
BEA
WebLogic
Adapter for
MQSeries ®

User Guide
Version 8.1.0
Document Revised: July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document
may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights
Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE
USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business
Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents
About This Document
Who Should Read This Documentation. .vii

Additional Information . viii

How to Use This Document. ix

Contact Us! .x

Documentation Conventions .x

1. Introducing the BEA WebLogic Adapter for MQSeries
About Adapters and BEA WebLogic Integration . 1-2

Key Components of Integration Solutions. 1-3

Basic WebLogic Integration Architecture . 1-3

Enterprise Information Systems . 1-4

Resource Adapters . 1-4

Application Views. 1-5

Service Clients and Event Consumers . 1-6

Service Clients . 1-6

Event Consumers . 1-7

About the BEA WebLogic Adapter for MQSeries . 1-7

Supported MQSeries Operations for Application Integration 1-7

Supported Services . 1-8

Supported Events . 1-8

Benefits of the Adapter for MQSeries . 1-8
BEA WebLogic Adapter for MQSeries User Guide iii

Getting Started With the Adapter for MQSeries. 1-9

Step 1: Design the Application Integration Solution . 1-9

Step 2: Determine the Required MQSeries Business Workflows 1-10

Step 3: Define Application Views and Configure Services and Events. 1-11

Step 4: Integrate with Other BEA Software Components . 1-11

Step 5: Deploy the Solution to the Production Environment. 1-12

2. Defining Application Views for MQSeries
How to Use This Document . 2-2

Before You Begin . 2-2

About Application Views . 2-3

About Defining Application Views. 2-3

Defining MQSeries Connection Parameters . 2-5

Configuring a Bindings Connection . 2-7

Configuring a TCP/IP Connection. 2-8

Implementing User Exits . 2-8

Setting TCP/IP Parameters . 2-10

Setting Service Properties . 2-12

Transaction Service . 2-13

SendMessage and SendRequest Service . 2-14

GetMessage Service. 2-18

Setting Event Properties . 2-19

Setting up Content Filtering. 2-20

Configuring Event Parameters . 2-21

Defining Event Connection Parameters . 2-23

Testing Services . 2-25

Testing Events Manually. 2-28
iv BEA WebLogic Adapter for MQSeries User Guide

3. Using the Adapter for MQSeries
Using a Transaction Service in a Process . 3-2

About Creating Request Documents . 3-5

Overriding MQ Message Descriptor Attributes . 3-5

Providing MQRFH2 Information. 3-6

Creating Request Documents . 3-6

SendMessage Datagram Request Document . 3-7

Sample SendMessage Request Document . 3-7

SendMessage Reply Request Document . 3-9

Sample SendMessage Reply Request Document . 3-9

SendRequest Request Document . 3-10

Sample SendRequest Request Document . 3-10

GetMessage Request Document. 3-11

Sample GetMessage Request Document. 3-11

Transaction Request Documents . 3-12

Transaction Begin Request Document . 3-12

Transaction Commit Request Document . 3-12

Transaction BackOut Request Document . 3-13

Using Data Formats in Services and Events . 3-13

Working with Group Messages . 3-14

Group Message Request Schema . 3-15

Group Message Option Tags . 3-15

Sending Group Messages Using a GroupId Generated by the Queue Manager . . . 3-16

Sending Group Messages Using a User-Specified GroupId 3-17

Receiving Group Messages . 3-18

About Response Documents . 3-18

Transaction Response Document . 3-19
BEA WebLogic Adapter for MQSeries User Guide v

SendMessage Response Document . 3-19

SendRequest Response Document. 3-19

GetMessage Response Document . 3-20

Event Response Document . 3-21

Handling Errors and Exceptions . 3-22

A. Request and Response Schemas
Transaction Request Schema . A-2

Transaction Response Schema . A-2

SendMessage Request Schema . A-3

SendMessage Response Schema. A-5

SendRequest Request Schema . A-7

SendRequest Response Schema . A-9

GetMessage Request Schema . A-11

GetMessage Response Schema . A-11

Event Schema . A-15

B. Run-Time Parameter Values

C. Error Messages and Troubleshooting
Error Messages . C-1

Troubleshooting Tips . C-3

Index
vi BEA WebLogic Adapter for MQSeries User Guide

About This Document
This document describes how to install, configure, and use the BEA WebLogic Adapter for
MQSeries. This document is organized as follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for MQSeries,” describes the adapter,
and how it relates to both MQSeries and WebLogic Integration.

Chapter 2, “Defining Application Views for MQSeries,” describes application views and
how to use them to configure events and services.

Chapter 3, “Using the Adapter for MQSeries,” describes how to use the services and events
of the adapter in a business process.

Appendix A, “Request and Response Schemas,” presents sample request and response
schemas for the services and the events.

Appendix B, “Run-Time Parameter Values,” presents the values required for configuring
each service during run-time.

Appendix C, “Error Messages and Troubleshooting,” provides details on errors messages
and troubleshooting.

Who Should Read This Documentation
This document is intended for the following members of an integration team:

Integration Specialists—Lead the integration design effort. Integration specialists have
expertise in defining the business and technical requirements of integration projects, and in
designing integration solutions that implement specific features of WebLogic Integration.
BEA WebLogic Adapter for MQSeries User Guide vii

The skills of integration specialists include business and technical analysis, architecture
design, project management, and WebLogic Integration product knowledge.

Technical Analysts—Provide expertise in an organization’s information technology
infrastructure, including telecommunications, operating systems, applications, data
repositories, future technologies, and IT organizations. The skills of technical analysts
include technical analysis, application design, and information systems knowledge.

Enterprise Information System (EIS) Specialists—Provide domain expertise in the systems
that are being integrated using WebLogic adapters. The skills of EIS specialists include
technical analysis and application integration design.

System Administrators—Provide in-depth technical and operational knowledge about
databases and applications deployed in an organization. The skills of system administrators
include capacity and load analysis, performance analysis and tuning, deployment
topologies, and support planning.

Additional Information
To learn more about the software components associated with the adapter, see the following
documents:

BEA WebLogic Adapter for MQSeries Release Notes

http://edocs.bea.com/wladapters/mq/docs81/pdf/relnotes.pdf

BEA Application Explorer Installation and Configuration Guide

http://edocs.bea.com/wladapters/bae/docs81/index.html

Introduction to the BEA WebLogic Adapters

http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf

BEA WebLogic Adapters 8.1 Dev2Dev Product Documentation

http://dev2dev.bea.com/products/wladapters/index.jsp

Application Integration documentation

http://edocs.bea.com/wli/docs81/aiover/index.html

http://edocs.bea.com/wli/docs81/aiuser/index.html
viii BEA WebLogic Adapter for MQSeries User Guide

http://e-docs.bea.com/wladapters/mq/docs81/pdf/relnotes.pdf
http://edocs.bea.com/wladapters/bae/docs81/index.html
http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf
http://dev2dev.bea.com/products/wladapters/index.jsp
http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

BEA WebLogic Integration documentation

http://edocs.bea.com/wli/docs81/index.html

BEA WebLogic Integration topics in the WebLogic Workshop help system

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

BEA WebLogic Platform documentation

http://edocs.bea.com/platform/docs81/index.html

MQSeries documentation

http://www.ibm.com/

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console describes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information about Adapter for MQSeries that you need to supply to complete the application view
definition. You will find that information in this document.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following roadmap illustration shows where you need to
refer from Using the Application Integration Design Console to this document.

Figure 1 Information Interlock with Using the Application Integration Design Console
BEA WebLogic Adapter for MQSeries User Guide ix

http://edocs.bea.com/wli/docs81/index.html
http://edocs.bea.com/platform/docs81/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Contact Us!
Your feedback on the BEA WebLogic Adapter for MQSeries documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the BEA WebLogic
Adapter for MQSeries documentation.

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Adapter for MQSeries and the version of the documentation.

If you have any questions about this version of BEA WebLogic Adapter for MQSeries, or if you
have problems using the BEA WebLogic Adapter for MQSeries, contact BEA Customer Support
through BEA WebSUPPORT at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
x BEA WebLogic Adapter for MQSeries User Guide

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
BEA WebLogic Adapter for MQSeries User Guide xi

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xii BEA WebLogic Adapter for MQSeries User Guide

C H A P T E R 1
Introducing the BEA WebLogic Adapter
for MQSeries
This section introduces the BEA WebLogic Adapter for MQSeries and describes how the adapter
enables integration with MQSeries business objects and WebLogic Integration.

It includes the following topics:

About Adapters and BEA WebLogic Integration

Key Components of Integration Solutions

About the BEA WebLogic Adapter for MQSeries

Getting Started With the Adapter for MQSeries
BEA WebLogic Adapter for MQSeries User Guide 1-1

About Adapters and BEA WebLogic Integration
The BEA application integration solution uses adapters and application views to help you
integrate applications in your enterprise. At its most fundamental level, an adapter is software
that connects an enterprise information system (EIS) and an integration server. This bi-directional
connection consists of services—interactions that originate in the adapter (and may require a
response from the EIS)—and events, interactions that originate in the EIS.

Most EIS systems make selected information and functions available to other applications by way
of specialized integration APIs. An adapter connects to the EIS through its integration API, or
through database or system calls, and exposes the available functions from the EIS. However,
rather than exposing the intricacies of APIs to users, WebLogic Integration incorporates
application views—business-oriented interfaces that provide a layer of abstraction between an
adapter and the EIS capabilities the adapter exposes.

Figure 1-1 Application View in an Integration Solution

Application views contain definitions for the services and events used by business processes to
communicate with an EIS. They also contain connection information and XML schema that
define inputs and outputs for services and events. After an adapter is deployed, you can use its
Web-based interface to define as many applications views as you need, and other WebLogic
Integration components and applications can use that adapter to access data on the EIS.

To learn more about BEA WebLogic Integration in the BEA WebLogic Workshop environment,
see the WebLogic Integration site at the following URL:

http://edocs/wli/docs81/index.html

To learn more about adapters in general, see Introduction to the BEA WebLogic Adapters for
WebLogic Integration at the following URL:

http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf

To learn more about the role of adapters in application integration architecture, see “Key
Components of Integration Solutions” on page 1-3.
1-2 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf
http://edocs/wli/docs81/index.html

Key Components o f Int eg ra t i on So lut ions
Key Components of Integration Solutions
This section describes some of the key concepts you need to be familiar with before you work
with an adapter.

Basic WebLogic Integration Architecture

Enterprise Information Systems

Resource Adapters

Application Views

Service Clients and Event Consumers

Basic WebLogic Integration Architecture
Adapters are used in conjunction with the Application Integration component of BEA WebLogic
Integration. This component provides a systematic, standards-based architecture for hosting
business-oriented interfaces to enterprise applications.

Figure 1-2 Adapters in the Application Integration Architecture
BEA WebLogic Adapter for MQSeries User Guide 1-3

For general information about Application Integration, see the following documents:

Introducing Application Integration at the following URL:

http://edocs.bea.com/wli/docs81/aiover/index.html

Using the Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Enterprise Information Systems
An enterprise information system (EIS) is software that provides the information infrastructure
for an enterprise. An EIS offers a set of services to its clients, which are made available to clients
via local and/or remote interfaces. An integration solution involves integration with one or more
EISs.

Resource Adapters
A resource adapter (or simply adapter) is a BEA software component that acts as a connector
between an EIS and a J2EE application server (such as BEA WebLogic Server). Each adapter
provides bi-directional, request-response integration with a specific application or technology.

Adapters handle two general types of operations:

Services are request/response communications with the EIS. Client applications submit
service requests to the EIS via the adapter, and the adapter returns the EIS response back to
the client. For example, a business process might place an item on an MQSeries queue or
execute a SELECT statement on a database. Responses are either synchronous or
asynchronous.

Figure 1-3 Service Invocations

Events are asynchronous, one-way messages received from an EIS. For example, the
adapter can receive a message from an MQSeries system. The adapter routes the EIS
message to the appropriate software component via the WebLogic Integration Message
Broker and the Application Integration JMS infrastructure.
1-4 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Key Components o f Int eg ra t i on So lut ions
Figure 1-4 Event Notifications

In effect, a service is a request for some work to be done and an event is a notification that some
work has been done.

For more information about the specific services and events supported by the Adapter for
MQSeries, see “About the BEA WebLogic Adapter for MQSeries” on page 1-7.

To learn more about the WebLogic Integration Message Broker and the Application Integration
JMS infrastructure, see Introducing Application Integration at the following URL:

http://edocs.bea.com/wli/docs81/aiover/index.html

Application Views
An application view is a business oriented interface to objects and operations within an EIS.
Application views include the information needed to communicate with the EIS as well as
configurations for services and events.

To learn more about using application views in processes, see the “WebLogic Workshop
Development Environment” at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

You typically define an application view for a specific business process. Therefore, you might
have multiple application views defined for a single adapter, each designed to meet a specific
requirement.

An application view defines:

Communication with the EIS, including connection settings, login credentials, and so on.

Service invocations, including the information that the EIS requires for the request, as
well as any service request and response schemas associated with the service.

