BEA WebLogic

Commerce Server Components
Developer’s Guide

BEA WebLogic Commerce Server 2.0
Document Edition 2.0
April 2000

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, transl ated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebL ogic, WebL ogic Enterprise,
WebL ogic Commerce Server, and WebL ogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
BEA WebL ogic Commer ce Server Components Developer’s Guide

Document Edition Date Software Version
1.0 January 2000 WebL ogic Commerce Server 1.7
11 February 2000 WebL ogic Commerce Server 1.7.1

20 April 2000 WebL ogic Commerce Server 2.0

Contents

About This Document

What Y OU NEed t0 KINOWcccoeiuiiiiiieeeetie sttt ettt vii
E-0OCSWED SItE....oceieeeeceeee ettt s e r e e e r e e e viii
How to Print the DOCUMENT..........ceeie et st st e viii
Related INfOrmMation.........ccoueeieieieee et st s e e e iX
CONLBCE US! ...ttt et st et e ae e s e et e e e sreeraesranns iX
Documentation CONVENLIONScc.cceeiuiieeieie e et ee e ereeree e srae st sraesae e eaeereens X

1. Overview of WebLogic Commerce Server Components

What are Commerce Server COMPONENES?c..ouerrrieireenereeeeseesieieseeseeseaneens 1-2
A Quick Look at a Few Key COMPONENES..........cuirereeererieie e seeienee s seee e 1-2
CUSLOMET ANA SESSIONc.veueeeeiere ettt er e 1-3
ShoppingAdVISOr and ItEMS..........coiiiee e e s 1-3
Order FUIFITTMENT. ..ot 1-3
FEAUrES @l @ GIaNCE........ccoee et 1-4
SPECHTICALTONS ... ettt et sttt st s et e e se e eeas 1-4
eCommerce brings tremendous opportunity and new challenges. 1-5
Build versus Buy: WL CS components offer the best of both solutions............ 1-6
How do WLCS COMPONENES WOFK?......ccoueeeireirieie e see e eees e e eeeseeseenee 1-6
Applications built with WLCS components leverage a scaleable,
high-performance ArchiteCture. ... e 1-7
Components are easy to use and CUSLOMIZE.coereeieeuererieee e 1-8
Base your eCommerce applications on our smart models and
0eNEraled EJIBS. ..ottt 1-9
Components use industry-standard Design and Analysis Patterns. 1-10
Components are neatly organized in Component Packages............c........ 1-11
MyBuUyBeans.com EXamMPIe........cccuririiirenee e e 1-13

BEA WebL ogic Commerce Server Components Developer’s Guide iii

2. Components Catalog

3. Development Process

What is the overall development ProCeSS?........cccoeeereerieriereereeseie e 3-2
Before You Begin: Copy the MOdel ... 35
Step 1: Export the WLCS model in Rational ROSEcccoueeiiereee e 35
Step 2: Run the WLCS Smart GENEratorcccueeirereee s eie e e enens 3-7
AGVANTAGESttt et e see st e e see e et e st en e e e aneeneenenan 3-7
Define @aNEW ProjECL.coi it 3-8
Configure the ProjECt...........coeii e e 3-10
Generate the JAVa SOUICES........c.eviueie e reeieeee e sees e eee e e seeee e seeneens 3-13
Step 3: Add Your Business Logic: Edit the Javafiles and Compile Them....3-15
Step 4: Run the EIB COmMPIlEr........ccooiieiiee e e s 3-17
Sep 5: Deploy your application, and start the Servercccvveeeeeeeineenne 3-18
Before Y ou Start the WebL ogic Application Server.........cococcceveeneenenen. 3-19
StArtiNg thE SEIVENceeeeeececee et s s sraeneas 3-19
Step 6: If desired, change the model, and iterate..........ccooeeeverceieievecicienenee 3-20
Do | haveto be a Rational Rose or UML EXPErt?........ccocveveneneeneennnnn. 321
Understanding the Foundation Package and Stereotypes...........cccceeueneens 3-21
BEIONGINGS. ..ottt sr e e eraeneas 3-22
=S o] TSP 3-22
0 Y/ 3-23
Configurable ENtityccvvciiiiieeiceiee et e 3-23
BUSINESS POLICY ..ottt e 3-24
WOTKFTOW ..ottt st e e e 3-24
SMAt FEAIUIES. ..ot e e 3-24
Understanding the Basic UML Modeling Notations............cccoceevvvvviennenns 3-25
Classes and SLEEOLYPEScoveeecieieeeeeere ettt 3-26
INNETTANCE. ..o ettt e e e 3-28
Aggregation and MUItipliCityccoeeveeieie e 3-29
PaCKAgES.o et e 3-30

WLCS Smart Generator Rules: Factors that Influence the
Generated JAVa FilS.......cc.oiiiiii e 3-30
ClBSSES. ...ttt ettt e e e e e e 3-31
Primary Key and Value..........coocovevieiieieee e 3-32

BEA WebL ogic Commerce Server Components Developer’s Guide

Interfaces, Homes, and Implementations...........ccccceereeeeresieneseeens 3-33

Attributes and Accessor Methods.........ccveeieeieiineniee e 3-34
Rules for Aggregation Notationsin the UML Diagram 3-36
COlECHIONS ...ttt ettt se e e se e 3-37
DESIGN DECISIONS.....ocvieiectiecie ettt et re et et e s srae st saeenneanen 3-40
Use of ENtitieS VErSUS SESSIONS.....cccccuerierereniereesieie e seeienee e ees 3-40
Implementing Business Logic inan Entitycoceoevenieneienencnne 3-40
Modeling from aMessage Specificationcccccceveieeninccne s 3-40
Changing Method SIgnatures..........ccceeveveeeeececeeeie e 3-41

4. Deploying Your Application

Defining the Persistence Type for your Deploymentccoooeieieieieenennes
Using Bean-Managed PersiStENCEoooeriririee et s
[T gl oo (17 1o o SRR

The Oracle Reference Implementations...........ccoeeevererieseereeneie e
Additional REQUITEMENESoeiiieeeirieee e e e

Depl OyMENt SELS OVEIVIBIWc.eeeeuieeiriee et e s see e seeseeseeee
Deploying 0N WINAOWS NTcocioeiriiiere et see e e seeseeseenee e
DePlOyiNg ON SOIAIS......coeieeie ettt et se e e
Considerations in Bean-Managed PersiStence...........coocvvveveveeeiesvveiecvecnvesneenns
Container-Managed Persistence Versus Bean-Managed Persistence.........
Considerations when Persisting an EJBcoceeveie e
Complexity of the Mapping Implementation.............cccceeriereieneennne
Dissecting and Persisting an Enterprise JavaBean...........c.cccceveveenee

5. Component Examples

How to Build and Run the EXamples..........ccoeieeieneiee e
Foundation and AXIOMccoeieririerireerie s e
Package eXampleS.aXiOmcccieiereeree e e e
Package examples.axiom DeSCription.cccoeoeirirnrieeie e
BeONQiNgS aNd EJBS........c.cooeciiciie ettt s er e s e e e
The Abstract Factory Pattern...........ccoeooieee e
AXIOM BEXAMPIE...c.eieeee e et e
WWOTKFTOW ...ttt e e e
Package examples.workflow DesCriptionccceeeeerieeesenieniese e

BEA WebL ogic Commerce Server Components Developer’s Guide

Vi

WV OTKETOW .. ettt st e e saae s s te e s sreee s e saeessareeaas 5-5

WOrKFIOW EXAMPIE ...ttt e e 5-6
BUSINESSPOIICY ...ttt et e e e e 5-6
Package exampl €S.bUSINESSPOLICYccuveuereeireiriieee e 5-6
Package exampl es.businesspolicy DesCriptioncccoceveieieneneeincne. 5-7
ItemPriceCal culationPolicy and BusinessPolicycooveieieneneciniennes 5-7
BusinessPOliCy EXAMPIE ..o 5-8
PaSSBYV A UE.......oe et e e e 5-9
Package examples.passbyValue..........ccoeeirneeieeinineee e 59
Package exampl es.passbyvalue Descriptionc.coceveveneeieeeneeieeinenes 5-9
Getting and Setting Attributes Using pass-by-value..........c.cccccoeiienenne. 5-10
Pass By Value EXaMPIe........cooiie i e 5-10

Index

BEA WebL ogic Commerce Server Components Developer’s Guide

About This Document

This document explains how to use the BEA WebL ogic Commerce Server
Components to extend or modify an e-Commerce Web site.

This document covers the following topics:
m Chapter 1, “Overview of WebLogic Commerce Server Components.”

m Chapter 2, “Components Catalog.”

Chapter 3, “Development Process.”

Chapter 4, “Deploying Your Application.”

Chapter 5, “Component Examples.”

What You Need to Know

This document is intended for Enterprise JavaBeans (EJB) and Java developers
involved in working with EJB components for an eCommerce site using BEA

WebL ogic Commerce Server. It assumes afamiliarity with the WebL ogic Commerce
Server platform, WebL ogic Application Server, EJB, Java, and related Web
technologies as described below. The topicsin this document are organized primarily
around development goals and the tasks needed to accomplish them.

Generally, the topics in this document speak particularly to the Java developer and
requires the basic knowledge with regard to the technology focus of that role:

m Java developer extend or modifies the Enterprise Java Bean (EJB) components
that make up the Commerce Server engine, if that level of customization is
needed.

BEA WebL ogic Commerce Server Components Developer’s Guide Vii

The Java devel oper working with the EJB components will also interact with other
development team members or may take on other roles as well:

m HTML author usesthe Java Server Page (JSP) tags provide in the JSP tag
library, thereby leveraging the power of personalization without having to know
Java.

m Java Server Page (JSP) developer creates JSPs using the tags provided or by
creating custom tags as needed.

m Application assembler, system analyst, or systemsintegrator writes rules, writes,
schemas, and monitors usage.

m Systemadministrator installs, configures, deploys, and monitors the Web
application server

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs’
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

Y ou can print acopy of thisdocument from aWeb browser, onefile at atime, by using
the File—>Print option on your Web browser.

A PDF version of thisdocument is available on the WL CS documentation Home page
at http://e-docs.bea.com/wlcs/. A PDF version of this document is also available on
your loca system if you installed the separate WL CS documentation kit. In the
installed WL CS directory, the documentation’ s default starting location is:

\'server\ public_htm \docs\index. ht m

Viii BEA WebL ogic Commerce Server Components Developer’s Guide

http://e-docs.bea.com/wlcs/
http://e-docs.bea.com/wlcs/

How to Print the Document

Y ou can open the PDF in Adobe Acrobat Reader and print the entire document (or a
portion of it) in book format. To access the PDFs, open the WebL ogic Commerce
Server documentation Home page, click the PDF files button and select the document
you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

For more information about the Java 2 Enterprise Edition (J2EE) APIs, see the Sun
Microsystems, Inc. Web site at http://java.sun.com/j2ee/.

Contact Us!

Y our feedback on the BEA WebL ogic Commerce Server documentation isimportant
tous. Send use-mail at docsupport@beasys.com if you have questions or comments.
Y our comments will be reviewed directly by the BEA professionals who create and
update the WebL ogic Commerce Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Commerce Server 2.0 release.

If you have any questions about thisversion of BEA WebL ogic Commerce Server, or
if you have problems installing and running BEA WebL ogic Commerce Server,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can aso contact Customer Support by using the contact information provided on the
Customer Support Card, which isincluded in the product package.

When contacting Customer Support, be prepared to providethefollowing information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

BEA WebL ogic Commerce Server Components Developer’s Guide iX

m Your machine type and authorization codes

m Thename and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, datatypes, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Example:
public interface Item extends Configurabl eEntity

{

public |tenmval ue getltenByValue() throws

Renot eExcepti on;

public void setltenByVal ue(ltenVal ue val ue) throws
Renot eExcepti on;

/...

}

nonospace
bol df ace
t ext

I dentifies significant wordsin code.
Example:
void commt ()

nonospace
italic
t ext

Identifies variablesin code.
Example:
String expr

X BEA WebL ogic Commerce Server Components Developer’s Guide

Documentation Conventions

Convention Item
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choicesin asyntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m That an argument can be repeated severa timesin acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

BEA WebL ogic Commerce Server Components Developer’s Guide

Xi

Xii BEA WebL ogic Commerce Server Components Developer’s Guide

CHAPTER

1 Overview of WebLogic

Commerce Server
Components

This section contains the following topics:
What are Commerce Server components?

A Quick Look at a Few Key Components
Customer and Session
ShoppingAdvisor and Items
Order Fulfillment

Features at a Glance

Specifications

eCommerce brings tremendous opportunity and new challenges.
Build versus Buy: WL CS components offer the best of both solutions.

How do WLCS components work?
Applications built with WL CS components|everage ascal eable, high-performance
Architecture.
Components are easy to use and customize.
Base your eCommerce applications on our smart models and generated EJBs.
Components use industry-standard Design and Analysis Patterns.
Components are neatly organized in Component Packages.

MyBuyBeans.com Example

BEA WebL ogic Commerce Server Components Developer’s Guide 1-1

1 overview of WebLogic Commerce Server Components

What are Commerce Server components?

At the heart of the BEA WebL ogic Commerce Server (WLCS) are the Commerce
Server components. Commerce Server components are software building blocks for
eBusiness that can be selected and snapped together to create arobust eCommerce
Web presence. Y ou can use any component asis, or customize or extend it to fit
particularly unique aspects of your business scenario. This family of Enterprise Java
Beans helps you bring new e-business services to your customers quickly and easily,
while allowing you to focus precious resources on your unique competitive
reguirements.

The WLCS components family is structured as packages. Each package contains a set
of components that plays a specific role in assembling an enterprise application.
WLCS providesindustry specific component packages for financia services,
telecommunications, and Internet retail. Today WL CSincludes component packages
required to build e-business applications, with an emphasis on Internet e-commerce
and customer self-service.

Using novel design patterns, we have model ed, designed, built, and tested our reusable
server-side components to work seamlessly in conjunction with your commercial EJB
application server.

A Quick Look at a Few Key Components

Following are descriptions of only afew of the key eBusiness components (order,
invoice, customer, session, and shoppingAdvisor). WLCS includes more than 80
out-of -the-box, pluggable Java components designed to provide most of the
functionality of essential e-business. For a more comprehensive and detailed look at
the components, you can refer to Chapter 2, “ Components Catalog,” or the complete
API in Javadoc.

1-2 BEA WebL ogic Commerce Server Components Developer’s Guide

A Quick Look at a Few Key Components

Customer and Session

Thefundamental entitiesfor any business are customer s and the products sold to them.
The Customer is an extension of the Axiom.Person. It provides the ability to store
contact, profile, and billing information for your customers. The Session components
are used to manage the process of allowing customers to access the system as guests
and then to register when they are ready to make a purchase. They also bind customers
to the orders that they build.

ShoppingAdvisor and Items

The Item is the interface to the productsthat you are selling. It stores basic product
identification and description, and provides a mechanism for pricing, including
runtime pluggable pricing palicies. The pricing mechanism isdesigned to allow you to
take into account a specific customer’s profile. This allows the application of special
merchandising discounts and incentives. The ShoppingAdvisor isthe means by
which you organize your products and make them searchable. Its additional features
include learning about customer preferences over time and recommending products
based on the resulting profile.

Order Fulfillment

The Order acts both as a shopping cart and the basis for order fulfillment. It is the
mechanism by which a customer keepstrack of itemsthat they want to purchase. The
list is manipulated through business methods so that overloading can enforce the
businessrules associated with building an order. Thereisalso an order cost calculation
method that can be used to take into account discounts across multiple individual
orders.

