0?7,

r
S’ 7
L/

BEAWebLogic
SIP Server-

Configuring and
Managing WebLogic SIP
Server

Version 2.1
Revised: December 2, 2005









Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.



Contents

1. Overview of the WebLogic SIP Server Architecture

Goals of the WebLogic SIP Server Architecture. .. ........ .. ... ... .. 1-2
Load Balancer . ......... .. 1-3
Engine Tier . .. ..o e 1-3
Datatier. ... ...t 1-4
Example Hardware Configuration. . .......... ..., 1-5
Alternate Configurations . . . .. ...ttt e 1-5

2. Overview of WebLogic SIP Server Configuration and

Management

Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server. .. ... ... 2-1
Engine and Data Tier Configuration OVerview. . .. ........c.cviiinvnnenenen.... 2-2
Configuration Implementation. .. ........... . it 2-4
Startup Sequence for a WebLogic SIP Server Domain. .......................... 2-4
Methods and Tools for Performing Configuration Tasks .. ........... .. .. ... ..... 2-5
Administration Console . . ....... ... .. 2-6
Upgrade UtIlity. . . . oot 2-6
WebLogic Scripting Tool (WLST). . ... o 2-6
Additional Configuration Methods. . . ........ ... .. . i i 2-6
Editing Configuration Files. . .. ... ... . . i 2-6

Custom JMX Applications . .. .....c.utntn vt 2-7
Administration Server Best Practices .............. ... .. .. i i 2-7
Adding threads to weblogic.admin.RMI and weblogic.admin. HTTP ... ......... 2-8
Common Configuration Tasks. ... ... i 2-9

Configuring and Managing WebLogic SIP Server



3. Configuring Data Tier Partitions and Replicas

Overview of Data Tier Configuration. . ........... ... .. .. . . i, 3-1
datatier.xml Configuration File . . ...... .. ... .. .. .. ... .. .. ... .. . ... 3-2
Configuration Requirements and Restrictions. . ............................ 3-2

Best Practices for Configuring and Managing Data Tier Servers. . ................. 3-3

Example Data Tier Configurations and Configuration Files ................. ... .. 3-4
Data Tier with One Partition . ........ ... ... . .. .. . . .. . ... 3-4
Data Tier with Two Partitions ........ ... ... . .. .. . . .. .. ... 3-5
Data Tier with Two Partitions and Two Replicas. . ........ ... .. ... ... .. .. 3-5

Monitoring and Troubleshooting Data Tier Servers. . ............. .. ... ... ..... 3-6

4. Configuring Engine Tier Container Properties

Overview of SIP Container Configuration . . ........... ... ... .. .. . ... ... 4-2
Using the Administration Console to Configure Container Properties. .. ............ 4-2
Locking and Persisting the Configuration. . ........... ... ... .. .. .. ... ... 4-3
Configuring Container Properties Using WLST (JMX).......... .. ... .. ... .. .... 4-4
ConfigManagerRuntimeMBean Usage and Reference ... .................... 4-4
Configuration MBeans for the SIP Servlet Container . ....................... 4-6
Locating the WebLogic SIP Server MBeans . . .............. ... .. .. ...... 4-8
WLST Configuration Examples . . ...... ... ... .. i 4-9
Invoking WL ST . . ... 4-9
WLST Template for Configuring Container Attributes. . .................... 4-10
Creating and Deleting MBeans . ............ ... .. .. .. . .. .. . ... 4-11
Working with URI Values . ....... ... ... . . . . 4-12
Reverting to the Original Boot Configuration. . ............. ... .. ... ... .. .... 4-13
Configuring NTP for Accurate SIP Timers. . ......... .. .. ... ... .. . a.. 4-13

vi Configuring and Managing WebLogic SIP Server



5. Capacity Planning for WebLogic SIP Server Deployments

Introduction to Capacity Planning. . . ........ .. .. ... . . .. . .
Determining Performance Goals. . ......... .. ... . . . i
Basic Hardware Configuration and Throughput Values. ............. ... ... .. ...

Throughput Values for WebLogic SIP Server Instances ......................
Sample Deployment Scenarios .. .......... ...
Small Deployment. . . ... ... e
Medium Deployment. . . .. ...

Large Deployment. . .. ...t e

6. Managing WebLogic SIP Server Network Resources

Overview of Network Configuration. . ......... .. ... ... . i,
Configuring Load Balancer Addresses . ........... .. ... ...
Multiple Load Balancers and Multihomed Load Balancers. ...................
Configuring Network Channels for SIPor SIPS. .. ... ... . .. .. . . .. . ..
Reconfiguring an Existing Channel . . ....... ... .. ... .. .. .. .. ... ....
Creating a New SIP or SIPS Channel. . . ........ ... .. ... .. ... .. .. ...
Configuring SIP Channels for Multi-Homed Machines . ... ......................
Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0) ................

Configuring Unique Listen Address Attributes for Data Tier Replicas ..............

/. Production Network Architectures and WebLogic SIP Server

Configuration

OVEIVIBW . . . oottt e e e e e e e e
Single-NIC Configurations with TCP and UDP Channels . .......................

Static Port Configuration for Outbound UDP Packets. .......................
Multihomed Server Configurations Overview . ............. .. .. .. ...,

Multihomed Servers Listening On All Addresses IP_ANY)........ ... ... .. .....

Configuring and Managing WebLogic SIP Server

vii



Multihomed Servers Listening on Multiple Subnets. .. ......... .. ... .. ... ..... 7-6

Understanding the Route Resolver .......... .. .. ... .. .. ... .. .. .. ... 7-7

IP Aliasing with Multihomed Hardware ............. ... ... .. ... ... ..... 7-7
Load Balancer Configurations ............... ... it innnannen .. 7-8
Single Load Balancer Configuration . ............. .. .. ..., 7-8
Multiple Load Balancers and Multihomed Load Balancers ................... 7-9
Network Address Translation Options. . . ...ttt .. 7-9

IP Masquerading Alternative to Source NAT . . ....... ... ... ... ... .. .. 7-9

3. Overview of WebLogic SIP Server Security Features

Authentication for SIP Servlets. .. ... ... .. . 8-1

Authentication Providers . ... ... .. .. . L 8-2
Overriding Authentication with Trusted Hosts. . ........ ... .. . .. .. ... ... .. 8-3
P-Asserted-Identity Support . ........ .. e 8-3
Role Assignment for SIP Servlet Declarative Security. . ......................... 8-3
Security Event Auditing .. ........ ... . 8-3
Common Security Configuration Tasks . ........ ... .. .. ... . .. . ... .... 8-3

9. Configuring Digest Authentication

Overview of Digest Authentication. . .. ............ ... 9-1
What Is Digest Authentication?. ...ttt 9-1
Digest Authentication Support in WebLogic SIP Server 2.1................... 9-2

Prerequisites for Configuring LDAP Digest Authentication ...................... 9-5

Steps for Configuring LDAP Digest Authentication ................. .. ... .. .... 9-7
Configure the LDAP Serveror RDBMS . .. ... ... . i 9-7

Using Unencrypted Passwords . .. ......... . i, 9-7
Using Precalculated Hash Values . . .......... ... . .. i, 9-8
Using Reverse-Encrypted Passwords . . ......... ... ... o .., 9-8

viii Configuring and Managing WebLogic SIP Server



Reconfigure the DefaultAuthenticator Provider. .. ............... .. ... .... 9-9
Configure an Authenticator Provider. ........ ... ... ... .. ... .. ... .. ... 9-9
Configure a New Digest Identity Asserter Provider. . ....................... 9-10
Configure an LDAP Digest Identity Asserter Provider .................. 9-10
Configure an RDBMS Digest Identity Asserter Provider. ................ 9-13
Sample Digest Authentication Configuration . ........... ... .. ... i, 9-15
10.Configuring Client-Cert Authentication
Overview of Client-Cert Authentication. ... ......... ... .. ... .. .. ... .. .... 10-1
Configuring SSL and X509 for WebLogic SIP Server.......................... 10-2
Configuring the Default Identity Asserter .............. ... ... .. .. ... .... 10-3
Configuring the LDAP X509 Identity Asserter............................ 10-4
Configuring WebLogic SIP Server to Use WL-Proxy-Client-Cert. . ............... 10-6
Supporting Perimeter Authentication with a Custom IA Provider .. ............... 10-7
11.Configuring P-Asserted-ldentity Assertion
Understanding Trusted Host Forwarding with P-Asserted-Identity . ............... 11-1
Overview Strict and Non-Strict P-Asserted-Identity Asserter Providers ............ 11-2
Configuring a P-Asserted-Identity Assertion Provider.......................... 11-3
12.Logging SIP Requests and Responses
Overview of SIPLogging . . ... i e e 12-1
Using the Template Logging Servlet. . .......... .. .. 12-2
Deploying the Template Logging Application. ... ........ .. ... ... ...... 12-3
Using the Logging Servlet Implementation in Other Applications . ............ 12-3
Defining Logging Servletsinsip.xml . ......... . ... i, 12-4
Configuring the Logging Level and Destination. .. ......... ... .. .. ... ...... 12-5
Specifying the Criteria for Logging Messages .. ........c.ouiiiinininenenan.. 12-6
Using XML Documents to Specify Logging Criteria . ...................... 12-7
Configuring and Managing WebLogic SIP Server ix



Using Servlet Parameters to Specify Logging Criteria .. .................... 12-8

Managing Logging Performance. . .......... ... .. .. .. . .. .. . . .. 12-10
Enabling Log Rotation and Viewing Log Files ........... . ... ... ... ... ... 12-11
trace-pattern.dtd Reference . .. .. ... ... . 12-11
Adding Tracing Functionality to SIP ServletCode ............... ... ... .. ... 12-15
13.Configuring SNMP

Overview of WebLogic SIP Server SNMP. .. ... ... ... ... . ... . ... ... 13-1
Browsingthe MIB. . .. ... .. . 13-2
Configuring SNMP . . . ... 13-2
SNMP Port Binding for WebLogic SIP Server. . ........... ... .. .. .. .. .. ... 13-2
Understanding and Responding to SNMP Traps ........... ... .. ... ... ..... 13-3
Files for Troubleshooting. . .. ....... ... .. .. . . . . 13-3
Trap Descriptions. . . . ... ...t 13-4
sipAppDeployed . . ... ... . 13-4
sipAppUndeployed . . .. .. ... . 13-4
sipAppFailedToDeploy. . ...... ... .. i 13-5
overloadControlActivated, overloadControlDeactivated . . .. ............. 13-5
licenseLimitExceeded. . ... ... .. ... ... . .. . 13-6
SErverStopped . . . ..o 13-8
dataTierServerStopped . . ... ... 13-9
replicaAddedToPartition. . ........... ... ... .. . .. . 13-10
replicaRemovedFromPartition . ........... .. ... .. ... .. . ... 13-10
connectionLostToPeer. . . ...... .. ... ... .. .. .. . i 13-10
connectionReestablishedToPeer............ ... ... .. ... .. .. .... 13-11

X Configuring and Managing WebLogic SIP Server



A. Upgrading Software and Applications in a Production
Environment

Overview of System and Application Upgrades. .. .......... .. ... ... .. ....
Requirements for Upgrading a Production System. . .........................
Upgrading to a New Version of WebLogic SIP Server. . ......................
Configure the Load Balancer . ........... .. . . . i ..
Configure the New Engine Tier Cluster. . ............... ...
Define the Cluster-to-Load Balancer Mapping . ............ ... .. .. ... ...
Duplicate the SIP Servlet Container and Data Tier Configuration ...........
Upgrade Engine Tier Servers and Target Applications to the New Cluster. . . . .
Upgrade Data Tier Servers. .. .. ..oou vt e
Upgrading a Deployed Production Application (Compatible Session Data) . ... ...
Upgrading a Deployed Production Application (Incompatible Session Data) . . . . ..
Configure the Load Balancer . ......... ... . . . ..
Configure the New Engine Tier Cluster. . ......... ... oo,
Define the Cluster-to-Load Balancer Mapping . .......... ... ... .. ... ...

Migrate Engine Tier Servers and Target Applications to the New Cluster . . . ..

B. Applying Patches Using InstallPatch

Overview of the InstallPatch Utility .. ........ ... ... . i ...
Required Environment for the InstallPatch Utility .. .........................
Syntax for Invoking the InstallPatch Utility . ........... ... .. .. .. .. ... ..
Example InstallPatch Commands . .......... .. .. .. . . ...

Editing the MANIFEST Classpathin GUIMode . .. .........................

C. Upgrading a WebLogic SIP Server 2.0.x Configuration to
Version 2.1

About the Upgrade Program .. ... ... ... i

Configuring and Managing WebLogic SIP Server

Xi



Steps for Upgrading an Existing Configuration . ............. .. .. ... .. ... .. .... C-1
Required Environment for the UpgradeConfig Utility . . ......................... C-2
wlss.UpgradeConfig Reference. . . ........ ... .. . .. .. . . . i C-2

D. Engine Tier Configuration Reference (sipserver.xml)

Xii

Overview of sipserver.xml .. ... ... . . D-2
Graphical Representation. .. ........ .. .. ... . . i D-2
Editing sipserver.Xml . ... ... ... ... D-3
Steps for Editing sipserver.xml . ....... .. .. .. . L D-4
XML Schema . .. ..o e D-4
Example sipserver.xml File. . ... .. ... ... . D-8
XML Element Description ... ........... it D-8
overload . . ... D-8
Overload Control Based on Session GenerationRate ................... D-11
Overload Control Based on Execute Queue Length. . ................ ... D-11

Two Levels of Overload Protection . .............. . ... ... .ouo... D-12
MeSSAZE-AEDUE . . . . .t D-12
proxy—Setting Up an Outbound Proxy Server............................ D-12
tl-timeout-interval . . . ... ..o D-14
t2-timeout-interval . . . . ..ot e D-14
t4-timeout-interval . . . . ..ot e D-14
timerB-timeout-interval . . .. ... ... D-15
timerF-timeout-interval .. ... .. ... .. . . D-15
max-application-session-lifetime. . . .. ........ ... .. .. L L L L. D-15
enable-local-dispatch . ........ .. ... . . D-15
cluster-loadbalancer-map. ... ....... ... .. L L D-16
default-behavior. . ... ... D-17
SIP-SECULILY . & ¢ vt vttt e ettt e e e e e e e e e e D-17

Configuring and Managing WebLogic SIP Server



E. Data Tier Configuration Reference (datatier.xml)

Overview of datatier.xml. .. ... . ... E-1
Editing datatier.xml . . . . ... e E-2
XML Schema. . . .. ..o E-2
Example datatier.xml File . . . ... . .. . E-3
XML Element Description . . ... .........i.iut it E-3

F. Tuning JVM Garbage Collection for Production Deployments

Goals for Tuning Garbage Collection Performance ............................. F-1
Tuning Garbage Collection with JRockit ......... ... .. .. ... .. . . .. ... ... F-2
Tuning Garbage Collection with SunJDK .. ...... ... .. .. ... .. ... .. . ... F-2

G. Avoiding JVM Delays Caused by Random Number Generation

Configuring and Managing WebLogic SIP Server Xiii



Xiv Configuring and Managing WebLogic SIP Server



CHAPTERo

Overview of the WebLogic SIP Server
Architecture

The following sections provide an overview of the WebLogic SIP Server 2.1 architecture:

“Goals of the WebLogic SIP Server Architecture” on page 1-2
“Load Balancer” on page 1-3

“Engine Tier” on page 1-3

“Data tier” on page 1-4

“Example Hardware Configuration” on page 1-5

“Alternate Configurations” on page 1-5

Configuring and Managing WebLogic SIP Server 1-1



Overview of the WebLogic SIP Server Architecture

Goals of the WebLogic SIP Server Architecture

1-2

WebLogic SIP Server 2.1 is designed to provide a highly scalable, highly available, performant
server for deploying SIP applications. The WebLogic SIP Server 2.1 architecture is simple to
manage and easily adaptable to make use of available hardware. The basic architecture consists
of several major components:

e Load Balancer
e Engine Tier

e Data tier

Figure 1-1shows the components of a basic WebLogic SIP Server installation. The sections that
follow describe each component of the architecture in more detail.

Figure 1-1 WebLogic SIP Server 2.1 Architecture

Partition 0

Configuring and Managing WebLogic SIP Server



Load Balancer

Load Balancer

Although it is not provided as part of the WebLogic SIP Server product, a load balancer (or
multiple load balancers) is an essential component of any production WebLogic SIP Server
installation. The primary goal of a load balancer is to provide a single public address that
distributes incoming SIP requests to multiple servers in the WebLogic SIP Server engine tier.
Distribution of requests ensures that WebLogic SIP Server engines are fully utilized.

Most load balancers have configurable policies to ensure that client requests are distributed
according to the capacity and availability of individual machines, or according to any other load
policies required by your installation. Some load balancers also provide special features for
managing SIP network traffic, such as support for routing policies based on source IP address,
port number, or other fields available in SIP message headers. Many load balancer products also
provide additional fault tolerance features for telephony networks.

In a WebLogic SIP Server installation, the load balancer is also essential for performing
maintenance activities such as upgrading individual servers (WebLogic SIP Server software or
hardware) or upgrading applications without disrupting existing SIP clients. The Administrator
modifies load balancer policies to move client traffic off of one or more servers, and then
performs the required upgrades on the unused server instances. Afterwards, the Administrator
modifies the load balancer policies to allow client traffic to resume on the upgraded servers.

BEA provides detailed information for setting up load balancers to monitor the health and
availability of individual server instances in the WebLogic SIP Server engine tier for basic load
distribution. See http://dev2dev.bea.com/. See also “Configuring Load Balancer Addresses” on
page 6-2 to configure a load balancer used with WebLogic SIP Server and “Upgrading Software
and Applications in a Production Environment” on page A-1 to use a load balancer to perform
system and application upgrades.

Engine Tier

The engine tier is a cluster of WebLogic SIP Server instances that hosts the SIP Servlets that
provide features to SIP clients. Server instances in the engine tier host only SIP Servlets—SIP
session information is not persisted in the engine tier, but is obtained by querying the data tier.

The primary goal of the engine tier is to provide maximum throughput and low response time to
SIP clients. As the number of calls, or the average duration of calls to your system increases, you
can easily add additional server instances to the engine tier to manage the additional load.

Note that although the engine tier consists of multiple WebLogic SIP Server instances, you
manage the engine tier as a single, logical entity; SIP Servlets are deployed uniformly to all server

Configuring and Managing WebLogic SIP Server 1-3


http://dev2dev.bea.com/

Overview of the WebLogic SIP Server Architecture

instances (by targeting the cluster itself) and the load balancer need not maintain an affinity
between SIP clients and servers in the engine tier.

Note: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

Data tier

1-4

The data tier is a cluster of WebLogic SIP Server instances that provides a high-performance,
highly-available, in-memory database for storing and retrieving the session state data for SIP
Servlets. The goals of the data tier are as follows:

e To provide reliable, performant storage for session data required by SIP applications in the
WebLogic SIP Server engine tier.

e To enable administrators to easily scale hardware and software resources as necessary to
accommodate the session state for all concurrent calls.

Within the data tier, session data is managed in one or more “partitions” where each partition
manages a fixed portion of the concurrent call state. For example, in a system that uses two
partitions, the first partition manages one half of the concurrent call state (for example, sessions
A through M) while the second partition manages another half of the concurrent call states
(sessions N through Z). With three partitions, each partition manages a third of the call state, and
so on. Additional partitions can be added as necessary to manage a large number of concurrent
calls.

Within each partition, multiple servers can be added to provide redundancy and failover should
other servers in the partition fail. When multiple servers participate in the same partition, the
servers are referred to as “replicas” because each server maintains a duplicate copy of the
partition’s call state. For example, if a two-partition system has two servers in the first partition,
each server manages a replica of call states A through M. If one or more servers in a partition fails
or is disconnected from the network, any available replica can automatically provide call state
data to the engine tier. In WebLogic SIP Server 2.1, the data tier can have a maximum of three
replicas, providing two levels of redundancy.

Configuring and Managing WebLogic SIP Server



Example Hardware Configuration

See “Configuring Data Tier Partitions and Replicas” on page 3-1 for more information about
configuring the data tier for high availability. See “Determining Performance Goals” on page 5-2
for information about planning the hardware resources required in the data tier.

Example Hardware Configuration

WebLogic SIP Server’s flexible architecture enables you to configure engine and data tiers in a
variety of ways to support high throughput and/or provide high availability. See “Capacity
Planning for WebLogic SIP Server Deployments” on page 5-1 for detailed information about
scaling the engine and data tiers to suit the needs of your organization.

Alternate Configurations

Not all WebLogic SIP Server requirements require the performance and reliability provided by
multiple servers in the engine and data tiers. On a development machine, for example, it is
generally more convenient to deploy and test applications on a single server, rather than a cluster
of servers.

WebLogic SIP Server enables you to combine engine and data tier services on a single server
instance when replicating call states is unnecessary. In a combined-tier configuration, the same
WebLogic SIP Server instance provides SIP Servlet container functionality and also manages the
call state for applications hosted on the server. Although the combined-tier configuration is most
commonly used for development and testing purposes, it may also be used in a production
environment if replication is not required for call state data. Figure 1-2 shows an example
deployment of multiple combined-tier servers in a production environment.

Configuring and Managing WebLogic SIP Server 1-5



Overview of the WebLogic SIP Server Architecture

Figure 1-2 Single-Server Configurations with SIP-Aware Load Balancer

SIP-Aware
Load Balancer
= 3
Call
Routing
Host 1 Host 2 Host 3
[ —— [ —— [ 7 o——

) | | €| | e

Because each server in a combined-tier server deployment manages only the call state for the
applications it hosts, the load balancer must be fully “SIP aware.” This means that the load
balancer actively routes multiple requests for the same call to the same WebLogic SIP Server
instance. If requests in the same call are not pinned to the same server, the call state cannot be
retrieved. Also keep in mind that if a WebLogic SIP Server instance fails in the configuration
shown in Figure 1-2, all calls handled by that server are lost.

1-6 Configuring and Managing WebLogic SIP Server



CHAPTERa

Overview of WebLogic SIP Server
Configuration and Management

The following sections provide an overview of how to configure and manage WebLogic SIP
Server deployments:

“Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server” on page 2-1
“Engine and Data Tier Configuration Overview” on page 2-2

“Startup Sequence for a WebLogic SIP Server Domain” on page 2-4

“Methods and Tools for Performing Configuration Tasks” on page 2-5

“Administration Server Best Practices” on page 2-7

“Common Configuration Tasks” on page 2-9

Shared Configuration Tasks for WebLogic SIP Server and
WebLogic Server

WebLogic SIP Server 2.1 is based on the award-winning WebLogic Server 8.1 application server,
and many system-level configuration tasks are the same for both products. This manual addresses
only those system-level configuration tasks that are unique to WebLogic SIP Server 2.1, such as
tasks related to network and security configuration and cluster configuration for the engine and
data tiers.

HTTP server configuration and other basic configuration tasks such as server logging, startup,
and shutdown, are addressed in the WebLogic Server 8.1 Documentation.

Configuring and Managing WebLogic SIP Server 2-1


http://e-docs.bea.com/wls/docs81/index.html

Overview of WebLogic SIP Server Configuration and Management

Engine and Data Tier Configuration Overview

2-2

The SIP Servlet container and call data replication features of WebLogic SIP Server are
implemented in an Enterprise Application (EAR), named sipserver, that is deployed on
WebLogic Server 8.1. The same sipserver application code is deployed to both engine and data
tier instances of WebLogic SIP Server, but the XML configuration file(s) included in the
sipserver application determine the role of each server instance. A server instance initiates data
tier services only if the server name is designated as a data tier server in the datatier.xml
configuration file. Servers that are not part of the data tier provide SIP Servlet container features,
and container properties are configured based on entries in the sipserver.xml configuration
file.

The sipserver EAR is deployed in exploded archive format, and is automatically copied to the
top level of the domain directory when you create a domain using the Configuration Wizard (for
example, c:\bea\user_projects\domains\mydomain\sipserver). Figure 2-1, “sipserver
Web Application Contents,” on page 2-3 summarizes the basic structure of the sipserver
application. Only one copy of the deployment files are maintained per domain, and changes to
the configuration are made by modifying the configuration files contained in the sipserver
application.

Warning: Never redeploy or undeploy the sipserver implementation application on a
running server. Always use the SIP Servers node in the Administration Console or
the WLST utility, as described in “Configuring Engine Tier Container
Properties” on page 4-1,to make changes to a running WebLogic SIP Server
deployment.

Configuring and Managing WebLogic SIP Server



Engine and Data Tier Configuration Overview

Figure 2-1 sipserver Web Application Contents

sipserver

Y

h

Y

1APP-INF Container Implementation
/container Implementation JARs
. Supportin
flib JARS 9
. Web Application for Managing Container
fco nﬂg and Data Tier Configuration
—'[ sipserver.xmil ]
Configuration Files for
Engine and Data Tier Nodes
_"‘[ datatier.xml ]
— /WEB-INF
= /classes Implementation Classes
. Supporting
> fNib JARs
‘Web Application
[ web.xmi J Deployment Descriptor
/META-INF
I—'[ application.xml ] EAR Deployment Descriptor

Configuring and Managing WebLogic SIP Server 2-3



Overview of WebLogic SIP Server Configuration and Management

Configuration Implementation

The config Web Application in sipserver provides the logic for parsing the sipserver.xml
and datatier.xml files and applying configuration changes, as well as the implementation of
the Administration Console extensions for configuring SIP features. Because the
sipserver.xml and datatier.xml configuration files are included within a Web Application,
changing the configuration for a WebLogic SIP Server deployment involves modifying these
files. Configuration changes to SIP Servlet container properties can be applied dynamically to a
running server by using the Administration Console SIP Servers node or from the command line
using the WLST utility. Configuration for data tier nodes cannot be changed dynamically, so you
must reboot data tier servers in order to change the number of partitions or replicas.

A special MBean included in the SIP Server implementation, ConfigManagerRuntimeMBean,
handles locking and modifying configuration files in response to JIMX commands, as well as
applying configuration changes to running servers. Therefore, when you edit a WebLogic SIP
Server configuration using the Administration Console or using JMX-based utilities,
ConfigManagerRuntimeMBean manages updates to your configuration files transparently. See
“Configuring Engine Tier Container Properties” on page 4-1. If you want to modify a
configuration file outside of JMX, you must do so while WebLogic SIP Server is shut down. See
“Engine Tier Configuration Reference (sipserver.xml)” on page D-1and “Data

Tier Configuration Reference (datatier.xml)” on page E-1.

Startup Sequence for a WebLogic SIP Server Domain

2-4

Note: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

Warning: When you configure a domain with multiple engine and data tier servers, you must
accurately synchronize all system clocks to a common time source (to within one or
two milliseconds) in order for the SIP protocol stack to function properly. See
Configuring NTP for Accurate SIP Timers in Configuring and Managing WebLogic
SIP Server for more information.

Configuring and Managing WebLogic SIP Server


{DOCROOT}/adminguide/enginetier.html#ntp
{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/index.html

Methods and Tools for Performing Configuration Tasks

Because a typical WebLogic SIP Server domain contains numerous engine and data tier servers,
with dependencies between the different server types, you should generally follow this sequence
when starting up a domain:

1. Start the Administration Server for the domain. Start the Administration Server in order
to provide the initial configuration to engine and data tier servers in the domain. The
Administration Server can also be used to monitor the startup/shutdown status of each
Managed Server. You generally start the Administration Server by using either the
startAdminServer.cmd script installed with the Configuration Wizard, or a custom startup
script.

2. Start data tier servers in each partition. The engine tier cannot function until servers in
the data tier are available to manage call state data. Although all replicas in each partition
need not be available to begin processing requests, at least one replica in each configured
partition must be available in order to manage the concurrent call state. All replicas should
be started and available before opening the system to production network traffic.

You generally start each data tier server by using either the startManagedwWebLogic.cmd
script installed with the Configuration Wizard, or a custom startup script.
startManagediWlebLogic. cmd requires that you specify the name of the server to startup,
as well as the URL of the Administration Server for the domain, as in:

startManagedWebLogic.cmd datanode0-0 t3://adminhost:7001

3. Start engine tier servers. After the data tier servers have started, you can start servers in
the engine tier and begin processing client requests. As with data tier servers, engine tier
servers are generally started using the startManagedwebLogic.cmd script or a custom
startup script.

Following the above startup sequence ensures that all Managed Servers use the latest SIP Servlet
container and data tier configuration. This sequence also avoids engine tier error messages that
are generated when servers in the data tier are unavailable.

Methods and Tools for Performing Configuration Tasks

WebLogic SIP Server provides several mechanisms for changing the configuration of the SIP
Servlet container:

e “Administration Console” on page 2-6
e “Upgrade Utility” on page 2-6
e “WebLogic Scripting Tool (WLST)” on page 2-6

Configuring and Managing WebLogic SIP Server 2-5



Overview of WebLogic SIP Server Configuration and Management

2-6

e “Additional Configuration Methods” on page 2-6

Administration Console

WebLogic SIP Server provides an Administration Console extension that allows you to modify
and monitor SIP Servlet container and data tier configuration properties using a graphical user
interface. The Administration Console for WebLogic SIP Server is similar to the console
available in WebLogic Server 8.1. All SIP Server configuration and monitoring is available via
the SIP Server node in the left pane. See “Configuring Engine Tier Container Properties” on
page 4-1 for more information about configuring the SIP Servlet container using the
Administration Console.

Upgrade Utility

The WebLogic SIP Server upgrade utility, wlss.UpgradeConfig, helps you migrate an earlier
WebLogic SIP Server configuration to a new WebLogic SIP Server 2.1 configuration.
wlss.UpgradeConfig operates by taking an existing sipserver.xml configuration file and
recreating the earlier configuration using the latest sipserver .xml schema. For more
information about upgrading a configuration, see “Upgrading a WebLogic SIP Server 2.0.x
Configuration to Version 2.1” on page C-1.

WebLogic Scripting Tool (WLST)

The WebLogic Scripting Tool (WLST) enables you to perform interactive or automated (batch)
configuration operations using a command-line interface. WLST is a JMX tool that can view or
manipulate the MBeans available in a running WebLogic SIP Server domain. “Configuring
Engine Tier Container Properties” on page 4-1 provides instructions for modifying SIP Servlet
container properties using WLST.

Additional Configuration Methods

Most WebLogic SIP Server configuration is performed using either the Administration Console
or WLST. The methods described in the following sections may also be used for certain
configuration tasks.

Editing Configuration Files

You may also edit sipserver.xml or datatier.xml by hand, following the respective schemas
described in “Engine Tier Configuration Reference (sipserver.xml)” on page D-1 and “Data Tier
Configuration Reference (datatier.xml)” on page E-1.

Configuring and Managing WebLogic SIP Server



Administration Server Best Practices

If you edit sipserver.xml by hand, you must manually reboot all servers to apply the
configuration changes.

Warning: Never redeploy or undeploy the sipserver implementation application on a
running server. Always use the SIP Servers node in the Administration Console or
the WLST utility, as described in “Configuring Engine Tier Container

Properties” on page 4-1,to make changes to a running WebLogic SIP Server
deployment.

Data tier properties, such as the number of call state partitions and replicas, can never be changed
while data tier server instances are running. If you edit datatier.xml, the changes are not
applied until the data tier servers are rebooted.

Custom JMX Applications

WebLogic SIP Server properties are represented by JMX-compliant MBeans, and access to these
MBeans and sipserver.xml is managed through the special runtime MBean,
com.bea.wcp.sip.management . runtime.ConfigManagerRuntimeMBean. You can
therefore program JMX application to configure SIP container properties using WebLogic SIP
Server MBeans.

The general procedure for modifying WebLogic SIP Server MBean properties using JMX is
described in “Configuring Container Properties Using WLST (JMX)” on page 4-4 (WLST itself
is aJMX-based application). For more information about the individual MBeans used to manage
SIP container properties, see the WebLogic SIP Server Javadocs.

Administration Server Best Practices

The Administration Server in a WebLogic SIP Server 2.0.2 installation is required only for
configuring, deploying, and monitoring J2EE services and applications; all SIP container
configuration is performed using the container's sipserver.xml configuration file.

Note: If an Administration Server fails due to a hardware, software, or network problem, only
management, deployment, and monitoring operations are affected. Managed Servers do
not require the Administration Server for continuing operation; J2EE applications
and SIP features running on Managed Server instances continue to function even if
the Administration Server fails.

BEA recommends the following best practices for configuring Administration Server and
Managed Server instances in your WebLogic SIP Server domain:

Configuring and Managing WebLogic SIP Server 2-1


{DOCROOT}/javadoc/index.html

Overview of WebLogic SIP Server Configuration and Management

2-8

e Run the Administration Server instance on a dedicated machine. The Administration
Server machine should have a memory capacity similar to Managed Server machines,
although a single CPU is generally acceptable for administration purposes.

e Increase the threads available in the weblogic.admin.RMI and weblogic.admin.HTTP
execute queues to match the number of managed servers in your system.

e Configure all Managed Server instances to use Managed Server Independence. This feature
allows the Managed Servers to restart even if the Administration Server is unreachable due
to a network, hardware, or software failure. See Replicating a Domain's Configuration
Files for Managed Server Independence in the WebLogic Server 8.1 documentation.

e Configure the Node Manager utility to automatically restart all Managed Servers in the
WebLogic SIP Server domain. See Configuring, Starting, and Stopping Node Manager in
the WebLogic Server 8.1 documentation.

Should an Administration Server instance or machine fail, remember that only configuration,
deployment, and monitoring features are affected, but Managed Servers continue to operate and
process client requests. Potential losses incurred due to an Administration Server failure include:

e Loss of in-progress management and deployment operations.
e Loss of ongoing logging functionality.

e Loss of SNMP trap generation for WebLogic Server instances (as opposed to WebLogic
SIP Server instances). On Managed Servers, WebLogic SIP Server traps are generated
even in the absence of the Administration Server.

