"'I

L/ hea

Ny

BEA Jolt

Developer’s
Guide

Copyright
Copyright © 1998, 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA SystemsLicense Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically alowed in the agreement.
Thisdocument may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercia Computer
Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin
Technical Dataand Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their
equivalent.

Information in this document is subject to change without notice and does not represent acommitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOESNOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt, and M3 aretrademarks of BEA Systems,
Inc.

All other company names may be trademarks of the respective companies with which they are
associated.

BEA Jolt Developer’s Guide

Document Edition Part Number Date Software Version

1.0 July 1999 BEA Jolt 1.2

Contents

1.

Introducing BEA Jolt

WHhat IS BEA JOIE? ...eiiie ettt ettt e e s et et nnenne s 1-2
K@Y FEALUMNES.......coii it 1-3
HOW TE WOTKS ...ttt e s e e 1-5
JOIE SEIVEN'S . ettt e e e 1-6

JOIt ClaSS LIDIAIY ..ottt ettt e e e 1-7
JOIBEANS ...ttt ettt ettt bbb e e e 1-9
ASP ConnectiVity fOr TUXEUO.........eeruerrererie e 1-9

Jolt Server and Jolt Client COMMUNICELION.c.ueerveeenierinieneeeeeee 1-10

JOIt REPOSITONY ...ecv ettt ettt ettt e s st et s ebe b 1-10
Jolt REPOSITONY EQITOrcveveviieeiie et 1-11

JOIt INLErNEL REIAYeve et e 1-11
How to Jolt your Tuxedo ApPliCaLiONSccccineineieeieee e 1-12

Bulk Loading Tuxedo Services

USING the BUIK LOBOEScciieieireciieceire ettt 2-2
To Activate The BUulK LOBHETcoooeiiriireeiieceeeteet e e 2-2
Command LiN€ OPLiONScoeevereerireerireetireererier st e e s 2-2

About the Bulk Load File.........cooviiiienieescineeeere e 2-3

Syntax of the Bulk Loader Data FileScooveeniiiniiine e 2-3
Guidelines for Using KEYWOIdS.........ccccereeenieenicineene e 2-4
Keyword Order in the Bulk Loader Data File...........ccooocviviviciiicciicinnn 2-5
Using Service-Level Keywordsand ValUes...........ccoeeeveeeieeinencniee 2-5
Using Parameter-Level Keywordsand VaUues.........ccocoveeveieirieccccniennnne 2-7
TrOUDIESNOOTING. ...ttt ettt ettt e st e 2-8
Sample Bulk LOBO DEaL........ccoeriierie ettt 29

Jolt Developer’s Guide i

3. Using the Jolt Repository Editor

Introduction to the RepOSItOry EQitOrovciiiriincire e 3-2
RepoSitory EAitOr WiNGOWoeierie ittt 3-2
Repository Editor Window DeSCriptionccoeveeereeiereeineeereeeneesieieias 3-4

GELtING SEAME. ...ttt e e e et et bbb e bbb ber e 35
Starting the Repository Editor Using the Java Applet Viewer................... 35
Starting the Repository Editor Using Y our Web Browserccccoceveene 35
Logging on to the REPOSITOrY EdItOr........cocoeveeeveeeveeiereciereeereeeeseresieieiae 3-6

Repository Editor Logon Window Descriptionccccveevennene. 3-7
Exiting the RepoSitory EditOr ..o s 3-8

Main Components of the Repository Editor..........cc.cooevveneenecenecenecene e 3-10
RePOSITOry EAitOr FIOW ..c.oveviieieieiee e e 3-10
What IS 8 PaCKAGE? ..ot e e 312

Packages Window DeSCription...........ccueereireeeirieeenieesieeesie s 3-13
Instructions for Viewing aPackagecoccovrivinencne e, 3-14
WAL IS @ SEIVICE?ecviictiietirte et 3-15
Services Window DESCriPLiON...........ccueeireieneiere e 3-16
Instructions for Viewing aService ... veineinecenesineenieeens 3-16
Working With Parameters..........ccooeerireeereieee e eeeeeens 3-17
Instructions for Viewing aParameterccoeovencineinccnenens 3-17

Setting Up Packages and SErVICES..........cou it 3-19
SAVING Y OUP WOTK ...ccuieieeiecet sttt s s e 3-19
Adding aPackage........ccooeiniiii e 3-19

Instructions for Adding aPackage...........cocvvemreincincinenne e 3-20
AdAING @ SENVICE ..ottt e e 321
Adding a Service Window DesCription.........c.ccoeeveeneineenecnenens 3-23
Instructionsfor Adding @ SErViCeccooeve e reeirecinecereeenieiens 3-24
Selecting CARRAY or STRING as a Service Buffer Type.............. 3-25
Adding aParamMELES ..o 3-26
Parameters Window DesCription...........oceveereeireineeinisse e 3-26
Instructions for Adding a Parametercoooveivencncinccnieeens 3-27
Selecting CARRAY or STRING as a Parameter Data Type............. 3-28
Grouping Services Using the Package Organizer.............ccoveeveeneceneeneeens 3-30
Package Organizer DESCIPLONc.ccvveeveee vttt 331
Instructions for Grouping Services with the Package Organizer3-32

iv Jolt Developer’s Guide

Modifying Packages/Services/Parameters.............cco e 3-34

Editing 8 SErVICE ...c.iiiiiectieee ettt 3-34
Instructions for Editing @ SErViCecocovvriereeineie s 3-35

Editing aParametercooeiieireire e 3-36
Editing aParameter ... e 3-37

Deleting Parameters/Services/Packages...........cccovcrnieccce s 3-37
Deleting aParametercooveeniincine e e 3-37

DEEiNg 8 SErVICE.......ci ittt e 3-37

Deleting 8 Package.........cocovviiriieie e 3-38

Making a Service Available to the Jolt Client............ccooooviieciiiicin e 3-39
Exporting/Unexporting SErVICeS.........cccou e 3-39
EXporting/Unexporting @ SErVICecocovvereierereneee e 3-40
Reviewing the Exported/Unexported Statusccoceveeveeneeieverneeeeeeneens 3-41
Reviewing the Exported/Unexported Status..........cccocoeeeveernereeenne 3-42

TESHNG B SEIVICE ...ttt e e b e 3-43
Repository Editor Service Test Window..........ccovciiniecric e 3-44
Service Test Window DesCriptionccoeereeneeneienenee e 3-45

Testing a Service Process FIOW..........ccoucinicicc e 3-46
TESHNG B SEIVICE....coiictiectireetereet ettt e et e e st e e 3-46
TrOUDIESNOOTING. ...ttt ettt st 3-48
Repository Enhancements for JOlt...........cccociiiicic i 3-50

Using the Jolt Class Library

Class Library FUNCtionality OVEIVIEWccccvviineieie et 4-2
Java Applications vs. JAVaAPPIELScociriirciree e 4-2

Jolt Class Library FEaUIES. ..ot 4-3
Error and Exception Handling.........c.cooeereeenecienecineceeececeee e 4-3

Jolt Client/Server RE@HONSNIP......cceivevireeeireieirecierieisier e e e e 4-4

Jolt Object REIAIONSNIPS........cuerieriiirire et 4-7
Jolt Class FUNCLIONEIILYooviveieieeieiee ettt e e e e 4-8
LOGON/L OGOFT ...ttt 4-8
Synchronous Service Callingccveeveireireneseese e 4-8
Transaction Begin, Commit, and RolIbacKcccccovvniiniciniennns 4-9

Jolt Class Library Walk-throughcocoveiiioini e 4-10
Using Tuxedo Buffer Types with JOItcccovvviiniiii i 4-14

Jolt Developer’s Guide %

Using the STRING BUFfer TYPE.....coii vt 4-15

Define TOUPPER in the Repository Editor.........c.coeveneiencineceenen 4-15
ToUpperjava Client COOE.........coooevererieree st 4-17

Using the CARRAY BUFfer TYPE ...coiviiieiireiirc s 4-19
Define ECHO in the Repository Editor.........coveveeveinene e 4-19
tryONCARRAY java Client Code.........cooevrerreneeiene e 4-21

Using the FML BUFfer TYPE......coiiiie et 4-23
tryOnFml.java Client Codecooeeieriene e 4-24

FML Field DEfiNitiONScccooveiiieieieceinecire e 4-24

Define PASSFML in the Repository Editor.........cccooeeeeienenineieen 4-25
tryONFMI.C SErver Codecovieirie it 4-27

Using the VIEW BUFfer TYPE.....ccviiiiireiiretrece s 4-30
simpview.java Clent COEc.eirerieneeree e e 4-30

VIEW Field DEfiNitioNScocoevirierire e 4-32

Define VIEW in the Repository Editor ..., 4-32
SIMPVIEW.C SEIVEr COUE.......cviieriiereie ettt 4-34
Multithreaded APPliCALTIONS.........ceieierie e 4-37
Threads Of CONLIOl ..o e 4-37
Preemptive Threadingccccoe v 4-38
Non-preemptive Threadingcooveveeeneee e 4-38

Using Jolt with Non-Preemptive Threading...........coccovennncincnenens 4-38
Using Threads for Asynchronous Behavior ..., 4-39
Using ThreadS With JOIt..........coco i 4-39
Event Subscription and NOtifiCationsS..........coievrenne v 4-44
APl for Event SUDSCIIPLIONcviueviieiiieee e e 4-44
Notification Event Handler............ccoeiiinc e 4-45
CONNECLION MOUES.......cecuieeiereeiie et e e e e e 4-46
Notification Data BUFfErS.........coceiieineine e e 4-46
Tuxedo Event SUDSCIIPLION ..o 4-47
Supported SUDSCIiPLON TYPES ..o e 4-47
Subscribing to NOtifiCatioNS.........c.vveviiii s 4-47
Unsubscribing from NOtifications. ... 4-48

Using the Jolt API to Receive Tuxedo Notifications............ccccocoveeeeenne 4-49
Clearing Parameter ValUES ..o ittt 4-51
REUSING ODJECES......oeiie ettt ettt et bbb b e 4-53

Vi Jolt Developer’s Guide

Application Deployment and Localization..............ccccovnciniccon e 4-57

Deploying a Jolt APPIEL.........ceiiireire e 4-57
Client CoNSIAEratioNS..........ccoeiviieeiiiiieeiee ettt et et e e 4-58
Web Server ConSiderations..........cooccceeieviiciecreeie e sre s sresree s 4-58
Localizing @ Jolt APPIELoveviieeiieeie e 4-59

Using JoltBeans

Overview Of JOIt BEANScccecuveiieceiete ettt st s er e e 5-2
JOIEBEANS TEIMS ... ve ettt ettt ettt e e ee e se e st e see st et e st e esae st enbenneenes 5-3
Adding JoltBeansto Y our Java Development Environment 5-4
Using Development and Runtime JOItBEaNS............ccooveeneevenineiniennienne 5-5
Basic Steps For UsiNg JOItBEEANS.........c.cvviireiieicire e 5-5
JavaBeans Events and TUXEdO EVENEScccvveriiine e 5-6
Using Tuxedo Event Subscription and Notification with JoltBeans... 5-6

How JoltBeans Use JavaBeans EVENLS..........cccoo e rerene e 5-7
The JOHBEANS TOOIKIL......cceeiieciie ettt ettt e st et ea e e 5-8
JOILSESSIONBEAN.ccuecutiie ittt ettt sttt et st eb st eaesnbeeae b s aeesreeanas 5-9
JOILSEIVICEBEAN......oe ettt era 5-10
JOItUSErEVENTBEAN ...ttt et b 5-11

JOIt AWAre GUI BEANS......c..ccuiciiciecieie ettt sttt sttt er e e 5-11
JOITEXIFIEIM. ...t e s n e e e 5-12
JOILADE ... e e e e s 5-12
o) OSSOSO 5-12
JOILCNECKDOX ... ittt ettt e st e 5-13
JOIECRNOICE. ...ci ettt et st et n e ere e 5-13

Using the Property List and the Property Editor to Modify the JoltBeans Properties
5-14

JoltBeans Class Library Walkthrough............ccooeiniininnneeseeneee 5-16
Building the Sample FOrM ... e 5-17
Placing JoltBeans onto the FOrm DeSIgnerocvveeereinceinceenne 5-18
Wiring the JoItBeans TOGELhErcocoievieeiiieiece e 5-25
Step 1: Wire the JoltSessionBean 10goNccoeereeneneneneeneninne 5-26
Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange

5-29
Step 3: Wire the accountl D JoltTextField asinput to the JoltServiceBean
USING JOItINPUEEVENLc..oieviiriietcietce et 5-33

Jolt Developer’s Guide Vil

viii

Step 4: Wire Button to JoltServiceBean using JoltAction 5-36
Step 5: Wire JoltServiceBean to the balance JoltTextField using

JOHOULPULEVENT ...ttt ettt 5-38

Step 6: Wire the JoltSessionBean 10goff ... 5-41

Step 7: Compilethe applet ..o 5-42
Running the Sample AppliCation ..o 5-43

Using the Jolt Repository and Setting the Property Values...........cocoveevenee. 5-43
JoltBeans Programming TasKScureureeireemrieinieiseese e s s e 5-46
Using Transactions with JOItBEANScocoeveeevereieniinecneereeeneieiins 5-47
Using Custom GUI Elements with the JoltService Bean............c.cccueeeee. 5-48

Using Servlet Connectivity for Tuxedo

What IS @ SEIVIEL? ...t e e e 6-2
How Servliets Work With JOIt..........coeeieiiiineie e 6-2
The Jolt Servliet ConNectiVity ClasseS.........ccvreireirie s e 6-3
Writing and Registering HTTP ServIets.........ccoovirininie s 6-4
Jolt Serviet CONNECLiVItY SAMPIEccorviiriie et e s 6-5
Viewing the Sample Serviet Applications...........coccuveevnieriniesnie s 6-5
SIMPAPP SAMPIE...c.ee ittt e e 6-5
Requirements for Running the Simpapp Sample........ccoceveernernens 6-6
Installing the SIMPAPP SaMPIE......covireeireee e 6-6
BanKAPD SAMPIE.....cvciiieeirietirie et ettt 6-8
Requirements for Running the Bankapp Sample.........ccccvevvnerneene 6-8
Installation INSIUCLIONS........cceiie i 6-8

AdMIN SAMPIE......oiiiii e e 6-10
Requirements for Running the Admin Sample.........c.coovvvnninienn 6-10
Installation INSIFUCLIONS........ccveieieieiee e e 6-10
Additional Information 0N SErVIELS.........ccvviereireie e 6-11

Using Jolt ASP Connectivity for Tuxedo

KBY FEALUIESo e e e e 7-2
ASP Connectivity Enhancements for JOltccocoevrennene i 7-2
How the Jolt ASP Connectivity for Tuxedo WOrKSccccoeieeiniienecene e 7-3
The ASP Connectivity for Tuxedo TOOIKItccovrririineircee s 7-6
Jolt ASP Connectivity for Tuxedo Walkthrough ..., 7-6

Jolt Developer’s Guide

Overview of the ASP for Tuxedo Walkthrough.............ccoeeviiiiiniinien 7-7

Getting Started CheCKITSt.........cviiiiieirer e 7-7
Overview of the TRANSFER SEIVICE.......cocoiniienicer ittt 7-9
TRANSFER Request WalKthrough.............coviiiininicc e 7-10
Initializing the Jolt Session POOl MaNagercocovvevrevenie e 7-10
Submitting a TRANSFER Request from the Client...........ccoooevieenennn. 7-13
Processing the REQUESEcciriircirecrieteeere e 7-15
Returning the Resultsto the CHENtcoccvieene e 7-17

A. Tuxedo Errors
TUXEUO ETTOIS. ...ttt ettt e ettt e et e et e s saae e e se e s saseesssaessreeesan A-2

B. System Messages

JOIt SYSLEM MESSAGESccveveriie sttt sttt B-2
REPOSITONY MESSAJES.... e ittt sttt sttt ettt et B-13
FML Error MESSAgES........occoiveiieiieii sttt e e e e B-15
INFOrMEtiON MESSAGEScveeiee ettt ettt ettt B-17
Jolt Relay Adapter (JRAD) MESSAJES.ccereeririerireeririeresieresier e e s B-18
Jolt Relay (JRLY) MESSAGEScouveriiereie ettt e B-24
Bulk Loader Utility MESSBgES........coreeuireeriieriieteiet sttt st B-30
Index

Jolt Developer’s Guide iX

X Jolt Developer’s Guide

CHAPTER (

1 Introducing BEA Jolt

BEA Jolt isa Java-based interface to the BEA Tuxedo system that extends the
functionality of existing Tuxedo applications to include Intranet- and Internet-wide
availability. Using Jolt, you can now easily transform any Tuxedo application so that
its services are available to customers using an ordinary browser on the Internet. Jolt
interfaces with existing and new Tuxedo applications and services to allow secure,
scalable, Intranet/Internet transactions between client and server. Jolt allows you to
build client applications and applets that can remotely invoke existing BEA Tuxedo
services, alowing application messaging, component management, and distributed
transaction processing.

Sincethesetasks are done in the Jolt API and the Jolt Repository Editor using the Java
programming language, the Jolt documentation assumes a familiarity with BEA
Tuxedo and Java programming. This documentation isintended for system
administrators, network administrators and developers.

“Introducing BEA Jolt” covers the following topics:
¢ What is BEA Jolt?
¢ Key Features
4 How It Works
4 Jolt Servers
Jolt Class Library
JoltBeans
ASP Connectivity for Tuxedo
Jolt Server and Jolt Client Communication
Jolt Repository

* & & & > o

Jolt Internet Relay

BEA Jolt Developer’'s Guide 1-1

1

Introducing BEA Jolt

What is BEA Jolt?

1-2

BEA JoltisaJavaclasslibrary and API that provides an interfaceto BEA Tuxedo and
WLE from remote Java clients. BEA Jolt consists of several components for creating
Javarbased client programs that access Tuxedo services. These Jolt components are as
follows:

L4

Jolt Server s—One or more Jolt servers listen for network connections from
clients, trandlate Jolt messages, multiplex multiple clients into a single process,
and submit and retrieve requests to and from Tuxedo-based applications running
on one or more Tuxedo servers.

Jolt Class Library—The Jolt class library is a Java package containing the class
files that implement the Jolt API. These classes enable Java applications and
applets to invoke BEA Tuxedo services. The Jolt classlibrary includes
functionality to set, retrieve, manage and invoke communication attributes,
notifications, network connections, transactions, and services.

JoltBeans—BEA JoltBeans provides a JavaBeans compliant interface to BEA
Jolt. JoltBeans are Beans components that can be used in JavaBeans-enabled
Integrated Devel opment Environments (IDEs) to construct BEA Jolt clients. Jolt
Beans consists of two sets of Java Beans: JoltBeanstoolkit (a
JavaBeans-compliant interface to BEA Jolt that includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean) and Jolt GUI beans (which consist of
Jolt-aware AWT and Swing-based beans).

Jolt Repository—A central Jolt Repository contains definitions of BEA Tuxedo
services. These Repository definitions are used by Jolt at runtime to access
Tuxedo services. You can export services to a Jolt client application or unexport
services by hiding the definitions from the Jolt client. Using the Repository
Editor, you can test new and existing BEA Tuxedo services independently of the
client applications.

Jolt Internet Relay—The Jolt Internet Relay is a component that routes
messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler
(JSH). This eliminates the need for the JSH and Tuxedo to run on the same
machine as the Web server. The Jolt Internet Relay consists of the Jolt Relay
(JRLY) and the Jolt Relay Adapter (JRAD).

BEA Jolt Developer’s Guide

Key Features

Key Features

With BEA Jolt, you can leverage existing Tuxedo servicesand extend your transaction
environment to the corporate intranet or world-wide Internet. The key feature of the
Jolt architectureisitssimplicity. Using Jolt, you can build, depl oy and maintain robust,
modular, and scal abl e el ectronic commerce systems that operate over the Internet.

BEA Jolt includes the following features:

L4

Java-based API for Simplified Development—With its Java-based API, BEA
Jolt simplifies application design by providing well-designed object interfaces.
Jolt supports the Java Devel oper’s Kit (JDK) 1.2 and is fully compatible with
Java threads. Jolt enables Java programmers to build graphical front-ends that
use the Tuxedo application and transaction services without the need to
understand detailed transactional semantics or without having to rewrite existing
Tuxedo applications.

Pure Java Client Development—Using Jolt, you can build a pure Java client
that runs in any Java-enabled browser. Jolt automatically converts from Javato
native BEA Tuxedo data types and buffers, and from Tuxedo back to Java. Asa
pure Java client, your applet or application does not need resident client-side
libraries or installation; thus, you can download client applications from the
network.

Easy Accessto Tuxedo Servicesvia Jolt Repository—The BEA Jolt
Repository facilitates Java application development by managing and presenting
BEA Tuxedo service definitions that you can usein your Javaclient. A Jolt
repository bulk loading utility lets you quickly integrate your existing Tuxedo
servicesinto the Jolt development environment. Jolt and Tuxedo simplify
network and application scalability, while encouraging the reuse of application
components.

GUI-based Maintenance and Distribution of Tuxedo Services—The Jolt
Repository Editor lets you manage BEA Tuxedo service definitions such as
service names, inputs and outputs. The Jolt Repository Editor provides support
for different input and output names for services defined in the Jolt Repository.

Encryption for Secure Transaction Processing—BEA Jolt allows you to
encrypt data transmitted between Jolt clients and the JSL/JSH. Jolt encryption

BEA Jolt Developer’s Guide 1-3

1 introduc ng BEA Jolt

addresses the issue of security that is essential for secure Internet transaction
processing.

4 Added Security via Internet Relay—BEA Jolt features an Internet Relay
component that allows network administrators to separate their Web Server and
Tuxedo application server. Web servers are generally considered insecure as
they often exist outside a corporate firewall. The Jolt Internet Relay gives you
greater flexibility to locate your BEA Tuxedo server in a secure location or
environment on your network, yet still be able to handle transactions from Jolt
clientson the Internet.

4 Event Subscription Support—Jolt Event Subscription is used to receive event
notifications from either Tuxedo services or other Tuxedo clients. Jolt Event
Subscription lets you handle two types of Tuxedo application events:

4 Unsolicited Event Notifications. A Jolt client can receive these notifications
when a Tuxedo client or service subscribes to unsolicited events and a
Tuxedo client issues a broadcast or a directly targeted message.

4 Brokered Event Notifications. The Jolt client receives these notifications via
the Tuxedo Event Broker. The Jolt client receives these notifications only
when it subscribesto an event and any Tuxedo client or server posts an
event.

1-4 BEA Jolt Developer’s Guide

How It Works

How It Works

BEA Jolt connects Java clients to applications built using the BEA Tuxedo system.
The Tuxedo system provides a set of modular services, each offering specific
functionality related to the application as awhole. (Figure 1-1 illustrates the
end-to-end view of the BEA Jolt architecture, as well asrelated Tuxedo components
and their interactions.) For example, asimple banking application might have services
such as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service
requests areimplemented in C or COBOL as a sequence of callsto aprogram library.
Accessing alibrary from a native program meansinstalling the library for the specific
combination of CPU and operating system release on the client machine, a situation
that Java was expressly designed to avoid. The Jolt Server implementation acts as a
proxy for the Jolt client, invoking the Tuxedo service on behalf of the client. The BEA
Jolt Server accepts reguests from the Jolt clients and maps those requests into Tuxedo
service requests.

BEA Jolt Developer’s Guide 1-5

1 introduc ng BEA Jolt

Figure1l-1 BEA Jolt Architecture

CUENT

Java-endaled
ek Browser

HTML, Applet, and
Jolt Code

Java Virtual Machine

Jalt
ppletfApplication

BEA Jolt
Class Library

Inter net

BEA Jott
Transact ion Protocal

BEA Jolt Server

Jolt Server Listener
Jolt Semer Handler
Repository Server

BEA Jolt |
Connectivity]
Module :
BEA Jolt

Repository

SERVER

Amlication Serwver

BEA Tie do
[N LIRY Service

DEPOSIT Service

Legacy
Aooess Sendces

databases

Jolt Servers

TheJolt Server has several componentsthat act in concert to pass Jolt client transaction
processing requests to the Tuxedo application. The components are as follows:

4 Jolt Server Listener (JSL). The JSL handles the initial Jolt client connection,
and is responsible for assigning a Jolt client to the Jolt Server Handler.

4 Jolt Server Handler (JSH). The JSH manages network connectivity, executes
service requests on behalf of the client and translates Tuxedo buffer data into the
Jolt buffer and vice versa.

4 Jolt Repository Server (JREPSVR). The JREPSVR retrieves Jolt service
definitions from the Jolt Repository and returns the service definitions to the
JSH. The JREPSVR aso updates or adds Jolt service definitions.

BEA Jolt Developer’s Guide

How It Works

The following figure illustrates the Jolt Server and Jolt Repository components.

Figure1-2 Jolt Server Components

Jolt Server and Repository Tuxedo
IT
Jﬁl;r?g Irevrer Repository Tuxedo
(SH) Services
on
Application
| - Server
Jolt Server Jolt Repository
Listener Server
(JSL) (JREPSVR)

Jolt Class Library

The BEA Jolt Class Library isaset of classes you can usein your Java application or
applet to make service requeststo the Tuxedo system from aJavaenabled client. These
Jolt classes allow you to access Tuxedo transaction services using objects.

When devel oping a Jolt client application, you only need to know about the classesthat
Jolt provides and the Tuxedo services that are exported by the Jolt Repository. Jolt
hides the underlying application details. Using Jolt and Jolt’ sClass Library, you do not
need to understand: the underlying transactional semantics, the language in which the
services were coded, buffer manipulation, the location of services, or the names of
databases used.

The Jolt API isaJavaclass library and has the benefits that Java provides: appletsare
downloaded dynamically and are only resident during runtime. Asaresult, thereisno
need for client installation, administration, management, or version control. If services
are changed, the client application becomes aware of the changes at the next call to the
Jolt Repository.

BEA Jolt Developer’s Guide 1-7

Introducing BEA Jolt

The following figure shows the flow of activity from a Jolt client to and from the
Tuxedo system. The call-out numbers correspond to descriptions of the activity in the
table that follows.

Figure 1-3 Usingthe Jolt ClassLibrary to access Tuxedo services

1, 2 connection
CLIENT -+ » \Web Server HOST

JAVA-Enabled Tuxedo Environment
Web Browser

3 i Application Servd
JAVAVM g connection

6
Application connection/request Jolt request
Code Server reply I

4,5

Jolt
Class Library

BEA Jolt
Repository

contains Tuxedo
service definitions

Run-Time

Thefollowing table briefly describes the flow of activity involved in using the Jolt
Class Library to access Tuxedo services.

Table 1-1 Usingthe Jolt ClassLibrary

Process Step Action
Connection 1 A Java enabled Web browser downloads an HTML page using
the HTTP protocol.
2 A Jolt applet is downloaded and executed in the Java Virtua
Machine on the client.
3 Thefirst Java applet task is to open a separate connection to the
Jolt Server.
Request 4 The Jolt client now knows the signature of the service (such as,

name, parameters, types) and can build a service request object
based on Jolt class definitions, and make a method call.

BEA Jolt Developer’s Guide

How It Works

Table 1-1 Usingthe Jolt ClassLibrary

5 The request is sent to the Jolt Server, which trand ates the Java
based request into a Tuxedo request and forwards the request to
the Tuxedo environment.

Reply 6 The Tuxedo system processes the request and returns the
information to the Jolt Server, which translatesit back to the Java
applet.

JoltBeans

BEA Jolt now includes JoltBeans, Java beans components that you can usein a
Java-enabled integrated devel opment environment (IDE) to construct BEA Jolt clients.
Using JoltBeans, you can create Jolt client applications with the ease of using typical
JavaBeans. Y ou can use popul ar JavaBeans-enabled development toolslike Symantec
Visual Café to graphically construct client applications.

BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt. A fully
functional BEA Jolt client can be developed without writing any code. Y ou can drag
and drop JoltBeans from the component palette of a development tool and position
them on the Javaform (or forms) of the Jolt client application you are creating. You
can populate the properties of the beans and graphically establish event source-listener
relationships between various beans of the application or applet. Typically, the
development tool is used to generate the event hook-up code, or you can code the
hook-up manually. Client development using JoltBeansisintegrated with the BEA Jolt
repository, providing easy access to available BEA Tuxedo functions.

ASP Connectivity for Tuxedo

The Jolt ASP Connectivity for Tuxedo Toolkit is an extension to the Jol Java class
library. The Toolkit allowsthe Jolt client classlibrary to be used in aWeb server, such
as the Microsoft Internet Information Server (11S), to provide an interface between
HTML clients or browsers, and Tuxedo services.

The Jolt ASP Connectivity for Tuxedo provides an easy-to-useinterfacefor processing
and generating dynamic HTML pages. Y ou do not need to learn how to write Common
Gateway Interface (CGI) transactional programs to access Tuxedo services.

BEA Jolt Developer’s Guide 1-9

1

Introducing BEA Jolt

Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt client
using the BEA Jolt Protocol. The communication process between the Jolt Server and
the Jolt client applet or applications functions as follows:

1. Tuxedo service requests and associated parameters are packaged into a message
buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message, and performs any data
conversions necessary, such as numeric format conversions or character set
conversions.

3. The Jolt Server makes the appropriate service reguest to the application service
requested by the Jolt client.

4. Once aservice reguest entersthe BEA Tuxedo system, it is executed in exactly
the same manner as requests issued by any other Tuxedo client.

5. Theresults are then returned to the BEA Jolt Server, which packages the results
and any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client
interface objects, completing the request.

Jolt Repository

1-10

The Jolt Repository is a database where Tuxedo services are defined, such as name,
number, type, parameter size, and permissions. The Repository functions as a central
database of definitions for Tuxedo services and permits new and existing Tuxedo
servicesto be made availableto Jolt client applications. A Tuxedo application can have
many services or service definitions such as ADD_CUSTOMER,
GET_ACCOUNTBALANCE, CHANGE _LOCATION, and GET_STATUS. All or
only afew of these definitions may be exported to the Jolt Repository. Within the Jolt
Repository, the devel oper or system administrator can export these servicesto the Jolt
client application.

All Repository services that are exported to one client are exported to all clients.
Tuxedo handles the cases where subsets of services may be needed for one client and
not others. Figure 1-4 illustrates how the Jolt Repository brokers Tuxedo servicesto

BEA Jolt Developer’s Guide

How It Works

multiple Jolt client applications. The diagram shows four Tuxedo services, however
the WITHDRAW serviceisnot defined in the Repository and the TRANSFER service
is defined but not exported.

Figure 1-4 Distributing Tuxedo Services via Jolt

Jolt Client

Tuxedo Application

Jolt Repository

éppl[cation Services DEPOSIT, INQUIRY
ervices .
INQUIRY DEPOSIT Jolt Client
DEPOSIT INOUIRY Application
WITHDRAW Q DEPOSIT, INQUIRY
TRANSFER :

TRANSFER

Jolt Repository Editor

The Jolt Repository Editor isaJava-based GUI administration tool that givesthe
application administrator access to individual BEA Tuxedo services. With the Jolt
Repository Editor you can define, test, and export servicesto Jolt clients.

Note: The Jolt Repository Editor only controls servicesfor Jolt client applications. It
cannot be used to make changes to the Tuxedo application.

The Jolt Repository Editor letsyou extend and distribute Tuxedo servicesto Jolt clients
without having to modify many lines of code. With the Jolt Repository Editor, you can
modify parameters for Tuxedo services, logically group Tuxedo services into
packages, and remove services from created packages. Y ou can al so make the services
available to browser-based Jolt applets or Jolt applications by exporting the services.

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to the
Jolt Server. The Jolt Internet Relay consists of the Jolt Relay (JRLY') and the Jolt
Relay Adapter (JRAD). JRLY is a stand-al one software component that routes Jolt
messages to the Jolt Relay Adapter. Requiring only minimal configuration to allow it
to work with Jolt clients, the Jolt Relay eliminates the need for the Tuxedo system to
run on the same machine as the Web server.

BEA Jolt Developer's Guide 1-11

1 introduc ng BEA Jolt

How to Jolt your Tuxedo Applications

The JRAD isaTuxedo system server, but does not include any Tuxedo services. It
requires command-line arguments to allow it to work with the JSH and the Tuxedo
system. JRAD receives client requests from JRLY, and forwards the request to the
appropriate JSH. Replies from the JSH are forwarded back to the JRAD, which sends
theresponse back tothe JRLY . A single Jolt Internet Relay (JRLY/JRAD pair) handles
multiple clients concurrently.

The following steps show just how quickly and easily Jolt clients can be created and
deployed.

1. Begin the process with a Tuxedo system application.

For information about installing Tuxedo and creating a Tuxedo application, refer
to the Tuxedo documentation set.

