
BEA WebLogic

B E A  W e b L o g i c  C o m m e r c e  S e r v e r  2 . 0
D o c u m e n t  E d i t i o n  2 . 0

A p r i l  2 0 0 0

Commerce Server Components
Developer’s Guide



Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against 
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or 
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable 
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems 
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause 
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc. 
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, 
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF 
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA 
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,  
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc. 

All other company names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Commerce Server Components Developer’s Guide

Document Edition Date Software Version

1.0 January 2000 WebLogic Commerce Server 1.7

1.1 February 2000 WebLogic Commerce Server 1.7.1

2.0 April 2000 WebLogic Commerce Server 2.0



BEA WebLogic Commerce Server Components Developer’s Guide iii

Contents

About This Document
What You Need to Know ................................................................................... vii

e-docs Web Site ................................................................................................. viii

How to Print the Document............................................................................... viii

Related Information............................................................................................. ix

Contact Us! .......................................................................................................... ix

Documentation Conventions .................................................................................x

1. Overview of WebLogic Commerce Server Components
What are Commerce Server components? ........................................................ 1-2

A Quick Look at a Few Key Components......................................................... 1-2

Customer and Session ................................................................................ 1-3

ShoppingAdvisor and Items ....................................................................... 1-3

Order Fulfillment........................................................................................ 1-3

Features at a Glance........................................................................................... 1-4

Specifications .................................................................................................... 1-4

eCommerce brings tremendous opportunity and new challenges. .................... 1-5

Build versus Buy: WLCS components offer the best of both solutions............ 1-6

How do WLCS components work?................................................................... 1-6

Applications built with WLCS components leverage a scaleable, 
high-performance Architecture. .......................................................... 1-7

Components are easy to use and customize. .............................................. 1-8

Base your eCommerce applications on our smart models and 
generated EJBs. ................................................................................... 1-9

Components use industry-standard Design and Analysis Patterns. ......... 1-10

Components are neatly organized in Component Packages..................... 1-11

MyBuyBeans.com Example ............................................................................ 1-13



iv BEA WebLogic Commerce Server Components Developer’s Guide

2. Components Catalog

3. Development Process
What is the overall development process?......................................................... 3-2

Before You Begin: Copy the Model.................................................................. 3-5

Step 1: Export the WLCS model in Rational Rose ........................................... 3-5

Step 2: Run the WLCS Smart Generator ........................................................... 3-7

Advantages ................................................................................................. 3-7

Define a New Project.................................................................................. 3-8

Configure the Project................................................................................ 3-10

Generate the Java Sources ........................................................................ 3-13

 Step 3: Add Your Business Logic: Edit the Java files and Compile Them....3-15

Step 4: Run the EJB Compiler......................................................................... 3-17

Step 5: Deploy your application, and start the server ..................................... 3-18

Before You Start the WebLogic Application Server................................ 3-19

Starting the Server .................................................................................... 3-19

Step 6: If desired, change the model, and iterate............................................. 3-20

Do I have to be a Rational Rose or UML Expert? ................................... 3-21

Understanding the Foundation Package and  Stereotypes........................ 3-21

Belongings......................................................................................... 3-22

Sessions ............................................................................................. 3-22

Entity ................................................................................................. 3-23

Configurable Entity ........................................................................... 3-23

Business Policy ................................................................................. 3-24

Workflow .......................................................................................... 3-24

Smart Features................................................................................... 3-24

Understanding the Basic UML Modeling Notations................................ 3-25

Classes and Stereotypes .................................................................... 3-26

Inheritance ......................................................................................... 3-28

Aggregation and Multiplicity ............................................................ 3-29

Packages ............................................................................................ 3-30

WLCS Smart Generator Rules: Factors that Influence the 
Generated Java Files.......................................................................... 3-30

Classes ............................................................................................... 3-31

Primary Key and Value ..................................................................... 3-32



BEA WebLogic Commerce Server Components Developer’s Guide v

Interfaces, Homes, and  Implementations ......................................... 3-33

Attributes and Accessor Methods ..................................................... 3-34

Rules for Aggregation Notations in the UML Diagram ................... 3-36

Collections ........................................................................................ 3-37

Design Decisions...................................................................................... 3-40

Use of Entities versus Sessions......................................................... 3-40

Implementing Business Logic in an Entity ....................................... 3-40

Modeling from a Message Specification .......................................... 3-40

Changing Method Signatures............................................................ 3-41

4. Deploying Your Application
Defining the Persistence Type for your Deployment ........................................ 4-1

Using Bean-Managed Persistence ..................................................................... 4-2

Introduction ................................................................................................ 4-3

The Oracle Reference Implementations ............................................................ 4-3

Additional Requirements .................................................................... 4-4

Deployment Sets Overview............................................................................... 4-4

Deploying on Windows NT............................................................................... 4-5

Deploying on Solaris ......................................................................................... 4-6

Considerations in Bean-Managed Persistence................................................... 4-7

Container-Managed Persistence Versus Bean-Managed Persistence ........ 4-7

Considerations when Persisting an EJB ..................................................... 4-8

Complexity of the Mapping Implementation...................................... 4-8

Dissecting and Persisting an Enterprise Java Bean............................. 4-8

5. Component Examples
How to Build and Run the Examples ................................................................ 5-2

Foundation and Axiom...................................................................................... 5-2

Package examples.axiom ........................................................................... 5-2

Package examples.axiom Description........................................................ 5-3

Belongings and EJBs.................................................................................. 5-3

The Abstract Factory Pattern...................................................................... 5-3

Axiom Example.......................................................................................... 5-4

Workflow........................................................................................................... 5-4

Package examples.workflow Description .................................................. 5-5



vi BEA WebLogic Commerce Server Components Developer’s Guide

Workflow.................................................................................................... 5-5

Workflow Example .................................................................................... 5-6

BusinessPolicy................................................................................................... 5-6

Package examples.businesspolicy .............................................................. 5-6

Package examples.businesspolicy Description .......................................... 5-7

ItemPriceCalculationPolicy and BusinessPolicy........................................ 5-7

BusinessPolicy Example ............................................................................ 5-8

PassByValue ...................................................................................................... 5-9

Package examples.passbyvalue .................................................................. 5-9

Package examples.passbyvalue Description .............................................. 5-9

Getting and Setting Attributes Using pass-by-value ................................ 5-10

Pass By Value Example............................................................................ 5-10

Index



BEA WebLogic Commerce Server Components Developer’s Guide vii

About This Document

This document explains how to use the BEA WebLogic Commerce Server 
Components to extend or modify an e-Commerce Web site.

This document covers the following topics:

n  Chapter 1, “Overview of WebLogic Commerce Server Components.”

n  Chapter 2, “Components Catalog.”

n Chapter 3, “Development Process.”

n Chapter 4, “Deploying Your Application.”

n Chapter 5, “Component Examples.”

What You Need to Know

This document is intended for Enterprise JavaBeans (EJB) and Java developers 
involved in working with EJB components for an eCommerce site using BEA 
WebLogic Commerce Server. It assumes a familiarity with the WebLogic Commerce 
Server platform, WebLogic Application Server, EJB, Java, and related Web 
technologies as described below. The topics in this document are organized primarily 
around development goals and the tasks needed to accomplish them.

Generally, the topics in this document speak particularly to the Java developer and 
requires the basic knowledge with regard to the technology focus of that role:

n Java developer extend or modifies the Enterprise Java Bean (EJB) components 
that make up the Commerce Server engine, if that level of customization is 
needed.



viii BEA WebLogic Commerce Server Components Developer’s Guide

The Java developer working with the EJB components will also interact with other 
development team members or may take on other roles as well:

n HTML author uses the Java Server Page (JSP) tags provide in the JSP tag 
library, thereby leveraging the power of personalization without having to know 
Java.

n Java Server Page (JSP) developer creates JSPs using the tags provided or by 
creating custom tags as needed.

n Application assembler, system analyst, or systems integrator writes rules, writes, 
schemas, and monitors usage.

n System administrator installs, configures, deploys, and monitors the Web 
application server

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the 
BEA Home page, click on Product Documentation or go directly to the “e-docs” 
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using 
the File—>Print option on your Web browser.

A PDF version of this document is available on the WLCS documentation Home page 
at http://e-docs.bea.com/wlcs/. A PDF version of this document is also available on 
your local system if you installed the separate WLCS documentation kit. In the 
installed WLCS directory, the documentation’s default starting location is:

\server\public_html\docs\index.htm

http://e-docs.bea.com/wlcs/
http://e-docs.bea.com/wlcs/


How to Print the Document

BEA WebLogic Commerce Server Components Developer’s Guide ix

You can open the PDF in Adobe Acrobat Reader and print the entire document (or a 
portion of it) in book format. To access the PDFs, open the WebLogic Commerce 
Server documentation Home page, click the PDF files button and select the document 
you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe 
Web site at http://www.adobe.com/.

Related Information

For more information about the Java 2 Enterprise Edition (J2EE) APIs, see the Sun 
Microsystems, Inc. Web site at http://java.sun.com/j2ee/.

Contact Us!

Your feedback on the BEA WebLogic Commerce Server documentation is important 
to us. Send us e-mail at docsupport@beasys.com if you have questions or comments. 
Your comments will be reviewed directly by the BEA professionals who create and 
update the WebLogic Commerce Server documentation.

In your e-mail message, please indicate that you are using the documentation for the 
BEA WebLogic Commerce Server 2.0 release.

If you have any questions about this version of BEA WebLogic Commerce Server, or 
if you have problems installing and running BEA WebLogic Commerce Server, 
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You 
can also contact Customer Support by using the contact information provided on the 
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address



x BEA WebLogic Commerce Server Components Developer’s Guide

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace 
text

Indicates code samples, commands and their options, data structures and 
their members, data types, directories, and file names and their extensions. 
Monospace text also indicates text that you must enter from the keyboard.

Example:

public interface Item extends ConfigurableEntity
{
public ItemValue getItemByValue() throws 
RemoteException;
public void setItemByValue(ItemValue value) throws 
RemoteException;
//...
}

monospace 
boldface 
text

Identifies significant words in code.

Example:

void commit ( )

monospace 
italic 
text

Identifies variables in code.

Example:

String expr



Documentation Conventions

BEA WebLogic Commerce Server Components Developer’s Guide xi

UPPERCASE 
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should 
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should 
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself 
should never be typed.

... Indicates one of the following in a command line: 

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. 
The vertical ellipsis itself should never be typed.

Convention Item



xii BEA WebLogic Commerce Server Components Developer’s Guide



BEA WebLogic Commerce Server Components Developer’s Guide 1-1

CHAPTER

1 Overview of WebLogic 
Commerce Server 
Components

This section contains the following topics:

What are Commerce Server components?

A Quick Look at a Few Key Components
Customer and Session
ShoppingAdvisor and Items
Order Fulfillment

Features at a Glance

Specifications

eCommerce brings tremendous opportunity and new challenges.

Build versus Buy: WLCS components offer the best of both solutions.

How do WLCS components work?
Applications built with WLCS components leverage a scaleable, high-performance 
Architecture.
Components are easy to use and customize.
Base your eCommerce applications on our smart models and generated EJBs.
Components use industry-standard Design and Analysis Patterns.
Components are neatly organized in Component Packages.

MyBuyBeans.com Example



1 Overview of WebLogic Commerce Server Components

1-2 BEA WebLogic Commerce Server Components Developer’s Guide

What are Commerce Server components?

At the heart of the BEA WebLogic Commerce Server (WLCS) are the Commerce 
Server components. Commerce Server components are software building blocks for 
eBusiness that can be selected and snapped together to create a robust eCommerce 
Web presence. You can use any component as is, or customize or extend it to fit 
particularly unique aspects of your business scenario. This family of Enterprise Java 
Beans helps you bring new e-business services to your customers quickly and easily, 
while allowing you to focus precious resources on your unique competitive 
requirements.

The WLCS components family is structured as packages. Each package contains a set 
of components that plays a specific role in assembling an enterprise application. 
WLCS provides industry specific component packages for financial services, 
telecommunications, and Internet retail. Today WLCS includes component packages 
required to build e-business applications, with an emphasis on Internet e-commerce 
and customer self-service.

Using novel design patterns, we have modeled, designed, built, and tested our reusable 
server-side components to work seamlessly in conjunction with your commercial EJB 
application server.

A Quick Look at a Few Key Components

Following are descriptions of only a few of the key eBusiness components (order, 
invoice, customer, session, and shoppingAdvisor). WLCS includes more than 80 
out-of-the-box, pluggable Java components designed to provide most of the 
functionality of essential e-business. For a more comprehensive and detailed look at 
the components, you can refer to Chapter 2, “Components Catalog,” or the complete 
API in Javadoc.



A Quick Look at a Few Key Components

BEA WebLogic Commerce Server Components Developer’s Guide 1-3

Customer and Session

The fundamental entities for any business are customers and the products sold to them. 
The Customer is an extension of the Axiom.Person. It provides the ability to store 
contact, profile, and billing information for your customers. The Session components 
are used to manage the process of allowing customers to access the system as guests 
and then to register when they are ready to make a purchase. They also bind customers 
to the orders that they build.

ShoppingAdvisor and Items

The Item is the interface to the products that you are selling. It stores basic product 
identification and description, and provides a mechanism for pricing, including 
runtime pluggable pricing policies. The pricing mechanism is designed to allow you to 
take into account a specific customer’s profile. This allows the application of special 
merchandising discounts and incentives. The  ShoppingAdvisor is the means by 
which you organize your products and make them searchable. Its additional features 
include learning about customer preferences over time and recommending products 
based on the resulting profile.

Order Fulfillment

The Order acts both as a shopping cart and the basis for order fulfillment. It is the 
mechanism by which a customer keeps track of items that they want to purchase. The 
list is manipulated through business methods so that overloading can enforce the 
business rules associated with building an order. There is also an order cost calculation 
method that can be used to take into account discounts across multiple individual 
orders.

When an order is completed it is bound to a PackingList so that shipping cost can be 
calculated. The next step is the creation of an Invoice, so that the order can be billed. 
Finally, the Inventory is updated.

The TroubleTicket components provide customer service issue tracking. These 
components provide you the ability to accept and track issues submitted by your 
customers.