To resume normal management activities, restart the failed Administration Server instance as
soon as possible.

Adding threads to weblogic.admin.RMI and
weblogic.admin.HTTP

You must increase the default size of the weblogic.admin.RMI and weblogic.admin.HTTP
execute queues to ensure that an Administration Server can configure and monitor the large
number of Managed Server instances deployed in a typical WebLogic SIP Server system. The
number of threads in each queue should, match the number of deployed Managed Servers in both
the engine and data tier clusters. By default, weblogic.admin.HTTP contains three threads and
weblogic.admin.RMI contains two threads.

weblogic.admin.RMI and weblogic.admin.RMI are internal execute queues and are not
displayed for configuration in the Administration Console. To add threads to the default queues,

Configuring and Managing WebLogic SIP Server


http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/adminguide/confignodemgr.html

Common Configuration Tasks

you must manually edit the config.xm1l file for your domain to specify the queue configuration.
Listing 2-1 highlights the configuration entries required for managing 10 servers (10 threads in
each queue). Note that

Listing 2-1 Increasing the Thread Count in Administration Server Execute Queues

<?xml version="1.0" encoding="UTF-8"?>
<Domain ConfigurationVersion="8.1.5.0" Name="my_domain">
<Cluster MulticastAddress="237.0.0.1" Name="BEA_ENGINE_TIER_CLUST"/>
<Cluster MulticastAddress="237.0.0.2" Name="BEA_DATA_ TIER_CLUST"/>
<Server ListenAddress="admin_server_address" ListenPort="7001"
Name="my_admin_server" NativeIOEnabled="true"
ReliableDeliveryPolicy="RMDefaultPolicy" ServerVersion="8.1.5.0">
<SSL Enabled="false" HostnameVerificationIgnored="false"
IdentityAndTrustLocations="KeyStores" Name="my_admin_server"/>
<ExecuteQueue Name="weblogic.kernel.Default"/>
<ExecuteQueue Name="sip.tracing.domain" QueueLength="1024"
ThreadCount="1" ThreadsMaximum="1" ThreadsMinimum="1"/>
<ExecuteQueue Name="weblogic.admin.RMI" ThreadCount="10"/>
<ExecuteQueue Name="weblogic.admin.HTTP" ThreadCount="10"/>

</Server>

Common Configuration Tasks

General administration and maintenance of WebLogic SIP Server requires that you manage both
WebLogic Server configuration properties and WebLogic SIP Server container properties. These
common configuration tasks are summarized in Table 2-1.

Configuring and Managing WebLogic SIP Server 2-9



Overview of WebLogic SIP Server Configuration and Management

2-10

Table 2-1 Common WebLogic SIP Server Configuration Tasks

Task

Description

“Configuring Engine Tier

Container Properties” on
page 4-1

Configuring SIP Container Properties using the
Administration Console

Using WLST to perform batch configuration

“Configuring Data Tier
Partitions and Replicas”
on page 3-1

Assigning WebLogic SIP Server instances to the data tier
partitions

Replicating call state using multiple data tier instances

“Managing WebLogic
SIP Server Network
Resources” on page 6-1

Configuring WebLogic Server network channels to
handling SIP and HTTP traffic

Setting up multi-homed server hardware

Configuring load balancers for use with WebLogic SIP
Server

“Configuring Digest
Authentication” on
page 9-1

Configuring the LDAP Digest Authentication Provider
Configuring a trusted host list

“Logging SIP Requests
and Responses” on
page 12-1

Configuring logging Servlets to record SIP requests and
responses.

Defining log criteria for filtering logged messages

Maintaining WebLogic SIP Server log files

Configuring and Managing WebLogic SIP Server



GHAPTERa

Configuring Data Tier Partitions and
Replicas

The following sections describe how to configure WebLogic SIP Server instances that make up
the data tier cluster of a deployment:

e “Overview of Data Tier Configuration” on page 3-1
e “Best Practices for Configuring and Managing Data Tier Servers” on page 3-3

e “Example Data Tier Configurations and Configuration Files” on page 3-4
— “Data Tier with One Partition” on page 3-4
— “Data Tier with Two Partitions” on page 3-5

— “Data Tier with Two Partitions and Two Replicas” on page 3-5

e “Monitoring and Troubleshooting Data Tier Servers” on page 3-6

Overview of Data Tier Configuration

The WebLogic SIP Server data tier is a cluster of server instances that manages the application
call state for concurrent SIP calls. The data tier may manage a single copy of the call state or
multiple copies as needed to ensure that call state data is not lost if a server machine fails or
network connections are interrupted.

The data tier cluster is arranged in one or more partitions. A partition consists of one or more data
tier server instances that manage the same portion of the concurrent call state data. In a

single-server WebLogic SIP Server installation, or in a two-server installation where one server
resides in the engine tier and one resides in the data tier, all call state data is maintained in a single

Configuring and Managing WebLogic SIP Server 3-1



Configuring Data Tier Partitions and Replicas

3-2

partition. Multiple partitions are required when the size of the concurrent call state exceeds the
maximum size that can be managed by a single server instance. When more than one partition is
used, the concurrent call state is split among the partitions, and each partition manages an
separate portion of the data. For example, with a two-partition data tier, one partition manages
the call state for half of the concurrent calls (for example, calls A through M) while the second
partition manages the remaining calls (N through Z).

In most cases, the maximum call state size that can be managed by an individual server
corresponds to the Java Virtual Machine limit of approximately 1.6GB per server. See “Capacity
Planning for WebLogic SIP Server Deployments” on page 5-1 for more information.

Additional servers can be added to the data tier to manage copies of the call state data. When
multiple servers are part of the same partition, each server manages a copy of the same portion of
the call data, referred to as a replica of the call state. If any server in a partition fails or cannot be
contacted due to a network failure, another replica in the partition supplies the call state data to
the engine tier.

datatier.xml Configuration File

The datatier.xml configuration file identifies data tier servers and also defines the partitions
and replicas used to manage the call state. If a server’s name is present in datatier.xml, that
server loads WebLogic SIP Server data tier functionality at boot time. (Server names that do not
appear in datatier.xml act as engine tier nodes and instead provide SIP Servlet container
functionality configured by the sipserver.xml configuration file.)

The sections that follow show examples of the datatier.xml contents for common data tier
configurations. See also “Data Tier Configuration Reference (datatier.xml)” on
page E-1 for full information about the XML Schema and elements.

Configuration Requirements and Restrictions

All servers that participate in the data tier should be members of the same WebLogic Server
cluster. The cluster configuration enables each server to monitor the status of other servers. Using
a cluster also enables you to easily target the sipserver application to all servers for
deployment.

For high reliability, you can configure up to 3 replicas within a partition.

The data tier configuration cannot be changed dynamically. You must restart servers in the data
tier in order to change data tier membership or reconfigure partitions or replicas. You can view

Configuring and Managing WebLogic SIP Server



Best Practices for Configuring and Managing Data Tier Servers

the current data tier configuration using the Configuration->Data Tier page of the WebLogic SIP
Server Administration Console, as shown in Figure 3-1.

Figure 3-1 Administration Console Display of Data Tier Configuration (Read-0nly)

replicated> SIP Servers> sipserver
Connected to : replicated

You are logged in as : weblogic

Best Practices for Configuring and Managing Data Tier Servers

Adding replicas can increase reliability for the system as a whole, but keep in mind that each
additional server in a partition requires additional network bandwidth to manage the replicated
data. With three replicas in a partition, each transaction that modifies the call state updates data
on three different servers.

To ensure high reliability when using replicas, always ensure that server instances in the same
partition reside on different machines. Hosting two or more replicas on the same machine leaves
all of the hosted replicas vulnerable to a machine or network failure.

Data tier servers can have one of three different statuses:
e ONLINE—indicates that the server is available for managing call state transactions.
e OFFLINE—indicates that the server is shut down or unavailable.

e ONLINE_LOCK_AUTHORITY_ ONLY—indicates that the server was rebooted and is currently
being updated (from other replicas) with the current call state data. A recovering server
cannot yet process call state transactions, because it does not maintain a full copy of the
call state managed by the partition.

If you need to take a data tier server instance offline for scheduled maintenance, make sure that
at least one other server in the same partition is active. If you shut down an active server and
all other servers in the partition are of£1ine or recovering, you will lose a portion of the active
call state.

WebLogic SIP Server automatically divides the call state evenly over all configured partitions.

Configuring and Managing WebLogic SIP Server 3-3



Configuring Data Tier Partitions and Replicas

Example Data Tier Configurations and Configuration Files

The sections that follow describe some common WebLogic SIP Server installations that utilize a
separate data tier.

Data Tier with One Partition

A single-partition, single-server data tier represents the simplest data tier configuration.
Listing 3-1 shows a data tier configuration for a single-server deployment.

Listing 3-1 Data Tier Configuration for Small Deployment

<st:data-tier

xmlns:st="http://bea.com/wcp/sip/management/internal /webapp”>
<st:partition>
<st:name>Partition0O</st:name>
<st:server-name>DataNode0-0</st:server-name>
</st:partition>
</st:data-tier>

To add a replica to an existing partition, simply define a second server-name entry in the same
partition. For example, the datatier.xml configuration file shown in Listing 3-2 recreates the
two-replica configuration shown in Figure 5-3, “Small Deployment with High Availability,” on
page 5-8.

Listing 3-2 Data Tier Configuration for Small Deployment with Replication

<st:data-tier

xmlns:st="http://bea.com/wcp/sip/management/internal /webapp”>
<st:partition>
<st:name>Partition0O</st:name>
<st:server-name>DataNode(0-0</st:server-name>
<st:server-name>DataNode0O-1</st:server-name>

</st:partition>

Configuring and Managing WebLogic SIP Server



Example Data Tier Configurations and Configuration Files

</st:data-tier>

Data Tier with Two Partitions

Multiple partitions can be easily created by defining multiple partition entries in
datatier.xml, as shown in Listing 3-3.

Listing 3-3 Two-Partition Data Tier Configuration

<st:data-tier

xmlns:st="http://bea.com/wcp/sip/management/internal /webapp”>
<st:partition>
<st:name>Partition0O</st:name>
<st:server-name>DataNode0O-0</st:server-name>
</st:partition>
<st:partition>
<st:name>Partitionl</st:name>
<st:server-name>DataNode0O-1</st:server-name>
</st:partition>

</st:data-tier>

Data Tier with Two Partitions and Two Replicas

Replicas of the call state can be added by defining multiple data tier servers in each partition.
Figure 5-4, “Medium-Sized Deployment,” on page 5-9 shows a system having two partitions
with two servers (replicas) in each partition. Listing 3-4 shows the datatier.xml configuration
file used to define this data tier.

Listing 3-4 Data Tier Configuration for Small Deployment

<st:data-tier

xmlns:st="http://bea.com/wcp/sip/management/internal /webapp”>

<st:partition>

Configuring and Managing WebLogic SIP Server 3-5



Configuring Data Tier Partitions and Replicas

<st:name>Partition0O</st:name>
<st:server-name>DataNode(0-0</st:server-name>
<st:server-name>DataNode0O-1</st:server-name>
</st:partition>
<st:partition>
<st:name>Partitionl</st:name>
<st:server-name>DataNodel-0</st:server-name>
<st:server-name>DataNodel-1</st:server-name>
</st:partition>

</st:data-tier>

Monitoring and Troubleshooting Data Tier Servers

3-6

A runtime MBean, com.bea.wcp.sip.management .runtime.ReplicaRuntimeMBean,
provides valuable information about the current state and configuration of the data tier. See the
WebLogic SIP Server JavaDocs for a description of the attributes provided in this MBean.

Many of these attributes can be viewed using the SIP Servers Monitoring->Data Tier Information
tab in the Administration Console, as shown in “Data Tier Monitoring in the Administration
Console” on page 3-6.

Figure 3-2 Data Tier Monitoring in the Administration Console

replicated> SIP Servers> sipserver

Connected to : repiicated You are logged in as : weblogic

Configuration | [LUEIHTTS
General || SIP Applications || Data Tier Information

This page displays runtime information for the data tie, such as the number of requests for call state data, the size of the timer queue,
and the state of individual data tier servers. This page displays information only if one or more replicas in the data ier are currently
running.

@ customize this view.

Call Call

High High | State | State

Partition | Replica Key | Key Total | Bytes | Bytes

Name | Name | Name | State |ReplicaServersinCurrentView | Count| Count |TotalBytes Bytes| Sent |Received

parition-
0

replicat replicat | ONLINE | replicat replica2 o |o o o |o 0

replica2 | B°M" | repiica2 | ONLINE | replicar replica2 o o |o o [0 o

Configuring and Managing WebLogic SIP Server


{DOCROOT}/javadoc/index.html

Monitoring and Troubleshooting Data Tier Servers

Listing 3-5 shows a simple WLST session that queries the current attributes of a single Managed
Server instance in a data tier partition. Table 3-1, “ReplicaRuntimeMBean Method and Attribute
Summary,” on page 3-8 describes the MBean services in more detail.

Listing 3-5 Displaying ReplicaRuntimeMBean Attributes

connect (‘weblogic’, 'weblogic’, 't3://datahost1:7001’)
custom()

cd
('mydomain:Location=dataserver0-0,Name=dataserver0-0, ServerRuntime=dataser
ver0-0, Type=ReplicaRuntime')

1s()

-rw- BytesReceived 0

-Tw- BytesSent 0

-rw- CachingDisabled true

-rw- CurrentViewId 0

-rw- DataItemCount 0

-rw- DataItemsToRecover 0

-rw- HighKeyCount 0

-rw- HighTotalBytes 0

-rw- KeyCount 0

-rw- MBeanInfo weblogic.management.tools.In
fo@19449d5

-rw- Name myserverl
-rw- ObjectName

mydomain:Location=dataserver0-0,
Name=dataserver0-0, ServerRuntime=dataserver0-0, Type=ReplicaRuntime
-rw- Parent mydomain:Location=dataserver0-0,

Name=myserverl, Type=ServerRuntime

Configuring and Managing WebLogic SIP Server 3-7



Configuring Data Tier Partitions and Replicas

-rw- PartitionId

-rw- PartitionName

-rw- Registered

-rw- ReplicaId

-rw- ReplicaServersInCurrentView

java.lang.String[dataserver0-0]

-rw- ReplicasInCurrentView
-rw- State

-rw- TimerQueueSize

-rw- TotalBytes

-rw- Type

-rwx dumpState

-rwx preDeregister

0
partition-0
false

0

[I@1694544
ONLINE

0

0

ReplicaRuntime

void

void

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute

Description

dumpState ()

Records the entire state of the selected data tier server
instance to the WebLogic SIP Server log file. You may
want to use the dumpState () method to provide
additional diagnostic information to a Technical
Support representative in the event of a problem.

BytesReceived

The total number of bytes received by this data tier
server. Bytes are received as servers in the engine tier
provide call state data to be stored.

BytesSent

The total number of bytes sent from this data tier server.
Bytes are sent to engine tier servers when requested to
provide the stored call state.

Configuring and Managing WebLogic SIP Server



Monitoring and Troubleshooting Data Tier Servers

Method/Attribute

Description

CurrentViewId

The current view ID. Each time the layout of the data
tier changes, the view ID is incremented. For example,
as multiple servers in a data tier cluster are started for
the first time, the view ID is incremented when each
server begins participating in the data tier. Similarly,
the view is incremented if a server is removed from the
data tier, either intentionally or due to a failure.

DataItemCount

The total number of stored call state keys for which this
server has data. This attribute may be lower than the
KeyCount attribute if the server is currently
recovering data.

DataItemsToRecover

The total number of call state keys that must still be
recovered from other replicas in the partition. A data
tier server may recover keys when it has been taken
offline for maintenance and is then restarted to join the
partition.

HighKeyCount The highest total number of call state keys that have
been managed by this server since the server was
started.

HighTotalBytes The highest total number of bytes occupied by call state
data that this server has managed since the server was
started.

KeyCount The number of call data keys that are stored on the
replica.

PartitionId The numerical partition ID (from 0 to 7) of this server’s
partition.

PartitionName The name of this server’s partition.

ReplicaId The numerical replica ID (from 0 to 2) of this server’s
replica.

ReplicaName The name of this server’s replica.

ReplicaServersInCurrentView

The names of other WebLogic SIP Server instances that
are participating in the partition.

Configuring and Managing WebLogic SIP Server 3-9



Configuring Data Tier Partitions and Replicas

Method/Attribute

Description

State

The current state of the replica. Data tier servers can
have one of three different statuses:

ONLINE—indicates that the server is available for
managing call state transactions.

OFFLINE—indicates that the server is shut down
or unavailable.

ONLINE_LOCK_AUTHORITY_ONLY—indicates
that the server was rebooted and is currently being
updated (from other replicas) with the current call
state data. A recovering server cannot yet process
call state transactions, because it does not maintain
a full copy of the call state managed by the
partition.

TimerQueueSize

The current number of timers queued on the data tier
server. This generally corresponds to the KeyCount
value, but may be less if new call states are being added
but their associated timers have not yet been queued.

Note:

Engine tier servers periodically check with
data tier instances to determine if timers
associated with a call have expired. In order
for SIP timers to function properly, all engine
tier servers must actively synchronize their
system clocks to a common time source. BEA
recommends using a Network Time Protocol
(NTP) client or daemon on each engine tier
instance and synchronizing to a selected NTP
server.

TotalBytes

The total number of bytes consumed by the call state
managed in this server.

3-10 Configuring and Managing WebLogic SIP Server



CHAPTERa

Configuring Engine Tier Container
Properties

The following sections describe how to configure SIP Container features in the engine tier of a
WebLogic SIP Server deployment:

e “Overview of SIP Container Configuration” on page 4-2
e “Using the Administration Console to Configure Container Properties” on page 4-2
— “Locking and Persisting the Configuration” on page 4-3
e “Configuring Container Properties Using WLST (JMX)” on page 4-4
— “ConfigManagerRuntimeMBean Usage and Reference” on page 4-4
— “Configuration MBeans for the SIP Servlet Container” on page 4-6
— “Locating the WebLogic SIP Server MBeans” on page 4-8
e “WLST Configuration Examples” on page 4-9
— “Invoking WLST” on page 4-9

“WLST Template for Configuring Container Attributes” on page 4-10
— “Creating and Deleting MBeans” on page 4-11
— “Working with URI Values” on page 4-12

e “Reverting to the Original Boot Configuration” on page 4-13

e “Configuring NTP for Accurate SIP Timers” on page 4-13

Configuring and Managing WebLogic SIP Server 4-1



Configuring Engine Tier Container Properties

Overview of SIP Container Configuration

As described in “Engine and Data Tier Configuration Overview” on page 2-2, WebLogic SIP
Server engine and data tier features are implemented using the sipserver J2EE application, and
SIP Container configuration is managed by the config Web Application contained in
sipserver, which contains the sipserver.xml file.

You can configure SIP Container properties either by using a JMX utility such as the
Administration Console or WebLogic Scripting Tool (WLST), or by programming a custom
JMX application. “Using the Administration Console to Configure Container Properties” on
page 4-2 describes how to configure container properties using the Administration Console
graphical user interface.

“Configuring Container Properties Using WLST (JMX)” on page 4-4 describes how to directly
access JMX MBeans to modify the container configuration. All examples use WLST to illustrate
JMX access to the configuration MBeans.

Using the Administration Console to Configure Container
Properties

42

The Administration Console included with WebLogic SIP Server enables you to configure and
monitor core WebLogic Server functionality as well as the SIP Servlet container functionality
provided with WebLogic SIP Server. To configure or monitor SIP Servlet features using the
Administration Console:

1. Use your browser to access the URL http://address:7001/console where address is the
Administration Server’s listen address and 7001 is the listen port.

2. Expand the SIP Servers node in the left pane.

3. Select the sipserver entry to display configuration and monitoring tabs in the right pane of
the console.

Note: In most cases your configuration will have only a single sipserver container beneath
the SIP Servers node. Additional containers may be available when performing a
production upgrade, as described in “Upgrading Software and Applications in a
Production Environment” on page A-1.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring WebLogic SIP Server. Table 4-1 summarizes the available
pages and provides links to additional information about configuring SIP container
properties.

Configuring and Managing WebLogic SIP Server



Using the Administration Console to Configure Container Properties

Table 4-1 WebLogic SIP Server Configuration and Monitoring Pages

Page Function
Configuration-> General Configure SIP timer values, session timeout duration, and default
WebLogic SIP Server behavior (proxy or user agent).
Proxy Configure proxy routing URIs and proxy policies.
Overload Protection  Configure the conditions for enabling and disabling automatic
overload controls.
Message Debug Enable or disable SIP message logging on a development system.
SIP Security Identify trusted hosts for which authentication is not performed.
Data Tier View the current configuration of data tier servers.
Monitoring-> General View runtime information about messages and sessions processed in
engine tier servers.
SIP Applications View runtime session information for deployed SIP applications.
Data Tier View runtime information about the current status and the work
Information performed by servers in the data tier.

Locking and Persisting the Configuration

In order to modify information on any of the WebLogic SIP Server configuration pages, you must
first obtain a lock on the configuration by clicking the Edit Configuration button. Locking a
configuration prevents other Administrators from modifying the configuration at the same time.
If you click Edit Configuration while another user has obtained a lock, you are unable to make
configuration changes until the lock has been released.

If you obtain a lock on the configuration, you can change SIP Servlet container attribute values
on multiple configuration pages as needed. You then have several options depending on whether
you want to keep or discard the changes you have made. The available options are displayed as
a series of buttons at the bottom of each configuration page:

e Save—Saves your current changes to a temporary configuration file,
sipserver.xml.saved, in the config subdirectory of the sipserver application.

e Rollback—Discards your current changes, deleting any temporary configuration files that
were written with previous Save operations.

Configuring and Managing WebLogic SIP Server 4-3


{DOCROOT}/adminguide/enginetier_dd.html#timers
{DOCROOT}/adminguide/enginetier_dd.html#sessionlifetime
{DOCROOT}/adminguide/enginetier_dd.html#defaultbehavior
{DOCROOT}/adminguide/enginetier_dd.html#defaultbehavior
{DOCROOT}/adminguide/enginetier_dd.html#proxy
{DOCROOT}/adminguide/enginetier_dd.html#overload
{DOCROOT}/adminguide/enginetier_dd.html#messagedebug
{DOCROOT}/adminguide/enginetier_dd.html#sipsecurity
{DOCROOT}/adminguide/datatier.html#datamon
{DOCROOT}/adminguide/datatier.html#datamon
{DOCROOT}/adminguide/datatier.html#dataconfig

Configuring Engine Tier Container Properties

o Activate—Persists all current changes to the sipserver.xml file (renaming the temporary
sipserver.xml.saved files to sipserver.xml), and activates the changes.

Note that WebLogic SIP Server automatically saves the original boot configuration in the file
sipserver.xml.bootedinthe sipserver/config subdirectory. You can use this file to revert
to the booted configuration if necessary to discard all configuration changes made since the server
was started.

Configuring Container Properties Using WLST (JMX)

4-4

Notes: The WebLogic Scripting Tool (WLST) is a utility that you can use to observe or modify
JMX MBeans available on a WebLogic Server or WebLogic SIP Server instance. WLST
is not distributed with WebLogic SIP Server, but can be downloaded from BEA’s
dev2dev site at
https://submit-codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=CS26.
Documentation for WLST is included with the product download, and also at
http://e-docs.bea.com/wls/docs90/config_scripting/index.html.

Before using WLST to configure a WebLogic SIP Server domain, you must add to your
classpath all JAR files in the APP-INF/1ib directory of the sipserver application. By
default these files are located in DOMAIN DIR/sipserver/APP-INF/1lib where
DOMAIN_DIR is the root of your WebLogic SIP Server domain. The libraries are
automatically added to your classpath using the setAdminClientEnv script, described
in “Invoking WLST” on page 4-9.

The appP-INF/1ib classes are required in addition to the WLST JAR files described in
the WLST documentation.

JMX configuration of the SIP Servlet container is managed by the
configManagerRuntimeMBean. ConfigManagerRuntimeMBean manages tasks such as:

e Governing access to the active SIP Servlet container configuration
e Writing the current container configuration to the sipserver.xml configuration file

e Activating the config Web Application to apply changes to the running SIP Servlet
container

Although any JMX application can access the SIP container’s configuration MBeans, all changes
to those MBeans must be coordinated through ConfigManagerRuntimeMBean.

ConfigManagerRuntimeMBean Usage and Reference

Table 4-2 describes the methods provided by ConfigManagerRuntimeMBean.

Configuring and Managing WebLogic SIP Server


https://submit-codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=CS26
http://e-docs.bea.com/wls/docs90/config_scripting/index.html

Configuring Container Properties Using WLST (JMX)

Table 4-2 ConfigManagerRuntimeMBean Method Summary

Method Description

activate() Writes the current configuration MBean attributes (the

current SIP Servlet container configuration) to the
sipserver.xml configuration file and applies
changes to the running the config application.

save () Writes the current configuration MBean attributes (the

current SIP Servlet container configuration) to the
sipserver.xml configuration file.

startEdit () Locks changes to the active SIP Servlet container

configuration. Other JMX application cannot alter the
configuration until you explicitly call stopEdit (), or
until your edit session is terminated.

If you attempt to call startEdit () when another
user has obtained the lock, you receive an error
message that states the user who owns the lock.

stopEdit () Releases the lock obtained for modifying SIP container

properties and rolls back any pending MBean changes.

A typical configuration session involves the following tasks (also summarized in Figure 4-1):

1.

Access the ConfigManagerRuntimeMBean for the WebLogic SIP Server instance that you
want to configure and call startEdit () to obtain a lock on the active configuration.

Modify existing SIP Servlet container configuration MBean attributes (or create or delete
configuration MBeans) to modify the active configuration. See “Configuration MBeans for
the SIP Servlet Container” on page 4-6 for a summary of the configuration MBeans.

Call configManagerRuntimeMBean.save () to persist all changes to a temporary
configuration file named sipserver.xml.saved, or

Call configManagerRuntimeMBean.activate () to persist changes to the
sipserver.xml.saved file, rename sipserver.xml.saved to sipserver.xml (copying
over the existing file), and apply changes to the running config application.

Note: When you boot the Administration Server for a WebLogic SIP Server domain, the
server parses the current container configuration in sipserver.xml and creates a
copy of the initial configuration in a file named sipserver.xml.booted. You can

Configuring and Managing WebLogic SIP Server 4-5



Configuring Engine Tier Container Properties

4-

use this copy to revert to the booted configuration, as described in “Reverting to the
Original Boot Configuration” on page 4-13.

Figure 4-1 Typical ConfigManagerRuntimeMBean Workflow

JMX Client ConfigManagerRuntimeMBean
Stant
Lock
stanEdi() " Configuration
Create/Delete/

Edit Configuration
MBeans

!

activate()

A

A |

- Save =ipserver.xml
Cenfiguration

Aedeploy contig
Appiication

Configuration MBeans for the SIP Servlet Container

ConfigManagerRuntimeMBean manages access to and persists the configuration MBean
attributes described in Table 4-3. Although you can modify other configuration MBeans, such as
WebLogic Server MBeans that manage resources such as network channels and other server
properties, those MBeans are not managed by ConfigManagerRuntimeMBean.

Configuring and Managing WebLogic SIP Server



Configuring Container Properties Using WLST (JMX)

Table 4-3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description
ClusterToLoadBa ClusterName, Manages the mapping of multiple clusters to
lancerMap LoadBalancerSipURT internal virtual IP addresses during a
software upgrade. This attribute is not used
during normal operations. See also
“cluster-loadbalancer-map” on page D-16.
OverloadProtect RegulationPolicy, Manages overload settings for throttling
ion Thresholdvalue, incoming SIP requests. See also “overload”
ReleaseValue on page D-8.
Proxy ProxyURIs, Manages the URIs routing policies for proxy
RoutingPolicy servers. See also “proxy—Setting Up an

Outbound Proxy Server” on page D-12.

Configuring and Managing WebLogic SIP Server 4-1



Configuring Engine Tier Container Properties

MBean Type MBean Attributes Description
SipSecurity TrustedAuthentication  Defines trusted hosts for which
Hosts authentication is not performed. See also
“sip-security”” on page D-17.
SipServer DefaultBehavior, Configuration MBean that represents the
EnablelLocalDispatch, entire sipserver.xml configuration file.

MaxApplicationSession
LifeTime,
OverloadProtectionMBe
an, ProxyMBean,
T1lTimeoutInterval,
T2TimeoutInterval,
T4TimeoutInterval,
TimerBTimeoutInterval

’

TimerFTimeoutInterval

SipServer also has
several helper
methods:
createProxy (),
destroyProxy (),
createOverloadProtect
ion(),
destroyOverloadProtec
tion(),
createClusterToLoadBa
lancerMap (),
destroyClusterToLoadB
alancerMap ()

You can use this MBean to obtain and
manage each of the individual MBeans
described in this table, or to set SIP timer or
SIP Session timeout values. See also
“Creating and Deleting MBeans”
on page 4-11,“default-behavior”
on page D-17,
“enable-local-dispatch” on
page D-15,
“max-application-session-lifet
ime” on page D-15,
“tl-timeout-interval” on

page D-14,
“t2-timeout-interval” on

page D-14,
“td-timeout-interval” on

page D-14,
“timerB-timeout-interval” on
page D-15, and
“timerF-timeout-interval” on
page D-15.

Locating the WebLogic SIP Server MBeans

All SIP Servlet container configuration MBeans, as well as ConfigManagerRuntimeMBean, are
located in the “custom” MBean tree, accessed using the custom () command in WLST. Within
the custom bean tree, individual configuration MBeans can be accessed using the path:

mydomain:DomainConfig=mydomain, Location=myserver,Name=myserver, Type=mbeant

ype

where:

4-8 Configuring and Managing WebLogic SIP Server



WLST Configuration Examples

® mydomain is the name of the WebLogic SIP Server domain
e myserver is the name of the WebLogic SIP Server instance

e mbeantype corresponds to an MBean type listed in Table 4-3.
Runtime MBeans, such as ConfigManagerRuntime, are accessed using the path:

mydomain:Location=myserver,Name=myserver, Type=mbeantype

For example, to browse the default Proxy MBean for a WebLogic SIP Server domain you would
enter these WLST commands:

custom ()

cd (‘mydomain:DomainConfig=mydomain, Location=myserver, Name=myserver, Type=Pr
oxy’)

1s()

Certain configuration settings, such as proxy and overload protection settings, are defined by
default in sipserver.xml. Configuration MBeans are generated for these settings when you
boot the associated server, so you can immediately browse the Proxy and OverloadProtection
MBeans. Other configuration settings are not configured by default and you will need to create

the associated MBeans before they can be accessed. See “Creating and Deleting MBeans™ on
page 4-11.

Ifnoenﬁkmznepﬁxenthlsipserver.xmlgnﬂytheSipServerandConfigManagerRuntime
MBean types are available for browsing.

WLST Configuration Examples

The following sections provide example WLST scripts and commands for configuring SIP
Servlet container properties.

Invoking WLST

To use WLST with WebLogic SIP Server, you must ensure that all WebLogic SIP Server JAR
files are included in your classpath along with the required WLST JAR files. Follow these steps:

1. Set your WebLogic SIP Server client administration environment using a script installed with
your domain:

cd c:\bea\wlss21l0\server\bin

.\setAdminClientEnv.cmd

Configuring and Managing WebLogic SIP Server 4-9



Configuring Engine Tier Container Properties

4-10

2. Add the required WLST JAR files to your class path:

cd c:\wlst

set CLASSPATH=%CLASSPATH%;c:\wlst\jython.jar;c:\wlst\wlst.jar
3. Start WLST:

java weblogic.WLST

4. Connect to the Administration Server for your WebLogic SIP Server domain:

connect ('system', 'weblogic', 't3://myadminserver:7001")

WLST Template for Configuring Container Attributes

Because a typical configuration session involves accessing ConfigManagerRuntimeMBean
twice—once for obtaining a lock on the configuration, and once for persisting the configuration
and/or applying changes—JMX applications that manage container attributes generally have a
similar structure. Listing 4-1 shows a WLST script that contains the common commands needed
to access ConfigManagerRuntimeMBean. The example script modifies the proxy
RoutingPolicy attribute, which is set to supplemental by default in new WebLogic SIP
Server domains. You can use this listing as a basic template, modifying commands to access and
modify the configuration MBeans as necessary.

Listing 4-1 Template WLST Script for Accessing ConfigManagerRuntimeMBean

# Connect to the Administration Server

connect ('weblogic', 'weblogic', 't3://localhost:7001")

# Navigate to ConfigManagerRuntimeMBean and start an edit session.
custom/()

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')

cmo.startEdit ()

# --MODIFY THIS SECTION AS NECESSARY--

# Edit SIP Servlet container configuration MBeans

cd ('mydomain:DomainConfig=mydomain, Location=myserver, Name=myserver, SipServ

er=myserver, Type=Proxy')

Configuring and Managing WebLogic SIP Server



WLST Configuration Examples

set ('RoutingPolicy', 'domain')
# Navigate to ConfigManagerRuntimeMBean and persist the configuration
# to sipserver.xml

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')

cmo.activate()

Creating and Deleting MBeans

The sipserver MBean represents the entire contents of the sipserver.xml configuration file.
In addition to having several attributes for configuring SIP timers and SIP application session
timeouts, SipServer provides helper methods to help you create or delete MBeans representing
proxy settings and overload protection controls.

Listing 4-2 shows an example of how to use the helper commands to create and delete
configuration MBeans that configuration elements in sipserver.xml. See also Listing 4-3,
“SIP Container Configuration MBeans,” on page 4-7 for alisting of other helper
methods in SipServer, or refer to the WebLogic SIP Server JavaDocs.

