0?7,

r
S’ 7
L/

BEAWebLogic
SIP Server-

Technical Product
Description

Version 2.2
Revised: June 30, 2006

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA Aqualogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Overview of the WebLogic SIP Server Architecture
2. Developing SIP Applications with WebLogic SIP Server 2.2

Overview of Developing SIP Applications with WebLogic SIP Server2.2........... 2-1
Goals of the SIP Servlet API Specification. 2-2
SIP Protocol Supportot 2-2
Simplicity and Ease of Use. 2-2
Converged AppliCationS\ v vttt 2-3
Application COmMPOSILION v v ettt et ettt e 2-4
Highly Reliable Implementation iiiiirnininan... 2-4
Overview of the SIP Servlet Container.t ninennn.. 2-4
SIP Dialog Handling. o e 2-5
Using the SIP Servliet APL. 2-7
The SipServiet Object.ot 2-7
SIP Factory . . .ottt 2-9
SIP MESSAZES « v v v ettt et e ettt e e e 2-9
SIPSESSION. . . v v ettt 2-10
SIpAPPLICAtIONSESSIONottt 2-11
Application TIMEIS.ottt e et 2-12
SIP Servlet Application Example: Converged SIP and HTTP Application. 2-12
SIP Servlet Application Example: SUBSCRIBE and NOTIFY................ 2-14
WebLogic SIP Server 2.2 Session APL. i 2-16
Assembling and Packaging a Converged Application....................... 2-16
Working with SIP and HTTP Sessions., 2-17
Modifying the SipApplicationSession from Non-SIP Servlets 2-18

WebLogic SIP Server 2.2 Technical Product Description ix

WebLogic SIP Server 2.2 Profile API 2-19

Using Document Keys for Application-Managed Profile Data................ 2-20
Monitoring Profile Data. o 2-22
WebLogic SIP Server Software Development Kit 2-24
Using WebLogic SIP Server with WebLogic Workshop 2-24
3. WebLogic SIP Server in the Network
Overview of WebLogic SIP Server in a Typical Service Provider Network 3-1
SIP and IMS Service Control (ISC) o e 3-2
ISCand the 3GPP SIP Profile it e 3-3
AS Session Case Determination Requirement of ISC........................ 3-3
Transport Layer Issues Related to ISC. 3-4
HTTP User Interface. i e 3-4
Service/Subscriber Data and Authentication., 3-5
Web Services Support and Integration with Service Oriented Architectures. 3-6
Management Interfaces. 3-6
Administration Console 3-7
Cluster-Wide Traffic Monitoring via the Administration Console 3-8
Media Control 3-10
Charging and Billing. i 3-11
SO CUIIEY & v v ettt et e e e 3-11
Authentication Providers L 3-13
Trusted Host Authentication i, 3-13
Declarative SeCUrity. oottt 3-14
4. WebLogic SIP Server Cluster Architecture
Overview of the Cluster Architecture iiiiiinon... 4-1
WebLogic SIP Server 2.2 Cluster Linear Scalability 4-2

X WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Replication.ottt 4-3

Partition VIEWSottt 4-4
Timer Processingttt e 4-4
Replica Failure i e 4-5
Engine Failure i 4-5
Effects of Failureson Call Flows i 4-6
Diameter Protocol Handling i 4-7
Deployment of WebLogic SIP Server 2.2 in Non-clustered configurations. 4-9
“Zero Downtime” Application Upgrades, 4-10
Requirements and Restrictions for Upgrading Deployed Applications 4-10

5. Standards Alignment

Overview of WebLogic SIP Server Standards Alignment 5-1
Java Sun Recommendation (JSR) Standards Compliance. 5-2
IETF RFC Complianceout ettt e e e et et 5-2
3GPP R6 Specification Conformanceoierninen e, 5-9

6. Supported Platforms
A. SIP Servlet API Service Invocation

OVEIVIEW . o o ettt ettt e e e e e e e e e e e e e A-1
Servlet Mapping Rules: Objects, Properties and Conditions. A-2
Supported Service Trigger Points. A-4
Request Object oot A-4

UR L. o A-4

SipURI (extends URI): o e A-4

TelURL (extends URI):.o A-5
AdAress:. . ot A-5
Conditions and Logical Connectors.o.uiiiren .. A-5

WebLogic SIP Server 2.2 Technical Product Description Xi

B. Acronyms
C. References

Xii WebLogic SIP Server 2.2 Technical Product Description

CHAPTERa

Overview of the WebLogic SIP Server
Architecture

WebLogic SIP Server is a carrier-class Java EE application server that has been extended with
support for the Session Initiation Protocol (SIP) and a number of operational enhancements that
allow it to meet the demanding requirements of next-generation Internet Protocol-based
communications networks. In a typical IMS deployment WebLogic SIP Server fills the role of
the IMS SIP Application Server.

WebLogic SIP Server 2.2 Technical Product Description 1-1

Overview of the WebLogic SIP Server Architecture

Figure 1-1 WebLogic SIP Server 2.2 in the IMS Service Architecture

Y
—3

.
2

P WLSS
\'\Sg// _=_
| v ISC
: OSA service OSA
HSS ‘|“‘ S-CSCF ““ “““ capability server ‘|““ app lication
N Cx : ISC (SCS) server
\ \\\ . —E— ISC OSA API
AN}
s 3GPP TS 23.002,
>y IMSSF Figure 6a: Functional
MAP\ T architecture for the provision of

5 ! CAP service in the IMS
|

\ Camel Service
Environment

The WebLogic SIP Server 2.2 implementation is based on parts of BEA’s widely deployed and
time-tested Java EE-compliant WebLogic Server product. WebLogic SIP Server supports all of
the standard BEA WebLogic Server programming interfaces and facilities such as JTA, JAF,
JMS, JNDI, JDBC and EJB. WebLogic SIP Server also supports the protocols typically
associated with a standards-compliant Java EE application server, including RMI over I1OP,
HTTP 1.1, LDAP, SMTP, POP, IMAP and SNMPv2.

WebLogic SIP Server 2.2 builds upon the base Java EE programming model by integrating a SIP
Servlet Container that is compliant with the JSR-000116 SIP Servlet API specification. This
“converged” container provides an execution environment for applications containing both
HTTP and SIP protocol handling components, as well as other protocols such as Diameter.

1-2 WebLogic SIP Server 2.2 Technical Product Description

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/
http://www.openmobilealliance.org/tech/LIF/
http://www.openmobilealliance.org/tech/LIF/

Figure 1-2 WebLogic SIP Server 2.2 Extended Java EE for Next Generation Networks

e ™
BEA WebLogic SIP Server

Real-time Communications Services/Applications

@ " B N O
Qo | | e || e

O
HTTP . SIP

B EtJB Servlet , Servlet
ontainer Container ession Container
/ \ jAPI K

N

J2EE Platform Kernel and Services k

SIP H DIAMETER H HTTPN LDAP H SNMP H SOAP H JDBC ‘

>

The “SIP Stack” of WebLogic SIP Server is fully integrated into the SIP Servlet container and is
substantially more powerful and easier to use than a traditional protocol stack. The SIP Servlet
API defines a higher layer of abstraction than simple protocol stacks provide and frees the
developer from any concern for the mechanics of the SIP protocol itself.

Note: In this context “mechanics” refers to the syntactic validation of received requests,
handling of transaction layer timers, generation of non application-related responses,
generation of fully-formed SIP requests from request objects (which involves correct
preparation of system headers and generation of syntactically correct SIP messages) and
handling of lower-layer transport protocols (such as TCP, UDP or SCTP).

The Servlet container distributes request and response objects to components in a structured way,
maintains awareness of the state of the larger, converged SIP and HTTP application session, and
manages the end-to-end object lifecycle, including resource, transaction, and session state
management. The converged SIP and HTTP container thereby frees the developer from much

WebLogic SIP Server 2.2 Technical Product Description 1-3

Overview of the WebLogic SIP Server Architecture

1-4

work (and opportunity for error) and allows deployed applications to inherit the high-availability,
performance, and operational features provided by the robust WebLogic SIP Server container
implementation.

The SIP Servlet API greatly simplifies the task of implementing SIP User Agents, Proxies and
Back-to-Back-User-Agents, and it narrows the developers exposure to operational concerns such
as resource management, reliability, manageability and interaction between services (see:
“Developing SIP Applications with WebLogic SIP Server 2.2 on page 2-1).

The SIP Servlet API is the ideal choice for exposing the full capabilities of the SIP protocol in a
Java and Java EE middleware solution. No equivalent standard exists for defining an Application
Programming Interface or programming model that is as well suited to meet both the needs of the
application developer and the operational requirements of the service provider.

The WebLogic SIP server also incorporates a number of architectural features that allow for its
deployment as a highly-available, fault tolerant Single System Image cluster. The WebLogic SIP
Server cluster architecture is based on a multi-tier model in which a load balancer distributes SIP
requests to a stateless Engine Tier (often referred to as “Engines”). The engine tier processes all
signaling traffic and replicates transaction and session state information to State Tier “partitions”.
Each partition may consist of one or more replicas distributed across servers or server blades
(cluster members). This clustering capability, combined with the load balancer, transparently
provides services with Telco-grade availability, scalability, and fault tolerance (session
retention), ensuring that ongoing sessions are not affected by the failure of individual cluster
members. A production deployment of WebLogic SIP Server has no single point of failure.

WebLogic SIP Server 2.2 Technical Product Description

CHAPTERa

Developing SIP Applications with
WebLogic SIP Server 2.2

The following sections describe the environment for developing applications with WebLogic SIP
Server:

“Overview of Developing SIP Applications with WebLogic SIP Server 2.2 on page 2-1
“Goals of the SIP Servlet API Specification” on page 2-2

“Overview of the SIP Servlet Container” on page 2-4

“Using the SIP Servlet API” on page 2-7

“WebLogic SIP Server 2.2 Session API” on page 2-16

“WebLogic SIP Server 2.2 Profile API” on page 2-19

“WebLogic SIP Server Software Development Kit” on page 2-24

Overview of Developing SIP Applications with WebLogic
SIP Server 2.2

JSR 116: SIP Servlet API extends the basic concept of the Servlet, originally introduced as a
programming model for implementation of applications which handle HTTP and the
programmatic generation of HTML. The Servlet model is one of the most widely-known and
used programming models in the Java community.

The SIP Servlet API specification describes not only the programming API but also the Servlet
container function. The container is the Server (software) that hosts or “contains” applications

WebLogic SIP Server 2.2 Technical Product Description 2-1

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

Developing SIP Applications with WebLogic SIP Server 2.2

written using the API. The SIP Servlet container hosts SIP applications. The container performs
a number of SIP functions as specified by various RFCs, thus taking the burden off of the

applications themselves. At the same time, the container exposes the application to SIP protocol
messages through the SIP Servlet API. In this way, the application can perform various actions
based on the SIP messages it receives from the container. Different applications can be coded and
deployed to the container in order to provide various telecommunication or multimedia services.

Goals of the SIP Serviet APl Specification

2-2

The sections that follow describe the primary goals of the SIP Servlet API specification.

SIP Protocol Support

The SIP Servlet API enables applications to perform a complete set of SIP Signaling functions.
The SIP Protocol specification defines different types of high level SIP roles, namely User
Agents (UAs) which include UA Clients, UA Servers, and Back to back user agents (B2BUAs).
The SIP protocol also defines the roles of Proxies, Registrars, and Redirect Servers. The SIP
Servlet API is a allows any of these roles to be coded as SIP Servlet application.

SIP is an extensible protocol, which is one of its strengths. Applications can extend the base
protocol to add new features as necessary. In fact, there are a number of RFCs that define
extensions to the base IETF RFC 326 SIP: Session Initiation Protocol. The SIP Servlet API is also
designed to allow developers to easily extend functionality. This is accomplished by dividing up
the SIP processing between the container functions the applications. Most of the base protocol
processing is performed by the container, leaving some of the higher level tasks for the
applications to perform. This clever division is what lends a great deal of power and flexibility to
the SIP Servlet API.

Simplicity and Ease of Use

The SIP Servlet container handles “non-application-specific” complexity outside of the
application code itself. Concerns like network connectivity, protocol transactions, dialog
management and route processing are required by virtually all applications, and it would be
enormously wasteful and error-prone to require each application to implement this support. With
the SIP Servlet API, all of these tasks are managed by the container, leaving applications to
provide higher level functions.

As an example, consider a SIP Proxy component:

WebLogic SIP Server 2.2 Technical Product Description

http://www.ietf.org/rfc/rfc3261.txt

Goals of the SIP Servlet APl Specification

1. A SIP Servlet within the SIP Servlet container receives a SIP request object and proxies it. A
SIP Proxy must add its own Via header to the request; the header is required by the base SIP
protocol to indicate which entities were traversed by the request. The Via header also stores
the branch identifier which acts as the transaction identifier.

Because the maintenance of transactions and their associated state machine is maintained
by the containers, it is the container that actually inserts the via headers to the Request.

2. The downstream SIP entity which next receives the request sends the response back along the
path built up by the SIP entities in the path of the request that have inserted themselves into
the via or record-route headers.

3. The container gets the response, removes the via header it inserted in the original request and
then processes the response. The application code does not need to manage the Via header
at all, which makes the life of application developer much easier.

There are many cases in which the SIP Servlet container handles this sort of mundane, but
essential, protocol detail.

Converged Applications

The SIP Servlet API specification is closely aligned with the Java EE specifications, and it is
expected that containers that host SIP Servlet applications also make Java EE features available
to developers. The most notable of these features is the HTTP Servlet container. There are a many
use cases in which a converged application, using both SIP and HTTP functions, is required, from
conferencing and click-to-call applications to Presence and User Agent Configuration
Management applications. Converged applications can also combine other protocols such as
Diameter to perform advanced functions such as modifying subscriber profile data.

Figure 2-1 HTTP/SIP Convergence in the SIP Serviet API

Jjavax.servlet

(Jjavax.servlet.http (javax.servlet.sip

WebLogic SIP Server 2.2 Technical Product Description 2-3

Developing SIP Applications with WebLogic SIP Server 2.2

Application Composition

The SIP Servlet API enables multiple applications to execute on the same request or response,
independently of one another. This is another very powerful feature of the SIP Servlet API. The
promise is that application developers are able to write applications providing features that are
independent of each other, but can be deployed to the same host SIP Servlet container. The
applications can be “composed” (or sequenced) to provide a service on a call. This composition
is facilitated by the container, and is described in more detail in “SIP Servlet API Service
Invocation” on page A-1.

Highly Reliable Implementation

Application data stored in container-managed session objects can benefit from replication and
failover. Almost all applications that perform some useful functions require some state between
different Requests and Responses. Some state information is mandated by the SIP protocol itself,
such as the transaction state machine with its Server and Client Transactions, and the Dialog state
machine.

The container also has a notion of message context which encapsulates the SIP level state, and
the concept of Sessions, which are the SIP Servlet API constructs. Applications can save their
own state in the Session objects maintained by the container. A carrier-grade container will
replicate this state such that the call becomes fault tolerant of a container instance, as is done in
WebLogic SIP Server.

Overview of the SIP Serviet Container

2-4

Figure 2-2 shows the logical layers of a WebLogic SIP Server SIP Servlet Container. The five
layers shown from the bottom are what are known as the SIP stack, the functionality of which is
defined in RFC 3261 and the associated RFCs that extend the base protocol.

SIP, being a transaction-based protocol, has a well-defined transaction layer. SIP requests are
always followed by one or more provisional Responses and one final response, with the exception
of the ACK which has no response. The transaction machinery is designed to keep track of the
provisional and final responses.