2. Ingtal the Jolt system.
Refer to Installing the BEA Tuxedo System.

3. Configure and define services using the Jolt Repository Editor or the Bulk
L oader.

For information regarding configuring the Jolt Repository Editor and making
Tuxedo services available to Jolt, refer to: Appendix B, “ System Messages”

4. Create a client application using the Jolt Class Library.

The following documentation shows you how to program your client application
using the Jolt Class Library:

4 "Using the Jolt Class Library"
4 API Reference in Javadoc

5. Run the Jolt-based client applet or application.

1-12 BEA Jolt Developer’s Guide

How to Jolt your Tuxedo Applications

Figure1-5 Creating a Jolt Application

Creating a new Tuxedo

Application? Have an Existing Tuxedo
N OB BN BN BN OB BN BN BN B BN Application?
| Design Your Application | el il iy :
Services | Tuxedo Application is Installed .
|

Write/Deploy Your Application and |
| Tuxedo Services J

(Install Jolt)

|
(Start Your Tuxedo Application

J L

Decide which Tuxedo Services to
Make Available to Jolt

J b
Use Repository Editor to Define

Services Available from Jolt

Program Client using Jolt
(Test Each Service ’ Class Library
Make Jolt classes available
Export Services) (i.e., via the Web)

Your Jolt Application is
Ready to Run

BEA Jolt Developer's Guide 1-13

1 introduc ng BEA Jolt

1-14 BEA Jolt Developer’'s Guide

CHAPTER

>

2

Bulk Loading Tuxedo
Services

Asasystems administrator, you may have an existing Tuxedo application with
multiple Tuxedo services. Manually creating these definitions in the repository
database may take hours to complete. The Jolt Bulk Loader isacommand utility that
allows you to load multiple, previously defined Tuxedo servicesto the repository
database in asingle step. Using the j bl d program, the bulk loader utility reads the
Tuxedo service definitionsfrom the specified text file and bulk loads them into the Jolt
Repository. The services areloaded to therepository databasein one“bulk load.” After
the services have populated the Jolt Repository, you can create, edit, and group
services using the Jolt Repository Editor.

“Bulk Loading Tuxedo Services’ covers the following topics:
¢ Using the Bulk L oader

4 Syntax of the Bulk Loader Data Files

4 Troubleshooting

¢ Sample Bulk Load Data

BEA Jolt Developer’s Guide 2-1

2 Bulk Loadi ng Tuxedo Services

Using the Bulk Loader

Thej bl d program is a Java application. Before running thej bl d command, set the
CLASSPATH environment variable (or its equiva ent) to point to the directory wherethe
Jolt classdirectory (i.e.,jolt.jar and jol tadnin.jar)islocated. If it isnot set,
the Java Virtual Machine (JVM) cannot locate any Jolt classes.

For security reasons, j bl d does not use command-line arguments to specify user
authentication information (user password or application password). Depending onthe
server’s security level, j bl d automatically prompts the user for passwords.

Thebulk loader utility getsitsinput from command-line arguments and from the input
file.

To Activate The Bulk Loader

Type the following at the prompt (with the correct options):

java bea.jolt.admn.jbld [-n][-p package][-u nanme][-r role] addr
file

Command Line Options
The following table describes the bulk loader command-line options.

Table2-1 Bulk Loader Command-line Options

Option Description

-u usrnane Specifies the user name (default is your account
name). (Mandatory if required by security)

-r usrrole Specifiesthe user role (default is admin). (Mandatory
if required by security)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

-p package Repository package name (default: BULKPKG)

2-2 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files

Table 2-1 Bulk Loader Command-line Options

Option Description

/I host : port Specifiesthe JRLY or JSL address (host name and IP
port number). (Mandatory)

fil enanme Specifies the file containing the service definitions.
(Mandatory)

About the Bulk Load File

The bulk load fileis atext file that defines services and their associated parameters.
The bulk loader loads the services defined in the bulk |oader file into the repository
using the package name “BULKPKG” by default. The - p command overrides the
default and you can give the package any name you choose. If another load is
performed from a bulk loader file with the same - p option, al the servicesin the
original package are deleted and a new package is created with the services from the
new bulk loader file.

If a service existsin a package other than the package you name that uses the - p
option, the bulk loader reports the conflict and does not load a service from the bulk
loader fileinto the repository. Use the Repository Editor to remove duplicate services
and load the bulk loader file again. See "Using the Jolt Repository Editor" for
additional information.

Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a set
number of parameter properties. Each property isrepresented by akeyword and a
value.

Keywords are divided into two levels:
4 Service-level

¢ Parameter-level

BEA Jolt Developer’s Guide 2-3

2 Bulk Loadi ng Tuxedo Services

Guidelines for Using Keywords

Thej bl d program reads the service definitions from atext file. To use the keywords,
observe the guidelinesin the following table.

Table 2-2 Guidelinesfor Using Keywords

Guideline Example

Each keyword must befollowed Correct: t ype=stri ng
by an equal sign (=) and the Incorrect: t ype

value.

Only onekeywordisalowedon Correct: type=string
each line. Incorrect: t ype=string access=out

Any lines not having an equal Correct: type=string
sign (=) areignored. Incorrect: type string

Certain keywords only accepta The keyword access accepts only these values: in,

well defined set of values. out, inout, noaccess
The input file may contain servi ce=l NQUI RY
multiple service definitions. <service keywords and val ues>

servi ce=DEPCSI T

<service keywords and val ues>
servi ce=W THDRAWAL

<service keywords and val ues>
ser vi ce=TRANSFER

<service keywords and val ues>

Each service definition consists ~ ser vi ce=deposi t
of multiple keywords and export =true
values. i nbuf =VI EWB2

out buf =VI EV82

i nvi ew=l NVI EW

out vi ew=QUTVI EW

2-4 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files

Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the datafilesto ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be theinitial

ser vi ce=<NAME> keyword definition (shown in the following listing). Following the
ser vi ce=<NAME> keyword, al of the remaining service keywords that apply to the
named service must be specified before the first par am=<NAMVE> definition. These
remaining service keywords can bein any order.

All the parameters associated with the service must be specified. Following each of the
par am=<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify anew ser vi ce=<NAVE> keyword definition.

Listing2-1 Correct Example of Hierarchical Order in a Data File

ser vi ce=<NAME>

<servi ce keywor d>=<val ue>
<servi ce keywor d>=<val ue>
<servi ce keywor d>=<val ue>
par amF<NAME>

<paramet er keywor d>=<val ue>
<paramet er keywor d>=<val ue>
par amF<NAME>

<paramet er keywor d>=<val ue>
<paramet er keywor d>=<val ue>

Using Service-Level Keywords and Values

A service definition must begin with the “ service=" keyword. Services using
CARRAY or STRING buffer types should only have one parameter intheservice. The
recommended parameter name for aCARRAY serviceis“CARRAY” with “ carray”
as the data type. For a STRING service, the recommended parameter nameis
“STRING” with “string” asthe datatype.

BEA Jolt Developer’s Guide 2-5

2 Bulk Loadi ng Tuxedo Services

To review the service-level keywords and val ues, see Table 2-3.

Table 2-3 Service-L evel Keywords and Values

Keyword Value

service Any Tuxedo service name

export true or false (default isfalse)

inbuf/outbuf Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY
X_OCTET
X_COMMON

X_C_TYPE

inview Any view namefor input parameters (optional ; only
if VIEW or VIEW32 or X_COMMON or
X_C_TYPE buffer typeis used)

outview Any view name for output parameters (optional)

2-6 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files

Using Parameter-Level Keywords and Values

A parameter beginswith the “param="keyword followed by a number of parameter
keywords. It ends when another “param” or “service” keyword, or end-of-fileis
encountered. The parameters can be in any order after the “param” keyword.

Review the parameter-level keywords and valuesin the following table.

Table 2-4 Parameter-Level Keywords and Values

Keyword

Values

param

Any parameter name

type

byte
short
integer
float
double
string
carray

access

in

out

inout
noaccess

count

Maximum number of occurrences (default is1). The
valuefor unlimited occurrencesis0. Used only by the
Repository Editor to format test screens.

BEA Jolt Developer’s Guide 2-7

2 Bulk Loadi ng Tuxedo Services

Troubleshooting

If you encounter any problems using the bulk loader utility, see the following table.
For acompletelist of bulk loader utility error messages and sol utions, see Appendix B,

“System Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If... Then...
The datafileis not found Check to ensure that the path is correct
The keyword isinvalid Check to ensure that the keyword isvalid for

the package, service, or parameter

The value of the keyword is null Type avalue for the keyword

Thevaueisinvalid Check to ensurethat the val ue of a parameter
iswithin the allocated range

The datatypeisinvalid Check to ensurethat the parameter isusing a
valid datatype

2-8 BEA Jolt Developer’s Guide

Sample Bulk Load Data

Sample Bulk Load Data

The following listing shows a sample datafilein the correct format using the UNIX
command cat servi cefil e. This example loads TRANSFER and PAY ROLL
service definitions to the BULKPKG.

Listing 2-2 Sample Bulk L oad Data

ser vi ce=TRANSFER
export=true

i nbuf =FML

out buf =FML

par anFACCOUNT_| D
type=i nt eger
access=in
count =2

par am=SAMOUNT
type=string
access=in

par amFSBALANCE
type=string
access=out
count =2

par anFSTATLI N
type=string
access=out

servi ce=LOG N
i nbuf =VI EW

i nvi ew=LOG NS
out vi ew=LOd NR
export=true
par amFuser
type=string
access=in

par amrFpasswd
type=string
access=in

par anrt oken

t ype=i nt eger
access=out

BEA Jolt Developer’s Guide 29

2

Bulk Loading Tuxedo Services

2-10

servi ce=PAYROLL
i nbuf =FML

out buf =FM.

par amFEMPLOYEE_NUM
t ype=i nt eger
access=in

par anFSALARY
type=f | oat
access=i nout

par anFH RE_DATE
type=string
access=i nout

BEA Jolt Developer’s Guide

CHAPTER

>

3

Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete Tuxedo service
definitions from the Repository based on the information available from the Tuxedo
configuration file. The Jolt Repository Editor accepts Tuxedo service definitions,
including the names of the packages, services, and parameters.

“Using the Jolt Repository Editor” coversthe following topics:
Introduction to the Repository Editor

Getting Started

Main Components of the Repository Editor

Setting Up Packages and Services

Grouping Services Using the Package Organizer
Modifying Packages/Services/Parameters

Making a Service Available to the Jolt Client

Testing a Service

* & & & & O > o o

Troubleshooting

BEA Jolt Developer’s Guide 31

3 Us ng the Jolt Repository Editor

Introduction to the Repository Editor

The Jolt Repository isused internally by Jolt to translate Java parameters to a Tuxedo
type buffer. The Repository Editor is available as a downloadable Java applet. When
a Tuxedo service is added to the repository, it must be exported to the Jolt server to
ensure that the client requests can be made from a Jolt client.

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command buttons,
status, and radio buttons. Thefollowing figureillustrates the parts of asamplewindow.
Details are explained in the “ Repository Editor Window Parts’ table.

3-2 BEA Jolt Developer’s Guide

Introduction to the Repository Editor

Figure3-1 Sample Repository Editor Window

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services

Editing existing service in package: BANKAFPP

Service MName
Input Buffer Type
Input Wiew Mame
Cutput Buffer Type

Cutput View Mame

Export Status

Service level actions

WITHDRAWAL
FrL hd
FriL =~

" Unexport (8 Export

Save Ser\xicel Testl Elackl

Farameters

FORMMAM
SAMOLUIMNT
SBALANCE
STATLIM

Farameter level actions

New. | Edit | Delets |

BEA Jolt Developer’s Guide

3 Us ng the Jolt Repository Editor

Repository Editor Window Description

The following table detail s the parts of the Repository Editor window shown in the
previous figure.

Table 3-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “ Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previousfigure, “Input Buffer Type” or “ Output
Buffer Type.”

3 Display list Select fromalist of predefined itemssuch asthe Parameterslist

or select from alist of items that have been defined.

4 Command buttons Activate an operation such as display the Packages window,
Serviceswindow, or Package Organizer. In the previousfigure,
command buttons include: “Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Status View the current status of the Repository Editor service or
package. (Thisitem does not appear in the previous figure.)

6 Radio buttons Select one of anumber of options. Only oneof theradio buttons
can beactivated at atime. For example, Export Status can only
be “Unexport” or “Export.”

3-4 BEA Jolt Developer’s Guide

Getting Started

Getting Started

Before starting the Repository Editor, make sure you have installed all the necessary
Jolt components (at least the Jolt Server and the Jolt Client). To use the Repository
Editor, you must:

4 Start the Repository Editor.
4 Log on to the Repository Editor.

Note: For information on exiting the Repository Editor after you have entered
information, refer to “ Exiting the Repository Editor” in this chapter.

Start the Repository Editor from either the JavaSoft appl et vi ewer or from your Web
browser.

Starting the Repository Editor Using the Java Applet
Viewer

To start the editor using the Java Applet Viewer:
1. Set the CLASSPATH to include the Jolt class directory.

2. If loading the applet from alocal disk, type the following at the URL location:
appl etvi ewer <full-pathname>/ RE. ht n

If loading the applet from the Web server, type the following at the URL
location:

appl etvi ewer http://<ww. server>/<URL pat h>/ RE. ht

3. Press Enter. The Repository Editor logon window displays.

Starting the Repository Editor Using Your Web Browser

To start the Repository Editor from aloca file:

BEA Jolt Developer’s Guide 3-5

3 Us ng the Jolt Repository Editor

1. Setthe CLASSPATH to include the Jolt class directory.
2. Typethefollowing:
file:<full-pathnane>/ RE. ht n
To start the Repository Editor from a Web server:
1. Ensure that the CLASSPATH does not include the Jolt class directory
2. Unset the CLASSPATH.
3. Typethefollowing:

http://<ww. server >/ <URL pat h>/ RE. ht m

Note: Before opening the file, modify the appl et codebase parameter in
RE. ht m to match your Jolt Java classes directory.

4. Press Enter. The Repository Editor logon window displays.

Logging on to the Repository Editor

3-6

After starting the Jolt Repository Logon Editor, follow the directionsto log on:

1. Type the name of the server machine designated as the “ access point” to the
Tuxedo application and select the Port Number text field.

2. Typethe Port Number and press Enter. The system validates the server and port
information.

Note: Unlessyou arelogging on through the Jolt Relay, the same port number is
used to configure the Jolt Listener. Refer to your UBBCONFI Gfile for
additional information.

3. Typethe Tuxedo Application Password and press Enter. Based on the
authentication level, type the remaining information.

4. Typethe Tuxedo User Name and press Tab.

5. Type the Tuxedo User Password and press Enter.
Note: SeetheJol t Sessi ond ass for additional information.

The Packages and Ser vices options are activated.

BEA Jolt Developer’s Guide

Getting Started

The following figure is an example of the Repository Editor logon window.

Figure3-2 Repository Editor L ogon Window

i Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server:
Fort Mumber:

User Role:

Application Password:

User Mame:

User Password:

FPackages

shawallkear

55557

joltadmin

Services Log Off

Repository Editor Logon Window Description

The following listing details the Repository Editor logon window.

Option Description

Server The server name.

BEA Jolt Developer’s Guide

3-7

3 Us ng the Jolt Repository Editor

Port Number The port number in decimal value.

Note: After the Server Name and Port Number are entered,
the User Name and Password fields are activated.
Activation is based on the authentication level of the
Tuxedo application.

User Role

Application Tuxedo administrative password text entry.

Password

User Name Tuxedo user identification text entry. Thefirst character must be an
alpha character.

User Password Tuxedo password text entry.

Packages This button accesses the Packages window. (Enabled after the
logon.)

Services This button accesses the Services window. (Enabled after the
logon.)

Log Off This button terminates the connection with the server.

Exiting the Repository Editor

Exit the Repository Editor when you are finished adding, editing, testing, or deleting
packages, services, and parameters. The following figure is an example of the
Repository Editor window before exiting. Only Packages, Services, and L og Off are
enabled. All text entry fields are disabled.

3-8 BEA Jolt Developer’s Guide

Getting Started

Figure3-3 Example of the Repository Editor Logon Window Befor e Exiting

i Applet Viewer: bea jolt. admin RE class
Applet

BEA Jolt Repository Editor

Server: skywalker
Fart Mumber: 85557

User Role: joltadmin
Application Password:
User Mame:

User Password:

Fackanes || Semices IWaye ol

To exit the Repository Editor:
1. Select Back from a previous window to return to the L ogon window.

2. Select Log Off to terminate the connection with the server. The Repository
Editor Logon window continues to display with disabled fields.

3. Select Close from your browser menu to remove the window from your screen.

BEA Jolt Developer’s Guide 39

3 Us ng the Jolt Repository Editor

Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

4 Packages
4 Services
¢ Parameters

In addition, you can test and group Services.

Repository Editor Flow

After logging on to the Repository Editor, two options are enabled, Packages and
Services. The following figure illustrates the Repository Editor flow to help you
determine which button to select.

3-10 BEA Jolt Developer’s Guide

Main Components of the Repository Editor

Figure3-4 Repository Editor Flow Diagram

Fackage

W o
Fackage Vicw
Crganizer

& Services
|

Logon to the Repository Move Add
Editor. Service Package Export
Determine
which Delete
tasks to Pack@e
complate.

f : ; e

dit Service
or Parameter

Add

Service or
Parameter

Delete
Service or
FParameter

Select Packages to perform the following functions:

4 View packages and services
4 Make aservice available using Export or Unexport
¢ Select apackageto delete

4 Accessthe Package Organizer to:
4 Move services from one package to another

4 Create anew package

BEA Jolt Developer's Guide 3-11

3 Us ng the Jolt Repository Editor

Select Services to access the Services window and perform the following functions:
4+ Create, add, edit, or delete service definitions
¢ Create, add, edit, or delete parameters

¢ Test the services and parameters

What is a Package?

3-12

Packages provide a convenient method for grouping services for Jolt administration.
A serviceis comprised of parameters, including pin number, account number,
payment, rate, term, age, or Social Security number. The Pack ages button can be used
to:

4 View packages and services

4 Export or unexport services

¢ Delete packages

4 Access Package Organizer to:
4 Move services

¢ Create anew package

The available packages are displayed. When a package is sel ected, the services
contained within a package display.

Thefollowing figure is an example of a Packages window.

BEA Jolt Developer’s Guide

Main Components of the Repository Editor

Figure3-5 Highlighted Package with Services

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]
Applet

BAN KA,
BULKPKG
SIMPSERY

Fackage Qrganizer | Export | nexpart | reletE | Elackl

Packages

Packages

Services

DEFOSIT
INGILIRY
TRAMSFER
W THDRAWMAL

Packages Window Description

The following listing describes the Packages window options.

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Moves the services among the packages or
adds a new package.

BEA Jolt Developer's Guide 3-13

3 Us ng the Jolt Repository Editor

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. Thisoptionis
enabled when a package is sel ected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the

package).

Instructions for Viewing a Package

1. To view the packages, select Packages from the Logon window. The Packages
window displays.

2. The packages are displayed in the Packages display list. In Figure 3-5,
BANKAPP, BULKPKG, and SIMPSERV are the available packages.

3-14 BEA Jolt Developer’s Guide

Main Components of the Repository Editor

What is a Service?

A serviceis adefinition of an available Tuxedo service. Servicesinclude parameters
such as pin number, account number, payment, and rate. Adding or editing a Jolt
service does not affect an existing Tuxedo service. Use the Services window to add,
edit, or delete services. The following figure is an example of a Services window
showing the available services for the package selected.

Figure3-6 Services Window

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]

Applet
Services

Packanes

BAMKAPP

BULKPKG

SIMPSERY

Semices Farameters
ACCOUNT_ID
FORMMAM
SBALAMCE
STATLIN

Mew.. | Edit..| Delete | Back |

BEA Jolt Developer's Guide 3-15

3 Us ng the Jolt Repository Editor

Services Window Description

The following table describes the Services window options:

Option Description

Packages Lists the services and parameters for the select package. Select the
package to add a new service, edit, or delete a service.

Services Lists aservice in the package to edit or delete. Selecting a service
displays the parameters within the service.

Parameters Displays selected service parameters.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
Thisbutton is enabled only if a service has been selected.

Delete Deletes aservice. This button isonly enabled if a service has been
selected.

Back Returns the user to the previous window.

Instructions for Viewing a Service

1. Toview the services, select Services from the Logon window.
The Services window displays.
The available packages are displayed in the Packages display list.
2. Select apackage.
In the previous figure, BANKAPP is the selected package.

Theavailable services for the selected package are displayed in the Services
display list. In the previous figure, DEPOSIT, INQUIRY, TRANSFER and
WITHDRAWAL arethe available services for BANKAPP.

3-16 BEA Jolt Developer’s Guide

Main Components of the Repository Editor

Working With Parameters

A service contains parameters, which may include pin number, account number,
payment, rate, term, age, or Social Security number. Adding or editing a parameter
does not modify or change an existing Tuxedo service. The following figure shows a
Services window displaying a selected service and its parameters.

Instructions for Viewing a Parameter

1. Select Services from the Logon window to view its parameters.
The Services window displays.
View packages in the Packages display list.

2. Select apackageto view its available services.
In the following figure, BANKAPP is the selected package.
View servicesin the Services display list.

3. Select aserviceto view its available parameters.

In the following figure, INQUIRY is the selected service.

4. View the parametersfor a selected service in the Parameters display list.

In the following figure, ACCOUNT_ID, FORMNAM, SBALANCE and
STATLIN are the available parameters for the INQUIRY service.

BEA Jolt Developer's Guide 3-17

3 Us ng the Jolt Repository Editor

Figure3-7 Services Window with Parameters

i Applet Viewer: bea jolt. admin RE class

Applet
Services

Packanes

BULKPKG

SIMPSERY

Semices Farameters
ACCOUNT_ID
FORMMAM
SBALAMCE
STATLIN

Mew.. | Edit..| Delete | Back |

3-18 BEA Jolt Developer’s Guide

Setting Up Packages and Services

Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its services:
4 Adding a package
4 Adding aservice

4 Adding a parameter

Saving Your Work

Asyou are creating and editing services and parameters, it isimportant to regularly
saveinformation to ensure that you do not inadvertently lose any input. Selecting Save
Ser vice can prevent the need to re-enter information in the event of a system failure.

Caution: Besureto exercise caution when you are adding or editing the parameters
of aservice. You must select Add before choosing Back from the Edit
Parameters window and returning to the Edit Services window.

If adding a new service or modifying an existing service at the Edit Services window,
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, awarning briefly displays on the status line at the
bottom of the window.

Adding a Package

If you need to add a new group of services, you must create a new package before
adding the services. Figure 3-8 shows how to add a new package, BALANCE, to the
Packages listing.

BEA Jolt Developer's Guide 3-19

3 Us ng the Jolt Repository Editor

Instructions for Adding a Package

Follow these instructions to add a package:

1. Select Packagesfrom the Logon window.
The Packages window displays.

2. Select Package Organizer.

The Package Organizer window displays. (For a description of the Package
Organizer window, see "Package Organizer Description” in this chapter in this
chapter.)

3. Select New Package from the Package Organizer window.
Thetext field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (in the following figure, BALANCE) is displayed in the
Packages display list in random order.

3-20 BEA Jolt Developer’s Guide

Setting Up Packages and Services

Figure 3-8 Adding a New Package

2 Applet Viewer: bea jolt.admin RE class
AApp J

Applet

Package Organizer
Packanes Fackages
BAMNKAPP BAMNKAPP
BULKPKG BULKPKG
SIMPSERY BALAMCE

SIMFSERY
Services Services
DEFOSIT = [IPASSFML
INGILIRY - IsmPIEW
TRAMNSFER TOURPFPER
W THD R AWAL
Mew Fackage I Back |

Adding a Service

Services are definitions of available Tuxedo services and can only be a part of a Jolt
package. Y ou are not required to create a new package before creating a new service;

however, you must create the service as a part of a package, even if it ismoved to a
different package at a later date.

BEA Jolt Developer's Guide 3-21

3 Us ng the Jolt Repository Editor

The Repository Editor accepts the new service name exactly asit istyped (that is, all
capital letters, abbreviations, misspellings are accepted). Service names must not
exceed 30 characters. The following figure shows an Adding New Service window.

Figure 3-9 Edit Services: Adding New Service Window

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Adding nesy service to packzge BANEARPP
Service Mame Farameters
Input Buffer Type FhiL -

Input Wiew Mame
Dutput Buffer Type FhiL -

Dutput View Mame

Export Status & Unexport () Export
Service level actions Farameter level actions
Save Setvice | Testl Elackl Mesw. . | =it | [elete |

3-22 BEA Jolt Developer’s Guide

Setting Up Packages and Services

Adding a Service Window Description

The following listing describes the options for adding services to a packagein a
package window.

Option Description
Edit Services Service Name The name of the new service to be added to the Repository.
Selections
Input Buffer VIEW - a C-structure and 16-bit integer field. Contains subtypes
Type/Output Buffer that have a particular structure. X_C_TY PE and X_COMMON are
Type equivalent. X_COMMON is used for COBOL and C.
VIEW32 - similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.
CARRAY - an array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.
FML - atypein which each field carries its own definition.
FML32 - similar to FML except the ID field and length field are 32
bits long.
STRING - acharacter array terminated by anull character that is
encoded or decoded.
Input View A unigue name assigned to the Input View Buffer and Output View
Name/Output View Buffer types. Thesefieldsare only enabled if VIEW or VIEW32 are
Name the selected buffer types.
Export Status Lists current status of the service. EXPORT or UNEXPORT gatus
is displayed. UNEXPORT isthe default.
Service Level Save Service Thiscommand button savesnewly created servicein the Repository.
Actions
Test Tests the service. This command button is disabled until anew
serviceis created or editsto an existing service are saved.
Back This command button returns you to the previous window.
Parameters Parameters List of service parametersto edit or delete.

BEA Jolt Developer's Guide 3-23

3 Us ng the Jolt Repository Editor

Parameter Level

Actions

New This command button adds new parameters to the service.

Edit An existing parameter can be edited. This command button is
disabled until a new parameter is selected.

Delete This command button deletes a parameter. This option is disabled
until a parameter is selected.

Instructions for Adding a Service

3-24

To add a service, follow these instructions:

1.
2.

From the L ogon window, select Services.

Select the package where the serviceis going to be added.

If you are uncertain which package should contain the new service, select a
package and use the Package Organizer to move the service to a different
package. (See “Grouping Services Using the Package Organizer” for additional
information.)

Select New from the Services window.

The Edit Services window is displayed.

Select the Service Name text field to activate it.
Type the service name.

Select the buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can change the Output Buffer typeto a
different buffer type.

If VIEW or VIEW32 is selected, type the Input View Name and Output View
Name in the accompanying text field.

If another buffer type is selected, the Input View Name and Output View Name
text fields are disabled.

If CARRAY or STRING is selected, refer to “ Selecting CARRAY or STRING as
a Service Buffer Type” in this chapter for additional instructions.

10. Select Save Serviceto save the newly created service.

BEA Jolt Developer’s Guide

Setting Up Packages and Services

Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRI NGis selected as the buffer type for a new service, only CARRAY or
STRI NG can be added as the data type for the accompanying parameters. See also
“Adding a Parameter” and “ Selecting CARRAY or STRING as a Parameter Data
Type” in this chapter. For further information, refer to "Using the Jolt Class Library"

The following figureis an example of the Edit Services window with STRING asthe
selected buffer type for the service.

Figure 3-10 Edit Services Window with STRING asthe Selected Buffer Type

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]
Applet

Edit Services
Adding nesy service to package: SIMPSERY

Service Mame I SIMFAFPF Farameters

Input Buffer Type

Input Wiew Mame

Dutput Buffer Type STRIMG 'I

Dutput View Mame

Export Status & Unexport () Export
Service level actions Farameter level actions
Save Setvice | Testl Elackl Mesw. . | =it | [elete |

BEA Jolt Developer's Guide 3-25

3 Us ng the Jolt Repository Editor

Adding a Parameter

Selecting New Parameter from the Edit Services window brings up the Edit
Parameters window. Review the features in the following figure. Use thiswindow to
enter the parameter and window information for a service.

Thefollowing figureis an example of the Edit Parameters window used to add a new
parameter.

Figure3-11 Adding a Parameter Window

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Adding new parameter to package: SIMPSERY service: SIMPAPP

Farameter Information Screen Information

Field Matne Screen Label I
Data Type string 'I

Direction " input ¢ output (8 both
Ocourrenceis)
Clearl e | Add | Elackl SYey= 2) | e

Parameters Window Description

Thefollowing listing describes the Edit Parameters window options.

3-26 BEA Jolt Developer’s Guide

Setting Up Packages and Services

Option

Description

Field Name

Adds the field name (for example, asset, inventory).

Type

List data type choices:

byte - 8-hit

short - 16-bit

integer - 32-bit

float - 32-hit

double - 64-bit

string - null-terminated character array
carray - variable length 8-bit character array

Direction

Lists choices for direction of information:
Input - Information is directed from the client to the server.
Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence(s)

Number of times that an identical field name can be used. If O, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by Tuxedo.

Clear

This command button clears the fields of the window.

Change

This command button is disabled while new parameters are added.

Add

This command button adds new parameters to the service. The
parameters are saved when the serviceis saved.

Back

This command button returns the user to the previous window.

Instructions for Adding a Parameter

1. Select Field Nameto activate the field and type the field name.

Note: If the buffer typeis FML or VIEW, the field name must match the
corresponding parameter field namein FML or VIEW.

BEA Jolt Developer's Guide — 3-27

3 Us ng the Jolt Repository Editor

@

2. Select the data type.

3. Select the Occur rences text field to activate it, and then enter the number of
occurrences.

4. Specify adirection by selecting the input, output, or both radio buttons.

5. Select Add to append the information. Add does not save the parameter.

6. Select Save Serviceto save the parameter as a part of the service.

Warning: If you do not select Save Service before you select Back, the
parameters are not saved as part of the service.

7. Select Back to return to the previous window.

Selecting CARRAY or STRING as a Parameter Data Type

3-28

If CARRAY or STRING isthe selected buffer type for anew service, only carray or
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “CARRAY” for a CARRAY buffer type, and the parameter name
“STRING” for a STRING buffer type.

See aso “Ingtructionsfor Adding a Service” and “ Selecting CARRAY or STRING as
aService Buffer Type” inthis chapter. For further information, refer to "Using the Jolt
Class Library" .

Thefollowing figure is an example of the Edit Parameters window with string asthe
selected data type for the parameter. The Type defaults to string and does not allow
you to modify that particular data type. The Field Name can be any name.

BEA Jolt Developer’s Guide

Setting Up Packages and Services

Figure 3-12 Edit Parameters Window with string asthe Data Type

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Adding new parameter to package: SIMPSERY service: SIMPAPP

Farameter Information Screen Information

Field Matne INPUT Screen Label I
Data Type string 'I

Directian T input ¢ output & both

Ocourrenceis) I 1

Clear | e | Back | SYey= 2) | e

adding INPLUT parameter

BEA Jolt Developer's Guide 3-29

3 Us ng the Jolt Repository Editor

Grouping Services Using the Package
Organizer

The Package Organizer moves services between packages. Y ou may want to group
related servicesin apackage (for example, WITHDRAWAL servicesthat are exported
only at a certain time of the day can be grouped together in a package).

The Package Organizer arrow buttons allow you to move a service from one package
to another. These buttons are useful if you have severa services to move between
packages. The packages and services display listings to help track a service within a
particular package.

Thefollowing figure is an example a of Package Organizer window with a service
selected for transfer to another package.

3-30 BEA Jolt Developer’s Guide

Grouping Services Using the Package Organizer

Figure3-13 Example of a Selected Service

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]

Applet
Package Organizer
Packanes Fackanes
BAMKAPP
BULKPKG BULKFKG
SIMPSERY SIMPSERY
Services Services

Mew Package l Elackl

Added Mew Package: BANIK

Package Organizer Description

The following table describes the options for the Package Organizer window:

Option Description

Available Packages (left Lists packages available where the service to be moved

display list) currently resides.

Available Packages (right Lists packages avail able as destinations for the service you

display list) are moving.

Services (left display list) Listsavailable servicesfor the highlighted package that can
be moved.

BEA Jolt Developer's Guide 3-31

3 Us ng the Jolt Repository Editor

Services (right display list)

Listsavailable servicesof the highlighted packagethat have
been moved.

Left arrow Moves services (one service a atime) to the package
highlighted on the |eft.

Right arrow Moves services (one service at atime) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Instructions for Grouping Services with the Package Organizer

3-32

1. Select the package containing the services to be moved from the Packages | eft
display window to the right display window.

In the previous figure, BANKAPP is the selected package.

2. Select the service to be moved from the Services left display window to the right

display window.

In the previous figure, INQUIRY isthe selected service in the BANKAPP

package.

3. Select the package to receive the service from the Packages right display

window.

The previous figure shows the selected service, INQUIRY, and the selected
package, BANK, to which the INQUIRY service will be moved.

BEA Jolt Developer’s Guide

Grouping Services Using the Package Organizer

Figure3-14 Exampleof a Moved Service

EiApplet Viewer: bea jolt. admin RE_class
Applet
Package Organizer
Packanes Fackanes
BANK Bae |
BAMKAPP
BULKPKG BULKPKG
SIMPSERY SIMPSERY
Services Services
DEFOSIT e M GUUIRY
TRAMNSFER e
WWITHD R AWAL
Mew Package l Back |
Added Mew Package: BANIK

4. To move the services between the packages, select the left arrow (<—) or right
arrow (—>).

These keys are activated only when both packages and a service are selected.
The keys are only active in the direction of the package where the serviceisto
be moved. The previous figure shows how the Repository Editor movesthe
INQUIRY service to the BANK package on the right.

Note: You cannot select the same packagein both theleft and right display lists.

