
Developer’s

J o l t 1 . 2 R e l e a s e
D o c u m e n t E d i t i o n 1 . 2

O c t o b e r 1 9 9 9

Guide

BEA Jolt

Copyright

Copyright © 1998, 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the
BEA Systems License Agreement and may be used or copied only in accordance with the terms of that
agreement. It is against the law to copy the software except as specifically allowed in the agreement.
This document may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced
to any electronic medium or machine readable form without prior consent, in writing, from BEA
Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA
Systems License Agreement and in subparagraph (c)(1) of the Commercial Computer
Software-Restricted Rights Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (d) of the
Commercial Computer Software--Licensing clause at NASA FAR supplement 16-52.227-86; or their
equivalent.

Information in this document is subject to change without notice and does not represent a commitment
on the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt, and M3 are trademarks of BEA Systems,
Inc.

All other company names may be trademarks of the respective companies with which they are
associated.

BEA Jolt Developer’s Guide

Document Edition Part Number Date Software Version

1.0 July 1999 BEA Jolt 1.2

Contents

1. Introducing BEA Jolt
What is BEA Jolt? ... 1-2

Key Features .. 1-3

How It Works .. 1-5

Jolt Servers .. 1-6

Jolt Class Library ... 1-7

JoltBeans .. 1-9

ASP Connectivity for Tuxedo .. 1-9

Jolt Server and Jolt Client Communication.. 1-10

Jolt Repository.. 1-10

Jolt Repository Editor ... 1-11

Jolt Internet Relay .. 1-11

How to Jolt your Tuxedo Applications ... 1-12

2. Bulk Loading Tuxedo Services
Using the Bulk Loader... 2-2

To Activate The Bulk Loader... 2-2

Command Line Options ... 2-2

About the Bulk Load File.. 2-3

Syntax of the Bulk Loader Data Files ... 2-3

Guidelines for Using Keywords ... 2-4

Keyword Order in the Bulk Loader Data File.. 2-5

Using Service-Level Keywords and Values... 2-5

Using Parameter-Level Keywords and Values .. 2-7

Troubleshooting... 2-8

Sample Bulk Load Data... 2-9
Jolt Developer’s Guide iii

3. Using the Jolt Repository Editor
Introduction to the Repository Editor .. 3-2

Repository Editor Window... 3-2

Repository Editor Window Description ... 3-4

Getting Started ... 3-5

Starting the Repository Editor Using the Java Applet Viewer................... 3-5

Starting the Repository Editor Using Your Web Browser 3-5

Logging on to the Repository Editor .. 3-6

Repository Editor Logon Window Description 3-7

Exiting the Repository Editor ... 3-8

Main Components of the Repository Editor .. 3-10

Repository Editor Flow .. 3-10

What is a Package?... 3-12

Packages Window Description.. 3-13

Instructions for Viewing a Package .. 3-14

What is a Service? .. 3-15

Services Window Description ... 3-16

Instructions for Viewing a Service ... 3-16

Working With Parameters .. 3-17

Instructions for Viewing a Parameter ... 3-17

Setting Up Packages and Services... 3-19

Saving Your Work.. 3-19

Adding a Package ... 3-19

Instructions for Adding a Package ... 3-20

Adding a Service .. 3-21

Adding a Service Window Description... 3-23

Instructions for Adding a Service ... 3-24

Selecting CARRAY or STRING as a Service Buffer Type.............. 3-25

Adding a Parameter .. 3-26

Parameters Window Description... 3-26

Instructions for Adding a Parameter .. 3-27

Selecting CARRAY or STRING as a Parameter Data Type 3-28

Grouping Services Using the Package Organizer.. 3-30

Package Organizer Description ... 3-31

Instructions for Grouping Services with the Package Organizer 3-32
iv Jolt Developer’s Guide

Modifying Packages/Services/Parameters... 3-34

Editing a Service .. 3-34

Instructions for Editing a Service ... 3-35

Editing a Parameter .. 3-36

Editing a Parameter .. 3-37

Deleting Parameters/Services/Packages... 3-37

Deleting a Parameter ... 3-37

Deleting a Service ... 3-37

Deleting a Package.. 3-38

Making a Service Available to the Jolt Client... 3-39

Exporting/Unexporting Services .. 3-39

Exporting/Unexporting a Service ... 3-40

Reviewing the Exported/Unexported Status .. 3-41

Reviewing the Exported/Unexported Status 3-42

Testing a Service ... 3-43

Repository Editor Service Test Window.. 3-44

Service Test Window Description .. 3-45

Testing a Service Process Flow.. 3-46

Testing a Service ... 3-46

Troubleshooting... 3-48

Repository Enhancements for Jolt... 3-50

4. Using the Jolt Class Library
Class Library Functionality Overview .. 4-2

Java Applications vs. Java Applets .. 4-2

Jolt Class Library Features ... 4-3

Error and Exception Handling.. 4-3

Jolt Client/Server Relationship... 4-4

Jolt Object Relationships... 4-7

Jolt Class Functionality ... 4-8

Logon/Logoff .. 4-8

Synchronous Service Calling .. 4-8

Transaction Begin, Commit, and Rollback ... 4-9

Jolt Class Library Walk-through ... 4-10

Using Tuxedo Buffer Types with Jolt ... 4-14
Jolt Developer’s Guide v

Using the STRING Buffer Type... 4-15

Define TOUPPER in the Repository Editor...................................... 4-15

ToUpper.java Client Code... 4-17

Using the CARRAY Buffer Type .. 4-19

Define ECHO in the Repository Editor... 4-19

tryOnCARRAY.java Client Code ... 4-21

Using the FML Buffer Type... 4-23

tryOnFml.java Client Code ... 4-24

FML Field Definitions .. 4-24

Define PASSFML in the Repository Editor...................................... 4-25

tryOnFml.c Server Code ... 4-27

Using the VIEW Buffer Type... 4-30

simpview.java Client Code ... 4-30

VIEW Field Definitions .. 4-32

Define VIEW in the Repository Editor ... 4-32

simpview.c Server Code.. 4-34

Multithreaded Applications ... 4-37

Threads of Control.. 4-37

Preemptive Threading ... 4-38

Non-preemptive Threading ... 4-38

Using Jolt with Non-Preemptive Threading... 4-38

Using Threads for Asynchronous Behavior ... 4-39

Using Threads with Jolt.. 4-39

Event Subscription and Notifications .. 4-44

API for Event Subscription .. 4-44

Notification Event Handler... 4-45

Connection Modes.. 4-46

Notification Data Buffers ... 4-46

Tuxedo Event Subscription .. 4-47

Supported Subscription Types .. 4-47

Subscribing to Notifications.. 4-47

Unsubscribing from Notifications... 4-48

Using the Jolt API to Receive Tuxedo Notifications 4-49

Clearing Parameter Values .. 4-51

Reusing Objects ... 4-53
vi Jolt Developer’s Guide

Application Deployment and Localization.. 4-57

Deploying a Jolt Applet.. 4-57

Client Considerations ... 4-58

Web Server Considerations.. 4-58

Localizing a Jolt Applet ... 4-59

5. Using JoltBeans
Overview of Jolt Beans ... 5-2

JoltBeans Terms .. 5-3

Adding JoltBeans to Your Java Development Environment 5-4

Using Development and Runtime JoltBeans.. 5-5

Basic Steps For Using JoltBeans... 5-5

JavaBeans Events and Tuxedo Events .. 5-6

Using Tuxedo Event Subscription and Notification with JoltBeans... 5-6

How JoltBeans Use JavaBeans Events.. 5-7

The JoltBeans Toolkit.. 5-8

JoltSessionBean.. 5-9

JoltServiceBean.. 5-10

JoltUserEventBean ... 5-11

Jolt Aware GUI Beans... 5-11

JoltTextField... 5-12

JoltLabel ... 5-12

JoltList .. 5-12

JoltCheckbox.. 5-13

JoltChoice... 5-13

Using the Property List and the Property Editor to Modify the JoltBeans Properties
5-14

JoltBeans Class Library Walkthrough... 5-16

Building the Sample Form ... 5-17

Placing JoltBeans onto the Form Designer 5-18

Wiring the JoltBeans Together... 5-25

Step 1: Wire the JoltSessionBean logon ... 5-26

Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange
5-29

Step 3: Wire the accountID JoltTextField as input to the JoltServiceBean
using JoltInputEvent .. 5-33
Jolt Developer’s Guide vii

Step 4: Wire Button to JoltServiceBean using JoltAction 5-36

Step 5: Wire JoltServiceBean to the balance JoltTextField using
JoltOutputEvent ... 5-38

Step 6: Wire the JoltSessionBean logoff... 5-41

Step 7: Compile the applet .. 5-42

Running the Sample Application .. 5-43

Using the Jolt Repository and Setting the Property Values............................. 5-43

JoltBeans Programming Tasks .. 5-46

Using Transactions with JoltBeans .. 5-47

Using Custom GUI Elements with the JoltService Bean 5-48

6. Using Servlet Connectivity for Tuxedo
What is a Servlet? .. 6-2

How Servlets Work With Jolt.. 6-2

The Jolt Servlet Connectivity Classes .. 6-3

Writing and Registering HTTP Servlets.. 6-4

Jolt Servlet Connectivity Sample .. 6-5

Viewing the Sample Servlet Applications.. 6-5

SimpApp Sample.. 6-5

Requirements for Running the Simpapp Sample 6-6

Installing the SimpApp Sample... 6-6

BankApp Sample.. 6-8

Requirements for Running the Bankapp Sample 6-8

Installation Instructions ... 6-8

Admin Sample .. 6-10

Requirements for Running the Admin Sample 6-10

Installation Instructions ... 6-10

Additional Information on Servlets ... 6-11

7. Using Jolt ASP Connectivity for Tuxedo
Key Features .. 7-2

ASP Connectivity Enhancements for Jolt ... 7-2

How the Jolt ASP Connectivity for Tuxedo Works .. 7-3

The ASP Connectivity for Tuxedo Toolkit ... 7-6

Jolt ASP Connectivity for Tuxedo Walkthrough .. 7-6
viii Jolt Developer’s Guide

Overview of the ASP for Tuxedo Walkthrough.. 7-7

Getting Started Checklist... 7-7

Overview of the TRANSFER Service... 7-9

TRANSFER Request Walkthrough... 7-10

Initializing the Jolt Session Pool Manager ... 7-10

Submitting a TRANSFER Request from the Client................................. 7-13

Processing the Request... 7-15

Returning the Results to the Client .. 7-17

A. Tuxedo Errors
Tuxedo Errors ... A-2

B. System Messages
Jolt System Messages ..B-2

Repository Messages ...B-13

FML Error Messages...B-15

Information Messages ...B-17

Jolt Relay Adapter (JRAD) Messages ...B-18

Jolt Relay (JRLY) Messages ...B-24

Bulk Loader Utility Messages ...B-30

Index
Jolt Developer’s Guide ix

x Jolt Developer’s Guide

CHAPTER
1 Introducing BEA Jolt

BEA Jolt is a Java-based interface to the BEA Tuxedo system that extends the
functionality of existing Tuxedo applications to include Intranet- and Internet-wide
availability. Using Jolt, you can now easily transform any Tuxedo application so that
its services are available to customers using an ordinary browser on the Internet. Jolt
interfaces with existing and new Tuxedo applications and services to allow secure,
scalable, Intranet/Internet transactions between client and server. Jolt allows you to
build client applications and applets that can remotely invoke existing BEA Tuxedo
services, allowing application messaging, component management, and distributed
transaction processing.

Since these tasks are done in the Jolt API and the Jolt Repository Editor using the Java
programming language, the Jolt documentation assumes a familiarity with BEA
Tuxedo and Java programming. This documentation is intended for system
administrators, network administrators and developers.

“Introducing BEA Jolt” covers the following topics:

� What is BEA Jolt?

� Key Features

� How It Works

� Jolt Servers

� Jolt Class Library

� JoltBeans

� ASP Connectivity for Tuxedo

� Jolt Server and Jolt Client Communication

� Jolt Repository

� Jolt Internet Relay
BEA Jolt Developer’s Guide 1-1

1 Introducing BEA Jolt
What is BEA Jolt?

BEA Jolt is a Java class library and API that provides an interface to BEA Tuxedo and
WLE from remote Java clients. BEA Jolt consists of several components for creating
Java-based client programs that access Tuxedo services. These Jolt components are as
follows:

� Jolt Servers—One or more Jolt servers listen for network connections from
clients, translate Jolt messages, multiplex multiple clients into a single process,
and submit and retrieve requests to and from Tuxedo-based applications running
on one or more Tuxedo servers.

� Jolt Class Library—The Jolt class library is a Java package containing the class
files that implement the Jolt API. These classes enable Java applications and
applets to invoke BEA Tuxedo services. The Jolt class library includes
functionality to set, retrieve, manage and invoke communication attributes,
notifications, network connections, transactions, and services.

� JoltBeans—BEA JoltBeans provides a JavaBeans compliant interface to BEA
Jolt. JoltBeans are Beans components that can be used in JavaBeans-enabled
Integrated Development Environments (IDEs) to construct BEA Jolt clients. Jolt
Beans consists of two sets of Java Beans: JoltBeans toolkit (a
JavaBeans-compliant interface to BEA Jolt that includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean) and Jolt GUI beans (which consist of
Jolt-aware AWT and Swing-based beans).

� Jolt Repository—A central Jolt Repository contains definitions of BEA Tuxedo
services. These Repository definitions are used by Jolt at runtime to access
Tuxedo services. You can export services to a Jolt client application or unexport
services by hiding the definitions from the Jolt client. Using the Repository
Editor, you can test new and existing BEA Tuxedo services independently of the
client applications.

� Jolt Internet Relay—The Jolt Internet Relay is a component that routes
messages from a Jolt client to a Jolt Server Listener (JSL) or Jolt Server Handler
(JSH). This eliminates the need for the JSH and Tuxedo to run on the same
machine as the Web server. The Jolt Internet Relay consists of the Jolt Relay
(JRLY) and the Jolt Relay Adapter (JRAD).
1-2 BEA Jolt Developer’s Guide

Key Features
Key Features

With BEA Jolt, you can leverage existing Tuxedo services and extend your transaction
environment to the corporate intranet or world-wide Internet. The key feature of the
Jolt architecture is its simplicity. Using Jolt, you can build, deploy and maintain robust,
modular, and scalable electronic commerce systems that operate over the Internet.

BEA Jolt includes the following features:

� Java-based API for Simplified Development—With its Java-based API, BEA
Jolt simplifies application design by providing well-designed object interfaces.
Jolt supports the Java Developer’s Kit (JDK) 1.2 and is fully compatible with
Java threads. Jolt enables Java programmers to build graphical front-ends that
use the Tuxedo application and transaction services without the need to
understand detailed transactional semantics or without having to rewrite existing
Tuxedo applications.

� Pure Java Client Development—Using Jolt, you can build a pure Java client
that runs in any Java-enabled browser. Jolt automatically converts from Java to
native BEA Tuxedo data types and buffers, and from Tuxedo back to Java. As a
pure Java client, your applet or application does not need resident client-side
libraries or installation; thus, you can download client applications from the
network.

� Easy Access to Tuxedo Services via Jolt Repository—The BEA Jolt
Repository facilitates Java application development by managing and presenting
BEA Tuxedo service definitions that you can use in your Java client. A Jolt
repository bulk loading utility lets you quickly integrate your existing Tuxedo
services into the Jolt development environment. Jolt and Tuxedo simplify
network and application scalability, while encouraging the reuse of application
components.

� GUI-based Maintenance and Distribution of Tuxedo Services—The Jolt
Repository Editor lets you manage BEA Tuxedo service definitions such as
service names, inputs and outputs. The Jolt Repository Editor provides support
for different input and output names for services defined in the Jolt Repository.

� Encryption for Secure Transaction Processing—BEA Jolt allows you to
encrypt data transmitted between Jolt clients and the JSL/JSH. Jolt encryption
BEA Jolt Developer’s Guide 1-3

1 Introducing BEA Jolt
addresses the issue of security that is essential for secure Internet transaction
processing.

� Added Security via Internet Relay—BEA Jolt features an Internet Relay
component that allows network administrators to separate their Web Server and
Tuxedo application server. Web servers are generally considered insecure as
they often exist outside a corporate firewall. The Jolt Internet Relay gives you
greater flexibility to locate your BEA Tuxedo server in a secure location or
environment on your network, yet still be able to handle transactions from Jolt
clients on the Internet.

� Event Subscription Support—Jolt Event Subscription is used to receive event
notifications from either Tuxedo services or other Tuxedo clients. Jolt Event
Subscription lets you handle two types of Tuxedo application events:

� Unsolicited Event Notifications. A Jolt client can receive these notifications
when a Tuxedo client or service subscribes to unsolicited events and a
Tuxedo client issues a broadcast or a directly targeted message.

� Brokered Event Notifications. The Jolt client receives these notifications via
the Tuxedo Event Broker. The Jolt client receives these notifications only
when it subscribes to an event and any Tuxedo client or server posts an
event.
1-4 BEA Jolt Developer’s Guide

How It Works
How It Works

BEA Jolt connects Java clients to applications built using the BEA Tuxedo system.
The Tuxedo system provides a set of modular services, each offering specific
functionality related to the application as a whole. (Figure 1-1 illustrates the
end-to-end view of the BEA Jolt architecture, as well as related Tuxedo components
and their interactions.) For example, a simple banking application might have services
such as INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service
requests are implemented in C or COBOL as a sequence of calls to a program library.
Accessing a library from a native program means installing the library for the specific
combination of CPU and operating system release on the client machine, a situation
that Java was expressly designed to avoid. The Jolt Server implementation acts as a
proxy for the Jolt client, invoking the Tuxedo service on behalf of the client. The BEA
Jolt Server accepts requests from the Jolt clients and maps those requests into Tuxedo
service requests.
BEA Jolt Developer’s Guide 1-5

1 Introducing BEA Jolt
Figure 1-1 BEA Jolt Architecture

Jolt Servers

The Jolt Server has several components that act in concert to pass Jolt client transaction
processing requests to the Tuxedo application. The components are as follows:

� Jolt Server Listener (JSL). The JSL handles the initial Jolt client connection,
and is responsible for assigning a Jolt client to the Jolt Server Handler.

� Jolt Server Handler (JSH). The JSH manages network connectivity, executes
service requests on behalf of the client and translates Tuxedo buffer data into the
Jolt buffer and vice versa.

� Jolt Repository Server (JREPSVR). The JREPSVR retrieves Jolt service
definitions from the Jolt Repository and returns the service definitions to the
JSH. The JREPSVR also updates or adds Jolt service definitions.
1-6 BEA Jolt Developer’s Guide

How It Works
The following figure illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server Components

Jolt Class Library

The BEA Jolt Class Library is a set of classes you can use in your Java application or
applet to make service requests to the Tuxedo system from a Java enabled client. These
Jolt classes allow you to access Tuxedo transaction services using objects.

When developing a Jolt client application, you only need to know about the classes that
Jolt provides and the Tuxedo services that are exported by the Jolt Repository. Jolt
hides the underlying application details. Using Jolt and Jolt’s Class Library, you do not
need to understand: the underlying transactional semantics, the language in which the
services were coded, buffer manipulation, the location of services, or the names of
databases used.

The Jolt API is a Java class library and has the benefits that Java provides: applets are
downloaded dynamically and are only resident during runtime. As a result, there is no
need for client installation, administration, management, or version control. If services
are changed, the client application becomes aware of the changes at the next call to the
Jolt Repository.

Repository

Tuxedo
/T

Jolt Server and Repository

Jolt Server
Handler
(JSH)

Jolt Server
Listener
(JSL)

Jolt Repository
Server

(JREPSVR)

Tuxedo
Services

on
Application

Server
BEA Jolt Developer’s Guide 1-7

1 Introducing BEA Jolt
The following figure shows the flow of activity from a Jolt client to and from the
Tuxedo system. The call-out numbers correspond to descriptions of the activity in the
table that follows.

Figure 1-3 Using the Jolt Class Library to access Tuxedo services

The following table briefly describes the flow of activity involved in using the Jolt
Class Library to access Tuxedo services.

4, 5

JAVA-Enabled

CLIENT

Jolt

Web Browser

1, 2

6

Web Server HOST

connection/request
reply

connection

request
Server

Run-Time

Application Server

BEA Tuxedo

BEA Jolt
Repository

contains Tuxedo
service definitions

Tuxedo Environment

Jolt
Class Library

Application
Code

JAVA VM 3 connection

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java enabled Web browser downloads an HTML page using
the HTTP protocol.

... 2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

... 3 The first Java applet task is to open a separate connection to the
Jolt Server.

Request 4 The Jolt client now knows the signature of the service (such as,
name, parameters, types) and can build a service request object
based on Jolt class definitions, and make a method call.
1-8 BEA Jolt Developer’s Guide

How It Works
JoltBeans

BEA Jolt now includes JoltBeans, Java beans components that you can use in a
Java-enabled integrated development environment (IDE) to construct BEA Jolt clients.
Using JoltBeans, you can create Jolt client applications with the ease of using typical
JavaBeans. You can use popular JavaBeans-enabled development tools like Symantec
Visual Café to graphically construct client applications.

BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt. A fully
functional BEA Jolt client can be developed without writing any code. You can drag
and drop JoltBeans from the component palette of a development tool and position
them on the Java form (or forms) of the Jolt client application you are creating. You
can populate the properties of the beans and graphically establish event source-listener
relationships between various beans of the application or applet. Typically, the
development tool is used to generate the event hook-up code, or you can code the
hook-up manually. Client development using JoltBeans is integrated with the BEA Jolt
repository, providing easy access to available BEA Tuxedo functions.

ASP Connectivity for Tuxedo

The Jolt ASP Connectivity for Tuxedo Toolkit is an extension to the Jol Java class
library. The Toolkit allows the Jolt client class library to be used in a Web server, such
as the Microsoft Internet Information Server (IIS), to provide an interface between
HTML clients or browsers, and Tuxedo services.

The Jolt ASP Connectivity for Tuxedo provides an easy-to-use interface for processing
and generating dynamic HTML pages. You do not need to learn how to write Common
Gateway Interface (CGI) transactional programs to access Tuxedo services.

... 5 The request is sent to the Jolt Server, which translates the Java
based request into a Tuxedo request and forwards the request to
the Tuxedo environment.

Reply 6 The Tuxedo system processes the request and returns the
information to the Jolt Server, which translates it back to the Java
applet.

Table 1-1 Using the Jolt Class Library
BEA Jolt Developer’s Guide 1-9

1 Introducing BEA Jolt
Jolt Server and Jolt Client Communication

The Jolt system handles all communication between the Jolt Server and the Jolt client
using the BEA Jolt Protocol. The communication process between the Jolt Server and
the Jolt client applet or applications functions as follows:

1. Tuxedo service requests and associated parameters are packaged into a message
buffer and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message, and performs any data
conversions necessary, such as numeric format conversions or character set
conversions.

