0?7,

r
S’ 7
L/

BEAWebLogic
SIP Server-

Developing Applications
with WebLogic SIP
Server

Version 2.2
Revised: May 16, 2006

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA Aqualogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Overview of SIP Servlets

Whatisa SIP Serviet? 1-1
Differences from HTTP Servlets. i i 1-3
Multiple ReSponses.ootit i e 1-3
Receiving Responses 1-4
Proxy FUNCtions i et e 1-6
Message Body. oo e 1-6
ServletRequest. 1-7
ServletResponse. 1-7
SIpServIetMesSage. . . o v ot e 1-8

Roles of a Servlet Container. i, 1-8
Application Management.outt et e 1-8

SIP MESSAZING . . . o o ettt et e e ettt e 1-10

Utility Functions 1-13

2. Requirements and Best Practices for WebLogic SIP Server
Applications

Overview of Developing and Porting Applications for WebLogic SIP Server2.2. 2-1
Applications Must Not Create Threads i, 2-2
Servlets Must Be Non-Blocking 2-2
Store all Application Data in the Session.io.... 2-3
All Session Data Must Be Serializable 2-3

Developing Applications with WebLogic SIP Server v

4

(@p]

vi

.................... Use setAttribute() to Modify Session Data in “No-Call” Scope2-3

send() Calls Are Buffered i
Mark SIP Servlets as Distributable

. Composing SIP Applications

Overview of SIP Application Compositionc.oouiiiniineennen. ..
Application Composition Model.
Sample Composer Applicationttt

Troubleshooting Application CompoSition.c.ovuiiinienenneennennen..

. Developing Converged Applications

Overview of Converged Applications.ouvt ittt
Assembling and Packaging a Converged Application
Working with SIP and HTTP Sessions.ovit it

Modifying the SipApplicationSession.ovvuit it
Using the Converged Application Example

. Using the Profile Service API (Diameter Sh Interface)

Overview of Profile Service API and Sh Interface Support
Enabling the Sh Interface Provider. i,
Overview of the Profile Service APIL.
Creating a Document Key for Application-Managed Profile Data.
Using a Constructed Document Key to Manage Profile Data

Monitoring Profile Data with ProfileListener.

. Using Content Indirection in SIP Servlets

Overview of Content Indirection.t

Developing Applications with WebLogic SIP Server

Using the Content Indirection APT, 6-2

Additional Information 6-2

/. Securing SIP Servlet Resources

Overview of SIP Servlet Securityt 7-1
WebLogic SIP Server Role Mapping Features 7-2
Using Implicit Role Assignment.ot 7-3
Assigning Roles Using security-role-assignmentc.oouiiunenn ... 7-4

Important Requirement for WebLogic SIP Server2.2.............. 7-4

Assigning Roles at Deployment Time, 7-6

Dynamically Assigning Roles Using the Administration Console 7-6
Assigning run-as Roles 7-7
Role Assignment Precedence for SIP ServletRoles 7-8
Debugging Security Features. i 7-9
weblogic.xml Deployment Descriptor Reference 7-9

8. Developing SIP Servlets Using Eclipse

OVEIVIEW . o o ettt e e e e e e e e e e 8-1
SIP Servlet Organizationoiuiutiit i, 8-2
Setting Up the Development Environment 8-2
Creating a WebLogic SIP Server Domain 8-3
Configure the Default Eclipse JVM 8-3
Creating a New Eclipse Project i, 8-3
Creatingan AntBuild File. 8-4
Building and Deploying the Project 8-6
Debugging SIP Serviets.t 8-6

9. Enabling Access Logging

OVEIVIEW .« . o ottt e e 9-1

Developing Applications with WebLogic SIP Server vii

Enabling Access Loggingt 9-2

Specifying a Predefined Logging Level. 9-2
Customizing Log Records 9-3
Specifying Content Types for Unencrypted Logging. 9-5
Example Access Log Configurationand Output., 9-6

10.Generating SNMP Traps from Application Code

OVEIVIEW . . o oottt e e e e e e 10-1
Requirement for Accessing SipServletSnmpTrapRuntimeMBean. 10-2
Obtaining a Reference to SipServletSnmpTrapRuntimeMBean. 10-3
Generating a SNMP Trapot 10-5

viii Developing Applications with WebLogic SIP Server

Overview of SIP Servlets

What is a SIP Serviet?

The SIP Servlet API is a part of JAIN APIs and being standardized as JSR116 of JCP (Java
Community Process). The SIP Servlet API version 1.0 was published in February, 2003.

Note: In this document, the term “SIP Servlet” is used to represent the API, and “SIP servlet”
is used to represent an application created with the API.

J2EE provides Java Servlet that is a main technology of building Web applications. Although
Java Servlet is used only to develop HTTP protocol-based applications on a Web application
server, it basically has functions as a generic API for server applications. SIP Servlet is defined
as the generic servlet API with SIP-specific functions added.

Figure 1-1 Servlet APl and SIP Serviet APl

SIP Servlet

HTTP Servlet

Generic Servlet

Java 2

Developing Applications with WebLogic SIP Server 1-1

Overview of SIP Servlets

1-2

SIP Servlets are very similar to HTTP Servlets, and HTTP servlet developers will quickly adapt
to the programming model. The service level defined by both HTTP and SIP Servlets is very
similar, and you can easily design applications that support both HTTP and SIP. Listing 1 shows
an example of a simple SIP servlet.

Listing 1-1 List 1: SimpleSIPServlet.java

package com.bea.example.simple;
import java.io.IOException;
import javax.servlet.*;

import javax.servlet.sip.*;
public class SimpleSIPServlet extends SipServlet {

protected void doMessage (SipServletRequest req)
throws ServletException, IOException

SipServletResponse res = req.createResponse (200);

res.send () ;

}

The above example shows a simple SIP servlet that sends back a 200 OK response to the SIP
MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet have many things
in common:

1. Servlets must inherit the base class provided by the API. HTTP servlets must inherit
HttpServlet, and SIP servlets must inherit SipServlet.

2. Methods doXxx must be overridden and implemented. HTTP servlets have doGet/doPost
methods corresponding to GET/POST methods. Similarly, SIP servlets have doXxx methods
corresponding to the method name (in the above example, the MESSAGE method).
Application developers override and implement necessary methods.

3. The lifecycle and management method (init, destroy) of SIP Servlet are exactly the same as
HTTP Servlet. Manipulation of sessions and attributes is also the same.

4. Although not appeared in the API, there is a deployment descriptor called sip.xml for a SIP
servlet, which corresponds to web.xml. Application developers and service managers can edit
this file to configure applications using multiple SIP servlets.

Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

However, there are several differences between SIP and HTTP servlets. A major difference
comes from protocols. The next section describes these differences as well as features of SIP
servlets.

Differences from HTTP Serviets

Multiple Responses

You might notice from the List 1 that the doMessage method has only one argument. In HTTP,
a transaction consists of a pair of request and response, so arguments of a doXxx method specify
a request (HttpServletRequest) and its response (HttpServletResponse). An application takes
information such as parameters from the request to execute it, and returns its result in the body of
the response.

protected void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

Figure 1-2 Example of Request and Response in SIP

Server

INVITE

100 Trying

180 Ringing

F

200 OK

F

The above figure shows an example of a response to the INVITE request. In this example, the
server sends back three responses 100, 180, and 200 to the single INVITE request. To implement
such sequence, in SIP Servlet, only a request is specified in a doXxx method, and an application
generates and returns necessary responses in an overridden method.

Currently, SIP Servlet defines the following doXxx methods:

protected void doInvite (SipServletRequest req);

Developing Applications with WebLogic SIP Server 1-3

Overview of SIP Servlets

protected
protected
protected
protected
protected
protected
protected
protected

protected

void

void

void

void

void

void

void

void

void

doAck (SipServletRequest req);
doOptions (SipServletRequest req);
doBye (SipServletRequest req);
doCancel (SipServletRequest req);
doSubscribe (SipServletRequest req);
doNotify(SipServletRequest req);
doMessage (SipServletRequest req);
doInfo (SipServletRequest req);

doPrack (SipServletRequest req);

Receiving Responses

One of the major features of SIP is that roles of a client and server are not fixed. In HTTP, Web
browsers always send HTTP requests and receive HTTP responses: They never receive HTTP
requests and send HTTP responses. In SIP, however, each terminal needs to have functions of
both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

Figure 1-3 Relationship between Client and Server in SIP

) INVITE
calling >

100 Trying

Fy

180 Ringing

Client
Fy
Server

200 OK

F

ACK

BYE disconnecting

F

Server
Client

200 OK

v

The above example indicates that a calling or disconnecting terminal acts as a client. In SIP, roles
of a client and server can be changed in one dialog. This client function is called UAC (User
Agent Client) and server function is called UAS (User Agent Server), and the terminal is called
UA (User Agent). SIP Servlet defines methods to receive responses as well as requests.

protected void doProvisionalResponse (SipServletResponse res);
protected void doSuccessResponse (SipServletResponse res);
protected void doRedirectResponse (SipServletResponse res);
protected void doErrorResponse (SipServletResponse res);

These doXxx response methods are not the method name of the request. They are named by the
type of the response as follows:

e doProvisionalResponse—A method invoked on the receipt of a provisional response (or
1xx response).

e doSuccessResponse—A method invoked on the receipt of a success response.

e doRedirectResponse—A method invoked on the receipt of a redirect response.

Developing Applications with WebLogic SIP Server 1-5

Overview of SIP Servlets

e doErrorResponse—A method invoked on the receipt of an error response (or 4xx, 5xx, 6Xx
responses).

Existence of methods to receive responses indicates that in SIP Servlet requests and responses are
independently transmitted an application in different threads. Applications must explicitly
manage association of SIP messages. An independent request and response makes the process
slightly complicated, but enables you to write more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these functions, SIP
servlets can not only wait for requests as a server (UAS), but also send requests as a client (UAC).

Proxy Functions

Another function that is different from the HTTP protocol is “forking.” Forking is a process of
proxying one request to multiple servers simultaneously (or sequentially) and used when multiple
terminals (operators) are associated with one telephone number (such as in a call center).

Figure 1-4 Proxy Forking

BOO1
helpdeskmoki.com »| SIP proxy = BoO?
SIPURI corresponded terminals g BOOS

helpdesk BOD1, BOOZ BOO3

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy functions.

Message Body

As the figure below, the structure of SIP messages is the same as HTTP.

1-6 Developing Applications with WebLogic SIP Server

Figure 1-5 SIP Message Example

Differences from HTTP Servlets

|INVITE sipritoulfloki.com SIP/Z.0

|]starting Line

Max-Forwards: 70

To: <3ip: tanakafoki.coms

From: <sip:itoulloki.cow:;tag=123456
Call-ID: 3d45£59alibh54

Cieq: 1 INVITE

Contact: =ip:l10.2.0.100:5060
Content-Type: application/sdp
Content-Length: 100

Via: SIP/Z.0/UDP 10..0.100:;branch=z5hG4bK1234d

-

Header Field

i

Blank Line

|j Separator

=0
o=- 5894032 5594032 IN IP4 10.Z2.0.100
5=5DP Media Session

- The rest is omitted.

Message Body

HTTP is basically a protocol to transfer HTML files and images. Contents to be transferred are
stored in the message body. HTTP Servlet defines stream manipulation-based API to enable
sending and receiving massive contents.

ServletRequest

ServletInputStream getInputStream()
BufferedReader getReader ()
ServletResponse

ServletOutputStream getOutputStream()
PrintWriter getWriter ()

int getBufferSize()

void setBufferSize (int size)

void resetBuffer ()

void flushBuffer()

In SIP, however, only low-volume contents are stored in the message body since SIP is intended
for real-time communication. Therefore, above methods are provided only for compatibility, and
their functions are disabled.

