'a' oo,

; !
L/ ea

BEA WebLogic
Collaborate

Developer Guide

BEA WeblLogic Collaborate 1.0.1
Documen t Edition 1.0.1
March 2001



Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
thelaw to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trand ated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commerciad Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document i s subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS"' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONSREGARDING THE USE, OR THE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebL ogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebLogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
BEA WebL ogic Collaborate Developer Guide

Document Edition Date Software Version

101 March 2001 101




Contents

About This Document

What Y OU NEEd 10 KINOW ....cocviiiiiiiecie ittt et st st st erae e Xii
HOw to Print thiS DOCUMENL ..........ccoie ittt s Xii
Related INfOrmation..........coccioiiiiiie et st st Xiii
(O] g1 "o B U PO Xiii
Documentation CONVENLIONS .........ccoceiueitieiiieie et ettt ee s se e e e e sbeesresra s Xiv

1. Introduction

MesSaging APPHICALIONS ......cvveieieeeie ettt e e 1-2
Management APPHICALTONS........cccci ettt e s e 1-3
LOGIC PIUG-INS ...ttt 1-4

2. Using Workflows to Exchange Business Messages

ADOUL USING WOPKFIOWS......ccoie ettt e s e 2-2
About This WebL ogic Process Integrator Version .........c.coevveeveveeveresenens 2-2
ArChiteCtural OVEIVIEW ......c.coveviriieireceirici et e e 2-3

ArchiteCture DIiagram..........ceoeirerre s 2-3
WebL ogic Process Integrator Components
in WebLogic Collaborate. .........cvvevireerirerineiseeese e 2-4
KEY CONCEPLS ..ottt ettt e et et 2-5
Workflows, Workflow Templates, and Workflow
Template DEfiNItiONS ........cvvirre e 2-5
Conversations, Conversation Definitions, and Business Messages.... 2-6
Initiators and PartiCipantS.........c.ccoeereeereeene e e 2-7
Sent and Received BUSINESS MESSAZES .....c.ceuvrveeireeeireeiiseieeies e 2-9
RUN-TIME Prer@qUISITES........coccuireieireceirieeiriee et e e e 29
Summary of Workflow Integration Tasks.........c.coveereincinencinene 2-10

BEA WebL ogic Collaborate Devel oper Guide i



AdMINISratiVE TASKS......ceeeiiiie i e s et r e s ee s e e ste s sae e 2-10

DESIGN TASKS ... cveviienie s seeieiieseeeeeeeee e e e seereeaeseeseeeenteseeneeneeneeneas 2-11
Programming TasKS.......cceceereeereee e s 2-13
Designing Workflows for Exchanging Business Messages...........ccoeeneevenenn. 2-14
Using Workflow Templates Created in Other WebL ogic
Process INtegrator VErSIONS. ......c.covueveeereeie ettt eresienenienens 2-15
Exporting Workflow Template Definitions...........ccccoevveenevncnene. 2-15
Importing Workflow Template Definitions..........cccveeveenennenene. 2-16
Defining Conversation PrOPErties..........ouuiiireiireiineines e 2-16
Opening Workflow Template Definitions.........c.ccoovereieeieneeine e 2-17
Linking Workflows to CONVErSations ...........ccceveevereereneereneeeneenienens 2-19
Defining the Quality of Service for Message Delivery
at the Template LeVE ..o 2-20
Linking C-Enabler Session Names to a Workflow Template
DEFINITION ... s 2-24
DefiNiNg Start ACHIONS......ccovieiiieierieieee e e 2-26
Defining the Start for a Conversation Initiator Workflow ................ 2-27
Defining the Start for a Conversation Participant Workflow............ 2-29
Defining Conversation TErMINaioN..........ccooevereneneeene e 2-31
Defining the Termination of Conversation Initiator Workflows....... 2-31
Defining the End of Conversation Participant Workflows............... 2-33
Defining WebL ogic Process Integrator Variables for Workflows........... 2-35
Associations Between WebL ogic Process Integrator Variables
and Java Data TYPES .....cveivereieriie ettt 2-36
Rules for Defining WebL ogic Process Integrator Variables............. 2-37
Defining INput Variables..........cooviireiincirecce s 2-38
Defining Output Variables..........ccove e 2-39
Working With BUSINESS MESSAJES ......c.cveueieriie ettt s 2-41
ADOUL BUSINESS MESSAJES ...ttt sttt et sttt ben e nenens 2-41
Summary of Prerequisite Tasks for Exchanging Business M essages....... 2-42
Defining Variables and Manipulating Business Messages ............oeu.... 2-43
Defining WebL ogic Process Integrator Variables for Business
MESSAGES ..ot e e e e 2-43
Defining Manipulate Business Message ACLioNS...........ccoeereenienens 2-44
Writing Business Operations to Manipulate Business Messages...... 2-51
Creating and Defining Messagesto Send..........ovvvverereenieeene e 2-53

BEA WebL ogic Collaborate Developer Guide



Stepsfor Creating BUSINESS MESSAJES. .......c.ovrveiereiereienee e 2-53

Defining Send Business Message ACLiONS.........covveeeeneneneeneneene 2-57
Defining the Quality of Service for Message Delivery for a Send
BusiNessS Message ACHION .......ccccvveineeinneec e 2-62
Assigning Message Token Information
to WebL ogic Process Integrator Variables...........cccooocoviinennne 2-63
Defining the Workflow to Receive Business Messages...........cvvvveeannn. 2-66
Defining the Business Message Start for Conversation Participant
WOPKFIOWS ..ot 2-67
Defining Business Message Recaive EVENts ..., 2-70
Steps for Receiving BuSINESS MESSAgES .......c.vevevereierenieneienee e 2-72
Developing Applications That Start Conversation Initiator Workflows......... 2-76
WebL ogic Process Integrator Integration APl ... ineneie e e 2-76
Creating Workflow C-Enabler SESSIONS .........coovveirieinienieiee e 2-77
Programming Steps for Accessing Conversation Initiator Workflows.... 2-78
Step 1: Import the Necessary Packages ........coovevvevnienece e 2-78
Step 2: Initialize Input Variables ... 2-79
Step 3: Establish a Workflow C-Enabler Session..........cccocevieenne. 2-81
Step 4: Create a Workflow Instance for a Specific Workflow
TOMPIALE ...ttt e s 2-83
Step 5: Start aWorkflow Instance ..o 2-84
Step 6: Wait for the Workflow Instance to Complete..............c...... 2-85
Step 7: Handle Results in Output Variables..........ccoooeeieneiencienen, 2-85
Step 8: Handling EXCEPLIONS........c.cevieeirieiire et s 2-86
3. Using XOCP C-Enabler Applications to Exchange Business
Messages
About XOCP C-Enabler AppliCaLIONS...........couruieriiiri e 3-2
ATrChIteCtUral OVEIVIEW .......oeieieceiece et e e e s 3-3
KBY CONCEPLS ....vcverire ittt e et nn e 34
XOCP C-Enabler AppliCationS.........cocvevirerererineineene s s 35
C-Enabler Class Library ..o e 35
Conversations and Conversation Definitions..........c.cccvevve e ineneas 3-5
XOCP Business Messages and Message Envelopes.........c.ccocvevnieee 3-6
Conversation Initiators and PartiCipants............coccereeriennenenenennne 3-10
Conversation CoOrdiNaLOrS .........ccovevirierenerenerenere e 311

BEA WebL ogic Collaborate Developer Guide v



Vi

Trading Partner SEALES...........ceivevirierere e e 3-13

SECUIE MESSAOING. . ..veeve ettt s s e s e 3-13
Key Tasks for C-Enabler AppliCations............ccoeveereinecineineeinecnieeens 3-14
JOINING @ C-SPACE......ccvireetirietiriet ettt s e e 3-14
Registering for aRolein a Conversation............oeeveereenesenenenee 3-15
Engaging in Conversations with Trading Partners............ccccocvevene. 3-16
Shutting Down a C-Enabler Session to Leave a C-Space................. 3-17
Run-Time INformation FIOW .........ccccoeiieneie i 3-18
Information FIOW Digram..........ccccoeveeerereneee et 3-19
Steps in the INformation FIOW ... 3-20
Programming Steps for C-Enabler Applications...........coeeeeeneeeneceneseene e 3-22
Step 1: IMport PaCKages. .........oovee e s 3-23
Step 2: Implement the ConversationHandler Interface........cccocvveeene. 3-24
Step 3: Create a C-Enabler SESSION........coveveierereireiiree e 3-25
Step 4: Register a Conversation Handler ...........ccoceveiniinic e 3-25
Step 5: Initiate or Participate in a Conversation............ccoeeveerernenenees 3-26
Step 6: Exchange BuSINESS MESSAgES .........covevereevireeeerieiirieeisieienie e 3-27
Step 7: End the CONVErSatioN ..........coceveeirieeirieireeine e 3-27
Participant Leaves a CoNVErsation...........ccocoevreveeeseeeseeeseereneerenene 3-27
Initiator Terminates & CoONVErSation............ccuveeerueeerieeerieene e senees 3-28
Step 8: Shut Down the C-Enabler Session ..........covveveereneine e 3-29
Sending XOCP BUSINESS MESSAJES.......ccvivereriereere et neereseerereereseereneeresiesesnenens 3-29
Step 1: Create the BUSINESS MESSAJE ......c.vvueeiriireire et 3-30
Importing the Required Packages ............ccooveereeinecinecineenecnieins 3-30
Creating Payload Parts..........ccovireirencnene s 3-30
Creating the XOCP Business Message and Adding Payload Parts... 3-32
Step 2: Specify the Recipients of the Business Message .......cccocevvenene. 3-33
Specifying a Particular Trading Partner ...........coccooveevneeinnesine e 3-33
Using C-Enabler XPath Expressions to Specify Message Recipient
CHIEITA oottt e e 3-34
Step 3: Specify the Quality of Service for Message Delivery.................. 3-37
Automatic Quality of Service FEAtUreS.........ccovviveincineceneineiens 3-37
QUAlItYOFSErVICE Class.......cvuiuireieireieiriei et 3-38
(000 [l e o1 o] 1= OSSR 3-40
Setting the Message Delivery Confirmation Level ... 3-40

BEA WebL ogic Collaborate Developer Guide



Setting Message DUrability .......c.ccooveineincinienec e 341

Setting the Message TiMEOUL .........ccccveeevere et 3-44
Setting the Number of Delivery Retry Attempts .......cccooevvenrienennnne 3-44
Setting the Correlation ID for aBusiness Message........cooevvenenen. 3-45
Step 4: Send the XOCP BUSINESS MESSAGE.......cvevvrereireeiireeiie e 3-46
Synchronous Message DElIVENY ........cocereere e e 3-46
Deferred Synchronous Message DeliVery..........coovviniennenceinne 3-46
Step 5: Check the Delivery Status of the Business Message .........coe.... 3-47
MESSAOE TOKENS.....eviieieie sttt e e 3-48
Delivery Status Tracking .......ccooeeveeineeen e e 3-49
Message Tracking LOCALIONS .............cccurinireciie e 3-50
Receiving XOCP BUSINESS MESSAES ......cverevereriererie st seeieseseeneesenesseneenes 3-52
About Receiving XOCP BUSINESS MESSAJES .......evvrvereriereriereete e neeie e 3-52
Receiving an XOCP BUSINESS MESSAJE.........cccvrurucuriine s 3-53
TaskS PErfOrMEd ........ccooeviniciieeiiee et 3-53
CO0E LISHING .ottt sttt ettt 3-54

Developing Logic Plug-Ins

ADOUL LOGIC PIUG-INS ...t e e e 4-2
What Are Logic PIUG-INS?.......c.ooiiiiiicicee s 4-2
Logic Plug-IN ArChiteCtUe. ........couereereeee e e 4-3
Logic Plug-1n ProCessing TasKS........ccerruerrerriereee e 4-4
CBINS. ..ottt e bbb 4-4
Business Messages and Message ENVElOPES..........cooovveeneenieennicneieine 4-7
System and Custom Logic PIUG-INS........covceiiiinicine e 4-8

LOGIC PIUG-IN AP .ttt e e e e e e s 4-9

Rules and Guidelinesfor Logic PIUG-INS ..o 4-11

Creating and Adding LOgiC PIUG-INS......c.cooieireie e 4-13
Programming Steps for Logic PlUg-INS..........cccovvieiviiiiioi i 4-13

Step 1: Import the Necessary Packages ........ccovevvevnenece e e 4-14
Step 2: Implement the Plugin Interface ... 4-15
Step 3: Specify the Exception Processing Model .........ccoocoveeevevenene 4-15
Step 4: Implement the Process Method.............coveneeienicncn 4-17
Step 5: Get the Business Message from the Message Envelope....... 4-18
Step 6: Validate the BUSINESS MESSAJE......cc.erveveriererierinie e 4-18

BEA WebL ogic Collaborate Developer Guide Vil



viii

Step 7: Get Business Message Properties ... seene e 4-19
Step 8: Process the Business Message as Needed............cocoeeeevienene 4-19
AdMINISEratiVe TASKS.....ueueieereeeietierere e s e see e neens 4-19

5. Developing Management Applications

About Management APPlICALIONS.........ccveireeiriirerere e e 5-2
MBeans and the MBEaN SENVES ........c.cooiereienee e 5-2
MBEAN PACKBJES ......cve ettt sttt e 5-3

MBean Server Implementation ............coeevrereneineeneese s 5-3

C-HUD MBEANS.......oiiiiecie ettt s e e 5-4
C-ENabler MBEANS ..ottt e s 5-5
Configuration REQUITEMENLS ........ccceiriiireiireceire e 5-5
Programming Steps for Management AppliCations..........c.ccoeveveneenecineciineenne 5-6
Step 1: Import the Necessary Packages.........ccvvveereeenieeineeenieeinesene s 5-7
C-HUD EXAMPIE......oceieii et e 5-7
C-Enabler EXamPIe ...t e 5-8

Step 2: Get a Reference to the MBean Server Object ........covevvvvrereniene 5-8
Step 3: Construct an ObjectName ObJECL..........ccovviireirirc s 5-8
OBJECE NBIMES ...ttt e sttt eb e 5-9

Object Name EXPreSSIONS .......cocereeierieeerieiireiise s s 5-11

Step 4: Query the MBEaN SENVES .........ccoi it 5-11
C-HUD EXAMPIE....oieiei e 5-12
C-Enabler Code EXaMPIe..........oviiieiiiiine e 5-12

Step 5: Read the Attributes of the MBean............ccovovvrvninc e, 5-13
C-HUD EXAMPIE......ociiieie it e 5-13
C-Enabler EXampPle......ccooviiviiiec e e 5-14

Step 6: Navigate ACroSS MBEANS.........ccoveiireiireieireeiie e 5-15
Step 7: Handle EXCEPLIONS. .......c.ovvieireieirecirceie e e 5-15

6. Writing to the Log

ADOUL tNE L O ...ttt e e s e e e 6-1
L OQ FIES. ..ttt et e e 6-1
LOGAING APl ..ottt ettt bbb 6-2
SEVENLY LEVEIS ..ottt e e e 6-2
Writing MeSSageS t0 tE LOG......c.cvveuireeeireceireceiriei e s e 6-3

BEA WebL ogic Collaborate Developer Guide



Index

Importing the Logging Package............couveiriire i
Writing aLog Message with an INFO Severity Level ...
Writing a Message With a Specific Severity Level ...

BEA WebLogic Collaborate Devel oper Guide

iX



X

BEA WebL ogic Collaborate Developer Guide



About This Document

This document describes how to devel op applications to exchange business messages
and monitor run-time activitiesin c-hubs and c-enablers in the BEA WebLogic
Collaborate™ system.

This document is organized as follows:

m  Chapter 1, “Introduction,” provides an introduction to devel oping applications
for the BEA WebL ogic Collaborate environment.

m Chapter 2, “Using Workflows to Exchange Business Messages,” describes how
to exchange business messages using WebL ogic Process I ntegrator workflows.

m Chapter 3, “Using XOCP C-Enabler Applications to Exchange Business
Messages,” describes how to exchange business messages using c-enabler
applications that implement the c-enabler API.

m Chapter 4, “Developing Logic Plug-Ins,” describes how to manipulate business
messages as they travel through the c-hub.

m Chapter 5, “Developing Management Applications,” describes how to monitor
run-time activities in the c-hub and c-enabler by devel oping management
applications that implement the BEA WebL ogic Collaborate Managed Beans
(MBeans).

m  Chapter 6, “Writing to the Log,” describes how to write messages to thelog in
any BEA WebL ogic Collaborate application.

BEA WebL ogic Collaborate Developer Guide Xi



What You Need to Know

This document is intended primarily for:

m  Business process designers who will use WebL ogic Process Integrator studio to
design workflows that integrate with the BEA WebL ogic Collaborate
environment.

m  Application developers who will write Java applications that manage the
exchange of business messages or monitor run-time statisticsin the BEA
WebL ogic Collaborate environment.

m  System administrators who will set up and administer BEA WebL ogic
Collaborate applications.

For an overview of the BEA WebL ogic Collaborate architecture, see Overview in the
BEA WebLogic Collaborate Getting Started document.

How to Print this Document

Y ou can print acopy of thisdocument from aWeb browser, onefileat atime, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebL ogic Collaborate
documentation CD. Y ou can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

Xii BEA WebL ogic Collaborate Developer Guide



How to Print this Document

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup

Language (XML), and Java programming, seethe Bibliography in the BEA WebL ogic
Collaborate online documentation.

Contact Us!

Y our feedback on the BEA WebL ogic Collaborate documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Y our

comments will be reviewed directly by the BEA professionals who create and update
the BEA WebL ogic Collaborate documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebL ogic Collaborate 1.0 rel ease.

When contacting Customer Support, be prepared to providethefollowing information:

Your name, e-mail address, phone number, and fax number
Your company hame and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

BEA WebL ogic Collaborate Developer Guide

xiii



Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext  Indicates terms defined in the glossary.

Ctrl+Tab I ndicates that you must presstwo or more keys simultaneously.

italics I ndicates emphasis or book titles.

nonospace I ndicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and filenames and their extensions.
M onospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream h> void main ( ) the pointer psz
chrmod u+w *

\tux\ dat a\ ap

. doc

t ux. doc

Bl TMAP

fl oat
nonospace I dentifies significant wordsin code.
:)Zi(ff ace Example:

void commt ()

nonospace Identifies variables in code.
italic

Example:
text

String expr

UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:

LPT1

SIGNON

OR

Xiv BEA WebL ogic Collaborate Developer Guide



Documentation Conventions

Convention

tem

{1}

Indicates a set of choices in asyntax line. The braces themselves should
never be typed.

[]

Indicates optional itemsin asyntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-o0 name ] [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

m  That an argument can be repeated severa timesin acommand line

m  That the statement omits additional optional arguments

m  That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-o0 name ] [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsisitself should never be typed.

BEA WebLogic Collaborate Devel oper Guide XV



XVi BEA WebL ogic Collaborate Developer Guide



CHAPTER

1

Introduction

The following sections introduce the different kinds of WebL ogic Collaborate
applications:

m  Messaging Applications
m  Management Applications
m Logic Plug-Ins

The following figure shows where these types of applications reside in the WebL ogic
Collaborate system.

Figure1-1 Typesof WebL ogic Collaborate Applications

Lagiis C-Hub
Plu g—lns Management
9 Applications
C-Hub Node
C-Enabler 5 5 C-Enabler
Applications PP PP Applications

Trading Partner Trading Partner
C-Enabler Node C-Enabler Node

For an introduction to the WebL ogic Collaborate system, see Overview in BEA
WebLogic Collaborate Getting Started.

BEA WebL ogic Collaborate Devel oper Guide 1-1



1

Introduction

Messaging Applications

1-2

WebL ogic Collaborate messaging applications handle the exchange of business
messages among trading partners in ac-space. Messaging applications run on
c-enabler nodes and exchange business messages via the c-hub. Developers can
implement messaging applications in two different ways.

Table 1-1 Different Implementations of Messaging Applications

Implementation Option

Description

Workflow applications

Use WebL ogic Process Integrator workflows to
exchange business messages with other trading
partners. The WLPI Verifier application (in

\ exanpl es\ W pi veri fi er)isanexampleof a
workflow application.

C-Enabler applications

Use the flexible and powerful c-enabler API to
exchange business messages with other trading
partners. The Verifier application (in

\ exanpl es\ veri fier)isanexampleof a
c-enabler application.

For any given messaging application, the best implementation approach depends on
the particular needs of that application. Workflow applications provide design and
run-time tools to expedite application devel oppment. C-Enabler applications provide

greater programmatic control using Java APIs. Developers need to determine the best

approach based on the relative advantages of each in relation to their specific

application requirements.

A conversation usually has multiple, interoperating messaging applications, each

tailored to a particular role in that conversation. For example, the trading partner who
initiates the conversation uses aninitiating messaging application, and trading partners
who participatein the conversation use adifferent participating messaging application

that interacts with the initiating messaging application at run time.

For moreinformation about messaging applications, see Chapter 2, “Using Workflows

to Exchange Business Messages,” and Chapter 3, “Using XOCP C-Enabler
Applications to Exchange Business M essages.”

BEA WebL ogic Collaborate Developer Guide



Management Applications

Management Applications

WebL ogic Collaborate management applications monitor run-time activities, such as
message traffic and conversation statistics, on c-hub and c-enabler nodes. WebL ogic
Collaborate providestwo administrative tool s, the C-Hub Administration Console and
the C-Enabler Administration Console, that monitor run-time. In addition to these
system tools, devel opers can create custom management applications that provide
comparable monitoring functionality.

Developers can implement two kinds of management applications.

Table 1-2 Typesof Managing Applications

Component Description

C-Hub management applications M onitor activities on the c-hub node and provide
run-time statistics for c-hubs, c-spaces, conversation
definitions, trading partners, and business messages.

C-Enabler management Monitor activities on c-enabler nodes and provide
applications run-time statistics for c-enablers, c-enabler sessions,
conversations, and business messages.

For c-hub and c-enabler management applications, WebL ogic Collaborate provides a
set of Managed Beans, or MBeans, which are special JavaBeans with attributes and
methods for management operations. These MBeans are BEA implementations of the
Java M anagement Extensions (JM X) Managed BeansAPI, which isdefined in the Java
Management Extensions Specification published by Sun Microsystems, Inc.

For more information about WebL ogic Collaborate management applications, see
Chapter 5, “Developing Management Applications.”

BEA WebL ogic Collaborate Developer Guide 1-3



1 Introduction

Logic Plug-Ins

Logic plug-ins are Java classes that perform specialized processing of business
messages asthey passthrough the c-hub. L ogic plug-insinsert rulesand businesslogic
at strategic locations along the path that business messages travel as they make their
way through the c-hub. WebL ogic Collaborate provides X OCP and RosettaNet router
and filter logic plug-ins. A c-hub provider or trading partner can develop and install
custom logic plug-ins on the c-hub to provide additional value for c-hub management
and for trading partners who use that c-hub.

Logic plug-insare stored and executed on the c-hub node and are defined in the c-hub
repository. Logic plug-ins are transparent to c-enabler users.

For more information about logic plug-ins, see Chapter 4, “Developing Logic
Plug-Ins.”

1-4 BEA WebL ogic Collaborate Developer Guide



CHAPTER

2 Using Workflows to

Exchange Business
Messages

Y ou can use WebL ogic Process Integrator workflows to exchange X OCP business
messages in the WebL ogic Collaborate environment. WebL ogic Process Integrator
accelerates application development by providing a visua design tool for designing
workflows (process models); arun-time Process Engine for executing workflows; and
process monitoring capabilities. Using WebL ogic Process Integrator in the WebL ogic
Collaborate environment invol ves a combination of design, programming, and
administrative tasks.

The following sections describe how to exchange business messages in WebL ogic
Collaborate by using WebL ogic Process Integrator workflows:

m  About Using Workflows

m  Designing Workflows for Exchanging Business M essages

m  Working with Business M essages

m  Developing Applications That Start Conversation Initiator Workflows

The WebL ogic Process Integrator Verifier program provides an example of using
WebL ogic Process | ntegrator workflowsto exchange business messagesin WebL ogic
Collaborate. For more information, see Running the WebL ogic Process I ntegrator
Verifier Example in BEA WebLogic Collaborate Getting Sarted.

BEA WebL ogic Collaborate Devel oper Guide 2-1



2 Using Workflows to Exchange Business Messages

About Using Workflows

The following sections describe key concepts for using WebL ogic Process I ntegrator
workflows in WebL ogic Collaborate applications:

m  About This WebLogic Process Integrator Version
m  Architectural Overview

m  Key Concepts

m  Run-Time Prerequisites

m  Summary of Workflow Integration Tasks

About This WebLogic Process Integrator Version

2-2

The version of WebL ogic Process Integrator that is bundled with WebL ogic
Collaborate provides al of the functionality of WebL ogic Process Integrator
version 1.2, which ships separately. It also provides additiona functionality for
integrating with the WebL ogic Collaborate environment, including:

m  Specialized workflow properties for manipulating business messages, specifying
the message delivery Quality of Service, handling message tokens, and so on

m A Javaapplication programming interface (API) for use in WebL ogic
Collaborate workflow applications

For more information about the WebL ogic Process Integrator application, see the
following documents:

m BEA WebLogic Process Integrator Studio User Guide
m BEA WebLogic Process Integrator Tutorial

m  BEA WebLogic Process Integrator Worklist Guide

BEA WebL ogic Collaborate Developer Guide



About Using Workflows

Architectural Overview

This section describes how WebL ogic Process Integrator integrates with the
WebL ogic Collaborate architecture.

Architecture Diagram

The following figure shows the WebL ogic Collaborate c-enabler architecture with
WebL ogic Process Integrator components.

Figure2-1 C-Enabler Architecture

C-Enabler Node

Application Application Application

C-Enabler

XML Services

WebLogic
Process
Integrator

WLPI e Messaging
Database

Studio
Process
Engine
Worklist

WebLogic Server (WLS)

Java Virtual Machine (JVM)

WebL ogic Process Integrator is started automatically upon c-enabler startup.

BEA WebLogic Collaborate Devel oper Guide

2-3



2 Using Workflows to Exchange Business Messages

WebLogic Process Integrator Components in WebLogic Collaborate

WebL ogic Collaborate provides the following WebL ogic Process Integrator
components:

Table 2-1 WebL ogic Process I ntegrator Components

Component Description

WebL ogic Process Client application that is used at design time to define
Integrator Studio workflows and at run time to monitor running workflows.
WebL ogic Process Run-time controller and workflow engine that executes and

Integrator Process Engine  manages workflows and tracks workflow instances.

WebL ogic Process Database in which workflow templates are stored.

Integrator Database This database can reside locally on the c-enabler node, or it
can reside on adifferent node that is network accessibleto the
c-enabler. The database can be deployed sothat it isaccessible
to asingle c-enabler only, to multiple c-enablers within the
same trading partner organization, or to multiple c-enablers
across trading partnersin different organizations.

WebL ogic Process Application that is used to view and perform tasks that are

Integrator Worklist currently assigned to a user or to roles to which the user
belongs, such as reassigning tasks to other users, marking
tasks as done, unmarking tasks done, viewing a workflow
status, manually starting a workflow, and so on.

For an introduction to these WebL ogi ¢ Process | ntegrator components, see WebL ogic
Process Integrator Overview in the BEA WebL ogic Process Integrator Sudio User
Guide.

2-4 BEA WebL ogic Collaborate Developer Guide



About Using Workflows

Key Concepts

This section describes key concepts that you need to understand before using
WebL ogic Process Integrator workflows in WebL ogic Collaborate applications.

Workflows, Workflow Templates, and Workflow Template Definitions

This section describes the following key WebL ogic Process I ntegrator concepts:

m  WebL ogic Process Integrator is aworkflow automation tool. A workflow is a
business process. Workflow automation is the automation of a business process,
in whole or in part, during which information of any typeis passed to the right
participant at the right time according to a set of intelligent business rules that
allow computers to perform most of the work while humans only have to deal
with exceptions.

m |nWebL ogic Process Integrator, a workflow template is afolder (or a container)
in the WebL ogic Process Integrator Studio. Thisworkflow template represents a
workflow and is given a meaningful workflow name, such as Order Processing
or Billing. The workflow template aggregates various definitions (or “versions”)
of its implementation; these are referred to as workflow template definitions.
Further, aworkflow template is responsible for controlling which organizations
can use the “contained” workflow template definitions.

m A workflow template definition is a definition (or “version™) of the workflow,
distinguished by its Effective and Expiry dates. At design time, you use the
WebL ogic Process Integrator Studio to link aworkflow template definition to a
particular conversation and WebL ogic Collaborate role (such as buyer or seller)
in aWebLogic Collaborate conversation definition. At run time, WebL ogic
Process Integrator starts an instance (or session) of aworkflow template
definition, selecting the most effective (or current and active) definition.

For detailed information about these concepts, see WebL ogic Process Integrator
Overview in the BEA WebLogic Process Integrator Studio User Guide.

BEA WebL ogic Collaborate Developer Guide 2-5



2 Using Workflows to Exchange Business Messages

Conversations, Conversation Definitions, and Business Messages

This section defines the following key WebL ogic Collaborate concepts:

m InWebL ogic Collaborate, a conversation is a series of message exchanges
between trading partners that takes place in a collaboration space and that is
predefined according to a conversation definition. Each message in the
conversation can cause any humber of back-end transactions.

m A conversation definition consists of a unique conversation name, conversation
version, document definitions, trading partner 1Ds, and trading partner roles for
one conversation. At design time, you use the WebL ogic Process I ntegrator
Studio to link aworkflow template definition to a particular role (such as buyer
or seller) in aWebL ogic Collaborate conversation definition.

m  An XOCP business message is the basic unit of communication exchanged
between trading partnersin an XOCP conversation. An X OCP business message
isamulti-part MIME message that consists of business documents and
attachments. A business document is the XML-based payload part of a business
message. An attachment is the non-XML-based payload part of a business
message. To construct outgoing business messages or to process incoming
business messages, a workflow uses the Manipul ate Business M essage action,
which invokes a Java class that implements the
com bea. b2b. W pi . MessageMani pul at or interface.

For detailed information about these concepts, see Overview in BEA WebLogic
Collaborate Getting Started.

2-6 BEA WebL ogic Collaborate Developer Guide



About Using Workflows

Initiators and Participants
A conversation involves an initiator who starts the conversation and participants who

participate in the conversation onceit has started. Each perspectiverequires adifferent
kind of workflow.

Table 2-2 Types of Workflows

Workflow Type Description
Conversation initiator Defined to have conversation properties and a non-Business
workflow Message start property. This type of workflow initiates and

terminates the conversation.

Conversation participant Defined to have conversation properties and a Business
workflow M essage start property. This type of workflow can join and
exit the conversation but cannot initiate or terminate it.