WebLogic SIP Server 2.2 Technical Product Description

Overview of the SIP Servlet Container

Figure 2-2 Message Processing Layers in the WebLogic SIP Server 2.2 SIP Servlet Container

SIP Servlet Container \

High Level Request/Response Handling
Session API
Timer API
Deployment
Listeners

|
Dialog Management Layer

Transaction Layer

J T 9 W=

Message Parser (Coder/Decoder)
| J
Transport Layer
| | —
TCP UDP TLS

SIP Dialog Handling

A dialog is a point-to-point session between two SIP endpoints that is uniquely identified by a
dialog identifier. Not all SIP requests create dialogs. However, the ones that do create dialogs
have a well-defined mechanism of establishing and tearing down the dialog (INVITE,
SUBSCRIBE/NOTIFY, REFER).

The SIP stack shown in this diagram is not strictly in accordance with RFC 3261. It differs from
the specification in that there is a layer called Transaction User (TU) above the Transaction layer,

WebLogic SIP Server 2.2 Technical Product Description 2-5

Developing SIP Applications with WebLogic SIP Server 2.2

2-6

and the dialog management layer is not explicitly a layer in 3261. The “Dialog layer” is a very
visible constituent of a SIP Servlet container because the dialogs correspond roughly to the
SipSession objects. In Figure 2-2 the TU layer is actually split between the Dialog
management layer and the big Container block.

The primary purpose of the Container is to host SIP Servlet applications that are written to the
container’s SIP Servlet API implementation. It exposes objects like SipServletRequest,
SipServletResponse, different types of Sessions, facilities like Timer, Logging, and so
forth.

Although SIP is a human-readable, text-based protocol, and is well-defined in RFC 3261, writing
SIP applications can be a challenging task. The SIP Servlet API is designed to make it very easy
for application developers to build SIP applications. While the SIP Servlet API allows access to
all the headers present in a SIP Request, it does not require applications to understand or modify
all of them for correct protocol behavior. Also, there are some headers that are strictly off limits
for applications. The SIP Servlet API defines the so-called “system headers” which are to be
managed only by the container. These headers include From, To, Call-ID, CSeq, Via,
Route (except through pushRoute), Record-Route, and Contact. Applications can add
attributes to the Record-Route header and Contact header fields in all request messages, as
well as 3xx and 485 responses. Additionally, for containers such as WebLogic SIP Server that
implement the reliable provisional responses extension, RAck and RSeq are also considered to
be system headers. The system header management performed by the container offloads a
tremendous amount of complexity from applications.

The From, To, Call-ID, and CSeq message headers collectively identify a given SIP dialog.
The SIP Servlet container keeps track of the dialog state and dialog-related data for the hosted
applications. The SIP Servlet API container is responsible for managing Record-Route,
Contact, and Via headers because the network listen points, failure management,
multi-homing, transport switching, and so forth are also handled by the container. Applications
can participate in the routing decisions of a Request emanating from the container by explicitly
modifying Request-URI or adding Route headers with pushRoute. As a result, applications
have no responsibility for resource management. The SIP Servlet API draws heavily from Java
EE standardization and common practices, such as the declarative usage of container features like
security, mapping, environment resources, and so forth.

Perhaps the greatest advantage of the SIP Servlet API is the API itself. The SIP Servlet API
abstracts a large number of complex SIP tasks behind intuitive constructs. The Proxy interface,
representing the proxy functionality in SIP, is an excellent example. A proxy can:

e be stateful or stateless

WebLogic SIP Server 2.2 Technical Product Description

Using the SIP Servlet API

e recurse automatically (send Requests automatically) on getting a 3xx class response to the
Contact address(es) in the Response

e use Record-Route to ensure that subsequent requests also go through it

e act as a forking proxy to proxy to multiple destinations, either in parallel or in sequence.

With the SIP Servlet API, all of these options are simple attributes of the Proxy object. The
container-managed Proxy deals with all low level details like finding a target set (based on
Request-URI or Route headers), applying RFC rules if a strict router is upstream or downstream,
creating multiple client transactions, correlating responses, choosing the best response, and so
forth.

Using the SIP Servlet API

This section describes additional important interfaces and constructs of the SIP Servlet API, and
includes examples.

The SipServlet Object

The SipServlet class extends the GenericServlet class in the servlet base package.
The service method dispatches the SIP message to either doRequest () or doResponse (),
and in turn the requests are directed to the doXXX methods for Requests such as doInvite,
doSubscribe, and so forth, or to doXXX methods for Responses such as
doSuccessResponse and doErrorResponse.

The servlet-mapping element defined in the deployment descriptor can define the rule that
MUST be satisfied before invoking a particular Servlet. The mapping rules have a well-defined
grammar in JSR 116. As an example, Listing 2-1 shows a mapping that invokes a Servlet only if
the Request is an INVITE and the host part of the Request-URI contains the string “bea . com”.
Servlet mapping rules are described in more detail in “SIP Servlet API Service Invocation” on
page A-1.

Listing 2-1 Example Serviet Mapping Rule

<pattern>
<and>
<equal>

<var>request.method</var>

WebLogic SIP Server 2.2 Technical Product Description 2-1

Developing SIP Applications with WebLogic SIP Server 2.2

<value>INVITE</value>

</equal>

<contains ignore-case="true">
<var>request.from.uri.host</var>
<value>bea.com</value>

</contains>

</and>
</pattern>

There is normally only one SipServlet object accessed by concurrent Requests, so it is not a
place to define any call- or session- specific data structure. doXXX methods in the application
generally implement the business logic for a given request. Consider Listing 2-2.

Listing 2-2 Example SIP Serviet

1: package test;

2: import javax.servlet.sip.SipServlet;

3: import javax.servlet.sip.SipServletRequest;
4: import java.io.IOException;

5: public class SimpleUasServlet extends SipServlet {

6: protected void doInvite (SipServletRequest req)
7 throws IOException {

8: req.createResponse (180) .send () ;

9: req.createResponse (200) .send () ;

10: 1}

11: protected void doBye (SipServletRequest req) throws IOException ({

12: req.createResponse (200) .send () ;

13: req.getApplicationSession() .invalidate () ;
14: 1}

15: }

2-8 WebLogic SIP Server 2.2 Technical Product Description

Using the SIP Servlet API

Listing 2-2 shows a simple UAS Servlet that is invoked on an incoming INVITE Request
(triggered by a rule similar to the one defined in Listing 2-1). The container invokes the
application by invoking the doInvite method. The application chooses to send a 180
Response (line 8) followed by a 200 Response (line 9). The application does nothing with the
ACK, which would be sent by the UAC. In this case the container receives the ACK and silently
ignores it. If it were a stateful proxy it would have proxied it. Applications only do what they need
to do and nothing more.

SIP Factory

As its name suggests, this class is used to create various SIP Servlet API objects like Request,
SipApplicationSession, Addresses, and so forth. An application acting as a UA can
use it to create a new Request. Requests created through the factory have a new Call-ID (with
the exception of a particular method for B2BUAs in which the application can chose to re-use the
existing Call-ID on the upstream leg) and do not have a tag in the To header. The Factory
object can be retrieved using the javax.servlet.sip.SipFactory attribute on the
ServletContext.

See the £findme example installed with WebLogic SIP Server 2.2 for an example of obtaining a
factory object using SipFactory.

SIP Messages

There are two classes of SIP messages: SipServletRequest and
SipServletResponse. These classes respectively represent SIP Requests (INVITE, ACK,
INFO, and so forth) and Responses (1xx, 2xx, and so forth). Messages are delivered to the
application through various doXXX methods defined in the SipServlet class.

SIP is an asynchronous protocol and therefore it is not obligatory for an application to respond to
a Request when the doRequest (doXXX) method is invoked. The application may respond to
the Request at a later stage, because they have access to the original Request object.

Both the SipServletRequest and SipServletResponse objects are derived from the
base SipServletMessage object, which provides some common accessor/mutator methods
like getHeader (), getContent (), and setContent (). The SipServletRequest
defines many useful methods for Request processing:

e SipServletRequest.createResponse () creates an instance of the
SipServletResponse object. This represents the Response to the Request that was
used to create it. Similarly, SipServletRequest.createCancel () createsa
CANCEL Request to a previously-sent Request.

WebLogic SIP Server 2.2 Technical Product Description 2-9

Developing SIP Applications with WebLogic SIP Server 2.2

2-10

Note: The CANCEL is sent if the UAC decides to not proceed with the call if it has not
received a response to the original request. Sending a CANCEL if you have received
a 200 response or not received a 100 response would be wrong protocol behavior,
luckily the SIP Servlet API steps up to rescue here too. The UAC application can
create and send a CANCEL oblivious to these details. The container makes sure that
the CANCEL is sent out only if a 1xx class response is received and any response
>200 is not received.

e SipServletRequest.getProxy () returns the associated Proxy object to enable an
application to perform proxy operations.

e SipServletRequest.pushRoute (SipURI) enables a UAC or a proxy to route the
request through a server identified by the SipURI. The effect of this method is to add a
Route header to the request at the top of the Route header list.

Another method of interest is SipServletRequest.isInitial (). Itis important to
understand the concept of initial and subsequent requests, because an application may treat each
one differently. For example, if an application receives a Re-INVITE request, it is delivered to
the Servlet’s doInvite () method, butthe isInitial () method returns “false”.

Initial requests are usually requests outside of an established dialog, of which the container has
no information. Upon receiving an initial Request, the container determines which application
should be invoked; this may involve looking up the Servlet-mapping rules. Some Requests create
dialogs, so any Request received after a dialog is established falls into the category of a
“subsequent” Request. Closely-linked with the dialog construct in SIP is the SipSession
object, described in “SipSession” on page 2-10.

In the SipServletResponse object, one particular method of interest is createAck ().
createAck () creates an ACK Request on a 2xx Response received for the INVITE
transaction. ACKs for non-2xx responses of the INVITE transaction are created by the container
itself.

SipSession

The SipSession roughly corresponds to a SIP dialog. For UAs the session maintains the
dialog state as specified by the RFC, in order to correctly create a subsequent request in a dialog.
If an application is acting as a UA (a UAC or a B2BUA), and after having processed an initial
request wants to send out a subsequent request in a dialog (such as a Re-INVITE or BYE), it must
use SipSession.createRequest () rather than one of SipFactory methods. Using a
factory method would result in requests being created “out of dialog”.

WebLogic SIP Server 2.2 Technical Product Description

Using the SIP Servlet API

The SipSession is also a place for an application to store any session-specific state that it
requires. An application can set or unset attributes on the SipSession object, and these
attributes are made available to the application over multiple invocations.

SipSession also provides the SipSession.setHandler (String
nameOfAServlet) method, which assigns a particular Servlet in the application to receive
subsequent Requests for that SipSession.

SipApplicationSession

The SipApplicationSession logically represents an instance of the application itself. An
application may have one or more protocol sessions associated with it, and these protocol
sessions may be of type SipSession or HttpSession as of JSR 116. Applications can also
store application-wide data as an attribute of the SipApplicationSession.

Any attribute set on a SipApplicationSession object or its associated SipSession is
visible only to that particular application. The SIP Servlet API defines a mechanism by which
more than one application can be invoked on the same call. This feature is known as application
composition. SipApplicationSession providesa getSessions () method that returns
the protocol sessions associated with the application session. Figure 2-3 shows the containment
hierarchy of the different sessions in the SIP Servlet API.

Figure 2-3 SipApplicationSession

SipApplicationSession

SipSession

The encodeUri (URI) methodinthe SipServletApplication interface is of particular
interest. This method encodes the SipApplication identifier with the URI specified in the
argument. If the container sees a new request with this encoded URI, even if on a different call,

WebLogic SIP Server 2.2 Technical Product Description 2-11

Developing SIP Applications with WebLogic SIP Server 2.2

2-12

it associates the encoded SipApplicationSession with this Request. This
innocuous-looking method has the power to link two disparate calls, and it can be used in variety
of other ways. SipApplicationSession is also associated with application session timers,
as described in “Application Timers” on page 2-12.

Application Timers

The SIP Servlet API provides a timer service that applications can use. The TimerService
interface can be retrieved using a ServletContext attribute, and it defines a
createTimer (SipApplicationSession appSession, long delay, boolean
isPersistent, java.io.Serializable info) method to start an application-level
timer.

The SipApplicationSession is implicitly associated with application-level timers. When
a timer fires, the container invokes an application-defined TimerListener and passes it the
ServletTimer object. The listener can use the ServletTimer object to retrieve the
SipApplicationSession, which provides the correct context for the timer’s expiry.

SIP Servlet Application Example: Converged SIP and HTTP
Application

In terms of the SIP Servlet API, a converged application is one that involves more than one
protocol, in this case SIP and HTTP. Listing 2-3 presents an example of a simple JSP page which
can be accessed through an HTTP URL.

Listing 2-3 Example JSP Showing HTTP and SIP Servlet Interaction

1: <html>

2: <body>

3: <%

4: if (request.getMethod() .equals ("POST")) {
5: javax.servlet.sip.SipFactory factory =
6: (javax.servlet.sip.SipFactory)

application.getAttribute (javax.servlet.sip.SipServlet.SIP FACTORY) ;

7: javax.servlet.sip.SipApplicationSession appSession =

WebLogic SIP Server 2.2 Technical Product Description

Using the SIP Servlet API

8: factory.createApplicationSession();

9: javax.servlet.sip.Address to =

10: factory.createAddress ("sip:localhost:5080") ;

11: javax.servlet.sip.Address from =

12: factory.createAddress ("sip:localhost:5060") ;

13: javax.servlet.sip.SipServletRequest invite =

14: factory.createRequest (appSession, "INVITE", from, to);
15: javax.servlet.sip.SipSession sess = invite.getSession(true);
16: sess.setHandler (“sipClickToDial") ;

17: //invite.setContent (content, contentType) ;

18: invite.send();

19: }

20: %>

21: <p>

22: Message sent

23: </body>

24: </html>

The JSP shown in Listing 2-3 would need to be packaged in the same application as a SIP Servlet.
The entire application is a skeleton of a click-to-dial application (called “sipClickToDial”),
where by clicking on a Web page you initiate a SIP call.

The HTTP Servlet creates a SIP Request from a factory and sends it to a SIP URI. When an HTTP
POST Request is sent to the HTTP Servlet it obtains the SipFactory on line 5-6. Next, it
creates an application session (line 7-8). The application session is the center piece for all of the
application’s SIP and HTTP interactions. The overall purpose is to send out a SIP Request, which
is done in lines 13-14, but first the application creates the From and To headers to be used when
forming the INVITE request.

On line 16 the application assigns a handler to the SipSession that is associated with the
INVITE Request that was created, and this ensures that the Response sent by a UAS that receives
the request is dispatched to a SIP Servlet for processing.

WebLogic SIP Server 2.2 Technical Product Description 2-13

Developing SIP Applications with WebLogic SIP Server 2.2

2-14

WebLogic SIP Server 2.2 also introduces an extension to the SIP Servlet API specification called
the Session API. See “WebLogic SIP Server 2.2 Session API” on page 2-16, for more detail.

SIP Servlet Application Example: SUBSCRIBE and NOTIFY

In the example shown in Listing 2-4 below, the application receives a SUBSCRIBE Request and
sends out a NOTIFY Request. The application then waits for the notification recipient for three
seconds, and if does not receive a success response (a 2xx class response), then it may take some
other action (for example, log a message).