In SIP, contents stored in the body include:

Developing Applications with WebLogic SIP Server 1-1

Overview of SIP Servlets

1-8

e SDP (Session Description Protocol)—A protocol to define multimedia sessions used
between terminals. This protocol is defined in RFC2373.

e Presence Information—A message that describes presence information defined in CPIM.

o IM Messages—IM (instant message) body. User-input messages are stored in the message
body.

Since the message body is in a small size, processing it in a streaming way increases overhead.
SIP Servlet re-defines API to manipulate the message body on memory as follows:

SipServletMessage

void setContent (Object content, String contentType)
Object getContent ()

byte[] getRawContent ()

Roles of a Servlet Container

The following sections describes major functions provided by WebLogic SIP Server as a SIP
servlet container:

e Application Management—Describes functions such as application management by servlet
context, lifecycle management of servlets, application initialization by deployment
descriptors.

e SIP Messaging—Describes functions of parsing incoming SIP messages and delivering
appropriate SIP servlets, sending messages created by SIP servlets to appropriate UAS, and
automatically setting SIP header fields.

e Utility Functions—Describes functions such as sessions, factories, and proxying that are
available in SIP servlets.

Application Management

Like HTTP servlet containers, SIP servlet containers manage applications by servlet context (see
Figure 6). Servlet contexts (applications) are normally archived in a WAR format and deployed
in each application server.

Note: The method of deploying in application servers varies depending on your product. Refer
to the documentation of your application server.

Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

Figure 1-6 Servlet Container and Servlet Context

HTTP SIP HTTP SIP
Servlet Servlet Servlet Serviet
Servlet context Serviet context
(Application) (Application)

Servlet container ‘

A servlet context for a converged SIP and Web application can include multiple SIP servlets,
HTTP servlets, and JSPs.

WebLogic SIP Server can deploy applications using the same method as the application server
you use as the platform. However, if you deploy applications including SIP servlets, you need a
SIP specific deployment descriptor (sip.xml) defined by SIP servlets. The table below shows the
file structure of a general converged SIP and Web application.

Table 1-1 File Structure Example of Application

File

Description

WEB-INF/

Place your configuration and executable files of your converged SIP and
Web application in the directory. You cannot directly refer to files in this
directory on Web (servlets can do this).

WEB-INF/web.xml

The J2EE standard configuration file for the Web application.

WEB-INF/sip.xml

The SIP Servlet-defined configuration files for the SIP application.

WEB-INF/classes/

Store compiled class files in the directory. You can store both HTTP and
SIP servlets in this directory.

WEB-INF/lib/

Store class files archived as Jar files in the directory. You can store both
HTTP and SIP servlets in this directory.

*.jsp, *.jpg

Files comprising the Web application (e.g. JSP) can be deployed in the
same way as J2EE.

Information specified in the sip.xml file is similar to that in the web.xml except
<servlet-mapping> setting that is different from HTTP servlets. In HTTP you specify a servlet
associated with the file name portion of URL. But SIP has no concept of the file name. You set

Developing Applications with WebLogic SIP Server 1-9

Overview of SIP Servlets

filter conditions using URI or the header field of a SIP request. The following example shows that
a SIP servlet called “register” is assigned all REGISTER methods.

Listing 1-2 List 1: Filter Condition Example of sip.xml

<servlet-mapping>
<servlet-name>registrar</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>REGISTER</value>
</equal>
</pattern>

</servlet-mapping>

Once deployed, lifecycle of the servlet context is maintained by the servlet container. Although
the servlet context is normally started and shutdown when the server is started and shutdown, the
system administrator can explicitly start, stop, and reload the servlet context.

SIP Messaging

SIP messaging functions provided by a SIP servlet container are classified under the following
types:

e Parsing received SIP messages.

e Delivering parsed messages to the appropriate SIP servlet.

e Sending SIP servlet-generated messages to the appropriate UA
e Automatically generating a response (such as “100 Trying”).

e Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or
SipServletResponse object. A received message is first parsed by the parser and then translated
to one of these objects and sent to the SIP servlet container.

1-10 Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

A SIP servlet container receives the following three types of SIP messages, for each of which you
determine a target servlet.

e First SIP Request—When the SIP servlet container received a request that does not belong
to any SIP session, it uses filter conditions in the sip.xml file (described in the previous
section) to determine the target SIP servlet. Since the container creates a new SIP session
when the initial request is delivered, any SIP requests received after that point are
considered as subsequent requests.

Note: Filtering should be done carefully. In WebLogic SIP Server, when the received SIP
message matches multiple SIP servlets, it is delivered only to any one SIP servlet.

e Subsequent SIP Request—When the SIP Servlet container receives a request that belongs
to any SIP session, it delivers the request to a SIP Servlet associated with that session.
Whether the request belongs to a session or not is determined using dialog ID.

Each time a SIP Servlet processes messages, a lock is established by the container on the
call ID. If a SIP Servlet is currently processing earlier requests for the same call ID when
subsequent requests are received, the SIP Servlet container queues the subsequent requests.
The queued messages are processed only after the Servlet has finished processing the
initial message and has returned control to the SIP Servlet container.

This concurrency control is guaranteed both in a single containers and in clustered
environments. Application developers can code applications with the understanding that
only one message for any particular call ID will be processed at a given time.

o SIP Response—When the received response is to a request that a SIP servlet proxied, the
response is automatically delivered to the same servlet since its SIP session had been
determined. When a SIP servlet sends its own request, you must first specify a servlet that
receives a response in the SIP session. For example, if the SIP servlet sending a request
also receives the response, the following handler setting must be specified in the SIP

session.
SipServletRequest req = getSipFactory () .createRequest (appSession, ...);
reg.getSession () .setHandler (getServletName ()) ;

Developing Applications with WebLogic SIP Server 1-1

Overview of SIP Servlets

Normally, in SIP a “session” means a real-time session by RTP/RTSP. On the other hand, in

HTTP Servlet a “session” refers to a way of relating multiple HTTP transactions. In this
document, session-related terms are defined as follows:

Table 1-2 Session-Related Terminology

Realtime Session A realtime session established by RTP/RTSP.

HTTP Session A session defined by HTTP Servlet. A means of relating multiple HTTP
transactions.

SIP Session A means of implementing the same concept as in HTTP session in SIP. SIP

(RFC3261) has a similar concept of “dialog,” but in this document this is
treated as a different term since its lifecycle and generation conditions are
different.

Application Session A means for applications using multiple protocols and dialogs to associate

multiple HTTP sessions and SIP sessions. Also called “AP session.”

1-12

WebLogic SIP Server automatically execute the following response and retransmission
processes:

e Sending “100 Trying”—When WebLogic SIP Server receives an INVITE request, it
automatically creates and sends “100 Trying.”

e Response to CANCEL—When WebLogic SIP Server receives a CANCEL request, it
executes the following processes if the request is valid.

a. Sends a 200 response to the CANCEL request.
b. Sends a 487 response to the INVITE request to be cancelled.

c. Invokes a doCancel method on the SIP servlet. This allows the application to abort the
process within the doCancel method, eliminating the need for explicitly sending back a
response.

e Sends ACK to an error response to INVITE—When a 4xx, 5xx, or 6xx response is
returned for INVITE that were sent by a SIP servlet, WebLogic SIP Server automatically
creates and sends ACK. This is because ACK is required only for a SIP sequence, and the
SIP servlet does not require it.

When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives ACK
for the response.

Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

e Retransmission process when using UDP—SIP defines that sent messages are retransmitted
when low-trust transport including UDP is used. WebLogic SIP Server automatically do
the retransmission process according to the specification.

Mostly, applications do not need to explicitly set and see header fields In HTTP Servlet since
HTTP servlet containers automatically manage these fields such as Content-Length and
Content-Type. SIP Servlet also has the same header management function.

In SIP, however, since important information about message delivery exists in some fields, these
headers are not allowed to change by applications. Headers that can not be changed by SIP
servlets are called “system headers.” The table below lists system headers:

Table 1-3 System Headers

Header Name Description

Call-ID Contains ID information to associate multiple SIP messages as Call.

From, To Contains Information on the sender and receiver of the SIP request (SIP,
URI, etc.). tag parameters are given by the servlet container.

CSeq Contains sequence numbers and method names.

Via Contains a list of servers the SIP message passed through. This is used

when you want to keep track of the pass to send a response to the request.

Record-Route, Route

Used when the proxy server mediates subsequent requests.

Contact

Contains network information (such as IP address and port number) that is
used for direct communication between terminals. For a REGISTER
message, 3Xx, or 485 response, this is not considered as the system header
and SIP servlets can directly edit the information.

Utility Functions

SIP Servlet defines the following utilities that are available to SIP servlets:

1. SIP Session, Application Session

2. SIP Factory

3. Proxy

Developing Applications with WebLogic SIP Server 1-13

Overview of SIP Servlets

SIP Session, Application Session

As stated before, SIP Servlet provides a “SIP session” whose concept is the same as a HTTP
session. In HTTP, multiple transactions are associated using information like Cookie. In SIP, this
association is done with header information (Call-ID and tag parameters in From and To). Servlet
containers maintain and manage SIP sessions. Messages within the same dialog can refer to the
same SIP session. Also, For a method that does not create a dialog (such as MESSAGE),
messages can be managed as a session if they have the same header information.

SIP Servlet has a concept of an “application session,” which does not exist in HTTP Servlet. An
application session is an object to associate and manage multiple SIP sessions and HTTP
sessions. It is suitable for applications such as B2BUA.

Note: In WebLogic SIP Server, HTTP sessions are not associated with application sessions.

SIP Factory

A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific objects necessary for
application execution. You can generate the following objects:

Table 1-4 Objects Generated with SipFactory

Class Name Description
URLI, SipURI, Address Can generate address information including SIP URI from String.
SipApplicationSession Creates a new application session. It is invoked when a SIP servlet starts a

new SIP signal process.

SipServletRequest Used when a SIP servlet acts as UAC to create a request. Such requests can

not be sent with Proxy.proxyTo. They must be sent with
SipServletRequest.send.

1-14

SipFactory is located in the servlet context attribute under the default name. You can take this
with the following code.

ServletContext context = getServletContext():;
SipFactory factory =

(SipFactory) context.getAttribute ("javax.servlet.sip.SipFactory");

Developing Applications with WebLogic SIP Server

Differences from HTTP Servlets

Proxy
Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its own sequences

including forking. You can specify the following settings in proxying with Proxy:

e Recursive routing (recurse)}—When the destination of proxying returns a 3xx response, the
request is proxied to the specified target.

Record-Route setting—Sets a <code>Record-Route</code> header in the specified request.

Parallel/Sequential (parallel)—Determines whether forking is executed in parallel or
sequentially.

stateful—Determines whether proxying is transaction stateful.

e Supervising mode—In the event of the state change of proxying (response receipts), an
application reports this.

Developing Applications with WebLogic SIP Server 1-15

Overview of SIP Servlets

1-16 Developing Applications with WebLogic SIP Server

CHAPTERa

Requirements and Best Practices for
WebLogic SIP Server Applications

The following sections requirements and best practices for developing applications for
deployment to WebLogic SIP Server:

e “Overview of Developing and Porting Applications for WebLogic SIP Server 2.2” on
page 2-1

e “Applications Must Not Create Threads” on page 2-2

e “Servlets Must Be Non-Blocking” on page 2-2

e “Store all Application Data in the Session” on page 2-3

e “All Session Data Must Be Serializable” on page 2-3

e “Use setAttribute() to Modify Session Data in “No-Call” Scope” on page 2-3
e “send() Calls Are Buffered” on page 2-5

e “Mark SIP Servlets as Distributable” on page 2-5

e “Observe Best Practices for J2EE Applications” on page 2-5

Overview of Developing and Porting Applications for
WebLogic SIP Server 2.2

In a typical production environment, SIP applications are deployed to a cluster of WebLogic SIP
Server instances that form the engine tier cluster. A separate cluster of servers in the data tier
provides a replicated, in-memory database of the call states for active calls. In order for

Developing Applications with WebLogic SIP Server 2-1

Requirements and Best Practices for WebLogic SIP Server Applications

applications to function reliably in this environment, you must observe the programming
practices and conventions described in the sections that follow to ensure that multiple deployed
copies of your application perform as expected in the clustered environment.

