portal name no longer displays in the
Portals section of the Portal Administration Tool home page.

Administering portal groups

The Portal Administration Tool enables you to personalize portal groups. You can
personalize the layout, content, and color scheme.

Avoid creating portal groups for business-to-consumer portals with an unmanageable
number of users.

You can edit portal groups from the portal view-page.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-47

Editing Portal Groups

Editing portal groups allows you to associate portlets with each group. You can also
personalize the group’s portal layout and color scheme.

To edit a portal group:

1. On the Portal Administration Tool home page, click the portal title link the group
is associated with. The portal view-page displays.

2. In the Associated Groups section of the screen, click the group title link you want
to edit. The group-view page displays. The names of the portal and group you
selected display at the top of the screen. Colored banners separate each group
property and contain a command button for that property. See the following
procedures for more information on editing group properties.

Adding and Removing Portlets from a Portal Group

As the Group Administrator, you choose which portlets are available to a group by
adding and removing them from the portal’s list of all associated portlets. From the
narrowed list of portlets you associate with a group, end-users further define which
portlets they want available and visible on their personalized portal page.

To associate portlets with a group:

1. On the group-view page, click +/- in the Associated Portlets banner to display the
Add or Remove Portlets tool.

2. To add a portlet to the group, select Avail. The portlet is associated with the
group. It does not display on the portal page until it is made visible by you or the
end-user.

3. To make a portlet visible, select Visible. The portlet is associated with the group
and displays on the portal page.

4. To remove a portlet from the group, select Unavail. The portlet becomes
disassociated from the group and unavailable to the group and end-users.
However, if the portlet has been personalized at the user level, it remains
associated with those users.

5. Click save.

2 Creating and Managing Portals

2-48 Using the BEA WebLogic Personalization Server

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

6. Click back to return to the group-view page. Available portlets appear in the
Associated Portlets section of the screen with a gray background. Visible portlets
are marked with an ’X’.

Editing the Portal Group Layout

You can move a group’s associated portlets left and right between columns and up and
down within columns. End-users can further personalize the portal layout.

To edit the layout of portlets in a group:

1. On the group-view page, click edit in the Layout banner to display the Edit Portal
Layout tool. This layout tool shows each portal column and the portlets that display
within those columns.

2. Select the portlet you want to move by clicking on it. The portlet name is
highlighted.

3. Click an arrow to move the portlet up or down within a column, or right or left
between columns.

4. When you are done editing the portal layout, click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

5. Click back to return to the portal view-page. A table in the Portal Layout section
lists the portlets as you arranged them within each column.

Editing the Portal Group Color Scheme

You can edit the overall appearance of a group by changing its portal background color
as well as the portlets’ component colors, title colors, and border appearance.

Using the Portal Administration Tool

Using the BEA WebLogic Personalization Server 2-49

To edit group colors:

1. On the group-view page, click edit in the Colors banner to display the Edit Color
Schemes tool. This tool provides five preset color schemes and a Custom Scheme
tool.

2. In the Portlet Color Schemes section of the screen, select a preset color scheme or
the custom color scheme. If you selected the custom color scheme, enter a hex
color code in each text field, or click the color palette icon to select a color for
each field from the Color Picker.

3. Select on to display portlet borders, or off to omit portlet borders.

4. Select Black, White, or Other to choose the color of the text that in the portlet
titlebar. If you selected Other, enter a hex color code in the text field, or click the
color palette icon to select a color from the Color Picker.

5. In the Portal Background Color section of the screen, select Gray, White, or
Other to choose a background color for the entire portal page. If you selected
Other, enter a hex color code in the text field, or click the color palette icon to
select a color from the Color Picker.

6. To preview your color selections, click the Click here to save changes and
preview colors link. Your color changes are saved and the Edit Color Schemes
tool re-displays the example portlet at the bottom of the screen to reflect your
color preferences.

7. To save your color preferences without previewing them, click save. The
group-view page displays the new colors associated with the portal in the Colors
section of the screen.

8. To revert the portal appearance to its original color scheme, click restore
defaults. The group-view page displays the default colors associated with the
portal in the Colors section of the screen.

2 Creating and Managing Portals

2-50 Using the BEA WebLogic Personalization Server

Testing Your Portal

Once your portal is operational, you should test it to verify that all the associated
portlets are available and visible as you specified them, and that your portal displays
the correct color scheme and layout.

To test your portal:

1. In a web browser, enter the Portal Service Manager URL. Using
http://host:port/myPortal as an example, myPortal matches the Portal
Service Manager name for your portal in the weblogic.properties file installed
in the portal directory.

The default portal home page should display all visible portlets and should
reflect your default color and layout preferences.

2. To test end-user personalization options, sign on to your portal by clicking the
Sign On icon in the upper right corner of the home page.

If you have not created a user profile, you can do so by following the
registration wizard. If you have created a profile, enter your username and
password, and click sign on.
You can now use the personalization tools to customize the portal’s color, layout,
and visible portlets.

Creating a Portal Using the Demo Portal

The following sections show you how the ACME Demo Portal data could be manually,
entered, using the administration tools. The BEA WebLogic Portal installation
package includes a Portal Service Manager for the Demo Portal. You can find it in the
weblogic.properties file. The Portal Service Manager property name is
exampleportal and maps to the Demo Portal EJB component.

Creating a Portal Using the Demo Portal

Using the BEA WebLogic Personalization Server 2-51

Before using the Portal Administration Tool to Assemble the Acme Demo Portal, you
must install and set up the BEA WebLogic Portal software. For more information, see
“Getting Started with the BEA WebLogic Portal” on page 2-9.

You must also set the WebLogic server document root before you are able to log on to
and use the tool. For more information, see “Getting Started with the BEA WebLogic
Portal” on page 2-9.

For more information on accessing and using the Administration Tool, see “Logging
On to the Portal Administration Tool” on page 2-31.

Building the Acme Demo Portal components

To create the Demo Portal definition:

1. Click create in the Portals banner of the Portal Administration Tool home page to
display the Create a New Portal tool.

2. Enter the following information in the appropriate fields:

Table 2-7

Field Name Data

Portal Name Demo Portal

Header URL header.jsp

Content URL portalcontent.jsp

Footer URL footer.jsp

Number of columns 3

Suspend Defaults to false. Set to true to suspend the
portal during maintenance.

Suspended URL Enter suspended.jsp if you want to
display the under maintenance URL during
maintenance.

2 Creating and Managing Portals

2-52 Using the BEA WebLogic Personalization Server

3. Click create.

If the portal was successfully created, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

4. Click back to return to the home page. The name of the new portal, ’Demo
Portal,’ displays in the Portals section of the home page.

Creating portlets for your demo portal

You create portlets in the Administration Tool by associating a URL with each portlet
component. When a portlet is created, it is not automatically associated with a portal.
You must add the portlets to the demo portal later from the portal view-page.

The Acme Demo Portal includes six portlet applications that you can assemble with
the Portal Administration Tool.

To create the demo portlets:

1. Click create in the Portlets banner of the Portal Administration Tool home page to
display the Create a New Portlet tool.

2. To create the first of the demo portlets, My Bookmarks, enter the following
information in the appropriate fields:

Table 2-8

Portlet Name Data

Bookmarks Portlet Name: Bookmarks

Content URL: portlets/bookmarks.jsp

Editable: select the check box

Edit URL: portlets/bookmarks_edit.jsp

Maximizable: select the check box

Creating a Portal Using the Demo Portal

Using the BEA WebLogic Personalization Server 2-53

3. Click create.

If the portlet was successfully created, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

4. Follow steps two through three above to create the remaining five portlets. For
each portlet, enter the following information in the appropriate fields:

Icon URL: portlets/images/pt_bookmark.gif

Login Required: select the check box

Titlebar URL: Enter a URL to display as the portlet titlebar. It can
be a JSP or HTML fragment.

Mandatory: A mandatory portlet is one that is always available
and visible.

Table 2-9

Portlet Name Data

My Dictionary Portlet Name: My Dictionary

Content URL: portlets/dictionary.jsp

Icon URL: portlets/images/pt_dictionary.gif

Minimizable: select the check box

My To Do List Portlet Name: My To Do List

Content URL: portlets/mytodo.jsp

Editable: select the check box

Edit URL: portlets/mytodo_edit.jsp

Maximizable: select the check box

Table 2-8

Portlet Name Data

2 Creating and Managing Portals

2-54 Using the BEA WebLogic Personalization Server

Icon URL: portlets/images/pt_my_list.gif

Minimizable: select the check box

Floatable: select the check box

Login Required: select the check box

My Group To Do List Portlet Name: My Group To Do List

Content URL: portlets/grouptodo.jsp

Banner URL: portlets/grouptodobanner.jsp

Editable: select the check box

Edit URL: portlets/grouptodo_edit.jsp

Maximizable: select the check box

Icon URL: portlets/images/pt_group_list.gif

Minimizable: select the check box

Floatable: select the check box

Login Required: select the check box

Stock Quote Portlet Name: Stock Quote

Content URL: portlets/quote.jsp

Icon URL: portlets/images/pt_quote.gif

Minimizable: select the check box

Search Portlet Name: Search

Content URL: portlets/search.jsp

Icon URL: portlets/images/pt_search.gif

Minimizable: select the check box

Table 2-9

Portlet Name Data

Creating a Portal Using the Demo Portal

Using the BEA WebLogic Personalization Server 2-55

5. Click back to return to the home page. The six new portlet names appear in the
Portlets section.

Associating portlets with your demo portal

After creating a portal, you can associate portlets to it. You can also personalize the
portal’s layout and color scheme, and make changes to the definition. For more
information on editing a portal, see “Editing Portlets” on page 2-38.

You choose which portlets are available to a portal by adding and removing them from
the system's list of established portlets. From the narrowed list of portlets you associate
with a portal, group and end-users further define which portlets they want available
and visible on their personalized portal page.

To associate the six portlets you just created with the demo portal:

1. On the Portal Administration Tool home page, click the Demo Portal title link in
the Portals section of the screen. The Demo Portal view-page displays.

2. On the portal view-page, click +/- in the Associated Portlets banner to display the
Add or Remove Portlets tool.

3. To add a portlet to the portal, select Avail. The portlet is associated with the
portal. It does not display on the portal page until it is made visible by you, the
Group Administrator, or the end-user.

News Index Portlet Name: News Index

Content URL: portlets/new_index.jsp

News Reader Portlet Name: News Reader

Content URL: portlets/news_viewer.jsp

Titlebar: content_titlebar.jsp

Table 2-9

Portlet Name Data

2 Creating and Managing Portals

2-56 Using the BEA WebLogic Personalization Server

4. To make a portlet visible, select Visible. The portlet is associated with the portal
and now displays on the portal page.

5. To remove a portlet from the portal, select Unavail. The portlet becomes
disassociated with the portal and unavailable to new groups and end-users
(including anonymous users). However, if the portlet has already been
personalized at a group or user level, it remains associated with those levels.

6. Click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

7. Click back to return to the Demo Portal view-page. Available portlets appear in
the Associated Portlets section of the screen with a gray background. Visible
portlets are marked with an X.

Editing your demo portal layout

You can move a portal’s associated portlets left and right between columns and up and
down within columns depending on the column layout you selected when you created
the portal. You can also change the percentage of the portal page that each column
occupies in all portals except group portals. Group Administrators and end-users can
further personalize the portal layout.

To edit the layout of portlets in the demo portal:

1. On the Demo Portal view-page, click edit in the Layout banner to display the Edit
Portal Layout tool. This layout tool shows each portal column, its span percentage,
and the portlets that display within those columns.

2. Select the portlet you want to move by clicking on it. The portlet name is
highlighted.

3. Click an arrow to move the portlet up or down within a column, or right or left
between columns.

Creating a Portal Using the Demo Portal

Using the BEA WebLogic Personalization Server 2-57

To change the column spans of a portal layout:

1. Click in the percentage field associated with a column and enter a new percentage.
The sum of all column spans should equal 100%.

2. When you finish editing the portal layout, click save.

If the changes were successfully made, a confirmation message appears in red at
the top of the screen. If not, an error message notifies you of the required
changes.

3. Click back to return to the Demo Portal view-page. A table in the Portal Layout
section lists the portlets as you arranged them within each column.

Editing your demo portal color scheme

You can edit the overall appearance of a portal by changing its background color as
well as the portlet’s component colors, title colors, and border appearance.

To edit the demo portal colors:

1. On the Demo Portal view-page, click edit in the Colors banner to display the Edit
Color Schemes tool. This tool provides five preset color schemes and a Custom
Scheme tool.

2. In the Portlet Color Schemes section of the screen, select a preset color scheme or
the custom color scheme. If you selected the custom color scheme, enter a hex
color code in each text field, or click the color palette icon to select a color for
each field from the Color Picker.

3. Select on to display portlet borders, or off to omit portlet borders.

4. Select Black, White, or Other to choose the color of the text that will display in
the portlet titlebar. If you selected Other, enter a hex color code in the text field,
or click the color palette icon to select a color from the Color Picker.

5. In the Portal Background Color section of the screen, select Gray, White, or
Other to choose a background color for the entire portal page. If you selected
Other, enter a hex color code in the text field, or click the color palette icon to
select a color from the Color Picker.

2 Creating and Managing Portals

2-58 Using the BEA WebLogic Personalization Server

6. To preview your color selections, click the Click here to save changes and
preview colors link. Your color changes will be saved and the Edit Color
Schemes tool will re-display the example portlet at the bottom of the screen to
reflect your color preferences.

7. To save your color preferences without previewing them, click save. The portal
view-page displays the new colors associated with the portal in the Colors section
of the screen.

8. To revert the portal appearance to the BEA original color scheme, click restore
defaults. The portal view-page displays the default colors associated with the
portal in the Colors section of the screen.

Testing Your Demo Portal

Once your portal is operational, you should test it to verify that all the associated
portlets are available and visible as you specified them, and that your portal displays
the correct color scheme and layout.

Figure 2-8 Acme Demo Portal

BEA WebLogic Portal Framework Files

Using the BEA WebLogic Personalization Server 2-59

To test the demo portal:

1. In a web browser, enter the Portal Service Manager URL
(http://host:port/exampleportal).

The default portal home page should display all visible portlets and should
reflect your default color and layout preferences.

2. To test end-user personalization options, sign on to your portal by clicking the
Sign On icon in the upper right corner of the home page.

If you have not created a user profile, you can do so by following the
registration wizard. If you have created a profile, enter your username and
password, and click sign on.

You can now use the personalization tools to customize the portal’s color, layout,
and visible portlets.

Figure 2-8 shows the Acme Demo Portal as it displays with the BEA default
color scheme and layout to a registered user named jsmith.

BEA WebLogic Portal Framework Files

The following table displays the names and functions of the template JSP files
provided with the BEA WebLogic Portal framework. Each of these files is located in
the root directory of the portal which it serves, such as /portals/repository.

Table 2-10

JSP File Name Function

_user_add_portlets.jsp The tool employed by the end user to add/remove
portlets.

_user_layout.jsp The tool employed by the end user to update portlet
layout.

_userlogin.jsp The user login page.

2 Creating and Managing Portals

2-60 Using the BEA WebLogic Personalization Server

_userreg.jsp The new user registration page.

_userreg_summary.jsp The user profile summary page.

alternatefooter.jsp The footer displayed when a portlet is maximized or
detached.

alternateheader.jsp The header displayed when a portlet is maximized or
detached.

baseheader.jsp A stripped version header.jsp, intended for
general use beyond the portal home page.

color_picker.jsp The color palette employed by the user color
preferences tool.

error.jsp A general-purpose page used for displaying run-time
errors.

error_footer.jsp The footer displayed with error.jsp.

error_header.jsp The header displayed with error.jsp.

footer.jsp The footer displayed with the main portal page.

fullscreenportlet.jsp The page used to display a maximized or detached
portlet.

gen_prefs.jsp The tool employed by the end user to update general
user profile information.

header.jsp The header displayed with the main portal page.

help.jsp The end user help page.

layout_script.jsp The JavaScript used by the end user layout tool.

portal.jsp The main portal page.

portalcontent.jsp The page which prescribes portlet layout within the
main portal page.

Table 2-10

JSP File Name Function

Internationalization

Using the BEA WebLogic Personalization Server 2-61

Internationalization

The BEA WebLogic Portal™ Administration Tool is supported by JSP bean objects
which employ Java internationalization standards in the practice of presenting error
and status messages. These beans use a BEA utility object called MessageBundle in
conjunction with text-based properties files to produce two types of locale-specific
display text. The two types of text are as follow:

n Static Text

n Constructed Messages

portalerror.jsp The default error page displayed when an access
attempt to a portal page fails.

portalnotexist.jsp The page which displays a general message indicated
that the requested portal does not exist.

portlet.jsp The page which constructs a portlet, combining
portlet titlebar, banner, header, content, and footer.

privacy_policy.jsp A placeholder for a company privacy policy
statement.

status.jsp The page used to display end-user status messages.

suspended.jsp The page which provides a message indicating that the
requested portal is currently non-operational,
typically for maintenance reasons.

titlebar.jsp The portlet titlebar. Contains appropriate portlet icons
and portlet name.

user_colors.jsp The end user color preferences tool.