1 Overview of WebLogic Commerce Server Components

1-4 BEA WebLogic Commerce Server Components Developer’s Guide

Features at a Glance

n Customizable Enterprise JavaBeans built from the ground up

n Plug-and-play components that allow you either to use our out-of-the-box 
solution, or to integrate with your legacy applications 

n Easy-to-use component APIs that are fully customizable and extensible using 
technologies like pluggable methods and dynamic runtime configuration 

n Implemented using established design and analysis patterns for ease of use and 
re-use

n WLCS architecture ensures that applications built on the components model run 
in a scaleable, high-performance, enterprise-class fashion

n Components work with other EJBs, including third-party and custom-built 
components 

n High-performance features such as pass-by-value (PBV) 

n Works with leading EJB Application Servers 

n Works with leading databases (Oracle, Sybase, DB2, Cloudscape, etc.) 

n Integrate with legacy systems (CICS, IMS, legacy databases) 

n You don’t need to be an EJB expert to use and customize our pre-built EJBs! 

Specifications

n 100% Pure Java 

n Components are Enterprise JavaBeans 1.1 

n Support for Java 2

n Support for the advanced Java 2 Collections API 



eCommerce brings tremendous opportunity and new challenges.

BEA WebLogic Commerce Server Components Developer’s Guide 1-5

n Support for Enterprise Java APIs including EJB, RMI, JNDI, JTS, and JDBC 

n Support for modeling using UML, with roundtrip engineering from Rational 
Rose 

n Component can be invoked from Java Clients, Java Servlets, Java Server Pages 
(JSP/JHTML), CORBA Clients and Servers,

n Support for ActiveX/COM, and other clients (Visual Basic, PowerBuilder) 

n Full support for BEA WebLogic Server and related features, including clustering 
and JDBC connection pooling. Support for other leading application servers 
coming soon.

eCommerce brings tremendous opportunity 
and new challenges.

Application server and EJB technologies present a tremendous opportunity for 
enterprise information systems. Businesses can gain competitive advantages by 
rapidly deploying applications that address today’s sophisticated requirements of 
integration, networking and scalability. However, building these systems from the 
ground up, without using specialized tools and prebuilt components, demands a great 
effort and expense.

A software development team building an eBusiness application using EJBs faces 
challenges that are compound by the increasingly short delivery times. To be 
successful a development team must be able to perform the following tasks seamlessly 
in record time frames: 

n Master changing and complex technologies 

n Model the business process accurately using object-oriented methodologies 

n Design an application architecture that takes advantage of the infrastructure 

n Implement, test, and deploy all business functions as Enterprise JavaBeans 



1 Overview of WebLogic Commerce Server Components

1-6 BEA WebLogic Commerce Server Components Developer’s Guide

Developers can take advantage of application server features and advanced tools to 
accelerate development but regardless of infrastructure and tools, they still must build 
all the business objects that make up their application. This task involves a tremendous 
amount of risk and effort. 

Build versus Buy: WLCS components offer 
the best of both solutions.

In the process of planning eBusiness applications, corporations are faced with a build 
or buy decision. Building an application of this kind from the ground up would 
consume considerable time and resources. On the other hand, an off-the-shelf 
application does not meet the company’s unique needs. The best solution is to use 
components. Components are packages of pre-built business functions that jump-start 
the development of an eBusiness application. Components allow developers to 
customize and snap together enterprise applications quickly, while tailoring them to 
specific business needs. The result is a complete solution that takes advantage of EJB 
technology without its time-consuming complexities. 

The BEA WebLogic Commerce Server provides a complete family of EJB 
components for eBusiness. Developers using WebLogic Commerce Server 
components do not need to start from scratch or master EJB complexities. By using 
WLCS components, developers can build eBusiness applications customized for their 
company’s unique business needs in record time frames.

How do WLCS components work?

WebLogic Commerce Server components can interact with each other as well as 
interact with other EJBs outside the component family. They have been modeled, 
designed, built, and tested to work together as a family and in combination with third 
party and customer-built EJBs. Applications built using WLCS components take the 
maximum advantage of EJB and application server technology.



How do WLCS components work?

BEA WebLogic Commerce Server Components Developer’s Guide 1-7

Applications built with WLCS components leverage a 
scaleable, high-performance Architecture.

WLCS components are designed to work together at run-time in a distributed, highly 
interactive environment. Once snapped together and deployed, these components can 
form an efficient, robust eCommerce application or engine, automatically leveraging 
powerful object oriented design patterns and taking full advantage of EJB 1.1 features. 
The WLCS component architecture provides the framework for scaleable, 
high-performance, enterprise-class eCommerce applications.

BEA also provides the complete WLCS component object model in Unified Modeling 
Language (UML) diagrams. Developers can either select existing pluggable 
components from the model or extend and customize components, using a WLCS tool 
to generate EJB source code based on the model. Either way, the integrity of the object 



1 Overview of WebLogic Commerce Server Components

1-8 BEA WebLogic Commerce Server Components Developer’s Guide

model and its design advantages are ensured in the application development process. 
Developers can focus on writing the business logic in their applications, and rely on 
the WLCS architecture to supply all the details of a well-designed EJB application, 
including transaction processing, messaging, proven design patterns and business 
policies, efficient database access across the network, and so on. All the good stuff you 
get by using an object oriented development methodology is built in to the 
components.

For a live example of this powerful EJB component architecture put to work as a Web 
presence, see the “Getting Started” topic in the  WebLogic Commerce Server 
Components MyBuyBeans Tour..

Components are easy to use and customize.

WLCS components are designed with usability in mind. Their ease of use allows 
developers to rapidly customize components and snap together applications with 
minimal training. Components are easily customizable and can be extended to make 
new components specific to a particular business. WLCS components include 
customization tools that integrate with leading modeling tools and Java IDEs. To 
customize or extend a component, developers simply customize its associated object 
model, and WLCS automated tools generate the customized code.



How do WLCS components work?

BEA WebLogic Commerce Server Components Developer’s Guide 1-9

Base your eCommerce applications on our smart models 
and generated EJBs.

WebLogic Commerce Server components make it easy to model an application. Using 
industry-standard Unified Modeling Language (UML), analysts can graphically model 
your company’s business process, selecting WLCS components from a repository.

WLCS provides you with a basic, EJB 1.1 compliant, eBusiness UML model. Analysts 
and developers simply extend and modify the base eBusiness model, using the WLCS 
components as needed.



1 Overview of WebLogic Commerce Server Components

1-10 BEA WebLogic Commerce Server Components Developer’s Guide

Once the UML class diagram is completed, all components and all object relationships 
are automatically generated using the WLCS Smart Generator. The Smart Generator 
is a tool that transforms a UML representation of your business process into EJB 
components. All the source code, object definitions, object relationships, 
documentation, and EJB-required files are automatically created by the Smart 
Generator. Adding a relationship between two objects is as easy as drawing a line 
between them. Using visual modeling and roundtrip engineering, changes to the 
business model can be rapidly translated into changes in the application, greatly 
reducing maintenance cost and boosting application reliability.

For more information about the development process, see Chapter 3, “Development 
Process.”

Components use industry-standard Design and Analysis 
Patterns.

WebLogic Commerce Server components interact with each other using industry 
standard Design Patterns to solve a wide range of business problems. The use of 
proven design patterns results in a better business model, lowered cost of development 
and maintenance, and faster time-to-market.

Industry Standard 
Design Patterns

WLCS 
Component 
Examples

Description Benefits

Strategy, Policy, and 
Chain of 
Responsibility Patterns

Individual Instance 
Method analysis 
pattern 

BusinessPolicy BusinessPolicy is a set of 
Behavioral patterns. It lets you 
interchange business policies.

 BusinessPolicy pattern works 
with organizational business 
hierarchies to manage the 
company’s business policies. 

Provides pluggable methods 
that can be changed at 
developent time or at runtime.

Allows for fast adaptation of 
new/customized business 
policies with minimum cost.

These new business policies can 
be tailored for specific clients or 
organizations. 



How do WLCS components work?

BEA WebLogic Commerce Server Components Developer’s Guide 1-11

Components are neatly organized in Component 
Packages.

The WebLogic Commerce Server components family is structured as packages. Each 
package contains a set of components that plays a specific role in assembling an 
enterprise application.

Command and Action 
Patterns 

Task A Behavioral pattern that 
encapsulates a business process 
that provides isolation between 
business logic and business 
objects.

Allows the separation of 
business logic from business 
objects. Results  in lower 
maintenance costs. 

Abstract Factory 
Pattern 

SmartHome, 
BelongingHome 

A Creational pattern that 
provides an interface for 
creating families of related or 
dependent objects without 
specifying their concrete 
classes. 

Provides a consistent 
programming model for 
creation of objects. Results in 
lower maintenance costs. 

Aggregation with Life 
Cycle Pattern

Singleton and 
collection 
aggregation of 
business objects 
by value, and by 
reference. 

A combination of Creational 
and Behavioral patterns that 
provide flexible ways to control 
the life cycle of aggregate 
objects directly from its owner. 

Provides a complete set of 
powerful and flexible APIs to 
maximize programming 
efficiency.  Results in a better 
business model design and                            
lower application development 
costs

Proxy Pattern SmartHandle, 
Collection of 
remote objects. 

A Structural pattern that 
provides a surrogate or 
placeholder for another object to 
control access to it. Allows for 
lazy evaluation of large 
collections of remote objects. 

Allows for a natural modeling 
of business relationships 
without compromising 
performance 

Industry Standard 
Design Patterns

WLCS 
Component 
Examples

Description Benefits



1 Overview of WebLogic Commerce Server Components

1-12 BEA WebLogic Commerce Server Components Developer’s Guide

n At the lowest level is the Foundation package. This package provides an 
interface to the application server and enhances EJBs with WebLogic Commerce 
Server design patterns. It allows all WLCS components to take advantage of 
both EJB technology and our implementation of industry-standard design 
patterns.

n For commonly used or core business functions, WLCS provides the Axiom 
package. This collection of components is designed to provide common 
business functionality that is used across applications. These components are 
typically lightweight and can be combined to create new powerful, 
industry-specific application components.

n WLCS provides industry specific component packages for financial services, 
telecommunications, and Internet retail. Today WLCS includes component 
packages required to build e-business applications, with an emphasis on Internet 
e-commerce and customer self-service. Taken as a whole, these industry specific 
component packages are referred to as the eBusiness package within WLCS.

WLCS includes more than 80 out-of-the-box, pluggable Java components designed to 
provide most of the functionality of essential e-business. For a comprehensive and 
detailed look at the components, see Chapter 2, “Components Catalog,” or the 
complete API in Javadoc.



MyBuyBeans.com Example

BEA WebLogic Commerce Server Components Developer’s Guide 1-13

MyBuyBeans.com Example

If you would like to see a working example of how to snap together the WebLogic 
Commerce Server components to form a robust, high-performance, retail Web site, see 
the WebLogic Commerce Server Components MyBuyBeans Tour.. The tour steps you 
through the development and deployment process using the imaginary 
MyBuyBeans.com retailer as a focus.



1 Overview of WebLogic Commerce Server Components

1-14 BEA WebLogic Commerce Server Components Developer’s Guide



BEA WebLogic Commerce Server Components Developer’s Guide 2-1

CHAPTER

2 Components Catalog

The following table lists the Enterprise Java Beans (EJBs) in the BEA WebLogic 
Commerce Server (WLCS) Component kit and provides links into the complete 
Javadoc API.

Package/Description Components Type

theory.smart.axiom.accounting

Stores lists of transaction entries (a 
transaction history) and balances. Used to 
describe anything from a cash value to an 
inventory of items.

Account ConfigurableEntity

AccountEntry Entity EJB

PostingRule Business Policy

DefaultPostingRule Business Policy

theory.smart.axiom.contact

Customer Information package. Stores 
personal data used for billing, shipping, 
marketing and any other services requiring 
customer contact

Address Belonging

Stakeholder Entity EJB

PhoneNumber Belonging

Email Belonging

Person Entity EJB

Url Belonging

CreditCard Belonging

PostalCode Belonging

theory.smart.axiom.messaging

Provides messaging between two parties. Has 
a mailbox along with search and retrieval 
capabilities.

PostOffice Session EJB

MailBox Entity EJB

Message Belonging



2 Components Catalog

2-2 BEA WebLogic Commerce Server Components Developer’s Guide

theory.smart.axiom.units

Standard solution to common unit conversion 
problems. Conversion of one unit of 
measurement to any other in the same 
classification.

Note: The price/money component 
provides multi-currency support.

UnitPrice Belonging

UnitConverter Session EJB

UnitConversion ConfigurableEntity

UnitList Entity EJB

UnitCategories Belonging

ConversionFunction Business Policy

Unit Belonging

Quantity Belonging

Quality Belonging

Price Belonging

DefaultConversionFunction Business Policy

theory.smart.axiom.util

Generic utilities package.

AlphaNumericSequencer Entity EJB

theory.smart.axiom.workflow

Objects to create a state machine with 
transitions. Can be used within other 
components.

StateMachine Workflow

TransitionPolicy Business Policy

Transition Belonging

State Belonging

theory.smart.ebusiness.customer

Customer interaction and profile management 
package. Can be seamlessly mapped to your 
existing customer database.

Customer Entity EJB

CustomerManager SessionEJB

theory.smart.ebusiness.giftregistry GiftRegistryManager SessionEJB

GiftRegistry EntityEJB

PurchasedOrderLine Belonging

Package/Description Components Type



BEA WebLogic Commerce Server Components Developer’s Guide 2-3

theory.smart.ebusiness.inventory

Distributed interface to your existing 
inventory system. Interfaces with legacy apps 
and existing databases

InventoryManager SessionEJB

ItemInventory EntityEJB

InventoryRecord ConfigurableEntity

Locator Belonging

theory.smart.ebusiness.invoicing

Distributed interface to your existing 
invoicing/billing system. Interfaces with 
legacy apps and existing databases

InvoiceManager SessionEJB

Invoice Entity EJB

theory.smart.ebusiness.item

Flexible management and access to catalogs 
of products and services, with dynamic 
policy-based pricing

Item ConfigurableEntity

ItemPriceCalculationPolicy Business Policy

DefaultItemPriceCalculationPolicy Business Policy

theory.smart.ebusiness.order

Online order entry, order management, and 
shopping cart functionality

Order Entity EJB

OrderManager SessionEJB

OrderLine Belonging

OrderWorkflow Workflow

theory.smart.ebusiness.session

Complete online user session management, 
including guest, authenticated login and 
multiple login functions. Sessions are stored 
transactionally for trouble-free web 
interaction

ebusinessSessionManager SessionEJB

ebusinessSession Entity EJB

ebusinessSessionWorkflow Workflow

theory.smart.ebusiness.shipping

Distributed interface to your existing 
shipping/order fulfillment system. Interfaces 
with legacy apps and existing databases

ShippingManager SessionEJB

ShippingMethod Entity EJB

PackingList Belonging

ShippingCostCalculationPolicy Business Policy

DefaultShippingCostCalculationPolicy Business Policy

Package/Description Components Type



2 Components Catalog

2-4 BEA WebLogic Commerce Server Components Developer’s Guide

theory.smart.ebusiness.shoppingAdvisor

Personalizes customer’s shopping experience. 
Suggests products and services based on 
customer profiles and buying patterns. Learns 
customer profiles. Allows for accurate 
targeting of offerings to consumers.