Event notifications, including the information that the EIS publishes and the event
schemas for inbound messages.
BEA WebLogic Adapter for MQSeries User Guide 1-5

http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

You create application views in either of two ways:

Using the Application View Design Console. For detailed information about application
views, see “What Are Application Views?” in “Understanding Application Integration” in
Using Application Integration at the following URL:

http://edocs.bea.com/wli/docs81/aiover/2intfra.html

Writing custom code. For more information, see “Using Application Views by Writing
Custom Code” in Using Application Integration at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/4usrcust.html

An application view for the Adapter for MQSeries provides these features:

Standards-based data representation. All events, requests, and responses are represented as
or encapsulated in standards-based XML.

Abstraction from the details of the EIS. Application views offer a level of abstraction from
the details of the underlying EIS, freeing the developers to concentrate on the business
processes and data and not on the configuration and details of that system.

To learn more about application views, see Chapter 2, “Defining Application Views for
MQSeries.”

Service Clients and Event Consumers
In an integration solution, there are clients that invoke services and consumers for event
notifications.

Service Clients
A variety of clients can invoke services on an EIS via an application view. They include BEA
WebLogic Workshop business processes, web services, and portals; queries and BEA Liquid
Data; and custom Java applications.

For more information, see the following topics in the BEA WebLogic Workshop Help System:

“Building Integration Applications”

“Building Web Services”

“Building Portal Applications”

In addition, see “Using Applications With Business Processes” in Using the Application
Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/3usruse.html
1-6 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/3usruse.html
http://edocs.bea.com/wli/docs81/aiover/2intfra.html
http://edocs.bea.com/wli/docs81/aiuser/4usrcust.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html

About the BEA WebLog ic Adapte r f or MQSer ies
Event Consumers
Adapters deliver events using the WebLogic Integration Message Broker, which provides
business processes with a channels-based publish and subscribe communication mechanism.
Consumers can include BEA WebLogic Workshop business processes, web services, and portals,
as well as custom Java applications.

For more information, see the following topics in the BEA WebLogic Workshop Help System:

“Message Broker Subscription Control” in “Message Broker Controls”

“Building Enterprise Applications”

at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

In addition, see “Receiving Events” in “Using Applications With Business Processes” in Using
the Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/3usruse.html

About the BEA WebLogic Adapter for MQSeries
The BEA WebLogic Adapter for MQSeries connects to your MQSeries system so that you can
easily use your MQSeries data and functions within your business processes. The adapter
provides scalable, reliable, and secure access to your MQSeries system.

This section includes the following topics:

Supported MQSeries Operations for Application Integration

Supported Services

Supported Events

Benefits of the Adapter for MQSeries

Supported MQSeries Operations for Application Integration
The Adapter for MQSeries supports application integration by sending and receiving data as
messages that allow business applications to exchange information across platforms. The adapter
provides the following functions:

Synchronous and asynchronous, bi-directional message interactions between WebLogic
Integration and MQSeries managed queues.
BEA WebLogic Adapter for MQSeries User Guide 1-7

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
http://edocs.bea.com/wli/docs81/aiuser/3usruse.html

Data transfer between a business process running within WebLogic Integration and an
MQSeries Queue Manager.

Services and events for end-to-end business process management using XML schemas.

Supported Services
The Adapter for MQSeries supports four types of services: Transaction, SendMessage,
SendRequest, and GetMessage. In each case, the service accepts an XML request document as
an input and executes the service and generates an XML response document as output.

These are the services supported by the Adapter for MQSeries:

Transaction allows you to create and manage a transaction scope for the remaining services
to be executed within a workflow.

SendMessage sends a datagram or reply message to a specific queue.

SendRequest sends a request message to a specific queue.

GetMessage gets a message from a specified queue.

Supported Events
The Adapter for MQSeries has a single event. The event is configured to receive messages from
a particular queue, and is triggered when messages arrive at the queue. The event then generates
an XML response document for each message.

Benefits of the Adapter for MQSeries
The combination of the adapter and WebLogic Integration supplies everything you need to
integrate your WebLogic Integration business processes and enterprise applications with your
MQSeries system. The Adapter for MQSeries provides these benefits:

Integration can be achieved without custom coding.

Business processes can be started by events generated by MQSeries.

Business processes can request and receive data from your MQSeries system using
services.
1-8 BEA WebLogic Adapter for MQSeries User Guide

Gett ing S ta r t ed W i th the Adapte r f or MQSer ies
Adapter events and services are standards-based. The adapter services and events provide
extensions to the J2EE Connector Architecture (JCA) version 1.0 from Sun Microsystems,
Inc. For more information, see the Sun JCA page at the following URL:

http://java.sun.com/j2ee/connector/

The adapter and WebLogic Integration solution is scalable. The BEA WebLogic Platform
provides clustering, load balancing, and resource pooling for a scalable solution. For more
information about scalability, see the following URL:

http://e-docs.bea.com/wls/docs81/cluster/index.html

The adapter and WebLogic Integration solution benefits from the fault-tolerant features of
the BEA WebLogic Platform. For more information about high availability, see the
following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

The adapter and WebLogic Integration solution is secure, using the security features of the
BEA WebLogic Platform and the security of your MQSeries system. For more information
about security, see the following URL:

http://edocs.bea.com/wls/docs81/secintro/index.html

Getting Started With the Adapter for MQSeries
This section gives an overview of how to get started using the BEA WebLogic Adapter for
MQSeries within the context of an application integration solution. Integration with MQSeries
involves the following tasks:

Step 1: Design the Application Integration Solution

Step 2: Determine the Required MQSeries Business Workflows

Step 3: Define Application Views and Configure Services and Events

Step 4: Integrate with Other BEA Software Components

Step 5: Deploy the Solution to the Production Environment

Step 1: Design the Application Integration Solution
The first step is to design an application integration solution, which includes (but is not limited
to) such tasks as:

Defining the overall scope of application integration.
BEA WebLogic Adapter for MQSeries User Guide 1-9

http://e-docs.bea.com/wls/docs81/cluster/index.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wls/docs81/secintro/index.html
http://java.sun.com/j2ee/connector/

Determining the business process(es) to integrate.

Determining which WebLogic Platform components will be involved in the integration,
such as web services, business processes, or portals designed in the WebLogic Workshop
environment.

Determining which external systems and technologies will be involved in the integration,
such as MQSeries systems and other EISs.

Determining which BEA WebLogic Adapters will be required, such as the BEA WebLogic
Adapter for MQSeries. An application integration solution can involve multiple adapters.

This step involves the expertise of business analysts, system integrators, and EIS specialists
(including MQSeries specialists). Note that an application integration solution can be part of a
larger integration solution.

To learn more about designing an application integration solution, see Designing WebLogic
Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/design/index.html

Step 2: Determine the Required MQSeries Business Workflows
Within the larger context of an application integration project, you must determine which queues,
queue managers, and connection channels you need to access in MQSeries to support the business
processes in the application integration solution.

Factors to consider include (but are not limited to):

Queue managers, queues, and connection channels used to access MQSeries.

MQSeries transactions involved in business processes

Logins required to access MQSeries transports and perform the required operations

Whether operations are, from the adapter point of view:

– services, which notify MQSeries, via an MQSeries XML document, with a request for
action, and, in addition, whether such services should be processed synchronously or
asynchronously

– events, which are notifications from MQSeries that trigger workflows

This step usually involves the expertise of MQSeries specialists, including analysts and
administrators.
1-10 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/design/index.html

Gett ing S ta r t ed W i th the Adapte r f or MQSer ies
Step 3: Define Application Views and Configure Services and
Events
You should create an application view that provides an XML-based interface between WebLogic
Integration (WLI) and a particular MQSeries system within your enterprise. If you are accessing
multiple MQSeries queue managers, you define a separate application view for each MQSeries
system you want to access. To provide different levels of security access (such as “guest” and
“administrator”), define a separate application view for each security level.

Once you define an application view, you can configure events and services in that application
view. To learn more about defining application views, see Chapter 2, “Defining Application
Views for MQSeries” in conjunction with Using the Application Integration Design Console, at
the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Step 4: Integrate with Other BEA Software Components
Once you have configured and published one or more application views for MQSeries
integration, you can integrate these application views into other BEA software components, such
as business processes or portals built in the BEA WebLogic Workshop environment.

For more information, see Using the Application Integration Design Console, particularly the
topic, “Using Application Views with Business Processes,” at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html
BEA WebLogic Adapter for MQSeries User Guide 1-11

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Step 5: Deploy the Solution to the Production Environment
After you have designed, built, and tested your application integration solution, you can deploy
it into a production environment. The following list describes some of the tasks involved in
deploying an application integration:

Design the deployment.

Deploy the required components of the BEA WebLogic Platform.

Install and deploy the BEA WebLogic Adapter for MQSeries as described in BEA
WebLogic Adapter for MQSeries Installation and Configuration Guide

Deploy your application views for MQSeries integration.

Verify business processes in the production environment.

Monitor and tune the deployment.

To learn more about deploying your application integration solution, see Deploying WebLogic
Integration Solutions at the following URL:

http://edocs.bea.com/wls/docs81/deploy/index.html
1-12 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wls/docs81/deploy/index.html

C H A P T E R 2
Defining Application Views for
MQSeries
An application view is a business-oriented interface to objects and operations within an EIS.

This section presents the following topics:

How to Use This Document

Before You Begin

About Application Views

About Defining Application Views

Defining MQSeries Connection Parameters

Setting Service Properties

Setting Event Properties

Defining Event Connection Parameters

Testing Services

Testing Events Manually
BEA WebLogic Adapter for MQSeries User Guide 2-1

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console describes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information—about connections to your MQSeries system, as well as supported services and
events—that you must supply as part of the application view definition. You will find that
information in this section.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following road map illustration shows where you need to
refer to this document from Using the Application Integration Design Console.

Figure 2-1 Information Interlock with Using the Application Integration Design Console

Before You Begin
Before you define an application view, make sure you have:

Installed and deployed the adapter according to the instructions in BEA WebLogic Adapter
for MQSeries Installation and Configuration Guide.

Determined which business processes need to be supported by the application view. The
required business processes determine the types of services and events you include in your
application views. Therefore, you must gather information about the application’s business
requirements from the business analyst. Once you determine the necessary business
2-2 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/index.html

About App l i ca t i on Views
processes, you can define and test the appropriate services and events. For more
information, see “Getting Started With the Adapter for MQSeries” on page 1-9.

Gathered the connection information for your MQSeries system.

About Application Views
An application view defines:

Connection information for the EIS, including login information, connection settings, and
so on.

Service invocations, including the information the EIS requires for this request, as well as
the request and response schemas associated with the service.

Event notifications, including the information the EIS publishes and the event schema for
inbound messages.

Typically, an application view is configured for a single business purpose and contains only the
services and events required for that purpose. An EIS might have multiple application views, each
defined for a different purpose.

About Defining Application Views
Defining an application view is a multi-step process described in Using the Application
Integration Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The information you enter depends on the requirements of your business process and your EIS
system configuration. Figure 2-2 summarizes the procedure for defining and configuring an
application view.
BEA WebLogic Adapter for MQSeries User Guide 2-3

http://edocs.bea.com/wli/docs81/aiuser/index.html

Figure 2-2 Process for Defining and Configuring an Application View

To define an application view:

1. Log on to the WebLogic Integration Application View Console.

2. Define the application context by selecting an existing application or specifying a new
application name and root directory.

This application will be using the events and services you define in your application view.
The application view works within the context of this application.

3. Add folders as required to help you organize application views.
2-4 BEA WebLogic Adapter for MQSeries User Guide

Def in ing MQSer i es Connect ion Paramete rs
4. Define a new application view for your adapter.

5. Add a new connection service or select an existing one.

If you are adding a new connection service, see “Defining MQSeries Connection
Parameters” on page 2-5 for details about MQSeries requirements.

6. Add the events and services for this application view.

See the following sections for details about MQSeries requirements:

– “Setting Service Properties” on page 2-12

– “Setting Event Properties” on page 2-19

7. Perform final configuration tasks.

If you are adding an event connection, see “Defining Event Connection Parameters” on
page 2-23 for details about MQSeries requirements.

8. Test all services and events to make sure they can properly interact with the target
MQSeries system.

See the following sections for details about MQSeries requirements:

– “Testing Services” on page 2-25

– “Testing Events Manually” on page 2-28

9. Publish the application view to the target WebLogic Workshop application.

This is the application you specified in step 2. Publishing the application view allows
business processes within the target application to interact with the newly published
application view using an Application View control.

Note: After you publish the application view, it is good practice to stop testing it. This ensures
that only one application view is deployed on WebLogic Server.

Defining MQSeries Connection Parameters

This information applies to “Step 5A, Create a New Browsing Connection” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The Select Browsing Connection page allows you to choose the type of connection factory to
associate with the application view. You can select an existing connection or create a connection.
BEA WebLogic Adapter for MQSeries User Guide 2-5

http://edocs.bea.com/wli/docs81/aiuser/index.html

Connections are contained within an adapter instance. The Adapter for MQSeries provides two
types of connection settings: Local Bindings connection and TCP/IP connection.

You can create a new browsing connection in one of the following ways:

Configuring a Bindings Connection

Configuring a TCP/IP Connection

To create a new browsing connection:

1. In the Define New Application View page, enter the application view name and description,
select the associated adapter, and click Create New Connection. The Create New Browsing
Connection page appears.