Listing 2-4 Example of SUBSCRIBE and NOTIFY handling

1: public class Sample TimerServlet extends SipServlet
2: implements TimerListener ({

3: private TimerService timerService;

4: private static String TIMER ID = "NOTIFY TIMEOUT TIMER";
5: public void init () throws ServletException {

6: try {

7: timerService =

8: (TimerService)getServletContext () .getAttribute
9: ("javax.servlet.sip.TimerService");

10: }

11: catch (Exception e) {

12: log ("Exception initializing the servlet "+ e);
13: }

14: }

15: protected void doSubscribe (SipServletRequest req)
16: throws ServletException, IOException {

17: reqg.createResponse (200) .send () ;

18: reg.getSession () .createRequest ("NOTIFY") .send () ;

WebLogic SIP Server 2.2 Technical Product Description

Using the SIP Servlet API

19: ServletTimer notifyTimeoutTimer =

20: timerService.createTimer (reqg.getApplicationSession(), 3000,
21: false, null);

22: reqg.getApplicationSession () .setAttribute (TIMER ID,

23: notifyTimeoutTimer) ;

24: }

25: protected void doSuccessResponse (SipServletResponse res)

26: throws javax.servlet.ServletException, Jjava.io.IOException ({
27: if (res.getMethod() .equals ("NOTIFY")) {

28: ServletTimer notifyTimeoutTimer =

29:

(ServletTimer) (res.getApplicationSession() .getAttribute (TIMER ID));

30: if (notifyTimeoutTimer != null) {

31: notifyTimeoutTimer.cancel () ;

32: res.getApplicationSession () .removeAttribute (TIMER ID);
33: }

34: }

35: }

36: public void timeout (ServletTimer timer) {

37: // This indicates that the timer has fired because a 200 to
38: // NOTIFY was not received. Here you can take any timeout
39: // action.

40: /] e

47 timer.getApplicationSession () .removeAttribute

("NOTIFYiT IMEOUTiTIMER") ;
42 }

43: }

WebLogic SIP Server 2.2 Technical Product Description 2-15

Developing SIP Applications with WebLogic SIP Server 2.2

In Listing 2-4, the Servlet itself implements TimerListener so that it will be notified of the
timeout. The example starts by obtaining the TimerService fromthe ServlietContext in
lines 7-9. The timer is then set for 3000 ms (3 seconds) upon receiving the SUBSCRIBE request
on line 20. Note that the timer could be set at any stage. There is also an option to attach an object
to the timer. The object could be used as an identifier or an invokable message at a later stage.
This sample simply associates the timer with a literal.

After sending the NOTIFY the application creates the timer and saves its reference in the
SipApplicationSession for later use on line 22.

If the application receives a 200 response to the NOTIFY, it can then extract the timer reference
and cancel the timer (line 25). However, if no response is received in 3 seconds, then the timer
fires and the container calls the t imeout () callback method (line 36).

WebLogic SIP Server 2.2 Session API

2-16

In a converged application, SIP protocol functionality is combined with other protocols
(generally HTTP or Diameter) to provide a unified communication service. For example, an
online push-to-talk application might enable a customer to initiate a voice call to ask questions
about products in their shopping cart. The SIP session initiated for the call is associated with the
customer's HTTP session, which enables the employee answering the call to view customer's
shopping cart contents or purchasing history.

You assemble converged applications using the basic SIP Servlet directory structure outlined in
JSR 116. Converged applications require both a sip.xml and a web . xm1 deployment
descriptor files.

The HTTP and SIP sessions used in a converged application can be accessed programmatically
via a common application session object. WebLogic SIP Server provides an extended API to help
you associate HTTP sessions with an application session.

Assembling and Packaging a Converged Application

JSR 116 fully describes the requirements and restrictions for assembling converged applications.
The following statements summarize the information in the SIP Servlet specification:

Use the standard SIP Servlet directory structure for converged applications.

Store all SIP Servlet files under the WEB-INF subdirectory; this ensures that the files are not
served up as static files by an HTTP Servlet.

WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Session API

Include deployment descriptors for both the HTPP and SIP components of your application. This
means that both sip.xml and web.xml descriptors are required. A weblogic.xml
deployment descriptor may also be included to configure Servlet functionality in the WebLogic
SIP Server container.

Observe the following restrictions on deployment descriptor elements:

The distributable tag must be present in both sip.xml and web.xml, or it must be
omitted entirely.

context-param elements are shared for a given converged application. If you define the same
context-param element in sip.xml and in web . xm1, the parameter must have the same
value in each definition.

Ifeither the di splay—-name or icons element is required, the element must be defined in both
sip.xml and web.xml, and it must be configured with the same value in each location.

Working with SIP and HTTP Sessions

Each application deployed to the WebLogic SIP Server container has a single
SipApplicationSession, which can contain one or more SipSession and
HttpSession objects. The basic API provided by
javax.servlet.SipApplicationSession enables you to iterate through all available
sessions available in a given SipApplicationSession. However, the basic API specified
by JSR 116 does not define methods to obtain a given SipApplicationSession orto create
or associate HTTP sessions with a SipApplicationSession.

WebLogic SIP Server extends the basic API to provide methods for:
e Creating new HTTP sessions from a SIP Servlet
e Adding and removing HTTP sessions from SipApplicationSession
e Obtaining SipApplicationSession objects using either the call ID or session ID

e Encoding HTTP URLs with session IDs from within a SIP Servlet

WebLogic SIP Server 2.2 Technical Product Description 2-11

Developing SIP Applications with WebLogic SIP Server 2.2

These extended API methods are available in the utility class
com.bea.wcp.util.Sessions.

Table 2-1 Summary of com.bea.wcp.util.Sessions Methods

Method Description
getApplicationSession Obtaina SipApplicationSession object with a specified
session ID.

getApplicationSessionsByCallId Obtain an Iterator of SipApplicationSession objects
associated with the specified call ID.

createHttpSession Create an HTTP session from within a SIP Servlet. You can
modify the HTTP session state and associate the new session
with an existing SipApplicationSession for later use.

setApplicationSession Associate an HTTP session with an existing
SipApplicationSession.

removeApplicationSession Removes an HTTP session from an existing
SipApplicationSession.

getEncodeURL Encodes an HTTP URL with the jsessionid of an existing
HTTP session object.

Modifying the SipApplicationSession from Non-SIP Servlets

When using a replicated domain, WebLogic SIP Server automatically provides concurrency
control when a SIP Servlet modifies a SipApplicationSession object. In other words,
when a SIP Servlet modifies the SipApplicationSession object, the SIP container
automatically locks other applications from modifying the object at the same time.

Non-SIP applications, such as HTTP Servlets, must themselves ensure that the application call
state is locked before modifying it in a replicated environment. To help application developers
manage concurrent access to the application session object, WebLogic SIP Server extends the
standard SipApplicationSession object with
com.bea.wcp.sip.WlssSipApplicationSession, and adds a new interface,
com.bea.wcp.sip.WlssAction to encapsulate changes to the session. When these APIs
are used, the SIP container ensures that all business logic contained within the WlssAction
object is executed on a locked copy of the associated SipApplicationSession instance.

2-18 WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Profile API

WebLogic SIP Server 2.2 Profile API

The IMS specification defines the Sh interface as the method of communication between the
Application Server (AS) function and the Home Subscriber Server (HSS), or between multiple
IMS Application Servers. The AS uses the Sh interface in two basic ways:

e To query or update a user’s data stored on the HSS

e To subscribe to and receive notifications when a user’s data changes on the HSS

The user data available to an AS may be defined by a service running on the AS (repository data),
or it may be a subset of the user’s IMS profile data hosted on the HSS. The Sh interface
specification, 3GPP TS 29.328 V5.11.0, defines the IMS profile data that can be queried and
updated via Sh. All user data accessible via the Sh interface is presented as an XML document
with the schema defined in 3GPP TS 29.328.

The IMS Sh interface is implemented as a provider to the base Diameter protocol support in
WebLogic SIP Server. The provider transparently generates and responds to the Diameter
command codes defined in the Sh application specification. A higher-level Profile Service API
enables SIP Servlets to manage user profile data as an XML document using XML Document
Object Model (DOM). Subscriptions and notifications for changed profile data are managed by
implementing a profile listener interface in a SIP Servlet.

WebLogic SIP Server 2.2 Technical Product Description 2-19

Developing SIP Applications with WebLogic SIP Server 2.2

2-20

Figure 2-4 Figure 10 - Profile Service API and Sh Provider Implementation

SIP SIp SIP SIp
Serviet Serviet Serviet Serviet

SIP
Serviet

com.bea.wep.profile AP

Sh
Application
Provider

Diameter Base Protoco

WebLogic SIP Server 2.2 includes only a single provider for the Sh interface. Future versions of
WebLogic SIP Server may include new providers to support additional interfaces defined in the
IMS specification. Applications using the profile service API will be able to use additional

providers as they are made available.

Using Document Keys for Application-Managed Profile Data

Servlets that manage profile data can explicitly obtain an Sh XML document from a factory using

a key, and then work with the document using DOM.

The document selector key identifies the XML document to be retrieved by a Diameter interface,

and uses the format protocol://uri/reference typel/access keyl.

WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Profile API

Table 2-2 summarizes the required document selector elements for each type of Sh data reference

request.

Table 2-2 Summary of Document Selector Elements for Sh Data Reference Requests

Data Reference
Type

Required Document Selector
Elements

Example Document Selector

RepositoryData sh://uri/reference_type/Service sh://sip:user@bea.com/RepositoryData/Call Screening/
-Indication

IMSPublicIdentity sh://uri/reference_type/[Identi sh:/sip:user@bea.com/IMSPublicldentity/Registered-Ide
ty-Set] ntities
where Identity-Set is one of:
e All-Identities
* Registered-Identities
* Implicit-Identities

IMSUserState sh://uri/reference_type sh://sip:user@bea.com/IMSUserState/

S-CSCFName sh://uri/reference_type sh://sip:user@bea.com/S-CSCFName/

InitialFilterCriteria

sh://uri/reference_type/Server-
Name

sh://sip:user@bea.com/InitialFilterCriteria/www.bea.com/

LocationInformation sh://uri/reference_type/(CS-Do sh://sip:user@bea.com/LocationInformation/CS-Domain/
main | PS-Domain)
UserState sh://uri/reference_type/(CS-Do sh://sip:user@bea.com/UserState/PS-Domain/
main | PS-Domain)
Charging sh://uri/reference_type sh://sip:user@bea.com/Charging information/
information
MSISDN sh://uri/reference_type sh://sip:user@bea.com/MSISDN/

WebLogic SIP Server provides a helper class, com.bea.wcp.profile.ProfileService, to
help you easily retrieve a profile data document. The getDocument () method takes a

constructed document key, and returns a read-only org.w3c.dom.Document object. To modify
the document, you make and edit a copy, then send the modified document and key as arguments
to the putDocument () method.

WebLogic SIP Server 2.2 Technical Product Description

2-21

Developing SIP Applications with WebLogic SIP Server 2.2

2-22

See Using the Profile Service API (Diameter Sh Interface) in Developing Applications with
WebLogic SIP Server for more information.

Monitoring Profile Data

The IMS Sh interface enables applications to receive automatic notifications when a subscriber’s
profile data changes. WebLogic SIP Server provides an easy-to-use API for managing profile
data subscriptions. A SIP Servlet registers to receive notifications by implementing the
com.bea.wcp.profile.ProfileListener interface, which consists of a single update
method that is automatically invoked when a change occurs to profile to which the Servlet is
subscribed. Notifications are not sent if that same Servlet modifies the profile information (for
example, if a user modifies their own profile data).

Note: In areplicated environment, Diameter relay nodes always attempt to push notifications
directly to the engine tier server that subscribed for profile updates. If that engine tier
server is unavailable, another server in the engine tier cluster is chosen to receive the
notification. This model succeeds because session information is stored in the data tier,
rather than the engine tier.

Actual subscriptions are managed using the subscribe method of the
com.bea.wcp.profile.ProfileService helper class. The subscribe method requires that you
supply the current SipApplicationSession and the key for the profile data document you want
to monitor. See “Using Document Keys for Application-Managed Profile Data” on page 2-20.

Applications can cancel subscriptions by calling ProfileSubscription.cancel (). Also,
pending subscriptions for an application are automatically cancelled if the application session is
terminated.

Listing 2-5 shows sample code for a Servlet that implements the ProfileListener interface.

Listing 2-5 Sample Servlet Implementing ProfileListener Interface

package demo;
import com.bea.wcp.profile.*;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServlet;
import org.w3c.dom.Document;

import java.io.IOException;

WebLogic SIP Server 2.2 Technical Product Description

{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/index.html
{DOCROOT}/programming/index.html

WebLogic SIP Server 2.2 Profile API

public class MyServlet extends SipServlet implements ProfileListener {
private ProfileService psvc;
public void init () {

psvc = (ProfileService)
getServletContext () .getAttribute (ProfileService.PROFILE SERVICE) ;

}

protected void doInvite (SipServletRequest req) throws IOException {
String docSel = "sh://" + reqg.getTo() + "/IMSUserState/";
// Subscribe to profile data.

psvc.subscribe (reqg.getApplicationSession(), docSel, null);

public void update (ProfileSubscription ps, Document document) {

System.out.println ("IMSUserState updated: " +

ps.getDocumentSelector());
}
}

The ProfileListener interface is handled similar to the TimerService provided by JSR
116 for application timers. Multiple Servlets in an application may implement the
ProfileListener interface, but only one Servlet may act as a listener. The SIP deployment
descriptor for the application must designate the profile listener class in the set of listeners as
shown in Listing 2-6.

Listing 2-6 Declaring a ProfileListener

<listener>
<listener-class>com.foo.MyProfilelListener</listener-class>

</listener>

WebLogic SIP Server 2.2 Technical Product Description 2-23

Developing SIP Applications with WebLogic SIP Server 2.2

WebLogic SIP Server Software Development Kit

2-24

The WebLogic SIP Server 2.2 SDK consists of the WebLogic SIP Server 2.2 executable and a
selection of example applications available as source code and deployable binaries. The
WebLogic SIP Server 2.2 SDK may be executed on any standard Windows or Linux workstation.
When used in conjunction with an IDE, common tasks such as the writing and modification of
Java code, setting of break-points, tracing and profiling are easily performed.

It is possible to use WebLogic SIP Server 2.2 in conjunction with virtually any of the popular
development tools commonly used to develop Java and Java EE applications.

Using WebLogic SIP Server with WebLogic Workshop

In order to have your application development environment in WebLogic Workshop and take
advantage of the XML beans, Controls, Debug Environment, Deployment, and so forth, follow
the steps below:

1. Create the WebLogic SIP Server domain using the Configuration Wizard.

2. Update the startWebLogic.cmd with:
Add the following lines after: set SERVER NAME=myserver
if "£DEBUG_PORT%"=="" (
set DEBUG_PORT=8453
)
set WLS_ HOME=D:\bea\weblogic81l
set ARDIR=%WLS HOMES%\server\lib

set JAVA DEBUG=-Xdebug -Xnoagent
-Xrunjdwp:transport=dt socket, address=%DEBUG PORT%, server=y, suspend=n
-Djava.compiler=NONE

set JAVA OPTIONS=%JAVA OPTIONS% -ea -da:com.bea... -da:javelin...
-da:weblogic...

3. Modify CLASSPATH

From:

CLASSPATH=%WEBLOGIC CLASSPATH%; 3POINTBASE CLASSPATHS;%JAVA HOMES \jre\li
b\rt.jar;$WL HOME%\server\lib\webservices.jar; $CLASSPATHS

To:

WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server Software Development Kit

CLASSPATH=%WLS HOMES$\javelin\lib\javelin.Jjar;$ARDIR%\weblogic knex patc
h.jar;$WLS HOME%\common\lib\log4j.Jjar;%ARDIR%\debugging.jar; $ARDIR%\kne
x.jar; $ARDIR%\wlw-lang.jar;

$ARDIRS%\xbean.jar; SWEBLOGIC CLASSPATHS%; $POINTBASE CLASSPATHS; $JAVA HOME
$\jre\lib\rt.jar;$WL HOME%\server\lib\webservices.jar; $CLASSPATHS

Modify java execution command

From:

$JAVA HOME%\bin\java %$JAVA VM% %MEM ARGS$ %$JAVA OPTIONS%
-Dweblogic.Name=%SERVER NAMES%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL HOMES%\server\lib\weblogic.policy"
weblogic.Server

To:

$JAVA HOMES$\bin\java $JAVA VM% %JAVA DEBUGS% $MEM ARGS% %JAVA OPTIONS$S
-Dwlw.testConsole=true -Dwlw.iterativeDev=true
-Dweblogic.Name=%SERVER NAMES%
-Dweblogic.ProductionModeEnabled=%PRODUCTION_MODE%
-Djava.security.policy="%WL HOMES%\server\lib\weblogic.policy"
weblogic.Server

Now just point your workshop application to the new domain and you are good to go.