Inthe context of abusiness process, thesetwo types of workflowsare interlocking. For
example, suppose a buyer wanted to obtain bids from various sellers. This business
process could be described as follows.

Figure2-2 Sample Business Process with Two Workflows

C-Hub
C-Enabler Node | Bid Request . | C-Enabler Node
Initiating h Bid Reply Participating
Trading Partner | giq award Trading Partner
(Buyer) » (Seller)
GetBids Workflow | SubmitBid
Bid Confirm Workflow

1. InWebL ogic Process Integrator Studio, the buyer (the initiating trading partner)
starts aworkflow named Get Bi ds (the conversation initiator workflow). The
Get Bi ds workflow constructs and sends a business message (containing a bid
request in the form of an XML document) by way of the c-hub to qualified sellers
and awaitsareply.

BEA WebL ogic Collaborate Developer Guide 2-7



2 Using Workflows to Exchange Business Messages

2-8

Note: The Get Bi ds workflow is defined with conversation properties and a
Manual start property. It is started programmatically by using a Java
application.

2. Each qualified seller (a participant trading partner) receives the business

message, which triggers the start of an instance of a workflow named Subni t Bi d
(the conversation participant workflow) on each seller’s c-enabler node.

The Submi t Bi d workflow processes the incoming bid request, determines
whether to submit abid or not and, if so, constructs and sends a business
message (containing a bid reply in the form of an XML document), and awaits
the results of the bid selection.

Note: The Subni t Bi d workflow is defined with conversation properties and a
M essage Start property.

. Onthe buyer side, the Get Bi ds workflow receives bid replies from al qualified

sellers, determines which seller to award the bid, and then notifies all sellers of
the results by:

e Constructing and sending a business message (containing a bid award in the
form of an XML document) to the winning bidder

e Constructing and sending a different business message (containing a bid
rejection in the form of an XML document) to all other sellers

The Get Bi ds workflow then awaits a bid confirmation from the winning seller.

. On the seller side, the Subni t Bi d workflow receives and processes the results of

the bid.

e If the seller was awarded the winning bid, the seller constructs and sends a
busi ness message (containing a bid confirmation in the form of an XML
document) to the seller.

Alternatively, the seller could return a different business message (containing
another XML document, such as a purchase order request) to the seller that
would continue the conversation.

e |f the sdller did not receive the bid award, that seller’s Submi t Bi d workflow
ends and the seller exits the conversation.

. On the buyer side, the Get Bi ds workflow receives and processes the bid

confirmation from the seller and then terminates the conversation.

BEA WebL ogic Collaborate Developer Guide



About Using Workflows

Sent and Received Business Messages

When trading partners exchange business messages, initiator and participant
workflows both typically send and receive business messages.

It isimportant to keep in mind which parts of the workflow send business messages
and which parts receive them. For example, a buyer might submit a bid request (a
business message) to aseller. In this case, the buyer workflow is sending the business
message and the seller workflow is receiving it. When the seller repliesto the request
with abid (another business message), then the roles are reversed: the seller workflow
is the sender and the buyer is the recipient workflow.

Thedesign and programming tasks differ for sending and receiving business messages.
However, in both cases, you must define certain properties in the workflow template
definition and write application code (that implements the

com bea. b2b. wl pi . MessageMani pul at or interface) to manipulate the business

message.

For more information about working with business messages, see “Working with
Business Messages’ on page 2-41.

Run-Time Prerequisites

Before exchanging messages at run time, the following prerequisites must be met:

m Install and configure WebL ogic Process Integrator and WebL ogic Collaborate, as
described in “Administrative Tasks” on page 2-10.

m  Defineand link workflows to WebL ogic Collaborate conversations, as described
in “Design Tasks” on page 2-11.

m  Write and test application code for manipulating messages and for starting the
conversation initiator workflow, as described in “Programming Tasks” on page
2-13.

m For al trading partners, WebL ogic Process Integrator is automatically loaded
and running upon c-enabler startup.

m For each trading partner, all relevant workflows are active and stored in the
WebL ogic Process Integrator database.

BEA WebL ogic Collaborate Developer Guide 29



2 Using Workflows to Exchange Business Messages

e For aninitiating trading partner, the conversation initiator workflow is active
and defined with the non-Business M essage start property. It awaits the
invocation of the application that starts the workflow.

e For all participating trading partners, the conversation participant workflow
is active and defined with a Business M essage start property. It awaitsthe
receipt of theinitial business message in the conversation.

Ssummary of Workflow Integration Tasks

Using WebL ogic Process Integrator workflows to exchange business messages in
WebL ogic Collaborate requires a combination of administrative, design, and
programming tasks.

Administrative Tasks

Integrating WebL ogic Process I ntegrator workflows requires the following
administrative tasks:

1. Install WebL ogic Collaborate, and configure WebL ogic Process I ntegrator
according to the instructions in Setting Up the WebL ogic Process Integrator
Environment in BEA WebLogic Collaborate Getting Started.

e Create the tablesfor the WebL ogic Process | ntegrator database by running
the appropriate SQL script for the database management you will use.

e Configure the JIDBC connection pool for the WebL ogic Process Integrator
database in the using the Administrative Console.

¢ Runthe WebL ogic Process Integrator Verifier program to validate your
installation and configuration.

2. For c-enabler nodes, specify the workflow c-enabler session names you want to
use in the c-enabler XML configuration file. For more information, see
Configuring C-Enablers in the BEA WebLogic Collaborate C-Enabler
Administration Guide.

2-10 BEA WebL ogic Collaborate Developer Guide



About Using Workflows

Design Tasks

3. Using the C-Hub Administration Console, create and configure the necessary

entities in the c-hub repository, including c-spaces, trading partners, conversation
definitions, document definitions, and so on. For more information, see the BEA
WebLogic Collaborate C-Hub Administration Guide.

Note: Every WebL ogic Process|ntegrator workflow template definition requires
a conversation definition.

. Using WebL ogic Process Integrator Studio, specify the organizations, users, and

rolesin the WebL ogic Process I ntegrator database, as described in Administering
Data within WebL ogic Process | ntegrator in the BEA WebLogic Process
Integrator Studio User Guide.

Integrating WebL ogic Process Integrator workflows requires the following design
tasks that you perform in WebL ogic Process Integrator Studio:

1. Create and design workflows that automate business processes.

You can create workflows from scratch, as described in Defining and
Maintaining Workflows in the BEA WebLogic Process Integrator Studio User
Guide.

Alternatively, you can import workflows created in other versions of WebL ogic
Process Integrator, as described in “Using Workflow Templates Created in Other
WebL ogic Process Integrator Versions’ on page 2-15.

In addition to defining the standard workflow properties, you must a so define
properties that link the workflow to the WebL ogic Collaborate messaging
system. The remaining tasks in this sequence apply to integrating workflows into
WebL ogic Collaborate.

. For each workflow template definition, specify conversation properties as

follows:

e Explicitly link the workflow template definition to arolein a conversation
definition in the c-hub repository, as described in “Linking Workflows to
Conversations’ on page 2-19.

e Associate at least one c-enabler session name to the workflow template
definition, as described in “Linking C-Enabler Session Names to a Workflow
Template Definition” on page 2-24.

BEA WebL ogic Collaborate Developer Guide  2-11



2 Using Workflows to Exchange Business Messages

2-12

e Optionally, specify other conversation properties, as described in “Defining
the Quality of Service for Message Delivery at the Template Level” on page
2-20.

3. For each workflow template definition, define start actions depending on the type
of workflow.

e For conversation initiator workflows, define a non-Business M essage start
property, as described in “ Defining the Start for a Conversation Initiator
Workflow” on page 2-27.

e For conversation participant workflows, define a Business M essage start
property, as described in “Defining the Start for a Conversation Participant
Workflow” on page 2-29.

4. For each workflow template definition, define how the workflow will end.

e For conversation initiator workflows, add a done shape and defineits
properties, as described in “Defining the Termination of Conversation
Initiator Workflows” on page 2-31.

e For conversation participant workflows, optionally define a Conversation
Terminate Event property and status, as described in “ Defining the End of
Conversation Participant Workflows” on page 2-33.

5. For any input or output variables used in the workflow, define them in the
workflow template definition, as described in “ Defining WebL ogic Process
Integrator Variables for Workflows’ on page 2-35.

6. For each workflow template definition, define how business messages are
processed and exchanged.

e For all workflows, define the WebL ogic Process Integrator variables that are
used to store business messages, as described in “Defining WebL ogic
Process Integrator Variables for Business Messages’ on page 2-43.

e For all workflows, define business operations that manipulate business
messages, either creating the business messages to send or processing
business messages that are received, as described in “Defining Manipulate
Business Message Actions’ on page 2-44.

e For workflows that send business messages, define the Send Business
Message action, as described in “Defining Send Business Message Actions’
on page 2-57. In addition, you add an associated Manipulate Business
M essage action to create the business message to send.

BEA WebL ogic Collaborate Developer Guide



About Using Workflows

You can a'so assign information from the message token that is returned
from a sent message to WebL ogic Process Integrator variables, as described
in “Assigning Message Token Information to WebL ogic Process Integrator
Variables’ on page 2-63.

e For conversation participant workflows, define the Start node as a Business
Message start so that the workflow is started upon receipt of theinitial
business message from the conversation initiator workflow, as described in
“Defining the Business Message Start for Conversation Participant
Workflows’ on page 2-67. In addition, you add an associated Manipulate
Business M essage action to process the incoming business message.

e For non-initial business messages received by conversation initiator or
conversation participant workflows, define a Business M essage Receive
event, as described in “Defining Business M essage Receive Events’ on page
2-70. In addition, you add an associated Manipulate Business M essage action
to process the incoming business message.

For comprehensive information about workflow design tasks, see “Designing
Workflows for Exchanging Business Messages’ on page 2-14.

Note:  You can run WebL ogic Process Integrator workflows in the WebL ogic
Collaborate environment even if they are not integrated with WebL ogic
Collaborate features. For example, you can run workflows created in
WebL ogic Process Integrator version 1.2 (shipped separately from WebL ogic
Collaborate) without specifically adapting them to integrate with WebL ogic
Collaborate.

Programming Tasks

Programming tasks depend on the specific needs of each application that makes use of
aworkflow. The following tasks are required:

m  For conversation initiator workflows, write an application that performsthe
following tasks: creates aworkflow c-enabler session; constructs a business
message; starts the workflow; sends a business message; and, optionally, awaits
areply. This application can do other tasks, but it must at least perform these
tasks. For more information, see “ Developing Applications That Start
Conversation Initiator Workflows’ on page 2-76.

m For both conversation initiator workflows and conversation participant
workflows, write application code that manipul ates the business messages that a

BEA WebLogic Collaborate Developer Guide  2-13



2 Using Workflows to Exchange Business Messages

workflow sends and receives. This code constructs a business message before it
is sent and processes a business message that has been received. Thiscodeisa
class that implementsthe com bea. b2b. wl pi . MessageMani pul at or interface.
For more information, see “Writing Business Operations to Manipulate Business
Messages’ on page 2-51.

Designing Workflows for Exchanging
Business Messages

2-14

To use workflows to exchange business messagesin WebL ogic Collaborate, design
workflow template definitions by using WebL ogic Process Integrator Studio. In
addition to the standard properties described in Defining and Maintaining Workflows
in the BEA WebL ogic Process Integrator Sudio User Guide, you must define
additional workflow properties, not described in that document, that allows the
workflow to be used in the WebL ogic Collaborate environment.

For example, you link aworkflow template definition to a particular rolein a
conversation definition in the c-hub repository. Y ou also define some additional
attributes, including the message delivery Quality of Service, messagetoken handling,
and conversation termination.

The following sections describe how to design workflows to exchange business
messages in the WebL ogic Collaborate environment:

m  Using Workflow Templates Created in Other WebL ogic Process Integrator
Versions

m Defining Conversation Properties
m Defining Start Actions

m Defining Conversation Termination

BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Using Workflow Templates Created in Other WebLogic
Process Integrator Versions

The version of WebL ogic Process Integrator that ships with WebLogic Collaborateis
designed to work seamlessly within the WebL ogic Collaborate environment. If you
have workflows that were designed in other versions of WebL ogic Process I ntegrator,
you can use still theseworkflowsin WebL ogic Collaborate, but you must completethe
following additional tasks to adapt them for use in WebL ogic Collaborate:

1.

Export the associated workflow template definition from the earlier version of
WebL ogic Process Integrator, as described in “ Exporting Workflow Template
Definitions” on page 2-15.

Import the workflow template definition that you previously exported into the
WebL ogic Process Integrator that ships with WebL ogic Collaborate, as described
in “Importing Workflow Template Definitions’ on page 2-16.

Modify the workflow template design to work with WebL ogic Collaborate, as
described in the section that begins with “Designing Workflows for Exchanging
Business Messages’ on page 2-14.

Note: Standalone versions of WebL ogic Process Integrator cannot use workflows

that were created or modified using the version of WebL ogic Process
Integrator Studio that shipswith WebL ogic Collaborate.

Exporting Workflow Template Definitions

To export aworkflow template definition from a WebL ogic Process I ntegrator version
that shipped separately from WebL ogic Collaborate:

1.
2.
3.

In the folder tree, right-click the workflow template definition you want to export.
Choose Export from the pop-up menu.

In the Save dialog box, select the location (drive and directory) where you want
to save the exported workflow template definition.

Specify the file name of the exported workflow template definition.

Click Save.

BEA WebLogic Collaborate Developer Guide  2-15



2 Using Workflows to Exchange Business Messages

Importing Workflow Template Definitions

To import a previously exported workflow template definition (see “Exporting
Workflow Template Definitions” on page 2-15) into the version of WebL ogic Process
Integrator that ships with WebL ogic Collaborate:

1.

In the WebL ogic Process Integrator folder tree, right-click the workflow template
into which you will import the workflow template definition.

From the pop-up menu, choose Import Template Definition.

In the Save dialog box, select the current location (drive and directory) of the
exported workflow template definition file that you want to import.

Click Save.

After thefileis read, an import confirmation dialog box appears. Click Yesto
confirm importing the workflow template definition.

Imported workflow template definitions are always marked “inactive.” Before an
imported workflow template definition can be instantiated, you must change its
definition to “active” in the Template Definition dialog box. For more
information, see Defining and Maintaining Workflows in the BEA WebLogic
Process Integrator Studio User Guide.

Defining Conversation Properties

2-16

Before you use a WebL ogic Process Integrator workflow to exchange business
messagesin WebL ogic Collaborate, you define certain conversation propertiesthat are
specific to the WebL ogic Collaborate environment. For detailed information about
defining workflow templates, see Defining and Maintaining Workflows in the BEA
WebL ogic Process Integrator Sudio User Guide.

BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Opening Workflow Template Definitions

To define aworkflow template definition in WebL ogic Process Integrator Studio:

1. Do one of thefollowing:

e To create a new template definition, right-click the template that will contain
the new template definition in the folder tree, and choose New Template
Definition from the pop-up menu.

e To open an existing template definition, right-click the template definition in
the folder tree and choose Open from the pop-up menu.

BEA WebLogic Collaborate Developer Guide  2-17



2 Using Workflows to Exchange Business Messages

2. Right-click the template definition and choose Properties from the pop-up menu
to display the Template Definition dialog box.

Figure 2-3 Template Definition Dialog Box

Template Definition wipiverfier_init

General l Exception Handlers

Id
|Curre nildser A+B0

Effective [ Expiry
way 18, 2000 | +|| I

[ Enahle auditing

Motes

Conversations ‘

Lastchanged an Last changed by
Diec b, 2000 2:31:00 P |bea

0] Cancel

3. Complete the fields in the Template Definition dialog box, as described in
Defining and Maintaining Workflows in the BEA WebLogic Process Integrator
Studio User Guide.

4. To define conversation properties, click Conversations.

5. Click OK to save your changes.

2-18 BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Linking Workflows to Conversations

Before you use a WebL ogic Process I ntegrator workflow to exchange business

messages in WebL ogic Collaborate, you first link the workflow template definition in

WebL ogic Process Integrator with a particular conversation type (a conversation

name, version, and WebL ogic Collaborate role) in the WebL ogic Collaborate c-hub

repository.

To link aworkflow template definition with conversation type:

1. Open the Template Definition dialog box, as described in “ Opening Workflow

Template Definitions’ on page 2-17.

2. Inthe Template Definition dialog box, click the Conversations button to display

the Conversation Properties dialog box.
Figure 2-4 Conversation Properties Dialog Box
Conversation Properties

Hame

Wersion
1.0

Fole
linitiator

Cuality of Service

Session

Ok

Add

Lpdate

Delete

Cancel

BEA WebLogic Collaborate Devel oper Guide

2-19



2 Using Workflows to Exchange Business Messages

3. Complete the following fields in the Conversation Properties dialog box.

Table 2-3 Fieldsin the Conversation Properties Dialog Box

Field Description

Name Name of the WebL ogic Collaborate conversation
definition in the c-hub repository to link with this
workflow template definition.

Version Version number of the conversation definition in the
c-hub repository to link with this workflow template
definition.

Role Role in the conversation definition to link with this

workflow template definition. In order for atrading
partner to receive messages in this conversation, it must
be registered in thisrole in the conversation at run time.

Quality of Service Message delivery qudlity of service, as described in
“Defining the Quality of Service for Message Ddlivery at
the Template Level” on page 2-20.

Session C-enabler session name(s) for which this workflow
template should be used, as described in “Linking
C-Enabler Session Names to a Workflow Template
Definition” on page 2-24.

4. Click OK to save your changes.

Defining the Quality of Service for Message Delivery at the Template Level

The Quality of Service (QoS) isaset of attributesthat are defined for reliable business
message publishing. In WebL ogic Process Integrator, you can define the QoS at the
following levels:

m At the workflow template definition level, where the settings apply to all Send
Business Message actions, unlessit is specifically overridden by the definition of
the action.

m At the Send Business Message action level, where the settings apply to the
specific action only but override the settings specified at the template level. For

2-20 BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

more information, see “Defining the Quality of Service for Message Delivery for
a Send Business Message Action” on page 2-62.

To specify the Quality of Service at the workflow template definition level:

1. Open the Conversation Properties dia og box for a workflow template definition,
as described in “Linking Workflows to Conversations’ on page 2-19.

2. Inthe Conversation Properties dialog box, click the Quality of Service button to
display the Quality of Service Settings dialog box.

BEA WebLogic Collaborate Developer Guide  2-21



2 Using Workflows to Exchange Business Messages

Figure2-5 Quality of Service Settings Dialog Box

Quality of Service Settings

Canfirm Message Delivery
" 1lptathe c-hub

" Upto the router in the c-hub

* To all destinations

Retry Atternpts For Send
3
Timeout For Send

Days HoursMing Secs
O IR G

Correlation 1D

Durahility Cptions

i« Mon-Persistence © Persistence

MHotes

] Cancel

3. Complete the following fieldsin the Quality of Service Settings dialog box.

2-22  BEA WebLogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Table 2-4 Fieldsin the Quality of Service Dialog Box

Field Description

Confirm Message Delivery  Degree to which message delivery confirmation is required:
up to the c-hub (the default), up to the router in the c-hub, or
to al destinations. Y our selection determines which options
are available in the Message Token Assignments dialog box,
as described in “ Assigning Message Token Information to
WebL ogic Process I ntegrator Variables’ on page 2-63.

m  Uptothec-hub Delivery confirmation is required when amessage reachesthe
c-hub (default). Select this option to provide basic delivery
confirmation with maximum run-time performance.

m  Uptotherouterinthe  Delivery confirmation isrequired when amessage reachesthe
c-hub router in the c-hub. This option provides the list of trading
partners selected by the c-hub router to receive the message.

m  Toal destinations Delivery confirmation isrequired from all destinations. Select
this option to provide the maximum delivery confirmation
details. May affect run-time performance.

Retry Attempts for Send Maximum number of retries for sending a message (defaultis
0). The WebL ogic Process Integrator Process Engine will
repeatedly attempt to send a message until it either
successfully sends the message or it exceeds the maximum
number of retries. A WebL ogic Process Integrator exception
will be thrown if the maximum retries are exceeded.

Timeout for Send Timeout value for sending a message (default is 0, which
means no timeout). The WebL ogic Process I ntegrator Process
Engine will wait until either adelivery confirmation is
received or the timeout period has been exceeded.

Correlation ID Message identification string that can be used to correlate the
message with other business messages in the application
(default isnone). For example, atrading partner might want to
specify acorrelation ID in areguest so that repliesto that
request can be matched to the original request. The WLC
messaging system includes this property with the message.

BEA WebLogic Collaborate Developer Guide  2-23



2 Using Workflows to Exchange Business Messages

Table 2-4 Fieldsin the Quality of Service Dialog Box (Continued)

Field Description

Durability Options Durability options for messaging: Persistence or
Non-persistence (default). Overrides the default setting (if
specified) for the associated conversation definition in the
c-hub repository.

Non-Persistence Messages are not to be saved in apersistent state. This option
improves run-time performance but will reduce the likelihood
of recovery from a system failure.

Persistence Messages are to be saved in a persistent state. This option
increases the likelihood of recovery from a system failure but
requires additional processing that might affect run-time
performance.

Notes Optional descriptive text.

4. Click OK to save your settings.

Linking C-Enabler Session Names to a Workflow Template Definition

2-24

Y ou can associate a workflow template definition with one or more workflow
c-enabler session names. At a minimum, you must link at least one c-enabler session
name. The WebL ogic Process I ntegrator Studio allows you to add, update, and delete
linked session names.

A workflow template definition can have more than one defined session name. This
allows the same workflow template definition (different instances) to be used by
different c-enablers in the same conversation. For example, a workflow template
definition could be defined with three different session names (such as sessi onA,
sessi onB, and sessi onC). Each trading partner in the conversation can then use the
appropriate session when providing their own implementation (manipulate message)
to process the reguest.

Session namesare defined in the c-enabler XML configuration file. Each session name
refersto one session entry in ac-enabler configuration file (whichisknown only at run
time). Each session entry in the c-enabler XML configuration file refers to a specific
c-hub, c-space, and trading partner.

BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Adding Sessions
To add asession:

1. Inthe Conversation Propertiesdialog box, click Add to display the Define Session
dialog box.

Figure2-6 Define Session dialog box

Define Seszion Ed |

Session Marme

Q1 Cancel |

2. Enter aunigue session hame.

3. Click OK to save your changes.

Updating Sessions
To update a session:

1. Inthe Conversation Properties dialog box, select the session you want to update
and then click Update to display the Define Session dialog box.

Figure2-7 Define Session dialog box

Define Seszion Ed |

Session Marme

caller-session

Q1 Cancel |

2. Edit the session name. It must be a unigque session hame.

3. Click OK to save your changes.

BEA WebLogic Collaborate Developer Guide  2-25



2 Using Workflows to Exchange Business Messages

Deleting Sessions
To delete a session:

1. Inthe Conversation Propertiesdial og box, select the session you want to delete and
then click Delete to display the Delete Session dialog box.

Figure2-8 Delete Session dialog box

E"g-_,% Delete Seszzion Ed

@ Areyou sure you want to delete this session?

2. Click Yes.

Defining Start Actions

Y ou define astart action based on the type of workflow and according to the following
rules:

m Toinstantiate a workflow, the workflow template definition must be active and
not expired.

m For aconversation initiator workflow that is started programmatically, you
specify aManual start property.

m For aconversation initiator workflow that is not started programmatically, you
can specify any start property (Event, Timed, Manual, or Called) except the
Business Message start state.

m For aconversation participant workflow that is started upon receiving a business
message, you define a Business M essage start state.

2-26  BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

Defining the Start for a Conversation Initiator Workflow

A conversation initiator workflow is started programmatically and must therefore have
aManual start property. For more information, see “Developing Applications That
Start Conversation Initiator Workflows’ on page 2-76.

To define the Manual start property for a conversation initiator workflow:

1. Display or add the start shape, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

BEA WebLogic Collaborate Developer Guide — 2-27



2 Using Workflows to Exchange Business Messages

2. Double-click the start shape to display the Start Properties dialog box.

Figure2-9 Start PropertiesDialog Box: Manual Start

2-28  BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

3. Changethetext in the Description field to a unique, identifiable name.

4. If the workflow will be started programmatically, select Manual.

Otherwise, select any other option except Business M essage as appropriate. For
more information about these options, see Working with Workflow Components
in the BEA WebL ogic Process Integrator Sudio User Guide.

5. Click OK.

Defining the Start for a Conversation Participant Workflow
A conversation participant workflow is started when it receives an initial business

message from a conversation initiator workflow. Y ou must define aBusiness M essage
start state for such workflows.

BEA WebLogic Collaborate Developer Guide  2-29



2 Using Workflows to Exchange Business Messages

To define the Business M essage start state for a conversation participant workflow:

1. Display or add the start shape, as described in Working with Workflow
Componentsin the BEA WebL ogic Process Integrator Studio User Guide.

2. Double-click the start shape to display the Start Properties dialog box.
Figure2-10 Start Properties Dialog Box: Business M essage Start

Descrphon

 Ewenl © Tened T Manual ¢ Called ™ Business Nessage

Busness Proiocols

froce =]
Variable Assignmanis
Target
lll.-.|l.l'c"".|.ﬂ'|:-u ;I
Sander's Fouler Expression
Esndar's Mama
fendaitiama | = Comver Senders Mame o 5Path

Vanables |h.||3n1| Actions | toaes |

variable | ¥ML Exprassion | Al |

Updale

Calule |

| e I Cancal |

2-30  BEA WebLogic Collaborate Devel oper Guide



Designing Workflows for Exchanging Business Messages

Change the text in the Description field to a unique, identifiable name.
Select Business Message.

Select the Business Protocol.

o o &~

Specify the target variable, as described in Working with Workflow Components
in the BEA WebLogic Process Integrator Studio User Guide.

7. Specify the sender filter variable, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Sudio User Guide.

8. Click OK.

Defining Conversation Termination

A conversation isterminated when the conversation initiator workflow reaches adone
state. Conversation participant workflows can end their participation in aconversation
before the conversation is terminated.

Defining the Termination of Conversation Initiator Workflows

For a conversation initiator workflow, you define the conversation termination
property (terminate with success or failure) for any done node in the workflow. Once
a done node is reached in the workflow, the running instance of the workflow is
marked done, regardless of whether the active workflow hasreach al the done nodes.
A conversation initiator workflow can terminate a conversation, but other participants
in the conversation cannot.

BEA WebLogic Collaborate Developer Guide  2-31



2 Using Workflows to Exchange Business Messages

To define the termination for a conversation initiator workflow:

1. Add or view adone shape, as described in Working with Workflow Components
in the BEA WebL ogic Process I ntegrator Studio User Guide.

2. Double-click the done shape or right-click it in the folder tree and choose
Properties to display the Done Properties dialog box.

Figure2-11 Done Properties Dialog Box

Dorn Properties E
Coeree i Teminale
#puceess |
™ Failurg
Arioms
Add |
Lipdaie |
Daleta |
2=
Moles
TizEinatss the workClow. A cofivaisacics ESIBinate JUcCead
18 bEmied En a&ll pacEicipantE of the cofver=abilon.
| ] I Carel

2-32  BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

3. Select a conversation termination option in the Done Properties dialog box.

Table 2-5 Conversation Termination Optionsin the Done Properties Dialog Box

Graphic Field Description

Success  The conversation should be terminated with a SUCCESS
result (default). The conversation is terminated after the

actions for this state are done.
The SUCCESS result indicates that the workflow instance

completed successfully. The participants of the
conversation will be notified (if possible) that the
conversation is being terminated.

Failure The conversation should be terminated with a FAILURE
result. The conversation is terminated after the actions for

this state are done.
The FAILURE result indicates that the workflow instance

encountered conversation-specific or application-specific
errors. The participants of the conversation are notified (if
possible) that the conversation is being terminated.

Defining the End of Conversation Participant Workflows

A conversation participant workflow has defined conversation properties, a Business
Message start property, and (optionally) a Conversation Terminate event. The
Conversation Terminate event is used in a participant workflow to wait for a
conversation termination signal from the conversation initiator. It allows a participant
workflow to perform additional processing (such as housekeeping operations) based
on the status of the conversation termination.

Note: Theuseof thisevent isoptiona. A workflow that does not wait for this event
can leave the conversation by simply ending the workflow (a Done node).

A workflow event shape represents a notification node. The workflow waits for a
conversation terminate to trigger the event. Upon that trigger, actions defined within
the event can be executed and/or workflow variables can be set.

To add a Conversation Terminate event to a conversation participant workflow:

1. Display or add any task as described in Working with Workflow Componentsin
the BEA WebL ogic Process Integrator Studio User Guide.

BEA WebLogic Collaborate Developer Guide  2-33



2 Using Workflows to Exchange Business Messages

2. Double-click the event shape or right-click it in the folder tree and choose the
Properties command to display the Event Properties dialog box.

Figure2-12 Event Properties Dialog Box

Event Fropmitios [ ]

Descrphon

Wit Tor o atiom tErninator

Evenl Trpa:

1~ Regular Everd

T Busingss Message Recems Everi
& Comersation Tarminate Event

‘Variable Assignmens
Terminabe Status
feomTerminstesuc: =]

Warisiles |Mu1| Actions | Meses |

‘Wariable | HML Expression I

Update

Dlele

i

| (5724 Cancel |

2-34  BEA WebL ogic Collaborate Developer Guide



Designing Workflows for Exchanging Business Messages

3. Select Conversation Terminate Event.

4. Select aWebL ogic Process Integrator Boolean variable to store the terminate
status, which will be set to one of the values in the following table.

Table 2-6 Terminate Status Optionsin the Event Properties Dialog Box

Option Description

True I ndi cates that the conversation was terminated with a
SUCCESS value.

False Indicates that the initiator has terminated the conversation

with a FAl LURE value.

Note: You must explicitly create this Boolean variable before selecting it in this
dialog box. For more information, see “Defining WebL ogic Process
Integrator Variables for Business Messages’ on page 2-43.

5. Click OK to save your changes.

WebL ogic Process Integrator assigns the conversation terminate status value to a
WebL ogic Process Integrator Boolean variable, which can be accessed by the
workflow or passed to a business operation. The developer of the workflow should
take appropriate actions based on this value.

Defining WebLogic Process Integrator Variables for
Workflows

A WebL ogic Process Integrator variable is typically used to store application-specific
information required by the workflow at run time. Variables are created and assigned
values largely to “control” the logical path through a workflow instance; the same
workflow template definition isinstantiated multiple times and can be traversed in
different waysif the flow contains decision nodes, which evaluate workflow variable
values and branch to either the next True or next False within the workflow, as

appropriate.