3. The Jolt Server makes the appropriate service request to the application service
requested by the Jolt client.

4. Once a service request enters the BEA Tuxedo system, it is executed in exactly
the same manner as requests issued by any other Tuxedo client.

5. The results are then returned to the BEA Jolt Server, which packages the results
and any error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client
interface objects, completing the request.

Jolt Repository

The Jolt Repository is a database where Tuxedo services are defined, such as name,
number, type, parameter size, and permissions. The Repository functions as a central
database of definitions for Tuxedo services and permits new and existing Tuxedo
services to be made available to Jolt client applications. A Tuxedo application can have
many services or service definitions such as ADD_CUSTOMER,
GET_ACCOUNTBALANCE, CHANGE_LOCATION, and GET_STATUS. All or
only a few of these definitions may be exported to the Jolt Repository. Within the Jolt
Repository, the developer or system administrator can export these services to the Jolt
client application.

All Repository services that are exported to one client are exported to all clients.
Tuxedo handles the cases where subsets of services may be needed for one client and
not others. Figure 1-4 illustrates how the Jolt Repository brokers Tuxedo services to
1-10 BEA Jolt Developer’s Guide

How It Works
multiple Jolt client applications. The diagram shows four Tuxedo services, however
the WITHDRAW service is not defined in the Repository and the TRANSFER service
is defined but not exported.

Figure 1-4 Distributing Tuxedo Services via Jolt

Jolt Repository Editor

The Jolt Repository Editor is a Java-based GUI administration tool that gives the
application administrator access to individual BEA Tuxedo services. With the Jolt
Repository Editor you can define, test, and export services to Jolt clients.

Note: The Jolt Repository Editor only controls services for Jolt client applications. It
cannot be used to make changes to the Tuxedo application.

The Jolt Repository Editor lets you extend and distribute Tuxedo services to Jolt clients
without having to modify many lines of code. With the Jolt Repository Editor, you can
modify parameters for Tuxedo services, logically group Tuxedo services into
packages, and remove services from created packages. You can also make the services
available to browser-based Jolt applets or Jolt applications by exporting the services.

Jolt Internet Relay

The Jolt Internet Relay is a component that routes messages from a Jolt client to the
Jolt Server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt
Relay Adapter (JRAD). JRLY is a stand-alone software component that routes Jolt
messages to the Jolt Relay Adapter. Requiring only minimal configuration to allow it
to work with Jolt clients, the Jolt Relay eliminates the need for the Tuxedo system to
run on the same machine as the Web server.

Jolt Client
ApplicationTuxedo

Application
Jolt Repository

Services
INQUIRY

Services

WITHDRAW

Jolt Client
Application

...

DEPOSIT

TRANSFER

DEPOSIT

TRANSFER
INQUIRY

DEPOSIT, INQUIRY

DEPOSIT, INQUIRY
BEA Jolt Developer’s Guide 1-11

1 Introducing BEA Jolt
How to Jolt your Tuxedo Applications

The JRAD is a Tuxedo system server, but does not include any Tuxedo services. It
requires command-line arguments to allow it to work with the JSH and the Tuxedo
system. JRAD receives client requests from JRLY, and forwards the request to the
appropriate JSH. Replies from the JSH are forwarded back to the JRAD, which sends
the response back to the JRLY. A single Jolt Internet Relay (JRLY/JRAD pair) handles
multiple clients concurrently.

The following steps show just how quickly and easily Jolt clients can be created and
deployed.

1. Begin the process with a Tuxedo system application.

For information about installing Tuxedo and creating a Tuxedo application, refer
to the Tuxedo documentation set.

2. Install the Jolt system.

Refer to Installing the BEA Tuxedo System.

3. Configure and define services using the Jolt Repository Editor or the Bulk
Loader.

For information regarding configuring the Jolt Repository Editor and making
Tuxedo services available to Jolt, refer to: Appendix B, “System Messages”

4. Create a client application using the Jolt Class Library.

The following documentation shows you how to program your client application
using the Jolt Class Library:

� "Using the Jolt Class Library"

� API Reference in Javadoc

5. Run the Jolt-based client applet or application.
1-12 BEA Jolt Developer’s Guide

How to Jolt your Tuxedo Applications
Figure 1-5 Creating a Jolt Application

Tuxedo Application is Installed

Design Your Application
Services

Write/Deploy Your Application and
Tuxedo Services

Install Jolt

Export Services

Program Client using Jolt
Class Library

Make Jolt classes available
(i.e., via the Web)

Have an Existing Tuxedo
Application?

Creating a new Tuxedo
Application?

Start Your Tuxedo Application

Your Jolt Application is
Ready to Run

Decide which Tuxedo Services to
Make Available to Jolt

Use Repository Editor to Define
Services Available from Jolt

Test Each Service
BEA Jolt Developer’s Guide 1-13

1 Introducing BEA Jolt
1-14 BEA Jolt Developer’s Guide

CHAPTER
2 Bulk Loading Tuxedo
Services

As a systems administrator, you may have an existing Tuxedo application with
multiple Tuxedo services. Manually creating these definitions in the repository
database may take hours to complete. The Jolt Bulk Loader is a command utility that
allows you to load multiple, previously defined Tuxedo services to the repository
database in a single step. Using the jbld program, the bulk loader utility reads the
Tuxedo service definitions from the specified text file and bulk loads them into the Jolt
Repository. The services are loaded to the repository database in one “bulk load.” After
the services have populated the Jolt Repository, you can create, edit, and group
services using the Jolt Repository Editor.

“Bulk Loading Tuxedo Services” covers the following topics:

� Using the Bulk Loader

� Syntax of the Bulk Loader Data Files

� Troubleshooting

� Sample Bulk Load Data
BEA Jolt Developer’s Guide 2-1

2 Bulk Loading Tuxedo Services
Using the Bulk Loader

The jbld program is a Java application. Before running the jbld command, set the
CLASSPATH environment variable (or its equivalent) to point to the directory where the
Jolt class directory (i.e., jolt.jar and joltadmin.jar) is located. If it is not set,
the Java Virtual Machine (JVM) cannot locate any Jolt classes.

For security reasons, jbld does not use command-line arguments to specify user
authentication information (user password or application password). Depending on the
server’s security level, jbld automatically prompts the user for passwords.

The bulk loader utility gets its input from command-line arguments and from the input
file.

To Activate The Bulk Loader

Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package][-u name][-r role] addr
file

Command Line Options

The following table describes the bulk loader command-line options.

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the user name (default is your account
name). (Mandatory if required by security)

-r usrrole Specifies the user role (default is admin). (Mandatory
if required by security)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

-p package Repository package name (default: BULKPKG)
2-2 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files
About the Bulk Load File

The bulk load file is a text file that defines services and their associated parameters.
The bulk loader loads the services defined in the bulk loader file into the repository
using the package name “BULKPKG” by default. The -p command overrides the
default and you can give the package any name you choose. If another load is
performed from a bulk loader file with the same -p option, all the services in the
original package are deleted and a new package is created with the services from the
new bulk loader file.

If a service exists in a package other than the package you name that uses the -p

option, the bulk loader reports the conflict and does not load a service from the bulk
loader file into the repository. Use the Repository Editor to remove duplicate services
and load the bulk loader file again. See "Using the Jolt Repository Editor" for
additional information.

Syntax of the Bulk Loader Data Files

Each service definition consists of service properties and parameters that have a set
number of parameter properties. Each property is represented by a keyword and a
value.

Keywords are divided into two levels:

� Service-level

� Parameter-level

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

Table 2-1 Bulk Loader Command-line Options

Option Description
BEA Jolt Developer’s Guide 2-3

2 Bulk Loading Tuxedo Services
Guidelines for Using Keywords

The jbld program reads the service definitions from a text file. To use the keywords,
observe the guidelines in the following table.

Table 2-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed
by an equal sign (=) and the
value.

Correct: type=string

Incorrect: type

Only one keyword is allowed on
each line.

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) are ignored.

Correct: type=string

Incorrect: type string

Certain keywords only accept a
well defined set of values.

The keyword access accepts only these values: in,
out, inout, noaccess

The input file may contain
multiple service definitions.

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists
of multiple keywords and
values.

service=deposit
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW
2-4 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files
Keyword Order in the Bulk Loader Data File

Keyword order must be maintained within the data files to ensure an error-free transfer
during the bulk load.

The first keyword definition in the bulk loader data text file must be the initial
service=<NAME> keyword definition (shown in the following listing). Following the
service=<NAME> keyword, all of the remaining service keywords that apply to the
named service must be specified before the first param=<NAME> definition. These
remaining service keywords can be in any order.

All the parameters associated with the service must be specified. Following each of the
param=<NAME> keywords are all the parameter keywords that apply to the named
parameter until the next occurrence of a parameter definition. These remaining
parameter keywords can be in any order. When all the parameters associated with the
first service are defined, specify a new service=<NAME> keyword definition.

Listing 2-1 Correct Example of Hierarchical Order in a Data File

service=<NAME>
<service keyword>=<value>
<service keyword>=<value>
<service keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>
param=<NAME>
<parameter keyword>=<value>
<parameter keyword>=<value>

Using Service-Level Keywords and Values

A service definition must begin with the “service=” keyword. Services using
CARRAY or STRING buffer types should only have one parameter in the service. The
recommended parameter name for a CARRAY service is “CARRAY” with “carray”
as the data type. For a STRING service, the recommended parameter name is
“STRING” with “string” as the data type.
BEA Jolt Developer’s Guide 2-5

2 Bulk Loading Tuxedo Services
To review the service-level keywords and values, see Table 2-3.

Table 2-3 Service-Level Keywords and Values

Keyword Value

service Any Tuxedo service name

export true or false (default is false)

inbuf/outbuf Select one of these buffer types:

FML
FML32
VIEW
VIEW32
STRING
CARRAY

X_OCTET

X_COMMON

X_C_TYPE

inview Any view name for input parameters (optional; only
if VIEW or VIEW32 or X_COMMON or
X_C_TYPE buffer type is used)

outview Any view name for output parameters (optional)
2-6 BEA Jolt Developer’s Guide

Syntax of the Bulk Loader Data Files
Using Parameter-Level Keywords and Values

A parameter begins with the “param=” keyword followed by a number of parameter
keywords. It ends when another “param” or “service” keyword, or end-of-file is
encountered. The parameters can be in any order after the “param” keyword.

Review the parameter-level keywords and values in the following table.

Table 2-4 Parameter-Level Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.
BEA Jolt Developer’s Guide 2-7

2 Bulk Loading Tuxedo Services
Troubleshooting

If you encounter any problems using the bulk loader utility, see the following table.
For a complete list of bulk loader utility error messages and solutions, see Appendix B,
“System Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

The data file is not found Check to ensure that the path is correct

The keyword is invalid Check to ensure that the keyword is valid for
the package, service, or parameter

The value of the keyword is null Type a value for the keyword

The value is invalid Check to ensure that the value of a parameter
is within the allocated range

The data type is invalid Check to ensure that the parameter is using a
valid data type
2-8 BEA Jolt Developer’s Guide

Sample Bulk Load Data
Sample Bulk Load Data

The following listing shows a sample data file in the correct format using the UNIX
command cat servicefile. This example loads TRANSFER and PAYROLL
service definitions to the BULKPKG.

Listing 2-2 Sample Bulk Load Data

service=TRANSFER
export=true
inbuf=FML
outbuf=FML
param=ACCOUNT_ID
type=integer
access=in
count=2
param=SAMOUNT
type=string
access=in
param=SBALANCE
type=string
access=out
count=2
param=STATLIN
type=string
access=out

service=LOGIN
inbuf=VIEW
inview=LOGINS
outview=LOGINR
export=true
param=user
type=string
access=in
param=passwd
type=string
access=in
param=token
type=integer
access=out
BEA Jolt Developer’s Guide 2-9

2 Bulk Loading Tuxedo Services
service=PAYROLL
inbuf=FML
outbuf=FML
param=EMPLOYEE_NUM
type=integer
access=in
param=SALARY
type=float
access=inout
param=HIRE_DATE
type=string
access=inout
2-10 BEA Jolt Developer’s Guide

CHAPTER
3 Using the Jolt
Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete Tuxedo service
definitions from the Repository based on the information available from the Tuxedo
configuration file. The Jolt Repository Editor accepts Tuxedo service definitions,
including the names of the packages, services, and parameters.

“Using the Jolt Repository Editor” covers the following topics:

� Introduction to the Repository Editor

� Getting Started

� Main Components of the Repository Editor

� Setting Up Packages and Services

� Grouping Services Using the Package Organizer

� Modifying Packages/Services/Parameters

� Making a Service Available to the Jolt Client

� Testing a Service

� Troubleshooting
BEA Jolt Developer’s Guide 3-1

3 Using the Jolt Repository Editor
Introduction to the Repository Editor

The Jolt Repository is used internally by Jolt to translate Java parameters to a Tuxedo
type buffer. The Repository Editor is available as a downloadable Java applet. When
a Tuxedo service is added to the repository, it must be exported to the Jolt server to
ensure that the client requests can be made from a Jolt client.

Repository Editor Window

Repository Editor windows contain entry fields, scrollable displays, command buttons,
status, and radio buttons. The following figure illustrates the parts of a sample window.
Details are explained in the “Repository Editor Window Parts” table.
3-2 BEA Jolt Developer’s Guide

Introduction to the Repository Editor
Figure 3-1 Sample Repository Editor Window
BEA Jolt Developer’s Guide 3-3

3 Using the Jolt Repository Editor
Repository Editor Window Description

The following table details the parts of the Repository Editor window shown in the
previous figure.

Table 3-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previous figure, “Input Buffer Type” or “Output
Buffer Type.”

3 Display list Select from a list of predefined items such as the Parameters list
or select from a list of items that have been defined.

4 Command buttons Activate an operation such as display the Packages window,
Services window, or Package Organizer. In the previous figure,
command buttons include: “Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Status View the current status of the Repository Editor service or
package. (This item does not appear in the previous figure.)

6 Radio buttons Select one of a number of options. Only one of the radio buttons
can be activated at a time. For example, Export Status can only
be “Unexport” or “Export.”
3-4 BEA Jolt Developer’s Guide

Getting Started
Getting Started

Before starting the Repository Editor, make sure you have installed all the necessary
Jolt components (at least the Jolt Server and the Jolt Client). To use the Repository
Editor, you must:

� Start the Repository Editor.

� Log on to the Repository Editor.

Note: For information on exiting the Repository Editor after you have entered
information, refer to “Exiting the Repository Editor” in this chapter.

Start the Repository Editor from either the JavaSoft appletviewer or from your Web
browser.

Starting the Repository Editor Using the Java Applet
Viewer

To start the editor using the Java Applet Viewer:

1. Set the CLASSPATH to include the Jolt class directory.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL
location:

appletviewer http://<www.server>/<URL path>/RE.html

3. Press Enter. The Repository Editor logon window displays.

Starting the Repository Editor Using Your Web Browser

To start the Repository Editor from a local file:
BEA Jolt Developer’s Guide 3-5

3 Using the Jolt Repository Editor
1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

file:<full-pathname>/RE.html

To start the Repository Editor from a Web server:

1. Ensure that the CLASSPATH does not include the Jolt class directory

2. Unset the CLASSPATH.

3. Type the following:

http://<www.server>/<URL path>/RE.html

Note: Before opening the file, modify the applet codebase parameter in
RE.html to match your Jolt Java classes directory.

4. Press Enter. The Repository Editor logon window displays.

Logging on to the Repository Editor

After starting the Jolt Repository Logon Editor, follow the directions to log on:

1. Type the name of the server machine designated as the “access point” to the
Tuxedo application and select the Port Number text field.

2. Type the Port Number and press Enter. The system validates the server and port
information.

Note: Unless you are logging on through the Jolt Relay, the same port number is
used to configure the Jolt Listener. Refer to your UBBCONFIG file for
additional information.

3. Type the Tuxedo Application Password and press Enter. Based on the
authentication level, type the remaining information.

4. Type the Tuxedo User Name and press Tab.

5. Type the Tuxedo User Password and press Enter.

Note: See the JoltSessionClass for additional information.

The Packages and Services options are activated.
3-6 BEA Jolt Developer’s Guide

Getting Started
The following figure is an example of the Repository Editor logon window.

Figure 3-2 Repository Editor Logon Window

Repository Editor Logon Window Description

The following listing details the Repository Editor logon window.

Option Description

Server The server name.
BEA Jolt Developer’s Guide 3-7

3 Using the Jolt Repository Editor
Exiting the Repository Editor

Exit the Repository Editor when you are finished adding, editing, testing, or deleting
packages, services, and parameters. The following figure is an example of the
Repository Editor window before exiting. Only Packages, Services, and Log Off are
enabled. All text entry fields are disabled.

Port Number The port number in decimal value.

Note: After the Server Name and Port Number are entered,
the User Name and Password fields are activated.
Activation is based on the authentication level of the
Tuxedo application.

User Role

Application
Password

Tuxedo administrative password text entry.

User Name Tuxedo user identification text entry. The first character must be an
alpha character.

User Password Tuxedo password text entry.

Packages This button accesses the Packages window. (Enabled after the
logon.)

Services This button accesses the Services window. (Enabled after the
logon.)

Log Off This button terminates the connection with the server.
3-8 BEA Jolt Developer’s Guide

Getting Started
Figure 3-3 Example of the Repository Editor Logon Window Before Exiting
.

To exit the Repository Editor:

1. Select Back from a previous window to return to the Logon window.

2. Select Log Off to terminate the connection with the server. The Repository
Editor Logon window continues to display with disabled fields.

3. Select Close from your browser menu to remove the window from your screen.
BEA Jolt Developer’s Guide 3-9

3 Using the Jolt Repository Editor
Main Components of the Repository Editor

The Repository Editor allows you to add, modify, or delete any of the following
components:

� Packages

� Services

� Parameters

In addition, you can test and group Services.

Repository Editor Flow

After logging on to the Repository Editor, two options are enabled, Packages and
Services. The following figure illustrates the Repository Editor flow to help you
determine which button to select.
3-10 BEA Jolt Developer’s Guide

Main Components of the Repository Editor
Figure 3-4 Repository Editor Flow Diagram

Select Packages to perform the following functions:

� View packages and services

� Make a service available using Export or Unexport

� Select a package to delete

� Access the Package Organizer to:

� Move services from one package to another

� Create a new package
BEA Jolt Developer’s Guide 3-11

3 Using the Jolt Repository Editor
Select Services to access the Services window and perform the following functions:

� Create, add, edit, or delete service definitions

� Create, add, edit, or delete parameters

� Test the services and parameters

What is a Package?

Packages provide a convenient method for grouping services for Jolt administration.
A service is comprised of parameters, including pin number, account number,
payment, rate, term, age, or Social Security number. The Packages button can be used
to:

� View packages and services

� Export or unexport services

� Delete packages

� Access Package Organizer to:

� Move services

� Create a new package

The available packages are displayed. When a package is selected, the services
contained within a package display.

The following figure is an example of a Packages window.
3-12 BEA Jolt Developer’s Guide

Main Components of the Repository Editor
Figure 3-5 Highlighted Package with Services

Packages Window Description

The following listing describes the Packages window options.

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Moves the services among the packages or
adds a new package.
BEA Jolt Developer’s Guide 3-13

3 Using the Jolt Repository Editor
Instructions for Viewing a Package

1. To view the packages, select Packages from the Logon window. The Packages
window displays.

2. The packages are displayed in the Packages display list. In Figure 3-5,
BANKAPP, BULKPKG, and SIMPSERV are the available packages.

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option is
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the
package).
3-14 BEA Jolt Developer’s Guide

Main Components of the Repository Editor
What is a Service?

A service is a definition of an available Tuxedo service. Services include parameters
such as pin number, account number, payment, and rate. Adding or editing a Jolt
service does not affect an existing Tuxedo service. Use the Services window to add,
edit, or delete services. The following figure is an example of a Services window
showing the available services for the package selected.

Figure 3-6 Services Window
BEA Jolt Developer’s Guide 3-15

3 Using the Jolt Repository Editor
Services Window Description

The following table describes the Services window options:

Instructions for Viewing a Service

1. To view the services, select Services from the Logon window.

The Services window displays.

The available packages are displayed in the Packages display list.

2. Select a package.

In the previous figure, BANKAPP is the selected package.

The available services for the selected package are displayed in the Services
display list. In the previous figure, DEPOSIT, INQUIRY, TRANSFER and
WITHDRAWAL are the available services for BANKAPP.

Option Description

Packages Lists the services and parameters for the select package. Select the
package to add a new service, edit, or delete a service.

Services Lists a service in the package to edit or delete. Selecting a service
displays the parameters within the service.

Parameters Displays selected service parameters.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.

Back Returns the user to the previous window.
3-16 BEA Jolt Developer’s Guide

Main Components of the Repository Editor
Working With Parameters

A service contains parameters, which may include pin number, account number,
payment, rate, term, age, or Social Security number. Adding or editing a parameter
does not modify or change an existing Tuxedo service. The following figure shows a
Services window displaying a selected service and its parameters.

Instructions for Viewing a Parameter

1. Select Services from the Logon window to view its parameters.

The Services window displays.

View packages in the Packages display list.

2. Select a package to view its available services.

In the following figure, BANKAPP is the selected package.

View services in the Services display list.

3. Select a service to view its available parameters.

In the following figure, INQUIRY is the selected service.

4. View the parameters for a selected service in the Parameters display list.

In the following figure, ACCOUNT_ID, FORMNAM, SBALANCE and
STATLIN are the available parameters for the INQUIRY service.
BEA Jolt Developer’s Guide 3-17

3 Using the Jolt Repository Editor
Figure 3-7 Services Window with Parameters
3-18 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Setting Up Packages and Services

This section includes the necessary steps for setting up a package and its services:

� Adding a package

� Adding a service

� Adding a parameter

Saving Your Work

As you are creating and editing services and parameters, it is important to regularly
save information to ensure that you do not inadvertently lose any input. Selecting Save
Service can prevent the need to re-enter information in the event of a system failure.

Caution: Be sure to exercise caution when you are adding or editing the parameters
of a service. You must select Add before choosing Back from the Edit
Parameters window and returning to the Edit Services window.

If adding a new service or modifying an existing service at the Edit Services window,
be sure to select Save Service before choosing Back. If you select Back before you
save the modified information, a warning briefly displays on the status line at the
bottom of the window.

Adding a Package

If you need to add a new group of services, you must create a new package before
adding the services. Figure 3-8 shows how to add a new package, BALANCE, to the
Packages listing.
BEA Jolt Developer’s Guide 3-19

3 Using the Jolt Repository Editor
 Instructions for Adding a Package

Follow these instructions to add a package:

1. Select Packages from the Logon window.

The Packages window displays.