BEA Jolt Developer's Guide 3-33

3 Us ng the Jolt Repository Editor

Modifying Packages/Services/Parameters

If a package, service, or parameter requires any modifications, you can make the
following changes:

¢ Editaservice
¢ Edit aparameter

¢ Delete aparameter/service/package

Editing a Service

Edit an existing service name, service information, or access the window to add new
parameters to an existing service. For a description of the Edit Services window, see
“Adding a Service Window Description” in this chapter. The following figureis an
exampl e of the Edit Services window.

3-34 BEA Jolt Developer’s Guide

Modifying Packages/Services/Parameters

Figure3-15 Edit Services Window

EiApplet Viewer: bea jolt. admin RE_class
Applet
Edit Services

Editing existing service in package: BAMNIAPP
Service Mame TRAMSFER Farameters
Input Buffer Type FhiL - ACCOUNT_ID
Input Wiew Mame FORMRNAM

SAMOLUIMT
Output Buffer Type |FML j CHALANCE
Cutput View Mame STATLIN
Export Status " Unexport (@ Export
Service level actions Farameter level actions

Save Setvice | Testl Elackl Mesw. . | =it | [elete |

Instructions for Editing a Service

Follow these instructions to edit a service:

1. Select the package containing the service that requires editing from the Services
window.

2. Select the service to edit.

The parameters are displayed in the parameters display list.
3. Select Edit.

The Edit Services window displays.

BEA Jolt Developer's Guide 3-35

3 Us ng the Jolt Repository Editor

4. Type or select the new information and select Save Service.

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

@ Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter. The following figure is an example of
the Edit Parameters window.

Figure3-16 Edit ParametersWindow

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Parameters
Changing existing parameter in package: BAMKAPP serice; TRARSFER

Farameter Information Screen Information

Field Matne ACCOUNT_ID Screen Label I
Data Type integer 'I

Direction o input ¢ output (7 both
Ocourrenceis) I 2
Clearl Change | L | Elackl SYey= 2) | e

3-36 BEA Jolt Developer’s Guide

Modifying Packages/Services/Parameters

Editing a Parameter

To change a parameter, follow these instructions:

1. Select the parameter in the Parameters window and select Edit Par ameters.

The “Edit Parameters: Changing Existing Parameter” window displays.
2. Typethe new information and select Change.

3. Select Back to return to the previous window.

Deleting Parameters/Services/Packages

This section details the necessary stepsto del ete a package. Before del eting a package,
all the services must be deleted from the package. The Delete option is not enabled
until all components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or packageis scheduled to
be deleted or has been moved to another |ocation before selecting Delete.

Deleting a Parameter

Determine which parametersto delete and follow these instructions.

1. Highlight the parameter you want to delete in the Parameters display list and select
Delete Par ameter.

2. Select Back to return to the previous window.

Deleting a Service

Determine which services to delete and follow these instructions. Make sure that all
parameters within this service are deleted before selecting this option.

1. Select Services from the Logon window.

The Packages window displays.

2. Select the package containing the service you want to delete.

BEA Jolt Developer's Guide 3-37

3 Us ng the Jolt Repository Editor

3. Select the service you want to delete.

Deleteis enabled.
4, Select Delete. The serviceis deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure all
services contained in this package are deleted or moved to another package before
selecting this option.

1. To delete packages, select Packages from the Logon window. The Packages
window displays.

2. Select apackage.

3. Select Delete.
The package is deleted.

3-38 BEA Jolt Developer’s Guide

Making a Service Available to the Jolt Client

Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you must export it. All servicesin a
package must be exported or unexported as a group. A service is made available by
using the Export and Unexport radio buttons.

This section discusses:
4+ Exporting/Unexporting services

4 Reviewing the Export/Unexport status

Exporting/Unexporting Services

Determine which services are being made available or unavailable to the Jolt client.
Services are exported to ensure that the Jolt client can access the most current service
definitions from the Jolt server.

The following figure shows the Packages window. From there you can Export and
Unexport services.

BEA Jolt Developer's Guide 3-39

3 Us ng the Jolt Repository Editor

Figure3-17 Export and Unexport Buttons

E\E?,Applet Yiewer: bea_jolt.admin.RE .class

Applet

Packages

Fackages

Services

DEPOSIT
INGLIRY
TRAMSFER

W THD R AWMAL

Fackage Organizer 1 Export j Unexport 1 (et] Back I

Exporting/Unexporting a Service

Follow the instructions below to export or unexport a service.

1. Select Packagesfrom the Logon window.

The Packages window displays.

2. Select apackage. Export and Unexport are enabled.

3. To make services available, select Export.

4. To make services unavailable, select Unexport.

3-40 BEA Jolt Developer’s Guide

Making a Service Available to the Jolt Client

Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the
Exported/Unexported Status’ in this chapter for additional information.

Reviewing the Exported/Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window. The following figure shows the current status as EXPORTED.

Figure 3-18 Exported/Unexported Status

[Applet Viewer: bea jolt. admin RE class

Applet

Edit Services
Editing existing service in package: BANKAPP

Service Mame TRAMSFER Farameters
Input Buffer Type F L - ACCOUNT_ID
Input View Marme FORMMNAM

SAMOUMT
Dutput Buffer Type FmL - SBALAMNCE
Cutput View Mame STATLIN
Export Status

(7 Unexport & Export

Service level actions FParameter level actions

Sawve Setvice | Testl Elackl ey | =it | [relete |

BEA Jolt Developer's Guide 3-41

3 Us ng the Jolt Repository Editor

Reviewing the Exported/Unexported Status

To review the current exported or unexported status of a service, follow these
instructions:

1. Select Servicesfrom the Logon window.
The Services window displays.

2. Tofind out if a service has been exported or unexported, check its status by
selecting a package from the Package display list.

The Services display list isenabled with alisting of services for the selected
package.

3. Select the desired service.

4. Select Edit. The Edit Services window displays with the Current Status of the
service as EXPORTED or UNEXPORTED.

3-42 BEA Jolt Developer’s Guide

Testing a Service

Testing a Service

Before they are made available to Jolt clients, a service and its parameters should be
tested to ensure that they are functioning properly. Servicesthat are currently available
can be tested without making changes to the services and parameters.

Note: The Jolt Repository Editor allows you to test an existing Tuxedo service with
Jolt without writing aline of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

This section explains the following:
4 Jolt Repository Editor Service Test Window

4 Testing a Service Instructions

BEA Jolt Developer's Guide 3-43

3 Us ng the Jolt Repository Editor

Repository Editor Service Test Window

344

Test the service to ensure that the parameter information is accurate. Although Test is
enabled when parameters are not added to the service, the Service Test window (the
following figure) displays the parameter fields as “unused” and they are disabled. A
service can only be tested when the corresponding Tuxedo server isrunning for the
service being tested.

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

The following figure shows an example of a Service Test window with writable and
read-only text fields.

Figure3-19 Sample Service Test Window

[E3 Applet Viewer: bea.jolt.admin.RE.class

Applet
Service: INQUIRY 1-4 of 4 Params
ACCOUNT_IDl integer[32]
FORMNAMl String (ReadOnly)
SEIALANCEl String (ReadOnly)
STATLINl String (ReadOnly)

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

Unusedl Unused

RUNl Clearl Neml Prevl Elackl

BEA Jolt Developer’s Guide

Testing a Service

Service Test Window Description

The following table details the Service Test window.

Note: You can enter atwo-digit hexadecimal character (0-9, a-f, A-F) for each byte
in the CARRAY datafield. For example, the hexadecimal value for 1234

decimal is0422.
Table 3-2
Option Description
Service Displays the name of the tested service (read-only).

Parameters displayed

Parameter text fields

RUN
Clear
Next
Prev

Back

Tracks the parameters displayed in the window (read-only).

The parameter information text entry field. Thesefields are
writable or read-only. Disabled if read-only.

Runs the test with the data entered.
Clearsthetext entry field.

Lists additional parameter fields, if applicable.
Lists previous parameter fields, if applicable.

Returnsto the Edit Services window.

BEA Jolt Developer's Guide 3-45

3 Us ng the Jolt Repository Editor

Testing a Service Process Flow

Test aservice to ensure that all service and parameter information is correct. You can
test a service without making changes to the service or its parameters. Y ou can aso
test a service after editing the service or its parameters.

The following figure shows a typical Repository Editor service test flow.

Figure3-20 Test Service Flow

‘ Select Test |i<

G

Testing a Service

Follow these instructions to test a service.
1. Select Servicesfrom the Logon window to display the Services window.

2. Select the package and the service to test.

3-46 BEA Jolt Developer’s Guide

Testing a Service

o o &~ w

Select Edit to access the Edit Services window.
Select Test to access the Service test window.
Input data in the Service test window parameter text field.

Select RUN.

The statusline displays the message, “Run Completed OK,” if the test passes, or
“Call Failed,” if the test fails. See “ Some Reasons Why a Test Might Fail” or the
“Repository Editor Troubleshooting Table” for additional Repository Editor
troubleshooting information.

Follow these instructions if editing isrequired to pass the test.

© N o o M w D PRE

Return to the Repository Editor logon window and select Packages.
Select the package with the servicesto be retested.

Select Unexport.

Select Back to return to the Logon window.

Select Services to display the Services window.

Select the package and the service that requires editing and select Edit.
Edit the service.

Save the service, select Test, and repeat steps 5 and 6 from previous list.

Some Reasons Why a Test Might Fail

Here are some reasons why a service test might fail and possible solutions.

If... Dothis. ..
A parameter isincorrect. Edit the service.
The Jolt server isdown. Check the server. The Tuxedo serviceis

down. Y ou do not need to edit the service.

BEA Jolt Developer's Guide 3-47

3 Us ng the Jolt Repository Editor

Troubleshooting

Consult the following table if you encounter problems while using the Repository
Editor.

Table 3-3 Repository Editor Troubleshooting Table

If... Then...

Y ou receive any error M ake sure the browser you are running is Java-enabl ed:

4 For Netscape browsers, make sure that “Enable Java” and
“Enable JavaScript” are checked under Edit—>
Preferences—>Advanced. Then select Communicator—>
Tools—>Java Console. If the Java Console does not exist on
the menu, the browser probably does not support Java.

4 For Internet Explorer, make sure the version is 3.0 (or later).
4 If running Netscape Navigator, check the Java Console for
error messages.

4 If running appletviewer, check the system console (or the
window where you started the appl et vi ewer).

Y ou cannot connect to Check and make sure that:

the ngt Server (after 4 Your Server nameis correct (and accessible from your
entering Server and machine). Check that the port number is the correct port.
Port Number) Theremust bea JSL or JRLY configured to listen on that port.

4 The Jolt server isup and running. If any authentication is
enabled, check that you are entering the correct user names
and passwords.

¢ If the applet was |oaded through http, the Web server, JRLY
and the Jolt server must be on the same machine (i.e., the
Server name entered into the Repository Editor must be the
same machine as the one used in the URL to download the

applet).

3-48 BEA Jolt Developer’s Guide

Troubleshooting

Table 3-3 Repository Editor Troubleshooting Table

If...

Then...

Y ou cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
applet through http, make sure that:

L4

¢
¢
¢

The browser is Java-enabled.
The Web server isrunning and accessible.
The RE. ht m fileisavailableto the Web server.

TheRE. ht ni file containsthe correct <codebase> parameter
(thisis where the Jolt class files are located).

If running the editor in a browser (or appl et vi ewer) and
loading the applet from disk, make sure that:

L4

¢
¢
¢

The browser is Java-enabled.
The RE. ht M file exists and is readable.
TheRE. ht M fileis Java-enabled.

TheRE. ht ni file containsthe correct <codebase> parameter
(thisiswherethe Jolt classfilesareinstalled onthelocal disk).

4 CLASSPATH isset and points to the Jolt class directory.
Y ou cannot display 4 Make sure that the Jolt Repository Server isrunning
Packages or Services (JREPSVR).
eventhoughyouaresure | ¢ Make sure that the JREPSVR can access the repository file.
they exist 4 Makesurethat the configuration of JREPSVR: verify CLOPT
parametersand verify thatj r ep. f 16 (FML definitionfile) is
installed and accessible (follow installation documentation)
Y ou cannot savechanges | Check permissions on the repository file. The file must be

in the Repository Editor

writable by the user who starts JREPSVR.

BEA Jolt Developer's Guide 3-49

3 Us ng the Jolt Repository Editor

Table 3-3 Repository Editor Troubleshooting Table

If... Then...

Y ou cannot test services | 4
¢
¢

Check that the service is available.
Verify the service definition matches the service.

If Tuxedo authentication is enabled, check that you have the
required permissions to execute the service.

Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications FML field tables or VIEW
files must be specified inthe FIELDTBL S and VIEWFILES
environment variablesin the ENVFILE. If these files are not
specified, the JSH is unable to process data conversion and
you will receive the message “ ServiceException: TPEJOLT
data conversion failed.”

Check the ULOG file for any additional diagnostic messages.

Repository Enhancements for Jolt

The Jolt Repository uses the FML 32 buffer type, which increases the internal buffer

size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATMI

buffer types:
¢ X_OCTET
¢ X CTYPE
¢ X_COMMON

3-50 BEA Jolt Developer’s Guide

CHAPTER

>

A

Using the Jolt Class
Library

The BEA Jolt Class Library provides developerswith aset of new object-oriented Java
language classes for accessing BEA Tuxedo services. Using these classes, you can
extend applications for Internet and intranet transaction processing. Y ou can use the
Jolt Class Library to customize accessto BEA Tuxedo services from Java applets.

“Usingthe Jolt Class Library” coversthe following topics:

* & & & & O > o o

L4

Class Library Functionality Overview
Jolt Object Relationships

Jolt Class Functionality

Jolt Class Library Walk-through
Using Tuxedo Buffer Types with Jolt
Multithreaded Applications

Event Subscription and Notifications
Clearing Parameter Values

Reusing Objects

Application Deployment and Localization

To usetheinformation in the following sections, you need to be generally familiar with
the Java programming language and object-oriented programming concepts. All the
programming examples are in Java code.

BEA Jolt Developer’s Guide 4-1

4 Usingthe Jolt Class Library

Note: All program examples are only fragments used to illustrate Jolt capabilities.
They are not intended to be compiled and run as provided. These program
examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library provides the Tuxedo application developer with the tools to
develop client-side applications or appletsthat run asindependent Java applications or
in a Java-enabled Web browser. Thebea. j ol t package containsthe Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import this
package. For an example of how to import thebea. j ol t package, refer to Listing 4-1.

Java Applications vs. Java Applets

4-2

Java programsthat run in abrowser are called “applets.” Applets are intended to be
small, easily downloaded parts of an overall application that perform specific
functions. Many popular browsers impose limitations on the capabilities of Java
applets for the purpose of providing a high degree of security for the users of the
browser. The following are some of the restrictionsimposed on applets:

4 An applet ordinarily cannot read or write files on any host system.

4 An agpplet cannot start any program on the host (client) that is executing the
applet.

4 An applet can make a network connection only to the host where it originated; it
cannot make other network connections, not even to the client machine.

Programming workarounds exist for most of the restrictions on Java applets. Check
your browser’ sweb site (for example, www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities that the
browser supports or restricts. Y ou can a so use Jolt Relay to work around some of the
network connection restrictions.

A Java application, however, isnot runin the context of abrowser and is not restricted
in the same ways. For example, a Java application can start another application on the
host machine where it is executing. While an applet relies on the windowing

BEA Jolt Developer’s Guide

Class Library Functionality Overview

environment of abrowser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designed to
be small and highly portable. A Java application, on the other hand, can operate much
like any other non-Java program. The security restrictions for appletsimposed by
various browsers and the scope of the two program types are the most important
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:
¢ Featuresfully thread-safe classes.

4 Encapsulates typical transaction functions such as logon, synchronous calling,
transaction begin, commit, rollback, and logoffs as Java objects.

4 Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

¢ Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and Tuxedo errors as exceptions.
The Jolt Class Library Reference contains the Jolt classes and lists the errors or
exceptions thrown for each class. The BEA Jolt 1.2 Online API Javadoc contains the
Error and Exception Class Reference.

BEA Jolt Developer’s Guide 4-3

4 Usingthe Jolt Class Library

Jolt Client/Server Relationship

BEA Jolt worksin adistributed client/server environment and connects Javaclientsto
BEA Tuxedo based applications. Figure 4-1 illustrates the client/server relationship
between a Jolt program and the Jolt Server.

Figure4-1 Jolt Client/Server Relationship

Client Jolt Server
Application Protocol

GUI Application - - Tu>.<ed(.)

Application
. Jolt Transaction Protocol ATMI
Jolt Class Librar
Y - P>l Protocol Translator
Connection Jolt Network Protocol Connection
M anager - - M anager
TCP/IP

Asillustrated in the diagram, the Jolt Server acts as a proxy for anative BEA Tuxedo
client, implementing functionality available through the native BEA Tuxedo client.
The BEA Jolt Server accepts requests from BEA Jolt clients and maps those requests
into BEA Tuxedo servicerequeststhrough the BEA Tuxedo ATMI interface. Requests
and associated parameters are packaged into a message buffer and delivered over the
network to the BEA Jolt Server. The BEA Jolt Connection Manager handles all
communication between the BEA Jolt Server and the BEA Jolt applet using the BEA
Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from the message,
performs any necessary data conversions, such as numeric format conversions or
character set conversions, and makes the appropriate service request to BEA Tuxedo
as specified by the message.

Once a service request enters the BEA Tuxedo system, it is executed in exactly the
same manner as any other BEA Tuxedo request. The results are returned through the
ATMI interface to the BEA Jolt Server, which packages the results and any error

4-4 BEA Jolt Developer’s Guide

Class Library Functionality Overview

information into a message that is sent to the BEA Jolt client applet. The BEA Jolt
client then maps the contents of the messageinto the various BEA Jolt client interface

objects, completing the request.

Ontheclient side, the user program containsthe client application code. The Jolt Class
Library packages a JoltSession and JoltTransaction, which in turn handle service

requests.

The following table describesthe client-side requests and Jolt Server-side actionsin a

simple example program.

Table 4-1 Jolt Client/Server Interaction

Jolt Client

1 attr=new Jolt SessionAttributes();

attr.setString(attr. APPADDRESS,
“// myhost : 8000") ;

2 session=new JoltSession(attr, usernane,
user Rol e, userPassword, appPassword);

3 wi t hdrawal =new Jol t Renot eSer vi ce(
servnanme, session);

4 withdrawal . addSt ri ng(“account nunber”,
“123");
wi t hdr awal . addFl oat (“amount”, (fl oat)
100. 00);

5 trans=new Jol t Transacti on(tine-out,
session);

6 w thdrawal.call(trans);

7 trans.conmmit() or trans.rollback();

8 bal ance=wi t hdr awal . get Fl oat Def (“bal ance, ”
(float) 0.0);

9 session. endSession();

Jolt Server

Binds the client to the
Tuxedo environment

Logs the client onto Tuxedo

Looks up the service
attributes in the Repository

Populates variablesin the
client (no Jolt Server
activity)

Begins anew Tuxedo
transaction
Executes the Tuxedo service

Completes or rolls back
transaction

Retrieves the results (no Jolt
Server activity)

Logstheclient off of Tuxedo

The following tasks, which summarize the interaction shown in Table 4-1,are the steps

involved in beginning a transaction:

BEA Jolt Developer’s Guide 4-5

4 Usingthe Jolt Class Library

46

2
3
4,
5

Bind the client to the Tuxedo environment using the Jol t Sessi onAt tri but es
class.

. Establish a session.
. Set variables.

Perform the necessary transaction processing.

. Log the client off of the Tuxedo system.

Each of these activitiesis handled through the use of the Jolt Class Library classes.
These classes include methods for setting and clearing data and for handling remote
serviceactions. The next section describesthe Jolt ClassLibrary classesin moredetail.

BEA Jolt Developer’s Guide

Jolt Object Relationships

Jolt Object Relationships

Thefollowing figureillustrates the relationship between the instantiated objects of the
Jolt Class Library classes.

Figure 4-2 Jolt Object Relationships

JoltRemoteService contains-a JoltUserEvent
uses-a
cal | (transaction) JoltSession contains-a
. cont ai ns-a
JoltTransaction ' uses- a+
uses-a
I JoltReply
JoltSessionAttributes

contains-a

JoltMessage

Asobjects, the Jolt classes interact in various relationships with each other. In the
previous figure, the relationships are divided into three basic categories:

Contains-a relationship. At the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

I s-arelationship. Theis-arelationship usually occursat the classinstance or sub-object
level and denotes that the object is an instance of a particular object.

Uses-a relationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the host and
port information.

BEA Jolt Developer’s Guide 4-7

4 Usingthe Jolt Class Library

Jolt Class Functionality

Jolt classes are used to perform the basic functions of transaction processing: log
on/log off, synchronous service calling, transaction begin, commit, rollback and
subscribe to events or unsolicited messages. The following sections describe how the
Jolt classes are used to perform these functions.

Logon/Logoff

The client application must log on to the Tuxedo environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class
and JoltSession class to establish a connection to a Tuxedo System.

The JoltSessionAttributes class is used to contain the connection propertiesto a
Jolt/Tuxedo system and contains various properties about the Jolt/Tuxedo System. To
establish a connection, the client application must create an instance of the JoltSession
class. Thisinstance is the JoltSession object. By instantiating a JoltSession object,
userslog on to Jolt/Tuxedo or log off by calling the endSession method.

Synchronous Service Calling

48

Transaction activities such as requests and replies are handled through the use of a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported Tuxedo request/reply service. You
must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.

To use a JoltRemoteService object, simply:
4 Set the input parameters

4 Invokethe service

4 Examine the output parameters

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (for example, string and byte array) are saved. Since
JoltRemoteService object is a stateful object, itsinput parameters and the request

BEA Jolt Developer’s Guide

Jolt Class Functionality

attributes are retained throughout the life of the object. Y ou can use thecl ear ()
method to reset the attributes and input parameters before reusing the
JoltRemoteService object.

Since Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects smultaneously by using the Javamultithreading capability.
Refer to "Multithreaded Applications" in this chapter for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, atransaction is represented as an object of the class JoltTransaction. The
transaction begins when the transaction object isinstantiated. The transaction object is
created with atime out and JoltSession object parameter:

trans = new JoltTransacti on(ti neout, session)

Jolt uses an explicit transaction model for any services involved in atransaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt

also requires that the service and the transaction belong to the same session. Jolt does
not allow you to use services and transactions that are not bound to the same session.

BEA Jolt Developer’s Guide 4-9

4 Usingthe Jolt Class Library

Jolt Class Library Walk-through

4-10

The example code provided in Listing 4-1 shows how to use the Jolt Class Library and
includes the use of the JoltSessionAttributes, JoltSession, JoltRemoteService, and
JoltTransaction classes.

The example combines two user-defined Tuxedo services (WITHDRAWAL and
DEPOSIT) to perform asimulated TRANSFER transaction. If the WITHDRAWAL
operation fails, arollback is performed. Otherwise, a DEPOSIT is performed and a
commit completes the transaction.

The basic steps of the transaction process shown in the example are asfollows:

1. Set the connection attributes like hostname and portnumber in the
JoltSessionAttribute object.

Refer to thislinein the following code listing:
sattr = new Jolt SessionAttributes();

2. Thesattr. checkAut henti cati onLevel () alowsthe application to determine
the level of security required to log on to the server.

Refer to thisline in the following code listing:
switch (sattr.checkAuthenticationLevel ())

3. Thelogon is accomplished by instantiating a JoltSession object.
Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole,
user Passwor d, appPassword) ;

This example does not explicitly catch Sessi onExcept i on efrors.

4. All JoltRemoteService calls require a service to be specified and the session key
returned from Jol t Sessi on() .

Refer to these lines in the following code listing:
wi t hdrawal = new Jol t Renot eServi ce(“ W THDRAWAL”, session);
deposit = new Jol t Renpt eServi ce(“DEPCSI T", session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal

BEA Jolt Developer’s Guide

Jolt Class Library Walk-through

and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository otherwise a ServiceException will be
thrown. This example does not explicitly catch ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such as
account number ACCOUNT _ID and withdrawal amount SAMOUNT are
automatically populated.

Refer to these lines in the following code listing:
wi t hdrawal . addl nt (“ ACCOUNT_I| D", 100000);
wi t hdrawal . addSt ri ng(“ SAMOUNT”, “100.00");

The add* () methods can throw | | | egal AccessError or NoSuchFi el dErr or
exceptions.

6. The JoltTransaction call allows atimeout to be specified if the transaction does
not complete within the specified time.

Refer to thisline in the following code listing:
trans = new Jol t Transacti on(5, session);

7. Oncethe withdrawal service definition has been automatically populated, the
withdrawal service isinvoked by calling the withdrawal.call (trans) method.

Refer to thisline in the following code listing:
wi t hdrawal . cal | (trans);

8. A failled WITHDRAWAL can berolled back.
Refer to thisline in the following code listing:
trans.rol | back();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committed.
Refer to these lines in the following code listing:

deposit.call (trans);

trans.conmit();

The following listing shows an example of a simple application for the transfer of
funds using the Jolt classes.

BEA Jolt Developer's Guide 4-11

4 Usingthe Jolt Class Library

Listing 4-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 BEA Systens, Inc. All Rights Reserved */
i mport bea.jolt.*;
public class SinmXfer
{
public static void main (String[] args)
{
Jol t Sessi on sessi on;
Jol t Sessi onAttributes sattr;
Jol t Renot eServi ce w t hdrawal ;
Jol t Renot eSer vi ce deposit;
Jol t Transacti on trans;
String user Name=nul | ;
String userPasswor d=nul | ;
String appPassword=nul | ;
String userRol e="myapp”;

sattr = new Jol t SessionAttributes();
sattr.setString(sattr. APPADDRESS, “//bluefish:8501");

switch (sattr.checkAut henticationLevel ())

{
case Jol t Sessi onAttri butes. NOAUTH:
System out. println(“NCAUTH n”);

br eak;

case Jol t Sessi onAttri but es. APPASSWORD:
appPassword = “appPassword”;
br eak;

case Jol t Sessi onAttri but es. USRPASSWORD:
user Name = “nmynane”;
user Password = “nysecret”;
appPassword = “appPassword”;
br eak;

}

sattr.setlnt(sattr.|DLETI MEQUT, 300);

sessi on = new Jol t Sessi on(sattr, userNanme, userRole,

user Password, appPassword);

/1 Sinulate a transfer

wi t hdrawal = new Jol t Renot eSer vi ce(“W THDRAWAL”, sessi on);
deposit = new Jol t Renot eSer vi ce(“ DEPCSI T”, session);

wi t hdr awal . addl nt (“ ACCOUNT_I D', 100000);
wi t hdr awal . addSt ri ng(“ SAMOUNT”, “100. 00");

/1 Begin the transaction w a 5 sec tineout
trans = new Jol t Transacti on(5, session);
try

{

4-12 BEA Jolt Developer’s Guide

Jolt Class Library Walk-through

wi thdrawal . call (trans);

}
catch (Applicati onException e)

e.printStackTrace();
/1 This service uses the STATLIN field to report errors
/1 back to the client application.
Systemerr. println(w thdrawal.get StringDef (“STATLI N, ” NO
STATLIN"));
Systemexit(1);
}

String wbal = withdrawal . getStringDef (“SBALANCE", “$-1.0");

/1l renpve | eading “$" before converting string to float
float w = Fl oat. val ueCf (wbal . substring(1)).floatVal ue();
if (w<0.0)

Systemerr.println(“Insufficient funds”);
trans.rol | back();
Systemexit(1);

}
el se // now attenpt to deposit/transfer the funds
{
deposit. addl nt (“ACCOUNT_I D', 100001);
deposit.addSt ri ng(“ SAMOUNT”, “100.00");
deposit.call (trans);
String dbal = deposit.getStringDef(“SBALANCE’, “-1.0");
trans.conmit();
System out. printl n(“Successful withdrawal”);
System out. println(“New bal ance is: “ + wbal);
System out . println(“Successful deposit”);
System out. printl n(“New bal ance is: “ + dbal);
}

sessi on. endSessi on();
System exit(0);
} // end nain

} /1 end SinXfer

BEA Jolt Developer's Guide 4-13

4 Usingthe Jolt Class Library

Using Tuxedo Buffer Types with Jolt

4-14

Jolt supports the following built-in Tuxedo buffer types:
FML, FML32
VIEW, VIEW32
X_COMMON

CARRAY

¢

¢

¢

¢ X _C TYPE
¢

¢ X_OCTET
¢

STRING
Note: X_OCTET isused identically to CARRAY.

X_COMMON and X_C_TYPE are used identically to VIEW.

For information about all the Tuxedo typed buffers, datatypes, and buffer types, refer
to the Tuxedo System Programmer’s Guide, Volume 1 and the Tuxedo System
Reference Manual.

Of the Tuxedo built-in buffer types, the Jolt application programmer should be
particularly aware of how Jolt handles the CARRAY (character array) and STRING
built-in buffer types. The CARRAY typeis used to handle data opaquely, (for
example, the characters of a CARRAY datatype are not interpreted in any way). No
data conversion is performed between a Jolt client and Tuxedo service.

For example, if aTuxedo serviceusesaCARRAY buffer type and the user setsa 32-bit
integer (in Javatheinteger isin big-endian byte order), then the datais sent unmodified
to the Tuxedo service. If the Tuxedo serviceisrun on amachine whose processor uses
little-endian byte-ordering (for example, Intel processors), the Tuxedo service must
convert the data properly before the data can be used.

BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Using the STRING Buffer Type

The STRING buffer type isa collection of characters. STRING consists of non-null
charactersand isterminated by anull character. The STRING datatypeischar act er
and, unlike CARRAY, you can determine its transmission length by counting the
number of charactersin the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

The following ToUpper code fragment, Listing 4-2, illustrates how Jolt works with a
service whose buffer typeis STRING. The TOUPPER Tuxedo Serviceisavailablein
the Tuxedo si npapp example.

Define TOUPPER in the Repository Editor

Before running the ToUpper . j ava example in the next listing, you need to define the
TOUPPER service through the Jolt Repository Editor:

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for moreinformation about defining your services
and adding new parameters.

1. Using the Jolt Repository Editor, define the TOUPPER service for the SIMPSERV
package.

BEA Jolt Developer's Guide 4-15

4 Usingthe Jolt Class Library

Figure4-3 Add a TOUPPER Service

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]
Applet

Services

Packanes

BANKAPP
BULKFKG
SIMPSERY

Semices Farameters
TOUPPER

New.. | [Edit | [Deieie | 'Back]

2. For the TOUPPER service, define an input buffer type of STRING and an output
buffer type of STRING. (See the following figure.)

3. Define only one parameter for the TOUPPER service named STRING that is both
an input and an output parameter.

4-16 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Figure4-4 Set Input and Output Buffer Typesto STRING

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]
Applet

Edit Services

Editing existing service in package: SIMPSERY
Service Mame TOUPPER Farameters

Input Buffer Type STRIMNG vl STRIMG

Input Wiew Mame

Dutput Buffer Type STRIMG 'I

Dutput View Mame

Export Status " Unexport (@ Export
Service level actions Farameter level actions
Save Setvice | Testl Elackl Mesw. . | =it | [elete |

ToUpper.java Client Code

The ToUpper . j ava Java code fragment in the following listing illustrates how Jolt
works with a service whose buffer type is STRING. The example shows a Jolt client
using a STRING buffer to pass datato a server. The Tuxedo server would take the
buffer, convert the string to all uppercase | etters and pass the string back to the client.
The following example assumes that a session object was already instantiated.

Listing4-2 Useof the STRING buffer type (ToUpper.java)

/* Copyright 1996 BEA Systems, Inc. Al Rights Reserved */
inport bea.jolt.*;

BEA Jolt Developer's Guide 4-17

4 Usingthe Jolt Class Library

public class ToUpper

public static void main (String[] args)

{
Jol t Sessi on sessi on;
Jol t Sessi onAttributes sattr;
Jol t Renot eSer vi ce t oupper;
Jol t Transacti on trans;

String user Name=nul | ;
String user Passwor d=nul | ;
String appPassword=nul | ;
String userRol e="nmyapp”;
String outstr;

sattr = new Jol t SessionAttributes();
sattr.setString(sattr. APPADDRESS, “//myhost: 8501");

switch (sattr.checkAut henticationLevel ())

case Jol t Sessi onAttributes. NOAUTH:

br eak;

case Jol t Sessi onAttri but es. APPASSWORD:
appPassword = “appPassword”;
br eak;

case Jol t Sessi onAttri but es. USRPASSWORD:
user Name = “nynane”;
user Password = “nysecret”;
appPassword = “appPassword”;
br eak;

}
sattr.setlnt(sattr.|DLETI MEQUT, 300);

sessi on = new Jol t Session(sattr, userNanme, userRole,
user Password, appPassword);
t oupper = new Jol t Renot eService (“TOUPPER’, session);
t oupper.setString(“STRING', “hello world”);
t oupper.cal | (null);
outstr = toupper.getStringDef(“STRING, null);
if (outstr !'= null)
System out. println(outstr);

sessi on. endSessi on();
System exi t(0);
} // end main
} // end ToUpper

4-18 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Using the CARRAY Buffer Type

The CARRAY buffer type isasimple character array buffer type that is built into the
Tuxedo system. Withthe CARRAY buffer type, because the system does not interpret
the data (athough the data type is known) there is no way of determining how much
data to transmit during an operation. The application is always required to specify a
length when passing this buffer type.

Note: X_OCTET isused identicaly to CARRAY .