2. In the Create New Browsing Connections page, enter a connection name and description, as
described in Using the Application Integration Design Console.

3. Click Define. The Select the Type of Connection page displays descriptions of the two
connection types.

Select the required connection type.

– To configure a bindings connection, see “Configuring a Bindings Connection” on
page 2-7.

– To configure a TCP/IP connection, see “Configuring a TCP/IP Connection” on
page 2-8.
2-6 BEA WebLogic Adapter for MQSeries User Guide

Def in ing MQSer i es Connect ion Paramete rs
Configuring a Bindings Connection
The Bindings Connection provides connection to the MQSeries Server running on the system
where the adapter is installed.

To configure a Bindings connection:

1. On the Select the Type of Connection page, select Bindings Connection and click Continue.
The Configure Connection Parameters page appears, displaying the fields required to
establish a Local Bindings Connection.

Note: A red asterisk () indicates that a field is required.

2. Enter the following information:

3. Click Connect to EIS.

You return to the Create New Browsing Connections page, where you can specify
connection pool parameters and logging levels. For more information, see Using the
Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Table 2-1 Local Bindings Connection Parameters

Parameter Description

User Name Your WebLogic user name

Password Your WebLogic password

Queue Manager Name The name of the Queue Manager
BEA WebLogic Adapter for MQSeries User Guide 2-7

http://edocs.bea.com/wli/docs81/aiuser/index.html

Configuring a TCP/IP Connection
A TCP/IP connection allows you to connect to any MQSeries Server that is running on the same
network where the adapter is installed.

This section contains the following topics:

Implementing User Exits

Setting TCP/IP Parameters

Implementing User Exits
If you are using a TCP/IP connection, you can also implement user exits for processing messages
or performing security operations. The available exits are:

Send Exit: users can implement logic to process the message before sending it to a queue.

Receive Exit: users can implement logic to process the message after retrieving it from a
queue.

Security Exit: users can implement logic to perform security operations, such as
authentication.

The corresponding Java MQSeries exit interfaces that should be implemented are:

MQSendExit

MQReceiveExit

MQSecurityExit

You can configure user exits when you configure a TCP/IP connection for the adapter. At
design-time, you can choose one or more of the available exits. For each exit you select, you must
provide an ExitAppName, which is the fully qualified name of the class file that implements the
corresponding Java MQSeries Exit interface. The class file you specify must be available in the
CLASSPATH of the application server where the Adapter for MQSeries is deployed.

For more information about implementing user exits, see your MQSeries documentation.
2-8 BEA WebLogic Adapter for MQSeries User Guide

Def in ing MQSer i es Connect ion Paramete rs
To implement a user exit:

1. Create a user exit class as follows:

package com.bea.UserExit;
import com.ibm.mq.MQSendExit;
public class UserSendExit implements MQSendExit {
public UserSendExit()
{
}
public byte[] sendExit(MQChannelExit channelExit,MQChannelDefinition
channelDefnition,byte[] agentBuffer)
{
// Your code goes here
return agentBuffer;
}
}

The name of this User Exit is UserSendExit. Similarly, for a Receive Exit, the class should
implement MQReceiveExit, and for a Security Exit, the class should implement
MQSecurityExit.

2. Compile this class and create a JAR file for the class file, for example senduserexit.jar.

3. Set the CLASSPATH to include this JAR file.

To know how to set the CLASSPATH, see BEA WebLogic Adapter for MQSeries Installation
and Configuration Guide at

http://edocs.bea.com/wladapters/mq/docs81/index.html

4. To use this exit, you specify its the fully qualified class name in the Configure TCP/IP
Connection page.

For example, com.bea.UserExit.UserSendExit.

For more information about TCP/IP connection settings, see “Setting TCP/IP Parameters”
on page 2-10.
BEA WebLogic Adapter for MQSeries User Guide 2-9

http://edocs.bea.com/wladapters/mq/docs81/index.html

Setting TCP/IP Parameters
A TCP/IP connection allows you to connect to any MQSeries Server that is running on the same
network where the adapter is installed.

To set the TCP/IP parameters:

1. On the Select the type of connection page, select TCP/IP Connection and click Continue.

The Configure Connection Parameters page displays the fields required for establishing a
TCP/IP connection.

Note: A red asterisk () indicates that a field is required.

2. Enter the following information:

Table 2-2 TCP/IP Connection Parameters

Parameter Description

User Name Your WebLogic user name

Password Your WebLogic password
2-10 BEA WebLogic Adapter for MQSeries User Guide

Def in ing MQSer i es Connect ion Paramete rs
3. Click Connect to EIS.

You return to the Create New Browsing Connections page, where you can specify
connection pool parameters and logging levels. For more information, see Using the
Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Does MQ Require
Authorization?

If MQSeries requires an authorization, this setting lets you use the
same user name and password to connect to it

Queue Manager Name The name of the MQSeries queue manager

Queue Manager Host The name of the host where the MQSeries Server is installed

Queue Manager Channel The name of the server connection channel to connect to the queue
manager

Queue Manager Port The port number of the queue manager

Queue Manager CCSID The coded character set ID for the character set used by the queue
manager to establish the connection and process message headers.
This should be a valid integer that corresponds to the character set to
be used. For example, 1208, 819.

Note: Be sure to select a CCSID that is supported by the MQ
Server’s operating system.

To see the CCSID catalog, click the View CCSID Catalog link. For
more information on CCSID, see your MQSeries
documentation or contact the MQ Administrator.

User Exit Type The exit types (if required) and their corresponding implementation
classes to process a message while it is sent or received from a queue,
or to perform security operations on the message.

Note: The corresponding exit implementation class must be created
and made available before you can use them here.

Table 2-2 TCP/IP Connection Parameters (Continued)

Parameter Description
BEA WebLogic Adapter for MQSeries User Guide 2-11

http://edocs.bea.com/wli/docs81/aiuser/index.html

Setting Service Properties

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Adapter for MQSeries uses services to make requests of the MQSeries system. A service consists
of both a request and a response. The Adapter for MQSeries supports the following services:

Transaction Service

SendMessage and SendRequest Service

GetMessage Service

To configure services:

1. On the Application View Administration page, click Add in the Services row. The Add
Service page appears.

2. Select the Service Type and click Continue. The selected service page appears.
2-12 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies
Transaction Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The transaction service in the Adapter for MQSeries exposes MQSeries Syncpoint capability to
the invoking client application. Syncpoints are MQSeries units of work. This capability allows
clients to invoke operations within a unit of work or, in other words, to define the transaction
scope of services. The adapter provides two types of transaction services:

Implicit Transaction

This type of transaction does not require the user to create and manage a transaction scope
to execute services. It provides the option of executing a Send or a Get service within a
specific transaction scope. The Adapter for MQSeries internally creates and manages the
transaction for such a transaction scope, freeing the user from the necessity to do so.

Explicit Transaction

This is the default transaction type. You can use an explicit transaction service in a
business process to begin and end a transaction scope. The transaction scope starts with a
Transaction Begin, can contain as many services as required in the middle, and ends with
either a Transaction Commit or a Transaction BackOut, depending on the process
requirements. The services invoked between the Transaction Begin and the Transaction
Commit or BackOut are part of the transaction scope.

Note: An explicit transaction scope is not required for services that use the Implicit
Transaction setting.

See “Using a Transaction Service in a Process” on page 3-2 to know how to use a
transaction service in a WebLogic Integration business process.

To configure a Transaction Service:

1. On the Add Service page, select Transaction and click Continue. The Transaction page
appears.
BEA WebLogic Adapter for MQSeries User Guide 2-13

http://edocs.bea.com/wli/docs81/aiuser/index.html

Note: A red asterisk () indicates that a field is required.

2. Enter a unique service name that describes the function the service performs and a brief
description of the service.

3. Click Add Service. The service is added to the application view.

SendMessage and SendRequest Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

A SendMessage service sends either a Datagram Message or a Reply Message to a queue. A
SendRequest service sends a Request message to a queue.

To configure a SendMessage or a SendRequest service:

1. On the Add Service page, select SendMessage or SendRequest and click Continue.

The corresponding page appears. This is the SendMessage page. In the SendRequest page,
Message Type is preset to Request and Reply to Queue Name is required.
2-14 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies
Note: A red asterisk () indicates that a field is required.

2. Enter a unique service name that describes the function the service performs and a
description for the service.

3. For SendMessage services only, select the message type. The choices are:

– Datagram: a message sent to a single destination with no reply expected

– Reply: a response to a request message received earlier

For SendRequest service, the message type is Request. This type of message expects a
reply.

4. Enter the name of the local or remote queue to which the message has to be sent.

For a Binding connection, before you can send messages to a remote queue, you must
configure the following:
BEA WebLogic Adapter for MQSeries User Guide 2-15

– a remote queue definition, a transmission queue, and a sender channel on the queue
manager to which you are connected.

– a local queue and a receiver channel on the remote queue manager.

For a TCP/IP connection, you need a Server Connection Channel, and you must make sure
that the MQSeries listener is configured.

Note: MQSeries does not support getting messages from remote queues.

5. If an implicit transaction is required, turn on the Implicit Transaction setting.

The default is explicit transaction. An implicit transaction does not require the user to
create a transaction scope for this service execution. Instead, the adapter creates the
transaction scope. For more information about implicit and explicit transactions, see
“Implicit Transaction” on page 2-13 and “Explicit Transaction” on page 2-13.

6. Enter the length of time the message should remain on the queue waiting to be picked up, in
tenths of a second. Leave the field blank or specify a value of -1 for an unlimited expiry.

The message will remain in the queue for the specified time, after which it will expire and
be deleted from the queue.

7. Select the message’s priority level. The lowest priority is 0, and the highest priority is 9.

If you select the default value, AsQueuedef, the message inherits the priority level defined
in the queue.

8. Select the persistence policy, as follows.

The persistence policy determines whether messages remain in the queue after a system
restart.

9. Enter a valid character set. Click the Character Set Catalog link to view the available
character sets.

Table 2-3 Persistence Policy Settings

Parameter Description

Persistent Messages are recovered and remain in the queue

NotPersistent Messages are no longer available on the queue when MQ Server restarts

AsQueuedef Messages have the persistence policy defined in the queue
2-16 BEA WebLogic Adapter for MQSeries User Guide

Set t ing Ser v i ce P rope r t ies
This is the CCSID to which outgoing message data will be converted.

10. Enter the name of the MCA message user.

This user should be a member of the MQSeries Administration group for reports to be
delivered to the specified ReplyTo Queue.

11. Select a segmentation policy.

This policy determines whether a message can be segmented before sending it to the
queue. If the setting is Allowed, the queue manager can segment the message according to
the criteria set in the queue. If the setting is NotAllowed, the message cannot be
segmented.

12. Select the report messaging options to receive reports on the messages sent.

Each of the four report types can be set to no report, or to contain no data, some data (the
first 100 bytes of the message) or full data (the full content of the message).

Note: COD, Exception, and Expiration reports require an MQ Server authorization. Unless the
message user is authorized by the MQSeries Server, messages will be delivered to the dead
letter queue on the queue manager.

13. Enter a Reply to Queue Name.

– For SendMessage services, enter the name of the queue for report messages.

– For SendRequest services, enter the name of the queue where replies are expected
(required).

Table 2-4 Report Messaging Parameters

Parameter Description

COA Sends a confirmation of arrival report to the queue configured to
receive reports.

COD Sends a confirmation of delivery report to the queue configured to
receive reports.

Exception Sends an exception report to the queue configured to receive reports,
if an exception occurs while sending the message to the queue.

Expiration Sends an expiration report to the queue configured to receive reports,
after the message in the queue expires.
BEA WebLogic Adapter for MQSeries User Guide 2-17

14. Enter a Reply to Queue Manager

This is the name of the queue manager for report messages.

15. Select the header format.

If the message is in a string format, select String. If the message requires an MQRFH2
header format, select MQRFH2. If the message does not require any header format, select
None.

16. If you have selected MQRFH2 as the header format, enter the header contents using the
format of the MQRFH2 schema. Click the link to view the MQRFH2 schema and use it to
develop the contents.

17. Select the Payload format of the message: TEXT, Binary, or XML.

18. Click Add Service. The service is added to the application view.

GetMessage Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

A GetMessage service receives a message from a message queue.

To configure a GetMessage service:

1. On the Add Service page, select GetMessage and click Continue. The GetMessage page
appears.

Note: A red asterisk () indicates that a field is required.
2-18 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Event P rope r t ies
2. Enter a unique service name that describes the function the service performs, and a
description for the service.

3. Enter the following information:

4. Click Add Service. The service is added to the application view.

Setting Event Properties

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

An event monitors a specified queue to receive messages that match configuration information
you provide when you define the event. The event creates an event response document for the
message retrieved. The event response document describes the MQMD properties and the
message data.

Table 2-5 GetMessage Service Parameters

Parameter Definition

Queue Name Name of the queue from where the message should be received.

Note: MQSeries does not support getting messages from remote queues.

Implicit Transaction A transaction that does not require the user to create a transaction scope for
this service execution. The adapter takes care of the transaction scope for
this type of service. The default is explicit transactions. See “Implicit
Transaction” on page 2-13 for details.

Message
Consumption

• Browse (default): lets you browse messages without deleting them.
Messages remain intact on the queue after they are read. If this option
is used, the MQ Administrator must periodically remove outdated and
unwanted messages from the queue.