Table 2-10

JSP File Name Function

2 Creating and Managing Portals

2-62 Using the BEA WebLogic Personalization Server

Properties Files

Properties files are located in two particular directories in the portal framework. The
first set of properties files supports the Portal Administration Tool and are located in
com/beasys/commerce/portal/admin/jspbeans/i18n.

The second set of properties files supports both the Administration Tool and the
run-time portal end-user tools. This set is located in
com/beasys/commerce/portal/jspbeans/i18n.

Each properties file that supports a particular bean includes the bean name and a
properties extension. For example, the properties file that supports the
com.beasys.portal.admin.jspbeans.PortalJspBean bean resides in the i18n
directory, and is called PortalJspBean.properties.

Static Text

The BEA WebLogic Portal uses the following convention when naming static text
entries in the properties files:

propertyName.txt=propertyValue

For example: error.txt=Error Occurred.

A static text property is acquired from a loaded MessageBundle using the following
method:

String messageBundle.getString(String propertyName)

For example:
System.out.printin(messageBundle.getString("error.txt"));

For more information, see the Portal API Documentation.

Constructed Messages

Using the BEA WebLogic Personalization Server 2-63

Constructed Messages

The dynamic display text created by internationalization often depends on one or more
variables, and the order of these variables in a text segment is locale-specific. In this
case, the BEA WebLogic Portal provides a means for constructing message segments
for display.

The portal uses the following convention when naming message entries in properties
files:

propertyName.msg=propertyValue

For example:

fieldRequired.msg={0} is a required field.

A constructed message is acquired from a loaded MessageBundle using the following
method:

String messageBundle.getMessage(Object[] args, String propertyName)

For example:

Object[] args={"ContentURL"};

System.out.println(args,"fieldRequired.msg");

For more information, see the Portal API Documentation.

2 Creating and Managing Portals

2-64 Using the BEA WebLogic Personalization Server

Using the BEA WebLogic Personalization Server 3-1

CHAPTER

3 Creating and Managing
Property Sets

The following topics are covered here:

Overview of Property Sets

Property Value Retrieval via ConfigurableEntity

Using the Property Set Management Tool
Creating Property Sets
Creating Properties within a Property Set
Editing Property Sets
Editing Properties within a Property Set
Deleting Property Sets
Deleting Properties

Using the Property Set Management tool, you can create property sets, the schemas for
personalization attributes schema and define the properties that make up these property
sets.

Overview of Property Sets

In the most general sense, a property can be considered a name/value pair. Property
sets serve as namespaces for properties so that properties can be conveniently grouped
and so that multiple properties with the same name can be defined.

3 Creating and Managing Property Sets

3-2 Using the BEA WebLogic Personalization Server

For instance, the web site developers might want users to be able to specify different
background colors for each of their portals by requiring the property
“backgroundColor” for a user. By creating “portalA” and “portalB” property sets, the
property “backgroundColor” can exist for both portal A and portal B. While the two
“backgroundColor” properties have the same name, they could have the same or
different definitions. Figure 3-1 shows two property sets with redundant property
names, corresponding to unique definitions.

Figure 3-1 Property Sets Serving as Namespaces.

A property definition includes the following information:

n Property Value Type: The data type of the property value, e.g., Text, Integer,
Float, Date/Time. A property called “age” might be an Integer type, while
“lastName” would most likely be Text.

n Plurality: Whether the property can contain a single value, or multiple values. A
property called “firstName” might be a single-valued property, while
“petPeeves” would most likely be multi-valued.

n Restriction: Whether the allowable values for a property are restricted. A
property called “favoriteDayOfTheWeek” would only have seven possible
values, while “email” would most likely be unrestricted.

n Default Property Value: A default value provided by the property set
corresponding to the property. A property called “favoriteDay” might have a
default value of “Saturday.”

Overview of Property Sets

Using the BEA WebLogic Personalization Server 3-3

For Personalization Server purposes, property sets are applied to four major areas.

1. User and Group Profiles

The “User/Group” property set type is used for defining the property sets and
properties that apply to user and group profiles. For example, a property set of this type
might be created called “portalA”. Subsequent property retrieval for a particular user
or group can then be scoped with this property set name to retrieve the user’s
background color for the portal. Please see the “Creating and Managing Users” for an
in-depth discussion of how property retrieval works for users and groups.

2. HTTP Sessions

The “Session” property set type is used for defining the property sets and properties
that apply to HTTP sessions. Like the “User/Group” property set type, a “Session”
property set type might be called “portalA”. Properties available through this property
set can then be accessed via the Personalization Advisor.

3. HTTP Requests

The “Request” property set type is used for defining the property sets and properties
that apply to HTTP requests. Again, like the “User/Group” property set type, a
“Request” property set type might be called “portalA.” Properties available through
this property set can then be accessed via the Personalization Advisor.

4. Content Management

The “Content Management” property set type is used for defining the configuration
and run-time use of the Content Management system. “Content Management”
property sets cannot be created or manipulated with the Personalization Server
administration tools. Please see “Creating and Managing Content” for more complete
information on this subject.

Creating a property set is a simple task via the Property Set Management tools. A name
for the set must be provided as well as a statement that describes the purpose of the
property set. Properties can be copied from an existing property set if a preexisting
property set defines similar properties. Expanding the previous example, if portal A’s
properties have been defined and portal B is going to have the same (or similar)
properties, then time is saved by copying the properties from portal A’s property set
when creating portal B’s property set. Finally, the type of property set (“User/Group”,
“Session”, or “Request”) must be chosen.

3 Creating and Managing Property Sets

3-4 Using the BEA WebLogic Personalization Server

When defining a property, specify the following:

n Property name

n Description

n Type

n Selection option

n Creation category

Name is the name of the property, such as “backgroundColor”. Description is a textual
description of the property, perhaps describing the purpose of the property. Type is the
data type of the property value. Date types supported by the administration tools are
Text, Integer (equivalent to Long in Java), Floating-Point number (equivalent to
Double in Java), Boolean, and Date/Time (equivalent to java.sql.Timestamp).
Selection option determines whether the property is single-valued or multi-valued.
Creation category determines whether the possible values are restricted. Restricted
property values are restricted to values listed in the property definition. Unrestricted
property values have no such limitation.

Property Definition Attribute Attribute Value

Name Text (100 character length maximum)

Description Text (255 character length maximum)

Type Text, Integer (equivalent to Long in Ja-
va), Floating-Point Number (equivalent
to Double in Java), Boolean, or Date/
Time

Selection Option Single-Valued or Multi-Valued

Creation Category Restricted or Unrestricted

Default Value Up to you – can be null

Property Value Retrieval via ConfigurableEntity

Using the BEA WebLogic Personalization Server 3-5

Once created, “User/Group” property values can be edited for a particular user or
group via the User Management user and group tools. For “Session” and “Request”
properties, the only editable values are the default values set in the property definitions
– runtime values are determined by values in the HTTP session or HTTP request,
respectively.

Property Value Retrieval via
ConfigurableEntity

Property Sets created with the administration tools are stored as
com.beasys.commerce.foundation.property.Schema components. The
component that acts as an “owner” of properties associated with Property Sets is the
com.beasys.commerce.axiom.contact.ConfigurableEntity. During
inspection of the javadoc for Schema and ConfigurableEntity, the reader may see
the words “schema” and “scope” used interchangeably with “Property Set.” Figure 3-2
shows a simplified representation of property value retrieval through a
ConfigurableEntity. For the ConfigurableEntity, the value of backgroundColor for
portalB has been overridden. The value of backgroundColor for portalA has not.
Therefore, when backgroundColor is requested for the portalB property set, the
overridden value, red, will be returned. When backgroundColor is requested for the
portalA property set, the property set default value, white, will be returned.

Figure 3-2 backgroundColor Property Retrieval

Figure 3-3 shows another simple example of backgroundColor property retrieval to
demonstrate the notion of an explicit successor. A second ConfigurableEntity can be
specified in the ConfigurableEntity getProperty() API that acts as a “backup”

3 Creating and Managing Property Sets

3-6 Using the BEA WebLogic Personalization Server

place to look for a particular property value. This second ConfigurableEntity is
considered an explicit property successor. In this example, a particular group is used
as an explicit successor, and the value for portalA’s background color, green, is
“inherited” from this successor.

Figure 3-3 Explicit Successor, ‘backgroundColor’ Property Retrieval.

Figure 3-4 provides an example of an implicit successor. An implicit successor is a
successor tied to a particular Property Set. In this case, the user does not have a value
for portalA.backgroundColor, and no explicit successor is provided in the
getProperty() call. However, the group has already been associated with the user as
its successor for the portalA Property Set. Again, the user “inherits” the property value,
green, from the group.

Figure 3-4 Property Inheritance through Property Set-Related Successor.

There also exists the notion of a default successor, which can be searched after an
explicit successor and a Property Set-related successor have failed to return a value for
the property. Figure 3-5 shows such a case. In this example, the Property Set-related
successor cannot produce the necessary property value for backgroundColor in
portalA, so the value must be retrieved from the default successor.

Figure 3-5 Figure 5. Property Inheritance through a default Successor.

Using the Property Set Management Tool

Using the BEA WebLogic Personalization Server 3-7

Keep in mind that these examples have been considerably simplified for brevity and to
easily explain relevant concepts. More details of ConfigurableEntity property
inheritance are available in the topic “Users and Groups” on page 4-3.

Using the Property Set Management Tool

The Property Set Management tools allow you to create and manage sets of typed
properties. Property Sets may be defined to describe user and group, session, request,
and content properties.

Creating Property Sets

To create a property set:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management home page appears.

2. Click create in the Property Sets banner. The Create Property Set page appears.

To enter a new property set:

a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.

c. Leave the Copy Properties From default as Don’t copy properties.

To copy properties from an existing property set into the new one:

3 Creating and Managing Property Sets

3-8 Using the BEA WebLogic Personalization Server

a. Enter the name of the new property set in the Name field.

b. Enter a description of the new property set in the Description field.

c. Select the appropriate property set containing the properties you want copied
from the Copy Properties From drop-down list box.

3. Click create to create the property set or click back to return to the Property Set
Management Home Page without saving the property set. The Property Set
Management home page appears after the create operation completes.

Creating Properties within a Property Set

To create properties within a property set:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management Home Page appears.

2. From the Property Set list, select the appropriate title link for the property set you
wish to add a property to. The Property Set view page appears.

3. Click create on the Properties bar. The Create Properties page appears.

a. Enter the property name in the Property Name field.

b. Enter a description of the new property in the Description field.

c. Select the type from the Type drop-down list box.

d. Select option (single, multiple) from the Selection Option drop-down list box.

Using the Property Set Management Tool

Using the BEA WebLogic Personalization Server 3-9

Note: The single option refers to those properties having only one option (e.g.,
Property: Color, Attribute: red). The multiple option refers to those
properties having multiple options (e.g., Property: Colors, Attributes: red,
green, blue, etc.).

e. Select the creation of category (Restricted, Unrestricted) from the Creation
Category drop-down box.

Note: Restricted categories refer to values that are selected via a list, radio
buttons, check boxes, etc. Unrestricted categories refer to instances in
which users populate a form field.

4. Click create.

5. Click back to return to the Property Set view.

To set up the property default value:

Note: Different steps are required for setting up default values, given your
option/category selection.

For single/restricted:

1. From Property Set view, click edit on the appropriate Property Set Description bar.

2. Click edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value(s) by selecting the appropriate check box(es).

6. Click save.

For single/unrestricted:

1. From Property Set view, click edit on the appropriate Property Set Description bar.

2. Click edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click save.

For multiple/restricted:

3 Creating and Managing Property Sets

3-10 Using the BEA WebLogic Personalization Server

1. From Property Set view, click edit on the appropriate Property Set Description bar.

2. Click edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click create. The new value appears in the Values matrix at the bottom of the
page.

5. Indicate the default value by selecting the appropriate radio button.

6. Click save.

For multiple-unrestricted:

1. From Property Set view, click edit on the appropriate Property Set Description bar.

2. Click edit on the Properties Values bar.

3. Enter a new value to the property in the New Value field.

4. Click save.

Editing Property Sets

To edit a property set:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management home page appears.

2. Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

To edit the Property Set Description:

a. Click edit on the Property Set Description bar. The Edit Property Set page
appears.

Using the Property Set Management Tool

Using the BEA WebLogic Personalization Server 3-11

b. Enter the new description in the Description field.

c. Click save to save changes. The general Property Set view appears with the
new information. Alternately, click back to return to Property Set view page
without saving your changes.

Editing Properties within a Property Set

To edit properties within a property set:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management home page appears.

2. Click the appropriate title link from the Property Sets list. The Property Set view
page appears.

3. Click edit on the appropriate property bar. The specific Property view page
appears, containing information specific to the property you wish to edit.

4. Click edit on the appropriate description or value bar. The Edit Property page
appears.

5. Enter changes in the field(s) provided.

6. Click save. The specific Property view returns. Alternatively, click back. The
specific Property view appears and your changes are not saved.

3 Creating and Managing Property Sets

3-12 Using the BEA WebLogic Personalization Server

Deleting Property Sets

To delete a property set:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management home page appears.

2. Click the X to the right of the appropriate title link from the property set list.

3. Click OK to confirm the deletion.

Deleting Properties

To delete properties:

1. On the Administration Tools Home Page, click the Property Set Management icon.
The Property Set Management home page appears.

2. Select the appropriate title link from the Property Sets list. The general Property
Set view appears.

3. Click Delete on the Properties bar. The Delete Properties page appears.

4. Select a property from the Property Name list.

5. Click delete.

Using the Property Set Management Tool

Using the BEA WebLogic Personalization Server 3-13

6. Click OK to confirm the deletion. The specific Property view returns.
Alternatively, click back. The Property view appears and the property is not
deleted.

3 Creating and Managing Property Sets

3-14 Using the BEA WebLogic Personalization Server

Creating and Using the BEA WebLogic Personalization Server 4-1

CHAPTER

4 Creating and Managing
Users

The following topics are covered here:

Overview of User Management

Users and Groups

Unified User Profiles

Using WebLogic Realms

Anonymous User Profiles

User Manager

Using the User Management Tool
Creating groups
Deleting groups
Adding users to groups
Removing users from groups
Editing group property values
Creating users
Editing user property values
Deleting users
Creating Unified Profile Types
Editing Unified Profile Types
Deleting Unified Profile Types
Registering group attributes for retrieval from LDAP
Deleting user attributes from LDAP
Adding group attributes in LDAP
Unregistering group attributes for retrieval in LDAP

4 Creating and Managing Users

4-2 Using the BEA WebLogic Personalization Server

Viewing LDAP configuration settings
Selecting groups for the Personalization Server from realm
Mapping realm groups to the Personalization Server
Deleting groups from your database

User Management joins enterprise data about users with profile data that is used to
personalize the users’ view of the application.

Overview of User Management

The User Management system is a set of JSP tags, EJBs, and tools that facilitate the
creation and persistence of user and group profile properties. It provides access to user
profile information within a larger personalization server solution. In addition, the
User Management system provides user-authentication mechanisms and user-to-group
associations.

The User Management system responsibilities follow:

n User Authentication—The user management system is used to authenticate a
user against a persistent set of authentication information (typically a
username-password combination).

n User/Group Association Management—The association of a user with one or
more groups can play an essential role in determining user profile information
pertinent to the user’s session. A user management system can either provide a
default schema for user-group information persistence or interface with existing
user databases via standardized interfaces (e.g., LDAP) or customized
connectors.

n User Profile Management—To create an effective personalization server
solution, a user profile must be made available to other personalization
subsystems. The user management system constructs the user profile from
persisted user and group attributes. User attributes can range from
statically-defined properties, such as a user's social security number, to
dynamically-created and persisted properties, such as web site tracking
information for a particular user, or user preferences entered from a standard
input screen. The user management system facilitates the creation and
persistence of user profile properties.

Users and Groups

Using the BEA WebLogic Personalization Server 4-3

Users and Groups

The two primary components employed by the Personalization Server’s User
Management system are the User and Group, which extend ConfigurableEntity. It is
from these components that User, and Group, and Unified User Profile functionality
stems. User and Group components are also referred to as “user profiles” and “group
profiles”. The fully qualified name of each object follows:

User – com.beasys.commerce.axiom.contact.User

Group – com.beasys.commerce.axiom.contact.Group

ConfigurableEntity –
com.beasys.commerce.axiom.foundation.ConfigurableEntity

The User Management system works in conjunction with the WebLogic Server’s
security realm. In this arrangement, the security realm provides a list of users and
groups, group membership information, and authentication. The User Management
system uses the security realm to authenticate users and to know which users and
groups exist and are valid, and what users are in a group. With this information from
the security realm, it is possible for the User Management system to accomplish its
primary duties: creating, retrieving, and managing user and group profiles complete
with property data. A default security realm (User Management RDBMSRealm) is
provided by the Personalization Server as part of its “out-of-the-box” configuration.

Property data can be anything that is relevant to a user or group profile in the context
of your personalized application. Things like age, gender, and favorite genres of music
could all be property data. Things like department, position, and office location could
also be property data. Much more is explained later about the actual and possible
implementation details of handling property data in user and group profiles.