BEA WebL ogic Collaborate Developer Guide  2-35



2 Using Workflows to Exchange Business Messages

Y ou must define WebL ogic Process Integrator variables for aworkflow template
definition that contains processes that require variables during run time. During
workflow execution, you can access a WebL ogic Process Integrator variable in the
following ways:

= Within the workflow instance, such asin a decision node

m  Within abusiness operation, such as by executing an Enterprise Java Bean (EJB)
or Java class

Associations Between WebLogic Process Integrator Variables and Java Data
Types
If you access aWebL ogic Process | ntegrator variable within a business operation, you

need to know how WebL ogic Process Integrator variabletypes correspond to Javadata
types. The following table shows how they are related.

Table 2-7 WebL ogic Process I ntegrator Variables and Java Data Types

WLPI Variable Type  JavaData Type

String java.lang. String
I nt eger Java. |l ang. | nt eger
Long Java. | ang. Long
Doubl e java. |l ang. Doubl e
Dat e java.util.Date
Bool ean java. |l ang. Bool ean
Conpl ex hj ect java.l ang. Obj ect

(must implement Ser i al i zabl e)

XML org. w3c. dom Node

2-36  BEA WebLogic Collaborate Devel oper Guide



Designing Workflows for Exchanging Business Messages

Rules for Defining WebLogic Process Integrator Variables

When defining WebL ogic Process Integrator variables, comply with the following
rules:

You can access workflow variables programmatically in the following situations:

e After theinstanceis created but beforeit is started, as described in “ Step 2:
Initialize Input Variables” on page 2-79.

e During the execution of a Manipulate Business M essage action, as described
in “Defining Manipulate Business Message Actions’ on page 2-44.

e After the instance completed, as described in “Step 7: Handle Resultsin
Output Variables’ on page 2-85.

If you define an input variable (a variable that is passed into the workflow), it
must have avalue assigned to it at run time before the workflow instance starts.
For an example of how thisis done in the WebL ogic Process Integrator Verifier
application, see “ Step 2: Initidize Input Variables’ on page 2-79.

If you define an output variable (avariable that is passed out of the workflow),
you can access its value after the workflow has finished.

If you define a variable as neither input or output, you can accessit only while
the workflow is running.

If you want to save a variable in a conversation participant workflow, or if you
want to access it after the workflow starts, you must define it as an output
variable and you need to access is using a business operation. For more
information about defining business operations, see in Administering Data
within WebL ogic Process Integrator in the BEA WebLogic Process I ntegrator
Studio User Guide.

Actions for accessing business messages use Java object variables for
manipulating, sending, or receiving business messages. However, the objects
stored in the variables through these actions belong to an internal class that
encapsulates the business message. As a conseguence, these variables should
only be accessed through message manipulators. Directly accessing these
variables will result in undefined behavior. For more information, see “ Defining
WebL ogic Process Integrator Variables for Business Messages” on page 2-43.

BEA WebL ogic Collaborate Developer Guide  2-37



2 Using Workflows to Exchange Business Messages

Defining Input Variables

Before aWebL ogic Collaborate application can set an input variable, you must define
it in WebL ogic Process | ntegrator Studio.

To definean input variable:
1. Do one of the following:

e Inthefolder tree, right-click Variables under the appropriate workflow
template definition, and choose New Variable to display the Variable
Properties dial og box.

e Right-click an existing variable in the folder tree and choose Properties from
the pop-up menu to display the Variables Properties dial og box.

Figure2-13 Variables Properties Dialog Box for an Input Variable

Variable Properties Ed |

MHame

requestString0

Type

|Etring LI
Farameter—————
v Input  [v Mandatary
[T Cutput

MHotes

Holds the recquest data
passed in by the client
application.

(]34 Cancel

2-38  BEA WebL ogic Collaborate Devel oper Guide



Designing Workflows for Exchanging Business Messages

2. Complete the fieldsin the following Variable Properties dialog box.

Table 2-8 Fieldsin the Variable Properties Dialog Box

Field Description
Name M eaningful name for the variable, such as ItemNumber.
Type Variable type: Boolean, Date, Double, Entity EJB, Integer,

Java Object, Session EJB, String, Long, or XML.

Parameter Input or Output. For Input, choose whether the parameter isa
mandatory one.

Notes Optional descriptive text.

3. Select Input.
4, Click OK.

In the preceding example, the variable named r equest St ri ng0 isdeclared asan
input variable. It is also declared as mandatory, which means that the workflow
instancewill start only if the WebL ogic Collaborate application explicitly setsitsvalue
before attempting to start the workflow instance. For more information, see
“Developing Applications That Start Conversation Initiator Workflows’ on page 2-76.

Defining Output Variables

Variables that must be retrieved after the workflow completes must be declared as
output variables. Otherwise, their value will not be preserved.

To define an output variable:

1. Do one of the following:

e Inthefolder tree, right-click Variables under the appropriate workflow
template definition, and choose New Variable to display the Variable
Properties dial og box.

BEA WebL ogic Collaborate Developer Guide ~ 2-39



2 Using Workflows to Exchange Business Messages

e Right-click an existing variable in the folder tree and choose Properties from
the pop-up menu to display the Variables Properties dial og.

Figure2-14 Variable Properties Dialog Box for an Output Variable

Variable Properties Ed |

MHame

replyString 0

Type

|String LI
Farameter————
[T Input [ Mandatary
v Cutput

MHotes

Holdz the reply data to
be extracted by the
client application.

Qs Cancel

2. Complete the fields in the Variable Properties dialog box, as described in
Working with Workflow Components in the BEA WebLogic Process | ntegrator
Studio User Guide.

3. Select Output.
4. Click OK.

2-40  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

Working with Business Messages

Y ou use WebL ogic Process I ntegrator in conjunction with WebL ogic Collaborate to
exchange business messages between trading partners. The following sections
describe how to work with business messages exchanged by using workflows:

m  About Business Messages

m  Summary of Prerequisite Tasks for Exchanging Business M essages
m Defining Variables and Manipulating Business M essages

m Creating and Defining Messages to Send

m Defining the Workflow to Receive Business M essages

About Business Messages

A business message is the basic unit of communication exchanged between trading
partnersin aconversation. A business message is a multi-part MIME message that
consists of:

m A business document, which represents the XML -based payload part of a
business message. The payload is the business content of a business message.

m An attachment, which represents a non-XML payload part of the business
message.

Y ou can access the contents of abusiness message programmatically using XOCP
messaging objects, as described in “ Step 1: Create the Business Message” on page
3-30 and “ Receiving an XOCP Business Message” on page 3-53.

BEA WebLogic Collaborate Developer Guide  2-41



2 Using Workflows to Exchange Business Messages

Summary of Prerequisite Tasks for Exchanging Business
Messages

Y ou must perform the following tasks before you can send and receive business
messages. Subsequent sections describe these tasksin detail.

m Define the business message in the workflow template using WebL ogic Process
Integrator Studio.

e For sending abusiness message, thisinvolves defining a Manipulate
Business Message action to construct the business message and the Send
Business Message action to send the message.

e For receiving a business message, this involves defining a Manipul ate
Business M essage action to process an incoming business message.

m  Write the Java application to process the business message by implementing the
com bea. b2b. wl pi . MessageMani pul at or interface and using the
mani pul at e method on that object.

This task involves writing the code associated with the Manipulate Business
M essage action.

e For sending a business message, this code constructs the business message to
send.

e For receiving a business message, this code processes an incoming business
message.

For more information, see “Writing Business Operations to Manipulate Business
Messages’ on page 2-51.

2-42  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

Defining Variables and Manipulating Business Messages

The following sections describe procedures you perform in regard to both sent and
received messages:

m Defining WebL ogic Process Integrator Variables for Business Messages
m  Defining Manipulate Business Message Actions

m  Writing Business Operations to Manipul ate Business M essages

Defining WebLogic Process Integrator Variables for Business Messages

At run time, a business message is stored in a WebL ogic Process Integrator variable
(of type Java Object) when it isready to be sent or when it has been received. When a
business message is ready to be sent, the application code associated with the

Mani pulate Business M essage action constructs the business message and returnsit in
this variable to the workflow instance. When a business message has been received,
the application code associated with the Manipul ate Business M essage action obtains
this variable from the workflow instance and uses it to process the incoming business

message.

Note:  In WebLogic Collaborate, XOCP business messages are not stored in
WebL ogic Process Integrator variables of type XML Document.

In WebL ogic Process | ntegrator Studio, you must define the JavaObject variablesused
to store business messages before you define any actions that refer to them, as
described in “Defining Manipulate Business Message Actions’ on page 2-44.

For each workflow template definition, you must define a separate variable for each
business message that the workflow sends or receives. For example, if aworkflow
sendsarequest and receivesareply, you must define variablesfor both initsworkflow
template definition.

BEA WebLogic Collaborate Developer Guide  2-43



2 Using Workflows to Exchange Business Messages

To define avariable for a business document in WebL ogic Process Integrator Studio:

1. Inthefolder tree, right-click Variables under the appropriate workflow template
definition and choose New Variable to display the Variable Properties dialog box.

Figure2-15 Variable Properties Dialog Box

Variable Properties Ed |

MHame

reguesthsg

Type
|.Java Ohbject LI

Farameter—————
[ nput [ Mandatary

[T Cutput

MHotes

& Tawa Object that |
holds the message to
be used in the "Send

-

(]34 Cancel

2. Specify aunique name for this variable.
3. Select the Java Object variable type.
4. Click OK.

Defining Manipulate Business Message Actions

At run time, the Manipulate Business Message action isinvoked to manipulate a

business message. If the workflow is sending abusi ness message (such as request), the
Manipulate Business M essage action runs the associated application code to create the
business message and save it in an output variable that is sent subsequently in a Send

2-44  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

Business Message action. If theworkflow is receiving a business message (such as a
reply), the Manipulate Business M essage action captures the incoming business
message in an input variable and passes it onto the associated application code for
processing.

The Manipulate Business M essage action can be associated with any of the following
nodes: task, decision, event, and start. Y ou must explicitly add the Manipulate
Business M essage action to the workflow template definition.

BEA WebLogic Collaborate Developer Guide  2-45



2 Using Workflows to Exchange Business Messages

Adding a Manipulate Business Message Action

To define the Manipulate Business M essage action for aworkflow in WebL ogic
Process Integrator Studio:

1. Inany dialog box where you can specify an action (such as the Task, Decision,
Event, or Start Properties dialog box), click Add to display the Add Action dialog
box.

Figure2-16 Add Action Dialog Box

Add Action |

Select an action to add

F-[_] TaskActions

-] Workflow Actions

-] Integration Actions

J Exception Handling Actions
F-_ ] Miscellaneous actions

]9 Cancel

2-46  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

2. Click the Integration Actions folder to expand it.

Figure2-17 Add Action Dialog Box With Integration Actions

Add Action Ed |

Select an action to add

-] Task Actions

-] Workflow Actions

= _~4 Integration Actions

Fost XML Event

Send XML to Client

Call Program

FPerfarm Business Operation
Manipulate Business Message
Send Business Message
[+~ ] Exception Handling Actions
- | Miscellaneous actions

(0]4 Cancel

BEA WebL ogic Collaborate Developer Guide

2-47



2 Using Workflows to Exchange Business Messages

2-48

3. Select Manipulate Business Message.
4. Click OK to display the Manipulate Business M essage dialog box.

Figure2-18 Manipulate Business M essage Dialog Box
Manipulate Business Message |

Zlass name

Input variable
Cuutput wariable

| =l

MHotes

(0]34 Cancel

BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

5. Complete the following fields in the Manipul ate Business M essage dialog box.

Table 2-9 Fieldsin the M anipulate Business M essage Dialog Box

Field Description

Class Name Required. Name of a Java class that implements the
com bea. b2b. Wl pi . MessageMani pul at or interface.
For more information, see “Writing Business Operationsto
Manipulate Business Messages’ on page 2-51.

Input variable Name of aWebL ogic Process|ntegrator variablethat contains

an existing business message, such asamessage that has been
received through a Receive Business Message action.

The contents of this variable will be passed asthei n
parameter to themani pul at e operation in the specified Java
classthat implements the

com bea. b2b. Wl pi . MessageMani pul at or interface.
If no variable name is specified, the value of thei n parameter
will benul | .

The specified variable must correspond to an existing

WebL ogic Process | ntegrator variable of type Java Object. For
more information, see “ Defining WebL ogic Process
Integrator Variables for Business Messages’ on page 2-43.

Output variable

Name of a WebL ogic Process Integrator variable that will
contain the business message returned by the mani pul at e
operation in the specified Java class that implements the
com bea. b2b. Wl pi . MessageMani pul at or interface.

The specified variable must correspond to an existing

WebL ogic Process | ntegrator variable of type Java Object. For
more information, see “Defining WebL ogic Process
Integrator Variables for Business Messages’ on page 2-43. If
no variable name is specified, then the return value of the
mani pul at e operation will be ignored.

Notes

Optional descriptive text.

BEA WebLogic Collaborate Developer Guide  2-49



2 Using Workflows to Exchange Business Messages

When specifying input or output variables, follow these guidelines:

e If the action receives a business message, then you must specify an input
variable.

e If the action sends a business message, then you must specify an output
variable.

e If the action receives a business message, modifiesit, and then sendsiit, you
must specify both an input and an output variable.

6. Click OK to save your changes.

Example of a Manipulate Business Message Action

For example, suppose you specify the following settings in the Manipulate Business
M essage dialog box.

Table 2-10 Sample Settingsin the Manipulate Business M essage Dialog Box

Field Description

Class name exanpl es. W pi verifier. ProcessRequest
Input variable request Msg

Output variable repl yMsg

At runtime, when the WebL ogic Process Integrator Process Engine executestheaction
with the specified settings, the following events occur:

1. Anobject of classexanpl es. w pi verifier.ProcessRequest is created using
reflection and the default constructor.

2. Thevalue of thei n parameter (r equest Msg) isretrieved.
3. Themani pul at e operation isinvoked on the object.

4. Thereturn value of the mani pul at e operation is stored in the WebL ogic Process
Integrator output variable (r epl yMsg).

2-50  BEA WebLogic Collaborate Devel oper Guide



Working with Business Messages

Writing Business Operations to Manipulate Business Messages

Y ou write business operations that use WebL ogic Process Integrator variables and
Java code to manipulate business messages that are exchanged between trading
partners. The Manipulate Business Message action invokes a special WebL ogic
Collaborate business operation, a message manipulator, to create a business message
to send or to process a business message that has been received. A message
manipulator is a Java class that implements the

com bea. b2b. w pi . MessageMani pul at or interface.

For more information about defining the message manipulator class and input and
output variables for the Manipulate Business M essage action, see “Defining
Manipulate Business Message Actions” on page 2-44. For more information about the
com bea. b2b. wl pi . MessageMani pul at or interface, seetheWebL ogic Collaborate
Javadoc.

Supported Operations

M essage manipulators support the following operations for processing business
messages:

m Creating business messages before sending them. (See “ Steps for Creating
Business Messages” on page 2-53.) A workflow must send messages to
participate in conversations.

e At runtime, the Manipulate Business Message action isinvoked. The
Manipulate Business M essage action creates a business message, based on
the contents of other WebL ogic Process I ntegrator variables, and returnsthe
business message for storagein a variable. For more information, see
“Defining WebL ogic Process Integrator Variables for Business Messages’ on
page 2-43.

e The Send Business Message action retrieves this variable and sends the
business message. For more information, see “Defining Send Business
Message Actions’ on page 2-57.

m  Processing business messages after receiving them. After a business message has
been received, an invoked business message manipulator extracts the contents of
the message and stores any required message parts in WebL ogic Process
Integrator variables for use by other actions.

BEA WebLogic Collaborate Developer Guide  2-51



2 Using Workflows to Exchange Business Messages

MessageManipulator Interface

To process business messages that are exchanged between roles in a conversation,
workflow applications use Java classes that implement the

com bea. b2b. wl pi . MessageMani pul at or interface. Thisinterface contains a
single operation, mani pul at e, with the following signature:

XOCPMessage mani pul at e(Wr kfl owml nst ance i nstance, XOCPMessage i n)
t hrows WLPI Excepti on;

When calling the mani pul at e operation, aworkflow specifies the following
parameters.

Table2-11 Parametersin the Manipulate Operation

Par ameter Description

i nstance Current workflow instance, which can be used to get or set
variables. For more information, see “Defining WebL ogic
Process Integrator Variablesfor Business Messages’ on page
2-43.

in XOCP message stored in the WebL ogic Process Integrator
variable specified as an input variable in the associated
Manipulate Business M essage action. If no input variablewas
specified in the Manipulate Business M essage action or if the
variable is empty, then nul | is passed.

The mani pul at e operation returns an X OCP message generated by the message
manipulator. At run time, this XOCP message s stored in the output variabl e specified
in the associated WebL ogic Process I ntegrator Manipul ate Business M essage action.
If this output variable was not specified, then the return value isignored.

Note: Classes that implement the message manipulator interface must have a public
default constructor (a constructor without arguments). The Process Engine
uses Java reflection to create objects of that class and therefore invokes the
default constructor.

2-52  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

Creating and Defining Messages to Send

The following sections describe how to prepare messages to be sent:

Steps for Creating Business M essages
Defining Send Business Message Actions

Defining the Quality of Service for Message Delivery for a Send Business
Message Action

Assigning Message Token Information to WebL ogic Process | ntegrator Variables

Steps for Creating Business Messages

The Prepar eQuery class in the WebL ogic Process Integrator Verifier program isan
example of amessage manipulator that constructs a business message beforeit is sent.
Itis called by the Manipulate Business M essage action that occurs in the workflow. It
returns areply message (replyMsg variable) that is passed back to the workflow asthe
business message to send.

Step 1: Import the Necessary Packages

Thefollowing listing showsthe packagesthat the Pr epar eQuer y classimports, which
includes the X OCP messaging objects that are used to create the XOCP message.

Listing2-1 Importing the Necessary Packages

package exanpl es.w piverifier;

inport java.io.*;

i nport org. apache. xerces. dom *;
i nport org.w3c.dom *;

i nport com bea. eci. | oggi ng. *;

i nport com bea. b2b. W pi . MessageMani pul at or;
i nport com bea. b2b. Wl pi . Wor kf | owl nst ance;

i nport com bea. b2b. W pi . W.PI Excepti on;

i nport com bea. b2b. prot ocol . conver sati on. Conver sati onType;
i nport com bea. b2b. enabl er. *;

BEA WebL ogic Collaborate Developer Guide  2-53



2 Using Workflows to Exchange Business Messages

i nport com bea. b2b. enabl er. xocp. *;

i nport com bea. b2b. prot ocol . nessagi ng. *;

i mport com bea. b2b. prot ocol . xocp. conversati on. | ocal . *;
i nport com bea. b2b. prot ocol . xocp. nessagi ng. *;

Step 2: Implement the MessageManipulator Interface

Thefollowing listing shows the Pr epar eQuer y class declaration that implements the
MessageMani pul at or interface.

Listing 2-2 Implementing the M essageM anipulator Interface

public class PrepareQuery inplenments MessageMani pul at or{

Step 3: Call the Manipulate Method

The code in the following listing calls the manipulate method, which retrieves the
current workflow instance object as well as the incoming business message.

Listing 2-3 Calling the manipulate M ethod

publ i c XOCPMessage mani pul at e(Wor kfl ow nstance i nstance,
XOCPMessage i n)
throws W.PI Excepti on{

2-54  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

Step 4: Get the Input Variables from the Current Workflow Instance

The code in the following listing gets the input variables associated with the current
workflow instance by calling the get Var i abl e method on the workflow instance.

Note: TheW pi Veri fi er Const ant s class contains constant values.

Listing2-4 Getting the Input Variables

int current =
((I'nteger)instance. get Vari abl e(W pi VerifierConstants. CURRENT)).in
t Val ue();

String req =
(String)instance. getVari abl e(W pi Veri fi er Const ant s. REQUJESTSTR +
current);

bool ean | ast;

if (current < 4){

try{
String v =

(String)instance. getVari abl e(W pi Veri fi er Const ant s. REQUJESTSTR +
(current + 1));

if (v =null || v.length() == 0)
| ast = true;
el se

| ast = fal se;
}catch (WL.PI Exception e){
| ast = true;
}
}el se
| ast = true;

if (last)
i nstance. setVariabl e("l ast”, new Integer(1));

BEA WebL ogic Collaborate Developer Guide  2-55



2 Using Workflows to Exchange Business Messages

The code in the following listing creates the request message. For more information
about creating X OCP business messages, see “Step 1: Create the Business M essage”
on page 3-30.

Listing 2-5 Creating the Request M essage

XOCPMessage xocpnsg = nul | ;

try{
DOM npl enment ati onl npl donmi = new DOM npl enent ati onl npl () ;

/1 "request" - (paraml) The qualified nane of the docunent
type to be created.

/1 "request" - The document type public identifier.

/1 "upper-request.dtd" - The docunment type systemidentifier

Docunent Type dType = domi . createDocunment Type("request",
"request", "upper-request.dtd");

or g. w3c. dom Docunent rq = new Docunent | npl (dType);
El ement root = rq.createEl ement("request");

rq. appendChi | d(root);

Text t = rqg.createText Node(req);

root . appendChil d(t);

root.setAttribute("last", last ? "true" : "false");

xocpnsg = new XOCPMessage("");
xocpnsg. addPayl oadPart (new Busi nessDocunent (rq));

}cat ch( Exception e){
e.printStackTrace();
t hr ow new W.PI Excepti on(" PrepareQuery rai sed exception:" + e);

}

2-56  BEA WebL ogic Collaborate Devel oper Guide



Working with Business Messages

Step 5: Return the Request Message
The code in the following listing returns the request message in the variable xocpnsg

(of type XOCPMes sage) Thereturn valueisthen assigned to an output variable (of type
Java Object) in the workflow in preparation for sending the business message.

Listing2-6 Returning the Request M essage

return xocpnsg;

Defining Send Business Message Actions
After you create a business message in WebL ogic Process Integrator using a

Manipulate Business M essage action and a message manipulator, you send the
business message using the Send Business M essage action.

BEA WebLogic Collaborate Developer Guide  2-57



2 Using Workflows to Exchange Business Messages

To define a Send Business M essage action:

1. Inany dialog box where you can specify an action (such as the Task, Decision,
Event, or Start Properties dialog box), click Add to display the Add Action dialog
box.

Figure2-19 Add Action Dialog Box

Add Action Ed |

Select an action to add

-] Task Actions

-] Workflow Actions

#- ] Integration Actions

J Exception Handling Actions
-] Miscellaneous actions

(0]4 Cancel

2-58  BEA WebL ogic Collaborate Devel oper Guide



Working with Business Messages

2. Click the Integration Actions folder to expand it.

Figure2-20 Add Action Dialog Box With Integration Actions

Sadect an achon o add
. | Tash Acfions
+ | ‘Workdow Arions
A Inlegrabon Aclions

# Fosl <KL Everd
# Eend ML 1a Clienl
& Call Program
# Ferorm Busingss Opsabon
& Wanigpulale Business Megsage
# Sand Business Wesaages

H-__|] Encephon Handing Aclions

¥ | Wigcallaneous acions

O I Cancal

BEA WebL ogic Collaborate Developer Guide  2-59



2 Using Workflows to Exchange Business Messages

3. Select Send Business Message, and then click OK to display the Send Business
Message dialog box.

Figure2-21 Send Business M essage Dialog Box

Sond Business Meszage

Source vanablks

I =
Rowter Expression Comlains
= Trading Parrsr Mame
" ¥Path Expression
™ Wariablg

RoRar Expression

Tarngsl e

[T Use Q0B Defined for Comvsersaion

Gualiy of Sandice I

Massage Token I

Moles

v 4 I Cancal

2-60  BEA WebLogic Collaborate Devel oper Guide



Working with Business Messages

4. Complete the following fields in the Send Business Message dial og box.

Table 2-12 Fieldsin the Send Business M essage Dialog Box

Field Description

Source Variable Name of aWebL ogic Process | ntegrator Java Object variable
that contains an XOCPMessage, probably created by an
earlier call to amessage manipulator. Required field. For more
information, see “Defining WebL ogic Process | ntegrator
Variables for Business Messages’ on page 2-43.

Router Expression Contents of the Router Expression field: atrading partner
Contains name or an XPath expression. Router expressions might be

overridden by router expressions specified in the c-hub
repository. For more information about routers, see Routing
and Filtering XOCP Business M essagesin the BEA WebL ogic
Collaborate C-Hub Administration Guide.

m  Trading Partner Name  The Router Expression field contains a single trading partner

name.
m  XPath Expression The Router Expression field contains an XPath expression.
m Vaiable The Router Expression field contains a WebL ogic Process

Integrator variable (of type String) with the contents of the
Xpath expression. The variableis selected from a drop down
list and may have been assigned by the Receive Business
Message event.

Router Expression Router expression that will be used when the message is sent.

m [f Trading Partner name is selected, the message will be
sent to the specified trading partner.

m |f XPath Expression is selected, the message will be sent
based on the specified XPath expression.

If thisfield is left blank, anull filter will be used. For more
information about router expressions, see Routing and
Filtering XOCP Business M essages in the BEA WebLogic
Collaborate C-Hub Administration Guide.

Target Role Theroleinthe conversation to which the messagewill be sent.
Required field.

BEA WebLogic Collaborate Developer Guide  2-61



2 Using Workflows to Exchange Business Messages

Table 2-12 Fieldsin the Send Business M essage Dialog Box (Continued)

Field Description
Use QoS Defined for Specifies whether to use the Quality of Service defined at the
Conversation template level or a this Send Business Message action level.

m If selected, WebL ogic Collaborate uses the QoS
information that was defined at the workflow template
definition level, as described in “ Defining the Quality of
Service for Message Delivery at the Template Level” on
page 2-20.

m If not selected, WebL ogic Coll aborate uses QoS
information defined at this Send Business Message action
level, asdescribed in “ Defining the Quality of Service for
Message Delivery for a Send Business M essage Action”
on page 2-62.

Quality Of Service Appears only if Use QoS Defined for Conversation is not
selected. Click this button to specify the quality of service at
this Send Business Message action level. For more
information, see” Defining the Quality of Servicefor Message
Ddlivery at the Template Level” on page 2-20.

Message Token Click this button to assign the message token information to
WebL ogic Process Integrator variables. For more
information, see “Assigning Message Token Information to
WebL ogic Process Integrator Variables’ on page 2-63.

Notes Optional descriptive text.

5. Click OK to save your changes.

Defining the Quality of Service for Message Delivery for a Send Business
Message Action

The Quality of Service (QoS) isaset of attributesthat are defined for reliable business
message publishing. In WebL ogic Process Integrator, you can define the QoS at the
following levels:

m At thetemplate level, where the settings apply to all Send Business Message
actions, unlessit is specifically overridden by the definition of the action. For

2-62  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

more information, see “Defining the Quality of Service for Message Delivery at
the Template Level” on page 2-20.

m At the Send Business Message action level, where the settings apply to the
specific action only but override the settings specified at the template level.

To define QoS at the Send Business Message level:
1. Click the Quality of Service button.
2. The Quality of Service Settings dialog box appears.

3. Complete the fieldsin the Quality of Service Settings dialog box, as described in
Table 2-4.

4. Click OK.

Note:  Thedefinitions specified here will apply to this Send M essage action only, not
to all send actions within this conversation.

Assigning Message Token Information to WebLogic Process Integrator

Variables

When a business message is sent by the WebL ogic Collaborate messaging service, a
message token isreturned as a Java object at the programming level. The message
token provides the information about the message, such as the message ID,
conversation I D, send success/failure, the delivery status, and the number of recipient
destinations after final selection (router and filter evaluations) at the c-hub.
Applications call the get Vari abl e method to get access to thisvariable.

Thisvariable could be defined as an output variable that gets processed after the
workflow ends. A message token is represented by the

com bea. b2b. pr ot ocol . nessagi ng. MessageToken class, which is described in
the Javadoc and in “Message Tokens’ on page 3-48.

Y ou can configure WebL ogic Process | ntegrator workflows to get access to the
message token by assigning the token and its associated information to WebL ogic
Process Integrator variables. At run time, values are assigned to the workflow instance
variables after the Send Business M essage action has completed. For moreinformation
about message tokens, see “Message Tokens” on page 3-48.

BEA WebL ogic Collaborate Developer Guide  2-63



2 Using Workflows to Exchange Business Messages

To assign the message token and its associated information to WebL ogic Process
Integrator variables:

1. Open the Send Business Message dialog box, as described in “ Defining Send
Business Message Actions” on page 2-57.

2. Inthe Send Business Message dialog box, click the Message Token button to
display the M essage Token dialog box.

Figure2-22 M essage Token Assignments Dialog Box

OB Mesaaging Cordrmation 21 by
To all deslinalions

Meszage Token

| [
Stabes of Send Busingss Masgage
[sandistazs =]
Mumber of Initial Recipents

| Hl
Mumber of Actusl Fedipiants:

Time Elapsed for Acks {mes)

Muotas

| Ok I Cancal

Note: Theavailable optionsin this dialog box depend on the selected Quality of
Service settings, as described in “ Defining the Quality of Service for
Message Delivery at the Template Level” on page 2-20.

2-64  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

3. Complete the following fields in the Message Token Assignments dialog box.

Table 2-13 Fieldsin the M essage Token Assignments Dialog Box

Field

Description

QoS Messaging
Confirmation set to:

Display only. Shows the QoS Message confirmation setting,
which is described in “ Defining the Quality of Service for
Message Delivery at the Template Level” on page 2-20.
The three possible settings are:

m  Confirm message delivery up to the c-hub
m  Confirm message delivery up to the router in the c-hub
m  Confirm message delivery to all destinations

Message Token Assigns the returned message token to a WebL ogic Process
Integrator Java Object variable. This object can then only be
passed to a business operation for processing.

Status of Send Message I ndicates whether the message was sent successfully (true for

successand falsefor failure). Assignsthevalueto aWebL ogic
Process I ntegrator Boolean variable that can be accessed by
the workflow or passed to a business operation.

Number of Initial
Recipients

Number of recipients assigned by the c-hub after the message
has traversed the router. Assigns the value to a WebL ogic
Process I ntegrator I nteger variable that can be accessed by the
workflow or passed to abusiness operation.

Thisfield appears only if the QoS Messaging Confirmation
setting is either is one of the following selections:

m  Totherouter in the c-hub
m  Toall destinations

Number of Actua
Recipients

Actual number of recipients (number of c-enabler sessions
that received the message). Assigns the valueto a WLPI
Integer variable that can be accessed by the workflow or
passed to a business operation.

Thisfield is shown only if the QoS Messaging Confirmation
setting is“To all destinations’.