Listing 4-2 WLST Commands for Creating and Deleting MBeans

connect ()
custom/()

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')
cmo.startEdit ()

cd('mydomain:DomainConfig=mydomain, Location=myserver, Name=sipserver, Server

Runtime=myserver, Type=SipServer')
cmo.destroyOverloadProtection()
cmo.createProxy ()

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')

cmo. save ()

Configuring and Managing WebLogic SIP Server 4-1


{DOCROOT}/javadoc/index.html

Configuring Engine Tier Container Properties

4-12

Working with URI Values

Configuration MBeans such as proxy require URI objects passed as attribute values. BEA
provides a helper class, com.bea.wcp.sip.util.URIHelper, to help you easily generate URI
objects from an array of Strings. Listing 4-3 modifies the sample shown in Listing 4-2, “WLST
Commands for Creating and Deleting MBeans,” on page 4-11 to add a new URI attribute to the
LoadBalancer MBean. See also the WebLogic SIP Server JavaDocs for a full reference to the
URIHelper class.

Listing 4-3 Invoking Helper Methods for Setting URI Attributes

# Import helper method for converting strings to URIs.
from com.bea.wcp.sip.util.URIHelper import stringToSipURIs
connect ()

custom/()

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')
cmo.startEdit ()

cd ('mydomain:DomainConfig=mydomain, Location=myserver, Name=sipserver, Type=S

ipServer')
cmo.createProxy ()

cd('mydomain:DomainConfig=mydomain, Location=myserver, Name=sipserver, SipSer

ver=sipserver, Type=Proxy"')

stringarg =
jarray.array([java.lang.String("sip://siplb.bea.com:5060")],java.lang.Stri
ng)

uriarg = stringToSipURIs(stringarg)
set ('ProxyURIs',uriarg)

cd('mydomain:Location=myserver,Name=sipserver, ServerRuntime=myserver, Type=

ConfigManagerRuntime')

cmo. save ()

Configuring and Managing WebLogic SIP Server


{DOCROOT}/javadoc/index.html

Reverting to the Original Boot Configuration

Reverting to the Original Boot Configuration

When you boot the Administration Server for a WebLogic SIP Server domain, the server creates
parses the current container configuration in sipserver.xml, and generates a copy of the initial
configuration in a file named sipserver.xml.booted. This backup copy of the initial
configuration is preserved until you next boot the server; modifying the configuration using JMX
does not affect the backup copy.

If you modify the SIP Servlet container configuration and later decide to roll back the changes,
copy the sipserver.xml.booted file over the current sipserver.xml file. Then reboot the
server to apply the new configuration.

Configuring NTP for Accurate SIP Timers

As engine tier servers add new call state data to the data tier, data tier instances queue and
maintain the complete list of SIP protocol timers and application timers associated with each call.
Engine tier servers periodically poll all partitions of the data tier to determine which timers have
expired, given the current time. (Multiple engine tier polls to the data tier are staggered to avoid
contention on the timer tables.) Engine tier servers then process expired timers using threads
allocated in the sip.timer.Default execute queue.

In order for the SIP protocol stack to function properly, all engine and data tier servers must
accurately synchronize their system clocks to a common time source, to within one or two
milliseconds. Large differences in system clocks cause a number of severe problems such as:

e SIP timers firing prematurely on servers with the fast clock settings.

e Poor distribution of timer processing in the engine tier. For example, one engine tier server
may processes all expired timers, whereas other engine tier servers process no timers.

BEA recommends using a Network Time Protocol (NTP) client or daemon on each WebLogic
SIP Server instance and synchronizing to a common NTP server.

Warning: You must accurately synchronize server system clocks to a common time source (to
within one or two milliseconds) in order for the SIP protocol stack to function
properly. Because the initial T1 timer value of 500 milliseconds controls the
retransmission interval for INVITE request and responses, and also sets the initial
values of other timers, even small differences in system clock settings can cause
improper SIP protocol behavior. For example, an engine tier server with a system
clock 250 milliseconds faster than other servers will process more expired timers
than other engine tier servers, will cause retransmits to begin in half the allotted time,
and may force messages to timeout prematurely.

Configuring and Managing WebLogic SIP Server 4-13



Configuring Engine Tier Container Properties

4-14 Configuring and Managing WebLogic SIP Server



cHAPTER@

Capacity Planning for WebLogic SIP
Server Deployments

The following sections describe how to configure WebLogic SIP Server domains to support the
SIP traffic and features required in your organization:

“Determining Performance Goals” on page 5-2

“Basic Hardware Configuration and Throughput Values” on page 5-4
“Sample Deployment Scenarios” on page 5-6

“Small Deployment” on page 5-7

“Medium Deployment” on page 5-8

“Large Deployment” on page 5-9

Configuring and Managing WebLogic SIP Server 5-1



Capacity Planning for WebLogic SIP Server Deployments

Introduction to Capacity Planning

BEA WebLogic SIP Server runs on a wide variety of hardware, and provides a highly scalable
architecture that can be deployed on multiple machines. Capacity planning is the process of
determining the hardware configuration that is required to meet your organization’s performance
and reliability goals. This document provides capacity planning suggestions for WebLogic SIP
Server with a focus on server hardware requirements.

Notes: Capacity planning is not an exact science. Every application is different, particularly
converged HTTP and SIP applications. This document is intended as a general guide for
planning server deployments; it uses conservative estimates for basic hardware
components and deployed applications. You should err on the side of caution when
planning for applications or hardware that differ from the basic recommendations
described in this document.

Any and all recommendations generated by this guide should be verified by actual
benchmarks before placing a system into production.

Your BEA sales or professional services representative may have more detailed capacity
planning information than is available in this document.

WebLogic SIP Server is implemented using a flexible architecture in which you can easily add
servers as needed to increase throughput for SIP traffic, or to provide high reliability for
defending against hardware failures. The primary goal of capacity planning for WebLogic SIP
server is to determine the size and configuration of the WebLogic SIP Server engine tier, which
hosts application logic, and the data tier, which stores the call state for SIP messages. Both tiers
may be extended to improve throughput or to increase the availability of services on your
network.

See “Overview of the WebLogic SIP Server Architecture” on page 1-1 for more information
about the basic architecture of a WebLogic SIP Server deployment.

Determining Performance Goals

5-2

Accurate capacity planning begins with a clear understanding of the throughput and reliability
requirements for your deployed applications. The following questions will help drive the capacity
planning process for WebLogic SIP Server:

e What is the required call volume? The call volume, expressed in calls per hour, is a
primary numerical input for determining the hardware requirements of a WebLogic SIP
Server deployment.

Configuring and Managing WebLogic SIP Server



Determining Performance Goals

e How many SIP messages do my applications generate? Basic throughput estimates for
WebLogic SIP Server are based on a Back-to-Back User Agent (B2ZBUA) Servlet
processing and originating 13 SIP messages as shown in the call flow in Figure 5-1. The
number of messages per call, combined with the call volume, determines the total number
of SIP messages that the system must process in a given period of time. This value drives
hardware requirements for both the engine and data tiers.

Figure 5-1 Call Flow for Capacity Planning B2BUA

UA1 B2BUA

=

A2

180 Ringing

180 Ringing

fEEEEE

EHE R

If you deploy a B2BUA that generates more SIP messages for each call, each WebLogic
SIP Server instance will support fewer calls per second. If you deploy an application that

Configuring and Managing WebLogic SIP Server 5-3



Capacity Planning for WebLogic SIP Server Deployments

generates fewer SIP messages per call, or if your system provides mainly proxy services,
then each server can support additional call volume.

e What is the average call duration? This guide uses an estimated average call duration of
6 minutes. When combined with the call volume estimate, the call duration helps you
determine the total number of concurrent calls your deployment must manage at a given
time. Longer call durations require additional RAM and possibly additional server
hardware in the data tier to handle the increase in concurrent call state.

e What is the size of the call state? This guide uses a conservative estimate of 30K per call
to manage the call state. If your application stores a larger amount of data for each call,
additional RAM may be required in the data tier for maintaining state information.

e What level of redundancy is required for keeping call state available? WebLogic SIP
Server enables you to replicate call state data on multiple machines to provide high
availability in the event of a hardware failure. If a host in the data tier fails, the call state
data associated with the failed server can be immediately retrieved from another SIP Server
instance in the data tier. You can choose to maintain up to 3 backup copies of the call state
data as necessary to provide high availability for your deployment. Each backup copy
requires additional RAM and generally additional host hardware in the data tier to manage
the replicated data between servers.

Note: The deployment scenarios described in this document use estimates for call duration, call
state size, and number of SIP messages per call for a B2BUA application. BEA has
derived these estimates from working with organizations that are deploying WebLogic
SIP Server for production use. The derived numbers are generally conservative and
provide workable hardware estimates for many production environments. However, if
your system or application differs significantly from the estimated numbers, you must
perform additional profiling to determine the exact hardware configuration required.

Note: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

Basic Hardware Configuration and Throughput Values

The capacity planning scenarios described in this document use one or more basic machine
configurations consisting of:

5-4 Configuring and Managing WebLogic SIP Server



Basic Hardware Configuration and Throughput Values

e Dual Xeon 3.6Ghz Processors

e 4GB of RAM

Each machine should host either a single WebLogic SIP Server engine tier server instance (which
uses both processors) or two WebLogic SIP Server data tier server instances (with one processor
per instance).

The JVM for each engine tier server should use the minimum amount of heap space required for
your deployed applications. This document assumes roughly 700 megabytes per engine tier
server instance. Data tier servers should use the maximum possible heap space for the Java
Virtual Machine. This document use a conservative value of 1.6 gigabytes per JVM.

If your organization uses substantially different machine specifications, you will need to profile
the hardware to determine the exact throughput capabilities for each machine.

Throughput Values for WebLogic SIP Server Instances

With the processing power provided by the basic hardware configuration described above, each
WebLogic SIP Server instance in the engine tier cluster can process and originate approximately
1,000 SIP messages per second, or 76 calls per second per second (assuming 13 SIP messages per
call for a single B2BUA Servlet as shown in Figure 5-1). This basic throughput value is used to
drive the hardware requirements for the WebLogic SIP Server engine tier.

The size of the WebLogic SIP Server data tier is driven by the expected total number of
simultaneous calls managed by the deployment. Given the total number of concurrent calls and
the average size of the call state, you can determine the maximum amount of RAM required to
store concurrent calls state for your system. This value is multiplied according to the number of
redundant call state replicas you wish to deploy for high availability. The total RAM requirement
is then divided by the maximum heap size per JVM to determine the number of data tier nodes,
and ultimately the number of host machines required in the WebLogic SIP Server data tier.

Figure 5-2, “Using Throughput Values to Determine Engine and Data Tier Requirements,” on
page 5-6 shows the sample calculations used to determine the medium-sized deployment
described in “Medium Deployment” on page 5-8.

Configuring and Managing WebLogic SIP Server 5-5



Capacity Planning for WebLogic SIP Server Deployments

Figure 5-2 Using Throughput Values to Determine Engine and Data Tier Requirements

Variables
1,000,000 Calls per Hour (Call Volume)
13 SIP Messages per Call
6 Minutes per Call
30 Kilobytes per Callstate
2 Replicas

Engine Tier Calculations
278 Regquired Calls per Second
x 13 SIP Messages per Call
3,614 Required SIP Messages per Second
{1000 SIP messages per Second per Engine Node throughput
4 Engine Tier Nodes, with 1 Node per Dual-CPU Machine*

Data Tier Calculations
Call State Requirements
16,667 Reguired Calls per minute
x & Minutes per Call
100,002 Concurrent Calls
x 30 Kilobytes per Callstate
£ 1024 Kilobytes per Megabyte
£ 1024 Megabytes per Gigabyte
3 GB reguired for Call State
£ 1.6 GB maximum heap per Java VM
2 Data Tier Nodes for Call State
x 2 (for 2 Callstate Replicas)
4 Total Data Tier Nodes Meeded for Call State and Replicas
/2 Nodes per Host {Based on Dual CPU Machine Specification®)
2 Reguired Data Tier Hosts (with 4GB per host)

Data Tier Throughput Information:
4 Engine Tier Nodes, with 1 Mode per Dual-CPU Machine*
x 76 Calls per second per Engine Tier node
304 SIP Messages per Second Throughput for Engine Tier
{2 Data Tier Reguests per SIP Message
608 Reguests per Second Throughput for Data Tier

Sample Deployment Scenarios

Given the basic hardware configuration and expected throughput values described in Sample
Deployment Scenarios, you can quickly estimate the total number of clustered WebLogic SIP
Server instances that are required in the engine and data tiers, as well as the total number of hosts
and RAM required in each tier. The following sections describe common deployment sizes used
in production environments:

e Small Deployment describes a simple system that supports 500,000 calls per hour.

e Medium Deployment describes an average call system that utilizes multiple clustered
servers to support 1 million calls per hour, with data replication to ensure high availability.

e Large Deployment describes a high performance, highly-available system that supports 10
million calls per hour with two replicas of the call state.

5-6 Configuring and Managing WebLogic SIP Server



Small Deployment

Small Deployment

A typical small deployment of WebLogic SIP Server consists of two dual-CPU machines each
running two WebLogic SIP Server instances. A system of this size can process over 500,000 calls
per hour, given the hardware and throughput values described in “Basic Hardware Configuration
and Throughput Values” on page 5-4. The small deployment utilizes only a single partition in the
data tier, but with two replicas to provide failover if one of the engines should fail. A load
balancer distributes client connections and performs failover from one engine tier server to the
other if an engine tier node fails or is brought down for maintenance. This configuration is shown
in Figure 5-3.

Note: The exact configuration shown in Figure 5-3 should only be used in cases where limited
hardware is available. Although limited failover is provided via two replicas in the data
tier, the overall throughput of the system is greatly reduced should one of the machines
fail.

Configuring and Managing WebLogic SIP Server 5-7



Capacity Planning for WebLogic SIP Server Deployments

Figure 5-3 Small Deployment with High Availability

Partition 0

1

1

T 1
A/ i

1

Replica Replica !
0-0 0-1 !

1

1

1

Medium Deployment

5-8

A typical medium deployment, shown in Figure 5-4, is configured to support a call rate of one

million calls per hour. In the engine tier, four WebLogic SIP Server instances (deployed on four
Dual-CPU machines) are required to support the call throughput. In the data tier, two partitions
are required to manage the call state for the maximum number of expected concurrent calls. Two
replicas in each partition provide replication and failover in the event of a data tier host failure.

Configuring and Managing WebLogic SIP Server



Large Deployment

Figure 5-4 Medium-Sized Deployment

Distribution
and
Failover

Host 1 Host 2 Host 3 Host 4

D)
D)
4|
4)

Call State
Replication

Data Tier Cluster

1 1
i Host 3 Host 4 i
: = Er— = |
1 1
1 Partition 0 !
1 1
i i
1 Replica m Replica !
! 00 04 !
1 1
| Partition 1 i
1 1
i i
1 Replica m Replica !
i 1-0 1-1 0
1 1
1 1
i i
1 1

Large Deployment

In the sample large-scale deployment, both the engine tier and data tier clusters have been
expanded to support a call rate of 10 million calls per hour, as shown in Figure 5-5, “Large-Scale
Deployment,” on page 5-11.

Configuring and Managing WebLogic SIP Server 5-9



Capacity Planning for WebLogic SIP Server Deployments

5-10

In the engine tier, 36 nodes are required given the maximum throughput per node value of 1,000
SIP messages per second.

In the data tier, 20 servers are required to manage the call state for the estimated number of
concurrent calls. However, to provide redundancy in the event of a failure, two replicas in each
partition store copies of the partition’s call state, resulting in 40 server nodes in the data tier.

To maximize the reliability for such a large deployment, each group of servers in the data tier
should be located in different physical locations, and/or on separate, dedicated networks.

Configuring and Managing WebLogic SIP Server



Large Deployment

Figure 5-5 Large-Scale Deployment

Load
Bala_ncer  J

Distribution
and
Failover
Engine Tier Cluster

36

Call State
Replication

Data Tier Cluster

Host 46 ST = Host 56 ST —=a
Partition 18
Replica Failover Replica
190 1841
Partition 20
Replica Replica
20-0 2041
— —

Configuring and Managing WebLogic SIP Server 5-11



Capacity Planning for WebLogic SIP Server Deployments

5-12 Configuring and Managing WebLogic SIP Server



CHAPTERa

Managing WebLogic SIP Server Network
Resources

The following sections describe how to configure network resources for use with WebLogic SIP
Server:

e “Overview of Network Configuration” on page 6-1

e “Configuring Load Balancer Addresses” on page 6-2

e “Configuring Network Channels for SIP or SIPS” on page 6-3

e “Configuring SIP Channels for Multi-Homed Machines” on page 6-5

e “Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)” on page 6-6

e “Configuring Unique Listen Address Attributes for Data Tier Replicas” on page 6-6

Overview of Network Configuration

The default HTTP network configuration for each WebLogic SIP Server instance is determined
from the Listen Address and Listen Port setting for each server. However, WebLogic SIP Server
does not support the SIP protocol over HTTP. The SIP protocol is supported over the UDP and
TCP transport protocols. SIPS is also supported using the TLS transport protocol.

To enable UDP, TCP, or TLS transports, you configure one or more network channels for a
WebLogic SIP Server instance. A network channel is a configurable WebLogic Server resource
that defines the attributes of a specific network connection to the server instance. Basic channel
attributes include:

e The protocols supported by the connection

Configuring and Managing WebLogic SIP Server 6-1



Managing WebLogic SIP Server Network Resources

The listen address (DNS name or IP address) of the connection

The port number used by the connection

(optional) The port number used by outgoing UDP packets

The public listen address (load balancer address) to embed in SIP headers when the
channel is used for an outbound connection.

You can assign multiple channels to a single WebLogic SIP Server instance to support multiple
protocols or to utilize multiple interfaces available with multihomed server hardware. You cannot
assign the same channel to multiple server instances.

When you configure a new network channel for the SIP protocol, WebLogic SIP Server
automatically creates the necessary both the UDP and TCP transport protocols on the configured
port. You cannot create a SIP channel that uses only UDP transport or only TCP transport. When
you configure a network channel for the SIPS protocol, the server uses the TLS transport protocol
for the connection.

As you configure a new SIP Server domain, you will generally create multiple SIP channels for
communication to each engine tier server in your system. Engine tier servers can communicate
to data tier replicas using the configured Listen Address attributes for the replicas. Note, however,
that replicas must use unique Listen Addressees in order to communicate with one another.

Note: If you configure multiple replicas in a data tier cluster, you must configure a unique
Listen Address for each server (a unique DNS name or IP address). If you do not specify
aunique Listen Address, the replica service binds to the default “localhost” address and
multiple replicas cannot locate one another.

Configuring Load Balancer Addresses

6-2

If your system uses one or more load balancers to distribute connections to the engine tier, you
must configure SIP network channels to include a load balancer address as the external listen
address. When a SIP channel has an external listen address that differs from the channel’s
primary listen address, WebLogic SIP Server embeds the host and port number of the external
address in SIP headers such as Response. In this way, subsequent communication for the call is
directed to the public load balancer address, rather than the local engine tier server address (which
may not be accessible to external clients).

If anetwork channel does not have a configured external listen address, the primary listen address
is embedded into SIP headers.

Configuring and Managing WebLogic SIP Server



Configuring Network Channels for SIP or SIPS

Multiple Load Balancers and Multihomed Load Balancers

If your system uses two load balancers, you must define two channels on each engine tier server
(one for each network connection to each load balancer) and assign the external listen address to
the corresponding load balancer. When a particular network interface on the engine tier server is
selected for outbound traffic, the network channel associated with that NIC’s address is examined
to determine the external listen address to embed in SIP headers.

If your system uses a multihomed load balancer having two public addresses, you must also
define a pair of channels to configure both public addresses. If the engine tier server has only one
NIC, you must define a second, logical address on the NIC to configure a dedicated channel for
the second public address. In addition, you must configure your IP routing policies to define
which logical address is associated with each public load balancer address.

Configuring Network Channels for SIP or SIPS

When you create a new domain using the Configuration Wizard, WebLogic SIP Server instances
are configured with a default network channel supporting the SIP protocol over UDP and TCP.
This default channel is configured to use Listen Port 5060, but specifies no Listen Address.
Follow the instructions in Reconfiguring an Existing Channel to change the default channel’s
listen address or listen port settings. See “Creating a New SIP or SIPS Channel” on page 6-4 for
to create a new channel resource to support additional protocols or additional network interfaces.

Reconfiguring an Existing Channel

Note: You cannot change the protocol supported by an existing channel. To reconfigure an
existing listen address/port combination to use a different network protocol, you must
delete the existing channel and create a new channel using the instructions in “Creating
a New SIP or SIPS Channel” on page 6-4.

1. Access the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the name of the server to configure.

3. In the right pane, select Protocols->Channels to display the configured channels.
4. To delete an existing channel, click the trash can icon next the channel name.

5. To reconfigure an existing channel:

a. Select the channel’s name from the channel list (for example, the default sipchannel).

Configuring and Managing WebLogic SIP Server 6-3



Managing WebLogic SIP Server Network Resources

6-4

c.

Edit the Listen Address or Listen Port fields to correspond to the address of a NIC or
logical address on the associated engine tier machine.

Edit the External Listen Address or External Listen Port fields to match the public address
of a load balancer in the system.

Edit the advanced channel attributes as necessary (see “Creating a New SIP or SIPS
Channel” on page 6-4 for details.)

Click Apply to apply your changes.

Creating a New SIP or SIPS Channel

To create add a new SIP or SIPS channel to the configuration of a WebLogic SIP Server instance:

1.
2.

Access the Administration Console for the WebLogic SIP Server domain.

In the left pane, select the name of the server to configure.

In the right pane, select Protocols->Channels to display the configured channels.

Click Configure a new Network Channel in the right pane.

Fill in the new channel fields as follows:

Name: Enter an administrative name for this channel, such as “SIPS-Channel-eth0.”

Protocol: Select either SIP to support UDP and TCP transport, or SIPS to support TLS
transport. Note that a SIP channel cannot support only UDP or only TCP transport on
the configured port.

Listen Address: Enter the IP address or DNS name for this channel. On a multi-homed
machine, enter the exact IP address of the interface you want to configure, or a DNS
name that maps to the exact IP address.

Listen Port: Enter the port number used to communication via this channel. The
combination of Listen Address and Listen Port must be unique across all channels
configured for the server. SIP channels support both UDP and TCP transport on the
configured port.

Click Create to create the new channel.

Edit the External Listen Address and External Listen Port fields to match the public
address of a load balancer associated with this channel. When the server selects an interface
or logical address to use for outbound network traffic, WebLogic SIP Server examines the

Configuring and Managing WebLogic SIP Server



Configuring SIP Channels for Multi-Homed Machines

channel that was configured with the same primary Listen Address; if the External Listen
Address of this channel differs, the external address is embedded into SIP message headers
for further call traffic. See “Configuring Load Balancer Addresses” on page 6-2.

8. Optionally click Show to display and edit advanced channel properties, such as connection
timeout values. Keep in mind the following restrictions and suggestions for advanced
channel properties:

Outbound Enabled—This attribute cannot be unchecked, because all SIP and SIPS
channels can originate network connections.

HTTP Enabled for This Protocol—This attribute cannot be selected for SIP and SIPS
channels, because WebLogic SIP Server does not support HTTP transport SIP
protocols.

Maximum Message Size—This attribute specifies the maximum TCP message size
that the server allows on a connection from this channel. WebLogic SIP Server shuts
off any connection where the messages size exceeds the configured value. The default
size of 10,000,000 bytes is large. If you are concerned about preventing Denial Of
Service (DOS) attacks against the server, reduce this attribute to a value that is
compatible with your deployed services.

Tep Connect Timeout Millis—This attribute specifies the amount of time WebLogic

SIP Server waits before it declares a destination address (for an outbound connection)

as unreachable. The attribute is applicable only to SIP channels; WebLogic SIP Server
ignores this attribute value for SIPS channels.

9. Click Apply.

Configuring SIP Channels for Multi-Homed Machines

If you are configuring a server that has multiple network interfaces (a “multihomed” server), you
must configure a separate network channel for each IP address used by WebLogic SIP Server.
WebLogic SIP Server uses the listen address and listen port values for each channel when
embedding routing information into SIP message system headers.

Note:

If you do not configure a channel for a particular IP address on a multihomed machine,
that IP address cannot be used when populating Via, Contact, and Record-Route headers.

Configuring and Managing WebLogic SIP Server 6-5



Managing WebLogic SIP Server Network Resources

Configuring Engine Servers to Listen on Any IP Interface
(0.0.0.0)

To configure WebLogic SIP Server to listen for UDP traffic on any available IP interface, create
anew SIP channel and specify 0.0.0.0 as the listen address. Note that you must still configure at
least one additional channel with an explicit IP address to use for outgoing SIP messages. (For
multi-homed machines, each interface used for outgoing messages must have a configured
channel.)

Note: If you configure a SIP channel without specifying the channel listen address, but you do
configure a listen address for the server itself, then the SIP channel inherits the server
listen address. In this case the SIP channel does not listen on IP_ANY.

Configuring Unique Listen Address Attributes for Data Tier
Replicas

Each replica in the data tier must bind to a unique Listen Address attribute (a unique DNS name
or IP address) in order to contact one another as peers. Follow these instructions for each replica
to assign a unique Listen Address:

1. Access the Administration Console for the WebLogic SIP Server domain.
2. In the left pane, select the name of the server to configure.

3. Select the Configuration->General tab.

4. Enter a unique DNS name or IP address in the Listen Address field.

5. Click Apply.

6-6 Configuring and Managing WebLogic SIP Server



cHAPTERﬂ

Production Network Architectures and
WebLogic SIP Server Configuration

The following sections describe common network architectures used in production deployments,
and explain how WebLogic SIP Server is configured to run in those architectures:

e “Overview” on page 7-2

e “Single-NIC Configurations with TCP and UDP Channels” on page 7-3

e “Multihomed Server Configurations Overview” on page 7-5

e “Multihomed Servers Listening On All Addresses (IP_ANY)” on page 7-5

e “Multihomed Servers Listening on Multiple Subnets” on page 7-6
— “Understanding the Route Resolver” on page 7-7
— “IP Aliasing with Multihomed Hardware” on page 7-7
e “Load Balancer Configurations” on page 7-8
— “Single Load Balancer Configuration” on page 7-8
— “Multiple Load Balancers and Multihomed Load Balancers” on page 7-9

— “Network Address Translation Options” on page 7-9

Configuring and Managing WebLogic SIP Server 1-1



Production Network Architectures and WebLogic SIP Server Configuration

Overview

1-2

Most production installations of WebLogic SIP Server are contain one or more of the following
characteristics:

e Multiple engine tier servers arranged in a cluster.

e Multiple network channels per engine tier server instance, in support of multiple SIP
transport protocols or multiple Network Interface Cards (NICs) on multihomed hardware.

e One or more load balancers, or a multihomed load balancer, performing server failover and
possibly Network Address Translation (NAT) for source or destination network packets.

A combination of these network elements can make it difficult to understand how elements
interact with one another, and how a particular combination of elements or configuration options
affects the contents of a SIP message or transport protocol datagram.

The sections that follow attempt to describe common WebLogic SIP Server network
architectures and explain how servers are configured in each architecture. The sections also
explain how information in SIP messages and transport datagrams is affected by each
configuration. XREF shows the typical Open Systems Interconnect (OSI) model layers that can
be affected by different network configurations.

Figure 7-1 0SI Layers Affected by WebLogic SIP Server Network Configuration

r .
{ e fi
e S|P System Headers
- Y
e s"sfon 1
Trg
Ly 8por~-]
Yerg. n t Source/Destination Port
’”ai’er 2 0::”'0"& Source/Destination
* IP Address
la
"""J'er y Ling 1
\/
.~

Layer 3 (Network) and Layer 4 (Transport) contain the source or destination IP address and port
numbers for both outgoing and incoming transport datagrams. Layer 7 (Application) may also be
affected because the SIP protocol specifies that certain SIP headers include addressing
information for contacting the sender of a SIP message.

Configuring and Managing WebLogic SIP Server



Single-NIC Configurations with TCP and UDP Channels

Single-NIC Configurations with TCP and UDP Channels

In a simple network configuration for a server having a single NIC, one or more network channels
may be created to support SIP messages over UDP and TCP, or SIPS over TLS. It is helpful to
understand how this simple configuration affects information in the OSI model, so that you can
understand how more complex configurations involving multihomed hardware and load
balancers affect the same information.

Figure 7-2 Single-NIC Network Channel Configuration

10.1.1.20 10.1.1.10

siP
Network Channel

WebLogic SIP
Server

Figure 7-2 shows a single engine tier server instance with a single NIC. The server is configured
with one network channel supporting SIP over UDP and TCP. (SIP channels always support both
UDP and TCP transports; you cannot support only one of the two.) Figure 7-2 also shows two
clients communicating with the server, one over UDP and one over TCP.

For the TCP transport, the outgoing datagram (delivered from WebLogic SIP Server to the UA)
contains the following information:

e Layer 3 includes the source IP address specified by the network channel (10.1.1.10 in the
example above).

e Layer 4 includes the source port number allocated by the underlying operating system.

Incoming TCP datagrams (delivered from the UA to WebLogic SIP Server) contain the following
information:

e Layer 3 includes the destination IP address specified by the network channel (10.1.1.10).

Configuring and Managing WebLogic SIP Server 1-3



Production Network Architectures and WebLogic SIP Server Configuration

1-4

e Layer 4 contains the destination port number specified by the network channel (5060).

For outgoing UDP datagrams, the OSI layer information contains the same information as with
TCP transport. For incoming UDP datagrams, the OSI layer information is the same as TCP
except in the case of incoming datagram Layer 4 information. For incoming UDP datagrams,
Layer 4 contains either:

e The destination port number specified by the network channel (5060), or

e The ephemeral port number previously allocated by WebLogic SIP Server.

By default WebLogic SIP Server allocates ports from the ephemeral port number range of the
underlying operating system for outgoing UDP datagrams. WebLogic SIP Server allows external
connections to use an ephemeral point as the destination port number, in addition to the port
number configured in the network channel. In other words, WebLogic SIP Server automatically
listens on all ephemeral ports that the server allocates. You can optionally disable WebLogic SIP
Server’s use of ephemeral port numbers by specifying the following option when starting the
server:

-Dwlss.udp.listen.on.ephemeral=false

You can determine WebLogic SIP Server’s use of a particular ephemeral port by examining the
server log file:

<Nov 30, 2005 12:00:00 AM PDT> <Notice> <WebLogicServer> <BEA-000202>
<Thread “SIP Message Processor (Transport UDP)” listening on port 35993.>

Static Port Configuration for Outbound UDP Packets

WebLogic SIP Server network channels provide a SourcePorts attribute that you can use to
configure one or more static ports that a server uses for originating UDP packets.

Warning: BEA does not recommend using the SourcePorts attribute in most configurations
because it degrades performance. Configure SourcePorts only in cases where you
must specify the exact ports that WebLogic SIP Server uses to originate UDP
packets.

To configure SourcePorts, use a JMX client such as WLST or directly modify a network
channel configuration in config.xml to include the attribute. SourcePorts defines an array of
port numbers or port number ranges, as shown in Listing 7-1.

Configuring and Managing WebLogic SIP Server



Multihomed Server Configurations Overview

Listing 7-1 Static Port Configuration for Outgoing UDP Packets

<NetworkAccessPoint HttpEnabledForThisProtocol="false"
ListenPort="5060" Name="sipchannel" OutboundEnabled="true"

Protocol="sip" SourcePorts="6100-6150, 6200-6250, 6300"/>

Multihomed Server Configurations Overview

Engine tier servers in a production deployment frequently utilize multihomed server hardware,
having two or more NICs. Multihomed hardware is typically used for one of the following
purposes:

e To provide redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available to communicate with data tier
servers or the Administration Server, even if a single NIC fails.

e To support SIP communication across two or more different subnets. For example
WebLogic SIP Server may be configured to proxy SIP requests from UAs in one subnet to
UAs in a second subnet, when the UAs cannot directly communicate across subnets.

The configuration requirements and OSI layer information differ depending on the use of
multihomed hardware in your system. When multiple NICs are used to provide redundant
connections within a subnet, servers are generally configured to listen on all available addresses
(IP_ANY) as described in “Multihomed Servers Listening On All Addresses (IP_ANY)” on
page 7-5.

When using multiple NICs to support different subnets, you must configure multiple network on
the server for each different NIC as described in “Multihomed Servers Listening on Multiple
Subnets” on page 7-6.

Multihomed Servers Listening On All Addresses (IP_ANY)

The simplest multihome configuration enables a WebLogic SIP Server instance to listen on all
available NICs (physical NICs as well as logical NICs), sometimes described as [P_ANY. To
accomplish this, you simply configure a single network channel and specify a channel listen
address of 0.0.0.0.

Note that you must configure the 0.0.0.0 address directly on the server’s network channel. If you
specify no IP address in the channel, the channel inherits the listen address configured for the

Configuring and Managing WebLogic SIP Server 1-5



Production Network Architectures and WebLogic SIP Server Configuration

server instance itself. See “Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)”
on page 6-6.

Multihomed Servers Listening on Multiple Subnets

1-6

Multiple NICs can also be used in engine tier servers to listen on multiple subnets. The most
common configuration uses WebLogic SIP Server to proxy SIP traffic from one subnet to another
where no direct access between subnets is permitted. Figure 7-3 shows this configuration.

Figure 7-3 Multihomed Configuration for Proxying between Subnets

UAC A UACB

| |
10.1.1.16 10.2.1.16

| —
Network
Router

101.1.10 10.21.10

Weblogic
SIP Server

To configure the WebLogic SIP Server instance in Figure 7-3 you must define a separate network
channel for each NIC used on the server machine. Listing 7-2 shows the config.xml entries that
define channels for the sample configuration.