ShoppingAdvisor Session EJB

CustomerProfile Entity EJB

ItemsByQuality Entity EJB

ItemsQualities Entity EJB

ItemsByDegree Belonging

Suggestion Belonging

theory.smart.ebusiness.troubleticket

Complete customer support system. Includes 
ticket entry and response management, with 
robust transactional workflow

TroubleTicket Entity EJB 

TroubleTicketWorkflow Workflow

TroubleTicketManager Session EJB

JournalEntry Belonging

Package/Description Components Type



BEA WebLogic Commerce Server Components Developer’s Guide 3-1

CHAPTER

3 Development Process

WebLogic Commerce Server (WLCS) provides prebuilt Enterprise JavaBean (EJB) 
components that you can use in your e-commerce Web applications. In the Java 
implementation source code that WLCS generates, you can add your business logic 
between specially provided code markers. If needed, you can also extend the WLCS 
components to add new components that match your specific business requirements.

The first section in this chapter outlines the overall development process. Subsequent 
sections provide details about each step. The following topics are presented:

n What is the overall development process?

n Before You Begin: Copy the Model

n Step 1: Export the WLCS model in Rational Rose

n Step 2: Run the WLCS Smart Generator

n Step 3: Add Your Business Logic: Edit the Java files and Compile Them

n Step 4: Run the EJB Compiler

n Step 5: Deploy your application, and start the server

n Step 6: If desired, change the model, and iterate



3 Development Process

3-2 BEA WebLogic Commerce Server Components Developer’s Guide

What is the overall development process?

You can create EJB components by modeling them using the Unified Modeling 
Language(UML) and then generating Java source code. This technique utilizes a UML 
drawing tool, in this case Rational Rose™, and creates an intermediate file that 
describes that model. That file is transformed by a WLCS  application called the Smart 
Generator into the Java classes that make up one or more EJBs.

Code generation from UML has long been recognized as a promising technology. This 
technique is powerful because it allows the designer to model the components in a 
natural way without being concerned with implementation-specific details.

Despite its promise, this technique has not been adopted widely for a number of 
reasons: 

n The generated code was often thought to be inferior, and there was no easy way 
to generate the implementation of the business logic

n Lack of an iterative development cycle, which meant that most tools could only 
be used to generate the first attempt at the classes; and an associated problem: 
often times the model and the code became unsynchronized and much of the 
model’s value was lost.

The WLCS utilities solve these problems by going a step further. The utilities do not 
assume a direct mapping from the model to the underlying language constructs. The 
user models the business objects and the Smart Generator creates a set of classes that 
implements these objects with reference to the Enterprise JavaBeans 1.1 Specification. 
Many of the laborious tasks of creating access methods and handling containment of 
references is automatically handled. 

The WLCS Smart Generator also uses intelligent algorithms to generate sensible 
naming for collections and methods. In addition, it generates documentation for these 
classes using the same intelligent naming scheme. Because the Smart Generator 
embeds code markers, it is possible for developers to add the business logic and then 
resynchronize those changes with the model. 

Figure 3-1 introduces the development process when you use WLCS components.



What is the overall development process?

BEA WebLogic Commerce Server Components Developer’s Guide 3-3

Figure 3-1   WLCS Components Development Process

The overall steps are as follows:

Before you begin: copy the installed WLCS model

Go to the “model\BEA WeblogicCommerce\” directory found under the WLCS 
installation directory. Create a separate work directory and copy the BEA 
WeblogicCommerce.mdl model file to your work directory.

Step 1: Export the WLCS model in Rational Rose

Start Rational Rose™, a graphical UML modeling product. Open your copy of 
the WLCS Components model, and use the WLCS plug-in to export the model 
to an intermediate file (*.tast).



3 Development Process

3-4 BEA WebLogic Commerce Server Components Developer’s Guide

Step 2: Run the WLCS Smart Generator

From the Rose menu, or the Windows Start menu, or a command prompt, run 
the WLCS Smart Generator. The Smart Generator is a Java application that 
reads the *.tast model definition file and generates the Java source files and 
EJB Deployment Descriptors.

Step 3: Edit the Java files: Add Your Business Logic

Edit the generated *Impl.java source files to add your business logic between 
the provided code markers. Because the Smart Generator embeds code markers, 
it is possible for you to add the business logic and then resynchronize those 
changes with the model.

Step 4: Run the EJB Compiler

Run the EJB compiler to generate the Java class files for your EJBs.

Step 5: Deploy your application, and start the server

Deploy the application using either Bean-Managed Persistence (BMP) or 
Conainer-Managed Persistence (CMP) to the host system or systems. Then start 
the WLCS Server on each machine that hosts the application.

Step 6: If desired, change your copy of the model, and iterate

If you want, you can change your copy of the WLCS model, adding new 
components or business policies that extend the ones provided by WLCS. You 
can then iterate through the development process (starting again at step 1). Smart 
Generator preserves the changes you made to the *Impl.java source files by 
locating your additions within the code markers.

Subsequent sections in this chapter provide details on the steps in the development 
process.



Before You Begin: Copy the Model

BEA WebLogic Commerce Server Components Developer’s Guide 3-5

Before You Begin: Copy the Model

This prerequisite step is simple. 

1. Go to the “model\BEA WeblogicCommerce\” directory found under the WLCS 
installation directory. The BEA WeblogicCommerce.mdl file in that directory is 
the model.

2. Create a subdirectory that will contain your copy of the model. In the WLCS 
Components Tour, readers are instructed to create a \model\tour\ subdirectory. 
However, you can create your work directory in a location that is separate from 
the installed WLCS folder hierarchy, such as d:\myWebApps\work\.

3. Copy the WLCS Component model file, BEA WeblogicCommerce.mdl, to the 
work directory that you created.

Step 1: Export the WLCS model in Rational 
Rose

Start Rational Rose™, a graphical UML modeling product. If you installed the WLCS 
software after you installed Rational Rose, as described in the WLCS Installation 
Guide, the WLCS plug-in to Rational Rose is already in place.

Open your copy of the WLCS Components model, and export the model to an 
intermediate definition file (*.tast). If at this time you are not extending the model 
and generating new classes based on existing WLCS classes, the procedure in this 
section is simple. 

(See the section “Step 6: If desired, change the model, and iterate” for more advanced 
considerations if you are extending the WLCS classes.)

The steps during your initial cycle through the development process are as follows:

1. Start Rational Rose. From the Windows Start menu, select Start → Programs → 
Rational Rose...



3 Development Process

3-6 BEA WebLogic Commerce Server Components Developer’s Guide

2. From the Rational Rose top-level menu, click File → Open, and browse to the 
directory where you put your copy of the model file, BEA 
WeblogicCommerce.mdl.

3. Double click on the BEA WeblogicCommerce.mdl file. Rational Rose opens the 
model.

4.  From the Rational Rose top-level menu, click Tools → WeblogicCommerce→ 
Export Model As...

5. The WLCS plug-in to Rational Rose displays the following screen:

6. Enter a file name for the model definition file. The default file type is .tast.

7. The WLCS plug-in to Rational Rose displays a confirmation message when the 
export operation completes successfully:



Step 2: Run the WLCS Smart Generator

BEA WebLogic Commerce Server Components Developer’s Guide 3-7

Step 2: Run the WLCS Smart Generator

The WLCS Smart Generator reads the *.tast model definition file and generates the 
Java source files based on an industry standard modeling language.

Advantages

Smart Generator provides the most comprehensive EJB code generation in the 
industry. The EJB code that is generated by the WLCS Smart Generator is optimized 
for the high performance demands of interactive e-commerce Web applications. The 
code is based on input from industry-leading persistence experts and systems 
integrators. The advantages of using the WLCS Smart Generator include:

n It allows you to focus on building your company’s business logic

n It enables reusability and customization of prebuilt EJB components 

n You do not have to know the details of EJB or track changes in the EJB 
Specification from Sun

n You do not have to know the details of implementing EJB code for high 
performance

n Preservation of your investment: your business logic can be regenerated to 
conform to revisions in the Sun Microsystems EJB Specification



3 Development Process

3-8 BEA WebLogic Commerce Server Components Developer’s Guide

After you update the generated Java implementation files, where you add your 
business logic (Step 3 in the development process), the WLCS Smart Generator reads 
in your changes the next time it runs, preserves your changes, and reflects the changes 
back in your copy of the model. Special code markers are provided in the generated 
*Impl.java files that enable the Smart Generator to synchronize the model with your 
business logic code.

Define a New Project

To define a new Smart Generator project, follow these steps. You can also see these 
steps with sample values in the WLCS Components Tour. The tour includes a great 
walk-through of extending an Item component and extending a pricing business 
policy.

1. Start the Smart Generator. Use one of the following options:

l From the Rational Rose top-level menu, select Tools → 
WeblogicCommerce→ Smart Generator.

l From the Windows Start menu, select Start → Programs → BEA WebLogic 
Commerce Server → Smart Generator.

l From a system prompt, run the script that starts the Smart Generator, which 
is implemented as a Java application. On Windows systems, the 
smart-generator.bat file is in \bin\win32\ in the installed WLCS 
directory. On Solaris systems, the smart-generator.sh file is in 
/bin/solaris2/ in the installed WLCS directory.

2. On the initial Smart Generator screen, click the New button. 

3. Smart Generator displays its Project Properties screen. For example:



Step 2: Run the WLCS Smart Generator

BEA WebLogic Commerce Server Components Developer’s Guide 3-9

4. In the Project Name field, enter a descriptive project name.

5. In the EJB Code Generation Output Directory, enter the location for the 
generated Java source files. This is the location where Smart Generator will place 
the Java interfaces, business logic, and other core EJB code.

6. In the Deploy Code Generation Output Directory, enter the location for the 
generated deployment code source files. This is the location where Smart 
Generator will place deployment descriptors and files containing JDBC 
instructions to persist Entity Beans using a specified database map. 

7. In the TAST Model File field, enter the name of the *.tast file you exported 
from your copy of the WLCS model (in Step 1).



3 Development Process

3-10 BEA WebLogic Commerce Server Components Developer’s Guide

8. In the Save Project To field, designate a directory that will contain the project 
definition file.

9. Click the OK button. 

Configure the Project

1. Click on the Packages tab. 

2. In the Packages pane, click on the package(s) you want to implement. 

3. In the Classes pane, double-click on the boxes next to the classes you want to 
implement. Double-clicking adds checkmarks next to selected classes. 

4. Click OK.



Step 2: Run the WLCS Smart Generator

BEA WebLogic Commerce Server Components Developer’s Guide 3-11

5. Select  Configuration→ Options from the Smart Generator menu. The User 
Options screen is displayed:

6. If needed, you can enter the following options on this Smart Generator screen:

-trace 

Sets the trace switch. The default value is g, which enables a code Generator 
trace. Other options: -trace c (compiler trace), -trace t (Tast processor 
trace), and -trace + (trace all).

-tast



3 Development Process

3-12 BEA WebLogic Commerce Server Components Developer’s Guide

Sets the metadata exchange format (default and only option in the current 
release).

-root

Sets the location of the root directory for the .java source files to be 
generated.

-deployment_root

Sets the root directory for output of deployment-specific code.

-classes (c1, c2, c3)

Allows you to specify a subset of classes to be processed by the next 
Generate operation in the WLCS Smart Generator. Enclose multiple entries 
in parentheses, separated by a comma. There is no default.

-bmp

Switch to specify that you do not want to use Bean-Managed persistence. In 
other words, sets bean-managed persistence to off. Do this if you want to use 
container-managed persistence instead.

The default is to deploy with this switch on using bean-managed persistence 
on a relational database such as Oracle. In the default on mode, the Smart 
Generator references a database mapping properties file to generate the 
appropriate database-related code.

7. On the User Options screen, you can also click the Java tab if you want to specify 
Java compiler options and related options. The WLCS Smart Generator displays 
a screen similar to the following:



Step 2: Run the WLCS Smart Generator

BEA WebLogic Commerce Server Components Developer’s Guide 3-13

8. Click the Ok button after you enter any compiler options.

Generate the Java Sources

When you are ready to generate the Java sources, click the Generate button on the main 
WLCS Smart Generator screen. Wait for the Smart Generator to complete its work. 
You can click the Output Console tab to view messages recorded during the generation 
step. Look for the “Compiler done” message at the end of the console output. 



3 Development Process

3-14 BEA WebLogic Commerce Server Components Developer’s Guide

For example:

Click the Exit button to close the WLCS Smart Generator.



Step 3: Add Your Business Logic: Edit the Java files and Compile Them

BEA WebLogic Commerce Server Components Developer’s Guide 3-15

 Step 3: Add Your Business Logic: Edit the 
Java files and Compile Them

1. Edit the Java files to add your business logic.

Edit the generated *Impl.java source files to add your business logic between 
the provided code markers. Because the WLCS Smart Generator embeds code 
markers, it is possible for you to add the business logic and then resynchronize 
those changes with the model.

When you run the Smart Generator again, it recognizes the changes you have 
made in your *Impl.java sources and reflects those changes in the model.

The code fragment in Listing 3-1 shows the type of code markers that are 
provided by the WLCS Smart Generator. The sample generated implementation 
file is BeanieHatPricePolicy.java, which you can create by running the  
WLCS Components Technical Tour in the online documentation. A bold 
typeface is used in the listing to highlight the markers.

Note: In all cases, the end tag, such as $_End, must appear before the closing 
brace of the additional method.