If you are porting an application from a previous version of WebLogic SIP Server, many of the
conventions and restrictions described below may be new to you, because previous WebLogic
SIP Server implementations did not support a clustering. As always, thoroughly test and profile
your ported applications to discover problems and ensure adequate performance in the new
environment.

Applications Must Not Create Threads

WebLogic SIP Server is a multi-threaded application server that carefully manages resource
allocation, concurrency, and thread synchronization for the modules it hosts. To obtain the
greatest advantage from the WebLogic SIP Server architecture, construct your application
modules according to the SIP Servlet and J2EE API specifications.

Avoid application designs that require creating new threads in server-side modules such as SIP
Servlets:

e The SIP Servlet container automatically locks the associated call state when invoking the
doxxx method of a SIP Servlet. If the doxxx method spawns additional threads or accesses
a different call state before returning control, deadlock scenarios can occur.

e Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
poor WebLogic SIP Server performance when the server load increases. Problems such as
deadlocks and thread starvation may not appear until the application is under a heavy load.

e Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

Servlets Must Be Non-Blocking

SIP and HTTP Servlets must not block threads in the body of a SIP method because the call state
remains locked while the method is invoked. For example, no Servlet method should actively
wait for data to be retrieved or written before returning control to the SIP Servlet container.

2-2 Developing Applications with WebLogic SIP Server

Store all Application Data in the Session

Store all Application Data in the Session

If you deploy your application to more than one engine tier server (in a replicated WebLogic SIP
Server configuration) you must store all application data in the session as session attributes. In a
replicated configuration, engine tier servers maintain no cached information; all application data
must be de-serialized from the session attribute available in data tier servers.

All Session Data Must Be Serializable

To support in-memory replication of SIP application call states, you must ensure that all objects
stored in the SIP Servlet session are serializable. Every field in an object must be serializable or
transient in order for the object to be considered serializable. If the Servlet uses a combination of
serializable and non-serializable objects, WebLogic SIP Server cannot replicate the session state
of the non-serializable objects.

Use setAttribute() to Modify Session Data in “No-Call”
Scope

The SIP Servlet container automatically locks the associated call state when invoking the doxxx
method of a SIP Servlet. However, applications may also attempt to modify session data in
“no-call” scope. No-call scope refers the context where call state data is modified outside the
scope of a normal doxxx method. For example, data is modified in no-call scope when an HTTP
Servlet attempts to modify SIP session data, or when a SIP Servlet attempts to modify a call state
other than the one that the container locked before invoking the Servlet.

Applications must always use the SIP Session’s setAttribute method to change attributes in
no-call scope. Likewise, use removeAttribute to remove an attribute from a session object.
Each time setAttribute/removeAttribute is used to update session data, the SIP Servlet
container obtains and releases a lock on the associated call state. This ensures that only one
application modifies the data at a time, and also ensures that your changes are replicated across
data tier nodes in a cluster.

If you use other set methods to change objects within a session, WebLogic SIP Server cannot
replicate those changes.

Note that the WebLogic SIP Server container does not persist changes to a call state attribute that
are made affer calling setAttribute. For example, in the following code sample the
setAttribute call immediately modifies the call state, but the subsequent call to
modifyState () does not:

Developing Applications with WebLogic SIP Server 2-3

Requirements and Best Practices for WebLogic SIP Server Applications

Foo foo = new Foo(..);
appSession.setAttribute ("name", foo); // This persists the call state.
foo.modifyState(); // This change is not persisted.

Instead, ensure that your Servlet code modifies the call state attribute value before calling
setAttribute, as in:

Foo foo = new Foo(..);
foo.modifyState () ;
appSession.setAttribute ("name", foo);

Also, keep in mind that the SIP Servlet container obtains a lock to the call state for each individual
setAttribute call. For example, when executing the following code in an HTTP Servlet, the
SIP Servlet container obtains and releases a lock on the call state lock twice:

appSess.setAttribute ("fool", "bar2");
appSess.setAttribute ("foo2", "bar2");

This locking behavior ensures that only one thread modifies a call state at any given time.
However, another process could potentially modify the call state between sequential updates. The
following code is not considered thread safe when done no-call state:

Integer oldValue = appSession.getAttribute ("counter");
Integer newValue = incrementCounter (oldValue);
appSession.setAttribute ("counter", newValue);

To make the above code thread safe, you must enclose it using the wlssAppSession.doAction
method, which ensures that all modifications made to the call state are performed within a single
transaction lock, as in:

wlssAppSession.doAction (new WlssAction () {

public Object run() throws Exception {

Integer oldvValue = appSession.getAttribute ("counter");
Integer newValue = incrementCounter (oldvValue);
appSession.setAttribute ("counter", newValue);

return null;

Developing Applications with WebLogic SIP Server

send() Calls Are Buffered

});

See “Modifying the SipApplicationSession” on page 4-4 for more information about using the
com.bea.wcp.sip.WlssAction interface.

send() Calls Are Buffered

If your SIP Servlet calls the send () method within a SIP request method such as doTnvite (),
doAck (), doNotify (), and so forth, keep in mind that the WebLogic SIP Server container
buffers all send () calls and transmits them in order after the SIP method returns. Applications
cannot rely on send () calls to be transmitted immediately as they are called.

WARNING: Applications must not wait or sleep after a call to send (), because the request or
response is not transmitted until control returns to the SIP Servlet container.

Mark SIP Servlets as Distributable

If you have designed and programmed your SIP Servlet to be deployed to a cluster environment,
you must include the distributable marker element in the Servlet’s deployment descriptor
when deploying the application to a cluster of engine tier servers. If you omitthe distributable
element, WebLogic SIP Server will not deploy the Servlet to a cluster of engine tier servers.

The distributable element is not required, and is ignored if you deploy to a single,
combined-tier (non-replicated) WebLogic SIP Server instance.

Observe Best Practices for J2EE Applications

If you are deploying applications that use other J2EE APIs, observe the basic clustering
guidelines associated with those APIs. For example, if you are deploying EJBs you should design
all methods to be idempotent and make EJB homes clusterable in the deployment descriptor. See
Clustering Best Practices in the WebLogic Server 8.1 Documentation for more information.

Developing Applications with WebLogic SIP Server 2-5

http://e-docs.bea.com/wls/docs81/cluster/best.html

Requirements and Best Practices for WebLogic SIP Server Applications

2-6 Developing Applications with WebLogic SIP Server

Composing SIP Applications

The following sections describe how to use WebLogic SIP Server 2.2 application composition
features:

e “Overview of SIP Application Composition” on page 3-1
e “Application Composition Model” on page 3-1
e “Sample Composer Application” on page 3-3

e “Troubleshooting Application Composition” on page 3-5

Overview of SIP Application Composition

Application composition is the process of “chaining” multiple SIP applications, such as Proxies,
User Agent Servers (UAS), User Agent Clients (UAC), redirect servers, and Back-to-Back User
Agents (B2BUA), into a logical path that processes a given SIP request. The sections that follow
describe an application composition programming model that can be deployed to WebLogic SIP
Server. By using this programming model, you can define a set of applications responsible for
processing a given initial SIP request, as well as the logic for how and when each application
should modify the request. The WebLogic SIP Server container ensures that each application
remains on the call path for subsequent message processing requests.

Application Composition Model

The basic WebLogic SIP Server application composition model involves creating a main
“composer” application that examines initial SIP requests to determine which deployed

Developing Applications with WebLogic SIP Server 3-1

Composing SIP Applications

3-2

applications should process the request. For example, a composer application may examine the
user specified in the Request-URI header and select applications based on the user’s subscription
level.

The composer application should insert one or more Route headers into the request, with each
Route header specifying the name and location of a deployed SIP application that should process
the request. Application names are defined similar to user addresses, using the format:

application@address

where application is the deployment name of the SIP application and address is the address
of the load balancer used to contact the WebLogic SIP Server installation, the cluster address, or
the listen address of the server itself (for example, proxyappl@mycompany . com). The order of
the Route headers in the message should dictate the required order of application execution. The
Request-URI header of the initial request should remain unchanged.

After inserting Route headers to chain the required applications, the composer application then
proxies the message using the original Request-URI. The container examines the contents of the
initial Route header in the request. If the user name portion of the route header matches a
deployed application name and the address matches a configured server address, then the
container delivers the request to the named application.

After each application processes the request, the top Route header is removed the message is then
proxied to the next application as shown in Figure 3-1.

Developing Applications with WebLogic SIP Server

Sample Composer Application

Figure 3-1 Composed Application Model

Intiial Request

Reguest-URI:
user@server.com
SIP Serviet
Container
Y " "
Composer] (app1) (app2) (app3)
Request-URI:
user@server.com Request-URI:
Route: user@sarver.com Request-URI:
app1@server.com Route: user@server.com
Route: app3@server.com
app3@server.com
proxyTo() proxyTo()

If a request is proxied to another server, the SIP Servlet container inserts the session IDs of
chained applications into the Record-Route header of the message. The session IDs ensure that
each server hosting a chained application remains in the call path for subsequent requests.

Sample Composer Application

Listing 3-1 shows the organization of a simple composer application.

Listing 3-1 Sample Composer Application

package example;

import javax.servlet.sip.SipFactory;

import javax.servlet.sip.SipServletRequest;

Developing Applications with WebLogic SIP Server 3-3

Composing SIP Applications

import javax.servlet.sip.SipURI;
import javax.servlet.sip.SipServlet;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;

import java.io.IOException;

public class Composer extends SipServlet {

private SipFactory factory;

private static final String CLUSTER ADDRESS = "example.com";

public void init (ServletConfig sc) throws ServletException {
super.init (sc);
factory = (SipFactory)

getServletContext () .getAttribute ("javax.servlet.sip.SipFactory");

protected void doRequest (SipServletRequest req)

throws ServletException, IOException {

if (!reqg.isInitial()) {

super.doRequest (req) ;

return;

SipURI[] routeSet = getRouteSet (req);

for (int 1 = 0; 1 < routeSet.length; i++) {

34 Developing Applications with WebLogic SIP Server

Troubleshooting Application Composition
req.pushRoute (routeSet[i]);
reqg.getProxy () .proxyTo (reqg.getRequestURI()) ;

/*

* Returns application route set for specified request. Ideally, this route
* set should be based on the requesting user's subscribed services. In

* this example, it is fixed for all users.

*/

private SipURI[] getRouteSet (SipServletRequest req) {

return new SipURI[] { createRouteURI ("appl"), createRouteURI ("app2") };

private SipURI createRouteURI (String appName) {
SipURI uri = factory.createSipURI (appName, CLUSTER ADDRESS) ;
uri.setLrParam(true);

return uri;

Troubleshooting Application Composition

WebLogic SIP Server examines the first Route header in a message to determine two things:
1. Does the username portion of the header match the name of a deployed SIP application?

2. Does the address portion of the header indicate that the application is intended for this
WebLogic SIP Server instance?

Developing Applications with WebLogic SIP Server 3-5

Composing SIP Applications

3-6

Both of these conditions must be met in order for the SIP Servlet container to route a request to
an application specified in the Route header. If either condition is not met, Weblogic SIP Server
uses the default Servlet mapping rules defined in the Servlet’s deployment descriptor to process
the request.

For example, if the username portion of the first Route header does not match a deployed
application name, default Servlet mapping rules are used to process the request. Always ensure
that the composer application embeds the correct application names into Route headers when
chaining applications together.