• Delete: used to delete a message from the queue after it is read.

Time Out The length of time, in seconds, to await receipt of a message. Leave this
field blank, or set it to -1 to wait indefinitely.

Payload Format The payload format applicable to the message to be received. The default
is TEXT.
BEA WebLogic Adapter for MQSeries User Guide 2-19

http://edocs.bea.com/wli/docs81/aiuser/index.html

Messages that cause errors (also known as Poison messages) while the event response document
is being generated are moved to the error queue that you specify when you configure the event.
If no error queue is specified, messages remain in their original queue, but no response is
generated. The error queue can be a local or remote queue. For more information on remote
queues, see your MQSeries documentation.

This section contains the following topics:

Setting up Content Filtering

Configuring Event Parameters

Setting up Content Filtering
Using the content filtering feature in an event, you can filter the messages in a queue based on
their contents. To set this option, you specify an optional payload filter, which consists of a string
of filtering characters, including case-sensitive wildcards.

To set content filtering for an event:

1. Extract the contentfilter.jar from the BEA_MQSERIES_8_1.ear file and include it in the
CLASSPATH of the environment where the Content Filtering Code will be developed.

2. Create a Content Filter class by extending the following Class:
com.bea.adapter.mqseries.AbstractContentFilter

Note: This class is present in the contentfilter.jar file that you extracted in step 1.

3. Write the Code for the Content Filter Class as follows:

package com.bea.adapter.mqseries.contentfilter;
import com.bea.adapter.mqseries.utils.AbstractContentFilter;
public class ContentFilter extends AbstractContentFilter{
public ContentFilter ()
{
}
public boolean matchContent(byte[]message)
{
boolean isMatching = false;
//Filtering logic to go here. isMatching to be made ‘true’ if the message
meets the filtering logic.
return isMatching;
}

Note: The matchContent function is abstract within the
com.bea.adapter.mqseries.utils.AbstractContentFilter class. To
2-20 BEA WebLogic Adapter for MQSeries User Guide

Set t ing Event P rope r t ies
incorporate your logic for filtering messages based on their contents, you should
override the matchContent function within the content filter class.

4. Compile this class and create a JAR with a name, for example, mycontentfilter.jar.

5. Include this JAR file in the CLASSPATH of the Start Server script. For more information on
setting the CLASSPATH, see “Extract the Adapter Files and Change the WebLogic Startup
Script” in BEA WebLogic Adapter for MQSeries Installation and Configuration Guide.

6. Start the WebLogic Server.

7. While configuring the event in the application view, select the Content Filtering Required
option.

8. Give the fully qualified class name of the Content Filter. For example,
com.bea.adapter.mqseries.contentfilter.ContentFilter.

9. Add the event and deploy the application view.

When the event is executed, the message obtained from the queue is passed to the matchContent
function as an input. Depending upon the Boolean value returned by this function, an event
response is generated for the message. This is in the form of an XML document describing the
MQMD attributes of the message and the application data.

Configuring Event Parameters
An event monitors a specified queue to receive messages that match configuration information
you provide when you define the event. The event creates an event response document for the
message retrieved. The event response document describes the MQMD properties and the
message data.

To configure an event:

1. On the Application View Administration page, click the Add button in the Events row. The
Event page appears.
BEA WebLogic Adapter for MQSeries User Guide 2-21

Note: A red asterisk () indicates that a field is required.

2. Enter a unique event name that describes the function the event performs, and a description
for the event.

3. Enter the following information:

Table 2-6 Event Parameters

Parameter Description

Connection Type The type of connection to the MQ Server (TCP or Bindings)

Queue Manager The name of the queue manager

Queue Manager Host The name of the host where the queue manager resides

Queue Manager Channel The name of the queue manager channel

Queue Manager Port The port number where the queue manager is running

Queue Manager CCSID The coded character set ID (CCSID) for the character set used by the
queue manager to establish a connection and process message headers.
This is also the CCSID of the payload of incoming messages. This
should be a valid integer that corresponds to the character set to be used.
Click the View CCSID Catalog link to view a list of links.
2-22 BEA WebLogic Adapter for MQSeries User Guide

Def in ing Event Connect ion Paramete rs
4. Click Add. The event is added to the application view.

5. See “Defining Event Connection Parameters” on page 2-23 for information about setting
connection parameters for an event.

Defining Event Connection Parameters

This information applies to “Step 7, Perform Final Configuration Tasks” in Using the Application
Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Once you have finished adding services and events and have saved your application view, you
must perform some final configuration tasks, including configuring event delivery connections,
before testing the services and events. You perform these configuration tasks from the Final
Configuration and Testing page.

To define event connection parameters:

1. In the Connections area on the Application View Administration page, click Select/Edit.

Queue to Monitor The name of the queue to monitor for messages. This should be a local
queue.

Error Queue The name of the queue for storing poison messages

Message Consumption • Browse: allows for browsing messages without deleting them.
Messages remain intact on the queue after they are read. If this
option is used, the MQ Administrator must periodically remove
outdated and unwanted messages from the queue.

• Delete (default): deletes a message from the queue after it is read.

Payload Format The data format applicable to the message received. The default is
TEXT.

Content Filter Required Filters the contents of the message received.

Content Filter Class The class file for the content filter. Required if content filter is selected.

Table 2-6 Event Parameters (Continued)

Parameter Description
BEA WebLogic Adapter for MQSeries User Guide 2-23

http://edocs.bea.com/wli/docs81/aiuser/index.html

The Connection Information for Application View page appears.

2. In the Event Connection area, click the Select Existing link.

The Select Event Connection for Application View page appears.

3. Select an Event connection from the available adapter instances, and click OK.

You return to the Connection Information for Application View page.

4. Under Event Connection, select the Event link.

The Edit Event Connection page appears.

5. In the Connection Parameters area, click Define.

The Configure Event Delivery Parameters page appears.

6. Enter the following information:

The event delivery parameters you enter on this page enable connection to your MQSeries
system and are used when generating events.

7. Click Continue to return to the Edit Event Connection page.

8. Set the log configuration.

Table 2-7 Event Connection Parameters

Parameter Description

Password The password for your WebLogic Server Administration Console user name.

SleepCount The number of milliseconds the adapter will wait between polling for events.

User Name Your WebLogic Server Administration Console user name, defined in the
startWebLogic script.

Enter connection information
for your system.
2-24 BEA WebLogic Adapter for MQSeries User Guide

Test ing Se rv ices
The Edit Event Adapter page allows you to define event parameters and configure the
information that will be logged for the connection factory. Select one of the following
settings for the log:

– Log errors and audit messages

– Log warnings, errors, and audit messages

– Log informational, warning, error, and audit messages

– Log all messages (maximum tracing level)

The table that follows describes the type of information that each logging message
contains.

9. Click OK.

You return to the Connection Information for Application View page, where you can click
Back to return to the Application View Administration page.

Testing Services

This information applies to “Step 8A, Test an Application View’s Services” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The purpose of testing an application view service is to evaluate whether that service interacts
properly with the target MQSeries system. When you test a service, you supply any inputs

Table 2-8 Logging message categories

This type of message Contains

Audit Extremely important information related to the business processing
performed by an adapter.

Error Information about an error that has occurred in the adapter, which
may affect system stability.

Warning Information about a suspicious situation that has occurred. Although
this is not an error, it could have an impact on adapter operation.

Information Information about normal adapter operations.
BEA WebLogic Adapter for MQSeries User Guide 2-25

http://edocs.bea.com/wli/docs81/aiuser/index.html

required to start the service. For the Adapter for MQSeries, the input is in the form of a valid XML
document that acts as input for the service.

Note: Before you test an application view, it must contain at least one event or service. Also,
you must place the application view in test mode. To place an application view in test
mode, click the Test button at the bottom of the Application View Administration page.

To test a service:

1. In the Summary for Application View page, click the Test link beside the service to be tested.

The Test Services page appears.

2. Enter the Transaction Name only if you have not selected the Implicit Transaction option,
while configuring the service during design-time.

3. Enter the sample request document that matches the request schema for the selected service.
For example,

<?xml version="1.0" encoding="UTF-8"?>
2-26 BEA WebLogic Adapter for MQSeries User Guide

Test ing Se rv ices
<snd:SendDatagramMessage
xmlns:snd="wlai/ApplicationView_SendDatagramMessage_request">

<snd:MessageDescriptor>

<snd:ExpirationPolicy>5000</snd:ExpirationPolicy>

<snd:Priority>8</snd:Priority>

<snd:PersistPolicy>Persistent</snd:PersistPolicy>

<snd:CharacterSet>1208</snd:CharacterSet>

<snd:Format>String</snd:Format>

</snd:MessageDescriptor>

<snd:Data>

<snd:Format>TEXT</snd:Format>

<snd:Content>This is the message to be put into the queue</snd:Content>

</snd:Data>

</snd:SendDatagramMessage>

4. Click Test.

The Test Results page displays the XML Response document generated after a successful
execution.
BEA WebLogic Adapter for MQSeries User Guide 2-27

Testing Events Manually

This information applies to “Step 8B, Test an Application View’s Events” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The purpose of testing an application view event is to make sure that the adapter correctly handles
events.
2-28 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/wli/docs81/aiuser/index.html

Tes t ing Events Manua l l y
Note: Before you test an application view, it must contain at least one event or service. Also,
you must place the application view in test mode. To place an application view in test
mode, click the Test button at the bottom of the Application View Administration page.

To test an event manually:

1. In the Summary for Application View page, click the Test link beside the event to be tested.

The Test Event page appears.

2. In the Time field, enter a reasonable period of time to wait, specified in milliseconds, before
the test times out (One second = 1000 milliseconds. One minute = 60,000 milliseconds.).

3. Click Test. The test waits for an event to trigger it. One of the following is shown as result:

– If the test succeeds, the Test Result page displays the event document generated by the
event.
BEA WebLogic Adapter for MQSeries User Guide 2-29

– If the test fails or if the event is not generated in the allotted time, the Test Result page
displays a Timed Out message.
2-30 BEA WebLogic Adapter for MQSeries User Guide

C H A P T E R 3
Using the Adapter for MQSeries
This section describes how to use MQSeries services and events in a process. It contains
information on the run-time requirements for executing services and events, and the request and
response documents involved in executing a process.

The information provided here assumes that you have in-depth knowledge of the WebLogic
Integration capabilities in WebLogic Workshop 8.1. To learn more about executing business
processes in the WebLogic Workshop environment, see the WebLogic Workshop and WebLogic
Integration documentation at the following URLs:

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

http://edocs.bea.com/wli/docs81/doc/index.html

This section contains the following topics:

Using a Transaction Service in a Process

About Creating Request Documents

Creating Request Documents

Working with Group Messages

Using Data Formats in Services and Events

About Response Documents

Handling Errors and Exceptions
BEA WebLogic Adapter for MQSeries User Guide 3-1

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
http://edocs.bea.com/wli/docs81/doc/index.html

Using a Transaction Service in a Process
A Transaction service in a process invokes a set of services as part of a transaction scope. The
transaction service provides three options:

Transaction Begin: begins a transaction scope with the associated MQ connection.

Transaction Commit: ends a transaction scope and save the changes made since the
beginning of the transaction scope.

Transaction BackOut: ends a transaction scope and rolls back the changes made since the
beginning of the transaction scope.

You invoke a service with a transaction scope. Transaction Begin is the first service in the
transaction scope, and Transaction Commit or Transaction BackOut is the last. In between, you
can invoke as many services as you need—iteratively within the transaction scope, and in any
sequence. This type of transactions is known as an explicit transaction, as described in “Explicit
Transaction” on page 2-13.

You can configure a service with an implicit transaction, which means that you can execute the
service independently in a process without defining a transaction scope. For more information,
see “Implicit Transaction” on page 2-13.

The following illustration shows an application view called mqCust that has three defined
services.

Figure 3-1 Sample Application View with Services Defined
3-2 BEA WebLogic Adapter for MQSeries User Guide

Us ing a T ransac t ion Serv ice in a Pr ocess
Figure 3-2 demonstrates how to use the mqCust services in a process. This process gets a message
from an MQSeries queue, copies the contents of the message, and puts it onto another MQSeries
queue. This is an explicit transaction scope that starts an MQSeries syncpoint operation and ends
with a Transaction Commit. It does error checking and calls a Transaction BackOut if the
operation to put a message on the queue fails. Figure 3-3 shows the logic for error checking.

Figure 3-2 Process with Adapter for MQSeries Transaction Scope

For each service you must provide a request document that is formatted in accordance with the
corresponding schema. You can override message descriptor values and data format, and provide
application data for Send services. The process illustrated above requires a total of five request
BEA WebLogic Adapter for MQSeries User Guide 3-3

documents, one for each service invocation. For more information about the formats for each
document, see Appendix A, “Request and Response Schemas.”

The following illustration shows the SendCustInfo node, which includes a transformation step.

Figure 3-3 SendCustInfo Node Transformation

After successful execution, a response document is generated for each service based on the
response schema of that service. See Appendix A, “Request and Response Schemas,” to view the
schemas for each service.