Listing 3-1   Code Markers Indicating Where to Insert Your Business Logic

package examples.buybeans.tour;

import theory.smart.foundation.*;
import theory.smart.util.*;

//$Import$_Begin ------------ CUSTOM CODE ---------------
// Place additional import statements here
//$Import$_End   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   .
   .
   .

class BeanieHatPricePolicyImpl implements BeanieHatPricePolicy
//$Implements$_Begin ------------ CUSTOM CODE ---------------
// Add interfaces that are implemented here
//$Implements$_End   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^



3 Development Process

3-16 BEA WebLogic Commerce Server Components Developer’s Guide

   .
   .
   .

//$AdditionalAttributeDeclarations$_Begin ------------ CUSTOM CODE 
---------------
// Add additional attribute declarations here
//$AdditionalAttributeDeclarations$_End   
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   .
   .
   .

protected BeanieHatPricePolicyImpl() 
{
  super();
//$Constructor$_Begin ------------ CUSTOM CODE ---------------
// Add constructor code here
//$Constructor$_End   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
}

   .
   .
   .

//$MethodException theory.smart.axiom.units.Price 
calculatePrice(theory.smart.ebusiness.item.Item item, 
theory.smart.axiom.units.Quantity qty, 
theory.smart.ebusiness.customer.Customer customer)$_Begin 
------------ CUSTOM CODE ---------------

// Add additional exceptions here

//$MethodException theory.smart.axiom.units.Price 
calculatePrice(theory.smart.ebusiness.item.Item item, 
theory.smart.axiom.units.Quantity qty, 
theory.smart.ebusiness.customer.Customer customer)$_End   
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

{
//$Method theory.smart.axiom.units.Price 
calculatePrice(theory.smart.ebusiness.item.Item item, 
theory.smart.axiom.units.Quantity qty, 
theory.smart.ebusiness.customer.Customer customer)$_Begin 
------------ CUSTOM CODE ---------------

  return null; //in Components Tour, custom pricing policy
                 code in WLCS documentation is inserted here...



Step 4: Run the EJB Compiler

BEA WebLogic Commerce Server Components Developer’s Guide 3-17

//$Method theory.smart.axiom.units.Price 
calculatePrice(theory.smart.ebusiness.item.Item item, 
theory.smart.axiom.units.Quantity qty, 
theory.smart.ebusiness.customer.Customer customer)$_End   
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
}

   .
   .
   .

Note: If you change the signature of a method it will not be properly managed by the 
WLCS Smart Generator. This happens because the round-trip engineering 
feature works by matching the exact signature of the method and the 
parameters.  If a generated method is no longer present in the model it will 
simply be deleted, along with the associated implementation. To avoid this 
situation, you must make matching changes in the model and the source code.  
As a consequence it is extremely important to consider the parameters to 
methods up front so as to avoid this problem.

2. Compile the *.java source files with any supported Java compiler. For 
example:

javac surfcity.java sunhat.java

Step 4: Run the EJB Compiler

The EJB compiler (ejbc) generates container classes according to the deployment 
properties you have specified in your deployment files. For more information on 
deploying EJBS, see the topics Deploying EJBs in WebLogic Server and Deploying 
EJBs with DeployerTool in the BEA WebLogic Server Enterprise JavaBeans 
documentation.

To run the EJB compiler against your files:

1. Create the files ejb-jar.xml and weblogic-jar.xml according to the Weblogic 
EJB deployment guide. For container-managed persistence (CMP) deployments, 
the beanname-CMP-RDBMS.xml will also be needed.



3 Development Process

3-18 BEA WebLogic Commerce Server Components Developer’s Guide

2. Create a deployment jar file that contains the xml files and the Home, Remote 
and Impl class files. To do this, use the syntax jar cvf <jar-file> 
<files...> For example:

jar cvf morehats.jar propeller.class button.class

Note: For help, type jar at the command prompt, and it will show the usage 
parameters.

3. Run ejbc on the deployment jar. The server and client stubs will be generated 
inside that jar.

4. Finally, copy your application JAR files to the deployment system that will host 
your application.

You can automate running the EJB compiler tasks for subsequent builds by creating a  
*.bat (NT) or *.sh (Solaris) build script file. For an example of a build script, see the 
tour-build.bat script in  bin\win32 under the WLCS installed directory. In 
addition to generating the *.class bytecodes for your application, the script should 
create or update the Java Archive (JAR) file for your application.  

Note: tour-build.bat will compile the tour files, tour-deploy.bat will jar them 
up,  and run ejbc on that jar.

Step 5: Deploy your application, and start 
the server

Deploy your application using either Bean-Managed Persistence (BMP) or 
Conainer-Managed Persistence (CMP) to the server. Then start the WLCS Server on 
each machine that hosts the application.

This section provides a brief overview of deployment. For more details, see Chapter 4, 
“Deploying Your Application.”   



Step 5: Deploy your application, and start the server

BEA WebLogic Commerce Server Components Developer’s Guide 3-19

Before You Start the WebLogic Application Server

Before you start the WebLogic application server, you must do the following:

n Set the environment variable DEPLOYMENT_SET to either BMP for bean-managed 
persistence, or CMP for container-managed persistence. 

n In the directory where you installed WLCS, rename the appropriate 
weblogic-XXX.properties file to weblogic.properties, where XXX is 
either BMP or CMP. The renamed file should reside in the top-level WLCS 
installed directory, such as c:\webLogicCommerce.

n In the directory where you installed WLCS, rename the 
weblogiccommerce-XXX.properties file to 
weblogiccommerce.properties, where XXX is either BMP or CMP. The renamed 
file should reside in the top-level WLCS installed directory, such as 
c:\webLogicCommerce.

The WLCS EJB source code is independent of the persistence method, whether it is 
container-managed or any implementation of bean-managed persistence.

The source code that uses JDBC instructions to persist Entity Beans is generated 
according to one of the BEA reference implementations of bean-managed persistence. 
If you use the reference data model, the source code may be used as generated. The 
more likely case is that the JDBC source code may be used as templates to persist EJBs  
to a legacy data model. 

One of the advantages of the WLCS approach is that business logic and other core EJB 
source code is independent of the persistence implementation. This isolates business 
application development from database development and schema changes.

Starting the Server

On the deployment system that will host your application, you must start the 
WebLogic Server.

1. Edit the weblogic.properties file so that the jar created in the last step is part 
of the weblogic.ejb.deploy field. 



3 Development Process

3-20 BEA WebLogic Commerce Server Components Developer’s Guide

2. Make sure that the class path set in sethome.sh or sethome.bat points to the 
class files that are needed by your bean. Also, make sure that the JAR file that 
you created is not in the classpath.

3. Start the server using either StartCommerce.sh for UNIX systems or 
StartCommerce.bat for Windows NT systems.

Step 6: If desired, change the model, and 
iterate

If desired, you can change your copy of the WLCS model, adding new components or 
business policies that extend the ones provided by WLCS. You can then iterate through 
the development process (starting again at step 1). 

When you extend the WLCS model, Smart Generator preserves any changes you made 
to the *Impl.java source files by locating your additions in between the code 
markers.

Changing your copy of the model requires a basic understanding of:

n A simple subset of UML notations

n The WLCS model’s Foundation packages

n The Smart Generator rules

To master these concepts, we have provided the following topics in this section:

n Do I have to be a Rational Rose or UML Expert?

n Understanding the Foundation Package and Stereotypes

n Understanding the Basic UML Modeling Notations

n WLCS Smart Generator Rules: Factors that Influence the Generated Java Files

n Design Decisions



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-21

Do I have to be a Rational Rose or UML Expert?

It is not necessary to be an expert in UML concepts or Rational Rose to model your 
EJBs. The remainder of this chapter takes a step-by-step approach to explain our 
technique to creating EJBs from UML. This discussion does not assume a familiarity 
with either of these topics and provides introductory explanations of the key elements 
of each. While knowledge of these specific technologies is not assumed, familiarity 
with the underlying concepts of object-oriented design, distributed objects, and 
transaction services is required.

There are a number of references in this document to various "Design Patterns" and 
"Analysis Patterns". There is a welcome trend towards documenting these axiomatic 
solutions to common computer science problems.

Understanding the Foundation Package and  Stereotypes

The theory.smart.foundation package is a set of classes from which the 
WebLogic Commerce Server components are built.  These classes provide the building 
blocks for the value added features of our components. Most of the classes that are 
generated from the model are derived from classes in the Foundation package. 

For example, the theory.smart.ebusiness package contains classes that are built 
on the Foundation package.

To simplify the complexity of the UML diagrams, the Foundation package 
relationships are described through class stereotypes rather than inheritance. Each of 
these stereotypes is used to model certain behaviors and implies the presence of 
additional methods. This section discusses the Foundation package from a conceptual 
viewpoint. If you need to extend the functionality of theory.smart.ebusiness classes, it 
is helpful to first understand the theory.smart.Foundation package.

With that goal in mind, this section describes the following concepts used in the 
Foundation package:

n Belongings

n Sessions

n Entity



3 Development Process

3-22 BEA WebLogic Commerce Server Components Developer’s Guide

n Configurable Entity

n Business Policy

n Workflow

n Smart Features

Belongings

A Belonging is the simplest form of a WLCS Component. A Belonging is a 
lightweight, local object that can be serialized.  A Belonging gets its name because it 
must "belong" to, or be acquired from, another object, typically a Session or Entity. It 
must be serializable so that it can be persisted with the class to which it belongs and 
passed remotely as a parameter.

One of the key characteristics of a Belonging is that it must be implemented using the 
Abstract Factory pattern.  This means that for each belonging there is a home class, an 
interface, and at least one implementation of that interface. Because access to the 
object is through an interface, there is a guaranteed level of abstraction.  This provides 
a great deal of flexibility because it means that you can substitute implementations.  
You could, for instance, make the object remote without changing the code that uses 
it.  Alternatively, you might substitute different business logic at runtime by changing 
the implementation returned by the home class.

Implementing all these classes by hand is lot of work. The WebLogic Commerce 
Server development tools simplify the process by generating all of the necessary 
classes automatically.  You can fully concentrate on modeling the attributes and 
methods so that they fit the needs of your business.

Sessions

Session components, implemented as Session EJBeans, are used to model 
service-oriented objects.  The key concept is that a Session is an object that provides 
access to a service implemented in itself or somewhere else on the network.  Attributes 
of a session are used only to configure it for use during the lifecycle of that session.  It 
is important to note that the attributes of a Session are not persistent.  The business 
methods are the most important part of a Session. 



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-23

Sessions provide a way of remotely implementing business logic, thus extending the 
reach of your client application.  For instance, when you need to perform an extended 
set of operations on a collection of remote objects it often makes sense to create a 
"Manager".  The Manager object can be co-located with the objects it will be operating 
on. This will reduce the network overhead and latency.

Sessions are also commonly used to provide an interface to a legacy system or to a 
service that is pinned to a specific piece of hardware.  The remote interface allows the 
client software to access the remote device as if it were local.  

Finally, by wrapping a subsystem and factoring out the functions common to similar 
systems it is possible to provide a level of redundancy. An example of this would be 
the case where there are multiple providers of credit card validation services.  These 
systems would likely have similar function but different implementations.  By creating 
a common interface to use the different implementations, it is possible to load balance 
between them or substitute one for the other.

Entity

An Entity, implemented as an Entity EJB, is an object with staying power.  Persistence 
is the key aspect of an Entity object. In its simplest form, an instance of an entity could 
be the equivalent of a single row in a relational database. This is an over-simplification 
because each Entity may include collections of attributes and implement business 
methods.  

Entities are representative of the attributes of which they are composed. This is what 
distinguishes them from Sessions, which represent a collection of services. As a 
general rule Entities do not implement sophisticated business logic, instead, they are 
the components that are acted upon. 

Configurable Entity

In addition to the standard qualities associated with an EJB Entity, the WLCS 
Component software provides dynamic configuration.  Dynamic configuration is the 
ability to add properties and methods at runtime and is provided by the Configurable 
Entity. The Configurable interface allows the programmer to associate a named value 
with the Entity.  These values are persisted separately so that they are permanently 
associated with the object without affecting the underlying schema.  



3 Development Process

3-24 BEA WebLogic Commerce Server Components Developer’s Guide

When the value stored in a Configurable Entity is a method, the result is the ability to 
exchange the implementation of a method dynamically or a “Pluggable Method” 
which is the implementation of the “Strategy” pattern. 

Business Policy

Configurable Entities can be arranged in a hierarchy of successors.  When this type of 
hierarchy is in place, a request to retrieve a value from a Configurable Entity triggers 
an upward search through the hierarchy of successors until a matching value is found 
or the top of the hierarchy is reached. This is the implementation of the "Chain of 
Responsibility" design pattern. 

The combination of “Pluggable Methods” and the hierarchy of succession is called a 
Business Policy. 

Workflow

For many business applications a simple mechanism to maintain internal state is all 
that is required to achieve a basic level of workflow. The WLCS software provides  
such a capability for defining and verifying the states and events that describe a 
business process.  What this means to the developer is that they can represent this 
process as a state diagram and then verify the legitimacy of business method 
invocations with a single method call to ask for a transition.  Adding a step is as simple 
as adding a new state.  The engine will then enforce the rule that this step must be taken 
without changes to existing code.

Smart Features

The WLCS Components software implements built-in advanced features that   
considerably improve the ease of use and efficiency of the final system. 

SmartKey

The EJB specification requires that for each Entity there is a class that represents the 
attributes of the primary key of that class. This Primary Key class is used to find and 
test the equality of instances of Entity objects.  To accomplish these simple goals the 
EJB specification only requires that the Primary Key class must be serializable.



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-25

The SmartKey interface extends this functionality and requires the implementation of 
the Comparable interface from the java collection API. This is so that SmartKeys can 
be easily compared and stored in ordered lists. The result is that it is easy to model 
relationships that require the ordering of Entities.

The toString method of a SmartKey simplifies the implementation of profiling and 
debugging code.

SmartHandle

The EJB specification provides for the passing of lightweight references to Enterprise 
Java Beans through the use of Handles. A handle in EJB is an opaque type that can be 
converted to and from an EJB Object. A handle is required to implement a test for 
equality such that given two handles it is possible to determine if they refer to the same 
Session or Entity object.