Even if the username matches a deployed application, the address portion must also match one of
the configured addresses for the WebLogic SIP Server instance:

e A load balancer URI configured in sipserver.xml
e The cluster address for the WebLogic SIP Server engine tier

e A listen address for the server instance itself (default listen address or the listen address of
a network channel)

To ensure that the address of an application matches the server address, ensure that the composer
application is embedding the proper address string in Route headers. Also ensure that the server
instances are configured using the same address string. See loadbalancer and Configuring

WebLogic SIP Server Network Resources in Configuring and Managing WebLogic SIP Server.

Developing Applications with WebLogic SIP Server

{DOCROOT}/configref/enginetier_dd.html#loadbalancer
{DOCROOT}/adminguide/network.html
{DOCROOT}/adminguide/network.html
{DOCROOT}/adminguide/index.html

CHAPTERa

Developing Converged Applications

The following sections describe how to develop converged HTTP and SIP applications with
WebLogic SIP Server:

e “Overview of Converged Applications” on page 4-1
e “Assembling and Packaging a Converged Application” on page 4-2
o “Working with SIP and HTTP Sessions” on page 4-2

e “Using the Converged Application Example” on page 4-5

Overview of Converged Applications

In a converged application, SIP protocol functionality is combined with other protocols
(generally HTTP) to provide a unified communication service. For example, an online
push-to-talk application might enable a customer to initiate a voice call to ask questions about
products in their shopping cart. The SIP session initiated for the call is associated with the
customer’s HTTP session, which enables the employee answering the call to view customer’s
shopping cart contents or purchasing history.

You assemble converged applications using the basic SIP Servlet directory structure outlined in

JSR 116. Converged applications require both a sip.xml and a web . xm1 deployment descriptor
files.

The HTTP and SIP sessions used in a converged application can be accessed programmatically
via a common application session object. WebLogic SIP Server provides an extended API to help
you associate HTTP sessions with an application session.

Developing Applications with WebLogic SIP Server 4-1

Developing Converged Applications

Assembling and Packaging a Converged Application

JSR 116 fully describes the requirements and restrictions for assembling converged applications.
The following statements summarize the information in the SIP Servlet specification:

e Use the standard SIP Servlet directory structure for converged applications.

o Store all SIP Servlet files under the wEB-INF subdirectory; this ensures that the files are
not served up as static files by an HTTP Servlet.

o Include deployment descriptors for both the HTPP and SIP components of your
application. This means that both sip.xml and web.xml descriptors are required. A
weblogic.xml deployment descriptor may also be included to configure Servlet
functionality in the WebLogic SIP Server container.

e Observe the following restrictions on deployment descriptor elements:

— The distributable tag must be present in both sip.xml and web.xml, or it must be
omitted entirely.

— context-param elements are shared for a given converged application. If you define
the same context-param element in sip.xml and in web.xm1, the parameter must
have the same value in each definition.

— If either the display-name or icons element is required, the element must be defined
in both sip.xml and web.xml, and it must be configured with the same value in each
location.

Working with SIP and HTTP Sessions

As shown in Figure 4-1, each application deployed to the WebLogic SIP Server container has a
single SipApplicationSession, which can contain one or more SipSession and
HttpSession objects. The basic API provided by javax.servlet.SipApplicationSession
enables you to iterate through all available sessions available in a given
SipApplicationSession. However, the basic API specified by JSR 116 does not define
methods to obtain a given SipApplicationSession or to create or associate HTTP sessions
with a SipApplicationSession.

4-2 Developing Applications with WebLogic SIP Server

Working with SIP and HTTP Sessions

Figure 4-1 Sessions in a Converged Application

SipApplicationSession

SipSession

WebLogic SIP Server extends the basic API to provide methods for:
e Creating new HTTP sessions from a SIP Servlet
e Adding and removing HTTP sessions from SipApplicationSession
e Obtaining SipApplicationSession objects using either the call ID or session ID

e Encoding HTTP URLs with session IDs from within a SIP Servlet

These extended API methods are available in the utility class com.bea.wcp.util.Sessions.
Table 4-1 provides a summary of each method. See the JavaDoc for more details on this utility

class.

Table 4-1 Summary of com.bea.wcp.util.Sessions Methods

Method Description

getApplicationSession Obtain a SipApplicationSession object with a specified
session ID.

getApplicationSessionsByCallld Obtain an Iterator of SipApplicationSession objects

associated with the specified call ID.

createHttpSession Create an HTTP session from within a SIP Servlet. You can modify
the HTTP session state and associate the new session with an
existing SipApplicationSession for later use.

Developing Applications with WebLogic SIP Server

4-3

{DOCROOT}/javadoc/index.html

Developing Converged Applications

4-4

Table 4-1 Summary of com.bea.wep.util.Sessions Methods

Method Description

setApplicationSession Associate an HTTP session with an existing
SipApplicationSession.

removeApplicationSession Removes an HTTP session from an existing
SipApplicationSession.

getEncodeURL Encodes an HTTP URL with the jsessionid of an existing HTTP
session object.

Modifying the SipApplicationSession

When using a replicated domain, WebLogic SIP Server automatically provides concurrency
control when a SIP Servlet modifies a SipApplicationSession object. In other words, when a
SIP Servlet modifies the SipApplicationSession object, the SIP container automatically locks
other applications from modifying the object at the same time.

Non-SIP applications, such as HTTP Servlets, must themselves ensure that the application call
state is locked before modifying it in a replicated environment. This is also required if a single
SIP Servlet needs to modify other call state objects, such as when a conferencing Servlet joins
multiple calls.

To help application developers manage concurrent access to the application session object,
WebLogic SIP Server extends the standard SipApplicationSession object with
com.bea.wcp.sip.WlssSipApplicationSession, and adds a new interface,
com.bea.wcp.sip.WlssAction to encapsulate changes to the session. When these APIs are
used, the SIP container ensures that all business logic contained within the wlssAction object is
executed on a locked copy of the associated SipApplicationSession instance.

Listing 4-1 Example Code using WissSipApplicationSession and WissAction API

SipApplicationSession appSession = ...;

WlssSipApplicationSession wlssAppSession = (WlssSipApplicationSession)

appSession;
wlssAppSession.doAction (new WlssAction() {

public Object run() throws Exception {

Developing Applications with WebLogic SIP Server

Using the Converged Application Example

// Add all business logic here.
appSession.setAttribute ("counter", latestCounterValue);
sipSession.setAttribute ("currentState", latestAppState);
// The SIP container ensures that the run method is invoked
// while the application session is locked.
return null;
}
});

Using the Converged Application Example

WebLogic SIP Server includes a sample converged application that uses the
com.bea.wcp.util.Sessions API All source code, deployment descriptors, and build files for
the example are installed in wLSS_HOME\samples\server\examples\src\converged. See
the readme . html file in the example directory for instructions about how to build and run the
example.

Developing Applications with WebLogic SIP Server 4-5

Developing Converged Applications

4-6 Developing Applications with WebLogic SIP Server

CHAPTERa

Using the Profile Service APl (Diameter
Sh Interface)

The following sections describe how to use the profile service API, based on the WebLogic SIP
Server Diameter protocol implementation, in your own applications:

“Overview of Profile Service API and Sh Interface Support” on page 5-1
“Enabling the Sh Interface Provider” on page 5-2

“Overview of the Profile Service API” on page 5-2

“Creating a Document Key for Application-Managed Profile Data” on page 5-3
“Using a Constructed Document Key to Manage Profile Data” on page 5-5

“Monitoring Profile Data with ProfileListener” on page 5-6

Overview of Profile Service APl and Sh Interface Support

The IMS specification defines the Sh interface as the method of communication between the
Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple
IMS Application Servers. The AS uses the Sh interface in two basic ways:

To query or update a user’s data stored on the HSS

To subscribe to and receive notifications when a user’s data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository data),
or it may be a subset of the user’s IMS profile data hosted on the HSS. The Sh interface
specification, 3GPP TS 29.328 V5.11.0, defines the IMS profile data that can be queried and

Developing Applications with WebLogic SIP Server 5-1

Using the Profile Service APl (Diameter Sh Interface)

updated via Sh. All user data accessible via the Sh interface is presented as an XML document
with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol support in
WebLogic SIP Server. The provider transparently generates and responds to the Diameter
command codes defined in the Sh application specification. A higher-level Profile Service API
enables SIP Servlets to manage user profile data as an XML document using XML Document
Object Model (DOM). Subscriptions and notifications for changed profile data are managed by
implementing a profile listener interface in a SIP Servlet.

Figure 5-1 Profile Service APl and Sh Provider Implementation

SIP SIP SIP SIP SIP
Serviet Serviet Serviet Serviet Serviet

com.bea.wcp.profile API

U

Diameter Base Protocol

Sh
Application
Provider

WebLogic SIP Server 2.2 includes only a single provider for the Sh interface. Future versions of
WebLogic SIP Server may include new providers to support additional interfaces defined in the
IMS specification. Applications using the profile service API will be able to use additional
providers as they are made available.

Enabling the Sh Interface Provider

See Configuring Diameter Sh Client Nodes and Relay Agents in Configuring and Managing
WebLogic SIP Server for full instructions on setting up Diameter support.

Overview of the Profile Service API

WebLogic SIP Server provides a simple profile service API that SIP Servlets can use to query or
modify subscriber profile data, or to manage subscriptions for receiving notifications about

5-2 Developing Applications with WebLogic SIP Server

{DOCROOT}/adminguide/diameterconfig.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/index.html

Creating a Document Key for Application-Managed Profile Data

changed profile data. Using the API, a SIP Servlet explicitly requests user profile documents via
the Sh provider application. The provider returns an XML document, and the Servlet can then use
standard DOM techniques to read or modify profile data in the local document. Updates to the
local document are applied to the HSS after a “put” operation.

Creating a Document Key for Application-Managed
Profile Data

Servlets that manage profile data can explicitly obtain an Sh XML document from a factory using
a key, and then work with the document using DOM.

The document selector key identifies the XML document to be retrieved by a Diameter interface,
and uses the format protocol://uri/reference typel/access keyl.

The protocol portion of the selector identifies the Diameter interface provider to use for
retrieving the document. In WebLogic SIP Server version 2.2, only the Sh interface is provided,
so only Sh XML documents (beginning with the sh:// protocol designation) can be retrieved.

With Sh document selectors, the next element, uri, generally corresponds to the User-Identity or
Public-Identity of the user whose profile data is being retrieved. If you are requesting an Sh data
reference of type LocationInformation or UserState, the URI value can be the User-Identity or
MSISDN for the user.

Table 5-1 summarizes the possible URI values that can be supplied depending on the Sh data
reference you are requesting. 3GPP TS 29.328 V5.11.0 describes the possible data references and
associated reference types in more detail.

Table 5-1 Possible URI Values for Sh Data References

Sh Data Reference Data Reference Type Possible URI Value in Document Selector

Number

0 RepositoryData User-Identity or Public-Identity
10 IMSPublicldentity

11 IMSUserState

12 S-CSCFName

13 InitialFilterCriteria

Developing Applications with WebLogic SIP Server 5-3

Using the Profile Service APl (Diameter Sh Interface)

Tahle 5-1 Possihle URI Values for Sh Data References

Sh Data Reference Data Reference Type

Possible URI Value in Document Selector

Number

14 LocationInformation User-Identity or MSISDN

15 UserState

17 Charging information ~ User-Identity or Public-Identity
17 MSISDN

The final element of the document selector, reference type, specifies the data reference type
being requested. For some data reference requests, only the uri and reference type are
required. Other Sh requests use an access key, which requires a third element in the document
selector corresponding to the value of the Attribute-Value Pair (AVP) defined in the key.

Table 5-2 summarizes the required document selector elements for each type of Sh data reference

request.