Group hierarchies permit property inheritance. For example, if a user profile doesn’t
yet have a “backgroundColor” property value, then the “backgroundColor” property
value might be inherited from an “engineering” group. Groups may have only one or
no parent group. As will be discussed later in this chapter, even if a realm for a
third-party data store (e.g., LDAP server) is used to access users and groups, any
arbitrary group hierarchy may be configured for personalization purposes (property
inheritance) via the User Management tools.

4 Creating and Managing Users

4-4 Using the BEA WebLogic Personalization Server

Profile functionality for both the User and Group components is inherited from the
ConfigurableEntity implementation. The figure below shows a simplified
representation of the User-Group-ConfigurableEntity relationship.

Figure 4-1 The User-Group-ConfigurableEntity Relationship.

Unified User Profiles

In the BEA WebLogic Personalization Server, system users are represented by user
profiles. A user profile provides an ID for a user and access to the properties of a user,
such as age or email address. Property values can be single-valued or multi-valued, and
are requested via a getProperty() method which takes a property name as a key.

An advantage of the user profile is that it can be extended and customized to retrieve
user information from an existing data source. For example, the user profile that ships
with the Personalization Server can combine user properties from the Personalization
Server database with user properties from an LDAP server into a single user profile for
use within an application. Developers and system users need not worry about the
different underlying data sources. To them there is just one place to go for user
information – the user profile.

The Unified User Profile (UUP) is the name used to describe this aggregation of
properties from an existing data source and the Personalization Server database tables
into a single, customized user profile. More specifically, a UUP marries existing
user/customer data by extending BEA’s User component. By installing the

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-5

Personalization Server’s database tables into the existing database instance and
extending the provided com.beasys.commerce.axiom.contact.User
implementation, developers can quickly create a customized UUP that retrieves and
stores properties from/to the existing database. This powerful flexibility is desirable
because it allows access to existing data without requiring data migration or disrupting
existing applications that also use the data. Conversely, if it is more desirable to
migrate existing data into a separate Personalization Server database instance, this is
also possible.

Configuration 1

Users and groups exist in some type of data store already, such as an LDAP directory.
Existing user property data must be incorporated into the Unified User Profile.

Figure 4-2 Configuration 1

4 Creating and Managing Users

4-6 Using the BEA WebLogic Personalization Server

Configuration 2

Users and groups already exist in a data store such as an LDAP directory. No existing
user or group data must be incorporated into the Unified User Profile. All user and
group property data is stored in the Personalization Server’s database tables.

Figure 4-3 Configuration 2

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-7

Configuration 3

There is no existing store of users and groups. The Personalization Server’s database
tables contain all user and group data.

Figure 4-4 Possible Configuration 3

Configuration 4

User, group, and property data are in an existing database. Existing user property data
must be incorporated into the Unified User Profile. A custom realm must be created in
order to use the existing users and groups with the Personalization Server.

4 Creating and Managing Users

4-8 Using the BEA WebLogic Personalization Server

Figure 4-5 Possible Configuration 4

The UnifiedUser example, found at
<install_dir>/server/publish.html/examples/unifieduserprofile/ind

ex.html, demonstrates a fictitious company’s use of the UUP to take advantage of
existing customer data. The UnifiedUser extends
com.beasys.commerce.axiom.contact.User and retrieves data from a preexisting
database. If you have existing user information that you wish to leverage in your
application, it is recommended that you study this example. The UnifiedUser shows
how, with relative ease, you can create a customized UUP that suits your application’s
persistence needs. The following table explains exactly what must be extended in order
to create your own custom UUP.

Object Must Extend

UUP Primary Key com.beasys.commerce.axiom.contact.User-
Pk--with no key fields added.

UUP EJB Interface com.beasys.commerce.axiom.contact.User

UUP EJB Implementa-
tion

com.beasys.commerce.axiom.contact.UserImpl

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-9

The fact that UUPs are ConfigurableEntities means that user profiles have the notion
of setting and getting a property explicitly or implicitly. Explicitly setting a property
means calling a setter method for a property directly. Implicitly setting a property
means setting a property via the setProperty() method where no explicit setter
method is available. For example, if a UUP contains a “userPoints” property calling
setUserPoints() directly would explicitly set the userPoints property, while calling
setProperty() with the “userPoints” key would implicitly set the userPoints
property. When it is called, setProperty() will first look for a setUserPoints()
setter method to call in the user profile. If such a setter method exists, this method is
called and is responsible for setting the property and doing whatever else is necessary
regarding that property’s change in value. Ultimately it is the UUP implementation’s
responsibility to persist explicitly-set property values – even if they are implicitly
called via setProperty(). ConfigurableEntity only handles persisting implicitly set
properties where no explicit setter method exists.

The figure below diagrams both an explicit and implicit call to setUserPoints(). In
both cases, it is the UUP bean’s responsibility to handle storing the userPoints value.
If no setUserPoints() method had existed in the UUP bean, the ConfigurableEntity
implementation would have handled storing the userPoints value.

Figure 4-6 Implicit and explicit calls to set the userPoints property.

This notion of implicitly and explicitly setting properties allows for additional
flexibility in UUP implementation. If any special logic needs to happen during the
setting or getting of a property, such as the recalculation of some other value, it can

4 Creating and Managing Users

4-10 Using the BEA WebLogic Personalization Server

conveniently be done in a setter or getter method for that property. Functionality
external to the UUP can always count on having a setProperty() method and a
getProperty() method for access to properties, eliminating any need to know
whether a property has its own setter or getter. For example, the <um:getproperty>
JSP tag can always retrieve the userPoints property value even if a
getUserPoints() method is the only way provided by the UUP to retrieve
userPoints. This is because the UUP’s getProperty() method will first check to
see if it has a getUserPoints() method before checking elsewhere. Properties that
have an explicit set<PropertyName>() and get<PropertyName>() method are
referred to as “explicit properties”, while properties that can only be set through a call
to setProperty() are referred to as “implicit properties”.

When implementing a custom UUP EJB, you only need to worry about implementing
explicit getter and setter methods for the explicit properties you want the UUP to have.
The implementations of these setters and getters then do whatever is necessary to set
and retrieve the property values in the existing datastore.

There are a few important things to be aware of when creating a custom UUP. The
get<PropertyName>(), set<PropertyName>() convention must be followed for
all explicit property setting and getting in a UUP. This means if you have a UUP with
an explicit userPoints property, you must provide an explicit getUserPoints()
method – retrieveUserPoints() would not work. Similarly, setting userPoints
must be done with a setUserPoints() method. This is because the getProperty()
and setProperty() methods look for getters and setters that follow this convention
when getting and setting properties via implicit calls. Overriding setProperty() or
getProperty() is not permitted - all getting and setting of explicit properties must be
done through getter and setter methods. Explicit getters and setters must take and
return objects – primitives such as long and float must be wrapped in java.lang.Long
and java.lang.Float objects to be compatible with ConfigurableEntity’s
getProperty() and setProperty() methods.

Also, if you provide a getter method, it is a good idea to also provide a setter method
and vice versa. This is because you can never predict when someone will try to set or
get a property. For example, let’s say you provide a getter that retrieves a property from
a database table but no corresponding setter. If setProperty() is called for that
property it will be stored in a Personalization Server table. This is messy because you
have the value being retrieved from one place and set in another. The next time the
property is retrieved, it would have its original value – not the value that was set. If you
want to provide a read-only property, you should implement an empty setter method.

The definition of ConfigurableEntity’s getProperty() method is as follows:

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-11

public Object getProperty(String propertySet,
 String propertyName,
 ConfigurableEntity explicitSuccessor,
 Object defaultValue);

The getProperty() method searches for properties in different places in a specific
order which is important to understand. For example, if a property is not found for a
User, perhaps a Group should be queried for the value. In this case the User would
inherit the property value from a Group. In ConfigurableEntity terms, the Group would
be the User’s “successor”. If a property is not found in a ConfigurableEntity, then the
ConfigurableEntity’s successor is queried for the value. This way ConfigurableEntities
can inherit and override values from a parent entity. Successors can be implicit or
explicit. An implicit successor is a ConfigurableEntity’s default successor or a
successor that is set for a specific Property Set. An explicit successor is a
ConfigurableEntity that is passed as a parameter to the getProperty() method.
Following is the order of the getProperty() property search as it exists in
ConfigurableEntity, and hence the User and Group objects as well as any UUP objects:

1. Look in the entity for the property for the specified Property Set.

2. Look in the entity for the property in the default (null) Property Set.

3. Look in the entity for the property in the Reserved Property Set (for properties
from LDAP if using the LDAPRealm).

4. Look for the property in the entity’s explicit successor (if specified).

5. Look for the property in the entity’s successor for the specified Property Set.

6. Look for the property in the entity’s default successor.

7. Look for a default value as defined in the Property Set if the Property Set is
specified (not null).

8. Return the defaultValue passed into the getProperty() method.

The definition of ConfigurableEntity’s setProperty() method is as follows:

public Object setProperty(String propertySet,
 String propertyName,
 Object value);

This method has a few details that it are also important to understand. If
setProperty() is used to set a property for a Property Set that is inconsistent with
the property set’s definition, an exception is thrown. For example, suppose we have
defined a “UnifiedUserExample” Property Set that has a userPoints property of type

4 Creating and Managing Users

4-12 Using the BEA WebLogic Personalization Server

Integer. If someone tries to set the userPoints property for the “UnifiedUserExample”
Property Set to be “foo” an exception would be thrown because userPoints is defined
as being of type Integer and “foo” is text. Similarly, setting a Boolean property value
to “bar” would result in an exception because Boolean values are restricted to Boolean
objects.

If setProperty() is called and null is passed for the Property Set, the property value
is set in the null Property Set – referred to as the default Property Set. As described
previously in the search order of getProperty(), the default property set is searched
before looking for the property value in the “Reserved” Property Set and then a
successor.

The “Reserved” Property Set is a read-only Property Set that is used to hold property
values from an external datastore. The only time the “Reserved” Property Set is
currently used in the Personalization Server is when properties are retrieved from an
LDAP directory. Attempting to set a property in the “Reserved” Property Set will
result in an exception being thrown. Properties in the “Reserved” Property Set and the
Reserved Property Set itself are not editable via the User Management tools. The User
Management tools allow the specification of attributes to be retrieved from an LDAP
server for users and groups.Only these attributes will be retrieved at runtime.

Properties can be set via setProperty() with a Property Set specified that doesn’t
exist. This is allowed, but strongly discouraged. When this is done, a Property Set is
not created “on-the-fly” for the specified Property Set name. Rather, the specified
Property Set name serves only as a namespace for the property. Similarly, it is allowed
but strongly discouraged to set a property via setProperty() for an existing Property
Set specifying a property that does not exist for that Property Set. Properties set in
either of these ways are not editable through the User Management tools, but
properties in the “null” or “default” property set are editable from the tools.

A couple of additional points about getProperty() and setProperty() that are
worth mentioning follow:

n getProperty() returns a java.lang.Long object if setProperty() is called
passing a java.lang.Integer object value. Code retrieving such a property should
be written as follows:

 Object value = myUser.getProperty(“my_property_set”,
 "my_integer_property",
 null,
 null);
 Number tempNumber = (Number) value;
 int realValue = tempNumber.intValue();

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-13

n getProperty() returns a java.lang.Double object if setProperty() is called
with a java.lang.Float object. Code retrieving such a property should be written
as follows:

 Object value = myUser.getProperty(“my_property_set”,
 "my_float_property",
 null,
 null);
 Number tempNumber = (Number) value;
 float realValue = tempNumber.floatValue();

The com.beasys.commerce.axiom.contact.User object offers functionality for
EJB find operations that makes integrating a UUP with the Personalization Server
easy. Once a UUP’s ejbFind() finds records in the existing data store, the call to
super.ejbFind()--the User object ejbFind()-- will create the necessary records for
the UUP in the Personalization Server tables if they do not yet exist and the following
condition is met: If the User object ejbFind() fails, it checks the underlying security
realm to see if the username corresponds to a valid user. If so, User’s ejbFind()
creates the necessary records, thereby eliminating finder errors and the need to spend
time initially migrating user data into the Personalization Server’s User database
tables.

Figure 4-7 Flow during an ejbFind() operation.

If your configuration is such that the realm cannot verify the existence of the user, but
the user must be created, it is the responsibility of your EJB to create the superclass
records if they are not found initially. The UnifiedUser example code demonstrates
such a situation. Please refer to the ejbFindByPrimaryKey() method in the file
UnifiedUserBean.java.

4 Creating and Managing Users

4-14 Using the BEA WebLogic Personalization Server

Six entries are required in the ejb-jar.xml file used when creating the unified user
profile bean’s descriptor. There entries are:

1. JNDIHomeName

This environment entry is not to be confused with the actual JNDI lookup name of the
extended EJB. Rather, it is used to collaborate profile entries for the UUP EJB with
those of com.beasys.commerce.axiom.contact.User. The value must always be:

com.beasys.commerce.axiom.contact.User

Exact entry:

<env-entry>
<env-entry-name>JNDIHomeName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>com.beasys.commerce.axiom.contact.User</env-entr
y-value>
</env-entry>

2. SchemaGroupName

This environment entry is used to configure the EJB to pull property values from a
particular classification of Property Sets. The value must always be:

USER

Exact entry:

<env-entry>
<env-entry-name>SchemaGroupName</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>USER</env-entry-value>
</env-entry>

3. SmartConnectionPoolClass

This environment entry is used to configure the EJB to use the correct database
connection pool class. The value must always be:

com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnectionPool

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-15

Exact Entry:

<env-entry>
<env-entry-name>SmartConnectionPoolClass</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entryvalue>

com.beasys.commerce.foundation.plugin.weblogic.
WeblogicConnectionPool

</env-entry-value>
</env-entry>

4. SmartBMP_URL

This environment entry provides the URL of the database to the EJB. The value must
always be:

jdbc:weblogic:jts:commercePool

Exact Entry:

<env-entry>
<env-entry-name>SmartBMP_URL</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>jdbc:weblogic:jts:commercePool</env-entry-value>
</env-entry>

5. SmartBMPClass

This environment entry specifies which SmartBMP class to use when creating,
refreshing, updating, and removing the EJB. If you have created a SmartBMP for your
class which extends com.beasys.commerce.axiom.contact.UserSmartBMP, use
the classname of your SmartBMP for this entry. If you do not use a particular
SmartBMP with your class, use
com.beasys.commerce.axiom.contact.UserSmartBMP as the value.

Sample entry:

<env-entry>
<env-entry-name>SmartBMPClass</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>

com.beasys.commerce.axiom.contact.UserSmartBMP

4 Creating and Managing Users

4-16 Using the BEA WebLogic Personalization Server

</env-entry-value>
</env-entry>

6. EntityPropertyManager

This environment entry specifies which EntityPropertyManager bean to use when
accessing user and group properties. If using the LDAP configuration (security realm
is the LDAP realm), the entry must be as follows.

Exact Entry:

<env-entry>
 <env-entry-name>EntityPropertyManagerHome</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-
value>com.beasys.commerce.foundation.property.EntityPropertyAggre
gator</env-entry-value>
</env-entry>

For any other configuration the EntityPropertyManager entry should be specified
as follows.

Exact Entry:

<env-entry>
 <env-entry-name>EntityPropertyManagerHome</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com.beasys.commerce.foundation.property.
EntityPropertyManager</env-entry-value>
</env-entry>

The contents of the ejb-jar.xml file shipped with the UnifiedUser example are
shown below. Note that this bean was not paired with its own SmartBMP
implementation derived from UserSmartBMP.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>com.beasys.commerce.user.example.UnifiedUser</ejb-name>
 <home>com.beasys.commerce.user.example.UnifiedUserHome</home>
 <remote>com.beasys.commerce.user.example.UnifiedUser</remote>
 <ejb-class>com.beasys.commerce.user.example.UnifiedUserBean</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>com.beasys.commerce.user.example.UnifiedUserPk</
prim-key-class>
 <reentrant>False</reentrant>

Unified User Profiles

Using the BEA WebLogic Personalization Server 4-17

 <env-entry>
 <env-entry-name>JNDIHomeName</env-entry-name
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com.beasys.commerce.axiom.contact.User<
/env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SchemaGroupName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>USER</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartConnectionPoolClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-
value>com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnectionPool</en
v-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMP_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>jdbc:weblogic:jts:commercePool</env-entry-value
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMPClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com.beasys.commerce.axiom.contact.UserSmartBMP</
env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>EntityPropertyManagerHome</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-
value>com.beasys.commerce.foundation.property.EntityPropertyAggregator</env-ent
ry-value>
 </env-entry>
 </entity>
 </enterprise-beans>
 </ejb-jar>

The last step in completing a custom UUP requires the UUP to be registered with the
Personalization Server through the User Management tools. In order to register the
UUP, the User Management tools require the following:

4 Creating and Managing Users

4-18 Using the BEA WebLogic Personalization Server

By registering the UUP with the Personalization Server, it becomes possible to ask for
the new profile type with the <um:getprofile> JSP tag:

<um:getprofile profileType=”UnifiedUserExample”
profileKey=”<%=username%>”/>

It is then possible to use the <um:getproperty> and <um:setproperty> JSP tags
with the UUP.