2. Select Package Organizer.

The Package Organizer window displays. (For a description of the Package
Organizer window, see "Package Organizer Description" in this chapter in this
chapter.)

3. Select New Package from the Package Organizer window.

The text field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (in the following figure, BALANCE) is displayed in the
Packages display list in random order.
3-20 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Figure 3-8 Adding a New Package

Adding a Service

Services are definitions of available Tuxedo services and can only be a part of a Jolt
package. You are not required to create a new package before creating a new service;
however, you must create the service as a part of a package, even if it is moved to a
different package at a later date.
BEA Jolt Developer’s Guide 3-21

3 Using the Jolt Repository Editor
The Repository Editor accepts the new service name exactly as it is typed (that is, all
capital letters, abbreviations, misspellings are accepted). Service names must not
exceed 30 characters. The following figure shows an Adding New Service window.

Figure 3-9 Edit Services: Adding New Service Window
3-22 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Adding a Service Window Description

The following listing describes the options for adding services to a package in a
package window.

Option Description

Edit Services
Selections

Service Name The name of the new service to be added to the Repository.

Input Buffer
Type/Output Buffer
Type

VIEW - a C-structure and 16-bit integer field. Contains subtypes
that have a particular structure. X_C_TYPE and X_COMMON are
equivalent. X_COMMON is used for COBOL and C.

VIEW32 - similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

CARRAY - an array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

FML - a type in which each field carries its own definition.

FML32 - similar to FML except the ID field and length field are 32
bits long.

STRING - a character array terminated by a null character that is
encoded or decoded.

Input View
Name/Output View
Name

A unique name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32 are
the selected buffer types.

Export Status Lists current status of the service. EXPORT or UNEXPORT status
is displayed. UNEXPORT is the default.

Service Level
Actions

Save Service This command button saves newly created service in the Repository.

Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.

Back This command button returns you to the previous window.

Parameters Parameters List of service parameters to edit or delete.
BEA Jolt Developer’s Guide 3-23

3 Using the Jolt Repository Editor
Instructions for Adding a Service

To add a service, follow these instructions:

1. From the Logon window, select Services.

2. Select the package where the service is going to be added.

If you are uncertain which package should contain the new service, select a
package and use the Package Organizer to move the service to a different
package. (See “Grouping Services Using the Package Organizer” for additional
information.)

3. Select New from the Services window.

The Edit Services window is displayed.

4. Select the Service Name text field to activate it.

5. Type the service name.

6. Select the buffer type.

Although the same buffer type selected for the Input Buffer is automatically
selected for the Output Buffer, you can change the Output Buffer type to a
different buffer type.

7. If VIEW or VIEW32 is selected, type the Input View Name and Output View
Name in the accompanying text field.

8. If another buffer type is selected, the Input View Name and Output View Name
text fields are disabled.

9. If CARRAY or STRING is selected, refer to “Selecting CARRAY or STRING as
a Service Buffer Type” in this chapter for additional instructions.

10. Select Save Service to save the newly created service.

Parameter Level
Actions

New This command button adds new parameters to the service.

Edit An existing parameter can be edited. This command button is
disabled until a new parameter is selected.

Delete This command button deletes a parameter. This option is disabled
until a parameter is selected.
3-24 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Selecting CARRAY or STRING as a Service Buffer Type

If CARRAY or STRING is selected as the buffer type for a new service, only CARRAY or
STRING can be added as the data type for the accompanying parameters. See also
“Adding a Parameter” and “Selecting CARRAY or STRING as a Parameter Data
Type” in this chapter. For further information, refer to "Using the Jolt Class Library"

The following figure is an example of the Edit Services window with STRING as the
selected buffer type for the service.

Figure 3-10 Edit Services Window with STRING as the Selected Buffer Type
BEA Jolt Developer’s Guide 3-25

3 Using the Jolt Repository Editor
Adding a Parameter

Selecting New Parameter from the Edit Services window brings up the Edit
Parameters window. Review the features in the following figure. Use this window to
enter the parameter and window information for a service.

The following figure is an example of the Edit Parameters window used to add a new
parameter.

Figure 3-11 Adding a Parameter Window

Parameters Window Description

The following listing describes the Edit Parameters window options.
3-26 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Instructions for Adding a Parameter

1. Select Field Name to activate the field and type the field name.

Note: If the buffer type is FML or VIEW, the field name must match the
corresponding parameter field name in FML or VIEW.

Option Description

Field Name Adds the field name (for example, asset, inventory).

Type List data type choices:

byte - 8-bit

short - 16-bit

integer - 32-bit

float - 32-bit

double - 64-bit

string - null-terminated character array

carray - variable length 8-bit character array

Direction Lists choices for direction of information:

Input - Information is directed from the client to the server.

Output - Information is directed from the server to the client.

Both - Information is directed from the client to the server, and from
the server to the client.

Occurrence(s) Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by Tuxedo.

Clear This command button clears the fields of the window.

Change This command button is disabled while new parameters are added.

Add This command button adds new parameters to the service. The
parameters are saved when the service is saved.

Back This command button returns the user to the previous window.
BEA Jolt Developer’s Guide 3-27

3 Using the Jolt Repository Editor
2. Select the data type.

3. Select the Occurrences text field to activate it, and then enter the number of
occurrences.

4. Specify a direction by selecting the input, output, or both radio buttons.

5. Select Add to append the information. Add does not save the parameter.

6. Select Save Service to save the parameter as a part of the service.

Warning: If you do not select Save Service before you select Back, the
parameters are not saved as part of the service.

7. Select Back to return to the previous window.

Selecting CARRAY or STRING as a Parameter Data Type

If CARRAY or STRING is the selected buffer type for a new service, only carray or
string can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the
parameter name “CARRAY” for a CARRAY buffer type, and the parameter name
“STRING” for a STRING buffer type.

See also “Instructions for Adding a Service” and “Selecting CARRAY or STRING as
a Service Buffer Type” in this chapter. For further information, refer to "Using the Jolt
Class Library" .

The following figure is an example of the Edit Parameters window with string as the
selected data type for the parameter. The Type defaults to string and does not allow
you to modify that particular data type. The Field Name can be any name.
3-28 BEA Jolt Developer’s Guide

Setting Up Packages and Services
Figure 3-12 Edit Parameters Window with string as the Data Type
BEA Jolt Developer’s Guide 3-29

3 Using the Jolt Repository Editor
Grouping Services Using the Package
Organizer

The Package Organizer moves services between packages. You may want to group
related services in a package (for example, WITHDRAWAL services that are exported
only at a certain time of the day can be grouped together in a package).

The Package Organizer arrow buttons allow you to move a service from one package
to another. These buttons are useful if you have several services to move between
packages. The packages and services display listings to help track a service within a
particular package.

The following figure is an example a of Package Organizer window with a service
selected for transfer to another package.
3-30 BEA Jolt Developer’s Guide

Grouping Services Using the Package Organizer
Figure 3-13 Example of a Selected Service

Package Organizer Description

The following table describes the options for the Package Organizer window:

Option Description

Available Packages (left
display list)

Lists packages available where the service to be moved
currently resides.

Available Packages (right
display list)

Lists packages available as destinations for the service you
are moving.

Services (left display list) Lists available services for the highlighted package that can
be moved.
BEA Jolt Developer’s Guide 3-31

3 Using the Jolt Repository Editor
Instructions for Grouping Services with the Package Organizer

1. Select the package containing the services to be moved from the Packages left
display window to the right display window.

In the previous figure, BANKAPP is the selected package.

2. Select the service to be moved from the Services left display window to the right
display window.

In the previous figure, INQUIRY is the selected service in the BANKAPP
package.

3. Select the package to receive the service from the Packages right display
window.

The previous figure shows the selected service, INQUIRY, and the selected
package, BANK, to which the INQUIRY service will be moved.

Services (right display list) Lists available services of the highlighted package that have
been moved.

Left arrow Moves services (one service at a time) to the package
highlighted on the left.

Right arrow Moves services (one service at a time) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.
3-32 BEA Jolt Developer’s Guide

Grouping Services Using the Package Organizer
Figure 3-14 Example of a Moved Service

4. To move the services between the packages, select the left arrow (<—) or right
arrow (—>).

These keys are activated only when both packages and a service are selected.
The keys are only active in the direction of the package where the service is to
be moved. The previous figure shows how the Repository Editor moves the
INQUIRY service to the BANK package on the right.

Note: You cannot select the same package in both the left and right display lists.
BEA Jolt Developer’s Guide 3-33

3 Using the Jolt Repository Editor
Modifying Packages/Services/Parameters

If a package, service, or parameter requires any modifications, you can make the
following changes:

� Edit a service

� Edit a parameter

� Delete a parameter/service/package

Editing a Service

Edit an existing service name, service information, or access the window to add new
parameters to an existing service. For a description of the Edit Services window, see
“Adding a Service Window Description” in this chapter. The following figure is an
example of the Edit Services window.
3-34 BEA Jolt Developer’s Guide

Modifying Packages/Services/Parameters
Figure 3-15 Edit Services Window

Instructions for Editing a Service

Follow these instructions to edit a service:

1. Select the package containing the service that requires editing from the Services
window.

2. Select the service to edit.

The parameters are displayed in the parameters display list.

3. Select Edit.

The Edit Services window displays.
BEA Jolt Developer’s Guide 3-35

3 Using the Jolt Repository Editor
4. Type or select the new information and select Save Service.

Editing a Parameter

All parameter elements can be changed, including the name of the parameter.

Warning: If you create a new parameter using an existing name, the system
overwrites the existing parameter. The following figure is an example of
the Edit Parameters window.

Figure 3-16 Edit Parameters Window
.

3-36 BEA Jolt Developer’s Guide

Modifying Packages/Services/Parameters
Editing a Parameter

To change a parameter, follow these instructions:

1. Select the parameter in the Parameters window and select Edit Parameters.

The “Edit Parameters: Changing Existing Parameter” window displays.

2. Type the new information and select Change.

3. Select Back to return to the previous window.

Deleting Parameters/Services/Packages

This section details the necessary steps to delete a package. Before deleting a package,
all the services must be deleted from the package. The Delete option is not enabled
until all components of the package or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be
deleted. Be certain that the parameter, service, or package is scheduled to
be deleted or has been moved to another location before selecting Delete.

Deleting a Parameter

Determine which parameters to delete and follow these instructions.

1. Highlight the parameter you want to delete in the Parameters display list and select
Delete Parameter.

2. Select Back to return to the previous window.

Deleting a Service

Determine which services to delete and follow these instructions. Make sure that all
parameters within this service are deleted before selecting this option.

1. Select Services from the Logon window.

The Packages window displays.

2. Select the package containing the service you want to delete.
BEA Jolt Developer’s Guide 3-37

3 Using the Jolt Repository Editor
3. Select the service you want to delete.

Delete is enabled.

4. Select Delete. The service is deleted.

Deleting a Package

Determine which packages to delete and follow these instructions. Make sure all
services contained in this package are deleted or moved to another package before
selecting this option.

1. To delete packages, select Packages from the Logon window. The Packages
window displays.

2. Select a package.

3. Select Delete.

The package is deleted.
3-38 BEA Jolt Developer’s Guide

Making a Service Available to the Jolt Client
Making a Service Available to the Jolt Client

To make a service available to a Jolt client, you must export it. All services in a
package must be exported or unexported as a group. A service is made available by
using the Export and Unexport radio buttons.

This section discusses:

� Exporting/Unexporting services

� Reviewing the Export/Unexport status

Exporting/Unexporting Services

Determine which services are being made available or unavailable to the Jolt client.
Services are exported to ensure that the Jolt client can access the most current service
definitions from the Jolt server.

The following figure shows the Packages window. From there you can Export and
Unexport services.
BEA Jolt Developer’s Guide 3-39

3 Using the Jolt Repository Editor
Figure 3-17 Export and Unexport Buttons

Exporting/Unexporting a Service

Follow the instructions below to export or unexport a service.

1. Select Packages from the Logon window.

The Packages window displays.

2. Select a package. Export and Unexport are enabled.

3. To make services available, select Export.

4. To make services unavailable, select Unexport.
3-40 BEA Jolt Developer’s Guide

Making a Service Available to the Jolt Client
Caution: The system does not display a confirmation message indicating that the
service is exported or unexported. See “Reviewing the
Exported/Unexported Status” in this chapter for additional information.

Reviewing the Exported/Unexported Status

When a service is exported or unexported, you can review its status from the Edit
Services window. The following figure shows the current status as EXPORTED.

Figure 3-18 Exported/Unexported Status
BEA Jolt Developer’s Guide 3-41

3 Using the Jolt Repository Editor
Reviewing the Exported/Unexported Status

To review the current exported or unexported status of a service, follow these
instructions:

1. Select Services from the Logon window.

The Services window displays.

2. To find out if a service has been exported or unexported, check its status by
selecting a package from the Package display list.

The Services display list is enabled with a listing of services for the selected
package.

3. Select the desired service.

4. Select Edit. The Edit Services window displays with the Current Status of the
service as EXPORTED or UNEXPORTED.
3-42 BEA Jolt Developer’s Guide

Testing a Service
Testing a Service

Before they are made available to Jolt clients, a service and its parameters should be
tested to ensure that they are functioning properly. Services that are currently available
can be tested without making changes to the services and parameters.

Note: The Jolt Repository Editor allows you to test an existing Tuxedo service with
Jolt without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a service and
its parameters, unexport the service prior to editing.

This section explains the following:

� Jolt Repository Editor Service Test Window

� Testing a Service Instructions
BEA Jolt Developer’s Guide 3-43

3 Using the Jolt Repository Editor
Repository Editor Service Test Window

Test the service to ensure that the parameter information is accurate. Although Test is
enabled when parameters are not added to the service, the Service Test window (the
following figure) displays the parameter fields as “unused” and they are disabled. A
service can only be tested when the corresponding Tuxedo server is running for the
service being tested.

Note: The Service Test window displays up to 20 items of any multiple-occurrence
parameters. All items that follow the twentieth occurrence of a parameter
cannot be tested.

The following figure shows an example of a Service Test window with writable and
read-only text fields.

Figure 3-19 Sample Service Test Window
3-44 BEA Jolt Developer’s Guide

Testing a Service
Service Test Window Description

The following table details the Service Test window.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each byte
in the CARRAY data field. For example, the hexadecimal value for 1234
decimal is 0422.

Table 3-2

Option Description

Service Displays the name of the tested service (read-only).

Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.

Prev Lists previous parameter fields, if applicable.

Back Returns to the Edit Services window.
BEA Jolt Developer’s Guide 3-45

3 Using the Jolt Repository Editor
Testing a Service Process Flow

Test a service to ensure that all service and parameter information is correct. You can
test a service without making changes to the service or its parameters. You can also
test a service after editing the service or its parameters.

The following figure shows a typical Repository Editor service test flow.

Figure 3-20 Test Service Flow

Testing a Service

Follow these instructions to test a service.

1. Select Services from the Logon window to display the Services window.

2. Select the package and the service to test.
3-46 BEA Jolt Developer’s Guide

Testing a Service
3. Select Edit to access the Edit Services window.

4. Select Test to access the Service test window.

5. Input data in the Service test window parameter text field.

6. Select RUN.

The status line displays the message, “Run Completed OK,” if the test passes, or
“Call Failed,” if the test fails. See “Some Reasons Why a Test Might Fail” or the
“Repository Editor Troubleshooting Table” for additional Repository Editor
troubleshooting information.

Follow these instructions if editing is required to pass the test.

1. Return to the Repository Editor logon window and select Packages.

2. Select the package with the services to be retested.

3. Select Unexport.

4. Select Back to return to the Logon window.

5. Select Services to display the Services window.

6. Select the package and the service that requires editing and select Edit.

7. Edit the service.

8. Save the service, select Test, and repeat steps 5 and 6 from previous list.

Some Reasons Why a Test Might Fail

Here are some reasons why a service test might fail and possible solutions.

If. . . Do this . . .

A parameter is incorrect. Edit the service.

The Jolt server is down. Check the server. The Tuxedo service is
down. You do not need to edit the service.
BEA Jolt Developer’s Guide 3-47

3 Using the Jolt Repository Editor
Troubleshooting

Consult the following table if you encounter problems while using the Repository
Editor.

Table 3-3 Repository Editor Troubleshooting Table

If . . . Then . . .

You receive any error Make sure the browser you are running is Java-enabled:

� For Netscape browsers, make sure that “Enable Java” and
“Enable JavaScript” are checked under Edit—>
Preferences—>Advanced. Then select Communicator—>
Tools—>Java Console. If the Java Console does not exist on
the menu, the browser probably does not support Java.

� For Internet Explorer, make sure the version is 3.0 (or later).

� If running Netscape Navigator, check the Java Console for
error messages.

� If running appletviewer, check the system console (or the
window where you started the appletviewer).

You cannot connect to
the Jolt Server (after
entering Server and
Port Number)

Check and make sure that:

� Your Server name is correct (and accessible from your
machine). Check that the port number is the correct port.
There must be a JSL or JRLY configured to listen on that port.

� The Jolt server is up and running. If any authentication is
enabled, check that you are entering the correct user names
and passwords.

� If the applet was loaded through http, the Web server, JRLY
and the Jolt server must be on the same machine (i.e., the
Server name entered into the Repository Editor must be the
same machine as the one used in the URL to download the
applet).
3-48 BEA Jolt Developer’s Guide

Troubleshooting
You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
applet through http, make sure that:

� The browser is Java-enabled.

� The Web server is running and accessible.

� The RE.html file is available to the Web server.

� The RE.html file contains the correct <codebase> parameter
(this is where the Jolt class files are located).

If running the editor in a browser (or appletviewer) and
loading the applet from disk, make sure that:

� The browser is Java-enabled.

� The RE.html file exists and is readable.

� The RE.html file is Java-enabled.

� The RE.html file contains the correct <codebase> parameter
(this is where the Jolt class files are installed on the local disk).

� CLASSPATH is set and points to the Jolt class directory.

You cannot display
Packages or Services
even though you are sure
they exist

� Make sure that the Jolt Repository Server is running
(JREPSVR).

� Make sure that the JREPSVR can access the repository file.

� Make sure that the configuration of JREPSVR: verify CLOPT
parameters and verify that jrep.f16 (FML definition file) is
installed and accessible (follow installation documentation)

You cannot save changes
in the Repository Editor

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

Table 3-3 Repository Editor Troubleshooting Table

If . . . Then . . .
BEA Jolt Developer’s Guide 3-49

3 Using the Jolt Repository Editor
Repository Enhancements for Jolt

The Jolt Repository uses the FML32 buffer type, which increases the internal buffer
size beyond 64K bytes.

Additionally, the JREPSVR and the Jolt Server (JSH) support the following XATMI
buffer types:

� X_OCTET

� X_C_TYPE

� X_COMMON

You cannot test services � Check that the service is available.

� Verify the service definition matches the service.

� If Tuxedo authentication is enabled, check that you have the
required permissions to execute the service.

� Check if the application file (FML or VIEW) is specified
correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications’ FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH is unable to process data conversion and
you will receive the message “ServiceException: TPEJOLT
data conversion failed.”

� Check the ULOG file for any additional diagnostic messages.

Table 3-3 Repository Editor Troubleshooting Table

If . . . Then . . .
3-50 BEA Jolt Developer’s Guide

CHAPTER
4 Using the Jolt Class
Library

The BEA Jolt Class Library provides developers with a set of new object-oriented Java
language classes for accessing BEA Tuxedo services. Using these classes, you can
extend applications for Internet and intranet transaction processing. You can use the
Jolt Class Library to customize access to BEA Tuxedo services from Java applets.

“Usingthe Jolt Class Library” covers the following topics:

� Class Library Functionality Overview

� Jolt Object Relationships

� Jolt Class Functionality

� Jolt Class Library Walk-through

� Using Tuxedo Buffer Types with Jolt

� Multithreaded Applications

� Event Subscription and Notifications

� Clearing Parameter Values

� Reusing Objects

� Application Deployment and Localization

To use the information in the following sections, you need to be generally familiar with
the Java programming language and object-oriented programming concepts. All the
programming examples are in Java code.
BEA Jolt Developer’s Guide 4-1

4 Using the Jolt Class Library
Note: All program examples are only fragments used to illustrate Jolt capabilities.
They are not intended to be compiled and run as provided. These program
examples require additional code to be fully executable.

Class Library Functionality Overview

The Jolt Class Library provides the Tuxedo application developer with the tools to
develop client-side applications or applets that run as independent Java applications or
in a Java-enabled Web browser. The bea.jolt package contains the Jolt Class
Library. To use the Jolt Class Library, the client program or applet must import this
package. For an example of how to import the bea.jolt package, refer to Listing 4-1.

Java Applications vs. Java Applets

Java programs that run in a browser are called “applets.” Applets are intended to be
small, easily downloaded parts of an overall application that perform specific
functions. Many popular browsers impose limitations on the capabilities of Java
applets for the purpose of providing a high degree of security for the users of the
browser. The following are some of the restrictions imposed on applets:

� An applet ordinarily cannot read or write files on any host system.

� An applet cannot start any program on the host (client) that is executing the
applet.

� An applet can make a network connection only to the host where it originated; it
cannot make other network connections, not even to the client machine.

Programming workarounds exist for most of the restrictions on Java applets. Check
your browser’s web site (for example, www.netscape.com or www.microsoft.com) or
developer documentation for specific information about the applet capabilities that the
browser supports or restricts. You can also use Jolt Relay to work around some of the
network connection restrictions.

A Java application, however, is not run in the context of a browser and is not restricted
in the same ways. For example, a Java application can start another application on the
host machine where it is executing. While an applet relies on the windowing
4-2 BEA Jolt Developer’s Guide

Class Library Functionality Overview
environment of a browser or appletviewer for much of its user interface, a Java
application requires that you create your own user interface. An applet is designed to
be small and highly portable. A Java application, on the other hand, can operate much
like any other non-Java program. The security restrictions for applets imposed by
various browsers and the scope of the two program types are the most important
differences between a Java application and a Java applet.

Jolt Class Library Features

The Jolt Class Library has the following characteristics:

� Features fully thread-safe classes.

� Encapsulates typical transaction functions such as logon, synchronous calling,
transaction begin, commit, rollback, and logoffs as Java objects.

� Contains methods that allow you to set idle time-outs for continuous and
intermittent client network connections.

� Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling

The Jolt Class Library returns both Jolt interpreter and Tuxedo errors as exceptions.
The Jolt Class Library Reference contains the Jolt classes and lists the errors or
exceptions thrown for each class. The BEA Jolt 1.2 Online API Javadoc contains the
Error and Exception Class Reference.
BEA Jolt Developer’s Guide 4-3

4 Using the Jolt Class Library
Jolt Client/Server Relationship

BEA Jolt works in a distributed client/server environment and connects Java clients to
BEA Tuxedo based applications. Figure 4-1 illustrates the client/server relationship
between a Jolt program and the Jolt Server.