When an order is completed it is bound to aPackingL ist so that shipping cost can be
calculated. The next step is the creation of an I nvoice, so that the order can be billed.
Finally, the Inventory is updated.

The TroubleTicket components provide customer service issue tracking. These
components provide you the ability to accept and track issues submitted by your
customers.

BEA WebL ogic Commerce Server Components Developer’s Guide 1-3

1 overview of WebLogic Commerce Server Components

Features at a Glance

m Customizable Enterprise JavaBeans built from the ground up

m Plug-and-play components that allow you either to use our out-of-the-box
solution, or to integrate with your legacy applications

m Easy-to-use component APIsthat are fully customizable and extensible using
technologies like pluggable methods and dynamic runtime configuration

m Implemented using established design and analysis patterns for ease of use and
re-use

m WLCS architecture ensures that applications built on the components model run
in a scaleable, high-performance, enterprise-class fashion

m Components work with other EJBs, including third-party and custom-built
components

m High-performance features such as pass-by-value (PBV)

m Workswith leading EJB Application Servers

m Workswith leading databases (Oracle, Sybase, DB2, Cloudscape, etc.)
m Integrate with legacy systems (CICS, IMS, legacy databases)

m You don't need to be an EJB expert to use and customize our pre-built EJBS!

Specifications

m 100% Pure Java

m Components are Enterprise JavaBeans 1.1

m Support for Java 2

m Support for the advanced Java 2 Collections API

1-4 BEA WebL ogic Commerce Server Components Developer’s Guide

eCommerce brings tremendous opportunity and new challenges.

m Support for Enterprise Java APIsincluding EJB, RMI, JNDI, JTS, and JDBC

m Support for modeling using UML, with roundtrip engineering from Rational
Rose

m Component can be invoked from Java Clients, Java Servlets, Java Server Pages
(JSP/IJHTML), CORBA Clients and Servers,

m Support for ActiveX/COM, and other clients (Visual Basic, PowerBuilder)

m Full support for BEA WebL ogic Server and related features, including clustering
and JDBC connection pooling. Support for other leading application servers
coming soon.

eCommerce brings tremendous opportunity
and new challenges.

Application server and EJB technol ogies present a tremendous opportunity for
enterprise information systems. Businesses can gain competitive advantages by
rapidly deploying applications that address today’ s sophisticated reguirements of
integration, networking and scalability. However, building these systems from the
ground up, without using specialized tools and prebuilt components, demands a great
effort and expense.

A software development team building an eBusiness application using EJBs faces
challenges that are compound by the increasingly short delivery times. To be
successful adevelopment team must be abl e to perform the following tasks seamlessly
in record time frames:

m Master changing and complex technologies
m Model the business process accurately using object-oriented methodologies
m Design an application architecture that takes advantage of the infrastructure

m Implement, test, and deploy all business functions as Enterprise JavaBeans

BEA WebL ogic Commerce Server Components Developer’s Guide 1-5

1 overview of WebLogic Commerce Server Components

Devel opers can take advantage of application server features and advanced tools to
accel erate development but regardless of infrastructure and toals, they still must build
all the business objectsthat make up their application. Thistask involvesatremendous
amount of risk and effort.

Build versus Buy: WLCS components offer
the best of both solutions.

In the process of planning eBusiness applications, corporations are faced with a build
or buy decision. Building an application of this kind from the ground up would
consume considerable time and resources. On the other hand, an off-the-shelf
application does not meet the company’ s unique needs. The best solution is to use
components. Components are packages of pre-built business functions that jump-start
the devel opment of an eBusiness application. Components allow devel opers to
customize and snap together enterprise applications quickly, while tailoring them to
specific business needs. The result is a complete solution that takes advantage of EJB
technology without its time-consuming complexities.

The BEA WebLogic Commerce Server provides a complete family of EJB
components for eBusiness. Devel opers using WebL ogic Commerce Server
components do not need to start from scratch or master EJB complexities. By using
WLCS components, developers can build eBusiness applications customized for their
company’ s unique business needs in record time frames.

How do WLCS components work?

WebL ogic Commerce Server components can interact with each other aswell as
interact with other EJBs outside the component family. They have been modeled,
designed, built, and tested to work together as a family and in combination with third
party and customer-built EJBs. Applications built using WLCS components take the
maximum advantage of EJB and application server technology.

1-6 BEA WebL ogic Commerce Server Components Developer’s Guide

How do WLCS components work?

Presentation
Lagic

wses mandager o
decess orders

Brues
arder keys

OrderM

AlphaNumericSequencer
Session E| pha

Entity Efl

mandges the
fr}ét;uﬁ

Order Entity EJB

Belongings

References to

ather EJBs

Componen! Inferaction Hmm}‘:fe

Applications built with WLCS components leverage a
scaleable, high-performance Architecture.

WL CS components are designed to work together at run-time in a distributed, highly
interactive environment. Once snapped together and deployed, these components can
form an efficient, robust eCommerce application or engine, automatically leveraging
powerful object oriented design patternsand taking full advantage of EJB 1.1 features.
The WL CS component architecture provides the framework for scaleable,
high-performance, enterprise-class eCommerce applications.

BEA also provides the complete WL CS component object model in Unified Modeling
Language (UML) diagrams. Devel opers can either select existing pluggable

components from the model or extend and customize components, using a WL CStool
to generate EJB source code based on the model. Either way, the integrity of the object

BEA WebL ogic Commerce Server Components Developer’s Guide 1-7

1 overview of WebLogic Commerce Server Components

model and its design advantages are ensured in the application development process.
Developers can focus on writing the business logic in their applications, and rely on
the WLCS architecture to supply al the details of awell-designed EJB application,
including transaction processing, messaging, proven design patterns and business
policies, efficient database access acrossthe network, and so on. All the good stuff you
get by using an object oriented development methodology is built in to the
components.

For alive example of this powerful EJB component architecture put to work as a Web
presence, see the “Getting Started” topic in the WeblLogic Commer ce Server
Components MyBuyBeans Tour ..

Components are easy to use and customize.

1-8

WLCS components are designed with usability in mind. Their ease of use allows
developersto rapidly customize components and snap together applications with
minimal training. Components are easily customizable and can be extended to make
new components specific to a particular business. WL CS componentsinclude
customization tools that integrate with leading modeling tools and Java IDEs. To
customize or extend a component, developers simply customize its associated object
model, and WL CS automated tool s generate the customized code.

BEA WebL ogic Commerce Server Components Developer’s Guide

How do WLCS components work?

Base your eCommerce applications on our smart models
and generated EJBs.

=<B3C . Session=»

ShoppingAdvisor

gsuggestionCount : int
SpnualityDepth : int

Sgeleteitemi =<<BEC.Belonging==
:addltemo Suggestions
SaleteDetautemo <cuses>> S
SgetDefaultSuggestions () > ‘:EE:::mg:gzg:gg
Yyetsuggestions) Tl SorderByDegreed
Sgetsuggestions) e [SorderBylternd
$leamCustomerPreferenced |
RaddCustormerPreference) T T e .
9deleleCustomerPreference) “.”\SES” e e
SdeleteCustamerProfilag ==B50.Collection List=>
Syetsuggestions) : ' '
Sgetsuggestionsn <<BSC.Entity== EISC\HI; "
) P .
j ItemsByQuality \tem@uar\]itlgs

E==B5C Primarykey== qualitMama : String &,-<B5C Frimarnyiey- lemiay Sling

PR
: Rapplyitem(

==B5C.Entity== ==BSC.Collection. List==
CustomerProfile

&==B5C Primarykey== custamerkey : String

==BSC.Collection List==

Papplyltem() 0.*

*app\y@ualiwo ==B5C . Belonging==

®applyQualiies ltemByDegrae
°ree ;int
Pyetiemiey)

==BSC.ConfigurableEntity==
ltem

==BSC.Collection List-=

(from item)

==B5C . Callection List==

1 0* 0.~
==BS5C Entity=~ ==B5C.Belonging== 0.
Custamer Quality
(from customer) (from axiom)

WebL ogic Commerce Server components makeit easy to model an application. Using
industry-standard Unified Modeling L anguage (UML), analysts can graphically model
your company’s business process, selecting WLCS components from arepository.

WLCSprovidesyou with a basic, EJB 1.1 compliant, eBusiness UML model. Analysts
and devel opers simply extend and modify the base eBusiness model, using the WLCS
components as heeded.

BEA WebL ogic Commerce Server Components Developer’s Guide 1-9

1 overview of WebLogic Commerce Server Components

Oncethe UML classdiagram iscompleted, all components and all object relationships
are automatically generated using the WL CS Smart Generator. The Smart Generator

isatool that transforms a UML representation of your business process into EJB
components. All the source code, object definitions, object relationships,
documentation, and EJB-required files are automatically created by the Smart
Generator. Adding a relationship between two objectsis as easy as drawing aline
between them. Using visual modeling and roundtrip engineering, changes to the
business model can be rapidly translated into changes in the application, greatly
reducing maintenance cost and boosting application reliability.

For more information about the devel opment process, see Chapter 3, “ Development

Process.”

Components use industry-standard Design and Analysis

Patterns.
WebL ogic Commerce Server components interact with each other using industry
standard Design Patterns to solve awide range of business problems. The use of
proven design patternsresultsin a better businessmodel, lowered cost of development
and maintenance, and faster time-to-market.
Industry Standard WLCS Description Benefits
Design Patterns Component
Examples

Strategy, Policy, and
Chain of
Responsibility Patterns

BusinessPolicy

Individual Instance
Method analysis

pattern

BusinessPolicy is a set of
Behavioral patterns. It letsyou
interchange business policies.

BusinessPolicy pattern works
with organizational business
hierarchiesto manage the
company’ s business policies.

Provides pluggable methods
that can be changed at
developent time or at runtime.

Allows for fast adaptation of
new/customized business
policies with minimum cost.

These new businesspoliciescan
betailored for specificclientsor
organizations.

1-10

BEA WebL ogic Commerce Server Components Developer’s Guide

How do WLCS components work?

Industry Standard WLCS Description Benefits
Design Patterns Component
Examples
Command and Action Task A Behavioral pattern that Allows the separation of
Patterns encapsulates a business process business logic from business
that providesisolation between objects. Results in lower
business logic and business maintenance costs.
objects.
Abstract Factory SmartHome, A Creationa pattern that Provides a consistent
Pattern BelongingHome provides an interface for programming model for

creating families of related or
dependent objects without
specifying their concrete
classes.

creation of objects. Resultsin
lower maintenance costs.

Aggregation with Life Singleton and A combination of Creational Provides a complete set of

Cycle Pattern collection and Behavioral patterns that powerful and flexible APIsto
aggregation of provideflexiblewaysto control maximize programming
business objects thelife cycle of aggregate efficiency. Resultsin abetter
by value, and by objectsdirectly from itsowner. businessmodel designand
reference. lower application development

costs

Proxy Pattern SmartHandle, A Structural pattern that Allows for anatura modeling

Collection of provides a surrogate or of business relationships

remote objects.

placeholder for another object to
control accesstoit. Allowsfor
lazy evaluation of large
collections of remote objects.

without compromising
performance

Components are neatly organized in Component

Packages.

The WebL ogic Commerce Server components family is structured as packages. Each
package contains a set of components that plays a specific role in assembling an

enterprise application.

BEA WebL ogic Commerce Server Components Developer’s Guide

1-11

1 overview of WebLogic Commerce Server Components

COMPONENT PACKAGES

Businass Pelicy

Saakekald
AlphaMumeric [
Sequancar Warkflow

Customers

Partie

Suppliers

m Atthelowest level isthe Foundation package. This package provides an
interface to the application server and enhances EJBs with WebL ogic Commerce
Server design patterns. It allows all WLCS components to take advantage of
both EJB technology and our implementation of industry-standard design
patterns.

m For commonly used or core business functions, WLCS provides the Axiom
package. This collection of components is designed to provide common
business functionality that is used across applications. These components are
typicaly lightweight and can be combined to create new powerful,
industry-specific application components.

m WLCS providesindustry specific component packages for financial services,
telecommunications, and Internet retail. Today WLCS includes component
packages required to build e-business applications, with an emphasis on Internet
e-commerce and customer self-service. Taken as awhole, these industry specific
component packages are referred to as the eBusiness package within WLCS.

WLCSincludes more than 80 out-of-the-box, pluggable Java components designed to
provide most of the functionality of essential e-business. For a comprehensive and
detailed look at the components, see Chapter 2, “Components Catalog,” or the
complete API in Javadoc.

1-12 BEA WebL ogic Commerce Server Components Devel oper’s Guide

MyBuyBeans.com Example

MyBuyBeans.com Example

If you would like to see aworking example of how to snap together the WebL ogic
Commerce Server componentsto form arobust, high-performance, retail Web site, see
the WebLogic Commerce Server Components MyBuyBeans Tour.. The tour stepsyou
through the development and deployment process using the imaginary
MyBuyBeans.com retailer as afocus.

BEA WebL ogic Commerce Server Components Developer's Guide ~ 1-13

1 overview of WebLogic Commerce Server Components

1-14 BEA WebL ogic Commerce Server Components Developer’s Guide

CHAPTER

Components Catalog

The following table lists the Enterprise Java Beans (EJBS) in the BEA WebL ogic
Commerce Server (WLCS) Component kit and provides links into the complete

Javadoc API.
Package/Description Components Type
theory.smart.axiom.accounting Account ConfigurableEntity
Stores lists of transaction entries (a -
transaction history) and balances. Used to AccountEntry Entity EJB
describe anything from a cash value to an PostingRule Business Policy

inventory of items.

DefaultPostingRule

Business Palicy

theory.smart.axiom.contact Address Belonging
Customer Information package. Stores -
personal data used for billing, shipping, Stakeholder Entity EJB
marketing and any other services requiring PhoneNumber Belonging
customer contact
Email Belonging
Person Entity EJB
Url Belonging
CreditCard Belonging
Postal Code Belonging
theory.smart.axiom.messaging PostOffice Session EJB
Provides messaging between two parties. Has ; -
amailbox along with search and retrieval MailBox Entity EJB
capabilities. Message Belonging

BEA WebL ogic Commerce Server Components Developer’s Guide 2-1

2 Components Catalog

Package/Description Components Type

theory.smart.axiom.units UnitPrice Belonging

Standard solution t(_) common un!t conversion UnitConverter ion EJB

problems. Conversion of one unit of

measurement to any other in the same UnitConversion Configurabl eEntity

classification.