BEA WebLogic Collaborate Developer Guide  2-65



2 Using Workflows to Exchange Business Messages

Table 2-13 Fieldsin the M essage Token Assignments Dialog Box (Continued)

Field Description

Time Elapsed for Acks Time taken, in milliseconds, for acknowledgments from all

(ms) recipients. Thisassignsthevalueto aWLPI Long variablethat
can be accessed by the workflow or passed to a business
operation.

Thisfield is shown only if the QoS Messaging Confirmation
setting is“ Confirm message delivery to all destinations.”

Notes Optional descriptive text.

Defining the Workflow to Receive Business Messages

A workflow can receive a business message in the following circumstances:

m  When a conversation participant workflow iswaiting for theinitial business
message sent by the conversation initiator workflow. The first business message
triggers the start node of the conversation, which is defined as a Business
M essage start. For more information, see “ Defining the Business M essage Start
for Conversation Participant Workflows” on page 2-67.

m  When aconversation initiator workflow or conversation participant workflow is
waiting for another message, such as areply to arequest, as described in
“Defining Business M essage Receive Events’ on page 2-70.

The following sections describe procedures for setting up your workflow to receive
business messages:

m Defining the Business Message Start for Conversation Participant Workflows
m Defining Business Message Receive Events

m  Stepsfor Receiving Business Messages

2-66  BEA WebLogic Collaborate Devel oper Guide



Working with Business Messages

Defining the Business Message Start for Conversation Participant Workflows

To define the Business Message start property for a conversation participant
workflow:

1. Display or add the start shape, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

BEA WebLogic Collaborate Developer Guide  2-67



2 Using Workflows to Exchange Business Messages

2. Double-click the start shape to display the Start Properties dialog box.

Figure2-23 Start Properties Dialog Box

2-68  BEA WebLogic Collaborate Developer Guide



Working with Business Messages

3. Complete the following fields in the Start Properties dialog box.

Table 2-14 Fieldsin the Start Properties Dialog Box

Variable Description

Start Property Select Busi ness Message.

Target Name of atarget WebL ogic Process | ntegrator variable (of
type Java Object) in which to store the business message.
Required field.

Sender’ s Router Name of a WebL ogic Process Integrator variable (of type

Expression String) in which to store an XPath expression. The value

representsthe X Path expression that was used by the sender to
send the message. This X Path expression can be used later as
part of arouter expression to publish areply to the current
message back to the sender. Optiona field.

Sender’s Name Name of a WebL ogic Process Integrator variable (of type
String) in which to store the name of the Trading Partner that
sent the message. If the Convert Sender’s Name to X Path
check box is selected, then thisnameis converted to an X Path
expression.

Convert Sender’'sNameto  If selected, the contents of the variable specified in the
XPath Sender'sName field will be converted to an XPath expression
suitable for use in the Send Business Message action.

If not selected, the Sender's Name variable will be the actua
name of the sending Trading Partner.

4. Click OK.

When aworkflow instance is started for the conversation participant workflow, the
target variable contains the business message that triggered the conversation. If a
router variable is specified, it contains an X Path expression that can be used to reply
to the sender. For more information, see “Defining Send Business Message Actions’
on page 2-57.

BEA WebL ogic Collaborate Developer Guide  2-69



2 Using Workflows to Exchange Business Messages

Defining Business Message Receive Events

If aworkflow waits to receive a business message, such as reply to arequest or a
subsequent (not an initial) request), you must define a Business M essage Receive
event. This event istriggered at run time when the appropriate business message is
received in the conversation.

To define a Business M essage Receive event:

1. Display or add atask as described in Working with Workflow Componentsin the
BEA WebLogic Process Integrator Sudio User Guide.

2-70  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

2. Double-click the event shape or right-click it in the folder tree and choose the
Properties command to display the Event Properties dialog box.

Figure2-24 Event Properties Dialog Box

Ewent Propmitios

Descrphon

Event Tvpe
T Fegular Event
= Husingss Message Fecems Everi

™ Cosversation Terminabe Event

Business Profocols

peace =
Variahle Ssslgnmenis
Targel

ln.-:|uu stMzg d

Eender's Rouler Expression
| =l
Bander's Mame
|‘:-l:r-Jt'|Hd|r|f

ll v Cormid Sendérs Mame i =Fath

Waristies ] M | Actions | hectes |

‘Wariable | HML Expression I

Update

Dlele

i

(5724 Cancel |

BEA WebLogic Collaborate Developer Guide  2-71



2 Using Workflows to Exchange Business Messages

3. Complete the following fields in the Event Properties dialog box.

Table 2-15 Fieldsin the Event Properties Dialog Box

Variable Description

Event Type Select Busi ness Message Recei ve Event.

Target Name of atarget WebL ogic Process Integrator variable (of
type Java Object) in which to store the business message.
Required field.

Sender’s Router Name of a WebL ogic Process I ntegrator variable (of type

Expression String) in which to store an XPath expression. The value

represents the X Path expression that was used by the sender to
send the message. This XPath expression can be used | ater as
part of arouter expression to publish areply to the current
message back to the sender. Optional field.

Sender’s Name Name of a WebL ogic Process | ntegrator variable (of type
String) in which to store the name of the Trading Partner that
sent the message. If the Convert Sender’s Name to X Path
checkbox is selected, then this nameis converted to an XPath
expression.

Convert Sender’sNameto  If selected, the contents of the variable specified in the
XPath Sender'sNamefield will be converted to an XPath expression
suitable for use in the Send Business M essage action.
If not selected, the Sender's Name variable will be the actual
name of the sending Trading Partner.

At run time, when the business message is received, the event istriggered and the
target variableis set to the business message that wasjust received. If arouter variable
isspecified, it containsan X Path expression that can be used to reply to the sender. For
more information, see “Defining Send Business M essage Actions’ on page 2-57.

Steps for Receiving Business Messages

2-72

The Pr epar eRepl y classin the WebL ogic Process Integrator Verifier programis an
exampl e of amessage manipulator that receives and processes a business message. It
is called by the Manipulate Business M essage action associated with the Start event
(defined as Business Message start event) that is triggered when the initial business

BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

message is received from the conversation initiator workflow. It returns areply
message (r epl yMsg variable) that is passed back to the workflow as the business
message to send.

Step 1: Import the Necessary Packages

The code in the following listing shows the packages that the Pr epar eRepl y class
imports, which includes the X OCP messaging objectsthat are used to create the XOCP
business message.

Listing 2-7 Importing the Necessary Packages

inport java.util.*;

i nport org. apache. xerces. dom *;
i nport org.w3c.dom *;

i nport com bea. eci. | oggi ng. *;

i nport com bea. b2b. W pi . MessageMani pul at or;

i nport com bea. b2b. Wl pi . Wor kf | owl nst ance;

i nport com bea. b2b. W pi . W.PI Excepti on;

i nport com bea. b2b. prot ocol . messagi ng. *;

i nport com bea. b2b. protocol . xocp. conver sation. | ocal . *;
i nport com bea. b2b. prot ocol . xocp. messagi ng. *;

Step 2: Implement the MessageManipulator Interface

The following listing showsthe Pr epar eRepl y class declaration that implements the
MessageMani pul at or interface.

Listing 2-8 Implementing the M essageM anipulator Interface

public class PrepareReply inplenments MessageMani pul at or

BEA WebL ogic Collaborate Developer Guide  2-73



2 Using Workflows to Exchange Business Messages

Step 3: Call the Manipulate Method

The codein the following listing calls the mani pul at e method, which retrieves the
current workflow instance object as well as the incoming business message (request).

Listing 2-9 Calling the manipulate M ethod

publ i c XOCPMessage mani pul at e(Wor kfl ow nstance i nstance,
XOCPMessage i n)
throws W.PI Excepti on{

Step 4: Process the Request Message

The codein the following listing processes the request message.

Listing 2-10 Processing the Request M essage

Payl oadPart[] payload = in. getPayl oadParts();

Docurent rq = nul | ;

if (payload != null && payload.length > 0){
Busi nessDocunent bd = (Busi nessDocunent) payl oad[ 0] ;
rqg = bd. get Docunent ();

}

if (rg == null){
t hrow new WLPI Exception("Di d not get a request document");

}

El enent root = rq.getDocunent El enent();

String name = root. get NodeNane();

if (!nanme.equal s("reply")){
String msg = "Expected reply, found " + nane;
t hr ow new WLPI Except i on(nsg) ;

}

if (!root.hasChil dNodes()){
String msg = "No data in reply";
t hr ow new WLPI Except i on(nsg) ;

}
Node val ue = root.getFirstChild();

if (value == null){

2-74  BEA WebL ogic Collaborate Developer Guide



Working with Business Messages

String nmsg = "No text inside request"”;
t hrow new WLPI Excepti on(nsg);

}

i f (value.get NodeType() != Node. TEXT_NCDE) {
String msg = "Note inside request is not text node";
throw new WLPI Excepti on(nsg);

}

Text t = (Text)val ue;

String data = t.getData();

Step 5: Process the Input Variables Associated with the Current Workflow Instance

The code in the following listing processes the input variables associated with the
current workflow instance.

Listing2-11 Changingthelnput Variables

/l get the 'current' variable fromthe workfl ow
int current =

((I'nteger)instance. get Vari abl e(W pi VerifierConstants. CURRENT)).in
t Val ue();

/] assign it to a variable that we can extract later in the
client servlet

i nst ance. setVari abl e( W pi Veri fi er Const ant s. REPLYSTR +
current, data);

/1 get the no of recipients that got the nessage

I nteger noOf Recipients =
(I'nteger)instance. getVari abl e(W pi VerifierConstants. RECI Pl ENTSHCOL
DER);

/] assign it to a variable that we can extract later in the
client servlet

i nst ance. set Vari abl e(

W pi VerifierConstants. RECl PI ENTS + current,

(I nteger)noOf Reci pi ents);

return null;

BEA WebL ogic Collaborate Developer Guide  2-75



2 Using Workflows to Exchange Business Messages

Developing Applications That Start
Conversation Initiator Workflows

For conversation initiator workflows, you can start the workflow at run time by using
WebL ogic Process Integrator Worklist or by starting it in a Java application.

The following sections describe how to start a conversation initiator workflow
programmatically:

m  WebL ogic Process Integrator Integration AP
m Creating Workflow C-Enabler Sessions
m  Programming Steps for Accessing Conversation Initiator Workflows

To start a conversation initiator workflow programmatically, the start node for the
workflow template must have a Manual start property, as described in “ Defining the
Start for a Conversation Initiator Workflow” on page 2-27.

WebLogic Process Integrator Integration API

WebL ogic Collaborate applications use the com bea. b2b. W pi packageto start
WebL ogic Process Integrator workflows. This package provides the following
interface and classes.

Table 2-16 Components of the com.bea.b2b.wlpi Package

Object Description

MessageMani pul at or interface Implemented by al classes that are used in a Manipul ate
Message action inside a WebL ogic Process I ntegrator task

Wor kf | owEnabl er Sessi on class Represents a workflow c-enabler session that is coupled with
WebL ogic Process Integrator workflows

Wor kf | owEnabl er Sessi onManager class Controls workflow c-enabler sessions

2-76  BEA WebL ogic Collaborate Developer Guide



Developing Applications That Start Conversation Initiator Workflows

Table 2-16 Components of the com.bea.b2b.wlpi Package (Continued)

Object Description

Wor kf | owl nst ance class Represents a running workflow instance

WLPI Excepti on class Thrown if an error occurs with WebL ogic Process Integrator
processing

For details about this package, see the WebL ogic Collaborate Javadoc.

Creating Workflow C-Enabler Sessions

Before you start the workflow, the application must first create a workflow c-enabler
session with the c-hub. A workflow c-enabler session isalogical session between one
c-enabler node and a c-hub that connects the c-enabler node to a c-space.

Y ou can create workflow c-enabler sessions in the following ways:
m  When the WebL ogic Server starts up, as described in this section.

m  AtruntimeinaWebLogic Collaborate application, as described in “ Creating a
New Workflow C-Enabler Session Programmatically” on page 2-82.

It is generally more convenient to create workflow c-enabler sessions as part of the
bootstrap sequence of the WebL ogic Server hosting the c-enabler. To create workflow
c-enabler sessions upon WebL ogic Server startup, you must specify the

com bea. b2b. wl pi . St art startup class and c-enabler session information while
using the WebL ogic Server Administration Console to configure the c-enabler node.

Thefollowing listing shows afragment of asampleconf i g. xnl filethat specifiesthe
startup class and defines a workflow c-enabler session named cal | er - sessi on.

Listing2-12 Startinga Workflow C-Enabler Session in the config.xml File

<<Startupd ass
Ar gunent s="Conf i gFi | e=xml / enabl ers. xm , Sessi onNane=cal | er - sessi on
, User =bea, Passwor d=12345678, Or gName=BEA"

Cl assNanme="com bea. b2b. wi pi . Start"

Name="W pi VerifierCaller"

BEA WebLogic Collaborate Developer Guide — 2-77



2 Using Workflows to Exchange Business Messages

Tar get s="nyserver"
/>

For more information about using the WebL ogic Server Administration Console, see
see the BEA WebLogic Server Administration Guide.

Programming Steps for Accessing Conversation Initiator

Workflows

To access a WebL ogic Process Integrator conversation initiator workflow, a
WebL ogic Collaborate workflow application completes the following steps:

Step 1: Import the Necessary Packages

Step 2: Initialize Input Variables

Step 3: Establish a Workflow C-Enabler Session

Step 4: Create a Workflow Instance for a Specific Workflow Template
Step 5: Start a Workflow Instance

Step 6: Wait for the Workflow Instance to Complete

Step 7: Handle Results in Output Variables

Step 8: Handling Exceptions

TheW pi Veri fierServl et intheWebLogic Process Integrator Verifier application
provides the sample code for this section. For more information about the WebL ogic
Process Integrator Verifier application, see Running the WebL ogic Process I ntegrator
Verifier Example in BEA WebLogic Collaborate Getting Started.

Step 1: Import the Necessary Packages

2-78

To access a WebL ogic Process I ntegrator workflow, a WebL ogic Collaborate
application begins by importing the necessary package(s). At a minimum, the

WebL ogic Collaborate application must import the com bea. b2b. wi pi package, as
shown in the following listing.

BEA WebL ogic Collaborate Developer Guide



Developing Applications That Start Conversation Initiator Workflows

Listing 2-13 Importing the com.bea.b2b.wlpi Package

inport java.io.*;

inport java.util.*;

inport javax.servlet.*;

inport javax.servlet.http.*;

i nport javax.nam ng. *;

i nport com bea.w pi . server.*;

i nport com bea. w pi . conmon. *;

i nport com bea.w pi.server.worklist.*;
i nport com bea.w pi.server.w col | aborate. *;
i nport com bea. b2b. Wl pi . *;

i nport com bea. eci. | oggi ng. *;

Step 2: Initialize Input Variables

If aconversationinitiator workflow hasinput variablesdefined, you must initializeand
assign variables to them in the WebL ogic Collaborate application before starting the
workflow instance. These input variables must first be declared in the template
definition in WebL ogic Process Integrator Studio, as described in “Defining Input
Variables’ on page 2-38.

Retrieving Values from a Submitted HTML Form

TheW pi Verifier Servl et inthe WebL ogic Process | ntegrator Verifier application
initializes the input variables and retrieves the values that a Web user has entered and
submitted in an HTML form, as shown in the following listing from the WebL ogic
Process Integrator Verifier application.

Listing 2-14 Setting the Value of an Input Variable

// servlet paraneters
private static final String sendParam = "sendstring";
private static final String idParam= "recipientld";

/1 vars to hold paraneter val ues

private String[] sendStr = new String[5]; // strings to send
/1 contains the replies for each sent string

private String[] reply = new String[sendStr.|ength];

/1 the no of actual recipients for each reply

private Integer[] noO'Recipients = new Integer[sendStr.|ength];

BEA WebL ogic Collaborate Developer Guide  2-79



2 Using Workflows to Exchange Business Messages

public void doPost(H tpServl et Request req, HttpServletResponse
res)
throws | CException, ServletException{
try{
/1 get the paraneters for this servlet
Enureration e = req.get ParaneterNanes();
String name = nul | ;
whil e (e.hasMreEl enents()){
nanme = (String)e.nextEl ement();
String | owNanme = nane.toLower Case();
if (1 owNane.startsWth(sendParam){
int index =
I nt eger. par sel nt (I omNane. substring(sendParam | ength()));
sendStr[index] = req.getParaneter(nane);

}
}/ 1 whil e

Assigning Values by Using the setVariable Method

A WebL ogic Collaborate application sets instance variables by calling the
set Var i abl e method on the workflow instance, passing the name of the variable and
itsvalue. The set Var i abl e method requires the following parameters.

Table 2-17 Parametersfor the setVariable Method

Par ameter Description
name Name of the variable to be set.
val ue Vauefor thevariable. Thevalue must be represented asaJava

object, as described in “ Associations Between WebL ogic
Process Integrator Variables and Java Data Types’ on page
2-36.

TheW pi Veri fi er Servl et of the WebL ogic Process Integrator Verifier application
usestheset Var i abl e method to specify valuesfor the request string, asshown in the
following listing.

2-80  BEA WebLogic Collaborate Devel oper Guide



Developing Applications That Start Conversation Initiator Workflows

Listing 2-15 Setting the Value of Input Variables

for (int i =0 ; i < data.length ; i++){
W . set Variabl e(W pi VerifierConstants. REQUESTSTR + i, data[i]);

Step 3: Establish a Workflow C-Enabler Session

Y ou establish aworkflow c-enabler session by accessing the Workflow C-Enabler
Session Manager and then retrieving an existing workflow c-enabler session or
creating a new one.

Accessing the Workflow C-Enabler Session Manager

WebL ogic Collaborate provides a Workflow C-Enabler Session Manager that
manages all workflow c-enabler sessions. One Workflow C-Enabler Session M anager
exists per WebL ogic Server instance. A WebL ogic Collaborate application must get
access to this Workflow C-Enabler Session Manager by calling the

VWor kf | owEnabl er Sessi onManager . get () method, as shown in the following
listing:

Listing 2-16 Accessing the Workflow C-Enabler Session M anager

VWor kf | owEnabl er Sessi onManager wesm =
Vor kf | owEnabl er Sessi onManager . get () ;

After accessing the Workflow C-Enabler Session Manager, a WebL ogic Collaborate
application either creates anew workflow c-enabler session or retrieves an existing
one.

Retrieving an Existing C-Enabler Session

If the required workflow c-enabler session already exists (for example, the workflow
c-enabler session was created upon WebL ogic Server startup, as described in
“Creating Workflow C-Enabler Sessions’ on page 2-77), a WebL ogic Collaborate

BEA WebL ogic Collaborate Developer Guide  2-81



2 Using Workflows to Exchange Business Messages

application can obtain accessto it by calling the get Exi st i ngEnabl er Sessi on
method and passing its workflow c-enabler session name. The workflow c-enabler
session name is specified in the c-enabler XML configuration file.

The code in the following listing retrieves an existing workflow c-enabler sessionin a
WebL ogic Collaborate application by specifying itsname (cal | er - sessi on):

Listing 2-17 Retrieving an Existing Wor kflow C-Enabler Session

Vor kf | owEnabl er Sessi on wes = wesm get Exi sti ngEnabl er Sessi on(
“call er-session");

Creating a New Workflow C-Enabler Session Programmatically

If you do not create workflow c-enabler sessions upon WebL ogic Server startup, as
described in “ Creating Workflow C-Enabler Sessions’ on page 2-77, the WebL ogic
Collaborate application must do so programmatically. Creating aworkflow c-enabler
session includes registering a workflow conversation handler for all of the
conversation types that are active for the workflow c-enabler session.

Note: A W.PI Except i on will bethrown if the specified workflow c-enabler session
was already created in a startup class or by a servlet initialized during the
WebL ogic server bootstrap.

The code in the following listing creates a workflow c-enabler session in aWebL ogic
Collaborate application.

Listing 2-18 Creating a Workflow C-Enabler Session

/1 Define the paraneters for the workflow c-enabl er session
String configFile = "xm/enabl ers.xm";

String sessionName = "call er-session”;

String orgName = "WACL";

String user = "bea";

String password = "12345678";

/1 CGet the only Wrkfl owEnabl er Sessi onManager

Wor kf | owEnabl er Sessi onManager wesm =
Wor kf | owEnabl er Sessi onManager. get () ;

2-82  BEA WebL ogic Collaborate Developer Guide



Developing Applications That Start Conversation Initiator Workflows

// Create a workflow c-enabler session with specified paraneters
Vor kf | owEnabl er Sessi on wes = wesm get Enabl er Sessi on(confi gFil e,
sessi onNane, orgName, user, password);

The WebL ogic Collaborate application passes the following parameters to the
get Enabl er Sessi on method.

Table 2-18 Parametersfor getEnabler Session()

Parameter Description

configFile Name of the c-enabler XML configuration file where the
session is defined.

This parameter isidentical to the corresponding parameter in
the Enabl er Sessi onFact ory. get Enabl er Sessi on
method.

sessi onNane Name of a session in the c-enabler XML configuration file.

This parameter isidentical to the corresponding parameter in
the Enabl er Sessi onFact ory. get Enabl er Sessi on
method.

or gNane Name of the WebL ogic Process Integrator organization
associated with the workflow template definition(s) to use.

user Login username of a WebL ogic user that has access to the
workflow template definitions.

password Login password of a user that has access to the template
definitions.

Step 4: Create a Workflow Instance for a Specific Workflow Template

After establishing a workflow c-enabler session, a WebL ogic Collaborate application
creates aworkflow instance by calling the cr eat el nst ance method, passing the
name of the WebL ogic Process Integrator workflow template to use. Calling this
method automatically creates a corresponding WebL ogic Collaborate conversation
associated with this workflow c-enabler session.

The specified workflow template must:

BEA WebL ogic Collaborate Developer Guide  2-83



2 Using Workflows to Exchange Business Messages

m Beactive and not expired

m Have aManual start state

Note: A WebL ogic Collaborate application can call thecr eat el nst ance methodto
to create any valid workflow instance, regardless of whether the workflow
templateislinked to arolein aWebL ogic Collaborate conversation definition.

The codein the following listing creates aworkflow instance.

Listing 2-19 Create a Workflow Instance for the Specified Workflow Template

Wor kfl ow nstance wi =
wes. cr eat el nst ance( W pi VerifierConstants. | NI TI AL_TEMPLATEI D) ;

Note: TheW pi Verifier Const ant s class contains constant val ues.

Step 5: Start a Workflow Instance

2-84

After creating aworkflow instance and initializing input variables, a WebL ogic
Collaborate application starts the workflow instance by calling the st ar t method on
the instance, as shown in the following listing.

Listing 2-20 Start a Workflow Instance

wi.start();

BEA WebL ogic Collaborate Developer Guide



Developing Applications That Start Conversation Initiator Workflows

Step 6: Wait for the Workflow Instance to Complete
Once aworkflow instance has been started, a WebL ogic Collaborate application can

wait for its completion by calling the wai t For Conpl et i on method on the
workflow instance. The operation blocks until the workflow instance has completed.

Listing2-21 Waiting for Completion of the Workflow Instance

private void waitForWrkFl owToEnd( Wr kf | owm nst ance wi)
t hrows Exception{

Wi . wai t For Conpl eti on();

While waiting for the workflow instance to complete, a WebL ogic Collaborate
application can determine the completion state of the workflow instance by calling the
i sConpl et ed method on the workflow instance. This method returns a Boolean

t r ue if the workflow execution completed, or f al se if not.

Step 7: Handle Results in Output Variables

After aworkflow instance has completed, a WebL ogic Collaborate application can
handle the results of the workflow instance by retrieving the information stored in
output variables. These output variables must first be declared in the template
definition in WebL ogic Process Integrator Studio, as described in “Defining Output
Variables’ on page 2-39.

A WebL ogic Collaborate application retrieves the value of an instance variable by
calling the get Var i abl e method on the workflow instance, passing the name of the
variable to retrieve, as shown in the following sample listing.

Listing2-22 Retrieving the Resultsin Output Variables

for (int i =0 ; i <reply.length ; i++){
try{
reply[i] =
(String)w .getVariabl e(Wpi VerifierConstants. REPLYSTR + i);

BEA WebL ogic Collaborate Developer Guide  2-85



2 Using Workflows to Exchange Business Messages

noCf Reci pients[i] =
(I'nteger)w . getVari abl e(W pi VerifierConstants. RECl Pl ENTS + i);

Theget Vari abl e method returns a Java object that should be cast to the appropriate
Java datatype, as described in “ Associations Between WebL ogic Process I ntegrator
Variables and Java Data Types’ on page 2-36.

Step 8: Handling Exceptions

If an error occurs while running aworkflow application, a
com bea. b2b. W pi . W.PI Except i on is thrown. Workflow applications can catch
this exception and process it as appropriate, as shown in the following listing.

Listing 2-23 Handling WL Pl Exceptionsin Workflow Applications

catch (WL.PI Exception we){
String msg = "Exception in Wrkflow " + we;
throw new Excepti on(msg);

2-86  BEA WebLogic Collaborate Devel oper Guide



CHAPTER

3 Using XOCP C-Enabler

Applications to
Exchange Business
Messages

The following sections describe how to develop c-enabler applications that exchange
business messages by using the eXtensible Open Collaboration Protocol (XOCP) in
the WebL ogic Collaborate messaging system:

m  About XOCP C-Enabler Applications

m  Programming Steps for C-Enabler Applications
m  Sending XOCP Business Messages

m  Receiving XOCP Business Messages

Many of the code samplesin this chapter derive from the installation verification
example, which residesin the/ exanpl es/ veri f i er subdirectory of the WebLogic
Collaborate application directory. For more information, see the BEA WebLogic
Collaborate Installation Guide.

Developers a'so design and implement workflows by using the WebL ogic Process
Integrator Studio. For more information, see Chapter 2, “Using Workflows to
Exchange Business Messages.”

BEA WebLogic Collaborate Devel oper Guide 31



3 Using XOCP C-Enabler Applications to Exchange Business Messages

About XOCP C-Enabler Applications

The following sectionsintroduce X OCP c-enabler applications and related concepts:
m Architectural Overview

m  Key Concepts

m  Run-TimeInformation Flow

m  Key Tasks for C-Enabler Applications

3-2 BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

Architectural Overview

The following diagram shows how c-enabler applications fit into the c-enabler
architecture.

Figure3-1 C-Enabler Applicationsin the C-Enabler Architecture

C-Enabler

Receive C-Enabler Application Send

T l

C-Enabler Class Library

T ‘,

Local
Conversation
Coordinator

Enqueus C-Enabler Scheduler Dequeus
Decoders Encoders
4
¥
Transport C-Enabler Transport Transport
| ¥
Incoming QOutgoing
Message Message

I
¥

C-Hub

BEA WebLogic Collaborate Devel oper Guide 3-3



3 Using XOCP C-Enabler Applications to Exchange Business Messages

The following table describes the key components related to c-enabler applications.

Table3-1 Key C-Enabler Componentsfor C-Enabler Applications

Component Description

C-Enabler application Java applications that exchange X OCP business messages
with other trading partners. For more information, see“XOCP
C-Enabler Applications’ on page 3-5.

C-Enabler Class Library Provides Java APIsfor exchanging X OCP busi ness messages.
For moreinformation, see“ C-Enabler Class Library” on page

3-5.
Local Conversation Coordinates conversation activity between the c-enabler and
Coordinator the c-hub. For more information, see “Conversation

Coordinators’ on page 3-11.

For moreinformation about other c-enabl er architectural components, see Introduction
to C-Enablersin the BEA WebLogic Collaborate C-Enabler Administration Guide.

Key Concepts

This section describes the following key concepts associated with c-enabler
applications:

m XOCP C-Enabler Applications

m C-Enabler Class Library

m  Conversations and Conversation Definitions

m  XOCP Business Messages and Message Envelopes
m Conversation Initiators and Participants

m Conversation Coordinators

m  Trading Partner States

m  Secure Messaging

3-4 BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

XOCP C-Enabler Applications

XOCP C-enabler applications are Java applications that run on c-enabler nodes and
use the C-Enabler Class Library to join and leave c-spaces; initiate or participate in
conversations; terminate or leave conversations; and exchange X OCP business
messages with other trading partners in the c-space. A c-enabler node can host many
XOCP c-enabler applications.

C-Enabler Class Library

The C-Enabler Class Library provides APIsfor exchanging X OCP business messages
and consists of the packages in the following table.

Table 3-2 C-Enabler Class Library Packages

Package Name Description

com bea. b2b. enabl er Used for working with c-enabler nodes and c-enabler
sessions.

com bea. b2b. enabl er. xocp Used for working with c-enabler sessions for the

XML Open Collaboration Protocol (XOCP).

com bea. b2b. prot ocol . xocp. conversati on  Used for working with conversations that use the

.l ocal XML Open Collaboration Protocol (XOCP).
com bea. b2b. prot ocol . nessagi ng Used for working with messages in a conversation.
com bea. b2b. prot ocol . xocp. nessagi ng Used for working with messagesin conversationsthat

use the XML Open Collaboration Protocol (XOCP).

For detailed information about these packages, see the Javadoc on the WebL ogic
Collaborate documentation CD or in the cl assdocs subdirectory of your WebLogic
Collaborate installation.

Conversations and Conversation Definitions

In WebL ogic Collaborate, aconversation is a series of message exchanges between
trading partners that take place in a collaboration space and that are predefined
according to a conversation definition. Each message in the conversation may cause
any number of back-end transactions.

BEA WebL ogic Collaborate Developer Guide 35



3 Using XOCP C-Enabler Applications to Exchange Business Messages

A conversation definition consists of a unique conversation name, conversation
version, message definitions, trading partner 1Ds, and trading partner roles for one
conversation. At design time, you use the WebL ogic Process Integrator Studio to link
aworkflow template definition to a particular role (such as buyer or seller) ina
WebL ogic Collaborate conversation definition.

XOCP Business Messages and Message Envelopes

An XOCP business message is the basic unit of communication exchanged between
trading partnersin an X OCP conversation. An XOCP business message is represented
in the C-Enabler Class Library by the

com bea. b2b. prot ocol . xocp. messagi ng. XOCPMessage class.

A message envelope is a container for a business message. A message envelope
contains information about the sender (such asthe sender URL) and recipient (such as
the destination URL). A message envelopeis represented in the C-Enabler Class
Library by the com bea. b2b. pr ot ocol . messagi ng. MessageEnvel ope class.
However, only logic plug-ins (not c-enabler applications) have programmatic access
to message envelopes. For more information, see “ Information Flow for Message
Envelopes’ on page 3-9 and Chapter 4, “Developing Logic Plug-Ins.”

3-6 BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

Diagram of an XOCP Business Message

The following figure shows a message envelope and the components of an XOCP
business message.