Table 5-2 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference

Required Document Selector

Example Document Selector

Type Elements

RepositoryData sh://uri/reference_type/Service sh:/sip:user@bea.com/RepositoryData/Call Screening/
-Indication

IMSPublicldentity sh://uri/reference_type/[Identi sh://sip:user@bea.com/IMSPublicldentity/Registered-Ide
ty-Set] ntities
where Identity-Set is one of:
* All-Identities
* Registered-Identities
* Implicit-Identities

IMSUserState sh://uri/reference_type sh://sip:user@bea.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@bea.com/S-CSCFName/

InitialFilterCriteria

sh://uri/reference_type/Server-
Name

sh://sip:user@bea.com/InitialFilterCriteria/www.bea.com/

5-4

Developing Applications with WebLogic SIP Server

Using a Constructed Document Key to Manage Profile Data

Table 5-2 Summary of Document Selector Elements for Sh Data Reference Requests

Data
Type

Reference Required Document Selector Example Document Selector
Elements

LocationInformation sh://uri/reference_type/(CS-Do sh://sip:user@bea.com/LocationInformation/CS-Domain/

main | PS-Domain)

UserState sh://uri/reference_type/(CS-Do sh://sip:user@bea.com/UserState/PS-Domain/
main | PS-Domain)

Charging sh://uri/reference_type sh://sip:user@bea.com/Charging information/

information

MSISDN sh://uri/reference_type sh://sip:user@bea.com/MSISDN/

Using a Constructed Document Key to Manage Profile
Data

WebLogic SIP Server provides a helper class, com.bea.wcp.profile.ProfileService, to
help you easily retrieve a profile data document. The getDocument () method takes a
constructed document key, and returns a read-only org.w3c.dom.Document object. To modify
the document, you make and edit a copy, then send the modified document and key as arguments
to the putDocument () method

Note: If Diameter Sh client node services are not available on the WebLogic SIP Server
instance when getDocument () the profile service throws a “No registered provider for
protocol” exception.

WebLogic SIP Server caches the documents returned from the profile service for the duration of
the service method invocation (for example, when a dorRequest () method is invoked). If the
service method requests the same profile document multiple times, the subsequent requests are
served from the cache rather than by re-querying the HSS.

Listing 5-1 shows a sample SIP Servlet that obtains and modifies profile data.

Listing 5-1 Sample Servlet Using ProfileService to Retrieve and Write User Profile Data

package demo;

import com.bea.wcp.profile.*;

Developing Applications with WebLogic SIP Server 5-5

Using the Profile Service APl (Diameter Sh Interface)

import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;
import java.io.IOException;
public class MyServlet extends SipServlet {
private ProfileService psvc;
public void init () {

psvc = (ProfileService)
getServletContext () .getAttribute (ProfileService.PROFILE SERVICE) ;

}

protected void dolInvite (SipServletRequest req) throws IOException {
String docSel = "sh://" + reqg.getTo() + "/IMSUserState/";
// Obtain and change a profile document.
Document doc = psvc.getDocument (docSel); // Document is read only.
Document docCopy = (Document) doc.cloneNode (true);
// Modify the copy using DOM.

psvc.putDocument (docSel, docCopy); // Apply the changes.

Monitoring Profile Data with ProfileListener

5-6

The IMS Sh interface enables applications to receive automatic notifications when a subscriber’s
profile data changes. WebLogic SIP Server provides an easy-to-use API for managing profile
data subscriptions. A SIP Servlet registers to receive notifications by implementing the
com.bea.wcp.profile.ProfileListener interface, which consists of a single update
method that is automatically invoked when a change occurs to profile to which the Servlet is
subscribed. Notifications are not sent if that same Servlet modifies the profile information (for
example, if a user modifies their own profile data).

Note: In areplicated environment, Diameter relay nodes always attempt to push notifications
directly to the engine tier server that subscribed for profile updates. If that engine tier

Developing Applications with WebLogic SIP Server

Monitoring Profile Data with ProfileListener

server is unavailable, another server in the engine tier cluster is chosen to receive the
notification. This model succeeds because session information is stored in the data tier,
rather than the engine tier.

Actual subscriptions are managed using the subscribe method of the

com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you
supply the current SipApplicationSession and the key for the profile data document you want
to monitor. See “Creating a Document Key for Application-Managed Profile Data” on page 5-3.

Applications can cancel subscriptions by calling ProfileSubscription.cancel (). Also,
pending subscriptions for an application are automatically cancelled if the application session is
terminated.

Listing 5-2 shows sample code for a Servlet that implements the Profilelistener interface.

Listing 5-2 Sample Servlet Implementing ProfileListener Interface

package demo;

import com.bea.wcp.profile.*;

import javax.servlet.sip.SipServletRequest;

import javax.servlet.sip.SipServlet;

import org.w3c.dom.Document;

import java.io.IOException;

public class MyServlet extends SipServlet implements ProfileListener {
private ProfileService psvc;
public void init () {

psvc = (ProfileService)
getServletContext () .getAttribute (ProfileService.PROFILE SERVICE) ;

}

protected void doInvite (SipServletRequest req) throws IOException {
String docSel = "sh://" + reqg.getTo() + "/IMSUserState/";
// Subscribe to profile data.

psvc.subscribe (reqg.getApplicationSession(), docSel, null);

Developing Applications with WebLogic SIP Server 5-7

Using the Profile Service APl (Diameter Sh Interface)

public void update (ProfileSubscription ps, Document document) {

System.out.println ("IMSUserState updated: " +

ps.getDocumentSelector());

}

5-8 Developing Applications with WebLogic SIP Server

CHAPTERa

Using Content Indirection in SIP
Servlets

The following sections describe how to develop SIP Servlets that work with indirect content
specified in the SIP message body:

e “Overview of Content Indirection” on page 6-1

e “Using the Content Indirection API” on page 6-2

Overview of Content Indirection

Data provided by the body of a SIP message can be included either directly in the SIP message
body, or indirectly by specifying an HTTP URL and metadata that describes the URL content.
Indirectly specifying the content of the message body is used primarily in the following scenarios:

e When the message bodies include large volumes of data. In this case, content indirection
can be used to transfer the data outside of the SIP network (using a separate connection or
protocol).

e For bandwidth-limited applications. In this case, content indirection provides enough
metadata for the application to determine whether or not it should retrieve the message
body (potentially degrading performance or response time).

WebLogic SIP Server provides a simple API that you can use to work with indirect content
specified in SIP messages.

Developing Applications with WebLogic SIP Server 6-1

Using Content Indirection in SIP Servlets

Using the Content Indirection API

The content indirection API provided by WebLogic SIP Server helps you quickly determine if a
SIP message uses content indirection, and to easily retrieve all metadata associated with the
indirect content. The basic API consists of a utility class,
com.bea.wcp.sip.engine.server.ContentIndirectionUtil, and an interface for
accessing content metadata, com.bea.wcp.sip.engine.server.ICParsedData.

SIP Servlets can use the utility class to identify SIP messages having indirect content, and to
retrieve an ICParsedData object representing the content metadata. The ICParsedData object
has simple “getter” methods that return metadata attributes.

Additional Information

6-2

Complete details about content indirection are available in a draft document:
http://bgp.potaroo.net/ietf/ids/draft-ietf-sip-content-indirect-mech-05.txt.

See also the WebLogic SIP Server JavaDoc for additional documentation about the content
indirection API.

Developing Applications with WebLogic SIP Server

{DOCROOT}/javadoc/index.html
http://bgp.potaroo.net/ietf/ids/draft-ietf-sip-content-indirect-mech-05.txt

CHAPTERa

Securing SIP Servlet Resources

The following sections describe how to apply security constraints to SIP Servlet resources when
deploying to WebLogic SIP Server 2.2:

“Overview of SIP Servlet Security” on page 7-1

“WebLogic SIP Server Role Mapping Features” on page 7-2
“Using Implicit Role Assignment” on page 7-3

“Assigning Roles Using security-role-assignment” on page 7-4
“Assigning run-as Roles” on page 7-7

“Role Assignment Precedence for SIP Servlet Roles” on page 7-8
“Debugging Security Features” on page 7-9

“weblogic.xml Deployment Descriptor Reference” on page 7-9

Overview of SIP Servlet Security

The SIP Servlet API specification defines a set of deployment descriptor elements that can be
used for providing declarative and programmatic security for SIP Servlets. The primary method
for declaring security constraints is to define one or more security-constraint elements in
the sip.xml deployment descriptor. The security-constraint element defines the actual

resources in the SIP Servlet, defined in resource-collection elements, that are to be
protected. security-constraint also identifies the role names that are authorized to access the

Developing Applications with WebLogic SIP Server 1-1

Securing SIP Servlet Resources

resources. All role names used in the security-constraint are defined elsewhere in sip.xml
in a security-role element.

SIP Servlets can also programmatically refer to a role name within the Servlet code, and then map
the hard-coded role name to an alternate role in the sip.xml security-role-ref element
during deployment. Roles must be defined elsewhere in a security-role element before they
can be mapped to a hard-coded name in the security-role-ref element.

The SIP Servlet specification also enables Servlets to propagate a security role to a called
Enterprise JavaBean (EJB) using the run-as element. Once again, roles used in the run-as
element must be defined in a separate security-role elementin sip.xml.

Chapter 14 in the SIP Servlet API specification provides more details about the types of security
available to SIP Servlets. SIP Servlet security features are similar to security features available
with HTTP Servlets; you can find additional information about HTTP Servlet security by
referring to these sections in the WebLogic Server 8.1 SPS documentation:

e J2EE Security Model in Programming WebLogic Security provides an overview of
declarative and programmatic security models for Servlets.

e EJB Security-Related Deployment Descriptors in Securing Enterprise JavaBeans (EJBs)
describes all security-related deployment descriptor elements for EJBs, including the
run-as element used for propagating roles to called EJBs.

See also the example sip.xml excerpt in Listing 7-1, “Declarative Security Constraints in
sip.xml,” on page 7-4.

WebLogic SIP Server Role Mapping Features

1-2

When you deploy a SIP Servlet, security-role definitions that were created for declarative and
programmatic security must be assigned to actual principals and/or roles available in the Servlet
container. WebLogic SIP Server 2.2 uses the security-role-assignment element in
weblogic.xml to help you map security-role definitions to actual principals and roles.
security-role-assignment provides two different ways to map security roles, depending on
how much flexibility you require for changing role assignment at a later time:

e The security-role-assignment element can define the complete list of principal names
and roles that map to roles defined in sip.xml. This method defines the role assignment at
deployment time, but at the cost of flexibility; to add or remove principals from the role,
you must edit weblogic.xml and redeploy the SIP Servlet.

Developing Applications with WebLogic SIP Server

http://e-docs.bea.com/wls/docs81/security/thin_client.html#thin_client_07
http://e-docs.bea.com/wls/docs81/security/thin_client.html
http://e-docs.bea.com/wls/docs81/security/ejb_client.html#ejb_client_DDs_01
http://e-docs.bea.com/wls/docs81/security/ejb_client.html

Using Implicit Role Assignment

o The externally-defined element in security-role-assignment enables you to
assign principal names and roles to a sip.xml role at any time using the Administration
Console. When using the externally-defined element, you can add or remove
principals and roles to a sip.xml role without having to redeploy the SIP Servlet.

Two additional XML elements can be used for assigning roles to a sip.xml run-as element:

run-as-principal-name and run-as-role-assignment. These role assignment elements

take precedence over security-role-assignment elements if they are used, as described in
“Assigning run-as Roles” on page 7-7.

Optionally, you can choose to specify no role mapping elements in weblogic.xml to use implicit
role mapping, as described in “Using Implicit Role Assignment” on page 7-3.

The sections that follow describe WebLogic SIP Server role assignment in more detail.