Using WebLogic Realms

A realm is a Java class that provides access to a store of Users, Groups, ACLs (Access
Control Lists), and related services. WebLogic Server uses a realm as a service, calling
into the realm to retrieve Users, Groups, and ACLs as Java objects. WebLogic Server
provides realms that access the WebLogic Server properties file, Windows NT or Unix
networks, and LDAP servers for user, group, and ACL information. The WebLogic
Personalization Server provides an additional RDBMSRealm which uses its own
database tables containing user and group information as an out-of-the-box option. It
is also possible to create your own realm if your situation requires accessing a datastore
not supported by WebLogic Server.

The WebLogic Personalization Server must have access to a realm to retrieve
information about users and groups, determine a group’s members, and authenticate
users. By depending on realms, the Personalization Server can use existing stores of
user and group information, allowing that information to remain in place. For instance,

Profile Type Name Arbitrary name that is later used to refer to the profile
type through the User Management system’s
<um:getprofile> JSP extension tag

Profile Home Class The home class of the new profile type

Profile Remote Interface The remote interface of the new profile type

Profile Primary Key Class The primary key class of the new profile type

Profile JNDI Name The JNDI lookup name of the new profile type

Using WebLogic Realms

Using the BEA WebLogic Personalization Server 4-19

if you already have users and groups defined in an LDAP directory, they can be
accessed by the Personalization Server through the LDAPRealm without requiring any
redundant data entry.

If you are using the Personalization Server without an external data store of user and
group information, then that information will be stored in the Personalization Server’s
database tables. In this case, the
com.beasys.commerce.axiom.contact.security.RDBMSRealm must be used to
access user and group information from the Personalization Server tables. For this
configuration to work, the appropriate realm properties for your database type must
exist in the commerce.properties file. Make sure the following properties are set:

In the BEA WebLogic Personalization Server’s commerce.properties file:

If using Oracle Thin Drivers (Oracle 8.0.5, Oracle 8.1.5):

commerce.usermgmt.RDBMSRealm.driver=oracle.jdbc.driver.OracleDriv
er
commerce.usermgmt.RDBMSRealm.dbUrl=\
 jdbc:oracle:thin:@<machine name>:<port number>:<database
instance>
commerce.usermgmt.RDBMSRealm.dbUser=<database user>
commerce.usermgmt.RDBMSRealm.dbPassword=<database user’s password>

If using the WebLogic Oracle OCI Driver:

commerce.usermgmt.RDBMSRealm.driver=weblogic.jdbc.oci.Driver
commerce.usermgmt.RDBMSRealm.dbUrl=jdbc:weblogic:oracle
commerce.usermgmt.RDBMSRealm.dbServer=<machine name>
commerce.usermgmt.RDBMSRealm.dbUser=<database user>
commerce.usermgmt.RDBMSRealm.dbPassword=<database user’s password>

If using Cloudscape:

commerce.usermgmt.RDBMSRealm.driver=COM.cloudscape.core.
JDBCDriver
commerce.usermgmt.RDBMSRealm.dbUrl=jdbc:cloudscape:Commerce;\
 create=true;autocommit=false
commerce.usermgmt.RDBMSRealm.dbUser=none
commerce.usermgmt.RDBMSRealm.dbPassword=none

In the BEA WebLogic Server’s weblogic.properties file:

4 Creating and Managing Users

4-20 Using the BEA WebLogic Personalization Server

weblogic.security.realmClass=\
com.beasys.commerce.axiom.contact.security.RDBMSRealm

It is important to note that if a realm other than the Personalization Server’s
RDBMSRealm is being used, the administration tools for creating users and groups
become inaccessible. This is because adding users and groups and administering
credentials must be done through tools provided by the external datastore.

For use within the Personalization Server, a realm must be a subclass of
weblogic.security.acl.AbstractListableRealm. The WebLogic NTRealm,
LDAPRealm, and UnixRealm are all subclasses of AbstractListableRealm.

Tools are provided that allow a properly-configured realm to be set up for use by the
Personalization Server. The realm configuration tools allow you to choose which
groups from the realm you wish to use in the Personalization Server, map group names
that have changed in the realm to new group names, and clean up Personalization
Server records that no longer correspond to valid realm users or groups.

Note: Changing the underlying realm can cause unpredictable behavior if the realm
configuration tools are not immediately used to map and remove groups and
clean up users as appropriate for the new realm.

In addition to user and group information, realms may also provide ACLs to determine
an authenticated user’s permissions within the system. An ACL guards an object or
service in WebLogic Server. ACLs can guard Servlets and JSP pages, JMS queues and
topics, EJBs, JDBC connection pools, JNDI contexts, and ZAC packages. You can
also create custom ACLs for use in your applications, and these ACLs will be
supported by the Personalization Server.

An ACL holds a list of AclEntries, each with a set of permissions for a user or group.
A permission is an action that can be performed on the protected resource--for
example, "execute", "lookup", "read", or "write". The exact permissions available
depend on the type of resource the ACL protects. For example, a Servlet requires
"execute" permission, and a JMS queue requires "read" or "write" permission.

For more information on realms, including how to configure and administer realms,
consult the WebLogic Server documentation for Using WebLogic Realms and ACLs.
Also, for more information on implementing a custom realm, see the WebLogic Server
documentation for doing so.

Anonymous User Profiles

Using the BEA WebLogic Personalization Server 4-21

Anonymous User Profiles

Certain scenarios require an unidentified user to be able to use a system. While the
unidentified user is using the system, you need to have a profile for that user in order
to set and get properties. For instance, a portal web site might want to let new users
tour the web site and configure a few things before they actually have an official login
name and password. The Anonymous User Profile allows for a user profile to be
created for such a user. An anonymous user profile can be treated just like a user profile
for a known user, but the anonymous user profile only lives for the life of the user
session. If the session is terminated without capturing an identity for the user, any
profile information accumulated during the life of the anonymous user profile is lost.
An anonymous user profile has no successor and will not retrieve default property
values from a Property Set.

The Anonymous User Profile is available only through JSP tags. An anonymous
profile is created when a <um:setproperty> or <um:getproperty> JSP tag is used
before a <um:getprofile> tag has been called. If during a session a persistent user
profile is created for the anonymous user, the <um:createuser> tag can be told to
store the values from the anonymous profile into the new user profile. This is done with
the saveAnonymous tag parameter set to “true”, as in <um:createuser
saveAnonymous=”true”>. See the documentation for User Management JSP tags for
more information on these tags.

For an example, see <install_dir>/server/public_html/anonymousprofile/index.html.

User Manager

The UserManager Session EJB provides user management functionality in a
Personalization Server-specific context. Services provided by the UserManager
include:

n Creating/removing users

n Creating/removing groups

n Adding users to groups/Removing users from groups

4 Creating and Managing Users

4-22 Using the BEA WebLogic Personalization Server

n Adding groups to groups/Removing groups from groups

n Retrieving usernames corresponding to a group

n Retrieving group names corresponding to a user

n Retrieving unique group and user IDs based on group/user name

n Retrieving group/user name based on unique ID

n Retrieving user/group objects based on name

For a complete list of UserManager services, please refer to the UserManager javadoc.

Though it supplies the underlying functionality of the Group/User management JSP
extension tags, the UserManager can be accessed directly. However, the UserManager
is not intended for use outside the context of the Personalization Server. To emphasize
this point, the general relationship between the UserManager and the security realm
support mechanism will be briefly explained, followed by a few examples.

The figure below shows the relationship between the UserManger, the RealmLink, and
the security realm. The RealmLink is used to ensure that realm query results are
consistent with Personalization Server user and group data. The RealmLink is the only
object aware of both the Personalization Server data, and the Realm user and group
data. An example of RealmLink activity is the query for group names associated with
a particular user. Since the user manager administration tools allow for group
registration with the Personalization server, the RealmLink will only return group
names for a particular user that exist in both the security realm and in the
Personalization Server tables.

User Manager

Using the BEA WebLogic Personalization Server 4-23

Figure 4-8 UserManager/RealmLink Cooperation.

To ensure behavior consistent with Personalization Server purposes, the UserManager
employs two primary strategies.

1. For certain operations,
(com.beasys.commerce.axiom.contact.UserManager), the UserManager
qualifies the security realm being used before taking action. These operations can
only be performed if the current security realm class is
com.beasys.commerce.axiom.contact.security.RDBMSRealm. See
UserManager EJB in Javadoc for details.

For example, the createGroup() method throws a
UserManagementException if the out-of-the-box RDBMSRealm is not being
used. The logic behind such an exception is that the UserManager is designed to
work with the default Personalization database schema. If another realm is being
used (e.g.,WebLogic LDAPRealm), it is assumed that the client has another
means, besides the Personalization Server administration tools, that should be
used for adding and removing groups and users to/from the realm.

2. For all operations, the UserManager works in conjunction with the
com.beasys.commerce.axiom.contact.security.RealmLink class to
ensure results consistent with both security realm and Personalization Server user
and group data.

For example, the getGroupNamesForUser() method returns only group names
which exist in the current security realm and which are registered with the
Personalization Server via the Realm Configuration tools.

4 Creating and Managing Users

4-24 Using the BEA WebLogic Personalization Server

Using the User Management Tool

The User Management tools allow you to create and associate users and groups or to
link to and use existing directories of users. A user or group may then be personalized
by overriding property values as defined in the Property Set Management tool. The
Unified Profile Types tool allows you to configure access through User Management
tag libraries to your existing application EJBs.

Note: If your system is configured for a third party realm, the interface above would
contain a Realm banner in addition to the ones presented and an LDAP banner
if your are using the LDAP Realm. In addition, the create buttons would not
appear on the Users or Groups banners.

Creating groups

Note: The User Management tools do not allow the creation of a group called
“everyone”, as this is a reserved WebLogic Server group name.

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click create in the Groups banner. The
Create a New Group page appears.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-25

3. Within the Group Hierarchy tree view, expand the hierarchy as needed to display
the add icon (+) at the level you wish to add the group. Click on the plus sign.
The Create a Group page appears.

4. Enter the name of the new group in the Group Name field.

5. Click create. A success or failure message appears.

6. Click back to return to the Group Administration tool or to enter another new
group name (Step 4).

Deleting groups

1. On the Administration Tool Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Groups in the Groups banner. The
Search for Groups tool appears.

4 Creating and Managing Users

4-26 Using the BEA WebLogic Personalization Server

To locate the group to delete by name:

a. Enter the group name in the Group Name field.

Note: The group name must be entered exactly.

b. Click search.

or

To locate the group to delete within the Group Hierarchy:

l Navigate the Group Hierarchy tree view.

3. Click X to the right of the group name. A confirmation box appears.

4. Select OK. The group is deleted.

Adding users to groups

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group by name:

a. Enter the group name in the Group Name field.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-27

b. Click search.

or

To locate the appropriate group within the Group Hierarchy:

l Navigate the Group Hierarchy tree view.

3. Select the group. The Group Properties view appears.

4. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

To locate the user by name:

a. Enter the user name in the Username field or a partial user name, including an
asterisk.

b. Click search. The Search Results and the current Group Users appear at the
bottom of the page.

or

To see a list of all users in an alphabetized category:

l Click the appropriate letter corresponding to the first letter of the user name.
The Search Results and the current matching Group Users appear at the
bottom of the page.

4 Creating and Managing Users

4-28 Using the BEA WebLogic Personalization Server

5. Select the user name, or a group of names, from the Search Results field.

6. Click the left-to-right directional arrow. The user name(s) appears with the Group
Users field.

7. Click save.

8. Click back to return to the Group Properties view.

Note: The search applies both list boxes.

Removing users from groups

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Groups in the Groups banner. The
Search for Groups tool appears.

To locate the appropriate group by name:

a. Enter the group name in the Group Name field.

b. Click search.

or

To locate the appropriate group within the Group Hierarchy:

l Navigate the Group Hierarchy tree view.

3. Select the group. The Group Properties view appears.

4. Click the add/remove icon (+/-) at the bottom of the page. The Add/Remove
Users tool appears.

To locate the user by name:

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-29

a. Enter the user name or a partial user name, including an asterisk, in the
Username field.

b. Click search. The Search Results and the current matching Group Users appear
at the bottom of the page.

To see a list of all users within an alphabetized category:

l Click the appropriate letter corresponding to the first letter of the user name.
The Search Results and the current Group Users appear at the bottom of the
page.

5. Select the user name, or a group of user names, from the Group Users field.

6. Click the right-to-left directional arrow. The user name(s) is removed from the
Group Users field and appears in Search Results.

7. Click save.

8. Click back to return to the Group Properties view.

Editing group property values

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Groups in the Groups banner. The
Search for a Group page appears.

To locate the appropriate group by name:

a. Enter the group name in the Group Name field.

b. Click search.

or

To locate the appropriate group within the Group Hierarchy:

l Navigate the Group Hierarchy tree view.

3. Select the group. The Group Properties view appears.

4 Creating and Managing Users

4-30 Using the BEA WebLogic Personalization Server

4. Select or search for a property set to view for this group. For specific instructions
on property set management, see Creating and Managing Property Sets. The
group’s default property values appear if no other property set has been accessed
during the tools session.

5. Click search.

6. Click edit on the appropriate Property bar. The associated Edit Property Values
page appears.

7. Change the values on the Edit Property Values page.

8. Click save.

9. Click back to return to the Group Properties view.

10. Return to Step 4 and edit other properties as necessary.

Note: Non-default Property sets and properties not configured through the Property
Set Management tools are not editable here.

Creating users

Note: All new users are com.beasys.commerce.axiom.contact.usercomponents.

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click create in the Users banner. The
Create New Users page appears.

3. Enter the user name in the Username field.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-31

Note: Limit user names to 25 characters.

4. Enter the password associated with the User Name in the Password field.

5. Re-enter the password provided in Step 4 in the Verify Password field.

Note: Characters in password fields appear as asterisks.

6. Click create. The new user appears at the bottom of the page.
Alternatively, click back to return to the User Management home page without
creating the new user.

Note: The WLCS RDBMS realm allows mixed case (e.g., User, user) user creation.

Editing user property values

Note: The administration tools do not allow the creation of a user with username
“system” or “guest”, as these are reserved WebLogic Server terms.

Note: Explicit properties of UUP are not editable from the administration tools.

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Users in the Users banner. The
Search for a User tool appears.

Note: Use the wildcard feature by entering a partial user name immediately followed
by an asterisk (*). The asterisk is a search return variable.

To locate the appropriate user by name:

a. Enter the user name in the Username field.

b. Click search. The search results appear at the bottom of the page.

or

To see a list of all users within an alphabetized category:

l Click the appropriate letter corresponding to the first letter of the user name.
A list of users appear at the bottom of the page.

3. Select the user. The User Property view appears.

4 Creating and Managing Users

4-32 Using the BEA WebLogic Personalization Server

4. Select a property set to view for this user. For specific instructions on Property
Set Management, see Chapter 3, “Creating and Managing Property Sets.”.

5. Click search.

6. Click edit on the appropriate Property bar. The associated Edit Property Values
page appears.

7. Change the user’s values at the Edit Property Values page.

8. Click save. A message appears indicating whether or not the edit was successful.
Alternatively, click back to return to the User Properties view without saving
your changes.

9. Click back to return to the User Properties view.

10. Return to Step 4 and edit other properties as necessary.

Deleting users

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Users in the Users banner. The
Search for a User tool appears.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-33

To locate the appropriate user by name:

a. Enter the user name in the Username field or a partial name with an asterisk.

b. Click search. The search results appear at the bottom of the page.

or

To see a list of all users within an alphabetized category:

l Click the appropriate letter corresponding to the first letter of the user name.
A list of users appear at the bottom of the page.

3. Click the X to right of the user name to delete the user. A confirmation dialog
box appears.

4. Click OK to confirm the deletion.

Note: When a user, declared in the weblogic.properties file, is deleted from the
Delete Users screen, the corresponding User component and its properties will
be deleted, but the user name will continue to be returned from user searches.

Creating Unified Profile Types

The Unified Profile Type tool facilitates the registration of profile types to be used as
Unified User Profile (UUP) objects.

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click create in the Unified Profile Types
banner. The Create New Unified Profile Type page appears.

4 Creating and Managing Users

4-34 Using the BEA WebLogic Personalization Server

The following table contains descriptions of the Create New Unified Profile Type
fields:

3. Enter the appropriate information in the fields provided.

4. Click create and return to the Unified Profile Types list.
Alternatively, click back to return to the User Management home page without
saving your changes.

Editing Unified Profile Types

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

Field Description

Profile Type Name This is an arbitrary name that is used to refer to the profile type
through the User Management system’s <um:getprofile> JSP
extension tag.

Profile Remote Interface The remote interface of the new profile type.

Home The home class of the new profile type.

PK Class The primary key class of the new profile type.

JNDI Name The JNDI lookup name of the new profile type.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-35

2. On the User Management home page, click the Unified Profile Types list. The
Unified Profile Type page appears.

3. Click the appropriate link to edit a unified profile type. The Edit Unified Profile
Type page appears.

4. Edit the appropriate field(s) of the unified profile type.

5. Click save and return to the Unified Profile Types list or click back to return to
the User Management home page without saving your changes.

Deleting Unified Profile Types

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Unified Profile Types. The Unified
Profile Type page appears.