Note: The request documents for each service contain some tags to which appropriate values
should be set at run time. See Appendix B, “Run-Time Parameter Values,” for
information on the tags for each service.
3-4 BEA WebLogic Adapter for MQSeries User Guide

About C rea t ing Reques t Documents
About Creating Request Documents
A request document is an XML document that the Adapter for MQSeries uses when it executes
services. Request documents can contain MQ message descriptor values, header information, and
application data.

This section describes how you can override descriptor values and how to provide header
information. It includes these topics:

Overriding MQ Message Descriptor Attributes

Providing MQRFH2 Information

Overriding MQ Message Descriptor Attributes
You can set MQ Message Descriptor (MQMD) attributes when you configure services and
events. The request documents for SendRequest and SendMessage services have a
MessageDescriptor tag, which contains the following tags:

Table 3-1 Message Descriptor Attributes

Tag Description

ExpirationPolicy Determines the length of time the message should remain on the queue
waiting to be picked up, in tenths of a second.

Priority Sets the message’s priority level. The lowest priority is 0 and the highest
priority is 9. With a setting of AsQueuedef, the message inherits the
priority level defined in the queue.

PersistPolicy Determines whether messages remain in the queue after a system restart.
Possible values are:

• Persistent: Messages are recovered and remain in the queue.

• NotPersistent: Messages are no longer available on the queue when it
restarts.

• AsQueuedef: Messages have the persistent policy defined in the
queue.

CharacterSet Identifies the character set used by the queue manager to establish the
connection and process message headers. This should be a valid integer
that corresponds to the character set to be used. For example, 1208 or 819.
BEA WebLogic Adapter for MQSeries User Guide 3-5

These tags correspond to fields in the SendMesage and SendRequest configuration pages. At
run-time, the values that you set for these tags will override the values specified for the service.

Note: If any of the MQMD values are either set incorrectly or omitted from the service
configuration or the request document, the adapter will use the default values.

For a list of default MQMD values, see your MQSeries documentation.

Providing MQRFH2 Information
The MQSeries Rules and Formatting Header 2 (MQRFH2) is a message header that provides
information about the structure and formatting of the message content that follows. In queues
serviced by a broker, MQRFH2 information speeds the sending of messages.

When you create a SendMessage or SendRequest request document, you can include MQRFH2
information in the following format:

<MQRFH2>

<Encoding></Encoding>

<CodedCharSetId></CodedCharSetId>

<Format></Format>

<NameValueCCSID></NameValueCCSID>

<NameValueDatan></NameValueDatan>

</MQRFH2>

You can also view the MQRFH2 schema when you configure a SendMessage or SendRequest
service.

Creating Request Documents
This section contains information on setting values in the request documents for sending different
types of messages to meet specific requirements.

The sample request documents in this section use the service name as the Root element. This is
not mandatory. The adapter accepts any well-formed document with any Root element name and

Format Determines the format used for message data. The choices are None,
String, or MQRFH2.

Table 3-1 Message Descriptor Attributes

Tag Description
3-6 BEA WebLogic Adapter for MQSeries User Guide

Creat ing Request Documents
valid values. The adapter also supports request and response documents without a namespace. A
response document is generated by the application for each service. See “About Response
Documents” on page 3-18 for the sample response documents.

Note: You can view the request and response schema for each service on the Summary for
Application View page.

This section contains the following topics:

SendMessage Datagram Request Document

SendMessage Reply Request Document

SendRequest Request Document

GetMessage Request Document

Transaction Request Documents

SendMessage Datagram Request Document
You can send a Datagram message using the SendMessage service. Before sending a Datagram
message, do the following in the SendMessage request document:

Configure the Message Descriptor data that you want to override. For details, see
“Overriding MQ Message Descriptor Attributes” on page 3-5.

Provide the MQRFH2 data if applicable. See “Providing MQRFH2 Information” on page 3-6.

In the Data tag, do the following:

– Provide the required format: TEXT, Binary, or XML.

– Provide the application data that you want to send to the queue (required). The
application data tag should not be empty.

You can use the same SendMessage service to send as many Datagram messages as the
destination queue can hold. For more information about the destination queue’s message holding
capacity, contact your MQ Server Administrator.

Sample SendMessage Request Document
These are the setting for a sample SendMessage request document:
BEA WebLogic Adapter for MQSeries User Guide 3-7

This is the corresponding sample SendMessage request document:

<?xml version="1.0" encoding="UTF-8"?>

<snd:SendDatagramMessage

xmlns:snd="wlai/ApplicationView_SendDatagramMessage_request">

<snd:MessageDescriptor>

<snd:ExpirationPolicy>5000</snd:ExpirationPolicy>

<snd:Priority>8</snd:Priority>

<snd:PersistPolicy>Persistent</snd:PersistPolicy>

<snd:CharacterSet>1208</snd:CharacterSet>

<snd:Format>String</snd:Format>

</snd:MessageDescriptor>

<snd:Data>

<snd:Format>TEXT</snd:Format>

<snd:Content>This is the message to be put into the

queue</snd:Content>

</snd:Data>

</snd:SendDatagramMessage>

See “SendMessage Response Document” on page 3-19 for the corresponding sample response
document.

Table 3-2 Sample SendMesage Request Document Values

Tag Value

ExpirationPolicy 5000

Priority 8

PersistPolicy Persistent

CharacterSet 1208

Format TEXT

Application data This is the message to be put into the queue
3-8 BEA WebLogic Adapter for MQSeries User Guide

Creat ing Request Documents
SendMessage Reply Request Document
You can send a Reply message using a SendMessage service that is configured with a message
type of Reply. Before sending a reply message, do the following in the SendMessage request
document:

Configure the Message Descriptor data that you want to override. For details, see
“Overriding MQ Message Descriptor Attributes” on page 3-5.

Provide the MQRFH2 data if applicable. See “Providing MQRFH2 Information” on page 3-6.

Provide the CorrelationId of the Reply message (required).

Provide an optional MessageId. If you do not provide the MessageId, the MessageId of
the reply message is generated by the queue manager. This ID is a hexadecimal String.

In the Data tag, provide the following:

– The required format: TEXT, Binary, or XML.

– The application data that you want to send to the queue (required). The application data
tag should not be empty.

You can use the same SendMessage service to send as many Reply Messages as the destination
queue can hold. For more information about the destination queue’s message holding capacity,
contact your MQ Server Administrator.

Sample SendMessage Reply Request Document
<?xml version="1.0" encoding="UTF-8"?>

<snd:SendReplyMessage

xmlns:snd="wlai/ApplicationView_SendReplyMessage_request">

<snd:MessageDescriptor>

 <snd:ExpirationPolicy>5000</snd:ExpirationPolicy>

 <snd:Priority>8</snd:Priority>

 <snd:PersistPolicy>Persistent</snd:PersistPolicy>

 <snd:CharacterSet>1208</snd:CharacterSet>

 <snd:Format>String</snd:Format>

</snd:MessageDescriptor>
BEA WebLogic Adapter for MQSeries User Guide 3-9

<snd:MessageId>414D5120514D5F6974706C5F303235301882173F12500600

</snd:MessageId>

<snd:CorrelationId>414D5120514D5F6974706C5F3032353070A0163F12800100

</snd:CorrelationId>

<snd:Data>

 <snd:Format>TEXT</snd:Format>

 <snd:Content>hello world</snd:Content>

</snd:Data>

</snd:SendReplyMessage>

SendRequest Request Document
You can send a Request message using the SendRequest service. Before sending a Request
message, do the following in the SendRequest request document:

Configure the Message Descriptor data that you want to override. For details, see
“Overriding MQ Message Descriptor Attributes” on page 3-5.

Provide the MQRFH2 data if applicable. See “Providing MQRFH2 Information” on page 3-6.

In the Data tag, do the following:

– Supply the required format: TEXT, Binary, or XML.

– Provide the application data that you want to send to the queue (required). The
application data tag should not be empty.

You can use the same SendRequest service to send as manyRequest messages as the destination
queue can hold. For more information about the destination queue’s message holding capacity,
contact your MQ Server Administrator.

Sample SendRequest Request Document
<?xml version="1.0" encoding="UTF-8"?>

<snd:SendRequestMessage

xmlns:snd="wlai/ApplicationView_SendRequestMessage_request">

<snd:MessageDescriptor>

<snd:ExpirationPolicy>5000</snd:ExpirationPolicy>

<snd:Priority>8</snd:Priority>
3-10 BEA WebLogic Adapter for MQSeries User Guide

Creat ing Request Documents
<snd:PersistPolicy>Persistent</snd:PersistPolicy>

<snd:CharacterSet>1208</snd:CharacterSet>

<snd:Format>String</snd:Format>

</snd:MessageDescriptor>

<snd:Data>

<snd:Format>TEXT</snd:Format>

<snd:Content>This is the message to be put into the queue</snd:Content>

</snd:Data>

</snd:SendRequestMessage>

See “SendRequest Response Document” on page 3-19 for the corresponding sample response
document.

GetMessage Request Document
You can receive messages from a specified queue using the GetMessage service. To receive a
message, set values for one or more of the following tags in the GetMessage request document:

MessageId: The MessageId of the message to be received. This is optional.

CorrelationId: The CorrelationId of the message to be received. This is optional.

GroupId: The GroupId of the message to be received. This is optional.

Note: If you want to receive a group message, ensure that the GroupId tag is present in the
request document. The first message in the queue bearing the specified GroupId is
received.

DataFormat: The data format of the message to be received: TEXT, Binary, or XML.

A message that matches these given IDs is received. If none of these values is provided, the first
message in the queue is received.

Note: When you configure a GetMessage service for an XML data format, the service will
throw a javax.resource.ResourceException if the message received is in TEXT or
Binary data format.

Sample GetMessage Request Document
<?xml version="1.0" encoding="UTF-8"?>

<gmn:GetTEXTMessage

xmlns:gmn="wlai/ApplicationView_GetTEXTMessage_request">
BEA WebLogic Adapter for MQSeries User Guide 3-11

 <gmn:MessageId>414D5120514D5F6974706C5F30323530A4F63F3B12B00100</gmn:

MessageId>

 <gmn:DataFormat>TEXT</gmn:DataFormat>

</gmn:GetTEXTMessage>

See “GetMessage Response Document” on page 3-20 for the corresponding sample response
document.

Transaction Request Documents
There are three different request documents, one for each type of transaction service:
Transaction Begin, Transaction Commit, and Transaction BackOut. A transaction scope begins
with Transaction Begin and ends with either Transaction Commit or Transaction BackOut.

This section lists the formats for the following Transaction Service request documents:

Transaction Begin Request Document

Transaction Commit Request Document

Transaction BackOut Request Document

See “Transaction Response Document” on page 3-19 for a sample response document.

Transaction Begin Request Document
<?xml version="1.0" encoding="UTF-8"?>

<tr:TransactionService

xmlns:tr="wlai/ApplicationView_TransactionService_request">

 <tr:TransactionFunction>Begin</tr:TransactionFunction>

</tr:TransactionService>

Transaction Commit Request Document
<?xml version="1.0" encoding="UTF-8"?>

<tr:TransactionService

xmlns:tr="wlai/ApplicationView_TransactionService_request">

 <tr:TransactionFunction>Commit</tr:TransactionFunction>

</tr:TransactionService>
3-12 BEA WebLogic Adapter for MQSeries User Guide

Us ing Data Fo rmats in Se rv ices and Events
Transaction BackOut Request Document
<?xml version="1.0" encoding="UTF-8"?>

<tr:TransactionService

xmlns:tr="wlai/ApplicationView_TransactionService_request">

 <tr:TransactionFunction>BackOut</tr:TransactionFunction>

</tr:TransactionService>

Using Data Formats in Services and Events
The Adapter for MQSeries supports TEXT, Binary, and XML data formats. Although you
configure a service or event with a data format when you create it, you can override that data
format in the SendMessage, SendRequest, and GetMessage services in the service’s request
document. You cannot override the configured data format for an event.

The following is an example showing how to send an XML application data in a Base64 encoded
format. Each element is in its own line (a requirement for well-formed XML):

<?xml version="1.0" encoding="UTF-8"?>

<data>

<header>hello world</header>

<body>this is a test message</body>

</data>

This XML application data should be Base64 encoded and put as value within the Content tag
of the request document. The Format tag data should be XML.

The request document containing Base64 encoded XML application data within the Content tag
is as follows:

Table 3-3 Data Formats for Services and Events

For This Data Format And This Type of Document The Content Tag Data Should Be

TEXT Request document or
Response document

Plain text

Binary or XML Request document or
Response document

Base64 encoded
BEA WebLogic Adapter for MQSeries User Guide 3-13

<?xml version="1.0" encoding="UTF-8"?>

<ServiceName>

<MessageDescriptor>

<ExpirationPolicy>5000</ExpirationPolicy>

<Priority>8</Priority>

<PersistPolicy>Persistent</PersistPolicy>

<CharacterSet>813</CharacterSet>

</MessageDescriptor>

<Data>

<Format>XML</Format>

<Content>

PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz48ZGF0YT48Ym9keT50aGlzIG

lzIGEgdGVzdCBtZXNzYWdlPC9ib2R5PjwvZGF0YT4=

</Content>

</Data>

</ServiceName>

Note: The ServiceName tag can be any valid tag name. The request document must be well
formed and comply with the XML schema for the service to execute properly. If the XML
application data (the Payload) was not well formed prior to Base64 encoding, or if it is
not included in the request document, the application will throw an exception and the
service will be terminated. You can follow the same process to send a message with
Binary data format.