Listing 7-2 Sample Network Channel Configuration for NICs on Multiple Subnets

<NetworkAccessPoint ListenAddress="10.1.1.10" ListenPort="5060"

Name="sipchannelA" Protocol="gip"/>

<NetworkAccessPoint ListenAddress="10.2.1.10" ListenPort="5060"

Name="sipchannelB" Protocol="sip"/>

Configuring and Managing WebLogic SIP Server



Multihomed Servers Listening on Multiple Subnets

Understanding the Route Resolver

When WebLogic SIP Server is configured to listen on multiple subsets, a feature called the route
resolver is responsible for the following activities:

e Populating OSI Layer 7 information (SIP system headers such as Via, Contact, and so
forth) with the correct address.

e Populating OSI Layer 3 information with the correct source IP address.

For example, in the configuration shown in Figure 7-3, WebLogic SIP Server must add the
correct subnet address to SIP system headers and transport datagrams in order for each UA to
continue processing SIP transactions. If the wrong subnet is used, replies cannot be delivered
because neither UA can directly access the other UA’s subnet.

The route resolver works by determining which NIC the operating system will use to send a
datagram to a given destination, and then examining the network channel that is associated with
that NIC. It them uses the address configured in the selected network channel to populate SIP
headers and Layer 3 address information.

For example, in the configuration shown in Figure 7-3, an INVITE message sent from WebLogic
SIP Server to UAC B would have a destination address of 10.2.1.16. The operating system would
transmit this message using NIC B, which is configured for the corresponding subnet. The route
resolver associates NIC B with the configured sipchannelB and embeds the channel’s IP
address (10.2.1.10) in the VIA header of the SIP message. UAC B then uses the VIA header to
direct subsequent messages to the server using the correct IP address. A similar process is used
for UAC A, to ensure that messages are delivered only on the correct subnet.

IP Aliasing with Multihomed Hardware

IP aliasing assigns multiple logical IP addresses to a single NIC, and is configured in the
underlying server operating system. If you configure IP aliasing and all logical IP addresses are
within the same subnet, you can simply configure WebLogic SIP Server to listen on all addresses
as described in “Multihomed Servers Listening On All Addresses (IP_ANY)” on page 7-5.

If you configure IP aliasing to create multiple logical IP addresses on different subnets, you must
configure a separate network channel for each logical IP address. In this configuration, WebLogic
SIP Server treats all logical addresses as separate physical interfaces (NICs) and uses the route
resolver to populate OSI Layer 4 and Layer 7 information based on the configured channel.

Configuring and Managing WebLogic SIP Server 1-1



Production Network Architectures and WebLogic SIP Server Configuration

Load Balancer Configurations

1-8

In addition to providing failover capabilities and distributing the client load across multiple
servers, a load balancer is also an important tool for configuring the network information
transmitted between clients and servers. The sections that follow describe common load balancer
configurations used with WebLogic SIP Server.

Single Load Balancer Configuration

The most common load balancer configuration utilizes a single load balancer that gates access to
a cluster of engine tier servers, as shown in Figure 7-4.

Figure 7-4 Single Load Balancer Configuration

Clients Clients Clients Clients
— Internet =,
2 —
Network j -
Router =——
Virtual IP
Load !
Balancer

Local IP Local IP Local IP
|
(= (=
Weblogic WebLogic WeblLogic
SIP Server SIP Server SIP Server

To configure WebLogic SIP Server for use with a single load balancer as in Figure 7-4, configure
one or more network channels for each server, and configure the public address of each channel
with the Virtual IP address of the load balancer. In this configuration, WebLogic SIP Server
embeds the load balancer IP address in SIP message system headers to ensure that clients can
reach the cluster for subsequent replies. “Managing WebLogic SIP Server Network Resources”
on page 6-1 presents detailed steps for configuring network channels with load balancer
addresses.

Configuring and Managing WebLogic SIP Server



Load Balancer Configurations

Note: Although some load balancing switches can automatically re-route all SIP messages in a
given call to the same engine tier server, this functionality is not required with WebLogic
SIP Server installations. See “Alternate Configurations” on page 1-5.

Multiple Load Balancers and Multihomed Load Balancers

Multiple load balancers (or a multihomed load balancer) can be configured to provide several
virtual IP addresses for a single WebLogic SIP Server cluster. To configure WebLogic SIP Server
for use with a multihomed load balancer, you create a dedicated network channel for each load
balancer or local server NIC, and set the channel’s public address to the virtual IP address of the
appropriate load balancer. In this configuration, the route resolver associates a configured
channel with the NIC used for originating SIP messages. The public address of the selected
channel is then used for populating SIP system messages. See “Understanding the Route
Resolver” on page 7-7.

Network Address Translation Options

In the most common case, a load balancer is configured using destination NAT to provide a
public IP address that clients use for communicating with one or more internal (private)
WebLogic SIP Server addresses. Load balancers may also be configured using source NAT,
which modifies the Layer 3 address information originating from a private address to match the
virtual IP address of the load balancer itself.

With the default route resolver behavior, a WebLogic SIP Server engine originates UDP packets
having a source IP address that matches the address of a local NIC (the private address). This can
be problematic for applications that try to respond directly to the Layer 3 address embedded in
the transport packet, because the local server address may not be publicly accessible. If your
applications exhibit this problem, BEA recommends that you configure the load balancer to
perform source NAT to change the transport Layer 3 address to a publicly-accessible virtual IP
address.

IP Masquerading Alternative to Source NAT

Warning: Using the WebLogic SIP Server IP masquerading functionality can lead to network
instability, because it requires duplicate IP addresses on multiple servers. Production
deployments must use a load balancer configured for source NAT, rather than IP
masquerading, to ensure reliable network performance.

If you choose not to enable source NAT on your load balancer, WebLogic SIP Server provides
limited IP masquerading functionality. To use this functionality, configure a logical address on

Configuring and Managing WebLogic SIP Server 1-9



Production Network Architectures and WebLogic SIP Server Configuration

1-10

each engine tier server using the public IP address of the load balancer for the cluster. (Duplicate
the same logical IP address on each engine tier server machine). When a local server interface
matches the IP address of a configured load balancer (defined in the public address of a network
channel), WebLogic SIP Server uses that interface to originate SIP UDP messages, and the Layer
3 address contains a public address.

You can disable WebLogic SIP Server’s IP masquerading functionality by using the startup
option:

-Dwlss.udp.lb.masquerade=false

Configuring and Managing WebLogic SIP Server



CHAPTERa

Overview of WebLogic SIP Server
Security Features

The following sections provide an overview of WebLogic SIP Server security:
e “Authentication for SIP Servlets” on page 8-1
e “Overriding Authentication with Trusted Hosts” on page 8-3
e “P-Asserted-Identity Support” on page 8-3
e “Role Assignment for SIP Servlet Declarative Security” on page 8-3
e “Security Event Auditing” on page 8-3

e “Common Security Configuration Tasks” on page 8-3

Authentication for SIP Servlets

WebLogic SIP Server users must be authenticated whenever they request access to a protected
resource, such as a protected method within a deployed SIP Servlet. WebLogic SIP Server
enables you to implement user authentication for SIP Servlets using any of the following
techniques:

o DIGEST authentication uses a simple challenge-response mechanism to verify the identity of
a user over SIP or HTTP. This technique is described in “Configuring Digest Authentication” on
page 9-1.

e CLIENT-CERT authentication uses an X509 certificate chain passed to the SIP
application to authenticate a user. The X509 certificate chain can be provided in a number
of different ways. In the most common case, two-way SSL handshake is performed before

Configuring and Managing WebLogic SIP Server 8-1



Overview of WebLogic SIP Server Security Features

8-2

transmitting the chain to ensure secure communication between the client and server.
CLIENT-CERT authentication is described fully in “Configuring Client-Cert
Authentication” on page 10-1.

e BASIC authentication uses the authorization SIP header to transmit the username and
password to SIP Servlets. BASIC authentication is not recommended for production
systems unless you can somehow ensure that all connections between clients and the
WebLogic SIP Server instance are secure. This document does not provide configuration
instructions for using BASIC authentication.

Different SIP Servlets deployed on WebLogic SIP Server can use different authentication
mechanisms as necessary. The required authentication mechanism is specified in the
auth-method element of the SIP Servlet’s sip.xml deployment descriptor. The deployment
descriptor may also define which resources are to be protected, listing specific role names that
are required for access. See Securing SIP Servlet Resources in Developing SIP Serviets with
WebLogic SIP Server for information about securing resources and mapping roles in the SIP
Servlet deployment descriptor.

Authentication Providers

WebLogic SIP Server authentication services are implemented using one or more authentication
providers. An authentication provider performs the work of proving the identity of a user or
system process, and then transmitting the identity information to other components of the system.

You can configure and use multiple authentication providers to uses different authentication
methods, or to work together to provide authentication. For example, when using Digest
authentication you typically configure both a Digest Identity Asserter provider to assert the
validity of a digest, and a second LDAP or RDBMS authentication provider that determines the
group membership of a validated user.

When linking multiple authentication providers, you must specify the order in which providers
are used to evaluate a given user, and also specify how much control each provider has over the
authentication process. Each provider can contribute a “vote” that specifies whether or not the
provider feels a given user is valid. The provider’s control flag indicates how the provider’s vote
is used in the authentication process.

For more information about configuring providers, see either “Configuring Digest
Authentication” on page 9-1 or “Configuring Client-Cert Authentication” on page 10-1.

Configuring and Managing WebLogic SIP Server


{DOCROOT}/programming/securityconsts.html
{DOCROOT}/programming/index.html
{DOCROOT}/programming/index.html

Overriding Authentication with Trusted Hosts

Overriding Authentication with Trusted Hosts

WebLogic SIP Server also enables you to designate trusted hosts for your system. Trusted hosts
are hosts for which WebLogic SIP Server performs no authentication. If the server receives a SIP
message having a destination address that matches a configured trusted hostname, the message is
delivered without Authentication. See “sip-security” on page D-17 for more information.

P-Asserted-Identity Support

WebLogic SIP Server supports the P-Asserted-Identity SIP header as described in
RFC3325. This functionality automatically logs in using credentials specified in the
P-Asserted-Identity header when they are received form a trusted host. When combined with
the privacy header, P-Asserted-Identity also determines whether the message can be
forwarded to trusted and non-trusted hosts. See “Configuring P-Asserted-Identity Assertion” on
page 11-1 for more information.

Role Assignment for SIP Servlet Declarative Security

The SIP Servlet API specification defines a set of deployment descriptor elements that can be
used for providing declarative and programmatic security for SIP Servlets. The primary method
for declaring security constraints is to define one or more security-constraint elements and
role definitions in the sip.xm1 deployment descriptor. WebLogic SIP Server adds additional
deployment descriptor elements to help developers easily map SIP Servlet roles to actual
principals and/or roles configured in the SIP Servlet container. See Securing SIP Servlet
Resources in Developing SIP Servlets with WebLogic SIP Server for more information.

Security Event Auditing

WebLogic SIP Server includes an auditing provider that you can configure to monitor authentication
events in the security realm. See Configuring a WebLogic Auditing Provider in the WebLogic Server
8.1 documentation for more information.

Common Security Configuration Tasks

Table 8-1 lists WebLogic SIP Server configuration tasks and provides links to additional
information.

Configuring and Managing WebLogic SIP Server 8-3


{DOCROOT}/programming/securityconsts.html
{DOCROOT}/programming/securityconsts.html
{DOCROOT}/programming/index.html
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#auditprovider

Overview of WebLogic SIP Server Security Features

8-4

Table 8-1 Security Configuration Tasks

Task Description

“Configuring Digest * Understanding the Digest identity assertion providers
Authentication” on »  Configuring LDAP Digest authentication

page 9-1

Configuring Digest authentication with an RDBMS

“Configuring Client-Cert
Authentication” on

Understanding client-cert authentication solutions

Delivering X509 certificates over 2-way SSL

10-1
page * Developing a Perimeter authentication solution
*  Using the WebLogic SIP Server WL_Client_Cert header
to deliver X509 certificates
“Configuring ¢ Understand forwarding rules for SIP messages having the

P-Asserted-Identity
Assertion” on page 11-1

P-Asserted-Identity header
Configuring P-Asserted-Identity providers

Securing SIP Servlet
Resources in
Developing SIP
Servlets with WebLogic
SIP Server

Defining security constraints for a SIP Servlet

Mapping SIP Servlet roles to WebLogic SIP Server roles
and principals

Debugging SIP Servlet security constraints

“sip-security” on
page D-17

Configuring trusted hosts

Configuring and Managing WebLogic SIP Server


{DOCROOT}/programming/securityconsts.html
{DOCROOT}/programming/securityconsts.html
{DOCROOT}/programming/index.html

CHAPTERa

Configuring Digest Authentication

The following sections describe how to configure WebLogic SIP Server to use Digest
authentication with a supported LDAP server or RDBMS:

e “Overview of Digest Authentication” on page 9-1
e “Prerequisites for Configuring LDAP Digest Authentication” on page 9-6
e “Steps for Configuring LDAP Digest Authentication” on page 9-8

e “Sample Digest Authentication Configurations” on page 9-16

Overview of Digest Authentication

The following sections provide a basic overview of Digest authentication, and describe Digest
authentication support and configuration in WebLogic SIP Server 2.1.

What Is Digest Authentication?

Digest authentication is a simple challenge-response mechanism used to authenticate a user over
SIP or HTTP. Digest authentication is fully described in RFC 2617.

When using Digest authentication, if a client makes an un-authenticated request for a protected
server resource, the server challenges the client using a nonce value. The client uses a requested
algorithm (MD5 by default) to generate an encrypted response—a Digest—that includes a
username, password, the nonce value from the challenge, the SIP method, and the requested URI.

Configuring and Managing WebLogic SIP Server 9-1



Configuring Digest Authentication

The server verifies the client Digest by recreating the Digest value and comparing it with the
client’s Digest. To recreate the Digest value the server requires a hash of the “A1” value (see RFC
2617) that includes, at minimum, the nonce, username, password and realm name. The server
either recreates the hash of the A1 value using a stored clear-text password for the user, or by
obtaining a precalculated hash value. Either the clear-text password or precalculated hash value
can be stored in an LDAP directory or accessed from an RDBMS using JDBC. The server then
uses the hash of the A1 value to recreate the Digest and compare it to the client’s Digest to verify
the user’s identity.

Digest authentication provides secure authorization over HTTP because the clear text password
is never transmitted between the client and server. The use of nonce values in the client challenge
also ensures that Digest authentication is resistant to replay attacks. See Figure 9-1 for a more
detailed explanation of the challenge-response mechanism for a typical request.

Digest Authentication Support in WebLogic SIP Server 2.1

WebLogic SIP Server 2.1 includes LDAP Digest Identity Asserter security providers for
asserting the validity of a client’s Digest using LDAP or an RDBMS. A separate authorization
provider is required to complete the authentication process (see “Configure an Authenticator
Provider” on page 9-10).

The Digest Identity Asserter only verifies a user’s credentials using the client Digest. After the
Digest is verified, the configured authorization provider completes the authentication process by
checking for the existence of the user (by username) and also populating group membership for
the resulting javax.security.auth.Subject.

The Digest Identity Asserter provider requires that user credentials be stored in an LDAP server
or RDBMS in one of the following ways:

e Unencrypted (clear text) passwords. The simplest configuration stores users’
unencrypted passwords in a store. If you choose this method, BEA recommends using an
SSL connection to the LDAP store or database to reduce the risk of exposing clear text
passwords in server-side network traffic. Some LDAP stores do not support storing
unencrypted passwords by default; in this case you must create or use a dedicated
credential attribute on the LDAP server for storing the password. See “Configure the
LDAP Server or RDBMS” on page 9-8.

e A pre-calculated hash of each password, username, and realm. If storing unencrypted
passwords is unacceptable, you can instead store a pre-calculated hash value of the
username, security-realm, and password in a new or existing attribute in LDAP or an
RDBMS. The Digest Identity Asserter then retrieves only the hash value for comparison to

9-2 Configuring and Managing WebLogic SIP Server



Overview of Digest Authentication

the client-generated hash in the Digest. Storing pre-calculated hash values provides
additional security.

The LDAP Digest Identity Asserter is compatible with any LDAP provider that permits storage
of a clear text password or pre-calculated hash value.

Notes: You cannot change the schema for the built-in LDAP store to add a dedicated field for
storing clear text passwords or pre-calculated hash values. However, you can use the
predefined “description” field to store password information for testing or demonstration
purposes.

If you do not use the DefaultAuthenticator provider for authentication decisions, you
must make DefaultAuthenticator an optional provider (ControlFlag=“SUFFICIENT” or
lower) before you can use Digest authentication. This will generally be the required
configuration in production installations where a separate LDAP store is used to maintain
clear text or hashed password information.

Configuring and Managing WebLogic SIP Server 9-3



Configuring Digest Authentication

Figure 9-1 Digest Authentication in WebLogic SIP Server 2.1

3 Response

2 Challenge
1 Request

5 Digest
Verification

SIP
Sarnviet

Weblogic
SIP Server

Digest Identity
Asserter
Provider

Authentication
Provider

6 Existence and Group Checking

4 Retrieve Hashed A1
or Unencrypted Password

HA1 or Unencrypted
Password

Figure 9-1 shows the basic architecture and use of an Identity Asserter provider for a typical
client request:

1. The client makes an unauthorized request for a protected application resource. (SIP Servlet
resources can be protected by specifying security constraints in the sip-xml deployment
descriptor. See Controlling Access to SIP Servlet Resources.)

2. The Digest Identity Asserter provider generates a challenge string consisting of the nonce
value, realm name, and encryption algorithm (either MD5 or MD5-sess). The SIP container
delivers the challenge string to the client.

9-4 Configuring and Managing WebLogic SIP Server


../programming/securityconsts.html

Overview of Digest Authentication

Note: The Digest Identity Asserter maintains a cache of used nonces and timestamps for a
specified period of time. All requests with a timestamp older than the specified
timestamp are rejected, as well as any requests that use the same timestamp/nonce
pair as the most recent timestamp/nonce pair still in the cache.

3. The client uses the encryption algorithm to create a Digest consisting of the username,
password, real name, nonce, SIP method, request URI, and other information described in
RFC 2617.

4. The Digest Identity Asserter verifies the client Digest by recreating the Digest value using a
hash of the A1 value, nonce, SIP method, and other information. To obtain a hash of the A1l
value, the Identity Asserter either generates HA1 by retrieving a clear-text password from
the store, or the Identity Asserter retrieves the pre-calculated HA1 from the store.

5. The generated Digest string is compared to the client’s Digest to verify the user’s identity.

6. If the user's identity is verified, an authentication provider then determines if the user exists
and if it does, the authentication provider populates the javax.security.auth.Subject
with the configured group information. This step completes the authentication process.

Note: If you do not require user existence checking or group population, you can use the
special “no-op” Identity Assertion Authenticator to avoid an extra connection to the
LDAP Server; see “Configure an Authenticator Provider” on page 9-10 for more
information.

After authentication is complete, the SIP Servlet container performs an authorization check
for the logged in javax.security.auth.Subject against the declarative
security-constraints defined in the Servlet’s sip.xml deployment descriptor.

The LDAP Digest Identity Asserter and the configured Authentication provider can either use the
same LDAP store or different stores.

Note: If you use multiple LDAP stores, you must also create some infrastructure to keep both
stores synchronized in response to adding, removing, or changing user credential
changes, as shown in Figure 9-2. Maintaining LDAP stores in this manner is beyond the
scope of this documentation.

Configuring and Managing WebLogic SIP Server 9-5



Configuring Digest Authentication

Figure 9-2 Multiple LDAP Servers

Weblogic SIP Server

Digest Identity
Asserter
Provider

Authentication
Provider

Prerequisites for Configuring LDAP Digest Authentication

9-6

In order to configure Digest authentication you must understand the basics of LDAP servers and
LDAP administration. You must also understand the requirements and restrictions of your
selected LDAP server implementation, and have privileges to modify the LDAP configuration as
well as the WebLogic SIP Server configuration.

Table 9-1 summarizes all of the information you will need in order to fully configure your LDAP
server for Digest authentication with WebLogic SIP Server 2.1.

Note that the LDAP authentication provider and the Digest Authentication Identity Asserter
provider can be configured with multiple LDAP servers to provide failover capabilities. If you
want to use more than one LDAP server for failover, you will need to have connection
information for each server when you configure Digest Authentication. See “Steps for
Configuring LDAP Digest Authentication” on page 9-8.

Configuring and Managing WebLogic SIP Server



Prerequisites for Configuring LDAP Digest Authentication

Table 9-1 Digest Identity Asserter Checklist

ltem Description Sample Value
Host The host name of the LDAP server. MyLDAPServer
Port The port number of the LDAP server. Port 389 is used by 389
default.
Principal A Distinguished Name (DN) that WebLogic SIP Server can  cn=ldapadminuser
use to connect to the LDAP Server.
Credential A credential for the above principal name (generally a ldapadminuserpassword
password).
LDAP The configured timeout value for connections to the LDAP 30 seconds
Connection server (in seconds). For best performance, there should be no
Timeout timeout value configured for the LDAP server. If a timeout

value is specified for the LDAP server, you should configure
the Digest Identity Asserter provider timeout to a value equal
to or less than the LDAP server's timeout.

User From Name
Filter

An LDAP search filter that WebLogic SIP Server will use to
locate a given username. If you do not specify a value for this
attribute, the server uses a default search filter based on the
user schema.

(&(cn=%u)(objectclass=pe
rson))

User Base DN The base Distinguished Name (DN) of the tree in the LDAP  cn=users,dc=mycompany,
directory that contains users. dc=com
Credential The credential attribute name used for Digest calculation. hashvalue

Attribute Name

This corresponds to the attribute name used to store
unencrypted passwords or pre-calculated hash values. See
“Configure the LDAP Server or RDBMS” on page 9-8.

Digest Realm The realm name to use for Digest authentication. mycompany.com
Name
Digest Algorithm  The algorithm that clients will use to create encrypted MD5
Digests. WebLogic SIP Server supports both MD5 and
MD5-sess algorithms. MD5 is used by default.
Digest Timeout The Digest authentication timeout setting. By default this 120

value is set to 120 seconds.

Configuring and Managing WebLogic SIP Server 9-7



Configuring Digest Authentication

Steps for Configuring LDAP Digest Authentication

9-8

Follow these steps to configure Digest authentication with WebLogic SIP Server 2.1:
1. “Configure the LDAP Server or RDBMS” on page 9-8.

2. “Reconfigure the DefaultAuthenticator Provider” on page 9-10.

Note: DefaultAuthenticator is set up as a required authentication provider by default. If the
DefaultAuthentication provider, which works against the embedded LDAP store, is
not used for authentication decisions, you must change the Control Flag to
“SUFFICIENT".

3. “Configure an Authenticator Provider” on page 9-10.

4. “Configure a New Digest Identity Asserter Provider” on page 9-11.

The sections that follow describe each step in detail.

Configure the LDAP Server or RDBMS

The LDAP server or RDBMS used for Digest verification must store either unencrypted, clear
text passwords, pre-calculated hash values, or passwords encrypted by a standard encryption
algorithm (3DES_EDE/CBC/PKCS5Padding by default). The sections below provide general
information about setting up your LDAP server or RDBMS to store the required information.
Keep in mind that LDAP server uses different schemas and different administration tools, and
you may need to refer to your LDAP server documentation for information about how to perform
the steps below.

If you are using multiple LDAP servers to enable failover capabilities for the security providers,
you must configure each LDAP server as described below.

Using Unencrypted Passwords

If you are using an RDBMS, or if your LDAP server’s schema allows storing unencrypted
passwords in the user’s password attribute, no additional configuration is needed. The Digest
Identity Asserter provider looks for unencrypted passwords in the password field by default.

If the schema does not allow unencrypted passwords in the password attribute, you have two
options:

e Store the unencrypted password in an existing, unused credential attribute in the LDAP
directory.

Configuring and Managing WebLogic SIP Server



Steps for Configuring LDAP Digest Authentication

e Create a new credential attribute to store the unencrypted password.

See your LDAP server documentation for more information about credential attributes available
in the schema. Regardless of which method you use, record the exact attribute name used to store
unencrypted passwords. You must enter the name of this attribute when configuring the LDAP
Digest Identity Asserter provider.

Using Precalculated Hash Values

If you want to use precalculated hash values, rather than unencrypted passwords, you can store
the hash values in one of two places in your LDAP directory:

e In an existing, unused credential attribute.

e In a new credential attribute that you create for the hash value.

See your LDAP server documentation for more information using or creating new credential
attributes.

For RDBMS stores, you can place the hash values in any column in your schema; you will define
the SQL command used to obtain the hash values when configuring the RDBMS Identity
Assertion Provider.

WebLogic SIP Server provides a simple method call to generate a hash of the Al value from a
given username, realm name, and unencrypted password. The built-in method is available at
com.bea.wcp.sip.util.DigestUtils.getHAl ("username", "realm-name",
"password"), and is packaged in the WwLSS_HOME\telco\lib\wlss.jar file. You can use also
use 3rd-party utilities for generating the hash value, or create your own method using information
from RFC 2617.

Note that you must also create the necessary infrastructure to update the stored hash value
automatically when the user name, password, or realm name values change. Maintaining the
password information in this manner is beyond the scope of this documentation.

Using Reverse-Encrypted Passwords

WebLogic SIP Server provides a utility to help you compute the Encryption Key, Encryption Init
Vector, and Encrypted Passwords values used when you configure the Digest Authorization
Identity Asserter provider. The utility is named
com.bea.wcp.sip.security.utils.JSafeEncryptionServiceImpl andispackagedinthe
wlss.jar file in the wLSS HOME/telco/1ib directory.

To view usage instructions and syntax:

Configuring and Managing WebLogic SIP Server 9-9



Configuring Digest Authentication

9-10

1. Addwlss.jar to your classpath:
set CLASSPATH=%CLASSPATH%;c:\bea\wlss210\telco\lib\wlss.jar
2. Execute the utility without specifying options:

java com.bea.wcp.sip.security.utils.JsafeEncryptionServiceImpl

Reconfigure the DefaultAuthenticator Provider

In most production environments you will use a separate LDAP provider for storing password
information, and therefore the DefaultAuthenticator, which works against the embedded LDAP
store, must not be required for authentication. Follow the instructions in this section to change the
provider’s control flag to “sufficient”.

Note: DefaultAuthenticator is set up as a required authentication provider by default. If the
DefaultAuthentication provider, which works against the embedded LDAP store, is
not used for authentication decisions, you must change the Control Flag to
“SUFFICIENT”.

To reconfigure the DefaultAuthenticator provider:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

3. Select the DefaultAuthenticator node in the left pane.
In the General tab on the right pane, change the Control Flag value to SUFFICIENT.

Click Apply to apply your changes.

A

Reboot the server to realize the changed security configuration.

Configure an Authenticator Provider

In addition to the Digest Identity Asserter providers, which only validate the client digest, you
must configure an “authentication” provider, which checks for a user’s existence and populates
the user’s group information. Follow the instructions in Configuring an LDAP Authentication
Provider in the WebLogic Server 8.1 SP5 documentation set to create an LDAP authentication
provider for your LDAP server. Use the information from Table 9-1, “Digest Identity Asserter
Checklist,” on page 9-7 to configure the provider.

Configuring and Managing WebLogic SIP Server


http://e-docs.bea.com/wls/docs81/secmanage/providers.html#ldap_authentication_provider
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#ldap_authentication_provider

Steps for Configuring LDAP Digest Authentication

If you do not require user existence checking or group population, then, in addition to a Digest
Identity Asserter provider, you can configure and use the special “no-op” authentication provider,
packaged by the name “IdentityAssertionAuthenticator.” This provider is helpful to avoid an
extra round-trip connection to the LDAP server. Note that the provider performs no user
validation and should be used when group information is not required for users.

To configure the “no-op” authorization provider:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

3. Select the Authentication node in the left pane.
Click Configure a new Identity Assertion Authenticator...

Enter a name for the new provider, and set the Control Flag to SUFFICIENT.

SRS

Click Create to create the new provider.

Configure a New Digest Identity Asserter Provider

Follow these instructions in one of the sections below to create the Digest Identity Asserter
provider and associate it with your LDAP server or RDBMS store:

e “Configure an LDAP Digest Identity Asserter Provider” on page 9-11

e “Configure an RDBMS Digest Identity Asserter Provider” on page 9-14

Configure an LDAP Digest Identity Asserter Provider

Follow these instructions to create a new LDAP Digest Identity Asserter Provider:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

3. Select the Authentication node in the left pane.

4. In the right pane of the Console, select Configure a new LDAP Digest Identity Asserter...

Configuring and Managing WebLogic SIP Server 9-11



Configuring Digest Authentication

5. Enter a name for the new provider in the Name field, or accept the default, and click Create.

6. Inthe Active Types Chooser area, select both of the available types
(WWW-Authenticate. DIGEST and Authorization.DIGEST) and use the arrow to move
them to the Chosen column.

7. Click Apply to create the new provider.

8. Select the Details tab in the right pane to further configure the new provider.

9. In the Details tab, enter LDAP server and Digest authentication information into the fields
as follows (use the information from Table 9-1):

User From Name Filter: Enter an LDAP search filter that WebLogic SIP Server will
use to locate a given username. If you do not specify a value for this attribute, the
server uses a default search filter based on the user schema.

User Base DN: Enter the base Distinguished Name (DN) of the tree in the LDAP
directory that contains users.

Credential Attribute Name: Enter the credential attribute in the LDAP directory that
stores either the pre-calculated hash value or the unencrypted password. By default
WebLogic SIP Server uses the password attribute of the user entry. If you use a
pre-calculated has value instead of an unencrypted password, or if the unencrypted
password is stored in a different attribute, you must specify the correct attribute name
here.

Group Attribute Name: Enter the group attribute in the LDAP directory that stores a
the set of group names to which the user belongs.

Password Encryption Type: Select the format in which the password is stored:
PLAINTEXT, PRECALCULATEDHASH, Of REVERSIBLEENCRYPTED.

Encryption Algorithm: If you have stored encrypted passwords, enter the encryption
algorithm that the Digest identity assertion provider will use for reverse encryption.

Encryption Key and Confirm Encryption Key: If you have stored encrypted
passwords, enter the base-64 encrypted key used as part of the reverse encryption
algorithm.

Encryption Init Vector and Confirm Encryption Init Vector: If you have stored
encrypted passwords, enter the base-64 encrypted init vector string used as part of the
reverse encryption algorithm.

Digest Realm Name: Enter the realm name to use for Digest authentication.

9-12 Configuring and Managing WebLogic SIP Server



Steps for Configuring LDAP Digest Authentication

— Digest Algorithm: Select either MD5 or MD5-sess as the algorithm to use for
encrypting Digests.

— Digest Timeout: This value defines the nonce timeout value for the digest challenge. If
the nonce timeout is reached before the client responds, the client is re-challenged with
a new nonce. By default, the Digest Timeout is set to 120 seconds.

— LDAP Connection Pool Size: Enter the number of connections to use for connecting
to the LDAP Server. This value should be equal to or less than the total number of
execute threads configured for WebLogic SIP Server. To view the current number of
configured threads, right-click on the WebLogic SIP Server name in the left pane of the
Administration Console and select View Execute Queues; the SIP Container uses the
Thread Count value of the queue named sip.transport.Default. The default value of
LDAP Connection Pool Size is 10.

Note that stale connections (for example, LDAP connections that are timed out by a
load balancer) are automatically removed from the connection pool.

— Host: Enter the host name of the LDAP server to use for Digest verification. If you are
using multiple LDAP servers for failover capabilities, enter the hostname:port value for
each server separated by spaces. For example: 1dapl .mycompany.com:1050
ldap?2 .mycompany.com: 1050

See Configuring Failover for LDAP Authentication Providers in the WebLogic Server
8.1 SP5 documentation for more information about configuring failover.

— Port: Enter the port number of the LDAP server.

— SSL Enabled: Select this option if you are using SSL to communicate unencrypted
passwords between WebLogic SIP Server and the LDAP Server.

— Principal: Enter the name of a principal that WebLogic SIP Server uses to access the
LDAP server.

— Credential: Enter the credential for the above principal name (generally a password).
— Confirm Credential: Re-enter the principal's credential.

— Cache Enabled: Specifies whether a cache should be used with the associated LDAP
server.

— Cache Size: Specifies the size of the cache, in Kilobytes, used to store results from the
LDAP server. By default the cache size is 32K.

— Cache TTL: Specifies the time-to-live (TTL) value, in seconds, for the LDAP cache.
By default the TTL value is 60 seconds.

Configuring and Managing WebLogic SIP Server 9-13


http://e-docs.bea.com/wls/docs81/secmanage/providers.html#1194983

Configuring Digest Authentication

9-14

— Results Time Limit: Specifies the number of milliseconds to wait for LDAP results
before timing out. Accept the default value of 0 to specify no time limit.

— Connect Timeout: Specifies the number of milliseconds to wait for an LDAP
connection to be established. If the time is exceeded, the connection times out. The
default value of O specifies no timeout value.

— Parallel Connect Delay: Specifies the number of seconds to delay before making
concurrent connections to multiple, configured LDAP servers. If this value is set to 0,
the provider connects to multiple servers in a serial fashion. The provider first tries to
connect to the first configured LDAP server in the Host list. If that connection attempt
fails, the provider tries the next configured server, and so on.

If this value is set to a non-zero value, the provider waits the specified number of
seconds before spawning a new thread for an additional connection attempt. For
example, if the value is set to 2, the provider first tries to connect to the first configured
LDAP server in the Host list. After 2 seconds, if the connection has not yet been
established, the provider spawns a new thread and tries to connect to the second server
configured in the Host list, and so on for each configured LDAP server.

— Connection Retry Limit: Specifies the number of times the provider tries to
reestablish a connection to an LDAP server if the LDAP server throws an exception
while creating a connection.

— Base64 Decoding Required: This field is not applicable to the LDAP Digest Identity
Asserter provider.