WebLogic SIP Server 2.2 Technical Product Description 2-25

Developing SIP Applications with WebLogic SIP Server 2.2

2-26 WebLogic SIP Server 2.2 Technical Product Description

CHAPTERa

WebLogic SIP Server in the Network

The following sections describe how WebLogic SIP Server 2.2 functions in a service provider
network:

“Overview of WebLogic SIP Server in a Typical Service Provider Network™ on page 3-1
“SIP and IMS Service Control (ISC)” on page 3-2

“HTTP User Interface” on page 3-4

“Service/Subscriber Data and Authentication” on page 3-5

“Web Services Support and Integration with Service Oriented Architectures” on page 3-6
“Management Interfaces” on page 3-6

“Media Control” on page 3-10

“Charging and Billing” on page 3-11

“Security” on page 3-11

Overview of WebLogic SIP Server in a Typical Service
Provider Network

WebLogic SIP Server can be deployed in 3GPP R6 compliant IMS networks as well as in
non-IMS networks. WebLogic SIP Server 2.2 can interoperate with a number of network
functions regardless of which applications or functions it hosts.

WebLogic SIP Server 2.2 Technical Product Description 3-1

WebLogic SIP Server in the Network

“3GPP R6 Specification Conformance” on page 5-9 outlines WebLogic SIP Server’s

conformance to the requirements introduced in the 3GPP Release 6 specifications.

Figure 3-1 WebLogic SIP Server deployed in a typical service provider network

/ v

i -

H :

: S
kL i !
e [T | pcscF !
= LY ! !

] i :
i =
VASP | !

IT SOA

ESB Web Svc.

Svc. Registry BPM Engine

OSSIBS-S~

N Network
ws Element
or A-BGF { lanagement
Enterpise =-S5 (WSDL/IUDDISOAP) N @
A-sBC (SNMP)
TP L e e
i E ot /{
& 0®®%,
3 ,2°°% ItEN FT) Charging
8 4 Y — d
!// 2 P-CSCF o % hea sy (FTPISFTP) unctions
g § WLSS 2.2 %\

vy
"
¥ (SIP,SDP)

"§"'"®|’sc (sIP)
A\ !\
\
AN
Sh
"

e
Itf-N "

(LDAP, SOAP

System

........ HSS Relational

LDAP Security
Provider Database

SIP and IMS Service Control (ISC)

3-2

The SIP interface between the Serving CSCF and the IMS SIP Application Server (AS) is defined
as the IMS Service Control (ISC) reference point. Although ISC is generally compliant with the
SIP protocol as defined by the IETF, it introduces several specific procedures and transport layer
requirements. SIP usage is often described as the “3GPP SIP Profile.”

The ISC reference point does not require that the AS or Serving CSCF add any particular attribute
or value to a request or response beyond the standard behavior of a SIP protocol entity. There are,
however, a number of SIP methods and headers that are relevant to many of the services that are
deployed on the IMS (SIP) AS. In order for the IMS SIP AS to “fully” comply with all of the
3GPP RS and R6 specifications, many IETF RFCs and drafts would have to be supported.
However, it is not reasonable to characterize this as “ISC compliance” because ISC specifically
addresses the relationship between the IMS (SIP) AS and the Serving CSCF. From this
perspective, ISC compliance is relatively straightforward and is minimally reflected in
“Procedures at the AS” defined in 3GPP TS 24.229: “IP Multimedia Call Control Protocol based
on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (Release 6).

WebLogic SIP Server 2.2 Technical Product Description

http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm

SIP and IMS Service Control (ISC)

From the perspective of WebLogic SIP Server, the Serving CSCF is a SIP Proxy and/or User
Agent (in the case of the Registration Event Package and third-party registration messages) and
is the SIP Application Server’s default gateway for SIP requests when the AS instantiates a User
Agent Client.

ISC and the 3GPP SIP Profile

The 3GPP requires SIP to be used in a more restricted manner than the IETF specs allow, and
also requires a number of additional SIP headers. This use of SIP is often referred to as the “3GPP
SIP Profile.”

The WebLogic SIP Server SIP Servlet Container provides automated management of session
objects, Servlet lifecycle, security, OAM and other functions that are not clearly within the scope
of an application’s business logic. The SIP Servlet Container allows applications to handle
(send/receive) SIP messages with non-standard methods or headers—the container is concerned
only with the validation of message syntax, and with the protocol transaction layer.

WebLogic SIP Server uses certain p-headers directly. For example, p-asserted-identity is
used as an assertion of identity within the WebLogic SIP Server security framework. Other
headers, like the 3GPP p-charging-vector or p-charging-function-address, are relevant
only within the scope of the application and have no container-level implications.

WebLogic SIP Server does not programmatically force applications to be compliant with the
3GPP SIP Profile, although applications deployed on WebLogic SIP Server may comply with the
SIP Profile as necessary.

AS Session Case Determination Requirement of ISC

When requests are sent to an IMS SIP Application Server by the S-CSCF, the SIP AS is generally
required to determine the session case (originating, terminating, or terminating unregistered) of
the request, either implicitly or explicitly.

WebLogic SIP Server 2.2 provides several ways of determining the session case for the request.
There are three mechanisms described in the 3GPP standardization that an IMS (SIP) AS may use
to make this determination.:

1. Session Case Specific Addresses (e.g. sip:sessioncase as0l.operator.net or
sip:as0l.operator.net:49494)

2. Tokens in the “User Part” of the Request URI (e.g. sip:token@as0l.operator.net)

3. Request URI Parameters (e.g. sip:as01l.operator.net;parameter)

WebLogic SIP Server 2.2 Technical Product Description 3-3

WebLogic SIP Server in the Network

See 3GPP TS 24.229: “IP Multimedia Call Control Protocol based on Session Initiation Protocol
(SIP) and Session Description Protocol (SDP); Stage 3 (Release 6) for more information.

The choice of which mechanism to use is at the discretion of both the Communications Service
Provider and the SIP Servlet application deployer. The SIP Servlet API relies on a deployment
descriptor file that is packaged with the SIP Servlet Application archive file when it is created.
The descriptor explicitly indicates the Service Trigger Points that will be used by the SIP Servlet
Container to determine which SIP Servlets to invoke. These Service Trigger Points are sufficient
to support any of the methods described above for determining the session case of the request.

For a more detailed description of the Service Trigger Points supported by WebLogic SIP Server
2.2 see “SIP Servlet API Service Invocation” on page A-1.

Transport Layer Issues Related to I1SC

The 3GPP Release 6 specifications mandate the use of IPv6 (see IETF RFC 2460: Internet
Protocol, Version 6 (IPv6) Specification) for all interfaces, including ISC. WebLogic SIP Server
2.2 does not support IPv6.

When using TCP, WebLogic SIP Server 2.2 does not arbitrarily create new connections for each
SIP Transaction or Dialog. By default, responses to SIP requests are returned using the
connection on which the request was received. If a TCP connection fails, WebLogic SIP Server
establishes a new TCP connection to the target host. This may mean that responses to SIP
requests are returned using TCP connections that are different from the connection over which
the request was sent. Although this conforms to the current best practice and to IETF RFC 3261:
SIP: Session Initiation Protocol, BEA has discovered that many SIP products on the market
demonstrate non-compliant behaviors with regard to handling OSI layer 3 protocols.

Although it is not normally the case that WebLogic SIP Server 2.2 is deployed directly facing
end-user SIP devices, it is important to understand the impact this behavior might have in such
cases. When interacting with SIP endpoints on the public Internet, TCP connections are often
kept alive indefinitely as a means of overcoming Network Address Translation (NAT) limitations
in many typical broadband routers and residential gateways.

WebLogic SIP Server 2.2 does not provide an Application Layer Gateway (ALG) capability, and
it is presumed that such capabilities are provided by a standard Session Border Control function.

HTTP User Interface

The 3GPP reference point associated with the HTTP interface provided by WebLogic SIP Server
is “Ut”. This interface is primarily used for three purposes:

3-4 WebLogic SIP Server 2.2 Technical Product Description

http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.3gpp.org/ftp/Specs/html-info/24229.htm
http://www.ietf.org/rfc/rfc2460.txt
http://www.ietf.org/rfc/rfc2460.txt

Service/Subscriber Data and Authentication

1. As a Web-based User Interface for customer self-care and service configuration, potentially
using HTML, xHTML or other presentation technologies.

2. To support content indirection.

3. To support XML Configuration Access Protocol (XCAP), required by Presence and
Conference Control Protocol.

WebLogic SIP Server provides HTTP support through its HTTP Servlet Container. Application
developers may implement applications or components that support any or all of the above use
cases for the “Ut” reference point.

Service/Subscriber Data and Authentication

WebLogic SIP Server 2.2 supports the Sh reference point used to interact with the Home
Subscriber Server (HSS) as the principal provider of IMS Profile data associated with the Public
Identity of the network user or subscriber. In many cases, standard LDAP directory servers or
relational databases are also used as supplementary resources for service or subscriber data.
These may also be accessed via standard interfaces supported by WebLogic SIP Server 2.2.

In many deployments, and for certain types of services such as Presence or media repositories,
subscriber and service data can be accessed using other means. These include LDAP, HTTP, or
access to relational databases.

In non-IMS deployments, the security provider may also be a standard directory accessed via
Lightweight Directory access Protocol (LDAP) or access to a relational database using a
database-specific interface. Most major commercial relational databases provide Java Database
Connectivity (JDBC). A number of high-performance and fault-tolerant JDBC drivers are
available commercially for use with WebLogic SIP Server.

WebLogic SIP Server 2.2 Technical Product Description 3-5

http://tools.ietf.org/wg/sip/draft-ietf-sip-content-indirect-mech/draft-ietf-sip-content-indirect-mech-03-from-02.wdiff.html
http://www3.ietf.org/proceedings/04aug/I-D/draft-ietf-simple-xcap-03.txt
http://www.ietf.org/rfc/rfc2251.txt

WebLogic SIP Server in the Network

Web Services Support and Integration with Service
Oriented Architectures

Figure 3-2 WebLogic SIP Server Integration with IT SOA Architectures

0% 9 9
[[@] Al
Aqualogic i Aqualogic AquaLoglc Content Portlet Personal
BSI UI DSP BEA WebLogic Portal
| | | | _‘ IT Networ
| _ I _ I _ |
i ' A T i
- Bain o e b L Le LS Aqualogic Service Bus - - - - - - - - - - - ----—----
o F A | L | ¥ A
Core Netw

BEA WebLogic SIP
Server

BEA WeblLogic SIP
Server

BEA WebLogic SIP
Server

Custom and 3PP Applications/Services

Custom and 3PP Applications/Services

Custom and 3PP Applications/Services

S

O] [B

o] [Be

i

O] [Be

5

; stp
HTTP o8
Container

8 —_ 8 uTTP O stp
Servlet Servlet Servlet Servlet Servlet Servlet
containar | | Containar J k nnnnnn Containar Containar J k tainer Container J L Container

Management Interfaces

WebLogic SIP Server 2.2 supports four primary management interfaces:

1.

3-6

JMX: WebLogic SIP Server 2.2 interoperates with standard network element management
systems via the Java Management eXtensions standard. Many common network management
suites support JMX natively, which is the standard management technology for Java
applications.

SNMP: WebLogic SIP Server 2.2 interoperates with standard network element management
systems via use of the Simple Network Management Protocol, V2. The WebLogic SIP Server
2.2 SNMP MIB complies with MIB II. WebLogic SIP Server 2.2 also enables developers to
send SNMP traps from within application code, as described in Generating SNMP Traps from
Application Code in Developing Applications with WebLogic SIP Server.

WebLogic SIP Server 2.2 Technical Product Description

{DOCROOT}/programming/snmptraps.html
{DOCROOT}/programming/snmptraps.html
{DOCROOT}/programming/index.html

Management Interfaces

WebLogic SIP Server 2.2 also builds upon WebLogic Server 8.1°s basic SNMP support,
which includes features such as SNMP proxying. See the WebLogic SNMP Management
Guide in the WebLogic Server 8.1 documentation for more information.

. Administration Console (GUI): WebLogic SIP Server 2.2 provides an extensive Web-based

GUI that supports all configuration management, including deployment of applications,
configuration of connectivity, and other common tasks. This interface offers secure,
role-based administration of servers from any terminal that has access to the BEA
Administration Server and supports a standard HTML Web browser.

Command-line Interface: WebLogic SIP Server provides a Command Line Interface (CLI)
for manual runtime configuration from any network terminal with secure access to the
Administration Server.

Administration Console

The WebLogic SIP Server 2.2 Web Administration Console is used for the following tasks:

Configuring attributes of resources
Deploying applications or components
Monitoring resource usage

Displaying log messages

Starting and stopping servers

WebLogic SIP Server 2.2 Technical Product Description 3-7

http://e-docs.bea.com/wls/docs81/snmpman/index.html
http://e-docs.bea.com/wls/docs81/snmpman/index.html

WebLogic SIP Server in the Network

Figure 3-3 WebLogic SIP Server 2.2 Administration Console

-4 DDA RS Sue-H-

® Comsale

2 apsiieatans

2 EJ Mosules

=1 2ot Application Naduisy
™

3 conmactor Moduias

3 Btartus & Entdown

o the brawsor 10 refarence the 2ame hots name that was sontin e g T

& Post Timeout: [0 seconds
-

@ & Gonnecton Factries
2 D Temptates.

mum past size this sEee
S Dessnston keve 1han € indicates an uekmne ez
S sanes
= 2 Dishibuted Destinationg
= 2 sarvers
2 Foreign JNS Servers
& (20 Meskaging Bridge
=LY

& P Enable Keepalives

Specifes whelhar thir

The Benitit O Ui (103 Seimer wans betors closing sn inacthe HTTR connectan

Ay HTTPS Duration: 50 seconds

The aenceent of ime this serwor waits before clasing an inactive HTTPS connection

= Advanced Options 1
50 Bacurity
S Doman Log Fiters /m Apply
2 Tasks
View server log View JND| tree Advanced Options

[[e P

Cluster-Wide Traffic Monitoring via the Administration
Console

The WebLogic SIP Server 2.2 Administration console provides a convenient interface for
observing current usage metrics as shown in Figure 3-4, “Cluster-Wide SIP Session Metrics,” on
page 3-9, Figure 3-5, “Application Metrics,” on page 3-9, and Figure 3-6, “Data Tier Statistics,”
on page 3-10.

3-8 WebLogic SIP Server 2.2 Technical Product Description

Management Interfaces

Figure 3-4 Cluster-Wide SIP Session Metrics

) webLo

Server Console =lojx|

Ele Edt Yew Go Bookmarks Toos el

a-op - & @ [0 imal_consele_frame 1 ZHoe[c

P Getting started 5 Latest Headines

|| WebLogic Server Console |
@ Consale . . P
5@ rentieatee replicated> SIP Servers> sipserver BEA (&4 1'%

Sisereers cted to © replicated

You are

gged in as

Configuration | {117

D senices General
3 security
3 Domain Log Filters
D Tasks This page displays runtime information about the messages and sessions processed by servers in the engine tier, as well as the start time of
223 5IP Servers each server. This page displays information only if ane or more engine tier servers are currently running.
@ sipserver

@ customize this view.