For a WLCS Entity component it is possible to create a SmartHandle that includes the 
object’s associated SmartKey. Because the SmartKey implements the Comparable 
interface it is possible to order a list of smart handles without accessing the remote 
objects that they refer to. This simple mechanism greatly improves performance.

SmartValue

Each Entity is composed of the attributes that describe it. In order to encapsulate the 
remote objects all attributes must be read and written through accessor methods, 
typically named get<Attr> and set<Attr>. This has the negative consequence that 
retrieving the attributes of an entity may result in many remote method invocations.  
To alleviate this problem the WLCS software provides a convenience class, derived 
from SmartValue, that contains a copy of all the top-level attributes.

Understanding the Basic UML Modeling Notations

You only need to know a small subset of the UML notations to use the WLCS 
components model. This section explains the UML notations for:

n Classes and Stereotypes

n Inheritance

n Aggregation and Multiplicity



3 Development Process

3-26 BEA WebLogic Commerce Server Components Developer’s Guide

n Packages

UML describes objects and their relationships graphically.  The WLCS Components 
software uses UML as a mechanism for simplifying the design and implementation of 
EJBs. Before we discuss the details, let’s review some of the UML notation from a 
higher level perspective. In this section we focus on the aspects of the notation that are 
of particular interest to the WLCS Smart Generator, analyzing portions of the sample 
UML diagram in Figure 3-2.

Figure 3-2   Sample UML Diagram

Classes and Stereotypes

Let’s start by focusing on the Java classess and stereotypes in Figure 3-3.



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-27

Figure 3-3   Compartments in each Class Box

Each of the rectangles in a diagram is a representation of a class in UML.  There are 
generally three compartments in each class box. A compartment may be left out if it is 
empty or if the details of the contents are not pertinent to a particular diagram. The 
latter is often the case when an object from another package is referenced.

The upper most box holds the class name and its stereotype. A stereotype is a 
"sub-classification" of an element in the model.  It is represented as the name of the 
stereotype enclosed in guillemets, as in <<stereotype>>.  In UML, anything can be 
tagged with a stereotype.  In the previous diagram, the Item class is stereotyped as a 
Configurable Entity. This means that it would have the qualities of one as described in 
the section Entity.

Attributes are listed in the second compartment.  In UML the name of the attribute is 
specified first followed by its type. The name and the type are separated by a colon.  It 
is notable because it is different from the Java language. It works well for object 
oriented modeling which is generally an iterative process. Often times a designer will 
list the attributes of class without specifying types the first time through. The same 
techinique holds true when specifying the arguments to a method.  Note that as already 
mentioned, attributes can be decorated with a stereotype.  The stereotype precedes the 
attribute and is embedded in guillemets as before.

Name and Stereotype

Attributes

Methods



3 Development Process

3-28 BEA WebLogic Commerce Server Components Developer’s Guide

The third and final compartment lists the methods.  The return type is listed after the 
closing parentheses and is separated from the class definition with a colon. Often the 
display of the parameters and the return value are supressed on the diagram because 
they consume a great deal of space.  

When specifying attributes and methods it is possible in the UML to indicate whether 
or not they are private, protected, or public.  The "tilted brick" icon to the left will have 
slight variations depending on this.

Inheritance

Figure 3-4 focuses on the UML notation for inheritance.

Figure 3-4   UML Notation for Inheritance

In a UML diagram, inheritance is depicted an unfilled arrow that points from the 
subclass towards its parent. In this case the ItemPriceCalculationPolicy will have 
a calculatePrice method through inheritance. The subclass will share all of the 
properties and attributes of its parent.



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-29

Aggregation and Multiplicity

Figure 3-5 illustrates the UML notations for concepts called aggregation and 
multiplicity.

Figure 3-5   UML Notation for Aggregation and Multiplicity

Aggregation is used to describe a containment relationship between classes. This is an 
alternative to simply defining an attribute with the type of the class. In UML this means 
that the contained object shares a life cycle with the containing object. That is, the 
containing object holds the only reference to it and is responsible for removing the 
object upon when it, itself, is removed.

Aggregation is depicted in UML with a line that extends from the containing to the 
contained item. The line begins with an oblong diamond that specifies a category of 
containment. A hollow diamond is used to show that the object is being contained by 
reference. A solid diamond specifies that the object is contained by value.



3 Development Process

3-30 BEA WebLogic Commerce Server Components Developer’s Guide

It is also possible to specify a multiplicity for the object being contained.  Options are 
1 (one to one), 0..1 (optionally null for references), or 0..* (zero to many).  As with all 
other elements of the UML it is possible to stereotype the relationship.  It is also 
possible to name an aggregation, although there is no example of this in the above 
diagram.

Packages

Figure 3-6 illustrates the UML notation for the relationship between packages.

Figure 3-6   UML Notation for Packages

Packages are used to group classes and other packages in to a hierarchy. Each package 
will contains classes and/or other packages. When the classes of one package use the 
classes of another this is depicted as a dotted line with an arrow in the appropriate 
directions. This same "uses" notation can be applied to classes as well.

WLCS Smart Generator Rules: Factors that Influence the 
Generated Java Files

This section explains how the WLCS Smart Generator transforms a UML diagram into 
EJB components. We will describe the Java code that will be generated as the result of 
making specific notations in a UML diagram.

foundation

axiom ebusiness



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-31

Classes

Only classes in the model that are stereotyped as eBusiness Smart Component 
(eBSC) will result in the generation of Java classes.  There is not a one-to-one mapping 
between each class in the UML model and Java. In particular, all eBSCs are 
implemented using the Abstract Factory pattern. This means that there will be at least 
one interface and two Java classes generated for each eBSC that is modeled in UML.  
In addition, each Entity eBSC will have an associated Primary Key and Value class 
that is generated as well. 

The following table describes the mapping of classes based on the class stereotype.

The naming convention for the generated classes is a follows:

n Class Only

The class will implement the respective interface and will be given the same 
name as the class in the model.

n Interface

The interface will be given the same name as the class in the model.

n Home

The Home interface/class will be the class name with the word “Home” 
appended. For example, ItemHome. For the Session and Entity objects this will 
be an interface that is used by the EJB Compiler to generate the home 
implementation.

n Implementation

Stereotype Class Only Interface Home Impl PK Value

BSC Belonging [x] [x] [x]

BSC Session [x] [x] [x]

BSC Entity [x] [x] [x] [x] [x]

BSC Workflow [x]

BSC Business Policy [x]



3 Development Process

3-32 BEA WebLogic Commerce Server Components Developer’s Guide

The Implementation class will be the class name with the letters "Impl" 
appended. For example, ItemImpl. You will add your business logic to each 
generated *Impl.java   file.

n Primary Key

The Primary Key class will be the class name with the letters "Pk" appended. for 
example, ItemPk.

n Value

The Value class will be the class name with the letters "Value" appended. For 
example,  ItemValue.

Primary Key and Value

For Entity Components there are two special classes that are generated.  The Primary 
Key class is a Java class with public members for each of the attributes that are 
stereotyped as <<BSC.PrimaryKey>>.   The primary key class is used by the create 
and findByPrimaryKey methods of the generated home class. 

Listing 3-2 demonstrates the usage of the PrimaryKey class.

Listing 3-2   Use of the PrimaryKey Class

public class OrderPk extends SmartKey implements java.io.Serializable
{
public String key;

public OrderPk(
 {
       super();
 }

   … more code here

}

public interface OrderHome extends SmartEJBHome
{
       public Order create(theory.smart.ebusiness.order.OrderPk orderPk )
              throws CreateException, RemoteException;
       Order findByPrimaryKey(theory.smart.ebusiness.order.OrderPk orderPk)
              throws RemoteException, FinderException;
}



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-33

The Value class is a Java class with public members for each of the attributes of the 
associated Entity.  This includes attributes that are specified through aggregation. This 
class is used by the generated Value accessor methods.  The purpose of these method 
is to simplify the retrieval of multiple attributes and reduce the overhead associated 
with remote method invocation. 

Listing 3-3 shows the use of Value objects in the code generated by the WLCS Smart 
Generator. Use caution when you use the setByValue method because there is no 
built-in Entity locking. When using the setByValue on an Entity object it is important 
to realize that the attributes which are members of the primary key cannot and will not 
be updated.  This is because as part of the identity of the Entity they are immutable.

Listing 3-3   Use of Value Objects

public class ItemValue extends SmartValue
{
       public String version;
       public String identifier;
       public String supplier;
       public String description;
       public theory.smart.axiom.units.Price price;
      public LinkedList qualities;

 protected ItemValue()
 {
   super();
 }
}

public interface Item extends ConfigurableEntity
{
public ItemValue getItemByValue() throws RemoteException;
public void setItemByValue(ItemValue value) throws RemoteException;
//...
}

Interfaces, Homes, and  Implementations

The Abstract Factory pattern requires that objects be accessed only through their 
interfaces and that the classes that implement those interfaces be acquired only through 
a factory class. The factory class in the case of EJB is referred to as a Home.  This has 
slightly different implications for EJB components and Belongings.  



3 Development Process

3-34 BEA WebLogic Commerce Server Components Developer’s Guide

When dealing with Session and Entity objects, run the EJB compiler to create the 
appropriate proxies stubs and skeletons. At deployment time the application server will 
be responsible for registering the home interface with the Java Naming and Directory 
Interface(JNDI) so that users of the EJBs will be able to create and find them. 

For Belongings, the home, interface, and implementation will reside wherever they are 
instantiated. Belongings are always passed by value. When a belonging is used as the 
parameter to a method of a Session or Entity it will be serialized and then reinstantiated 
on the server.  To make this happen the Java class associated with the belonging must 
be available in the class path on the server.  

The deployment implication is that the release of these classes must be coordinated 
between the client and the server.

The Home interface is where finder methods reside.  A finder method is one that 
locates one or more preexisting entities.  The WLCS Smart Generator will 
automatically generate a finder method based on the primaryKey, as shown in 
Listing 3-2.  

It is often necessary to create finders that search for entities based on the values of 
some other attributes. Adding an operation to the main class and stereotyping it as 
<<BSC.Home.Operation>> will accomplish this.  The resulting method will be 
generated into the associated home class.

Attributes and Accessor Methods

For each attribute that is specified in the WLCS Components model a pair of accessor 
methods are generated.  The get<AttributeName> method will retrieve the value of 
the attribute from the remote object and return it to the client.  The 
set<AttributeName> method will pass the attribute to the remote object where it will 
be updated.  In the case of  an Entity the entire object will be marked as dirty such that 
the application server will know that the changed values need to be persisted in the 
database. (The “isDirty” attribute is specific to BEA WebLogic Server.) This is true of 
Sessions to a lesser degree in that many application servers perform a serialization of 
Session beans for the purpose of optimizing the caching of Sessions.  

The following listing shows the generated accessors.



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-35

Listing 3-4   Generated Accessors

public interface Item extends ConfigurableEntity
{
  public String getSupplier() throws RemoteException;
  public String getIdentifier() throws RemoteException;
  public String getVersion() throws RemoteException;

  public String getDescription() throws RemoteException;
  public void setDescription(String description) throws 
RemoteException;
  public theory.smart.axiom.units.Price getPrice() throws 
RemoteException;
  public void setPrice(theory.smart.axiom.units.Price price) throws 
RemoteException;
}

public class ItemImpl extends ConfigurableEntityImpl
{
  public String version;
  public String identifier;
  public String supplier;

  public String description;
  public theory.smart.axiom.units.Price price;

 public String getDescription()
 {
   return (String) description;
 }
 public void setDescription(String description)
 {
   isDirty = true;
   this.description = (String) description;
 }
 public String getSupplier()
 {
   return supplier;
 }
 public String getIdentifier()
 {
   return identifier;
 }
 public String getVersion()
 {
   return version;
 }
 public theory.smart.axiom.units.Price getPrice()
 {



3 Development Process

3-36 BEA WebLogic Commerce Server Components Developer’s Guide

   return (theory.smart.axiom.units.Price) price.value();
 }
 public void setPrice(theory.smart.axiom.units.Price price)
 {
   isDirty = true;
   this.price = (theory.smart.axiom.units.Price) price.value();
 }
}

One omission in the previous sample code is that there are no methods for setting 
attributes that are stereotyped as part of the PrimaryKey for an entity.  This is because 
those attributes are part of the identity of the object and as such they are immutable,  
cannot be changed.

Accessors are generated for belongings as well.  The call to an accessor of a belonging 
is a direct call to the implementation object. 

All of the attributes must be serializable. This also ensures that they can be persisted.

Rules for Aggregation Notations in the UML Diagram

Aggregation allows for the definition of an attribute of a class by drawing a line 
between it and another class which will be a included as a member.  The following 
rules describe the allowable notations:

n A Belonging may only be contained by value (solid diamond).

n An Entity may only be contained by reference (hollow diamond).  In such cases 
the attribute is stored as a SmartHandle.

n A Workflow is similar to a Belonging and is always contained by value. A 
Workflow is persisted using a WorkflowContext.

n A BusinessPolicy is similar to a Belonging and is always contained by value. 
The accessors for the BusinessPolicy must be explicitly specified as business 
methods.

n If an aggregation is named, that name will be used by the WLCS Smart 
Generator when it creates the accessors for that attribute.  This is necessary so 
that multiple relationships to the same class can be modeled.



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-37

n If an aggregation is not named, the accessors will be created by the WLCS 
Smart Generator based on the name of the class that is being contained.

n Multiplicity may be defined as described in the section on “Collections.”

Collections

One of the most challenging issues when designing distributed object systems is 
implementing one-to-many relationships between objects.  When modeling eBSC in 
UML such relationships are described by stereotyping either an attribute or an 
aggregation with a multiplicity of zero or more. 

When an aggregation relationship is stereotyped as a particular collection type, the 
internal attribute reflects that choice and the appropriate accessors are generated.  The 
table below describes the options, a brief description of their usage, and the Java 2 
SDK class upon which the implementation is based.  See the Java 2 SDK 
documentation at http://java.sun.com/products/jdk/1.2/docs/index.html for more 
details about the features of each collection type.