10. Click Apply to apply your changes.

11. Reboot the server to realize the changed security configuration.

Configure an RDBMS Digest Identity Asserter Provider

Follow these instructions to create a new RDBMS Digest Identity Asserter Provider:

1.

Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

Select the Authentication node in the left pane.
In the right pane of the Console, select Configure a new DBMS Digest Identity Asserter...

Enter a name for the new provider in the Name field, or accept the default, and click Create.

Configuring and Managing WebLogic SIP Server



Steps for Configuring LDAP Digest Authentication

In the Active Types Chooser area, select both of the available types

(WWW-Authenticate. DIGEST and Authorization.DIGEST) and use the arrow to move
them to the Chosen column.

Click Apply to create the new provider.
Select the Details tab in the right pane to further configure the new provider.

In the Details tab, enter RDBMS server and Digest authentication information into the

fields as follows:

Data Source Name: Enter the name of the JDBC DataSource used to access the
password information.

SQLGet Users Password: Enter the SQL statement used to obtain the password or
hash value from the database. The SQL statement must return a single record result set.

SQLList Member Groups: Enter a SQL statement to obtain the group information
from a specified username. The username is supplied as a variable to the SQL
statement, as in SELECT G_NAME FROM groupmembers WHERE G_MEMBER = 2.

Password Encryption Type: Select the format in which the password is stored:
PLAINTEXT, PRECALCULATEDHASH, Of REVERSIBLEENCRYPTED.

Encryption Algorithm: If you have stored encrypted passwords, enter the encryption
algorithm that the Digest identity assertion provider will use for reverse encryption.

Encryption Key and Confirm Encryption Key: If you have stored encrypted
passwords, enter the base-64 encrypted key used as part of the reverse encryption
algorithm.

Encryption Init Vector and Confirm Encryption Init Vector: If you have stored
encrypted passwords, enter the base-64 encrypted init vector string used as part of the
reverse encryption algorithm.

Digest Realm Name: Enter the realm name to use for Digest authentication.

Digest Algorithm: Select either MD5 or MD5-sess as the algorithm to use for
encrypting Digests.

Digest Timeout: This value defines the nonce timeout value for the digest challenge. If
the nonce timeout is reached before the client responds, the client is re-challenged with
a new nonce. By default, the Digest Timeout is set to 120 seconds.

Base64 Decoding Required: This field is not applicable to the RDBMS Digest Identity
Asserter provider.

10. Click Apply to apply your changes.

Configuring and Managing WebLogic SIP Server 9-15



Configuring Digest Authentication

11. Reboot the server to realize the changed security configuration.

Sample Digest Authentication Configurations

After configuring Digest authentication using the preceding steps, you can verify the
configuration by examining the config.xm1 file for your domain. The sections that follow show
sample excerpts from config.xml.

The Administration Console automatically encrypts credential information stored in
config.xml. If you are editing config.xml manually, you can use the
weblogic.management .EncryptionHelper utility to encrypt the credentials as described in
the WebLogic Server 8.1 documentation.

Oracle Internet Directory Server

Listing 9-1 shows the security provider configuration in config.xml for a domain that uses
LDAP Digest authentication. Note that although the IPlanetAuthenticator provider was selected,
the provider is configured to use an Oracle Internet Directory Server.

Listing 3-1 Sample Security Provider Configuration for Oracle

<weblogic.security.providers.authentication.IPlanetAuthenticator
ControlFlag="SUFFICIENT"
Credential="{3DES}uQtI9MFcc7yR9hqggx39J2g=="
DisplayName="0OIDAuthenticator"
GroupBaseDN="cn=Groups, dc=bea,dc=com" Host="1lcw2kl1l8.bea.com"
Name="Security:Name=myrealmOIDAuthenticator" Port="389"
Principal="cn=orcladmin" Realm="Security:Name=myrealm"
UserBaseDN="cn=users, dc=bea, dc=com"

UserFromNameFilter=" (&amp; (cn=%u) (objectclass=person))"/>
<com.bea.wcp.sip.security.authentication.LdapDigestIdentityAsserter
ActiveTypes="Authorization.DIGEST |WWW-Authenticate.DIGEST"

Credential="{3DES}uQtI9MFcc7yR9hggx39J2g=="

9-16 Configuring and Managing WebLogic SIP Server



http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/EncryptionHelper.html

Sample Digest Authentication Configurations

CredentialAttributeName="middlename"
DigestRealmName="wcp.bea.com" Host="lcw2k1l8.bea.com"
Name="Security:Name=myrealmLdapDigestIdentityAsserter"
Principal="cn=orcladmin" Realm="Security:Name=myrealm"
UserBaseDN="cn=users, dc=bea, dc=com"

UserFromNameFilter=" (&amp; (cn=%u) (objectclass=person))"/>

WebLogic SIP Server Embedded LDAP

You can use WebLogic SIP Server’s embedded LDAP implementation to use Digest
authentication in a test or demo environment. Because you cannot change the schema of the
embedded LDAP store, you must store password information in the existing “description” field.

To use the embedded LDAP store for Digest authentication, follow the instructions in the sections
that follow.

Store User Password Information in the Description Field

To create new users with password information in the existing “description” field:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane of the Console, select the Security->Realms->myrealm->Users node.
3. Click Configure a new User...
4. Enter a name for the new user in the Name field.

5. Enter the Digest password information for the user in the Description field. The password
information can be either the clear-text password, a pre-calculated hash value, or a
reverse-encrypted password.

6. Enter an 8-character password in the Password and Confirm Password fields. You cannot
proceed without adding a standard password entry.

7. Click Apply.

Configuring and Managing WebLogic SIP Server 9-17



Configuring Digest Authentication

9-18

Set the Embedded LDAP Password

Follow these instructions to set the password for the embedded LDAP store to a known password.
You will use this password when configuring the Digest Identity Asserter provider as described
in “Configure an LDAP Digest Identity Asserter Provider” on page 9-11:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane of the Console, select the Security node.

3. In the right pane, select Configuration->Embedded LDAP.

4. Enter the password you would like to use in the Credential and Confirm Credential fields.
5. Click Apply.

6. Reboot the server.

Configure the Digest Identity Asserter Provider

Listing 9-2 shows the security provider configuration in config.xml for a domain that uses
LDAP implementation embedded in WebLogic SIP Server. Note that such a configuration is
recommended only for testing or development purposes. Listing 9-2 highlights values that you
must define when configuring the provider using the instructions in “Configure an LDAP Digest
Identity Asserter Provider” on page 9-11.

Listing 9-2 Sample Security Provider Configuration with Embedded LDAP

<com.bea.wcp.sip.security.authentication.LdapDigestIdentityAsserter
ActiveTypes:"Authorization.DIGEST|WWW—Authenticate.DIGEST"
Credential="{3DES}4490Kgbalpo65cVYXzKhBg=="
CredentialAttributeName="description"
DigestRealmName="wcp.bea.com" Host="myserver.mycompany.com"
Name="Security:Name=myrealmLdapDigestIdentityAsserter"
Port="7001" Principal="cn=Admin"
Realm="Security:Name=myrealm"

UserBaseDN="ou=people, ou=myrealm, dc=mydomain" />

Configuring and Managing WebLogic SIP Server



CHAPTERm

Configuring Client-Cert Authentication

The following sections describe how to configure WebLogic SIP Server to use Client-Cert
authentication:

e “Overview of Client-Cert Authentication” on page 10-1
e “Configuring SSL and X509 for WebLogic SIP Server” on page 10-2
e “Configuring WebLogic SIP Server to Use WL-Proxy-Client-Cert” on page 10-6

e “Supporting Perimeter Authentication with a Custom IA Provider” on page 10-7

Overview of Client-Cert Authentication

Client-Cert authentication uses a certificate or other custom tokens in order to authenticate a user.
The token is “mapped” to a user present in the WebLogic SIP Server security realm in which the
Servlet is deployed. SIP Servlets that want to use Client-Cert authentication must set the
auth-method element to CLIENT-CERT in their sip.xml deployment descriptor.

The token used for Client-Cert authentication can be obtained in several different ways:

e X509 Certificate from SSL—In the most common case, an X509 certificate is derived
from a client token during a two-way SSL handshake between the client and the server.
The SIP Servlet can view the resulting certificate in the
javax.servlet.request.X509Certificate request attribute. This method for
performing Client-Cert authentication is the most common and is described in the SIP
Servlet specification (JSR-116). WebLogic SIP Server provides two security providers that

Configuring and Managing WebLogic SIP Server 10-1



Configuring Client-Cert Authentication

can be used to validate the X509 certificate; see “Configuring SSL and X509 for
WebLogic SIP Server” on page 10-2.

e WL-Proxy-Client-Cert Header—WebLogic SIP Server provides an alternate method for
supplying a Client-Cert token that does not require a two-way SSL handshake between the
client and server. Instead, the SSL handshake can be performed between a client and a
proxy server or load balancer before reaching the destination WebLogic SIP Server. The
proxy generates the resulting X509 certificate chain and encrypts it using base-64
encoding, and finally adds it to a special WL-Proxy-Client-Cert header in the SIP
message. The server hosting the destination SIP Servlet then uses the
WL-Proxy-Client-Cert header to obtain the certificate. The certificate is also made
available by the container to Servlets via the
javax.servlet.request.X509Certificate request attribute.

To use this alternate method of supplying client tokens, you must configure WebLogic SIP
Server to enable use of the WL-Proxy-Client-Cert header; see “Configuring WebLogic
SIP Server to Use WL-Proxy-Client-Cert” on page 10-6. You must also configure an X509
Identity Asserter provider as described in “Configuring SSL and X509 for WebLogic SIP
Server” on page 10-2.

SIP Servlets can also use the CLIENT-CERT auth-method to implement perimeter
authentication. Perimeter authentication uses custom token names and values, along with a
custom security provider, to authenticate clients. See “Supporting Perimeter Authentication with
a Custom IA Provider” on page 10-7 for a summary of steps required to implement perimeter
authentication.

Configuring SSL and X509 for WebLogic SIP Server

10-2

WebLogic SIP Server includes two separate Identity Assertion providers that can be used with
X500 certificates. The LDAP X509 Identity Asserter provider receives an X509 certificate, looks
up the LDAP object for the user associated with that certificate in a separate LDAP store, ensures
that the certificate in the LDAP object matches the presented certificate, and then retrieves the
name of the user from the LDAP object. The Default Identity Asserter provider maps the user
according to its configuration, but does not validate the certificate.

With either provider, WebLogic SIP Server uses two-way SSL to verify the digital certificate
supplied by the client. You must ensure that a SIPS transport (SSL) has been configured in order
to use Client-Cert authentication. See “Managing WebLogic SIP Server Network Resources” on
page 6-1 if you have not yet configured a secure transport.

See “Configuring the Default Identity Asserter” on page 10-3 to configure the Default Identity
Asserter provider. In most production installations you will have a separate LDAP store and will

Configuring and Managing WebLogic SIP Server



Configuring SSL and X509 for WebLogic SIP Server

need to configure the LDAP X509 Identity Asserter provider to use client-cert authentication; see
“Configuring the LDAP X509 Identity Asserter” on page 10-4.

Configuring the Default Identity Asserter

The Default Identity Asserter can be configured to verify an X509 certificate passed to it by a
client over a secure (SSL) connection. The Default Identity Asserter requires a separate user
name mapper to map the associated client “certificate” to a user configured in the default security
realm. You can use the default user name mapper installed with WebLogic SIP Server, or you can
create a custom user name mapper class as described in Configuring a User Name Mapper in the
WebLogic Server 8.1 Documentation.

Follow these instructions to configure the Default Identity Asserter:

1.

Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

Select the Authentication node in the left pane.

In the right pane of the Console, select Defaultldentity Asserter from the table of configured
providers.

In the Types table, select X.509 and use the arrow to move this type to the Chosen column.

Select Base64 Decoding Required if the client token is being passed via two-way SSL or a
WL-Proxy-Client-Cert header.

Click Apply to apply the change.

You can use either a custom Java class to map names in the X509 certificate to usernames
in the built-in LDAP store, or you can use the default user name mapper. To specify a
custom Java class to perform user name mapping:

a. Enter the name of the custom class in the User Name Mapper Class Name field.

b. Click Apply.

To use the default user name mapper:
a. Click the Details tab.

b. Select Use Default User Name Mapper

Configuring and Managing WebLogic SIP Server 10-3


http://e-docs.bea.com/wls/docs81/secmanage/providers.html#user_name_mapper

Configuring Client-Cert Authentication

10-4

c. In the Default User Name Mapper Attribute Type field, select either CN-Common Name
or E-Email Address depending on the user name attribute you have stored in the security
realm.

d. In the Default User Name Mapper Attribute Delimiter field, accept the default delimiter
of “@”. This delimiter is used with the E-Email Address attribute type to extract the email
portion from the client token. For example, a token of “joe @mycompany.com” would be
mapped to a username ““joe” configured in the default security realm.

e. Click Apply.

Configuring the LDAP X509 ldentity Asserter

Follow these steps to create and configure the X509 Authentication Provider.

1.

Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

Select the Authentication node in the left pane.
In the right pane of the Console, select Configure a new LDAP Digest p Asserter...
Enter a name for the new provider in the Name field, or accept the default, and click Create.

In the Active Types Chooser area, select X.509 and use the arrow to move this type to the
Chosen column.

Click Apply to create the new provider.
Select the Details tab in the right pane to further configure the new provider.

In the Details tab, enter LDAP server information into the fields as follows:

— User Field Attributes: Enter an LDAP search filter that WebLogic SIP Server will use
to locate a given username. The filter is applied to LDAP objects beneath the base DN
defined in the Certificate Mapping attribute described below.

— Username Attribute: Enter the LDAP attribute that stores the user’s name.

— Certificate Attribute: Enter the LDAP attribute that stores the certificate for the user
name.

Configuring and Managing WebLogic SIP Server



Configuring SSL and X509 for WebLogic SIP Server

Certificate Mapping: Specify how a query string to construct the base LDAP DN used
to locate the LDAP object for the user.

Base64 Decoding Required: Select this field if the client token is being passed via
two-way SSL or a WL-Proxy-Client-Cert header.

Host: Enter the host name of the LDAP server to verify the incoming certificate. If you
are using multiple LDAP servers for failover capabilities, enter the hostname:port value
for each server separated by spaces. For example: 1dapl . mycompany . com:1050
ldap2 .mycompany.com: 1050

See Configuring Failover for LDAP Authentication Providers in the WebLogic Server
8.1 SP5 documentation for more information about configuring failover.

Port: Enter the port number of the LDAP server.

SSL Enabled: Select this option if you are using SSL to communicate unencrypted
passwords between WebLogic SIP Server and the LDAP Server.

Principal: Enter the name of a principal that WebLogic SIP Server uses to access the
LDAP server.

Credential: Enter the credential for the above principal name (generally a password).
Confirm Credential: Re-enter the principal's credential.

Cache Enabled: Specifies whether a cache should be used with the associated LDAP
server.

Cache Size: Specifies the size of the cache, in Kilobytes, used to store results from the
LDAP server. By default the cache size is 32K.

Cache TTL: Specifies the time-to-live (TTL) value, in seconds, for the LDAP cache.
By default the TTL value is 60 seconds.

Follow Referrals: Select this to specify that a search for a user or group within the
LDAP X509 Identity Assertion provider should follow referrals to other LDAP servers
or branches within the LDAP directory.

Bind Anonymously On Referrals: By default, the LDAP X509 Identity Assertion
provider uses the same DN and password used to connect to the LDAP server when
following referrals during a search. If you want to connect as an anonymous user,
check this box.

Results Time Limit: Specifies the number of milliseconds to wait for LDAP results
before timing out. Accept the default value of 0 to specify no time limit.

Configuring and Managing WebLogic SIP Server 10-5


http://e-docs.bea.com/wls/docs81/secmanage/providers.html#1194983

Configuring Client-Cert Authentication

— Connect Timeout: Specifies the number of milliseconds to wait for an LDAP
connection to be established. If the time is exceeded, the connection times out. The
default value of 0 specifies no timeout value.

— Parallel Connect Delay: Specifies the number of seconds to delay before making
concurrent connections to multiple, configured LDAP servers. If this value is set to 0,
the provider connects to multiple servers in a serial fashion. The provider first tries to
connect to the first configured LDAP server in the Host list. If that connection attempt
fails, the provider tries the next configured server, and so on.

If this value is set to a non-zero value, the provider waits the specified number of
seconds before spawning a new thread for an additional connection attempt. For
example, if the value is set to 2, the provider first tries to connect to the first configured
LDAP server in the Host list. After 2 seconds, if the connection has not yet been
established, the provider spawns a new thread and tries to connect to the second server
configured in the Host list, and so on for each configured LDAP server.

— Connection Retry Limit: Specifies the number of times the provider tries to
reestablish a connection to an LDAP server if the LDAP server throws an exception
while creating a connection.

10. Click Apply to apply your changes.

11. Reboot the server to realize the changed security configuration.

Configuring WebLogic SIP Server to Use WL-Proxy-Client-Cert

10-6

In order for WebLogic SIP Server to use the WL-Proxy-Client-Cert header, a proxy server or
load balancer must first transmit the X509 certificate for a client request, encrypt it using base-64
encoding, and then add the resulting token WL-Proxy-Client-Cert header in the SIP message.
If your system is configured in this way, you can enable the local WebLogic SIP Server instance
(or individual SIP Servlet instances) to examine the WL-Proxy-Client-Cert header for client
tokens.

To configure the server instance to use the WL-Proxy-Client-Cert header:

1. Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

2. In the left pane, expand the Servers node and select a server to configure. (Alternately,
expand the Clusters node and select a cluster name to configure WL-Proxy-Client-Cert
use for the entire cluster.)

3. Select the Configuration->General tab in the right pane.

Configuring and Managing WebLogic SIP Server



Supporting Perimeter Authentication with a Custom [A Provider

4. Select Client Cert Proxy Enabled.
5. Click Apply to apply your changes.

6. Follow the instructions under “Configuring SSL and X509 for WebLogic SIP Server” on
page 10-2 to configure either the default identity asserter or the LDAP Identity Asserter
provider to manage X509 certificates. Select the Base64 Decoding Required option to
decode the token passed in the WL-Proxy-Client-Cert header.

7. Reboot the server to realize the changed configuration.

To enable WL-Proxy-Client-Cert header for an individual Web Application, set the
com.bea.wcp.clientCertProxyEnabled context parameter to true in the sip.xml
deployment descriptor.

Supporting Perimeter Authentication with a Custom IA Provider

With perimeter authentication, a system outside of WebLogic Server establishes trust via tokens.
The system is generally comprised of an authentication agent that creates an artifact or token that
must be presented to determine information about the authenticated user at a later time. The actual
format of the token varies from vendor to vendor (for example, SAML or SPNEGO).

WebLogic SIP Server supports perimeter authentication through the use of an Identity Assertion
provider designed to recognize one or more token formats. When the authentication type of a SIP
Servlet is set to CLIENT-CERT, the SIP container in WebLogic SIP Server performs identity
assertion on values from the request headers. If the header name matches the active token type
for a configured provider, the value is passed to the provider for identity assertion.

The provider can then use a user name mapper to resolve the certificate to a user available in the
security realm. The user corresponding to the Subject's Distinguished Name (SubjectDN)
attribute in the client's digital certificate must be defined in the server's security realm; otherwise
the client will not be allowed to access a protected WebLogic resource.

If you want to use custom tokens to pass client certificates for perimeter authentication, you must
create and configure a custom Identity Assertion provider in place of the LDAP X509 or Default
Identity Asserter providers described above. See Identity Assertion Providers in Developing
Security Providers for WebLogic Server (WebLogic Server 8.1 Documentation) for information
about creating providers for handling tokens passed with perimeter authentication.

Configuring and Managing WebLogic SIP Server 10-7


http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html

Configuring Client-Cert Authentication

10-8 Configuring and Managing WebLogic SIP Server



CHAPTERa

Configuring P-Asserted-ldentity
Assertion

The following sections describe how the P-Asserted-Identity and privacy headers affect
forwarding to trusted and non-trusted hosts, and how to configure a WebLogic SIP Server
P-Asserted-Identity Asserter provider:

e “Understanding Trusted Host Forwarding with P-Asserted-Identity” on page 11-1
e “Overview Strict and Non-Strict P-Asserted-Identity Asserter Providers” on page 11-2

e “Configuring a P-Asserted-Identity Assertion Provider” on page 11-3

Understanding Trusted Host Forwarding with
P-Asserted-ldentity

WebLogic SIP Server supports the P-Asserted-Identity SIP header as described in
RFC3325. To enable use of this header, you must configure one of two available P-Asserted
Identity Assertion provider as described in “Configuring a P-Asserted-Identity Assertion
Provider” on page 11-3.

When WebLogic SIP Server receives a message having the P-Asserted-Identity header from
a trusted host configured with the provider, it logs in the user specified in the header to determine
group membership and other privileges.

The presence of a P-Asserted-Identity header combined with the pPrivacy header also
determines whether WebLogic SIP Server forwards a given message to trusted and non-trusted
hosts. Figure 11-1 summarizes the forwarding restrictions with P-Asserted-Identity.

Configuring and Managing WebLogic SIP Server 111



Configuring P-Asserted-ldentity Assertion

Figure 11-1 Forwarding Restrictions with P-Asserted-Identity and Privacy Headers

Is the Privacy
Header Set to
laT?

|2 the Destination

Trusted? No

Yes

Was the
P-Assered-
Identity Header
Added Locally?

Block the
—- |

Yes Yes

Forward the -
Header

Overview Strict and Non-Strict P-Asserted-ldentity Asserter
Providers

If the contents of a P-Asserted-Identity header are invalid, or if the header is received from a
non-trusted host, then the security provider returns an “anonymous” user to the SIP Servlet
container. If you configured the PAsserted Identity Strict Asserter provider, an exception is
also thrown so that you can audit the substitution of the anonymous user. (If you configured the
basic PAsserted Identity Asserter provider, no exception is thrown.)

With either provider, if the requested resource is protected, the SIP container then uses the
authentication method defined in the auth-type element in the Servlet’s sip.xml deployment
descriptor to authorize the request. (For example, digest authentication may be used if the Servlet
specifies the digest authentication method.)

11-2 Configuring and Managing WebLogic SIP Server



Configuring a P-Asserted-ldentity Assertion Provider

If the requested resource is not protected, the anonymous user is simply passed to the SIP Servlet
without authorization.

Configuring a P-Asserted-ldentity Assertion Provider

Follow these steps to configure a security provider used to support the P-Asserted-Identity
header. Note that one of two providers can be selected, as described in “Overview Strict and
Non-Strict P-Asserted-Identity Asserter Providers” on page 11-2:

1.

Log in to the Administration Console for the WebLogic SIP Server domain you want to
configure.

In the left pane of the Console, expand the
Security->Realms->myrealm->Providers->Authentication node.

Select the Authentication node in the left pane.

In the right pane of the Console, select one of the following options:

— Configure a new PAsserted Identity Asserter...—Select this option to configure a
provider that does not throw an exception when the P-Asserted-Identity header is
invalid or is received from a non-trusted host and an anonymous user is substituted.

— Configure a new PAsserted Identity Strict Asserter...—Select this option to configure a
provider that throws an exception when the P-Asserted-Identity header is invalid
or is received from a non-trusted host and an anonymous user is substituted.

See “Overview Strict and Non-Strict P-Asserted-Identity Asserter Providers” on page 11-2
for more information.

Enter a name for the new provider and click Create.
Select the Details tab to display the new provider’s configuration.

Fill in the fields of the Details tab as follows:

— Trusted Hosts: Enter one or more host names that the provider will treat as trusted
hosts. Note that the provider does not use trusted hosts configured in the
sipserver.xml file (*sip-security” on page D-17.)

— User Name Mapper Class Name: Enter the name of a custom Java class used to map
user names in the P-Asserted-Identity header to user names in the default security
realm. Or, leave this field blank to use the default user name mapper. See Configuring
a User Name Mapper in the WebLogic Server 8.1 Documentation for more
information.

Configuring and Managing WebLogic SIP Server 11-3


http://e-docs.bea.com/wls/docs81/secmanage/providers.html#user_name_mapper
http://e-docs.bea.com/wls/docs81/secmanage/providers.html#user_name_mapper

Configuring P-Asserted-ldentity Assertion

— Base64Decoding Required: This field is not used by the provider.
8. Click Apply.

11-4 Configuring and Managing WebLogic SIP Server



cHAPTERﬂ

Logging SIP Requests and Responses

The following sections describe how to configure and manage logging for SIP requests and
responses:

“Overview of SIP Logging” on page 12-1

“Using the Template Logging Servlet” on page 12-2

“Defining Logging Servlets in sip.xml” on page 12-4
“Configuring the Logging Level and Destination” on page 12-5
“Specifying the Criteria for Logging Messages” on page 12-6
“Managing Logging Performance” on page 12-10

“Enabling Log Rotation and Viewing Log Files” on page 12-11
“trace-pattern.dtd Reference” on page 12-11

“Adding Tracing Functionality to SIP Servlet Code” on page 12-15

Overview of SIP Logging

WebLogic SIP Server enables you to perform Protocol Data Unit (PDU) logging for the SIP
requests and responses it processes. Logged SIP messages are placed either in the domain-wide
log file for WebLogic SIP Server, or in the log files for individual Managed Server instances.
Because SIP messages share the same log files as WebLogic SIP Server instances, you can use

Configuring and Managing WebLogic SIP Server 121



Logging SIP Requests and Responses

advanced server logging features such as log rotation, domain log filtering, and maximum log
size configuration when managing logged SIP messages.

Administrators configure SIP PDU logging by defining one or more SIP Servlets using the
com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl class that is
available in the template sipserver-tracing.war application. Logging criteria are then
configured either as parameters to the defined servlet, or in separate XML files packaged with the
application.

As SIP requests are processed or SIP responses generated, the logging Servlet compares the
message with the filtering patterns defined in a standalone XML configuration file or Servlet
parameter. SIP requests and responses that match the specified pattern are written to the log file
along with the name of the logging servlet, the configured logging level, and other details. To
avoid unnecessary pattern matching, the Servlet marks new SIP Sessions when an initial pattern
is matched and then logs subsequent requests and responses for that session automatically.

WebLogic SIP Server includes a template Web Application, sipserver-tracing.war, that
defines several SIP logging Servlets. You can use the Servlets that are predefined in this
application, or you can copy the Servlet implementation class into your own applications and
define logging Servlets as needed. See “Using the Template Logging Servlet” on page 12-2.
Logging criteria are defined either directly in sip.xml as parameters to a logging Servlet, or in
external XML configuration files. See “Specifying the Criteria for Logging Messages” on

page 12-6.

Note: Engineers can implement PDU logging functionality in their Servlets either by creating
a delegate with the TraceMessageListenerFactory in the Servlet’s init () method,
or by using the tracing class in deployed Java applications. Using the delegate enables
you to perform custom logging or manipulate incoming SIP messages using the default
trace message listener implementation. See “Adding Tracing Functionality to SIP Servlet
Code” on page 12-15 for an example of using the factory in a Servlet’s init () method.

Using the Template Logging Servlet

12-2

The template logging application, sipserver-tracing.war, contains a logging Servlet
implementation that you can customize to perform logging in a WebLogic SIP Server domain.
You can either use sipserver-tracing.war as a standalone application that you configure and
deploy along with other applications on your system, or you can incorporate the Servlet
implementation class from sipserver-tracing.war directly into other applications to provide
tracing functionality. The following sections describe each approach.

Configuring and Managing WebLogic SIP Server



Using the Template Logging Servlet

Deploying the Template Logging Application

Notes: The default SIP Logging Application is not deployed to new domains by default. Follow

the instructions below to deploy the application.

If you want to create and deploy logging Servlets in your own applications (instead of
using the template Web Application described below), you must package the
sipserver-tracing.jar library from the template in your Web Application. The
library is not deployed by default with the sipserver implementation application.

The default SIP Logging Servlets are included in a Web Application,
WL_HOME/telco/lib/sipserver-tracing.war. To deploy this application

1.

Create a new directory from which to deploy the logging application. For example:
cd c:\bea\user_projects\domains\mydomain

mkdir sipserver-tracing

Change to the newly-created application directory:

cd sipserver-tracing

Extract the logging application into the new application directory:

jar xvf c:\bea\wlss210\telco\lib\sipserver-tracing.war

The logging Servlets are activated by deploying the sipserver-tracing application.
Deploy the new application using either the Administration Console or the
weblogic.Deployer utility. For example:

java weblogic.Deployer -adminurl t3://localhost:7001 -user weblogic
-password weblogic deploy -nostage -source
c:\bea\user_projects\domains\mydomain\sipserver-tracing

Deploying the unmodified application enables the template logging Servlets with default
pattern matching configuration. See “Defining Logging Servlets in sip.xml” on page 12-4
and “Specifying the Criteria for Logging Messages” on page 12-6 for information about
customizing the template application to perform logging for your system.

Using the Logging Servlet Implementation in Other
Applications

Follow these steps to add logging capabilities to an existing application:

1.

Create a temporary directory into which you will extract the template logging application:

Configuring and Managing WebLogic SIP Server 12-3



Logging SIP Requests and Responses

mkdir c:\tracing-tmp

Change to the newly-created application directory:

cd c:\tracing-tmp

Extract the template logging application into the new application directory:
jar xvf c:\bea\wlss210\telco\lib\sipserver-tracing.war

Copy the sipserver-tracing.jar library from the temporary directory into the
WEB-INF/1ib directory of your own application. For example:

cp WEB-INF\lib\sipserver-tracing.jar
c:\bea\user_projects\mydomain\myapplication\WEB-INF\1lib

See “Defining Logging Servlets in sip.xml” on page 12-4 to define a new logging Servlet in
your existing application. Then read “Specifying the Criteria for Logging Messages” on
page 12-6 to customizing the logging performed by the Servlet.

Defining Logging Servlets in sip.xml

12-4

Logging Servlets for SIP messages are created by defining Servlets having the implementation
class com.bea.wcp.sip.engine.tracing.listener.TraceMessagelListenerImpl. The
sipserver-tracing template application defines two logging servlets in its sip.xml
deployment descriptor, msgTraceLogger and invTraceLogger. The definition for
msgTraceLogger is shown in Listing 12-1.

Listing 12-1 Template Logging Servlets

<servlet>

<servlet-name>msgTracelLogger</servlet-name>

<servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessagelLis

tenerImpl</servlet-class>

<init-param>
<param-name>domain</param-name>
<param-value>true</param-value>
</init-param>

<init-param>

Configuring and Managing WebLogic SIP Server



Configuring the Logging Level and Destination

<param-name>level</param-name>
<param-value>full</param-value>
</init-param>
<load-on-startup/>

</servlet>

You can either maintain all of your logging Servlets within the template application, or you can
add logging Servlets to your own SIP applications by defining Servlets that use the
com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl
implementation class. See “Using the Template Logging Servlet” on page 12-2.

Configuring the Logging Level and Destination

Logging attributes such as the level of logging detail and the destination log file for SIP messages
are passed as initialization parameters to the logging Servlet. Table 12-1 lists the parameters and
parameter values that you can specify as init-param entries. Listing 12-1, “Template Logging
Servlets,” on page 12-4 shows the sample init-param entries for a Servlet that logs full SIP
message information to the domain log file.

Configuring and Managing WebLogic SIP Server 12-5



Logging SIP Requests and Responses

Table 12-1 Logging Level and Destination Parameters

param-name Entry Possible param-value Description
Entries
domain true, false The domain parameter determines if

whether or not matching SIP messages are
logged to the domain log file. If set to true,
SIP Messages are logged to the domain log
file as well as the local server log file. The
default location of the domain log file is in a
file named wl-domain. log in the domain
directory.

If set to false, WebLogic SIP Server logs SIP
messages only to the Managed Server’s local
log file.

level terse, basic, full The level parameter determines the
amount of information logged for each
matching SIP message:

* terse—Logs only domain setting,
logging Servlet name, logging level,
and whether or not the message is an
incoming message.

* basic—Logs the terse items plus the
SIP message status, reason phrase, the
type of response or request, the SIP
method, the From header, and the To
header.

e full—Logs the basic items plus all
SIP message headers plus the timestamp,
protocol, request URI, request type,
response type, content type, and raw
content.

Specifying the Criteria for Logging Messages

The criteria for selecting SIP messages to log can be defined either in XML files that are packaged
with the logging Servlet’s application, or as initialization parameters in the Servlet’s sip.xml
deployment descriptor. The sections that follow describe each method.

12-6 Configuring and Managing WebLogic SIP Server



Specifying the Criteria for Logging Messages

Using XML Documents to Specify Logging Criteria

If you do not specify logging criteria as an initialization parameter to the logging Servlet, the
Servlet looks for logging criteria in a pair of XML descriptor files in the top level of the logging
application. These descriptor files, named request-pattern.xml and
response-pattern.xml, define patterns that WebLogic SIP Server uses for selecting SIP
requests and responses to place in the log file.

Note: By default WebLogic SIP Server logs both requests and responses. If you do not want to
log responses, you must define a response-pattern.xml file with empty matching
criteria.

A typical pattern definition defines a condition for matching a particular value in a SIP message
headmﬁForexanqﬂeﬁhesanqﬂeresponse—pattern.xmlLmedbythemngraceLoggerSendet
matches all MESSAGE requests. The contents of this descriptor are shown in

Listing 12-2 Sample response-pattern.xml for msgTracelLogger Serviet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pattern
PUBLIC "Registration//Organization//Type Label//Definition Language"
"trace-pattern.dtd">
<pattern>
<equal>
<var>response.method</var>
<value>MESSAGE</value>
</equal>
</pattern>

Additional operators and conditions for matching SIP messages are described in
“trace-pattern.dtd Reference” on page 12-11. Most conditions, such as the equal condition
shown in Listing 12-2, require a variable (var element) that identifies the portion of the SIP
message to evaluate. Table 12-2 lists some common variables and sample values. For additional
variable names and examples, see Chapter 11: Mapping Requests to Servlets in the SIP Serviet
API 1.0 specification; WebLogic SIP Server enables mapping of both request and response
variables to logging Servlets.