Application | SIP
Session | Session ion | Messages | Messages | Messages
Name Count— | Count™ |Count™ | Count™ |Received | Rejected” | Processed | Cluster Id
Tue Jul
engine1|13:15:59 (4 4 0 0 32 16 16 6898261947193003856
POT
2006
Tue Jul
engine2|13:16:06 (0 0 0 0 0 0 0 6898261947193003856
POT
2006

oo

Figure 3-5 Application Metrics

Server Console - Mo:

=lolx|

E

it Yew Go Bookmar

Tooks

@5 80a0 e T

P Getting started 5 Latest Headines

|| WebLogic Server Console |

@ C I . o
onsole replicated> SIP Servers> sipserver

ey
BEAA 1)

o replicated

Configuration | {17

G SIP Appli
ity
3 Domain Log Filters
Tasks This page displays runtime session information for applications deployed in the engine tier. This page displays
223 5IP Servers information only if ane or more engine tier servers are currently running.
@ sipserver
@ customize this view.
SIP
Session
Engine |Name Count™ | Count™—
engine1 | engine 1_engine 1_terminating_proxy_proxy |0 0
engine1 | engine_engine_mime_mime 0 0
engine1 | engine 1_engine 1_terminating_proxy_b2bua |0 0
engine1 | engine 1_engine 1_convergence_mysipapp |2 2
engine2 | engine2_engine2_terminating_proxy_b2bua |0 0
engine2 | engine2_engine2_convergence_mysipapp |0 0
engine2 | engine2_engine2_mime_mime 0 0
engine2 | engine2_engine2_terminating_proxy_proxy |0 0

Dore

WebLogic SIP Server 2.2 Technical Product Description 3-9

WebLogic SIP Server in the Network

Figure 3-6 Data Tier Statistics

Ele Edt Yew Go Bookmarks Toos el

@20 QM el _console_frame_1 ZHoe[c

P Getting started

] weblogic sers

@ Consale
B @ replicated

D servers
D ciusters

O machines Configuration | NUETTCLIL
C Deployments
3 senvices General || SIP Applications || Data Tier Information

3 security
3 Domain Log Filters
2 Tasks This page displays runtime information for the data tier, such as the number of requests for call state data, the size of the timer queue, and the
B3 8P servers state of individual data tier servers. This page displays information only if one or more replicas in the data tier are curtently running,
@ sipserver

replicated> SIP Servers> sipserver

ated

@ customize this vie
Call Call
High High |State |[State
Partition | Replica Key |Key™ Total |Bytes |Bytes
Name Name ™ Name™ |State ReplicaServersinCurrentView | Count | Count | TotalBytes | Bytes M‘ Received
replica? | partition-0 |replica’ | ONLINE | replica1 replica2 0o [2 o 17575470187 470187
replica2 | partition-0 | replica2 | ONLINE | replica1 replica2 0o [2 o 17575 | 265205 470187
o 4

Media Control

3-10

The 3GPP R6 specifications define the “Mr” reference point as the SIP protocol. In actual
deployments, however, a more refined view of the general-purpose media control interface is
required.

Media Server vendors appear to disagree on the possibility of a general-purpose interface
between IMS SIP Application Servers and Media Resource Functions, and even on the general
architecture of the MRF as a sub-system in the network.

In all cases known to BEA, however, the transport protocols are TCP, UDP, or SCTP combined
with application-layer protocols such as SIP or HTTP. The media control messages are generally
formatted as eXtensible Markup Language (XML) documents.

WebLogic SIP Server does not provide a specific API for media server control, because there is
not yet an applicable standard nor clear opportunity for one to be defined. In cases where the
media control interface relies on the exchange of XML documents using standard transports, the
implementation of media control is neither complex nor labor intensive for application
developers. WebLogic SIP Server provides support for all of the required protocols, and offers a
powerful XML-handling facility that is sufficient in nearly all cases.

Interoperability between WebLogic SIP Server 2.2 and many popular MRF implementations
from multiple vendors has been demonstrated. Most use cases have been easy to implement using
WebLogic SIP Server 2.2.

WebLogic SIP Server 2.2 Technical Product Description

Charging and Billing

Charging and Billing
WebLogic SIP Server 2.2 does not offer any specific capabilities related to charging and billing.
It is within the scope of the application developer to generate Call Detail Records or implement
interfaces for real-time billing and mediation gateways/functions in the service provider network.
WebLogic SIP Server 2.2 supports a number of transport mechanisms and data formats,
specifically XML and any text based formats, using Java 2 Standard Edition and Java EE.

Security

WebLogic SIP Server users must be authenticated when they request access to a protected
resource, such as a protected method in a deployed SIP Servlet. WebLogic SIP Server 2.2 enables
you to perform SIP Servlet authentication using any of the following techniques:

o DIGEST authentication uses a simple challenge-response mechanism to verify the
identity of a user over SIP or HTTP. See Configuring Digest Authentication in Configuring
and Managing WebLogic SIP Server.

WebLogic SIP Server 2.2 Technical Product Description 3-11

{DOCROOT}/security/digestauth.html
{DOCROOT}/security/index.html
{DOCROOT}/security/index.html

WebLogic SIP Server in the Network

Figure 3-7 Digest Authentication Handling in WebLogic SIP Server 2.2

3 Response

2 Challenge
1 Request

5 Digest
Verification

SIP
Sarnviet

Weblogic
SIP Server

Digest Identity
Asserter
Provider

Authentication
Provider

6 Existence and Group Checking

4 Retrieve Hashed A1
or Unencrypted Password

HA1 or Unencrypted
Password

o CLIENT-CERT authentication uses an X509 certificate chain passed to the SIP
application to authenticate a user. The X509 certificate chain can be provided in a number
of different ways. In the most common case, two-way SSL handshake is performed before
transmitting the chain to ensure secure communication between the client and server.

e BASIC authentication uses the Authorization SIP header to transmit the username and
password to SIP Servlets. BASIC authentication is not recommended for production
systems unless you can ensure that all connections between clients and the WebLogic SIP
Server instance are secure.

3-12 WebLogic SIP Server 2.2 Technical Product Description

Security

Different SIP Servlets deployed on WebLogic SIP Server can use different authentication
mechanisms as necessary. The required authentication mechanism is specified in the
auth-method element of the SIP Servlet Application’s deployment descriptor. The deployment
descriptor may also define resources that are to be protected, listing the specific role names that
are required for access.

Authentication Providers

WebLogic SIP Server authentication services are implemented using one or more authentication
providers. An authentication provider performs the work of proving the identity of a user or
system process, and then transmitting the identity information to other components of the system.

WebLogic SIP Server 2.2 may be configured to use multiple authentication providers via
different authentication methods. For example, when using Digest authentication an
administrator may configure both a Digest Identity Asserter provider to assert the validity of a
digest, and a second LDAP or RDBMS authentication provider that determines the group
membership of a validated user.

Trusted Host Authentication

WebLogic SIP Server 2.2 is designed for deployment scenarios where it is adjacent to trusted
hosts and it is not required to fulfill the role of an application layer security boundary between the
trusted and untrusted domains.

WebLogic SIP Server 2.2 enables administrators to designate network hosts that are considered
to be “trusted”. Trusted hosts are hosts for which WebLogic SIP Server performs no
authentication. If the server receives a SIP message having a destination address that matches a
configured trusted hostname, the message is delivered without Authentication.

WebLogic SIP Server 2.2 supports the P-Asserted-Identity SIP header as described in IETF RFC
3325: Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within
Trusted Networks. This functionality automatically logs in using credentials specified in the
P-Asserted-Identity header when they are received from a trusted host. When combined with the
privacy header, P-Asserted-Identity also determines whether the message can be forwarded to
trusted and non-trusted hosts.

WebLogic SIP Server 2.2 Technical Product Description 3-13

http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3325.txt

WebLogic SIP Server in the Network

3-14

Figure 3-8 Asserted Identity Handling in WebLogic SIP Server 2.2

It is also possible to use WebLogic SIP Server 2.2 in scenarios that do not involve trusted hosts.
See “Standards Alignment” on page 5-1 for a more detailed description of WebLogic SIP Server
2.2 standards compliance.

Declarative Security

The SIP Servlet API specification defines a set of deployment descriptor elements that can be
used for providing declarative and programmatic security for SIP Servlets. The primary method
for declaring security constraints is to define one or more security-constraint elements
and role definitions in the sip.xml deployment descriptor. WebLogic SIP Server adds
additional deployment descriptor elements to help developers easily map SIP Servlet roles to
actual principals and/or roles configured by the WebLogic SIP Server 2.2 administrator.

WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server Cluster
Architecture

The following sections describe the WebLogic SIP Server 2.2 cluster architecture:

“Overview of the Cluster Architecture ” on page 4-1

“WebLogic SIP Server 2.2 Cluster Linear Scalability” on page 4-2

“WebLogic SIP Server 2.2 Replication” on page 4-3

“Diameter Protocol Handling” on page 4-7

“Deployment of WebLogic SIP Server 2.2 in Non-clustered configurations” on page 4-9

““Zero Downtime” Application Upgrades” on page 4-10

Overview of the Cluster Architecture

WebLogic SIP Server 2.2 provides a multi-tier cluster architecture in which a stateless “Engine
Tier” processes all traffic and distributes all transaction and session state to a “Data Tier.” The
data tier is comprised of one or more partitions, labeled as “Data Nodes” in Figure 4-1 below.
Each partition may contain one or more replicas of all state assigned to it and may be distributed
across multiple physical servers or server blades. A standard load balancing appliance is used to
distribute traffic across the Engines in the cluster. It is not necessary that the load balancer be
SIP-aware; there is no requirement that the load balancer support affinity between Engines and
SIP dialogs or transactions. However, SIP-aware load balancers can provide higher performance
by maintaining a client’s affinity to a particular engine tier server.

WebLogic SIP Server 2.2 Technical Product Description 4-1

WebLogic SIP Server Cluster Architecture

Figure 4-1 Example WebLogic SIP Server 2.2 Cluster

IP Network

Load Balancer 1 Load Balancer 2

T T

R LT N S A T N S ¥
! 1
H 1 H
' D Relay 1 D Relay 2 i H Engine 1 Engine 2 Engine n Engine n+1 !
"""""""""" M Hal ks e eteiniuaied e WLSS Cluster
' P2 — P2 b P-3 eamons | (P8 Admin Server
i
P-4 P-1 PARTITIO! P-1 P-4
Data Node 1 Data Node 2 Data Node n Data Node n+1

In some cases, it is advantageous to have state tier instances and engine tier instances running on
the same physical host (as shown in Figure 4-1). This is particularly true when the physical
servers or server blades in the cluster are based on Symmetrical Multi-Processing (SMP)
architectures, as is now common for platforms such as Advance Telecom Computing
Architecture (ATCA). This is not arbitrarily required, however, and it is entirely possible to
physically distribute State Tier and Engine instances each to a different physical server or server
blade.

There is no arbitrary limit to the number of engines, partitions or physical servers within a cluster,
and there is no fixed ratio of engines to partitions. When dimensioning the cluster, however, a
number of factors should be considered, such as the typical amount of memory required to store
the state for a given session and the increasing overhead of having more than two replicas within
a partition.

WebLogic SIP Server 2.2 Cluster Linear Scalability

WebLogic SIP Server 2.2 has demonstrated linear scalability from 2 to 16 hosts (up to 32 CPUs)
in both laboratory and field tests and in commercial deployments. This characteristic is likely to
be evident in larger clusters as well, up to the ability of the cluster interconnect (or alternatively

4-2 WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Replication

the load balancer) to support the total traffic volume. Gigabit Ethernet is recommended as a
minimum for the cluster interconnect.

WebLogic SIP Server 2.2 Replication

The WebLogic SIP Server 2.2 data tier is an in-memory, peer-replicated store. The store also

functions as a lock manager, whereby call state access follows a simple “library book™ model (a
call state can only be checked out by one SIP engine at a time).

The nodes in the data tier are called replicas. To increase the capacity of the data tier, the data is
split evenly across a set of partitions. Each partition has a set of 1-8 replicas which maintain a
consistent state. (BEA recommends using no more than 3 replicas per partition.) The number of
replicas in the partition is the replication factor.

Replicas can join and leave the partition. Any given replica serves in exactly one partition at a
time. The total available call state storage capacity of the cluster is determined by the capacity of
each partition.

Figure 4-2 WebLogic SIP Server 2.2 State Replication

'.zl 1)
Replica 1
'-\Te"'.

Ly
Replica 2 =

b B

|
.1

The call state store is peer-replicated. This means that clients perform all operations (reads and
writes) to all replicas in a partition. Peer replication stands in contrast to the more common
primary-secondary replication architecture, wherein one node acts as a primary and the all other
nodes act as secondaries. With primary-secondary replication, clients only talk directly to the
current primary node. Peer-replication is roughly equivalent to the synchronous
primary-secondary architecture with respect to failover characteristics, peer replication has lower
latency during normal operations on average. Lower latency is achieved because the system does

not have to wait for the synchronous 2™ hop incurred with primary-secondary replication.

WebLogic SIP Server 2.2 Technical Product Description 4-3

WebLogic SIP Server Cluster Architecture

44

Peer replication also provides better failover characteristics than asynchronous
primary-secondary systems because there is no change propagation delay.

99 ¢

The operations supported by all replicas for normal operations are: “lock and get call state,” “put
and unlock call state,” and “lock and get call states with expired timers.” The typical message
processing flow is simple:

1. Lock and get the call state.
2. Process the message.

3. Put and unlock the call state.

Additional management functions deal with bootstrapping, registration, and failure cases.

Partition Views

The current set of replicas in a partition is referred to as the partition view. The view contains an
increasing ID number. A view change signals that either a new replica has joined the partition, or
that a replica has left the partition. View changes are submitted to engines when they perform and
operation against the data tier.

When faced with a view change, engine nodes performing a lock/get operation must immediately
retry their operations with the new view. Each SIP engine schedules a 10ms interval for retrying
the lock/get operation against the new view. In the case of a view change on a put request, the
new view is inspected for added replicas (in the case that the view change derives from a replica
join operation instead of replica failure or shutdown). If there is an added replica, that replica also
gets the put request to ensure consistency.

Timer Processing

An additional function of the data tier is timer processing. The replicas set timers for the call
states when call states perform put operations. Engines then poll for and “check out” timers for
processing. Should an engine fail at this point, this failure is detected by the replica and the set of
checked-out timers is forcefully checked back in and rescheduled so that another engine may
check them out and process them.

As an optimization, if a given call state contains only timers required for cleaning up the call state,
the data tier itself expires the timers. In this special case, the call state is not returned to an engine
tier for further processing, because the operation can be completed wholly within the data tier.

WebLogic SIP Server 2.2 Technical Product Description

WebLogic SIP Server 2.2 Replication

Replica Failure

The SIP engine node clients perform failure detection for replicas, or for failed network
connections to replicas.

During the course of message processing, an engine communicates with each replica in the
current partition view. Normally all operations succeed, but occasionally a failure (a dropped
socket or an invocation timeout) is detected. When a failure is detected the engine sends a “replica
died” message to any of the remaining live replicas in the partition. (If there is no remaining live
replica, the partition is declared “dead” and the engines cannot process calls hashing to that
partition until the partition is restored). The replica that receives the failed replica notification
proposes a new partition view that excludes the reportedly dead replica. All clients will then
receive notification of the view change (see “Partition Views” on page 4-4).

To handle partitioned network scenarios where one client cannot talk to the supposedly failed
replica but another replica can, the “good” replica removes the reportedly failed replica offline,
ensuring safe operation in the face of network partition.