Figure3-2 Components of an XOCP Business M essage

Message Envelope

Sender Information ‘ ‘ Recipient Information

XOCP Business Message

Message Header

Payload

Business

Document(s) Attachment(s)

BEA WebL ogic Collaborate Developer Guide 3-7



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Components of an XOCP Business Message

3-8

An XOCP business message is a multi-part MIME (Multipurpose Internet Mail
Extensions) message. It consists of the following components.

Table 3-3 Components of an XOCP Business M essage

Component

Description

Message header

Message attributes, including the sender and recipient information,
conversation information, Qualites of Service information, and so on.

Payload

Container for busi ness document(s) and attachment(s) in thisbusiness
message. The payload container has one or more business documents,
one or more attachments, or a combination of both. A payload part is
represented in the C-Enabler Class Library by the

com bea. b2b. prot ocol . nessagi ng. Payl oadPart
interface.

Business
document(s)

XML -based payload part of a business message. Represented in the
C-Enabler Class Library by the

com bea. b2b. prot ocol . nessagi ng. Busi nessDocunent
class.

Attachment(s)

Non-XML-based payload part of abusiness message. Binary content.
Represented in the C-Enabler Class Library by the
com bea. b2b. prot ocol . nessagi ng. At t achnment class.

BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

Information Flow for Message Envelopes

The following figure shows an example of how message envel opes are processed in
the c-hub.

Figure 3-3 Message Envelope Processing in the C-Hub

C-Hub
Message
Envelope
Business
Message
Message
Envelope .
Router ™ Business - Filter
Message
i Message
Envelope
Message Business
Envelope Message
Business
Message Message Message
Envelope Envelope
4 - -
Business Business
Message Message
Business
Message
4
¥ ¥
Sending Recipient Recipient
Trading Trading Trading
Partner Partner Partner

BEA WebL ogic Collaborate Devel oper Guide 3-9



3 Using XOCP C-Enabler Applications to Exchange Business Messages

M essage envel ope processing occurs in the following sequence:

1.

The sending c-enabler application creates and sends the business message to the
c-hub.

The c-hub receives the business message and wraps it into a message envelope,
extracting certain sender and recipient information from the business message.

Therouter processes the business message and then validates and finalizes the list
of recipients.

The router creates a separate message envelope for each recipient in the
recipients list, inserts alogica copy of the business message in the message
envelope, and then forwards all message envelopes onto the filter.

In the diagram, the router creates message envel opes for three recipients.

Within the filter, the applicable protocol-specific filter for each recipient trading
partner evaluates each business message to determine whether it will be sent to
therecipient. The filter forwards accepted messages onto the next processing step
in the c-hub.

In the diagram, the three business messages are evauated in the filter. Two are
accepted and oneis rejected.

The c-hub validates the recipient, and then sends the business message (in its
message envel ope) to the recipient trading partner.

The recipient trading partner receives the business message.

Conversation Initiators and Participants

3-10

In any XOCP conversation, there are two types of trading partner roles:

Conversation initiator isthe trading partner who creates the conversation and
sends the first business message (such as a request) to one or more recipient
trading partners. The conversation initiator usually awaits areply from each
trading partner and might exchange subsequent business messages. When
finished, the conversation initiator terminates the conversation (unless the
conversation has timed out).

Conversation participant is atrading partner who is enlisted in the conversation
when it receives the first business message from the conversation initiator. The
conversation participant usually sends areply to the conversation initiator and,

BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

optionally, might exchange subsequent business messages. When finished, the
conversation participant either leaves the conversation or waits until the
conversation terminates.

Each conversation definition in the repository includes at least both of these types of
roles. A trading partner must be subscribed to the appropriate role in the conversation
in order to initiate or participate in conversations associated with that conversation
definition.

The initiator of a conversation is usually determined by the role in which atrading
partner is registered. For example, in a Get Quot e conversation, the trading partner
who isin the role of buyer would normally initiate a Get Quot e conversation. Any
trading partner whoisintherole of seller would normally be aconversation participant
in the Get Quot e conversation.

The following figure shows some of the tasks that conversation initiators and
conversation participants perform.

Figure3-4 Conversation Initiatorsand Participants

C-Hub

Time

Create Conversation

Send Request

Con\(e_rsanon Send Reply Convgr_satlon
Initiator - Participant

Terminate
Conversation

Conversation Coordinators

WebL ogic Collaborate has two types of conversation coordinators that coordinate
conversations at run time: a global conversation coordinator coordinates active
conversations on the c-hub, and local conversation coordinatorsin c-enablers help the
global coordinator coordinate active conversationslocally.

BEA WebL ogic Collaborate Developer Guide  3-11



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Thefollowing figure shows global and local conversation coordinatorsin the

WebL ogic Collaborate architecture.

Figure3-5 Global and L ocal Conversation Coor dinators

Conversation
Initiator

XOCP
Local Conversation

Conversation [

C-Hub

Global
Conversation
Coordinator

Conversation
Participant

Local

Coordinator

Global Conversation Coordinator

[
-

A J

Conversation
Coordinator

A global conversation coordinator is a c-hub based service that coordinates
conversation life cycles according to the rules of XOCP and supports long-living,
durable conversations that span multiple organizational boundaries. The global
conversation coordinator maintains alist of active conversations in the c-hub.

The global conversation coordinator performs the following services:

m Enlistsand deliststrading partnersin a conversation
m Enforces the XOCP conversation termination protocol

m Maintains status information about conversations

m Providesthe conversational context for the execution of the business protocol

Local Conversation Coordinators

A local conversation coordinator is a c-enabler based service that coordinates
conversations in which the c-enabler node is participating. The local conversation
coordinator maintains alist of active conversations in which the c-enabler node is
participating. Each c-enabler session has a separate local conversation coordinator.

3-12  BEA WebL ogic Collaborate Developer Guide




About XOCP C-Enabler Applications

The local conversation coordinator performs the following tasks:

m Localy enlistsin a conversation when theinitial business messagein a
conversation is received from the c-hub

m Localy delistsfrom a conversation when the terminate conversation system
message is received from the c-hub

Trading Partner States

The following table describes the states assigned to trading partners as they perform
tasks related to c-space and conversation participation.

Table 3-4 Trading Partner States

State Description
CONNECTED Trading partner has joined a c-space.
REG STERED Connected trading partner hasregistered for rolesin conversationsand

isready to initiate or participate in conversations.

ACTI VE Registered trading partner has participated (sent or received abusiness
message) in at least one conversation.

DROPPEDOUT Trading partner has left a conversation.

DI SCONNECTED  Trading partner has left a c-space.

Some of these trading partner states are visible in the C-Hub Administration Console
and the C-Enabler Administration Console. For more information, see Using the
C-Hub Administration Console in the BEA WebLogic Collaborate C-Hub
Administration Guide and Working with C-Enablers in the BEA WebL ogic
Collaborate C-Enabler Administration Guide.

Secure Messaging

Communication between the c-hub and c-enablersis secured viathe Secure Sockets
Layer (SSL). Before allowing the trading partner to exchange business messages, the
c-hub must authenticate the identity of the trading partner using the trading partner’s
certificate. Once authenticated, business messages are exchanged securely among

BEA WebL ogic Collaborate Developer Guide  3-13



3 Using XOCP C-Enabler Applications to Exchange Business Messages

trading partners by way of the c-hub. For more information about WebL ogic
Collaborate security, see Configuring Security in the BEA WebL ogic Collaborate
C-Hub Administration Guide.

Key Tasks for C-Enabler Applications

This section introduces the key tasks that c-enabler applications perform:
m Joining a C-Space

m  Registering for aRole in a Conversation

m Engaging in Conversations with Trading Partners

m  Shutting Down a C-Enabler Session to Leave a C-Space

Joining a C-Space

Before exchanging business messages, a c-enabler application must join a c-space.
Tojoin ac-space, the c-enabler application must create a c-enabler session, whichisa
logical session between a c-enabler node and one c-hub for one particular c-space.

Before atrading partner (c-enabler application) can create ac-enabler sessiontojoin a
Cc-space:

m  Thec-space and trading partner configuration information must be defined in the
WebL ogic Collaborate repository on the c-hub that hosts the c-space.

m The session’s configuration information (as well as the c-space, c-hub and
c-enabler URL, trading partner name, and c-enabler session name) must be
defined in the c-enabler XML configuration file. For more information, see
Configuring C-Enablers in the BEA WebLogic Collaborate C-Enabler
Administration Guide. For an introduction to c-enabler sessions, see Introducing
C-Enablersin the BEA WebLogic Collaborate C-Enabler Administration Guide.

m  Thetrading partner must be authorized to join the c-space.

When ac-enabler session is created, the c-enabler sends a system message to the c-hub
with arequest to join the c-space using the configuration settings specified in the
c-enabler XML configuration file. This message acts as an authentication request to
join the WebL ogic Collaborate system. The c-hub validates the registration of the

3-14  BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

trading partner in the requested c-space and, if valid, allowsthat trading partner to join
that particular c-space. At this point, the trading partner isin a CONNECTED state but it
cannot yet participate in conversations.

Note: If the c-enabler node crashes after joining a c-space, the c-enabler application
can rgjoin the c-space upon normal startup. The previous c-enabler session is
discarded and new resources are assigned to the new c-enabler session.
However, the c-hub will not be able to deliver business messages while the
c-enabler node is down. Undelivered business messages will be discarded if
the number of retry attemptsis exceeded or if the business message or
conversation times out.

When atrading partner wants to leave a c-space, the c-enabler application shuts down
the associated c-enabler session, as described in “ Shutting Down a C-Enabler Session
to Leave a C-Space” on page 3-17.

Registering for a Role in a Conversation

Once connected, atrading partner needs to register a conversation handler for a
particular role in a specific conversation definition in a given c-space. The
conversation handler must be registered for the conversation type that will define how
the trading partner participates in the conversation.

Role registration requires the following information in the c-hub repository:

m The conversation type is a subset of a conversation definition that defines a
conversation for one trading partner based on the role in the conversation
definition to which the trading partner subscribed.

m A message definition consists of ordered message parts. A message part contains
acontent type (XML or binary) and can contain a document definition. If the
content type is XML, then the document definition is required for that part. For
type binary, no other information is required.

For an introduction to these concepts, see Introducing C-Enablersin the BEA
WebLogic Collaborate C-Enabler Administration Guide.

Before registering for a conversation type, the trading partner must first be authorized
to register. Authorization is configured by the c-hub administrator and is based on the
trading partner’s subscription to arolein a conversation definition.

BEA WebLogic Collaborate Developer Guide  3-15



3 Using XOCP C-Enabler Applications to Exchange Business Messages

When a c-enabler session attempts to register a conversation handler for a specific
conversation type, the c-enabler sends an X OCP system message, “register for
conversation,” to the c-hub. The c-hub validates the role of the trading partner for the
regquested conversation type in the associated c-space. If theregistration is valid, the
trading partner isthen allowed to initiate and participate in conversations associated
with the registered conversation type. At this point, the trading partner isin a

REG STERED state and is ready to initiate or participate in conversations.

Engaging in Conversations with Trading Partners

Once registered for arole in a conversation, atrading partner can engagein
conversations in accordance with that role. Conversation initiation and participation
occurs on the c-hub itself. However, the c-enabler session maintains some state
information about the conversations in which it is involved.

The overall tasks for conversation initiator c-enabler applications and conversation
participant c-enabler applications are very similar. However, conversation initiator
c-enabler applications can terminate conversations while conversation participant
c-enabler applications cannot. Conversation participant c-enabler applications can
only leave a conversation.

Initiating a Conversation and Sending a Business Message

To initiate a conversation, a conversation initiator c-enabler application creates the
conversation. Optionally, the conversation initiator c-enabler application can specify a
timeout value, after which the conversation will automatically terminate; this value
overrides the timeout value that is specified in the associated conversation definition
in the repository.

Thelocal conversation coordinator on the c-enabler node sends an XOCP system
message, “ create conversation,” to the c-hub. The global conversation coordinator in
the c-hub creates a conversation in the appropriate c-space and enlists the trading
partner asthe conversation initiator. After the conversationiscreated, the conversation
initiator c-enabler application creates and sends a business message, as described in
“Sending X OCP Business Messages’ on page 3-29.

Participating in a Conversation

The global conversation coordinator in the c-hub handles al business messages that
the c-hub receivesfor agiven conversation. After the c-hub deliverstheinitial business
message to recipient trading partners, the global conversation coordinator enliststhose

3-16  BEA WebLogic Collaborate Devel oper Guide



About XOCP C-Enabler Applications

trading partners in that conversation. Once atrading partner isenlisted in a
conversation, the trading partner isin an ACTI VE state and can send and receive
business messages in that conversation.

When the c-enabler session on atarget c-enabler node receives the initial business
messagein aconversation, it performsthe necessary housekeeping (such asregistering
the conversation in the local list) before invoking the onMessage callback on the
conversation handler. For more information, see “ Receiving XOCP Business
Messages” on page 3-52.

Once aregistered trading partner isenlisted in a conversation, thetrading partner isin
an ACTI VE state and can send and receive business messagesin that conversation.

Leaving a Conversation

When finished participating in a conversation, a conversation participant trading
partner can leave the conversation. When atrading partner leaves a conversation, the
conversation coordinator removes it from the list of participating trading partners.
Subsequent business messages in that conversation will not be sent to that trading
partner. After atrading partner leaves, it isin a DROPPEDCUT state for that conversation.

Terminating Conversations

A conversation terminates when theinitiating trading partner explicitly terminates the
conversation, or when the conversation times out, which ever occurs first. A trading
partner who has initiated a conversation must terminate that conversation at the
appropriate time in a business process.

Note:  Only the conversation initiator can terminate a conversation.

When a conversation is terminated, the conversation coordinator sends al of the
participating trading partners an XOCP system message, “terminate message,” which
is propagated as the callback onTer ni nat e on registered conversation handlersin
c-enabler sessions at respective c-enabler nodes.

Shutting Down a C-Enabler Session to Leave a C-Space

When atrading partner hasfinished itsactivitiesin a c-space, the c-enabler application
should leave the c-space by shutting down the c-enabler session. When a c-enabler
application shuts down a c-enabler session, the c-enabler sends an XOCP system
message, “leave c-space,” to the c-hub. When the c-hub receivesthis system message,

BEA WebL ogic Collaborate Developer Guide  3-17



3 Using XOCP C-Enabler Applications to Exchange Business Messages

the conversation coordinator automatically terminates all of the conversations that the
trading partner hasinitiated in the c-space and deliststhe trading partner from all other
conversations in which it was participating in the c-space.

L eaving a c-space:

m  Stops the c-hub from sending any further messages to the trading partner
associated with the shutdown c-enabler session.

m Terminatesall conversations that were initiated by the trading partner.

m Causes the trading partner to leave any conversationsin which it was
participating.

m Reclaims resources allocated in the c-hub for that c-enabler session.

At this point, the trading partner is in a DI SCONNECTED state in that c-space.

Run-Time Information Flow

At run time, all c-enabler applications perform certain tasksidenticaly: joining a
c-space, registering conversation handlers, and leaving the c-space. During individual
conversations, however, conversation initiators and conversation participants perform
aseries of distinct, interweaving tasks.

3-18  BEA WebLogic Collaborate Devel oper Guide



About XOCP C-Enabler Applications

Information Flow Diagram

The following figure shows the run-time information flow between conversation

initiators and participants.

Figure3-6 Information Flow Between Conversation Initiator and Participant

Time

C-Enabler

Conversation Initiator

C-Hub
Join C-Space N _ Join C-Space
getEnablerSessions( ) o h getEnablerSessions( )
Register Conversation Handler Register Conversation Handler
registerConversationHandler() > registerConversationHandler()
Create Conversation
createConversation() "
Send First Bus Msg (Request) % Deliver First Bus Msg
send() " z:') enlist global enlist local "
onMessage( )
Deliver Reply Bus Msg Send Reply Bus Msg
‘onMessage( ) send()
Terminate Conversation Terminate Conversation
terminate( ) i delist global delist local i

Conversation Terminated

-
-

onTerminate( )

Leave C-Space

onTerminate( )

Leave C-Space

shutdown( )

shutdown( )

C-Enabler

Conversation Participant

Thisisasimplified example that uses a single conversation and a minimal exchange
of business messages (request and reply). In practice, atrading partner may participate
in multiple conversations after registering a conversation handler and before leaving
the c-space. In addition, within asingle conversation, trading partners might exchange
many business messages, not just a single request and a singlereply.

BEA WebL ogic Collaborate Developer Guide

3-19



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Steps in the Information Flow

3-20

At run time, the flow of information between trading partners (via c-enabler
applications communicating through the c-hub) proceedsin the following sequence:

1.
2.

Trading partner c-enabler applicationsjoin the c-space.

Each trading partner c-enabler application registers a conversation handler with
the c-enabler session, which in turn (with the help of the local conversation
coordinator) registers that trading partner for agiven role in a given conversation
at the c-hub.

The conversation starts when the conversation initiator c-enabler application
creates a conversation.

The global conversation coordinator adds the conversation instance to its global
conversation list and marks the trading partner as the initiator.

Thelocal conversation coordinator in the conversation initiator c-enabler node
adds the conversation instance to its local conversation list.

The conversation initiator’s c-enabler application creates and sends a business
message (such as a request).

The conversation initiator’s c-enabler session delivers the business message to
the c-hub.

The c-hub delivers the business message to the conversation participant’s
c-enabler node.

The global conversation coordinator in the c-hub enlists the participating trading
partner in the conversation, adding the participating trading partner to the
conversation instance entry in the global conversation list.

10. Thelocal conversation coordinator receives the business message and enlists the

trading partner in the conversation locally, adding the conversation instance to
the local conversation list.

11. The onMessage implementation in the conversation participant c-enabler

application isinvoked, and the onMessage implementation processes the
business message.

12. The conversation participant c-enabler application creates and sends a business

message (such as a reply) back to the conversation initiator.

BEA WebL ogic Collaborate Developer Guide



About XOCP C-Enabler Applications

13. The c-enabler session on the conversation participant c-enabler node delivers the
business message to the c-hub.

14. The c-hub receives the business message and deliversit to the conversation
initiator c-enabler node.

15. The conversation initiator c-enabler node receives the business message.

16. The onMessage implementation in the conversation initiator c-enabler
application isinvoked, and the onMessage implementation processes the
business message.

17. To end the conversation, the conversation initiator c-enabler application
terminates the conversation.

Note: A conversation might terminate automatically if the conversation timeout
is exceeded.

18. The local conversation coordinator in the conversation initiator c-enabler node
delivers notification of termination to the global conversation coordinator in the
c-hub.

19. The global conversation coordinator in the c-hub delists the conversation
participant in the global conversation list and delivers notification of termination
to the local conversation coordinator on the conversation participant c-enabl er
node.

20. Theloca conversation coordinator on the conversation participant c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

21. The onTer ni nat e implementation in the conversation participation c-enabler
application isinvoked.

22. The global conversation coordinator in the c-hub marks the conversation
terminated and informs the conversation initiator by sending a conversation
termination confirmation.

23. The conversation initiator c-enabler node receives the conversation termination
confirmation.

24. The local conversation coordinator on the conversation initiator c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

BEA WebLogic Collaborate Developer Guide  3-21



3 Using XOCP C-Enabler Applications to Exchange Business Messages

25. The onTer ni nat e implementation in the conversation initiator c-enabler
application is invoked.

26. Trading partner c-enabler applications |eave the c-space.

For more information about these steps, see “Key Tasks for C-Enabler Applications”
on page 3-14.

Programming Steps for C-Enabler
Applications

The previous section, “Run-Time Information Flow” on page 3-18, provided an
end-to-end ook at the flow of messages between c-enabler applications and the c-hub.
The following steps describe the sequence of tasks that a devel oper usually provides
in ac-enabler application:

m  Step 1: Import Packages

m  Step 2: Implement the ConversationHandler Interface
m  Step 3: Create a C-Enabler Session

m  Step 4: Register a Conversation Handler

m  Step 5: Initiate or Participate in a Conversation

m  Step 6: Exchange Business M essages

m  Step 7: End the Conversation

m  Step 8: Shut Down the C-Enabler Session

This section describes these steps using sample code.

Note: You must provide a c-enabler XML configuration file that contains the
configuration information that the c-enabler application requires at run time.
Only one c-enabler XML configuration file exists per c-enabler node.

3-22  BEA WebL ogic Collaborate Developer Guide



Programming Steps for C-Enabler Applications

However, the c-enabler XML configuration file can specify configuration
information for multiple c-enabler sessions, one for each c-space that the
associated trading partner joins.

For more information, see Configuring C-Enablersin the BEA WebLogic
Collaborate C-Enabler Administration Guide. In addition, for help in defining
the c-enabler XML configuration file, see the comments in the

Enabl er Confi g. dt d filein the dt d subdirectory of your WebL ogic

Collaborate insta lation.

Step 1: Import Packages

C-enabler applications import the required packages from the C-Enabler Class

Library. For a description of these packages, see “ C-Enabler Class Library” on page

3-5.

The following listing is an example of the packages to import.

Listing3-1 Importing Packages

i nport
i nport
i nport
i nport

i nport
i nport
i nport
i nport
i nport
i nport

i nport

org.w3c. dom *;

org. apache. htm . dom *;

org. apache. xm . serialize. *;
org. apache. xerces. dom *;

com bea.
com bea.
com bea.
com bea.
com bea.
com bea.

com bea.

b2b.
b2b.
b2b.
b2b.
b2b.
b2b.

eci.

protocol . conver sati on. Conver sati onType;
enabl er. *;

enabl er. xocp. *;

protocol . messagi ng. *;

protocol . xocp. conversation. | ocal.*;
protocol . xocp. messagi ng. *;

| oggi ng. *;

BEA WebL ogic Collaborate Developer Guide

3-23



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Step 2: Implement the ConversationHandler Interface

To receive messages, a c-enabler application must implement the following interface:

com bea. b2b. prot ocol . xocp. conversati on. | ocal . Conversati onHandl er

Thisinterface provides the onMessage and onTer ni nat e methods that are used to
handle incoming business messages and conversation termination notifications,
respectively. The onMessage method is invoked when the c-enabler receives a
business message. The onTer ni nat e method isinvoked when the c-enabler receives
a conversation termination.

The conversation handler isrequired in order for the trading partner to receive business
messages in a conversation. A conversation handler must support at least one
conversationtype (com bea. b2b. protocol . conver sati on. Conver sati onType),
which represents arole in aconversation. A c-enabler session supports one
conversation handler per conversation type.

Listing 3-2 Implementation of the ConversationHandler Interface

public class MyConversati onHandl er
i npl enent s Conver sati onHandl er{

private String collaboratorld;

MyConver sati onHandl er (String col | aboratorld){
this.collaboratorld = col |l aboratorld;

}

public voi d onMessage( XOCPMessage msg) {
System out. println("onMessage: received for collaborator:" +
col | aboratorld );
Conversation conv = nsg.get Conversation();
Qual ityOf Service qos = msg. get QS();

}

public void onTerm nat e( Conversation conv, int result) {
Systemout.println("onTerm nate: received for collaborator:"
+ coll aboratorld);

}
}

3-24  BEA WebL ogic Collaborate Developer Guide



Programming Steps for C-Enabler Applications

For detailed information about the Conver sat i onHandl er interface, see the Javadoc
on the WebL ogic Collaborate documentation CD or inthecl assdocs subdirectory of
your WebL ogic Collaborate installation.

Step 3: Create a C-Enabler Session

To initiate or participate in conversations, atrading partner creates a c-enabler session
on a c-enabler node. Each c-enabler session enables the trading partner to exchange
messages with other trading partners in one c-space.

To create a new c-enabler session or to get an existing one, use the

com bea. b2b. enabl er. Enabl er class. The following listing is an example of
getting the sessi on1 c-enabler session based on the information defined in the
c-enabler XML configuration file. Alternatively, an application could get all the
c-enabler session definitions from the c-enabler XML configuration file and then
create c-enabler sessions as needed.

Listing 3-3 Obtaining the C-Enabler Session

Enabl er enabl er = Enabl er. get Enabl er ("enabl er.xm ") ;

Enabl er Sessi on es = enabl er. get Enabl er Sessi on("sessi onl");
// Create all enabler session(s) defined in "enabler.xm"
/| Enabl er Sessi on[] ess = enabl er. get Enabl er Sessi ons();

/1 Optionally, get nanmes of Enabler Sessions

// and use nane to create enabl er session individually

/1 String[] sessionNanmes = enabl er. get Sessi onNanes();

/1 Enabl er Session es = null;

Step 4: Register a Conversation Handler

To participate in a conversation, a c-enabler application must register a conversation
handler. A conversation handler can be associated with multiple conversation types
(each type has conversation name, version and role). A conversation handler can aso
be shared among multiple conversations. As conversation handler is implemented by
the application, and it is up to the devel oper to use it as needed.

BEA WebL ogic Collaborate Developer Guide  3-25



3 Using XOCP C-Enabler Applications to Exchange Business Messages

To register a conversation handler, a c-enabler application calls the
regi st er Conver sat i onHandl er method on the XOCPEnabl er Sessi on instance,
passing the conversation type and the conversation handler object as parameters.

Thefollowing listing is an example of registering a conversation handler for a buyer
role (generally a conversation initiator) in the BuyPr ocessor conversation. Note that
the specified conversation definition and role must be defined in the c-hub repository.

Listing 3-4 Registering a Conversation Handler

XCCPEnabl er Sessi on session = null;
i f(es instanceof XOCPEnabl er Sessi on)
sessi on = ( XOCPEnabl er Sessi on) es;
MyConver sati onHandl er ch = new
MyConver sat i onHandl er (sessi on. get Tr adi ngPartner());

ConversationType ctype = new ConversationType("BuyProcessor",
"1.0", "buyer");

ConversationType[] types = { ctype };

sessi on. regi st er Conversati onHandl er (types, ch);

Step 5: Initiate or Participate in a Conversation

A conversation initiator application explicitly starts a conversation. To initiate a
conversation, theinitiating trading partner callsthecr eat eConver sat i on method on
thecom bea. b2b. enabl er . xocp. XOCPEnabl er Sessi on instance, passing the
conversation type and, optionally, the conversation timeout value, in seconds (or zero,
the default, for no timeout if the configured timeout is a'so zero in the conversation
definition in the c-hub repository). The trading partner must be registered in the
initiator role in the conversation definition.

3-26  BEA WebLogic Collaborate Devel oper Guide



Programming Steps for C-Enabler Applications

The following listing is an example of initiating a conversation:

Listing 3-5 Initiating a Conversation

Conversati onType ctype = new Conversati onType(" BuyProcessor",
"1.0", "buyer");
Conversation conv = session.createConversation(ctype, 0);

Step 6: Exchange Business Messages

After the conversation initiator application has created the conversation, it can begin
exchanging business messages with other trading partners in the c-space.

Initially, the conversation initiator application creates and sends a business message
(such as arequest) to one or more trading partners in the c-space. When atrading
partner receives the business message, its conversation participant application
processes the business message and (usually) creates and sends a reply business
message. The trading partners may send and receive several business messagesin the
conversation. For more information about exchanging business messages, see
“Sending XOCP Business Messages’ on page 3-29 and “Receiving X OCP Business
Messages” on page 3-52.

Step 7: End the Conversation

A conversation can end after trading partners have finished exchanging business
messagesin that conversation. The way atrading partner ends involvement in a
conversation depends on its role in the conversation.

Participant Leaves a Conversation

Participant trading partners can leave a conversation. To leave aconversation, a
participant c-enabler application calls the | eave method on the Conver sat i on
instance, passing f al se. No messageswill be retained on the c-hub while the
participant is not participating.

BEA WebLogic Collaborate Developer Guide  3-27



Using XOCP C-Enabler Applications to Exchange Business Messages

Note: Inthisrelease, only thef al se argument is supported.

Thefollowing listing shows an example of a participant leaving a conversation.

Listing 3-6 Leaving a Conversation

c.l eave(false);

Initiator Terminates a Conversation

3-28

Conversation initiators can explicitly terminate the conversation or wait until the
conversation times out (the conversation initiator can specify atimeout vaue at the
time it creates the conversation, or they can specify zero to use the timeout value
defined for the conversation in the c-hub repository). When a conversation terminates,
the conversation initiator and al participating trading partners are delisted from the
conversation, any undelivered business messages are discarded, and associated system
resources are released.

To terminate a conversation explicitly, the initiating c-enabler application calls the
t er mi nat e method in itsimplementation of the Conver sat i on interface, asshownin
the following listing.

Listing 3-7 Terminating a Conversation

c.term nate( Conver sati on. SUCCESS);

BEA WebL ogic Collaborate Developer Guide



Sending XOCP Business Messages

Step 8: Shut Down the C-Enabler Session

To shut down a c-enabler session and leave the c-space, an application uses the

shut Down method in its implementation of the Enabl er Sessi on interface, always
passing f al se. Thefollowing listing shows an example of shutting down a c-enabler
session.

Listing 3-8 Shutting Down a C-Enabler Session

es. shut Down( f al se);

If ac-enabler application shuts down a c-enabler session, the trading partner leavesthe
c-space automatically and permanently.

Sending XOCP Business Messages

The following sections describe how a c-enabler application sends X OCP business
messages to one or more trading partners in a c-space:

m  Step 1: Create the Business Message

m  Step 2: Specify the Recipients of the Business Message

m  Step 3: Specify the Quality of Service for Message Delivery
m  Step 4: Send the XOCP Business Message

m  Step 5: Check the Delivery Status of the Business M essage

To send an X OCP business message, a c-enabler application constructs the business
document, creates the business message, specifies the message routing criteria and
Quality of Service delivery options, and sends the business message to the c-hub for
processing. The c-enabler application can al so check the delivery status of the business

BEA WebL ogic Collaborate Developer Guide  3-29



3 Using XOCP C-Enabler Applications to Exchange Business Messages

message, including whether it was successfully delivered. For an introduction to
XOCP business messages, see “ XOCP Business M essages and M essage Envel opes’
on page 3-6.

Step 1: Create the Business Message

To create a business message, a c-enabler application first creates the message
payload, which consists of any business documents and attachments that the business
message will contain. For an introduction to the components of a business message,
see “X OCP Business M essages and Message Envelopes’ on page 3-6.

Importing the Required Packages

To create abusiness message, a c-enabler application imports the necessary packages,
as shown in the following listing.

Listing 3-9 Importing Packagesfor Business M essage Creation

i mport org.w3c.dom *;

i mport org.apache. htm . dom *;

i mport org.apache. xm .serialize.*;

i mport org. apache. xerces. dom *;

i nport com bea. b2b. prot ocol . conversati on. ConversationType;

Creating Payload Parts

A c-enabler application next creates the message payload, which can include business
documents and attachments.

Creating XML Documents

A business message can contain one or more business documents. A business
document isthe XML -based payload part of abusiness message. A business document
isan instance of the com bea. b2b. pr ot ocol . messagi ng. Busi nessDocunent
class.