Configuring and Managing WebLogic SIP Server 12-1



Logging SIP Requests and Responses

Table 12-2 Pattern-matching Variables and Sample Values

Variahle Sample Values

request.method, MESSAGE, INVITE, ACK, BYE, CANCEL
response.method

request.uri.user, guest, admin, joe
response.uri.user

request.to.host, server.mydomain.com
response.to.host

Both request-pattern.xml and response-pattern.xml use the same Document Type
Definition (DTD). See “trace-pattern.dtd Reference” on page 12-11 for more information.

Using Servlet Parameters to Specify Logging Criteria

Pattern-matching criteria can also be specified as initialization parameters to the logging Servlet,
rather than as separate XML documents. The parameter names used to specify matching criteria
are request-pattern-string and response-pattern-string. They are defined along with
the logging level and destination as described in “Configuring the Logging Level and
Destination” on page 12-5.

The value of each pattern-matching parameter must consist of a valid XML document that
adheres to the DTD for standalone pattern definition documents (see “Using XML Documents to
Specify Logging Criteria” on page 12-7). Because the XML documents that define the patterns
and values must not be parsed as part of the sip.xml descriptor, you must enclose the contents
within the cDATA tag. Listing 12-3 shows the full sip.xml entry for the sample logging Servlet,
invTraceLogger. The final two init-param elements specify that the Servlet log only INVITE
request methods and OPTIONS response methods.

Listing 12-3 Logging Criteria Specified as init-param Elements

<servlet>
<servlet-name>invTracelLogger</servlet-name>

<servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessagel

istenerImpl</servlet-class>

12-8 Configuring and Managing WebLogic SIP Server



Specifying the Criteria for Logging Messages

<init-param>
<param-name>domain</param-name>
<param-value>true</param-value>
</init-param>
<init-param>
<param-name>level</param-name>
<param-value>full</param-value>
</init-param>
<init-param>
<param-name>request-pattern-string</param-name>
<param-value>
<! [CDATA[
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE pattern

PUBLIC "Registration//Organization//Type Label//Definition

Language"
"trace-pattern.dtd">
<pattern>
<equal>
<var>request .method</var>
<value>INVITE</value>
</equal>
</pattern>
11>
</param-value>
</init-param>
<init-param>

<param-name>response-pattern-string</param-name>

Configuring and Managing WebLogic SIP Server

12-9



Logging SIP Requests and Responses

<param-value>
<! [CDATA[
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pattern

PUBLIC "Registration//Organization//Type Label//Definition

Language"
"trace-pattern.dtd">
<pattern>
<equal>
<var>response.method</var>
<value>OPTIONS</value>
</equal>
</pattern>
11>
</param-value>
</init-param>
<load-on-startup/>

</servlet>

Managing Logging Performance

The SIP message logging implementation uses the threads in two execute queues,
sip.tracing.local and sip.tracing.domain, to write log messages to the server and
domain log files, respectively. By default each queue is configured with only a single thread. If
the volume of log messages exceeds the capacity of either of these queues, log messages are
dropped and a notification of drop messages is written to the file. Normal logging continues when
the volume of logged messages can be handled by the available threads.

If the number of dropped message notifications is unacceptable, follow these instructions to
increase the number of threads available in the queue:

1. Access the Administration Console for the WebLogic SIP Server domain.

12-10 Configuring and Managing WebLogic SIP Server



6.
7.

Enabling Log Rotation and Viewing Log Files

Expand the Servers node in the left pane of the Administration Console.

Right-click the name of the server that contains the execute queue you want to configure,
and select View Execute Queues. (If you want to configure the queue used for writing to the
domain log file, right-click any available server.)

In the right pane of the console, click either sip.tracing.local or
sip.tracing.domain to configure the queue.

Edit the Thread Count value to change the number of threads allocated to the pool, or
change any other Execute Queue properties to improve performance as needed.

Click Apply to apply your changes.

Reboot the WebLogic SIP Server instance to realize the change.

Enabling Log Rotation and Viewing Log Files

The WebLogic SIP Server logging infrastructure enables you to automatically write to a new log
file when the existing log file reaches a specified size. You can also view log contents using the
Administration Console or configure additional server-level events that are written to the log. See
Server Log in the WebLogic Server 8.1 documentation for more information about basic log

management.

trace-pattern.dtd Reference

trace-pattern.dtd defines the required contents of the request-pattern.xml and
response-pattern.xml, documents, as well as the values for the request-pattern-string

and response-pattern-string Servlet init-param variables

Listing 12-4 trace-pattern.dtd

<l--

The different types of conditions supported.

-—>

<!ENTITY % condition "and | or | not |

e

equal | contains | exists | subdomain-of">

Configuring and Managing WebLogic SIP Server 12-11


http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html
http://e-docs.bea.com/wls/docs81/index.html

Logging SIP Requests and Responses

<!--

A pattern is a condition: a predicate over the set of SIP requests.

-——>

<!ELEMENT pattern (%condition;)>

<!--

An "and" condition is true if and only if all its constituent conditions

are true.

-——>

<!ELEMENT and (%condition;)+>

<!--

An "or" condition is true if at least one of its constituent conditions

is true.

-——>

<!ELEMENT or (%condition;)+>

<!--

Negates the value of the contained condition.

-——>

<!ELEMENT not (%condition;)>

12-12 Configuring and Managing WebLogic SIP Server



trace-pattern.dtd Reference

<!--

True if the value of the variable equals the specified literal wvalue.

-——>

<!ELEMENT equal (var, value)>
<!--
True if the value of the variable contains the specified literal value.

-——>

<!ELEMENT contains (var, value)>

<!--

True if the specified variable exists.

-——>

<!ELEMENT exists (var)>

<!--

<!ELEMENT subdomain-of (var, value)>

<!--
Specifies a variable. Example:
<var>request.uri.user</var>

-——>

Configuring and Managing WebLogic SIP Server 12-13



Logging SIP Requests and Responses

<!ELEMENT

<!--

Specifies

-——>

<!ELEMENT

<!--

Specifies

-——>

<!ATTLIST

<!--

Specifies

-——>

<!ATTLIST

<!--

var (#PCDATA)>

a literal string value that is used to specify rules.

value (#PCDATA)>

whether the "equal" test is case sensitive or not.

equal ignore-case (true|false) "false">

whether the "contains" test is case sensitive or not.

contains ignore-case (true|false) "false">

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor. This allows

tools that produce additional deployment information (i.e information

beyond the standard deployment descriptor information) to store the

non-standard information in a separate file, and easily refer from

12-14 Configuring and Managing WebLogic SIP Server



Adding Tracing Functionality to SIP Servlet Code

these tools-specific files to the information in the standard sip-app
deployment descriptor.

-——>

<!ATTLIST pattern id ID #IMPLIED>
<!ATTLIST and id ID #IMPLIED>
<!ATTLIST or id ID #IMPLIED>

<!ATTLIST not id ID #IMPLIED>
<!ATTLIST equal id ID #IMPLIED>
<!ATTLIST contains id ID #IMPLIED>
<!ATTLIST exists id ID #IMPLIED>
<!ATTLIST subdomain-of id ID #IMPLIED>
<!ATTLIST var id ID #IMPLIED>

<!ATTLIST value id ID #IMPLIED>

Adding Tracing Functionality to SIP Servlet Code

Tracing functionality can be added to your own Servlets or to Java code by using the
TraceMessageListenerFactory. TraceMessageListenerFactory enables clients to reuse
the default trace message listener implementation behaviors by creating an instances and then
delegating to it. The factory implementation instance can be found in the servlet context for SIP
Servlets by looking up the value of the
TraceMessagelistenerFactory.TRACE_MESSAGE_LISTENER_FACTORY attribute.

Note: Instances created by the factory are not registered with WebLogic SIP Server to receive
callbacks upon SIP message arrival and departure.

To implement tracing in a Servlet, you use the factory class to create delegate in the Servlet’s
init () method as shown in Listing 12-5.

Listing 12-5 Using the TraceMessageListenerFactory

public void init() throws ServletException {

Configuring and Managing WebLogic SIP Server 12-15



Logging SIP Requests and Responses

ServletContext sc = (ServletContext) getServletContext() ;

TraceMessagelListenerFactory factory = (TraceMessagelListenerFactory)
sc.getAttribute (TraceMessagelListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY

)i

delegate = factory.createTraceMessageListener (getServletConfig()) ;

12-16 Configuring and Managing WebLogic SIP Server



Configuring SNMP

The following sections describe how to configure and manage SNMP services with WebLogic
SIP Server 2.1:

e “Overview of WebLogic SIP Server SNMP” on page 13-1

e “Browsing the MIB” on page 13-2

e “Configuring SNMP” on page 13-2

e “SNMP Port Binding for WebLogic SIP Server” on page 13-2

e “Understanding and Responding to SNMP Traps” on page 13-3

Overview of WebLogic SIP Server SNMP

WebLogic SIP Server includes a dedicated SNMP MIB to monitor activity on engine tier and data
tier server instances. The WebLogic SIP Server MIB adds several traps and attributes in addition
to those provided by the WebLogic Server 8.1 MIB. Engine and data tier traps are generated
directly by the Managed Server instances that make up each tier.

The Administration Server may also generate traps on behalf of the WebLogic SIP Server domain
as a whole, for example when a server in a cluster fails. WebLogic SIP Server MIB entries can
also be monitored directly from the Administration Server of a domain.

Note: WebLogic SIP Server MIB objects are read-only. You cannot modify a WebLogic SIP
Server configuration using SNMP.

Configuring and Managing WebLogic SIP Server 13-1



Configuring SNMP

Browsing the MIB

You can use either of the following methods to browse the contents of the WebLogic SIP Server
MIB:

e Use a MIB browser. WebLogic SIP Server does not provide a MIB browser, but most
vendors of SNMP utilities do. The MIB is located in a file named
WLSS_HOME/telco/1lib/BEA-WLSS-MIB.asnl.

e Use a Web browser to view the WebLogic SIP Server SNMP MIB Reference on the BEA
e-docs Web site.

Because the MIB Reference uses Javascript and DHTML to provide browsing capabilities
that are similar to a MIB browser, you must use one of the following Web browsers:

Firefox

Internet Explorer, version 5 or higher

Mozilla

Netscape Navigator, version 6 or higher

Opera 7 or higher

Configuring SNMP

To enable SNMP monitoring for the entire WebLogic SIP Server domain, follow these steps:
1. Login to the Administration Console for the WebLogic SIP Server domain.
2. In the left pane, select the Services->SNMP node.

3. Select the Enabled check box to enable SNMP.

Note: WebLogic SIP Server instances ignore the SNMP port number specified on this page.
See “SNMP Port Binding for WebLogic SIP Server” on page 13-2.

4. Click Apply to apply your changes.

SNMP Port Binding for WebLogic SIP Server

If you run multiple Managed Server instances on the same machine, each server instance would
normally attempt to bind to the same configured SNMP port (for example, port 161). WebLogic
SIP Server instances automatically manage SNMP port conflicts by automatically attempting to
bind to port 1610, and incrementing the port number as needed if the current port is unavailable.

13-2 Configuring and Managing WebLogic SIP Server


{DOCROOT}/snmp/index.html

Understanding and Responding to SNMP Traps

This helps to avoid a SNMP startup failure when multiple WebLogic SIP Server instances are
deployed on the same server hardware.

You can also manually override the starting port number that WebLogic SIP Server attempts to

bind to by supplying the -DWLSS . SNMPPort=port_number startup argument.

Warning: If you specify the -DWLSS . SNMPPort option, ensure that the starting port number
and subsequent numbers are unused on your system. The default starting port of
1610 was selected because no services are commonly bound to the 1610 port range.

Understanding and Responding to SNMP Traps

The following sections describe the WebLogic SIP Server SNMP traps in more detail. Recovery
procedures for responding to individual traps are also included where applicable.

Files for Troubleshooting

The following WebLogic SIP Server log and configuration files are frequently helpful for
troubleshooting problems, and may be required by your technical support contact:

® SDOMAIN DIR/config.xml

® SDOMAIN_DIR/sipserver/config/sipserver.xml

SDOMAIN DIR/*.log (domain log file)

SDOMAIN DIR/servername/*.log (server and access logs)
® sip.xml (in the /WEB-INF subdirectory of the application)
® web.xml (in the /WEB-INF subdirectory of the application)

General information that can help the technical support team includes:

e The specific versions of:
— WebLogic SIP Server
— Java SDK
— Operating System
e Thread dumps for hung WebLogic SIP Server processes

e Network analyzer logs

Configuring and Managing WebLogic SIP Server 13-3



Configuring SNMP

13-4

Trap Descriptions

The following sections provide detailed information about the following WebLogic SIP Server
SNMP traps:

e “sipAppDeployed” on page 13-4

e “sipAppUndeployed” on page 13-4

e “sipAppFailedToDeploy” on page 13-5

e “overloadControlActivated, overloadControlDeactivated” on page 13-5
e “licenseLimitExceeded” on page 13-6

e “serverStopped” on page 13-8

e “dataTierServerStopped” on page 13-9

e “replicaAddedToPartition” on page 13-10

e “replicaRemovedFromPartition” on page 13-10

e “connectionLostToPeer” on page 13-10

e “connectionReestablishedToPeer” on page 13-11
sipAppDeployed

Description

WebLogic SIP Server generates this alarm when a SIP Servlet is deployed to the container.

Recovery Procedure

This trap is generated during normal deployment operations and does not indicate an exception.

sipAppUndeployed

Description

WebLogic SIP Server generates this alarm when a SIP application shuts down, or if a SIP
application is undeployed. This generally occurs when WebLogic SIP Server is shutdown while
active requests still exist.

Configuring and Managing WebLogic SIP Server



Understanding and Responding to SNMP Traps

Recovery Procedure

During normal shutdown procedures this alarm should be filtered out and should not reach
operations. If the alarm occurs during the course of normal operations, it indicates that someone
has shutdown the application or server unexpectedly, or there is a problem with the application.
Notify Tier 4 support immediately.

sipAppFailedToDeploy

Description

WebLogic SIP Server generates this trap when an application deploys successfully as a Web
Application but fails to deploy as a SIP application.

Recovery Procedure

The typical failure is caused by an invalid sip.xml configuration file and should occur only
during software installation or upgrade procedures. When it occurs, undeploy the application,
validate the sip.xml file, and retry the deployment.

Note: This alarm should never occur during normal operations. If it does, contact Tier 4 support
immediately.

overloadControlActivated, overloadControlDeactivated

Description

Weblogic SIP Server uses a configurable throttling mechanism that helps you control the number
of new SIP requests that are processed. After a configured overload condition is observed,
WebLogic SIP Server destroys new SIP requests by responding with “503 Service Unavailable”
to the caller. The server continues to destroy new requests until the overload condition is resolved
according to a configured threshold control value. This alarm is generated when the throttling
mechanism is activated. The throttling behavior should eventually return the server to a
non-overloaded state, and further action may be unnecessary. See Overload in Configuring and
Managing WebLogic SIP Server.

Recovery Procedure

1. Check other servers to see if they are nearly overloaded.

2. Check to see if the load balancer is correctly balancing load across the application servers,
or if it is overloading one or more servers. If additional servers are nearly overloaded, Notify Tier
4 support immediately.

Configuring and Managing WebLogic SIP Server 13-5


{DOCROOT}/adminguide/enginetier_dd.html#overload
{DOCROOT}/adminguide/enginetier_dd.html#overload

Configuring SNMP

13-6

3. If the issue is limited to one server, notify Tier 4 support within one hour.

Additional Overload FAQs

Question: How can I monitor load using the Administration Server? How can I tell when I'm near
a threshold?

Answer: If you set the queue length as an incoming call overload control, you can monitor the
length of the queue using the Administration Console. If you specify a session rate control, you
cannot monitor the session rate using the Administration Console. (The Administration Console
only displays the current number of SIP sessions, not the rate of new sessions generated.)

licenseLimitExceeded

Description

WebLogic SIP Server generates this trap when it detects a license violation. This trap can occur
if server usage or access exceeds the limitations specified in the license file, or if the file is
accidentally modified. Never modify, move, or delete the license file during normal operations.

License violations may cause one or more of the following behaviors if the license file has been
modified or corrupted:

o If the license signature in the license file was changed, WebLogic SIP Server may detect
the anomaly and shut down. Furthermore, WebLogic SIP Server will not start up if the
license signature is modified or corrupted.

e If the IP address in the license file is incorrect, WebLogic SIP Server will not start up.

e If the license expiration is reached WebLogic SIP Server will not start up. If the server is
already running, it will shut down automatically after the expiration is reached.

Note: Permanent licenses have no expiration. If you purchased a permanent license but your
license expires, your server may be using an evaluation license instead of your purchased
license.

If usage reaches the maximum values set in the license file (max-sessions, max-registers or
max-users) WebLogic SIP Server continues to run but rejects requests that exceed the defined
limits. The following behaviors may be observed when usage limits are reached:

1. If the number of sessions has reached max-sessions and there is a request to create a new
session:

— WebLogic SIP Server generates a 1icenseLimitExceeded exception and rejects the
request.

Configuring and Managing WebLogic SIP Server



Understanding and Responding to SNMP Traps

— The application must handle the exception and notify the source of the request.

— If the application passes the exception to the SIP container as is, WebLogic SIP Server
returns a “503 Out Of Licensed Resources” response.

2. If there is an attempt to register a user beyond the maximum number specified in
max-users:

— The user management component generates an IllegallLicenseException.
— The application must handle the exception and notify the source of the request.

— If the application passes the exception to the SIP container as is, WebLogic SIP Server
returns a “503 Out Of Licensed Resources” response.

Removing an existing user enables a new user to be registered.

3. If the number of connected terminals has reached max-registers:
— The registrar servlet returns “503 Service Unavailable” to the new REGISTER request.
— Registered terminals can still be refreshing or removed (UNREGISTERed).
— UNREGISTERIng a terminal enables a new REGISTER to succeed.

The license file is an XML document located at $BEA_HOME/1license.bea. The following
sample shows a portion of an evaluation license:

<license-group format="1.0" product="WebLogic SIP Server" release="2.1">
<license
component="SIP Servlet Engine"
expiration="never"
ip="any"
licensee="BEA Evaluation Customer"
msgspersec="100"
serial="616351266349-1813874379535"
type="SDK"
signature="MCOCFQDeWBkXTSZ5b01qy0D/AfukgzghDwIURsL8bkpTwlypiTSBg+dlb
dyzbRM="

/>

Configuring and Managing WebLogic SIP Server 13-1



Configuring SNMP

</license-group>

</license-group>

13-8

Recovery Procedure

1. Check the license file to insure that it has not been accidentally removed, changed or
corrupted. Note that WebLogic SIP Server checks the license every four hours, so repairs may
not be registered immediately.

2. Check the expiration date in the license, and confirm that an EVAL license was not
accidentally installed over the permanent license.

3. Notify Tier 4 Support of the condition, and send them a copy of the license file.

Additional License FAQs

Question: What IP should be used for licensing purposes?
Question: Each box has multiple IP addresses. Which IP should be assigned to the license?

Answer: Use the IP address that is returned with get local host command.

Question: I've upgraded my hardware system or need to move WebLogic SIP Server to a new
machine. How do I modify the license file to use a new IP address?

Answer: Contact BEA Support with the updated IP address. BEA will generate a new license for
you. You can then replace the license file with the updated file immediately without stopping
WebLogic SIP Server.

serverStopped

Description

This trap indicates that the WebLogic Server instance is now down. This trap applies to both
engine tier and data tier server instances. If this trap is received spontaneously and not as a result
of a controlled shutdown, follow the steps below.

Recovery Procedure

1. Use the following command to identify the hung process:
ps —ef | grep java

There should be only one PID for each WebLogic Server instance running on the machine.

Configuring and Managing WebLogic SIP Server



Understanding and Responding to SNMP Traps

2. After identifying the affected PID, use the following command to kill the process:
kill -3 [pid]

3. This command generates the actual thread dump. If the process is not immediately killed,
repeat the command several times, spaced 5-10 seconds apart, to help diagnose potential
deadlock problems, until the process is killed.

4. Attempt to restart WebLogic SIP Server immediately. See Restarting Failed Server
Instances in the WebLogic Server 8.1 documentation.

5. Make a backup copy of all SIP logs on the affected server to aid in troubleshooting. The
location of the logs varies based on the server configuration.

6. Copy each log to assist Tier 4 support with troubleshooting the problem.

Note: WebLogic SIP Server logs are truncated according to your system configuration.
Make backup logs immediately to avoid losing critical troubleshooting information.

7. Notify Tier 4 support and include the log files with the trouble ticket.

8. Monitor the server closely over next 24 hours. If the source of the problem cannot be
identified in the log files, there may be a hardware or network issue that will reappear over
time.

Additional Shutdown FAQs

Question: If the server shuts down, are all SNMP traps for the server lost?

Answer: The Administration Console generates SNMP messages for managed WebLogic Server
instances only until the ServerShutDown message is received. Afterwards, no additional
messages are generated.

dataTierServerStopped

Description

WebLogic SIP Server generates this alarm when an unrecoverable error occurs in a WebLogic
Server instance that is part of the data tier.

Recovery Procedure

See the Recovery Procedure for “serverStopped” on page 13-8.

Configuring and Managing WebLogic SIP Server 13-9



Configuring SNMP

13-10

replicaAddedToPartition

Description

WebLogic SIP Server generates this alarm when a server instance is added to a partition in the
data tier.

Recovery Procedure

This trap is generated during normal startup procedures when data tier servers are booted.

replicaRemovedFromPartition

Description

This trap is generated when a WebLogic SIP Server instance is removed from the data tier, either
as a result of a normal shutdown operation or because of a failure.

Recovery Procedure

If this trap is generated as a result of a server instance failure, additional traps will be generated
to indicate the exception. See the recovery procedures for traps generated in addition to

replicaRemovedFromPartition.

connectionLostToPeer

Description

This trap is generated when an engine tier server instance loses its connection to a replica in the
data tier. It may indicate a network connection problem between the engine and data tiers, or may
be generated with additional traps if a data tier server fails.

Recovery Procedure

If this trap occurs in isolation from other traps indicating a server failure, it generally indicates a
network failure. Verify or repair the network connection between the affected engine tier server
and the data tier server.

If the trap is accompanied by additional traps indicating a data tier server failure (for example,
dataTierServerStopped), follow the recovery procedures for the associated traps.

Configuring and Managing WebLogic SIP Server



Understanding and Responding to SNMP Traps

connectionReestablishedToPeer

Description

This trap is generated when an engine tier server reconnects to a data tier server after a prior
failure (after a connectionLostToPeer trap was generated). Repeated instances of this trap may
indicate an intermittent network failure between the engine and data tiers.

Recovery Procedure

See “connectionLostToPeer” on page 13-10.

Configuring and Managing WebLogic SIP Server 13-11



Configuring SNMP

13-12 Configuring and Managing WebLogic SIP Server



APPENDlxa

Upgrading Software and Applications
In a Production Environment

Note: The sections that follow provide only general instructions for upgrading WebLogic SIP
Server software and deployed applications. Your service pack or new software may
contain additional instructions and tools to help you upgrade the software.

The following sections describe how to upgrade production WebLogic SIP Server installations
to a new release of the software, and how to upgrade individual SIP applications on a production
server installation:

e “Overview of System and Application Upgrades” on page A-1

e “Requirements for Upgrading a Production System” on page A-2

e “Upgrading to a New Version of WebLogic SIP Server” on page A-3

e “Upgrading a Deployed Production Application (Compatible Session Data)”” on page A-12
e “Upgrading a Deployed Production Application (Incompatible Session Data)” on

page A-13

Overview of System and Application Upgrades

Because a typical production WebLogic SIP Server installation uses multiple server instances in
both the engine and data tiers, upgrading the WebLogic SIP Server software, or a SIP Servlet
deployed to the engine tier, requires that you follow very specific practices. These practices
ensure that:

e Existing clients of deployed SIP Servlets are not interrupted or lost during the upgrade
procedure.

Configuring and Managing WebLogic SIP Server A-1



Upgrading Software and Applications in a Production Environment

o The upgrade procedure can be “rolled back™ to a previous state if any problems occur.

The sections that follow describe how to use a configured load balancer to perform a “live”
upgrade of the WebLogic SIP Server software, or a deployed SIP application on a production
installation. The procedure for either type of upgrade is similar, but each procedure is described
in a separate section for clarity.

When upgrading the WebLogic SIP Server software (for example, in response to a Service Pack),
or upgrading a SIP Servlet where the Servlet’s session data is incompatible with the older version,
a new engine tier cluster is created to host newly-upgraded engine tier instances or new versions
of SIP Servlets. One-by-one, servers in the engine tier are shut-down, upgraded, and then
restarted in the new target cluster. While servers are being upgraded, WebLogic SIP Server
automatically forwards requests from one engine tier cluster to the other as necessary to ensure
that data tier requests are always initiated by a compatible engine tier server. After all servers
have been upgraded, the older cluster is removed and no longer used. After upgrading the engine
tier cluster, servers in the data tier may also be upgraded, one-by-one. See “Upgrading a
Deployed Production Application (Compatible Session Data)”” on page A-12 for more
information.

Requirements for Upgrading a Production System

A-2

To upgrade a production WebLogic SIP Server installation you require:

e Nostage-mode deployments for existing SIP applications. (Nostage-mode deployment
enables you to upgrade a deployed SIP Servlet without performing a redeployment
operation, as described in “Upgrading a Deployed Production Application (Compatible
Session Data)” on page A-12.)

o Cluster-targeted deployments for all SIP applications. All deployed SIP Servlets must be
targeted to the engine tier cluster, rather than to individual Managed Server instances
within the cluster. Cluster-level targeting is required in order to perform an upgrade of the
WebLogic SIP Server software without disrupting existing clients.

e A compatible load balancer product and administrator privileges for reconfiguring the load
balancer virtual IP addresses and pools.

e Adequate disk space on the Administration Server machine and on each Managed Server
machine for installing a copy of the new WebLogic SIP Server software (for server
software upgrades only).

e Privileges for modifying configuration files on the WebLogic SIP Server Administration
Server machine.

Configuring and Managing WebLogic SIP Server



Upgrading to a New Version of WebLogic SIP Server

e Privileges for shutting down and starting up individual Managed Server instances.

e Three or more replicas in each partition of the data tier, in order to upgrade the WebLogic
SIP Server software to a new version. With fewer than three replicas in each partition, it is
not possible to safely upgrade a production data tier deployment as no backup replica
would be available during the upgrade procedure.

Warning: Before modifying any production installation, thoroughly test your proposed
changes in a controlled, “stage” environment to ensure software compatibility and
verify expected behavior.

Upgrading to a New Version of WebLogic SIP Server

Follow these steps to upgrade a production installation of WebLogic SIP Server to a newer
version of the WebLogic SIP Server software. These instructions upgrade both the SIP Servlet
container implementation and the data tier replication and failover implementation included in
the sipserver Enterprise Application (EAR).

The steps for performing a software upgrade are divided into several high-level procedures:

1. Configure the Load Balancer—Define a new, internal Virtual IP address for the new engine
tier cluster you will configure.

2. Configure the New Engine Tier Cluster—Create and configure a new, empty engine tier
cluster that will host upgraded engine tier servers and your production applications.

3. Define the Cluster-to-Load Balancer Mapping—Modify the SIP Servlet container
configuration to indicate the virtual IP address of each engine tier cluster.

4. Duplicate the SIP Servlet Container and Data Tier Configuration—Copy the active
sipserver.xml configuration file into the new sipserver application to duplicate your
production container configuration.

5. Upgrade Engine Tier Servers and Target Applications to the New Cluster—Shut down
individual engine tier server instances, restarting them in the new engine tier cluster.

6. Upgrade Data Tier Servers—Shut down individual data tier servers, restarting them with the
new data tier software implementation.

Each procedure is described in the sections that follow.

Configuring and Managing WebLogic SIP Server A-3



Upgrading Software and Applications in a Production Environment

A-4

Configure the Load Balancer

Begin the software upgrade procedure by defining a new internal virtual IP address for the new
engine tier cluster you will create in “Configure the New Engine Tier Cluster” on page A-4. The
individual server IP addresses (the pool definition) for the new virtual IP address should be
identical to the pool definition of your currently-active engine tier cluster. Figure A-1 shows a
sample configuration for a cluster having three engine tier server instances; both virtual IP
addresses define the same servers.

Figure A-1 Virtual IP Address Configuration for Parallel Clusters

= 3
Vitual IP 1 Vitual IP 2
172.17.0.1:5060 172.17.0.2:5060

A

\

See your load balancer documentation for more information about defining virtual IP addresses.

In the next section, you will configure the WebLogic SIP Server domain to identify the virtual IP
addresses that map to each engine tier cluster. WebLogic SIP Server uses this mapping during the
upgrade procedure to automatically forward requests to the appropriate “version” of the cluster.
This ensures that data tier requests always originate from a compatible version of the WebLogic
SIP Server engine tier.

Configure the New Engine Tier Cluster

Follow these steps to create a new Engine Tier cluster to host upgraded containers, and to
configure both clusters in preparation for a software upgrade:

1. On the Administration Server machine, install the new WebLogic SIP Server software into a
new BEA home directory. The steps that follow refer to c: \beanew as the BEA home
directory in which the new software was installed. c : \bea refers to the software
implementation that is being upgraded.

Configuring and Managing WebLogic SIP Server



5.

Upgrading to a New Version of WebLogic SIP Server

On the Administration Server machine, copy the new sipserver application directory into
a new directory from which it will be deployed. For example:

cp -r c:\beanew\wlss21l0\samples\domains\telco\sipserver c:\deployments

Log in to the Administration Console for the active WebLogic SIP Server domain.

In the Administration Console, create a new, empty engine tier cluster for hosting the
upgraded engine tier servers:

a. In the left pane, select the Clusters node.

b. Select Configure a New Cluster...

c. Enter a name for the new cluster. For example, “NewEngineCluster.”
d. Click Create to create the cluster.

Proceed to “Define the Cluster-to-Load Balancer Mapping” on page A-5.

Note: During the upgrade process you need to target the new sipserver Enterprise

Application, as well as your own SIP applications, to the newly-created cluster.
However, you cannot target applications to an empty cluster. For this reason, targeting
applications to the new cluster occurs only after you have added the first engine tier
server to the new cluster in “Upgrade Engine Tier Servers and Target Applications to the
New Cluster” on page A-7.

Define the Cluster-to-Load Balancer Mapping

In this procedure, you manually edit the active sipserver.xml configuration file to define the
cluster-loadbalancer-map element. This XML element defines the internal, virtual IP
address that is assigned to the older and newer engine tier clusters.

To define the cluster-to-load balancer mapping:

1.

Move to the directory containing the sipserver.xml configuration file for your production
domain. For example:

cd c:\bea\user_projects\domains\mydomain\sipserver\config
Open the sipserver.xml file with a text editor:

notepad sipserver.xml

Add a cluster-loadbalancer-map element definition to the end of the configuration file,
before the final </sip-server> line. The full definition must include a mapping for both
the older and the newer engine tier cluster. A mapping consists of the internal virtual IP

Configuring and Managing WebLogic SIP Server A-5



Upgrading Software and Applications in a Production Environment

A-6

address of the cluster configured on the load balancer, as well as the cluster name defined in
the WebLogic SIP Server domain. Listing 1-1 shows an entry for the sample clusters
described earlier.

Listing 1-1 Sample cluster-loadbalancer-map Definition

<cluster-loadbalancer-map>
<cluster-name>EngineCluster</cluster-name>
<sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>
<cluster-name>NewEngineCluster</cluster-name>
<sip-uri>sip:172.17.0.2:5060</sip-uri>
</cluster-loadbalancer-map>

</sip-server>

4. Save your changes to sipserver.xml and exit your text editor.

Duplicate the SIP Servlet Container and Data Tier
Configuration

Before upgrading individual engine tier servers, you must ensure that the SIP Servlet container
configuration and data tier configuration in the new engine tier cluster matches your current
production configuration. To duplicate the container configuration, copy your production
sipserver.xml and datatier.xml configuration files on top of the files in the new sipserver
application. For example:

cp c:\bea\user_projects\domains\mydomain\sipserver\config\sipserver.xml

c:\deployments\sipserver\config

cp c:\bea\user_projects\domains\mydomain\sipserver\config\datatier.xml

c:\deployments\sipserver\config

The sipserver.xml file in both the old and the new sipserver application should now be
identical; only the implementation classes for each application are different. As engine tier

Configuring and Managing WebLogic SIP Server



Upgrading to a New Version of WebLogic SIP Server

servers are restarted in the new engine tier cluster in the next procedure, they will have the same
SIP container configuration but will use the new container implementation.

Upgrade Engine Tier Servers and Target Applications to the
New Cluster

To upgrade individual engine tier servers, you gracefully shut each server down, change its
cluster membership, and then restart it. Follow these steps:

1. Access the Administration Console for your production domain.

2. Select the first running engine tier server that you want to upgrade:
a. Expand the Servers tab in the left pane.
b. Select the name of the server you want to upgrade.

3. Select the Control->Start/Stop tab in the right pane.

4. Select Graceful shutdown of this server...

5. Select Yes to perform the shutdown.

The server remains active while clients are still accessing the server, but no new
connection requests are accepted. After all existing client connections have ended or timed
out, the server shuts down. Other server instances in the engine tier process client requests
during the shutdown procedure.

6. Select the Servers tab in the left pane and verify that the Managed Server has shut down.

7. Change the stopped server’s cluster membership so that it is a member of the new engine
tier cluster:

a. Expand the Clusters tab in the left pane.
b. Select the name of the active engine tier cluster.
c. Select the Configuration->Servers tab in the right pane.

d. Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

e. Click Apply.