Figure 4-1 Jolt Client/Server Relationship
.

As illustrated in the diagram, the Jolt Server acts as a proxy for a native BEA Tuxedo
client, implementing functionality available through the native BEA Tuxedo client.
The BEA Jolt Server accepts requests from BEA Jolt clients and maps those requests
into BEA Tuxedo service requests through the BEA Tuxedo ATMI interface. Requests
and associated parameters are packaged into a message buffer and delivered over the
network to the BEA Jolt Server. The BEA Jolt Connection Manager handles all
communication between the BEA Jolt Server and the BEA Jolt applet using the BEA
Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from the message,
performs any necessary data conversions, such as numeric format conversions or
character set conversions, and makes the appropriate service request to BEA Tuxedo
as specified by the message.

Once a service request enters the BEA Tuxedo system, it is executed in exactly the
same manner as any other BEA Tuxedo request. The results are returned through the
ATMI interface to the BEA Jolt Server, which packages the results and any error

Client

GUI Application

Jolt Class Library

Connection
Manager

ATMI
Protocol Translator

Connection

Jolt Server

TCP/IP

Tuxedo
Application

Application Protocol

Jolt Transaction Protocol

Jolt Network Protocol
Manager
4-4 BEA Jolt Developer’s Guide

Class Library Functionality Overview
information into a message that is sent to the BEA Jolt client applet. The BEA Jolt
client then maps the contents of the message into the various BEA Jolt client interface
objects, completing the request.

On the client side, the user program contains the client application code. The Jolt Class
Library packages a JoltSession and JoltTransaction, which in turn handle service
requests.

The following table describes the client-side requests and Jolt Server-side actions in a
simple example program.

The following tasks, which summarize the interaction shown in Table 4-1,are the steps
involved in beginning a transaction:

Table 4-1 Jolt Client/Server Interaction

Jolt Client Jolt Server

1 attr=new JoltSessionAttributes();

attr.setString(attr.APPADDRESS,
“//myhost:8000”);

Binds the client to the
Tuxedo environment

2 session=new JoltSession(attr, username,
userRole, userPassword, appPassword);

Logs the client onto Tuxedo

3 withdrawal=new JoltRemoteService(
servname, session);

Looks up the service
attributes in the Repository

4 withdrawal.addString(“accountnumber”,
“123”);

withdrawal.addFloat(“amount”, (float)
100.00);

Populates variables in the
client (no Jolt Server
activity)

5 trans=new JoltTransaction(time-out,
session);

Begins a new Tuxedo
transaction

6 withdrawal.call(trans); Executes the Tuxedo service

7 trans.commit() or trans.rollback(); Completes or rolls back
transaction

8 balance=withdrawal.getFloatDef(“balance,”
(float) 0.0);

Retrieves the results (no Jolt
Server activity)

9 session.endSession(); Logs the client off of Tuxedo
BEA Jolt Developer’s Guide 4-5

4 Using the Jolt Class Library
1. Bind the client to the Tuxedo environment using the JoltSessionAttributes
class.

2. Establish a session.

3. Set variables.

4. Perform the necessary transaction processing.

5. Log the client off of the Tuxedo system.

Each of these activities is handled through the use of the Jolt Class Library classes.
These classes include methods for setting and clearing data and for handling remote
service actions. The next section describes the Jolt Class Library classes in more detail.
4-6 BEA Jolt Developer’s Guide

Jolt Object Relationships
Jolt Object Relationships

The following figure illustrates the relationship between the instantiated objects of the
Jolt Class Library classes.

Figure 4-2 Jolt Object Relationships

As objects, the Jolt classes interact in various relationships with each other. In the
previous figure, the relationships are divided into three basic categories:

Contains-a relationship. At the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-a relationship. The is-a relationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

Uses-a relationship. An object can use another object without containing it. For
example, a JoltSession can use the JoltSessionAttributes object to obtain the host and
port information.

JoltUserEvent

JoltTransaction uses-a

uses-a

contains-a

JoltSession

JoltRemoteService

JoltSessionAttributes

contains-a

call(transaction) contains-a

JoltReply

JoltMessage

contains-a

uses-a
BEA Jolt Developer’s Guide 4-7

4 Using the Jolt Class Library
Jolt Class Functionality

Jolt classes are used to perform the basic functions of transaction processing: log
on/log off, synchronous service calling, transaction begin, commit, rollback and
subscribe to events or unsolicited messages. The following sections describe how the
Jolt classes are used to perform these functions.

Logon/Logoff

The client application must log on to the Tuxedo environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class
and JoltSession class to establish a connection to a Tuxedo System.

The JoltSessionAttributes class is used to contain the connection properties to a
Jolt/Tuxedo system and contains various properties about the Jolt/Tuxedo System. To
establish a connection, the client application must create an instance of the JoltSession
class. This instance is the JoltSession object. By instantiating a JoltSession object,
users log on to Jolt/Tuxedo or log off by calling the endSession method.

Synchronous Service Calling

Transaction activities such as requests and replies are handled through the use of a
JoltRemoteService object (an instance of the JoltRemoteService class). Each
JoltRemoteService object refers to an exported Tuxedo request/reply service. You
must provide a service name and a JoltSession object to instantiate a
JoltRemoteService object before it can be used.

To use a JoltRemoteService object, simply:

� Set the input parameters

� Invoke the service

� Examine the output parameters

For efficiency, Jolt does not make a copy of any input parameter object; only the
references to the object (for example, string and byte array) are saved. Since
JoltRemoteService object is a stateful object, its input parameters and the request
4-8 BEA Jolt Developer’s Guide

Jolt Class Functionality
attributes are retained throughout the life of the object. You can use the clear()
method to reset the attributes and input parameters before reusing the
JoltRemoteService object.

Since Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Java multithreading capability.
Refer to "Multithreaded Applications" in this chapter for additional information.

Transaction Begin, Commit, and Rollback

In Jolt, a transaction is represented as an object of the class JoltTransaction. The
transaction begins when the transaction object is instantiated. The transaction object is
created with a time out and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction. The
transaction service invocation requires a JoltTransaction object as a parameter. Jolt
also requires that the service and the transaction belong to the same session. Jolt does
not allow you to use services and transactions that are not bound to the same session.
BEA Jolt Developer’s Guide 4-9

4 Using the Jolt Class Library
Jolt Class Library Walk-through

The example code provided in Listing 4-1 shows how to use the Jolt Class Library and
includes the use of the JoltSessionAttributes, JoltSession, JoltRemoteService, and
JoltTransaction classes.

The example combines two user-defined Tuxedo services (WITHDRAWAL and
DEPOSIT) to perform a simulated TRANSFER transaction. If the WITHDRAWAL
operation fails, a rollback is performed. Otherwise, a DEPOSIT is performed and a
commit completes the transaction.

The basic steps of the transaction process shown in the example are as follows:

1. Set the connection attributes like hostname and portnumber in the
JoltSessionAttribute object.

Refer to this line in the following code listing:

sattr = new JoltSessionAttributes();

2. The sattr.checkAuthenticationLevel() allows the application to determine
the level of security required to log on to the server.

Refer to this line in the following code listing:

switch (sattr.checkAuthenticationLevel())

3. The logon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole,
userPassword, appPassword);

This example does not explicitly catch SessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session key
returned from JoltSession().

Refer to these lines in the following code listing:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and
DEPOSIT services, which are stored in the Jolt Repository, to the withdrawal
4-10 BEA Jolt Developer’s Guide

Jolt Class Library Walk-through
and deposit objects, respectively. The services WITHDRAWAL and DEPOSIT
must be defined in the Jolt Repository otherwise a ServiceException will be
thrown. This example does not explicitly catch ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such as
account number ACCOUNT_ID and withdrawal amount SAMOUNT are
automatically populated.

Refer to these lines in the following code listing:

withdrawal.addInt(“ACCOUNT_ID”, 100000);

withdrawal.addString(“SAMOUNT”, “100.00”);

The add*() methods can throw IllegalAccessError or NoSuchFieldError
exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction does
not complete within the specified time.

Refer to this line in the following code listing:

trans = new JoltTransaction(5,session);

7. Once the withdrawal service definition has been automatically populated, the
withdrawal service is invoked by calling the withdrawal.call(trans) method.

Refer to this line in the following code listing:

withdrawal.call(trans);

8. A failed WITHDRAWAL can be rolled back.

Refer to this line in the following code listing:

trans.rollback();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committed.
Refer to these lines in the following code listing:

deposit.call(trans);

trans.commit();

The following listing shows an example of a simple application for the transfer of
funds using the Jolt classes.
BEA Jolt Developer’s Guide 4-11

4 Using the Jolt Class Library
Listing 4-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class SimXfer
{

public static void main (String[] args)
{

JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService withdrawal;
JoltRemoteService deposit;
JoltTransaction trans;
String userName=null;
String userPassword=null;
String appPassword=null;
String userRole=”myapp”;

sattr = new JoltSessionAttributes();
sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

switch (sattr.checkAuthenticationLevel())
{
case JoltSessionAttributes.NOAUTH:

System.out.println(“NOAUTH\n”);
break;

case JoltSessionAttributes.APPASSWORD:
appPassword = “appPassword”;
break;

case JoltSessionAttributes.USRPASSWORD:
userName = “myname”;

userPassword = “mysecret”;
appPassword = “appPassword”;
break;

}
sattr.setInt(sattr.IDLETIMEOUT, 300);
session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);
// Simulate a transfer
withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);
deposit = new JoltRemoteService(“DEPOSIT”, session);

withdrawal.addInt(“ACCOUNT_ID”, 100000);
withdrawal.addString(“SAMOUNT”, “100.00”);

// Begin the transaction w/ a 5 sec timeout
trans = new JoltTransaction(5, session);
try
{

4-12 BEA Jolt Developer’s Guide

Jolt Class Library Walk-through
withdrawal.call(trans);
}

catch (ApplicationException e)
{

e.printStackTrace();
// This service uses the STATLIN field to report errors
// back to the client application.

System.err.println(withdrawal.getStringDef(“STATLIN”,”NO
STATLIN”));
System.exit(1);

}

String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0”);

// remove leading “$” before converting string to float
float w = Float.valueOf(wbal.substring(1)).floatValue();
if (w < 0.0)
{

System.err.println(“Insufficient funds”);
trans.rollback();
System.exit(1);

}
else // now attempt to deposit/transfer the funds
{

deposit.addInt(“ACCOUNT_ID”, 100001);
deposit.addString(“SAMOUNT”, “100.00”);

deposit.call(trans);
String dbal = deposit.getStringDef(“SBALANCE”, “-1.0”);
trans.commit();

System.out.println(“Successful withdrawal”);
System.out.println(“New balance is: “ + wbal);

System.out.println(“Successful deposit”);
System.out.println(“New balance is: “ + dbal);

}

session.endSession();
System.exit(0);
} // end main

} // end SimXfer
BEA Jolt Developer’s Guide 4-13

4 Using the Jolt Class Library
Using Tuxedo Buffer Types with Jolt

Jolt supports the following built-in Tuxedo buffer types:

� FML, FML32

� VIEW, VIEW32

� X_COMMON

� X_C_TYPE

� CARRAY

� X_OCTET

� STRING

Note: X_OCTET is used identically to CARRAY.

X_COMMON and X_C_TYPE are used identically to VIEW.

For information about all the Tuxedo typed buffers, data types, and buffer types, refer
to the Tuxedo System Programmer’s Guide, Volume 1 and the Tuxedo System
Reference Manual.

Of the Tuxedo built-in buffer types, the Jolt application programmer should be
particularly aware of how Jolt handles the CARRAY (character array) and STRING
built-in buffer types. The CARRAY type is used to handle data opaquely, (for
example, the characters of a CARRAY data type are not interpreted in any way). No
data conversion is performed between a Jolt client and Tuxedo service.

For example, if a Tuxedo service uses a CARRAY buffer type and the user sets a 32-bit
integer (in Java the integer is in big-endian byte order), then the data is sent unmodified
to the Tuxedo service. If the Tuxedo service is run on a machine whose processor uses
little-endian byte-ordering (for example, Intel processors), the Tuxedo service must
convert the data properly before the data can be used.
4-14 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Using the STRING Buffer Type

The STRING buffer type is a collection of characters. STRING consists of non-null
characters and is terminated by a null character. The STRING data type is character
and, unlike CARRAY, you can determine its transmission length by counting the
number of characters in the buffer until reaching the null character.

Note: During the data conversion from Jolt to STRING, the null terminator is
automatically appended to the end of the STRING buffers because a Java
string is not null-terminated.

The following ToUpper code fragment, Listing 4-2, illustrates how Jolt works with a
service whose buffer type is STRING. The TOUPPER Tuxedo Service is available in
the Tuxedo simpapp example.

Define TOUPPER in the Repository Editor

Before running the ToUpper.java example in the next listing, you need to define the
TOUPPER service through the Jolt Repository Editor:

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for more information about defining your services
and adding new parameters.

1. Using the Jolt Repository Editor, define the TOUPPER service for the SIMPSERV
package.
BEA Jolt Developer’s Guide 4-15

4 Using the Jolt Class Library
Figure 4-3 Add a TOUPPER Service

2. For the TOUPPER service, define an input buffer type of STRING and an output
buffer type of STRING. (See the following figure.)

3. Define only one parameter for the TOUPPER service named STRING that is both
an input and an output parameter.
4-16 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Figure 4-4 Set Input and Output Buffer Types to STRING

ToUpper.java Client Code

The ToUpper.java Java code fragment in the following listing illustrates how Jolt
works with a service whose buffer type is STRING. The example shows a Jolt client
using a STRING buffer to pass data to a server. The Tuxedo server would take the
buffer, convert the string to all uppercase letters and pass the string back to the client.
The following example assumes that a session object was already instantiated.

Listing 4-2 Use of the STRING buffer type (ToUpper.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
BEA Jolt Developer’s Guide 4-17

4 Using the Jolt Class Library
public class ToUpper
{

public static void main (String[] args)
{

JoltSession session;
JoltSessionAttributes sattr;
JoltRemoteService toupper;
JoltTransaction trans;
String userName=null;
String userPassword=null;
String appPassword=null;
String userRole=”myapp”;
String outstr;

sattr = new JoltSessionAttributes();
sattr.setString(sattr.APPADDRESS, “//myhost:8501”);

switch (sattr.checkAuthenticationLevel())
{
case JoltSessionAttributes.NOAUTH:

break;
case JoltSessionAttributes.APPASSWORD:

appPassword = “appPassword”;
break;

case JoltSessionAttributes.USRPASSWORD:
userName = “myname”;
userPassword = “mysecret”;
appPassword = “appPassword”;
break;

}
sattr.setInt(sattr.IDLETIMEOUT, 300);
session = new JoltSession(sattr, userName, userRole,
userPassword, appPassword);
toupper = new JoltRemoteService (“TOUPPER”, session);
toupper.setString(“STRING”, “hello world”);
toupper.call(null);
outstr = toupper.getStringDef(“STRING”, null);
if (outstr != null)

System.out.println(outstr);

session.endSession();
System.exit(0);

} // end main
} // end ToUpper
4-18 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Using the CARRAY Buffer Type

The CARRAY buffer type is a simple character array buffer type that is built into the
Tuxedo system. With the CARRAY buffer type, because the system does not interpret
the data (although the data type is known) there is no way of determining how much
data to transmit during an operation. The application is always required to specify a
length when passing this buffer type.

Note: X_OCTET is used identically to CARRAY.

Define ECHO in the Repository Editor

Before running the example in the “Add a TOUPPER Service” figure, you must write
and boot an ECHO Tuxedo service. The ECHO service takes a buffer and passes it
back to the Jolt client. You also need to use the Jolt Repository Editor to define the
ECHO service.
BEA Jolt Developer’s Guide 4-19

4 Using the Jolt Class Library
Figure 4-5 Add ECHO Service

In the Repository Editor add the ECHO service as follows:

1. Add a service named ECHO whose buffer type is CARRAY.

2. Define the input buffer type and output buffer type as CARRAY for the ECHO
service.
4-20 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Figure 4-6 Edit ECHO Service

3. Define the ECHO service with only one parameter named CARRAY that is both
an input and output parameter.

Note: If using the X_OCTET buffer type, you must change the Input Buffer Type
and Output Buffer Type fields to X_OCTET.

tryOnCARRAY.java Client Code

The code in the following listing illustrates how Jolt works with a service whose buffer
type is CARRAY. Since Jolt does not look into the CARRAY data stream, it is the
programmer's responsibility to have the matching data format between the Jolt client
and the CARRAY service. The following example assumes that a session object was
already instantiated.
BEA Jolt Developer’s Guide 4-21

4 Using the Jolt Class Library
Listing 4-3 CARRAY Buffer Type

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

/* This code fragment illustrates how Jolt works with a service
* whose buffer type is CARRAY.
*/

import java.io.*;
import bea.jolt.*;
class ...
{

...
public void tryOnCARRAY()
{

byte data[];
JoltRemoteService csvc;
DataInputStream din;
DataOutputStream dout;
ByteArrayInputStream bin;
ByteArrayOutputStream bout;
/*
* Use java.io.DataOutputStream to put data into a byte array
*/

bout = new ByteArrayOutputStream(512);
dout = new DataOutputStream(bout);
dout.writeInt(100);
dout.writeFloat((float) 300.00);
dout.writeUTF("Hello World");
dout.writeShort((short) 88);
/*
* Copy the byte array into a new byte array "data". Then
* issue the Jolt remote service call.
*/

data = bout.toByteArray();
csvc = new JoltRemoteService("ECHO", session);
csvc.setBytes("CARRAY", data, data.length);
csvc.call(null);
/*
* Get the result from JoltRemoteService object and use
* java.io.DataInputStream to extract each individual value
* from the byte array.
*/

data = csvc.getBytesDef("CARRAY", null);
if (data != null)
{

bin = new ByteArrayInputStream(data);
din = new DataInputStream(bin);
4-22 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
System.out.println(din.readInt());
System.out.println(din.readFloat());
System.out.println(din.readUTF());
System.out.println(din.readShort());

}
}

}

Using the FML Buffer Type

FML (Field Manipulation Language) is a flexible data structure that can be used as a
typed buffer. The FML data structure stores tagged values that are typed, variable in
length, and may have multiple occurrences. The typed buffer is treated as an abstract
data type in FML.

FML gives you the ability to access and update data values without having to know
how the data is structured and stored. In your application program, you simply access
or update a field in the fielded buffer by referencing its identifier. To perform the
operation, the FML runtime determines the field location and data type.

FML is especially suited for use with Jolt clients as the client and server code may be
in two languages (for example, Java and C), the client/server platforms may have
different data type specifications, or the interface between the client and the server
changes frequently.

The following tryOnFml examples illustrate the use of the FML buffer type. The
examples show a Jolt client using FML buffers to pass data to a server. The server takes
the buffer, creates a new FML buffer to store the data, and passes that buffer back to
the Jolt client. The examples consist of the following components.

� The “tryOnFml.java” Code example is a Jolt client that contains a PASSFML
service.

� The “tryOnFml.f16 Field Definitions” code example is a Tuxedo FML field
definitions table used by the PASSFML service.

� The “tryOnFml.c” code example is a server code fragment that contains the
server side C code for handling the data sent by the Jolt client.
BEA Jolt Developer’s Guide 4-23

4 Using the Jolt Class Library
tryOnFml.java Client Code

The tryOnFml.java Java code fragment in the following listing illustrates how Jolt
works with a service whose buffer type is FML. The following example assumes that
a session object was already instantiated.

Listing 4-4 tryOnFml.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;
class ...
{

...
public void tryOnFml ()
{

JoltRemoteService passFml;
String outputString;
int outputInt;
float outputFloat;

...
passFml = new JoltRemoteService("PASSFML",session);
passFml.setString("INPUTSTRING", "John");
passFml.setInt("INPUTINT", 67);
passFml.setFloat("INPUTFLOAT", (float)12.0);
passFml.call(null);
outputString = passFml.getStringDef("OUTPUTSTRING", null);
outputInt = passFml.getIntDef("OUTPUTINT", -1);
outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
System.out.print("String =" + outputString);
System.out.print(" Int =" + outputInt);
System.out.println(" Float =" + outputFloat);
}

}

FML Field Definitions

The entries in the following listing, tryOnFml.f16, show FML field definitions for
the tryOnFml.java example.
4-24 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Listing 4-5 tryOnFml.f16 Field Definitions

#
FML field definition table
#
*base 4100
INPUTSTRING 1 string
INPUTINT 2 long
INPUTFLOAT 3 float
OUTPUTSTRING 4 string
OUTPUTINT 5 long
OUTPUTFLOAT 6 float

Define PASSFML in the Repository Editor

The"Using the STRING Buffer Type" figure illustrated the SIMPAPP package with
two services. The TOUPPER service was used to illustrate the STRING typed buffer.
The other service in SIMPAPP package is the PASSFML service. This service is used
with the tryOnFml.java and tryOnFml.c code. Before running the tryOnFml.java
example, you need to modify the PASSFML service through the Jolt Repository
Editor.

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for more information about defining a service.

1. Using the Jolt Repository Editor, define the PASSFML service with an input buffer
type of FML and an output buffer type of FML.

The following figure illustrates the Jolt Repository Edit Services window with
the PASSFML service.

2. Define the input buffer type and output buffer type as FML for the PASSFML
service.

3. Define the parameters for the PASSFML service. In this example, the parameters
are: INPUTSTRING, OUTPUTINT, INPUTINT, OUTPUTSTRING,
OUTPUTFLOAT, INPUTFLOAT.
BEA Jolt Developer’s Guide 4-25

4 Using the Jolt Class Library
Figure 4-7 Edit the PASSFML Service
4-26 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Figure 4-8 Edit the PASSFML Parameters

tryOnFml.c Server Code

The following listing illustrates the server side code for using the FML buffer type. The
PASSFML service reads in an input FML buffer and outputs a FML buffer.