3. Click the X to right of the user name to delete the user. A confirmation dialog
box appears.

4. Click OK to confirm the deletion.

The remaining tools are accessible only if a realm other than Personalization Server’s
RDBMSRealm is used. The LDAP tools are accessible only if WebLogic’s
LDAPRealm is used.

Note: For the LDAP features to appear in the User Management tool, you must first
install and configure the WebLogic LDAP security realm for your WebLogic
Server. See http://www.weblogic.com/docs50/admindocs/ldap.html for
details.

Registering group attributes for retrieval from LDAP

This screen is used to register group attribute names for runtime retrieves via the group
profile.

4 Creating and Managing Users

4-36 Using the BEA WebLogic Personalization Server

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. Click Create on the Enabled User Attributes bar. The Add User Attribute page
appears.

4. Enter a new attribute to retrieve from LDAP in the User Attribute Name field.

5. Click save. Alternatively, click back to return to LDAP Configuration view
without saving your changes.

6. Repeat Steps 4 and 5 as necessary.

7. When finished, click back.

Deleting user attributes from LDAP

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. In the Enabled User Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

4. Click OK to confirm the deletion.

5. Repeat Steps 3 and 4 as necessary.

6. When finished, click back.

Adding group attributes in LDAP

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-37

2. On the User Management home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

Note: For the LDAP features to appear in the User Management tool, you must first
install and configure the WebLogic LDAP security realm for your WebLogic
Server. See http://www.weblogic.com/docs50/admindocs/ldap.html for
details.

3. Click create on the Enabled Group Attributes bar. The Add Group Attribute tool
appears.

4. Enter a new attribute in the Group Attribute Name field to retrieve from LDAP.

5. Click save to add the attribute or click back to return to LDAP Configuration
view without saving your changes.

6. Repeat Steps 4 and 5 as necessary.

Unregistering group attributes for retrieval in LDAP

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

4 Creating and Managing Users

4-38 Using the BEA WebLogic Personalization Server

3. In the Enabled Group Attributes list, click the X to the right of the attribute you
want to delete. A confirmation dialog box appears.

4. Click OK to confirm the deletion.

5. Repeat Steps 3 and 4 as necessary.

Viewing LDAP configuration settings

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click LDAP in the LDAP banner. The
LDAP Configuration view appears.

3. View the status of the following parameters from the LDAP Configuration
Parameters field:

Parameter Description

Groups Location Distinguished name for the hierarchical parent of all relevant
groups.

Group Name Attribute The name of the attribute that uniquely identifies a group.

Group Username
Attribute

The name of the attribute in group objects that has as its value
the group members.

Users Location Distinguished name for the hierarchical parent of all relevant
users.

Username Attribute The name of the attribute that uniquely identifies users in the
system.

Example: login name or unique ID.

LDAP System
Principal

Distinguished name for a system level user. This user has read
access to all information in the LDAP directory accessed by the
application.

LDAP URL The Universal Resource Locator (URL) of the LDAP directory
server you are running.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-39

Note: The values above are “read only” and are specified when configuring the LDAP
realm.

Selecting groups for the Personalization Server from
realm

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Realm in the Realm banner. The
Realm Configuration page appears.

3. Click edit in the Groups bar. The Edit Group Information tool appears.

SSL Indicates whether communication from the Personalization
Server to the LDAP directory should be encrypted over SSL.

Parameter Description

4 Creating and Managing Users

4-40 Using the BEA WebLogic Personalization Server

4. Select the group(s) you wish to use.

5. Click Save.

Mapping realm groups to the Personalization Server

Use this tool when a group name changes in the realm. The records in the
Personalization Server to reflect the group name.

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Realm in the Realm banner. The
Realm Configuration page appears.

3. Click edit in the Groups bar. The Edit Group Information tool appears.

4. Click Map in the Status description of the corresponding group name. The Map
Group tool appears.

Note: You are only given the option of mapping those groups that have been found
in your database but are missing from the realm.

5. Select the appropriate group name from the Map To Group field.

6. Click save. Alternatively, click back to return to the Realm Configuration page
without saving your changes.

Using the User Management Tool

Using the BEA WebLogic Personalization Server 4-41

Note: Group mapping works by simply changing the name of the group in the
personalization tables to the group name in the realm. All property data is
retained.

Deleting groups from your database

1. On the Administration Tools Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Realm in the Realm banner. The
Realm Configuration page appears.

3. Click edit in the Groups bar. The Edit Group Information tool appears.

4. Click Remove in the Status description of the corresponding group name.

Note: You are only given the option of deleting those groups that are found in
your database but are missing from the realm. A confirmation dialog box
appears.

5. Click OK to confirm the deletion.

4 Creating and Managing Users

4-42 Using the BEA WebLogic Personalization Server

Deleting user records from personalization database

1. On the Administration Tool Home Page, click the User Management icon. The
User Management home page appears.

2. On the User Management home page, click Realm in the Realm banner. The
LDAP Configuration view appears.

3. Click edit in the Users bar. The Clean Up Users tools appears with a count of
users found in the personalization database but not in the realm.

4. Click clean up if the user names are no longer needed. All associated records are
removed.

Using the BEA WebLogic Personalization Server 5-1

CHAPTER

5 Creating and Managing
Content

Creating and Managing Content covers the following topics:

What is the Content Management Component?
Third-party tools and WLPS
Constructing queries using Java
Differences between content management and document management
Using the document servlet
JSP Tags

Configuring the Content Management component
Configuring the Document EJB deployment descriptor
Configuring the Document Schema EJB deployment descriptor
Configuring the DocumentManager EJB deployment descriptor
Setting up Connection pools
Using the Show Document Servlet
Querying document content
Structuring a query
Using comparison operators to construct queries
Using the BulkLoader to load file-based content
Using Content Management JSP Tags

The Content Management component of WLPS 2.0 provides content and document
management capabilities for use in personalization services. The Content Manager
works with files or with content managed by third-party vendor tools from
Documentum and Interwoven.

5 Creating and Managing Content

5-2 Using the BEA WebLogic Personalization Server

What is the Content Management
Component?

The Content Management runtime component provides access to content via both tags
and EJBs. The Content Management tags allow a JSP developer to receive an
enumeration of Content objects by querying the content database directly using a
search expression syntax.

WebLogic Personalization Server 2.0 provides several components that allow content
personalization for users. Together, these components provide a complete
personalization solution. Of these personalization components, the Portal, Rules, User,
and Property Set Management elements include edit-time graphical user interfaces
(GUIs) that allow developers to customize the elements. Neither the Content
Management or Personalization Advisor components have a GUI.

The Content Management component works alongside the other components to deliver
personalized content, but doesn’t have a GUI-based tool for edit-time customization.
The content engine behind the ContentManager may be set up to be the reference
implementation, provided out of the box, or Documentum. The Content Management
component supports querying that returns content from a content repository using
several methods:

n Search for content by metadata: Boolean logic searching evaluates content that
matches a metadata/operator/value criteria.

n Retrieve content by ID: The system allows retrieval of raw bytes of content
data—either in blocks or in its entirety—through the content’s known identifier.

n Query content metadata by ID: The system, through the known identifier of a
content piece, can query the metadata describing the content piece. Several
metadata attributes provide information about the content. The query language
maps some attribute names onto explicit attributes of the Content or Document
objects the query searches. Queries searching for Content objects support the
following case-sensitive explicit attribute names:

l identifier: Corresponds to the unique String identifier of the Content (i.e.
the getIdentifier method).

l mimeType: Corresponds to the String MIME type of the Content (i.e. the
getMimeType method).

What is the Content Management Component?

Using the BEA WebLogic Personalization Server 5-3

n Queries searching for Document objects support the following additional
case-sensitive explicit attribute names:

l size: Corresponds to the Long size of the document in bytes (i.e. the getSize
method). Documents without file bytes will have a size of 0 or less.

l version: Corresponds to the Integer version number of the document (i.e.
the getVersion method).

l author: Corresponds to the String identifier of the author of the document
(i.e. the getAuthor method).

l creationDate: Corresponds to the Timestamp of when the document was
created (i.e. the getTimestamp method).

l modifiedBy: Corresponds to the String identifier of the individual who last
modified the document (i.e. the getModifiedBy method).

l modifiedDate: Corresponds to the Timestamp of when the document was last
modified (i.e. the getModifiedDate method).

l lockedBy: Corresponds to the String identifier of the individual who has the
document locked (i.e. the getLockedBy method).

l description: Corresponds to the String description of the document (i.e. the
getDescription method).

l comments: Corresponds to any String comments about the document (i.e.
the getComments method).

Note: All other attribute names in queries are considered implicit metadata
properties.

n Get content schema by name: The document management system (DMS)
contains a set of named schemas that describe a set of non-standard metadata
attributes. Each piece of content in the DMS is associated with one of these
schemas and each schema specifies valid attributes

n Get content schema names: A user can query the system for a list of all schema
names a DMS supports.

Note: See “Querying document content” on page 5-15 for more information about
queries.

5 Creating and Managing Content

5-4 Using the BEA WebLogic Personalization Server

Third-party tools and WLPS

BEA partners with third-party vendors to add flexibility to WebLogic Personalization
Server. The Content Management component works with Interwoven’s
TeamSite/OpenDeploy product and Documentum’s 4i product. Both these products
provide robust content creation management solutions while the Content Management
component of WLPS 2.0 personalizes and serves the content to the end-user.

Constructing queries using Java

To construct queries using Java syntax instead of using the query language supplied
with the Content Management component, refer to the //API documentation//.

Note: Use the constants in TypesHelper when calling Logical.setLogical and
Criteria.setComparator.

The ContentManager session bean is the primary interface to the functionality of the
Content Management component. Using a ContentManager instance, content is
returned based on a Search object with an embedded Expression. An Expression is
a boolean tree of arbitrary depth, with other sub-Expressions as nodes. The
Expression interface is meant to be abstract, where the actual instances are Logical
or Criteria interfaces. As an example, the expression color == ’red’ && price
> 50 would consist of a Logical with the value and that has as children two
Criteria.

Differences between content management and
document management

Content objects include metadata about the content. Metadata provides a means to
query and match content with users by allowing the system to retrieve content based
on the metadata that describes the content. In general, some kind of content
management system provides services such as retrieval of content and content
authoring services including creation, editing, versioning, and workflow.

What is the Content Management Component?

Using the BEA WebLogic Personalization Server 5-5

Documents are a specialized type of Content that provide two methods for retrieval:
a metadata-searching mechanism and retrieval of the pure bytes of the document’s file.
Documents should include additional explicit metadata properties related to the file
and its versioning, including its size, name, path, author, and version. A document
management system usually provides document-based services for documents that
reside in the system’s repository.

WebLogic Personalization Server 2.0 provides the entire Content object model;
however, it only provides the Document object as a concrete implementation
(subclass) of the Content class.

Using the document servlet

The Content Management component includes a servlet capable of outputting the
contents of a Document object. This servlet is useful when streaming the contents of
an image that resides in a content management system or to stream a document’s
contents that are stored in a content management system when an HTML link is
selected. The servlet supports the following Request/URL parameters:

Request
Parameter

Required Description

contentHome maybe If the contentHome initialization
parameter is not specified, then this is
required and will be used as the JNDI name
of the DocumentHome. If the
contentHome initialization parameter is
specified, this is ignored.

contentId no The string identifier of the Document to
retrieve. If not specified, the servlet looks in
the PATH_INFO.

blockSize no The size of the data blocks to read. The
default is 8K. Use 0 or less to read the entire
block of bytes in one operation.

5 Creating and Managing Content

5-6 Using the BEA WebLogic Personalization Server

The servlet only supports Documents, not other subclasses of Content. It sets the
Content-Type to the Document’s mimetype, the Content-Length to the
Document’s size, and correctly sets the Content-Disposition, which should
present the correct file name when the file is saved from a browser.

Example 1: Usage in a JSP:

<cm:select contentHome="bea.eDocs.CMgr" max="5"
sortBy="creationDate ASC, title ASC" query="type = ’News’ &&
timeOfDay = ’Evening’ && mimetype like ’text/*’ " id="newsList" />

 <es:foreachinarray array="newsList" id="newsItem"
 type="com.beasys.commerce.axiom.content.Content">
 <a href="/showDocServlet/<cm:printproperty
 id="newsItem" name="identifier" encode="url"/>
 &contentHome=bea.eDocs.CMgr"><cm:printproperty id="newsItem"
 name="Title" encode="html" />
 </es:foreachinarray>

Example 2: Usage in a JSP

This example searches for image files that match keywords that contain bird and
displays the image in a bulleted list.

<cm:select contentHome=”bea.eDocs.cMgr” max=”5” sortBy=”name”
id=”list” query=”Keywords like ‘*birds*’ && mimeType like
‘image/*’“ />

 <es:foreachinarray array=”list” id=”img”
 type=”com.beasys.commerce.axiom.content.Content”>
 <img src=”/showDocServlet?contentId=<cm:printproperty
 id=”img” name=”identifier”
 encode=”url”/>&contentHome=”bea.eDocs.cMgr”>
 </es:foreachinarray>

JSP Tags

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. Note that none
of the tags support or use a body. The tags include:

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-7

n The <cm:select> tag uses only the search expression query syntax to select
content. See the JSP documentation for more information.

n The <cm:selectbyid> tag retrieves content using the content’s unique
identifier. See the JSP documentation for more information.

n The <cm:printproperty> tag inlines the value of the specified Content
metadata property as a string. See the JSP documentation for more information.

n The <cm:printdoc> tag inlines the raw bytes of a Document object into the JSP
output stream. See the JSP documentation for more information.

Configuring the Content Management
component

The Document EJB, Document Schema EJB, and DocumentManager EJB deployment
descriptors handle the configuration for the Content Management component. To use
the reference implementation document repository, you need to configure the EJB
deployment descriptors and also set up two WLS JDBC connection pools.

Once the deployment descriptor has been written, just build the EJBs as you normally
would, then add the resulting jar file to your ejb.deploy entry in the
weblogic.properties file.

Configuring the Document EJB deployment descriptor

The logic for loading Document EJBs is handled via a SmartBMP. The Document EJB
implementation loads the SmartBMP object from a class name specified in the EJB
environment in the EJB's deployment descriptor. The EJB environment variable is
SmartBMPClass. The value must be the fully-qualified class name of the SmartBMP to
use. This class must be capable of populating a DocumentImpl object and must also
have the methods defined in the Content and Document Javadocs.

5 Creating and Managing Content

5-8 Using the BEA WebLogic Personalization Server

To use the reference implementation document management system, set
SmartBMPClass to
com.beasys.commerce.axiom.document.SPIDocumentSmartBMP and specify the
following EJB environment variables in the document EJB deployment descriptor:

n SmartConnectionPoolClass (required): Specifies the fully-qualified class
name of the SmartConnectionPool implementation class. In WebLogic Server,
set SmartConnectionPool to
com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnecti

onPool.

n SmartBMPUpdate: Set to false.

n SmartBMP_URL (required): Specifies the JDBC URL to the document JDBC
connection pool (see “Setting up Connection pools” on page 5-12), which is the
URL that the EJB uses to obtain a document connection. This value should
correspond to the WebLogic connection pool that uses the document reference
implementation JDBC driver.

n PropertyCase: This sets how the DocumentImpl modifies incoming property
names. If this is lower, all property names are converted to lower case. If this is
upper, all property names are converted to upper case. If this is anything else or
not specified, property names are not modified. Use lower or upper if the
SmartBMP class expects everything in a certain case (e.g. the Documentum
SmartBMP expects everything in lower case). For the document reference
implementation, do not specify the PropertyCase.

Other SmartBMP class for other document management system will possibly require
more and/or different EJB environment variables.

Configuring the Document Schema EJB deployment
descriptor

The logic for loading Document Schema EJBs is handled via a SmartBMP. The Schema
EJB implementation loads the SmartBMP object from a class name specified in the EJB
environment in the EJB's deployment descriptor. The EJB environment variable is
SmartBMPClass. The value must be the fully-qualified class name of the SmartBMP to
use. This SmartBMP must be capable of populating a SchemaImpl object with
PropertyMetaData objects.

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-9

To use the reference implementation document management system, set
SmartBMPClass to
com.beasys.commerce.axiom.document.SPISchemaSmartBMP and specify the
following EJB environment variables in the document EJB deployment descriptor:

n SmartConnectionPoolClass (required): Specifies the fully-qualified class
name of the SmartConnectionPool implementation class. In WebLogic Server,
set SmartConnectionPool to
com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnecti

onPool.

n SmartBMPUpdate: Set to false.

n SmartBMP_URL (required): Specifies the JDBC URL to the document JDBC
connection pool (see “Setting up Connection pools” on page 5-12), which is the
URL that the EJB uses to obtain a document connection. This value should
correspond to the WebLogic connection pool that uses the document reference
implementation JDBC driver.

Note: This value should correspond to the value in the Document EJB. See
“Configuring the Document EJB deployment descriptor” on page 5-7 for
more information.

Other SmartBMP class for other document management system will possibly require
more and/or different EJB environment variables.

Configuring the DocumentManager EJB deployment
descriptor

The DocumentManagerSession EJB simply hides the details of getting to the
Document and DocumentSchema EJBs. It understands the following environment
variables in its deployment descriptor:

n UseDefaultHomeNames: If this set to true, then the default home names will be
used if either ContentHome or SchemaHome is not specified.

n ContentHome: This specifies the JNDI home name of the DocumentHome object
to use.

n SchemaHome: This specifies the JNDI home name of the SchemaHome object to
use.