Table 3-1  Collection Stereotype Mappings

Stereotype Name Purpose Collection Type

BSC.Collection.Set A collection that contains 
no duplicates and in which 
there is no implied 
ordering.

java.util.Collection.TreeSet

BSC.Collection.Array An ordered collection that 
is stored as contiguous 
elements.  This allows for 
optimal random access so 
that operations like 
re-sorting can be executed 
quickly.

java.util.Collection.ArrayList

BSC.Collection.List An ordered list that 
optimizes insertions at the 
ends.  

java.util.Collection.LinkedList



3 Development Process

3-38 BEA WebLogic Commerce Server Components Developer’s Guide

The accessors for collections are generated for each stereotype as described in 
Table 3-2.  The table uses a shorthand syntax to convey which accessors are generated 
when a given stereotype is chosen.  The token <Attribute> is replaced by the name of 
the attribute or aggregation as specified in the model.  In the case of methods that 
accept or return a collection, the type is stereotype specific as defined in Table 3-1.  
The details of the parameters and return values are implied so that the table itself can 
be concise.  While there is no true inheritance relationship,  it should be considered that 
Set serves as a basis for Array, which is a basis for List.  Map is different in that it 
supports lookup by key.

In the case where an aggregation to an entity is specified by value, an additional group 
of methods is generated.  These methods simplify the maintenance of the ownership 
relationship by ensuring that the underlying Entity is removed from its home in 
conjunction with the removal of its reference from the list.  The converse, add by value, 
is not supported because it would require that the containing entity be aware of the 
home of the entity to be added.  

The Set provides methods for adding and removing attributes from a collection, it 
provides a "bag" type collection mechanism. The Array provides random access 
methods and is optimized for  random access by integral position,  for this reason it is 
especially useful when multiple sort orders are required.  The List provides random 
access but is optimized for adding at the ends; this makes it good candidate for use 
when stacks or queues are needed.

The Map makes it possible to index a collection by a String. 

BSC.Collection.Map A collection that is indexed 
by string and optimized for 
quick lookup.  Iteration will 
be in ascending order 
according to the natural sort 
method.

java.util.Collection.TreeMap

Table 3-1  Collection Stereotype Mappings

Stereotype Name Purpose Collection Type



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-39

Table 3-2  Generated Accessors by Stereotype

Accessors Iterator Methods Entity by Value

Set add<Attribute>

add<Attributes>
   (<CollectionType>)

contains<Attribute>

is<Attributes>Empty

removeAll<Attributes>

get<Attributes>() :<CollectionType>

create<Attribute>Iterator

hasNext<Attribute>

getNext<Attribute>

remove<Attribute>At

remove<Attribute>ByValue

remove<Attributes>ByValueAt

removeAll<Attribute>ByValue

Array <All of Set > +

add<Attribute>( int position,…)

set<Attribute>( int position, …)

get<Attribute>( int position)

get<Attributes>( int from, int to)

remove<Attribute>( int position)

indexOf<Attribute>

lastIndexOf<Attribute>

<All of Set> +

add<Attribute>At

set<Attribute>At

getNext<Attribute>

getPrevious<Attribute>

getNext<Attribute>Index

getPrevious<Attribute>
     Index

<All of Set> +

remove<Attribute>ByValue(int)

List <All of Array> +

addFirst<Attribute>

addLast<Attribute>

getFirst<Attribute>

getLast<Attribute>

removeFirst<Attribute>

removeLast<Attribute>

<All of Array> <All of Array> +

removeFirst<Attribute>ByValue

removeLast<Attribute>ByValue

Map put<Attribute>(String key)

put<Attributes>(TreeMap)

get<Attribute>ByKey

get<Attributes>(String)

contains<Attribute>Key

contains<Attribute>Value

remove<Attribute>ByKey

removeAll<Attributes>

create<Attribute>Iterator

hasNext<Attribute>

getNext<Attribute>

remove<Attribute>At

<Accessors are defined using

WithKey instead of ByKey>

put<Attribute>ByValue

remove<Attribute>

      ByValueWithKey

removeAll<Attributes>ByValue



3 Development Process

3-40 BEA WebLogic Commerce Server Components Developer’s Guide

Design Decisions

Now that we have covered the basics, let’s discuss some of the choices that you will 
need to make during the design process. While it would be nice to allow the modeler 
to design without consideration for implementation details, the reality is that truly 
good designs take into account deployment-time issues. 

Use of Entities versus Sessions

One of the most common issues when modeling EJB is related to legacy systems.  
These systems very typically provide an API or message-based protocol to allow 
external systems to access their functionality.  The tendency in such cases is to simply 
model access to such systems as a Session component where each function in the API 
is a method of the Session bean.  In the case of legacy systems that store complex 
business data and relationships, this is a mistake.  In such cases it is best to model the 
internal objects as Entities where appropriate.  This will provide for a more 
understandable system definition that takes advantage of the important caching and 
transaction services features of the EJB specification.

Implementing Business Logic in an Entity

In general, Session beans provide a sensible mechanism for implementing "workflow" 
related business logic.  Workflow in this case is logic that coordinates the usage of any 
number of Entity beans.  This has the performance-improving effect of reducing the 
network overhead associated with executing extended operations remotely.  In the case 
where an Entity bean needs to perform complex business logic on classes that it 
references, it is best to implement that logic as a method of the Entity bean.  This places 
the business logic where it belongs,  with the data that it is manipulating.

Modeling from a Message Specification

There is a strong trend in the industry to translate message specifications, particularly 
XML DTDs, directly into business objects.  While this may be convenient, it may not 
result in a clean description of the business objects.  This is similar to attempt to model 
a system based solely on the API.  A better approach is to consider a message 
specification as providing insight into a single users perspective of the system.  One 



Step 6: If desired, change the model, and iterate

BEA WebLogic Commerce Server Components Developer’s Guide 3-41

approach is to consider the messages as method invocations to one or more underlying 
business objects.  The contents of the message can then be modeled as attributes of 
various underlying objects.

Changing Method Signatures

If you change the signature of a method it will not be properly managed by the WLCS 
Smart Generator. This happens because the round trip engineering feature works by 
matching the exact signature of the method and the parameters.  If a generated method 
is no longer present in the model it will simply be deleted, along with the associated 
implementation. To avoid this situation, you must make matching changes in the 
model and the source code.  As a consequence it is extremely important to consider the 
parameters to methods up front so as to avoid this problem.



3 Development Process

3-42 BEA WebLogic Commerce Server Components Developer’s Guide



BEA WebLogic Commerce Server Components Developer’s Guide 4-1

CHAPTER

4 Deploying Your 
Application

This chapter explains how to deploy your application. The following topics are 
presented:

n Defining the Persistence Type for your Deployment

n Using Bean-Managed Persistence

n The Oracle Reference Implementations 

n Deployment Sets Overview

n Deploying on Windows NT

n Deploying on Solaris

n Considerations in Bean-Managed Persistence

Defining the Persistence Type for your 
Deployment

Before you start the WebLogic application server, you must do the following:

n Set the environment variable DEPLOYMENT_SET to either BMP for Bean-Managed 
Persistence, or CMP for container-managed persistence. 



4 Deploying Your Application

4-2 BEA WebLogic Commerce Server Components Developer’s Guide

n In the directory where you installed WLCS, rename the appropriate 
weblogic-XXX.properties file to weblogic.properties, where XXX is 
either BMP or CMP. The renamed file should reside in the top-level WLCS 
installed directory, such as c:\WebLogicCommerce.

n In the directory where you installed WLCS, rename the 
weblogiccommerce-XXX.properties file to 
weblogiccommerce.properties, where XXX is either BMP or CMP. The renamed 
file should reside in the top-level WLCS installed directory, such as 
c:\WebLogicCommerce.

The WLCS EJB source code is independent of the persistence method, whether it is 
container-managed or any implementation of Bean-Managed Persistence.

The source code that uses JDBC instructions to persist Entity Beans is generated 
according to one of the BEA reference implementations of Bean-Managed Persistence. 
If you use the reference data model, the source code may be used as generated. The 
more likely case is that the JDBC source code may be used as templates to persist EJBs 
to a legacy data model. 

One of the advantages of the WLCS approach is that business logic and other core EJB 
source code is independent of the persistence implementation. This isolates business 
application development from database development and schema changes.

Using Bean-Managed Persistence

You can deploy the WebLogic Commerce Server examples using Bean-Managed 
Persistence.

This section discusses the following topics:

n Introduction

n The Oracle Reference Implementations

n Deployment Sets Overview

n Deploying on Windows NT

n Deploying on Solaris



The Oracle Reference Implementations

BEA WebLogic Commerce Server Components Developer’s Guide 4-3

Introduction

You can map WLCS to any database available through JDBC. BEA provides a 
reference implementation (deployment set) for Bean-Managed Persistence. This is 
available as a deployment options in the WebLogic Commerce Server release.

Here, we describe how to deploy the WebLogic Commerce Server software in the 
following environments:

n Deploying on Windows NT

n Deploying on Solaris

The example Oracle deployment set allows you to map the MyBuyBeans.com 
components to Oracle 8.0.5 and Oracle 8.1.5.

The WLCS Smart Generator has basic object/relational mapping features that generate 
up to 100% of the mapping from beans to a relational model using serialization. For 
complex databases the generated code serves as a starting point for reliable and 
scalable Bean-Managed Persistence that you can modify and fine-tune.

Note: For specific directions on deploying the MyBuyBeans.com example portal on 
Oracle, see the Installation Guide.

The Oracle Reference Implementations

The Oracle reference implementation uses Oracle’s object-relational features including 
database object types and nested tables. WebLogic Commerce Server are stored with 
a maximum transparency. You can query on every field in the example BuyBeans 
object model. This reference implementation is made available to help gauge the effort 
and complexity of more-detailed object-relational persistence.

If you have any comments, questions, or need help with a WebLogic-Oracle 805 
deployment, please contact support@theorycenter.com.

Oracle OCI Driver. The WebLogic-Oracle 805 deployment uses the Oracle Thin 
JDBC driver. If you want to use the Oracle OCI driver instead, you do not have to 
re-run the EJB compiler. You need to modify the weblogic.properties file to use 



4 Deploying Your Application

4-4 BEA WebLogic Commerce Server Components Developer’s Guide

the OCI Driver instead of the Thin driver, then re-start the server. All our beans use 
TRANSACTION_READ_COMMITED as the isolation-level, but if you change the 
isolation level then you need to re-run the EJB compiler and redeploy all the beans.

Additional Requirements

n MyBuyBeans.com examples successfully deployed using default 
container-managed persistence on the Windows NT or the Solaris operating 
systems. 

n Oracle Thin driver for JDBC. These drivers can be downloaded from the Oracle 
Web site at http://www.oracle.com/.

Deployment Sets Overview

Deployment Sets give you the freedom to develop your business application 
independently from the application server or database vendors.

This separates business logic from the development environment and gives you the 
freedom to choose to develop in one environment and deploy in another. Each 
Deployment Set pertains to a particular combination of an application server and 
database.

There is a deployment set available for each of BEA’s certified implementations on an 
application server and database. Deployment sets are available for:

n WebLogic 

l Using Container-Managed Persistence to a Cloudscape database 

l Using Bean-Managed Persistence to an Oracle 805 Database 

The following table illustrates the matrix of servers and databases.

Table 4-1  Servers and Databases

Databases Application Servers

Databases WebLogic NAS



Deploying on Windows NT

BEA WebLogic Commerce Server Components Developer’s Guide 4-5

Deploying on Windows NT

This reference example assumes you have installed the WebLogic Commerce Server 
software under c:\WebLogicCommerce.

1. Edit c:\WebLogicCommerce\bin\win32\sethome.bat 

l Change DEPLOYMENT_SET to BMP

l Set ORACLE_HOME to the Oracle installation directory.

2. Create the BuyBeans schema in your Oracle 8.0.5 or higher database.

l Use c:\WebLogicCommerce\db\oracle\create-p13n-oracle-nt.sql 

3. Change the weblogic.properties file. 

l Copy the file c:\WebLogicCommerce\weblogic-bmp.properties to 
c:\WebLogicCommerce\weblogic.properties 

4. Edit the file c:\WebLogicCommerce\weblogic.properties. 

l Search for the properties named 
weblogic.jdbc.connectionPool.CommercePool These are examples for 
using either the OCI or Thin driver. Modify the connection pools to use your 
database and password. See
http://www.weblogic.com/docs/classdocs/API_jdbct3.html#connpools for 
further help. 

5. Start the WebLogic server using 
c:\WebLogicCommerce\StartCommerce.bat. 

6. Load the database 

Cloudscape CMP n/a

Oracle 8.0.5 BMP under development

Table 4-1  Servers and Databases

Databases Application Servers



4 Deploying Your Application

4-6 BEA WebLogic Commerce Server Components Developer’s Guide

l Run the c:\WebLogicCommerce\bin\win32\DataLoader.bat 

7. Start your web browser. Enter the URL with the name and port of the machine 
where you deployed the WebLogic server. You will have to register a new user 
with username "cool" and password "bean". 

8. You are now using BEA’s Bean-Managed Persistence! 

Deploying on Solaris

This example assumes you have installed the WebLogic Commerce Server software in  
/WebLogicCommerce.

1. Edit /WebLogicCommerce/bin/solaris2/sethome.sh 

l Change DEPLOYMENT_SET to BMP

l Set ORACLE_HOME to the Oracle installation directory.

2. Create the BuyBeans schema in your Oracle 8.0.5 or higher database. 

l Use 
/WebLogicCommerce/db/oracle/misc/create-p13n-oracle-unix.sql 

3. Change the weblogic.properties file. 

l Copy the file /WebLogicCommerce/weblogic-bmp.properties to 
/WebLogicCommerce/weblogic.properties 

4. Edit the file /WebLogicCommerce/weblogic.properties. 

l Search for the properties named 
weblogic.jdbc.connectionPool.CommercePool These are examples for 
using either the OCI or Thin driver. Modify the connection pools to use your 
database and password. See
http://www.weblogic.com/docs/classdocs/API_jdbct3.html#connpools for 
further help. 

5. Start the WebLogic server using /WebLogicCommerce/StartCommerce.sh. 

6. Load the database 

l Run the /WebLogicCommerce/bin/solaris2/DataLoader.sh  



Considerations in Bean-Managed Persistence

BEA WebLogic Commerce Server Components Developer’s Guide 4-7

7. Start your web browser. Enter the url with the name and port of the machine 
where you deployed the WebLogic server. You will have to register a new user 
with username "cool" and password "bean". 

8. You are now using BEA’s Bean-Managed Persistence.

Considerations in Bean-Managed 
Persistence

The section discusses the design and implementation of Bean-Managed Persistence.