Define ECHO in the Repository Editor

Before running the example in the“Add aTOUPPER Service” figure, you must write
and boot an ECHO Tuxedo service. The ECHO service takes a buffer and passesit
back to the Jolt client. Y ou also need to use the Jolt Repository Editor to define the
ECHO service.

BEA Jolt Developer's Guide 4-19

4 Usingthe Jolt Class Library

Figure4-5 Add ECHO Service

[Applet Viewer: bea jolt. admin RE class

Applet

Services
Packanes

|EIHNKAF'F'

SIMPSERY

Services Farameters

CSTRING ;l CARRAY
DATATOOXZ0

DISCOMMECTED |

HR
JCARRAY
JFLUSH

W IEW LI

Mew.. | Edit. | Detete | Back |

In the Repository Editor add the ECHO service asfollows:
1. Add aservice named ECHO whose buffer type is CARRAY.

2. Define the input buffer type and output buffer type as CARRAY for the ECHO
service.

4-20 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Figure4-6 Edit ECHO Service

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: BULKPKG

Service Mame ECHO Farameters

Input Buffer Type CARRAY - l CARRAY

Input Wiew Mame

Dutput Buffer Type CARRAY 'I

Dutput View Mame

Export Status " Unexport (@ Export
Service level actions Farameter level actions
Save Setvice | Testl Elackl Mesw. . | =it | [elete |

3. Definethe ECHO service with only one parameter named CARRAY that is both
an input and output parameter.

Note: If using the X_OCTET buffer type, you must change the I nput Buffer Type
and Output Buffer Typefieldsto X_OCTET.

tryOnCARRAY.java Client Code

The codeinthefollowing listing illustrates how Jolt workswith aservice whose buffer
typeis CARRAY. Since Jolt does not look into the CARRAY data stream, it is the
programmer's responsibility to have the matching data format between the Jolt client
and the CARRAY service. Thefollowing example assumes that a session object was
already instantiated.

BEA Jolt Developer's Guide 4-21

4 Usingthe Jolt Class Library

Listing 4-3 CARRAY Buffer Type

/* Copyright 1996 BEA Systens, Inc. All Rights Reserved */

/* This code fragment illustrates how Jolt works with a service
* whose buffer type is CARRAY.

*/

i mport java.io.*;
i nport bea.jolt.*;
class ...

{

publ ic void tryOnCARRAY()

{

byte data[];

Jol t Renot eSer vi ce csvc;

Dat al nput St ream di n;

Dat aCut put St r eam dout ;

Byt eAr rayl nput St r eam bi n;

Byt eAr rayQut put St r eam bout ;

/*

* Use java.io.DataCQutputStreamto put data into a byte array
*/

bout new Byt eArrayQut put St ream(512) ;

dout = new Dat aCut put St rean(bout) ;

dout.writelnt(100);

dout.writeFloat((float) 300.00);

dout. witeUTF("Hello World");

dout.writeShort((short) 88);

/*
* Copy the byte array into a new byte array "data". Then
* issue the Jolt renote service call.

*/
data = bout.toByteArray();
csvc = new Jol t Renot eServi ce("ECHO', session);

csvc. set Byt es(" CARRAY", data, data.length);
csvc.call (null);
/*
* Get the result from JoltRenpteServi ce object and use
* java.io.Datal nputStreamto extract each individual value
* fromthe byte array.
*/
data = csvc. get Byt esDef (" CARRAY", null);
if (data !'= null)
{
bi n
din

new Byt eArrayl nput St rean{ dat a) ;
new Dat al nput St reamn(bi n);

4-22 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Systemout. println(din.readlnt());
System out. printl n(din.readFl oat());
System out. printl n(din.readUTF());
System out. printl n(din.readShort());

Using the FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged values that are typed, variable in
length, and may have multiple occurrences. The typed buffer is treated as an abstract
datatypein FML.

FML givesyou the ability to access and update data values without having to know
how the datais structured and stored. In your application program, you simply access
or update afield in the fielded buffer by referencing itsidentifier. To perform the
operation, the FML runtime determines the field location and data type.

FML is especially suited for use with Jolt clients as the client and server code may be
in two languages (for example, Java and C), the client/server platforms may have
different data type specifications, or the interface between the client and the server
changes frequently.

Thefollowing t ryOnFm examplesillustrate the use of the FML buffer type. The
examplesshow aJolt client using FML buffersto passdatato aserver. The server takes
the buffer, creates anew FML buffer to store the data, and passes that buffer back to
the Jolt client. The examples consist of the following components.

4 The“tryOnFml.java’ Code exampleisa Jolt client that contains a PASSFML
service.

4 The“tryOnFml.f16 Field Definitions’ code exampleisa Tuxedo FML field
definitions table used by the PASSFML service.

4 The“tryOnFml.c” code exampleisaserver code fragment that contains the
server side C code for handling the data sent by the Jolt client.

BEA Jolt Developer's Guide 4-23

4 Usingthe Jolt Class Library

tryOnFml.java Client Code
Thet ryOnFn . j ava Java code fragment in the following listing illustrates how Jolt

works with a service whose buffer typeis FML. The following example assumes that
a session object was already instantiated.

Listing 4-4 tryOnFml.java Code Example

/* Copyright 1997 BEA Systems, Inc. Al Rights Reserved */

i nport bea.jolt.*;
class ...

{

public void tryOnFm ()
{
Jol t Renot eSer vi ce passFm ;
String outputString;
int outputlnt;
float outputFloat;

passFm = new Jol t Renot eSer vi ce(" PASSFM.", sessi on) ;

passFm . set String("l NPUTSTRI NG', "John");

passFm . set|nt ("I NPUTI NT", 67);

passFm . set Fl oat (" | NPUTFLQAT", (float)12.0);

passFm . call (null);

out put String = passFni . get StringDef ("OQUTPUTSTRI NG', null);

out put I nt = passFml . getl|ntDef ("OUTPUTINT", -1);

out put Fl oat = passFml . get Fl oat Def (" QUTPUTFLOAT", (float)-1.0);
Systemout.print("String =" + outputString);

Systemout.print(" Int =" + outputlnt);
Systemout.println(" Float =" + outputFloat);
}

FML Field Definitions

The entriesin the following listing, t r yOnFni . f 16, show FML field definitions for
thetryOnFni . j ava example.

4-24 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Listing4-5 tryOnFml.f16 Field Definitions

#

FM. field definition table
#

*base 4100

INPUTSTRING 1 string

I NPUTI NT 2 | ong

| NPUTFLOAT 3 fl oat
QUTPUTSTRING 4 string
QUTPUTI NT 5 | ong
QUTPUTFLCAT 6 fl oat

Define PASSFML in the Repository Editor

The"Using the STRING Buffer Type" figureillustrated the SIMPAPP package with
two services. The TOUPPER service was used to illustrate the STRING typed buffer.
The other servicein SIMPAPP packageisthe PASSFML service. Thisserviceisused
withthetryOnFm . j ava andt r yOnFni . ¢ code. Beforerunningthet ryOnFni . j ava
example, you need to modify the PASSFML service through the Jolt Repository
Editor.

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for more information about defining a service.

1. Using the Jolt Repository Editor, definethe PASSFML service with aninput buffer
type of FML and an output buffer type of FML.

The following figure illustrates the Jolt Repository Edit Services window with
the PASSFML service.

2. Definethe input buffer type and output buffer type as FML for the PASSFML
service.

3. Definethe parameters for the PASSFML service. In this example, the parameters
are: INPUTSTRING, OUTPUTINT, INPUTINT, OUTPUTSTRING,
OUTPUTFLOAT, INPUTFLOAT.

BEA Jolt Developer's Guide 4-25

4 Usingthe Jolt Class Library

Figure4-7 Edit the PASSFML Service

i Applet Viewer: bea jolt. admin RE class

Applet

Edit Services
Adding nesy service to package: BULKPEG

Service Mame PASSFML Farameters
Input Buffer Type FhiL - INPUTFLOAT
Input Wiew Marme INPUTINT

INPLUTSTRIMG
Dutput Buffer Type FhiL i QUTPLUTFLOAT
Cutput View Mame QUTPUTIMNT

QUTPLUTSTIMNG
Export Status

" Unexport (= E

Service level actions Farameter level actions

Save Sewicel Testl Elackl

New| [ETT| e

4-26 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Figure4-8 Edit the PASSFML Parameters

2 Applet Viewer: bea jolt. admin RE_class
S ApPp]
Applet

Edit Parameters
Changing existing parameter in package: BULKFPKG service: PASSFML

Farameter Information Screen Information

Field Matne INPUTSETRIMNG Screen Label I
Data Type string 'I

Direction o input ¢ output (7 both
Ocourrenceis) I 1
Clearl Change | L | Elackl SYey= 2) | e

tryOnFml.c Server Code

Thefollowinglisting illustratesthe server side codefor using the FML buffer type. The
PASSFML servicereadsin an input FML buffer and outputsa FML buffer.

Listing4-6 tryOnFml.c Code Example

/*
* tryOnFmi . c

*

* Copyright (c) 1997 BEA Systems, Inc. All rights reserved
*

BEA Jolt Developer's Guide 4-27

4 Usingthe Jolt Class Library

* Contains the PASSFM. Tuxedo server.
*
*/
#i nclude <stdlib. h>
#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#i ncl ude <sys/stat. h>
#i ncl ude <mal | oc. h>
#i ncl ude <mat h. h>
#i nclude <string. h>
#include <fm . h>
#i ncl ude <fm 32. h>
#i ncl ude <Usysfl ds. h>
#i nclude <atm . h>
#i ncl ude <userl og. h>
#include "tryOnFm . f16. h"
/*
* PASSFML service reads in a input fm buffer and outputs a fm buffer.
*/
voi d
PASSFM_(TPSVCI NFO *rgst)

{

FLDLENI en;

FBFR*svci nfo = (FBFR *) rqst->dat a;

charinput Stri ng[256] ;

| ongi nput | nt;

fl oati nput Fl oat;

FBFR*fm _ptr;

intrt;

if (Fget(svcinfo, INPUTSTRING O, inputString, &en) < 0) {
(voi d)userl og("Fget of INPUTSTRING failed %",
Fstrerror(Ferror));

tpreturn(TPFAI L, O, rgst->data, OL, 0);

}

if (Fget(svcinfo, INPUTINT, O, (char *) & nputlnt, & en) < 0) {
(void)userl og("Fget of INPUTINT failed %", Fstrerror(Ferror));
tpreturn(TPFAI L, 0, rgst->data, OL, 0);

i f (Fget(svcinfo, | NPUTFLOAT, 0, (char *) & nputFloat, & en) < 0) {
(voi d)userl og("Fget of | NPUTFLOAT failed %",

Fstrerror(Ferror));

tpreturn(TPFAI L, 0, rgst->data, OL, 0);

/* We could just pass the FML buffer back as is, put lets*/

/* store it into another FM. buffer and pass it back.*/
if ((fm _ptr = (FBFR *)tpalloc("FM", NULL, rgst->len))==(FBFR *) NULL) {

4-28 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

(void)userlog(“tpalloc failed in PASSFM. %",
tpstrerror(tperrno));
tpreturn(TPFAIL, 0, rgst->data, OL, 0);

i f(Fadd(fm _ptr, OQUTPUTSTRI NG inputString, (FLDLEN)O) == -1) {
userl og("Fadd failed with error: %", Fstrerror(Ferror));
tpfree((char *)fm _ptr);

tpreturn(TPFAIL, 0, NULL, OL, 0);

}
i f(Fadd(fm _ptr, QUTPUTINT, (char *)& nputlnt, (FLDLEN)O) == -1) {
userl og("Fadd failed with error: %", Fstrerror(Ferror));
tpfree((char *)fm _ptr);
tpreturn(TPFAIL, 0, NULL, OL, 0);

}
i f(Fadd(fm _ptr, QUTPUTFLQAT, (char *)& nputFloat, (FLDLEN)O) == -1) {
userl og("Fadd failed with error: %\ n", Fstrerror(Ferror));
tpfree((char *)fm _ptr);
tpreturn(TPFAIL, 0, NULL, OL, 0);

}
tpreturn(TPSUCCESS, 0, (char *)fm _ptr, OL, 0);

BEA Jolt Developer's Guide 4-29

4 Usingthe Jolt Class Library

Using the VIEW Buffer Type

VIEW isabuilt-in Tuxedo typed buffer. The VIEW buffer provides away to use C
structures and COBOL records with the Tuxedo system. The VIEW typed buffer
enables the Tuxedo run-time system to understand the format of C structures and
COBOL records based on the view description that is read at run time.

When allocatinga VIEW, your application specifiesaVIEW buffer type and asubtype
that matches the name of the view (the name that appearsin the view descriptionfile).
The parameter name must match the field name in that view. Since the Tuxedo
run-time system can determine the space needed based on the structure size, your
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in arequest or
response, and handle encoding and decoding when the message transfers between
different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and
its server-side application. The example consists of three parts:

¢ Thesi npvi ew. j ava Jolt client that contains the code used to connect to Tuxedo
and uses the VIEW buffer type (in the following listing)

¢ Thesi npvi ew. v16 file that contains the Tuxedo VIEW field definitions

¢ Thesi npvi ew. ¢ code sample containing the server side C code for handling the
input from the Jolt client

The Jolt client treats anull character in aVIEW buffer string format as an end-of-line
character and truncates any part of the string that follows the null.

simpview.java Client Code

4-30

Thefollowing listing illustrates how Jolt works with a service whose buffer typeis
VIEW. Theclient code isidentical to the code used for accessing an FML service.

Note: The codein the following listing does not catch any exceptions. Since all Jolt
exceptions are derived from j ava. | ang. RunTi meExcept i on, the Java
Virtual Machine (JV M) will catch these exceptionsif the application does not.
(A well-written application would catch these exceptions, and take appropriate
actions.)

BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Before running the examplein the following listing, you need to add the VIEW service
to the SIMPAPP package using the Jolt Repository Editor and write the si npvi ew. ¢
Tuxedo application. This servicetakesthe datafrom the client VIEW buffer, createsa
new buffer and passes it back to the client as anew VIEW buffer. The following
example assumes that a session object has already been instantiated.

Listing4-7 simpview.java Code Example

/* Copyright 1997 BEA Systems, Inc. Al Rights Reserved */

/*

* This code fragnent illustrates how Jolt works with a service whose buffer
* type is VIEW

*/

inport bea.jolt.*;

class ...

{
publ ic void sinmview ()

Jol t Renot eServi ce Vi ewSvc;

String outString;

int outlnt;

fl oat out Fl oat;

// Create a Jolt Service for the Tuxedo service "SI MPVI EW
Vi ewSvc = new Jol t Renot eSer vi ce(" SI MPVI EW , sessi on) ;

/1 Set the input paranetes required for SIMVIEW

Vi ewSvc. setString("inString", "John");

Vi ewSvc. setlnt("inlnt", 10);

Vi ewSvc. setFl oat ("inFloat", (float)10.0);

// Call the service. No transaction required, so pass
/1 a "null" paraneter

Vi ewSve. call (null');

// Process the results

outString = ViewSvc. getStringDef("outString", null);
outlnt = ViewSvc.getlntDef("outlnt", -1);

out Fl oat = ViewSvc. get Fl oat Def ("out Fl oat", (float)-1.0);
/1 And display them..

Systemout.print("outString=" + outString + ",");

Systemout.print("outlnt=" + outlnt + ", ");
System out. println("outFloat=" + outFloat);
}
}

BEA Jolt Developer's Guide 4-31

4 Usingthe Jolt Class Library

VIEW Field Definitions

The following entries show the Tuxedo VIEW field definitions for the
si npvi ew. j ava example.

Listing 4-8 simpview.v16 Field Definitions

#

VIEWfor SIMPVIEW This viewis used for both input and out put. The
service coul d al so have used separate input and output views.

The first 3 parans are input parans, the second 3 are outputs.

#

VI EW Si mpVi ew

$

#type cname fbname count flag size nul |
string inString - 1 - 32 -

| ong i nl nt - 1 - - -
float inFloat - 1 - - -
string outString - 1 - 32 -

| ong out I nt - 1 - - -
float outFl oat - 1 - - -

END

Define VIEW in the Repository Editor

Before running the si npvi ew. j ava and si npvi ew. ¢ examples, you need to define
the VIEW service through the Jolt Repository Editor.

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for more information about defining a service.

4-32 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Figure4-9 Add SIMPVIEW Service

EaApplet Viewer: bea.jolt.admin.RE. class
3 App

Applet

Services

Fackages
BAMEARP

BULKPKG
SIMPSERY

Semices Farameters

innt
inString
outFloat
outint
outString

Mew.. | Edit. | Delete| Back|

In the Repository Editor add the VIEW service asfollows:
1. AddaSIMPVIEW servicefor the SIMPSERV package.

2. Definethe SIMPVIEW service with an input buffer type of VIEW and an output
buffer type of VIEW.

BEA Jolt Developer's Guide 4-33

4 Usingthe Jolt Class Library

Figure4-10 Edit SIMPVIEW Service

i Applet Viewer: bea jolt. admin RE class
Applet

Edit Services
Editing existing service in package: SIMPSERY

Service Mame SIMPWIEWY Farameters
Input Buffer Type W "I
Input Wiew Mame inString
outFloat
Output Buffer Type WVIEWY 'I autint
Output Yiew Mame outString
Export Status & Unexport () Export
Service level actions Farameter level actions
Save Setvice | Testl Elackl Mesw. . | Edit... | Delete |

3. Define the parameters for the VIEW service. In this exampl e the parameters are:
inlnt, inString, outFloat, outlnt, outString.

Note: If usingthe X_COMMON or X_C_TYPE buffer types, you must put the
correct buffer type in the I nput Buffer Typeand Output Buffer Typefields.
Additionally, you must choose the corresponding I nput View Name and
Output View Name fields.

simpview.c Server Code

In thefollowing server code, the input and output buffersare VIEW. The code accepts
the VIEW buffer data as input and outputs the same dataas VIEW.

4-34 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt

Listing4-9 simpview.c Code Example

S| MPVI EW ¢
Copyright (c) 1997 BEA Systenms, Inc. All rights reserved
Cont ai ns the SIMPVI EW Tuxedo server.

T T I R I S

~

ncl ude <stdlib. h>

i ncl ude <stdio. h>

i ncl ude <ctype. h>

i ncl ude <sys/types. h>
i ncl ude <sys/ipc. h>
i ncl ude <sys/sem h>
i ncl ude <sys/stat. h>
i ncl ude <mall oc. h>

i ncl ude <mat h. h>

i ncl ude <string. h>

i ncl ude <fm . h>

i ncl ude <fm 32. h>

i ncl ude <Usysflds. h>
i ncl ude <atni.h>

i ncl ude <userl og. h>
i ncl ude "si npview h"

STHEERHREEZER R R ER

* Contents of sinpview h.
*

*struct SinpView {
*

*charinString[32];
*| ongi nl nt;

*fl oatinFl oat;
*charout String[32];
*| ongout | nt ;

*f | oat out Fl oat ;

*}’

*/
/*

* service reads in a input view buffer and outputs a view buffer.
*/

voi d

SI MPVI EW TPSVCI NFO *rgst)

{

/ *

* get the structure (M EWSVC) fromthe TPSVC NFO structure
*/

BEA Jolt Developer's Guide 4-35

4 Usingthe Jolt Class Library

struct SinmpView*svcinfo = (struct SinpView *) rqst->data;
/*

* print the input parans to the UserLog. Note there is

* no error checking here. Normally a SERVER woul d perform
* some validation of input and return TPFAIL if the input
* is not correct.

*/

(voi d)userl og("SIMPVI EW I nString=%s, | nlnt=%l, | nFl oat =% ",
svci nfo->inString, svcinfo->inlnt, svcinfo->inFloat);

/*

* Popul ate the output fields and send them back to the caller
*/

strcpy (svcinfo->outString, "Return from SI MPVI EW);

svci nfo->outl nt = 100;

svci nf o->out Fl oat = (float) 100. 00;

/*

* |f there was an error, return TPFAIL

* tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo),
*/

t preturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);

4-36 BEA Jolt Developer’s Guide

0);

Multithreaded Applications

Multithreaded Applications

AsaJava-based set of classes, Jolt supports multithreaded applications. However,
various implementations of the Java language differ with respect to certain language
and environment features. Jolt programmers need to be aware of the following:

4 The use of preemptive and non-preemptive threads when creating applications or
applets with the Jolt Class Library

4 The use of threads to get asynchronous behavior similar to thet pacal | ()
function in Tuxedo

The following section describes the issues arising from using threads with different
Java implementations and is followed by an example of the use of threads in a Jolt
program.

Note: Most Javaimplementations provide preemptive rather than non-preemptive
threads. The difference between these two models can lead to very different
performance and programming requirements.

Threads of Control

Each concurrently operating task in the Javavirtual machineisathread. Threads exist
in various states, theimportant ones being RUNNING, RUNNABLE, or BLOCKED.

4 A RUNNING thread isa currently executing thread.

4 A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing the
state of athread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

4 A BLOCKED thread is athread that iswaiting on the availability of some event
or resource.

Note: The JavaVM schedules threads of the same priority to run in around-robin
mode.

BEA Jolt Developer's Guide 4-37

4 Usingthe Jolt Class Library

Preemptive Threading

The main performance difference between the two threading models arisesin telling a
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedureisto set a hardware timer that goes off periodically.
When the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In anon-preemptivethreading environment, athread must volunteer to give up control
of the CPU and move to the RUNNABLE state. Many of the methods in the Java
language classes contain code that volunteers to give up control, and are typically
associated with actions that might take along time. For example, reading from the
network will generally cause athread to wait for a packet to arrive. A thread that is
waiting on the availability of some event or resourceisinthe BLOCKED state. When
the event occurs or the resource becomes available, the thread becomes RUNNABLE.

Using Jolt with Non-Preemptive Threading

4-38

If your Jolt-based Java program is running on a non-preemptive threading Virtual
Machine (such as Sun Solaris), the program must either:

¢ Occasionally call amethod that blocks the thread, or
4+ Explicitly give up control of the CPU using the Thr ead. yi el d() method

Thetypical usageisto make the following call in all long running code segments or
potentially time-consuming loops:

Thread. current Thread. yi el d();

Without sending this message, the threads used by the Jolt library may never get
scheduled, and as such, the Jolt operation isimpaired.

The only virtual machine known to use non-preemptive threading is the Java
Developer’sKit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform. If
you want your applet to work on JDK 1.0, you must make sure to send the yield

BEA Jolt Developer’s Guide

Multithreaded Applications

messages. Asmentioned earlier, some methods contain yields. Animportant exception
isthe Syst em i n. r ead method. This method does not cause athread switch. Rather
than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

Y ou can use threads in Jolt to get asynchronous behavior that is analogous to the

t pacal | () functionin Tuxedo. With thiscapability, you do not need an asynchronous
servicerequest function. Y ou can get thisfunctionality because Jolt isthread-safe. For
example, the Jolt client application can start one thread that sends arequest to a Tuxedo
service function and then immediately start another thread that sends another request
to a Tuxedo service function. So even though the Jolt t pacal | () issynchronous, the
application is asynchronous because the two threads are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet isfully thread-safe. Jolt support of multithreaded
applications includes the following client characteristics:

4 Multiple sessions per client

4 Multithreaded within a session

4 Client application manages threads, not asynchronous calls
¢ Performs synchronous calls

The following program illustrates the use of two threads in a Jolt application.

BEA Jolt Developer's Guide 4-39

4 Usingthe Jolt Class Library

4-40

Listing 4-10 Using Multiple Threadswith Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systens, Inc. All Rights Reserved */
i mport bea.jolt.*;
public class ThreadBank
{
public static void main (String [] args)
{
Jol t Sessi on session;
try
{
Jol t Sessi onAttri butes dattr;
String userName = null;
String userPasswd = null;
String appPasswd = nul | ;
String userRole = null;

/1 fill in attributes required
dattr = new JoltSessionAttributes();
dattr.set String(dattr. APPADDRESS, "// bl uefish: 8501");

// instantiate domain
/1 check authentication |evel
switch (dattr.checkAuthenticationLevel ())

{

case Jolt Sessi onAttri but es. NOAUTH:
System out. printl n(“NOAUTH\ n");
br eak;

case Jol t Sessi onAttri but es. APPASSWORD:
appPasswd = “myAppPasswd”;
br eak;

case Jol t Sessi onAttri but es. USRPASSWORD:
user Name = “nyNanme”;
user Passwd = “nySecret”;
appPasswd = “myAppPasswd”;
br eak;

dattr.setlnt(dattr.|DLETI MEQUT, 60);

session = new Jol t Session (dattr, userNanme, userRol e,
user Passwd, appPasswd) ;

T1 t1

T2 t2

new Tl (session);
new T2 (session);

tl.start();
t2.start();

Thread. current Thread().yiel d();
try

BEA Jolt Developer’s Guide

Multithreaded Applications

{
while (tl.isAlive() & t2.isAlive())
Thread. current Thread() . sl eep(1000);
}
catch (InterruptedException e)
{
Systemerr.println(e);
if (t2.isAlive())
{
Systemout.println(“job 2 is still alive”);
try
Thread. current Thread(). sl eep(1000);
catch (InterruptedException el)
{
Systemerr.println(el);
}
else if (tl.isAlive())
{ Systemout.printin(“jobl is still alive”);
try
{
Thread. current Thread(). sl eep(1000);
catch (InterruptedException el)
{
Systemerr.println(el);
}
}
}

sessi on. endSessi on() ;

catch (Sessi onException e)

{
Systemerr.printin(e);
finally
{
System out. println(“normal ThreadBank terni)
}
}
}
class T1 extends Thread
{

BEA Jolt Developer's Guide 4-41

4 Usingthe Jolt Class Library

Jol t Session j _session;
Jol t Renot eSer vi ce j _withdrawal ;

public T1 (Jolt Session session)

{
j _sessi on=sessi on;
j _withdrawal = new Jol t Renot eServi ce(“ W THDRAWAL”, j _sessi on);
}
public void run()
{
j _wi t hdrawal . addl nt (“ACCOUNT_I D', 10001) ;
j _withdrawal . addSt ri ng(“ SAMOUNT”, " 100. 00”) ;
try
{
Systemout.println(“lnitiating Wthdrawal from account
10001");
j_withdrawal .call (null);
String W= j_wi thdrawal . get StringDef (“SBALANCE", "-1.0");
Systemout.println(“-->Wthdrawal Bal ance: “ + W;
catch (ApplicationException e)
e.printStackTrace();
Systemerr.println(e);
}
}
}
class T2 extends Thread
{

Jol t Session j _session;
Jol t Renot eSer vi ce j _deposit;

public T2 (Jolt Session session)
{
j _sessi on=sessi on;
j _deposi t= new Jol t Renot eSer vi ce(“ DEPCSI T”, j _sessi on);

public void run()
{
j _deposi t. addl nt (“ACCOUNT_I| D', 10000);
j _deposit.addString(“ SAMOUNT”, " 100. 00") ;
try
{
Systemout.printIln(“Initiating Deposit fromaccount 10000");
j _deposit.call (null);
String D = j_deposit.getStringDef(“SBALANCE",”-1.0");
System out.println(“-->Deposit Bal ance: “ + D);

4-42 BEA Jolt Developer’s Guide

Multithreaded Applications

catch (ApplicationException e)

e.printStackTrace();
Systemerr.println(e);
}
}
}

BEA Jolt Developer'sGuide 4-43

4 Usingthe Jolt Class Library

Event Subscription and Notifications

Programmers developing client applications with Jolt can receive event notifications
from either Tuxedo Services or other Tuxedo clients. The Jolt Class Library contains
classes that support the following types of Tuxedo notifications for handling
event-based communication:

L4

Unsolicited Event Notifications. These are notifications that a Jolt client
receives as aresult of a Tuxedo client or service issuing a broadcast using either
at pbroadcast () or adirectly targeted messageviaa tpnotify() ATMI cal.

Brokered Event Notifications. These notifications are received by a Jolt client
through the Tuxedo Event Broker. The notifications are only received when the
Jolt client subscribes to an event and any Tuxedo client or server issues a
system-posted event or t ppost () call.

API for Event Subscription

4-44

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications:

L4

JoltSession. The JoltSession class includes an onRepl y() method for receiving
notifications and notification messages.

JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.

JoltM essage. The JoltM essage class provides get () methods for obtaining
information about the notification or event.

JoltUserEvent. The JoltUserEvent class supports subscription to both unsolicited
and event notification types.

For additional information about these classesrefer to the “ APl Reference in Javadoc.”

BEA Jolt Developer’s Guide

Event Subscription and Notifications

Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt client
application requires an event handler routine that is invoked upon receipt of a
notification.Jolt only supports a single handler per session. In Tuxedo versions, you
cannot determine which event generated a notification. Therefore, you cannot invoke
an event-specific handler based on a particular event.

The client application must provide a single handler (by overriding the onRepl y()
method) per session that will beinvoked for all notifications received by that client for
that session. The single handler call-back function is used for both unsolicited and
event notification types. It is up to the (user-supplied) handler routine to determine
what event caused the handler invocation and take appropriate action. If the user does
not override the session handler, then notification messages are silently discarded by
the default handler.

The Jolt client providesthe call back function by subclassing the JoltSession class and
overriding the onRepl y() method with auser-defined onRepl y() method.

In Tuxedo/ATMI clients, processing in the handler call-back function islimited to a
subset of ATMI calls. This restriction does not apply to Jolt clients. Separate threads
are used to monitor notifications and run the event handler method. A Jolt client can
perform all Jolt-supported functionality from within the handler. All the rules that
apply to anormal Jolt client program apply to the handler, such as asingle transaction
per session at any time.

Each invocation of the handler method takes placein aseparatethread. The application
developer should ensure that theonRepl y() method iseither synchronized or written
thread-safe, since separate threads could be executing the method simultaneously.

Jolt uses an implicit model for enabling the handler routine. When a client subscribes
to an event, Jolt internally enables the handler for that client, thus enabling unsolicited
notificationsaswell. A Jolt client cannot subscribe to event notifications without also
receiving unsolicited notifications. In addition, asingle onRepl y() methodisinvoked
for both types of notifications.

BEA Jolt Developer's Guide 4-45

4 Usingthe Jolt Class Library

Connection Modes

Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode receive notifications while
they have an active network connection to the Jolt Session Handler (JSH). When the
network connection is closed, the JSH logs and drops notifications destined for the
client. Jolt clients operating in a connection-less mode do not receive unsolicited
messages or notifications while they do not have an active network connection. All
messages received during thistime are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt
clientsin the Tuxedo environment. If aJSH receives an acknowledged notification for
aclient and the client does not have an active network connection, the JSH logs an
error and returns a failure acknowledgment to the notification.

Notification Data Buffers

4-46

When aclient receives notification, it isaccompanied by adatabuffer. The data buffer
can be of any Tuxedo data buffer type. Jolt clients (for example, the handler) will
receive these buffersasa Jol t Message object and should use the appropriate

Jol t Message classget * () methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer needs to know field
names.

The Jolt system does not provide functionality equivalent tot pt ypes() in Tuxedo.
For FML and VIEW buffers, the datais accessed using the get * () methods with the
appropriate field name, for example:

get I nt Def ("ACOOUNT | D', -1);

For STRING and CARRAY bhuffers, the data is accessed by the same name as the
buffer type:

get StringDef ("STRING', null);
get Byt esDef (" CARRAY", null);

BEA Jolt Developer’s Guide

Event Subscription and Notifications

STRING and CARRAY buffers contain only a single data element. This complete
element isreturned in the get * () methods above.

Tuxedo Event Subscription

Tuxedo brokered event notification allows Tuxedo programsto post events without
knowing what other programs are supposed to receive notification of an event’s
occurrence. The Jolt event notification allows Jolt client applications to subscribe to
Tuxedo eventsthat are broadcast or posted using the Tuxedo t pnoti fy() or

t pbroadcast () calls.

Jolt clients are only able to subscribe to events and notifications that are generated by
other components in Tuxedo (such as a Tuxedo Service or Client). Jolt clients are not
able to send events or notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. The Jolt onRepl y() method is
called when a subscription is fulfilled. The Jolt APl does not support dispatching a
service routine or enqueueing amessage to an application queue when anotification is
received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notification, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly enables
unsolicited notification. This means that if the application creates a JoltUserEvent
object for Event "X", the client automatically receives notifications directed to it as a
result of t pnoti fy() ort pbroadcast ().

Note: Thisis not the recommended method for enabling unsolicited notification. If
you want unsolicited notification, the application should explicitly do so (as
described in the JoltUserEvent class). The reason for this is explained in the
following section.

BEA Jolt Developer's Guide 4-47

4 Usingthe Jolt Class Library

Unsubscribing from Notifications

4-48

Tostop subscribing to event notifications and/or unsolicited messages, you need to use
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notificationswith
an unsubscribe method does not turn off all subscription notifications. This differs
from Tuxedo. In Tuxedo the use of t pset unsol () withaNULL handler turns off all
subscription notifications.

When unsubscribing, the following considerations apply:

4 |If aclientissubscribed to only a single event, unsubscribing disables both the
event notification and unsolicited messages.

4 If aclient has multiple subscriptions, then unsubscribing from any single
subscription disables only that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

4 If aclient subscribesto both unsolicited and event notifications, then
unsubscribing to only the unsolicited notification will not stop either type of
notification from continuing. In addition, this unsubscribe does not throw an
exception. However, the Jolt APl remembers that an unsubscribe has taken place
and a subsequent unsubscribe to the remaining event disables both event
notification and unsolicited messages.