5 Creating and Managing Content

5-10 Using the BEA WebLogic Personalization Server

Example deployment descriptor file

The following is a sample ejb-jar.xml deployment descriptor file:

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC ’-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’ ’http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’>
<ejb-jar>
 <enterprise-beans>

 <!-- our Document entity bean -->
 <entity>
 <ejb-name>com.beasys.commerce.axiom.document.Document</ejb-name>
 <home>com.beasys.commerce.axiom.document.DocumentHome</home>
 <remote>com.beasys.commerce.axiom.document.Document</remote>
 <ejb-class>com.beasys.commerce.axiom.document.DocumentImpl</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>
 com.beasys.commerce.axiom.document.DocumentPk
 </prim-key-class>
 <reentrant>False</reentrant>
 <env-entry>
 <env-entry-name>SmartConnectionPoolClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnectionPool
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMP_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>jdbc:weblogic:pool:docPool</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMPClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.axiom.document.SPIDocumentSmartBMP
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMPUpdate</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 </entity>

 <!-- our Schema entity bean -->
 <entity>

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-11

 <ejb-name>com.beasys.commerce.axiom.document.DocumentSchema</ejb-name>
 <home>com.beasys.commerce.foundation.property.SchemaHome</home>
 <remote>com.beasys.commerce.foundation.property.Schema</remote>
 <ejb-class>com.beasys.commerce.foundation.property.SchemaImpl</ejb-class>
 <persistence-type>Bean</persistence-type>
 <prim-key-class>
 com.beasys.commerce.foundation.property.SchemaPk
 </prim-key-class>
 <reentrant>False</reentrant>
 <env-entry>
 <env-entry-name>SmartConnectionPoolClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.foundation.plugin.weblogic.WeblogicConnectionPool
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMP_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>jdbc:weblogic:pool:docPool</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMPClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.axiom.document.SPISchemaSmartBMP
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SmartBMPUpdate</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>false</env-entry-value>
 </env-entry>
 </entity>

 <!-- The default DocumentManager bean -->
 <session>
 <ejb-name>com.beasys.commerce.axiom.document.DocumentManager</ejb-name>
 <home>com.beasys.commerce.axiom.document.DocumentManagerHome</home>
 <remote>com.beasys.commerce.axiom.document.DocumentManager</remote>
 <ejb-class>
 com.beasys.commerce.axiom.document.DocumentManagerImpl
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>ContentHome</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>com.beasys.commerce.axiom.document.Document

5 Creating and Managing Content

5-12 Using the BEA WebLogic Personalization Server

 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SchemaHome</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.axiom.document.DocumentSchema</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>com.beasys.commerce.axiom.document.Document</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <method>
 <ejb-name>com.beasys.commerce.axiom.document.DocumentSchema</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <method>
 <ejb-name>com.beasys.commerce.axiom.document.DocumentManager</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>

 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

Setting up Connection pools

For the document reference implementation, set up a specialized WebLogic
connection pool with the same name as the Document and Schema EJB’s
SmartBMP_URL environment variable (see “Configuring the Document EJB
deployment descriptor” on page 5-7).

For example, if the connection pool name is docPool:

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-13

n the SmartBMP_URL environment variable should be
jdbc:weblogic:pool:docPool.

n The URL should be
jdbc:beasys:docmgmt:com.beasys.commerce.axiom.document.ref.RefD

ocumentProvider.

n The driver should be
com.beasys.commerce.axiom.document.jdbc.Driver. It should not be
configured to use a test_table, although it can be allowed to shrink. The driver
supports the following properties:

l jdbc.url (required): Specifies the JDBC URL of the database. The
connection in this pool opens a connection to this JDBC URL. This property
probably should refer to another, non-specialized JDBC connection pool,
although it can be any JDBC URL.

l jdbc.driver: Specifies a JDBC driver class name to load.

l jdbc.isPooled: If true, then the system assumes the JDBC URL in
jdbc.url is a pooling connection URL and connections will open and close
as needed. If false, then this connection opens one connection via the
jdbc.url and uses that for its lifetime. If the jdbc.url starts with
jdbc:weblogic:pool or jdbc:weblogic:jts, then this property
automatically becomes true.

l docBase (required): Specifies the document base of the document files. The
ids in the database use file paths relative to this directory and must exist
when the connection is created. To operate in a cluster or a multi-server
environment, you must either replicate the files on the machines or the put
the docBase directory on a shared volume.

l schemaXML: Specifies the file or directory where the XML schema
(following the doc-schemas.dtd) resides. Either the schemaXML property or
the iw.schemaBase property is required, although the schemas under
schemaXML take precedence if both are specified. The schemaXML property
has the same constraints as the docBase property when used in a cluster.

Note: If schemaXML is a directory, the connection will recurse under it and load
all files ending in .xml (*.xml).

Note: If schemaXML is a file, the connection loads it.

l iw.schemaBase: Specifies the directory in which the InterWoven
datacapture.cfg files reside. The connection recurses through this

5 Creating and Managing Content

5-14 Using the BEA WebLogic Personalization Server

directory, loading all datacapture.cfg files it finds. Either the
iw.schemaBase or schemaXML property is required, although you can
specify both. The iw.schemaBase property has the same constraints as the
docBase property when used in a cluster.

All other properties are passed with jdbc.url when the Driver Manager opens a
database connection.

Example connection pool entry

The following example shows a sample configuration in the weblogic.properties
file.

weblogic.jdbc.connectionPool.docPool=\
url=jdbc:beasys:docmgmt:com.beasys.commerce.axiom.document.ref.Re
fDocumentProvider,\
 driver=com.beasys.commerce.axiom.document.jdbc.Driver,\
 loginDelaySecs=1,\
 initialCapacity=1,\
 maxCapacity=5,\
 capacityIncrement=1,\
 allowShrinking=true,\
 shrinkPeriodMins=15,\
 refreshMinutes=10,\
 props=jdbc.url=jdbc:weblogic:pool:commercePool;\
 jdbc.isPooled=true;\
 docBase=C:/WeblogicCommerce/docBase;\
 schemaXML=C:/WeblogicCommerce/docSchemas;\
 iw.schemaBase=C:/iw-home/templatedata

Using the Show Document Servlet

To operate the Show Document Servlet, it should be registered with WebLogic Server.
The class name of the servlet is
com.beasys.commerce.content.ShowDocServlet. To register it with WebLogic,
add a line similar to the following to your weblogic.properties files:

weblogic.httpd.register.showDocServlet=\
 com.beasys.commerce.content.ShowDocServlet

Reference the class in the URL as /showDocServlet. To change the URL reference,
change /showDocServlet. For example, to specify the URL as
/myapp/doc-shower, enter the following in the weblogic.properties file:

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-15

weblogic.httpd.register.myapp/doc-shower=\
 com.beasys.commerce.content.ShowDocServlet

Querying document content

n JSP tags (see “Using Content Management JSP Tags” on page 5-22.)

n ContentHelper (see the API documentation)

n ContentManager (see the API documentation)

n ContentHome (see the API documentation)

Structuring a query

WLPS 2.0 queries use a syntax similar to the SQL string syntax that supports basic
Boolean-type comparison expressions, including nested parenthetical queries. In
general, the template for use includes a metadata property name, a comparison
operator, and a literal value. The basic query uses the following template:

Note: Consult the API documentation on
com.beasys.commerce.util.ExpressionHelper for more
information about the query syntax.

attribute_name comparison_operator literal_value

Several constraints apply to queries constructed using this syntax:

n String literals must be enclosed in single quotes.

l ‘WebLogic Server’

l ‘football’

n Date literals can be created via a simplistic toDate method that takes one or two
String arguments (enclosed in single quotes). The first, if two arguments are
supplied, is the SimpleDateFormat format string; the second argument is the
date string. If only one argument is supplied, it should include the date string in
‘MM/dd/yyyy HH:mm:ss z’ format.

l toDate(‘EE dd MMM yyyy HH:mm:ss z’, ‘Thr 06 Apr 2000
16:56:00 MDT’)

5 Creating and Managing Content

5-16 Using the BEA WebLogic Personalization Server

l toDate(‘02/23/2000 13:57:43 MST’)

n Use the toProperty method to compare properties whose names include spaces
or other special characters. In general, use toProperty when the property name
doesn’t comply with the Java variable-naming convention that uses
alphanumeric characters.

l toProperty (‘My Property’) = ‘Content’

n Use \ along with the appropriate character(s) to create an escape sequence that
include special characters in string literals.

l toProperty (‘My Property\’s Contents’) = ‘Content’

n The now keyword—only used on the literal value side of the expression—refers
to the current date and time.

n Boolean literals are either true or false.

n Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms (e.g.
1.24e4 and 1.24E-4).

n An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression.

l !(keywords contains ‘football’) || (size >= 256)

n The Boolean and operator is represented by the literal &&.

l author == ‘james’ && age < 55

n The Boolean or operator is represented by the literal ||.

l creationDate > now || expireDate < now

The following examples illustrate full expressions:

Example 1:

((color="red" && size <=1024) || (keywords contains "red" &&
creationDate < now))

Example 2:

creationDate > toDate (‘MM/dd/yyyy HH:mm:ss’, ‘2/22/2000 14:51:00’)
&& expireDate <= now && mimetype like ‘text/*’

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-17

Using comparison operators to construct queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. The table summarizes the comparison
operators available for each metadata type. (See Support for Native Types in the
Developer’s Guide topic Overview of Personalization Development for more
information about the native types supported in WLPS 2.0.)

Operator Type Characteristics

Boolean (==, !=) Boolean attributes support an equality check against Boolean.TRUE or
Boolean.FALSE.

Numeric (==, !=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than
checks against a java.lang.Number.

Text (==, !=, >, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus
lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (i.e. the like operator),
similar to the SQL LIKE operator or DOS prompt file matching. In this
situation, the wildcards will be * (asterisk) for match any and ? (question
mark) for match single. Interval matching (e.g. using []) is not supported. To
match * or ? exactly, the quote character will be \ (backslash).

Datetime (==, !=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than
checks against a java.sql.Timestamp.

Multi-valued Comparison
Operators (contains, containsall)

Multi-valued attributes support a contains operator that takes an object of
the attribute’s subtype and checks that the attribute’s value contains it.
Additionally, multi-valued attributes support a containsall operator,
which takes another collection of objects of the attribute’s subtype and checks
that the attribute’s value contains all of them.

Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute’s collection of values. Any value that
matches the operator and operand should return true. For example, if the
multi-valued text attribute keywords has the values BEA, Computer, and
WebLogic and the operand is BEA, then the < operator returns true (BEA is
less than Computer), the > operator returns false (BEA is not greater than any
of the values), and the == operator returns true (BEA is equal to BEA).

User Defined Comparison
Operators

Currently, no operators can be applied to a user-defined attribute.

5 Creating and Managing Content

5-18 Using the BEA WebLogic Personalization Server

Note: The search parameters and expression objects support negation of expressions
via a bit flag (!).

Using the BulkLoader to load file-based content

WebLogic Personalization Server 2.0 provides no run-time tools to load metadata
information from a content database. However, the server provides a command line
utility, the BulkLoader, that descends a directory hierarchy, parses the HTML-style
<meta> tags, reverses the metadata content contained within the <meta> tags into
schema information, and loads the resulting documents into the reference
implementation database.

The BulkLoader is a command-line application that is capable of loading document
metadata into the reference implementation database from a directory and file
structure. The BulkLoader parses the document base and weblogic.properties and
loads all the document metadata so that the Content Management component can
search for documents.

Command line usage

The BulkLoader class allows a number of command-line switches:

java com.beasys.commerce.axiom.document.loader.BulkLoader
 [-/+verbose] [-/+recurse] [-/+delete] [-/+metaparse] [-/+cleanup]
 [-/+hidden] [-/+inheritProps]
 [-properties <name>] -conPool <name> [-schema <name>] [+schema]
 [-match <pattern>] [-ignore <pattern>] [-htmlPat <pattern>]
 [-d <dir>] [-mdext <ext>] [--] [files... directories...]

-verbose: emit verbose messages
+verbose: run quietly [default]
-recurse: recurse into directories [default]
+recurse: don’t recurse into directories
-delete: remove document from database
+delete: insert documents into database [default]
-metaparse: parse HTML files for <meta> tags [default]
+metaparse: don’t parse HTML files for <meta> tags
-cleanup: if specified, this only performs a table cleanup using the -d
 argument as the document base (i.e. all files will need to be under
 that directory).
+cleanup: turn off table cleanup (i.e. do a document load) [default]
-hidden: specify to ignore hidden files and directories [default]

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-19

+hidden: specify to include hidden files and directories
-inheritProps: specify to have metadata properties be inherited when
 recursing [default]
+inheritProps: specify to have metadata properties not be inherited
 when recursing.
-htmlPat <pattern>: Specifies a pattern for determining which files are HTML
 files for determining whether to do the <meta> tag parse. This can be
 specified mulitple times. If none are specified, ’*.htm’ and ’*.html’
 are used.
-properties <name>: specifies the location of the weblogic.properties file
 which should contain the connectionPool definition. Defaults to
 "weblogic.properites" in the current directory.
-conPool <name>: specifies the connectionPool name from the properties file
 from which the BulkLoader should get the connection information
-schema <name>: specifies the path to the schema file the BulkLoader will
 generate (defaults to "document-schema.xml")
+schema: if specified, than no schema file will be created.
-match <pattern>: specifies a file pattern the BulkLoader should include.
 This can be specified multiple times. If none are specified, all files
 and directories are included.
-ignore <pattern>: specifies a file pattern the BulkLoader should not include.
 This can be specified multiple times.
-d <dir>: specifies the docBase that non-absolute paths will be relative to.
 If not specified, "." (current directory) is used.
-mdext <ext>: specifies the file name extension for metadata property files.
 The value should starts with a ".". This defaults to ".md.properties".
--: everything after this is considered a file or directory

How the BulkLoader finds files

The following sequence describes how the BulkLoader locates files.

1. The BulkLoader starts by looking at the list of files and directories specified from
the command line.

l If no files or directory are specified, it uses only the docBase specified by
the -d option. It then loops over the list of files and directories.

l If it finds a directory and +recurse is specified, then it stops.

l If it finds a directory and recursion is turned on (the default or with
-recurse), then the BulkLoader loops over the files and directories
contained within that directory.

Note: If the file or directory is not an absolute path, then it is assumed to be
relative to the docBase specified by the -d option.

5 Creating and Managing Content

5-20 Using the BEA WebLogic Personalization Server

2. To determine if the BulkLoader should process a file or directory, it checks to see
if the file is marked as a hidden file.

Note: If it is a hidden file (or directory) and the +hidden option was not
specified, then the file or directory is ignored.

3. If the file or directory does not exist or is not readable by the user executing the
BulkLoader, a warning is displayed and the file or directory is ignored.

4. If the file or directory is a file, then it is loaded.

5. If the loaded object is a directory and recursion is enabled, then the files and
directories under the directory are retrieved by filtering against the -match and
-ignore options.

Note: The -match and -ignore options only apply to files and directories not
listed on the command line; in other words, they apply only to those found
by recursing into a directory. The patterns specified with the -match and
-ignore options (and the -htmlPat options, for that matter) should be
DOS-style patterns: ’*’ matches any set of characters, ’?’ matches any one
character. Sets of characters (e.g. [aceg]) are not supported.

6. If the subfile or directory name matches any of the patterns specified by a
-ignore option, the subfile or directory is ignored.

7. If the subfile or directory is a directory, then it is included.

8. If the subfile or directory is a file and no -match options were specified, then it
will be included; if at least one -match option is supplied, then the file name must
match at least one of -match patterns.

Note: Files with an extension matching the extension specified by -mdext
(.md.properties by default) are always ignored.

How the BulkLoader finds metadata properties

As the BulkLoader is finding files and directories, it will also attempt to load metadata
property files. Whenever the BulkLoader encounters a directory that it will process, it
looks for a file called dir.<mdext> where <mdext> is the extension specified by the
-mdext option. Therefore, the default file name it looks for is dir.md.properties.
If this file exists and is readable by the user, the BulkLoader loads it as a Java-style
properties file of name=value properties. If the directory is actually a subdirectory

Configuring the Content Management component

Using the BEA WebLogic Personalization Server 5-21

entered because +recurse was not specified and the +inheritProps option is not
specified, then the properties from dir.md.properties be added to the properties
from the parent directory. All files in the directory gain these metadata properties.

When the BulkLoader finds a file which is to be included and loaded, it looks for a file
whose name is the original file name appended with the -mdext. So, by default, if the
file is called image.gif, the BulkLoader looks for a file called
image.gif.md.properties. If that file exists and is readable, the BulkLoader loads
those properties into the directory’s (and possibly parent directories’) properties.

Finally, if the file is an HTML file and the +metaparse option was not specified, then
the BulkLoader will parse the HTML, looking for <meta> tags. The BulkLoader
determines if a file is an HTML file by using the filename patterns specified by the
-htmlPat options. If no -htmlPat patterns are specified, then *.htm and *.html are
used. The BulkLoader will load any <meta> tags that contain name and content values
found anywhere in the file (not just in the HTML head section) into the file’s
properties.