Configuring and Managing WebLogic SIP Server A-7



Upgrading Software and Applications in a Production Environment

A-8

i.

Next, expand the Clusters tab and select the newly-created engine tier cluster
(“NewEngineCluster”).

Select the Configuration->Servers tab in the right pane.

Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

Click Apply.

8. After adding the first engine tier server to the new cluster, you can now target the
sipserver Enterprise Application and your own SIP applications to the new cluster.

Note: Perform this step only once, after adding the first engine tier server to the new cluster:

a.

b.

In the left pane, select the Deployments->Applications node.
Select Deploy a new Application...

Using the links in the Location field, select the new sipserver application directory on
the Administration Server machine (for example, c: \deployments\sipserver).

Click Target Application.

Select the name of the new engine tier cluster (“NewEngineCluster”). Also ensure that All
servers in the Cluster is selected.

Click Continue.
Select the option, I will make the application accessible from the following location.
Click Deploy.

Repeat this step to deploy all of your production SIP applications to the new cluster. Both
the new and old engine tier clusters should be configured similarly, except that the new
cluster hosts the new sipserver application while the existing cluster hosts the older
sipserver application.

9. Restart the stopped managed server to bring it up in the new engine tier cluster:

a.

Access the machine on which the stopped engine tier server runs (for example, use a
remote desktop on Windows, or secure shell (SSH) on Linux).

Use the available Managed Server start script (startManagedWebLogic.cmd or
startManaged WebLogic.sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd engine-serverl t3://adminhost:7001

Configuring and Managing WebLogic SIP Server



Upgrading to a New Version of WebLogic SIP Server

10. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

11. Repeat these steps to upgrade the remaining engine tier servers.

At this point, all running Managed Servers are using the new SIP Container implementation (the
new sipserver application deployment) and are hosting your production SIP Servlets with the
same SIP Servlet container settings as your old configuration. Data tier servers can now be
upgraded using the instructions in “Upgrade Data Tier Servers” on page A-9.

Upgrade Data Tier Servers

Warning: Your data tier must have three active replicas (three server instances) in each
partition in order to upgrade the servers in a production environment. With only two
replicas in each partition, a failure of the active replica during the upgrade process
will result in the irrecoverable loss of call state data. With only one replica in each
partition, the upgrade cannot be initiated without losing call state data.

The procedure for upgrading server instances in the data tier is similar to the procedure for
upgrading servers in the engine tier, except that:

e No SIP applications are targeted to the newly-created data tier cluster.

e No cluster-to-load balancer map is necessary for the parallel data tier cluster.

Apart from these differences, the process for upgrading a data tier cluster involves creating a new
cluster for hosting upgraded server instances, targeting the new sipserver application to the
new cluster, and restarting individual server instances in the new cluster. While upgrading
individual data tier servers, care must be taken to ensure that each partition always contains an
two active replicas in each partition to protect against hardware or software failures during the
upgrade.

To upgrade data tier servers to a new WebLogic SIP Server implementation:

1. First perform all previous procedures to upgrade the engine tier servers in your domain. See
“Upgrading to a New Version of WebLogic SIP Server” on page A-3.

2. Log in to the Administration Console for the active WebLogic SIP Server domain.

3. Inthe Administration Console, create a new, empty data tier cluster for hosting the
upgraded data tier servers:

a. In the left pane, select the Clusters node.

Configuring and Managing WebLogic SIP Server A-9



Upgrading Software and Applications in a Production Environment

A-10

b

C.

. Select Configure a New Cluster...

Enter a name for the new cluster. For example, “NewDataCluster.”

d. Click Create to create the cluster.

4. Select a running data tier server that you want to upgrade:

a.

b

Expand the Servers tab in the left pane.

. Select the name of the server you want to upgrade.

Warning: Do not shut down a data tier server instance in a partition unless two additional

servers in the same partition are available, and both are in the ONLINE state. See
“Monitoring and Troubleshooting Data Tier Servers” on page 3-6 for
information about determining the state of data tier servers.

5. Select the Control->Start/Stop tab in the right pane.

6. Select Graceful shutdown of this server...

7. Select Yes to perform the shutdown.

The server remains active while engine tier instances are still accessing the server, but no
new connection requests are accepted. After all existing connections have ended, the server
shuts down. Other replicas in the same data tier partition process engine tier requests for
call state data during the shutdown procedure.

8. Select the Servers tab in the left pane and verify that the Managed Server has shut down.

9. Change the stopped server’s cluster membership so that it is a member of the new data tier
cluster:

a.

b.

Expand the Clusters tab in the left pane.
Select the name of the active data tier cluster.
Select the Configuration->Servers tab in the right pane.

Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

Click Apply.

Next, expand the Clusters tab and select the newly-created data tier cluster
(“NewDataCluster”).

Configuring and Managing WebLogic SIP Server



i.

Upgrading to a New Version of WebLogic SIP Server

Select the Configuration->Servers tab in the right pane.

Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

Click Apply.

10. After adding the first data tier server to the new cluster, target the new sipserver
Enterprise Application to the cluster:

Note: Perform this step only once, after adding the first data tier server to the new cluster:

a.

b.

In the left pane, select the Deployments->Applications node.
Select Deploy a new Application...

Using the links in the Location field, select the new sipserver application directory on
the Administration Server machine (for example, c : \deployments\sipserver).

Click Target Application.

Select the name of the new data tier cluster (“NewDataCluster”). Also ensure that All
servers in the Cluster is selected.

Click Continue.
Select the option, I will make the application accessible from the following location.

Click Deploy.

11. Restart the stopped managed server to bring it up in the new data tier cluster:

a.

Access the machine on which the stopped data tier server runs (for example, use a remote
desktop on Windows, or secure shell (SSH) on Linux).

Use the available Managed Server start script (startManagediebLogic.cmd or
startManagediWebLogic.sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd data-serverl t3://adminhost:7001

12. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

13. Repeat these steps to upgrade the remaining data tier servers.

14. After all data tier servers have been upgraded, delete the original data tier cluster:

a.

Select the Clusters node in the left pane.

Configuring and Managing WebLogic SIP Server A-11



Upgrading Software and Applications in a Production Environment

b. Select the trash can icon next to the name of the older cluster in the cluster table.
c. Select Yes to delete the cluster definition.
15. Finally, delete the original engine tier cluster:
a. Select the Clusters node in the left pane.
b. Select the trash can icon next to the name of the older cluster in the cluster table.

c. Select Yes to delete the cluster definition.

At this point, all running Managed Servers are using the new WebLogic SIP Server data tier
implementation (the new sipserver application deployment) and serving call state data to
upgraded servers in the Engine Tier.

Upgrading a Deployed Production Application (Compatible
Session Data)

A-12

This section describes how to upgrade a deployed SIP Servlet to a new version of the same SIP
Servlet in a production environment. The instructions that follow assume that the session data
used by the new Servlet version is compatible with the older Servlet version. If the session data
is incompatible, see “Upgrading a Deployed Production Application (Incompatible Session
Data)” on page A-13 instead.

Warning: In order to upgrade a SIP Servlet using the procedure below, the session state
information stored by the new version of the Servlet must be compatible with the
older version of the Servlet. If the older and newer Servlets use incompatible session
information, you must follow the instructions in “Upgrading a Deployed Production
Application (Incompatible Session Data)” on page A-13 instead.

To upgrade an individual SIP Servlet to a new version:
1. Onthe Administration Server machine, make a backup copy of the source files used to deploy

the older SIP Servlet version. You may need the older files if you decide to revert to the
previously-deployed application. For example:

cd c:\deployments
mkdir myServlet_backup

cp -r myServlet\* myServlet_backup

2. Replace the current deployment source files with the updated version of the deployment
files. For example, if the file list for the new version of the Servlet is the same as the old:

Configuring and Managing WebLogic SIP Server



Upgrading a Deployed Production Application (Incompatible Session Data)

cp -r myNewServlet\* myServlet

If files have been deleted from the old servlet version, delete the original deployment files
before copying over the new files:

rm -r myServlet\*
cp -r myNewServlet\* myServlet

At this point, the source files for the already-deployed SIP Servlet should represent the
upgraded Servlet implementation. The currently-active SIP Servlet deployed to the engine
tier uses the older version of the implementation.

3. To deploy the new source files and make the upgraded Servlet implementation active, use
the Administration Console to gracefully shutdown a single Managed Server instance in the
engine tier, and then restart the same server.

4. After the server has started and joined the cluster, repeat the previous step for an additional
server in the engine tier. Repeat this process until each server in the engine tier has been
restarted.

For nostage-mode deployments, the final two steps have the effect of deploying the SIP Servlet
using the updated source files.

Warning: It is important that the updated application files are deployed by gracefully shutting
down and then restarting individual servers, rather than by simply redeploying the
running application. Redeploying an application immediately unloads the
application’s implementation classes and replaces them with the newer classes. This
makes the application unavailable during redeployment and may result in dropped
client connections; never redeploy a running application in a production system.

Upgrading a Deployed Production Application (Incompatible
Session Data)

This section describes how to upgrade a deployed SIP Servlet to a new version when the session
data used by the new Servlet is compatible with the older version. The upgrade procedure is
similar to the procedure described in “Upgrading to a New Version of WebLogic SIP Server” on
page A-3, except that the SIP Servlet container (sipserver application) is not upgraded.

The steps for performing this type of upgrade are divided into these high-level procedures:

1. Configure the Load Balancer—Define a new, internal Virtual IP address for the new engine
tier cluster you will configure.

Configuring and Managing WebLogic SIP Server A-13



Upgrading Software and Applications in a Production Environment

A-14

2. Configure the New Engine Tier Cluster—Create and configure a new, empty engine tier
cluster that will host the new version of the SIP Servlet.

3. Define the Cluster-to-Load Balancer Mapping—Modify the SIP Servlet container
configuration to indicate the virtual IP address of each engine tier cluster.

4. Migrate Engine Tier Servers and Target Applications to the New Cluster—Shut down
individual engine tier server instances, restarting them in the new engine tier cluster.

Each procedure is described in the sections that follow.

Configure the Load Balancer

Begin the software upgrade procedure by defining a new internal virtual IP address for the new
engine tier cluster you will create in “Configure the New Engine Tier Cluster” on page A-4. The
individual server IP addresses (the pool definition) for the new virtual IP address should be
identical to the pool definition of your currently-active engine tier cluster. Figure A-1 shows a
sample configuration for a cluster having three engine tier server instances; both virtual IP
addresses define the same servers.

Figure A-2 Virtual IP Address Configuration for Parallel Clusters

= 3
Vitual IP 1 Vitual IP 2
172.17.0.1:5060 172.17.0.2:5060

See your load balancer documentation for more information about defining virtual IP addresses.

In the next section, you will configure the WebLogic SIP Server domain to identify the virtual IP
addresses that map to each engine tier cluster. WebLogic SIP Server uses this mapping during the
upgrade procedure to automatically forward requests to the appropriate “version” of the cluster.
This ensures that data tier requests always originate from a compatible version of the WebLogic
SIP Server engine tier.

Configuring and Managing WebLogic SIP Server



Upgrading a Deployed Production Application (Incompatible Session Data)

Configure the New Engine Tier Cluster

Follow these steps to create a new Engine Tier cluster to host upgraded containers, and to
configure both clusters in preparation for a software upgrade:

1.

S.

On the Administration Server machine, install the new WebLogic SIP Server software into a
new BEA home directory. The steps that follow refer to c: \beanew as the BEA home
directory in which the new software was installed. c : \bea refers to the software
implementation that is being upgraded.

On the Administration Server machine, copy the new sipserver application directory into
a new directory from which it will be deployed. For example:

cp -r c:\beanew\wlss21l0\samples\domains\telco\sipserver c:\deployments
Log in to the Administration Console for the active WebLogic SIP Server domain.

In the Administration Console, create a new, empty engine tier cluster for hosting the
upgraded engine tier servers:

a. In the left pane, select the Clusters node.

b. Select Configure a New Cluster...

c. Enter a name for the new cluster. For example, “NewEngineCluster.”
d. Click Create to create the cluster.

Proceed to “Define the Cluster-to-Load Balancer Mapping” on page A-5.

Note: During the upgrade process you need to target your new SIP applications to the

newly-created cluster. However, you cannot target applications to an empty cluster. For
this reason, targeting applications to the new cluster occurs only after you have added the
first engine tier server to the new cluster in “Migrate Engine Tier Servers and Target
Applications to the New Cluster” on page A-16.

Define the Cluster-to-Load Balancer Mapping

In this procedure, you manually edit the active sipserver.xml configuration file to define the
cluster-loadbalancer-map element. This XML element defines the internal, virtual IP
address that is assigned to the older and newer engine tier clusters.

To define the cluster-to-load balancer mapping:

Configuring and Managing WebLogic SIP Server A-15



Upgrading Software and Applications in a Production Environment

A-16

1. Move to the directory containing the sipserver.xml configuration file for your production
domain. For example:

cd c:\bea\user_projects\domains\mydomain\sipserver\config
2. Open the sipserver.xml file with a text editor:

notepad sipserver.xml

3. Addacluster-loadbalancer-map element definition to the end of the configuration file,
before the final </sip-server> line. The full definition must include a mapping for both
the older and the newer engine tier cluster. A mapping consists of the internal virtual IP
address of the cluster configured on the load balancer, as well as the cluster name defined in
the WebLogic SIP Server domain. Listing 1-1 an entry for the sample clusters described
earlier.

Listing 1-2 Sample cluster-loadbalancer-map Definition

<cluster-loadbalancer-map>
<cluster-name>EngineCluster</cluster-name>
<sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>
<cluster-name>NewEngineCluster</cluster-name>
<sip-uri>sip:172.17.0.2:5060</sip-uri>
</cluster-loadbalancer-map>

</sip-server>

4. Save your changes to sipserver.xml and exit your text editor.

Migrate Engine Tier Servers and Target Applications to the
New Cluster

To deploy the new version of the SIP Servlet, you gracefully shut each server down, change its
cluster membership, and then restart it in the new cluster. Because you target the newer versions
of your production applications to the new cluster, restarting server instances in the new cluster
deploys the latest application versions. Follow these steps:

Configuring and Managing WebLogic SIP Server



Upgrading a Deployed Production Application (Incompatible Session Data)

Access the Administration Console for your production domain.
Select a running engine tier server that you want to upgrade:

a. Expand the Servers tab in the left pane.

b. Select the name of the server you want to upgrade.

Select the Control->Start/Stop tab in the right pane.

Select Graceful shutdown of this server...

Select Yes to perform the shutdown.

The server remains active while clients are still accessing the server, but no new
connection requests are accepted. After all existing client connections have ended or timed
out, the server shuts down.

Other server instances in the engine tier process client requests using the older version of
the SIP Servlet, and the WebLogic SIP Servlet implementation automatically forwards
requests to the appropriate cluster (using the cluster-to-load balancer map) so that each
engine tier accesses the correct version of the application’s session data.

Select the Servers tab in the left pane and verify that the Managed Server has shut down.

Change the stopped server’s cluster membership so that it is a member of the new engine
tier cluster:

a. Expand the Clusters tab in the left pane.
b. Select the name of the active engine tier cluster.
c. Select the Configuration->Servers tab in the right pane.

d. Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

e. Click Apply.

f. Next, expand the Clusters tab and select the newly-created engine tier cluster
(“NewEngineCluster”).

g. Select the Configuration->Servers tab in the right pane.

h. Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

Configuring and Managing WebLogic SIP Server A-17



Upgrading Software and Applications in a Production Environment

i.

Click Apply.

8. After adding the first engine tier server to the new cluster, you can now target the new SIP
applications to the new cluster.

Note: Perform this step only once, after adding the first engine tier server to the new cluster:

a.

b.

In the left pane, select the Deployments->Applications node.
Select Deploy a new Application...

Using the links in the Location field, select the new version of an application on the
Administration Server machine.

Click Target Application.

Select the name of the new engine tier cluster (“NewEngineCluster”). Also ensure that All
servers in the Cluster is selected.

Click Continue.
Select the option, I will make the application accessible from the following location.
Click Deploy.

Repeat this step to deploy all of your newer SIP applications to the new cluster. Both the
new and old engine tier clusters should be configured similarly, except that the new cluster
hosts the newer applications while the existing cluster hosts the older applications.

9. Restart the stopped managed server to bring it up in the new engine tier cluster:

a.

Access the machine on which the stopped engine tier server runs (for example, use a
remote desktop on Windows, or secure shell (SSH) on Linux).

Use the available Managed Server start script (startManagedWebLogic.cmd or
startManagedWebLogic. sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd engine-serverl t3://adminhost:7001

10. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

11. Repeat these steps to upgrade the remaining engine tier servers.

12. After all engine tier servers have been upgraded, delete the original engine tier cluster:

a.

A-18

Select the Clusters node in the left pane.

Configuring and Managing WebLogic SIP Server



Upgrading a Deployed Production Application (Incompatible Session Data)

b. Select the trash can icon next to the name of the older cluster in the cluster table.

c. Select Yes to delete the cluster definition.

At this point, all running Managed Servers are using the new version of the SIP Servlet.

Configuring and Managing WebLogic SIP Server A-19



Upgrading Software and Applications in a Production Environment

A-20 Configuring and Managing WebLogic SIP Server



APPENDIXG

Applying Patches Using InstallPatch

The following sections provide instructions for applying patches to WebLogic SIP Server
instances:

“Overview of the InstallPatch Utility” on page B-1

“Required Environment for the InstallPatch Utility” on page B-2
“Syntax for Invoking the InstallPatch Utility” on page B-2
“Example InstallPatch Commands” on page B-3

“Editing the MANIFEST Classpath in GUI Mode” on page B-4

Overview of the InstallPatch Utility

The WebLogic SIP Server container functionality is implemented using an Enterprise
Application (EAR) named sipserver. To patch the sipserver implementation EAR, you add
the patch JAR file to the domain directory and then use the InstallPatch utility to add the JAR
the application.

InstallPatch automates the process of editing the sipserver MANIFEST class path, which
defines the list of JAR files used by the application and their relative order. You can use
InstallPatch to perform common patching operations such as:

e Installing a new patch (JAR file)

e Removing a previously-applied patch

Configuring and Managing WebLogic SIP Server B-1



Applying Patches Using InstallPatch

e Changing the order in which patches are loaded

Although it is possible to manually edit the MANIFEST class path in the sipserver application,
BEA recommends using InstallPatch to avoid errors.

Required Environment for the InstallPatch Utility

To set up your environment for the InstallPatch utility:

1. Install the WebLogic SIP Server software 2.1. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Move to the top level of the domain directory that you want to patch:
cd BEA_HOME\user_projects\domains\mydomain

In the above command, BEA HOME refers to the top-level BEA installation directory (for
example, c:\bea).

3. Set the client environment using the command:

setAdminClientEnv.cmd

Syntax for Invoking the InstallPatch Utility

The InstallPatch utility can run in either command-line or GUI mode. By default the utility runs
in command-line mode. The syntax for using the utility in command-line mode is:

java com.bea.wcp.sip.tools.InstallPatch
[-mode (gui | cmdline)]
-action (prepend | append | set | view)
-patch filename.jar [-patch filenameZ.jar ...]

[-help] [-verbose]
When running the utility in GUI mode, all other options are ignored:

java com.bea.wcp.sip.tools.InstallPatch -mode gui

Table 1-1 describes the arguments to com.bea.wcp.sip.tools.InstallPatch.

B-2 Configuring and Managing WebLogic SIP Server


{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/index.html

Table 1-1 InstallPatch Arguments

Example InstallPatch Commands

Argument

Definition

-mode (gui | cmdline)

Specifies whether to run the utility in GUI mode or in
command-line mode. Command-line mode is used by default. If

you run the utility in GUI mode, all other arguments are ignored.

-action (prepend | append |
set | view)

Specifies a single action to perform on the CLASSPATH in
command-line mode:

prepend—Adds one or more JAR files to the beginning of
the existing CLASSPATH. The JAR files must be specified
in subsequent -patch arguments.

append—Adds one or more JAR files to the end of the
existing CLASSPATH. The JAR files must be specified in
subsequent —-patch arguments.

set—Re-writes the entire CLASSPATH using the JAR
files specified in subsequent -patch arguments. If you use
the set action, note that you must specify the default
implementation JAR files (. /wlss_sp.Jjar and
./wlss.jar) as well as any patch files you want to add.
See “Example InstallPatch Commands” on page B-3 for
more information.

view—Displays the current CLASSPATH.

-patch filename.jar

Specifies full path and filename of a patch file to apply. You can
apply multiple patches by specifying multiple -patch
arguments. Multiple patches are applied in the order in which
you specify them on the command line.

-mode gui Starts the utility in GUI mode. You cannot use the ~action or
-patch arguments when running in GUI mode.

-help Displays usage information.

-verbose Displays verbose output for command-line mode.

Example InstallPatch Commands

The following examples assume an initial MANIFEST classpath of:

./wlss_sp.jar ./wlss.jar

To add a new patch JAR file to the beginning of the classpath:

Configuring and Managing WebLogic SIP Server

B-3



Applying Patches Using InstallPatch

java com.bea.wcp.sip.tools.InstallPatch -action prepend -patch
CR567890_wlss210.jar

This yields the classpath:
./CR567890_wlss210.jar ./wlss_sp.jar ./wlss.jar
To add a multiple patch JAR files to the end of the classpath:

java com.bea.wcp.sip.tools.InstallPatch -action append -patch
CR567891_wlss210.jar -patch CR567892_wlss210.jar

This yields the classpath:

./CR567890_wlss210.jar ./wlss_sp.jar ./wlss.jar ./CR567891_wlss210.jar
./CR567892_wlss210.jar

To remove one or more patches, re-write the CLASSPATH using the set action, as in:

java com.bea.wcp.sip.tools.InstallPatch -action set -patch
CR567890_wlss210.jar -patch wlss_sp.jar -patch wlss.jar -patch
CR567891_wlss210.jar

This yields the classpath:

./CR567890_wlss210.jar ./wlss_sp.jar ./wlss.jar ./CR567891_wlss210.jar

Editing the MANIFEST Classpath in GUI Mode

B-4

Running the InstallPatch utility in GUI mode enables you to reorder or delete existing patch
files from the MANIFEST classpath. You invoke the utility in GUI mode using the command:

java com.bea.wcp.sip.tools.InstallPatch -mode gui

This yields a simple text editing window that shows the current classpath setting, as shown in
Figure B-3.

Configuring and Managing WebLogic SIP Server



Figure B-3 InstallPatch GUI Mode

Editing the MANIFEST Classpath in GUI Mode

= Install Sip Server Container patches

Aalss_spar Swissjar

Current Classpath:

|

¥}

Set Classpath H Quit |

To rearrange the order of JARSs in the classpath, simply copy and paste the filenames in the
desired order, keeping a space between multiple filenames. Click Set Classpath to persist the
changes or Quit to exit without making changes.

Note: You can use GUI mode to add new patch JAR files to the existing classpath only if you

first manually copy those files to the APP-INF\container subdirectory of the

sipserver application.

Configuring and Managing WebLogic SIP Server

B-5



Applying Patches Using InstallPatch

B-6 Configuring and Managing WebLogic SIP Server



APPENDIXG

Upgrading a WebLogic SIP Server 2.0.x
Configuration to Version 2.1

The following sections provide instructions for upgrading WebLogic SIP Server from a previous
release:

e “About the Upgrade Program” on page C-1
e “Steps for Upgrading an Existing Configuration” on page C-1
e “Required Environment for the UpgradeConfig Utility” on page C-2

e “wlss.UpgradeConfig Reference” on page C-2

About the Upgrade Program

The WebLogic SIP Server upgrade program, wlss.UpgradeConfig, takes a sipserver.xml
configuration file from a version 2.0.x WebLogic SIP Server release and recreates the
configuration in WebLogic SIP Server 2.1 using the latest schemas. For example, connector
entries from an earlier sipserver .xml file are converted into network channels in the WebLogic
SIP Server 2.1 config.xml file.

In order to use the upgrade program, you must install WebLogic SIP Server 2.1 and create a new
WebLogic SIP Server 2.1 domain. The newly domain configuration is then updated to match the
earlier configuration using the wlss.UpgradeConfig program.

Steps for Upgrading an Existing Configuration

To upgrade a previous WebLogic SIP Server configuration to a new WebLogic SIP Server 2.1
configuration:

Configuring and Managing WebLogic SIP Server Cc-1



Upgrading a WebLogic SIP Server 2.0.x Configuration to Version 2.1

1. Install the WebLogic SIP Server software 2.1. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Use the Configuration Wizard to create a new Basic WebLogic SIP Server Domain on the
Administration Server machine. See Using the Configuration Wizard in Installing WebLogic
SIP Server.

3. Start the Administration Server for the WebLogic SIP Server 2.1 domain.

4. Set the environment required for using the UpgradeConfig utility. See “Required
Environment for the UpgradeConfig Utility” on page C-2.

5. Use the wlss.UpgradeConfig utility to recreate your earlier WebLogic SIP Server
configuration on the new WebLogic SIP Server 2.1 domain. See “wlss.UpgradeConfig
Reference” on page C-2.

Required Environment for the UpgradeConfig Utility

To set up your environment for the UpgradeConfig utility:

1. Install the WebLogic SIP Server software 2.1. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Move to the top level of the WebLogic SIP Server 2.1 domain directory that you created:
cd BEA_HOME\user_projects\domains\mydomain

In the above command, BEA HOME refers to the top-level BEA installation directory (for
example, c:\bea).

3. Set the client environment using the command:

setAdminClientEnv.cmd

wiss.UpgradeConfig Reference

The wlss.UpgradeConfig program uses the syntax:

java wlss.UpgradeConfig -username adminuser -password adminpassword

—adminurl url -sipserverconfigfile sipserver old.xml

where:
® adminuser is the username of the WebLogic SIP Server 2.1 administrator

® adminpassword is the password of the WebLogic SIP Server 2.1 administrator

c-2 Configuring and Managing WebLogic SIP Server


{DOCROOT}/install/index.html
{DOCROOT}/install/index.html
{DOCROOT}/install/index.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/postins.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/index.html

wlss.UpgradeConfig Reference

e url is the URL of the WebLogic SIP Server 2.1 Administration Server

® sipserver old.xml is the full path to the sipserver.xml file from the earlier
WebLogic SIP Server installation

For example:

java wlss.UpgradeConfig -username weblogic -password weblogic -adminurl
t3://localhost:7001 -sipserverconfigfile

c:\bea\user_projects\domains\wlss202_domain\sipserver.xml
The upgrade utility modifies the sipserver.xml and config.xml files in the WebLogic SIP

Server 2.1 domain as necessary to match the earlier configuration.

Notes: The version 2.1 Administration Server must be running in order to upgrade the
configuration.

wlss.UpgradeConfig can only update a WebLogic SIP Server 2.1 configuration from
a single version 2.0.x sipserver.xnl file. You cannot perform multiple upgrades
against the same version 2.1 Administration Server using different sipserver.xml files.

Configuring and Managing WebLogic SIP Server c-3



Upgrading a WebLogic SIP Server 2.0.x Configuration to Version 2.1

C-4 Configuring and Managing WebLogic SIP Server



APPENDlxﬂ

Engine Tier Configuration Reference
(sipserver.xml)

The following sections provide a complete reference to the engine tier configuration file,

sipserver.xml:
e “Overview of sipserver.xml” on page D-2
e “Editing sipserver.xml” on page D-3
o “XML Schema” on page D-4
e “Example sipserver.xml File” on page D-8

e “XML Element Description” on page D-8

Configuring and Managing WebLogic SIP Server D-1



Engine Tier Configuration Reference (sipserver.xml)

Overview of sipserver.xml

The sipserver.xml file is an XML document that configures the SIP container features
provided by a WebLogic SIP Server instance in the engine tier of a server installation.
sipserver.xml is stored in the subdirectory DOMAIN DIR/sipserver/config/ where
DOMAIN_DIR is the root directory of the WebLogic SIP Server domain.

Graphical Representation

Figure D-4 shows the element hierarchy of the sipserver.xml deployment descriptor file.

D-2 Configuring and Managing WebLogic SIP Server



Editing sipserver.xml

Figure D-4 Element Hierarchy of sipserver.xml

sip-server

routing-policy

—‘ overload

g

essage-debug

Editing sipserver.xml

You should never move, modify, or delete the sipserver.xml file during normal operations.

BEA recommends using the Administration Console to modify sipserver.xml indirectly,
rather than editing the file. Using the Administration Console ensures that the sipserver.xml
document always contains valid XML. See also “Configuring Container Properties Using WLST
(JMX)” on page 4-4.

Configuring and Managing WebLogic SIP Server D-3



Engine Tier Configuration Reference (sipserver.xml)

You may need to manually view or edit sipserver.xml to troubleshoot problem configurations,
repair corrupted files, or to roll out custom configurations to large number machines when
installing or upgrading WebLogic SIP Server. When you manually edit sipserver.xml, you
must reboot WebLogic SIP Server instances to apply your changes.

Warning: Never redeploy or undeploy the sipserver implementation application on a
running server. Always use the SIP Servers node in the Administration Console or
the WLST utility, as described in “Configuring Engine Tier Container
Properties” on page 4-1,to make changes to a running WebLogic SIP Server
deployment.

Steps for Editing sipserver.xml

If you need to modify sipserver.xml on a production system, follow these steps:

1. Use a text editor to open the DOMATIN DIR/sipserver/config/sipserver.xml file, where
DOMAIN_DIR is the root directory of the WebLogic SIP Server domain.

2. Modify the sipserver.xml file as necessary. See “XML Schema” on page D-4 for a full
description of the XML elements.

3. Save your changes and exit the text editor.

4. Reboot or start servers to have your changes take effect:

Warning: Never redeploy or undeploy the sipserver implementation application on a
running server. Always use the SIP Servers node in the Administration Console or
the WLST utility, as described in “Configuring Engine Tier Container
Properties” on page 4-1,to make changes to a running WebLogic SIP Server
deployment.

5. Test the updated system to validate the configuration.

XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.bea.com/ns/wlcp/wlss/210"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:wlss="http://www.bea.com/ns/wlcp/wlss/210"

elementFormDefault="qualified">

D-4 Configuring and Managing WebLogic SIP Server



XML Schema

<xsd:element name="sip-server">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="loadbalancer" type="wlss:loadBalancerType"

minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="proxy" type="wlss:proxyType" minOccurs="0"

maxOccurs="1" nillable="true"/>

<xsd:element name="overload" type="wlss:overloadControlType"

minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="message-debug" type="wlss:messageDebugType"

minOccurs="0" maxOccurs="1" nillable="true"/>

<xsd:element name="cluster-loadbalancer-map"
type="wlss:clusterLoadBalancerMapType" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>

<xsd:element name="sip-security" type="wlss:sipSecurityType"

minOccurs="0" maxOccurs="1"/>

<xsd:element name="default-behavior" type="xsd:string"

default="proxy" minOccurs="0" />

<xsd:element name="tl-timeout-interval" default="500"

type="xsd:unsignedLong" minOccurs="0"/>

<xsd:element name="t2-timeout-interval" default="4000"

type="xsd:unsignedLong" minOccurs="0"/>

<xsd:element name="t4-timeout-interval" default="5000"

type="xsd:unsignedLong" minOccurs="0" />

<xsd:element name="timerB-timeout-interval" default="32000"

type="xsd:unsignedLong" minOccurs="0"/>

<xsd:element name="timerF-timeout-interval" default="32000"

type="xsd:unsignedLong" minOccurs="0"/>

<xsd:element name="max-application-session-lifetime" default="-1"

type="xsd:int" minOccurs="0"/>

<xsd:element name="enable-local-dispatch" default="false"

type="xsd:boolean" minOccurs="0"/>

Configuring and Managing WebLogic SIP Server D-5



Engine Tier Configuration Reference (sipserver.xml)

</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="loadBalancerType">
<xsd:sequence>

<xsd:element name="udp-uri" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="tcp-uri" type="xsd:string" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="tls-uri" type="xsd:string" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="overloadControlType">
<xsd:sequence>

<xsd:element name="threshold-policy" default="queue-length"

type="xsd:string" />
<xsd:element name="threshold-value" type="xsd:long"/>
<xsd:element name="release-value" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="proxyType">
<xsd:sequence>
<xsd:element name="routing-policy" type="xsd:string"/>

<xsd:element name="uri" type="xsd:string" minOccurs="1"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="messageDebugType">

D-6 Configuring and Managing WebLogic SIP Server



XML Schema

<xsd:sequence>

<xsd:element name="level" type="xsd:string" default="full"/>

<xsd:element name="format" type="wlss:formatType" minOccurs="0"

maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="formatType">
<xsd:sequence>
<xsd:element name="pattern" type="xsd:string"/>

<xsd:element name="token" type="xsd:string" minOccurs="1"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="clusterLoadBalancerMapType">
<xsd:sequence>
<xsd:element name="cluster-name" type="xsd:string"/>
<xsd:element name="sip-uri" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="sipSecurityType">
<xsd:sequence>
<xsd:element name="trusted-authentication-host"
type="xsd:string"
minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Configuring and Managing WebLogic SIP Server

D-7



Engine Tier Configuration Reference (sipserver.xml)

Example sipserver.xml File

The following shows a simple example of a sipserver.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/210">
<overload>
<threshold-policy>queue-length</threshold-policy>
<threshold-value>200</threshold-value>
<release-value>150</release-value>
</overload>

</sip-server>

XML Element Description

The following sections describe each element used in the sipserver.xml configuration file. Each
section describes an XML element that is contained within the main sip-server element shown
in Figure D-4.

overload

The overload element enables you to throttle incoming SIP requests according to a configured
overload condition. When an overload condition occurs, WebLogic SIP Server destroys new SIP
requests by responding with “503 Service Unavailable” until the configured release value is
observed, or until the capacity of the server’s execute queues is exceeded (see XREF).