Using Implicit Role Assignment

With implicit role assignment, WebLogic SIP Server assigns a security-role name in
sip.xml to a role of the exact same name, which should be configured in the WebLogic SIP
Server security realm. To use implicit role mapping, you omit the security-role-assignment
element in weblogic.xml, as well as any run-as-principal-name, and
run-as-role-assignment elements use for mapping run-as roles.

When no role mapping elements are available in weblogic.xml, WebLogic SIP Server
implicitly maps sip.xml security-role elements to roles having the same name. Note that
implicit role mapping takes place regardless of whether the role name defined in sip.xml is
actually available in the security realm. WebLogic SIP Server display a warning message anytime
it uses implicit role assignment. For example, if you use the “everyone” role in sip.xml but you
do not explicitly assign the role in weblogic.xml, the server displays the warning:

<Webapp: ServletContext (id=id, name=application,context-path=/context), the
role: everyone defined in web.xml has not been mapped to principals in
security-role-assignment in weblogic.xml. Will use the rolename itself as

the principal-name.>

You can ignore the warning message if the corresponding role has been defined in the WebLogic
SIP Server security realm. The message can be disabled by defining an explicit role mapping in

weblogic.xml.

Use implicit role assignment if you want to hard-code your role mapping at deployment time to
a known principal name.

Developing Applications with WebLogic SIP Server 1-3

Securing SIP Servlet Resources

Assigning Roles Using security-role-assignment

1-4

The security-role-assignment elementin weblogic.xml enables you to assign roles either
at deployment time or at any time using the Administration Console. The sections that follow
describe each approach.

Important Requirement for WebLogic SIP Server 2.2

If you specify a security-role-assignment element in weblogic.xml, WebLogic SIP
Server 2.2 requires that you also define a duplicate security-role element in a web.xml
deployment descriptor. This requirement applies even if you are deploying a pure SIP Servlet,
which would not normally require a web . xm1 deployment descriptor (generally reserved for
HTTP Web Applications).

Note: If you specify a security-role-assignment in weblogic.xml but there is no
corresponding security-role element in web.xml, WebLogic SIP Server 2.2
generates the error message:

The security-role-assignment references an invalid security-role:
rolename

The server then implicitly maps the security-role defined in sip.xml to a role of the
same name, as described in “Using Implicit Role Assignment” on page 7-3.

For example, Listing 7-1 shows a portion of a sip.xm1 deployment descriptor that defines a
security constraint with the role, roleadmin. Listing 7-2 shows that a
security-role-assignment element has been defined in weblogic.xml to assign principals
and roles to roleadmin. In WebLogic SIP Server 2.2, this Servlet must be deployed with a
web . xml deployment descriptor that also defines the roleadmin role, as shown in Listing 7-3.

If the web . xm1 contents were not available, WebLogic SIP Server would use implicit role
assignment and assume that the roleadmin role was defined in the security realm; the principals
and roles assigned in weblogic.xml would be ignored.

Listing 7-1 Declarative Security Constraints in sip.xml

<security-constraint>
<resource-collection>

<resource-name>RegisterRequests</resource-name>

Developing Applications with WebLogic SIP Server

Assigning Roles Using security-role-assignment

<servlet-name>registrar</servlet-name>
</resource-collection>
<auth-constraint>
<role-name>roleadmin</role-name>
</auth-constraint>

</security-constraint>

<security-role>

<role-name>roleadmin</role-name>

</security-role>

Listing 7-2 Example security-role-assignment in weblogic.xml

<weblogic-web-app>
<security-role-assignment>
<role-name>roleadmin</role-name>
<principal-name>Tanya</principal-name>
<principal-name>Fred</principal-name>
<principal-name>system</principal-name>
</security-role-assignment>

</weblogic-web-app>

Listing 7-3 Required security-role Element in web.xml

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app 2 3.dtd">

<web-app>

Developing Applications with WebLogic SIP Server 1-5

Securing SIP Servlet Resources

1-6

<security-role>
<role-name>roleadmin</role-name>
</security-role>

</web-app>

Assigning Roles at Deployment Time

A basic security-role-assignment element definition in weblogic. xml declares a mapping
between a security-role defined in sip.xml and one or more principals or roles available in
the WebLogic SIP Server security realm. If the security-role is used in combination with the
run-as element in sip.xml, WebLogic SIP Server assigns the first principal or role name
specified in the security-role-assignment to the run-as role.

Listing 7-2, “Example security-role-assignment in weblogic.xml,” on page 7-5 shows an
example security-role-assignment element. This example assigns three users to the
roleadmin role defined in Listing 7-1, “Declarative Security Constraints in sip.xml,” on
page 7-4. To change the role assignment, you must edit the weblogic.xml descriptor and
redeploy the SIP Servlet.

Dynamically Assigning Roles Using the Administration
Console

The externally-defined element can be used in place of the <principal-name> element to
indicate that you want the security roles defined in the role-name element of sip.xml to use
mappings that you assign in the Administration Console. The externally-defined element
gives you the flexibility of not having to specify a specific security role mapping for each security
role at deployment time. Instead, you can use the Administration Console to specify and modify
role assignments at anytime.

Additionally, because you may elect to use this element for some SIP Servlets and not others, it
is not necessary to select the ignore roles and polices from DD option for the security realm.
(You select this option in the On Future Redeploys: ficld on the General tab of the
Security->Realms->myrealm control panel on the Administration Console.) Therefore, within
the same security realm, deployment descriptors can be used to specify and modify security for
some applications while the Administration Console can be used to specify and modify security
for others.

Note: When specifying security role names, observe the following conventions and
restrictions:

Developing Applications with WebLogic SIP Server

Assigning run-as Roles

e The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xmI#NT-Nmtoken.

e Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, <> #, |, &, ~, 7, (), { }.

e Security role names are case sensitive.
e The BEA suggested convention for security role names is that they be singular.

Listing 7-4 shows an example of using the externally-defined element with the roleadmin
role defined in Listing 7-1, “Declarative Security Constraints in sip.xml,” on page 7-4. To assign
existing principals and roles to the roleadmin role, the Administrator would use the WebLogic
SIP Server Administration Console.

See Security Roles in the WebLogic Server 8.1 SP5 documentation for information about adding
and modifying security roles using the Administration Console.

Listing 7-4 Example externally-defined Element in weblogic.xml

<weblogic-web-app>
<security-role-assignment>
<role-name>webuser</role-name>
<externally-defined/>
</security-role-assignment>

</weblogic-web-app>

Assigning run-as Roles

The security-role-assignment described in “Assigning Roles Using
security-role-assignment” on page 7-4 can be also be used to map run-as roles defined in
sip.xml. Note, however, that two additional elements in weblogic.xml take precedence over
the security-role-assignment if they are present: run-as-principal-name and

run-as-role-assignment.

run-as-principal-name specifies an existing principle in the security realm that is used for all
run-as role assignments. When it is defined within the servlet-descriptor element of

Developing Applications with WebLogic SIP Server 1-1

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Securing SIP Servlet Resources

weblogic.xml, run-as-principal-name takes precedence over any other role assignment
elements for run-as roles.

run-as-role-assignment specifies an existing role or principal in the security realm that is
used for all run-as role assignments, and is defined within the weblogic-web-app element.

See “weblogic.xml Deployment Descriptor Reference” on page 7-9 for more information about
individual weblogic.xml descriptor elements. See also “Role Assignment Precedence for SIP
Servlet Roles” on page 7-8 for a summary of the role mapping precedence for declarative and
programmatic security as well as run-as role mapping.

Role Assignment Precedence for SIP Servlet Roles

WebLogic SIP Server provides several ways to map sip.xml roles to actual roles in the SIP
Container during deployment. For declarative and programmatic security defined in sip.xml,
the order of precedence for role assignment is:

1. Ifweblogic.xml assigns a sip.xml role in a security-role-assignment element, the
security-role-assignment is used.

Note: WebLogic SIP Server 2.2 also requires a role definition in web . xm1 in order to use a
security-role-assignment. See “Important Requirement for WebLogic SIP
Server 2.2” on page 7-4.

2. Ifno security-role-assignment is available (or if the required web . xm1 role assignment
is missing), implicit role assignment is used.

For run-as role assignment, the order of precedence for role assignment is:

1. Ifweblogic.xml assigns a sip.xml run-as role in a run-as-principal-name element
defined within servlet-descriptor, the run-as-principal-name assignment is used.

Note: WebLogic SIP Server 2.2 also requires a role definition in web . xm1 in order to assign
roles with run-as-principal-name. See “Important Requirement for WebLogic
SIP Server 2.2” on page 7-4.

2. Ifweblogic.xml assigns asip.xml run-as roleina run-as-role-assignment element,
the run-as-role-assignment element is used.

Note: WebLogic SIP Server 2.2 also requires a role definition in web . xm1 in order to assign
roles with run-as-role-assignment. See “Important Requirement for WebLogic
SIP Server 2.2” on page 7-4.

Developing Applications with WebLogic SIP Server

Debugging Security Features

3. Ifweblogic.xml aSSignS asip.xml run-asroleina security-role-assignment
element, the security-role-assignment is used.

Note: WebLogic SIP Server 2.2 also requires a role definition in web . xm1 in order to use a
security-role-assignment. See “Important Requirement for WebLogic SIP
Server 2.2” on page 7-4.

4. Ifno security-role-assignment is available (or if the required web . xm1 role assignment
is missing), implicit role assignment is used.

Debugging Security Features

If you want to debug security features in SIP Servlets that you develop, specify the
-Dweblogic.Debug=wlss.Security startup option when you start WebLogic SIP Server.
Using this debug option causes WebLogic SIP Server to display additional security-related
messages in the standard output.

weblogic.xml Deployment Descriptor Reference

The weblogic.xml DTD contains detailed information about each of the role mapping elements
discussed in this section. See http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd
for the complete DTD. See also weblogic.xml Deployment Descriptor Elements in the WebLogic
Server 8.1 SP5 documentation.

Developing Applications with WebLogic SIP Server 1-9

Securing SIP Servlet Resources

1-10 Developing Applications with WebLogic SIP Server

CHAPTERa

Developing SIP Servlets Using Eclipse

The following sections describe how to use Eclipse to develop SIP Servlets for use with
WebLogic SIP Server:

e “Overview” on page 8-1
e “Setting Up the Development Environment” on page 8-2
e “Building and Deploying the Project” on page 8-6

e “Debugging SIP Servlets” on page 8-6

Overview

This document provides detailed instructions for using the Eclipse IDE as a tool for developing
and deploying SIP Servlets with WebLogic SIP Server 2.2. The full development environment
requires the following components, which you must obtain and install before proceeding:

e WebLogic SIP Server 2.2

e JDK 1.4.2

e Ant (installed with WebLogic SIP Server 2.2)
e Eclipse version 3.1

e CVS client and server (required only for version control)

Developing Applications with WebLogic SIP Server 8-1

Developing SIP Servlets Using Eclipse

SIP Servlet Organization

Building a SIP Servlet produces a Web Archive (WAR file or directory) as an end product. A
basic SIP Servlet WAR file contains the subdirectories and contents described in Figure 8-1.

Figure 8-1 SIP Serviet WAR Contents

Project
Directory

/JSP or HTML
(JSPs and Static Files)

— IWEB-INF

— web.xml

| sip.xml
Mlib
(jar Files)
/classes
(Compiled Classes)

ftags

(tid Files)

Setting Up the Development Environment

Follow these steps to set up the development environment for a new SIP Servlet project:

1. Create a new WebLogic SIP Server Domain.
2. Create a new Eclipse project.

3. Create an Ant build file.

8-2 Developing Applications with WebLogic SIP Server

Setting Up the Development Environment

The sections that follow describe each step in detail.