In summary, the BulkLoader gathers metadata for a document from the following
sources (in this order):

1. The parent directories’ dir.md.properties file

2. The file’s directory’s dir.md.properties file

3. The files’s .md.properties file

4. If the file is an HTML file, then it uses <meta> tags.

The metadata is gathered in a last-seen-is-used algorithm. Therefore, for example, if a
metadata attribute is specified in both the <meta> tags and the directory’s
dir.md.properties file, the value from the <meta> tags will be used.

From there, the id of the document in the database will be the file path, relative to the
docBase specified by the -d option. If the file path is not relative to the docBase, then
it will be relative to the path from the command line. The file size will be retrieved
from the file. The mimeType will be determined by the file’s extension. The
modifiedDate in the database will become the current time (since that’s when the
document is being modified in the database).

After loading all the documents on the list, if the +schema option is not specified, the
BulkLoader will output a XML file containing the schema information and following
the doc-schemas DTD. The BulkLoader will output a single schema which contains
entries for all the metadata attributes it finds over the entire load.

5 Creating and Managing Content

5-22 Using the BEA WebLogic Personalization Server

Cleaning up the database

If the -cleanup option is specified, the BulkLoader will not actually load any
documents. Instead, it will attempt to cleanup and update the database tables. It will
first query the database, looking for any metadata entries that do not have
corresponding document entries. For each of those, it will create a document entry. It
will then go over each document entry and update the size, modified date, and possibly
the mime type (if the mime type is not in the database) based upon the files in the
docBase specified with the -d option.

Using Content Management JSP Tags

To use the Content Management JSP tags, ensure that the cm.tld file resides in the
WEB-INF directory of your WAR files or in your document root.

Using the BEA WebLogic Personalization Server 6-1

CHAPTER

6 Creating and Managing
Rules

Creating and Managing Rules covers the following topics:

What is the Rules Manager?
Well-known objects
What are Rulesheets?
Classifier rules
Content selector rules
Debugging rulesheets

Using the Rules Management Administration Tool
Creating a rulesheet
Opening a rulesheet
Editing rulesheet properties
Saving a rulesheet
Deleting a rulesheet
Navigating between rule types
Finding a rule
Creating a classifier rule
Editing a rule
Editing rule properties
Adding an If user phrase to a rule
Editing an If user phrase
Deleting a rule phrase
Creating a content selector rule
Adding an If user classifier to a content selector rule phrase
Adding an And when phrase to a content selector rule
Adding a Then display content phrase to a content selector rule
Editing a Then display content phrase

6 Creating and Managing Rules

6-2 Using the BEA WebLogic Personalization Server

Rules Management forms a key part of the personalization process by prescribing
custom content to fit individual user profiles. The business logic encompassed by these
rules allows robust delivery of personalized content marketed specifically to each
end-user type.

What is the Rules Manager?

WebLogic Personalization Server 2.0 offers a robust personalization solution through
a set of components that provide edit-time and run-time services for delivering
personalized content to end-users while browsing a web site. These personalization
components use business rules to match users and groups with appropriate content.
The logic encompassed by the rules forms a critical piece of the personalization
process.

The Rules Management component of WLPS provides editing, deploying, and
run-time capabilities for providing personalized content based on externalized rules.
This component includes two major parts: an edit-time tool with a graphical user
interface that allows developers to define classification and content selection rules and
a run-time service that matches users with content based on these rules.

Well-known objects

The Rules Management component uses several well-known objects:

n Content: This object is relevant to content selector rules. It corresponds to whatever
content type is selected for set of object types. For each content selector rule invocation, a
single Content object will be provided in the editor as a shorthand way for the rule
writer to specify the nature of the content query to be produced. For instance,
Content.size < 10000 would specify a part of a query to find content items who
have a size attribute with a value less than 10,000.

n Now: A well-known object in the rule editor, of type Datetime. A valid expression
might be: Now == Jan 01, 2000, 00:00:00 MST.

n User: For each call to the rules component, a single User object will be provided for
use by the rules. User has a fixed schema, determined dynamically at edit-time by

What is the Rules Manager?

Using the BEA WebLogic Personalization Server 6-3

calling the User Management component. Given that the User might have a Numeric
schema attribute called age, a valid expression might be: User.age > 35.

n Request: This object is used in the same way as the User object. The Request
properties are defined in a default property set (see the Foundation
documentation).

n Session: This object is used in the same way as the User object. The Session
properties are defined in a default property set (see the Foundation
documentation).

What are Rulesheets?

The BEA WebLogic Personalization Server 2.0 provides rulesheets that comprise a set
of classifier and content selector rules. These rulesheets act as containers for rules that
match personalized content with users.

A saved rulesheet generally contains a set of related rules and always has a relationship
with a property set (see “Creating and Managing Property Sets” on page 3-1) that
defines the attributes available for user and group profiles.

Note: Once you define a rulesheet and the property set to which it relates, you cannot
change the relationship. You must create a new rulesheet and relate it to
another property set if you want to change the property set for a rulesheet. This
relationship between rulesheets and property sets makes it important to be
careful when modifying property sets that rulesheets depend on. In general,
you shouldn’t change or delete properties if a rule refers to it. Adding
properties does not affect existing rules.

Classifier rules

Classifier rules categorize users into groups using simple Boolean logic that
determines if a user profile meets a set of conditions and places the user in a category
based upon the result. Essentially, if the user profile meets the conditions, it is
classified according to the classifier rule; if it doesn’t meet the classification
conditions, the user profile is not included in the classification group.

6 Creating and Managing Rules

6-4 Using the BEA WebLogic Personalization Server

The following examples illustrate the logic involved in processing a classifier rule
(note the implicit and between the rule phrases):

Classifier MiddleAgeMan
If User has the following characteristics:
 User.age > 35
 and User.age < 65
 and User.gender == "M" OR "male"

Classifier HighEarner
If User has the following characteristics:
 User.income > 100000

Classifier rules are the building blocks of more complicated rules. Content selector
rules (see “Content selector rules” on page 6-4) can use classifier rules as they select
personalized content to match a user or group profile.

Use the <pz:div> (see the JSP documentation) JSP tag to include a classifier rule in a
JSP page.

Content selector rules

Content selector rules construct queries on the fly and return content based on the user
profile. This type of rule adds time and content components to the basic classifier rule
and may use references to classifier rules to define it. It also produces dynamic queries
at run-time to select content from a document collection.

The power of producing dynamic queries that match content with user profiles allows
content selectors to deliver highly customized content to end-users. Since content
selector rules can use queries to select content based on run-time parameters, they
allow the system to match personalized content to user profiles.

Note: Although a profile may meet the criteria of a content selector rule, the rule may
not return any content objects. Why? If no content that matches the query’s
criteria, the query cannot return a content object.

Content selector rules contain three parts. Each part contains zero to many phrases. The
generic description of each rule part includes:

n if user: The decision structure that determines if a profile meets a set of criteria

n and when: The time component of the rule

What is the Rules Manager?

Using the BEA WebLogic Personalization Server 6-5

n then display content based on: Queries and selects content based on a set of
criteria

The following example demonstrates the prototype for a content selector rule:

ContentSelector JanuaryStockQuotes (type: StockQuote)
If user has the following characteristics:
 Classifier MiddleAgeMan
 and Classifier HighEarner
 and User.net_worth > 1000000

And when:
 Now >= "Jan 01, 2000, 00:00:00 MST"
 and Now < " Feb 01, 2000, 00:00:00 MST"

Then select Content where:
 Content.size < 20000
 and Content.MIMEType LIKE "*html*"
 and Content.investment_type == User.investor_type;
 and ANY Content.investment_qualities == User.risk_preference
 and Content.creation_date > Now

Note: Once you define a content selector rule and the content type it uses, you cannot
change the content type.

Use the <pz:contentselector> JSP tag to include content selector rules in JSP
pages. (See the JSP documentation.)

Debugging rulesheets

You might notice that a rulesheet you’ve used in the past begins functioning oddly.
This bug is probably because of a change in the property set with which the rulesheet
has a relationship.

What is the relationship between Property sets and rulesheets?

Rulesheets rely on property sets to provide the properties they use to evaluate user and
group profiles. If a property is modified after a rulesheet that uses it has been created,
rules may contain dangling references to properties that no longer exist or that have
been changed.

6 Creating and Managing Rules

6-6 Using the BEA WebLogic Personalization Server

As much as possible, you should avoid modifying properties after defining rules that
rely upon them. Since the property set defines the schema for the properties the
rulesheet acts upon, any change to the properties the rules use will affect the schema
and may alter the validity of the rulesheet. In general, be careful when modifying or
deleting existing properties.

Note: You can add properties without affecting existing rules.

Content type and content selector rules

Another problem can occur when you change a content’s metadata types after creating
a content selector rule based on that content type’s metadata. Remember that the
content selector rule relies upon metadata to locate content. If you change content
metadata and a content selector rule references the previous metadata, the rule will not
work correctly.

Using the Rules Management
Administration Tool

The Rules Management administration tool is an edit-time tool that provides an
HTML-based GUI for creating, editing, and deleting rulesheets.

The run-time rules service uses rulesheets to create personalized content for end-users.
The rulesheets created via the Rules Management Administration Tools interface
produce XML output that is stored and evaluated at run-time.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-7

Note: You should already have defined at least one property set before creating
rulesheets. Property sets provide the template that defines the parameters that
rules act upon at run-time.

Creating a rulesheet

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. On the Rules Management home page, click create. The Create a Rulesheet edit
page appears.

3. Enter a name for the rulesheet in the Name field.

Note: You must populate all fields that have a red star to their right before you can
create the rulesheet.

4. Enter a description for the rulesheet in the Description field.

5. Select a property set for the rulesheet from the choices in the Property Set
drop-down list box.

Note: You cannot change the property set after you create the rulesheet because the
rules in the rulesheet fit only the schema defined in the property set.

6. Click create to save the rulesheet with the parameters you’ve selected. WebLogic
Personalization Server saves the new rulesheet and returns to the Rules
Management home page.

Note: Clicking back cancels the operation and returns you to the Rules Management
home page without creating a new rulesheet.

Opening a rulesheet

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

6 Creating and Managing Rules

6-8 Using the BEA WebLogic Personalization Server

2. On the Rules Management home page, click the name of the rulesheet to open.
The Rulesheet view page appears, displaying rulesheet information and a list of
the classifier and content selector rules included in the rulesheet.

Editing rulesheet properties

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet you want to edit.

3. On the Rulesheet view page, click edit in the Definition bar. The Edit Rulesheet
edit page appears.

4. Enter a new name and description.

Note: Remember you can’t change the property set. You must create a new rulesheet
to change the property set. See “Creating a rulesheet” on page 6-7 for
instructions on creating a rulesheet.

5. Click save to commit the changes or back to cancel the changes. If you save the
changes, the Rulesheet view page appears with the new information displayed.

Saving a rulesheet

1. On the Rulesheet view page, click finished. The rulesheet is saved with the
changes you made and WebLogic Personalization Server returns to the Rules
Management home page.

Note: This is the only time the rulesheet is saved, so ensure you click finished
before closing the rulesheet.

Deleting a rulesheet

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-9

2. On the Rules Management home page, click delete.

3. Select the name of the rulesheet to delete from the Rulesheet Name drop-down
list box.

4. Click delete to permanently delete the rulesheet or click back to cancel the delete
operation. The Rules Management home page appears after the delete operation
completes.

Note: You must click OK in the dialog that appears to confirm the delete operation.

Navigating between rule types

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open a rulesheet. See “Creating a rulesheet” on page 6-7 for instructions on
creating a rulesheet. The Rulesheet view page appears.

3. In the rules list, click to content selectors or to classifiers to navigate to the top
of the rule type sections.

Finding a rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet which contains the rule you want to locate. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Locate the top of the rule type list (classifier or content selector type). See
“Navigating between rule types” on page 6-9 for the procedure to navigate
between rule types.

4. Click the letter in the alphabet bar that matches the first letter of the rule you
want to find. An underlined letter indicates that a rule name begins with that
letter. The browser displays the rule names beginning with the letter you selected
at the top of the browser.

6 Creating and Managing Rules

6-10 Using the BEA WebLogic Personalization Server

Note: You can also scroll to the rule using the browser’s scroll bar.

5. Locate the rule you need. See “Editing a rule” on page 6-11 for information about
making changes to the rule.

Creating a classifier rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet in which you want to create the rule by clicking the rulesheet
name. See “Creating a rulesheet” on page 6-7 for instructions on creating a
rulesheet. The Rulesheet view page appears.

3. Click create in the Classifiers bar of the Rules list. The Create a Classifier Rule
edit page appears.

4. Enter the rule’s name into the Rule Name field.

Note: Rule names cannot include spaces and punctuation.

5. Enter a description of the rule into the Description field.

6. Click create to save the rule in the current rulesheet. The Create a Classifier Rule
edit page refreshes and displays a message about the rule creation’s success or
failure.

7. Create as many more rules as you need. Click back to return to the Rulesheet
view page. The Rulesheet view page appears with the new rule(s) you created
displayed in the alphabetical rule list.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-11

Editing a rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet that contains the rule by clicking the rulesheet name. See
“Creating a rulesheet” on page 6-7 for instructions on creating a rulesheet. The
Rulesheet view page appears.

3. Locate the rule you want to edit. See “Finding a rule” on page 6-9 for information
on locating a rule.

4. Click the name of the rule. The Rule view page appears.

5. Edit the rule using the instructions included in this documentation.

Editing rule properties

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet containing the rule you want to edit (see “Opening a
rulesheet” on page 6-7). The Rulesheet view page appears.

6 Creating and Managing Rules

6-12 Using the BEA WebLogic Personalization Server

3. Find the appropriate rule to edit. See “Finding a rule” on page 6-9 for information
on locating a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click edit in the Definition bar. The Edit Rule Definition edit page appears.

6. Enter a new name and description.

7. Click save to commit the changes or back to cancel the changes. The Rule view
page appears with the new information displayed.

Adding an If user phrase to a rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet that contains the rule to which you want to add a phrase. See
“Creating a rulesheet” on page 6-7 for instructions on creating a rulesheet. The
Rulesheet view page appears.

3. Find the rule you want to modify. See “Finding a rule” on page 6-9 for
information on locating a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click phrase to add a phrase to the rule. Step 1 of the Create If Phrase Wizard
appears.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-13

6. Select the Single-Value with Constant template to define the phrase and click
next. Step 2 of the Create If Phrase Wizard appears.

Note: Click back in any wizard page to return to the preceding page in the Rules
Management interface.

7. Click on the property to use to define the left operand of the rule phrase and click
next. Step 3 of the Create If Phrase Wizard appears.

6 Creating and Managing Rules

6-14 Using the BEA WebLogic Personalization Server

8. Select a comparator from the Comparator drop-down list box and enter a value
into the Constant field.

9. To add an or condition to the phrase, click the icon. The wizard page adds
another Comparator drop-down list box and Constant field to the phrase below
the current Comparator drop-down list box and Constant field.

10. Select a comparator and enter a value into the new Constant field. Click the
icon again to add any number of conditions to the phrase.

11. When you have completed construction of the phrase, click save to add the
phrase to the rule or back to return to the previous step of the Create If Phrase
Wizard.

Editing an If user phrase

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-15

2. Open the rulesheet which contains the rule you want to edit. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Find the rule to edit. See “Finding a rule” on page 6-9 for information on locating
a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click one of the phrases listed below the If the user has the following
characteristics bar. Step 3 of the Create If Phrase Wizard appears.

6. Select a comparator from the Comparator drop-down list box and enter a value
into the Constant field.

7. Click save to commit the changes or back to cancel the changes. The Rule view
page appears with the changes you made to the phrase displayed.

Deleting a rule phrase

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet which contains the rule to which you want to add a phrase.
See “Creating a rulesheet” on page 6-7 for instructions on creating a rulesheet.
The Rulesheet view page appears.

3. Find the rule which contains the rule phrase to delete. See “Finding a rule” on
page 6-9 for information on locating a rule.

4. Click the name of the rule. The Rule view page appears.

5. To delete a phrase, click the icon next to the phrase name. After you confirm

the delete process, the page refreshes and the new page does not show the phrase
you deleted.

6 Creating and Managing Rules

6-16 Using the BEA WebLogic Personalization Server

Creating a content selector rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet in which you want to create the rule by clicking the rulesheet
name. See “Creating a rulesheet” on page 6-7 for instructions on creating a
rulesheet. The Rulesheet view page appears.

3. Click create in the Content Selectors bar of the Rules list. The Create a Content
Selector Rule edit page appears.

4. Select the content type from the Content Type drop-down list box.

5. Enter the rule’s name into the Rule Name field.

Note: Rule names cannot include spaces and punctuation.

6. Enter a description of the rule into the Description field.

7. Click create to save the rule in the current rulesheet. The Create a Content
Selector Rule edit page refreshes and displays a message about the rule creation’s
success or failure.

8. Create as many rules as you need. Click back to return to the Rulesheet view
page. The Rulesheet view page appears with the new rule(s) you created
displayed in the alphabetical rule list.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-17

Adding an If user classifier to a content selector rule
phrase

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet which contains the rule you want to edit. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Find the rule to edit. See “Finding a rule” on page 6-9 for information on locating
a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click class in the If the user has the following characteristics bar. The Rule
search page appears.