Working with Group Messages
A group message is a set of messages that share a common GroupId. Each message in the group
has a unique Message Sequence Number (MsgSeqNumber). The MsgSeqNumber for the first
message in the group is 1 and is sequentially incremented for each subsequent message in the
group. You must provide the GroupId and MsgSeqNumber as inputs while sending group
messages. You can do this in two ways:

You can let the queue manager generate the GroupId and MsgSeqNumber for the first
message, and then add logic to the business process to assign the GroupId and
MsgSeqNumbers for all subsequent messages. See “Sending Group Messages Using a
GroupId Generated by the Queue Manager” on page 3-16 for more information.

You can provide a GroupId and MsgSeqNumber for all the messages in the group,
including the first message. See “Sending Group Messages Using a User-Specified
GroupId” on page 3-17 for more information.
3-14 BEA WebLogic Adapter for MQSeries User Guide

Working wi th G roup Messages
Note: When you assign a GroupId, make sure that it is unique for this group within the
queue to which the messages are sent.

Group Message Request Schema
The Adapter for MQSeries lets you send Group Messages using SendMessage and SendRequest
services. The request schema of these services has the following tags that are used to send Group
messages.

<xsd:element name="GroupMessageOptions" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="IsFirstMessage" type="xsd:boolean" minOccurs="0"/>

<xsd:element name="IsLastMessage" type="xsd:boolean" minOccurs="0"/>

<xsd:element name="IsIntermediateMessage" type="xsd:boolean"

minOccurs="0"/>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Group Message Option Tags
The GroupMessageOptions tag is normally optional in the request document, but it becomes
required when you send Group Messages.

While sending Group Messages you should make the following settings depending upon the
sequence of messages you send:

Table 3-4 Group Message Tags

For This Message Set This Tag Value to True Omit Values for These Tags

First IsFirstMessage IsLastMessage and
IsIntermediateMessage

Intermediate IsIntermediateMessage IsFirstMessage and IsLastMessage

Last IsLastMessage IsFirstMessage and
IsIntermediateMessage
BEA WebLogic Adapter for MQSeries User Guide 3-15

For the first message in the group, the GroupId is optional, but if you provide a value, it should
be the same GroupId used for all subsequent group messages in the queue. If you don’t provide
a value, the MQ Server generates a unique GroupID and MsgSeqNumber and returns them to the
user in the response document. The MsgSeqNumber is usually 1 for the first message in the
group.

For the intermediate and last messages, the GroupId is required. It should be the same value that
was returned in the response document after the first message was sent. If it is not the same value,
the MQ Server will create a new group message. The MsgSeqNumber is also required and should
be the incremented value of the MsgSeqNumber that was returned in the response document of
the previous message in the group.

For more information on Group message concepts, see your MQSeries documentation.

Sending Group Messages Using a GroupId Generated by the
Queue Manager
If you use the GroupId generated by the MQSeries Server, you do not have to provide the
GroupId and MsgSeqNumber for the first message in the group. Instead, you can allow the queue
manager to generate the GroupId and MsgSeqNumber for the first message. However, you must
supply additional logic in the process to get the GroupId and MsgSeqNumber from the first
message’s response document and set the GroupId as input for the subsequent messages in the
group. You must also provide the logic that picks up the MsgSeqNumber and increments it
correctly for the subsequent messages.

To send group messages using a GroupID generated by the queue manager:

1. Determine the type of message that you want to send, create an application view, and add the
required services. For explicit transactions, add a Transaction service to start and stop the
transaction scope during execution. For more information, see “About Defining Application
Views” on page 2-3.

2. Deploy the application view.

3. Create a process using WebLogic Workshop. See BEA WebLogic Workshop Help at the
following URL:

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
3-16 BEA WebLogic Adapter for MQSeries User Guide

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

Working wi th G roup Messages
4. Provide additional logic in the process to pick the GroupId and MsgSeqNumber from the
first message’s response document and set the same GroupId as input in the subsequent
service’s request documents. Each MsgSeqNumber should be an incremented value of the
previous message’s MsgSeqNumber.

Note: Be sure to omit the GroupId and MsgSeqNumber for the first message in the group.

5. Create a request document that corresponds to each message in the group.

6. Execute the process. For each invocation of the SendMessage or SendRequest service,
provide the corresponding request document as input. The group messages are sent to the
specified queue.

Sending Group Messages Using a User-Specified GroupId
You can specify the GroupId and MsgSeqNumber in the GroupId and MsgSeqNumber tags in the
request document for all messages in the group. Be sure that within the queue, the GroupId used
is unique for the group.

To send the group messages using a user-specified GroupID:

1. Determine the type of message that you want to send, create an application view, and add the
required services. For explicit transactions, add a Transaction service to start and stop the
transaction scope during execution. For more information, see “About Defining Application
Views” on page 2-3.

2. Deploy the application view.

3. Create a process using WebLogic Workshop. See BEA WebLogic Workshop Help at the
following URL:

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

4. Provide a GroupId and MsgSeqNumber. Be sure that the GroupId is unique for this group
and that it is used for both the first message and all subsequent messages. Set the
MsgSeqNumber for the first message to 1, and increment it by 1 for each subsequent
message.

5. Create a request document that corresponds to each message in the group.

6. Execute the process. For each invocation of the SendMessage or SendRequest service,
provide the corresponding request document as input. The group messages are sent to the
specified queue.
BEA WebLogic Adapter for MQSeries User Guide 3-17

http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

Receiving Group Messages
You can receive group messages from the queue using a GetMessage service or an event. The
GetMessage service retrieves only the first message with the specified ID in the queue. To
retrieve all messages in the group, you must invoke the GetMessage service iteratively with a
message consumption setting of ‘Delete’ and the GroupID in the request document. In an event,
all the messages in the queue, including group messages, are received.

About Response Documents
The request and response schemas for Adapter for MQSeries support the usage of Namespaces.
However the adapter also supports request documents without NameSpaces. In either case, the
response documents for services and events are generated with a default Namespace.

The adapter generates an event document for each event you create. This document has a MQMD
section, which contains the message descriptors, and a data section, which contains the
application data and header information.

The sample response documents in this section use the service name as the Root element. This is
not mandatory. The adapter generates a response document for each service. See “About Creating
Request Documents” on page 3-5 for the sample request documents.

Note: You can view the request schema and the response schema for each service on the
Summary for Application View page.

This section includes the following sample response documents:

Transaction Response Document

SendMessage Response Document

SendRequest Response Document

GetMessage Response Document

Event Response Document
3-18 BEA WebLogic Adapter for MQSeries User Guide

About Response Documents
Transaction Response Document
<?xml version="1.0" encoding="UTF-8"?>

<ns0:TransactionService xmlns:ns0="wlai/

ApplicationView_TransactionService_response">

<ns0:Result>

<ns0:Status>SUCCESS</ns0:Status>

<ns0:Error/>

</ns0:Result>

</ns0:TransactionService>

SendMessage Response Document
<?xml version="1.0"?>

<ns0:SendDatagramMessage

xmlns:ns0="wlai/ApplicationView_SendDatagramMessage_response">

<ns0:Result>

<ns0:MessageId>414D5120514D5F6974706C5F30323530E6450A3F12600000</ns0:

MessageId>

<ns0:Status>SUCCESS</ns0:Status>

<ns0:Error/>

<ns0:GroupMessage/>

</ns0:Result>

</ns0:SendDatagramMessage>

SendRequest Response Document
<?xml version="1.0"?>

<ns0:SendRequestMessage

xmlns:ns0="wlai/ApplicationView_SendRequestMessage_response">

<ns0:Result>
BEA WebLogic Adapter for MQSeries User Guide 3-19

<ns0:MessageId>414D5120514D5F6974706C5F30323530E6450A3F12B00000

</ns0:MessageId>

<ns0:Status>SUCCESS</ns0:Status>

<ns0:Error/>

<ns0:GroupMessage/>

</ns0:Result>

</ns0:SendRequestMessage>

GetMessage Response Document
<?xml version="1.0"?>

<ns0:GetTEXTMessage

xmlns:ns0="wlai/ApplicationView_GetTEXTMessage_response">

 <ns0:Result>

 <ns0:Status>SUCCESS</ns0:Status>

 <ns0:Error/>

 <ns0:GetInfo>

 <ns0:QueueName>MessageQueue</ns0:QueueName>

 <ns0:MessageConsumption>Browse</ns0:MessageConsumption>

 </ns0:GetInfo>

 <ns0:PayLoad>

 <ns0:MQMD>

 <ns0:MessageType>Datagram</ns0:MessageType>

<ns0:MessageId>414D5120514D5F6974706C5F30323530E6450A3F12900000</ns0:

MessageId>

 <ns0:CorrelationId></ns0:CorrelationId>

<ns0:GroupId>414D5120514D5F6974706C5F30323530E6450A3F22900000</ns0:

GroupId>

 <ns0:Format>MQSTR </ns0:Format>

 <ns0:ReplyToQueueName>ReportQueue

</ns0:ReplyToQueueName>
3-20 BEA WebLogic Adapter for MQSeries User Guide

About Response Documents
 <ns0:ReplyToQueueManagerName>QM_itpl_025051

</ns0:ReplyToQueueManagerName>

 <ns0:UserId>admin </ns0:UserId>

 <ns0:ApplicationIdData>

</ns0:ApplicationIdData>

 <ns0:PutApplicationName>MQSeries Client for Java

</ns0:PutApplicationName>

 <ns0:PutDateTime>9/7/2001 - 6:13:11</ns0:PutDateTime>

 <ns0:ApplicationOriginData> </ns0:ApplicationOriginData>

 </ns0:MQMD>

 <ns0:Message>

 <ns0:MQRFH2_Contents/>

 <ns0:Data>

 <ns0:Content>This is the message to be put into the

queue</ns0:Content>

 </ns0:Data>

 </ns0:Message>

 </ns0:PayLoad>

 </ns0:Result>

</ns0:GetTEXTMessage>

Event Response Document
<?xml version="1.0"?>

<ns:EventforTEXT xmlns:ns="wlai/ApplicationView_EventforTEXT_event">

 <ns:EventInfo>

 <ns:QueueName>MessageQueue</ns:QueueName>

 <ns:MessageConsumption>browse</ns:MessageConsumption>

 </ns:EventInfo>

 <ns:PayLoad>
BEA WebLogic Adapter for MQSeries User Guide 3-21

 <ns:MQMD>

 <ns:MessageType>Request</ns:MessageType>

<ns:MessageId>414D5120514D5F6974706C5F30323530E6450A3F12B00000</ns:

MessageId>

 <ns:CorrelationId></ns:CorrelationId>

 <ns:GroupId></ns:GroupId>

 <ns:Format>MQSTR </ns:Format>

 <ns:ReplyToQueueName>ReplyQueue</ns:ReplyToQueueName>

<ns:ReplyToQueueManagerName>QM_itpl_025051</ns:ReplyToQueueManagerName>

 <ns:UserId></ns:UserId>

 <ns:ApplicationIdData></ns:ApplicationIdData>

 <ns:PutApplicationName>MQSeries Client for

Java</ns:PutApplicationName>

 <ns:PutDateTime>9/7/2001 - 6:23:19</ns:PutDateTime>

 <ns:ApplicationOriginData></ns:ApplicationOriginData>

 </ns:MQMD>

 <ns:Message>

 <ns:MQRFH2_Contents/>

 <ns:Data>This is the message to be put into the queue</ns:Data>

 </ns:Message>

 </ns:PayLoad>

</ns:EventforTEXT>

Handling Errors and Exceptions
If an MQ exception occurs during the execution of a service, the adapter builds a response
document with status set to FAILURE. Additionally, an error tag displays the MQ reason code
for the exception, the completion code, and the MQ description for the MQ reason code.

For all other exceptions, the adapter throws a javax.resource.ResourceException back to
the invoking application. It is the client application’s responsibility to call a Transaction BackOut
to roll back the changes that had occurred since the start of the current Transaction Scope. This
3-22 BEA WebLogic Adapter for MQSeries User Guide

Hand l ing Er ro rs and Except ions
should be done to safeguard the application data. The illustration that follows shows the process
node with a decision that invokes a Transaction-BackOut or a Transaction-Commit, depending
on the status of the services in the transaction scope.

Transaction Scope Error Conditions
If a transaction scope already exists before you execute a Transaction service with
Transaction-Begin, the Transaction service invocation fails and the adapter generates a response
document with the status tag set to FAILURE. When any other service is invoked and a
transaction scope does not exist, the adapter throws a javax.resource.ResourceException,
and the service invocation is terminated.

If a transaction scope exists, but the service execution is not successful, the adapter throws a
javax.resource.ResourceException, and the service invocation is terminated. If the service
execution is successful, the user can invoke a Transaction-Commit to save the process changes
permanently.

If a ResourceException is thrown during process execution, the user can invoke a
Transaction-BackOut to roll back the changes that happened since the start of the current
transaction scope.
BEA WebLogic Adapter for MQSeries User Guide 3-23

3-24 BEA WebLogic Adapter for MQSeries User Guide

A P P E N D I X A
Request and Response Schemas
This section contains the request and response schemas generated by the Adapter for MQSeries
for services and events. The request documents you create must be in accordance with the
corresponding request schema. Likewise, the response document generated by the adapter will be
in accordance with the adapter’s response schema. These schemas are generated by the adapter
when you configure services and events.