3-30 BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

A Busi nessDocunent object containsan XML document, which isan instance of the
or g. w3c. dom Document classintheor g. wdc. dompackage published by the World
Wide Web Consortium (www. w3. or g). A c-enabler application can also use a
third-party implementation of that package, such asthe or g. apache. xer ces. dom
package provided by The Apache XML Project (ww. apache. or g), whichiswhat the
Verifier application uses to create and process XML documents.

Note: The specified document type parameters must map to a part content type of
message definition associated with the conversation definition in the
repository.

Thefollowing listing from the Par t ner 1Ser vl et of the Verifier application createsa
request in the form of an XML document.

Listing3-10 Creatingan XML Document

/1l Create a request docunent

DOM npl enent ati onl npl donmi = new DOM npl enent ati onl npl () ;
Docurent Type dType = domi . createDocunent Type("request”, null,
"request.dtd");

or g. w3c. dom Docurment rq = new Docunent!| npl (dType);

El enent root = rq.createEl ement("request");

/1 the actual string data to be processed by the other partner
String sendStr = "ABCDEFGH ";

root . appendChi | d(rq. creat eText Node(sendStr));

rq. appendChi l d(root);

After creating the XML document, a c-enabler application creates a
Busi nessDocument object, passing the XML document (request) as a parameter to
the constructor, as shown in the following listing.

Listing3-11 Creating a BusinessDocument

Busi nessDocunent bdoc = new Busi nessDocurnent (rq);

BEA WebLogic Collaborate Developer Guide  3-31



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Creating Attachments

A business message can contain one or more attachments. An attachment isa
non-XM L -based payload part of a business message that contains binary content. An
attachment is an instance of the com bea. b2b. pr ot ocol . messagi ng. At t achment
class. For more information, see the WebL ogic Collaborate Javadoc.

The following listing shows creating an attachment.

Listing 3-12 Creating an Attachment

FilelnputStreamfis = new Filel nput Strean("sonefile");
Attachnent att = new Attachment (fis);

Creating the XOCP Business Message and Adding Payload Parts

After creating the message payload, ac-enabler application creates the XOCP business
message and adds the payload partsto it. The

com bea. b2b. pr ot ocol . xocp. messagi ng. XOCPMessage class represents an
XOCP business message. For more information, see the WebL ogic Collaborate
Javadoc.

To construct the business message, a c-enabler application:
1. Creates an instance of the XOCPMessage class.

2. Addsthe payload parts to the business message by calling either of the following
methods on the XOCPMessage message object:

e addPayLoadPart adds asingle business document or attachment to the
business message.

e addPayLoadPart s adds multiple business documents or attachmentsto the
business message.

3-32  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

The following listing creates an XOCP business message and adds payload partsto it.

Listing 3-13 Creating a Business M essage and Adding Payload Parts

XOCPMessage smsg = new XOCPMessage("");
smsg. addPayl oadPart ( bdoc) ;
smsg. addPayl oadPart (att);

Note: The c-Enabler application clones XOCPMessage content (except its payl oad
parts) before sending it to the c-hub. Therefore, a payload part must not be
changed after invoking the send or sendAndwai t methods on the
XOCPMessage.

Step 2: Specify the Recipients of the Business Message

After creating a business message, a c-enabler application optionally specifiesthe
trading partner towhichit will be sent. A c-enabler application might send the business
message to a specific trading partner (a point-to-point exchange), such as when it
replies to arequest received from a conversation initiator. Alternatively, a c-enabler
application might send the business message to a set of trading partners (multicasting)
based on business criteria (c-enabler X Path expressions), such as when abuyer sends
abid request to multiple sellers of a particular product.

Either way, the set of eligible trading partnersis constrained by those who are
subscribed to the appropriate rolein the conversation definition. In addition, router and
filter expressions defined in the c-hub repository may also affect message delivery to
particular trading partners. For more information, see Routing and Filtering XOCP
Business Messages in the BEA WebL ogic Collaborate C-Hub Administration Guide.

Specifying a Particular Trading Partner

If an XOCP business message is being sent to a single, known trading partner, a
c-enabler application can call theset Reci pi ent method on the XOCPMessage object,
passing the trading partner name as the parameter. The specified trading partner must
be defined in the c-hub repository.

BEA WebL ogic Collaborate Developer Guide  3-33



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Thefollowing listing shows specifying the trading partner named Chi pMaker asthe
recipient of the business message.

Listing 3-14 Specifying a Single Trading Partner

String tradi ngPartner Nane = "Chi pMaker";
XOCPMessage msg = new XCOCPMessage();
nmeg. set Reci pi ent (tradi ngPart ner Nane) ;

Using set Reci pi ent for abusiness message expedites message delivery becausethe
c-hub does not perform the usual router processing, such as evaluating trading partner
or c-hub XPath expressions. However, the business message is still subject to
applicablefiltering in the c-hub. For moreinformation, see Routing and Filtering
XOCP Business Messages in the BEA WebL ogic Collaborate C-Hub Administration
Guide.

Using C-Enabler XPath Expressions to Specify Message Recipient Criteria

A c-enabler application can use X Path expressions to specify the criteriafor the set of
trading partnersthat are to receive the business message. C-enabler X Path expressions
areused to address parts of an XML document. For more information, see Routing and
Filtering XOCP Business Messagesin the BEA WebLogic Collaborate C-Hub
Administration Guide.

The XPath expression should be specific to the document format of the c-hub
repository and should define a node set of trading-partner elements. The XPath
expression selects recipient trading partners based on the following attributes, which
are defined in the c-hub repository:

m Standard attributes, such the trading partner name or a postal code

m  Extended properties, which are custom attributes, elements, and text defined by
the c-hub administrator

The XPath expression is passed as part of the message header in the business message
from the c-enabl er to the c-hub. The c-hub usesthis X Path expression, along with other
XPath expressions defined in the c-hub repository, to determine the set of message
recipients for the business message.

3-34  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

If applicable trading partner and c-hub X Path expressions are defined in the c-hub
repository, the c-hub evaluates these expressions after it receives the business
message. Depending on how they are configured, these X Path expressions might
override or append the c-enabler X Path expression that the c-enabler application
specifies. For more information, see Routing and Filtering XOCP Business M essages
in the BEA WebLogic Collaborate C-Hub Administration Guide.

To specify ac-enabler X Path expression for an X OCP business message, the c-enabler
application callstheset Expr essi on method on the XOCPMessage object, passing the
XPath expression as the parameter.

Notes: The version of Apache Xalan (v 1.0.1) supports single quotes, but not double
quotes, to delimit string literals.

Beforethe businessmessageisdelivered, itisstill subject to applicable router and filter
processing in the c-hub.

Specifying Standard Trading Partner Attributes

The following listing shows a c-enabler XPath expression that selects the trading
partner with the specified name:

Listing 3-15 C-Enabler XPath Expression Specifying a Trading Partner Name

nsg. set Expressi on("//tradi ng- partner[ @anme=\""+
tradi ngPart ner Nane+"\"']")

The following listing shows a c-enabler XPath expression that selects the trading
partner whose address contains the string “ San”:

Listing3-16 C-Enabler XPath Expression Specifying a Trading Partner Name

nsg. set Expressi on("//tradi ng- partner[contains(address,\'San\')]")

1

BEA WebL ogic Collaborate Developer Guide  3-35



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Specifying a C-Enabler XPath Expression Using Extended Properties

Extended properties are user-defined elements, attributes, and text that can be
associated with trading partnersin the c-hub repository. These properties provide
application extensions to the standard predefined attributes in the repository. The
extended property sets are modeled in the repository so that they can be retrieved as
subtrees within an XML document. Extended properties are configured in the Trading
Partners tab in the C-Hub Administration Console. For more information, see Using
the C-Hub Administration Console in the BEA WebL ogic Collaborate C-Hub
Administration Console.

C-enabler X Path expressions can refer to these extended properties to assist with
business message routing. For example, suppose a c-hub administrator added an
extended property caled “Maximum Order Quantity” so that sellers could indicate in
the c-hub repository the largest quantity that they could accommodate. With this
property defined, abuyer with alarge order could specify ac-enabler X Path expression
that sends the business message only to the sellers that can process the order.

The following code listing shows an XML document generated from the repository
with an extended property set for agiven seller:

Listing 3-17 Extended Property Set in XML Document Generated from the
Repository

<c- hub cont ext =" message-router">

<tradi ng- part ner nane="ABC Sell er"
emai | =" or der pr ocessi ng@omnmedonai n. cont
phone="999- 999- 9999" >
<address>123 Main St., San Jose, CA 95131</address>
<ext ended- property-set name="Capacity">

<max-order - quantity>1000</ max- order-quantity>
</ ext ended- property-set >
</tradi ng-partner>

</ c- hub>

3-36  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

Thefollowing listing shows a c-enabler X Path expression that selects trading partners
that can accommodate orders larger than 500 units:

Listing 3-18 C-Enabler XPath Expression Specifying an Order Size

nsg. set Expressi on("//tradi ng- partner[ ext ended- property-set/ ( @max-
order-qty > \'500\')]")

Because the seller can accommodate orders of up to 1000 units, the seller would be
selected as arecipient of this business message.

Step 3: Specify the Quality of Service for Message
Delivery

The WebL ogic Collaborate messaging system allows c-enabler applications to define
the Quality of Service (Q0S), or level of reliability, to use when delivering a business
message to recipient trading partners. The Quality of Service settings are stored in the
message header of the business message. The messaging system supports the reliable
delivery of messagesin the event of network-link or node failures. The messaging
system provides other capabilities to support reliable messaging, such as message
logging and tracking, correlation of messages, delivery retry attempts, message
timeouts, and choice of message delivery methods.

Automatic Quality of Service Features

The WebL ogic Collaborate messaging system provides certain automatic Quality of
Service features that do not require input from c-enabler applications:

m  WebL ogic Collaborate prevents duplicate message delivery.

m  WebL ogic Collaborate time stamps every business message when it arrives at
the c-hub or a c-enabler node, which helps with taking performance
measurements and with application debugging.

BEA WebL ogic Collaborate Developer Guide  3-37



3 Using XOCP C-Enabler Applications to Exchange Business Messages

QualityOfService Class

Thecom bea. b2b. prot ocol . xocp. messagi ng. Qual i t yO Ser vi ce class

represents Quality of Service settingsfor businessmessages. TheQual i t yOf Servi ce
class definesthe quality of servicereguired from the WebL ogic Collaborate messaging
system to deliver a specific message and it identifies to the WebL ogic Collaborate
messaging system the c-enabler application’s expectation for delivering the business
message. A c-enabler application creates aninstance of thisclass, callsmethodson this
instance to specify various Quality of Service settings, and then calls the set QoS
method on the message instance, passing the Qual i t yOf Ser vi ce object, to associate
the settings with the message. If a c-enabler application does not specify Quality of
Service settings, the WebL ogic Collaborate messaging system uses the default values

where applicable.

Quality of Service Settings, Options, and Default Values

The following table describes the available Quality of Service settings, options, and

default values.

Table 3-5 Quality of Service Settings, Options, and Default Values

QoS Setting / Description Options

Default Value(s)

CONFI RVED_DELI VERY_TO_DESTI NATI ON( S) Not applicable

m  Providesthe complete delivery status from each
destination, including receipt timestamp, router
selected trading partners, final list of recipient
trading partners, and so on.

m  Provides complete message tracking information
(al potential locations) for the c-hub administrator
and the sending c-enabler's administrator.

Not applicable

CONFI RVED_ROUTI NG Not applicable

m  Providesinformation from the c-hub router about
the trading partners selected to receive the business
message.

m  Provides message tracking for the sending
c-enabler's administrator (until the business
message reaches the c-hub router),

3-38  BEA WebL ogic Collaborate Devel oper Guide

Not applicable



Sending XOCP Business Messages

Table 3-5 Quality of Service Settings, Options, and Default Values (Continued)

QoS Setting / Description

Options

Default Value(s)

CONFI RVED_DELI VERY_TO HUB

(Default)

m  Message reached the c-hub

m  No message tracking for sending c-enabler's

Not applicable

Not applicable

administrator
DURABI LI TY m  PERSI| STENT NON- PERSI STENT
m  NON- PERSI STENT
TI MEQUT Timeout, inmilliseconds, Ignored
after send
RETRY_ATTEMPTS 0-n As defined in the c-hub

configuration

CORRELATI ON_I D

Application-defined field

Ignored

How Quiality of Service Settings Affect Message Tracking and Delivery Acknowledgments

The following table describes how the Quality of Service setting affects message
tracking and delivery acknowledgments.

Table 3-6 QoS, Acknowledgment, and M essage Tracking

Quality of Service Setting

M essage Tracking (Y/N)?

Acknowledgment (Y/N)?

Confirmed Delivery to Destination(s) Y
Confirmed Delivery To Router N
Confirmed Delivery To C-Hub N

If the Confirmed Delivery to Destination(s) setting is used, then complete message
tracking is available and acknowledgments are used to reliably deliver the message to
its destination(s). If the Confirmed Delivery to Hub setting is used, then no message
tracking isavailable and no acknowledgments are sent from recipient trading partners..

BEA WebLogic Collaborate Devel oper Guide

3-39



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Code Example

Thefollowing listing is an example of setting the Quality of Service for a business
message.

Listing 3-19 Setting the Quality of Service for a Business M essage

/1 Rel evant inports

i nport com bea. b2b. prot ocol . mnessagi ng. MessageToken;

i mport com bea. b2b. prot ocol . nessagi ng. Del i verySt at us;

i mport com bea. b2b. prot ocol . nessagi ng. Busi nessDocunent ;
i mport com bea. b2b. prot ocol . xocp. conversati on. | ocal . *;
i nport com bea. b2b. prot ocol . xocp. nessagi ng. *;

i mport com bea. b2b. enabl er. *;

i nport com bea. b2b. enabl er. xocp. *;

XOCPMessage nmsg = ...

/]l Create QoS object

Qual ityOf Service qos = new Qual ityOf Service();
/| Specify nessage to be persisted

gos. set Persi stent (true);

/1 Specify confirmed delivery to destination(s)
gos. set ConfirmedDel i veryToDesti nati on(true);
nsg. set QS( qos) ;

Setting the Message Delivery Confirmation Level
To specify thelevel of message delivery confirmation, ac-enabler application callsone

of the following methods on the Qual i t yOf Ser vi ce instance, passing the Boolean
t rue parameter to enable that option:

3-40 BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

Table 3-7 Message Delivery Confirmation L evels

Dur ability Description

set ConfirmedDel i veryToDestination Specifies whether to confirm message delivery up toits
destination (true) or only up to the c-hub (false).

set ConfirmedDel i ver yToHub Specifies whether to confirm message delivery up to the
c-hub (true) or not (false).

set ConfirmedDel i ver yToRout er Specifies whether to confirm message delivery up to the
router in the c-hub (true) or only up to the c-hub (false).

The following listing is an exampl e of setting the message confirmation level up to its
destination.

Listing 3-20 Setting the M essage Delivery Confirmation L evel

gos. set Confi rmedDel i veryToDest i nation(true);

For more information about confirming message delivery, see “Step 5: Check the
Delivery Status of the Business Message” on page 3-47.

Setting Message Durability
In the WebL ogic Collaborate messaging system, message durability is a Quality of

Service option that determines whether adurable message store is used in order to
guarantee delivery of message in case of node failures.

BEA WebLogic Collaborate Developer Guide  3-41



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Message Durability Options

A c-enabler application has two message durability options, non-persistent (the
default) and persistent, as described in the following table.

Table 3-8 Message Durability Options

Durability

Description

Non-persistent

For non-persistent QoS, the message is not stored
anywhere in adurable data store in the WebL ogic
Collaborate system in due process of delivery toits
destination. A non-persistent business message en routeto
itsdestination isnot recoverablein case of wholeor partial
system failures. Using this option requires less system
resources and improves throughput.

Persistent

For persistent QoS, messageis persisted to adurable data
store in due process of delivery to its destination. This
quality of service increases the guarantee of delivery, as
the message is stored, in reliable data store. The message
delivery guarantee increases at the expense of throughput
of the system. Such amessage travelsslower in thesystem
and consumes more resources.

The message is persisted to a data store chosen by the
owner of the WebL ogic Collaborate component or
serialized to afile on disk based on size of the message.

Message and Conversation Durability

A c-enabler application can specify message durability on a per message basis. In
addition, message durability can be defined on a per conversation basisin the c-hub

repository.

How business messages are persisted on a per message or a per conversation basis
depends on a combination of whether persistenceis enabled or disabled in the c-hub,
the conversation, or the message, as shown in the following table.

3-42  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

Table 3-9 Message Persistence

Persistent Object Persistence Enabled?

If persistenceisenabled (Y) or disabled (N) for:

= C-Hub Y Y Y Y N
m  Conversation Y N Y N Y/N
m  Business Message Y N N Y Y/N

Then the conversation or business messageis ~ Persisted?
persisted (Y) or not persisted (N):

m  Conversation Y N Y N N

m  Business Message Y N Y N N

A business message is considered persistent if persistence (recovery) isenabled in the
c-hub, if the conversation in which message propagatesis persistent, and if the
message QoS indicates persistence. Even if persistenceisenabled for conversations or
messages, if persistenceisnot enabled in the c-hub, then no conversations or messages
are stored to areliable data store.

Specifying Message Persistence

To enable message persistence, a c-enabler application callsthe set Per si st ent
method on the Qual i t yOFf Ser vi ce instance, passing the Booleant r ue parameter, as
shown in the following listing.

Listing 3-21 Specifying M essage Persistence

gos. set Persi stent (true);

BEA WebLogic Collaborate Developer Guide  3-43



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Setting the Message Timeout

If specified, the message timeout determines how long a sender waits for
acknowledgments. If a business message expires (times out), the receiver of the

busi ness message does not processit, and all other processing of the business message,
including acknowledgment processing and delivery retries, is abandoned.

Timeout Algorithm

WebL ogic Collaborate does not synchronize the clocks used by its different
components, which can reside in different machines at different locations. Instead,
WebL ogic Collaborate uses a relative time a gorithm.

Based on thisalgorithm, thetimeleft before thetimeout of abusiness message (relative
to the absol ute time of the component processing the business message) isincluded in
the busi ness message when the business message is sent to the other component. On
the receiving component, the timeout cal culations are based on an absolute time (at the
arrival of the business message) and a relative time (embedded in the incoming
message) left to process the message. Thisalgorithm at least ensures that the actual
message timeout in the system will always occur after the original timeout specified
by the application.

Message Tinmeout on the G Hub = Message tinmeout specified by the
c-enabl er application when sending a nessage

Message Tinmeout on the Sending C Enabl er = Message Tineout on the
C-Hub + Nx Delta

Where
m  N=apredefined number in the system, such as 10

m  Del t a = Estimated round-trip time between the sending c-enabler and the c-hub

Setting the Number of Delivery Retry Attempts

If an attempt to deliver a business message fails due to intermittent network failures,
the WebL ogic Collaborate messaging system attempts to retry sending the business
message repeatedly until one of the following occurs:

m Thebusiness messageis delivered (delivery succeeded).

m  The number of retry attemptsis exceeded.

3-44  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

m  The message times out.

m  The conversation in which the business message is sent either terminates or
times out.

The default values for message timeouts and retry intervals are defined in the c-hub
repository and areretrieved by ac-enabler at the time the c-enabler session is created.
The WebL ogic Collaborate messaging system waits for the configured interval before
attempting to resend a business message.

To override the default retry attempt limit, a c-enabler application callsthe
set Ti meout method on the Qual i t yOf Ser vi ce instance, passing the timeout value
(number of milliseconds) as a parameter, as shown in the following listing.

Listing 3-22 Specifying the M essage Timeout

gos. set Ti meout ( 10000) ;

Setting the Correlation ID for a Business Message

A c-enabler application can specify aunique correlation 1D for a business message so
that it can correlate received business messages (such as replies to arequest) from
trading partners to a previously sent message (such as a request). The correlation ID
accompanies the business message to its destination. The c-enabler application of the
recipient trading partner can use this value to unambiguously identify the reply
message sent back to the originating trading partner.

To specify the correlation ID, a c-enabler application callsthe set Correl ati onl d
method on the Qual i t yOF Ser vi ce instance, passing a string representing the
correlation 1D as a parameter, as shown in the following listing.

Listing 3-23 Specifying the Correlation ID for a Business M essage

gos. set Correl ationl d("ABC123");

BEA WebLogic Collaborate Developer Guide  3-45



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Step 4: Send the XOCP Business Message

After specifying the recipients of a business message and the Quality of Service, a
c-enabler application sends the business message in one of the following ways:

m  Synchronous message delivery

m Deferred synchronous message delivery

Synchronous Message Delivery

With synchronous message delivery, the application waits until the sent message is
delivered to the destination(s). The WebL ogic Collaborate messaging system returns
control to the application once the outcome of the activity of sending the message is
known. The application waits until any of the following events occurs:

m  Acknowledgments are received from all potential destinations
m  Message times out
m  Conversation in which message was sent terminates

To send a business message synchronously, a c-enabler application cals the

sendAndWai t method onthe XOCPMes sage instance, passing thetimeto wait (number
of milliseconds) as aparameter. If zero (0) is specified, the c-enabler application waits
until the business message reaches its destination(s), as shown in the following listing.

Listing 3-24 Sending a M essage Using Synchr onous M essage Delivery

MessageToken t oken = nsg. sendAndWai t (0);

Deferred Synchronous Message Delivery

With deferred synchronous message delivery, the WebL ogic Collaborate messaging
system returns control to the c-enabl er application immediately after amessageis sent,
and returns a message token that the c-enabler application can use to check the status
of message delivery. Once a message token is accessed, the application waits for a
specified time or until any of the following events occurs:

3-46  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

m  Acknowledgments are received from all potential destinations.
m The message times out.
m  The conversation in which message was sent either terminates or times out.

To send a business message with deferred synchronous message delivery, a c-enabler
application calsthe send method on the XOCPMes sage instance, continues executing
business logic, and then checks the status by calling the wai t For ACK method on the
MessageToken instance, as shown in the following listing.

Listing 3-25 Sending a Message Using Deferred Synchronous M essage Delivery

token = nsg. send();

t oken. wai t For ACK() ;

Thewai t For Ack method will block until the status of the business message is
available (if no timeout is specified) or until the specified timeout (in milliseconds) is
exceeded.

Step 5: Check the Delivery Status of the Business
Message

Both the send and sendAndWai t methods on the XOCPMessage instance return a
message token that a c-enabl er application can query to check the delivery statusof the
associated business message.

BEA WebLogic Collaborate Developer Guide  3-47



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Message Tokens

A message token is an instance of the
com bea. b2b. pr ot ocol . xocp. messagi ng. XOCPMessageToken class. A message
token has the following attributes:

Table 3-10 Message Token Information

Attribute

Description

Message ID

Unique ID of the business message.

Exception

If applicable, any exception that occurred before the
business message | ft the sending c-enabler. An exception
isusually returned when the message is sent, but for
deferred synchronous message ddlivery, the business
message might be kept in an internal send queue
temporarily before being delivered to the c-hub.

Elapsed Time

Time taken to deliver the business message to al
destination(s). This information is available only after
acknowledgments have been received from all message
destinations. Availability is subject to the specified
Qualify of Service delivery option.

Ddlivery Status

Delivery status from recipient destination(s). This
information depends on the availability of such
information. Availability is subject to the specified
Quadlify of Service delivery option.

Number of Recipients (Router)

Number of recipient trading partners after the business
message has been processed by the XOCP router in the
c-hub. Availability is subject to the specified Qualify of
Service delivery option.

Number of Recipients (Filter)

Number of recipient trading partners after the business
message has been processed by the XOCP filter in the
c-hub. Availability is subject to the specified Qualify of
Service delivery option.

If the business message was sent using the synchronous send delivery option, then the
message token cannot be used to wait for acknowledgments and, if used, the method

returnsimmediately.

3-48  BEA WebLogic Collaborate Devel oper Guide



Sending XOCP Business Messages

Delivery Status Tracking

In the WebL ogic Collaborate messaging system, when a business message reachesiits
destination (the receive queue of the destination c-enabler node), a system messageis
returned to the sender to acknowledge the message delivery if the Quality of Service
setting requiresiit.

A c-enabler application can use either of the following methods to obtain the delivery
status:

m get Al | Deli verySt at us if the business message was sent to multiple recipients
m get Del i veryStat us if the business message was sent to a single recipient

Both methods return aDel i ver ySt at us object, an instance of the
com bea. b2b. prot ocol . messagi ng. Del i verySt at us classthat provides the
following information:

m Recipient (name of the recipient trading partner or message tracking |l ocation)
m  Timestamp of the receipt of the business message

m  Status code, which is one of the following values.

Table 3-11 Message Delivery Satus Codes

Status Code Description

SUCCESS Business message was successfully delivered to the
destination. No errors or exceptions occurred.

FAl LURE An error occurred while delivering the business message
to this destination.

RETRI ES_EXHAUSTED All delivery retry attempts have been exhausted and the
business message has been discarded.

TI MEDOUT Timeout occurred before message delivery and the
business message has been discarded.

BEA WebLogic Collaborate Developer Guide  3-49



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Message Tracking Locations

The WebL ogic Collaborate messaging system provides message tracking features that
allow c-hub and c-enabler administrators to check the progress of a business message
asit moves through various predefined message tracking locations along the message
path en route to its destination. The C-Hub Administration Console and the C-Enabler
Administration Console can display status information if a business message passes
through these tracking points. Administrators can use message tracking information
for debugging and to identify bottlenecks in applications.

Note: Theavailability of messagetracking locations depends on the configuration of
the WebL ogic Collaborate system and the specified Quality of Service for a
given business message (such as
CONFI RVED_DELI VERY_TO DESTI NATI ON( S) , which is described in
Table 3-5). For example, if the c-enabler and c-hub are colocated on the same
node, some locations are not available. Similarly, some |ocations may not be
available for synchronous message delivery.

3-50 BEA WebL ogic Collaborate Devel oper Guide



Sending XOCP Business Messages

Diagram of Message Tracking Locations

Sending
C-Enabler
Session

The following figure shows the message tracking locationsin the WebL ogic
Collaborate messaging system.

Figure 3-7 Message Tracking L ocations

HUE_RECEIVE_QUEUE

Receive
Queue

Receive

Send Queue

Send Queue

Description of Message Tracking Locations

Table 3-12 Message Tracking L ocations

EMABLER_SEND QUELE

C-Hub

HUB_ROUTER

L

o

w

>

Cﬁ\

w

=

w

(&7

w

II\

o -

g Receiving

@ | C-Enabler

I Session
Receive Receive
Queue Queue

Send Queue

Send Queue

HUB_SEND_QUEUE

The following message tracking locations are potentially visible in the C-Hub

Administration Console or the C-Enabler Administration Console.

M essage Tracking L ocation

L ocations

Activity Performed

ENABLER SEND QUEUE

Send queuein the c-enabler session of

the sending trading partner.

M essage is enqueued for sending.

HUB_RECEI VE_QUEUE

Receive queuefor thesending trading

partner in the c-hub.

Message is enqueued in the receive
queue of the trading partner at the

c-hub.

BEA WebLogic Collaborate Developer Guide  3-51



3 Using XOCP C-Enabler Applications to Exchange Business Messages

Table 3-12 Message Tracking L ocations (Continued)

M essage Tracking L ocation Activity Performed
L ocations
HUB_ROUTER XOCP-Router in the c-hub. Message has reached the router.

HUB_SEND_QUEUE

Send queue of the receiving trading
partner in the c-hub.

Message has been enqueued for
delivery in thetarget trading partner's
queue a the c-hub.

ENABLER RECEI VE_QUEUE

Receive queue in the c-enabler
session of the receiving trading
partner.

M essage has been enqueued in queue
of the listener thread of the target
trading partner's c-enabler session.

Receiving XOCP Business Messages

The following sections describe how to receive X OCP business messagesin a
c-enabler application:

m  About Recelving XOCP Business M essages

m  Receiving an XOCP Business Message

About Receiving XOCP Business Messages

C-enabler applications must implement the onMessage method in the
Conver sat i onHandl er interface to receive and process business messages.
The onMessage method has the following signature.

Listing 3-26 Signature for onM essage M ethod

public void onMessage( XOCPMessage nsgQ)

3-52

BEA WebL ogic Collaborate Developer Guide



Receiving XOCP Business Messages

The c-enabler session invokes the onMessage method whenever a c-enabler receives
abusinessmessage, passing the business message asan input parameter. The c-enabler
application retrieves the XOCPMessage object containing the business message and
then calls methods on that instance to process the message.

If ac-enabler application receives multiple business documentsin a conversation, the
onMessage implementati on would first determine the type of document received (such
as abid request or bid reward), and then process that document accordingly.

In addition, the onMessage implementation might contain code that constructs and
sends a business message. For example, a conversation participant c-enabler
application might implement onMessage to receive arequest, process the request, and
then create and send the reply document.

Receiving an XOCP Business Message

Listing 3-27 describes the onMessage implementation in the Par t ner 2Ser vl et of
the Verifier application. ThisonMessage implementation processes the initial
business document (a request) sent from the Par t ner 1Ser vl et . It then creates and
sends a reply document back to the Partner1 node.

Tasks Performed

The onMessage code performs the following tasks:

1. Retrievesthe Quality of Service for the business message by calling the get QS
method on the XOCPMes sage instance.

The application will use the same Quality of Service settings to send the reply
message.

2. Retrievesthe payload parts of the business message by calling the
get Payl oadPart s method on the XOCPMessage instance.

3. Retrievesthe first (and only) business document in the Payl oadPart [] array.

4. Extracts the associated XML document by calling the get Document method on
the Busi nessDocunent instance.

BEA WebL ogic Collaborate Developer Guide  3-53



3 Using XOCP C-Enabler Applications to Exchange Business Messages

5. Retrieves and examines parts of the XML document using methods on the
Documnent instance, which is an instance of the or g. w3c. dom Docunent class
provided in the or g. w3c. dompackage published by the World Wide Web
Consortium (www.w3.0rg).

A c-enabler application can also use athird party implementation of that
package, such asthe or g. apache. xer ces. dompackage provided by The
Apache XML Project (www.apache.org), which iswhat the Verifier application
usesto create and process business documents.

6. Retrievesthe datastring (" ABCDEFGHI ") embedded in the business document and
convertsit to all lowercase letters.

7. Constructs a reply document, specifies the same Quality of Service as the request
document, and sends the document to Trading Partner 1.

Code Listing

Thefollowing listing is the onMessage implementation in the Par t ner 2Ser vl et of
the Verifier application.