Note: The price/money component UnitList Entity £JB

provides multi-currency support. UnitCategories Belonging

ConversionFunction Business Policy
Unit Belonging
Quantity Belonging
Quality Belonging
Price Belonging
DefaultConversionFunction Business Policy

theory.smart.axiom.util AlphaNumericSequencer Entity EJB

Generic utilities package.

theory.smart.axiom.wor kflow StateMachine Workflow

Objects to create a state machine with " - - -

transitions. Can be used within other TransitionPolicy Business Policy

components. Transition Belonging
State Belonging

theory.smart.ebusiness.customer Customer Entity EJB

Customer interaction and profilemanagement -

package. Can be seamlessly mapped to your CustomerManager OnEJB

existing customer database.

theory.smart.ebusiness.giftregistry GiftRegistryManager SessionEJB
GiftRegistry EntityEJB
PurchasedOrderLine Belonging

2-2 BEA WebL ogic Commerce Server Components Developer’s Guide

Package/Description Components Type

theory.smart.ebusiness.inventory InventoryManager SessionEJB

Distributed interface to your existing -

inventory system. Interfaceswith legacy apps Iteminventory EntityEJB

and existing databases InventoryRecord ConfigurableEntity
Locator Belonging

theory.smart.ebusiness.invoicing InvoiceManager SessionEJB

Distributed interface to your existing - -

invoicing/billing system. Interfaces with Invoice Entity EJB

legacy apps and existing databases

theory.smart.ebusiness.item Item ConfigurableEntity

Flexible management and access to catal ogs
of products and services, with dynamic
policy-based pricing

ItemPriceCal cul ationPolicy

Business Palicy

DefaultltemPriceCal culationPolicy

Business Palicy

theory.smart.ebusiness.order Order Entity EJB
Online order entry, order management, and .
shopping cart functionality OrderManager SessionEJB
OrderLine Belonging
OrderWorkflow Workflow
theory.smart.ebusiness.session ebusinessSessionM anager SessionEJB
Complete online user session management, - - -
including guest, authenticated login and ebusinessSession Entity EJB
multiple login functions. Sessionsare stored o \sinessSessi onWorkflow Workflow
transactionally for trouble-free web
interaction
theory.smart.ebusiness.shipping ShippingManager SessionEJB
Distributed interface to your existing " -
shipping/order fulfillment system. Interfaces ShippingMethod Entity EJB
with legacy apps and existing databases PackingList Belonging

ShippingCostCalculationPolicy

Business Palicy

DefaultShippingCostCalculationPolicy Business Policy

BEA WebL ogic Commerce Server Components Developer’s Guide 2-3

2 Components Catalog

Package/Description Components Type
theory.smart.ebusiness.shoppingAdvisor ShoppingAdvisor Session EJB
Personalizes customer’s shopping experience. - -
Suggests products and services based on CustomerProfile Entity E)B
customer profilesand buying patterns. Learns ItemsByQuality Entity EJB
customer profiles. Allows for accurate
targeting of offerings to consumers. ItemsQualities Entity EJB
ItemsByDegree Belonging
Suggestion Belonging
theory.smart.ebusiness.troubleticket TroubleTicket Entity EJB
C_:omplete cusiomer support system. Incl u.d S TroubleTicketWorkflow Workflow
ticket entry and response management, with
robust transactional workflow TroubleTicketManager Session EJB
Journal Entry Belonging

2-4 BEA WebL ogic Commerce Server Components Developer’s Guide

CHAPTER

3 Development Process

WebL ogic Commerce Server (WLCS) provides prebuilt Enterprise JavaBean (EJB)

components that you can use in your e-commerce Web applications. In the Java

implementation source code that WL CS generates, you can add your business logic
between specialy provided code markers. If needed, you can aso extend the WLCS
components to add new components that match your specific business requirements.

Thefirst section in this chapter outlines the overall development process. Subsequent
sections provide details about each step. The following topics are presented:

What is the overall development process?

Before You Begin: Copy the Model

Step 1: Export the WLCS model in Rational Rose

Step 2: Run the WL CS Smart Generator

Step 3: Add Your Business Logic: Edit the Javafiles and Compile Them
Step 4: Run the EJB Compiler

Step 5: Deploy your application, and start the server

Step 6: If desired, change the model, and iterate

BEA WebL ogic Commerce Server Components Developer’s Guide

3-1

3 Development Process

What is the overall development process?

Y ou can create EJB components by modeling them using the Unified Modeling
Language(UML) and then generating Java source code. Thistechnique utilizesaUML
drawing tool, in this case Rational Rose™, and creates an intermediate file that
describesthat model. That fileistransformed by aWL CS application called the Smart
Generator into the Java classes that make up one or more EJBs.

Code generation from UML haslong been recognized asapromising technology. This
technique is powerful because it allows the designer to model the componentsin a
natural way without being concerned with implementation-specific details.

Despite its promise, this technique has not been adopted widely for a number of
reasons:

m The generated code was often thought to be inferior, and there was no easy way
to generate the implementation of the business logic

m Lack of aniterative development cycle, which meant that most tools could only
be used to generate the first attempt at the classes; and an associated problem:
often times the model and the code became unsynchronized and much of the
model’s value was | ost.

The WLCS utilities solve these problems by going a step further. The utilities do not
assume a direct mapping from the model to the underlying language constructs. The

user models the business objects and the Smart Generator creates a set of classes that
implementsthese objectswith referenceto the Enterprise JavaBeans 1.1 Specification.
Many of the laborious tasks of creating access methods and handling containment of

references is automatically handled.

The WLCS Smart Generator also uses intelligent algorithms to generate sensible
naming for collections and methods. In addition, it generates documentation for these
classes using the same intelligent naming scheme. Because the Smart Generator
embeds code markers, it is possible for devel opers to add the business logic and then
resynchronize those changes with the model.

Figure 3-1 introduces the devel opment process when you use WL CS components.

3-2 BEA WebL ogic Commerce Server Components Developer’s Guide

What is the overall development process?

Figure3-1 WLCS Components Development Process

Start by opening & copy Export
ofWLCS maodel in Rose moadel ta...

E.JB
D eplovment

Descriptors
*DD HML

The overall steps are as follows:

WLCS Model
Definition
tast

Generated
Jawva File=
*java,
mpljava,
*Home java,
P H java

Before you begin: copy theinstalled WL CS model

Go to the “ nodel \ BEA Wbl ogi cComer ce\ " directory found under the WLCS
installation directory. Create a separate work directory and copy the BEA
Wbl ogi cComrer ce. mdl model fileto your work directory.

Step 1: Export the WL CS model in Rational Rose

Start Rational Rose™, agraphical UML modeling product. Open your copy of
the WL CS Components model, and use the WL CS plug-in to export the model

to an intermediate file (*. t ast).

BEA WebL ogic Commerce Server Components Developer’s Guide 3-3

3 Development Process

Sep 2: Run the WL CS Smart Gener ator

From the Rose menu, or the Windows Start menu, or a command prompt, run
the WLCS Smart Generator. The Smart Generator is a Java application that
readsthe*. t ast model definition file and generates the Java source files and
EJB Deployment Descriptors.

Sep 3: Edit the Java files: Add Your BusinessL ogic

Edit the generated *1 npl . j ava source filesto add your business logic between
the provided code markers. Because the Smart Generator embeds code markers,
it is possible for you to add the business logic and then resynchronize those
changes with the model.

Sep 4: Run the EJB Compiler

Run the EJB compiler to generate the Java class files for your EJBs.

Sep 5: Deploy your application, and start the server

Deploy the application using either Bean-Managed Persistence (BMP) or
Conainer-Managed Persistence (CMP) to the host system or systems. Then start
the WLCS Server on each machine that hosts the application.

Step 6: If desired, change your copy of the model, and iterate

If you want, you can change your copy of the WL CS model, adding new
components or business policies that extend the ones provided by WLCS. You
can then iterate through the devel opment process (starting again at step 1). Smart
Generator preserves the changes you made to the * I npl . j ava source files by
locating your additions within the code markers.

Subsequent sectionsin this chapter provide details on the steps in the development
process.

3-4 BEA WebL ogic Commerce Server Components Developer’s Guide

Before You Begin: Copy the Model

Before You Begin: Copy the Model

Step 1.
Rose

This prerequisite stepis simple.

1. Gotothe“nodel \ BEA Wbl ogi cCommer ce\” directory found under the WLCS
installation directory. The BEA Webl ogi cCommer ce. ndl filein that directory is
the model.

2. Create asubdirectory that will contain your copy of the model. In the WLCS
Components Tour, readers are instructed to create a\model\tour\ subdirectory.
However, you can create your work directory in alocation that is separate from
the installed WL CS folder hierarchy, such as d: \ nyWebApps\ wor k\ .

3. Copy the WLCS Component model file, BEA Wbl ogi cConmrer ce. mdl , to the
work directory that you created.

Export the WLCS model in Rational

Start Rational Rose™, agraphical UML modeling product. If you installed the WLCS
software after you installed Rational Rose, as described in the WLCS Installation
Guide, the WLCS plug-in to Rational Rose is already in place.

Open your copy of the WL CS Components model, and export the model to an
intermediate definition file (*. t ast). If a thistime you are not extending the model
and generating new classes based on existing WL CS classes, the procedure in this
section issimple.

(Seethe section “ Step 6: If desired, change the model, and iterate” for more advanced
considerations if you are extending the WLCS classes.)

The steps during your initial cycle through the development process are as follows:

1. Start Rational Rose. From the Windows Start menu, select Start — Programs —
Rational Rose...

BEA WebL ogic Commerce Server Components Developer’s Guide 3-5

3 Development Process

2. From the Rational Rose top-level menu, click File - Open, and browse to the
directory where you put your copy of the model file, BEA
Webl ogi cConmrer ce. ndl .

3. Double click on the BEA Webl ogi cCommer ce. ndl file. Rational Rose opens the
model.

4. From the Rational Rose top-level menu, click Tools — WeblogicCommerce -
Export Model As...

5. The WLCS plug-in to Rational Rose displays the following screen:

Selectouput TostFle K|
Save n: IESTC j ﬁl

B example
3 examples

bbtour.tast

File name: Inewtnur.tasﬂ | Save I
Save as ype: ITheu:ury TAST j Canicel |

6. Enter afile name for the model definition file. The default filetypeis.t ast .

7. The WLCS plug-in to Rational Rose displays a confirmation message when the
export operation completes successfully:

3-6 BEA WebL ogic Commerce Server Components Developer’s Guide

Step 2: Run the WLCS Smart Generator

Success

M odel iz successfully exported

Step 2: Run the WLCS Smart Generator

The WLCS Smart Generator readsthe * . t ast model definition file and generates the
Java source files based on an industry standard modeling language.

Advantages

Smart Generator provides the most comprehensive EJB code generation in the
industry. The EJB code that is generated by the WL CS Smart Generator is optimized
for the high performance demands of interactive e-commerce Web applications. The
code is based on input from industry-leading persistence experts and systems
integrators. The advantages of using the WL CS Smart Generator include:

It allows you to focus on building your company’s business logic
It enables reusability and customization of prebuilt EJB components

You do not have to know the details of EJB or track changes in the EJB
Specification from Sun

You do not have to know the details of implementing EJB code for high
performance

Preservation of your investment: your business logic can be regenerated to
conform to revisions in the Sun Microsystems EJB Specification

BEA WebL ogic Commerce Server Components Developer’s Guide 3-7

3 Development Process

After you update the generated Java implementation files, where you add your
business logic (Step 3 in the development process), the WL CS Smart Generator reads
inyour changesthe next time it runs, preserves your changes, and reflects the changes
back in your copy of the model. Special code markers are provided in the generated
*1 npl . j ava filesthat enablethe Smart Generator to synchronize the model with your
business logic code.

Define a New Project

To define anew Smart Generator project, follow these steps. Y ou can also see these
steps with sample values in the WL CS Components Tour. The tour includes a great
walk-through of extending an Item component and extending a pricing business

policy.
1. Start the Smart Generator. Use one of the following options:

e From the Rational Rose top-level menu, select Tools —
WeblogicCommerce - Smart Generator.

e From the Windows Start menu, select Start — Programs — BEA WebL ogic
Commerce Server — Smart Generator.

e From asystem prompt, run the script that starts the Smart Generator, which
isimplemented as a Java application. On Windows systems, the
smart - gener at or. bat fileisin\ bi n\w n32\ intheinstalled WLCS
directory. On Solaris systems, the smar t - gener at or . sh fileisin
/ bi n/ sol ari s2/ intheinstalled WLCS directory.

2. Ontheinitial Smart Generator screen, click the New button.

3. Smart Generator displays its Project Properties screen. For example:

3-8 BEA WebL ogic Commerce Server Components Developer’s Guide

Step 2: Run the WLCS Smart Generator

Project Properties

rDiremuries rPackages |

Project Hame :
Ibtour |

EJB Code Generation Output Directony :
\DAoptiwebLogicACISTT || Browse.. |

Deploy Code Generation Output Directony :
|D:Il:upﬂWethgicACldepluﬂweblugiclclnudscape | | Browse ... |

TAST Model File :

\DhoptiwebLogicACisrcibbtour tast | | Browse.. |

Save Project To :

\DAoptiwebLogicACisrcibbtour | | Browse.. |
0K Cancel

4. Inthe Project Namefield, enter a descriptive project name.

5. Inthe EJB Code Generation Output Directory, enter the location for the
generated Java source files. Thisisthe location where Smart Generator will place
the Javainterfaces, business logic, and other core EJB code.

6. Inthe Deploy Code Generation Output Directory, enter the location for the
generated deployment code source files. Thisisthe location where Smart
Generator will place deployment descriptors and files containing JDBC
instructions to persist Entity Beans using a specified database map.

7. Inthe TAST Model Filefield, enter the name of the*. t ast file you exported
from your copy of the WLCS model (in Step 1).

BEA WebL ogic Commerce Server Components Developer’s Guide 39

3 Development Process

8. Inthe Save Project To field, designate a directory that will contain the project
definition file.

9. Click the OK button.

Configure the Project

1. Click on the Packages tab.

EEi Project Properties B3
Packages |

Packages Classes

v| BeanieHat
[BeanieHatPricePolicy

_| examples.huybeans

_| examples.buyheans.item

[] examples.buybeans.tour

ok [cacat |

2. Inthe Packages pane, click on the package(s) you want to implement.

3. Inthe Classes pane, double-click on the boxes next to the classes you want to
implement. Double-clicking adds checkmarks next to selected classes.

4. Click OK.

3-10 BEA WebL ogic Commerce Server Components Developer’s Guide

Step 2: Run the WLCS Smart Generator

5. Select Configuration - Options from the Smart Generator menu. The User
Options screen is displayed:

6.

[;g User Options

(Smart Generator | Java |

—smart Generator Options

Smart Generator

|then:|r'5f.sman.cnmpiler.SmanGeneratnr |

Smart Generator Options

|—trace ¥}

Smart Generator TAST Flag

|—ta st

Smart Generator Root Directory Flag

|— root

Smart Generator Deploy Root Directory Flag

|-dep|n_.rment_runt

Smart Generator Classes Flag

|-|:Iasaes

Ok

| | Cancel

If needed, you can enter the following options on this Smart Generator screen:

-trace

Sets the trace switch. The default value is g, which enables a code Generator
trace. Other options. -trace c (compiler trace), -t race t (Tast processor
trace),and - trace + (traceall).

-tast

BEA WebL ogic Commerce Server Components Developer's Guide 3-11

3 Development Process

Sets the metadata exchange format (default and only option in the current
release).

-root

Setsthe location of the root directory for the . j ava sourcefilesto be
generated.

- depl oynent _r oot
Setsthe root directory for output of deployment-specific code.
-classes (cl, c2, c3)

Allows you to specify a subset of classes to be processed by the next
Generate operation in the WL CS Smart Generator. Enclose multiple entries
in parentheses, separated by a comma. Thereis no default.

- bn‘p
Switch to specify that you do not want to use Bean-Managed persistence. In

other words, sets bean-managed persistence to off. Do this if you want to use
contai ner-managed persistence instead.

The default is to deploy with this switch on using bean-managed persistence
on arelational database such as Oracle. In the default on mode, the Smart
Generator references a database mapping propertiesfile to generate the
appropriate database-related code.