Container-Managed Persistence Versus Bean-Managed 
Persistence

In Container-Managed Persistence (CMP), you use the deployment descriptor to tell 
the container which attributes of the entity bean to persist.  Flexibility is therefore 
governed by the vendors of the container and database.

BMP gives you explicit control of the management of a bean instance’s state.  

The advantages of using Bean-Managed persistence may include:

n Performance advantages

n The ability to express complex relationships among data

n An interface to complex legacy SQL databases via JDBC

n An interface to other enterprise data sources such as CICS and MQ-Series

Some disadvantages for developers when you use BMP:

n You must explicitly code the ejbCreate(), ejbLoad(), and other EJB 
callback methods.

n You must explicitly code the finders methods in the home implementation.



4 Deploying Your Application

4-8 BEA WebLogic Commerce Server Components Developer’s Guide

n You  must understand, develop, and maintain a map between bean and database.

n The dependency risk of commiting a bean’s abstract business logic to a specific 
database type and structure.

Considerations when Persisting an EJB

The data model and access mechanisms have a strong impact on persistence logic. In 
particular, an entity bean’s primary key, attributes, and contained classes must be 
considered. Particular attention should be given to other entity beans that are contained 
by value or reference.

The principles discussed in this section use a framework of mapping EJB Objects to a 
relational data model using JDBC.  These principles may be generalized by the reader 
and applied to other mechanisms for modeling and accessing enterprise data.

Complexity of the Mapping Implementation

Consider the factors driving the map between EJB Objects and data storage.

A fixed database schema and a fixed object model may increase the complexity of the 
mapping implementation. Flexibility in either the database schema or the object model 
may correspondingly decrease this complexity.

Serializing objects or parts of objects may help decrease complexity of data mapping.  
The tradeoff is that the serialized data is “opaque” and is not easily accessed through 
third party tools such as report writers.

Dissecting and Persisting an Enterprise Java Bean

Primary Key

The Enterprise JavaBeans Specification requires that each Entity Bean has a class that 
represent attributes that uniquely identify an instance of that bean.  The implication is 
that these attributes are used in primary key columns or foreign key columns in a 
relational database.  These attributes cannot be serialized because they must be queried 
against.



Considerations in Bean-Managed Persistence

BEA WebLogic Commerce Server Components Developer’s Guide 4-9

Singleton Attributes

Attributes that have a 1:1 relationship with their class are easily mapped to columns or 
sets of columns in a relation that characterizes the bean.

Primitive Data Types

Attributes that correspond to JDBC primitive types, (for example:   
java.sql.Types.LONGVARCHAR, java.sql.types.INTEGER) easily map to 
columns in a relational table. If these attributes are serialized they cannot be easily be 
used in SQL reports or queries.  Serialization of these attributes may impact the        
complexity or performance of the object-relational map.  References to primitive data 
types are possible but discouraged.

Compound Data Types

Attributes that are java objects (not EJB’s) are easily decomposed into columns that 
correspond to the JDBC primitive types.  When these attributes are contained by value 
they can go in the table (or relation) where the EJB object is persisted.  Care must be 
taken to ensure they are deleted from the database when the containing EJB object is 
deleted.

A reference to an attribute can be established with a foreign key to a relation that stores 
the actual attribute. 

It is up to the application designers to determine application specific standards for 
creating and maintaining these keys. Application logic must ensure dangling 
references do not occur when the contained object is removed.  

Designers should also consider if the referenced data should have a foreign key back 
to the containing EJB. 

The complexity of this issue increases if many EJBs can reference the data.

Entity Beans

Entity Beans can contain other Entity Beans by value or reference.  The fields in an 
entity bean’s primary key class comprise a foreign key in the containing bean’s 
relation.  In addition, the containing bean needs access to the contained bean’s primary 
key class and home class.  This allows the containing bean to call          
findByPrimaryKey() to locate the contained bean.

Entity beans should be stored in their own relation, regardless of their containment by 
value or reference. 



4 Deploying Your Application

4-10 BEA WebLogic Commerce Server Components Developer’s Guide

Application logic must be developed so beans contained by value are not orphaned, 
and to avoid dangling references to beans contained by reference.    Designers should 
also consider if the target entity bean should have a foreign key back to the containing 
EJB.  The complexity of this issue increases if many EJB’s can reference the data.

Collections: Attributes Contained in a Many-to-One Relationship

Entity beans can contain other Java objects in many-to-one relationship.  These 
collections can be stored in a separate table or a nested table if the DBMS supports this.  
The separate table needs a foreign key to join with the containing entity bean.

Application logic needs to address issues raised by Java’s different collection classes.  
Many of these classes do not have a key to access the data.  Some of these classes 
support ordering which must the persistence logic must manage.  

Performance issues arise when persisting collections that have no primary key.  When 
one member of the collection changes, the entire collection must be deleted and 
updated into persistent storage.

The CRUD operations (create, refresh, update, delete) must be done atomically on all 
the changing attributes of an Entity bean.  This raises issues of transactional integrity 
and increased resources to support large transactions; for example: transaction logs, 
open cursors.

Collections can be serialized into a single column if the Java collection class 
implements the java.io.Serializable interface and the DBMS supports binary data 
types.  This may simplify the persistence logic.  In this case, whenever any member of 
the collection changes, the entire collection must be deleted and updated in the 
database.

Application logic needs to address orphan and dangling reference issues for objects 
contained by value and reference.  Serialization of collections contained by reference 
will increase application logic complexity.

Primitive Data Types

Collections of primitive data types raise few issues that have not been previously 
discussed. Collections of primitive data types by reference are an absurdity, because 
the only key can be the value of each element in the collection.

Compound Data Types



Considerations in Bean-Managed Persistence

BEA WebLogic Commerce Server Components Developer’s Guide 4-11

Collections of compound data types that are contained by value can be serialized or 
stored in a separate table from the Entity Bean.  If they are stored in a separate table, 
they need a foreign key to join with the containing entity bean.

Collections of compound data types by reference are possible if there is some unique 
key that identifies each element in the collection. The collection of keys would be 
serialized or stored in a separate table from the containing Entity Bean.  If the keys are 
stored in a separate table, this table also needs a foreign key to the containing Entity 
Bean(s).  This makes it possible to avoid dangling references when the object is 
deleted.

The complexity of the object-relational mapping increases when the objects in a 
collection have collections themselves.  Many joins may be required to update and 
refresh the data.  Serialization may reduce this complexity.

Entity Beans

Collections of Entity Beans are simplified because of requirement that each Entity 
Bean have a primary key class.  The collection of primary keys needs to be persisted 
in serialized or table form.  

As previously stated, Entity Beans should be stored in their own relation.  The 
containing class needs to have access to the contained bean’s home class and primary 
key class to invoke findByPrimaryKey() to locate the contained bean.

When entity beans are contained by value, and persisted in a table, this table may not 
need a foreign key to the containing bean.  When they are contained by reference, the 
table should have a foreign key to the containing Entity Bean(s).  This makes it 
possible to avoid dangling references when the contained entity bean.



4 Deploying Your Application

4-12 BEA WebLogic Commerce Server Components Developer’s Guide



BEA WebLogic Commerce Server Components Developer’s Guide 5-1

CHAPTER

5 Component Examples

The section contains the following topics:

How to Build and Run the Examples

Foundation and Axiom
Package examples.axiom
Package examples.axiom Description
Belongings and EJBs
The Abstract Factory Pattern
Axiom Example

Workflow
Package examples.workflow Description
Workflow
Workflow Example

BusinessPolicy
Package examples.businesspolicy
Package examples.businesspolicy Description
ItemPriceCalculationPolicy and BusinessPolicy
BusinessPolicy Example

PassByValue
Package examples.passbyvalue
Package examples.passbyvalue Description
Getting and Setting Attributes Using pass-by-value
Pass By Value Example



5 Component Examples

5-2 BEA WebLogic Commerce Server Components Developer’s Guide

How to Build and Run the Examples

To become better acquainted with the workings of an EJB-based application built 
using our WebLogic Commerce Server (WLCS), follow these examples.

Note: To build and run any of these examples, you must have the following in your 
CLASSPATH: 

n theory-smart-generator.jar, theory-axiom-foundation.jar, 

theory-ebusiness.jar, theory-examples.jar  Each of these jar 
files can be found in the lib directory under the WebLogic Commerce 
Server installation directory. 

n Application Server classes (default classpath required by WebLogic 
Server) 

The fastest way to run any of the examples is by using the scripts provided in 
...\bin\win32\*.bat or ..\bin\solaris2\*.sh (Found under the WLCS 
installation directory)

Foundation and Axiom

This example demonstrates the core technology: Belongings, Entity Beans, 
Collections and RemoteIterators. 

Package examples.axiom

The Axiom example shows the use of WLCS Axiom package of WebLogic Commerce 
Server.



Foundation and Axiom

BEA WebLogic Commerce Server Components Developer’s Guide 5-3

Package examples.axiom Description

The Axiom example shows the use of the WLCS components Axiom package. 

This example demonstrates: 

l The Abstract Factory Pattern 

l How to use EJB WebLogic Commerce Server 

l Usage of Belonging WebLogic Commerce Server 

l Remote Iterators 

Belongings and EJBs

The Axiom package contains light weight components known as belongings, as well 
as Entity and Session EJB components. Belongings can be aggregated to other 
components by value. EJBs are used alone or aggregated to other components by 
reference or value.

The Abstract Factory Pattern 

All WebLogic Commerce Server use the abstract factory pattern. The principle is very 
simple: Don’t use new() to create an object, instead, you use Home.create(). The 
Abstract factory pattern is implemented as the "Home" for EJBs and as a Java class 
with static methods for Belongings.

Table 5-1  Axiom Package Summary

Class Description

AxiomExample Shows how to use the WLCS components Axiom 
package. 



5 Component Examples

5-4 BEA WebLogic Commerce Server Components Developer’s Guide

Axiom Example

The example application performs the following steps: 

1. Find or create or a Customer component 

2. Create belongings 

3. Add belongings to the Customer 

4. Use a Remote Iterator to iterate through the belongings 

5. Remove the Belongings 

To get the most out of this example, first read through AxiomExample.java on our 
web site��Then you can build it and run it.�

Note: Be sure to set your CLASSPATH as described in “How to Build and Run the 
Examples” on page 5-2.

Workflow

Workfow, eBusinessSession, and eBusinessSessionManager components. The 
Workflow maintains state for the session and guides the user through the process. 

Package examples.workflow 

Shows the use of WLCS Workflow components.

This example demonstrates: 

n How to use WLCS components. 

n Usage of the Workflow component. 

n Usage of eBusinessSession and eBusinessSessionManager.



Workflow

BEA WebLogic Commerce Server Components Developer’s Guide 5-5

Package examples.workflow Description 

Shows the use of the WLCS Workflow components.

This example demonstrates: 

n How to use WLCS components. 

n Usage of the Workflow component. 

n Usage of eBusinessSession and eBusinessSessionManager. 

Workflow

This example shows the use of a WLCS component that has a workflow associated to 
it. The workflow states and transitions are modeled with Rational Rose. For this 
examples, we’ll use the EBusinessSession Component. This component has a 
workflow that guides it through the different stages of an online e-business session. If 
you look at the Rose model file for the ebusiness.session package, you will find that 
EBusinessSessionWorkflow has a state diagram associated to it. The workflow 
logic can be implemented in any way you want; however, WLCS provides a reference 
implementation. For the reference implementation, for each component with the 
BSC.Workflow stereotype, all the states and transitions in the Rose model are 
generated into a complete state machine by the SmartGenerator, so you can use it 
immediately, without any hand-coding of the workflow states or transitions. 

In this example, we also use the EBusinessSessionManager and show how a 
"manager" session bean can simplify the usage of an entity bean 

Table 5-2  Workflow Package Summary

Class Description

WorkflowExample  Workflow example.



5 Component Examples

5-6 BEA WebLogic Commerce Server Components Developer’s Guide

Workflow Example

The workflow example application performs the following steps: 

1. Create a Guest Session component using the EBusinessSessionManager. 

2. Try options such as enroll, cancellEnrollment, becomeGuest, and 
disableAuthentication. (You can find these transitions in the 
EBusinessSessionWorkflow state diagram) 

3. Register as a new or Login as an existing Customer 

4. Perform more options (authenticate, and disableAuthentication) 

To get the most out of this example, first read through WorkflowExample.java on 
our web site�then you can build it and run it�

Note: Be sure to set your CLASSPATH as described in “How to Build and Run the 
Examples” on page 5-2.

BusinessPolicy

Pluggable Methods, Strategy Pattern, or Individual Instance Method. No matter what 
you call it, it is a powerful design tool. This example demonstrates how 
ConfigurableEntity beans and BusinessPolicy work together to create very flexible 
solutions. 

Package examples.businesspolicy

BusinessPolicy Example shows the use of WLCS WebLogic BusinessPolicy 
Components.



BusinessPolicy

BEA WebLogic Commerce Server Components Developer’s Guide 5-7

 

Package examples.businesspolicy Description 

The BusinessPolicy example shows the use of the WLCS BusinessPolicy components. 

This example demonstrates: 

n How to use the WLCS components

n How to add a default Policy to an Item using the WLCS BusinessPolicy 
components

n How to use a non-default policy to change the price of an item 

ItemPriceCalculationPolicy and BusinessPolicy

This example shows the use of 
theory.smart.ebusiness.item.ItemPriceCalculationPolicy which is an 
extension to theory.smart.foundation.BusinessPolicy. A BusinessPolicy 
consists of rules and regulations, specific to your business. These rules can be 
encapsulated into a component and then added to a Component such as an Item.

This example demonstrates the concept of "Pluggable Methods", better known as 
policies. When you create your components, you will realize that many times you want 
to alter the component behaviour based on external conditions that you can not 
evaluate at development time. Reusability, extensibility and rapid development and 
enhancement are typical problems that can be solved using policies. BusinessPolicy 

Table 5-3  BusinessPolicy Package Summary

Class Description

AprilFoolsDiscountPolicy This class is a custom item pricing calculation policy. 

BusinessPolicyExample This example demonstrates the concept of "Pluggable 
Methods", better known as policies. 

SeniorCitizenDiscountPolicy This class is a custom item pricing calculation policy.