Listing 3-27 The onM essage Implementation in Partner 2Ser vlet

public void onMessage( XOCPMessage rnsg) {

try{
QualityOf Service qos = rmnsg. get QS();

Payl oadPart[] payl oad = rmsg. get Payl oadParts();
Docunent rqg = null;

if (payload != null && payl oad.length > 0){
Busi nessDocunent bd = (Busi nessDocunent) payl oad[ 0] ;
rqg = bd. get Documnent () ;
}
if (rq == null){
t hrow new Exception("Di d not get a request document");

}

Conversation conv = rmsg. get Conversation();

El enent root = rq. get Docunent El enent () ;

String name = root.get NodeNane();

i f (!nanme. equal s("request")){
debug( " Received "+nane+" instead of a request");
return;

3-54  BEA WebL ogic Collaborate Devel oper Guide



Receiving XOCP Business Messages

}

}
Text revStr = (Text)root.getFirstChild();

/'l Create the return document

DOM npl enment ati onl npl domi = new DOM npl enent ati onl npl () ;

Docurent Type dType = dom . creat eDocunment Type("“reply", null, "reply.dtd");
rg = new Docunent | npl (dType);

root = rq.createEl ement("reply");

String sendStr = new String(revStr.getData());

root . appendChi |l d(rq. creat eText Node(sendStr.toLower Case()));

rg. appendChi |l d(root);

XOCPMessage snsg = new XOCPMessage("");

sneg. addPayl oadPart (new Busi nessDocunent (rq));

sneg. set QS( qos) ;

sneg. set Expressi on("//tradi ng-partner[ @ane=\"'Partner1\']");

smsg. set Conver sati on(conv) ;
smsg. sendAndWai t (0) ;

}cat ch(Exception e){

}

e.printStackTrace();

BEA WebL ogic Collaborate Developer Guide  3-55



3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-56  BEA WebL ogic Collaborate Devel oper Guide



CHAPTER

4 Developing Logic
Plug-Ins

The following sections describe how to develop logic plug-insin WebL ogic
Collaborate:

m  About Logic Plug-Ins

m Logic Plug-In API

m Rulesand Guiddinesfor Logic Plug-Ins
m Creating and Adding Logic Plug-Ins

For sampl e applications that demonstrate the use of logic plug-ins, see the
MessageCounter and CheckAccount logic plug-in samples, which are described in
Using Logic Plug-Ins for Billing in BEA WebL ogic Collaborate Getting Started.

BEA WebL ogic Collaborate Devel oper Guide 4-1



4 Developing Logic Plug-Ins

About Logic Plug-Ins

The following sections describe logic plug-ins and related concepts:
m  What Are Logic Plug-Ins?

m Logic Plug-In Architecture

m Chains

m Business Messages and Message Envel opes

m System and Custom Logic Plug-Ins

m Creating and Adding Logic Plug-Ins

m Creating and Adding Logic Plug-Ins

What Are Logic Plug-Ins?

Logic plug-insare individual components that perform specialized processing of
busi ness messages that pass through the c-hub. A logic plug-inisacustom servicethat
ac-hub provider or trading partner can develop and install on a c-hub to provide
additional value for c-hub management and for trading partners who use that c-hub.

Logic plug-insinsert rules and business logic at strategic locations along the path that
business messages travel asthey make their way through the c-hub. Logic plug-insare
Javaclassesthat are invoked when a c-spaceis started. At run time, logic plug-ins can
intercept, process, and output business messages. When a business message passes
through the location where a logic plug-in is configured, the logic plug-in processes
the business message. Logic plug-in execution occurs on the c-hub and is transparent

to c-enabler users.

Each logic plug-in is associated with a business protocol. A logic plug-in processes
only the messages that are exchanged using that protocol. For example, if aparticular
plug-inisassociated with the XOCP protocol, thenit will process only X OCP business

messages.

4-2 BEA WebL ogic Collaborate Developer Guide



About Logic Plug-Ins

Logic Plug-In Architecture

Logic plug-ins can be installed at two processing locations in the c-hub: in the router
and in thefilter, which are shown in the following figure.

Figure4-1 Logic Plug-In Locationsin the C-Hub: Router and Filter

Send-Side

C-Hub

Receive-Side

Routing Service

Router

Filter

Scheduling Service

Decoder

Encoder

Transport Service

Incoming Message

Sending
Trading
Partner

Y

QOutgoing Message

Recipient
Trading
Partner(s)

BEA WebLogic Collaborate Devel oper Guide

4-3



4 Developing Logic Plug-Ins

Logic Plug-In Processing Tasks

WebL ogic Collaborate-provided X OCP router and XOCP filter plug-ins, aswell as
RosettaNet plug-ins, are directly involved in the processing of message recipients
based on Xpath expressions in the repository. However, custom logic plug-ins can
perform awide range of services that are entirely unrelated to routing or filtering, as
well as performing routing and filtering operations. For example, a custom logic
plug-in might track the number of messages sent from each trading partner for billing

purposes.

Logic plug-ins perform the types of tasks described in the following table.

Table4-1 Tasks That Logic Plug-Ins Perform

Process Description Examples
Route Changes the list of target recipients for a m  “If acomputer chip order over $1M is
Modification business message. Subject to conversation and placed, make sure that NewChipCo isone
c-space validation of the recipient. (WebLogic of therecipients.”
Collaborate plug-ins and custom plug-ins.) m  “After January 1, 2000, no orders should
be sent to OldChipCo.”
Examination  Examines the contents of a business message m  “Log all senders of messages for billing
and takes certain actions based on the results of purposes.”
the examination. (Custom plug-ins.) = “Sample 1 out of every N messages of
Note:  Examination isusually performed on type X for standards compliance.”
business messages without encrypted ~ ®  “For messages of type X, how many are
contents. conversation version 1 versus
conversation version 27’
Content Changes the contents of a business message. m  “If over N items are ordered, be sure to
Modification L . specify extrainsurance.”
Note:  Content modificationis not allowedin
thisrelease.
Chains
Both the router and filter modules can have multiple plug-ins that will be executed
when a business message passes through that part of the c-hub. Multiplelogic plug-ins
that share the same protocol are sequenced as alogic plug-in chain.
4-4 BEA WebL ogic Collaborate Developer Guide



About Logic Plug-Ins

Inachain, thelogic plug-ins are processed sequentially at run time. After one plug-in
has finished executing, the next sequential plug-in in the chain will normally be
activated. Each successive plug-in can access any changes made previously to the
shared message information as the business message passes throughout the c-hub.

Note: The position of alogic plug-inin achain isconfigured in the repository using
the C-Hub Administration Console, as described in Working with Logic
Plug-ins in the BEA WebLogic Collaborate C-Hub Administration Guide.

Thefollowing figure shows an example of achain of XOCPlogic plug-insintherouter
location in the c-hub.

Figure4-2 Sample XOCP Router Chain

Router
I XOCP Router Chain

I
: | XOCP-Router-Enqueue |
Y

| XOCP-Messagelnspector |
A

Y

| XOCP-Router |

I
I
I
I
I
I
I
: | XOCP-MessageTracker |
I
I
I
I
I
I

—_—_——-—-— - — | ——_———— e — =

XOCP
Business
Message

BEA WebLogic Collaborate Devel oper Guide 4-5



4 Developing Logic Plug-Ins

46

Note that even when custom logic plug-ins do not provide routing or filtering
capability, they must still be part of an XOCP or RosettaNet router or filter chain. In
this example, the chain contains four logic plug-ins that are processed in the order
described in the following table.

Table 4-2 Logic Plug-Insin the Sample XOCP Router Chain

Logic Plug-In

Description

XOCP router

WebL ogic Collaborate provides this logic plug-in, which
might modify the list of recipients for an XOCP business
message based on X Path router expressions configured in the
repository. This should be thefirst logic plug-ininthe XOCP
router chain.

XOCP-MessageTracker

Hypothetical logic plug-in. A c-hub owner or trading partner
might provide such acustom logic plug-in to track the number
of business messages sent from each trading partner for billing
purposes.

X OCP-Messagel nspector

Hypothetical logic plug-in. A c-hub owner or trading partner
might provide such a custom logic plug-in to examine and
maintain statistics for the types of business documents being
exchanged on the c-hub (for example, purchase orders,
invoices, and so on).

XOCP router enqueue

WebL ogic Collaborate provides this logic plug-in, which
enqueues the XOCP business message in an internal c-hub
router message queue. This should be the last logic plug-inin
the XOCP router chain.

In this example, only XOCP business messages will trigger the logic plug-insin the
XOCP router chain. Non-X OCP business messages (such as RosettaN et messages) are
processed separately by the router chain associated with the protocol/c-space defined
by the URL that received the business message.

BEA WebL ogic Collaborate Developer Guide



About Logic Plug-Ins

Business Messages and Message Envelopes

A business message is the basic unit of communication exchanged between trading
partnersin a conversation. The business message contains the list of message
recipients. A business message is represented in the C-Hub API by the

com bea. b2b. pr ot ocol . messagi ng. Message interface. In addition, the following
classes implement this interface and represent protocol-specific business messages:

® com bea. b2b. prot ocol . xocp. messagi ng. XOCPMessage

m com bea. b2b. protocol . rosett anet. messagi ng. RNMessage

When a business message enters the c-hub, the c-hub creates a message envel ope that
acts as a container for the business message as it travels through the c-hub. Message
envelopes are instances of the

com bea. b2b. pr ot ocol . nessagi ng. MessageEnvel ope class.

The message envelope is used for routing purposes and is analogous to a paper
envelope for aletter: the message envel ope contains the business message plus
addressing information, such as the identity of the sender (return address) and one
recipient of the business message (destination address), as shown in the following
figure.

Figure4-3 Message Envelope Containing an XOCP Business M essage

Message Envelope

Sender URL

Recipient / Destination URL

XOCP Business Message

M essage envelopes a so contain other information about the business message. For
detailed information about the MessageEnvel ope class, see the Javadoc on the
WebL ogic Collaborate documentation CD or in the cl assdocs subdirectory of your
WebL ogic Collaborate installation.

BEA WebL ogic Collaborate Developer Guide 4-7



4 Developing Logic Plug-Ins

For XOCP business messages, after the system XOCP router processes an XOCP
business message and finalizes the list of intended message recipients, the c-hub

validatesthe recipients and creates a separate message envel ope (and alogical copy of
the X OCP business message) for each recipient in the recipient list. These message
envelopesare then forwarded to the X OCP filter for processing. For moreinformation,
see “Information Flow for Message Envelopes’ on page 3-9.

System and Custom Logic Plug-Ins

48

WebL ogic Collaborate provides the following logic plug-insto provide standard
services for processing business messages.

Table 4-3 System Logic Plug-lIns

Logic Plug-In

Description

XOCP router

Modifiesthelist of recipients for an XOCP business message
based on XPATH router expressions configured in the
repository. In genera, this system logic plug-in should befirst
in the router chain so that custom logic plug-ins can
subsequently process a business message after itslist of
intended recipients is known.

XOCP router enqueue

Enqueues the XOCP business message in the c-hub router
message queue. Ingeneral, thissystem logic plug-in should be
last in the XOCP router chain.

XOCP filter

Determines whether an X OCP business messageis sentto a
trading partner based on X PATH filter expressionsconfigured
in the repository. In general, this system logic plug-in should
be first in the XOCP filter chain so that custom logic plug-ins
can subsequently process a business message after rejected
business messages have been filtered out.

RosettaNet router

Handlesrouting for RosettaNet businessmessages. Ingeneral,
this system logic plug-in should be first in the RosettaNet
router chain.

BEA WebL ogic Collaborate Developer Guide



Logic Plug-In API

Table 4-3 System L ogic Plug-Ins (Continued)

Logic Plug-In Description

RosettaNet router enqueue  Enqueuesthe RosettaNet business messagein the c-hub router
message queue. In general, this system logic plug-in should be
last in the RosettaNet router chain.

RosettaNet filter Determines whether a RosettaNet business message is sent to
atrading partner. In general, this system logic plug-in should
be first in the RosettaNet filter chain.

In addition to using the system logic plug-ins, c-space owners and trading partners can
develop their own custom logic plug-insto provide specialized services on the c-hub.
Each logic plug-inisaJavaclass that implementsthe Logic Plug-In API, as described
in “Programming Stepsfor Logic Plug-Ins’ on page 4-13.

Logic Plug-In API

WebL ogic Collaborate provides aL ogic Plug-In API that allows WebL ogic
Collaborate applications to:

m Add or remove target trading partners from the message recipient list. The c-hub
validatesthe list of recipients before sending the business message.

m Retrieve, examine, and process parts of business messages. To ensure that the
contents of business messages will not be atered or misrepresented
programmatically, the logic plug-in API provides methods for examining
business messages, but not for changing their contents.

The following table lists the components of the Logic Plug-in API. For more
information, see the WebL ogic Collaborate Javadoc.

BEA WebL ogic Collaborate Developer Guide 4-9



4 Developing Logic Plug-Ins

Table 4-4 Logic Plug-In API

Class/Interface

Description

com bea. b2b. protocol . Plugln

Tagging interface that describes a generic logic
plug-in, which represents pluggabl e code that can be
inserted for execution at various places in the c-hub.

com bea. b2b. prot ocol . Pl ugl nExcepti on

Exception class that isthrown if an error occurs while
executing alogic plug-in.

com bea. b2b. prot ocol . messagi ng. Message
Envel ope

Representsthe container (“envelope”) for abusiness
message passing through the c-hub. The
MessageEnvel ope containsthe actual business
message plus high level routing and processing
information associated with the business message,
such asthe sender URL and the URL for one recipient
(thereis asingle message envelopefor each recipient).
A Javal nput St r eamisavailablein case access to
the native message is needed (however, because
message content modification is not allowed, no

Qut put St r eamis provided).

com bea. b2b. prot ocol . messagi ng. Message

Represents a business message passing through the
c-hub. It provides additional information to be used to
properly route a message between trading partners.

It also contains information specific to the particular
business protocol being used for thisbusiness message.
Depending on the protocol used, the Message class
will usually be subclassed to provide additional
protocol -specific information about the message.

com bea. b2b. prot ocol . messagi ng. Payl oad
Par t

Represents a component of the message payl oad.
Specific implementing classes of thisinformation are
provided for some of the different types of parts of a
business message, such as XML or non-XML parts, or
to assist in accessing business protocol-specific
information.

com bea. b2b. prot ocol . conver sati on. Conv
ersationType

Representsa single role in a specific conversation
definition. It contains information such as the
conversation name, conversation version, and trading
partner role.

4-10

BEA WebL ogic Collaborate Developer Guide



Rules and Guidelines for Logic Plug-Ins

Rules and Guidelines for Logic Plug-Ins

Logic plug-ins should conform to the following rules and guidelines:

Logic plug-ins must be thread-safe and, therefore, stateless. At run time, logic
plug-in instances are cached and shared by multiple threads. Using instance
variables is not recommended.

If access to shared resourcesisrequired, then use the synchr oni zed Java
keyword to restrict access to the shared resource. Certain resources, such as
instance variables within the class, shared objects, or external system resources
(like files) might need shared access. Using the synchr oni zed keyword can
affect overall application performance, so use it only when necessary.

Logic plug-ins can modify the message envelope and the list of recipientsin the
business message, but they cannot modify the message contents. Changing the
business message invalidates the digital signature, if present. The Logic Plug-In
API provides mutator methods for modifying the message envel ope only.

Logic plug-ins must be self-contained. They are not interdependent with other
logic plug-ins; they cannot pass variables between them; and they do not return a
variable. The message envelope isthe only input and the only output. If the logic
plug-in makes a change to the message envelope, it outputs the message
envelope as modified.

The main logic plug-in class must implement the
com bea. b2b. pr ot ocol . Pl ugl n interface.

To ensure secure messaging, logic plug-ins are generally not able to inspect
encrypted business messages. Examination is usually performed on business
messages that do not have encrypted contents. To examine the encrypted
contents of a business message, the logic plug-in would need to decrypt the
message, inspect its contents, and then encrypt it again. Userswould need to
have their own public key infrastructure.

It is the responsibility of the plug-in provider to ensure that any custom plug-ins
that are installed on the c-hub are properly debugged and designed from a
security perspective.

A logic plug-in is always associated with at least one particular protocol in the
repository. Thelogic plug-in istriggered only when a business message that

BEA WebL ogic Collaborate Developer Guide  4-11



4 Developing Logic Plug-Ins

4-12

uses that protocol passes through the c-hub. For example, a RosettaNet business
message does not trigger an X OCP-defined logic plug-in, and vice versa.

A singlelogic plug-in can be associated with multiple protocols in the
repository. For example, the samelogic plug-in class named Sent Messages
could be associated with the XOCP and RosettaNet protocols. In the C-Hub
Administration Console, you can define two separate logic plug-ins (such as
XOCP- Sent Messages and RN- Sent Messages), athough each would point to the
same Sent Messages class. Alternatively, the samelogic plug-in can be used in
two different protocol chains; they would shareinitialization parameters, but
they would be separate instances.

An efficient logic plug-in determines quickly whether a business message
qualifiesfor processing and, if not, exits immediately.

Logic plug-ins can call other modules, including shared methods in a utility
library (for example, a modul e that accesses a database).

Logic plug-ins are initialized one time, when the c-space is activated.

e |f the c-spaceis shut down (the shut down method is called on the associated
com bea. b2b. managenent . hub. r unt i me. CSpaceMBean), then al
protocol-specific logic plug-ins associated with that c-space are shut down as
well. The c-space must be restarted for the logic plug-insto be active.

e |f the c-hub is shut down (the shut down method is called on the associated
com bea. b2b. managenent . hub. r unt i me. CHubMBean), then all logic
plug-ins running on that c-hub are shut down aswell. The c-hub and c-space
must be restarted.

e |If thelogic plug-in definitions change in the c-hub repository, such aswhen
the chain is resequenced or when logic plug-in definitions are added,
changed, or removed, then the c-space must be shut down and restarted to
reflect the repository changes.

The WebL ogic Server instance must be restarted (and the Java Virtual Machine,
or VM, reloaded) if an upgraded version of the logic plug-in source code is
installed on the c-hub.

BEA WebL ogic Collaborate Developer Guide



Creating and Adding Logic Plug-Ins

Creating and Adding Logic Plug-Ins

Implementing a custom logic plug-in requires a combination of development and
administrative tasks. The following steps describe those procedures:

Programming Steps for Logic Plug-1ns

m  Administrative Tasks

Programming Steps for Logic Plug-Ins

This section describes the programming steps that you must perform in the logic
plug-in code. Although each logic plug-in processes business messagesin itsown way,
all logic plug-ins must perform certain tasks.

To implement alogic plug-in, complete the following steps:

Step 1: Import the Necessary Packages

Step 2: Implement the Plugin Interface

Step 3: Specify the Exception Processing Model

Step 4: Implement the Process Method

Step 5: Get the Business Message from the M essage Envelope
Step 6: Validate the Business Message

Step 7: Get Business M essage Properties

Step 8: Process the Business M essage as Needed

BEA WebLogic Collaborate Developer Guide  4-13



4 Developing Logic Plug-Ins

This section uses code fragments from the Sent MsgCount er . j ava filein the
M essageCounter sample application. The Sent MsgCount er classisalogic plug-in
that:

m |ntercepts a business message en route through the c-hub

m Obtains the names of the message sender, its target recipient, and its associated
conversation definition

m Inserts arow with thisinformation in the billing database.

The CheckAccount . j ava file in the CheckAccount sample application is another
example of alogic plug-in. For more information about the M essageCounter and
CheckA ccount sample applications, see Using Logic Plug-Insfor Billing in BEA
WebLogic Collaborate Getting Sarted.

Step 1: Import the Necessary Packages

At aminimum, alogic plug-in needs to import the following packages:
m com bea. b2b. prot ocol . *

® com bea. b2b. prot ocol . messagi ng. *

Thefollowing listing from the Sent MsgCount er . j ava file showsimporting the
necessary packages.

Listing 4-1 Importing the Necessary Packages

i nport java.util.Hashtabl e;

i mport com bea. b2b. protocol . *;

i nport com bea. b2b. prot ocol . nessagi ng. *;
i nport com bea. eci . | oggi ng. *;

i mport javax. nam ng.*;

i nport javax. sql . DataSource;

/1 This package is needed to access the DB pool
i mport java.sql.*;

4-14  BEA WebL ogic Collaborate Developer Guide



Creating and Adding Logic Plug-Ins

Step 2: Implement the Plugin Interface

A logic plug-in needs to implement the com bea. b2b. pr ot ocol . Pl ugl n interface,
as shown in the following listing.

Listing4-2 Implementing the Plugln Interface

public class Sent MsgCounter inplenments Plugln
{ ...
}

Step 3: Specify the Exception Processing Model
A Pl ugl nExcepti on isthrown if:

®m A run-time exception (such asaNul | Poi nt er Except i on) isthrown by alogic
plug-in and caught by WebL ogic Collaborate processing code.

m  Thelogic plug-in throws an exception to indicate problems encountered during
logic plug-in processing. The logic plug-in might handle the exception directly
or it might notify the WebL ogic Collaborate processing code.

BEA WebL ogic Collaborate Developer Guide  4-15



4 Developing Logic Plug-Ins

4-16

The exception processing model specified in alogic plug-in determines what happens
if an exception isthrown. Logic plug-ins must implement the

except i onProcessi nghbdel method and specify one of the return values described
in the following table.

Table 4-5 Options for the Exception Processing M odel

Class/Interface Description

EXCEPTI ON_CONTI NUE  Indicates that processing should continue to the next logic
plug-ininthe chainif aPl ugl nExcept i on isthrown.

Use this option to allow a business message to continue
through the c-hub even if an error occurs during the execution
of thislogic plug-in.

EXCEPTI ON_STOP Indicates that processing should stop at thislogic plug-inif a
Pl ugl nExcept i on isthrown. The business message does
not continue to the next logic plug-in in the chain.

Use this option to cancel message processing and prevent its
further progress through the c-hub. For example, if alogic
plug-in might vaidate business documents and reject any that
contain insufficient or incorrect data.

EXCEPTI ON_UNW ND Indicates that processing should unwind if a
Pl ugl nExcept i on isthrown. The business message does
not continue to the next logic plug-in in the chain.

Use this option to reject a message; to prevent its further
progress through the c-hub; and to undo any changes made by
this plug-in, along with any changes made by previous
plug-insin the chain. If an exception is thrown and thisis the
exception processing model, then the unwi nd methodsin all
previous plug-ins in the chain (but not the current logic
plug-in), are invoked in reverse order. In effect, unwinding
cancels all changes made by the chain.

For example, if alogic plug-in inserts arow in a database
table, itsunwi nd method should delete that row.

Note:  To use this exception processing model, all logic
plug-insin the chain must implement the unwi nd
method, even if it does nothing.

BEA WebL ogic Collaborate Developer Guide



Creating and Adding Logic Plug-Ins

If abusiness message is rejected, what happens next depends on the business protocol
as well asthe specified Quality of Service associated with the message. For example,
the sending c-enabler application might be notified that message delivery failed and it
might then attempt to send the business message again.

The following listing shows how the Sent MsgCount er plug-in implements the
excepti onProcessi ngvbdel method.

Listing 4-3 Specifying the Exception Processing M odel

public int exceptionProcessinghdel ()

{
return EXCEPTI ON_CONTI NUE;

}

Step 4: Implement the Process Method

To process a business message, alogic plug-in must implement the pr ocess method,
which accepts the message envel ope of the business message asits only parameter. In
the following listing, the Sent MsgCount er class begins its implementation of the

pr ocess method by defining the variables that it will later use to store message
properties.

Listing 4-4 Implementing the Process M ethod

public void process(MessageEnvel ope nEnv) throws Plugl nException

{
String sender, conversation ;
String tRecipient;
Connection conn = null;
Statenment stnt = null;
Message bMsg = nul | ;

}

BEA WebLogic Collaborate Developer Guide  4-17



4 Developing Logic Plug-Ins

Note: When processing a business message, alogic plug-in is alowed to modify
only the message envelope, not the business message.

Step 5: Get the Business Message from the Message Envelope

If alogic plug-in needs to inspect the contents of a business message, it must call the
get Message method on the MessageEnvel ope instance, which retrieves the business
message as a Message object.

Inthefollowinglisting, the Sent MsgCount er class getsthe business message from the
message envelope by calling the get Message method.

Listing 4-5 Retrieving the Business M essage from the M essage Envelope

if((bMsg = nEnv. get Message())== null)

new Throwabl e("bMsg is NULL"). printStackTrace();

Step 6: Validate the Business Message

Optionaly, alogic plug-in can determine whether a message is a valid business
message that should be processed, or a system message that should be ignored by the
logic plug-in. To check a business message, the logic plug-in can call the

i sBusi nessMessage method on the Message instance. In the following listing, the
Sent MsgCount er classusesthei sBusi nessMessage method to ensure that the
message is a business message before processing it.

Listing 4-6 Validating the Business M essage

if (bMsg.isBusi nessMessage())
{

4-18  BEA WebL ogic Collaborate Developer Guide



Creating and Adding Logic Plug-Ins

Step 7: Get Business Message Properties

Optionally, alogic plug-in can retrieve certain properties of the business message by
calling methods on the MessageEnvel ope or Message instance. In the following
listing, the Sent MsgCount er class gets the name of the conversation definition
associ ated with the conversation in which this message was sent, the name of the
sender of the business message, and the name of the recipient trading partner.

Listing4-7 Retrieving Business M essage Properties

conversati on= bMsg. get Conversati onType() . get Nane() ;
sender = mEnv. get Sender () ;
t Reci pi ent = nEnv. get Reci pi ent ();

Step 8: Process the Business Message as Needed

After alogic plug-in has obtained the necessary information from the business
message, it processes this information as needed. For example, the Sent MsgCount er
plug-in updates the billing database with the message statistics it has collected.

Administrative Tasks

An administrator adds the logic plug-in definition to the repository by performing the
following tasks from the Logic Plug-Ins tab of the C-Hub Administration Console:

1. Specify the following logic plug-in properties:
e Name of the logic plug-in.

e Javaclassthat implementsthe Pl ugl n interface. This class can call auxiliary
classes in the class library, but it must be the main point of entry for the logic
plug-in. In addition, the Java class file must reside in a location specified by
the WebL ogic CLASSPATH.

e Parameter name/value pairs to use when initializing the Java class.
2. Assign alogic plug-in to a business protocol.

3. Specify the position of the logic plug-in in the chain.

BEA WebL ogic Collaborate Developer Guide  4-19



4 Developing Logic Plug-Ins

For moreinformation about administrativetasks, see Working with L ogic Plug-Insand
Using the C-Hub Administration Console in the BEA WebLogic Collaborate C-Hub
Administration Guide.

4-20  BEA WebL ogic Collaborate Developer Guide



CHAPTER

5

Developing
Management
Applications

The following sections describe how to create WebL ogic Collaborate management
applications that monitor run-time activity on c-hub and c-enabler nodes:

m  About Management Applications
m  Programming Steps for Management Applications

The WebL ogic Collaborate C-Hub Administration Console and the C-Enabler
Administration Console tools provide run-time monitoring of c-hub and c-enabler
activities. In addition to these standard tools, developers can create custom
management applications that provide the same monitoring information that appears
in the administration console tools.

These custom management applications can provide read-only access to real-time
statistics, such as the number of messages exchanged in a particular conversation or
the number of messages received by the c-hub. In addition, these custom applications
can perform certain administrative tasks programmatically, such as shutting down a
particular c-space or the c-hub (in c-hub management applications) or leaving or
terminating a particular conversation (in c-enabler management applications).

Note: Configuring the c-hub repository requiresthe C-Hub Administration Console.
Custom management applications cannot perform configuration tasks.

BEA WebLogic Collaborate Devel oper Guide 5-1



5

Developing Management Applications

About Management Applications

The following sections describe management applicationsin WebL ogic Collaborate:
m  MBeans and the MBean Server

m C-Hub MBeans

m  C-Enabler MBeans

m Configuration Requirements

MBeans and the MBean Server

5-2

WebL ogic Collaborate provides devel opers with the application programming
interfaces (APIs) needed to create custom management applications that monitor
run-time activity on c-hub and c-enabler nodes. The C-Hub Administration Console
and the C-Enabler Administration Console tools also use these APIs to provide
real-time monitoring information.

These APIs consist of setsof Java Management Extensions (JM X) Managed Beans, or
MBeans, which are specia JavaBeans with attributes and methods for management
operations. For more information about IM X, particularly the use of the IMX AP
(including the MBean Server and MBeans), see the Java Management Extensions
Specification published by Sun Microsystems, Inc., at the following URL:

http://wwmv j ava. sun. conl pr oduct s/ JavaManagenent /i ndex. ht il

BEA WebL ogic Collaborate Developer Guide



About Management Applications

MBean Packages

WebL ogic Collaborate provides the following packages for creating custom
management applications.

Table5-1 Packagesfor WebL ogic Collabor ate Management Applications

Package Description

com bea. b2b. managenent Provides the Managenment Except i on class for
handling errorsthat occur when running amanagement
application.

com bea. b2b. managenent . hub. runti nme Provides c-hub MBeans used for creating management
applications that monitor run-time activity on c-hub
nodes.

com bea. b2b. managenent . enabl er. runti me  Provides c-enabler MBeans used for creating
management applications that monitor run-time
activity on c-enabler nodes.

For detailed information about these packages, see the Javadoc on the WebL ogic
Collaborate documentation CD or in the cl assdocs subdirectory of your WebLogic
Collaborate installation.

Note: Inthisrelease, al MBeans areimplemented as Standard MBeans, which isa
classthat implements its own MBean interface.

MBean Server Implementation

WebL ogic Collaborate provides an implementation of the IMX MBean Server
component that serves as arepository for MBeans.

m The c-hub MBeans are registered with the MBean Server running inside the
c-hub. When c-hub MBeans are created, WebL ogic Collaborate popul ates their
attributes from settings in the c-hub repository.

m  The c-enabler MBeans are registered with the MBean server running inside the
c-enabler. When c-enabler MBeans are created, WebL ogic Collaborate popul ates
their attributes from settings in the c-enabler XML configuration file.

BEA WebL ogic Collaborate Developer Guide 5-3



5 Developing Management Applications

At runtime, WebL ogic Collaborate updatesthe MBean attributesto reflect the state of
the running system.

Note: C-enablersthat are co-located with the c-hub or with other c-enablerssharethe
same M Bean Server instance. If ac-enabler runsin WebL ogic Server without
aco-located hub, it will have its own local MBean server.

C-Hub MBeans

The com bea. b2b. managenent . hub. r unt i me package contains the WebL ogic
Collaborate c-hub MBeans, which are described in the following table.

Table 5-2 Managed Beansin the C-Hub MBeans

Label Description

HubMBean Represents a c-hub. Used for monitoring a c-hub at run
time.