7. Onthe User Options screen, you can aso click the Javatab if you want to specify
Java compiler options and related options. The WL CS Smart Generator displays
a screen similar to the following:

3-12 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 2: Run the WLCS Smart Generator

[=3 User Options
meart Generator ||Java
—Java Options
Classpath

|C:UDK1 21 .Eljrellimrt.jar;C:Iwehlngiclevallclnud|
Java Compiler

|ja~.ra|: |
Java Compiler Options

Java Virtual Machine

ava |
JYM Options

Java Execution Timeout

110000 |

Ok | | Cancel

8. Click the Ok button after you enter any compiler options.

Generate the Java Sources

When you areready to generate the Java sources, click the Generate button onthe main
WLCS Smart Generator screen. Wait for the Smart Generator to compl ete its work.
You can click the Output Console tab to view messages recorded during the generation
step. Look for the “ Compiler done” message at the end of the console output.

BEA WebL ogic Commerce Server Components Developer's Guide 3-13

3 Development Process

For example:

Eg'-_": Smart Generator M=l B3 |
File Configuration Help

(F'rujects Output Console

C:/WebLogichC/srofexanples /buybeans /tour /BeanieHatPricePolicy. java

Mon 4pr 03 192:07:00 EDT 2000:<g> Created backup file t£o -->

C: /MebLogichCserc/exanples /Auyheans ftour fEeanieHatPricePolicy. java.bak

Mon apr 03 19:07:00 EDT 2000:<g> Generating Implementation
C:/WMeblLogichC/erc/exanples fhuybheans ftour /BeanieHatPricePolicyInpl. java
Mon Apr 03 19:07:01 EDT 2000:<g>= Created backup file to -->
C:/WebLogichC/srofexanples /buybeans /tour /BeanielHatPricePolicyInpl. java.bak
Mon 4pr 03 19:07:01 EDT 2000:<g= Generating Home

C: /MebhLogichCserc/exanples /huyheans ftour /BEeanieHatPricePolicyHone. jawva
Mon 4Apr 03 19:07:01 EDT 2000:<g> Created backup file to -->
C:/WeblLogichC/erc/exanples fhuybheans ftour /BeanieHatPricePolicyHone, java.bak
Mon 4pr 03 19:07:01 EDT 2000:<g>= Generating Data O0bject JLDEC

C: /WebLogichAC//deplovi/weblogic/cloudscape fexanples /buvbeans s tour /BeanieHatP
ricePolicyTcEnp, java 2
Mon 4pr 03 19:07:01 EDT 2000:<g> Compiler done (took 10 seconds)

Clear

| v

Exit

Click the Exit button to close the WL CS Smart Generator.

3-14 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 3: Add Your Business Logic: Edit the Java files and Compile Them

Step 3: Add Your Business Logic: Edit the
Java files and Compile Them

1. Edit the Javafilesto add your businesslogic.

Edit the generated * | npl . j ava source files to add your business logic between
the provided code markers. Because the WL CS Smart Generator embeds code
markers, it is possible for you to add the business logic and then resynchronize
those changes with the model.

When you run the Smart Generator again, it recognizes the changes you have
made in your * Impl.java sources and reflects those changes in the model.

The code fragment in Listing 3-1 shows the type of code markers that are
provided by the WL CS Smart Generator. The sample generated implementation
fileis Beani eHat Pri cePol i cy. j ava, which you can create by running the
WL CS Components Technical Tour in the online documentation. A bold
typeface isused in the listing to highlight the markers.

Note: Inall cases, the end tag, such as$_End, must appear before the closing
brace of the additional method.

Listing 3-1 CodeMarkersIndicating WheretoInsert Your Business L ogic

package exanpl es. buybeans.tour;

import theory.smart.foundation.*;
inmport theory.smart.util.*;

//$lnmport$_Begin ------------ CUSTOM CODE ---------------
/1 Place additional inmport statements here
//$| n-por t $ End NANNNANNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

cl ass Beani eHat PricePolicyl npl inplenents Beani eHat Pri cePolicy

/1 $lnpl enent s$_Begin ------------ CUSTOM CODE - --------------
/1 Add interfaces that are inplenented here
//$| n-pl en-ent S$ End NANNNANNNNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNN

BEA WebL ogic Commerce Server Components Developer's Guide 3-15

3 Development Process

/1 $Addi ti onal Attri buteDecl arati ons$ Begin ------------ CUSTOM CODE

// Add additional attribute declarations here
/1 $Addi ti onal Attri but eDecl arati ons$_End

NNANNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

prot ected Beani eHat PricePolicyl npl ()

{

super () ;
//$Constructor$ Begin ------------ CUSTOM CODE - --------------
// Add constructor code here
//$c0nst r l.lCt or $ End NANNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
}

/| $Met hodExcepti on theory. smart.axi omunits. Price

cal cul atePrice(theory.snart. ebusiness.itemltemitem
theory.smart.axi omunits. Quantity qty,

theory. smart. ebusi ness. cust oner. Cust oner custoner)$ Begin
------------ CUSTOM CODE - --------------

/1 Add additional exceptions here

/1 $Met hodExcepti on theory. smart.axi omunits.Price
cal cul atePrice(theory.snart. ebusiness.itemltemitem
theory.smart.axiomunits. Quantity qty,

theory. smart. ebusi ness. cust oner. Cust oner custoner)$ End
NANNNANNNNNNNNNANNNNNNNNNANNNNNNNNNNNNNNNANNNNNNN

/1 $Met hod theory.smart.axi omunits. Price

cal cul atePrice(theory.snart. ebusiness.itemltemitem
theory.smart.axiomunits. Quantity qty,

theory. smart. ebusi ness. cust oner. Cust onmer custoner)$ Begin
------------ CUSTOM CODE - --------------

return null; //in Components Tour, custom pricing policy
code in WCS docunmentation is inserted here...

3-16 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 4: Run the EJB Compiler

Step 4.

// $Met hod theory. smart.axiomunits.Price

cal cul atePrice(theory. smart.ebusiness.itemltemitem
theory.smart.axiomunits. Quantity qty,

theory. smart. ebusi ness. cust oner. Cust oner customner)$_End
NANNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNN

}

Note: If you changethe signature of amethod it will not be properly managed by the
WLCS Smart Generator. This happens because the round-trip engineering
feature works by matching the exact signature of the method and the
parameters. If a generated method is no longer present in the model it will
simply be deleted, along with the associated implementation. To avoid this
situation, you must make matching changes in the model and the source code.
Asaconsequence it is extremely important to consider the parametersto
methods up front so asto avoid this problem.

2. Compilethe*.java source fileswith any supported Java compiler. For
example:

javac surfcity.java sunhat.java

Run the EJB Compiler

The EJB compiler (ej bc) generates container classes according to the deployment
properties you have specified in your deployment files. For more information on
deploying EJBS, see the topics Deploying EJBsin WebL ogic Server and Deploying
EJBs with DeployerTool in the BEA WebLogic Server Enterprise JavaBeans
documentation.

To run the EJB compiler against your files:

1. Createthefilesej b-j ar.xn andwebl ogi c-j ar. xml according to the Weblogic
EJB deployment guide. For container-managed persistence (CMP) deployments,
the beannane- CVP- RDBMS. xml will also be needed.

BEA WebL ogic Commerce Server Components Developer's Guide 3-17

3 Development Process

2. Create adeployment jar file that contains the xml files and the Home, Remote
and Impl classfiles. To do this, usethe syntax j ar cvf <jar-file>
<files...>For example:

jar cvf norehats.jar propeller.class button.class
Note: For help, typej ar at the command prompt, and it will show the usage
parameters.

3. Runej bc on the deployment jar. The server and client stubs will be generated
insidet hat jar.

4. Finaly, copy your application JAR files to the deployment system that will host
your application.

Y ou can automate running the EJB compiler tasks for subsequent builds by creating a
. bat (NT)or. sh (Solaris) build script file. For an example of abuild script, seethe
tour - bui | d. bat scriptin bi n\ wi n32 under the WLCS installed directory. In
addition to generating the *.class bytecodes for your application, the script should
create or update the Java Archive (JAR) file for your application.

Note: tour-buil d. bat will compilethetour files, t our - depl oy. bat will jar them
up, and run ej bc on that jar.

Step 5: Deploy your application, and start
the server

Deploy your application using either Bean-Managed Persistence (BMP) or
Conainer-Managed Persistence (CMP) to the server. Then start the WL CS Server on
each machine that hosts the application.

This section providesabrief overview of deployment. For more details, see Chapter 4,
“Deploying Y our Application.”

3-18 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 5: Deploy your application, and start the server

Before You Start the WebLogic Application Server

Before you start the WebL ogic application server, you must do the following:

m Set the environment variable DEPLOYMENT_SET to either BMP for bean-managed
persistence, or VP for container-managed persistence.

m Inthedirectory where you installed WLCS, rename the appropriate
webl ogi c- XXX. properties filetowebl ogi c. properti es, where XXX is
either BMP or CVP. The renamed file should reside in the top-level WLCS
installed directory, such asc: \ webLogi cConmmer ce.

m Inthedirectory where you installed WLCS, rename the
webl ogi ccommer ce- XXX. properti es fileto
webl ogi ccommer ce. properti es, where XXX is either BMP or CVP. The renamed
file should reside in the top-level WLCS installed directory, such as
c:\webLogi cComer ce.

The WLCS EJB source code is independent of the persistence method, whether it is
container-managed or any implementation of bean-managed persistence.

The source code that uses JDBC instructions to persist Entity Beansis generated
according to one of the BEA reference implementations of bean-managed persistence.
If you use the reference data model, the source code may be used as generated. The
morelikely caseisthat the JDBC source code may be used astemplatesto persist EIBs
to alegacy data model.

One of the advantages of the WL CS approach isthat business|ogic and other core EJB
source code is independent of the persistence implementation. This isolates business
application development from database development and schema changes.

Starting the Server

On the deployment system that will host your application, you must start the
WebL ogic Server.

1. Edit thewebl ogi c. properti es file so that the jar created in the last step is part
of thewebl ogi c. ej b. depl oy field.

BEA WebL ogic Commerce Server Components Developer's Guide 3-19

3 Development Process

Step 6:

Iiterate

2. Make sure that the class path set in set hone. sh or set hone. bat points to the
classfiles that are needed by your bean. Also, make sure that the JAR file that
you created is not in the classpath.

3. Start the server using either St art Conmer ce. sh for UNIX systems or
St ar t Commer ce. bat for Windows NT systems.

If desired, change the model, and

If desired, you can change your copy of the WL CS model, adding hew components or
business policiesthat extend the ones provided by WL CS. You cantheniterate through
the devel opment process (starting again at step 1).

When you extend the WL CS model, Smart Generator preserves any changesyou made
tothe*1 npl . j ava source files by locating your additionsin between the code
markers.

Changing your copy of the model requires a basic understanding of:

m A simple subset of UML notations

m TheWLCS model’s Foundation packages

m The Smart Generator rules

To master these concepts, we have provided the following topicsin this section:

m Do | haveto be aRational Rose or UML Expert?

m Understanding the Foundation Package and Stereotypes

m Understanding the Basic UML Modeling Notations

m WLCS Smart Generator Rules: Factors that | nfluence the Generated Java Files

m Design Decisions

3-20 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

Do | have to be a Rational Rose or UML Expert?

It is not necessary to be an expert in UML concepts or Rational Rose to model your
EJBs. The remainder of this chapter takes a step-by-step approach to explain our
technique to creating EJBs from UML. This discussion does not assume a familiarity
with either of these topics and providesintroductory explanations of the key elements
of each. While knowledge of these specific technologiesis not assumed, familiarity
with the underlying concepts of object-oriented design, distributed objects, and
transaction servicesis required.

There are anumber of references in this document to various "Design Patterns' and
"Anaysis Patterns'. Thereis a welcome trend towards documenting these axiomatic
solutions to common computer science problems.

Understanding the Foundation Package and Stereotypes

Thet heory. smart . f oundat i on packageis a set of classes from which the

WebL ogic Commerce Server componentsarebuilt. These classesprovidethebuilding
blocks for the value added features of our components. Most of the classes that are
generated from the model are derived from classes in the Foundation package.

For example, thet heory. smart . ebusi ness package contains classes that are built
on the Foundation package.

To simplify the complexity of the UML diagrams, the Foundation package

rel ationships are described through class stereotypes rather than inheritance. Each of
these stereotypes is used to model certain behaviors and implies the presence of
additional methods. This section discusses the Foundation package from a conceptual
viewpoint. If you need to extend the functionality of theory.smart.ebusiness classes, it
is helpful to first understand the theory.smart.Foundation package.

With that goal in mind, this section describes the following concepts used in the
Foundation package:

m Beongings
m Sessions

m Entity

BEA WebL ogic Commerce Server Components Developer's Guide 3-21

3 Development Process

Belongings

Sessions

m Configurable Entity
m Business Policy
m Workflow

m Smart Features

A Belonging is the simplest form of a WL CS Component. A Belonging isa
lightweight, local object that can be serialized. A Belonging gets its name because it
must "belong" to, or be acquired from, another object, typically a Session or Entity. It
must be seriaizable so that it can be persisted with the class to which it belongs and
passed remotely as a parameter.

One of the key characteristics of a Belonging isthat it must be implemented using the
Abstract Factory pattern. This meansthat for each belonging thereisahome class, an
interface, and at least one implementation of that interface. Because accessto the
object isthrough an interface, thereis a guaranteed level of abstraction. Thisprovides
agreat deal of flexibility because it means that you can substitute implementations.

Y ou could, for instance, make the object remote without changing the code that uses
it. Alternatively, you might substitute different businesslogic at runtime by changing
the implementation returned by the home class.

Implementing all these classes by hand is lot of work. The WebL ogic Commerce
Server development tools simplify the process by generating all of the necessary
classes automatically. You can fully concentrate on modeling the attributes and
methods so that they fit the needs of your business.

Session components, implemented as Session EJBeans, are used to model
service-oriented objects. The key concept is that a Session is an object that provides
accessto aserviceimplemented in itself or somewhere else on the network. Attributes
of asession are used only to configure it for use during the lifecycle of that session. It
isimportant to note that the attributes of a Session are not persistent. The business
methods are the most important part of a Session.

3-22 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

Sessions provide a way of remotely implementing business logic, thus extending the
reach of your client application. For instance, when you need to perform an extended
set of operations on acollection of remote objects it often makes sense to create a
"Manager". The Manager object can be co-located with the objectsit will be operating
on. Thiswill reduce the network overhead and latency.

Sessions are al'so commonly used to provide an interface to alegacy system or to a
servicethat is pinned to a specific piece of hardware. Theremoteinterface allowsthe
client software to access the remote device asif it were local.

Finally, by wrapping a subsystem and factoring out the functions common to similar

systemsit is possible to provide alevel of redundancy. An example of thiswould be

the case where there are multiple providers of credit card validation services. These

systemswould likely have similar function but different implementations. By creating
acommon interface to use the different implementations, it is possible to load balance
between them or substitute one for the other.

Entity

An Entity, implemented asan Entity EJB, is an object with staying power. Persistence
isthe key aspect of an Entity object. Inits simplest form, an instance of an entity could
betheequivalent of asinglerow in arelational database. Thisisan over-simplification
because each Entity may include collections of attributes and implement business
methods.

Entities are representative of the attributes of which they are composed. Thisis what
distinguishes them from Sessions, which represent a collection of services. Asa
general rule Entities do not implement sophisticated business logic, instead, they are
the components that are acted upon.