If you want to stop unsolicited messagesin your client application, you need to make
sure that you have unsubscribed to all events.

BEA Jolt Developer’s Guide

Event Subscription and Notifications

Using the Jolt API to Receive Tuxedo Notifications

The example code provided in the following listing shows how to use the Jolt Class
Library for receiving notifications and includes the use of the JoltSession, JoltReply,
JoltM essage and JoltUserEvent classes.

Listing4-11 Asynchronous Notification

cl ass Event Sessi on extends Jol t Sessi on

{

public Event Session(JoltSessionAttributes attr, String user,
String role, String upass, String apass)
{

super(attr, user, role, upass, apass);

/**

* Override the default unsolicited nmessage handl er.

* @aramreply a place holder for the unsolicited nmessage
* @ee bea.jolt.JoltReply

*/

public void onReply(JoltReply reply)

{
/1 Print out the STRI NG buffer type nessage which contains
/1 only one field; the field name nmust be "STRING'. |If the
/| message uses CARRAY buffer type, the field nane nust be
/1 "CARRAY". Oherwi se, the field nanes nmust conformto the
/1 elenments in FM. or VI EW
Jol t Message msg = (Jol t Message) reply. get Message();
System out. println(nmsg.getStringDef("STRING', "No Msg"));

}

public static void main(Strings args[])

{

Jol t User Event unsol Event;
Jol t User Event hel | oEvent ;
Event Sessi on sessi on;

/1 Instantiate my session object which can print out the
// unsolicited messages. Then subscribe to HELLO event
// and Unsolicited Notification which both use STRI NG

/1 buffer type for the unsolicited nmessages.

session = new Event Session(...);

BEA Jolt Developer's Guide 4-49

4 Usingthe Jolt Class Library

hel | oEvent = new Jol t User Event ("HELLO', null, session);
unsol Event = new Jol t User Event (Jol t User Event . UNSOLMSG, nul I,
session);

/'l Unsubscribe the HELLO event and unsolicited notification.
hel | oEvent . unsubscri be();
unsol Event . unsubscri be();

4-50 BEA Jolt Developer’s Guide

Clearing Parameter Values

Clearing Parameter Values

The Jolt Class Library includes a method (the cl ear () method) that allows you to
remove existing attributes from an object and, in effect, provides for the reuse of the
object. Ther euseSanpl e. j ava exampleillustrates how to usethecl ear () method
for clearing parameter values.

Ther euseSanpl e. j ava example shows how to reuse the JoltRemoteService
parameter values. The example shows that you do not have to destroy the service to
reuseit. Instead, thesvc. cl ear () ; statement is used to discard the existing input
parameters before reusing the addst ri ng() method.

Listing4-12 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systems, Inc. Al Rights Reserved */
inport java.net.*;
inport java.io.*;
inport bea.jolt.*;

/*
* This is a Jolt sanple programthat illustrates how to reuse the
* Jol t Renpt eService after each invocation.
*/

cl ass reuseSanpl e

{

private static JoltSession s_session;

static void init(String host, short port)

{
/* Prepare to connect to the Tuxedo domain. */
Jol t Sessi onAttributes attr = new Jol t SessionAttributes();
attr.setString(attr. APPADDRESS, "/ /”+ host+":" + port);

nul | ;

“sw-devel oper”;
nul | ;

nul | ;

String usernane
String userrole
String appl passwd
String userpasswd

/* Check what authentication |evel has been set. */
switch (attr.checkAut henticationLevel ())
{
case Jol t Sessi onAttri but es. NOAUTH:
br eak;
case Jolt Sessi onAttri but es. APPASSWORD:

BEA Jolt Developer's Guide 4-51

4 Usingthe Jolt Class Library

appl passwd = “secret8”;

br eak;
case Jol t Sessi onAttri but es. USRPASSWORD:
username = “nyNane”;
user passwd = “BEA#1";
appl passwd = “secret8”;
br eak;
}
/* Logon now without any idle timeout (0). */
/* The network connection is retained until |ogoff. */

attr.setlnt(attr.|DLETI MEQUT, 0);
s_session = new Jolt Session(attr, usernane, userrole,
user passwd, appl passwd) ;

}

public static void main(String args[])
{

String host;

short port;

Jol t Renot eSer vi ce svc;

if (args.length != 2)

{
Systemerr. println(“Usage: reuseSanple host port”);
Systemexit(1);

}

/* CGet the host nane and port nunber for initialization. */
host = args[O0];
port = (short)lnteger.parselnt(args[1]);

init(host, port);

/* Get the object reference to the DELREC service. This

* service has no output paranmeters, but has only one input
* paraneter.

*/

svc = new Jol t Renot eServi ce(“DELREC’, s_session);

try

{
/* Set input paranmeter REPNAME. */

svc. addStri ng(“ REPNAME", “Recordl”);

svc.call (null);

/* Change the input paraneter before reusing it */
svc. set String(“ REPNAMVE', “Record2”);

svc.call (null);

/* Sinply discard all input paraneters */
svc. clear();

4-52 BEA Jolt Developer’s Guide

Reusing Objects

svc. addString(“ REPNAMVE”, “Record3”);
svec.cal l (null);

catch (ApplicationException e)

Systemerr.println(“Service DELREC fail ed: “+
e. get Message() +” “+ svc.get StringDef (“MESSAGE", null));
}

/* Logoff now and get rid of the object. */
s_sessi on. endSessi on() ;

Reusing Objects

The following ext endSanpl e. j ava example illustrates one way to subclass the
JoltRemoteServiceclass. In this case, a TransferService classis created by subclassing
the JoltRemoteServiceclass. The TransferService class extendsthe JoltRemoteService
class, adding a Transfer feature which makes use of the Tuxedo bankapp funds
TRANSFER service.

The exampl e usesthe extends keyword from the Javalanguage. Theext ends keyword
isused in Javato subclass abase (parent) class. The following code shows only one of
many different ways to extend from JoltRemoteService.

Listing 4-13 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 BEA Systems, Inc. Al Rights Reserved */

i nport java.net.*;
inport java.io.*;
inport bea.jolt.*;

/*

* This Jolt sanple code fragment illustrates how to custom ze

* Jol t Rempt eService. It uses the Java | anguage “ext ends” mechani sm
*/

cl ass TransferService extends Jolt Renot eService

{

BEA Jolt Developer's Guide 4-53

4 Usingthe Jolt Class Library

public String fronBal;
public String toBal;

public TransferService(JoltSession session)

{
super (“ TRANSFER’, session);

public String doxfer(int fromAcct Num int toAcctNum
anmount)
{
/* Clear any previous input paraneters */
this.clear();

/* Set the input paraneters */
this.setIntltenm(“ACCOUNT_I D', 0, fromAcctNun);
this.setlntltenm(“ACCOUNT_I D', 1, toAcctNum;
this.setString(“SAMOUNT”, anpunt);

try

{
/* Invoke the transfer service. */
this.call(null);

/* Get the output paraneters */
fromBal = this.getStringltenDef(“SBALANCE’, O,

if (fromBal == null)
return “No bal ance from Account “ +
fromAcct Num

toBal = this.getStringltenDef(“SBALANCE’, 1, null);

if (toBal == null)

return “No balance from Account “ + toAcct Num

return null;
catch (ApplicationException e)

/* The transaction failed, return the reason */

return this.getStringDef(“STATLIN', “Unknown reason”);

}

cl ass extendSanpl e

public static void main(String args[])

{
Jol t Sessi on s_session;
String host ;
short port;

4-54 BEA Jolt Developer’s Guide

Reusing Objects

TransferService xfer;
String failure;

if (args.length != 2)
Systemerr.println(“Usage: reuseSanple host port”);
Systemexit(1);

/* Get the host nane and port nunmber for initialization. */
host args[0];
port (short) I nteger. parselnt(args[1]);

/* Prepare to connect to the Tuxedo domain. */
Jol t Sessi onAttributes attr = new Jolt SessionAttributes();
attr.setString(attr. APPADDRESS, "//”+ host+":" + port);

String username = null;

String userrole = “sw devel oper”;
String appl passwd = null;

String userpasswd = null;

/* Check what authentication |evel has been set. */
switch (attr.checkAuthenticationLevel ())

{
case Jolt Sessi onAttri but es. NOAUTH:
br eak;
case Jolt Sessi onAttri but es. APPASSWORD:
appl passwd = “secret8”;
br eak;
case Jol t Sessi onAttri but es. USRPASSWORD:
user name = “nyNanme”;
user passwd = “BEA#1";
appl passwd = “secret8”;
br eak;
}
/* Logon now wi thout any idle timeout (0). */
/* The network connection is retained until logoff. */

attr.setlnt(attr.|DLETI MEQUT, 0);
s_session = new Jol t Session(attr, username, userrole,
user passwd, appl passwd);

/*

* TransferService extends fromJolt Renot eServi ce and uses t he
* standard Tuxedo BankApp TRANSFER service. W invoke this
* service twice with different paraneters. Note, we assune
* that “s_session” is initialized sonewhere before.
*/

BEA Jolt Developer's Guide 4-55

4 Usingthe Jolt Class Library

4-56

xfer = new TransferService(s_session);
if ((failure = xfer. doxfer (10000, 10001, “500.00")) != null)
Systemerr.println(“Tranasaction failed: “ + failure);
el se
{
Systemout. println(“Transaction is done.”);
Systemout. println(“From Acct Bal ance: “+xfer.fronBal);
Systemout.println(“ To Acct Bal ance: “+xfer.toBal);

}

if ((failure = xfer.doxfer (51334, 40343, “$123.25")) !=null)
Systemerr.println(“Tranasaction failed: “ + failure);
el se
{
Systemout. println(“Transaction is done.”);
Systemout. println(“From Acct Bal ance: “+xfer.fronBal);
Systemout.println(“ To Acct Bal ance: “+xfer.toBal);

BEA Jolt Developer’s Guide

Application Deployment and Localization

Application Deployment and Localization

The Jolt Class Library alows you to build Java applications that execute from within
aclient Web browser. For these types of applications, you need to address the
following application development tasks:

4+ Deploying your Jolt applicationin an HTML page
4 Localizing your Jolt application for different languages and character sets

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, you need to consider the three componentsthat operate
together to make the applet function in a Web browser environment:

4 Requirements for the Tuxedo server and Jolt server
¢ Client-side execution of the applet
4 Requirements for the Web server that downl oads the Java appl et

Information for configuring the Tuxedo server and Jolt server to work with Jolt is
available in Installing the BEA Tuxedo System. The following sections describe
common client and Web server considerations for deploying Jolt applets.

BEA Jolt Developer's Guide 4-57

4 Usingthe Jolt Class Library

Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just as
any other Java applet in an HTML page. A Jolt applet can be embedded in an HTML
page using the HTML applet tag:

<appl et code="appl et _nane. cl ass”> </ appl et >

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the

HTML pageloads. Y ou can code the appl et to run immediately after it isdownl oaded,
or you can include code that setsthe applet to run based upon a user action, atimeout,
or aset interval. Y ou can also create an applet that downloadsin the HTML page, but
opens in another window or, for instance, simply plays a series of sounds or musical

tunes at intervals. The programmer has alarge degree of freedom in coding the applet
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution is
stopped.

Web Server Considerations

4-58

When you use the Jolt classes in a Java applet, the Jolt Server must run on the same
machine asthe Web server that downloadsthe Java applet unlessyou install Jolt Relay
on the Web server.

When awebmaster sets up aWeb server, adirectory is specified to storeal theHTM L
files. Within that directory, asubdirectory named “classes’ must be created to contain
all Javaclassfiles and packages. For example:

<htm -dir>/cl asses/bea/jolt

Or, you can set the CLASSPATH to include thej ol t . j ar file that contains all the Jolt
classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient access,
you may want to place it in the same directory asthe HTML files. The only
requirement for the Jolt classes subdirectory is that the classes must be made
available to the Web server.

BEA Jolt Developer’s Guide

Application Deployment and Localization

The HTML file for the Jolt applet should refer the codebase to thej ol t . j ar fileor
the cl asses directory. For example:

/export/htm/

| classes/

| _ bea/

| jolt/

_Jol tSessionAttributes. class
_Jol t Renot eSer vi ces. cl ass

. rrycorrbany/
_app.class

ex1. htm

I
I
I
I
I
I
[
| ex2.htm

The webmaster may specify the “app” applet inex1. ht nl as:

<appl et codebase="cl asses” code=nyconpany. app. cl ass w dt h=400
hei ght =200>

Localizing a Jolt Applet

If your Jolt application is intended for international use, you must address certain
localization issues. Localization considerations apply to applicationsthat executefrom
aclient Web browser and applications that are designed to run outside a Web browser
environment. L ocalization tasks can be divided into two categories:

4 Adapting an application from its original language to a target language.

4 Tranglating strings from one language to another. This sometimes requires
specifying a different al phabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the Java
language and the Tuxedo system. Jolt transfers Java 16-bit Unicode characters to the
JSH. The JSH provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes,
refer to your Java Development Kit (JDK) documentation.

BEA Jolt Developer's Guide 4-59

4 Usingthe Jolt Class Library

4-60 BEA Jolt Developer’s Guide

CHAPTER

5

Using JoltBeans

>

Formerly available asan add on, JoltBeans areincluded in BEA Jolt. Using JoltBeans,
you can create Jolt client applications with the ease of using JavaBeans. JoltBeans are
JavaBeans components that are used in Java devel opment environments to construct

Jolt clients. Y ou can use popular Java-enabled development tools such as Symantec

Visual Café to graphically construct client applications. JoltBeans provide a
JavaBeans-compliant interface to BEA Jolt. Y ou can develop afully functional BEA
Jolt client without writing any code.

“Using Jolt Beans” covers the following topics:

* & & o o

Overview of Jolt Beans

JoltBeans Terms

Adding JoltBeans to Your Java Development Environment
JavaBeans Events and Tuxedo Events

How JoltBeans Use JavaBeans Events
4 JoltSessionBean

4 JoltServiceBean

4+ JoltUserEventBean

Jolt Aware GUI Beans

Using the Property List and the Property Editor to Modify the JoltBeans
Properties

JoltBeans Class Library Walkthrough
4 Building the Sample Form
4 Wiring the JoltBeans Together

BEA Jolt Developer’s Guide

51

5 us ng JoltBeans

4 Using the Jolt Repository and Setting the Property Vaues
4 JoltBeans Programming Tasks

4 Using Transactions with JoltBeans

4 Using Custom GUI Elements with the JoltService Bean

4 How JoltBeans Use JavaBeans Events

Overview of Jolt Beans

JoltBeans consists of two sets of Java Beans. The first set, the JoltBeanstoolkit, isa
beans version of the Jolt API. The second set consists of GUI beans, which include
Jolt-aware AWT beans and Jolt-aware Swing beans. These GUI components are a
“Jolt-enabled” version of some of the standard Java AWT and Swing components, and
help you build a Jolt client GUI with minimal or no coding.

Y ou can drag and drop JoltBeans from the component pal ette of a development tool
and position them on the Java form (or forms) of the Jolt client application you're
creating. Y ou can populate the properties of the beans and graphically establish event
source-listener relationships between various beans of the application or applet.
Typically, the development tool is used to generate the event hook-up code, or you can
code the hook-up manually. Client development using JoltBeansis integrated with the
BEA Jolt repository, providing easy access to available BEA Tuxedo services.

Note: Currently, Symantec Visual Café 3.0isthe only IDE that has been certified by
BEA for use with JoltBeans. However, JoltBeans are also compatible with
other Java development environments such as Visua Age.

Thefirst topicsin this section provide a general, conceptual overview of how
JoltBeans work, aswell as a description of each Jolt bean and how it interacts with
Tuxedo events. The JoltBeans walkthrough demonstrates the specific stepsrequired to
create a Jolt client that interacts with Tuxedo services.

To use the JoltBeans toolkit, it is recommended that you be familiar with
JavaBeans-enabled, integrated devel opment environments (IDES). Thewalkthroughin
this chapter is based on Symantec’s Visual Café 3.0 IDE and illustrates the basic steps
of building a sample applet.

5-2 BEA Jolt Developer’s Guide

JoltBeans Terms

JoltBeans Terms

Refer to the following terms as you work with JoltBeans:

JavaBeans
Reusabl e software components that are graphically displayed in a
development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of
communication can be JavaBeans events, methods, or properties offered by
JoltBeans.

Jolt-Awar e Bean
A bean that is source of JoltInputEvents, listener of JoltOutputEvents, or
both. Jolt-aware beans are asubset of Custom GUI elementsthat follow beans
guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components (AWT and Swing), both containing the
JoltList, JoltCheckBox, JoltTextField, JoltLabel, and JoltChoice
components.

JoltBeans T oolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the
JoltServiceBean, JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a
listener of events from another bean.

BEA Jolt Developer’s Guide 5-3

5 us ng JoltBeans

Adding JoltBeans to Your Java Development
Environment

54

Before you can use JoltBeans, you must set up your development environment to
include JoltBeans. To set up your Java devel opment environment, you must:

4 Set the class path in your development environment to include al the Jolt
classes.

4 Add JoltBeans to the Component Library of your development environment.

The method of setting the CLASSPATH can vary, depending on the devel opment
environment you' re using.

JoltBeansincludes aset of . j ar filescontaining all of the JoltBeans. Y ou can add
these. j ar filesto your preferred Javadevel opment environment so that JoltBeansare
available in the component library of your Javatool. For example, using Symantec
Visual Café, you can set the CLASSPATH so that the . j ar filesarevisiblein the
Component Library window of Visua Café. Y ou only need to set the CLASSPATH of
these. jar filesinyour development environment once. After you have placed these
. j ar filesinthe CLASSPATH of your development environment, you can then add
JoltBeansto the Component Library. Then you can simply drag and drop any JoltBean
directly onto the Javaform on which you are developing your Jolt client application.

To set the CLASSPATHin your Java devel opment environment, follow the instructions
in the product documentation for your development environment. Navigate from the
IDE of your development tool to the directory where the jolt.jar file resides. The
jolt.jar fileistypicaly found in the directory called 9%aUXDI R4 udat adoj \j ol t .
Thejol t.jar filecontainsthe main Jolt classes. Set the CLASSPATH to include these
classes. The JoltBean . j ar files do not need to be added to the CLASSPATH. To use
them, you only need to add them as components in your IDE.

After you have set the CLASSPATHto include the Jolt classes, you can add JoltBeansto
the Component Library of your development environment. See the documentation for
your particular development environment for instructions on populating the
Component Library.

When you are ready to add JoltBeans to the Component Library of your devel opment
environment, add only the development version of JoltBeans, as explained in the next
section, “Using Development and Runtime JoltBeans.”

BEA Jolt Developer’s Guide

Basic Steps For Using JoltBeans

Using Development and Runtime JoltBeans

The . j ar files containing JoltBeans contain two versions of each JoltBean, a

devel opment version and aruntime version. The development version of each JoltBean
name ends with the suffix Dev. The runtime version of each class name ends with the
suffix Rt . For example, the development version of the class, JoltBean, is

Jol t BeanDev, while the runtime version of the same classisJol t BeanRt .

Use the development version of JoltBeans during the devel opment process. The
development JoltBeans have additional properties that enhance development in a
graphic IDE. For example, the development Beans have graphic properties (“bean
information™) that allow you to work with them as graphic icons in your development
environment.

Theruntime version of JoltBeans does not havethese additional properties. Y ou do not
need the additional development properties of the beansat runtime. The runtime beans
are simply a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled
using the development beans. However, if you want to run it from a command line
outside of your development environment, it is recommended that you set the
CLASSPATH so that the runtime beans are used when compiling your application.

Basic Steps For Using JoltBeans

After you have added the development version of JoltBeansto the Component Library
of your Java development environment, the basic steps in using JoltBeans during
development are as follows:

1. Drag the beansfrom the JoltBeans component palette of your development
environment to the Java form-designer for a Jolt client application or applet.

2. Populate the properties of the beans and set up the event-source listener
rel ationships between the beans of the application or applet (“wire” the beans
together). The development tool generates the event hook-up code.

3. Finaly, add the application logic to the event callbacks.

BEA Jolt Developer’s Guide 5-5

5 us ng JoltBeans

These steps are explained in more detail in the following sections. The JoltBeans
walkthrough demonstrates each of these steps with an example.

JavaBeans Events and Tuxedo Events

JavaBeans communicate through events. An event in a BEA Tuxedo system is
different from an event in a JavaBeans environment. In a Tuxedo application, an event
israised from one part of an application to another part of the same application.
JoltBeans events are communi cated between beans.

Using Tuxedo Event Subscription and Notification with JoltBeans

5-6

Tuxedo supports brokered and unsolicited event notification. Jolt provides a
mechanism for Jolt clients to receive Tuxedo events. JoltBeans also include this
capability.

Note: Tuxedo event subscription and notification isdifferent from JavaBeans events.

The following example shows how the Tuxedo asynchronous notification mechanism
is used in JoltBeans applications.

1. Usetheset Event Nane() andset Fi | ter () methods of the JoltUserEventBean
to specify the Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registersitself as a
JoltOutputL istener to the JoltSessionBean.

3. Thesubscri be() method is called on JoltUserEventBean.

4. When the actual Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to itslisteners by calling ser vi ceRet ur ned() onthem. The
JoltOutputEvent object contains the data of the Tuxedo event.

When the client is no longer interested in the event, it callsunsubscri be() onthe
JoltUserEventBean.

Note: If theclient wants only to subscribe to unsolicited events, use set Event Name
("\\. UNSOLMSG') , which can be set using the property sheet. Event Name
and Fi | ter are properties of the JoltUserEventBean.)

BEA Jolt Developer’s Guide

How JoltBeans Use JavaBeans Events

How JoltBeans Use JavaBeans Events

A Jolt client applet or application that has been built using JoltBeanstypically consists
of Jolt-aware GUI Beans, such as JoltTextField or JoltList, and JoltBeans, such as
JoltServiceBean and JoltSessionBean. The main mode of communication between
Beansis by JavaBeans events.

Jolt-aware beans are sources of JoltlnputEvents or listeners of JoltOutputEvents or
both. JoltServiceBeans are sources of JoltOutputEvents and listeners of
JoltInputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans
directly to the parameters of a Tuxedo service (represented by a JoltServiceBean).
Jolt-aware beans notify the JoltServiceBean viaa JoltInputEvent when their content
changes. The JoltServiceBean sends a JoltOutputEvent to all registered Jolt-aware
beans when thereply datais available after the service call. The Jolt-aware GUI Beans
contain logic that updates their contents with the corresponding output parameter of
the service.

The following figure shows a graphical representation of the possible relationships
among the JoltBeans.

BEA Jolt Developer’s Guide 5-7

5 us ng JoltBeans

Figure5-1 Possible Interrelationships Among the JoltBeans

Custom GUI element Custom GUI element

Jolt aware AWT hean Joltinputevent

Java AWT hean
Event

Jaltinput

JoltOutputEvent

/' PropertyChangeEvent

JoltOutputEvent

Jolt aware AWT bean

Java AWT bean

The JoltBeans Toolkit

The JoltBeans Toolkit includes the following beans:
4+ JoltSessionBean

4 JoltServiceBean

4+ JoltUserEventBean

These components transform the complete Jolt Class Library into beans components,
with al of the features of any typical JavaBean, including easy reuse and graphic
development ease.

Refer to the online APl Reference in Javadoc in this help system for specific
descriptions of the JoltBeans classes, constructors, and methods.

The following sections provide information about the properties of each bean.

5-8 BEA Jolt Developer’s Guide

The JoltBeans Toolkit

JoltSessionBean

The JoltSessionBean, which represents the Tuxedo session, encapsul ates the
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction classes.
The JoltSessionBean offers properties to set session and security attributes, such as
sending a timeout or a Tuxedo user name, as well as methods to open and close a
Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the Tuxedo session is
established or closed. PropertyChange is a standard bean event defined in the

j ava. beans package. The purpose of thisevent isto signal other beans about achange
of the value of a property in the source bean. In this case, the source is the
JoltSessionBean, the targets are JoltServiceBeans or JoltUserEventBeans, and the
property changing is the LoggedOn property of the JoltSessionBean. When alogon is
successful and asession is established, LoggedOn isset to t r ue. After the logoff is
successful and the session is closed, the LoggedOn property issetto f al se.

The JoltSessionBean provides methods to control transactions, including
begi nTransacti on(), conmit Transaction(), androl | backTransacti on().

The following table shows the JoltSessionBean properties and descriptions.

Table 5-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the | P address (host name) and port number of the JSL or the Jolt
Relay. Theformatis// host : port nunber (eg.,
nyhost : 7000).

AppPassword Set the Tuxedo application password used at logon, if required.
| dleTimeOut Set the IDLETIMEOUT value.
inTransaction Indicatet r ue or f al se depending if atransaction has been started

and not committed or aborted.

LoggedOn Indicatet r ue or f al se if aTuxedo session does or does not exist.
ReceiveTimeOut Set the RECV TIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.

SessionTimeOut Set the SESSIONTIMEOUT value.

BEA Jolt Developer’s Guide 5-9

5 us ng JoltBeans

Table5-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

UserName Indicate the Tuxedo user name, if required.

UserPassword Indicate the Tuxedo user password, if required.

UserRole Indicate the Tuxedo user role, if required.
JoltServiceBean

The JoltServiceBean represents a remote Tuxedo service. The name of the serviceis
set as a property of the JoltServiceBean. The JoltServiceBean listensto
JoltlnputEvents from other beans to populate itsinput buffer. JoltServiceBean offers
thecal | Servi ce() method to invoke the service. JoltServiceBean isan event source
for JoltOutputEvents that carry information about the output of the service. After a
successful cal | Ser vi ce(), listener beans are notified via a JoltOutputEvent that
carries the reply message.

Although the primary way of changing and querying the underlying message buffer of
the JoltServiceBean is viaevents, the JoltServiceBean al so provides methods to access
the underlying message buffer directly (set | nput Val ue(..) , get Qut put Val ue(..)).

The following table shows the JoltServiceBean properties and descriptions.

Table 5-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows accessto

the Tuxedo client session.

Transactional Set to trueif this JoltServiceBean isto beincluded in the transaction
that was started by its JoltSessionBean.

5-10 BEA Jolt Developer’s Guide

Jolt Aware GUI Beans

JoltUserEventBean

The JoltUserEventBean provides access to Tuxedo events. The Tuxedo event to
subscribeto or unsubscribe from is defined by setting the appropriate properties of this
bean (event name and event filter). The actual event notification is delivered in the
form of a JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Table 5-3 JoltUser EventBean Propertiesand Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter

Session The JoltSessionBean associ ated with the bean that allows access to

the Tuxedo client session.

Jolt Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are
inherited from the Java Abstract Windowing Toolkit. They include:

¢ JoltTextField
¢ Jol tLabel

4 Jol tList

4 Jol t Checkbox

4 Jol t Choi ce

Note: To avoid errors when compiling, it is recommended that you use only the

AWT beans together, or the Swing beans together, rather than mixing beans
from these two packages.

BEA Jolt Developer's Guide 5-11

5 us ng JoltBeans

JoltTextField

JoltLabel

JoltList

Thisis a Jolt-aware extension of j ava. awt . Text Fi el d and Swing JTextfi el d.
JoltTextField contains parts of theinput for aservice. A JoltServiceBean may listento
events raised by a JoltTextField. JoltTextField sends JoltInputEventsto its listeners
(typically JoltServiceBeans) when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listensto
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it islinked.

Thisis a Jolt-aware extension of j ava. awt . Label and Swing JLabel that islinked
to a specific field in the Jolt output buffer by its JoltFieldName property. If the field
occurs multiple times, the occurrence this textfield is linked to is specified by the
occurrencel ndex property of this bean. JoltLabel can be connected with
JoltServiceBeans to display output from aservice. A JoltLabel listensto
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it islinked.

ThisisaJolt-aware extension of j ava. awt . Li st and SwingJl i st thatislinkedto a
specific Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the
field occurs multiple times in the Jolt input buffer, the occurrence thislist is linked to
is specified by the occurrencel ndex property of this bean. JoltList can be connected
with JoltServiceBeans in two ways:

4 JoltList contains parts of the input for a service. A JoltServiceBean listens to
events raised by a JoltList. JoltList sends JoltlnputEvents to its listeners when
the selection in the listbox changes. The JoltinputEvent, in this case, is populated
with the single value of the selected item.

4 JoltList displays output from a service. When used to display the output of a
service, JoltList listens to JoltOutputEvents from JoltServiceBeans and updates
its contents accordingly with all occurrences of the field to which it is linked.

5-12 BEA Jolt Developer’s Guide

Jolt Aware GUI Beans

JoltCheckbox

JoltCheckbox is a Jolt-aware extension of j ava. awt . Checkbox and Swing
JCheckBox that islinked to aspecificfield in the Jolt input buffer by its JoltFieldName
property. If the field occurs multiple times, the occurrence this checkbox islinked to
is specified by the occurrencelndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for
aservice. A JoltServiceBean listensto events raised by a JoltCheckbox. JoltCheckbox
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the checkbox changes. The JoltinputEvent in this case is populated with the

Tr ueVal ue property of datatype String (if the box is selected) or Fal seval ue (if the
box is unselected).

JoltChoice

JoltChoice providesa Jolt-aware extension of j ava. awt . Choi ce and SwingJChoi ce
that is linked to a specific field in the Jolt input buffer by its JoltFieldName property.
If the field occurs multiple times, the occurrence this choiceislinked to is specified by
the occurrencel ndex property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a
service. A JoltServiceBean may listen to events raised by a JoltChoice. JoltChoice
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the choicebox changes. The JoltInputEvent in this case is populated with the single
value of the selected item.

Note: For adetailed description of these classes, see the online Javadoc class
reference library included with Jolt.

BEA Jolt Developer's Guide 5-13

5 us ng JoltBeans

Using the Property List and the Property
Editor to Modify the JoltBeans Properties

The values of most JoltBeans properties can be modified by simply editing the right
column of the Property List, as shown in the following figure.

Custom Property Editors are provided, for some properties of JoltBeans.

The Custom Property Editors, accessed from the Property List, include dialog boxes
that are used to modify the property values. Y ou can invoke the Custom Property
Editors from the Property List by selecting the button with the ellipsis (“...”) that is
next to the value of the corresponding property value.

Figure5-2 Example of the Property List and Ellipsis Button

& Property List - JoltBeanDev [M[=]1F3

Ié‘éi JoltZenriceBean v|

Class heajoltheans. JoltServiceBean
MName JoltSericeBean

Session null |
Transactional |false

When the ellipsis button is selected, the Property Editor shown in the following figure
displays.

5-14 BEA Jolt Developer’s Guide

Using the Property List and the Property Editor to Modify the JoltBeans Properties

Figure5-3 Custom Property Editor Dialog Box

Custom Property Ed... B3

Services:

Logaon | I

The Custom Property Editor of JoltBeans reads cached information. Initially, thereis
no cached information available, so when the Property Editor isused for thefirst time,
thedialog box isempty. Log ontothe Jolt repository and |oad the property editor cache
from the repository.

Details of thelogon and an example of using the Property List and Property Editor are
shown in the “Using the Jolt Repository and Setting the Property Values’ section of
the “ JoltBeans Class Library Walkthrough.”

BEA Jolt Developer's Guide 5-15

5 us ng JoltBeans

JoltBeans Class Library Walkthrough

This walkthrough describes how to build an applet that is used to:

4 Enter an account ID

4 Click on the Inquiry button

4 Display the balance of the account (shown in the following figure).

Thisis an example of a completed Java form containing JoltBeans. The appl et
implements the client functionality for the INQUIRY service of the BANKAPP
sample that is included with Tuxedo. To run this sample, the Tuxedo server must be
running.

Figure5-4 Samplelnquiry Applet

[EiApplet Viewer: Appletl.class M=l
Applet

Accaunt ID

Balance

Inguiry |

Refer to Figure 5-6 for an example of each item. To begin, select the following beans,
shown in the following table.

5-16 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Table 5-4 Required Form Components

Component Purpose

Applet (or JApplet, if JFC A form used to paint the beans in your development

applet ischosen) environment.

JoltSessionBean Logs on to a Tuxedo session.

JoltTextField Getsinput from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses a Tuxedo service. (In this case, INQUIRY from
BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

Building the Sample Form

Thefollowing exampleiscreated using the Visual Café 3.0 devel opment environment.
The example demonstrates how to build an applet that alows you to enter an account
ID and use a Tuxedo service to get and show the account balance. The basic steps to
create this example are as follows:

1. Choose File | New Project and select either JFC Applet or AWT application. This
step provides you with the basic form designer on which you drop the JoltBeans.

2. Dragand drop al of the JoltBeans you want to use in your applet from the
Component Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property
editor.

4. Wire the beanstogether using the I nteraction Wizard.
5. Compile the applet.

These steps are described in detail in the following sections.

BEA Jolt Developer's Guide 5-17

5 us ng JoltBeans

Note: The graphic interface of previous versions of Visual Café will differ from the
look of Visual Café 3.0. Y ou can complete this sasmple applet in a previous
version Visua Café, however, the steps executed in the Interaction Wizard
differ dightly from this example.

Placing JoltBeans onto the Form Designer

1. First, choose File | New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following
figure) onto the form designer.

The following figure shows how a JoltBean is selected and dragged and dropped
onto the paette of Form Designer.