Creating a WebLogic SIP Server Domain

In order to deploy and test your SIP Servlet, you need access to a WebLogic SIP Server domain
that you can reconfigure and restart as necessary. Follow the instructions in Creating a New
WebLogic SIP Server Domain to create a new domain using the Configuration Wizard. When
generating a new domain:

e Select Development Mode as the startup mode for the new domain.

e Select Sun SDK 1.4.2 as the SDK for the new domain.

Configure the Default Eclipse JVM

The latest versions of Eclipse use the version 1.5 JRE by default. Follow these steps to configure
Eclipse to use the version 1.4.2 JRE installed with WebLogic SIP Server:

1. Start Eclipse.

2. Select Window->Preferences

3. Expand the Java category in the left pane, and select Installed JREs.
4. Click Add... to add the new JRE.

5. Enter a name to use for the new JRE in the JRE name field.

6. Click the Browse... button next to the JRE home directory field. Then navigate to the
BEA HOME/jdk142 08 directory and click OK.

7. Click OK to add the new JRE.
8. Select the check box next to the new JRE to make it the default.

9. Click OK to dismiss the preferences dialog.

Creating a New Eclipse Project

Follow these steps to create a new Eclipse project for your SIP Servlet development, adding the
WebLogic SIP Server libraries required for building and deploying the application:

1. Start Eclipse.

2. Select File->New->Project...

Developing Applications with WebLogic SIP Server 8-3

{DOCROOT}/install/postins.html#configwiz
{DOCROOT}/install/postins.html#configwiz

Developing SIP Servlets Using Eclipse

8-4

Select Java Project and click Next.
Enter a name for your project in the Project Name field.

In the Location field, select Create project in workspace if you have not yet begun writing the
SIP Servlet code. If you already have source code available in another location, Select Create
project at external location and specify the directory. Click Next.

Click the Libraries tab and follow these steps to add required JARs to your project:
a. Click Add External JARs...

b. Use the JAR selection dialog to add the
BEA HOME/wlss220/server/lib/weblogic.jar file to your project.

c. Click Add External JARs... once again.

d. Use the JAR selection dialog to add the
BEA HOME/wlss220/telco/auxlib/sipservlet.jar file to your project.

e. (Optional.) If your application needs to access WebLogic SIP Server MBeans using IMX,
also use the JAR selection dialog to add
BEA HOME/wlss220/telco/lib/wcp_sip_core.jar to your project.

Add any additional JAR files that you may require for your project.

Click Finish to create the new project. Eclipse displays your new project name in the Package
Explorer.

Right-click on the name of your project and use the New->Folder command to recreate the
directory structure shown in Figure 8-1, “SIP Servlet WAR Contents,” on page 8-2.

Creating an Ant Build File

Follow these steps to create an Ant build file that you can use for building and deploying your
project:

1.
2.

Right-click on the name of your project in Eclipse, and select New->File
Enter the name build.xml and click Finish. Eclipse opens the empty file in a new window.

Copy the sample text from Listing 8-1, substituting your domain name and application name
for mybpomain and myApplication.

Developing Applications with WebLogic SIP Server

Setting Up the Development Environment

Listing 8-1 Ant Build File Contents

<?xml version="1.0" encoding="IS0O-8859-1"?>
<project default="all">
<property environment="env"/>
<property name="beahome" value="${env.BEA HOME}"/>
<target name="all" depends="compile,install"/>
<target name="compile">
<mkdir dir="WEB-INF/classes"/>

<javac destdir="WEB-INF/classes" srcdir="src" debug="true"

debuglevel="1lines,vars, source">
<classpath>
<pathelement path="${weblogic.jar}"/>
</classpath>
</javac>
</target>
<target name="install">

<jar
destfile="$ {beahome}/user projects/domains/myDomain/applications/myApplica

tion.war">
<zipfileset dir="WEB-INF" prefix="WEB-INF"/>
<zipfileset dir="WEB-INF" includes="*.html"/>
<zipfileset dir="WEB-INF" includes="*.jsp"/>

</jar>

</target>

</project>

4. Close the build.xml file and save your changes.

Developing Applications with WebLogic SIP Server 8-5

Developing SIP Servlets Using Eclipse

5. Verify that the build. xml file is valid by selecting Window->Show View->Ant and dragging
the build.xml file into the Ant view. Correct any problems before proceeding.

6. Right-click on the project name and select Properties.

7. Select the Builders property in the left column, and click New.

8. Select the Ant Build tool type and click OK to add an Ant builder.

9. In the Buildfile field, click Browse Workspace and select the build.xml file you created.

10. In the Base Directory field, click Browse Workspace and select the top-level directory for
your project.

11. Click the JRE tab and choose Separate JRE in the Runtime JRE field. Use the drop-down list
or the Installed JREs... button to select an installed version 1.4.2 JRE.

12. Click the Environment tab, and Click New. Enter a new name/value pair to define the
BEA HOME variable. The BEA HOME variable must point to the home directory of the
WebLogic SIP Server 2.2 directory. For example:

— Name: BEA HOME
— Value: c:\bea
13. Click OK to add the new Ant builder to the project.
14. De-select Java Builder in the builder list to remove the Java builder from the project.

15. Click OK to finish configuring Builders for the project.

Building and Deploying the Project

The build.xml file that you created compiles your code, packages the WAR, and copies the
WAR file to the /applications subdirectory of your development domain. WebLogic SIP
Server automatically deploys valid applications located in the /applications subdirectory.

Debugging SIP Serviets

8-6

In order to debug SIP Servlets, you must enable certain debug options when you start WebLogic
SIP Server. Follow these steps to add the required debug options to the script used to start
WebLogic SIP Server:

1. Use a text editor to open the StartWebLogic.cmd script for your development domain.

Developing Applications with WebLogic SIP Server

Debugging SIP Servlets

Beneath the line that reads:
set JAVA OPTIONS=
Enter the following line:

set DEBUG OPTS=-Xdebug
-Xrunjdwp:transport=dt socket,address=9000, server=y, suspend=n

Save the file and use the script to restart WebLogic SIP Server.

Developing Applications with WebLogic SIP Server 8-7

Developing SIP Servlets Using Eclipse

8-8 Developing Applications with WebLogic SIP Server

Enabling Access Logging

The following sections describe how to use WebLogic SIP Server access logging features on a
development system:

e “Overview” on page 9-1
e “Enabling Access Logging” on page 9-2
e “Specifying Content Types for Unencrypted Logging” on page 9-5

e “Example Access Log Configuration and Output” on page 9-6

Overview

Access logging records all SIP messages (both requests and responses) received by WebLogic
SIP Server. You can use the access log in a development environment to check how external SIP
requests and SIP responses are received. By outputting the distinguishable information of SIP
dialogs such as Call-IDs from the application log, and extracting relevant SIP messages from the
access log, you can also check SIP invocations from HTTP servlets and so forth.

WARNING: The access logging functionality logs all SIP requests and responses; do not
enable this feature in a production system. In a production system, you can instead
configure one or more logging Servlets, which enable you to specify additional
criteria for determining which messages to log. See Logging SIP Requests and
Responses in Configuring and Managing WebLogic SIP Server.

When you enable access logging, WebLogic SIP Server records access log records in the
Managed Server log file associated with each engine tier server instance.

Developing Applications with WebLogic SIP Server 9-1

{DOCROOT}/adminguide/pdulogging.html
{DOCROOT}/adminguide/pdulogging.html
{DOCROOT}/adminguide/index.html

Enabling Access Logging

Enabling Access Logging

9-2

You enable and configure access logging by adding a message-debug element to the
sipserver.xml configuration file. WebLogic SIP Server provides two different methods of
configuring the information that is logged:

e Specify a predefined logging level (terse, basic, or full), or

o Identify the exact portions of the SIP message that you want to include in a log record, in a
specified order

The sections that follow describe each method of configuring access logging functionality. See
also the Engine Tier Configuration Reference (sipserver.xml) in Configuring and Managing
WebLogic SIP Server for a full reference to the sipserver.xml file contents.

Specifying a Predefined Logging Level

The optional 1evel element in message-debug specifies a predefined collection of information
to log for each SIP request and response. The following levels are supported:

e terse—Logs only the domain setting, logging Servlet name, logging level, and whether
or not the message is an incoming message.

® basic—Logs the terse items plus the SIP message status, reason phrase, the type of
response or request, the SIP method, the From header, and the To header.

e full—Logs the basic items plus all SIP message headers plus the timestamp, protocol,
request URI, request type, response type, content type, and raw content.

Listing 9-1 shows a configuration entry that specifies the full logging level.

Listing 9-1 Sample Accessing Logging Level Configuration in sipserver.xml

<message-debug>
<level>full</level>

</message-debug>

Developing Applications with WebLogic SIP Server

{DOCROOT}/configref/enginetier_dd.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/index.html

Enabling Access Logging

Customizing Log Records

WebLogic SIP Server also enables you to customize the exact content and order of each access
log record. To configure a custom log record, you provide a format element that defines a log
record pattern and one or more tokens to log in each record.

Note: If you specify a format element with a <level>full</level> element (or with the
level element undefined) in message-debug, WebLogic SIP Server uses “full”
message debugging and ignores the format entry. The format entry can be used in
combination with either the “terse” or “basic” message-debug levels.

Table 9-1 describes the nested elements used in the format element.

Table 9-1 Nested format Elements

param-name param-value Description

pattern Specifies the pattern used to format an access log entry. The
format is defined by specifying one or more integers, bracketed
by “{“and “}”. Each integer represents a t oken defined later in
the format definition.

token A string token that identifies a portion of the SIP message to
include in a log record. Table 9-2 provides a list of available
string tokens. You can define multiple token elements as
needed to customize your log records.

Table 9-2 describes the string token values used to specify information in an access log record:

Table 9-2 Available Tokens for Access Log Records

Token Description Example or Type
%call_id The Call-ID header. It is blank when forwarding. 43543543
Y%content The raw content. Byte array
%content_length The content length. String value
%content_type The content type. String value
%cseq The CSeq header. It is blank when forwarding. INVITE 1
%date The date when the message was received. 2004/05/16

(“yyyy/MM/dd” format)

Developing Applications with WebLogic SIP Server 9-3

Enabling Access Logging

Tahle 9-2 Available Tokens for Access Log Records

Token Description Example or Type
%exception The class name of the exception occurred when NullPointerException
calling the AP. Detailed information is recorded to
the run-time log.
Y%from The From header (all). It is blank when forwarding. sip:foo@bea.com;tag=438943

%from_addr

The address portion of the From header.

foo@bea.com

%from_port

The port number portion of the From header.

7002

%from_tag

The tag parameter of the From header. It is blank
when forwarding.

12345

%from_uri

The SIP URI part of the From header. It is blank
when forwarding.

sip:foo@bea.com

Y%headers A List of message headers stored in a 2-element List of headers
array. The first element is the name of the header,
while the second is a list of all values for the header.

%io Whether the message is incoming or not. TRUE

%method The name of the SIP method. It records the method INVITE
name to invoke when forwarding.

%msg Summary Call ID String value

%mtype The type of receiving. SIPREQ

Y%protocol The protocol used. UDP

Y%reason The response reason. OK

Y%req_uri The request URI. This token is only available forthe sip:foo@bea.com
SIP request.

Y%status The response status. 200

Y%time The time when the message was received. 18:05:27
(“HH:mm:ss” format)

Y%timestampmillis Time stamp in milliseconds. 9295968296

%to The To header (all). It is blank when forwarding. sip:foo@bea.com;tag=438943

9-4 Developing Applications with WebLogic SIP Server

Specifying Content Types for Unencrypted Logging

Tahle 9-2 Available Tokens for Access Log Records

Token Description Example or Type

%to_addr The address portion of the To header. foo@bea.com

%to_port The port number portion of the To header. 7002

%to_tag The tag parameter of the To header. It is blank when 12345
forwarding.