Configurable Entity

In addition to the standard qualities associated with an EJB Entity, the WLCS
Component software provides dynamic configuration. Dynamic configuration is the
ability to add properties and methods at runtime and is provided by the Configurable
Entity. The Configurable interface all ows the programmer to associate a named vaue
with the Entity. These values are persisted separately so that they are permanently
associ ated with the object without affecting the underlying schema.

BEA WebL ogic Commerce Server Components Developer's Guide 3-23

3 Development Process

When the value stored in a Configurable Entity is a method, the result isthe ability to
exchange the implementation of a method dynamically or a*“Pluggable Method”
which is the implementation of the “ Strategy” pattern.

Business Policy

Workflow

Configurable Entities can be arranged in ahierarchy of successors. When thistype of
hierarchy isin place, arequest to retrieve a value from a Configurable Entity triggers
an upward search through the hierarchy of successors until a matching valueisfound
or the top of the hierarchy is reached. Thisis the implementation of the "Chain of
Responsibility" design pattern.

The combination of “Pluggable Methods” and the hierarchy of successionis called a
Business Policy.

For many business applications a simple mechanism to maintain internal stateis all
that isrequired to achieve a basic level of workflow. The WL CS software provides
such a capability for defining and verifying the states and events that describe a
business process. What this means to the developer is that they can represent this
process as a state diagram and then verify the legitimacy of business method
invocations with asingle method call to ask for atransition. Addingastepisassimple
asadding anew state. The enginewill then enforce therul ethat this step must betaken
without changes to existing code.

Smart Features

SmartKey

The WLCS Components software implements built-in advanced features that
considerably improve the ease of use and efficiency of the final system.

The EJB specification requires that for each Entity there is a class that represents the
attributes of the primary key of that class. This Primary Key class is used to find and
test the equality of instances of Entity objects. To accomplish these simple goals the
EJB specification only requires that the Primary Key class must be serializable.

3-24 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

SmartHandle

SmartValue

The SmartK ey interface extends this functionality and requires the implementation of
the Comparabl e interface from the java collection API. Thisis so that SmartKeys can
be easily compared and stored in ordered lists. The result isthat it is easy to model
relationships that require the ordering of Entities.

Thet oSt ri ng method of a SmartKey simplifies the implementation of profiling and
debugging code.

The EJB specification providesfor the passing of lightweight references to Enterprise
Java Beansthrough the use of Handles. A handlein EJB is an opague type that can be
converted to and from an EJB Object. A handleis required to implement atest for
equality such that given two handlesit is possible to determineif they refer to the same
Session or Entity object.

For aWLCS Entity component it is possible to create a SmartHandl e that includes the
object’s associated SmartKey. Because the SmartK ey implements the Comparable
interface it is possible to order alist of smart handles without accessing the remote
objectsthat they refer to. This simple mechanism greatly improves performance.

Each Entity is composed of the attributes that describe it. In order to encapsul ate the
remote objects all attributes must be read and written through accessor methods,
typically named get <At t r > and set <At t r >. This has the negative consequence that
retrieving the attributes of an entity may result in many remote method invocations.
To aleviate this problem the WL CS software provides a convenience class, derived
from SmartValue, that contains a copy of all the top-level attributes.

Understanding the Basic UML Modeling Notations

Y ou only need to know a small subset of the UML notations to use the WLCS
components model. This section explainsthe UML notations for:

m Classes and Stereotypes
m Inheritance

m Aggregation and Multiplicity

BEA WebL ogic Commerce Server Components Developer's Guide 3-25

3 Development Process

m Packages

UML describes objects and their relationships graphically. The WLCS Components
software uses UML as amechanism for simplifying the design and implementation of
EJBs. Before we discuss the details, let’s review some of the UML notation from a

higher level perspective. In this section we focus on the aspects of the notation that are

of particular interest to the WL CS Smart Generator, analyzing portions of the sample
UML diagram in Figure 3-2.

Figure3-2 Sample UML Diagram

fyrre $uuT%

[}

Classes and Stereotypes

Let’s start by focusing on the Java classess and stereotypesin Figure 3-3.

3-26 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

Figure 3-3 Compartmentsin each Class Box

Q Name and Stereotype ‘:‘:BSC.CDHﬁQUleEEHtit‘_ﬁ’}
> Itermn

Gdestription : String Attributes
QﬂEIEC.F'rimarg.rKeyw A pplier : Sthing “40
QHEISC.F'H mankey== identifier : String
¢¢¢ESC.PrimawKeybb wergon ;- String

ghrice :theory anart.axiom.unitsPrice

—WcalculateFrce
#calculatePn’ceg «ﬂo
Q=tDefaultiternP riceCaloul atio nPolicy)
‘IrgetDefaultltemPrice CalculationP olicyd
Q==B5C Home.D peration== findAll{

Each of the rectanglesin adiagram is arepresentation of aclassin UML. There are
generally three compartmentsin each classbox. A compartment may beleft out if itis
empty or if the details of the contents are not pertinent to a particular diagram. The
latter is often the case when an object from another package is referenced.

The upper most box holds the class name and its stereotype. A stereotypeisa
"sub-classification" of an element in the model. It isrepresented as the name of the
stereotype enclosed in guillemets, asin <<st er eot ype>>. In UML, anything can be
tagged with a stereotype. In the previous diagram, the Item classis stereotyped as a
Configurable Entity. Thismeansthat it would have the qualities of one as described in
the section Entity.

Attributes are listed in the second compartment. In UML the name of the attributeis
specified first followed by itstype. The name and the type are separated by acolon. It
is notable because it is different from the Java language. It works well for object
oriented modeling which is generally an iterative process. Often times a designer will
list the attributes of class without specifying types the first time through. The same
techinique hol ds true when specifying the argumentsto amethod. Note that asalready
mentioned, attributes can be decorated with astereotype. The stereotype precedesthe
attribute and is embedded in guillemets as before.

BEA WebL ogic Commerce Server Components Developer's Guide — 3-27

3 Development Process

Thethird and final compartment lists the methods. The return typeis listed after the
closing parentheses and is separated from the class definition with a colon. Often the
display of the parameters and the return value are supressed on the diagram because

they consume a great deal of space.

When specifying attributes and methodsit is possible in the UML to indicate whether
or not they are private, protected, or public. The"tilted brick" icon to theleft will have
dlight variations depending on this.

Inheritance
Figure 3-4 focuses on the UML notation for inheritance.

Figure3-4 UML Notation for Inheritance

==H5C BudnessPolicy ==
ItemPriceCalculationP olicy

¥calculate Price()

==B5C BusinessPalicys= =
DefaultltermPriceCalculationP olicy

InaUML diagram, inheritance is depicted an unfilled arrow that points from the
subclasstowardsits parent. Inthiscasethel t enPri ceCal cul ati onPol i cy will have
acal cul at ePri ce method through inheritance. The subclass will share al of the
properties and attributes of its parent.

3-28 BEA WebL ogic Commerce Server Components Developer’s Guide

Step 6: If desired, change the model, and iterate

Aggregation and Multiplicity

Figure 3-5 illustrates the UML notations for concepts called aggregation and
multiplicity.

Figure3-5 UML Notation for Aggregation and Multiplicity

._\.:u' iy
g " T,
i 1
&8 ¥ ¥
e
™K JulF
L3 rr
[2SS O T
Bpane i ksn e T T s
ol o Cyad "
[-
'!._ _\—_______
ey
l.‘. —_______\-
ﬁ_'_ o i e b
R
. - i i ke -'_'_'_'_,__,_,—o-""
% rimF _F'_'_'_'_,_,-:-"'_';
— K
fﬂ_'_'_,.o-_,_,-'-'—"
i
e
T

Aggregation is used to describe acontainment relationship between classes. Thisisan
aternativeto simply defining an attribute with the type of the class. InUML thismeans
that the contained object shares alife cycle with the containing object. That is, the
containing object holds the only reference to it and is responsible for removing the
object upon when it, itself, is removed.

Aggregation is depicted in UML with aline that extends from the containing to the
contained item. The line begins with an oblong diamond that specifies a category of
containment. A hollow diamond is used to show that the object is being contained by
reference. A solid diamond specifies that the object is contained by value.

BEA WebL ogic Commerce Server Components Developer's Guide 3-29

3 Development Process

Packages

Itisalso possible to specify amultiplicity for the object being contained. Options are
1 (oneto one), 0..1 (optionally null for references), or 0..* (zero to many). Aswith all
other elements of the UML it is possible to stereotype the relationship. Itisalso
possible to name an aggregation, although there is no example of this in the above
diagram.

Figure 3-6 illustrates the UML notation for the relationship between packages.

Figure3-6 UML Notation for Packages

foundation

axiom ebusiness

Packages are used to group classes and other packagesin to ahierarchy. Each package
will contains classes and/or other packages. When the classes of one package use the
classes of another thisis depicted as a dotted line with an arrow in the appropriate
directions. This same "uses" notation can be applied to classes as well.

WLCS Smart Generator Rules: Factors that Influence the
Generated Java Files

This section explains how the WL CS Smart Generator transformsa UML diagraminto
EJB components. We will describe the Java code that will be generated asthe result of
making specific notationsin aUML diagram.

3-30 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

Classes

Only classes in the model that are stereotyped as eBusi ness Smart Conponent
(eBSC) will result inthe generation of Javaclasses. Thereisnot aone-to-one mapping
between each class in the UML model and Java. In particular, all eBSCs are
implemented using the Abstract Factory pattern. This means that there will be at least
one interface and two Java classes generated for each eBSC that ismodeled in UML.
In addition, each Entity eBSC will have an associated Primary Key and Value class
that is generated as well.
The following table describes the mapping of classes based on the class stereotype.

Stereotype ClassOnly Interface Home Impl PK Value

BSC Belonging [x] [x] (x]

BSC Session [X] [X] [X]

BSC Entity [x] [x] [x] [x] [x]

BSC Workflow [X]

BSC Business Policy [x]

The naming convention for the generated classesis afollows:

m ClassOnly

The class will implement the respective interface and will be given the same
name as the classin the model.

m Interface
Theinterface will be given the same name as the class in the model.

m Home

The Home interface/class will be the class name with the word “Home”
appended. For example, ItemHome. For the Session and Entity objects thiswill
be an interface that is used by the EJB Compiler to generate the home
implementation.

m Implementation

BEA WebL ogic Commerce Server Components Developer's Guide 3-31

3 Development Process

The Implementation class will be the class name with the letters " Impl*
appended. For example, Itemimpl. You will add your business logic to each
generated *Impl.java file.

m Primary Key

The Primary Key classwill be the class name with the letters "Pk" appended. for
example, ItemPk.

= Vaue

The Value class will be the class name with the letters "Value" appended. For
example, ItemValue.

Primary Key and Value

For Entity Components there are two special classes that are generated. The Primary
Key classis a Java class with public members for each of the attributes that are
stereotyped as <<BSC. Pri mar yKey>>. The primary key classis used by the create
and f i ndByPr i mar yKey methods of the generated home class.

Listing 3-2 demonstrates the usage of the Pri mar yKey class.

Listing 3-2 Useof the PrimaryKey Class

public class Order Pk extends SnartKey inplenments java.io. Serializable

{
public String key;

public Order Pk(

{
super () ;
}
...more code here
}
public interface OrderHone extends Snart EJBHone
{
public Order create(theory.smart. ebusi ness. order. O derPk orderPk)
throws O eat eException, RenpteException;
Order findByPrimaryKey(theory.smart. ebusi ness. order. O derPk order Pk)
t hrows Renot eException, FinderException;
}

3-32 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

The Val ue classis a Java class with public members for each of the attributes of the
associated Entity. Thisincludesattributesthat are specified through aggregation. This
classis used by the generated V& ue accessor methods. The purpose of these method
isto simplify the retrieval of multiple attributes and reduce the overhead associated
with remote method invocation.

Listing 3-3 shows the use of Value objectsin the code generated by the WL CS Smart
Generator. Use caution when you use the set By Val ue method because there is no
built-in Entity locking. When using the set By Val ue onan Entity object itisimportant
to realize that the attributes which are members of the primary key cannot and will not
be updated. Thisisbecause as part of the identity of the Entity they are immutable.

Listing 3-3 Use of Value Objects

public class |tenVal ue extends Smart Val ue

{
public String version
public String identifier;
public String supplier
public String description
public theory.smart.axiomunits.Price price
public LinkedList qualities

protected |temval ue()
{
super () ;
}
}

public interface Item extends Configurabl eEntity

public |tenVal ue getltenByVal ue() throws RenoteException
public void setltenByVal ue(ltenVval ue val ue) throws RenoteException
/...

}

Interfaces, Homes, and Implementations

The Abstract Factory pattern requires that objects be accessed only through their
interfaces and that the classesthat implement those interfaces be acquired only through
afactory class. The factory classin the case of EJB isreferred to asaHome. Thishas
dlightly different implications for EJB components and Belongings.

BEA WebL ogic Commerce Server Components Developer's Guide 3-33

3 Development Process

When dealing with Session and Entity objects, run the EJB compiler to create the
appropriate proxies stubs and skeletons. At deployment time the application server will
be responsible for registering the home interface with the Java Naming and Directory
Interface(INDI) so that users of the EJBs will be able to create and find them.

For Belongings, the home, interface, and implementation will residewherever they are
instantiated. Belongings are always passed by value. When abelonging is used as the
parameter to amethod of a Session or Entity it will be serialized and then reinstantiated
on the server. To make this happen the Java class associated with the belonging must
be available in the class path on the server.

The deployment implication is that the release of these classes must be coordinated
between the client and the server.

The Home interface is where finder methods reside. A finder method is one that
locates one or more preexisting entities. The WL CS Smart Generator will
automatically generate a finder method based on the primaryKey, as shown in
Listing 3-2.

It is often necessary to create finders that search for entities based on the values of
some other attributes. Adding an operation to the main class and stereotyping it as
<<BSC. Honme. Qper at i on>> will accomplish this. The resulting method will be
generated into the associated home class.

Attributes and Accessor Methods

3-34

For each attribute that is specified in the WL CS Components model a pair of accessor
methods are generated. The get <At t ri but eName> method will retrieve the value of
the attribute from the remote object and return it to the client. The

set <At t ri but eName> method will passthe attributeto the remote object whereit will
be updated. Inthe case of an Entity the entire object will be marked as dirty such that
the application server will know that the changed values need to be persisted in the
database. (The“isDirty” attributeisspecific to BEA WebL ogic Server.) Thisistrue of
Sessionsto alesser degree in that many application servers perform a serialization of
Session beans for the purpose of optimizing the caching of Sessions.

Thefollowing listing shows the generated accessors.

BEA WebL ogic Commerce Server Components Developer’s Guide

Step 6: If desired, change the model, and iterate

Listing 3-4 Generated Accessors

public interface Item extends Configurabl eEntity

{
public String getSupplier() throws RenbteException;
public String getldentifier() throws RenoteException;
public String getVersion() throws RenoteException;

public String getDescription() throws RenbteException;

public void setDescription(String description) throws
Renot eExcept i on;

public theory.smart.axiomunits.Price getPrice() throws
Renot eExcept i on;

public void setPrice(theory.smart.axiomunits.Price price) throws

Renot eExcept i on;
}

public class Item npl extends Configurabl eEntityl npl
{

public String version;

public String identifier;

public String supplier;

public String description;
public theory.snart.axiomunits.Price price;

public String getDescription()
{

return (String) description;

public void setDescription(String description)

{
isDirty = true;
this.description = (String) description;

public String getSupplier()
{

return supplier;

}
public String getldentifier()
{

return identifier;
public String getVersion()
{

return version;

public theory.smart.axiomunits.Price getPrice()

{

BEA WebL ogic Commerce Server Components Developer’s Guide

3-35

3 Development Process

return (theory.smart.axiomunits.Price) price.value();

public void setPrice(theory.smart.axiomunits.Price price)
{
isDirty = true;
this.price = (theory.snart.axiomunits.Price) price.value();
}
}

One omission in the previous sample code isthat there are no methods for setting
attributes that are stereotyped as part of the PrimaryK ey for an entity. Thisisbecause
those attributes are part of the identity of the object and as such they are immutable,
cannot be changed.