The next figure shows how JoltBeans appear when they are placed on the palette
of the Form Designer.

5-18 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Figure5-5 JoltBeansand the Form Designer in Visual Café

Form Designer - JAppletl

&0 Standard
- (3 Uhility
-3 Multimedia

--[:l Farms

-3 Project Templates
-3 Menus & Menu lterns
-3 dhAWARE
-3 Additional
w1 Pansls
I [5hapes

--[:| Predefiped TextFields

o JDItUSerEventBean
¢ LB JoltServiceBean
E} a JDItEieanDe\.wat

B2 Jolilist
----|3' JoltCheckbox
- [JoltChoice
- JoltTextField
- [Bg JoltLabel

BEA Jolt Developer's Guide 5-19

5 us ng JoltBeans

Figure5-6 Visual Café 3.0 Form Designer

JoltTextField JoltSessionBean

Label o
—— JoltServiceBean

] e

3. Next, set the properties of each bean. To modify or customize the buttons, labels
or fields, use the property list. Some JoltBeans use a Custom Property Editor.

The example in the next figure shows how selecting the JoltFieldName of the
button property list displays the Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of
the JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the
JoltBeans, refer to “Using the Jolt Repository and Setting the Property
Values’section in this chapter.

The following table specifies the property values that should be set. Values
specified in bold and italic text are required, and those in plain text are
recommended.

Table 55 Required and Recommended Property Values

Bean Property Value
label 1 Text Account ID
label2 Text Balance
JoltTextFieldl Name accountld

5-20 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Table 5-5 Required and Recommended Property Values

Bean Property Value
JoltTextFieldl JoltFieldName ACCOUNT_ID
JoltTextField2 Name balance
JoltTextField2 JoltFieldName SBALANCE
JoltSessionBean1 AppAddress /ltuxserv: 2010
JoltServiceBeanl Name inquiry
JoltServiceBeanl ServiceName INQUIRY
buttonl Label Inquiry

Note: In thiswalkthrough, the default occurrencelndex of 0 works for both
JoltTextFields.

Refer to the next table and the section, “Using the Jolt Repository and Setting
the Property Values’ for general guidelines on JoltBean properties.

BEA Jolt Developer'sGuide 5-21

5 us ng JoltBeans

Figure5-7 Exampleof JoltTextField Property List and Custom Property Editor

Note: The Custorn Property
Editor is popralated ondy &
I'@ accountlD ot I the Jolt Eepository Server
Backgrond O whie WREP) is rursing.
= Bounds
e 1
et]
e 20 Custom Property Editor [E3
Lo Heght 10
Closs aenjothears et JoltTexdField SIS
Lolumis i
Cirzor TEXT_CIRSCOR, DL A T
Edilabilz TuE TLRMMAM
Erabled rue
O Fcnt
-~ Mame Zlislog
- Siza 12
= Ehde
- Bold ‘alse
flelic ‘alse I—
Fcreground W blazk S ACEOJINTID
Inhmif ?Hr:kgrnu FIR
Inherit "cnt TUE
Inherit =creqrou rue EI
Note: Select from the abdve
Marre account!d N st or type in sazually.
Nrrurrercelnde] 1
Text
Yisihle Tue

5. To change the value of the JoltFieldName property, click on the ellipsis button of
the JoltFieldName in the Property List. The Custom Property Editor displays.
Select or type the new field name (in this example, “ACCOUNT _ID"). Select
OK.

Note: The propertiesthat are visible in the Custom Property Editor are cached

locally, therefore, if the source database is modified you must use the Refresh
button to see the current, available properties.

5-22 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Figure5-8 Revised JoltFieldNamein the JoltTextField Property List

¥ Property List - JohtBeanDev... [H[=] 3

I@ accountD v|

Inherit Font

Background [white
= Bounds

o 7 0

e 0

- Wificth 20

-+ Height 40
Class beajoltbeans.awt JolTextField
Columns]
Cursor TEXT_CURSOR
Editahlz true
Enakled true

£ Font

- Mame Dialog

=1ri} 12
£} Style

... Bald false
o ltalic false
Fareground W black
Inherit Backgrou|true
true

MName accountlD
Occurrencelnde) 0

Text

Yisible true

The change isreflected in the Property List shown in the previous figure and on
the text field shown in the next figure.

BEA Jolt Developer’s Guide

5-23

5 us ng JoltBeans

5-24

Figure5-9 Example of JoltBeanson the Form Designer with Property Changes

Form Deszigner - JApplet1 _ O] x|

[JppletT Mod| | I A

The previous figure shows how the text on the button and the textfiel ds changes
after the text is added to the property list fields for these beans.

6. After you set the propertiesto theright values (refer to the “ Required and
Recommended Properties’ table for additional information on the required and
recommended property values), define how the beans will interact by wiring
them together using the Visual Café Interaction Wizard.

BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Wiring the JoltBeans Together

After all the beans are positioned on your form and the properties are set, wire the
beans and their events together. Figure 5-10 gives an exampl e of the flow to help you
determine the order when you are ready to wire the beans.

Wiring the beans allows you to establish event source-listener relationships between
various beans on the form. For example, the JoltServiceBean is alistener of
ActionEvents from the button and invokes cal | Ser vi ce() when theevent is
received. Use the Visual Café Interaction Wizard to wire the beans together.

The following figure shows the sequence in which you will wire the beanstogether to
create this sample applet. The numbers in this figure correspond to the numbers of the
steps that follow.

Figure5-10 How JoltBeansare Connected on the Form

Form Deszigner - JApplet1 _ O] x|

- Balance- - -

(S| I 5 ..

[Jpplet] [Mod [4

BEA Jolt Developer's Guide 5-25

5 us ng JoltBeans

Step 1: Wire the JoltSessionBean logon

1. Click the Interaction Wizard button. Click in the applet window and drag alineto
the JoltSessionBean.

The Visua Cafe Interaction Wizard window displays.

Figure5-11 Wirethe Applet to the Jolt Session Bean

Form Deszigner - JApplet1 =] E3

LoomeEiEe s R Drag
................................... here
::::::::Inquir'fl:::::::::::::::::::::

[JApplett bod [5

5-26 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

2. Sdlect ComponentShown (as shown below) as the event you want to start the

interactio

n. Click Next.

The Visual Café Interaction Wizard displays.

Figure5-12 Visual Cafe Interaction Wizard
Interaction Wizard E
What event in JApplet1 do you warnt to start the interaction?
Ewverts:
- componertHiddzn d
~componenttoved
~componentResized
amponent Shovwn|
E-cortainer
--component Added
e pomponentRemoyed
Eh-focus
- focusGained
“focusLost
----- keyPressed
----- keyReleazed
----- keyTyped
[El-mouse
. emousetlicked j
IcomponerrtShown

[v Group events

= Back | et = | et | Cancel | Help |

BEA Jolt Developer’s Guide

5-27

5 us ng JoltBeans

3. With the “Perform an action” radio button enabled, select “L ogon to the Tuxedo
system.” Click Finish.

Figure5-13 Select “Logon to the Tuxedo System

Interaction Wizard

‘What do you want to happen when JApplet1 fires componentShown event?

& Perform an action " Call & methad " Set & property
Movailable objects: Actions:
H JAppletl Begin a newvy transaction..

Commit the current transaction

Logoff from the TUXEDD system

88 incyiry
i ogon to the TUXED
rﬁ acoourtid ogon to the TUXEDO sy |
Rollback the current transaction

I balance
(B joftLabeh
[E5 joftLabel2
3 buttont

ILngnn ta the TUXEDD system

= Back | et = | Finish | Cancel | Help |

Completing these three steps enables the | ogon() method of the
JoltSessionBean to be triggered by an applet (for example, ComponentShown)
that is sent when the applet is opened for the first time.

5-28 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange

1. Click the Interaction Wizard button. Click on the JoltSessionBean and drag aline
to the JoltServiceBean (as shown in the following figure).

Figure5-14 Wirethe JoltSessionBean to the JoltServiceBean

Form Deszigner - JApplet1 _ (O] x|

[J&spplet] Mod | | 7

BEA Jolt Developer's Guide 5-29

5 us ng JoltBeans

The Interaction Wizard displays and asks, “What event in joltSessionBeanl do
you want to start the interaction?” (as shown in the following figure).

Figure5-15 Select propertyChange asthe Event

Interaction Wizard E
‘What event in joltSessionBean1 do you want to start the interaction?

Evernts:

(= JqﬂSessionElean hound property change

Ipropert\,f(:hange

¥ Group events

=iHGEEE | et = | RIRE] | Cancel | Help |

5-30 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Select propertyChange as the event that starts the interaction. Click Next.

The Interaction Wizard window displays and asks, “What do you want to happen

when joltSessionBeanl fires propertyChange event?” and provides alist of

object and actions (as shown in the following figure).

Figure5-16 Select “Handle a Jolt property change event”

Interaction Wizard

What do you want to happen when jotSessionBeani fires propertyChange event?

& Perform an action " Call & methad " Set & property

Movailable objects:

Actions:

PF dapplett
9% jotSessionBean
L incuiry

: I accountid
I balance
(B joftLabeh

[E5 joftLabel2
3 buttont

Clear the Jolt message buffer
Handle Jolt input event. .

anclle = Jokt proper ert...

Invoke the TUXEDC service represented by this Bean
Set 5 specific occurrence of & field in the input butfer as
Set a specific occurrence of a field in the input butfer in
Set all occurrences of a field inthe ingpot buffer sstest..
Set all occurrences of a field inthe input buffer in native
Set the value of & field inthe input buffer as text...

Set the value of a field in the input buffer in native formal

4] o

IHandIe a Jolt property change event

= Back | et = | RNl | Cancel | Help |

BEA Jolt Developer’s Guide

5-31

5 us ng JoltBeans

3. Select “Handle a Jolt property change event” as the method. Click Next.

The Interaction Wizard window displays and asks, “How do you want to supply
the parameter to this method?’ and provides alist of available objects and
actions to choose from (as shown in the following figure).

Figure5-17 Select joltSesssionBeanl

Interaction Wizard E

Iinquirv.pr-:-per‘ty(:hange(PropertyChangeEvent
Howy do you want to supply the parameter to this method?
g Get it from an obiect . Let me enter the expression myself

Mevailable objects: Actions:

H Jppletl 2et the current Property Change Evert object

382 incuiry
I accountid
I balance
(B joftLahel
(B jnfiLabel2
3 button

Showe |v Actions [Methods [Veriebles

IGet the current Property Change Event object

= Back | Dt = | Finizh | Cancel | Help |

4. Select joltSessionBeanl as the object that supplies the action.

5. Select “Get the current Property Change Event object” as the action. Click
Finish.
Compl eting these three steps enabl es the JoltSessionBean to send a

propertyChange event when | ogon() completes. The JoltServiceBean listens to
this event and associates its service with this session.

5-32 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Step 3: Wire the accountlD JoltTextField as input to the JoltServiceBean using
JoltinputEvent

1. Click the Interaction Wizard button. Select the accountl D JoltTextField bean and
drag aline to the JoltServiceBean.

The Interaction Wizard displays.

Figure5-18 Select dataChanged asthe Event to Start thelnteraction

Interaction Wizard

What evert in accountld do you weant to start the interaction’?

Events:

| »

¢ eactionPerformed

El---ancestor i
- gncestor Added

- ancestorhoved

- gncestorRemoved

[=]- boundPropertyChange

- propertyChange - Border

- propertyChangs - Caret

- propertyChange - CaretCalor

- propertyChange - DisabledTexdColor

- propertyChange - Document

- propertyChange - Editable j

IdataChanged

v Group events

= Honh | et = | iRl | Cancel | Help |

2. Seect dataChanged as the event. Click Next.

BEA Jolt Developer's Guide 5-33

5 us ng JoltBeans

3. With the joltServicebean “inquiry” selected as the object supplying the
parameter, select “Handle ajolt input event” asthe action. Click Next.

Figure5-19 Choose“inquiry” and “Handle a Jolt I nput Event”

Interaction Wizard E

What doyou wwant to happen when accountld fires dataChanged event?

& Perfarm an action " Call & methiad " Set & property
Available ohjects: Actions:
ﬁ' JApplet Clzar the Joft message buffer

'@ joftSessionBeant andle a Joft input evert. ..
B inigLiry Handle 5 Jolt property change event...
J - Invoke the TUXEDD service represented by this Bean

I accountl » -)

- et & specific occurrence of a field in the input butfer as
@ . Hance Set a specific occurrence of a field in the input butfer in
(B jctL ket Set all oocurrences of a field in the input butfer a= text...
@ jottLabel2 Set all oocurrences of & field in the input buffer in native
3 buttont Set the value of & field in the input buffer astext...

Set the value of a field in the input buffer in native formal

Kl | 2

IHandIe a Jolt input event

= Back | et = | et | Cancel | Help |

The Interaction Wizard window displays, asking “How do you want to supply
the parameter to this method?’ and providing alist of available objects and
actions to choose from (as shown in the following figure).

5-34 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Figure5-20 Select “accountld” and Get the current Jolt I nput Event

Interaction Wizard

Iinquiry.dataChanged[SJoltinputEvent
Howy do yau want to supply the parameter tothis method?
i« Get it from an ohject I Let me enter the expression myself

Available objects: Actions:
ﬁ' JApplet et the current Jokt Input Evert

d '@ joltSeszionBeant

382 inciry

E accountld
I balance
(B jottLabel

(B jofiLabel2
3 buttont

Showe: |w Actions [Methods [T Warishles

IGet the current Jolft Input Event

= Back | Ient = | Finizh | Cancel | Help |

. With “accountld” selected as the object, select “get the current Jolt Input Event”
asthe action. Click Finish.

Completing these four steps enables you to type the account number in the first
text field. The JoltFieldName property of this JoltTextField is set to
“ACCOUNT_ID". Whenever the text inside this text box changes, it sends a
JoltInputEvent to the JoltServiceBean. (The JoltServiceBean listens to
JoltInputEvents from this textbox.) The JoltInputEvent object contains the name,
value, and occurrence index of the field.

BEA Jolt Developer's Guide 5-35

5 us ng JoltBeans

Step 4: Wire Button to JoltServiceBean using JoltAction

1. Clickthelnteraction Wizard button. Select the Inquiry Button and drag alineto the
JoltServiceBean.

The Interaction Wizard window displays.

Figure5-21 Select “action Performed” asthe event

Interaction Wizard E

‘What event in buttond do you want to start the interaction?

Ewvents:

[=]--action
- ctionPerformed

I_:_| component
compaonentHidden

componenthioved

- componertResized

(- component=hown

[l facus

----- focusGained

“focusLost —

| »

----- keyPreszzed
----- keyReleased
----- keyTyped

[=l-mouze j

IactionPerformed

¥ Group events

=iHGEEE | et = | RIRE] | Cancel | Help |

2. Select “action Performed” as the event. Click Next.

5-36 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Figure5-22 Select “inquiry” and “Invoke Tuxedo Service...

Interaction Wizard

What do you want to happen when buttond fires actionPerformed evert?

& Perform an actian

Movailable objects:

" Call & methad

" Set & property

Actions:

PE dapplett
9% jotSessionBean

L inguiry
I accountid
I balance
(B joftLabel

[E5 jottLabel2
3 buttont

Clear the Jolt message buffer
Handle 3 Jolt input event...

Handle = Joit property change event
e he TU ed by thi an
Set 5 specific occurrence of & field in the input butfer as
Set a specific occurrence of a field in the input butfer in
Set all occurrences of a field inthe inpot buffer ss test..
Set sl occurrences of a field inthe input buffer in native
Set the value of & field inthe input buffer as text...

Set the value of a field in the input buffer in native formal

4] O

Ilnvuke the TUXEDC service represented by this Bean

= Back | et = | Finizh | Cancel | Help |

3. Select “Invoke Tuxedo Service represented by this bean” as the action. Click

Finish.

Completing these two steps enables the cal | Servi ce() method of the

JoltServiceBean to be triggered by an ActionEvent from the Inquiry button.

BEA Jolt Developer’s Guide

5-37

5 us ng JoltBeans

Step 5: Wire JoltServiceBean to the balance JoltTextField using
JoltOutputEvent

1. Click the Interaction Wizard button. Select the JoltServiceBean and drag aline to
the AmountJoltTextField bean. The Interaction Wizard displays (as shown in the
following figure).

Figure5-23 Select “serviceReturned” asthe event

Interaction Wizard E

What event in inquiry do you want to start the interaction?

IserviceReturned

[v Group events

= Haeh | et = | Frst | Cancel | Help |

2. Select serviceReturned as the event. Click Next.

5-38 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Figure5-24 Select “balance” and “ Set the Jolt TextField’ s text”

Interaction Wizard E
‘What do you want to happen when inquiry fires serviceReturned event?
& Perform an action " Call & methad " Set & property
Movailable objects: Actions:
H JAppletl Dizahle the JottTextField 1=
'% joltSessionBean Dizahle the Joft TextField on condition...
é‘g{ ingLiry Enable the JoltTexdField
Enable the JoltTextField on condition...
anc D
Hide the: JohTe:xtField
Recuest the focus
(B jotiLabel2 Selects all the text
3 buttont Set the Backaround Color...
Set the Foreground Color ...
Set the Jolt figld name. ..
Set the JoltTextField's Fort ... [
Set the JokTexdFisld's texd. .
Set the bounds rectangle...
Set the curzor type...
Set the occurence index. . j
IHandIe a gervice returned event
= Back | et = | RNl | Cancel | Help |

3. Select “balance” as the available object, and “Handle a service returned event...”

as the action. Click Next.

BEA Jolt Developer’s Guide

5-39

5 us ng JoltBeans

Figure5-25 Select “inquiry” and “ Get the value of field...”

Interaction Wizard

Ibalance.serviceRetumed(JoltOutputEvent
Howy do yau want to supply the parameter tothis method?
i« Get it from an ohject I Let me enter the expression myself

Available objects: Actions:

ﬁ' JApplet! et the JotOutputEvert object
d '@ joltSeszionBeant
XL incuiry

I accountic

I balance

(B jottLahel

(B jofiLabel2
3 buttont

Showe: |w Actions [Methods [T Warishles

IGet the JoktOutputEvent object

= Back | Ient = | Finizh | Cancel | Help |

4. Select “inquiry” asthe object, and “ Get the JoltOutputEvent object” as the action.
Click Finish.
Compl eting these three steps alows the JoltServiceBean to send a
JoltOutputEvent when it receives reply data from the remote service. The
JoltOutputEvent object contains methods to access fields in the output buffer.
The JoltTextField displays the result of the INQUIRY service.

5-40 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough

Step 6: Wire the JoltSessionBean logoff

1. Click the Interaction Wizard button. Click in the applet window (not on another
bean) and drag a line to the JoltSessionBean. The Interaction Wizard displays (as
shown in the following figure).

Figure5-26 Select “Interaction Wizard”

Interaction ‘Wizard

What event in JAppletd do you wart to start the interaction?

Everts:

[=]- component

[omponertHidder|
componenthoved
i companertResized
o componertShawn
[cortainer
----- componentAdded
o componertRemoyed
[=-focus
----- focusGained
. focusLost

| »

IcomponentHidden

|v Group everts

= Eak | Mext = | RIRE] | Cancel | Help |

2. Select componentHidden as the event. Click Next.

BEA Jolt Developer's Guide 5-41

5 us ng JoltBeans

Figure5-27 Select “joltSessionBean1” and “L ogoff from the Tuxedo system”

Interaction ‘Wizard

What do you want to happen when JApplet1 fires componentHidden event?

(% Perfaorm an action " Call & methad " Set aproperty
Lwailable objects: Actions:
?j JApplett Begin & new transaction...

Commit the current transaction
ogoff from the TUXE

Logon to the TIXEDC system
Rollack the current transaction

I accourtid
I balance
(B joftLabel

(B joftLabel2
3 buttont

ILogoff from the TUXEDD system

= Back | et = | Finish | Cancel | Help |

3. With “joltSessionBeanl” selected as the object, select “L ogoff from the Tuxedo
system” as the action (as shown in the previous figure). Click Finish.

Completing these two steps enablesthe | ogof f () method of the
JoltSessionBean to be triggered by an applet (for example, componentHidden)
that is sent when the applet gets hidden.

Step 7: Compile the applet

After wiring the JoltBeanstogether, compilethe applet. It isalso recommeded that you
fill in the empty catch blocks for exceptions. Check the message window for any
compilation errors and exceptions.

Refer to the following table and the following figure for additional information.

5-42 BEA Jolt Developer’s Guide

Using the Jolt Repository and Setting the Property Values

Running the Sample Application

To run the sample application, you must have the Tuxedo server running. Then enter
an account number in the Account 1D textfield. Y ou may use any of the account
numbersincluded in the BANK A PP database. Following are two exampl es of account
numbers you can use to test the sample application:

4 80001
4 50050

Using the Jolt Repository and Setting the
Property Values

Custom Property Editors are provided for the following properties:
4 JoltFieldName (Jolt-aware AWT beans)
4 serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are
used to add or modify the properties. Y ou can invoke the boxes from the Property List
by selecting the button with the ellipsis (...) that is next to the value of the
corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the
following table.

Table 5-6 JoltBean Specific Properties

JoltBean Property Input Description
JoltSessionBean appAddress eg., //host: port
userName, Password or Type your Tuxedo user name and
AppPassword passwords.

BEA Jolt Developer'sGuide 5-43

5 us ng JoltBeans

5-44

Table5-6 JoltBean Specific Properties

JoltBean Property Input Description
JoltServiceBean serviceName INQUIRY, for example.
isTransactiona Settot r ue if the service needsto be
executed within atransaction. Set
isTransactiona to f al se if the
service does not require atransaction.
JoltUserEventBean eventName Refer tothe Tuxedo t psubscri be
filter calls.
All Jolt-aware GUI joltFieldName ACCOUNT_ID, for example
beans occurrencel ndex Multiple fields of the same name.
Index starts at O.
JoltCheckbox TrueVaue and FalseVaue Thefield value corresponding to the

state of the checkbox.

The property editor reads cached information from the repository and returns names of
the available services and dataelementsin alist box. An example of the ServiceName

property editor is shown in the following figure:

Figure5-28 JoltServiceBean Property Editor

& Property List - JoltBeanDev [M[=]1F3

#8 JoltServiceBean

-

Class heajoltheans. JoltServiceBean
Name JoltServiceBean

Session null T
Transactional |false

1. Select the service name by clicking on the éllipsisin the ServiceNamefield shown
in the previousfigure.

The Custom Property Editor for ServiceName shown in the following figure

displays.

BEA Jolt Developer’s Guide

Using the Jolt Repository and Setting the Property Values

Figure5-29 Custom Property Editor for serviceName

Custom Property Ed... B3

Services:

ﬂl [ey

Note: If you cannot or do not want to connect to the Repository database, simply type
the service name in the text box and proceed to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select L ogon.
The JoltBeans Repository Logon shown in the following figure displays.

Figure5-30 JoltBeans Repository Log On

[=iJoltBeans Repository... F3

Server: I

Fort number: I

Anplication password: l—

Ugername: l—

User passward: Ii
Logaon | Cancel |

3. Typethe Tuxedo or Jolt Relay Machine name for Server and the JSL or Jolt
Relay Port Number. Type password and user name information (if required) and
click Logon.

4. The Custom Property Editor loads its cache from the repository.

BEA Jolt Developer's Guide 5-45

5 us ng JoltBeans

5. Select the appropriate service name in the list box shown in Figure 5-31. Enter
the property value (service or field name) directly. A text box is provided. Click
OK on the property editor dialog (shown in the following figure). The bean
property is set with the contents of the textbox.

6. Click OK on the Custom Property Editor dialog (shown in the following figure).

Figure5-31 Property Editor with Selected Service

Custom Property Editor B3

Senices:

ml [nauiry

JoltBeans Programming Tasks

Additional programming tasks include:
4 Using Transactions with JoltBeans

4 Using Custom GUI Elements with the JoltService Bean

5-46 BEA Jolt Developer’s Guide

JoltBeans Programming Tasks

Using Transactions with JoltBeans

Y our Tuxedo application services may have functionality that updates your database.
If so, you can use transactions with JoltBeans (for example, inthe sample, BANKAPP,
the services TRANSFER and WITHDRAWAL update the database of BANKAPP). If
your application service is read-only (such as INQUIRY), you do not need to use
transactions.

The following example shows how to use transactions with JoltBeans.

1. Theset Transacti onal (true) methodiscalled on the JoltServiceBean.
(isTransactiond is a boolean property of the JoltServiceBean.)

2. Thebegi nTransact i on() method is called on the JoltSessionBean.
3. Thecal | Service() methodis called on the JoltServiceBean.

4. Depending on the outcome of the service call, the commi t Tr ansacti on() or
rol | backTransacti on() method is called on the JoltSessionBean.

BEA Jolt Developer's Guide 5-47

5 us ng JoltBeans

Using Custom GUI Elements with the JoltService Bean

5-48

JoltBeans provides alimited set of Jolt-enabled GUI components. Y ou can also use
controls that are not Jolt enabled together with the JoltServiceBean. Y ou can link
controls to the JoltServiceBean that display output information of the service
represented by the JoltServiceBean. Y ou can aso link controls that display input
information.

For example, a GUI element that uses an adapter class to implement the
JoltOutputL istener interface can listen to JoltOutputEvents. The JoltServiceBean as
the event source for JoltOutputEvents calls the ser vi ceRet ur ned() method of the
adapter class when it sends a JoltOutputEvent. Inside ser vi ceRet ur ned() , the
control’ sinterna datais updated using information from the event object.

The development tool generates the adapter class when the JoltServiceBean and the
GUI eement are wired together.

As another example, a GUI element can call the set | nput Text Val ue() method on
the JoltServiceBean. The GUI element contains input data for the Tuxedo service
represented by the JoltServiceBean.

As athird example, a GUI element can implement the required methods

(addJol t 1 nput Li st ener () and renoveJdol t | nput Li st ener ()) to act as event

sources for JoltInputEvents. The JoltServiceBean acts as an event listener for these
events. The control sends a JoltInputEvent when its own state changes to keep the

JoltServiceBean updated with the input information.

BEA Jolt Developer’s Guide

CHAPTER

>

6

Using Servlet

Connectivity for
Tuxedo

With BEA Jolt servlet connectivity, you can use HT TP servletsto perform server-side
Javatasksin response to HTTP requests. Jolt certifies servlet connectivity with the
Java Web Server versions 1.1.3 and up, and supports most other standard servlet
engines. Using the Jolt session pool classes, asimple HTML client can connect to any
Web server that supports generic servlets. Thus, al Jolt transactions are handled by a
servlet on the web server rather than being handled by a client applet or application.

Thiscapability meansthat HTML clients can invoke Tuxedo services without directly
connecting to Tuxedo. HTML clients can instead connect to a Web server, through
HTTP, wherethe Tuxedo service request is executed by a generic servlet. Using a Jolt
session, the servlet on the web server administers the Tuxedo service request by
connecting to the Tuxedo Server through the Jolt Server Handler (JSH) or the Jolt
Server Listener (JSL), which then makes the Tuxedo service request. This capability
allows many types of HTML clientsto make remote Tuxedo service requests. All Jolt
transactions are handled on the server side without requiring any changetotheorigina
HTML client. Thus, HTML clients are allowed to be very simple and require little
maintenance.

This section covers the following topics:
¢ What isaServiet?
¢ How Servlets Work With Jolt

4 Writing and Registering HTTP Servlets

BEA Jolt Developer’s Guide 6-1

6 us ng Servlet Connectivity for Tuxedo

4 Jolt Servlet Connectivity Sample

4 Additional Information on Servlets

What is a Servlet?

A servlet isany Java class that can be invoked and executed on a server, usually on
behalf of aclient. A servlet works on the server, while an applet works on the client.
An HTTP servlet is a Java class that handles an HTTP request and deliversan HTTP
response. HTTP servlets reside on an HTTP server and must extend the JavaSoft
javax.servlet.http.Http Servlet Class so that they may run in ageneric servlet engine
framework.

Some advantages of using HTTP servlets are:

¢ They are written in awell-formed, and compiled language (Java), so are more
robust than “interpreted” scripts.

¢ They are an integral part of the HTTP server that supports them.

4 They can be protected by the robust security of the server, unlike some CGlI
scripts that are hazardous.

4 They interact with the HTTP request through awell-developed programmatic
interface, and so are easier to write and less prone to errors.

How Servlets Work With Jolt

With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage
of the Jolt features. Jolt servletshandle HT TP requests using the following Jolt classes:

4 ServletDataSet
4+ ServletPoolManager Config

¢ ServletResult

6-2 BEA Jolt Developer’s Guide

How Servlets Work With Jolt

¢ ServiletSessionPool
¢ ServletSessionPoolM anager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes:
ServletDataSet

This class contains data el ements that represent the input and output parameters of a
BEA Tuxedo service. It providesamethod toimport the HTML field namesand values
from ajavax.servlet.http.HttpServletRequest object.

Ser vletPoolM anager Config

Thisclass is the startup class for a Jolt Session Pool Manager and one or more
associated Jolt Session Pools. It creates the session pool manager if needed and starts
a session pool with a minimum number of sessions. Jolt Session Pool Manager that
internally keeps track of one or more named session pools.

Thisclassis derived from bea. j ol t . pool . Pool Manager Conf i g and alows the
caller to pass aProperties or Hashtabl e object to the static st ar t up() method to create
asession pool and the static get Sessi onPool Manager () method to get the session
pool manager of bea. j ol t. pool . servl et . Ser vl et Sessi onPool Manager class.

ServletResult
This class provides methods to retrieve each field in a ServletResult object as a String.
Ser vletSessionPool

This class provides a session pool for usein aJavaserviet. A session pool represents
one or more connections (sessions) to a BEA Tuxedo system. This class provides call
methods that accept input parameters for aBEA Tuxedo service as a
javax.servlet.http.HttpServletRequest object.

Ser vletSessionPool M anager

Thisclassisaservlet-specific session pool manager. It manages a collection of one or
more session pools of class Ser vl et Sessi onPool . This class provides methods that
are used to create both the ServletSessionPool M anager itsel f and the session poolsthat
it contains. These methods are part of the administrative API for a session pool.

BEA Jolt Developer’s Guide 6-3

6 us ng Servlet Connectivity for Tuxedo

Writing and Registering HTTP Servlets

Y ou must first import the packages that support Jolt servlet connectivity (jol t. j ar,
joltjse.jar,servlet.jar). HTTP servlets must extend
javax.servlet.http.HttpServlet. After you write your HTTP servlets, you register them
with a Web server that supports generic servlets. Y our custom servlets are treated
exactly like the standard HTTP servlets that provide the HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a
matching URL is requested, the corresponding servlet is called upon to handle the
request.

Refer to the documentation for your particular Web server for instructions on how to
register servlets.

6-4 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample

Jolt Servlet Connectivity Sample

The Jolt software includes three sampl e applications that demonstrate serviet
connectivity using the Jolt servlet classes. The three samples are:

4 SimpApp Sample
4 BankApp Sample
4 Admin Sample

Refer to these samplesin to see code examples of how to use the Jolt servlet classesin
your own servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API client
classes (usually chosen asan option wheninstalling Jolt). Oncetheclassesareinstalled
in your directory of choice, navigate to the following directory to see the sample
application files:

<lInstallation directory>\udataobj\jolt\exanpl es\servl et

To view the sample code, use atext editor such as Microsoft NotePad to open the Java
files for each sample application.

SimpApp Sample

A sample application named “Simpapp” isincluded with Jolt. The Simpapp
application illustrates how the servlet uses Servlet Connectivity for Tuxedo. The
following servlet tasks are illustrated by the Simpapp sample:

4 How to use a property file to create a session pool.
4 How to get the session pool manager.

4 How to retrieve the session pool by name.

BEA Jolt Developer’s Guide 6-5

6 us ng Servlet Connectivity for Tuxedo

4 How toinvoke a Tuxedo service.
4 How to process the result set.

This example demonstrates how a servlet may connect to Tuxedo and call upon one of
its services; it should be invoked from the si mpapp. ht m file. The servlet creates a
session pool manager at initialization, which is used to obtain a session when the
doPost () method isinvoked. This session is used to connect to a servicein Tuxedo
with aname described by the posted “ SVCNAME” argument. In this examplethe service
iscaled "TQUPPER"', which transposes the posted “STRI NG’ argument text into
uppercase, and returns the result to the client browser within some generated HTML .

Note: TheWebLogic Server isused in this example.

Requirements for Running the Simpapp Sample

The requirements for Running the Simpapp sample are:

4 Any Web Application Server with Servlet JSDK 1.1 or above.
4 Tuxedo 7.1 or above with SimpApp sample running.

4+ Jolt

Installing the SimpApp Sample

1. Install theJolt classlibrary (j ol t . j ar) and Servlet Connectivity for Tuxedo class
library (j ol tj se. j ar) to the web application server. Extract the classfilesif itis
required by your web application server.

2. Compilethe Si npAppSer vl et . j ava. Make sure that you include the standard
JDK 1.1.x classes. zi p, JSDK 1.1 classes, Jolt classes library and Servlet
Connectivity for Tuxedo classlibrary in the classpath.

javac -classpath
$(JAVA HOME) / I'i b/ cl asses. zi p: $(JISDK) /1 i b/ servlet.jar:

$(JOLTHOVE) /jolt.jar: $(JOLTHOVE)/jol tjse.jar:./cl asses
-d ./classes SinpAppServlet.java

Note: The package name of the SimpAppServiet is
“examples;jolt.servlet.simpapp.”