Engine Failure

The major concerns with engine failure are:
1. They are in the middle of a lock/get or put/unlock operation during failure;
2. They fail to unlock call states for messages they are currently processing;

3. They abandon the set of timers that they are currently processing.

Replicas are responsible for detecting engine failure. In the case of failures during lock/get and
put/unlock operations, there is risk of lock state and data inconsistency between the replicas (data
inconsistency in the case of put/unlock only). To handle this, the replicas break locks for call
states if they are requested by another engine and the current lock owner is deemed dead. This
allows progress with that call state.

Additionally, to deal with possible data inconsistency in scenarios where locks had to be broken,
the call state is marked as “possibly stale”. When an engine evaluates the response of a lock/get
operation, it wants to choose the best data. If any one replica reports that it has non-stale data, that
data is used. Otherwise, the “possibly stale” data is used (it is only actually stale in the case that
the single replica that had the non-stale version died in the intervening period).

WebLogic SIP Server 2.2 Technical Product Description 4-5

WebLogic SIP Server Cluster Architecture

46

Effects of Failures on Call Flows

Because of the automatic failure recovery of the replicated store design, failures don’t affect call
flow unless the failure is of a certain duration or magnitude.

Figure 4-3 Replication Example Call Flow 1

UAC

- 180

— 200

B2BUA

INVITE —|

UAS

INVITE ———»=

Replica
Fails

ACK ——m

- 200

+— 200

180

ACK ———»

Failure doesn't

affect call flow

In some cases, failure recovery causes “blips” in the system where the engine’s coping with view
changes causes message processing to temporarily back-up. This is usually not dangerous, but
may cause UAC or UAS re-transmits if the backlog created is substantial.

WebLogic SIP Server 2.2 Technical Product Description

Diameter Protocol Handling

Figure 4-4 Replication Example Call Flow 2

UAC B2BUA UAS

INVITE ——=|

Replica
Fails; cause INVITE ——»
slight delay

- 180

INVITE
retransmit retransmit
e

Failure causes
delays, inciting
retransmits

ACK ———

ACK ——»

—— 200

Catastrophic failure of a partition (whereby no replica is remaining) causes a fraction of the
cluster to be unable to process messages. If there are four partitions, and one is lost, 25% of
messages will be rejected. This situation will resolve once any of the replicas are put back in the
service of that partition.

Diameter Protocol Handling

A typical WebLogic SIP Server domain deploys support for the Diameter base protocol and IMS
Sh interface provider on all engine tier servers, which each act as Diameter Sh client nodes. SIP
Servlets deployed on the engines can use the profile service API to initiate requests for user
profile data, or to subscribe to and receive notification of profile data changes. The Sh interface
is also used to communicate between multiple IMS Application Servers.

WebLogic SIP Server 2.2 Technical Product Description 4-7

WebLogic SIP Server Cluster Architecture

4-8

One or more server instances may be also be configured as Diameter relay agents, which route

Diameter messages from the client nodes to a configured Home Subscriber Server (HSS) in the
network, but do not modify the messages. BEA recommends configuring one or more servers to
act as relay agents in a domain. The relays simplify the configuration of Diameter client nodes,
and reduce the number of network connections to the HSS. Using at least two relays ensures that
a route can be established to an HSS even if one relay agent fails.

The relay agents included in WebLogic SIP Server 2.2 perform only stateless proxying of
Diameter messages; messages are not cached or otherwise processed before delivery to the HSS.

Note: In order to support multiple HSSs, the 3GPP defines the Dh interface to look up the
correct HSS. WebLogic SIP Server 2.2 does not provide a Dh interface application, and
can be configured only with a single HSS.

Note that relay agent servers do not function as either engine or data tier instances—they should
not host applications, store call state data, maintain SIP timers, or even use SIP protocol network
resources (sip or sips network channels).

WebLogic SIP Server also provides a simple HSS simulator that you can use for testing Sh client
applications. You can configure a WebLogic SIP Server instance to function as an HSS simulator
by deploying the appropriate application.

WebLogic SIP Server 2.2 Technical Product Description

Deployment of WebLogic SIP Server 2.2 in Non-clustered configurations

Figure 4-5 WebLogic SIP Server 2.2 Diameter Domain

Engine Tier Cluster

diameter.xml
(Listing 8-3)

i (rey
Cal state ;
Repication :

i (rey

" e—ToP—»

Diameter Relay Agents

diameter.xml
(Listing 8-4)

eterxm
(Listing 8:5)

10.0.1.30/3821
hss_ wiss.com

Deployment of WebLogic SIP Server 2.2 in Non-clustered
configurations

WebLogic SIP Server 2.2 may be deployed in non-clustered configurations where session
retention is not a relevant capability. The SIP signaling throughput of individual WebLogic SIP
Server 2.2 instances will be substantially higher due to the elimination of the computing overhead
of the clustering mechanism. Non-clustered configurations are appropriate for development
environments or for cases where all deployed services are stateless and/or session retention is not
considered important to the user experience (where users are not disturbed by failure of
established sessions).

It is important to note that this has no impact on the licensing of the product and does not affect
license capacity. This feature may reduce the volume of hardware required to handle a given SIP
signaling traffic load, however.

WebLogic SIP Server 2.2 Technical Product Description 4-9

WebLogic SIP Server Cluster Architecture

“Zero Downtime” Application Upgrades

4-10

With WebLogic SIP Server 2.2, you can upgrade a deployed SIP application to a newer version
without losing existing calls being processed by the application. This type of application upgrade
is accomplished by deploying the newer application version alongside the older version.
WebLogic SIP Server automatically manages the SIP Servlet mapping so that new requests are
directed to the new version. Subsequent messages for older, established dialogs are directed to
the older application version until the calls complete. After all of the older dialogs have
completed and the earlier version of the application is no longer processing calls, you can safely
un-deploy it.

WebLogic SIP Server's upgrade feature ensures that no calls are dropped while during the
upgrade of a production application. The upgrade process also enables you to revert or rollback
the process of upgrading an application. If, for example, you determine that there is a problem
with the newer version of the deployed application, you can simply un-deploy the newer version.
WebLogic SIP Server then automatically directs all new requests to the older application version.

Requirements and Restrictions for Upgrading Deployed
Applications

To use the application upgrade functionality of WebLogic SIP Server:

e You must assign version information to your updated application in order to distinguish it
from the older application version. Note that only the newer version of a deployed
application requires version information; if the currently-deployed application contains no
version designation, WebLogic SIP Server automatically treats this application as the
“older” version.

e Both the deployed application and the updated application must provide only SIP protocol
functionality. You cannot upgrade converged HTTP/SIP applications using these
procedures.

e A maximum of two different versions of the same application can be deployed at one time.

e If your application hard-codes the use of an application name (for example, in composed
applications where multiple SIP Servlets process a given call), you must replace the
application name with calls to a helper method that obtains the base application name.
WebLogic SIP Server provides SipApplicationRuntimeMBean methods for
obtaining the base application name and version identifier, as well as determining whether
the current application version is active or retiring.

WebLogic SIP Server 2.2 Technical Product Description

“Zero Downtime” Application Upgrades

e When applications take part in a composed application (using application composition
techniques), WebLogic SIP Server always uses the latest version of an application when
only the base name is supplied.

WebLogic SIP Server also provides the ability for Administrators to upgrade the SIP Servlet
container, JVM, or application on a cluster-wide basis without affecting existing SIP traffic. This
is accomplished by creating multiple clusters and having WebLogic SIP Server automatically
forward requests during the upgrade process. See Upgrading Software and Converged
Applications in Configuring and Managing WebLogic SIP Server.

WebLogic SIP Server 2.2 Technical Product Description 4-1

{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/upgrading.html
{DOCROOT}/adminguide/upgrading.html

WebLogic SIP Server Cluster Architecture

4-12 WebLogic SIP Server 2.2 Technical Product Description

Standards Alignment

The following sections describe how WebLogic SIP Server 2.2 complies with various
specifications and RFCs:

e “Overview of WebLogic SIP Server Standards Alignment” on page 5-1
e “Java Sun Recommendation (JSR) Standards Compliance” on page 5-2
e “IETF RFC Compliance” on page 5-2

e “3GPP R6 Specification Conformance” on page 5-9

Overview of WebLogic SIP Server Standards Alignment

WebLogic SIP Server is developed with special attention to Internet Engineering Task Force and
3™ Generation Partnership Project specifications. Feature development is prioritized according
to general market trends, both observed and predicted. In cases where certain specifications are
obsolete or where Internet drafts are formalized as ‘Request For Comments’ standards,
WebLogic SIP Server places priority on compliance with those specifications. In cases where
specifications are part of a larger release plan, as with the 3GPP, BEA prioritizes compliance with
the latest ratified release (in this case, Release 6). This should not be presumed to mean that the
product is not compliant with subsequent versions of component specifications, although this
document does not summarize compliance with those specifications.

WebLogic SIP Server 2.2 Technical Product Description 5-1

Standards Alignment

Java Sun Recommendation (JSR) Standards Compliance

WebLogic SIP Server 2.2 is compliant with the JSR 58: Java 2 Platform, Enterprise Edition 1.3
Specification and all of its component specifications, and is enhanced by the addition of a SIP
Servlet container defined by JSR 116: “SIP Servlet APL.”

WebLogic SIP Server 2.2 has executed all related Test Compatibility Kits (TCKs) and has met
the formal requirements established by Sun Microsystems for formal public statements of
compliance.

IETF RFC Compliance

The following table lists the WebLogic SIP Server level of compliance to common Internet
Engineering Task Force (IETF) Requests for Comment (RFCs) and Internet drafts. The level of
compliance is defined as follows:

e Yes—Indicates that WebLogic SIP Server container directly supports the feature or
specification.

e Yes (Platform)—Indicates WebLogic SIP Server can host applications or components that
implement the RFC. However, the RFC or feature has no impact on the transaction layer of
the protocol or on the behavior of the SIP Servlet container.

Table 5-1 WebLogic SIP Server IETF Compliance

RFC or Title Compliant? Additional Information

Specification

Number

761 DoD Standard Yes See http://www.ietf.org/rfc/rfc761.txt
Transmission

Control Protocol

768 User Datagram Yes See http://www.ietf.org/rfc/rfc768.txt
Protocol

1847 Security Multiparts Yes WebLogic SIP Server supports applications that
for MIME: (Platform) consume or generate signed or encrypted multipart
Multipart/Signed and MIME objects. See http://www.ietf.org/rfc/rfc1847.txt
Multipart/Encrypted

5-2 WebLogic SIP Server 2.2 Technical Product Description

http://www.jcp.org/en/jsr/detail?id=58
http://www.jcp.org/en/jsr/detail?id=58
http://www.ietf.org/rfc/rfc761.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc1847.txt

Tahle 5-1 WebLogic SIP Server IETF Compliance

IETF RFC Compliance

1907 Management Yes See http://www.ietf.org/rfc/rfc1907.txt
Information Base for (Platform)
Version 2 of the
Simple Network
Management
Protocol (SNMPv2)

2183 Communicating Yes WebLogic SIP Server supports applications that
Presentation (Platform) conform to this specification. See
Information in http://www.ietf.org/rfc/rfc2183.txt
Internet Messages:
The
Content-Disposition
Header Field

2246 The TLS Protocol Yes WebLogic SIP Server supports TLS. See
Version 1.0 http://www.ietf.org/rfc/rfc2246.txt

2327 SDP: Session Yes WebLogic SIP Server supports applications that
Description Protocol consume or generate SDP. See

http://www.ietf.org/rfc/rfc2327 .txt

2543 SIP: Session Yes WebLogic SIP Server supports backward compatibility
Initiation Protocol as described in this specification. See
(v1) http://www.ietf.org/rfc/rfc2543 txt

2616 Hypertext Transfer Yes See http://www.ietf.org/rfc/rfc2616.txt
Protocol -- HTTP 1.1

2617 HTTP Yes See http://www.ietf.org/rfc/rfc2617.txt
Authentication:
Basic and Digest
Access
Authentication

2848 The PINT Service Yes Note that implementing PINT services implies a
Protocol: Extensions (Platform) pre-IMS architecture. Although BEA favors the

to SIP and SDP for IP
Access to Telephone
Call Services

3GPP/TISPAN architecture and approach to class 4/5
Service Emulation and does not advocate PINT, it is
possible to implement PINT service elements using
WebLogic SIP Server. See
http://www.ietf.org/rfc/rfc2848.txt

WebLogic SIP Server 2.2 Technical Product Description 5-3

http://www.ietf.org/rfc/rfc1907.txt
http://www.ietf.org/rfc/rfc2183.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2327.txt
http://www.ietf.org/rfc/rfc2543.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2848.txt

Standards Alignment

Tahle 5-1 WebLogic SIP Server IETF Compliance

2976 The SIP INFO Yes See http://www.ietf.org/rfc/rfc2976.txt
Method

3204 MIME media types Yes WebLogic SIP Server does not directly consume or
for ISUP and QSIG (Platform) generate ISUP and QSIG objects, but it supports
Objects applications that consume or generate these objects.

See http://www.ietf.org/rfc/rfc3204.txt

3261 SIP: Session Yes See http://www.ietf.org/rfc/rfc3261.txt
Initiation Protocol

3262 Reliability of Yes See http://www.ietf.org/rfc/rfc3262.txt
Provisional
Responses in the
Session Initiation
Protocol (SIP)

3264 An Offer/Answer Yes WebLogic SIP Server supports applications that
Model with Session (Platform) conform to this specification. See
Description Protocol http://www.ietf.org/rfc/rfc3264.txt
(SDP)

3265 Session Initiation Yes See http://www.ietf.org/rfc/rfc3265.txt
Protocol
(SIP)-Specific Event
Notification

3268 Advanced Yes WebLogic SIP Server supports cryptographic services,
Encryption Standard ~ (Platform) but specific algorithms that are used are subject to local
(AES) Ciphersuites availability and export control. See
for Transport Layer http://www.ietf.org/rfc/rfc3268.txt
Security (TLS)

3311 The Session Yes WebLogic SIP Server supports applications that
Initiation Protocol conform to this specification. See
(SIP) UPDATE http://www.ietf.org/rfc/rfc3311.txt
Method

3312 Integration of Yes WebLogic SIP Server supports applications that
Resource (Platform) conform to this specification. See

Management and
Session Initiation
Protocol (SIP).

http://www.ietf.org/rfc/rfc3312.txt

5-4 WebLogic SIP Server 2.2 Technical Product Description

http://www.ietf.org/rfc/rfc2976.txt
http://www.ietf.org/rfc/rfc3204.txt
http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3262.txt
http://www.ietf.org/rfc/rfc3264.txt
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3268.txt
http://www.ietf.org/rfc/rfc3311.txt
http://www.ietf.org/rfc/rfc3312.txt

Tahle 5-1 WebLogic SIP Server IETF Compliance

IETF RFC Compliance

3323 A Privacy Yes
Mechanism for the (Platform)
Session Initiation

Protocol (SIP)

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3323.txt

3325 Private Extensionsto Yes
the Session Initiation
Protocol (SIP) for

Asserted Identity

within Trusted

Networks

See http://www.ietf.org/rfc/rfc3325.txt

3326 The Reason Header Yes
Field for the Session (Platform)
Initiation Protocol

(SIP)

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3326.txt

3327 Session Initiation Yes
Protocol (SIP) (Platform)
Extension Header

Field for Registering
Non-Adjacent

Contacts.