Listing 4-6 tryOnFml.c Code Example

/*

* tryOnFml.c
*
* Copyright (c) 1997 BEA Systems, Inc. All rights reserved
*

BEA Jolt Developer’s Guide 4-27

4 Using the Jolt Class Library
* Contains the PASSFML Tuxedo server.
*
*/

#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "tryOnFml.f16.h"
/*
* PASSFML service reads in a input fml buffer and outputs a fml buffer.
*/

void
PASSFML(TPSVCINFO *rqst)
{
FLDLENlen;
FBFR*svcinfo = (FBFR *) rqst->data;
charinputString[256];
longinputInt;
floatinputFloat;
FBFR*fml_ptr;
intrt;
if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {
(void)userlog("Fget of INPUTSTRING failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTINT, 0, (char *) &inputInt, &len) < 0) {
(void)userlog("Fget of INPUTINT failed %s",Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTFLOAT, 0, (char *) &inputFloat, &len) < 0) {
(void)userlog("Fget of INPUTFLOAT failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
/* We could just pass the FML buffer back as is, put lets*/
/* store it into another FML buffer and pass it back.*/
if ((fml_ptr = (FBFR *)tpalloc("FML",NULL,rqst->len))==(FBFR *)NULL) {
4-28 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
(void)userlog("tpalloc failed in PASSFML %s",
tpstrerror(tperrno));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if(Fadd(fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);

}
if(Fadd(fml_ptr, OUTPUTINT, (char *)&inputInt, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);

}
if(Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %d\n", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);

}
tpreturn(TPSUCCESS, 0, (char *)fml_ptr, 0L, 0);
}

BEA Jolt Developer’s Guide 4-29

4 Using the Jolt Class Library
Using the VIEW Buffer Type

VIEW is a built-in Tuxedo typed buffer. The VIEW buffer provides a way to use C
structures and COBOL records with the Tuxedo system. The VIEW typed buffer
enables the Tuxedo run-time system to understand the format of C structures and
COBOL records based on the view description that is read at run time.

When allocating a VIEW, your application specifies a VIEW buffer type and a subtype
that matches the name of the view (the name that appears in the view description file).
The parameter name must match the field name in that view. Since the Tuxedo
run-time system can determine the space needed based on the structure size, your
application need not provide a buffer length. The run-time system can also
automatically handle such things as computing how much data to send in a request or
response, and handle encoding and decoding when the message transfers between
different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and
its server-side application. The example consists of three parts:

� The simpview.java Jolt client that contains the code used to connect to Tuxedo
and uses the VIEW buffer type (in the following listing)

� The simpview.v16 file that contains the Tuxedo VIEW field definitions

� The simpview.c code sample containing the server side C code for handling the
input from the Jolt client

The Jolt client treats a null character in a VIEW buffer string format as an end-of-line
character and truncates any part of the string that follows the null.

simpview.java Client Code

The following listing illustrates how Jolt works with a service whose buffer type is
VIEW. The client code is identical to the code used for accessing an FML service.

Note: The code in the following listing does not catch any exceptions. Since all Jolt
exceptions are derived from java.lang.RunTimeException, the Java
Virtual Machine (JVM) will catch these exceptions if the application does not.
(A well-written application would catch these exceptions, and take appropriate
actions.)
4-30 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Before running the example in the following listing, you need to add the VIEW service
to the SIMPAPP package using the Jolt Repository Editor and write the simpview.c
Tuxedo application. This service takes the data from the client VIEW buffer, creates a
new buffer and passes it back to the client as a new VIEW buffer. The following
example assumes that a session object has already been instantiated.

Listing 4-7 simpview.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */
/*
* This code fragment illustrates how Jolt works with a service whose buffer
* type is VIEW.
*/
import bea.jolt.*;
class ...
{
...
public void simpview ()
{
JoltRemoteService ViewSvc;
String outString;
int outInt;
float outFloat;
// Create a Jolt Service for the Tuxedo service "SIMPVIEW"
ViewSvc = new JoltRemoteService("SIMPVIEW",session);
// Set the input parametes required for SIMPVIEW
ViewSvc.setString("inString", "John");
ViewSvc.setInt("inInt", 10);
ViewSvc.setFloat("inFloat", (float)10.0);
// Call the service. No transaction required, so pass
// a "null" parameter
ViewSvc.call(null);
// Process the results
outString = ViewSvc.getStringDef("outString", null);
outInt = ViewSvc.getIntDef("outInt", -1);
outFloat = ViewSvc.getFloatDef("outFloat", (float)-1.0);
// And display them...
System.out.print("outString=" + outString + ",");
System.out.print("outInt=" + outInt + ",");
System.out.println("outFloat=" + outFloat);
}
}

BEA Jolt Developer’s Guide 4-31

4 Using the Jolt Class Library
VIEW Field Definitions

The following entries show the Tuxedo VIEW field definitions for the
simpview.java example.

Listing 4-8 simpview.v16 Field Definitions

#
VIEW for SIMPVIEW. This view is used for both input and output. The
service could also have used separate input and output views.
The first 3 params are input params, the second 3 are outputs.
#
VIEW SimpView
$
#type cname fbname count flag size null
string inString - 1 - 32 -
long inInt - 1 - - -
float inFloat - 1 - - -
string outString - 1 - 32 -
long outInt - 1 - - -
float outFloat - 1 - - -
END

Define VIEW in the Repository Editor

Before running the simpview.java and simpview.c examples, you need to define
the VIEW service through the Jolt Repository Editor.

Note: If you are not familiar with using the Jolt Repository Editor, refer to "Using
the Jolt Repository Editor" for more information about defining a service.
4-32 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Figure 4-9 Add SIMPVIEW Service

In the Repository Editor add the VIEW service as follows:

1. Add a SIMPVIEW service for the SIMPSERV package.

2. Define the SIMPVIEW service with an input buffer type of VIEW and an output
buffer type of VIEW.
BEA Jolt Developer’s Guide 4-33

4 Using the Jolt Class Library
Figure 4-10 Edit SIMPVIEW Service

3. Define the parameters for the VIEW service. In this example the parameters are:
inInt, inString, outFloat, outInt, outString.

Note: If using the X_COMMON or X_C_TYPE buffer types, you must put the
correct buffer type in the Input Buffer Type and Output Buffer Type fields.
Additionally, you must choose the corresponding Input View Name and
Output View Name fields.

simpview.c Server Code

In the following server code, the input and output buffers are VIEW. The code accepts
the VIEW buffer data as input and outputs the same data as VIEW.
4-34 BEA Jolt Developer’s Guide

Using Tuxedo Buffer Types with Jolt
Listing 4-9 simpview.c Code Example

/*
* SIMPVIEW.c
*
* Copyright (c) 1997 BEA Systems, Inc. All rights reserved
*
* Contains the SIMPVIEW Tuxedo server.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*
* Contents of simpview.h.
*
*struct SimpView {
*
*charinString[32];
*longinInt;
*floatinFloat;
*charoutString[32];
*longoutInt;
*floatoutFloat;
*};
*/
/*
* service reads in a input view buffer and outputs a view buffer.
*/
void
SIMPVIEW(TPSVCINFO *rqst)
{
/*
* get the structure (VIEWSVC) from the TPSVCINFO structure
*/
BEA Jolt Developer’s Guide 4-35

4 Using the Jolt Class Library
struct SimpView*svcinfo = (struct SimpView *) rqst->data;
/*
* print the input params to the UserLog. Note there is
* no error checking here. Normally a SERVER would perform
* some validation of input and return TPFAIL if the input
* is not correct.
*/

(void)userlog("SIMPVIEW: InString=%s,InInt=%d,InFloat=%f",
svcinfo->inString, svcinfo->inInt, svcinfo->inFloat);
/*
* Populate the output fields and send them back to the caller
*/

strcpy (svcinfo->outString, "Return from SIMPVIEW");
svcinfo->outInt = 100;
svcinfo->outFloat = (float) 100.00;
/*
* If there was an error, return TPFAIL
* tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
*/

tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);
}

4-36 BEA Jolt Developer’s Guide

Multithreaded Applications
Multithreaded Applications

As a Java-based set of classes, Jolt supports multithreaded applications. However,
various implementations of the Java language differ with respect to certain language
and environment features. Jolt programmers need to be aware of the following:

� The use of preemptive and non-preemptive threads when creating applications or
applets with the Jolt Class Library

� The use of threads to get asynchronous behavior similar to the tpacall()
function in Tuxedo

The following section describes the issues arising from using threads with different
Java implementations and is followed by an example of the use of threads in a Jolt
program.

Note: Most Java implementations provide preemptive rather than non-preemptive
threads. The difference between these two models can lead to very different
performance and programming requirements.

Threads of Control

Each concurrently operating task in the Java virtual machine is a thread. Threads exist
in various states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

� A RUNNING thread is a currently executing thread.

� A RUNNABLE thread can be run once the current thread has relinquished
control of the CPU. There can be many threads in the RUNNABLE state, but
only one can be in the RUNNING state. Running a thread means changing the
state of a thread from RUNNABLE to RUNNING, and causing the thread to
have control of the Java Virtual Machine (VM).

� A BLOCKED thread is a thread that is waiting on the availability of some event
or resource.

Note: The Java VM schedules threads of the same priority to run in a round-robin
mode.
BEA Jolt Developer’s Guide 4-37

4 Using the Jolt Class Library
Preemptive Threading

The main performance difference between the two threading models arises in telling a
running thread to relinquish control of the Java VM. In a preemptive threading
environment, the usual procedure is to set a hardware timer that goes off periodically.
When the timer goes off, the current thread is moved from the RUNNING to the
RUNNABLE state, and another thread is chosen to run.

Non-preemptive Threading

In a non-preemptive threading environment, a thread must volunteer to give up control
of the CPU and move to the RUNNABLE state. Many of the methods in the Java
language classes contain code that volunteers to give up control, and are typically
associated with actions that might take a long time. For example, reading from the
network will generally cause a thread to wait for a packet to arrive. A thread that is
waiting on the availability of some event or resource is in the BLOCKED state. When
the event occurs or the resource becomes available, the thread becomes RUNNABLE.

Using Jolt with Non-Preemptive Threading

If your Jolt-based Java program is running on a non-preemptive threading Virtual
Machine (such as Sun Solaris), the program must either:

� Occasionally call a method that blocks the thread, or

� Explicitly give up control of the CPU using the Thread.yield() method

The typical usage is to make the following call in all long running code segments or
potentially time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt library may never get
scheduled, and as such, the Jolt operation is impaired.

The only virtual machine known to use non-preemptive threading is the Java
Developer’s Kit (JDK version 1.0, 1.0.1, 1.0.2) machine running on a Sun platform. If
you want your applet to work on JDK 1.0, you must make sure to send the yield
4-38 BEA Jolt Developer’s Guide

Multithreaded Applications
messages. As mentioned earlier, some methods contain yields. An important exception
is the System.in.read method. This method does not cause a thread switch. Rather
than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior

You can use threads in Jolt to get asynchronous behavior that is analogous to the
tpacall() function in Tuxedo. With this capability, you do not need an asynchronous
service request function. You can get this functionality because Jolt is thread-safe. For
example, the Jolt client application can start one thread that sends a request to a Tuxedo
service function and then immediately start another thread that sends another request
to a Tuxedo service function. So even though the Jolt tpacall() is synchronous, the
application is asynchronous because the two threads are running at the same time.

Using Threads with Jolt

A Jolt client-side program or applet is fully thread-safe. Jolt support of multithreaded
applications includes the following client characteristics:

� Multiple sessions per client

� Multithreaded within a session

� Client application manages threads, not asynchronous calls

� Performs synchronous calls

The following program illustrates the use of two threads in a Jolt application.
BEA Jolt Developer’s Guide 4-39

4 Using the Jolt Class Library
Listing 4-10 Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */
import bea.jolt.*;
public class ThreadBank
{

public static void main (String [] args)
{

JoltSession session;
try
{

JoltSessionAttributes dattr;
String userName = null;
String userPasswd = null;
String appPasswd = null;
String userRole = null;

// fill in attributes required
dattr = new JoltSessionAttributes();
dattr.setString(dattr.APPADDRESS,”//bluefish:8501”);

// instantiate domain
// check authentication level
switch (dattr.checkAuthenticationLevel())
{

case JoltSessionAttributes.NOAUTH:
System.out.println(“NOAUTH\n”);
break;

case JoltSessionAttributes.APPASSWORD:
appPasswd = “myAppPasswd”;
break;

case JoltSessionAttributes.USRPASSWORD:
userName = “myName”;
userPasswd = “mySecret”;
appPasswd = “myAppPasswd”;
break;

}
dattr.setInt(dattr.IDLETIMEOUT, 60);
session = new JoltSession (dattr, userName, userRole,

userPasswd, appPasswd);
T1 t1 = new T1 (session);
T2 t2 = new T2 (session);

t1.start();
t2.start();

Thread.currentThread().yield();
try
4-40 BEA Jolt Developer’s Guide

Multithreaded Applications
{
while (t1.isAlive() && t2.isAlive())
{

Thread.currentThread().sleep(1000);

}
}
catch (InterruptedException e)
{

System.err.println(e);
if (t2.isAlive())
{

System.out.println(“job 2 is still alive”);
try
{

Thread.currentThread().sleep(1000);
}
catch (InterruptedException e1)
{

System.err.println(e1);
}

}
else if (t1.isAlive())
{ System.out.println(“job1 is still alive”);

try
{

Thread.currentThread().sleep(1000);
}
catch (InterruptedException e1)
{

System.err.println(e1);
}

}
}
session.endSession();

}
catch (SessionException e)
{

System.err.println(e);
}
finally
{

System.out.println(“normal ThreadBank term”);
}

}
}

class T1 extends Thread
{

BEA Jolt Developer’s Guide 4-41

4 Using the Jolt Class Library
JoltSession j_session;
JoltRemoteService j_withdrawal;

public T1 (JoltSession session)
{

j_session=session;
j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);

}
public void run()
{

j_withdrawal.addInt(“ACCOUNT_ID”,10001);
j_withdrawal.addString(“SAMOUNT”,”100.00”);
try
{

System.out.println(“Initiating Withdrawal from account
10001”);

j_withdrawal.call(null);
String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0”);
System.out.println(“-->Withdrawal Balance: “ + W);

}
catch (ApplicationException e)
{

e.printStackTrace();
System.err.println(e);

}
}

}

class T2 extends Thread
{

JoltSession j_session;
JoltRemoteService j_deposit;

public T2 (JoltSession session)
{

j_session=session;
j_deposit= new JoltRemoteService(“DEPOSIT”,j_session);

}
public void run()
{

j_deposit.addInt(“ACCOUNT_ID”,10000);
j_deposit.addString(“SAMOUNT”,”100.00”);
try
{
System.out.println(“Initiating Deposit from account 10000”);

j_deposit.call(null);
String D = j_deposit.getStringDef(“SBALANCE”,”-1.0”);
System.out.println(“-->Deposit Balance: “ + D);

}

4-42 BEA Jolt Developer’s Guide

Multithreaded Applications
catch (ApplicationException e)
{

e.printStackTrace();
System.err.println(e);

}
}

}

BEA Jolt Developer’s Guide 4-43

4 Using the Jolt Class Library
Event Subscription and Notifications

Programmers developing client applications with Jolt can receive event notifications
from either Tuxedo Services or other Tuxedo clients. The Jolt Class Library contains
classes that support the following types of Tuxedo notifications for handling
event-based communication:

� Unsolicited Event Notifications. These are notifications that a Jolt client
receives as a result of a Tuxedo client or service issuing a broadcast using either
a tpbroadcast() or a directly targeted message via a tpnotify() ATMI call.

� Brokered Event Notifications. These notifications are received by a Jolt client
through the Tuxedo Event Broker. The notifications are only received when the
Jolt client subscribes to an event and any Tuxedo client or server issues a
system-posted event or tppost() call.

API for Event Subscription

The Jolt Class Library provides four classes that implement the asynchronous
notification mechanism for Jolt client applications:

� JoltSession. The JoltSession class includes an onReply() method for receiving
notifications and notification messages.

� JoltReply. The JoltReply class gives the client application access to any
messages received with an event or notification.

� JoltMessage. The JoltMessage class provides get() methods for obtaining
information about the notification or event.

� JoltUserEvent. The JoltUserEvent class supports subscription to both unsolicited
and event notification types.

For additional information about these classes refer to the “API Reference in Javadoc.”
4-44 BEA Jolt Developer’s Guide

Event Subscription and Notifications
Notification Event Handler

For both unsolicited notifications and a brokered event notification, the Jolt client
application requires an event handler routine that is invoked upon receipt of a
notification.Jolt only supports a single handler per session. In Tuxedo versions, you
cannot determine which event generated a notification. Therefore, you cannot invoke
an event-specific handler based on a particular event.

The client application must provide a single handler (by overriding the onReply()
method) per session that will be invoked for all notifications received by that client for
that session. The single handler call-back function is used for both unsolicited and
event notification types. It is up to the (user-supplied) handler routine to determine
what event caused the handler invocation and take appropriate action. If the user does
not override the session handler, then notification messages are silently discarded by
the default handler.

The Jolt client provides the call back function by subclassing the JoltSession class and
overriding the onReply() method with a user-defined onReply() method.

In Tuxedo/ATMI clients, processing in the handler call-back function is limited to a
subset of ATMI calls. This restriction does not apply to Jolt clients. Separate threads
are used to monitor notifications and run the event handler method. A Jolt client can
perform all Jolt-supported functionality from within the handler. All the rules that
apply to a normal Jolt client program apply to the handler, such as a single transaction
per session at any time.

Each invocation of the handler method takes place in a separate thread. The application
developer should ensure that the onReply() method is either synchronized or written
thread-safe, since separate threads could be executing the method simultaneously.

Jolt uses an implicit model for enabling the handler routine. When a client subscribes
to an event, Jolt internally enables the handler for that client, thus enabling unsolicited
notifications as well. A Jolt client cannot subscribe to event notifications without also
receiving unsolicited notifications. In addition, a single onReply() method is invoked
for both types of notifications.
BEA Jolt Developer’s Guide 4-45

4 Using the Jolt Class Library
Connection Modes

Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all
notifications. Jolt clients working in connection-less mode receive notifications while
they have an active network connection to the Jolt Session Handler (JSH). When the
network connection is closed, the JSH logs and drops notifications destined for the
client. Jolt clients operating in a connection-less mode do not receive unsolicited
messages or notifications while they do not have an active network connection. All
messages received during this time are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt
clients in the Tuxedo environment. If a JSH receives an acknowledged notification for
a client and the client does not have an active network connection, the JSH logs an
error and returns a failure acknowledgment to the notification.

Notification Data Buffers

When a client receives notification, it is accompanied by a data buffer. The data buffer
can be of any Tuxedo data buffer type. Jolt clients (for example, the handler) will
receive these buffers as a JoltMessage object and should use the appropriate
JoltMessage class get*() methods to retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for
notification. However, the Jolt client application programmer needs to know field
names.

The Jolt system does not provide functionality equivalent to tptypes() in Tuxedo.
For FML and VIEW buffers, the data is accessed using the get*() methods with the
appropriate field name, for example:

getIntDef ("ACCOUNT_ID", -1);

For STRING and CARRAY buffers, the data is accessed by the same name as the
buffer type:

getStringDef ("STRING", null);
getBytesDef ("CARRAY", null);
4-46 BEA Jolt Developer’s Guide

Event Subscription and Notifications
STRING and CARRAY buffers contain only a single data element. This complete
element is returned in the get*() methods above.

Tuxedo Event Subscription

Tuxedo brokered event notification allows Tuxedo programs to post events without
knowing what other programs are supposed to receive notification of an event’s
occurrence. The Jolt event notification allows Jolt client applications to subscribe to
Tuxedo events that are broadcast or posted using the Tuxedo tpnotify() or
tpbroadcast() calls.

Jolt clients are only able to subscribe to events and notifications that are generated by
other components in Tuxedo (such as a Tuxedo Service or Client). Jolt clients are not
able to send events or notifications.

Supported Subscription Types

Jolt only supports notification types of subscriptions. The Jolt onReply() method is
called when a subscription is fulfilled. The Jolt API does not support dispatching a
service routine or enqueueing a message to an application queue when a notification is
received.

Subscribing to Notifications

If a Jolt client subscribes to a single event notification, the client receives both
unsolicited messages and event notification. Subscribing to an event implicitly enables
unsolicited notification. This means that if the application creates a JoltUserEvent
object for Event "X", the client automatically receives notifications directed to it as a
result of tpnotify() or tpbroadcast().

Note: This is not the recommended method for enabling unsolicited notification. If
you want unsolicited notification, the application should explicitly do so (as
described in the JoltUserEvent class). The reason for this is explained in the
following section.
BEA Jolt Developer’s Guide 4-47

4 Using the Jolt Class Library
Unsubscribing from Notifications

To stop subscribing to event notifications and/or unsolicited messages, you need to use
the JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with
an unsubscribe method does not turn off all subscription notifications. This differs
from Tuxedo. In Tuxedo the use of tpsetunsol() with a NULL handler turns off all
subscription notifications.

When unsubscribing, the following considerations apply:

� If a client is subscribed to only a single event, unsubscribing disables both the
event notification and unsolicited messages.

� If a client has multiple subscriptions, then unsubscribing from any single
subscription disables only that single subscription. Unsolicited notifications
continue. Only the last subscription to be unsubscribed causes unsolicited
notification to stop.

� If a client subscribes to both unsolicited and event notifications, then
unsubscribing to only the unsolicited notification will not stop either type of
notification from continuing. In addition, this unsubscribe does not throw an
exception. However, the Jolt API remembers that an unsubscribe has taken place
and a subsequent unsubscribe to the remaining event disables both event
notification and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make
sure that you have unsubscribed to all events.
4-48 BEA Jolt Developer’s Guide

Event Subscription and Notifications
Using the Jolt API to Receive Tuxedo Notifications

The example code provided in the following listing shows how to use the Jolt Class
Library for receiving notifications and includes the use of the JoltSession, JoltReply,
JoltMessage and JoltUserEvent classes.

Listing 4-11 Asynchronous Notification

class EventSession extends JoltSession
{

public EventSession(JoltSessionAttributes attr, String user,
String role, String upass, String apass)

{
super(attr, user, role, upass, apass);

}
/**
* Override the default unsolicited message handler.
* @param reply a place holder for the unsolicited message
* @see bea.jolt.JoltReply
*/
public void onReply(JoltReply reply)
{

// Print out the STRING buffer type message which contains
// only one field; the field name must be "STRING". If the
// message uses CARRAY buffer type, the field name must be
// "CARRAY". Otherwise, the field names must conform to the
// elements in FML or VIEW.

JoltMessage msg = (JoltMessage) reply.getMessage();
System.out.println(msg.getStringDef("STRING", "No Msg"));

}
public static void main(Strings args[])
{

JoltUserEvent unsolEvent;
JoltUserEvent helloEvent;
EventSession session;
...

// Instantiate my session object which can print out the
// unsolicited messages. Then subscribe to HELLO event
// and Unsolicited Notification which both use STRING
// buffer type for the unsolicited messages.

session = new EventSession(...);
BEA Jolt Developer’s Guide 4-49

4 Using the Jolt Class Library
helloEvent = new JoltUserEvent("HELLO", null, session);
unsolEvent = new JoltUserEvent(JoltUserEvent.UNSOLMSG, null,

session);
...