6-6 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample

3. Putthesi npapp. ht Ml and si npapp. properti es filesin the public HTML
directory.

4. Modify the si npapp. properti es file. Changethe “appaddrli st ” and
“f ai | overlist” with the proper Jolt server hosts and ports. Specify the proper
Tuxedo authentication information if the SimpApp has security turned on. For
example:

#si npapp

#Fri Apr 16 00:43: 30 PDT 1999
pool nane=si npapp
appaddrlist=//host: 7000, //host: 8000
failoverlist=//backup: 9000

m npool si ze=1

maxpool si ze=3

userrol e=tester

apppasswor d=appPass

user name=guest

user passwor d=nyPass

5. Register “Simpapp” for the SimpAppServlet. Consult your web application
server for details. If you are using WebL ogic, add the following line to the
webl ogi c. properti es file:

webl ogi c. htt pd. regi ster. si npapp=exanpl es.jol t.servl et. Si npAppSe
rvl et

6. To accessthe SimpApp initial page “si npapp. ht m ,” type:
http:// mywebser ver: 8080/ si npapp. ht ni

BEA Jolt Developer’s Guide 6-7

6 us ng Servlet Connectivity for Tuxedo

BankApp Sample

The“Bankapp” application illustrates how the servlet is written with
PageCompiledServlet with Servlet Connectivity for Tuxedo. Bankapp illustrates the
following:

4 How to use a property file to create a session pool.
4 How to get the session pool manager.

4 How to retrieve a session pool by name.
4 How toinvoke a Tuxedo service.

4 How to process the result set.

Requirements for Running the Bankapp Sample

Following are the requirements for running the Bankapp sample:
4 Any Web Application Server with Servlet JSDK 1.1 or above.
4 Tuxedo 7.1 with BankApp sample running.

4+ Jolt

Installation Instructions

1. Install theJolt classlibrary (j ol t . j ar) and Servlet Connectivity for Tuxedo class
library (j ol tj se. j ar) to the web application server. Extract the classfilesif itis
required by your web application server.

2. Copy al HTML, JHTML and bankapp. pr operti es filesto the public HTML
directory of the web application server (for example,
$WEBLOG C/ nyserver/ public_ht ni for WebLogic):

bankapp. properties
tell erForm ht m
i nqui ryForm ht m

deposi t Form ht m

6-8 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample

wi t hdrawal Form ht n
transfer Form htm
InquiryServlet.jhtnm
Deposit Servlet.jhtm
Wt hdrawal Servl et.jhtm
TransferServlet.jhtn

3. Modify the bankapp. properti es file. Change the “appaddr | i st ” and
“f ai | overlist” with the proper Jolt server hosts and ports. Specify the proper
Tuxedo authentication information if the BankA pp has security turned on. For
example,

#bankapp

#Fri Apr 16 00:43: 30 PDT 1999
pool nane=bankapp
appaddrlist=//host: 8000, //host: 7000
failoverlist=//backup: 9000

m npool si ze=2

maxpool si ze=10

userrol e=teller

apppasswor d=appPass

user name=JaneDoe

user passwor d=nyPass

4. If applicable, turn on the automatic page compilation for JHTML from your
servlet engine. Consult the user manual of your web application server for details.

5. To access BankApp through Servlet Connectivity for Tuxedo, use the following
URL inyour favorite browser:

htt p: // nywebserver: 8080/t el | er Form ht ni

BEA Jolt Developer’s Guide 6-9

6 us ng Servlet Connectivity for Tuxedo

Admin Sample

The“Admin” sample application illustrates the following servlet tasks:
4 How to use the administrative API to control the session pools.

4 How to retrieve the statistics through PageCompiledServlet in Servlet
Connectivity for Tuxedo.

Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample:
4 Any Web Application Server with Servlet JISDK 1.1 or above
4+ Jolt

Installation Instructions

1. Install the Jolt class library and Servlet Connectivity for Tuxedo class library to the
web application server.

2. Copy al JHTML filesto the public HTML directory (for example,
$WEBLOG C/ nyserver/ public_htm for Weblogic):

Pool Li st.jhtm
Pool Admi n.j ht m
3. To get alist of session pools, use the following URL in your favorite browser:
http://mywebserver:8080/PoolList.jhtml

6-10 BEA Jolt Developer’s Guide

Additional Information on Servlets

Additional Information on Servlets

For more information on writing and using servlets, see the following sites:

BEA WebL ogic Servlet Documentation

ht t p: // www. webl ogi c. conf docs/ cl assdocs/ APl _ser vl et. htni

Java Servlets

http://jserv.java.sun. con products/java-server/docunentati on/
webserver 1. 1/i ndex_devel oper. htm

Servlet Interest Group

servl et-interest @ava. sun. com

BEA Jolt Developer's Guide 6-11

6 Us ng Servlet Connectivity for Tuxedo

6-12 BEA Jolt Developer’s Guide

CHAPTER

Z

Using Jolt ASP

Connectivity for
Tuxedo

>

The Jolt ASP Connectivity for Tuxedo provides an easy-to-useinterfacefor processing
and generating dynamic HTML pages. Y ou do not need to learn how to write Common
Gateway Interface (CGI) transactional programs to access Tuxedo services.

The following topics are discussed in this section:

* & & S O & O O > o o

Key Features

ASP Connectivity Enhancements for Jolt

How the Jolt ASP Connectivity for Tuxedo Works
The ASP Connectivity for Tuxedo Toolkit

Jolt ASP Connectivity for Tuxedo Walkthrough
Overview of the ASP for Tuxedo Walkthrough
Getting Started Checklist

Overview of the TRANSFER Service
TRANSFER Request Walkthrough

Initializing the Jolt Session Pool Manager
Submitting a TRANSFER Request from the Client

BEA Jolt Developer’s Guide

7-1

[Using Jolt ASP Connectivity for Tuxedo

4 Processing the Request

4 Returning the Results to the Client

Key Features

The Jolt ASP Connectivity for Tuxedo, an extension to the Jolt class library, enables
Tuxedo services and transactions to be invoked from a Web server using a scripting
language.

Some of the benefits of this architecture include:
4 TheHTML interfaceis preserved.

4 Theneed to download Java class filesis eliminated along with the delays
associated with the downl oad.

4 Session Pooling efficiently utilizes the Tuxedo resources.

¢ Leveragesindustry standard HT TP protocol with encryption, and firewall
configuration for the Web server.

Note: Asynchronous notification is not available in the ASP Connectivity for
Tuxedo. It is recommended that Jolt enabled Java clients (applets) be written
using a retained connection to support asynchronous notification.

ASP Connectivity Enhancements for Jolt

Jolt includes the following enhancements to ASP Connectivity for Tuxedo:

4 The package name for JoltWAS has been changed from bea. web to
bea.jolt. pool.

4 The package name for Tuxedo-ASP Connectivity has been changed from
JoltWASfor I1Stobea. j ol t. pool . asp.

7-2 BEA Jolt Developer’s Guide

How the Jolt ASP Connectivity for Tuxedo Works

4 All Javaclass names for Tuxedo-ASP Connectivity have been renamed with the
prefix of Asp and have new ActiveX component names (for example,
BEAJOLTPOOL. AspSessi onPool Manager) . It is recommended that existing
JoltWA S for IS customers use the new ActiveX component names.

4 A new AspSessi onPool . cal | Ex() method is added. It allows usersto call a
service with acontainer class AspDat aSet object for arbitrary datatypes
instead of the string array in the AspSessi onPool . cal | () method.

4 New AspPool Manager Confi g and Ser vl et Pool Manager Conf i g classesare
added to simplify the creation of the session pool manager and the session pools.
The session pool usesthejava. util . Properties classtopassinthe
following session pool properties:

L4

* & & & & ¢ o o

poolname
appaddrlist
failoverlist
minipoolsize
maxpoolsize
username
userpassword
userrole

apppassword

How the Jolt ASP Connectivity for Tuxedo

Works

The Jolt ASP Connectivity for Tuxedo architecture includes three main components:
a session, a session pool, and a session pool manager. A session object represents a
connection with the Tuxedo system. A session pool represents many physical
connections between the Web server and the Tuxedo system. It also associates a
session with an HTTP request.

BEA Jolt Developer’s Guide 7-3

[Using Jolt ASP Connectivity for Tuxedo

The session pool manager isresponsible for maintaining a set of session objects, each
having a unique session identifier.

1. If the Web application has not been initialized, the Web Application initializes the
session pool manager, creates a session pool, and establishes sessions (also known
as connections) with the Jolt Server.

2. When a service request arrives, the Web application gets a session pool object
from the session pool manager. The session pool invokes the service call using
the session that isthe “least busy,” based on the number of outstanding call
reguests on a given session.

3. If the selected session isterminated by the Jolt server, the session pool object
restarts a new session or reroutes the request to another session. If the session
pool manager is unable to get any session, a null session object is returned.

A graphical representation of the ASP Connectivity for Tuxedo architecture is shown
in the following figure.

7-4 BEA Jolt Developer’s Guide

How the Jolt ASP Connectivity for Tuxedo Works

Figure7-1 Jolt ASP Connectivity for Tuxedo Architecture

Session
Pool Application
Services
Manager
‘ R Session
I i ‘*@
Qg, Host 1
)
o
Weh Server
Application
Services
Host2}
TUXEDO Domain

Refer to the online “ APl Reference in Javadoc” for additional information about the
Sessi onPool classand Sessi onPool Manager class.

BEA Jolt Developer’s Guide 7-5

[Using Jolt ASP Connectivity for Tuxedo

The ASP Connectivity for Tuxedo Toolkit

The ASP Connectivity for Tuxedo Toolkit isan extension to the Jolt Class Library. The
Toolkit allows the Jolt Client Class Library to be used in aWeb Server (such as
Microsoft Active Server) to provide an interface between HTML clients or browsers,
and a Tuxedo application.

Samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This section explains the steps you
follow to use an HTML client interface with the TRANSFER service of the Tuxedo
bankapp application. The TRANSFER serviceillustrates the use of parameterswith
multiple occurrences. This wa kthrough explains the use of the TRANSFER service
only.

Jolt ASP Connectivity for Tuxedo
Walkthrough

7-6

A complete listing of all the examplesused in this chapter are distributed with the Jolt
software. In this section, segments of code from these samplesareused to illustrate the
use of the Toolkit. The samples delivered with the software support four services:
INQUIRY, WITHDRAWAL, DEPOSIT, and TRANSFER. This chapter explains the
stepsyou can follow tousean HTML client interface to the TRANSFER service of the
Tuxedo bankapp application. The TRANSFER serviceillustratesthe use of parameters
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Note: Thewalkthrough illustratesthe use of the ASP Connectivity For Tuxedo with
Microsoft I1S and VB Script.

To use the information in the following sections, you should be familiar with:
4 BEA Tuxedo and the sample Tuxedo application, bankapp
4 BEA Jolt

BEA Jolt Developer’s Guide

Overview of the ASP for Tuxedo Walkthrough

¢ HTML (Hypertext Markup Language)

4 VB Script

4 Object-oriented programming concepts

Overview of the ASP for Tuxedo
Walkthrough

Follow these steps to complete the ASP Connectivity for Tuxedo walkthrough:

4 Review the Getting Started Checklist

4 Review the Overview of the TRANSFER Service

4 Complete the Stepsin the TRANSFER Request walkthrough

L4

¢
¢
¢

Initializing the Jolt Session Pool M anager
Submitting a TRANSFER Request from the Client
Processing the Request

Returning the Results to the Client

Getting Started Checklist

Review this checklist before starting the TRANSFER Request Walkthrough.

Note: This checklist applies to Microsoft Active Server Pages only.

1. Ensure that you have a supported browser installed on your client machine. The
client machine must have a network connection to the Web server that is used to
connect to the Tuxedo environment.

2. Configure and boot Tuxedo and the Tuxedo bankapp example.

BEA Jolt Developer’s Guide 7-7

[Using Jolt ASP Connectivity for Tuxedo

7-8

a. Make surethe TRANSFER serviceisavailable.

b. Refer to the BEA Tuxedo user documentation for information about
completing this task.

. Refer to Installing the BEA Tuxedo System for information about how to

configure a Jolt Server.

a. Note the hostname and port number associated with your Jolt Server Listener
(JsL).

b. Ensurethat the TRANSFER service is defined in the Jolt Repository.

c. Testthe TRANSFER service using the Jolt Repository Editor to make sureitis
accessible to Jolt clients.

. Make sure you have Microsoft 11S 4.0 up and running.

a. Check that script execution permissionisenabled in the Web server application
properties.

b. Refer to the user documentation that accompanies the Microsoft 1S server for
instructions.

. Install the Jolt Asp Connectivity For Tuxedo classes. These classes are contained

inthej ol tasp. j ar file. Be sure these classes arein your class path and
available to your Web Server.

. Install the teller sample application.
. The code samples shown in “ TRANSFER Request Walkthrough” are available

from a sample application delivered with the Jolt Asp Connectivity For Tuxedo
software. The following table lists the filesin the sample application. These files
are avaluable reference for the walkthrough and are located in
<extract_directory>/teller.

Table 7-1 Bankapp Sample Source Files

File Name Description

tell erForm asp Initializes the Jolt Session Pool Manager and displays

available bankapp services.

transferForm htm Presents an HTML form for user input.

BEA Jolt Developer’s Guide

Overview of the TRANSFER Service

Table 7-1 Bankapp Sample Source Files

File Name Description

tlr.asp Processesthe HTML form and returns results as an
HTML page.

web_admi n.inc VBScript functionsfor initializing the Jolt Session Pool
Manager.

web_start.inc VBScript functionsfor initializing the Jolt Session Pool
Manager.

web_tenpl ates.inc VBScript functions for caching HTML templ ates.

tenplates/transfer.tenp HTML templatesused for returning results.

Overview of the TRANSFER Service

The TRANSFER Servicein bankapp moves funds between two accounts. The service
takes two account numbers, an input amount, and returns two balances—one for each
account. In addition, the service returns an error message if there is an application or
system error.

A TRANSFERisaWITHDRAWAL and aDEPOSIT executed asasingletransaction.
The transaction is created on the server, so the client does not need to create a
transaction.

The client interface consists of an HTML page with aform used to enter the required
data— account numbers and a dollar amount. This datais sent to the Web server asa
“POST” request.

Inthe Web server, this request is processed using aVV BScript Active Server Page. This
program extracts the input data fields from the request, formats them for use with the
Jolt ASP Connectivity For Tuxedo class library, and dispatches the request to the
TRANSFER service in the bankapp application. The TRANSFER service returns the
results of the transaction. These results are returned to the VBScript program that
mergestheminto adynamically created HTML page. Thispageisreturned to theclient
viathe Web server infrastructure.

BEA Jolt Developer’s Guide 7-9

[Using Jolt ASP Connectivity for Tuxedo

In the final part of thiswalkthrough, run the necessary HTML pages and server-side
VBScript logic to execute a TRANSFER.

TRANSFER Request Walkthrough

This section explains what happens when you execute a TRANSFER reguest. Every
step is not illustrated here, only those steps that are necessary.

Included are:

4 Initiaizing the Jolt Session Pool Manager

4 Submitting a TRANSFER Request from the Client
4 Processing the Request
¢

Returning the Results to the Client

Initializing the Jolt Session Pool Manager

7-10

To start the walkthrough, use the browser on your client to connect to the Web server
where the Jolt Asp Connectivity For Tuxedo classes are installed. The first page to
download ist el | er For m asp (see the following figure for an example of a

tel | er For m asp page). If theteller sample has been installed as described in step 6
of the “Getting Started Checklist,” the URL for this page will be:

http://<web-server:port>/teller/tellerFormasp

Note: The use of the port number isoptional, depending on how your Web server is
configured. In most cases, you are not required to add the “:port” in the URL .

BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough

Figure 7-2 teller Form.asp Example

a Banking Demo - Microsoft Internet Explorer
JEiIe Edit View Go Favorites Help ‘

e 200N QB8 HRS
JAddress @http:h‘spiderfsamples/teller/tellerForm.asj JLinks

Please Select One of the Banking
Transactions:

Inquiry |
Deposit |

Withdrawal J

Transfer

Status |

[]
| ’_l_l_lﬁ Local intranet zone A

The page, t el | er For m asp contains VBScript procedures required to initialize the
Jolt Session Pool Manager. Theinitialization codeis contained in an A SP Script block.
This code tells the Web server to execute this block of code on the server, instead of
sending it to the client.

Listing 7-1 tellerForm.asp: Initialize the Jolt Session Pool M anager

<%

"/l Initialize the session nmanager and cache tenplates
Cal | web_initSessionMyr(Null)

Cal | web_cacheTenpl ates()

%

BEA Jolt Developer's Guide 7-11

[Using Jolt ASP Connectivity for Tuxedo

7-12

TheVBScript procedureweb_i ni t Sessi onMyr () callsother VBScript proceduresto
establish a pool of Jolt Sessions. A Jolt Session is established between the Jolt ASP
Connectivity For Tuxedo in the Web Server and the Jolt Servers that reside in your
Tuxedo application. One of the procedures calledisweb_st ar t () . Thisprocedure (in
thefileweb_st art . i nc) should have been edited as part of the teller application
installation process in step 6 of the “ Getting Started Checklist”.

The procedure web_cacheTenpl at es() reads various HTML template filesinto a
memory cache. This step is not required, but it improves performance.

Listing 7-2 teller Form.asp: Allow the user to choose TRANSFER service

<I NPUT TYPE="button" VALUE="Transfer"
ond i ck="wi ndow. | ocation='transferFormhtm ">

The HTML segment above displays a button labeled “ Transfer.” When this button is
selected, the browser |oads the paget r ansf er For m ht m This page presents aform
used to enter the data required by the TRANSFER service.

BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough

Submitting a TRANSFER Request from the Client

Figure7-3 transferForm.htm Example

2 Transfer Fund between Accounts - Microsoft Inter... [Hi=] E3

J File Edit View Go Favorites Help ‘
o238 RS H
JAddress @Hspider,’sampIes;‘teIIer!transferForm.htmj JLinks
[
Enter the Account Numbers and the
Amount:
From Account Number: |10000
To Account Number: |10001
Amount: §[100.00
Transfer I Clearl
[-]
| || |EgLocalintanst zone v

The form in the previousfigure is generated by the paget r ansf er For m ht m This
page presents you with aform for input. The page consists of three text fields (two
account numbers and a dollar amount), and a button that, when pressed, causes the
TRANSFER service to be invoked.

The code segment in the following figurethe following listing shows the key HTML
elements for this page. The highlighted elements in the following listing correspond
to the elementsin the following table.

BEA Jolt Developer's Guide 7-13

[Using Jolt ASP Connectivity for Tuxedo

Listing 7-3 transferForm.htm: TRANSFER Form

<FORM NAME="t el l er" ACTION="tIr.asp" METHOD="POST">
<TABLE>
<TR><TD ALI G\N=RI GHT>From Account Nunber: </ TD>

<TD><I NPUT TYPE="text" NAME="ACCOUNT | D 0"></TD></ TR>
<TR><TD ALI G\=RI GHT>To Account Nunber: </ TD>

<TD><I NPUT TYPE="text" NAME="ACCOUNT |ID 1"></TD></ TR>
<TR><TD ALI G\=RI GHT>Anount : $</ TD>

<TD><I NPUT TYPE="text" NAME=" SAMOUNT" ></ TD></ TR>
</ TABLE>
<CENTER>
<I NPUT TYPE="hi dden" NAME="SVCNAME' VALUE="TRANSFER'>
<INPUT TYPE="submt" VALUE="Transfer">
<INPUT TYPE="reset" VALUE="Cl ear">
</ CENTER>
</ FORW>

Table7-2 Key HTML Elementsand Descriptions

Element Description

ACTION="t I r. asp” When the “submit” button is pressed, the contents of this
form areddivered to apagecalledt | r. asp onthe Web
server for processing.

NAME=" ACCOUNT_I| D 0" Shows the use of afield with multiple occurrences. The
TRANSFER service expects two input account numbers,
both called “ACCOUNT_ID”. By using a convention of
appending an underscore and occurrence_number (e.g.,
_0, _1) to the field name, both the name of afield and its
occurrence can be passed to the program on the Web
Server.

NAME=" SAMOUNT” Shows the use of an input field that hasa single
occurrence. In this example, there is nothing appended to
the name of the field.

7-14 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough

The HTML form field names used in this example exactly match the Tuxedo field
names expected by the TRANSFER service. Thisis not required, but doing so
facilitates processing on the server because you do not have to map these inputs to
Tuxedo field names. This is done by the Jolt ASP Connectivity For Tuxedo classes.

The hidden field SYCNAME is assigned a value of TRANSFER. Thisfield does not
appear on the client form, but it is sent to the Web server as part of the request. The
VBScript program retrieves the value of thisfield in order to determine which Tuxedo
serviceisto be called (in this example, the service is TRANSFER).

Complete thefields Fr om Account Number, To Account Number, and Anount .
(10000 and 10001 are valid bankapp account numbers). Press the “ Transfer” button.
The data entered on the form is sent to the Web server for processing by the program
t1r.asp asspecifiedinthe ACTION field of the form.

Processing the Request

When the Web server receivesthe TRANSFER request, it runsthe programt | r. asp.
Client requests are turned into a Request object in the Web server. This Request object
has members containing all the data that was input to the form aong with other form
data, such as hidden fields. The Web server makes the Request object available to the
program being invoked.

The programt | r. asp contains only VBScript. The first action performed by this
program verifies that the Jolt Session Pool Manager isinitialized. The code example
shown in the following listing performs the initialization check and returnsan HTML
error page if the pool is not initialized.

BEA Jolt Developer's Guide 7-15

[Using Jolt ASP Connectivity for Tuxedo

7-16

Listing 7-4 tlr.asp: Verify the Jolt Session Pool M anager is Initialized

<%

If Not |sCObject(Application("mgr")) Then

%
<HTM.>
<HEAD><TI TLE>Er r or </ TI TLE></ HEAD>
<BODY><CENTER>
<H2>Sessi on Manager is not initialized</H2>
<P>Make sure that you access the correct HTM
</ CENTER></ BCDY>
</ HTM.>

<%

End If

%

If the session pool isinitialized, the program continues to process the request. The
program locates a Session from the Session Pool Manager shown in the following
listing.

Listing 7-5 tlr.asp: Locate a Session

Set pool = Application("nmgr").get Sessi onPool (Null)

Onceavalid session islocated, the program retrieves an HTML template that is used
to return the resultsto the client. In this example, these templates were cached in the
initialization section. The template retrieved isidentified by the name of the service
being invoked, Request (" SVCNAME") shown in the following listing.

Listing 7-6 tlr.asp: Retrieve a Cached HTML Template

"// Choose the response tenplate
If | sEnpty(Application("tenplates")) Then
Set tenplate = Server. Creat eCbj ect (" BEAVEB. Tenpl at e")
El se
Sel ect Case Request (" SVCNAME")
Case "I NQUI RY"
Set tenplate = Application("tenplates") (1 NQU RY)

BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough

Case "DEPCSI T"

Set tenplate = Application("tenpl ates")(DEPCSIT)
Case "W THDRAWAL"

Set tenplate = Application("tenpl ates") (W THDRAWAL)
Case " TRANSFER"

Set tenplate = Application("tenpl at es") (TRANSFER)

End Sel ect
End | f

Next, call the Tuxedo service. In this example, the input data from the Request object
is passed tothe cal | () method of the session. Thecal | () method uses the built-in
ASP Request object asinput. Theresultsof thecal | () arestoredintheout put object
and an array, i odat a.

Listing 7-7 tlr.asp: Invokethe Tuxedo Service

Set output = pool.call (Request ("SVCNAVE"), Null, Not hi ng)
Set iodata(l) = output

After youinvokethe Tuxedo service, theout put object and the second element of the
array i odat a contain the results of the service call.

Note: Inthisexample, because the initial form specified field names match the
Tuxedo service parameter names, the Request object can be used in the
cal I () method. If these names do not match, create an input array with
“name=value’ elements for each service parameter before invoking the
cal | () method.

Returning the Results to the Client

Atthis stage, no results have beenreturned to the client. Thefinal step sendsan HTML
page containing the results of the service call back to the client. The HTML page
consists of thetemplate merged with the data returned by the service call shown in the
previous listing.

BEA Jolt Developer's Guide 7-17

[Using Jolt ASP Connectivity for Tuxedo

7-18

Thetemplate file contains placeholders for variable (call-specific) data. These
placeholders areidentified by the specia tag <%=NAMVEY%. In the code exampl e shown
in the following listing, an index is used to indicate which occurrence of a parameter
nameis used. For example, ACCOUNT_I D[0] specifiesthefirst occurrence of thefield
ACCOUNT_| D.

Listing 7-8 transfer.temp: Placeholdersfor TRANSFER Results

<TABLE BORDER=1>

<TR><TD></ TD><TD ALI GN=CENTER>Account #</ TD>
<TD ALI G\=CENTER>Bal ance</ B></ TR>

<TR><TD ALI G\=RI GHT>Fr om </ B></ TD><TD><%ACCOUNT_| D] 0] %</ TD>
<TD><%=SBALANCE[0] %</ TR>

<TR><TD ALI G\=RI GHT>To: </ B></ TD><TD><%ACCOUNT_I D[1] %</ TD>
<TD><%=SBALANCE[1] %</ TR>

</ TABLE>

To substitute the placeholders in the template with the actual values of the data
returned from the service call, use the eval () method of the Template object shown
in the following listing. This method matches placehol ders in the template file with
fields of the same name in the results data and replaces them accordingly. A check for
valid results (out put object) is done as shown in the following listing. If thereisno
output object, an error template page is returned.

Listing 7-9 tlr.asp: Template Processing

path = Application("tenplatedir")
If (Not |sObject(output)) O (output is Nothing) Then
Call tenplate.eval File(path & "\ nosession.tenmp", Null)
El sei f output.noError() Then
Call tenpl ate. eval (iodata)
El seif output.applicationError() Then
Call tenplate.eval File(path & "\error.tenp", iodata)
El se
'// Systemerror
D m errdat a(0)
Set errdata(0) = Server. Creat eObj ect ("BEAVEB. Tenpl at eDat a")
Call errdata(0).setVal ue("ERRNO', output.getError())
Call errdata(0).setVal ue("ERRVBG', output.getStringError())

BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough

Call tenplate.eval File(path & "\syserror.tenp", errdata)
End | f

Note: Thearray i odat a contains both the input request and the results from the
service call. Thisis useful if you want the results page to contain datathat is
part of the input.

When thetemplateis processed, the resulting HTML isreturned to the client as shown
in the following figure.

Figure 7-4 tlr.asp Results Page

2 CTRANSFER Result - Microsoft Internet Explorer [H[=] 3

J File Edit View Go Favorites Help ‘
e 200N QB8 HRS
JAddress €] http:/fspiderfsamplesftellerftir.asp j JLinks

The Result of the CTRANSFER
Service is:

Account Number: 10000
Cwrrent Balance: $4878.82
Cwrrent Date: Tue May 12 11:37:44 PDT 1998

Back |

N

’_l_l_lﬁ Local intranet zone

BEA Jolt Developer'sGuide 7-19

[Using Jolt ASP Connectivity for Tuxedo

7-20 BEA Jolt Developer’s Guide

APPENDIX (

A Tuxedo Errors

This appendix describes the Jolt Class Library errors and exceptions. The Jolt Class
Library returns both Jolt and Tuxedo errors and exceptions. The Jolt Class Library
errors and exceptions are aso listed for each class, constructor, and method listed in
the API Reference in Javadoc. Tuxedo Errors are described briefly in this appendix.
For a complete explanation of Tuxedo errors, refer to BEA Tuxedo System Messages.

BEA Jolt Developer’s Guide A-1

A Tuxedo Errors

Tuxedo Errors

Expanded referencesto Tuxedo will be available in afuture release of the Jolt product
documentation. If you require an immediate, expanded reference for Tuxedo related
errors, see the Tuxedo System Reference Manual.

Table A-1 Tuxedo Errors

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor isinvalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC Degueuing a message from the specified queue failed. The reason for
failure can be determined by the diagnostic value returned through
ctl structure.

TPEEVENT An event occurred; the event typeis returned in revent.

TPEHAZARD Dueto afailure, the work done on behalf of the transaction can have
been heuristically completed.

TPEHEURISTIC Dueto aheuristic decision, the work done on behalf of the transaction
was partially committed and partially aborted.

TPEINVAL Aninvalid argument was detected.

TPEITY PE The type and subtype of the input buffer is not one of the types and
subtypes that the service accepts.

TPELIMIT The caller’ s request was not sent because the maximum number of
outstanding requests or connections has been reached.

TPEMATCH svcname is dready advertised for the server but with afunction other
then func.
TPEMIB The administrative request failed. out buf isupdated and returned to

the caller with FM L 32 fields indicating the cause of the error asis
discussed in M B(5) and TM_ M B(5) .

A-2 BEA Jolt Developer’s Guide

Tuxedo Errors

Table A-1 Tuxedo Errors

Error Description

TPENOENT Cannot send to svc because it does not exist or is not the correct type
of service.

TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application becauseit does not have permission
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE t padntal | () wascaled with the TUXCONFIG environment
variable pointing to a different release version configuration file.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error either int pr et ur n(3) or
t pf or war d(3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’ sreply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

BEA Jolt Developer’s Guide A-3

A Tuxedo Errors

A-4 BEA Jolt Developer’s Guide

Tuxedo Errors

BEA Jolt Developer’s Guide A-5

A Tuxedo Errors

A-6 BEA Jolt Developer’s Guide

APPENDIX (
B System Messages

Jolt system messages and code referenceswill be available in afuture release of the
Jolt product documentation. If you require an immediate, expanded reference, refer to
BEA Tuxedo System Messages.

This appendix includes:

Jolt System Messages

Repository Messages

FML Error Messages

Information M essages

Jolt Relay Adapter (JRAD) Messages
Jolt Relay (JRLY) Messages

* & & & O o o

Bulk L oader Utility Messages

BEA Jolt Developer’s Guide B-1

B systemMessages

Jolt System Messages

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Message Manual, Volume 2, under “WSNATIVE MESSAGES
(WSNAT_CAT).

1503 ERROR Could not initialize Jolt administration services.
Description Jolt administration services cannot be started.
Action Check the userlog for other messagesto determine
the proper course of action.
See Also Tuxedo Administration Guide
1504 ERROR Failed to advertise local Jolt administration service <service
name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messagesto determine
the proper course of action.
See Also Tuxedo Administration Guide
1505 ERROR Failed to advertise global Jolt administr ation service <service
name>.
Description Jolt administration services cannot be started.
Action Check the userlog for other messagesto determine
the proper course of action.
See Also Tuxedo Administration Guide

B-2 BEA Jolt Developer’s Guide

Jolt System Messages

1506 ERROR Terminating Jolt administration servicesin preparation for
shutdown.
Description The JSL has completed its shutdown andisexiting
the system.
Action Informational message, no action required.
See Also Tuxedo Administration Guide
1510 ERROR Received networ k message with unknown context.
Description BEA Jolt protocol failure. Received acorrupted or
an improper message.
Action Restart Jolt client.
1511 ERROR _tprandkey() failed tperrno = %d, could not generate random
encryption key.
Description Tuxedo internal failure.
Action Restart Jolt servers.
1512 ERROR Sending of reply to challenge call to client failed.
Description JSH was unable to reply to Jolt client due to
network error.
Action Restart client.
1513 ERROR Failed to encrypt ticket information.
Description BEA Tuxedo internal failure.
Action Retry the option. If the problem persists, contact
BEA Technica Support.
1514 ERROR Incorrect ticket value sent by workstation client.
Description BEA Jolt protocol failure.
Action Retry the option. If the problem persists, contact

BEA Technica Support.

BEA Jolt Developer’s Guide B-3

B systemMessages

B-4

1515 ERROR Tried to process unexpected message opcode 0x% 1x.
Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.
Action Retry the option. If the problem persists, contact
BEA Technical Support.
1516 ERROR Unrecognized message format, release % 1d.
Description BEA Jolt protocol failure.
Action Make sure the client classes are at the appropriate
version level.
1517 ERROR Commit handle and clientid have no matching requests.
Description Received a copy from Tuxedo that has no
corresponding client.
Action No action required.
1518 ERROR Call handle and clientid have no matching requests.
Description Received areply from Tuxedo that has no
corresponding client.
Action No action required.
1519 ERROR Application password does not match.
Description Authentication error.
Action Check the application password.
1520 ERROR Init handle and clientid have no matching requests
Description A reply could not be sent to client. (May bedueto
client disconnect.)
Action No action required.
1521 ERROR Unrecognized message magic %/d.
Description I nappropriate message is sent to JSH/JSL .
Action Check the client sending erroneous messages.

BEA Jolt Developer’s Guide

Jolt System Messages

1522 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.

1523 ERROR Memory allocation failure.
Description Machine does not have enough memory.
Action Check the machine resources.

1524 ERROR Failed to create encryption/decryption schedule.
Description BEA Tuxedo internal error.
Action Retry the option. If the problem persists, contact

BEA Technica Support.

1525 ERROR Tried to process unexpected message opcode 0x% 1x.
Description Received amessage with invalid opcode.
Action Check the client.