These are the request and response schemas generated by the Adapter for MQSeries:

Transaction Request Schema

Transaction Response Schema

SendMessage Request Schema

SendMessage Response Schema

SendRequest Request Schema

SendRequest Response Schema

GetMessage Request Schema

GetMessage Response Schema

Event Schema

To view the schemas, click the schema link (request and response) on the Application View
Administration page of the Application Integration Design Console. The supported schemas
follow.
BEA WebLogic Adapter for MQSeries User Guide A-1

Transaction Request Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_TransactionService_request"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_TransactionService_request">

<xsd:element name="TransactionService">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="TransactionFunction" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Transaction Response Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_TransactionService_response"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_TransactionService_response">

<xsd:element name="TransactionService">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Result">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Status" type="xsd:string"/>

<xsd:element name="Error">
A-2 BEA WebLogic Adapter for MQSeries User Guide

SendMessage Request Schema
<xsd:complexType>

<xsd:sequence>

<xsd:element name="CompletionCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCodeDescription" type="xsd:string"

minOccurs="0"/>

<xsd:element name="Trace" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

SendMessage Request Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_SendDatagramMessage_request"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_SendDatagramMessage_request">

<xsd:element name="SendDatagramMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageDescriptor">

<xsd:complexType>
BEA WebLogic Adapter for MQSeries User Guide A-3

<xsd:sequence>

<xsd:element name="ExpirationPolicy" type="xsd:string" minOccurs="0"/>

<xsd:element name="Priority" type="xsd:string" minOccurs="0"/>

<xsd:element name="PersistPolicy" type="xsd:string" minOccurs="0"/>

<xsd:element name="CharacterSet" type="xsd:string" minOccurs="0"/>

<xsd:element name="Format" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MQRFH2" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Encoding" type="xsd:long"/>

<xsd:element name="CodedCharSetId" type="xsd:long"/>

<xsd:element name="Format" type="xsd:string"/>

<xsd:element name="NameValueCCSID" type="xsd:long"/>

<xsd:element name="NameValueDatan" type="xsd:long"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GroupMessageOptions" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="IsFirstMessage" type="xsd:boolean" minOccurs="0"/>

<xsd:element name="IsLastMessage" type="xsd:boolean" minOccurs="0"/>
A-4 BEA WebLogic Adapter for MQSeries User Guide

SendMessage Response Schema
<xsd:element name="IsIntermediateMessage" type="xsd:boolean"

minOccurs="0"/>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="MessageId" type="xsd:string" minOccurs="0"/>

<xsd:element name="CorrelationId" type="xsd:string" minOccurs="0"/>

<xsd:element name="Data">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Format" type="xsd:string"/>

<xsd:element name="Content" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

SendMessage Response Schema
<?xml version="1.0" encoding="UTF-8"?>
BEA WebLogic Adapter for MQSeries User Guide A-5

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_SendDatagramMessage_response"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_SendDatagramMessage_response">

<xsd:element name="SendDatagramMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Result">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageId" type="xsd:string"/>

<xsd:element name="Status" type="xsd:string"/>

<xsd:element name="Error">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CompletionCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCodeDescription" type="xsd:string"

minOccurs="0"/>

<xsd:element name="Trace" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GroupMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="MessageSeqNumber" type="xsd:string" minOccurs="0"/>
A-6 BEA WebLogic Adapter for MQSeries User Guide

SendReques t Request Schema
</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

SendRequest Request Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_SendRequestMessage_request"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_SendRequestMessage_request">

<xsd:element name="SendRequestMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageDescriptor">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ExpirationPolicy" type="xsd:string" minOccurs="0"/>

<xsd:element name="Priority" type="xsd:string" minOccurs="0"/>

<xsd:element name="PersistPolicy" type="xsd:string" minOccurs="0"/>

<xsd:element name="CharacterSet" type="xsd:string" minOccurs="0"/>

<xsd:element name="Format" minOccurs="0">

<xsd:complexType>
BEA WebLogic Adapter for MQSeries User Guide A-7

<xsd:sequence>

<xsd:element name="MQRFH2" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Encoding" type="xsd:long"/>

<xsd:element name="CodedCharSetId" type="xsd:long"/>

<xsd:element name="Format" type="xsd:string"/>

<xsd:element name="NameValueCCSID" type="xsd:long"/>

<xsd:element name="NameValueDatan" type="xsd:long"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GroupMessageOptions" minOccurs="0">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="IsFirstMessage" type="xsd:boolean" minOccurs="0"/>

<xsd:element name="IsLastMessage" type="xsd:boolean" minOccurs="0"/>

<xsd:element name="IsIntermediateMessage" type="xsd:boolean"

minOccurs="0"/>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>
A-8 BEA WebLogic Adapter for MQSeries User Guide

SendReques t Response Schema
</xsd:complexType>

</xsd:element>

<xsd:element name="Data">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Format" type="xsd:string"/>

<xsd:element name="Content" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

SendRequest Response Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_SendRequestMessage_response"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_SendRequestMessage_response">

<xsd:element name="SendRequestMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Result">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageId" type="xsd:string"/>

<xsd:element name="Status" type="xsd:string"/>
BEA WebLogic Adapter for MQSeries User Guide A-9

<xsd:element name="Error">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CompletionCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCodeDescription" type="xsd:string"

minOccurs="0"/>

<xsd:element name="Trace" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GroupMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="MessageSeqNumber" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
A-10 BEA WebLogic Adapter for MQSeries User Guide

GetMessage Request Schema
GetMessage Request Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_GetTEXTMessage_request"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_GetTEXTMessage_request">

<xsd:element name="GetTEXTMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageId" type="xsd:string" minOccurs="0"/>

<xsd:element name="CorrelationId" type="xsd:string" minOccurs="0"/>

<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>

<xsd:element name="DataFormat" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

GetMessage Response Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_GetTEXTMessage_response"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_GetTEXTMessage_response">

<xsd:element name="GetTEXTMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Result">

<xsd:complexType>
BEA WebLogic Adapter for MQSeries User Guide A-11

<xsd:sequence>

<xsd:element name="Status" type="xsd:string"/>

<xsd:element name="Error">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="CompletionCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCode" type="xsd:string" minOccurs="0"/>

<xsd:element name="ReasonCodeDescription" type="xsd:string"

minOccurs="0"/>

<xsd:element name="Trace" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="GetInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="QueueName" type="xsd:string"/>

<xsd:element name="MessageConsumption" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="PayLoad">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MQMD">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageType" type="xsd:string"/>
A-12 BEA WebLogic Adapter for MQSeries User Guide

GetMessage Response Schema
<xsd:element name="MessageId" type="xsd:normalizedString"/>

<xsd:element name="CorrelationId" type="xsd:normalizedString"/>

<xsd:element name="GroupId" type="xsd:normalizedString"/>

<xsd:element name="Format" type="xsd:normalizedString"/>

<xsd:element name="ReplyToQueueName" type="xsd:string"/>

<xsd:element name="ReplyToQueueManagerName" type="xsd:string"/>

<xsd:element name="UserId" type="xsd:string"/>

<xsd:element name="ApplicationIdData" type="xsd:string"/>

<xsd:element name="PutApplicationName" type="xsd:string"/>

<xsd:element name="PutDateTime" type="xsd:string"/>

<xsd:element name="ApplicationOriginData" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Message">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MQRFH2_Contents">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="StrucId" type="xsd:string" minOccurs="0"/>

<xsd:element name="Version" type="xsd:long" minOccurs="0"/>

<xsd:element name="StrucLength" type="xsd:long" minOccurs="0"/>

<xsd:element name="Encoding" type="xsd:long" minOccurs="0"/>

<xsd:element name="CodedCharSetId" type="xsd:long" minOccurs="0"/>

<xsd:element name="Format" type="xsd:string" minOccurs="0"/>

<xsd:element name="Flags" type="xsd:long" minOccurs="0"/>
BEA WebLogic Adapter for MQSeries User Guide A-13

<xsd:element name="NameValueCCSID" type="xsd:long" minOccurs="0"/>

<xsd:element name="NameValueLengthn" type="xsd:long" minOccurs="0"/>

<xsd:element name="NameValueDatan" type="xsd:long" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Data">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Content" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
A-14 BEA WebLogic Adapter for MQSeries User Guide

Event Schema
Event Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="wlai/ApplicationView_EventforTEXT_event"

elementFormDefault="qualified"

targetNamespace="wlai/ApplicationView_EventforTEXT_event">

<xsd:element name="EventforTEXT">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="EventInfo">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="QueueName" type="xsd:string"/>

<xsd:element name="MessageConsumption" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="PayLoad">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MQMD">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MessageType" type="xsd:string"/>

<xsd:element name="MessageId" type="xsd:normalizedString"/>

<xsd:element name="CorrelationId" type="xsd:normalizedString"/>

<xsd:element name="GroupId" type="xsd:normalizedString"/>

<xsd:element name="Format" type="xsd:normalizedString"/>
BEA WebLogic Adapter for MQSeries User Guide A-15

<xsd:element name="ReplyToQueueName" type="xsd:string"/>

<xsd:element name="ReplyToQueueManagerName" type="xsd:string"/>

<xsd:element name="UserId" type="xsd:string"/>

<xsd:element name="ApplicationIdData" type="xsd:string"/>

<xsd:element name="PutApplicationName" type="xsd:string"/>

<xsd:element name="PutDateTime" type="xsd:string"/>

<xsd:element name="ApplicationOriginData" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Message">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MQRFH2_Contents">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="StrucId" type="xsd:string" minOccurs="0"/>

<xsd:element name="Version" type="xsd:long" minOccurs="0"/>

<xsd:element name="StrucLength" type="xsd:long" minOccurs="0"/>

<xsd:element name="Encoding" type="xsd:long" minOccurs="0"/>

<xsd:element name="CodedCharSetId" type="xsd:long" minOccurs="0"/>

<xsd:element name="Format" type="xsd:string" minOccurs="0"/>

<xsd:element name="Flags" type="xsd:long" minOccurs="0"/>

<xsd:element name="NameValueCCSID" type="xsd:long" minOccurs="0"/>

<xsd:element name="NameValueLengthn" type="xsd:long" minOccurs="0"/>

<xsd:element name="NameValueDatan" type="xsd:long" minOccurs="0"/>

</xsd:sequence>
A-16 BEA WebLogic Adapter for MQSeries User Guide

Event Schema
</xsd:complexType>

</xsd:element>

<xsd:element name="Data" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
BEA WebLogic Adapter for MQSeries User Guide A-17

A-18 BEA WebLogic Adapter for MQSeries User Guide

A P P E N D I X B
Run-Time Parameter Values
This section lists the optional and required run-time parameter values that you can specify in a
request document.

Table 2-1 Transaction Service Run-Time Parameter Values

Tag Name Required Permitted Values

TransactionFunction Yes Begin, Commit, BackOut

Table 2-2 SendMessage and SendRequest Service Run-Time Parameter Values

Tag Name Required Permitted Values

MessageDescriptor Yes

ExpirationPolicy No Any integer value (in tenths of a second)

Priority No Any value between 0 to 9 or AsQueueDef

PersistPolicy No Persistent, NotPersistent, AsQueueDef

CharacterSet No Refer toCharacter Set Catalog link on
SendRequest and SendMessage pages during
design-time

Format No None, String, MQRFH2
BEA WebLogic Adapter for MQSeries User Guide B-1

MQRFH2 No

Yes, if the format is
MQRFH2

Encoding, CodedCharSetId, Format,
NameValueCCSID, and NameValueDatan tags

GroupMessage
Options

Yes, if Group
Messaging is required

IsFirstMessage Yes, only for the first
message in the group.

True

IsLastMessage Yes, only for the last
message.

True

IsIntermediateMessage Yes, only for
intermediate
messages.

True

GroupId No, for the first
message.

Yes, for intermediate
and last messages.

A valid hexadecimal GroupId in string format

MsgSeqNumber No, for the first
message.

Yes, for intermediate
and last messages.

Positive integer

MessageId No A valid hexadecimal MessageId in string format

CorrelationId Yes, for Reply
message.

No, for Datagram and
Request Messages.

A valid hexadecimal CorrelationId in string
format

Data Yes Format and Contents tag

Table 2-3 GetMessage Service Run-Time Parameter Values

Tag Name Required Permitted Values

MessageId No A valid hexadecimal MessageId in string format

Table 2-2 SendMessage and SendRequest Service Run-Time Parameter Values (Continued)
B-2 BEA WebLogic Adapter for MQSeries User Guide

CorrelationId No A valid hexadecimal CorrelationId in string
format

GroupId No A valid hexadecimal GroupId in string format

Data Format Yes TEXT, Binary, XML

Table 2-3 GetMessage Service Run-Time Parameter Values (Continued)
BEA WebLogic Adapter for MQSeries User Guide B-3

B-4 BEA WebLogic Adapter for MQSeries User Guide

A P P E N D I X C
Error Messages and Troubleshooting
This section lists error messages that you may encounter while using the Adapter for MQSeries.
It describes what might have generated each error message, and what you can do to resolve the
problem. It also contains troubleshooting tips on failures related to service execution.