Accessors are generated for belongingsaswell. The call to an accessor of abelonging
isadirect call to the implementation object.

All of the attributes must be seriaizable. This also ensures that they can be persisted.

Rules for Aggregation Notations in the UML Diagram

Aggregation allows for the definition of an attribute of a class by drawing aline
between it and another class which will be aincluded asamember. The following
rules describe the allowabl e notations:

m A Belonging may only be contained by value (solid diamond).

m An Entity may only be contained by reference (hollow diamond). In such cases
the attribute is stored as a SmartHandle.

m A Workflow issimilar to a Belonging and is always contained by value. A
Workflow is persisted using a WorkflowContext.

m A BusinessPolicy is similar to a Belonging and is always contained by value.
The accessors for the BusinessPolicy must be explicitly specified as business
methods.

m |f an aggregation is named, that name will be used by the WL CS Smart
Generator when it creates the accessors for that attribute. Thisis necessary so
that multiple relationships to the same class can be modeled.

3-36 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

Collections

m If an aggregation is not named, the accessors will be created by the WLCS
Smart Generator based on the name of the class that is being contained.

m Multiplicity may be defined as described in the section on “ Collections.”

One of the most challenging issues when designing distributed object systemsis
implementing one-to-many relationships between objects. When modeling eBSC in
UML such relationships are described by stereotyping either an attribute or an
aggregation with a multiplicity of zero or more.

When an aggregation relationship is stereotyped as a particular collection type, the
internal attribute reflectsthat choice and the appropriate accessors are generated. The
table below describes the options, a brief description of their usage, and the Java 2
SDK class upon which the implementation is based. Seethe Java2 SDK
documentation at http://java.sun.com/products/jdk/1.2/docs/index.html for more
details about the features of each collection type.

Table 3-1 Collection Stereotype Mappings

Stereotype Name Purpose Collection Type

BSC.Collection.Set A collection that contains | java.util.Collection.TreeSet
no duplicates and in which
thereis no implied
ordering.

BSC.Collection.Array | Anordered collectionthat | java.util.Collection.ArrayList
is stored as contiguous
elements. Thisallows for
optimal random access so
that operations like
re-sorting can be executed
quickly.

BSC.Collection.List An ordered list that javauutil.Collection.LinkedList
optimizes insertions at the
ends.

BEA WebL ogic Commerce Server Components Developer's Guide 3-37

3 Development Process

3-38

Table 3-1 Collection Stereotype M appings

Stereotype Name Purpose Collection Type

BSC.Collection.Map | A collectionthatisindexed | java.util.Collection.TreeMap
by string and optimized for
quick lookup. Iterationwill
be in ascending order
accordingto thenatural sort
method.

The accessors for collections are generated for each stereotype as described in

Table 3-2. Thetable uses ashorthand syntax to convey which accessors are generated
when a given stereotypeis chosen. The token <Attribute> is replaced by the name of
the attribute or aggregation as specified in the model. In the case of methods that
accept or return a collection, the typeis stereotype specific as defined in Table 3-1.
The details of the parameters and return values are implied so that the table itself can
be concise. Whilethereisno trueinheritancerelationship, it should be considered that
Set servesasabasis for Array, which isabasisfor List. Map is different in that it
supports lookup by key.

In the case where an aggregation to an entity is specified by value, an additional group
of methods is generated. These methods simplify the maintenance of the ownership
relationship by ensuring that the underlying Entity is removed from its homein
conjunction withtheremoval of itsreferencefromthelist. The converse, add by value,
is not supported because it would require that the containing entity be aware of the
home of the entity to be added.

The Set provides methods for adding and removing attributes from acollection, it
provides a"bag" type collection mechanism. The Array provides random access
methods and is optimized for random access by integral position, for thisreason it is
especially useful when multiple sort orders are required. The List provides random
access but is optimized for adding at the ends; this makesit good candidate for use
when stacks or queues are needed.

The Map makes it possibleto index a collection by a String.

BEA WebL ogic Commerce Server Components Developer’s Guide

Step 6: If desired, change the model, and iterate

Table 3-2 Generated Accessorsby Sereotype

Accessors Iterator Methods Entity by Value

Set add<Attribute> create<Attribute>Iterator remove<Attribute>ByVaue
add<Attributes> hasNext<Attribute> remove<Attributes>ByValueAt

(<CollectionType>) getNext<Attribute> removeAll<Attribute>ByVa ue

contains<Attribute> remove<Attribute>At
is<Attributes>Empty
removeAll<Attributes>
get<Attributes>() :<CollectionType>

Array <All of Set >+ <All of Set> + <All of Set>+
add<Attribute>(int position,...) add<Attribute>At remove<Attribute>ByVa ue(int)
set<Attribute>(int position, ...) set<Attribute>At
get<Attribute>(int position) getNext<Attribute>
get<Attributes>(int from, int to) getPrevious<Attribute>
remove<Attribute>(int position) getNext<Attribute>Index
indexOf<Attribute> getPrevious<Attribute>
|astl ndexOf<Attribute> Index

List <All of Array> + <All of Array> <All of Array> +
addFirst<Attribute> removeFirst<Attribute>ByVaue
addL ast<Attribute> removel ast<Attribute>ByValue
getFirst<Attribute>
getL ast<Attribute>
removeFirst<Attribute>
removel ast<Attribute>

Map put<Attribute>(String key) create<Attribute>Iterator <Accessor s are defined using

put<Attributes>(TreeM ap)
get<Attribute>ByKey
get<Attributes>(String)
contains<Attribute>Key
contains<Attribute>Value
remove<Attribute>ByKey
removeAll<Attributes>

hasNext<Attribute>
getNext<Attribute>
remove<Attribute>At

WithKey instead of ByKey>
put<Attribute>ByValue
remove<Attribute>
ByValueWithKey
removeAll<Attributes>ByValue

BEA WebL ogic Commerce Server Components Developer’s Guide

3-39

3 Development Process

Design Decisions

Now that we have covered the basics, let’ s discuss some of the choices that you will
need to make during the design process. While it would be nice to alow the model er
to design without consideration for implementation details, the redity isthat truly
good designs take into account deployment-time issues.

Use of Entities versus Sessions

One of the most common issues when modeling EJB isrelated to legacy systems.
These systems very typically provide an APl or message-based protocol to allow
external systemsto accesstheir functionality. Thetendency in such casesisto simply
model access to such systems as a Session component where each function in the API
isamethod of the Session bean. In the case of legacy systems that store complex
business data and relationships, thisisamistake. In such casesit is best to model the
internal objects as Entities where appropriate. Thiswill provide for amore
understandabl e system definition that takes advantage of the important caching and
transaction services features of the EJB specification.

Implementing Business Logic in an Entity

In general, Session beans provide a sensible mechanism for implementing "workflow"
related businesslogic. Workflow in thiscase islogic that coordinates the usage of any
number of Entity beans. This has the performance-improving effect of reducing the
network overhead associated with executing extended operationsremotely. Inthe case
where an Entity bean needs to perform complex businesslogic on classesthat it
references, itisbest toimplement that logic asamethod of the Entity bean. Thisplaces
the business logic where it belongs, with the data that it is manipulating.

Modeling from a Message Specification

Thereisastrong trend in the industry to translate message specifications, particularly
XML DTDs, directly into business objects. While this may be convenient, it may not
result in aclean description of the businessobjects. Thisissimilar to attempt to model
a system based solely onthe API. A better approach is to consider a message
specification as providing insight into a single users perspective of the system. One

3-40 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Step 6: If desired, change the model, and iterate

approach isto consider the messages as method invocationsto one or more underlying
business objects. The contents of the message can then be modeled as attributes of
various underlying objects.

Changing Method Signatures

If you change the signature of amethod it will not be properly managed by the WLCS
Smart Generator. This happens because the round trip engineering feature works by
matching the exact signature of the method and the parameters. If a generated method
is no longer present in the model it will simply be deleted, along with the associated
implementation. To avoid this situation, you must make matching changesin the
model and the sourcecode. Asaconsequenceit isextremely important to consider the
parameters to methods up front so asto avoid this problem.

BEA WebL ogic Commerce Server Components Developer's Guide 3-41

3 Development Process

3-42 BEA WebL ogic Commerce Server Components Devel oper’s Guide

CHAPTER

4 Deploying Your
Application

This chapter explains how to deploy your application. The following topics are
presented:

Defining the Persistence Type for your Deployment
Using Bean-Managed Persistence

The Oracle Reference Implementations
Deployment Sets Overview

Deploying on Windows NT

Deploying on Solaris

Considerations in Bean-Managed Persistence

Defining the Persistence Type for your
Deployment

Before you start the WebL ogic application server, you must do the following:

Set the environment variable DEPLOYMENT _SET to either BMP for Bean-Managed
Persistence, or CMP for container-managed persistence.

BEA WebL ogic Commerce Server Components Developer’s Guide 4-1

4 Deploying Your Application

m Inthedirectory where you installed WL CS, rename the appropriate
webl ogi c- XXX. properti es filetowebl ogi c. properties, where XXX is
either BMP or CVP. The renamed file should reside in the top-level WLCS
installed directory, such asc: \ WebLogi cCommer ce.

m Inthedirectory where you installed WL CS, rename the
webl ogi ccommer ce- XXX properties fileto
webl ogi ccommer ce. properti es, where XXX is either BMP or CVP. The renamed
file should reside in the top-level WL CS installed directory, such as
c:\WebLogi cConmer ce.

The WLCS EJB source code is independent of the persistence method, whether it is
contai ner-managed or any implementation of Bean-Managed Persistence.

The source code that uses JDBC instructions to persist Entity Beans is generated
according to one of the BEA reference implementati ons of Bean-Managed Persi stence.
If you use the reference data model, the source code may be used as generated. The
more likely caseisthat the JDBC source code may be used astemplatesto persist EJBs
to alegacy data model.

One of the advantages of the WL CS approach isthat business logic and other core EJB
source codeis independent of the persistence implementation. Thisisolates business
application development from database devel opment and schema changes.

Using Bean-Managed Persistence

Y ou can deploy the WebL ogic Commerce Server examples using Bean-Managed
Persistence.

This section discusses the following topics:
m Introduction

m The Oracle Reference |mplementations
m Deployment Sets Overview

m Deploying on Windows NT

m Deploying on Solaris

4-2 BEA WebL ogic Commerce Server Components Developer’s Guide

The Oracle Reference Implementations

Introduction

Y ou can map WLCSto any database available through JDBC. BEA provides a
reference implementation (deployment set) for Bean-Managed Persistence. Thisis
available as a deployment options in the WebL ogic Commerce Server release.

Here, we describe how to deploy the WebL ogic Commerce Server software in the
following environments:

m Deploying on WindowsNT
m Deploying on Solaris

The example Oracle deployment set allows you to map the MyBuyBeans.com
componentsto Oracle 8.0.5 and Oracle 8.1.5.

The WL CS Smart Generator has basi c object/relational mapping featuresthat generate
up to 100% of the mapping from beansto a relational model using serialization. For
complex databases the generated code serves as a starting point for reliable and
scalable Bean-Managed Persistence that you can modify and fine-tune.

Note: For specific directionson deploying the M yBuyBeans.com exampl e portal on
Oracle, seethe I nstallation Guide.

The Oracle Reference Implementations

The Oraclereferenceimplementation uses Oracl €'sobject-rel ational featuresincluding
database object types and nested tables. WebL ogic Commerce Server are stored with
amaximum transparency. Y ou can query on every field in the example BuyBeans
object model. Thisreference implementation is made availableto help gauge the effort
and complexity of more-detailed object-relational persistence.

If you have any comments, questions, or need help with a WebL ogic-Oracle 805
deployment, please contact support@theorycenter.com.

Oracle OCI Driver. The WebL ogic-Oracle 805 deployment uses the Oracle Thin
JDBC driver. If you want to use the Oracle OCI driver instead, you do not have to
re-run the EJB compiler. Y ou need to modify the webl ogi c. properti es fileto use

BEA WebL ogic Commerce Server Components Developer’s Guide 4-3

4 Deploying Your Application

the OCI Driver instead of the Thin driver, then re-start the server. All our beans use
TRANSACTION_READ_COMMITED astheisolation-level, but if you change the
isolation level then you need to re-run the EJB compiler and redeploy al the beans.

Additional Requirements

m MyBuyBeans.com examples successfully deployed using default
contai ner-managed persistence on the Windows NT or the Solaris operating
systems.

m Oracle Thindriver for JDBC. These drivers can be downloaded from the Oracle
Web site at http://www.oracle.com/.

Deployment Sets Overview

Deployment Sets give you the freedom to develop your business application
independently from the application server or database vendors.

This separates business logic from the devel opment environment and gives you the
freedom to choose to develop in one environment and deploy in another. Each
Deployment Set pertainsto a particular combination of an application server and
database.

Thereisadeployment set avail ablefor each of BEA's certified implementations on an
application server and database. Deployment sets are available for:

m WebLogic
e Using Container-Managed Persistence to a Cloudscape database
e Using Bean-Managed Persistence to an Oracle 805 Database

Thefollowing table illustrates the matrix of servers and databases.

Table4-1 Serversand Databases

Databases Application Servers

Databases WebLogic NAS

4-4 BEA WebL ogic Commerce Server Components Developer’s Guide

Deploying on Windows NT

Table4-1 Serversand Databases

Databases Application Servers
Cloudscape CMP n/a
Oracle 8.0.5 BMP under development

Deploying on Windows NT

This reference example assumes you have installed the WebL ogic Commerce Server
software under c:\ WebLogi cComer ce.

1

Edit c: \ WebLogi cCommrer ce\ bi n\ wi n32\ set hone. bat
e Change DEPLOYMENT_SET to BMP
e Set ORACLE_HOME to the Oracle installation directory.

Create the BuyBeans schema in your Oracle 8.0.5 or higher database.

e Usec:\WbLogi cComer ce\ db\ or acl e\ cr eat e- p13n-or acl e- nt . sql

Change the webl ogi c. properti es file.

e Copy thefilec: \ WebLogi cCommer ce\ webl ogi c- bnp. properties to
c: \ WbLogi cCommer ce\ webl ogi c. properti es

Edit thefilec: \ WebLogi cConmrer ce\ webl ogi c. properti es.

e Search for the properties named
webl ogi c. j dbc. connect i onPool . Conmer cePool These are examples for
using either the OCI or Thin driver. Modify the connection pools to use your
database and password. See
http://www.webl ogic.com/docs/classdocs/API_jdbct3.html#connpools for
further help.

Sart the WebL ogic server using
c:\ WebLogi cCommer ce\ St art Conmrer ce. bat .