See http://www.ietf.org/rfc/rfc3327.txt

3351 User Requirements Yes
for the Session (Platform)
Initiation Protocol
(SIP) in Support of
Deaf, Hard of
Hearing and
Speech-impaired
Individuals

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3351.txt

3372 Session Initiation Yes
Protocol for (Platform)
Telephones (SIP-T):

Context and

Architectures

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3372.txt

3428 Session Initiation Yes
Protocol (SIP)
Extension for Instant

Messaging

See http://www.ietf.org/rfc/rfc3428.txt

WebLogic SIP Server 2.2 Technical Product Description 5-5

http://www.ietf.org/rfc/rfc3323.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc3326.txt
http://www.ietf.org/rfc/rfc3327.txt
http://www.ietf.org/rfc/rfc3351.txt
http://www.ietf.org/rfc/rfc3372.txt
http://www.ietf.org/rfc/rfc3428.txt

Standards Alignment

Tahle 5-1 WebLogic SIP Server IETF Compliance

3455 Private Header Yes
(P-Header) (Platform)
Extensions to the

Session Initiation

Protocol (SIP) for the
3rd-Generation

Partnership Project

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3455.txt

(3GPP)
3515 The Session Yes See http://www.ietf.org/rfc/rfc3515.txt
Initiation Protocol
(SIP) Refer Method.
3578 Mapping of Yes WebLogic SIP Server supports applications that
Integrated Services (Platform) conform to this specification, but it does not provide an
Digital Network ISUP interface. See http://www.ietf.org/rfc/rfc3578.txt
(ISDN) User Part
(ISUP) Overlap
Signalling to the
Session Initiation
Protocol (SIP)
3588 Diameter Base Yes WebLogic SIP Server does not expose the Diameter
Protocol base protocol to developers, but uses the base protocol
as a means of managing profile data with network
functions such as Home Subscriber Servers (HSS) via
the Sh interface.See http://www.ietf.org/rfc/rfc3588.txt
3608 Session Initiation Yes WebLogic SIP Server supports applications that
Protocol (SIP) (Platform) conform to this specification, but it does not provide a
Extension Header means of storing the ServiceRoute established during
Field for Service registration. This functionality can be implemented as
Route Discovery part of the application. See
During Registration. http://www.ietf.org/rfc/rfc3608.txt
3665 Session Initiation Yes WebLogic SIP Server supports applications that
Protocol (SIP) Basic conform to this specification. See
Call Flow Examples. http://www.ietf.org/rfc/rfc3665.txt

5-6 WebLogic SIP Server 2.2 Technical Product Description

http://www.ietf.org/rfc/rfc3455.txt
http://www.ietf.org/rfc/rfc3515.txt
http://www.ietf.org/rfc/rfc3578.txt
http://www.ietf.org/rfc/rfc3608.txt
http://www.ietf.org/rfc/rfc3588.txt
http://www.ietf.org/rfc/rfc3665.txt

Tahle 5-1 WebLogic SIP Server IETF Compliance

IETF RFC Compliance

3666 Session Initiation Yes WebLogic SIP Server supports applications that
Protocol (SIP) Public ~ (Platform) conform to this specification. See
Switched Telephone http://www.ietf.org/rfc/rfc3666.txt
Network (PSTN)
Call Flows
3702 Authentication, Yes WebLogic SIP Server version 2.2 supports JDBC and
Authorization, and LDAP. See http://www.ietf.org/rfc/rfc3702.txt
Accounting
Requirements for the
Session Initiation
Protocol (SIP)
3725 Best Current Yes WebLogic SIP Server supports applications that
Practices for Third conform to this specification. See
Party Call Control http://www .ietf.org/rfc/rfc3725.txt
(3pcc) in the Session
Initiation Protocol
(SIP)
3764 Enumservice Yes WebLogic SIP Server supports applications that
Registration for (Platform) conform to this specification. See
Session Initiation http://www.ietf.org/rfc/rfc3764.txt
Protocol (SIP)
Addresses-of-Record
3853 S/MIME Advanced Yes WebLogic SIP Server supports applications that
Encryption Standard ~ (Platform) conform to this specification. See
(AES) Requirement http://www.ietf.org/rfc/rfc3853.txt
for the Session
Initiation Protocol
(SIP)
3892 The Session Yes WebLogic SIP Server supports applications that
Initiation Protocol (Platform) conform to this specification. See
(SIP) Referred-By http://www.ietf.org/rfc/rfc3892.txt
Mechanism
3893 Session Initiation Yes WebLogic SIP Server supports applications that
Protocol (SIP) (Platform) conform to this specification. See
Authenticated http://www.ietf.org/rfc/rfc3893.txt
Identity Body (AIB)
Format

WebLogic SIP Server 2.2 Technical Product Description 5-1

http://www.ietf.org/rfc/rfc3666.txt
http://www.ietf.org/rfc/rfc3702.txt
http://www.ietf.org/rfc/rfc3725.txt
http://www.ietf.org/rfc/rfc3764.txt
http://www.ietf.org/rfc/rfc3853.txt
http://www.ietf.org/rfc/rfc3892.txt
http://www.ietf.org/rfc/rfc3893.txt

Standards Alignment

Tahle 5-1 WebLogic SIP Server IETF Compliance

3903 Session Initiation Yes
Protocol (SIP)
Extension for Event
State Publication

See http://www.ietf.org/rfc/rfc3903.txt

3911 The Session Yes
Initiation Protocol (Platform)
(SIP) “Join” Header

WebLogic SIP Server supports applications that
conform to this specification. See
http://www.ietf.org/rfc/rfc3911.txt

4244 An Extension to the Yes WebLogic SIP Server supports applications that
Session Initiation (Platform) conform to this specification. See
Protocol (SIP) for http://www.ietf.org/rfc/rfc4244 txt
Request History
Information

1157 A Simple Network Yes WebLogic SIP Server supports SNMP V2c traps. See
Management http://www.ietf.org/rfc/rfc1157.txt
Protocol (SNMP)

1901 Introduction to Yes WebLogic SIP Server supports SNMP V2c traps. See
Community-based http://www.ietf.org/rfc/rfc1901.txt
SNMPv2

1905 Protocol Operations ~ Yes WebLogic SIP Server supports SNMP V2c¢ traps. See
for Version 2 of the http://www.ietf.org/rfc/rfc1905.txt
Simple Network
Management
Protocol (SNMPv2)

1906 Transport Mappings Yes WebLogic SIP Server supports SNMP over both TCP
for Version 2 of the and UDP. See http://www.ietf.org/rfc/rfc1906.txt
Simple Network
Management

Protocol (SNMPv2)

draft-levy-sip- Diversion Indication Yes

WebLogic SIP Server supports applications that

diversion-08 in SIP (Platform) conform to this specification. See
https://datatracker.ietf.org/public/idindex.cgi?comman
d=id_detail&id=6002

draft-donovan SIP 183 Session Yes WebLogic SIP Server supports applications that

-mmusic-183- Progress Message (Platform) conform to this specification. See

00 Draft https://datatracker.ietf.org/public/idindex.cgi?comman

d=id_detail&id=4308

5-8 WebLogic SIP Server 2.2 Technical Product Description

http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc3911.txt
http://www.ietf.org/rfc/rfc4244.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1901.txt
http://www.ietf.org/rfc/rfc1905.txt
http://www.ietf.org/rfc/rfc1906.txt
https://datatracker.ietf.org/public/idindex.cgi?command=id_detail&id=4308
https://datatracker.ietf.org/public/idindex.cgi?command=id_detail&id=6002

Tahle 5-1 WebLogic SIP Server IETF Compliance

3GPP R6 Specification Conformance

draft-ietf-sip- A Mechanism for Yes WebLogic SIP Server supports applications that
content-indire ~ Content Indirection (Platform) conform to this specification. See
ct-mech-05 in Session Initiation http://www.ietf.org/internet-drafts/draft-ietf-sip-conte
Protocol (SIP) nt-indirect-mech-05.txt
Messages
draft-ietf-sim The Extensible Yes WebLogic SIP Server supports applications that
ple-xcap-08 Markup Language (Platform) conform to this specification. See
(XML) http://www?3.ietf.org/proceedings/05nov/IDs/draft-ietf
Configuration -simple-xcap-08.txt
Access Protocol
(XCAP)

3GPP R6 Specification Conformance

Table 5-2, “3GPP R6 Specification Conformance,” on page 5-10 summarizes the ability of the
WebLogic SIP Server 2.2 release to support implementation of the enablers or application
functions identified by each applicable 3GPP Release 6 specification.

Other than the exceptions noted, WebLogic SIP Server 2.2 does not impose any restrictions on
implementing applications or functions that are compliant with those associated with the
Application Server entity described in the specification. In some cases, applications must
implement support for SIP methods or headers. The default behavior of the WebLogic SIP Server

WebLogic SIP Server 2.2 Technical Product Description 5-9

http://www.ietf.org/internet-drafts/draft-ietf-sip-content-indirect-mech-05.txt
http://www3.ietf.org/proceedings/05nov/IDs/draft-ietf-simple-xcap-08.txt

Standards Alignment

5-10

Sip Servlet Container is to pass unrecognized headers, request methods and payloads to SIP
Servlets using normal SIP Servlet API procedures.

Table 5-2 3GPP R6 Specification Conformance

Specification

Comments

3GPP TS 23.228: “IP Multimedia Subsystem
(IMS); Stage 2 (Release 6)”

No comments.

3GPP TS 24.229: “IP Multimedia Call Control
Protocol based on Session Initiation Protocol
(SIP) and Session Description Protocol (SDP);
Stage 3 (Release 6)”

WebLogic SIP Server 2.2 does not support IPv6.

WebLogic SIP Server 2.2 does not enforce the
requirement that only one
p-charging-function-address header per SIP
request as described in sub-section 5.7.1.2.
WebLogic SIP Server does enforce uniqueness.

WebLogic SIP Server 2.2 does not provide
privacy support as described in sub-section 5.7.3.

3GPP TS 23.141: “Presence Service;
Architecture and Functional description
(Release 6)”

WebLogic SIP Server 2.2 does not natively
support the Ph (MAP), P1 (LIF-MLP), Px
(DIAMETER Cx/Dx), Pg (phase 4, 3GPP
Release 5),Pc (CAMEL phase 4, 3GPP Release 5)
or Pr, Pk and Pp (RADIUS) reference points.

WebLogic SIP Server 2.2 does not support IPv6
as required for the Presence User Agent (Peu)
reference point as required in sub-section 4.3.1.

3GPP TS 23.218: “IP Multimedia (IM) session
handling; IM call model; Stage 2 (Release 6)”

No comments.

3GPP TS 24.247 “Messaging using the IP
Multimedia (IM) Core Network (CN)
subsystem; Stage 3 (Release 6)”

WebLogic SIP Server does not provide support
for the Message Session Relay Protocol (MSRP),
although it is presumed that an MSRP relay will
typically be implemented as a Media Resource
Function in the IMS architecture.

WebLogic SIP Server 2.2 Technical Product Description

Tahle 5-2 3GPP R6 Specification Conformance

3GPP R6 Specification Conformance

Specification

Comments

3GPP TS 24.841: “Presence service based on
Session Initiation Protocol (SIP); Functional
models, information flows and protocol details
(Release 6)”

» WebLogic SIP Server 2.2 does not provide direct
support for all procedures defined in IETF RFC
3263: “Session Initiation Protocol (SIP):
Locating SIP Servers”, in that it does not support
DNS SRV record lookups.

* WebLogic SIP Server 2.2 does not provide
support for [IETF RFC 3310: “Hypertext Transfer
Protocol (HTTP) Digest Authentication Using
Authentication and Key Agreement (AKA)”.

3GPP TS 24.109: “Bootstrapping interface (Ub)
and Network application function interface
(Ua); Protocol details (Release 6)”

* WebLogic SIP Server 2.2 does not provide
support for [IETF RFC 3310: “Hypertext Transfer
Protocol (HTTP) Digest Authentication Using
Authentication and Key Agreement (AKA)”.

* WebLogic SIP Server 2.2 supports the
‘X-3GPP-Asserted-Identity extension-header’
for use applying access control and authorization
constraints within the integrated security
framework.

3GPP TS 29.328: “IP Multimedia Subsystem
(IMS) Sh interface; Signalling flows and
message contents”

¢ No comments.

3GPP TS 29.329: “Sh interface based on the

Diameter protocol; Protocol details (Release 6)”

¢ No comments.

3GPP TS 33.222: “Generic Authentication
Architecture (GAA); Access to network
application functions using Hypertext Transfer
Protocol over Transport Layer Security
(HTTPS) (Release 6)”

* WebLogic SIP Server supports the Application
Server role in the GAA.

WebLogic SIP Server 2.2 Technical Product Description 5-11

Standards Alignment

5-12 WebLogic SIP Server 2.2 Technical Product Description

Supported Platforms

WebLogic SIP Server 2.2 is supported on the following hardware and operating system
combinations:

e Microsoft Windows 2000 Server, Advanced Server on 32-bit x86 architecture
e Microsoft Windows 2000 Professional on 32-bit x86 architecture

e Microsoft Windows Server 2003 Standard, Enterprise, and Datacenter on 32-bit x86
architecture

e Microsoft Windows Server 2003 Enterprise and Datacenter on Itanium
e Microsoft Windows XP on 32-bit x86 architecture

e Novell SUSE LINUX® Enterprise Server 8 on 32-bit x86 architecture

Novell SUSE LINUX® Enterprise Server 9 on 32-bit x86 architecture

e Red Hat Enterprise Linux 2.1 AS, ES on 32-bit x86 architecture

Red Hat Enterprise Linux 2.1 WS on 32-bit x86 architecture

Red Hat Enterprise Linux 3.0 AS, ES on 32-bit x86 architecture

Red Hat Enterprise Linux 3.0 WS on 32-bit x86 architecture
e Sun Solaris 8 on SPARC
Sun Solaris 9 on SPARC

WebLogic SIP Server 2.2 Technical Product Description

6-1

Supported Platforms

e HP-UX 11i v2 on Itanium (Generic Installer)

See Supported Configurations for more detailed information about the hardware and software
configurations that are compatible with WebLogic SIP Server 2.2.

6-2 WebLogic SIP Server 2.2 Technical Product Description

{DOCROOT}/platform.html

APPENDlxa

SIP Servlet APl Service Invocation

The following sections describe the Service invocation method of the SIP Servlet API (JSR 116):
e “Overview” on page A-1

e “Servlet Mapping Rules: Objects, Properties and Conditions” on page A-2

Overview

The SIP Servlet API provides a model for application composition and interaction Service
Interaction which is analogous with a simplistic implementation of the Service Capability
Interaction Manager (SCIM) alluded to by the 3GPP. Handling of all incoming requests is
governed by the WebLogic SIP Server SIP Servlet Container in accordance with the SIP Servlet
API specification.

The WebLogic SIP Server 2.2 SIP Servlet Container filters received Initial SIP requests and
applies a set of defined rules (Servlet Mapping Rules) to determine which SIP Servlets within the
deployed applications shall be invoked to service that particular request. This order is always
sequential and is defined in a configuration file built up through successive deployments of SIP
applications.

Within the deployment descriptor for each SIP Application that is deployed, a sequence of
conditions, called Servlet Mapping Rules, is defined. These rules determine which Servlets will
handle any initial request. As the request object is “routed” between Servlets, the path from
Servlet to Servlet is recorded in a fashion equivalent to the “record-route” and “via” headers in
SIP requests. This route is stored as part of the SIP application session and is appended to
subsequent requests within the same dialogue in either “forward” or “reverse” order depending

WebLogic SIP Server 2.2 Technical Product Description A-1

SIP Servlet APl Service Invocation

on the orientation of the “From” and “To” tags for the request. This internal “route” is stripped
from the request object before a SIP request leaves WebLogic SIP Server and is not visible to
external SIP servers. It is again added whenever a new request within an existing dialog is
received.

The SIP Servlets (SIP/HTTP application) that are invoked in this manner are unaware that any
other SIP/HTTP application exists. This is one of the fundamental characteristics of the SIP
Servlet programming model. Making maximal use of this model requires that the Servlet
container be treated by the developer as if it is a logical sub-network, with the container
effectively acting as an intermediary proxy. In many ways, the SIP Servlet Container may be
compared with the Serving CSCF function in an_IMS architecture.