%to_uri The SIP URI part of the To header. It is blank when sip:foo@bea.com
forwarding.

See “Example Access Log Configuration and Output” on page 9-6 for an example
sipserver.xml file that defines a custom log record using two tokens.

Specifying Content Types for Unencrypted Logging

By default WebLogic SIP Server uses String format (UTF-8 encoding) to log the content of SIP
messages having a text or application/sdp Content-Type value. For all other Content-Type
values, WebLogic SIP Server attempts to log the message content using the character set
specified in the charset parameter of the message, if one is specified. If no charset parameter
is specified, or if the charset value is invalid or unsupported, WebLogic SIP Server uses
Base-64 encoding to encrypt the message content before logging the message.

If you want to avoid encrypting the content of messages under these circumstances, specify a list
of String-representable Content-Type values using the string-rep elementin sipserver.xml.
The string-rep element can contain one or more content-type elements to match. Ifa logged
message matches one of the configured content-type elements, WebLogic SIP Server logs the
content in String format using UTF-8 encoding, regardless of whether or not a charset
parameter is included.

Note: You do not need to specify text/* or application/sdp content types as these are logged in
String format by default.

Listing 9-2 shows a sample message-debug configuration that logs String content for three
additional Content-Type values, in addition to text/* and application/sdp content.

Developing Applications with WebLogic SIP Server 9-5

Enabling Access Logging

Listing 9-2 Logging String Content for Additional Content Types

<message-debug>
<level>full</level>
<string-rep>
<content-type>application/msml+xml</content-type>
<content-type>application/media control+xml</content-type>
<content-type>application/media control</content-type>
</string-rep>

</message-debug>

Example Access Log Configuration and Output

Listing 9-3 shows a sample access log configuration in sipserver.xml. Listing 9-4, “Sample
Access Log Output,” on page 9-6 shows sample output from the Managed Server log file.

Listing 9-3 Sample Access Log Configuration in sipserver.xml

<message-debug>
<format>
<pattern>{0} {1l}</pattern>
<token>%headers</token>
<token>%content</token>
</format>

</message-debug>

Listing 9-4 Sample Access Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com>

<myserver> <ExecuteThread: 'll' for queue: 'sip.transport.Default'> <<KWLS

9-6 Developing Applications with WebLogic SIP Server

Example Access Log Configuration and Qutput

Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut
<sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>

Content-Length: 136

Contact: user:user@10.32.5.230:5061

CSeqg: 1 INVITE

Call-ID: 59.3170.10.32.5.230Quser.call.id

From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
;tag=59

Via: SIP/2.0/UDP 10.32.5.230:5061
Content-Type: application/sdp
Subject: Performance Test
Max-Forwards: 70

v=0

o=userl 53655765 2353687637 IN IP4 127.0.0.1

c=IN IP4 127.0.0.1

m=audio 10000 RTP/AVP 0
a=rtpmap:0 PCMU/8000
>

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com>
<myserver> <ExecuteThread: 'll' for queue: 'sip.transport.Default'> <<KWLS
Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut
<sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>

Content-Length: 0
CSeq: 1 INVITE
Call-ID: 59.3170.10.32.5.230@user.call.id

Via: SIP/2.0/UDP 10.32.5.230:5061

Developing Applications with WebLogic SIP Server 9-7

Enabling Access Logging

From: user <sip:user@10.32.5.230:5061> <mailto:sip:user@10.32.5.230:5061>
;tag=59

Server: BEA WebLogic SIP Server 2.2.0.0

>

9-8 Developing Applications with WebLogic SIP Server

CHAPTERm

Generating SNMP Traps from
Application Code

The following sections describe how to use the WebLogic SIP Server
SipServletSnmpTrapRuntimeMBean to generate SNMP traps from within a SIP Servlet:

e “Overview” on page 10-1
e “Requirement for Accessing SipServletSnmpTrapRuntimeMBean” on page 10-2
e “Obtaining a Reference to SipServletSnmpTrapRuntimeMBean” on page 10-3

e “Generating a SNMP Trap” on page 10-5

See Configuring SNMP in Configuring and Managing WebLogic SIP Server for information
about configuring SNMP in a WebLogic SIP Server domain.

Overview

WebLogic SIP Server 2.2 introduces a new runtime MBean,
SipServletSnmpTrapRuntimeMBean, that enables applications to easily generate SNMP
traps. The WebLogic SIP Server MIB contains seven new OIDs that are reserved for traps
generated by an application. Each OID corresponds to a severity level that the application can
assign to a trap, in order from the least severe to the most severe:

e Info
e Warning

e Error

Developing Applications with WebLogic SIP Server 10-1

{DOCROOT}/adminguide/snmp.html
{DOCROOT}/adminguide/index.html

Generating SNMP Traps from Application Code

e Notice
e Critical
o Alert

e Emergency

To generate a trap, an application simply obtains an instance of the
SipServletSnmpTrapRuntimeMBean and then executes a method that corresponds to the
desﬁedlrapSeverﬁyleVel(sendInfoTrap(),sendWarningTrap(),sendErrorTrap(),
sendNoticeTrap (), sendCriticalTrap(), sendAlertTrap (), and
sendEmergencyTrap ()). Each method takes a single parameter—the String value of the trap
message to generate.

For each SNMP trap generated in this manner, WebLogic SIP Server also automatically transmits
the Servlet name, application name, and WebLogic SIP Server instance name associated with the
calling Servlet.

Requirement for Accessing
SipServlietSnmpTrapRuntimeMBean

10-2

In order to obtain a SipServletSnmpTrapRuntimeMBean, the calling SIP Servlet must be able
to perform MBean lookups from the Servlet context. To enable this functionality, you must assign
a WebLogic SIP Server administrator role-name entry to the security-role and run-as role
elements in the sip.xml deployment descriptor. Listing 10-1 shows a sample sip.xml file with
the required role elements highlighted.

Listing 10-1 Sample Role Requirement in sip.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app
PUBLIC "-//Java Community Process//DTD SIP Application 1.0//EN"
"http://www.jcp.org/dtd/sip-app 1 0.dtd">
<sip-app>
<display-name>My SIP Servlet</display-name>

<distributable/>

Developing Applications with WebLogic SIP Server

Obtaining a Reference to SipServletSnmpTrapRuntimeMBean

<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.mycompany.MyServlet</servlet-class>
<run-as>
<role-name>weblogic</role-name>
</run-as>
</servlet>
<servlet-mapping>
<servlet-name>myservlet</servlet-name>
<pattern>
<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
</pattern>
</servlet-mapping>
<security-role>
<role-name>weblogic</role-name>
</security-role>

</sip-app>

Obtaining a Reference to
SipServletSnmpTrapRuntimeMBean

Any SIP Servlet that generates SNMP traps must first obtain a reference to the
SipServletSnmpTrapRuntimeMBean. Listing 10-2 shows the sample code for a method to
obtain the MBean.

Developing Applications with WebLogic SIP Server 10-3

Generating SNMP Traps from Application Code

Listing 10-2 Sample Method for Accessing SipServietSnmpTrapRuntimeMBean

public SipServletSnmpTrapRuntimeMBean getServletSnmpTrapRuntimeMBean () {
MBeanHome localHomeB = null;

SipServletSnmpTrapRuntimeMBean ssTrapMB = null;

try
{
Context ctx = new InitialContext ();
localHomeB = (MBeanHome)ctx.lookup (MBeanHome.LOCAL JNDI NAME) ;

ctx.close();
} catch (NamingException ne) {

ne.printStackTrace () ;

Set set = localHomeB.getMBeansByType ("SipServletSnmpTrapRuntime") ;
if (set == null || set.isEmpty()) {
try {

throw new ServletException ("Unable to lookup type
'SipServletSnmpTrapRuntime'") ;

} catch (ServletException e) {

e.printStackTrace();

}

ssTrapMB = (SipServletSnmpTrapRuntimeMBean) set.iterator().next();

return ssTrapMB;

10-4 Developing Applications with WebLogic SIP Server

Generating a SNMP Trap

Generating a SNMP Trap

In combination with the method shown in Listing 10-2, Listing 10-3 demonstrates how a SIP
Servlet would use the MBean instance to generate an SNMP trap in response to a SIP INVITE.

Listing 10-3 Generating a SNMP Trap

public class MyServlet extends SipServlet {

private SipServletSnmpTrapRuntimeMBean sipServletSnmpTrapMb = null;

public MyServlet () {

}

public void init (ServletConfig sc) throws ServletException {

super.init (sc);

sipServletSnmpTrapMb = getServletSnmpTrapRuntimeMBean () ;

protected void doInvite (SipServletRequest req) throws IOException ({

sipServletSnmpTrapMb.sendInfoTrap ("Rx Invite from " +
req.getRemoteAddr () + "with call id" + req.getCallId()):;

}

Developing Applications with WebLogic SIP Server 10-5

Generating SNMP Traps from Application Code

10-6 Developing Applications with WebLogic SIP Server

	Overview of SIP Servlets
	What is a SIP Servlet?
	Differences from HTTP Servlets
	Multiple Responses
	Receiving Responses
	Proxy Functions
	Message Body
	ServletRequest
	ServletResponse
	SipServletMessage

	Roles of a Servlet Container
	Application Management
	SIP Messaging
	Utility Functions

	Requirements and Best Practices for WebLogic SIP Server Applications
	Overview of Developing and Porting Applications for WebLogic SIP Server 2.2
	Applications Must Not Create Threads
	Servlets Must Be Non-Blocking
	Store all Application Data in the Session
	All Session Data Must Be Serializable
	Use setAttribute() to Modify Session Data in “No-Call” Scope
	send() Calls Are Buffered
	Mark SIP Servlets as Distributable
	Observe Best Practices for J2EE Applications

	Composing SIP Applications
	Overview of SIP Application Composition
	Application Composition Model
	Sample Composer Application
	Troubleshooting Application Composition

	Developing Converged Applications
	Overview of Converged Applications
	Assembling and Packaging a Converged Application
	Working with SIP and HTTP Sessions
	Modifying the SipApplicationSession

	Using the Converged Application Example

	Using the Profile Service API (Diameter Sh Interface)
	Overview of Profile Service API and Sh Interface Support
	Enabling the Sh Interface Provider
	Overview of the Profile Service API
	Creating a Document Key for Application-Managed Profile Data
	Using a Constructed Document Key to Manage Profile Data
	Monitoring Profile Data with ProfileListener

	Using Content Indirection in SIP Servlets
	Overview of Content Indirection
	Using the Content Indirection API
	Additional Information

	Securing SIP Servlet Resources
	Overview of SIP Servlet Security
	WebLogic SIP Server Role Mapping Features
	Using Implicit Role Assignment
	Assigning Roles Using security-role-assignment
	Important Requirement for WebLogic SIP Server 2.2
	Assigning Roles at Deployment Time
	Dynamically Assigning Roles Using the Administration Console

	Assigning run-as Roles
	Role Assignment Precedence for SIP Servlet Roles
	Debugging Security Features
	weblogic.xml Deployment Descriptor Reference

	Developing SIP Servlets Using Eclipse
	Overview
	SIP Servlet Organization

	Setting Up the Development Environment
	Creating a WebLogic SIP Server Domain
	Configure the Default Eclipse JVM
	Creating a New Eclipse Project
	Creating an Ant Build File

	Building and Deploying the Project
	Debugging SIP Servlets

	Enabling Access Logging
	Overview
	Enabling Access Logging
	Specifying a Predefined Logging Level
	Customizing Log Records

	Specifying Content Types for Unencrypted Logging
	Example Access Log Configuration and Output

	Generating SNMP Traps from Application Code
	Overview
	Requirement for Accessing SipServletSnmpTrapRuntimeMBean
	Obtaining a Reference to SipServletSnmpTrapRuntimeMBean
	Generating a SNMP Trap

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