5 Component Examples

5-8 BEA WebLogic Commerce Server Components Developer’s Guide

is the WLCS implementation of the Policy and Strategy design patterns. Using this 
concepts allows you to replace the default policy at runtime. The policy is stored as a 
property for the item. 

In this example we will use an item component. The item component has a pricing 
policy. The item’s price is calculated based on a given quantity and the pricing policy. 
You can replace the pricing policy to alter the way the price is calculated for the item. 
This means that you can modify the behaviour of the item by plugging in a method that 
calculates the price the way you want If you do not provide a pricing policy, a default 
policy will be used. The example creates an item. It then sets the 
SeniorCitizenDiscountPolicy as the default pricing policy for the item. Then the 
item’s price is calculated using the default policy. Finally, it modifies the item’s 
quantity and once again, and calculates the price by using the 
AprilFoolsDiscountPolicy policy. To better understand this example, first go 
through the Axiom example first.

The concept is also used in our BuyBeans.com online store where different pricing 
policies of BuyBeans are used for calculating the prices of 
examples.buybeans.item.BeanieBaby, 
examples.buybeans.item.CoffeeBean, and 
examples.buybeans.item.JellyBean components. They use 
BeanieBabyPricePolicy, CoffeeBeanPricePolicy, and 
JellyBeanPricePolicy respectively.

BusinessPolicy Example

The BusinessPolicy example application performs the following steps: 

1. Find or create or an Item component 

2. Set the Item’s Quantity. 

3. Add the SeniorCitizenDiscountPolicy to the Item as the default pricing 
policy and change the Item’s price. 

4. Change the Item’s Quantity. 

5. Change the item’s price using the AprilFoolsDiscountPolicy. 

To get the most out of this example, first read through�

BusinessPolicyExample.java on our web site��Then you can build it and run it.�



PassByValue

BEA WebLogic Commerce Server Components Developer’s Guide 5-9

Note: Be sure to set your CLASSPATH as described in “How to Build and Run the 
Examples” on page 5-2.

PassByValue

Sometimes it is useful to get or set all of the attributes of an object with a single method 
call. When dealing with remote objects that are persisted in the database, this results in 
a tremendous performance gain. BEA's WebLogic Commerce Server components give 
you that flexibility. 

Package examples.passbyvalue 

Shows the use of BEA WebLogic Commerce Server components’ pass-by-value 
feature. This example demonstrates:

n How to use WLCS components.

n How to use pass-by-value
 

Package examples.passbyvalue Description

Shows the use of BEA WebLogic Commerce Server' pass-by-value feature.This 
example demonstrates: 

n How to use WLCS components

n How to get and set values for WebLogic Commerce Server components using 
pass-by-value

Table 5-4  PassByValue Class Summary

Class Description

Pass-by-value example.  Pass-by-value example.



5 Component Examples

5-10 BEA WebLogic Commerce Server Components Developer’s Guide

Getting and Setting Attributes Using pass-by-value

This example shows how you can get and set the attributes of an Entity Component by 
value. What this means is that instead of getting/setting one attribute at a time, you can 
request that a local copy of all attributes be sent to you directly, in one remote call. You 
can then read and modify this "Value object" or local copy, and send it back in one 
remote call. This has tremendous performance advantages compared to accessing one 
attribute at a time It is also important to be able to set many attributes within a single 
transaction without having to begin/commit a JTS User Transaction from the client. In 
short, pass-by-value is really handy! Our implementation is tightly-coupled: that 
means that at compile time, we enforce type consistency for getting/setting attributes 
in the value objects. This has an advantage over "parameter sets"and "late-binding" 
implementations where you pass around a set of name/value pairs: with these 
approaches, if you change the type of an attribute your client will still compile but 
crash at runtime. This won’t happen using WebLogic Commerce Server, since the 
value object will change accordingly and the client would not compile if an assignment 
was illegal. In addition, our value objects are generated by BEA SmartGenerator 
(based on a UML model), so they don’t add any maintenance costs. 

Pass By Value Example

The PassByValue example application performs the following steps: 

n Find or create or a Customer component 

n Create a value object and get the CustomerValue. 

n Change Customer information 

n Set the CustomerValues 

To get the most out of this example, first read through�PassByValueExample.java 

on our web site��Then you can build it and run it.�

Note: Be sure to set your CLASSPATH as described in “How to Build and Run the 
Examples” on page 5-2.



BEA WebLogic Commerce Server Components Developer’s Guide I-1

Index

A
abstract factory pattern 5-3
accessor method, generating 3-34
accounting EJB 2-1
adding business logic 3-15
advantages of Smart Generator 3-7
aggregation notation

overview 3-29
rules for 3-36

application, deploying 3-18
array collection 3-37
attribute

and accessor method 3-34
singleton 4-9

axiom example 5-2

B
BEA, contacting ix
bean-managed persistence 4-2, 4-7
belonging

in an example 5-3
overview 3-22

BSC.Collection.Array 3-37
BSC.Collection.List 3-37
BSC.Collection.Map 3-38
BSC.Collection.Set 3-37
business logic

adding 3-15
in an entity 3-40

business policy

example 5-6
overview 3-24

C
catalog EJB 2-3
changing

method signature 3-41
model 3-20

class
generating 3-31
UML notation for 3-26

CLASSPATH for examples 5-2
collection 3-37

attribute 4-10
java.util.Collection.ArrayList 3-37
java.util.Collection.LinkedList 3-37
java.util.Collection.TreeMap 3-38
java.util.Collection.TreeSet 3-37

component
catalog 2-1
overview 1-2
package 1-11

component type
belonging 3-22
business policy 3-24
configurable entity 3-23
entity 3-23
session 3-22
workflow 3-24

configurable entity 3-23



I-2 BEA WebLogic Commerce Server Components Developer’s Guide

configuring Smart Generator project 3-10
contacting BEA ix
copying model 3-5
customer contact EJB 2-1
customer interaction EJB 2-2
customer support EJB 2-4

D
defining

persistence type 4-1
Smart Generator project 3-8

deploying 4-1
application 3-18
on Solaris 4-6
on Windows NT 4-5

deployment set 4-4
documentation, where to find it viii

E
editing Java source files 3-15
EJB

accounting 2-1
catalog 2-3
customer contact 2-1
customer interaction 2-2
customer support 2-4
gift registry 2-2
inventory 2-3
invoicing 2-3
messaging 2-1
order entry 2-3
overview 1-2
package 1-11
session management 2-3
shipping 2-3
shopping advisor 2-4
state machine 2-2
theory.smart.axiom.accounting 2-1
theory.smart.axiom.contact 2-1

theory.smart.axiom.messaging 2-1
theory.smart.axiom.units 2-2
theory.smart.axiom.util 2-2
theory.smart.axiom.workflow 2-2
theory.smart.ebusiness.customer 2-2
theory.smart.ebusiness.giftregistry 2-2
theory.smart.ebusiness.inventory 2-3
theory.smart.ebusiness.invoicing 2-3
theory.smart.ebusiness.item 2-3
theory.smart.ebusiness.order 2-3
theory.smart.ebusiness.session 2-3
theory.smart.ebusiness.shipping 2-3
theory.smart.ebusiness.shoppingAdviso

r 2-4
theory.smart.ebusiness.troubleticket 2-4
unit conversion 2-2
utilities 2-2
workflow 2-2

EJB compiler, running 3-17
entity 3-23

business logic 3-40
versus session 3-40

example
all 5-1
axiom 5-2
business policy 5-6
CLASSPATH 5-2
pass by value 5-9
workflow 5-4

exporting model 3-5

F
features 1-4
foundation package 3-21

G
generating

accessor method 3-34
class 3-31



BEA WebLogic Commerce Server Components Developer’s Guide I-3

home 3-33
implementation 3-33
interface 3-33
Java source files 3-13
Primary Key 3-32

gift registry EJB 2-2

H
home, generating 3-33

I
implementation

generating 3-33
Oracle reference 4-3

inheritance, UML notation for 3-28
interface, generating 3-33
inventory EJB 2-3
invoicing EJB 2-3

J
Java source files

editing 3-15
generating 3-13

java.util.Collection.ArrayList 3-37
java.util.Collection.LinkedList 3-37
java.util.Collection.TreeMap 3-38
java.util.Collection.TreeSet 3-37

L
linked list collection 3-37

M
map collection 3-38
mapping implementation 4-8
message specification, modeling 3-40
messaging EJB 2-1
method signature, changing 3-41

model
changing 3-20
copying 3-5
exporting 3-5
from message specification 3-40

modeling notation 3-25

N
notation 3-25

O
Oracle reference implementation 4-3
order entry EJB 2-3

P
package

overview 1-11
UML notation for 3-30

pass by value example 5-9
pattern, abstract factory 5-3
persistence

bean-managed 4-2
considerations 4-7
defining type 4-1

Primary Key
generating 3-32
in a persistent EJB 4-8

printing product documentation viii
project

configuring 3-10
defining 3-8

R
related information ix
rules

for aggregation notation 3-36
for Smart Generator 3-30

running



I-4 BEA WebLogic Commerce Server Components Developer’s Guide

EJB compiler 3-17
Smart Generator 3-7

S
server

preparing to start 3-19
starting 3-18

session
overview 3-22
versus entity 3-40

session management EJB 2-3
set

collection 3-37
deployment 4-4

shipping EJB 2-3
shopping advisor EJB 2-4
singleton attributes 4-9
Smart features 3-24
Smart Generator

advantages 3-7
configuring project 3-10
defining project 3-8
rules 3-30
running 3-7

SmartHandle 3-25
SmartKey 3-24
SmartValue 3-25
Solaris deployment 4-6
specifications 1-4
starting server 3-18
state machine EJB 2-2
stereotype 3-21

BSC.Collection.Array 3-37
BSC.Collection.List 3-37
BSC.Collection.Map 3-38
BSC.Collection.Set 3-37
UML notation for 3-26

support, technical ix

T
theory.smart.axiom.accounting 2-1
theory.smart.axiom.contact 2-1
theory.smart.axiom.messaging 2-1
theory.smart.axiom.units 2-2
theory.smart.axiom.util 2-2
theory.smart.axiom.workflow 2-2
theory.smart.ebusiness.customer 2-2
theory.smart.ebusiness.giftregistry 2-2
theory.smart.ebusiness.inventory 2-3
theory.smart.ebusiness.invoicing 2-3
theory.smart.ebusiness.item 2-3
theory.smart.ebusiness.order 2-3
theory.smart.ebusiness.session 2-3
theory.smart.ebusiness.shipping 2-3
theory.smart.ebusiness.shoppingAdvisor 2-4
theory.smart.ebusiness.troubleticket 2-4
tree map collection 3-38
tree set collection 3-37
type of component

belonging 3-22
business policy 3-24
configurable entity 3-23
entity 3-23
session 3-22
workflow 3-24

U
UML notation for

aggregation 3-29
class 3-26
inheritance 3-28
package 3-30
stereotype 3-26

unit conversion EJB 2-2
utilities EJB 2-2

W
WebLogic Application Server



BEA WebLogic Commerce Server Components Developer’s Guide I-5

preparing to start 3-19
starting 3-18

WebLogic Commerce Server
components 1-2
features 1-4
specifications 1-4

Windows NT deployment 4-5
workflow

EJB 2-2
example 5-4
stereotype 3-24


	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Commerce Server Components
	What are Commerce Server components?
	A Quick Look at a Few Key Components
	Customer and Session
	ShoppingAdvisor and Items
	Order Fulfillment

	Features at a Glance
	Specifications
	eCommerce brings tremendous opportunity and new challenges.
	Build versus Buy: WLCS components offer the best of both solutions.
	How do WLCS components work?
	Applications built with WLCS components leverage a scaleable, high-performance Architecture.
	Components are easy to use and customize.
	Base your eCommerce applications on our smart models and generated EJBs.
	Components use industry-standard Design and Analysis Patterns.
	Components are neatly organized in Component Packages.

	MyBuyBeans.com Example

	2 Components Catalog
	3 Development Process
	What is the overall development process?
	Before You Begin: Copy the Model
	Step 1: Export the WLCS model in Rational Rose
	Step 2: Run the WLCS Smart Generator
	Advantages
	Define a New Project
	Configure the Project
	Generate the Java Sources

	Step 3: Add Your Business Logic: Edit the Java files and Compile Them
	Step 4: Run the EJB Compiler
	Step 5: Deploy your application, and start the server
	Before You Start the WebLogic Application Server
	Starting the Server

	Step 6: If desired, change the model, and iterate
	Do I have to be a Rational Rose or UML Expert?
	Understanding the Foundation Package and Stereotypes
	Belongings
	Sessions
	Entity
	Configurable Entity
	Business Policy
	Workflow
	Smart Features

	Understanding the Basic UML Modeling Notations
	Classes and Stereotypes
	Inheritance
	Aggregation and Multiplicity
	Packages

	WLCS Smart Generator Rules: Factors that Influence the Generated Java Files
	Classes
	Primary Key and Value
	Interfaces, Homes, and Implementations
	Attributes and Accessor Methods
	Rules for Aggregation Notations in the UML Diagram
	Collections

	Design Decisions
	Use of Entities versus Sessions
	Implementing Business Logic in an Entity
	Modeling from a Message Specification
	Changing Method Signatures



	4 Deploying Your Application
	Defining the Persistence Type for your Deployment
	Using Bean-Managed Persistence
	Introduction

	The Oracle Reference Implementations
	Additional Requirements

	Deployment Sets Overview
	Deploying on Windows NT
	Deploying on Solaris
	Considerations in Bean-Managed Persistence
	Container-Managed Persistence Versus Bean-Managed Persistence
	Considerations when Persisting an EJB
	Complexity of the Mapping Implementation
	Dissecting and Persisting an Enterprise Java Bean



	5 Component Examples
	How to Build and Run the Examples
	Foundation and Axiom
	Package examples.axiom
	Package examples.axiom Description
	Belongings and EJBs
	The Abstract Factory Pattern
	Axiom Example

	Workflow
	Package examples.workflow Description
	Workflow
	Workflow Example

	BusinessPolicy
	Package examples.businesspolicy
	Package examples.businesspolicy Description
	ItemPriceCalculationPolicy and BusinessPolicy
	BusinessPolicy Example

	PassByValue
	Package examples.passbyvalue
	Package examples.passbyvalue Description
	Getting and Setting Attributes Using pass-by-value
	Pass By Value Example


	Index