CSpaceMBean Represents a c-space. Used for monitoring c-spaces on

the c-hub at run time.

d obal Conver sati onMBean Representsan instance of aglobal conversation
managed by the Conversation Manager on the c-hub.
Used for monitoring active conversations within a
Cc-space.

Col | abor at or MBean Represents a trading partner in a c-space. Used for
monitoring trading partnersin the c-space.

MessageMBean Represents a message in a conversation. Used for
monitoring messages in the c-space.

5-4 BEA WebL ogic Collaborate Developer Guide



About Management Applications

C-Enabler MBeans

The com bea. b2b. managenent . enabl er . r unt i me package contains the
WebL ogic Collaborate c-enabler MBeans, which are described in the following table.

Table 5-3 Managed Beansin the C-Enabler M Beans

L abel Description

Enabl er MBean Represents a c-enabler. Used for monitoring the
c-enabler at run time.

Conver sat i onMBean Represents a conversation. Used for monitoring active
conversations in which the c-enabler isinvolved.

Enabl er Sessi onMBean Represents a c-enabler session. Used for monitoring
active c-enabler sessions on the c-enabler.

MessageMBean Represents a message in a conversation. Used for
monitoring messages in the c-enabler.

Configuration Requirements

To use the WebL ogic Collaborate MBeans, make sure that the following file is
included in the CLASSPATH:

[ib\jnxri.jar

Note: Be sure to use the Javasoft implementation of thisfile.

BEA WebLogic Collaborate Devel oper Guide 5-5



5 Developing Management Applications

Programming Steps for Management
Applications

The steps for using MBeans to devel op management applications for c-hubs and
c-enablers are nearly identica. To access WebL ogic Collaborate MBeans using the
JMX API, aJava application must complete the following steps:

m  Step 1: Import the Necessary Packages

m  Step 2: Get a Reference to the MBean Server Object
m  Step 3: Construct an ObjectName Object

m  Step 4: Query the MBean Server

m  Step 5: Read the Attributes of the MBean

m Step 6: Navigate Across MBeans

m  Step 7: Handle Exceptions

The C-Hub and C-Enabler Administration Consoles use the IMX APl and WebL ogic
Collaborate MBeans to monitor running c-hubs and c-enablers, respectively.

5-6 BEA WebL ogic Collaborate Developer Guide



Programming Steps for Management Applications

Step 1: Import the Necessary Packages

To work with MBeans, amanagement application must import the necessary
packages. At a minimum, the application must import the packages described in the

following table.

Table 5-4 Packagesthat M ust Be Imported

L abel

Description

j avax. managenent . *;

Required for IMX MBeans, as mandated in the
Java Management Extensions Specification
published by Sun Microsystems, Inc.

j avax. nam ng. *;

Required for retrieving the MBean server object
using JNDI lookup. Only the following are
required:

®m j avax. nam ng. Cont ext

m javax.naming. | ni tial Cont ext

com bea. b2b. managenent . Managenent Excepti on

Required for handling exceptionsin all
management applications.

com bea. b2b. managenent . hub. runti ne. *

Required for c-hub management applications.

com bea. b2b. managenent . enabl er. runti me. *

Required for c-enabler management
applications.

C-Hub Example

The code in the following listing imports the necessary packages for c-hub

management applications.

Listing 5-1 Importing Packages for C-Hub M anagement Applications

i nport j avax. nmanagenent. *;
i nport j avax. nam ng. Cont ext ;

i nport javax.nam ng. | nitial Context;
i nport com bea. b2b. managenent . Managenent Except i on;
i nport com bea. b2b. managenent . hub. runti me. *;

BEA WebLogic Collaborate Devel oper Guide 5-7



5 Developing Management Applications

C-Enabler Example

The code in the following listing imports the necessary packages for c-enabler
management applications.

Listing 52 Importing Packagesfor C-Enabler Management Applications

i nport javax. management.*;

i nport javax. nam ng. Cont ext;

i mport javax. nam ng. | nitial Cont ext;

i nport com bea. b2b. managenment . Managenent Excepti on;
i nport com bea. b2b. managenent . enabl er. runti me*;

Step 2: Get a Reference to the MBean Server Object

To get areference the MBean server object, amanagement application calls the
fi ndMBeanSer ver method on the MBeanSer ver Fact or y object, as shown in the
following listing.

Listing 5-3 Getting a Referenceto the MBean Server Object

MBeanServer server = null;
ArraylLi st nmbsList = MBeanServer Factory. findMBeanServer ("W.C");
if (nbsList.size() > 0) {
server = (MBeanServer)nbsLi st. get(0);
}

Step 3: Construct an ObjectName Object

MBeans are uniquely identified by object names inside the MBean server.
The j ect Nane class represents an object name.

5-8 BEA WebL ogic Collaborate Developer Guide



Programming Steps for Management Applications

Object Names

An object name consists of two parts:

m Domain Name. For all MBeans in WebL ogic Collaborate, the domain name is
the same:

wW.C

m Key property list. Enables you to assign unigue names to the MBeans of a
given domain. The WebL ogic Collaborate M Beans have the following key
properties:

Table5-5 Key Properties

Property Description

type Name of the MBean interface.
For c-hub management applications, one of the
following values:
s  HubMBean
m  CSpaceMBean
m  Col | abor at or MBean
m  {d obal Conversati onMBean
m  MessageMBean
For c-enabler management applications, one of the
following values:
Enabl er MBean
Enabl er Sessi onMBean
m  Conver sati onMBean
m  MessageMBean

nanme Unique identifier of the MBean.

BEA WebLogic Collaborate Devel oper Guide 5-9



5 Developing Management Applications

Table 5-5 Key Properties (Continued)

Property

Description

subsystem

Unique identifier of the subsystem.

For c-hubs, use the following format:

hub. <hubName>

For c-enablersin conjunction with Enabl er MBeans
and MessageMBeans, use the following format:
enabl er.

For c-enablersin conjunction with

Enabl er Sessi onMBeans and

Conver sat i onMBeans, use the following format:
enabl er . <enabl er Name>

The enabl er Narre extension uniquely identifies the
specific c-enabler in the conversation. Thisis needed
because a c-enabler can participate in the same
conversation in two different roles using two different
c-enabler sessions.

C-Hub Example

For example, a CSpaceMBean could have the following object name:

WLC: t ype=CSpaceMBean, *

C-Enabler Example

Similarly, an Enabl er MBean could have either of the following object names:

WLC: t ype=Enabl er MBean, *

WLC: t ype=Enabl er MBean, subsyst enrenabl er, *

5-10 BEA WebLogic Collaborate Devel oper Guide



Programming Steps for Management Applications

Object Name Expressions

C-Hub Example

For MBeans, object names can be also used for query operations that use object name
expressions. The MBean server uses pattern matching on the object names of the
registered MBeans. The matching syntax is consistent with file globing, which is
described in the Java Management Extensions Specification published by Sun
Microsystems, Inc.:

m  Anasterisk (*) matches any character sequence.

m A question mark (?) matches a single character.

For exampl e, the foll owing object name expression will match the object names of all
registered CSpaceMBeans.

WL.C: t ype=CSpaceMBean, nanme=*

C-Enabler Example

Similarly, the following object name expression will match the object names of all
registered Enabl er MBeans.

W.C: t ype=Enabl er MBean, nane=*

Step 4: Query the MBean Server

After constructing an object name expression, an application queriesthe MBean server
by passing in the Cbj ect Nanme object corresponding to the expression. To retrieve the
set of registered MBeans whose hames satisfy an object name expression, use the
following method:

j avax. managenent . MBeanSer ver. quer yNanmes()

The MBean server returns aset of objectsthat satisfy the query criteria. Note that these
are Obj ect Name objects that represent MBeans, not direct references to the MBeans
themselves.

BEA WebL ogic Collaborate Developer Guide  5-11



5 Developing Management Applications

C-Hub Example

The code in the following listing retrieves a set of Obj ect Name objects that represent
the CSpaceMBeans associated with registered c-spaces on the c-hub.

Listing 5-4 Retrieving Registered CSpaceM Beans

if (server !'=null) {
bj ect Name quer yObj Nane = new Obj ect Name("WLC: t ype=HubMBean, *") ;
// beans is a set of ObjectName objects
beans= server. queryNames(quer yCbj Nane, null);

}

if (null == beans)
noCsps = true;

el se {

Iterator it = null;
it = beans.iterator();
csps = new ArraylList();
while (it !'= null &% it.hasNext()) {
Obj ect Nanme obj name = (Cbj ect Nane)it.next();
hubCbj = objname.toString();
cspbeans = (CSpaceMBean[])server.getAttribute(objnane , "CSpaces");
for (int c=0; c < cspbeans.length; c++)
csps. add(cspbeans[c]);

C-Enabler Code Example

The code in the following listing retrieves a set of Obj ect Name objects that represent
active Enabl er Sessi onMBeans on the c-enabler.

Listing5-5 Retrieving Registered Enabler SessionM Beans

if (server !'= null)

Obj ect Nanme quer yObj Nane = new Cbj ect Nane("W.C: subsystenrenabl er." + enabl er Nane
+ ", name=" + sessionNane + ",type=Enabl er Sessi onMBean" );

/1 beans is a set of (bjectName objects

beans= server. queryNanes(queryQbj Name, null);

}

5-12  BEA WebL ogic Collaborate Developer Guide



Programming Steps for Management Applications

Iterator it = beans.iterator();
// 1terate through the Enabl er Sessi onMBeans
while (it.hasNext()){
Obj ect Name obj Name = (Qbj ectName)it. next();
// do sonet hing

}

Step 5: Read the Attributes of the MBean

Use the oj ect Nane instance, obtained in the previous step, to access other MBeans,
provided that the Obj ect Name has one or more attributes whose type is MBean. To
read the attributes of an MBean, use the following method, passing the Cbj ect Name
object as a parameter:

j avax. managemnent . MBeanSer ver. get Attri bute()

Onceyou cdl theget At t ri but e method by passing in the Obj ect Nane object for the
first MBean, you can get references directly to other MBean instances.

C-Hub Example

The code in the following listing retrieves a set of attributes associated with a global
conversation.

Listing5-6 Retrieving Conversation Attributes

while ((count < convsPerPage) &% (idx < total Convs)) {
(bj ect Name obj Name = ( Qbj ect Nane) convs. get (i dx);
String convlid = (String) server.getAttribute(obj Name, "Conversationld");
CSpaceMBean cspace = (CSpaceMBean) server.getAttribute(obj Name, "CSpace");
Prot ocol protocol = (Protocol)server.getAttribute(obj Nane, "Protocol");
Date startTine = (Date) server.getAttribute(objName, "ActiveSince");
Date | ast Message = (Date) server.getAttribute(obj Name, "LastMessageTi me");
String |astSender = (String) server.getAttribute(objName, "LastSender");
Col | aborator MBean[] parts = (Col | aborator MBean[])

server. get Attri bute(obj Nane, "ActiveCollaborators");

String checkBoxSuccess = "checkBoxSuccess" + idx;
String checkBoxFail ure = "checkBoxFailure" + idx;
String regConvid = convlid.replace('*','$');
regConvlid = regConvid.replace(':','$");

BEA WebL ogic Collaborate Developer Guide  5-13



5

Developing Management Applications

regConvlid = regConvld.replace('?','$");
regConvid = regConvid.replace('=",'$");

String checkBoxVal ue = "W.C: subsyst enrhub, nanme=" + regConvld + ", cspacenanme="

+ cspace. get Nane() + ",type=d obal Conver sati onMBean" ;

Inthisexample, ser ver isareferenceto the MBean server and obj Nane isareference

to the Obj ect Nane object representing the G obal Conver sat i onMBean.

The application can then iterate through and process the set of

d obal Conver sati onMBean objects as needed. Because it now has direct references
to the MBean, the application can use methods on the MBean to retrieve attributes,

such as run-time monitoring information.

C-Enabler Example

Thecodeinthefollowing listing retrievesa set of attributes associated with a c-enabler

session.

Listing 5-7 Retrieving C-Enabler Session Attributes

Iterator it = beans.iterator();
while (it.hasNext()){

Obj ect Name obj = (QbjectNanme)it. next();

hubUrl = (String)server.getAttribute(obj, "HubUrl");

hubProxyHost = (String)server.getAttribute(obj, "ProxyHost");
hubProxyPort = (String)server.getAttribute(obj, "ProxyPort");

hubUser = (String)server.getAttribute(obj, "HubUser");

hubCertField = (String)server.getAttribute(obj, "CertificateFi el dName");
hubCertVal ue = (String)server.getAttribute(obj, "CertificateFi el dvalue");
hubServerCertField = (String)server.getAttribute(obj,

"ServerCertificateFiel dName");

hubServerCertVal ue = (String)server.getAttribute(obj,

"ServerCertificateFiel dval ue");

enablerUl = (String)server.getAttribute(obj, "EnablerUl");

cSpaceNane = (String)server.getAttribute(obj, "CSpaceNane");

tradi ngPartner = (String)server.getAttribute(obj, "TradingPartnerName");
certLocation = (String)server.getAttribute(obj, "CertificatelLocation");
privateKeyLoc = (String)server.getAttribute(obj, "PrivateKeylLocation");

5-14  BEA WebL ogic Collaborate Developer Guide



Programming Steps for Management Applications

Inthisexample, ser ver isareferenceto the MBean server and obj Nane isareference
to the (bj ect Name object representing the Enabl er Sessi onMBean.

The application can then iterate through and process the set of

Enabl er Sessi onMBean objectsas needed. Because it now hasdirect referencesto the
M Bean, the application can use methods on the MBean to retrieve attributes, such as
run-time monitoring information.

Step 6: Navigate Across MBeans

MBeansthat arelogically related have accessor methods to retrieve referencesto each
other. These methodsare strongly typed and return an exact MBean type. For example,
the CSpaceMBean. get Hub() method returns a HubMBean that represents the c-hub
associated with that c-space. Similarly, the Enabl er Sessi onMBean. get Enabl er ()
method returns a Enabl er MBean that represents the associated c-enabler.

For detailed information about these methods, see the Javadoc on the WebL ogic
Collaborate documentation CD or in the cl assdocs subdirectory of your WebLogic
Collaborate installation.

Step 7: Handle Exceptions

If an error occurs while running a WebL ogic Collaborate management application, a
com bea. b2b. managenment . Management Except i on isthrown. Management
applications can catch this exception and process it as appropriate, as shown in the
following listing.

Listing 5-8 Handling ManagementExceptionsin Management Applications

catch (Managenent Excepti on ne){
String msg = "Exception in Managenent Application: " + me;
debug(nsg);
t hrow new Exception(nsg);

BEA WebL ogic Collaborate Developer Guide  5-15



5 Developing Management Applications

5-16  BEA WebLogic Collaborate Devel oper Guide



CHAPTER

6

Writing to the Log

The following sections describe how to write messages to the log in WebL ogic
Collaborate applications:

m About the Log

m  Writing Messagesto the Log

About the Log

Log Files

WebL ogic Collaborate applications can write messages (errors, warnings, and
information) to alog filefor subsequent examination. WebL ogic Collaborate provides
aLogging API that applications can use to write messages to the log.

Logged messages are written to the following locations:

m  WebLogic Collaborate system log file (W c. | og), the C-Hub Administration
Console, and the C-Enabler Administration Console

m WebLogic Server log file (webl ogi c. | og) and the WebL ogic Server Console (if
it is running)

Thew c. | og system log fileis created automatically when a c-hub or c-enabler starts
up. Thesize of thisfileislimited to IMB. When the file size is exceeded, thefileis
renamed with a numeric suffix (such aswi c1. | og) and a new empty fileis created.

BEA WebLogic Collaborate Devel oper Guide 6-1



6 Writing to the Log

Logging API

The com bea. eci . | oggi ng package contains the WebL ogic Collaborate logging
API, which consists of the classes described in the following table.

Table6-1 Logging API

Name Description
Log Defines severity levels for log messages.
User Log Represents a user log. Provides access to the log for

users. The user log is defined as a User log output
stream (with a<user > tag) in the system log.

For detailed information about these classes, see the Javadoc on the WebL ogic
Collaborate documentation CD or in the cl assdocs subdirectory of your WebL ogic
Collaborate installation.

Severity Levels

The Log class defines the severity levels described in the following table.

Table 6-2 Severity Levels Defined in Log Class

Level Severity Description

1 FATAL Fatal error hasoccurred. A system component failed abnormally
due to the exception that was detected.

2 ERRCR User level error has occurred. A critical error occurred that
impacts system stability.

3 WARNI NG Warning message. A minor exception occurred that does not
impact system stability.

4 I NFO Informational message. Informationa only. Not used in
exception conditions. An example would be logging the
successful startup of the c-hub.

6-2 BEA WebL ogic Collaborate Developer Guide



Writing Messages to the Log

Writing Messages to the Log

WebL ogic Collaborate applications can write messages to the user log using the | og
method in the User Log class. The log method hastwo versions: one version specifies
the message text with an | NFO severity level, and the other version specifiesthe
message text and a particul ar severity level (FATAL, ERROR, or WARNI NG). In addition,
applications have print stream access to the log viauser | og. out .

Importing the Logging Package

To write to the log, WebL ogic Collaborate applications must import the
com bea. eci . | oggi ng package, as shown in the following listing.

Listing 6-1 Importing the com.bea.eci.logging Package

i nport com bea. eci. | oggi ng. *;

Writing a Log Message with an INFO Severity Level

To write alog message with an | NFO severity level, an application can use the
following version of the | og method:

static void log(java.lang. String userMQg)

BEA WebLogic Collaborate Devel oper Guide 6-3



6 Writing to the Log

Thefollowing listing shows writing alog message with an | NFO severity level:

Listing 6-2 Writing an INFO Message to theLog

private static void debug(String msg){
i f (DEBUG
UserLog. |l og("***Partnerl1Servlet: "+nsg);

Writing a Message With a Specific Severity Level

Towrite alog message with a specific severity level, an application uses the following
version of the | og method:

static void log(int severity, java.lang. String userMsg)

Thefollowing listing shows writing alog message with a WARNI NG severity level:

Listing 6-3 Writinga WARNING Messageto the L og

private static void debug(String msg){
i f (DEBUG
User Log. | og(l og. WARNI NG, 1rs(Q) ;

}
try {
}catch(Exception e){
debug("Partnerl exception errors");
e. print StackTrace(User Log. out) ;
}

6-4 BEA WebL ogic Collaborate Developer Guide



Index

A

about conversations 2-6
action
publish business document action 2-60
ACTIVE state 3-13
APIs
C-Enabler API 3-5
attachments
creating 3-32

B

Business Message Recelve events 2-70
busi ness messages
about business messages 2-6, 2-41, 3-6,
4-7
creating 2-53, 3-30
exchanging 2-42
receiving 2-66, 2-72, 3-52
sending 3-46
WebL ogic Process Integrator variables
2-43
business operations 2-51

C

c-enabler applications
about c-enabler applications 3-5
application steps 3-22
architectural overview 3-3
creating attachments 3-32

creating business messages 3-30
creating XML documents 3-30
creating XOCP Business M essages 3-32
initiating conversations 3-16
joining a c-space 3-14
key tasks 3-14
leaving conversations 3-17
registering for arole in aconversation
3-15
run-time information flow 3-19
shutting down c-enabler sessions and
conversations 3-17
specifying a trading partner 3-33
specifying recipients 3-33
specifying XPath expressions 3-34
terminating conversations 3-17
C-Enabler Class Library
enlisting trading partners 3-16
implementing interfaces 3-24
C-Enabler Class Library, about 3-5
c-enabler MBeans 5-5
c-enabler sessions
linking to workflow templates 2-24
shutting down 3-17
c-enablers
Enabler APl 3-5
chains
about chains 4-4
c-hub MBeans 5-4
CollaboratorMBean 5-4
com.bea.b2b.enabler package 3-5

BEA WebL ogic Collaborate Developer Guide -1



com.bea.b2b.management.enabler.runtime
package 5-5
com.bea.b2b.management.hub.runtime
package 5-4
com.bea.eci.logging package 6-2
confirmation of message delivery 3-40
CONNECTED state 3-13
content modification 4-4
conversation coordinators 3-11
conversation definitions
about conversation definitions 2-6, 3-5
conversation initiators 3-10
about conversation initiators 2-7
conversation participants 3-10
about conversation participants 2-7
ConversationMBean 5-5
conversations 2-6
about conversations 3-5
initiating 3-16
initiators 3-10
leaving 3-17
linking
workflow template definitions to
2-19
participants 3-10
participating in 3-16
registering for arolein 3-15
shutting down 3-17
terminating 3-17
correlation ID 3-45
creating
attachments 3-32
business messages 2-53
payload parts 3-30
XML documents 3-30
XOCP business messages 3-32
creating a workflow instance 2-83
CSpaceMBean 5-4
Cc-spaces
joining 3-14
leaving 3-17

[-2 BEA WebL ogic Collaborate Developer Guide

customer support contact information xiii

D

deferred synchronous message delivery 3-46

delivery attempts 3-44
delivery status, tracking 3-49
DISCONNECTED state 3-13
domain name 5-9

DROPPED OUT state 3-13
durability 3-41

E

EnablerMBean 5-5
EnablerSessionMBean 5-5
enlisting trading partners 3-16
error levels 6-2
examination 4-4
exception processing model 4-15
exceptions

management applications 5-15
exporting workflow template definitions

2-15

extended properties 3-36

G

global conversation coordinator 3-12
Global ConversationMBean 5-4

H
HubMBean 5-4

implementing interfacesin the C-Enabler
Class Library
3-24
importing workflow template definitions
2-16



initiating conversations 3-16
initiators 2-7
input variables, defining 2-38

J

joining c-spaces 3-14

K
key property list 5-9

L
leaving
conversations 3-17
c-spaces 3-17
linking
c-enabler session names to workflow
template definitions 2-24
linking workflow template definitions to
conversations 2-19
local conversation coordinators 3-12
log
about the log 6-1
log files 6-1
Logging API 6-2
severity levels 6-2
logic plug-in 4-8
logic plug-ins
about logic plug-ins 4-2
administrative tasks 4-19
application programming interface
(API) 4-9
architecture 4-3
business message from message
envelope 4-18
business message properties 4-19
developer tasks 4-13
exception processing model 4-15
importing packages 4-14

Plugln Interface, implementing 4-15
process method 4-17
programming steps4-13
RN-Filter 4-9

RN-Router 4-8
RN-Router-Enqueue 4-9

rules and guidelines 4-11

system logic plug-ins 4-8

types of processing tasks 4-4
validating business message 4-18
XOCP-Filter 4-8

XOCP-Router 4-8

X OCP-Router-Enqueue 4-8

M

management applications
about management applications 5-2
c-enabler MBeans 5-5
c-hub MBeans 5-4
configuration requirements 5-5

constructing ObjectName objects 5-8

getting referenceto MBean server object

5-8
handling exceptions 5-15
importing packages 5-7
MBeans and M Bean server 5-2
navigating across MBeans 5-15
programming steps 5-6
querying MBean server 5-11
reading attributes of MBeans 5-13

Manipulate Business Message action 2-44

MBean server
about the MBean server 5-2
getting areference to 5-8
implementation 5-3
querying 5-11

MBeans
about MBeans 5-2
c-enabler

ConversationMBean 5-5

BEA WebL ogic Collaborate Developer Guide



EnablerMBean 5-5
EnablerSessionMBean 5-5
MessageM Bean 5-5
c-enabler MBeans 5-5
c-hub
CollaboratorMBean 5-4
CSpaceMBean 5-4
Global ConversationMBean 5-4
HubMBean 5-4
MessageM Bean 5-4
c-hub MBeans 5-4
navigating across 5-15
packages 5-3
reading attributes of 5-13
message delivery
deferred synchronous 3-46
synchronous 3-46
message delivery confirmation 3-40
message durability 3-41
message envel opes
about message envelopes 3-6, 4-7
information flow 3-9
message tokens
about message tokens 3-48
workflow applications 2-63
message tracking locations 3-50
MessageM Bean 5-4, 5-5
messages
timeouts 3-44

0

object names

constructing 5-8

domain name 5-9

key property list 5-9

object name expressions 5-11
ObjectName objects 5-8

opening workflow template definitions 2-17

output variables
defining 2-39

-4 BEA WebL ogic Collaborate Developer Guide

)
packages
com.bea.b2b.enabler 3-5

com.bea.b2b.management.enabl er.runti

me5-5

com.bea.b2b.management.hub.runtime

5-4

com.com.bea.eci.logging 6-2
participants 2-7
participating in conversations 3-16
payload parts

adding 3-32

creating 3-30
persistence 3-41
printing product documentation xii
publish business document action 2-60

Q

Quality of Service
automatic features 3-37
correlation 1D 3-45
message delivery confirmation 3-40
message durability 3-41
message timeouts 3-44
options 3-38
QualityOf Service class 3-38
retry attempts 3-44
Send Business Message action 2-62
settings 3-38
values 3-38
workflow template definitions 2-20

R
receiving

business messages 2-72, 3-52
recipients

specifying 3-33

trading partner 3-33

XPath expressions 3-34



REGISTERED state 3-13
registering

for arolein aconversation 3-15
related information xiii
retry attempts 3-44
RN-Filter logic plug-in 4-9
RN-Router logic plug-in 4-8
RN-Router-Enqueue logic plug-in 4-9
route modification 4-4

S
secure messaging 3-13
Secure Sockets Layer (SSL) 3-13
Send Business Message actions 2-57
Quality of Service 2-62
sending
business messages 3-46
severity levels 6-2
shutting down c-enabler sessions 3-17
Start 2-28
start actions, in workflow template
definitions 2-26
starting a workflow instance 2-84
states, trading partners 3-13
synchronous message delivery 3-46

T

terminating conversations 3-17
termination

workflow template definitions 2-31
timeouts

message timeouts 3-44
tracking

delivery status 3-49
trading partners

enlisting 3-16

states 3-13

\%

variables in workflow template definitions
2-35

W

WebL ogic Collaborate
creating a workflow instance 2-83
publish business document action 2-60
starting a workflow instance 2-84
WebL ogic Process I ntegrator
administrative tasks 2-10
architectural overview 2-3
components 2-4
design tasks 2-11
documentation 2-2
integration APl 2-76
integration tasks 2-10
Manipulate Business Message action
2-44
message tokens 2-63
programming tasks 2-13
Send Business Message actions 2-57
variable types 2-36
variables 2-35
version information 2-2
workflow templates from other versions
2-15
workflow applications
Business Message Recelve events 2-70
receiving business messages 2-66
workflow c-enabler sessions 2-77
workflow c-enabler sessions 2-77
workflow instance
creating 2-83
starting 2-84
workflow template definitions
about workflow template definitions 2-5
business messages
defining 2-42
conversation termination 2-31

BEA WebL ogic Collaborate Developer Guide -5



exporting 2-15
importing 2-16
input variables 2-38
linking c-enabler session names 2-24
linking to conversations 2-19
opening 2-17
output variables 2-39
Quality of Service 2-20
start actions 2-26
variables 2-35
workflow templates
about workflow templates 2-5
workflows
about workflows 2-5
writing messages to log
importing packages 6-3
INFO severity level 6-3
other severity levels 6-4

X

XML documents, creating 3-30
XOCP business messages

components of 3-8

diagram of 3-7
XOCP-Filter logic plug-in 4-8
XOCP-Router logic plug-in 4-8
X OCP-Router-Enqueue 4-8
XPath expressions 3-34

-6 BEA WebL ogic Collaborate Developer Guide



	About This Document
	What You Need to Know
	How to Print this Document
	Documentation Conventions

	1 Introduction
	Messaging Applications
	Management Applications
	Logic Plug-Ins

	2 Using Workflows to Exchange Business Messages
	About Using Workflows
	About This WebLogic Process Integrator Version
	Architectural Overview
	Key Concepts
	Run-Time Prerequisites
	Summary of Workflow Integration Tasks

	Designing Workflows for Exchanging Business Messages
	Using Workflow Templates Created in Other WebLogic Process Integrator Versions
	Defining Conversation Properties
	Defining Start Actions
	Defining Conversation Termination
	Defining WebLogic Process Integrator Variables for Workflows

	Working with Business Messages
	About Business Messages
	Summary of Prerequisite Tasks for Exchanging Business Messages
	Defining Variables and Manipulating Business Messages
	Creating and Defining Messages to Send
	Defining the Workflow to Receive Business Messages

	Developing Applications That Start Conversation Initiator Workflows
	WebLogic Process Integrator Integration API
	Creating Workflow C-Enabler Sessions
	Programming Steps for Accessing Conversation Initiator Workflows


	3 Using XOCP C-Enabler Applications to Exchange Business Messages
	About XOCP C-Enabler Applications
	Architectural Overview
	Key Concepts
	Key Tasks for C-Enabler Applications
	Run-Time Information Flow

	Programming Steps for C-Enabler Applications
	Step 1: Import Packages
	Step 2: Implement the ConversationHandler Interface
	Step 3: Create a C-Enabler Session
	Step 4: Register a Conversation Handler
	Step 5: Initiate or Participate in a Conversation
	Step 6: Exchange Business Messages
	Step 7: End the Conversation
	Step 8: Shut Down the C-Enabler Session

	Sending XOCP Business Messages
	Step 1: Create the Business Message
	Step 2: Specify the Recipients of the Business Message
	Step 3: Specify the Quality of Service for Message Delivery
	Step 4: Send the XOCP Business Message
	Step 5: Check the Delivery Status of the Business Message

	Receiving XOCP Business Messages
	About Receiving XOCP Business Messages
	Receiving an XOCP Business Message


	4 Developing Logic Plug-Ins
	About Logic Plug-Ins
	What Are Logic Plug-Ins?
	Logic Plug-In Architecture
	Logic Plug-In Processing Tasks
	Chains
	Business Messages and Message Envelopes
	System and Custom Logic Plug-Ins

	Logic Plug-In API
	Rules and Guidelines for Logic Plug-Ins
	Creating and Adding Logic Plug-Ins
	Programming Steps for Logic Plug-Ins
	Administrative Tasks


	5 Developing Management Applications
	About Management Applications
	MBeans and the MBean Server
	C-Hub MBeans
	C-Enabler MBeans
	Configuration Requirements

	Programming Steps for Management Applications
	Step 1: Import the Necessary Packages
	Step 2: Get a Reference to the MBean Server Object
	Step 3: Construct an ObjectName Object
	Step 4: Query the MBean Server
	Step 5: Read the Attributes of the MBean
	Step 6: Navigate Across MBeans
	Step 7: Handle Exceptions


	6 Writing to the Log
	About the Log
	Log Files
	Logging API
	Severity Levels

	Writing Messages to the Log
	Importing the Logging Package
	Writing a Log Message with an INFO Severity Level
	Writing a Message With a Specific Severity Level


	Index