Error Messages
The error messages along with suitable solutions to counter them are tabulated here:

Error javax.resource.spi.EISSystemException: An exceptional condition was
encountered when <username> attempted to open a connection to the
EIS; Message catalog not found

Source MQSeries Connection - Bindings

Description This MQSeries error occurs when an invalid Queue Manager Name is
entered.

Action 1. Check the Name of the Queue Manager. Verify it with the one that is
available in the MQ Server.

2. Check whether the MQ Server is installed on the system on which the
Adapter for MQSeries is installed.

For details on configuring Connection Parameters, see “Configuring a
Bindings Connection” on page 2-7.
BEA WebLogic Adapter for MQSeries User Guide C-1

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; Message catalog not found

Source MQSeries Connection - TCP/IP

Description This MQSeries error occurs when an invalid Queue Manager Name is
entered.

Action 1. Check the Name of the Queue Manager. Verify it with the one that is
available in the MQ Server.

2. Compare the Name of the Queue Manager Host, Queue Manager
Channel and Queue Manager Port number with the ones that are
available in the MQ Server.

3. Check if the CCSID is entered appropriately (check its presence in the
CCSID Catalog). If it is entered, check the Language Support that is
required for the CCSID entered and ensure that it is available on the
system (the one you are trying to establish a connection with) on
which the MQ Server is installed.

For details on configuring Connection Parameters, see “Configuring a
TCP/IP Connection” on page 2-8.

Consult your MQ Server Administrator for more details.

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; <name of the User Exit Class
entered by the User>

Source MQSeries Connection - TCP/IP

Description This MQSeries error occurs when you configure the User Exits
incorrectly.

Action Check whether one or more of the User Exits have been opted. If yes,
check whether the App Name was entered for the displayed User Exit. If
yes, check whether the Exit App Name Class Name is available in the
execution environment.

For details on using User Exits, see “Implementing User Exits” on
page 2-8.
C-2 BEA WebLogic Adapter for MQSeries User Guide

T roub leshoo t ing T i ps
Troubleshooting Tips
These troubleshooting tips will be helpful in solving problems that you might encounter while
executing the services.

Check whether the service executed is a part of the Transaction Scope (if it is not
configured as an implicit service).

For explicit transaction services, check if the Transaction-Begin was invoked earlier. If not,
check whether Transaction-Commit or BackOut was invoked before the Transaction-Begin.

Ensure the Request Document matches the corresponding Request Schema.

Find out if the mandatory tags and their values are provided in the Request Document.

Check whether the Queue Name provided in the Service configuration is a valid one.

Check the message holding capacity of the Queue to which the Service has been
configured. This is applicable for both SendMessage and SendRequest Services.

Check if the timeout period set in GetMessage is long enough for the Application to
retrieve the message.

Check whether the Queue in GetMessage contains the expected message.

Error Absence of an Event Response Document

Source Events

Description The expected Event Response Document is not generated after executing
a workflow instance.

Action 1. Check whether the event is configured to the correct Queue.

2. Check for a message in the Queue.

3. Verify that the Connection parameters are appropriate.

4. Check whether the right data format is chosen. Also check whether the
expected Message’s data format matches the one configured to.

5. Check whether Content Filtering has been opted for. If yes, check
whether the Content Filter Class name is correct and is available in the
execution environment where the Adapter for MQSeries is deployed.

6. Check whether the Content Filter was developed correctly.
BEA WebLogic Adapter for MQSeries User Guide C-3

Confirm the presence of a CorrelationId in the Request Document of SendMessage Service
with message type Reply.

Check the validity of the MQRFH2 contents in confirmation with the MQRFH2 schema.
This is applicable for both SendMessage and SendRequest Services.

For XML payload (application data), check if the payload format provided in the request
document is XML. The XML application data must be well-formed and Base64-encoded,
and it must be placed within the Content tag of the request document.

For Binary payload (application data), verify that the data format specified in the request
document is Binary and or Base64-encoded.

Check whether the GroupId and MsgSeqNumber (for Group Messaging) provided for the
Last and Intermediate Messages in the Group are valid. This is applicable for SendMessage
and SendRequest Services.

Check if the Message User is authorized by the MQ Server. This is applicable when the
Reports (COD, Exception, and Expiration) of SendMessage and SendRequest Services are
not delivered to the specified Reply to Queue.
C-4 BEA WebLogic Adapter for MQSeries User Guide

Index

A
Adapter for MQSeries

benefits 1-8
features 1-6
supported events 1-8
supported operations 1-7
supported services 1-8, 2-12

adapters
benefits 1-8
defined 1-4

Add Service page 2-12
application context, defining 2-4
application views

adding events to 2-19
adding services to 2-12
defined 1-5
described 2-3
events, adding 2-19
final configuration tasks 2-23
overview of defining 2-3
preparing to define 2-2
services, adding 2-12
services, testing 2-25
steps in defining 2-3
testing events manually 2-28
testing services 2-25

auditing events 2-25

B
BEA WebLogic Adapter for MQSeries,
overview 1-7
browse connection, creating new 2-6

C
CharacterSet attribute, described 3-5
connection factory logging 2-25
connections

configuring 2-5
for events 2-23
local bindings 2-7
TCP/IP 2-8

contact information, for customer support x
content filtering

described 2-20
setting up 2-20

Create New Browsing Connections page 2-6
customer support contact information x

D
data formats, used in services and events 3-13
Datagram message

described 2-14
request document for 3-7

documentation conventions x

E
enterprise information systems, defined 1-4
error messages C-1
event connection parameters, setting 2-23
event consumers, described 1-7
event notifications, described 1-5
event response documents, described 2-19
events

adding to application views 2-19
auditing 2-25
configuring 2-21
content filtering 2-20
data formats 3-13
defined 1-4
described 2-19
response documents 3-21
supported 1-8
BEA WebLogic Adapter for MQSeries User Guide I-1

testing manually 2-28
ExpirationPolicy attribute, described 3-5
explicit transaction

described 2-13

F
Format atttribute, described 3-6

G
GetMessage service

described 2-18
request document for 3-11
response document for 3-20
run-time parameters B-2

group messages
described 3-14
message tags 3-15
receiving 3-18
request schema 3-15
sending 3-14
with GroupId generated 3-16
with GroupID specified 3-17
with MsgSeqNumber generated 3-16
with MsgSeqNumber specified 3-17

GroupId
described 3-14
generated 3-16
user specified 3-17

GroupMessageOptions tag 3-15

I
implicit transactions

described 2-13
setting up 2-16

integration solutions, components 1-3

L
local bindings connections

defining 2-7
described 2-7
settings 2-7

logging, described 2-25

M
message URL http

//edocs.bea.com/workshop/docs81/doc/en/c
ore/index.html -ix

//www.ibm.com/ -ix
MQ exceptions, described 3-22
MQ Message Descriptors, overriding 3-5
MQRFH2 information, in requrest documents
3-6
MQSeries, supported operations 1-7
MsgSeqNumber

described 3-14
generated 3-16
user specified 3-17

P
persistence policy settings 2-16
PersistPolicy attribute, described 3-5
poison messages 2-20
Priority attribute, described 3-5
product support x

R
related information viii
Reply message

described 2-14
request document for 3-9

report messaging options 2-17
request documents

creating 3-5
Datagram sample 3-7
described 3-5
GetMessage sample 3-11
group messages 3-15
1-2 BEA WebLogic Adapter for MQSeries User Guide

MQRFH2 information 3-6
overriding message descriptor attributes 3-5
Reply sample 3-9
samples 3-6
SendMessage sample 3-7
SendRequest sample 3-10
Transaction BackOut sample 3-13
Transaction Begin sample 3-12
Transaction Commit sample 3-12

resource adapter, defined 1-4
ResourceException, described 3-22
response documents

described 3-18
events 3-21
GetMessage service 3-20
SendMessage service 3-19
SendRequest service 3-19
Transaction service 3-19

run-time parameters
GetMessage service B-2
SendMessage service B-1
SendRequest service B-1
Transaction service B-1

S
segmentation policy 2-17
Select Browsing Connection page 2-5
SendMessage service

request document for 3-7
SendMessage services

Datagram message 2-14
described 2-14
Reply message 2-14
response document for 3-19
run-time parameters B-1
settings 2-14

SendRequest services
described 2-14
request document for 3-10
response documents for 3-19

run-time parameters B-1
settings 2-14

service clients, described 1-6
service invocations, described 1-5
services

adding to application views 2-12
data formats 3-13
defined 1-4
explicit transaction 2-13
GetMessage

described 2-18
response documents 3-20

implicit transaction 2-13
request documents 3-5
request schema for group messages 3-15
response documents 3-18
SendMessage

Datagram 2-14
described 2-14
Reply 2-14
response documents 3-19
settings 2-14

SendRequest
described 2-14
response documents 3-19
settings 2-14

supported 1-8
testing 2-25
Transaction

described 2-13
in a process 3-2
response document for 3-19
settings 2-13
types 2-13

Transaction BackOut 3-2
Transaction Begin 3-2
Transaction Commit 3-2

supported
events 1-8
operations 1-7
services 1-8
BEA WebLogic Adapter for MQSeries User Guide 1-3

supported MQSeries operations 1-7

T
TCP/IP connections

defining 2-8
described 2-8
settings 2-10

technical support x
Transaction BackOut

described 2-13
in a process 3-2
request document for 3-13

Transaction Begin
described 2-13
in a process 3-2
request document for 3-12

Transaction Commit
described 2-13
in a process 3-2
request document for 3-12

transaction scope
described 2-13
in a process 3-2

Transaction services
BackOut

described 2-13
in a process 3-2

Begin
described 2-13
in a process 3-2

Commit
described 2-13
in a process 3-2

described 2-13
explicit 2-13
implicit 2-13
response document for 3-19
run-time parameters B-1
settings 2-13
types 2-13

using in a process 3-2
troubleshooting tips C-3

U
user exits

described 2-8
exit interfaces 2-8
implementation example 2-9
receive exits 2-8
security exit 2-8
send exit 2-8
types, described 2-8

Using the Application Integration Design
Console with this document ix

W
WebLogic Integration

architecture 1-3
described 1-2
1-4 BEA WebLogic Adapter for MQSeries User Guide

	About This Document
	Who Should Read This Documentation
	Additional Information
	How to Use This Document
	Contact Us!
	Documentation Conventions

	Introducing the BEA WebLogic Adapter for MQSeries
	About Adapters and BEA WebLogic Integration
	Key Components of Integration Solutions
	Basic WebLogic Integration Architecture
	Enterprise Information Systems
	Resource Adapters
	Application Views
	Service Clients and Event Consumers
	Service Clients
	Event Consumers

	About the BEA WebLogic Adapter for MQSeries
	Supported MQSeries Operations for Application Integration
	Supported Services
	Supported Events
	Benefits of the Adapter for MQSeries

	Getting Started With the Adapter for MQSeries
	Step 1: Design the Application Integration Solution
	Step 2: Determine the Required MQSeries Business Workflows
	Step 3: Define Application Views and Configure Services and Events
	Step 4: Integrate with Other BEA Software Components
	Step 5: Deploy the Solution to the Production Environment

	Defining Application Views for MQSeries
	How to Use This Document
	Before You Begin
	About Application Views
	About Defining Application Views
	Defining MQSeries Connection Parameters
	Configuring a Bindings Connection
	Configuring a TCP/IP Connection
	Implementing User Exits
	Setting TCP/IP Parameters

	Setting Service Properties
	Transaction Service
	SendMessage and SendRequest Service
	GetMessage Service

	Setting Event Properties
	Setting up Content Filtering
	Configuring Event Parameters

	Defining Event Connection Parameters
	Testing Services
	Testing Events Manually

	Using the Adapter for MQSeries
	Using a Transaction Service in a Process
	About Creating Request Documents
	Overriding MQ Message Descriptor Attributes
	Providing MQRFH2 Information

	Creating Request Documents
	SendMessage Datagram Request Document
	Sample SendMessage Request Document

	SendMessage Reply Request Document
	Sample SendMessage Reply Request Document

	SendRequest Request Document
	Sample SendRequest Request Document

	GetMessage Request Document
	Sample GetMessage Request Document

	Transaction Request Documents
	Transaction Begin Request Document
	Transaction Commit Request Document
	Transaction BackOut Request Document

	Using Data Formats in Services and Events
	Working with Group Messages
	Group Message Request Schema
	Group Message Option Tags
	Sending Group Messages Using a GroupId Generated by the Queue Manager
	Sending Group Messages Using a User-Specified GroupId
	Receiving Group Messages

	About Response Documents
	Transaction Response Document
	SendMessage Response Document
	SendRequest Response Document
	GetMessage Response Document
	Event Response Document

	Handling Errors and Exceptions

	Request and Response Schemas
	Transaction Request Schema
	Transaction Response Schema
	SendMessage Request Schema
	SendMessage Response Schema
	SendRequest Request Schema
	SendRequest Response Schema
	GetMessage Request Schema
	GetMessage Response Schema
	Event Schema

	Run-Time Parameter Values
	Error Messages and Troubleshooting
	Error Messages
	Troubleshooting Tips

	Index