1526 ERROR Jolt license has expired.
Description License for Jolt use has expired.
Action Contact BEA Technica Support.

1527 ERROR Expected argument to -c option.
Description Option -¢ needs an argument.
Action Provide a valid argument.

1528 ERROR Request for inappropriate session type.
Description Received a message without valid session

information.

Action Restart the client.

BEA Jolt Developer’s Guide B-5

B systemMessages

1529 ERROR Session type must be RETAINED or TRANSIENT.
Description Server configuration does not match client
request.
Action Check the -c argument of the JSL.
1530 ERROR Received RECONNECT message with invalid context.
Description Client context is cleaned. A -T option is specified
to the JSL.
Action Check the -T option. Check the network errors
also.
1531 ERROR Recelved invalid RECONNECT request
Description Received a RECONNECT request.
Action Restart client.
1532 ERROR Received J_CL OSE message with invalid context.
Description Timeout in connection.
Action If arequest is sent after atimeout that is longer

than the session timeout of the JSL, the JSH
cannot validate the session ID.

1533 ERROR Sending of reply of close protocol failed.
Description BEA Jolt protocol failure.
Action Check theclient.

1534 ERROR Sending of reply of reconnect protocol failed.
Description BEA Jolt protocol failed.
Action Check theclient.

1535 ERROR Timestamp mismatch in close protocol.
Description BEA Jolt protocol failed.
Action Restart the client.

B-6 BEA Jolt Developer’s Guide

Jolt System Messages

1536 ERROR Received J_ RECONNECT message with invalid context.
Description BEA Jolt protocol failed. Session timed out before
RECONNECT request arrived.
Action Restart the client.
1537 ERROR Timestamp mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.
1538 ERROR Client address mismatch in reconnect protocol.
Description BEA Jolt protocol failure.
Action Restart the client.
1539 ERROR Failed to decrypt reconnect information.
Description BEA Jolt protocol failure.
Action Restart the client.
1540 ERROR Failed to encrypt reconnect information.
Description BEA Jolt protocol failure.
Action Restart the client.
1541 ERROR Received RECONNECT request for nonTRANSIENT client.
Description Improper request from client.
Action Restart the client.
1542 ERROR Unlicensed Jolt server.
Description The JSL isnot licensed. Theinstallation is
incomplete, or it failed to burn thelicense into the
JSL.
Action Reinstall Jolt with avalid Jolt license.

BEA Jolt Developer’s Guide B-7

B systemMessages

B-8

1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for
the Jolt product. The Tuxedo license may have
been used during installation instead of the Jolt
license.

Action Reinstall Jolt with avalid Jolt license.

1544 ERROR This Tuxedo is not Release <Tuxedo release number>.

Description Jolt is compatible with Tuxedo Release 6.1 or 6.2.
The JSL hasdetermined that the Tuxedo releaseis
not compatible.

Action Install Tuxedo 6.1 or Tuxedo 6.2.

1545 ERROR Cannot determineif this Tuxedo is <Tuxedo release number>:
service TMIB failed.

Description This version of Tuxedo does not support the MIB.
The Tuxedo release may be Tuxedo 6.0 or earlier.

Action Install Tuxedo 6.1 or 6.2 or check to ensure that
your Tuxedo releaseis 6.1 or 6.2.

1546 WARN The version of this Tuxedo isnot available; <Tuxedo release
number> is assumed.

Description TheMIB issupported with thisversion of Tuxedo,
but the rel ease number isunavailable. The Tuxedo
version might not beamaster binary. It might aso
be an internal version of Tuxedo.

Action No action is required.

1547 ERROR Memory allocation failurein JOLT_SUBSCRIBE.
Description Check resources of the machine.
Action Restart Tuxedo after increasing system resources.

BEA Jolt Developer’s Guide

Jolt System Messages

1548 ERROR jolt_tpset_enq failed.
Description Internal system failure.
Action Restart the client. If problem persists, check field
table files and directories and then restart the
SErvers.
1549 ERROR [JOLT_EVENTS failed to set %sfield. Ferror32=%d].
Description Unable to get the field definition for Tuxedo
internal fields.
Action Check Tuxedo installation and restart the servers.
1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.
Description Application error.
Action Check the client and restart the client.
1551 ERROR Memory allocation failurein JOLT_UNSUBSCRIBE.
Description Resources are not enough.
Action Increase resources and restart Tuxedo.
1552 WARN Dropping notification message for Transient client %d.
Description Notification arrived when atransient client is not
connected.
Action Information message only; no action required.
1553 WARN Dropping broadcast message for Transient client %d.
Description Notification arrived when atransient client is not
connected.
Action Information message only; no action required.

BEA Jolt Developer’s Guide B-9

B systemMessages

B-10

1554 ERROR Expected numeric argument for -Z option.
Description -Z option expects 0, 40, or 128 as the argument.
Action Check the configuration file and specify avaid
numeric argument for JSL.
1555 ERROR %d - Illegal argument for -Z option.
Description Incorrect argument value is specified.
Action Check the argument for -Z option and correct it.
1556 ERROR %d - Illegal argument for -Z option dueto international license.
Description For international release only 0 or 40 are allowed.
Action Specify correct argument.
1557 ERROR Incorrect number of encrypted bit valuesfrom workstation client.
Description BEA Jolt protocol failure.
Action Call BEA Technical Support.
1558 ERROR Expected argument to -E option.
Description An argument is expected for - E option.
Action Specify correct option and restart Tuxedo.
1559 ERROR %s- lllegal argument to -E option.
Description Incorrect value is specified as argument to - E
option.
Action Specify the correct option.
1560 ERROR Cannot initialize the code conversion for local %s.

Description Cannot find function to do the code conversion for
internationalization.

Action Check the shared library.

BEA Jolt Developer’s Guide

Jolt System Messages

1561 ERROR TUXDIR isnot set.
Description TUXDIR environment variable is not set.
Action Set the variable to Tuxedo directory and restart
Tuxedo.
1562 ERROR Error reading licensefile.
Description Jolt is not able to open Tuxedo licensefilein
$TUXDIR/udataobj/lic.txt.
Action Copy the correct licensefileto
$TUXDIR/udataobj/lic.txt.
1563 INFO Serial Number: <% s>, Expiration Date: <% s>.
Description Serial number and expiration date displays.
Action No action required.
1564 INFO Licensee: <% s>.
Description Licensee information displays.
Action No action required.
1565 ERROR Call handle and clientid have no matching requests.
Description Received areply from Tuxedo that has no
corresponding client.
Action No action required.
1566 INFO M essage received without handle, ignored.
Description A Tuxedo message arrived without an identifying
handle.
Action No action required.

BEA Jolt Developer's Guide B-11

B systemMessages

B-12

1567 ERROR Expected argument to -j option.

Description -j requires an argument.

Action Specify - j argument
(ANY/RETAINED/RECONNECT) in UBB and
reboot Tuxedo system.

1568 INFO Compression threshold is set to %d.

Description Informative message.

Action No action required.

1569 ERROR No Tuxedo Encryption installed. Cannot use Diffie-Hellman.

Description Cannot find encryption libraries.

Action Contact Tuxedo support.

1570 WARN Jolt Client Connection Request timed out.

Description Jolt client sent connect reguest for JSH too late.

Action If problem persists, increasethevaueof - | option
inJSL.

1571 WARN A Jolt Client hasincorrect APPADDR.

Description A Jolt client has specified JSH address instead of
JSL.

Action Change the client and specify correct address.

1572 WARN A Non Jolt Opcodeis sent to JSH.
Description A request received by JSh has non Jolt opcode.
Action Check client’s APPADDR.

BEA Jolt Developer’s Guide

Repository Messages

Repository Messages

ERROR Usage: JREPSVR [-W] -P path -W writable repository.
Description Aninvalid option is specified or - P is not
specified properly.
Action Review the Jolt documentation and ensure that the
options are specified correctly.
ERROR Not enough memory
Description Not enough memory; please add more swap space.
Action Configure additional memory. Make sure the operating
system parameters are set correctly for the amount of
memory on the machine and the amount of memory that
can be used by a process. Reduce the memory usage on
themachine or increase the amount of physical memory
on the machine.
ERROR Not enough disk space for “ <repository-file-path>"
Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.
Action Configure additional disk space.
ERROR Cannot modify read-only repository “<repository-file-path>"
Description Denies attempt to add or delete an entry from a
read-only repository.
Action Check the file permission and ensure that the fileis
writable.
ERROR “<repository-file-path>" isnot avalid repository file.

Description The specified fileisnot valid; avalid repository file
must have the string, “# JOLT1.0" in thefirgt line.

Action Extract the file from the Jolt distribution CD-ROM.

BEA Jolt Developer's Guide B-13

B systemMessages

B-14

ERROR Can’t open <repository-file-path>.

Description Unabl e to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

ERROR Can’t create <repository-file-path>: check permission or path.

Description Unable to create the repository file during garbage
collection.

Action Check thefile or directory permission.

ERROR Syntax error: <service definition>.

Description Aninvalid entry was detected when an attempt was
made to add an entry to the repository. The entry must
have ‘:’ asafield separator.

Action Contact BEA Technica Support.

ERROR Garbage collection failed: <key> not found.

Description When the writabl e repository is shutdown, it performs
garbage collection to collapse the repository file. If it
detects an inconsistency, the garbage collection fails.

Action Contact BEA Technica Support.

BEA Jolt Developer’s Guide

FML Error Messages

FML Error Messages

ERROR Fielded buffer not aligned.

Description AnFML function was called with afielded buffer that is
not properly aligned. Most machines reguire half-word
alignment.

Action useFal | oc toretrieve an allocated, properly
aligned buffer.

See Also Tuxedo Reference Manual

ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has not
been initialized.

Action UseFi ni t toinitialize abuffer allocated directly by
the application, or use Fal | oc toallocate and
initialize afielded buffer.

See Also Tuxedo Reference Manual

ERROR Invalid argument to function.

Description Aninvalid argument (other than an invalid field buffer,
field identifier, or field type) was passed to an FML
function. This can be a parameter where anon-NULL
parameter was expected (for example, it can be an
invalid buffer size, etc.).

Action See the manual page associated with the error for the
correct parameter values.

See Also Tuxedo Reference Manual

BEA Jolt Developer's Guide B-15

B systemMessages

B-16

ERROR

Unknown field number or type.

Description Aninvalid field number was specified for an FML
function, an invalid field number (O or greater than
8192) was specified, or Fname could not find the
associated field identifier for the specified name.

Action Most of the FML functionsreturn this error; see the
manual page associated with the function that returned
this error. Check your code to make sure the field
specified isvalid.

See Also Tuxedo Reference Manual

BEA Jolt Developer’s Guide

Information Messages

Information Messages

INFO

Repository “<repository-file-path>" (### records) iswritable.

Description When awritable Repository server is brought up, it
reports the number of recordsit found.

Action No action required.

INFO

Repository “<repository-file-path>" (### records) isread-only.

Description When aread-only Repository server is brought up, it
reports the number of recordsit found.

Action No action required.

BEA Jolt Developer's Guide B-17

B systemMessages

Jolt Relay Adapter (JRAD) Messages

B-18

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Message Manual, Volume 2, under “WSNATIVE MESSAGES
(WSNAT_CAT).

1500 ERROR Needs both -I -c options with arguments.
Description Needed options are without arguments.
Action Check and correct configuration file for JRAD
entry.
1501 ERROR M alloc failed.
Description JRAD isnot able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1502 ERROR M emory allocation failed.
Description JRAD isnot able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1503 ERROR M emory allocation failed. Cannot send ESTCON.
Description JRAD isnot able to allocate dynamic memory.
Action Increase the system resources and restart the
JRAD.

BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages

1504 INFO Memory allocation failed. Cannot send ESTCON.
Description JRAD is not able to alocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1505 ERROR Memory allocation failed. Cannot send ESTCON.
Description JRAD isnot able to alocate dynamic memory.
Action Increase the system resources and restart the
JRAD.
1506 ERROR Connection to JSL failed.
Description JSL is not running.
Action Check the address given with option - c.
1507 ERROR Sending message to JSL failed.
Description JSL isnot running or network connection is down.
Action Restart the JRAD/JSL .
1508 INFO Sending message to JSH failed.
Description Network is down. Connection to the JSH failed.
Action Check the network and restart the JSL.
1509 ERROR Sending CONNECT reply to JRLY.
Description Unable to reach JRLY . Probably problemin the
network.
Action Restart the JRLY and JRAD after check the

network addresses.

BEA Jolt Developer's Guide B-19

B systemMessages

B-20

1510 ERROR Sending SHUTDOWN reply to JRLY.
Description Unableto reach JRLY . Probably problem in the
network.
Action Restart the JRLY and JRAD after check the
network addresses.
1511 ERROR Incorrect Jolt message received from JRLY.
Description A non Jolt message is sent by JRLY .
Action No action required. JRLY process filters non Jolt
messages already.
1512 ERROR Sending SHUTDOWN to JRLY failed.
Description Unable to send shutdown messageto JRLY .
Action No action required.
1513 ERROR Sending CL OSE to JRLY failed for ID <%d>.
Description Unable to send CLOSE message for Relay 1D to
JRLY.
Action No action required.
1514 ERROR Sending CL OSE to JRLY failed.
Description Unable to send CLOSE message for Relay ID to
JRLY.
Action No action required.
1515 ERROR Sending CL OSE to JRLY failed for ID <%d>.
Description Unable to send CLOSE message for Relay 1D to
JRLY.
Action No action required.
1516 ERROR Sending ESTCON to JRLY failed for 1D <%d>.
Description Sending ESTCON message failed.
Action No action required.

BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages

1517 ERROR Invalid Handler 1d. No corresponding address.
Description JRAD received a message without JSH
identification.
Action No action required.
1518 ERROR Cannot connect to JSH with id <%d>.
Description JRAD received a message without JSH
identification.
Action No action required.
1519 ERROR Invalid request from JRLY.
Description JRAD received a message without JSH
identification.
Action No action required.
1521 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1522 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1523 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.
1525 ERROR JRLY connection is down.
Description JRLY connection is down.
Action No action required.

BEA Jolt Developer's Guide B-21

B systemMessages

B-22

1526 INFO JRLY connection is UP.

Description A JRLY-JRAD connection is established.

Action No action required.
1531 ERROR Sending R_CLOSE | R_ACK failed.

Description Failed to send Relay protocol ack.

Action No action required.
1532 INFO JRLY connection is closed.

Description JRLY connection is down.

Action No action required.
1533 ERROR Bad hex number provided for external jrly address: %s.

Description Invalid - Hoption value.

Action Check - Hoption and provide correct value.
1534 ERROR Convert external jrly addressto hex format failed: %s.

Description Invalid - Hoption value.

Action Check - Hoption and provide correct value.
1535 ERROR Bad hex number provided for connecting address: %s.

Description Invalid - c option value.

Action Check - ¢ option and provide correct value.
1536 ERROR address conversion failed.

Description Invalid - c option value.

Action Check - ¢ option and provide correct value.
1537 WARN Convert listening addressto hex format failed: %s.

Description Invalid- | option value

Action Check - | option and provide correct value.

BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages

1538 WARN Convert connecting addr ess to hex format failed: %s.

Description Invalid - c option value.

Action Check - ¢ option and provide correct val ue.
1539 WARN Refusing connection to JRAD. JRLY connection exists.

Description A second JRLY istrying to connect to JRAD.

Connection isrefused by JRAD.

Action Provide correct CONNECT address for JRLY .

1540 WARN No JRLY process connected.

Description A dubious message arrived for JSL/JSH with no
relay connected.

Action Check the network address in configuration.

BEA Jolt Developer's Guide B-23

B systemMessages

Jolt Relay (JRLY) Messages

B-24

Thefollowing table lists the Jolt Relay messages.

ERROR Ignoring syntax error in configuration fileline %d

Description Theline in question doesn't contain an equal signor (in
case of the LISTEN and CONNECT tag) is missing the
colon.

Action Verify the syntax of the configuration file a the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description Thelinein question is does not contain one of thevalid
tags: LOGDIR, ACCESS_LOG, ERROR_LOG,
LISTEN, CONNECT.

Action Verify the syntax of the configuration file a the
specified line.

ERROR MSG_MALLOC: perror().

Description Memory allocation failed. Therelay will exit.

Action Make more memory available on the machine on which
the relay isrunning. Remove other unnecessary
processes which may be running on the same host asthe
relay. Restart the relay.

ERROR Client structure!=NULL for file descriptor %ld

Description Aninternal error occurred. Therelay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.

BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages

ERROR Invalid file descriptor %Id

Description Aninterna error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technica Support.

ERROR Could not open configuration file %s

Description The specified configuration file doesnot exist or is
not readable. Therelay will exit.

Action Check thefile name and the permissionsonthefile
and the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration
file or no value for it was given.

Action Verify the entry for thetag LOGDIR in the
configuration file. Check that the correct
configuration fileisbeing used (- f parameter).

ERROR No access log file specified.

Description ACCESS _L OG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for thetag ACCESS_LOG inthe
configuration file.Check that the correct
configuration fileisbeing used (- f parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for thetag ERROR_LOG in the

configuration file. Check that the correct
configuration fileisbeing used (- f parameter).

BEA Jolt Developer's Guide B-25

B systemMessages

B-26

ERROR No JRLY host specified

Description Thevaluefor the LISTEN tag does not contain the
host name or | P address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for thetag LISTEN in the
configuration file. Check that the correct
configuration fileisbeing used (- f parameter).

ERROR No JRAD host specified.

Description Thevalue for the CONNECT tag doesnot contain
the host nameor IP address or the JRAD host, e.g.,
CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct
configuration fileisbeing used (- f parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a
valid port number on the relay host.

Action Verify the entry for thetag LISTEN in the
configuration file. Check that the correct
configuration fileisbeing used (- f parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description Thevaluefor the CONNECT tag does not contain
avalid port number on the relay host.

Action Verify the entry for the tag CONNECT in the
configuration file.Check that the correct
configuration fileisbeing used (- f parameter).

BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages

ERROR Could not determine | P address of listener host

Description Therelay could not look up the | P address of the
host machine,

Action If the host was specified as a host name replace it
with the IP address and restart the relay. If it
aready was given as| P address make sure that the
IP addressis correct and that you're trying to start
the relay on thishost. Note that the address
specified must be the address of the host on which
therelay isrunning.

ERROR Cannot bind socket

Description Thelistener port specified in the configuration fileis
already being used by another application or still ina
final wait state from a previous run of jrly.

Action Either specify adifferent port number in the
configurationfile (and all HTML files containing the |P
address and port number of therelay) or wait afew
minutes. The command "netstat -a" displays existing
connections.

ERROR Can’t open log file %s

Description Either the error log file or access|og file (or both) could
not be opened for writing.

Action Check the configuration file for correct spelling of the

LOGDIR. Make sureyou havewrite permissionson this
directory and the files specified. On Windows NT, the
directory separators must be back slashes, not forward
slashes.

BEA Jolt Developer's Guide B-27

System Messages

B-28

ERROR W SASartup failed (NT only)

Description TheWinsock driver could not initialize. Possible causes:

4 Theunderlying network subsystem is not
ready for network communication Version
2.0 of Windows Sockets support is not
provided by this particular Windows Sockets
implementation.

4 Limit onthenumber of taskssupported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on
your system.

ERROR Couldn't load Winsock Driver version 2.X. (NT only)

Description Therelay requires Winsock version 2 or higher, but
could not load it.

Action Check the networking software configuration on your
system. An older version of Windows Sockets support
was detected.

ERROR FATAL ERROR: unknown message code % ld.

Description Internal error. The relay will exit

Action Restart the relay. If thismessage appearsrepeatedly and
can be reproduced consistently notify BEA Technica
Support.

ERROR connect: Connection refused
Description Therelay could not connect to JRAD.
Action Make sure the relay adapter (JRAD) isrunning. Check

that the CONNECT tag in the relay configuration file
identifies the correct host and port on which the JRAD
isrunning.

BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages

ERROR accept(): accept failed, errno: 24, strerror: Too many open files
Description Therelay tried to open more files/sockets than the
system limit.
Action The default maximum number of open file descriptors

for aprocessis 64 on most UNIX systems. Set this
number to at least 1024 (with the limit or ulimit
commands).

BEA Jolt Developer’'s Guide B-29

B systemMessages

Bulk Loader Utility Messages

B-30

ERROR Filenot found: %s
Description The specified fileis not found.
Action Check the path again.
ERROR Error on line%d: %svalueisnull
Description A valueis expected for this keyword.
Action Input the value.
ERROR Error on line%d: Invalid keyword: %s=%s
Description Keyword is not recognized.
Action Input the correct keyword value.
ERROR Error on line%d: Invalid number: %s
Description The numeric number is maformed.
Action Input the correct value.
ERROR Error on line%d: Invalid value: %s
Description The value of the parameter is out of range.
Action Input the correct value.
ERROR Error on line%d: Invalid value: %s
Description The data type of the parameter isinvalid.
Action Input the correct value.

BEA Jolt Developer’s Guide

Index

A

applets
client-side execution 4-57
Java 4-1, 4-2, 4-58
Jolt 1-11, 4-4
localizing 4-59
appletview
Repository Editor 3-5
applications
deployment 4-57
localization 4-57
multithreaded 4-37
ASP Connectivity 7-1

B

BEA Tuxedo
access 4-1
ATMI interface 4-4
buffer types
using with Jolt 4-14
customizing 4-1
data types
using with Jolt 4-14
logging
off 4-5
on 4-5
server requirements 4-57
services
executing 4-5
requests 4-4

transaction
begin 4-5
complete 4-5
new 4-5
rollback 4-5
buffer type
CARRAY 4-21, 4-30
FML 4-23
STRING 4-15
VIEW 4-30
buffer types
STRING 4-15
Tuxedo 4-14
bulk loader
bulk load file 2-2, 2-3
command line options 2-2
datafile syntax 2-3
getting started 2-2
introduction 2-1
keywords 2-4, 2-5, 2-7
messages B-30
sample data2-9
troubleshooting 2-8
using Windows NT 2-2

C
CARRAY

buffer type 4-17, 4-19, 4-21, 4-24, 4-30

classes 4-6
functionality 4-8

Jolt Developer’s Guide

hierarchy 4-7
Jolt 4-1, 4-6, 4-8
JoltRemoteService 4-8
JoltSession 4-8
JoltSessionAttributes 4-6, 4-8
JoltTransaction 4-10
relationships 4-7
subdirectory 4-58
client
Jolt 4-5
logon/logoff 4-8
connection attributes 4-10
hostname 4-10
portnumber 4-10
connection modes
connection-less 4-46
retained 4-46

D

data types
Tuxedo 4-14
DES1-3

E

ECHO service parameters
INPUT/OUTPUT 4-21
encryption 1-3
errors
Jolt 4-3
Jolt interpreter 4-3
summary of Tuxedo A-2
Tuxedo generated in Jolt 4-3
Event Subscription 4-44
classesfor 4-44
supported types 4-47
events
subscribing to 4-44
exceptions
Jolt 4-3

-2 Jolt Developer’s Guide

ServiceException 4-11
System.in.read 4-39
exporting services 3-39

F
FML buffer type 4-23

G

group services
package organizer
how to use 3-32

H
HTML

applet tag 4-58
page 4-58

J

Java

applets4-1, 4-2, 4-58

class files 4-58

clients1-7, 4-4

Developer’sKit (JDK) 1.0 4-38

language classes 4-1

packages 4-58

programs 4-2

Thread.yield() method 4-38

Virtual Machine (VM) 4-37

Jolt

applets1-11
deploying 4-57
localizing 4-59

architecture 1-3, 1-5, 1-6

bulk loader 2-1

classes 4-1, 4-6, 4-58
functionality 4-8
hierarchy 4-7
relationships 4-7

subdirectory 4-58
client
interface objects 4-5
logon/logoff 4-8
populating variables 4-5
requests 4-5
client/server
interaction 4-5
relationship 4-4
clients
communication with servers 1-10
connection manager 4-4
defined 1-2
features 1-3
international use 4-59
JRAD B-18
JRLY B-24
Repository 4-5
Editor
using 3-1
service attributes 4-5
Repository Editor 1-2
server 4-4, 4-5, 4-58
reguirements 4-57
servers 1-2
communication with clients 1-10
components 1-6
proxy for Tuxedo client 1-5
Transaction Protocol 1-10, 4-4
using threads with 4-39

Jolt ClassLibrary 1-2,1-7, 4-2, 4-6, 4-8, 4-10

application development 4-57
errors 4-3

handling 4-3

list of Tuxedo related A-2
exceptions 4-3

handling 4-3
functionality 4-8
object/class reusability 4-51

Jolt Reply 4-44

Jolt Repository Server 1-6
Jolt Server Handler 1-6
Jolt Server Listener 1-6
JoltBeans 5-1
JoltM essage 4-44
JoltRemoteService 4-10
calls4-10
class4-8
object 4-8
resetting parameters 4-9
reusing 4-51
JoltSession 4-5, 4-10, 4-44, 4-49
class 4-8, 4-10, 4-49
object 4-7, 4-8
instantiating 4-10

JoltSessionAttributes 4-6, 4-7, 4-8, 4-10

JoltTransaction 4-5, 4-7, 4-9, 4-10
class4-10

JoltUserEvent 4-44

JRAD
messages B-18

JREPSVR

JRLY
messages B-24

JSH

JSL

L
logoff 4-8
logon 4-8
Repository Editor 3-6

M

messages
bulk loader B-30
FML B-15
information B-17
Jolt system B-2
JRAD B-18

Jolt Developer’s Guide

JRLY B-24

repository B-13
methods

clear() 4-9

Thread.yield() 4-38
multithreaded applications 4-37

N

Netscape Navigator 3-5
notifications
brokered event 4-44
data buffers 4-46
event handler for 4-45
unsolicited 4-44
unsubscribing 4-48
using Jolt to receive 4-49

0]

objects
relationships 4-7
reusability 4-44
reusing 4-53

P
package organizer

description 3-31

group services

how to 3-32

using 3-30
packages

add a package 3-20

adding 3-19

delete a package 3-37

deleting 3-38

modifying 3-34

package organizer 3-30

Repository Editor 3-12, 3-13
parameters 3-17

-4 Jolt Developer’s Guide

delete a parameter 3-37
deleting 3-37

edit a parameter 3-37
editing 3-36

modifying 3-34

R

RC41-3
Repository Editor 1-2, 1-10
appletviewer 3-5
exiting the 3-8
introduction 3-2
logon 3-6
main components of 3-10
Netscape Navigator 3-5
packages 3-12, 3-13
setting up 3-19
parameters 3-17
process flow 3-10
sample window 3-2
sample window description 3-4
saving your work 3-19
services 3-15
description of 3-16
setting up 3-19
view services 3-16
troubleshooting 3-48

S

saving your work 3-19
security 1-3
server
Jolt 4-5
Tuxedo requirements for 4-57
web 4-58
servers
components 1-6
Jolt 1-2
Jolt Repository 1-6

services
add a parameter 3-26
data type selection 3-28
how to 3-27
window description 3-26
add aservice 3-21
buffer type selection 3-25
how to 3-23, 3-24
calling synchronous 4-8
definitions 4-11
delete a service 3-37
deleting 3-37
edit aservice 3-34
editing 3-35
export status
reviewing 3-41, 3-42
exporting 3-39, 3-40
grouping 3-30
Jolt client

make service available to 3-39

modifying 3-34
parameters 3-17
service test window 3-44, 3-45
test aservice
failure, reasons for 3-47
how to 3-46
process flow 3-46
testing 3-43
unexport 3-39
unexport a service 3-40
unexport status
reviewing 3-41, 3-42
using the Repository Editor 3-15
view parameters 3-17
view services 3-16
Servlets 6-1
STRING buffer type 4-15

T
testing

services 3-43
threads 4-37

BLOCKED 4-37

non-preemptive 4-38

RUNNABLE 4-37

RUNNING 4-37

using Jolt with non-preemptive 4-38

using with Jolt 4-39
TOUPPER

service 4-15
TPEABORT A-2
TPEBADDESC A-2
TPEBLOCK A-2
TPEDIAGNOSTICA-2
TPEEVENT A-2
TPEHAZARD A-2
TPEHEURISTIC A-2
TPEINVAL A-2
TPEITYPE A-2
TPELIMIT A-2
TPEMATCH A-2
TPEMIB A-2
TPENOENT A-2
TPEOS A-2
TPEOTYPE A-2
TPEPERM A-3
TPEPROTO A-3
TPERELEASE A-3
TPERMERR A-3
TPESVCERR A-3
TPESVCFAIL A-3
TPESYSTEM A-3
TPETIME A-3
TPETRAN A-3
TPGOTSIG A-3
Transaction

Protocol 4-4
transaction

begin 4-9

commit 4-9

object 4-9

Jolt Developer’s Guide

rollback 4-9
troubl eshooting
Repository Editor 3-48
Tuxedo
distributing services 1-11
errors A-2

U

unexporting services 3-39

\Y

VIEW buffer type 4-30
view parameters 3-17

W

web server
considerations 4-58

-6 Jolt Developer’s Guide

	Copyright
	1 Introducing BEA Jolt
	What is BEA Jolt?
	Key Features
	How It Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	ASP Connectivity for Tuxedo
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Repository Editor

	Jolt Internet Relay

	How to Jolt your Tuxedo Applications

	2 Bulk Loading Tuxedo Services
	Using the Bulk Loader
	To Activate The Bulk Loader
	Command Line Options
	About the Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	3 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor Using Your Web Browser
	Logging on to the Repository Editor
	Repository Editor Logon Window Description

	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What is a Package?
	Packages Window Description
	Instructions for Viewing a Package

	What is a Service?
	Services Window Description
	Instructions for Viewing a Service

	Working With Parameters
	Instructions for Viewing a Parameter

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Instructions for Adding a Package

	Adding a Service
	Adding a Service Window Description
	Instructions for Adding a Service
	Selecting CARRAY or STRING as a Service Buffer Type

	Adding a Parameter
	Parameters Window Description
	Instructions for Adding a Parameter
	Selecting CARRAY or STRING as a Parameter Data Type

	Grouping Services Using the Package Organizer
	Package Organizer Description
	Instructions for Grouping Services with the Package Organizer

	Modifying Packages/Services/Parameters
	Editing a Service
	Instructions for Editing a Service

	Editing a Parameter
	Editing a Parameter

	Deleting Parameters/Services/Packages
	Deleting a Parameter
	Deleting a Service
	Deleting a Package

	Making a Service Available to the Jolt Client
	Exporting/Unexporting Services
	Exporting/Unexporting a Service

	Reviewing the Exported/Unexported Status
	Reviewing the Exported/Unexported Status

	Testing a Service
	Repository Editor Service Test Window
	Service Test Window Description

	Testing a Service Process Flow
	Testing a Service

	Troubleshooting
	Repository Enhancements for Jolt

	4 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Functionality
	Logon/Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Jolt Class Library Walk-through
	Using Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Define TOUPPER in the Repository Editor
	ToUpper.java Client Code

	Using the CARRAY Buffer Type
	Define ECHO in the Repository Editor
	tryOnCARRAY.java Client Code

	Using the FML Buffer Type
	tryOnFml.java Client Code
	FML Field Definitions
	Define PASSFML in the Repository Editor
	tryOnFml.c Server Code

	Using the VIEW Buffer Type
	simpview.java Client Code
	VIEW Field Definitions
	Define VIEW in the Repository Editor
	simpview.c Server Code

	Multithreaded Applications
	Threads of Control
	Preemptive Threading
	Non-preemptive Threading

	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	API for Event Subscription
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	Tuxedo Event Subscription
	Supported Subscription Types
	Subscribing to Notifications
	Unsubscribing from Notifications

	Using the Jolt API to Receive Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Application Deployment and Localization
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	5 Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Runtime JoltBeans

	Basic Steps For Using JoltBeans
	JavaBeans Events and Tuxedo Events
	Using Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Placing JoltBeans onto the Form Designer

	Wiring the JoltBeans Together
	Step 1: Wire the JoltSessionBean logon
	Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange
	Step 3: Wire the accountID JoltTextField as input to the JoltServiceBean using JoltInputEvent
	Step 4: Wire Button to JoltServiceBean using JoltAction
	Step 5: Wire JoltServiceBean to the balance JoltTextField using JoltOutputEvent
	Step 6: Wire the JoltSessionBean logoff
	Step 7: Compile the applet
	Running the Sample Application

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	6 Using Servlet Connectivity for Tuxedo
	What is a Servlet?
	How Servlets Work With Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	Requirements for Running the Simpapp Sample
	Installing the SimpApp Sample

	BankApp Sample
	Requirements for Running the Bankapp Sample
	Installation Instructions

	Admin Sample
	Requirements for Running the Admin Sample
	Installation Instructions

	Additional Information on Servlets

	7 Using Jolt ASP Connectivity for Tuxedo
	Key Features
	ASP Connectivity Enhancements for Jolt
	How the Jolt ASP Connectivity for Tuxedo Works
	The ASP Connectivity for Tuxedo Toolkit
	Jolt ASP Connectivity for Tuxedo Walkthrough
	Overview of the ASP for Tuxedo Walkthrough
	Getting Started Checklist
	Overview of the TRANSFER Service
	TRANSFER Request Walkthrough
	Initializing the Jolt Session Pool Manager
	Submitting a TRANSFER Request from the Client
	Processing the Request
	Returning the Results to the Client

	A Tuxedo Errors
	Tuxedo Errors

	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

	Index