6. Enter the name of the rule in the Classifier Name field and click search to find a
rule or click a letter to view all classifier rules that begin with the letter you click.
Rules matching the search criteria populate the page when the search completes.

Note: The * character allows you to perform a wildcard search. Using the * character
alone returns a list of all classifier rules.

7. Check the boxes next to the classifier you want to add to the rule.

8. Click save to commit the changes. The Rule search page refreshes and displays a
message about the process’s success or failure.

9. Add as many classifier rules as you need. When you finish, click back to return
to the Rule view page. The Rule view page appears with the new classifier(s)
displayed in the beneath the If the user has the following characteristics bar.

Adding an And when phrase to a content selector rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

6 Creating and Managing Rules

6-18 Using the BEA WebLogic Personalization Server

2. Open the rulesheet which contains the rule you want to edit. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Find the rule to edit. See “Finding a rule” on page 6-9 for information on locating
a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click phrase in the And when bar. The Edit And When Phrase edit page appears.

6. Select a comparator from the Comparator drop-down list box.

7. Select a date and time to compare using the icon to display a calendar or

by entering a date into the Date field.

Note: You must include the date string in ‘MM/dd/yyyy HH:mm:ss z’ format.

8. Click save to add the phrase to the rule or click back to cancel the phrase
creation and leave the rule as it was before. The Rule view page appears and
displays the new phrase.

Using the Rules Management Administration Tool

Using the BEA WebLogic Personalization Server 6-19

Adding a Then display content phrase to a content
selector rule

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet which contains the rule you want to edit. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Find the rule to edit. See “Finding a rule” on page 6-9 for information on locating
a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click phrase in the Then display content based on bar. Step 1 of the Create Then
Phrase Wizard appears.

6. Select a template to use to define the content query and click next. Step 2 of the
Create Then Phrase Wizard appears.

6 Creating and Managing Rules

6-20 Using the BEA WebLogic Personalization Server

7. Select a property from the Property list and click next. Step 3 of the Create Then
Phrase Wizard appears.

Note: The list receives its data from the metadata stored in the document
management system.

8. Select a comparator and one of the following, depending on the template:

l Enter a constant value if you selected the Value with Constant template.

l Select a property from the Property drop-down list if you selected the Value
with Property template.

l You cannot change the value of now if you selected the Value with Date
template.

Editing a Then display content phrase

1. From the Administration Tools Home Page, click the Rules Management icon. The
Rules Management home page appears.

2. Open the rulesheet which contains the rule you want to edit. See “Creating a
rulesheet” on page 6-7 for instructions on creating a rulesheet. The Rulesheet
view page appears.

3. Find the rule to edit. See “Finding a rule” on page 6-9 for information on locating
a rule.

4. Click the name of the rule. The Rule view page appears.

5. Click one of the phrases listed below the phrase bar. Step 3 of the Create Then
Phrase Wizard appears.

6. Select a comparator from the Comparator drop-down list and enter a value into
the Constant field.

7. Click save to commit the changes or back to cancel the changes. The Rule view
page appears with the changes you made to the phrase displayed.

BEA WebLogic Personalization Server Developer’s Guide I-1

Index

A
adding

And phrase to rule 6-17
group attribute 4-36
If classifier 6-17
If phrase to rule 6-12
portlet to group 2-47
portlet to system 2-42
Then phrase to rule 6-19
user to group 4-26

And phrase, adding to rule 6-17
anonymous user profile 4-21
associating

group with portal 2-45
portlet with demo portal 2-55
user with group 4-2

attribute
adding for group 4-36
deleting for user 4-36
editing 2-43
registering for group 4-35
unregistering for group 4-37

authenticating user 4-2

B
building demo portal component 2-51
BulkLoader 5-18

C
class, PortalJspBase 2-16
classifier rule

creating 6-10
introduction 6-3

classifying user 1-3
colors

editing for demo portal 2-57
editing for group 2-48
editing for portal 2-44

comparison operators in query 5-17
component, demo portal 2-51
ConfigurableEntity 3-5
configuring

Content Management system 5-7
Document EJB 5-7
Document Schema EJB 5-8
DocumentManager EJB 5-9

connection pool
example 5-14
setting up 5-12

constructed message 2-63
constructing query 5-4
contact information xi
content

loading from URL 2-21
loading with BulkLoader 5-18
managing

(versus document management) 5-4
managing (overview) 1-3
managing (property set) 3-3

I-2 BEA WebLogic Personalization Server Developer’s Guide

personalizing 1-3
Content Management system

configuring 5-7
description 5-2

Content object 6-2
content selector rule 6-4

creating 6-16
creating

content selector rule 6-16
group 4-24
portal by using demo portal 2-50
portal, description 2-26
portal, details 2-40
portal, procedure 2-7
portlet 2-36
portlet application 2-13
portlet for demo portal 2-52
property set, procedure 3-7
property within property set 3-8
rulesheet 6-7
unified profile 4-33
user 4-30

creating classifier rule 6-10
current page, retrieving 2-20
customer support xi

D
database

deleting group 4-41
deleting user record 4-42

debugging rulesheet 6-5
defining portlet JSP 2-14
definitions, editing 2-41
deleting

group 4-25
group from database 4-41
portal 2-46
portlet 2-39
property 3-12
property set 3-12

record from database 4-42
rule phrase 6-15
rulesheet 6-8
unified profile 4-35
user 4-32
user attributes 4-36

demo portal 2-50
associating portlet 2-55
building component 2-51
creating portlet 2-52
editing colors 2-57
editing layout 2-56
introduction 2-7
testing 2-58
using to create a portal 2-50

developing portlet 2-11
document content, querying 5-15
Document EJB, configuring 5-7
document root 2-27
Document Schema EJB, configuring 5-8
document servlet 5-5
documentation, where to find it x
DocumentManager EJB, configuring 5-9
dynamic query 1-3

E
editing

demo portal colors 2-57
demo portal layout 2-56
group property 4-29
If phrase 6-14
portal 2-41
portal colors 2-44
portal definitions 2-41
portal group 2-47
portal group colors 2-48
portal group layout 2-48
portal layout 2-43
portlet 2-38
portlet attribute 2-43

BEA WebLogic Personalization Server Developer’s Guide I-3

property set 3-10
property within property set 3-11
rule 6-11
rule property 6-11
rulesheet property 6-8
Then phrase 6-20
unified profile 4-34
user property 4-31

embedded rules engine 1-3
engine, embedded rules 1-3
example portlet

introduction 2-21
JSP 2-24

F
file

.jar 2-10
portal framework 2-59
properties 2-62

finding rule 6-9
form processing 2-19
framework

file 2-59
portal 2-15

G
group

adding attribute 4-36
adding portlet 2-47
adding user 4-26
associating with portal 2-45
associating with user 4-2
creating 4-24
deleting 4-25
deleting from database 4-41
editing 2-47
editing property 4-29
managing 2-46
mapping 4-40

registering attribute 4-35
removing portlet 2-47
removing user 4-28
selecting 4-39
unregistering attribute 4-37

Group component 4-3
group profile property set 3-3

H
home page, retrieving 2-19
HTML form processing 2-19
HTTP request property set 3-3
HTTP session property set 3-3

I
If classifier, adding to rule 6-17
If phrase

adding to rule 6-12
editing 6-14

internationalization 2-61

J
.jar file 2-10
JSP tags 5-6
JSP, defining 2-14

L
layout

editing for demo portal 2-56
editing for portal 2-43
editing group 2-48

LDAP, viewing settings 4-38
loading

content with BulkLoader 5-18
content with URL 2-21

logging on, Portal Administration Tool 2-31
login status 2-21

I-4 BEA WebLogic Personalization Server Developer’s Guide

M
managing

content 1-3
portal (description) 2-26
portal (details) 2-39
portal (overview) 1-5
portal group 2-46
portlet 2-33
property set 1-2
rule (details) 6-2
rule (overview) 1-4
user 4-1
user profile 4-2

mapping groups 4-40
message, constructed 2-63

N
navigating rule type 6-9
Now object 6-2

O
object

Content 6-2
Now 6-2
Request 6-3
Session 6-3
User 6-2

opening rulesheet 6-7

P
Personalization Advisor 1-3
Personalization Server 1-1
personalizing

content 1-3
portal 2-6

pluggable portlet 2-5
portal

associating group 2-45

controlling access 2-28
deleting 2-46
developing 2-2
editing 2-41
editing colors 2-44
editing definitions 2-41
editing layout 2-43
framework 2-15
framework file 2-59
in-a-box, introduction 2-6
in-a-box, running 2-9
introduction to demo 2-7
managing (description) 2-26
managing (details) 2-39
managing (overview) 1-5
personalizing 2-6
service manager 2-28
session information 2-16
setting up software 2-27
testing 2-50
versus portlet 2-4
WebLogic 2-9

Portal Administration Tool
logging on 2-31
using 2-33

portal creation
by using demo portal 2-50
description 2-26
details 2-40
procedure 2-7

portal group
editing 2-47
editing colors 2-48
editing layout 2-48
managing 2-46

Portal Service Manager 2-18
PortalJspBase class 2-16
portlet

adding to group 2-47
adding to system 2-42
application 2-13

BEA WebLogic Personalization Server Developer’s Guide I-5

associating with demo portal 2-55
creating 2-36
creating for demo portal 2-52
definition 2-11
deleting 2-39
developing 2-11
editing 2-38
editing attribute 2-43
examples, introduction 2-21
examples, JSP 2-24
JSP, defining 2-14
managing 2-33
pluggable 2-5
removing from group 2-47
removing from system 2-42
URL link 2-18
versus portal 2-4

printing product documentation xi
processing HTML form 2-19
profile

creating (unified) 4-33
deleting (unified) 4-35
editing (unified) 4-34
for user 4-4
property set 3-3
user (anonymous) 4-21

profile management 4-2
property

creating within property set 3-8
deleting 3-12
editing for group 4-29
editing for rule 6-11
editing for rulesheet 6-8
editing for user 4-31
editing within property set 3-11
file 2-62

property set
and rulesheet 6-5
content management 3-3
creating 3-7
creating property 3-8

deleting 3-12
editing 3-10
editing property 3-11
HTTP request 3-3
HTTP session 3-3
management, overview 1-2
overview 3-1
user and group profile 3-3

property value, retrieving 3-5

Q
query

comparison operators 5-17
constructing 5-4
structuring 5-15

querying
document content 5-15
dynamically 1-3

R
realm

mapping group 4-40
selecting group 4-39
WebLogic 4-18

record, deleting from database 4-42
registering group attribute 4-35
removing

portlet from group 2-47
portlet from system 2-42
user from group 4-28

request
destination 2-20
property set 3-3

Request object 6-3
retrieving

current page 2-20
home page 2-19
property value 3-5

rule

I-6 BEA WebLogic Personalization Server Developer’s Guide

adding And phrase 6-17
adding If classifier 6-17
adding If phrase 6-12
adding Then phrase 6-19
classifier 6-3
content selector 6-4
creating classifier rule 6-10
creating content selector rule 6-16
deleting phrase 6-15
editing 6-11
editing If phrase 6-14
editing property 6-11
editing Then phrase 6-20
finding 6-9
navigating between types 6-9

rule managing 1-4
Rules Management component 6-2
Rules Management tool 6-6
rulesheet

and property set 6-5
creating 6-7
debugging 6-5
deleting 6-8
description 6-3
editing property 6-8
opening 6-7
saving 6-8

S
saving rulesheet 6-8
selecting group 4-39
servlet, document 5-5
session

information 2-16
property set 3-3

Session object 6-3
setting up

connection pool 5-12
portal software 2-27

Show Document servlet 5-14

static text 2-62
status, user login 2-21
structuring query 5-15
support, technical xi

T
tags, JSP 5-6
testing

demo portal 2-58
portal 2-50

text, static 2-62
Then phrase

adding to rule 6-19
editing 6-20

third-party tool 5-4
tool

Rules Management 6-6
third-party 5-4
User Management 4-24

U
unified profile

creating 4-33
deleting 4-35
editing 4-34

unregistering group attribute 4-37
URL link in portlet 2-18
user

adding to group 4-26
associating with group 4-2
authenticating 4-2
classification 1-3
creating 4-30
deleting 4-32
deleting attributes 4-36
deleting record from database 4-42
editing property 4-31
login status 2-21
profile 4-4

BEA WebLogic Personalization Server Developer’s Guide I-7

profile management 4-2
profile property set 3-3
profile, anonymous 4-21
removing from group 4-28

User component 4-3
User Management system

introduction 1-3
overview 4-2

User Management tool 4-24
User object 6-2
UserManager EJB 4-21

V
viewing LDAP settings 4-38

W
WebLogic

portal 2-9
realm 4-18

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document

	Contact Us!
	Documentation Conventions

	1 Overview of the Personalization Server
	What is the Personalization Server?
	Property Set Management
	Personalization Advisor
	User Management
	Content Management
	Rules Management
	Portal Management

	2 Creating and Managing Portals
	Introduction to Portal Development
	What is the difference between a portal and a portlet?
	More about Personalization Server portals and portlets
	Pluggable Portlets

	Portal-to-Go
	Portal personalization
	The Acme Demo Portal
	How to create a portal
	Where to get more information

	Getting Started with the BEA WebLogic Portal
	Running the Portal-to-Go
	Jar files

	Developing Portlets
	What is a portlet?
	Creating a portlet application
	Defining the Portlet JSP
	Working Within the Portal Framework

	Using example portlets
	Portlet JSP example

	Creating and Administering Portals
	Setting Up
	Set the WebLogic Server document root
	Configure the portal service manager to control portal access
	Create a portal web site directory under the server document root

	Logging On to the Portal Administration Tool
	Using the Portal Administration Tool
	Administering portlets
	Creating Portlets
	Editing Portlets
	Deleting Portlets

	Administering portals
	Creating Portals
	Editing Portals
	Deleting Portals

	Administering portal groups
	Editing Portal Groups

	Testing Your Portal
	Creating a Portal Using the Demo Portal
	Building the Acme Demo Portal components
	Creating portlets for your demo portal
	Associating portlets with your demo portal
	Editing your demo portal layout
	Editing your demo portal color scheme

	Testing Your Demo Portal
	BEA WebLogic Portal Framework Files
	Internationalization
	Properties Files
	Static Text
	Constructed Messages

	3 Creating and Managing Property Sets
	Overview of Property Sets
	Property Value Retrieval via ConfigurableEntity
	Using the Property Set Management Tool
	Creating Property Sets
	Creating Properties within a Property Set
	Editing Property Sets
	Editing Properties within a Property Set
	Deleting Property Sets
	Deleting Properties

	4 Creating and Managing Users
	Overview of User Management
	Users and Groups
	Unified User Profiles
	Configuration 1
	Configuration 2
	Configuration 3
	Configuration 4

	Using WebLogic Realms
	Anonymous User Profiles
	User Manager
	Using the User Management Tool
	Creating groups
	Deleting groups
	Adding users to groups
	Removing users from groups
	Editing group property values
	Creating users
	Editing user property values
	Deleting users
	Creating Unified Profile Types
	Editing Unified Profile Types
	Deleting Unified Profile Types
	Registering group attributes for retrieval from LDAP
	Deleting user attributes from LDAP
	Adding group attributes in LDAP
	Unregistering group attributes for retrieval in LDAP
	Viewing LDAP configuration settings
	Selecting groups for the Personalization Server from realm
	Mapping realm groups to the Personalization Server
	Deleting groups from your database
	Deleting user records from personalization database

	5 Creating and Managing Content
	What is the Content Management Component?
	Third-party tools and WLPS
	Constructing queries using Java
	Differences between content management and document management
	Using the document servlet
	JSP Tags

	Configuring the Content Management component
	Configuring the Document EJB deployment descriptor
	Configuring the Document Schema EJB deployment descriptor
	Configuring the DocumentManager EJB deployment descriptor
	Example deployment descriptor file

	Setting up Connection pools
	Example connection pool entry

	Using the Show Document Servlet
	Querying document content
	Structuring a query
	Using comparison operators to construct queries
	Using the BulkLoader to load file-based content
	Command line usage
	How the BulkLoader finds files
	How the BulkLoader finds metadata properties
	Cleaning up the database

	Using Content Management JSP Tags

	6 Creating and Managing Rules
	What is the Rules Manager?
	Well-known objects
	What are Rulesheets?
	Classifier rules
	Content selector rules
	Debugging rulesheets
	What is the relationship between Property sets and rulesheets?
	Content type and content selector rules

	Using the Rules Management Administration Tool
	Creating a rulesheet
	Opening a rulesheet
	Editing rulesheet properties
	Saving a rulesheet
	Deleting a rulesheet
	Navigating between rule types
	Finding a rule
	Creating a classifier rule
	Editing a rule
	Editing rule properties
	Adding an If user phrase to a rule
	Editing an If user phrase
	Deleting a rule phrase
	Creating a content selector rule
	Adding an If user classifier to a content selector rule phrase
	Adding an And when phrase to a content selector rule
	Adding a Then display content phrase to a content selector rule
	Editing a Then display content phrase

	Index