User-configured overload controls are applied only to initial SIP requests; SIP dialogues that are
already active when an overload condition occurs may generate additional SIP requests that are
not throttled.

To configure an overload control, you define the three elements described in Table 4-2.

D-8 Configuring and Managing WebLogic SIP Server



XML Element Description

Tahle 4-2 Nested overload Elements

Element

Description

threshold-policy

A String value that identifies the type of measurement used to
monitor overload conditions:

* session-rate measures the rate at which new SIP
requests are generated. WebLogic SIP Server determines
the session rate by calculating the number of new SIP
application connections that were created in the last 5
seconds of operation. See “Overload Control Based on
Session Generation Rate” on page D-11.

¢ gueue-length measures the sum of the sizes of the
execute queues that processes SIP requests and SIP timers.
See “Overload Control Based on Execute Queue Length” on
page D-11.

You must use only one of the above policies to define an

overload control.

Configuring and Managing WebLogic SIP Server D-9



Engine Tier Configuration Reference (sipserver.xml)

Element Description

threshold-value Specifies the measured value that causes WebLogic SIP Server
to start throttling new SIP requests:

*  When using the session-rate threshold policy,
threshold-value specifies the number of new SIP
requests per second that trigger an overload condition. See
“Overload Control Based on Session Generation Rate” on
page D-11.

*  When using the queue-1length threshold policy,
threshold-value specifies the size of the combined SIP
transport and SIP timer execute queue lengths that triggers
an overload condition. See “Overload Control Based on
Execute Queue Length” on page D-11.

After the threshold-value is observed, WebLogic SIP
Server throttles new SIP requests until the release-value
value is observed.

release-value Specifies the measured value that causes WebLogic SIP Server
to stop throttling new SIP requests:

*  When using the session-rate threshold policy,
release-value specifies the number of new SIP requests
per second that terminates session throttling. See “Overload
Control Based on Session Generation Rate” on page D-11.

*  When using the queue-1length threshold policy,
release-value specifies the combined execute queue
length that terminates session throttling. See “Overload
Control Based on Execute Queue Length” on page D-11.

WebLogic SIP Server provides two different policies for throttling SIP requests:

e The session-rate policy throttles sessions when the volume new SIP sessions reaches a
configured rate (a specified number of sessions per second).

o The queue-length policy throttles requests after the sum of the sizes of the
sip.transport.Default and sip.timer.Default execute queues reaches a configured
size.

Note: You can throttle SIP requests either using session-rate policy or a queue-length
policy. You cannot use both policies simultaneously.

The following sections describe each policy in detail.

D-10 Configuring and Managing WebLogic SIP Server



XML Element Description

Overload Control Based on Session Generation Rate

WebLogic SIP Server calculates the session generation rate (sessions per second) by monitoring
the number of application sessions created in the last 5 seconds. When the session generation rate
exceeds the rate specified in the threshold-value element, WebLogic SIP Server throttles
initial SIP requests until the session generation rate becomes smaller than the configured

release-value

The following example configures WebLogic SIP Server to begin throttling SIP requests when
the new sessions are created at a rate higher than 50 sessions per second. Throttling is
discontinued when the session rate drops to 40 sessions per second:

<overload>
<threshold-policy>session-rate</threshold-policy>
<threshold-value>50</threshold-value>
<release-value>40</release-value>

</overload>

Overload Control Based on Execute Queue Length

By default, SIP messages are handled by an execute queue named sip.transport.Default and SIP
timers are processed by an execute queue named sip.timer.Default. These execute queues are
configured in the config.xml file for your WebLogic SIP Server installation.

WebLogic SIP Server performs execute queue-based overload control by monitoring the
combined lengths of these default execute queues. When the sum of the lengths of the two execute
queues exceeds the length specified in the threshold-value element, WebLogic SIP Server
throttles initial SIP requests until the total length is reduced to the configured release-value.

Listing 4-3 shows the default overload configuration from sipserver.xml. In the default
configuration, WebLogic SIP Server begins throttling SIP requests when the combined size of
the sip.transport.Default and sip.timer.Default queues exceeds 200 requests. Throttling is
discontinued when the combined length returns to 200 or fewer simultaneous requests.

Listing 4-3 Sample overload Definition

<overload>

<threshold-policy>queue-length</threshold-policy>

Configuring and Managing WebLogic SIP Server D-11



Engine Tier Configuration Reference (sipserver.xml)

D-12

<threshold-value>200</threshold-value>
<release-value>150</release-value>

</overload>

Two Levels of Overload Protection

User-configured overload controls (defined in sipserver.xml) represent the first level of
overload protection provided by WebLogic SIP Server. They mark the onset of an overload
condition and initiate simple measures to avoid dropped calls (generating 503 responses for new
requests).

If the condition that caused the overload persists or worsens, then the execute queues used to
perform work in the SIP Servlet container may become full. At this point, the server can no longer
generate 503 responses, so new message requests are simply dropped. In this way, the configured
size of the SIP container’s execute queues (sip.transport.Default and
sip.timer.Default) represent the second and final level of overload protection employed by
the server.

Always configure overload controls in sipserver.xml conservatively, and resolve the
circumstances that caused the overload in a timely fashion. Overload conditions should never be
permitted to last until the point where the execute queue capacities are exceeded.

message-debug

The message-debug element is used to enable and configure access logging for WebLogic SIP
Server. This element should be used only in a development environment, because access logging
logs all SIP requests and responses. See Enabling Access Logging in Developing SIP Servlets
with WebLogic SIP Server for information about configuring and using access logging.

If you want to perform more selective logging in a production environment, see “Logging SIP
Requests and Responses” on page 12-1.

proxy—-3Setting Up an Outbound Proxy Server

RFC 3261 defines an outbound proxy as “A proxy that receives requests from a client, even
though it may not be the server resolved by the Request-URI. Typically, a UA is manually
configured with an outbound proxy, or can learn about one through auto-configuration
protocols.”

In WebLogic SIP Server an outbound proxy server is specified using the proxy element in
sipserver.xml. The proxy element defines one or more proxy server URIs. You can change the

Configuring and Managing WebLogic SIP Server


{DOCROOT}/programming/accesslogging.html
{DOCROOT}/programming/index.html
{DOCROOT}/programming/index.html

XML Element Description

behavior of the proxy process by setting a proxy policy with the proxy-policy tag. Listing 4-3
describes the possible values for the proxy elements.

The default behavior is as if domain policy is in effect. The proxy policy means that the request
is sent out to the configured outbound proxy and the route headers in the request preserve any
routing decision taken by WebLogic SIP Server. This enables the outbound proxy to send the
request over to the intended recipient after it has performed its actions on the request. The proxy
policy comes into effect only for the initial requests. As for the subsequent request the Route Set
takes precedence over any policy in a dialog. (If the outbound proxy wants to be in the Route Set
it can turn record routing on).

Also if a proxy application written on WebLogic SIP Server wishes to override the configured
behavior of outbound proxy traversal, then it can add a special header with name
“X-BEA-Proxy-Policy” and value “domain”. This header is stripped from the request while
sending, but the effect is to ignore the configured outbound proxy. The X-BEA-Proxy-Policy
custom header can be used by applications to override the configured policy on a
request-by-request basis. The value of the header can be “domain” or “proxy”. Note, however,
that if the policy is overridden to “proxy,” the configuration must still have the outbound proxy
URISs in order to route to the outbound proxy.

Table 4-3 Nested proxy Elements

Element Description

routing-policy An optional element that configures the behavior of the proxy.
Valid values are:

* domain - Proxies messages using the routing rule defined
by RFC 3261, ignoring any outbound proxy that is specified.

e proxy - Sends the message to the downstream proxy
specified in the default proxy URI. If there are multiple
proxy specifications they are tried in the order in which they
are specified. However, if the transport tries a UDP proxy,
the settings for subsequent proxies are ignored.

uri The TCP or UDP URI of the proxy server. You must specify at
least one URI for a proxy element.

Listing 4-4 shows the default proxy configuration for WebLogic SIP Server domains. The
request in this case is created in accordance with the SIP routing rules, and finally the request is
sent to the outbound proxy “sipoutbound.bea.com”.

Configuring and Managing WebLogic SIP Server D-13



Engine Tier Configuration Reference (sipserver.xml)

D-14

Listing 4-4 Sample proxy Definition

<proxy>
<routing-policy>proxy</routing-policy>
<uri>sip:sipoutbound.bea.com:5060</uri>
<!-- Other proxy uri tags can be added. -->

</proxy>

t1-timeout-interval

This element sets the value of the SIP protocol T1 timer, in milliseconds. Timer T1 also specifies
the initial values of Timers A, E, and G, which control the retransmit interval for INVITE
requests and responses over UDP.

Timer T1 also affects the values of timers F, H, and J, which control retransmit intervals for
INVITE responses and requests; these timers are set to a value of 64*T1 milliseconds. See the
SIP: Session Initiation Protocol for more information about SIP timers. See also “Configuring
NTP for Accurate SIP Timers” on page 4-13.

If t1-timeout-interval is not configured, WebLogic SIP Server uses the SIP protocol default
value of 500 milliseconds.

t2-timeout-interval

This elements sets the value of the SIP protocol T2 timer, in seconds. Timer T2 defines the
retransmit interval for INVITE responses and non-INVITE requests. See the SIP: Session
Initiation Protocol for more information about SIP timers. See also “Configuring NTP for
Accurate SIP Timers” on page 4-13.

If t2-timeout-interval is not configured, WebLogic SIP Server uses the SIP protocol default
value of 4 seconds.

t4-timeout-interval

This elements sets the value of the SIP protocol T4 timer, in seconds. Timer T4 specifies the
maximum length of time that a message remains in the network. Timer T4 also specifies the
initial values of Timers I and K, which control the wait times for retransmitting ACKs and
responses over UDP. See the SIP: Session Initiation Protocol for more information about SIP
timers. See also “Configuring NTP for Accurate SIP Timers” on page 4-13.

Configuring and Managing WebLogic SIP Server



XML Element Description

If t4-timeout-interval is not configured, WebLogic SIP Server uses the SIP protocol default
value of 5 seconds.

timerB-timeout-interval

This elements sets the value of the SIP protocol Timer B, in milliseconds. Timer B specifies the
length of time a client transaction attempts to retry sending a request. See the SIP: Session
Initiation Protocol specification for more information about SIP timers. See also “Configuring
NTP for Accurate SIP Timers” on page 4-13.

If timerB-timeout-interval is not configured, the Timer B value is derived from timer T1
(64*T1, or 32000 milliseconds by default).

timerF-timeout-interval

This elements sets the value of the SIP protocol Timer F, in milliseconds. Timer F specifies the
timeout interval for retransmitting non-INVITE requests. See the SIP: Session Initiation Protocol
specification for more information about SIP timers. See also “Configuring NTP for Accurate SIP
Timers” on page 4-13.

If timerF-timeout-interval is not configured, the Timer F value is derived from timer T1
(64*T1, or 32000 milliseconds by default).

max-application-session-lifetime

This element sets the maximum amount of time, in minutes, that a SIP application session can
exist before WebLogic SIP Server invalidates the session. By default there is no limit for SIP
session lifetimes.

enable-local-dispatch

enable-local-dispatch is a server optimization that helps avoid unnecessary network traffic
when sending and forwarding messages. You enable the optimization by setting this element
“true.” When enable-1local-dispatch enabled, if a server instance needs to send or forward a
message and the message destination is the engine tier’s cluster address or the local server
address, then the message is routed internally to the local server instead of being sent via the
network. Using this optimization can dramatically improve performance when chained
applications process the same request as described in Composing SIP Applications in Developing
SIP Servlets with WebLogic SIP Server.

Configuring and Managing WebLogic SIP Server D-15


{DOCROOT}/programming/index.html
{DOCROOT}/programming/index.html
{DOCROOT}/programming/composition.html

Engine Tier Configuration Reference (sipserver.xml)

You may want to disable this optimization if you feel that routing internal messages could skew
the load on servers in the engine tier, and you prefer to route all requests via a configured load
balancer.

By default enable-local-dispatch is set to “false.”

cluster-loadbalancer-map

The cluster-loadbalancer-map element is used only when upgrading WebLogic SIP Server
software, or when upgrading a production SIP Servlet to a new version. It is not required or used
during normal server operations.

During a software upgrade, multiple engine tier clusters are defined to host the older and newer
software versions. A cluster-loadbalancer-map defines the virtual IP address (defined on
your load balancer) that correspond to an engine tier cluster configured for an upgrade. WebLogic
SIP Server uses this mapping to ensure that engine tier requests for timers and call state data are
received from the correct “version” of the cluster. If a request comes from an incorrect version of
the software, the cluster-loadbalancer-map entries are used to forward the request to the
correct cluster.

Each cluster-loadbalancer-map entry contains the two elements described in

Table 4-4 Nested cluster-loadbalancer-map Elements

Element Description
cluster-name The configured name of an engine tier cluster.
sip-uri The internal SIP URI that maps to the engine tier cluster. This

corresponds to a virtual IP address that you have configured in
your load balancer. The internal URI is used to forward requests
to the correct cluster version during an upgrade.

Listing 4-5 shows a sample cluster-loadbalancer-map entry used during an upgrade.

Listing 4-5 Sample cluster-loadbalancer-map Entry

<cluster-loadbalancer-map>

<cluster-name>EngineCluster</cluster-name>

D-16 Configuring and Managing WebLogic SIP Server



XML Element Description

<sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>

<cluster-name>EngineCluster2</cluster-name>

<sip-uri>sip:172.17.0.2:5060</sip-uri>

</cluster-loadbalancer-map>

default-behavior

This element defines the default behavior of the WebLogic SIP Server instance if the server
cannot match an incoming SIP request to a deployed SIP Servlet (or if the matching application
has been invalidated or timed out). Valid values are:

e proxy—Act as a stateless proxy server.

e ua—Act as a User Agent.
proxy is used as the default if you do not specify a value.
When acting as a User Agent (UA), WebLogic SIP Server acts in the following way in response
to SIP requests:

e ACK requests are discarded without notice.

e CANCEL or BYE requests receive response code 481 - Transaction does not exist.

o All other requests receive response code 500 - Internal server error.

When acting as a stateless proxy requests are automatically forwarded to an outbound proxy (see
“proxy—-Setting Up an Outbound Proxy Server” on page D-12) if one is configured. If no proxy
is defined, Weblogic SIP Server proxies to a specified Request URI only if the Request URI does
not match the IP and port number of a known local address for a SIP Servlet container, or a load
balancer address configured for the server. This ensures that the request does not constantly loop
to the same servers. When the Request URI matches a local container address or load balancer
address, WebLogic SIP Server instead acts as a UA.

sip-security

WebLogic SIP Server enables you to configure one or more trusted hosts for which authentication is
not performed. When WebLogic SIP Server receives a SIP message, it calls getRemoteaddress ()

Configuring and Managing WebLogic SIP Server D-17



Engine Tier Configuration Reference (sipserver.xml)

D-18

on the SIP Servlet message. If this address matches an address defined in the server's trusted host list,
no further authentication is performed for the message.

The sip-security element defines one or more trusted hosts, for which authentication is not
performed. The sip-security element contains one or more trusted-authentication-host
elements, each of which contains a trusted host definition. A trusted host definition can consist
of an IP address (with or without wildcard placeholders) or a DNS name. Listing 4-6 shows a
sample sip-security configuration.

Listing 4-6 Sample Trusted Host Configuration

<sip-security>

<trusted-authentication-host>myhostl.mycompany.com</trusted-authenticat

ion-host>
<trusted-authentication-host>172.*</trusted-authentication-host>

</sip-security>

Configuring and Managing WebLogic SIP Server



APPENDIXﬂ

Data Tier Configuration Reference
(datatier.xml)

The following sections provide a complete reference to the data tier configuration file,

datatier.xml:
e “Overview of datatier.xml” on page E-1
e “Editing datatier.xml” on page E-2
e “XML Schema” on page E-2
e “Example datatier.xml File” on page E-3

e “XML Element Description” on page E-3

Overview of datatier.xml

The datatier.xml configuration file identifies servers that manage the concurrent call state for
SIP applications, and defines how those servers are arranged into data tier partitions. A partition
refers to one or more data tier server instances that manage the same portion of the call state.
Multiple servers in the same partition are referred to as replicas because they all manage a copy
of the same portion of the call state.

datatier.xml is stored in the subdirectory DOMAIN _DIR/sipserver/config/ where
DOMAIN_DIR is the root directory of the WebLogic SIP Server domain.

Configuring and Managing WebLogic SIP Server E-1



Data Tier Configuration Reference (datatier.xml)

Editing datatier.xml

You can edit datatier.xml using either the Administration Console or a text editor. Note that
changes to the data tier configuration cannot be applied to servers dynamically; you must restart
servers in order to change data tier membership or reconfigure partitions.

XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

targetNamespace="http://bea.com/wcp/sip/management/internal /webapp”
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified”
xmlns:data-tier="http://bea.com/wcp/sip/management/internal /webapp”>
<xsd:element name="data-tier”>
<xsd:complexType>
<xsd:sequence>

<xsd:element name="partition” type="data-tier:partitionType”

minOccurs="0" maxOccurs="500"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="partitionType”>
<xsd:sequence>
<xsd:element name="name” type="xsd:string”/>

<xsd:element name="server-name” type="xsd:string” minOccurs="1"

maxOccurs="8"/>
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

E-2 Configuring and Managing WebLogic SIP Server



Example datatier.xml File

Example datatier.xml File

Listing 4-7 shows the template datatier.xml file created using the Configuration Wizard. See

also “Example Data Tier Configurations and Configuration Files” on page 3-4.

Listing 4-7 Default datatier.xml File

<st:data-tier

xmlns:st="http://bea.com/wcp/sip/management/internal /webapp”>

<st:partition>
<st:name>partition-0</st:name>
<st:server-name>replical</st:server-name>
<st:server-name>replical2</st:server-name>

</st:partition>

</st:data-tier>

XML Element Description

datatier.xml contains one or more partition elements that define servers’ membership in a
data tier partition. All data tier clusters must have at least one partition.” Each partition
contains the XML elements described in Table 4-5.

Configuring and Managing WebLogic SIP Server E-3



Data Tier Configuration Reference (datatier.xml)

E-4

Table 4-5 Nested partition Elements

Element

Description

name

A String value that identifies the name of the partition. BEA
recommends including the number of the partition (starting at 0)
in the text of the name for administrative purposes. For example,
“partition-0.”

server-name

Specifies the name of a WebLogic SIP Server instance that
manages call state in this partition. You can define up two three
servers per partition element. Multiple servers in the same
partition maintain the same call state data, and are referred to as
replicas.

BEA recommends including the number of the server (starting
with 0) and the number of the partition in the server name for
administrative purposes. For example, “replica-0-0.”

Configuring and Managing WebLogic SIP Server



APPENDIXﬂ

Tuning JVM Garbage Collection for
Production Deployments

The following sections describe how to tune Java Virtual Machine (JVM) garbage collection
performance for engine tier servers:

e “Goals for Tuning Garbage Collection Performance” on page F-1
e “Tuning Garbage Collection with JRockit” on page F-2

e “Tuning Garbage Collection with Sun JDK” on page F-2

Goals for Tuning Garbage Collection Performance

Production installations of WebLogic SIP Server generally require extremely small response
times (under 50 milliseconds) for clients at all times, even under peak server loads. A key factor
in maintaining brief response times is the proper selection and tuning of the JVM’s Garbage
Collection (GC) algorithm for WebLogic SIP Server instances in the engine tier.

Whereas certain tuning strategies are designed to yield the lowest average garbage collection
times or to minimize the frequency of full GCs, those strategies can sometimes result in one or
more very long periods of garbage collection (often several seconds long) that are offset by
shorter GC intervals. With a production SIP Server installation, all long GC intervals must be
avoided in order to maintain response time goals.

The sections that follow describe GC tuning strategies for JRockit and Sun’s JVM that generally
result in best response time performance.

Configuring and Managing WebLogic SIP Server F-1



Tuning JVM Garbage Collection for Production Deployments

Tuning Garbage Collection with JRockit

When using BEA’s JRockit JVM, the best response time performance is generally obtained by
using the single-spaced, concurrent garbage collector with a very small (1%) compaction rate.
These settings can be obtained with the following startup options:

® —Xgc:singlecon specifies the use of the single-spaced, concurrent garbage collector

e —XXcompactratio:1 specifies that only one percent of the heap is compacted after each
garbage collection.

It is important to use the low compaction ratio setting along with the single-spaced GC algorithm
to obtain the best response time performance. Note, however, that using the indicated compaction
ratio may be problematic if you deploy applications that periodically allocate drastically different
sizes of memory in the heap (for example a 10K allocation followed by byte-sized increments).

Warning: If you deploy applications that allocate varying sizes of memory, using a small
compaction ratio may lead to Out Of Memory errors or forced compaction, both of
which must be avoided in a production system. You must thoroughly analyze
deployed applications in a stage environment to determine which JVM settings are
acceptable for your system.

JRockit provides several monitoring tools that you can use to analyze the JVM heap at any given
moment, including:

e JRockit Runtime Analyzer—provides a view into the runtime behavior of garbage
collection and pause times.

e JRockit Stack Dumps—reveals applications’ thread activity to help you troubleshoot and/or
improve performance.

Use these and other tools in a controlled environment to determine the effects of JVM settings
before you use the settings in a production deployment. See the BEA WebLogic JRockit 1.4.2
SDK Documentation for more information about JRockit and JRockit profiling tools.

Tuning Garbage Collection with Sun JDK

F-2

When using Sun’s JDK, the goal in tuning garbage collection performance is to reduce the time
required to perform a full garbage collection cycle. You should not attempt to tune the JVM to
minimize the frequency of full garbage collections, because this generally results in an eventual
forced garbage collection cycle that may take up to several full seconds to complete.

Configuring and Managing WebLogic SIP Server


http://e-docs.bea.com/wljrockit/docs142/tuning/basic.html

http://e-docs.bea.com/wljrockit/docs142/userguide/apstkdmp.html
http://e-docs.bea.com/wljrockit/docs142/index.html
http://e-docs.bea.com/wljrockit/docs142/index.html

Tuning Garbage Collection with Sun JDK

The simplest and most reliable way to achieve short garbage collection times over the lifetime of
a production server is to use a fixed heap size with the default collector and the parallel young
generation collector, restricting the new generation size to at most one third of the overall heap.
The following example JVM settings highlights the key garbage collection options used in this
strategy:

—-XX:4+UseTLAB -XX:+UseParNewGC -Xms768m -Xmx768m -XX:NewSize=256m
-XX:MaxTenuringThreshold=0 -XX:SurvivorRatio=128

The above options have the following effect:

e -xx:+UseTLAB—Uses thread-local object allocation blocks. This improves concurrency by
reducing contention on the shared heap lock.

e -XX:+UseParNewGC—Uses a parallel version of the young generation copying collector
alongside the default collector. This minimizes pauses by using all available CPUs in
parallel. The collector is compatible with both the default collector and the Concurrent
Mark and Sweep (CMS) collector.

e -Xms768m, -Xmx768m—Fixes the heap size to increase the predictability of garbage
collection. -xmx768m limits the heap size so that even Full GCs do not trigger SIP
retransmissions. -xms sets the starting size to match to prevent pauses caused by heap
expansion.

® -XX:NewSize=256m—Defines the minimum young generation size. BEA recommends
testing your production applications starting with a young generation size of 1/3 the total
heap size. Using a larger young generation size causes fewer minor collections to occur but
may compromise response time goals by cause longer-running full collections.

You can fine-tune the frequency of minor collections by gradually reducing the size of the
heap allocated to the young generation to a point below which the observed response time
becomes unacceptable.

® -XX:MaxTenuringThreshold=0—Makes the full NewSize available to every NewGC
cycle, and reduces the pause time by not evaluating tenured objects. Technically, this
setting promotes all live objects to the older generation, rather than copying them.

® -XX:SurvivorRatio=128—Specifies a high survivor ratio, which goes along with the
zero tenuring threshold to ensure that little space is reserved for absent survivors.

Configuring and Managing WebLogic SIP Server F-3



Tuning JVM Garbage Collection for Production Deployments

F-4 Configuring and Managing WebLogic SIP Server



APPENDlxa

Avoiding JVM Delays Caused by
Random Number Generation

The library used for random number generation in Sun’s JVM relies on /dev/random by default
for UNIX platforms. This can potentially block the WebLogic SIP Server process because on
some operating systems /dev/random waits for a certain amount of “noise” to be generated on
the host machine before returning a result. Although /dev/random is more secure, BEA
recommends using /dev/urandomif the default JVM configuration delays WebLogic SIP Server
startup.

To determine if your operating system exhibits this behavior, try displaying a portion of the file
from a shell prompt:

head -n 1 /dev/random

If the command returns immediately, you can use /dev/random as the default generator for
SUN’s JVM. If the command does not return immediately, use these steps to configure the JVM
to use /dev/urandom:

1. Open the $JAVA_HOME/jre/lib/security/java.security file in a text editor.

2. Change the line:
securerandom. source=/dev/random
to read:

securerandom. source=/dev/urandom

3. Save your change and exit the text editor.

Configuring and Managing WebLogic SIP Server G-1



Avoiding JVM Delays Caused by Random Number Generation

G-2 Configuring and Managing WebLogic SIP Server



	Overview of the WebLogic SIP Server Architecture
	Goals of the WebLogic SIP Server Architecture
	Load Balancer
	Engine Tier
	Data tier
	Example Hardware Configuration
	Alternate Configurations

	Overview of WebLogic SIP Server Configuration and Management
	Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server
	Engine and Data Tier Configuration Overview
	Configuration Implementation

	Startup Sequence for a WebLogic SIP Server Domain
	Methods and Tools for Performing Configuration Tasks
	Administration Console
	Upgrade Utility
	WebLogic Scripting Tool (WLST)
	Additional Configuration Methods
	Editing Configuration Files
	Custom JMX Applications


	Administration Server Best Practices
	Adding threads to weblogic.admin.RMI and weblogic.admin.HTTP

	Common Configuration Tasks

	Configuring Data Tier Partitions and Replicas
	Overview of Data Tier Configuration
	datatier.xml Configuration File
	Configuration Requirements and Restrictions

	Best Practices for Configuring and Managing Data Tier Servers
	Example Data Tier Configurations and Configuration Files
	Data Tier with One Partition
	Data Tier with Two Partitions
	Data Tier with Two Partitions and Two Replicas

	Monitoring and Troubleshooting Data Tier Servers

	Configuring Engine Tier Container Properties
	Overview of SIP Container Configuration
	Using the Administration Console to Configure Container Properties
	Locking and Persisting the Configuration

	Configuring Container Properties Using WLST (JMX)
	ConfigManagerRuntimeMBean Usage and Reference
	Configuration MBeans for the SIP Servlet Container
	Locating the WebLogic SIP Server MBeans

	WLST Configuration Examples
	Invoking WLST
	WLST Template for Configuring Container Attributes
	Creating and Deleting MBeans
	Working with URI Values

	Reverting to the Original Boot Configuration
	Configuring NTP for Accurate SIP Timers

	0
	Capacity Planning for WebLogic SIP Server Deployments
	Introduction to Capacity Planning
	Determining Performance Goals
	Basic Hardware Configuration and Throughput Values
	Throughput Values for WebLogic SIP Server Instances

	Sample Deployment Scenarios
	Small Deployment
	Medium Deployment
	Large Deployment

	Managing WebLogic SIP Server Network Resources
	Overview of Network Configuration
	Configuring Load Balancer Addresses
	Multiple Load Balancers and Multihomed Load Balancers

	Configuring Network Channels for SIP or SIPS
	Reconfiguring an Existing Channel
	Creating a New SIP or SIPS Channel

	Configuring SIP Channels for Multi-Homed Machines
	Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)
	Configuring Unique Listen Address Attributes for Data Tier Replicas

	Production Network Architectures and WebLogic SIP Server Configuration
	Overview
	Single-NIC Configurations with TCP and UDP Channels
	Static Port Configuration for Outbound UDP Packets

	Multihomed Server Configurations Overview
	Multihomed Servers Listening On All Addresses (IP_ANY)
	Multihomed Servers Listening on Multiple Subnets
	Understanding the Route Resolver
	IP Aliasing with Multihomed Hardware

	Load Balancer Configurations
	Single Load Balancer Configuration
	Multiple Load Balancers and Multihomed Load Balancers
	Network Address Translation Options
	IP Masquerading Alternative to Source NAT



	Overview of WebLogic SIP Server Security Features
	Authentication for SIP Servlets
	Authentication Providers

	Overriding Authentication with Trusted Hosts
	P-Asserted-Identity Support
	Role Assignment for SIP Servlet Declarative Security
	Security Event Auditing
	Common Security Configuration Tasks

	Configuring Digest Authentication
	Overview of Digest Authentication
	What Is Digest Authentication?
	Digest Authentication Support in WebLogic SIP Server 2.1

	Prerequisites for Configuring LDAP Digest Authentication
	Steps for Configuring LDAP Digest Authentication
	Configure the LDAP Server or RDBMS
	Using Unencrypted Passwords
	Using Precalculated Hash Values
	Using Reverse-Encrypted Passwords

	Reconfigure the DefaultAuthenticator Provider
	Configure an Authenticator Provider
	Configure a New Digest Identity Asserter Provider
	Configure an LDAP Digest Identity Asserter Provider
	Configure an RDBMS Digest Identity Asserter Provider


	Sample Digest Authentication Configurations
	Oracle Internet Directory Server
	WebLogic SIP Server Embedded LDAP
	Store User Password Information in the Description Field
	Set the Embedded LDAP Password
	Configure the Digest Identity Asserter Provider



	Configuring Client-Cert Authentication
	Overview of Client-Cert Authentication
	Configuring SSL and X509 for WebLogic SIP Server
	Configuring the Default Identity Asserter
	Configuring the LDAP X509 Identity Asserter

	Configuring WebLogic SIP Server to Use WL-Proxy-Client-Cert
	Supporting Perimeter Authentication with a Custom IA Provider

	Configuring P-Asserted-Identity Assertion
	Understanding Trusted Host Forwarding with P-Asserted-Identity
	Overview Strict and Non-Strict P-Asserted-Identity Asserter Providers
	Configuring a P-Asserted-Identity Assertion Provider

	Logging SIP Requests and Responses
	Overview of SIP Logging
	Using the Template Logging Servlet
	Deploying the Template Logging Application
	Using the Logging Servlet Implementation in Other Applications

	Defining Logging Servlets in sip.xml
	Configuring the Logging Level and Destination
	Specifying the Criteria for Logging Messages
	Using XML Documents to Specify Logging Criteria
	Using Servlet Parameters to Specify Logging Criteria

	Managing Logging Performance
	Enabling Log Rotation and Viewing Log Files
	trace-pattern.dtd Reference
	Adding Tracing Functionality to SIP Servlet Code

	Configuring SNMP
	Overview of WebLogic SIP Server SNMP
	Browsing the MIB
	Configuring SNMP
	SNMP Port Binding for WebLogic SIP Server
	Understanding and Responding to SNMP Traps
	Files for Troubleshooting
	Trap Descriptions
	sipAppDeployed
	sipAppUndeployed
	sipAppFailedToDeploy
	overloadControlActivated, overloadControlDeactivated
	licenseLimitExceeded
	serverStopped
	dataTierServerStopped
	replicaAddedToPartition
	replicaRemovedFromPartition
	connectionLostToPeer
	connectionReestablishedToPeer



	Upgrading Software and Applications in a Production Environment
	Overview of System and Application Upgrades
	Requirements for Upgrading a Production System
	Upgrading to a New Version of WebLogic SIP Server
	Configure the Load Balancer
	Configure the New Engine Tier Cluster
	Define the Cluster-to-Load Balancer Mapping
	Duplicate the SIP Servlet Container and Data Tier Configuration
	Upgrade Engine Tier Servers and Target Applications to the New Cluster
	Upgrade Data Tier Servers

	Upgrading a Deployed Production Application (Compatible Session Data)
	Upgrading a Deployed Production Application (Incompatible Session Data)
	Configure the Load Balancer
	Configure the New Engine Tier Cluster
	Define the Cluster-to-Load Balancer Mapping
	Migrate Engine Tier Servers and Target Applications to the New Cluster


	Applying Patches Using InstallPatch
	Overview of the InstallPatch Utility
	Required Environment for the InstallPatch Utility
	Syntax for Invoking the InstallPatch Utility
	Example InstallPatch Commands
	Editing the MANIFEST Classpath in GUI Mode

	Upgrading a WebLogic SIP Server 2.0.x Configuration to Version 2.1
	About the Upgrade Program
	Steps for Upgrading an Existing Configuration
	Required Environment for the UpgradeConfig Utility
	wlss.UpgradeConfig Reference

	Engine Tier Configuration Reference (sipserver.xml)
	Overview of sipserver.xml
	Graphical Representation

	Editing sipserver.xml
	Steps for Editing sipserver.xml

	XML Schema
	Example sipserver.xml File
	XML Element Description
	overload
	Overload Control Based on Session Generation Rate
	Overload Control Based on Execute Queue Length
	Two Levels of Overload Protection

	message-debug
	proxy—Setting Up an Outbound Proxy Server
	t1-timeout-interval
	t2-timeout-interval
	t4-timeout-interval
	timerB-timeout-interval
	timerF-timeout-interval
	max-application-session-lifetime
	enable-local-dispatch
	cluster-loadbalancer-map
	default-behavior
	sip-security


	Data Tier Configuration Reference (datatier.xml)
	Overview of datatier.xml
	Editing datatier.xml
	XML Schema
	Example datatier.xml File
	XML Element Description

	Tuning JVM Garbage Collection for Production Deployments
	Goals for Tuning Garbage Collection Performance
	Tuning Garbage Collection with JRockit
	Tuning Garbage Collection with Sun JDK

	Avoiding JVM Delays Caused by Random Number Generation


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