Load the database

BEA WebL ogic Commerce Server Components Developer’s Guide 4-5

4 Deploying Your Application

e Runthec:\WebLogi cConmer ce\ bi n\ wi n32\ Dat aLoader . bat

Sart your web browser. Enter the URL with the name and port of the machine
where you deployed the WebL ogic server. You will have to register a new user
with username "cool" and password "bean".

You are now using BEA’s Bean-Managed Persistence!

Deploying on Solaris

Thisexample assumesyou haveinstalled the WebL ogic Commerce Server softwarein
/ WebLogi cComer ce.

1

Edit / WvebLogi cCormer ce/ bi n/ sol ari s2/ set hone. sh
e Change DEPLOYMENT_SET to BMP
e Set ORACLE_HOME to the Oracle installation directory.

Create the BuyBeans schema in your Oracle 8.0.5 or higher database.

o Use
/ WebLogi cCommer ce/ db/ or acl e/ m sc/ cr eat e- p13n-oracl e- uni x. sql

Change the webl ogi c. properti es file.

e Copy thefile/ WebLogi cConmer ce/ webl ogi c- bnp. properties to
/ WebLogi cComer ce/ webl ogi c. properti es

Edit thefile/ WebLogi cComrer ce/ webl ogi c. properti es.

e Search for the properties named
webl ogi c. j dbc. connect i onPool . Comrer cePool These are examples for
using either the OCI or Thin driver. Modify the connection poolsto use your
database and password. See
http://www.weblogic.com/docs/classdocs/API _jdbct3.html#connpools for
further help.

Sart the WebL ogic server using / WebLogi cConmmer ce/ St ar t Cormer ce. sh.

L oad the database
e Runthe/WeblLogi cCommer ce/ bi n/ sol ari s2/ Dat aLoader . sh

4-6 BEA WebL ogic Commerce Server Components Developer’s Guide

Considerations in Bean-Managed Persistence

7. Sart your web browser. Enter the url with the name and port of the machine
where you deployed the WebL ogic server. You will have to register a new user
with user name "cool" and password "bean".

8. You are now using BEA’s Bean-Managed Persistence.

Considerations in Bean-Managed
Persistence

The section discusses the design and implementation of Bean-Managed Persistence.

Container-Managed Persistence Versus Bean-Managed
Persistence

In Container-Managed Persistence (CMP), you use the deployment descriptor to tell
the container which attributes of the entity bean to persist. Flexibility istherefore
governed by the vendors of the container and database.

BMP gives you explicit control of the management of a bean instance’s state.
The advantages of using Bean-Managed persistence may include:

m Performance advantages

m The ability to express complex relationships among data

m Aninterface to complex legacy SQL databases via JDBC

m Aninterface to other enterprise data sources such as CICS and MQ-Series
Some disadvantages for developers when you use BMP:

m You must explicitly codetheej bCreat e(), ejbLoad(), and other EJB
callback methods.

m You must explicitly code the finders methods in the home implementation.

BEA WebL ogic Commerce Server Components Developer’s Guide 4-7

4 Deploying Your Application

m You must understand, develop, and maintain a map between bean and database.

m Thedependency risk of commiting a bean’s abstract business logic to a specific
database type and structure.

Considerations when Persisting an EJB

The data model and access mechanisms have a strong impact on persistence logic. In
particular, an entity bean’s primary key, attributes, and contained classes must be
considered. Particular attention should be given to other entity beansthat are contained
by value or reference.

The principles discussed in this section use a framework of mapping EJB Objectsto a
relational datamodel using JDBC. These principles may be generalized by the reader
and applied to other mechanisms for modeling and accessing enterprise data.

Complexity of the Mapping Implementation

Consider the factors driving the map between EJB Objects and data storage.

A fixed database schemaand afixed object model may increase the complexity of the
mapping implementation. Flexibility in either the database schema or the object model
may correspondingly decrease this complexity.

Serializing objects or parts of objects may help decrease complexity of data mapping.
The tradeoff is that the serialized datais “ opaque” and is not easily accessed through
third party tools such as report writers.

Dissecting and Persisting an Enterprise Java Bean

Primary Key

The Enterprise JavaBeans Specification requires that each Entity Bean has a class that
represent attributes that uniquely identify an instance of that bean. Theimplication is
that these attributes are used in primary key columns or foreign key columnsin a
relational database. These attributes cannot be serialized becausethey must be queried
against.

4-8 BEA WebL ogic Commerce Server Components Developer’s Guide

Considerations in Bean-Managed Persistence

Singleton Attributes

Attributesthat have a1:1 relationship with their class are easily mapped to columnsor
sets of columnsin arelation that characterizes the bean.

Primitive Data Types

Attributes that correspond to JDBC primitive types, (for example:

j ava. sql . Types. LONGVARCHAR, j ava. sql .t ypes. | NTEGER) easily map to
columnsin arelational table. If these attributes are serialized they cannot be easily be
used in SQL reports or queries. Serialization of these attributes may impact the
complexity or performance of the object-relational map. Referencesto primitive data
types are possible but discouraged.

Compound Data Types

Attributes that are java objects (not EJB’s) are easily decomposed into columns that
correspond to the JDBC primitivetypes. When these attributes are contained by value
they can go in the table (or relation) where the EJB object is persisted. Care must be
taken to ensure they are deleted from the database when the containing EJB object is
del eted.

A referenceto an attribute can be established with aforeign key to arelation that stores
the actual attribute.

It is up to the application designers to determine application specific standards for
creating and maintaining these keys. Application logic must ensure dangling
references do not occur when the contained object isremoved.

Designers should also consider if the referenced data should have aforeign key back
to the containing EJB.

The complexity of thisissue increasesif many EJBs can reference the data.
Entity Beans

Entity Beans can contain other Entity Beans by value or reference. Thefieldsin an
entity bean’s primary key class comprise aforeign key in the containing bean’s
relation. Inaddition, the containing bean needs access to the contained bean’ s primary
key class and home class. This allows the containing bean to call
findByPrimaryKey() to locate the contained bean.

Entity beans should be stored in their own relation, regardless of their containment by
value or reference.

BEA WebL ogic Commerce Server Components Developer’s Guide 4-9

4 Deploying Your Application

Application logic must be developed so beans contained by value are not orphaned,
and to avoid dangling references to beans contained by reference. Designers should
also consider if thetarget entity bean should have aforeign key back to the containing
EJB. The complexity of thisissue increasesif many EJB’s can reference the data.

Collections: Attributes Contained in a Many-to-One Relationship

Entity beans can contain other Java objects in many-to-one relationship. These
collectionscan be stored in aseparatetable or anested tableif the DBM S supportsthis.
The separate table needs a foreign key to join with the containing entity bean.

Application logic heedsto addressissues raised by Java s different collection classes.
Many of these classes do not have a key to access the data. Some of these classes
support ordering which must the persistence logic must manage.

Performanceissues arise when persisting collections that have no primary key. When
one member of the collection changes, the entire collection must be deleted and
updated into persistent storage.

The CRUD operations (create, refresh, update, delete) must be done atomically on all
the changing attributes of an Entity bean. This raises issues of transactional integrity
and increased resources to support large transactions; for example: transaction logs,
open cursors.

Collections can be serialized into asingle column if the Java collection class
implements the java.io.Serializable interface and the DBM S supports binary data
types. Thismay simplify the persistencelogic. In this case, whenever any member of
the collection changes, the entire collection must be deleted and updated in the
database.

Application logic needs to address orphan and dangling reference issues for objects
contained by value and reference. Serialization of collections contained by reference
will increase application logic complexity.

Primitive Data Types

Collections of primitive datatypes raise few issues that have not been previously
discussed. Callections of primitive data types by reference are an absurdity, because
the only key can be the value of each element in the collection.

Compound Data Types

4-10 BEA WebL ogic Commerce Server Components Developer’s Guide

Considerations in Bean-Managed Persistence

Collections of compound data types that are contained by value can be serialized or
stored in a separate table from the Entity Bean. If they are stored in a separate table,
they need aforeign key to join with the containing entity bean.

Collections of compound data types by reference are possible if thereis some unique
key that identifies each element in the collection. The collection of keyswould be
serialized or stored in a separate table from the containing Entity Bean. If thekeysare
stored in a separate tabl e, this table also needs a foreign key to the containing Entity
Bean(s). This makesit possible to avoid dangling references when the object is

del eted.

The complexity of the object-relational mapping increases when the objectsin a
collection have collections themselves. Many joins may be required to update and
refresh the data. Serialization may reduce this complexity.

Entity Beans

Collections of Entity Beans are simplified because of requirement that each Entity
Bean have aprimary key class. The collection of primary keys needs to be persisted
in seridized or table form.

Aspreviously stated, Entity Beans should be stored in their own relation. The
containing class needs to have access to the contained bean’ s home class and primary
key class to invoke findByPrimaryKey() to locate the contained bean.

When entity beans are contained by value, and persisted in atable, thistable may not
need a foreign key to the containing bean. When they are contained by reference, the
table should have aforeign key to the containing Entity Bean(s). This makesit
possible to avoid dangling references when the contained entity bean.

BEA WebL ogic Commerce Server Components Developer's Guide 4-11

4 Deploying Your Application

4-12 BEA WebL ogic Commerce Server Components Developer’s Guide

CHAPTER

5

Component Examples

The section contains the following topics:
How to Build and Run the Examples

Foundation and Axiom
Package examples.axiom
Package exampl es.axiom Description
Belongings and EJBs
The Abstract Factory Pattern
Axiom Example

Workflow
Package examples.workflow Description
Workflow
Workflow Example

BusinessPolicy
Package exampl es.businesspolicy
Package exampl es.businesspolicy Description
ItemPriceCal culationPolicy and BusinessPolicy
BusinessPolicy Example

PassByValue
Package examples.passbyvaue
Package exampl es.passbyval ue Description
Getting and Setting Attributes Using pass-by-value
Pass By Value Example

BEA WebL ogic Commerce Server Components Developer’s Guide

5-1

5 component Examples

How to Build and Run the Examples

To become better acquainted with the workings of an EJB-based application built
using our WebL ogic Commerce Server (WLCS), follow these examples.

Note: To build and run any of these examples, you must have the following in your
CLASSPATH:

m theory-smart-generator.jar, theory-axi omfoundation.jar,
t heory-ebusiness.jar, theory-exanples.jar Eachofthesejar
files can be found in the lib directory under the WebL ogic Commerce
Server installation directory.

m Application Server classes (default classpath required by WebL ogic
Server)

The fastest way to run any of the examplesis by using the scripts provided in
..\ bi n\wi n32\ *. bat or .\bin\sol ari s2*. sh (Found under the WLCS
installation directory)

Foundation and Axiom

Thisexample demonstrates the core technology: Belongings, Entity Beans,
Collections and Remotelterators.

Package examples.axiom

The Axiom example showsthe use of WL CS Axiom package of WebL ogic Commerce
Server.

5-2 BEA WebL ogic Commerce Server Components Developer’s Guide

Foundation and Axiom

Table5-1 Axiom Package Summary

Class Description
AxiomExample Shows how to use the WLCS components Axiom
package.

Package examples.axiom Description

The Axiom example shows the use of the WL CS components Axiom package.
This example demonstrates:

e The Abstract Factory Pattern

e How to use EJB WebL ogic Commerce Server

¢ Usage of Belonging WebL ogic Commerce Server

e Remote lterators

Belongings and EJBs

The Axiom package contains light weight components known as belongings, as well
as Entity and Session EJB components. Belongings can be aggregated to other

components by value. EJBs are used alone or aggregated to other components by
reference or value.

The Abstract Factory Pattern

All WebL ogic Commerce Server use the abstract factory pattern. The principleisvery
simple: Don't use new() to create an object, instead, you use Hone. creat e() . The
Abstract factory pattern isimplemented as the "Home" for EJBs and as a Java class
with static methods for Belongings.

BEA WebL ogic Commerce Server Components Developer’s Guide 5-3

5 component Examples

Axiom Example

The example application performs the following steps:
Find or create or a Customer component

Create belongings

Add belongings to the Customer

Use a Remote Iterator to iterate through the belongings

a > w dhoPRE

Remove the Belongings

To get themost out of thisexample, first read through Axi onExanpl e. j ava on our
web site. Thenyou can build it and runit.

Note: Besureto set your CLASSPATH as described in “How to Build and Run the
Examples’ on page 5-2.

Workflow

Workfow, eBusinessSession, and eBusi nessSessionManager components. The
Workflow maintains state for the session and guides the user through the process.

Package examples.wor kflow

Shows the use of WLCS Workflow components.
This example demonstrates:

m How to use WLCS components.

m Usage of the Workflow component.

m Usage of eBusi nessSessi on and eBusi nessSessi onManager .

5-4 BEA WebL ogic Commerce Server Components Developer’s Guide

Workflow

Table 5-2 Workflow Package Summary

Class Description

WorkflowExample Workflow example.

Package examples.workflow Description

Shows the use of the WL CS Workflow components.
This example demonstrates:

m How to use WLCS components.

m Usage of the Workflow component.

m Usage of eBusi nessSessi on and eBusi nessSessi onManager .

Workflow

This example shows the use of a WLCS component that has a workflow associated to
it. The workflow states and transitions are modeled with Rational Rose. For this
examples, we'll use the EBusi nessSessi on Component. This component has a
workflow that guidesit through the different stages of an online e-business session. If
you look at the Rose model file for the ebusiness.session package, you will find that
EBusi nessSessi onWor kf | ow has a state diagram associated to it. The workflow
logic can beimplemented in any way you want; however, WL CS provides areference
implementation. For the reference implementation, for each component with the
BSC.Workflow stereotype, all the states and transitions in the Rose model are
generated into a complete state machine by the SmartGenerator, so you can use it
immediately, without any hand-coding of the workflow states or transitions.

In this example, we also use the EBusi nessSessionM anager and show how a
"manager" session bean can simplify the usage of an entity bean

BEA WebL ogic Commerce Server Components Developer’s Guide 5-5

5 component Examples

Workflow Example

The workflow example application performs the following steps:
1. Create a Guest Session component using the EBusi nessSessi onManager .

2. Try optionssuch asenrol | , cancel | Enrol | ment , beconeGuest , and
di sabl eAut hent i cat i on. (You can find these transitions in the
EBusi nessSessi onVr kf | ow state diagram)

3. Register asanew or Login as an existing Customer
4. Perform more options (aut henti cat e, and di sabl eAut hent i cati on)

To get the most out of thisexample, first read through Wor kf | owExanpl e. j ava on
our web site then you can build it and run it.

Note: Besureto set your CLASSPATH as described in “How to Build and Run the
Examples’ on page 5-2.

BusinessPolicy

Pluggable Methods, Strategy Pattern, or Individual Instance Method. No matter what
you call it, it isa powerful design tool. This example demonstrates how
ConfigurableEntity beans and BusinessPolicy work together to create very flexible
solutions.

Package examples.businesspolicy

BusinessPolicy Example shows the use of WLCS WebL ogic BusinessPolicy
Components.

5-6 BEA WebL ogic Commerce Server Components Developer’s Guide

BusinessPolicy

Table 5-3 BusinessPolicy Package Summary

Class Description
AprilFoolsDiscountPolicy This classis acustom item pricing cal culation policy.
BusinessPolicyExample This example demonstrates the concept of "Pluggable

Methods", better known as policies.

SeniorCitizenDiscountPolicy ~ This classis acustom item pricing cal culation policy.