// Unsubscribe the HELLO event and unsolicited notification.
helloEvent.unsubscribe();
unsolEvent.unsubscribe();

}
}

4-50 BEA Jolt Developer’s Guide

Clearing Parameter Values
Clearing Parameter Values

The Jolt Class Library includes a method (the clear() method) that allows you to
remove existing attributes from an object and, in effect, provides for the reuse of the
object. The reuseSample.java example illustrates how to use the clear() method
for clearing parameter values.

The reuseSample.java example shows how to reuse the JoltRemoteService
parameter values. The example shows that you do not have to destroy the service to
reuse it. Instead, the svc.clear(); statement is used to discard the existing input
parameters before reusing the addString() method.

Listing 4-12 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */
import java.net.*;
import java.io.*;
import bea.jolt.*;
/*
* This is a Jolt sample program that illustrates how to reuse the
* JoltRemoteService after each invocation.
*/
class reuseSample
{

private static JoltSession s_session;
static void init(String host, short port)
{

/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

String username = null;
String userrole = “sw-developer”;
String applpasswd = null;
String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())
{

case JoltSessionAttributes.NOAUTH:
break;

case JoltSessionAttributes.APPASSWORD:
BEA Jolt Developer’s Guide 4-51

4 Using the Jolt Class Library
applpasswd = “secret8”;
break;

case JoltSessionAttributes.USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1”;
applpasswd = “secret8”;
break;

}

/* Logon now without any idle timeout (0). */
/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);
s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

}

public static void main(String args[])
{

String host;
short port;
JoltRemoteService svc;

if (args.length != 2)
{

System.err.println(“Usage: reuseSample host port”);
System.exit(1);

}

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parseInt(args[1]);

init(host, port);

/* Get the object reference to the DELREC service. This
* service has no output parameters, but has only one input
* parameter.
*/

svc = new JoltRemoteService(“DELREC”, s_session);
try
{

/* Set input parameter REPNAME. */
svc.addString(“REPNAME”, “Record1”);
svc.call(null);
/* Change the input parameter before reusing it */
svc.setString(“REPNAME”, “Record2”);
svc.call(null);

/* Simply discard all input parameters */
svc.clear();
4-52 BEA Jolt Developer’s Guide

Reusing Objects
svc.addString(“REPNAME”, “Record3”);
svc.call(null);

}
catch (ApplicationException e)
{

System.err.println(“Service DELREC failed: “+
e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));

}

/* Logoff now and get rid of the object. */
s_session.endSession();

}
}

Reusing Objects

The following extendSample.java example illustrates one way to subclass the
JoltRemoteService class. In this case, a TransferService class is created by subclassing
the JoltRemoteService class. The TransferService class extends the JoltRemoteService
class, adding a Transfer feature which makes use of the Tuxedo bankapp funds
TRANSFER service.

The example uses the extends keyword from the Java language. The extends keyword
is used in Java to subclass a base (parent) class. The following code shows only one of
many different ways to extend from JoltRemoteService.

Listing 4-13 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import java.net.*;
import java.io.*;
import bea.jolt.*;

/*
* This Jolt sample code fragment illustrates how to customize
* JoltRemoteService. It uses the Java language “extends” mechanism
*/
class TransferService extends JoltRemoteService
{

BEA Jolt Developer’s Guide 4-53

4 Using the Jolt Class Library
public String fromBal;
public String toBal;

public TransferService(JoltSession session)
{

super(“TRANSFER”, session);
}

public String doxfer(int fromAcctNum, int toAcctNum, String
amount)

{
/* Clear any previous input parameters */
this.clear();

/* Set the input parameters */
this.setIntItem(“ACCOUNT_ID”, 0, fromAcctNum);
this.setIntItem(“ACCOUNT_ID”, 1, toAcctNum);
this.setString(“SAMOUNT”, amount);

try
{

/* Invoke the transfer service. */
this.call(null);

/* Get the output parameters */
fromBal = this.getStringItemDef(“SBALANCE”, 0, null);
if (fromBal == null)

return “No balance from Account “ +
fromAcctNum;

toBal = this.getStringItemDef(“SBALANCE”, 1, null);
if (toBal == null)

return “No balance from Account “ + toAcctNum;
return null;

}
catch (ApplicationException e)
{

/* The transaction failed, return the reason */
return this.getStringDef(“STATLIN”, “Unknown reason”);

}
}

}

class extendSample
{

public static void main(String args[])
{

JoltSession s_session;
String host;
short port;
4-54 BEA Jolt Developer’s Guide

Reusing Objects
TransferService xfer;
String failure;

if (args.length != 2)
{

System.err.println(“Usage: reuseSample host port”);
System.exit(1);
}

/* Get the host name and port number for initialization. */
host = args[0];
port = (short)Integer.parseInt(args[1]);

/* Prepare to connect to the Tuxedo domain. */
JoltSessionAttributes attr = new JoltSessionAttributes();
attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

String username = null;
String userrole = “sw-developer”;
String applpasswd = null;
String userpasswd = null;

/* Check what authentication level has been set. */
switch (attr.checkAuthenticationLevel())
{

case JoltSessionAttributes.NOAUTH:
break;

case JoltSessionAttributes.APPASSWORD:
applpasswd = “secret8”;
break;

case JoltSessionAttributes.USRPASSWORD:
username = “myName”;
userpasswd = “BEA#1”;
applpasswd = “secret8”;
break;

}

/* Logon now without any idle timeout (0). */
/* The network connection is retained until logoff. */
attr.setInt(attr.IDLETIMEOUT, 0);
s_session = new JoltSession(attr, username, userrole,
userpasswd, applpasswd);

/*
* TransferService extends from JoltRemoteService and uses the
* standard Tuxedo BankApp TRANSFER service. We invoke this
* service twice with different parameters. Note, we assume
* that “s_session” is initialized somewhere before.
*/
BEA Jolt Developer’s Guide 4-55

4 Using the Jolt Class Library
xfer = new TransferService(s_session);
if ((failure = xfer.doxfer(10000, 10001, “500.00”)) != null)

System.err.println(“Tranasaction failed: “ + failure);
else
{

System.out.println(“Transaction is done.”);
System.out.println(“From Acct Balance: “+xfer.fromBal);
System.out.println(“ To Acct Balance: “+xfer.toBal);

}

if ((failure = xfer.doxfer(51334, 40343, “$123.25”)) != null)
System.err.println(“Tranasaction failed: “ + failure);

else
{

System.out.println(“Transaction is done.”);
System.out.println(“From Acct Balance: “+xfer.fromBal);
System.out.println(“ To Acct Balance: “+xfer.toBal);

}

}
}

4-56 BEA Jolt Developer’s Guide

Application Deployment and Localization
Application Deployment and Localization

The Jolt Class Library allows you to build Java applications that execute from within
a client Web browser. For these types of applications, you need to address the
following application development tasks:

� Deploying your Jolt application in an HTML page

� Localizing your Jolt application for different languages and character sets

The following sections describe these application development considerations.

Deploying a Jolt Applet

When you deploy a Jolt applet, you need to consider the three components that operate
together to make the applet function in a Web browser environment:

� Requirements for the Tuxedo server and Jolt server

� Client-side execution of the applet

� Requirements for the Web server that downloads the Java applet

Information for configuring the Tuxedo server and Jolt server to work with Jolt is
available in Installing the BEA Tuxedo System. The following sections describe
common client and Web server considerations for deploying Jolt applets.
BEA Jolt Developer’s Guide 4-57

4 Using the Jolt Class Library
Client Considerations

When you write a Java applet that incorporates Jolt classes, the applet works just as
any other Java applet in an HTML page. A Jolt applet can be embedded in an HTML
page using the HTML applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the
HTML page loads. You can code the applet to run immediately after it is downloaded,
or you can include code that sets the applet to run based upon a user action, a timeout,
or a set interval. You can also create an applet that downloads in the HTML page, but
opens in another window or, for instance, simply plays a series of sounds or musical
tunes at intervals. The programmer has a large degree of freedom in coding the applet
initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution is
stopped.

Web Server Considerations

When you use the Jolt classes in a Java applet, the Jolt Server must run on the same
machine as the Web server that downloads the Java applet unless you install Jolt Relay
on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the HTML
files. Within that directory, a subdirectory named “classes” must be created to contain
all Java class files and packages. For example:

<html-dir>/classes/bea/jolt

Or, you can set the CLASSPATH to include the jolt.jar file that contains all the Jolt
classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient access,
you may want to place it in the same directory as the HTML files. The only
requirement for the Jolt classes subdirectory is that the classes must be made
available to the Web server.
4-58 BEA Jolt Developer’s Guide

Application Deployment and Localization
The HTML file for the Jolt applet should refer the codebase to the jolt.jar file or
the classes directory. For example:

/export/html/
|______ classes/
| |______ bea/
| | |______ jolt/
| | |______ JoltSessionAttributes.class
| | |______ JoltRemoteServices.class
| | |______ ...
| |______ mycompany/
| |______ app.class
|______ ex1.html
|______ ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400
height=200>

Localizing a Jolt Applet

If your Jolt application is intended for international use, you must address certain
localization issues. Localization considerations apply to applications that execute from
a client Web browser and applications that are designed to run outside a Web browser
environment. Localization tasks can be divided into two categories:

� Adapting an application from its original language to a target language.

� Translating strings from one language to another. This sometimes requires
specifying a different alphabet or a character set from the one used in the
original language.

For localization, the Jolt Class Library package relies on the conventions of the Java
language and the Tuxedo system. Jolt transfers Java 16-bit Unicode characters to the
JSH. The JSH provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes,
refer to your Java Development Kit (JDK) documentation.
BEA Jolt Developer’s Guide 4-59

4 Using the Jolt Class Library
4-60 BEA Jolt Developer’s Guide

CHAPTER
5 Using JoltBeans

Formerly available as an add on, JoltBeans are included in BEA Jolt. Using JoltBeans,
you can create Jolt client applications with the ease of using JavaBeans. JoltBeans are
JavaBeans components that are used in Java development environments to construct
Jolt clients. You can use popular Java-enabled development tools such as Symantec
Visual Café to graphically construct client applications. JoltBeans provide a
JavaBeans-compliant interface to BEA Jolt. You can develop a fully functional BEA
Jolt client without writing any code.

“Using Jolt Beans” covers the following topics:

� Overview of Jolt Beans

� JoltBeans Terms

� Adding JoltBeans to Your Java Development Environment

� JavaBeans Events and Tuxedo Events

� How JoltBeans Use JavaBeans Events

� JoltSessionBean

� JoltServiceBean

� JoltUserEventBean

� Jolt Aware GUI Beans

� Using the Property List and the Property Editor to Modify the JoltBeans
Properties

� JoltBeans Class Library Walkthrough

� Building the Sample Form

� Wiring the JoltBeans Together
BEA Jolt Developer’s Guide 5-1

5 Using JoltBeans
� Using the Jolt Repository and Setting the Property Values

� JoltBeans Programming Tasks

� Using Transactions with JoltBeans

� Using Custom GUI Elements with the JoltService Bean

� How JoltBeans Use JavaBeans Events

Overview of Jolt Beans

JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans toolkit, is a
beans version of the Jolt API. The second set consists of GUI beans, which include
Jolt-aware AWT beans and Jolt-aware Swing beans. These GUI components are a
“Jolt-enabled” version of some of the standard Java AWT and Swing components, and
help you build a Jolt client GUI with minimal or no coding.

You can drag and drop JoltBeans from the component palette of a development tool
and position them on the Java form (or forms) of the Jolt client application you’re
creating. You can populate the properties of the beans and graphically establish event
source-listener relationships between various beans of the application or applet.
Typically, the development tool is used to generate the event hook-up code, or you can
code the hook-up manually. Client development using JoltBeans is integrated with the
BEA Jolt repository, providing easy access to available BEA Tuxedo services.

Note: Currently, Symantec Visual Café 3.0 is the only IDE that has been certified by
BEA for use with JoltBeans. However, JoltBeans are also compatible with
other Java development environments such as Visual Age.

The first topics in this section provide a general, conceptual overview of how
JoltBeans work, as well as a description of each Jolt bean and how it interacts with
Tuxedo events. The JoltBeans walkthrough demonstrates the specific steps required to
create a Jolt client that interacts with Tuxedo services.

To use the JoltBeans toolkit, it is recommended that you be familiar with
JavaBeans-enabled, integrated development environments (IDEs). The walkthrough in
this chapter is based on Symantec’s Visual Café 3.0 IDE and illustrates the basic steps
of building a sample applet.
5-2 BEA Jolt Developer’s Guide

JoltBeans Terms
JoltBeans Terms

Refer to the following terms as you work with JoltBeans:

JavaBeans
Reusable software components that are graphically displayed in a
development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of
communication can be JavaBeans events, methods, or properties offered by
JoltBeans.

Jolt-Aware Bean
A bean that is source of JoltInputEvents, listener of JoltOutputEvents, or
both. Jolt-aware beans are a subset of Custom GUI elements that follow beans
guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components (AWT and Swing), both containing the
JoltList, JoltCheckBox, JoltTextField, JoltLabel, and JoltChoice
components.

JoltBeans Toolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the
JoltServiceBean, JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a
listener of events from another bean.
BEA Jolt Developer’s Guide 5-3

5 Using JoltBeans
Adding JoltBeans to Your Java Development
Environment

Before you can use JoltBeans, you must set up your development environment to
include JoltBeans. To set up your Java development environment, you must:

� Set the class path in your development environment to include all the Jolt
classes.

� Add JoltBeans to the Component Library of your development environment.

The method of setting the CLASSPATH can vary, depending on the development
environment you’re using.

JoltBeans includes a set of .jar files containing all of the JoltBeans. You can add
these .jar files to your preferred Java development environment so that JoltBeans are
available in the component library of your Java tool. For example, using Symantec
Visual Café, you can set the CLASSPATH so that the .jar files are visible in the
Component Library window of Visual Café. You only need to set the CLASSPATH of
these .jar files in your development environment once. After you have placed these
.jar files in the CLASSPATH of your development environment, you can then add
JoltBeans to the Component Library. Then you can simply drag and drop any JoltBean
directly onto the Java form on which you are developing your Jolt client application.

To set the CLASSPATH in your Java development environment, follow the instructions
in the product documentation for your development environment. Navigate from the
IDE of your development tool to the directory where the jolt.jar file resides. The
jolt.jar file is typically found in the directory called %TUXDIR%\udatadoj\jolt.
The jolt.jar file contains the main Jolt classes. Set the CLASSPATH to include these
classes. The JoltBean .jar files do not need to be added to the CLASSPATH. To use
them, you only need to add them as components in your IDE.

After you have set the CLASSPATH to include the Jolt classes, you can add JoltBeans to
the Component Library of your development environment. See the documentation for
your particular development environment for instructions on populating the
Component Library.

When you are ready to add JoltBeans to the Component Library of your development
environment, add only the development version of JoltBeans, as explained in the next
section, “Using Development and Runtime JoltBeans.”
5-4 BEA Jolt Developer’s Guide

Basic Steps For Using JoltBeans
Using Development and Runtime JoltBeans

The .jar files containing JoltBeans contain two versions of each JoltBean, a
development version and a runtime version. The development version of each JoltBean
name ends with the suffix Dev. The runtime version of each class name ends with the
suffix Rt. For example, the development version of the class, JoltBean, is
JoltBeanDev, while the runtime version of the same class is JoltBeanRt.

Use the development version of JoltBeans during the development process. The
development JoltBeans have additional properties that enhance development in a
graphic IDE. For example, the development Beans have graphic properties (“bean
information”) that allow you to work with them as graphic icons in your development
environment.

The runtime version of JoltBeans does not have these additional properties. You do not
need the additional development properties of the beans at runtime. The runtime beans
are simply a pared down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled
using the development beans. However, if you want to run it from a command line
outside of your development environment, it is recommended that you set the
CLASSPATH so that the runtime beans are used when compiling your application.

Basic Steps For Using JoltBeans

After you have added the development version of JoltBeans to the Component Library
of your Java development environment, the basic steps in using JoltBeans during
development are as follows:

1. Drag the beans from the JoltBeans component palette of your development
environment to the Java form-designer for a Jolt client application or applet.

2. Populate the properties of the beans and set up the event-source listener
relationships between the beans of the application or applet (“wire” the beans
together). The development tool generates the event hook-up code.

3. Finally, add the application logic to the event callbacks.
BEA Jolt Developer’s Guide 5-5

5 Using JoltBeans
These steps are explained in more detail in the following sections. The JoltBeans
walkthrough demonstrates each of these steps with an example.

JavaBeans Events and Tuxedo Events

JavaBeans communicate through events. An event in a BEA Tuxedo system is
different from an event in a JavaBeans environment. In a Tuxedo application, an event
is raised from one part of an application to another part of the same application.
JoltBeans events are communicated between beans.

Using Tuxedo Event Subscription and Notification with JoltBeans

Tuxedo supports brokered and unsolicited event notification. Jolt provides a
mechanism for Jolt clients to receive Tuxedo events. JoltBeans also include this
capability.

Note: Tuxedo event subscription and notification is different from JavaBeans events.

The following example shows how the Tuxedo asynchronous notification mechanism
is used in JoltBeans applications.

1. Use the setEventName() and setFilter() methods of the JoltUserEventBean
to specify the Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registers itself as a
JoltOutputListener to the JoltSessionBean.

3. The subscribe() method is called on JoltUserEventBean.

4. When the actual Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to its listeners by calling serviceReturned() on them. The
JoltOutputEvent object contains the data of the Tuxedo event.

When the client is no longer interested in the event, it calls unsubscribe() on the
JoltUserEventBean.

Note: If the client wants only to subscribe to unsolicited events, use setEventName
("\\.UNSOLMSG"), which can be set using the property sheet. EventName
and Filter are properties of the JoltUserEventBean.)
5-6 BEA Jolt Developer’s Guide

How JoltBeans Use JavaBeans Events
How JoltBeans Use JavaBeans Events

A Jolt client applet or application that has been built using JoltBeans typically consists
of Jolt-aware GUI Beans, such as JoltTextField or JoltList, and JoltBeans, such as
JoltServiceBean and JoltSessionBean. The main mode of communication between
Beans is by JavaBeans events.

Jolt-aware beans are sources of JoltInputEvents or listeners of JoltOutputEvents or
both. JoltServiceBeans are sources of JoltOutputEvents and listeners of
JoltInputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans
directly to the parameters of a Tuxedo service (represented by a JoltServiceBean).
Jolt-aware beans notify the JoltServiceBean via a JoltInputEvent when their content
changes. The JoltServiceBean sends a JoltOutputEvent to all registered Jolt-aware
beans when the reply data is available after the service call. The Jolt-aware GUI Beans
contain logic that updates their contents with the corresponding output parameter of
the service.

The following figure shows a graphical representation of the possible relationships
among the JoltBeans.
BEA Jolt Developer’s Guide 5-7

5 Using JoltBeans
Figure 5-1 Possible Interrelationships Among the JoltBeans

The JoltBeans Toolkit

The JoltBeans Toolkit includes the following beans:

� JoltSessionBean

� JoltServiceBean

� JoltUserEventBean

These components transform the complete Jolt Class Library into beans components,
with all of the features of any typical JavaBean, including easy reuse and graphic
development ease.

Refer to the online API Reference in Javadoc in this help system for specific
descriptions of the JoltBeans classes, constructors, and methods.

The following sections provide information about the properties of each bean.
5-8 BEA Jolt Developer’s Guide

The JoltBeans Toolkit
JoltSessionBean

The JoltSessionBean, which represents the Tuxedo session, encapsulates the
functionality of the JoltSession, JoltSessionAttributes, and JoltTransaction classes.
The JoltSessionBean offers properties to set session and security attributes, such as
sending a timeout or a Tuxedo user name, as well as methods to open and close a
Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the Tuxedo session is
established or closed. PropertyChange is a standard bean event defined in the
java.beans package. The purpose of this event is to signal other beans about a change
of the value of a property in the source bean. In this case, the source is the
JoltSessionBean, the targets are JoltServiceBeans or JoltUserEventBeans, and the
property changing is the LoggedOn property of the JoltSessionBean. When a logon is
successful and a session is established, LoggedOn is set to true. After the logoff is
successful and the session is closed, the LoggedOn property is set to false.

The JoltSessionBean provides methods to control transactions, including
beginTransaction(), commitTransaction(), and rollbackTransaction().

The following table shows the JoltSessionBean properties and descriptions.

Table 5-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the IP address (host name) and port number of the JSL or the Jolt
Relay. The format is //host:port number (e.g.,
myhost:7000).

AppPassword Set the Tuxedo application password used at logon, if required.

IdleTimeOut Set the IDLETIMEOUT value.

inTransaction Indicate true or false depending if a transaction has been started
and not committed or aborted.

LoggedOn Indicate true or false if a Tuxedo session does or does not exist.

ReceiveTimeOut Set the RECVTIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.

SessionTimeOut Set the SESSIONTIMEOUT value.
BEA Jolt Developer’s Guide 5-9

5 Using JoltBeans
JoltServiceBean

The JoltServiceBean represents a remote Tuxedo service. The name of the service is
set as a property of the JoltServiceBean. The JoltServiceBean listens to
JoltInputEvents from other beans to populate its input buffer. JoltServiceBean offers
the callService() method to invoke the service. JoltServiceBean is an event source
for JoltOutputEvents that carry information about the output of the service. After a
successful callService(), listener beans are notified via a JoltOutputEvent that
carries the reply message.

Although the primary way of changing and querying the underlying message buffer of
the JoltServiceBean is via events, the JoltServiceBean also provides methods to access
the underlying message buffer directly (setInputValue(…), getOutputValue(…)).

The following table shows the JoltServiceBean properties and descriptions.

UserName Indicate the Tuxedo user name, if required.

UserPassword Indicate the Tuxedo user password, if required.

UserRole Indicate the Tuxedo user role, if required.

Table 5-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

Table 5-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows access to
the Tuxedo client session.

Transactional Set to true if this JoltServiceBean is to be included in the transaction
that was started by its JoltSessionBean.
5-10 BEA Jolt Developer’s Guide

Jolt Aware GUI Beans
JoltUserEventBean

The JoltUserEventBean provides access to Tuxedo events. The Tuxedo event to
subscribe to or unsubscribe from is defined by setting the appropriate properties of this
bean (event name and event filter). The actual event notification is delivered in the
form of a JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Jolt Aware GUI Beans

The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are
inherited from the Java Abstract Windowing Toolkit. They include:

� JoltTextField

� JoltLabel

� JoltList

� JoltCheckbox

� JoltChoice

Note: To avoid errors when compiling, it is recommended that you use only the
AWT beans together, or the Swing beans together, rather than mixing beans
from these two packages.

Table 5-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter

Session The JoltSessionBean associated with the bean that allows access to
the Tuxedo client session.
BEA Jolt Developer’s Guide 5-11

5 Using JoltBeans
JoltTextField

This is a Jolt-aware extension of java.awt.TextField and Swing JTextfield.