Servlet Mapping Rules: Objects, Properties and
Conditions

A-2

Servlet mapping rules are defined by the service developer and are detailed in the Deployment
Descriptor for the application. The deployment descriptor is a document that is contained within
the SAR archive file that is deployed on WebLogic SIP Server. There may be more than one
Servlet mapping rule defined within the Deployment Descriptor for the application (SIP/HTTP
application). In this case, these rules must be applied in the order in which they are defined in the
Deployment Descriptor.

The following figure provides an example of a simple Servlet mapping rule found in a typical
Deployment Descriptor.

Note: Servlet mapping rules are entirely concerned with the content of the SIP message being
processed. It is not possible to use information regarding the actual IP address and port
number on which the request was received as service trigger points unless this
information matches the request URI of the Sip message.

The _Servlet mapping rule shown in Listing A-1 illustrates the following Boolean expression:

(Method="INVITE” OR Method = “MESSAGE” OR Method=”SUBSCRIBE”) AND
(Method="INVITE” OR Method = “MESSAGE” OR (NOT Header = “from” Match =
“Bob”))

Note: This is the same logical condition used in the Initial filter Criteria example provided in
3GPP TS 29.228 Annex C expressed as a Servlet Mapping Rule.

WebLogic SIP Server 2.2 Technical Product Description

Servlet Mapping Rules: Objects, Properties and Conditions

Listing A-1 Example Servlet Mapping Rule

<servlet-mapping>

<servlet-name>servletl</servlet-name>

<pattern>
<and>

<or>

</or>

<or>

<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>
<equal>
<var>request.method</var>
<value>MESSAGE</value>
</equal>
<equal>
<var>request.method</var>
<value>SUBSCRIBE</value>

</equal>

<equal>
<var>request.method</var>
<value>INVITE</value>
</equal>

<equal>
<var>request.method</var>

<value>MESSAGE</value>

WebLogic SIP Server 2.2 Technical Product Description

SIP Servlet APl Service Invocation

A-4

</equal>
<not>
<equal>
<var>request.from.display-name</var>
<value>Bob</value>
</equal>
</not>
</or>
</and>
</pattern>

</servlet-mapping>

Supported Service Trigger Points

Service Point Triggers are the attributes of a SIP request that may be evaluated by Servlet
Mapping Rules. See Section 11.1: Triggering Rules in the JSR 116 specification for more
information.

Request Object

The Request Object is a Java representation of a SIP request.
e method: the request method, a string
e uri: the request URI; for example a SIpURI or a TelURL
e from: an Address representing the value of the From header

e to: an Address representing the value of the To header

URI:

e scheme: the URI scheme

SipURI (extends URI):

e scheme: a literal string — either “sip” or “sips”

WebLogic SIP Server 2.2 Technical Product Description

http://www.jcp.org/aboutJava/communityprocess/final/jsr116/

Servlet Mapping Rules: Objects, Properties and Conditions

user: the “user” part of the SIP/SIPS URI

host: the “host” part of the SIP/SIPS URI. This may be a domain name or a dotted decimal
IP address.

port: the URI port number in decimal format; if absent the default value is used (5060 for
UDP and TCP, 5061 for TLS).

tel: if the “user” parameter is not “phone”, this variable is undefined. Otherwise, its value
is the telephone number contained in the “user” part of the SIP/SIPS URI with visual
separators stripped. This variable is always matched case insensitively (the telephone
numbers may contain the symbols ‘A’, ‘B’, ‘C’ and ‘D”).

param.name: value of the named parameter within a SIP/SIPS URI; name must be a valid
SIP/SIPS URI parameter name.

TelURL (extends URI):

scheme: always the literal string “tel”
tel: the tel URL subscriber name with visual separators stripped off

param.name: value of the named parameter within a tel URL; name must be a valid tel
URL parameter name

Address:

uri: the URI object; see URI, SipURI, TelURL types above

display-name: the display-name portion of the From or To header

Conditions and Logical Connectors

equal: compares the value of a variable with a literal value and evaluates to true if the
variable is defined and its value equals that of the literal. Otherwise, the result is false.

exists: takes a variable name and evaluates to true if the variable is defined, and false
otherwise.

contains: evaluates to true if the value of the variable specified as the first argument
contains the literal string specified as the second argument.

subdomain-of: given a variable denoting a domain name (SIP/SIPS URI host) or
telephone subscriber (tel property of SIP or Tel URLSs), and a literal value, this operator

WebLogic SIP Server 2.2 Technical Product Description A-5

SIP Servlet APl Service Invocation

A-6

returns true if the variable denotes a subdomain of the domain given by the literal value.
Domain names are matched according to the DNS definition of what constitutes a
subdomain; for example, the domain names “example.com” and
“research.example.com“are both subdomains of “example.com”. IP addresses may be
given as arguments to this operator; however, they only match exactly. In the case of the tel
variables, the subdomain-of operator evaluates to true if the telephone number denoted by
the first argument has a prefix that matches the literal value given in the second argument;
for example, the telephone number “1 212 555 1212" would be considered a subdomain of
“1212555”.

e and: contains a number of conditions and evaluates to true if and only if all contained
conditions evaluate to true

e or: contains a number of conditions and evaluates to true if and only if at least one
contained condition evaluates to true

e not: negates the value of the contained condition.

The equal and contains operators optionally ignores character case when making comparisons.
The default is case sensitive matching.

WebLogic SIP Server 2.2 Technical Product Description

Acronyms

o 3GPP—3rd Generation Partnership Project
o API—Application Program Interface
o CSP—Communications Service Provider

o HSS—Home Subscriber Server

HTTP—Hypertext Transport Protocol

IDE—Integrated Development Environment

IETF—Internet Engineering Task Force
o IMS—IP Multimedia Subsystem

IP—Internet Protocol

ISC—IMS Service Control

ITU—International Telecommunication Union

Java EE—1Java Platform, Enterprise Edition
o OAM—Operation, Administration and Maintenance

PoC—Push to Talk over Cellular

o RAM—Random Access Memory

RDBMS—Relational Database Management System

WebLogic SIP Server 2.2 Technical Product Description

B-1

Acronyms

e SCE—Service Creation Environment

e S-CSCF—Serving Call Session Control Function
e SDK—Software Development Kit

e SIP—Session Initiation Protocol

e SPA—Service Provider Administrator

e TCK—Technology Compatibility Kit

o TCP—Transport Control Protocol

e UDP—User Datagram Protocol

o WLSS—(BEA) WebLogic SIP Server

B-2 WebLogic SIP Server 2.2 Technical Product Description

References

10.

11.

12.

3GPP TS 22.250: “IP Multimedia Subsystem (IMS) group management; Stage 1 (Release 6)”
3GPP TS 22.340: “IMS Messaging; Stage 1 (Release 6)”

3GPP TS 23.002: “Network architecture (Release 6)”

3GPP TS 23.141: “Presence Service; Architecture and Functional description (Release 6)”
3GPP TS 23.218: “IP Multimedia (IM) session handling; IM call model; Stage 2 (Release 6)”
3GPP TS 23.228: “IP Multimedia Subsystem (IMS); Stage 2 (Release 6)”

3GPP TS 24.109: “Bootstrapping interface (Ub) and Network application function interface
(Ua); Protocol details (Release 6)”

3GPP TS 24.141: “Presence service using the [P Multimedia (IM); Core Network (CN)
subsystem; Stage 3 (Release 6)”

3GPP TS 24.147: “Conferencing using the IP Multimedia (IM) Core Network (CN)
Subsystem; Stage 3 (Release 6)”

3GPP TS 24.228: “Signaling flows for the IMS call control based on SIP and SDP; Stage 3
(Release 6)”

3GPP TS 24.229: “IP Multimedia Call Control Protocol based on Session Initiation Protocol
(SIP) and Session Description Protocol (SDP); Stage 3 (Release 6)”

3GPP TS 24.147: “Conferencing using the IP Multimedia (IM) Core Network (CN)
subsystem; Stage 3 (Release 6)”

WebLogic SIP Server 2.2 Technical Product Description Cc-1

References

C-2

13.3GPP TS 24.247 “Messaging using the [P Multimedia (IM) Core Network (CN) subsystem;
Stage 3 (Release 6)”

14.3GPP TS 24.841: “Presence service based on Session Initiation Protocol (SIP); Functional
models, information flows and protocol details (Release 6)”

15.3GPP TS 26.141: “IP Multimedia System (IMS) Messaging and Presence; Media formats and
Codecs (Release 6)”

16. 3GPP TS 24.109: “Bootstrapping interface (Ub) and network application function interface
(Ua); Protocol details (Release 6)”

17.3GPP TS 29.328: “IP Multimedia Subsystem (IMS) Sh interface; Signalling flows and
message contents”

18.3GPP TS 29.329: “Sh interface based on the Diameter protocol; Protocol details (Release 6)”

19. 3GPP TS 33.222: “Generic Authentication Architecture (GAA); Access to network
application functions using Hypertext Transfer Protocol over Transport Layer Security
(HTTPS) (Release 6)”

20. draft-burger-sipping-netann-11: “Basic Network Media Services with SIP”
21. draft-ietf-simple-presence-rules-02: “Presence Authorization Rules.”

22. draft-ietf-simple-xcap-03 (July 2004): “The Extensible Markup Language (XML)
Configuration Access Protocol (XCAP)”.

23. draft-ietf-simple-xcap-list-usage-02 (February 2004): “An Extensible Markup Language
(XML) Format for Representing Resource Lists”.

24, draft-ietf-simple-xcap-package-03: “An Extensible Markup Language (XML) Document
Format for Indicating Changes in XML Configuration Access Protocol (XCAP) Resources.’

i

25. draft-ietf-sip-connect-reuse-03.txt (April 2005): “Connection Reuse in the Session Initiation
Protocol (SIP)”

26. draft-ietf-sip-content-indirect-mech-03 (June 2003): “A Mechanism for Content Indirection
in Session Initiation Protocol (SIP) Messages”.

27. draft-ietf-sipping-cc-conferencing-01 (June 2003): “Session Initiation Protocol Call Control
- Conferencing for User Agents”.

28. draft-ietf-sipping-conference-package-03 (February 2004): “A Session Initiation Protocol
(SIP) Event Package for Conference State”.

WebLogic SIP Server 2.2 Technical Product Description

29. draft-ietf-sipping-conferencing-framework-01 (October 2003): “A Framework for
Conferencing with the Session Initiation Protocol”.

30. draft-ietf-xcon-cpcp-xcap-00 (April 2004): “The Conference Policy Control Protocol
(CPCP)”.

31. draft-isomaki-simple-xcap-pidf-manipulation-usage-00 (February 2004): “An Extensible
Markup Language (XML) Configuration Access Protocol (XCAP) Usage for Manipulating
Presence Document Contents”.

32. draft-jennings-sipping-outbound-00 (April 2005): “SIP Conventions for Connection Usage”
33.IETF RFC 2251: “Lightweight Directory Access Protocol (v3)”

34.IETF RFC 2327: “SDP: Session Description Protocol”

35.1ETF RFC 2460: “Internet Protocol, Version 6 (IPv6) Specification”

36. IETF RFC 2486: “The Network Access Identifier”

37.1IETF RFC 2617: “HTTP Authentication: Basic and Digest Access Authentication”.
38.1IETF RFC 3261: “SIP: Session Initiation Protocol”

39.IETF RFC 3263: “Session Initiation Protocol (SIP): Locating SIP Servers”

40. IETF RFC 3310: “Hypertext Transfer Protocol (HTTP) Digest Authentication Using
Authentication and Key Agreement (AKA)”

41.1ETF RFC 3325: “Private Extensions to the Session Initiation Protocol (SIP) for Asserted
Identity within Trusted Network”

42.IETF RFC 3412: “Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP)”

43.1ETF RFC 3418: “Management Information Base (MIB) for the Simple Network
Management Protocol (SNMP)”

44 TETF RFC 3428: “Session Initiation Protocol (SIP) Extension for Instant Messaging”

45.1ETF RFC 3512: “Configuring Networks and Devices with Simple Network Management
Protocol (SNMP)”

46.1IETF RFC 3761: “The E.164 to Uniform Resource Identifiers (URI) Dynamic Delegation
Discovery System (DDDS) Application (ENUM)”

47.1IETF RFC 3840: “Indicating User Agent Capabilities in the Session Initiation Protocol (SIP)”

WebLogic SIP Server 2.2 Technical Product Description c-3

References

C-4

48.IETF RFC 3966: “The tel URI for Telephone Numbers”
49.RFC 3261: “Caller Preferences for the Session Initiation Protocol (SIP)”

50. RFC 3329 (January 2003): “Security Mechanism Agreement for the Session Initiation
Protocol (SIP)”.

51.LIF TS 101: “Mobile Location Protocol Specification” (Location Interoperability Forum
2001)

52.JSR 116: “SIP Servlet API”

53.JSR 58: “Java ™M 2 Platform, Enterprise Edition 1.3 Specification”

WebLogic SIP Server 2.2 Technical Product Description

http://www.openmobilealliance.org/tech/LIF/
http://www.openmobilealliance.org/tech/LIF/

	Overview of the WebLogic SIP Server Architecture
	Developing SIP Applications with WebLogic SIP Server 2.2
	Overview of Developing SIP Applications with WebLogic SIP Server 2.2
	Goals of the SIP Servlet API Specification
	SIP Protocol Support
	Simplicity and Ease of Use
	Converged Applications
	Application Composition
	Highly Reliable Implementation

	Overview of the SIP Servlet Container
	SIP Dialog Handling

	Using the SIP Servlet API
	The SipServlet Object
	SIP Factory
	SIP Messages
	SipSession
	SipApplicationSession
	Application Timers
	SIP Servlet Application Example: Converged SIP and HTTP Application
	SIP Servlet Application Example: SUBSCRIBE and NOTIFY

	WebLogic SIP Server 2.2 Session API
	Assembling and Packaging a Converged Application
	Working with SIP and HTTP Sessions
	Modifying the SipApplicationSession from Non-SIP Servlets

	WebLogic SIP Server 2.2 Profile API
	Using Document Keys for Application-Managed Profile Data
	Monitoring Profile Data

	WebLogic SIP Server Software Development Kit
	Using WebLogic SIP Server with WebLogic Workshop

	WebLogic SIP Server in the Network
	Overview of WebLogic SIP Server in a Typical Service Provider Network
	SIP and IMS Service Control (ISC)
	ISC and the 3GPP SIP Profile
	AS Session Case Determination Requirement of ISC
	Transport Layer Issues Related to ISC

	HTTP User Interface
	Service/Subscriber Data and Authentication
	Web Services Support and Integration with Service Oriented Architectures
	Management Interfaces
	Administration Console
	Cluster-Wide Traffic Monitoring via the Administration Console

	Media Control
	Charging and Billing
	Security
	Authentication Providers
	Trusted Host Authentication
	Declarative Security

	WebLogic SIP Server Cluster Architecture
	Overview of the Cluster Architecture
	WebLogic SIP Server 2.2 Cluster Linear Scalability
	WebLogic SIP Server 2.2 Replication
	Partition Views
	Timer Processing
	Replica Failure
	Engine Failure
	Effects of Failures on Call Flows

	Diameter Protocol Handling
	Deployment of WebLogic SIP Server 2.2 in Non-clustered configurations
	“Zero Downtime” Application Upgrades
	Requirements and Restrictions for Upgrading Deployed Applications

	Standards Alignment
	Overview of WebLogic SIP Server Standards Alignment
	Java Sun Recommendation (JSR) Standards Compliance
	IETF RFC Compliance
	3GPP R6 Specification Conformance

	Supported Platforms
	SIP Servlet API Service Invocation
	Overview
	Servlet Mapping Rules: Objects, Properties and Conditions
	Supported Service Trigger Points
	Request Object
	URI:
	SipURI (extends URI):
	TelURL (extends URI):
	Address:

	Conditions and Logical Connectors

	Acronyms
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