Package examples.businesspolicy Description

The BusinessPolicy example showsthe use of the WL CS BusinessPolicy components.
This example demonstrates:
m How to use the WL CS components

m How to add a default Policy to an Item using the WL CS BusinessPolicy
components

m How to use a hon-default policy to change the price of an item

ItemPriceCalculationPolicy and BusinessPolicy

This example shows the use of

theory. smart . ebusiness.item |tenPriceCal cul ati onPol i cy whichisan
extensiontot heory. smart . f oundati on. Busi nessPol i cy. A Busi nessPol i cy
consists of rules and regulations, specific to your business. These rules can be
encapsulated into a component and then added to a Component such as an Item.

This example demonstrates the concept of "Pluggable Methods", better known as
policies. When you create your components, you will realize that many timesyou want
to alter the component behaviour based on external conditions that you can not
evaluate at development time. Reusability, extensibility and rapid development and
enhancement aretypical problemsthat can be solved using policies. Busi nessPol i cy

BEA WebL ogic Commerce Server Components Developer’s Guide 5-7

5 component Examples

isthe WL CS implementation of the Policy and Strategy design patterns. Using this
concepts allows you to replace the default policy at runtime. The policy is stored as a
property for the item.

In this example we will use an item component. The item component has a pricing
policy. Theitem's priceis calculated based on agiven quantity and the pricing policy.
Y ou can replace the pricing policy to alter the way the priceis calculated for the item.
Thismeansthat you can modify the behaviour of theitem by plugging in amethod that
calculates the price the way you want If you do not provide a pricing policy, adefault
policy will be used. The example creates an item. It then sets the

Seni or G ti zenDi scount Pol i cy asthe default pricing policy for theitem. Then the
item's price is calculated using the default policy. Finally, it modifies the item’s
guantity and once again, and cal cul ates the price by using the

Apri | Fool sDi scount Pol i cy policy. To better understand this example, first go
through the Axiom example first.

The concept is also used in our BuyBeans.com online store where different pricing
policies of BuyBeans are used for calculating the prices of

exanpl es. buybeans. i t em Beani eBaby,

exanpl es. buybeans. i t em Cof f eeBean, and

exanpl es. buybeans. i tem Jel | yBean components. They use

Beani eBabyPri cePol i cy, Cof f eeBeanPri cePol i cy, and

Jel | yBeanPri cePol i cy respectively.

BusinessPolicy Example

The BusinessPolicy example application performs the following steps:
1. Find or create or an Item component
2. Settheltem'sQuantity.

3. Addthe Seni or Citi zenDi scount Pol i cy to the Item as the default pricing
policy and change the Item'’s price.

4. Changethe ltem'sQuanti ty.
5. Changethe item’s price using the Apr i | Fool sDi scount Pol i cy.

To get the most out of this example, first read through
Busi nessPol i cyExanpl e. j ava onour web site. Then you can build it and run it.

5-8 BEA WebL ogic Commerce Server Components Developer’s Guide

PassByValue

Note: Besureto set your CLASSPATH asdescribed in “How to Build and Run the
Examples’ on page 5-2.

PassByValue

Sometimesit isuseful to get or set all of the attributes of an object with asingle method
call. When dealing with remote objectsthat are persisted in the database, thisresultsin
atremendous performance gain. BEA'sWebL ogic Commerce Server componentsgive
you that flexibility.

Package examples.passbyvalue

Shows the use of BEA WebL ogic Commerce Server components’ pass-by-value
feature. This example demonstrates:

m How to use WLCS components.

m How to use pass-by-value

Table 5-4 PassByValue Class Summary

Class Description

Pass-by-value example. Pass-by-value example.

Package examples.passbyvalue Description

Shows the use of BEA WebL ogic Commerce Server' pass-by-value feature.This
example demonstrates:

m How to use WLCS components

m How to get and set values for WebL ogic Commerce Server components using
pass-by-value

BEA WebL ogic Commerce Server Components Developer’s Guide 5-9

5 component Examples

Getting and Setting Attributes Using pass-by-value

This example shows how you can get and set the attributes of an Entity Component by
value. What thismeansisthat instead of getting/setting one attribute at atime, you can
reguest that alocal copy of all attributes be sent to you directly, in oneremotecall. Y ou
can then read and modify this "V alue object" or local copy, and send it back in one
remote call. This has tremendous performance advantages compared to accessing one
attribute at atime It is also important to be able to set many attributes within asingle
transaction without having to begin/commit aJTS User Transaction fromtheclient. In
short, pass-by-valueisrealy handy! Our implementation is tightly-coupled: that
means that at compile time, we enforce type consistency for getting/setting attributes
in the value objects. This has an advantage over "parameter sets'and "late-binding"
implementations where you pass around a set of name/value pairs: with these
approaches, if you change the type of an attribute your client will still compile but
crash at runtime. Thiswon't happen using WebL ogic Commerce Server, since the
value object will change accordingly and the client would not compileif an assignment
wasillegal. In addition, our value objects are generated by BEA SmartGenerator
(based on a UML model), so they don't add any maintenance costs.

Pass By Value Example

The PassByV alue exampl e application performs the following steps:
m Find or create or a Customer component

m Create avalue object and get the CustomerVal ue.

m Change Customer information

m Set the CustomerValues

To get the most out of this example, first read through PassByVal ueExanpl e. j ava
on our web site. Then you can build it and runiit.

Note: Besureto set your CLASSPATH as described in “How to Build and Run the
Examples’ on page 5-2.

5-10 BEA WebL ogic Commerce Server Components Devel oper’s Guide

Index

A

abstract factory pattern 5-3
accessor method, generating 3-34
accounting EJB 2-1
adding business logic 3-15
advantages of Smart Generator 3-7
aggregation notation
overview 3-29
rulesfor 3-36
application, deploying 3-18
array collection 3-37
attribute
and accessor method 3-34
singleton 4-9
axiom example 5-2

B
BEA, contacting ix
bean-managed persistence 4-2, 4-7
belonging

in an example 5-3

overview 3-22
BSC.Collection.Array 3-37
BSC.Collection.List 3-37
BSC.Collection.Map 3-38
BSC.Collection.Set 3-37
business logic

adding 3-15

in an entity 3-40
business policy

example 5-6
overview 3-24

C

catalog EJB 2-3
changing
method signature 3-41
model 3-20
class
generating 3-31
UML notation for 3-26
CLASSPATH for examples 5-2
collection 3-37
attribute 4-10
java.util.Collection.ArrayList 3-37
java.util.Collection.LinkedList 3-37
java.util.Collection. TreeMap 3-38
java.util.Collection.TreeSet 3-37
component
catalog 2-1
overview 1-2
package 1-11
component type
belonging 3-22
business policy 3-24
configurable entity 3-23
entity 3-23
session 3-22
workflow 3-24
configurable entity 3-23

BEA WebL ogic Commerce Server Components Developer’s Guide

configuring Smart Generator project 3-10

contacting BEA ix

copying model 3-5

customer contact EJB 2-1
customer interaction EJB 2-2
customer support EJB 2-4

D
defining

persistence type 4-1

Smart Generator project 3-8
deploying 4-1

application 3-18

on Solaris 4-6

on Windows NT 4-5
deployment set 4-4
documentation, where to find it viii

E

editing Java source files 3-15
EJB
accounting 2-1
catalog 2-3
customer contact 2-1
customer interaction 2-2
customer support 2-4
gift registry 2-2
inventory 2-3
invoicing 2-3
messaging 2-1
order entry 2-3
overview 1-2
package 1-11
session management 2-3
shipping 2-3
shopping advisor 2-4
state machine 2-2

theory.smart.axiom.accounting 2-1
theory.smart.axiom.contact 2-1

theory.smart.axiom.messaging 2-1
theory.smart.axiom.units 2-2
theory.smart.axiom.util 2-2
theory.smart.axiom.workflow 2-2
theory.smart.ebusi ness.customer 2-2
theory.smart.ebusiness.giftregistry 2-2
theory.smart.ebusiness.inventory 2-3
theory.smart.ebusiness.invoicing 2-3
theory.smart.ebusiness.item 2-3
theory.smart.ebusiness.order 2-3
theory.smart.ebusiness.session 2-3
theory.smart.ebusiness.shipping 2-3
theory.smart.ebusi ness.shoppingAdviso
r2-4

theory.smart.ebusiness.troubl eticket 2-4
unit conversion 2-2
utilities 2-2
workflow 2-2

EJB compiler, running 3-17

entity 3-23
business logic 3-40
versus session 3-40

example
al 5-1
axiom 5-2
business policy 5-6
CLASSPATH 5-2
pass by value 5-9
workflow 5-4

exporting model 3-5

F

features 1-4
foundation package 3-21

G

generating
accessor method 3-34
class 3-31

[-2 BEA WebL ogic Commerce Server Components Developer’s Guide

home 3-33

implementation 3-33

interface 3-33

Java source files 3-13

Primary Key 3-32
gift registry EJB 2-2

H
home, generating 3-33

I
implementation

generating 3-33

Oracle reference 4-3
inheritance, UML notation for 3-28
interface, generating 3-33
inventory EJB 2-3
invoicing EJB 2-3

J
Java source files

editing 3-15

generating 3-13
javautil.Collection.ArrayList 3-37
javauutil.Collection.LinkedList 3-37
javauutil.Collection.TreeMap 3-38
javautil.Collection.TreeSet 3-37

L
linked list collection 3-37

M

map collection 3-38
mapping implementation 4-8

message specification, modeling 3-40

messaging EJB 2-1
method signature, changing 3-41

model

changing 3-20

copying 3-5

exporting 3-5

from message specification 3-40
modeling notation 3-25

N
notation 3-25

0]

Oracle reference implementation 4-3
order entry EJB 2-3

P
package

overview 1-11

UML notation for 3-30
pass by value example 5-9
pattern, abstract factory 5-3
persistence

bean-managed 4-2

considerations 4-7

defining type 4-1
Primary Key

generating 3-32

in apersistent EJB 4-8
printing product documentation viii
project

configuring 3-10

defining 3-8

R

related information ix
rules
for aggregation notation 3-36
for Smart Generator 3-30
running

BEA WebL ogic Commerce Server Components Developer’s Guide

EJB compiler 3-17
Smart Generator 3-7

S

server
preparing to start 3-19
starting 3-18
session
overview 3-22
versus entity 3-40
session management EJB 2-3
set
collection 3-37
deployment 4-4
shipping EJB 2-3
shopping advisor EJB 2-4
singleton attributes 4-9
Smart features 3-24
Smart Generator
advantages 3-7
configuring project 3-10
defining project 3-8
rules 3-30
running 3-7
SmartHandle 3-25
SmartKey 3-24
SmartValue 3-25
Solaris deployment 4-6
specifications 1-4
starting server 3-18
state machine EJB 2-2
stereotype 3-21
BSC.Collection.Array 3-37
BSC.Collection.List 3-37
BSC.Collection.Map 3-38
BSC.Collection.Set 3-37
UML notation for 3-26
support, technical ix

T

theory.smart.axiom.accounting 2-1
theory.smart.axiom.contact 2-1
theory.smart.axiom.messaging 2-1
theory.smart.axiom.units 2-2
theory.smart.axiom.util 2-2
theory.smart.axiom.workflow 2-2
theory.smart.ebusiness.customer 2-2
theory.smart.ebusiness.giftregistry 2-2
theory.smart.ebusiness.inventory 2-3
theory.smart.ebusiness.invoicing 2-3
theory.smart.ebusiness.item 2-3
theory.smart.ebusiness.order 2-3
theory.smart.ebusiness.session 2-3
theory.smart.ebusiness.shipping 2-3
theory.smart.ebusi ness.shoppingAdvisor 2-4
theory.smart.ebusiness.troubl eticket 2-4
tree map collection 3-38
tree set collection 3-37
type of component

belonging 3-22

business policy 3-24

configurable entity 3-23

entity 3-23

session 3-22

workflow 3-24

U

UML notation for
aggregation 3-29
class 3-26
inheritance 3-28
package 3-30
stereotype 3-26

unit conversion EJB 2-2

utilities EJB 2-2

W
WebL ogic Application Server

-4 BEA WebL ogic Commerce Server Components Developer’s Guide

preparing to start 3-19
starting 3-18
WebL ogic Commerce Server
components 1-2
features 1-4
specifications 1-4
Windows NT deployment 4-5
workflow
EJB 2-2
example 5-4
stereotype 3-24

BEA WebL ogic Commerce Server Components Developer’s Guide

-5

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Commerce Server Components
	What are Commerce Server components?
	A Quick Look at a Few Key Components
	Customer and Session
	ShoppingAdvisor and Items
	Order Fulfillment

	Features at a Glance
	Specifications
	eCommerce brings tremendous opportunity and new challenges.
	Build versus Buy: WLCS components offer the best of both solutions.
	How do WLCS components work?
	Applications built with WLCS components leverage a scaleable, high-performance Architecture.
	Components are easy to use and customize.
	Base your eCommerce applications on our smart models and generated EJBs.
	Components use industry-standard Design and Analysis Patterns.
	Components are neatly organized in Component Packages.

	MyBuyBeans.com Example

	2 Components Catalog
	3 Development Process
	What is the overall development process?
	Before You Begin: Copy the Model
	Step 1: Export the WLCS model in Rational Rose
	Step 2: Run the WLCS Smart Generator
	Advantages
	Define a New Project
	Configure the Project
	Generate the Java Sources

	Step 3: Add Your Business Logic: Edit the Java files and Compile Them
	Step 4: Run the EJB Compiler
	Step 5: Deploy your application, and start the server
	Before You Start the WebLogic Application Server
	Starting the Server

	Step 6: If desired, change the model, and iterate
	Do I have to be a Rational Rose or UML Expert?
	Understanding the Foundation Package and Stereotypes
	Belongings
	Sessions
	Entity
	Configurable Entity
	Business Policy
	Workflow
	Smart Features

	Understanding the Basic UML Modeling Notations
	Classes and Stereotypes
	Inheritance
	Aggregation and Multiplicity
	Packages

	WLCS Smart Generator Rules: Factors that Influence the Generated Java Files
	Classes
	Primary Key and Value
	Interfaces, Homes, and Implementations
	Attributes and Accessor Methods
	Rules for Aggregation Notations in the UML Diagram
	Collections

	Design Decisions
	Use of Entities versus Sessions
	Implementing Business Logic in an Entity
	Modeling from a Message Specification
	Changing Method Signatures

	4 Deploying Your Application
	Defining the Persistence Type for your Deployment
	Using Bean-Managed Persistence
	Introduction

	The Oracle Reference Implementations
	Additional Requirements

	Deployment Sets Overview
	Deploying on Windows NT
	Deploying on Solaris
	Considerations in Bean-Managed Persistence
	Container-Managed Persistence Versus Bean-Managed Persistence
	Considerations when Persisting an EJB
	Complexity of the Mapping Implementation
	Dissecting and Persisting an Enterprise Java Bean

	5 Component Examples
	How to Build and Run the Examples
	Foundation and Axiom
	Package examples.axiom
	Package examples.axiom Description
	Belongings and EJBs
	The Abstract Factory Pattern
	Axiom Example

	Workflow
	Package examples.workflow Description
	Workflow
	Workflow Example

	BusinessPolicy
	Package examples.businesspolicy
	Package examples.businesspolicy Description
	ItemPriceCalculationPolicy and BusinessPolicy
	BusinessPolicy Example

	PassByValue
	Package examples.passbyvalue
	Package examples.passbyvalue Description
	Getting and Setting Attributes Using pass-by-value
	Pass By Value Example

	Index