JoltTextField contains parts of the input for a service. A JoltServiceBean may listen to
events raised by a JoltTextField. JoltTextField sends JoltInputEvents to its listeners
(typically JoltServiceBeans) when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

JoltLabel

This is a Jolt-aware extension of java.awt.Label and Swing JLabel that is linked
to a specific field in the Jolt output buffer by its JoltFieldName property. If the field
occurs multiple times, the occurrence this textfield is linked to is specified by the
occurrenceIndex property of this bean. JoltLabel can be connected with
JoltServiceBeans to display output from a service. A JoltLabel listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the
occurrence of the field to which it is linked.

JoltList

This is a Jolt-aware extension of java.awt.List and Swing Jlist that is linked to a
specific Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the
field occurs multiple times in the Jolt input buffer, the occurrence this list is linked to
is specified by the occurrenceIndex property of this bean. JoltList can be connected
with JoltServiceBeans in two ways:

� JoltList contains parts of the input for a service. A JoltServiceBean listens to
events raised by a JoltList. JoltList sends JoltInputEvents to its listeners when
the selection in the listbox changes. The JoltInputEvent, in this case, is populated
with the single value of the selected item.

� JoltList displays output from a service. When used to display the output of a
service, JoltList listens to JoltOutputEvents from JoltServiceBeans and updates
its contents accordingly with all occurrences of the field to which it is linked.
5-12 BEA Jolt Developer’s Guide

Jolt Aware GUI Beans
JoltCheckbox

JoltCheckbox is a Jolt-aware extension of java.awt.Checkbox and Swing
JCheckBox that is linked to a specific field in the Jolt input buffer by its JoltFieldName
property. If the field occurs multiple times, the occurrence this checkbox is linked to
is specified by the occurrenceIndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for
a service. A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the checkbox changes. The JoltInputEvent in this case is populated with the
TrueValue property of data type String (if the box is selected) or FalseValue (if the
box is unselected).

JoltChoice

JoltChoice provides a Jolt-aware extension of java.awt.Choice and Swing JChoice
that is linked to a specific field in the Jolt input buffer by its JoltFieldName property.
If the field occurs multiple times, the occurrence this choice is linked to is specified by
the occurrenceIndex property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a
service. A JoltServiceBean may listen to events raised by a JoltChoice. JoltChoice
sends JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection
in the choicebox changes. The JoltInputEvent in this case is populated with the single
value of the selected item.

Note: For a detailed description of these classes, see the online Javadoc class
reference library included with Jolt.
BEA Jolt Developer’s Guide 5-13

5 Using JoltBeans
Using the Property List and the Property
Editor to Modify the JoltBeans Properties

The values of most JoltBeans properties can be modified by simply editing the right
column of the Property List, as shown in the following figure.

Custom Property Editors are provided, for some properties of JoltBeans.

The Custom Property Editors, accessed from the Property List, include dialog boxes
that are used to modify the property values. You can invoke the Custom Property
Editors from the Property List by selecting the button with the ellipsis (“...”) that is
next to the value of the corresponding property value.

Figure 5-2 Example of the Property List and Ellipsis Button

When the ellipsis button is selected, the Property Editor shown in the following figure
displays.
5-14 BEA Jolt Developer’s Guide

Using the Property List and the Property Editor to Modify the JoltBeans Properties
Figure 5-3 Custom Property Editor Dialog Box
.

The Custom Property Editor of JoltBeans reads cached information. Initially, there is
no cached information available, so when the Property Editor is used for the first time,
the dialog box is empty. Log on to the Jolt repository and load the property editor cache
from the repository.

Details of the logon and an example of using the Property List and Property Editor are
shown in the “Using the Jolt Repository and Setting the Property Values” section of
the “JoltBeans Class Library Walkthrough.”
BEA Jolt Developer’s Guide 5-15

5 Using JoltBeans
JoltBeans Class Library Walkthrough

This walkthrough describes how to build an applet that is used to:

� Enter an account ID

� Click on the Inquiry button

� Display the balance of the account (shown in the following figure).

This is an example of a completed Java form containing JoltBeans. The applet
implements the client functionality for the INQUIRY service of the BANKAPP
sample that is included with Tuxedo. To run this sample, the Tuxedo server must be
running.

Figure 5-4 Sample Inquiry Applet

Refer to Figure 5-6 for an example of each item. To begin, select the following beans,
shown in the following table.
5-16 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Building the Sample Form

The following example is created using the Visual Café 3.0 development environment.
The example demonstrates how to build an applet that allows you to enter an account
ID and use a Tuxedo service to get and show the account balance. The basic steps to
create this example are as follows:

1. Choose File | New Project and select either JFC Applet or AWT application. This
step provides you with the basic form designer on which you drop the JoltBeans.

2. Drag and drop all of the JoltBeans you want to use in your applet from the
Component Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property
editor.

4. Wire the beans together using the Interaction Wizard.

5. Compile the applet.

These steps are described in detail in the following sections.

Table 5-4 Required Form Components

Component Purpose

Applet (or JApplet, if JFC
applet is chosen)

A form used to paint the beans in your development
environment.

JoltSessionBean Logs on to a Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses a Tuxedo service. (In this case, INQUIRY from
BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.
BEA Jolt Developer’s Guide 5-17

5 Using JoltBeans
Note: The graphic interface of previous versions of Visual Café will differ from the
look of Visual Café 3.0. You can complete this sample applet in a previous
version Visual Café, however, the steps executed in the Interaction Wizard
differ slightly from this example.

Placing JoltBeans onto the Form Designer

1. First, choose File | New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following
figure) onto the form designer.

The following figure shows how a JoltBean is selected and dragged and dropped
onto the palette of Form Designer.

The next figure shows how JoltBeans appear when they are placed on the palette
of the Form Designer.
5-18 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Figure 5-5 JoltBeans and the Form Designer in Visual Café
BEA Jolt Developer’s Guide 5-19

5 Using JoltBeans
Figure 5-6 Visual Café 3.0 Form Designer

3. Next, set the properties of each bean. To modify or customize the buttons, labels
or fields, use the property list. Some JoltBeans use a Custom Property Editor.

The example in the next figure shows how selecting the JoltFieldName of the
button property list displays the Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of
the JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the
JoltBeans, refer to “Using the Jolt Repository and Setting the Property
Values”section in this chapter.

The following table specifies the property values that should be set. Values
specified in bold and italic text are required, and those in plain text are
recommended.

Table 5-5 Required and Recommended Property Values

Bean Property Value

label1 Text Account ID

label2 Text Balance

JoltTextField1 Name accountId
5-20 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Note: In this walkthrough, the default occurrenceIndex of 0 works for both
JoltTextFields.

Refer to the next table and the section, “Using the Jolt Repository and Setting
the Property Values” for general guidelines on JoltBean properties.

JoltTextField1 JoltFieldName ACCOUNT_ID

JoltTextField2 Name balance

JoltTextField2 JoltFieldName SBALANCE

JoltSessionBean1 AppAddress //tuxserv:2010

JoltServiceBean1 Name inquiry

JoltServiceBean1 ServiceName INQUIRY

button1 Label Inquiry

Table 5-5 Required and Recommended Property Values

Bean Property Value
BEA Jolt Developer’s Guide 5-21

5 Using JoltBeans
Figure 5-7 Example of JoltTextField Property List and Custom Property Editor

5. To change the value of the JoltFieldName property, click on the ellipsis button of
the JoltFieldName in the Property List. The Custom Property Editor displays.
Select or type the new field name (in this example, “ACCOUNT_ID”). Select
OK.

Note: The properties that are visible in the Custom Property Editor are cached
locally, therefore, if the source database is modified you must use the Refresh
button to see the current, available properties.
5-22 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Figure 5-8 Revised JoltFieldName in the JoltTextField Property List

The change is reflected in the Property List shown in the previous figure and on
the text field shown in the next figure.
BEA Jolt Developer’s Guide 5-23

5 Using JoltBeans
Figure 5-9 Example of JoltBeans on the Form Designer with Property Changes

The previous figure shows how the text on the button and the textfields changes
after the text is added to the property list fields for these beans.

6. After you set the properties to the right values (refer to the “Required and
Recommended Properties” table for additional information on the required and
recommended property values), define how the beans will interact by wiring
them together using the Visual Café Interaction Wizard.
5-24 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Wiring the JoltBeans Together

After all the beans are positioned on your form and the properties are set, wire the
beans and their events together. Figure 5-10 gives an example of the flow to help you
determine the order when you are ready to wire the beans.

Wiring the beans allows you to establish event source-listener relationships between
various beans on the form. For example, the JoltServiceBean is a listener of
ActionEvents from the button and invokes callService() when the event is
received. Use the Visual Café Interaction Wizard to wire the beans together.

The following figure shows the sequence in which you will wire the beans together to
create this sample applet. The numbers in this figure correspond to the numbers of the
steps that follow.

Figure 5-10 How JoltBeans are Connected on the Form

1

2
3

4

5

6

BEA Jolt Developer’s Guide 5-25

5 Using JoltBeans
Step 1: Wire the JoltSessionBean logon

1. Click the Interaction Wizard button. Click in the applet window and drag a line to
the JoltSessionBean.

The Visual Cafe Interaction Wizard window displays.

Figure 5-11 Wire the Applet to the Jolt Session Bean

Drag
here
5-26 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
2. Select ComponentShown (as shown below) as the event you want to start the
interaction. Click Next.

The Visual Café Interaction Wizard displays.

Figure 5-12 Visual Cafe Interaction Wizard
BEA Jolt Developer’s Guide 5-27

5 Using JoltBeans
3. With the “Perform an action” radio button enabled, select “Logon to the Tuxedo
system.” Click Finish.

Figure 5-13 Select “Logon to the Tuxedo System

Completing these three steps enables the logon() method of the
JoltSessionBean to be triggered by an applet (for example, ComponentShown)
that is sent when the applet is opened for the first time.
5-28 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange

1. Click the Interaction Wizard button. Click on the JoltSessionBean and drag a line
to the JoltServiceBean (as shown in the following figure).

Figure 5-14 Wire the JoltSessionBean to the JoltServiceBean
BEA Jolt Developer’s Guide 5-29

5 Using JoltBeans
The Interaction Wizard displays and asks, “What event in joltSessionBean1 do
you want to start the interaction?” (as shown in the following figure).

Figure 5-15 Select propertyChange as the Event
5-30 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
2. Select propertyChange as the event that starts the interaction. Click Next.

The Interaction Wizard window displays and asks, “What do you want to happen
when joltSessionBean1 fires propertyChange event?” and provides a list of
object and actions (as shown in the following figure).

Figure 5-16 Select “Handle a Jolt property change event”
S

BEA Jolt Developer’s Guide 5-31

5 Using JoltBeans
3. Select “Handle a Jolt property change event” as the method. Click Next.

The Interaction Wizard window displays and asks, “How do you want to supply
the parameter to this method?” and provides a list of available objects and
actions to choose from (as shown in the following figure).

Figure 5-17 Select joltSesssionBean1

4. Select joltSessionBean1 as the object that supplies the action.

5. Select “Get the current Property Change Event object” as the action. Click
Finish.

Completing these three steps enables the JoltSessionBean to send a
propertyChange event when logon() completes. The JoltServiceBean listens to
this event and associates its service with this session.
5-32 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Step 3: Wire the accountID JoltTextField as input to the JoltServiceBean using
JoltInputEvent

1. Click the Interaction Wizard button. Select the accountID JoltTextField bean and
drag a line to the JoltServiceBean.

The Interaction Wizard displays.

Figure 5-18 Select dataChanged as the Event to Start the Interaction

2. Select dataChanged as the event. Click Next.
BEA Jolt Developer’s Guide 5-33

5 Using JoltBeans
3. With the joltServicebean “inquiry” selected as the object supplying the
parameter, select “Handle a jolt input event” as the action. Click Next.

Figure 5-19 Choose “inquiry” and “Handle a Jolt Input Event”

The Interaction Wizard window displays, asking “How do you want to supply
the parameter to this method?” and providing a list of available objects and
actions to choose from (as shown in the following figure).
5-34 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Figure 5-20 Select “accountId” and Get the current Jolt Input Event

4. With “accountId” selected as the object, select “get the current Jolt Input Event”
as the action. Click Finish.

Completing these four steps enables you to type the account number in the first
text field. The JoltFieldName property of this JoltTextField is set to
“ACCOUNT_ID”. Whenever the text inside this text box changes, it sends a
JoltInputEvent to the JoltServiceBean. (The JoltServiceBean listens to
JoltInputEvents from this textbox.) The JoltInputEvent object contains the name,
value, and occurrence index of the field.
BEA Jolt Developer’s Guide 5-35

5 Using JoltBeans
Step 4: Wire Button to JoltServiceBean using JoltAction

1. Click the Interaction Wizard button. Select the Inquiry Button and drag a line to the
JoltServiceBean.

The Interaction Wizard window displays.

Figure 5-21 Select “action Performed” as the event

2. Select “action Performed” as the event. Click Next.
5-36 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Figure 5-22 Select “inquiry” and “Invoke Tuxedo Service...”

3. Select “Invoke Tuxedo Service represented by this bean” as the action. Click
Finish.

Completing these two steps enables the callService() method of the
JoltServiceBean to be triggered by an ActionEvent from the Inquiry button.
BEA Jolt Developer’s Guide 5-37

5 Using JoltBeans
Step 5: Wire JoltServiceBean to the balance JoltTextField using
JoltOutputEvent

1. Click the Interaction Wizard button. Select the JoltServiceBean and drag a line to
the AmountJoltTextField bean. The Interaction Wizard displays (as shown in the
following figure).

Figure 5-23 Select “serviceReturned” as the event

2. Select serviceReturned as the event. Click Next.
5-38 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Figure 5-24 Select “balance” and “Set the JoltTextField’s text”

3. Select “balance” as the available object, and “Handle a service returned event...”
as the action. Click Next.
BEA Jolt Developer’s Guide 5-39

5 Using JoltBeans
Figure 5-25 Select “inquiry” and “Get the value of field...”

4. Select “inquiry” as the object, and “Get the JoltOutputEvent object” as the action.
Click Finish.

Completing these three steps allows the JoltServiceBean to send a
JoltOutputEvent when it receives reply data from the remote service. The
JoltOutputEvent object contains methods to access fields in the output buffer.
The JoltTextField displays the result of the INQUIRY service.
5-40 BEA Jolt Developer’s Guide

JoltBeans Class Library Walkthrough
Step 6: Wire the JoltSessionBean logoff

1. Click the Interaction Wizard button. Click in the applet window (not on another
bean) and drag a line to the JoltSessionBean. The Interaction Wizard displays (as
shown in the following figure).

Figure 5-26 Select “Interaction Wizard”

2. Select componentHidden as the event. Click Next.
BEA Jolt Developer’s Guide 5-41

5 Using JoltBeans
Figure 5-27 Select “joltSessionBean1” and “Logoff from the Tuxedo system”

3. With “joltSessionBean1” selected as the object, select “Logoff from the Tuxedo
system” as the action (as shown in the previous figure). Click Finish.

Completing these two steps enables the logoff() method of the
JoltSessionBean to be triggered by an applet (for example, componentHidden)
that is sent when the applet gets hidden.

Step 7: Compile the applet

After wiring the JoltBeans together, compile the applet. It is also recommeded that you
fill in the empty catch blocks for exceptions. Check the message window for any
compilation errors and exceptions.

Refer to the following table and the following figure for additional information.
5-42 BEA Jolt Developer’s Guide

Using the Jolt Repository and Setting the Property Values
Running the Sample Application

To run the sample application, you must have the Tuxedo server running. Then enter
an account number in the Account ID textfield. You may use any of the account
numbers included in the BANKAPP database. Following are two examples of account
numbers you can use to test the sample application:

� 80001

� 50050

Using the Jolt Repository and Setting the
Property Values

Custom Property Editors are provided for the following properties:

� JoltFieldName (Jolt-aware AWT beans)

� serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are
used to add or modify the properties. You can invoke the boxes from the Property List
by selecting the button with the ellipsis (...) that is next to the value of the
corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the
following table.

Table 5-6 JoltBean Specific Properties

JoltBean Property Input Description

JoltSessionBean appAddress

userName, Password or
AppPassword

e.g., //host:port

Type your Tuxedo user name and
passwords.
BEA Jolt Developer’s Guide 5-43

5 Using JoltBeans
The property editor reads cached information from the repository and returns names of
the available services and data elements in a list box. An example of the ServiceName
property editor is shown in the following figure:

Figure 5-28 JoltServiceBean Property Editor

1. Select the service name by clicking on the ellipsis in the ServiceName field shown
in the previous figure.

The Custom Property Editor for ServiceName shown in the following figure
displays.

JoltServiceBean serviceName

isTransactional

INQUIRY, for example.

Set to true if the service needs to be
executed within a transaction. Set
isTransactional to false if the
service does not require a transaction.

JoltUserEventBean eventName

filter

Refer to the Tuxedo tpsubscribe
calls.

All Jolt-aware GUI
beans

joltFieldName

occurrenceIndex

ACCOUNT_ID, for example

Multiple fields of the same name.
Index starts at 0.

JoltCheckbox TrueValue and FalseValue The field value corresponding to the
state of the checkbox.

Table 5-6 JoltBean Specific Properties

JoltBean Property Input Description
5-44 BEA Jolt Developer’s Guide

Using the Jolt Repository and Setting the Property Values
Figure 5-29 Custom Property Editor for serviceName

Note: If you cannot or do not want to connect to the Repository database, simply type
the service name in the text box and proceed to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select Logon.
The JoltBeans Repository Logon shown in the following figure displays.

Figure 5-30 JoltBeans Repository Log On

3. Type the Tuxedo or Jolt Relay Machine name for Server and the JSL or Jolt
Relay Port Number. Type password and user name information (if required) and
click Logon.

4. The Custom Property Editor loads its cache from the repository.
BEA Jolt Developer’s Guide 5-45

5 Using JoltBeans
5. Select the appropriate service name in the list box shown in Figure 5-31. Enter
the property value (service or field name) directly. A text box is provided. Click
OK on the property editor dialog (shown in the following figure). The bean
property is set with the contents of the textbox.

6. Click OK on the Custom Property Editor dialog (shown in the following figure).

Figure 5-31 Property Editor with Selected Service

JoltBeans Programming Tasks

Additional programming tasks include:

� Using Transactions with JoltBeans

� Using Custom GUI Elements with the JoltService Bean
5-46 BEA Jolt Developer’s Guide

JoltBeans Programming Tasks
Using Transactions with JoltBeans

Your Tuxedo application services may have functionality that updates your database.
If so, you can use transactions with JoltBeans (for example, in the sample, BANKAPP,
the services TRANSFER and WITHDRAWAL update the database of BANKAPP). If
your application service is read-only (such as INQUIRY), you do not need to use
transactions.

The following example shows how to use transactions with JoltBeans.

1. The setTransactional (true) method is called on the JoltServiceBean.
(isTransactional is a boolean property of the JoltServiceBean.)

2. The beginTransaction() method is called on the JoltSessionBean.

3. The callService() method is called on the JoltServiceBean.

4. Depending on the outcome of the service call, the commitTransaction() or
rollbackTransaction()method is called on the JoltSessionBean.
BEA Jolt Developer’s Guide 5-47

5 Using JoltBeans
Using Custom GUI Elements with the JoltService Bean

JoltBeans provides a limited set of Jolt-enabled GUI components. You can also use
controls that are not Jolt enabled together with the JoltServiceBean. You can link
controls to the JoltServiceBean that display output information of the service
represented by the JoltServiceBean. You can also link controls that display input
information.

For example, a GUI element that uses an adapter class to implement the
JoltOutputListener interface can listen to JoltOutputEvents. The JoltServiceBean as
the event source for JoltOutputEvents calls the serviceReturned() method of the
adapter class when it sends a JoltOutputEvent. Inside serviceReturned(), the
control’s internal data is updated using information from the event object.

The development tool generates the adapter class when the JoltServiceBean and the
GUI element are wired together.

As another example, a GUI element can call the setInputTextValue() method on
the JoltServiceBean. The GUI element contains input data for the Tuxedo service
represented by the JoltServiceBean.

As a third example, a GUI element can implement the required methods
(addJoltInputListener() and removeJoltInputListener()) to act as event
sources for JoltInputEvents. The JoltServiceBean acts as an event listener for these
events. The control sends a JoltInputEvent when its own state changes to keep the
JoltServiceBean updated with the input information.
5-48 BEA Jolt Developer’s Guide

CHAPTER
6 Using Servlet
Connectivity for
Tuxedo

With BEA Jolt servlet connectivity, you can use HTTP servlets to perform server-side
Java tasks in response to HTTP requests. Jolt certifies servlet connectivity with the
Java Web Server versions 1.1.3 and up, and supports most other standard servlet
engines. Using the Jolt session pool classes, a simple HTML client can connect to any
Web server that supports generic servlets. Thus, all Jolt transactions are handled by a
servlet on the web server rather than being handled by a client applet or application.

This capability means that HTML clients can invoke Tuxedo services without directly
connecting to Tuxedo. HTML clients can instead connect to a Web server, through
HTTP, where the Tuxedo service request is executed by a generic servlet. Using a Jolt
session, the servlet on the web server administers the Tuxedo service request by
connecting to the Tuxedo Server through the Jolt Server Handler (JSH) or the Jolt
Server Listener (JSL), which then makes the Tuxedo service request. This capability
allows many types of HTML clients to make remote Tuxedo service requests. All Jolt
transactions are handled on the server side without requiring any change to the original
HTML client. Thus, HTML clients are allowed to be very simple and require little
maintenance.

This section covers the following topics:

� What is a Servlet?

� How Servlets Work With Jolt

� Writing and Registering HTTP Servlets
BEA Jolt Developer’s Guide 6-1

6 Using Servlet Connectivity for Tuxedo
� Jolt Servlet Connectivity Sample

� Additional Information on Servlets

What is a Servlet?

A servlet is any Java class that can be invoked and executed on a server, usually on
behalf of a client. A servlet works on the server, while an applet works on the client.
An HTTP servlet is a Java class that handles an HTTP request and delivers an HTTP
response. HTTP servlets reside on an HTTP server and must extend the JavaSoft
javax.servlet.http.Http Servlet Class so that they may run in a generic servlet engine
framework.

Some advantages of using HTTP servlets are:

� They are written in a well-formed, and compiled language (Java), so are more
robust than “interpreted” scripts.

� They are an integral part of the HTTP server that supports them.

� They can be protected by the robust security of the server, unlike some CGI
scripts that are hazardous.

� They interact with the HTTP request through a well-developed programmatic
interface, and so are easier to write and less prone to errors.

How Servlets Work With Jolt

With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage
of the Jolt features. Jolt servlets handle HTTP requests using the following Jolt classes:

� ServletDataSet

� ServletPoolManagerConfig

� ServletResult
6-2 BEA Jolt Developer’s Guide

How Servlets Work With Jolt
� ServletSessionPool

� ServletSessionPoolManager

The Jolt Servlet Connectivity Classes

Following are descriptions of the Jolt servlet connectivity classes:

ServletDataSet

This class contains data elements that represent the input and output parameters of a
BEA Tuxedo service. It provides a method to import the HTML field names and values
from a javax.servlet.http.HttpServletRequest object.

ServletPoolManagerConfig

This class is the startup class for a Jolt Session Pool Manager and one or more
associated Jolt Session Pools. It creates the session pool manager if needed and starts
a session pool with a minimum number of sessions. Jolt Session Pool Manager that
internally keeps track of one or more named session pools.

This class is derived from bea.jolt.pool.PoolManagerConfig and allows the
caller to pass a Properties or Hashtable object to the static startup()method to create
a session pool and the static getSessionPoolManager() method to get the session
pool manager of bea.jolt.pool.servlet.ServletSessionPoolManager class.

ServletResult

This class provides methods to retrieve each field in a ServletResult object as a String.

ServletSessionPool

This class provides a session pool for use in a Java servlet. A session pool represents
one or more connections (sessions) to a BEA Tuxedo system. This class provides call
methods that accept input parameters for a BEA Tuxedo service as a
javax.servlet.http.HttpServletRequest object.

ServletSessionPoolManager

This class is a servlet-specific session pool manager. It manages a collection of one or
more session pools of class ServletSessionPool. This class provides methods that
are used to create both the ServletSessionPoolManager itself and the session pools that
it contains. These methods are part of the administrative API for a session pool.
BEA Jolt Developer’s Guide 6-3

6 Using Servlet Connectivity for Tuxedo
Writing and Registering HTTP Servlets

You must first import the packages that support Jolt servlet connectivity (jolt.jar,
joltjse.jar, servlet.jar). HTTP servlets must extend
javax.servlet.http.HttpServlet. After you write your HTTP servlets, you register them
with a Web server that supports generic servlets. Your custom servlets are treated
exactly like the standard HTTP servlets that provide the HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a
matching URL is requested, the corresponding servlet is called upon to handle the
request.

Refer to the documentation for your particular Web server for instructions on how to
register servlets.
6-4 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample
Jolt Servlet Connectivity Sample

The Jolt software includes three sample applications that demonstrate servlet
connectivity using the Jolt servlet classes. The three samples are:

� SimpApp Sample

� BankApp Sample

� Admin Sample

Refer to these samples in to see code examples of how to use the Jolt servlet classes in
your own servlets.

Viewing the Sample Servlet Applications

To view the code for the Jolt sample applications, you need to install the Jolt API client
classes (usually chosen as an option when installing Jolt). Once the classes are installed
in your directory of choice, navigate to the following directory to see the sample
application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use a text editor such as Microsoft NotePad to open the Java
files for each sample application.

SimpApp Sample

A sample application named “Simpapp” is included with Jolt. The Simpapp
application illustrates how the servlet uses Servlet Connectivity for Tuxedo. The
following servlet tasks are illustrated by the Simpapp sample:

� How to use a property file to create a session pool.

� How to get the session pool manager.

� How to retrieve the session pool by name.
BEA Jolt Developer’s Guide 6-5

6 Using Servlet Connectivity for Tuxedo
� How to invoke a Tuxedo service.

� How to process the result set.

This example demonstrates how a servlet may connect to Tuxedo and call upon one of
its services; it should be invoked from the simpapp.html file. The servlet creates a
session pool manager at initialization, which is used to obtain a session when the
doPost() method is invoked. This session is used to connect to a service in Tuxedo
with a name described by the posted “SVCNAME” argument. In this example the service
is called "TOUPPER", which transposes the posted “STRING” argument text into
uppercase, and returns the result to the client browser within some generated HTML.

Note: The WebLogic Server is used in this example.

Requirements for Running the Simpapp Sample

The requirements for Running the Simpapp sample are:

� Any Web Application Server with Servlet JSDK 1.1 or above.

� Tuxedo 7.1 or above with SimpApp sample running.

� Jolt

Installing the SimpApp Sample

1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for Tuxedo class
library (joltjse.jar) to the web application server. Extract the class files if it is
required by your web application server.

2. Compile the SimpAppServlet.java. Make sure that you include the standard
JDK 1.1.x classes.zip, JSDK 1.1 classes, Jolt classes library and Servlet
Connectivity for Tuxedo class library in the classpath.

javac -classpath
$(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:

$(JOLTHOME)/jolt.jar:$(JOLTHOME)/joltjse.jar:./classes

-d ./classes SimpAppServlet.java

Note: The package name of the SimpAppServlet is
“examples.jolt.servlet.simpapp.”
6-6 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample
3. Put the simpapp.html and simpapp.properties files in the public HTML
directory.

4. Modify the simpapp.properties file. Change the “appaddrlist” and
“failoverlist” with the proper Jolt server hosts and ports. Specify the proper
Tuxedo authentication information if the SimpApp has security turned on. For
example:

#simpapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=simpapp

appaddrlist=//host:7000,//host:8000

failoverlist=//backup:9000

minpoolsize=1

maxpoolsize=3

userrole=tester

apppassword=appPass

username=guest

userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your web application
server for details. If you are using WebLogic, add the following line to the
weblogic.properties file:

weblogic.httpd.register.simpapp=examples.jolt.servlet.SimpAppSe
rvlet

6. To access the SimpApp initial page “simpapp.html,” type:

http://mywebserver:8080/simpapp.html
BEA Jolt Developer’s Guide 6-7

6 Using Servlet Connectivity for Tuxedo
BankApp Sample

The “Bankapp” application illustrates how the servlet is written with
PageCompiledServlet with Servlet Connectivity for Tuxedo. Bankapp illustrates the
following:

� How to use a property file to create a session pool.

� How to get the session pool manager.

� How to retrieve a session pool by name.

� How to invoke a Tuxedo service.

� How to process the result set.

Requirements for Running the Bankapp Sample

Following are the requirements for running the Bankapp sample:

� Any Web Application Server with Servlet JSDK 1.1 or above.

� Tuxedo 7.1 with BankApp sample running.

� Jolt

Installation Instructions

1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for Tuxedo class
library (joltjse.jar) to the web application server. Extract the class files if it is
required by your web application server.

2. Copy all HTML, JHTML and bankapp.properties files to the public HTML
directory of the web application server (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

bankapp.properties

tellerForm.html

inquiryForm.html

depositForm.html
6-8 BEA Jolt Developer’s Guide

Jolt Servlet Connectivity Sample
withdrawalForm.html

transferForm.html

InquiryServlet.jhtml

DepositServlet.jhtml

WithdrawalServlet.jhtml

TransferServlet.jhtml

3. Modify the bankapp.properties file. Change the “appaddrlist” and
“failoverlist” with the proper Jolt server hosts and ports. Specify the proper
Tuxedo authentication information if the BankApp has security turned on. For
example,

#bankapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=bankapp

appaddrlist=//host:8000,//host:7000

failoverlist=//backup:9000

minpoolsize=2

maxpoolsize=10

userrole=teller

apppassword=appPass

username=JaneDoe

userpassword=myPass

4. If applicable, turn on the automatic page compilation for JHTML from your
servlet engine. Consult the user manual of your web application server for details.

5. To access BankApp through Servlet Connectivity for Tuxedo, use the following
URL in your favorite browser:

http://mywebserver:8080/tellerForm.html
BEA Jolt Developer’s Guide 6-9

6 Using Servlet Connectivity for Tuxedo
Admin Sample

The “Admin” sample application illustrates the following servlet tasks:

� How to use the administrative API to control the session pools.

� How to retrieve the statistics through PageCompiledServlet in Servlet
Connectivity for Tuxedo.

Requirements for Running the Admin Sample

Following are the requirements for running the Admin sample:

� Any Web Application Server with Servlet JSDK 1.1 or above

� Jolt

Installation Instructions

1. Install the Jolt class library and Servlet Connectivity for Tuxedo class library to the
web application server.

2. Copy all JHTML files to the public HTML directory (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

PoolList.jhtml

PoolAdmin.jhtml

3. To get a list of session pools, use the following URL in your favorite browser:

http://mywebserver:8080/PoolList.jhtml
6-10 BEA Jolt Developer’s Guide

Additional Information on Servlets
Additional Information on Servlets

For more information on writing and using servlets, see the following sites:

BEA WebLogic Servlet Documentation

http://www.weblogic.com/docs/classdocs/API_servlet.html

Java Servlets

http://jserv.java.sun.com/products/java-server/documentation/
webserver1.1/index_developer.html

Servlet Interest Group

servlet-interest@java.sun.com
BEA Jolt Developer’s Guide 6-11

6 Using Servlet Connectivity for Tuxedo
6-12 BEA Jolt Developer’s Guide

CHAPTER
7 Using Jolt ASP
Connectivity for
Tuxedo

The Jolt ASP Connectivity for Tuxedo provides an easy-to-use interface for processing
and generating dynamic HTML pages. You do not need to learn how to write Common
Gateway Interface (CGI) transactional programs to access Tuxedo services.

The following topics are discussed in this section:

� Key Features

� ASP Connectivity Enhancements for Jolt

� How the Jolt ASP Connectivity for Tuxedo Works

� The ASP Connectivity for Tuxedo Toolkit

� Jolt ASP Connectivity for Tuxedo Walkthrough

� Overview of the ASP for Tuxedo Walkthrough

� Getting Started Checklist

� Overview of the TRANSFER Service

� TRANSFER Request Walkthrough

� Initializing the Jolt Session Pool Manager

� Submitting a TRANSFER Request from the Client
BEA Jolt Developer’s Guide 7-1

7 Using Jolt ASP Connectivity for Tuxedo
� Processing the Request

� Returning the Results to the Client

Key Features

The Jolt ASP Connectivity for Tuxedo, an extension to the Jolt class library, enables
Tuxedo services and transactions to be invoked from a Web server using a scripting
language.

Some of the benefits of this architecture include:

� The HTML interface is preserved.

� The need to download Java class files is eliminated along with the delays
associated with the download.

� Session Pooling efficiently utilizes the Tuxedo resources.

� Leverages industry standard HTTP protocol with encryption, and firewall
configuration for the Web server.

Note: Asynchronous notification is not available in the ASP Connectivity for
Tuxedo. It is recommended that Jolt enabled Java clients (applets) be written
using a retained connection to support asynchronous notification.

ASP Connectivity Enhancements for Jolt

Jolt includes the following enhancements to ASP Connectivity for Tuxedo:

� The package name for JoltWAS has been changed from bea.web to
bea.jolt.pool.

� The package name for Tuxedo-ASP Connectivity has been changed from
JoltWAS for IIS to bea.jolt.pool.asp.
7-2 BEA Jolt Developer’s Guide

How the Jolt ASP Connectivity for Tuxedo Works
� All Java class names for Tuxedo-ASP Connectivity have been renamed with the
prefix of Asp and have new ActiveX component names (for example,
BEAJOLTPOOL.AspSessionPoolManager). It is recommended that existing
JoltWAS for IS customers use the new ActiveX component names.

� A new AspSessionPool.callEx() method is added. It allows users to call a
service with a container class AspDataSet object for arbitrary data types
instead of the string array in the AspSessionPool.call() method.

� New AspPoolManagerConfig and ServletPoolManagerConfig classes are
added to simplify the creation of the session pool manager and the session pools.
The session pool uses the java.util.Properties class to pass in the
following session pool properties:

� poolname

� appaddrlist

� failoverlist

� minipoolsize

� maxpoolsize

� username

� userpassword

� userrole

� apppassword

How the Jolt ASP Connectivity for Tuxedo
Works

The Jolt ASP Connectivity for Tuxedo architecture includes three main components:
a session, a session pool, and a session pool manager. A session object represents a
connection with the Tuxedo system. A session pool represents many physical
connections between the Web server and the Tuxedo system. It also associates a
session with an HTTP request.
BEA Jolt Developer’s Guide 7-3

7 Using Jolt ASP Connectivity for Tuxedo
The session pool manager is responsible for maintaining a set of session objects, each
having a unique session identifier.

1. If the Web application has not been initialized, the Web Application initializes the
session pool manager, creates a session pool, and establishes sessions (also known
as connections) with the Jolt Server.

2. When a service request arrives, the Web application gets a session pool object
from the session pool manager. The session pool invokes the service call using
the session that is the “least busy,” based on the number of outstanding call
requests on a given session.

3. If the selected session is terminated by the Jolt server, the session pool object
restarts a new session or reroutes the request to another session. If the session
pool manager is unable to get any session, a null session object is returned.

A graphical representation of the ASP Connectivity for Tuxedo architecture is shown
in the following figure.
7-4 BEA Jolt Developer’s Guide

How the Jolt ASP Connectivity for Tuxedo Works
Figure 7-1 Jolt ASP Connectivity for Tuxedo Architecture

Refer to the online “API Reference in Javadoc” for additional information about the
SessionPool class and SessionPoolManager class.
BEA Jolt Developer’s Guide 7-5

7 Using Jolt ASP Connectivity for Tuxedo
The ASP Connectivity for Tuxedo Toolkit

The ASP Connectivity for Tuxedo Toolkit is an extension to the Jolt Class Library. The
Toolkit allows the Jolt Client Class Library to be used in a Web Server (such as
Microsoft Active Server) to provide an interface between HTML clients or browsers,
and a Tuxedo application.

Samples delivered with the software support four services: INQUIRY,
WITHDRAWAL, DEPOSIT, and TRANSFER. This section explains the steps you
follow to use an HTML client interface with the TRANSFER service of the Tuxedo
bankapp application. The TRANSFER service illustrates the use of parameters with
multiple occurrences. This walkthrough explains the use of the TRANSFER service
only.

Jolt ASP Connectivity for Tuxedo
Walkthrough

A complete listing of all the examples used in this chapter are distributed with the Jolt
software. In this section, segments of code from these samples are used to illustrate the
use of the Toolkit. The samples delivered with the software support four services:
INQUIRY, WITHDRAWAL, DEPOSIT, and TRANSFER. This chapter explains the
steps you can follow to use an HTML client interface to the TRANSFER service of the
Tuxedo bankapp application. The TRANSFER service illustrates the use of parameters
with multiple occurrences. This walkthrough explains the use of the TRANSFER
service only.

Note: The walkthrough illustrates the use of the ASP Connectivity For Tuxedo with
Microsoft IIS and VBScript.

To use the information in the following sections, you should be familiar with:

� BEA Tuxedo and the sample Tuxedo application, bankapp

� BEA Jolt
7-6 BEA Jolt Developer’s Guide

Overview of the ASP for Tuxedo Walkthrough
� HTML (Hypertext Markup Language)

� VB Script

� Object-oriented programming concepts

Overview of the ASP for Tuxedo
Walkthrough

Follow these steps to complete the ASP Connectivity for Tuxedo walkthrough:

� Review the Getting Started Checklist

� Review the Overview of the TRANSFER Service

� Complete the Steps in the TRANSFER Request walkthrough

� Initializing the Jolt Session Pool Manager

� Submitting a TRANSFER Request from the Client

� Processing the Request

� Returning the Results to the Client

Getting Started Checklist

Review this checklist before starting the TRANSFER Request Walkthrough.

Note: This checklist applies to Microsoft Active Server Pages only.

1. Ensure that you have a supported browser installed on your client machine. The
client machine must have a network connection to the Web server that is used to
connect to the Tuxedo environment.

2. Configure and boot Tuxedo and the Tuxedo bankapp example.
BEA Jolt Developer’s Guide 7-7

7 Using Jolt ASP Connectivity for Tuxedo
a. Make sure the TRANSFER service is available.

b. Refer to the BEA Tuxedo user documentation for information about
completing this task.

3. Refer to Installing the BEA Tuxedo System for information about how to
configure a Jolt Server.

a. Note the hostname and port number associated with your Jolt Server Listener
(JSL).

b. Ensure that the TRANSFER service is defined in the Jolt Repository.

c. Test the TRANSFER service using the Jolt Repository Editor to make sure it is
accessible to Jolt clients.

4. Make sure you have Microsoft IIS 4.0 up and running.

a. Check that script execution permission is enabled in the Web server application
properties.

b. Refer to the user documentation that accompanies the Microsoft IIS server for
instructions.

5. Install the Jolt Asp Connectivity For Tuxedo classes. These classes are contained
in the joltasp.jar file. Be sure these classes are in your class path and
available to your Web Server.

6. Install the teller sample application.

7. The code samples shown in “TRANSFER Request Walkthrough” are available
from a sample application delivered with the Jolt Asp Connectivity For Tuxedo
software. The following table lists the files in the sample application. These files
are a valuable reference for the walkthrough and are located in
<extract_directory>/teller.

Table 7-1 Bankapp Sample Source Files

File Name Description

tellerForm.asp Initializes the Jolt Session Pool Manager and displays
available bankapp services.

transferForm.htm Presents an HTML form for user input.
7-8 BEA Jolt Developer’s Guide

Overview of the TRANSFER Service
Overview of the TRANSFER Service

The TRANSFER Service in bankapp moves funds between two accounts. The service
takes two account numbers, an input amount, and returns two balances—one for each
account. In addition, the service returns an error message if there is an application or
system error.

A TRANSFER is a WITHDRAWAL and a DEPOSIT executed as a single transaction.
The transaction is created on the server, so the client does not need to create a
transaction.

The client interface consists of an HTML page with a form used to enter the required
data — account numbers and a dollar amount. This data is sent to the Web server as a
“POST” request.

In the Web server, this request is processed using a VBScript Active Server Page. This
program extracts the input data fields from the request, formats them for use with the
Jolt ASP Connectivity For Tuxedo class library, and dispatches the request to the
TRANSFER service in the bankapp application. The TRANSFER service returns the
results of the transaction. These results are returned to the VBScript program that
merges them into a dynamically created HTML page. This page is returned to the client
via the Web server infrastructure.

tlr.asp Processes the HTML form and returns results as an
HTML page.

web_admin.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_start.inc VBScript functions for initializing the Jolt Session Pool
Manager.

web_templates.inc VBScript functions for caching HTML templates.

templates/transfer.temp HTML templates used for returning results.

Table 7-1 Bankapp Sample Source Files

File Name Description
BEA Jolt Developer’s Guide 7-9

7 Using Jolt ASP Connectivity for Tuxedo
In the final part of this walkthrough, run the necessary HTML pages and server-side
VBScript logic to execute a TRANSFER.

TRANSFER Request Walkthrough

This section explains what happens when you execute a TRANSFER request. Every
step is not illustrated here, only those steps that are necessary.

Included are:

� Initializing the Jolt Session Pool Manager

� Submitting a TRANSFER Request from the Client

� Processing the Request

� Returning the Results to the Client

Initializing the Jolt Session Pool Manager

To start the walkthrough, use the browser on your client to connect to the Web server
where the Jolt Asp Connectivity For Tuxedo classes are installed. The first page to
download is tellerForm.asp (see the following figure for an example of a
tellerForm.asp page). If the teller sample has been installed as described in step 6
of the “Getting Started Checklist,” the URL for this page will be:

http://<web-server:port>/teller/tellerForm.asp

Note: The use of the port number is optional, depending on how your Web server is
configured. In most cases, you are not required to add the “:port” in the URL.
7-10 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough
Figure 7-2 tellerForm.asp Example

The page, tellerForm.asp contains VBScript procedures required to initialize the
Jolt Session Pool Manager. The initialization code is contained in an ASP Script block.
This code tells the Web server to execute this block of code on the server, instead of
sending it to the client.

Listing 7-1 tellerForm.asp: Initialize the Jolt Session Pool Manager

<%
'// Initialize the session manager and cache templates
Call web_initSessionMgr(Null)
Call web_cacheTemplates()
%>
BEA Jolt Developer’s Guide 7-11

7 Using Jolt ASP Connectivity for Tuxedo
The VBScript procedure web_initSessionMgr() calls other VBScript procedures to
establish a pool of Jolt Sessions. A Jolt Session is established between the Jolt ASP
Connectivity For Tuxedo in the Web Server and the Jolt Servers that reside in your
Tuxedo application. One of the procedures called is web_start(). This procedure (in
the file web_start.inc) should have been edited as part of the teller application
installation process in step 6 of the “Getting Started Checklist”.

The procedure web_cacheTemplates() reads various HTML template files into a
memory cache. This step is not required, but it improves performance.

Listing 7-2 tellerForm.asp: Allow the user to choose TRANSFER service

<INPUT TYPE="button" VALUE="Transfer"
onClick="window.location='transferForm.htm'">

The HTML segment above displays a button labeled “Transfer.” When this button is
selected, the browser loads the page transferForm.htm. This page presents a form
used to enter the data required by the TRANSFER service.
7-12 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough
Submitting a TRANSFER Request from the Client

Figure 7-3 transferForm.htm Example

The form in the previous figure is generated by the page transferForm.htm. This
page presents you with a form for input. The page consists of three text fields (two
account numbers and a dollar amount), and a button that, when pressed, causes the
TRANSFER service to be invoked.

The code segment in the following figurethe following listing shows the key HTML
elements for this page. The highlighted elements in the following listing correspond
to the elements in the following table.
BEA Jolt Developer’s Guide 7-13

7 Using Jolt ASP Connectivity for Tuxedo
Listing 7-3 transferForm.htm: TRANSFER Form

<FORM NAME="teller" ACTION="tlr.asp" METHOD="POST">
<TABLE>
<TR><TD ALIGN=RIGHT>From Account Number: </TD>

<TD><INPUT TYPE="text" NAME="ACCOUNT_ID_0"></TD></TR>
<TR><TD ALIGN=RIGHT>To Account Number: </TD>

<TD><INPUT TYPE="text" NAME="ACCOUNT_ID_1"></TD></TR>
<TR><TD ALIGN=RIGHT>Amount: $</TD>

<TD><INPUT TYPE="text" NAME="SAMOUNT"></TD></TR>
</TABLE>
<CENTER>
<INPUT TYPE="hidden" NAME="SVCNAME" VALUE="TRANSFER">
<INPUT TYPE="submit" VALUE="Transfer">
<INPUT TYPE="reset" VALUE="Clear">
</CENTER>
</FORM>

Table 7-2 Key HTML Elements and Descriptions

Element Description

ACTION=”tlr.asp” When the “submit” button is pressed, the contents of this
form are delivered to a page called tlr.asp on the Web
server for processing.

NAME=”ACCOUNT_ID_0” Shows the use of a field with multiple occurrences. The
TRANSFER service expects two input account numbers,
both called “ACCOUNT_ID”. By using a convention of
appending an underscore and occurrence_number (e.g.,
_0, _1) to the field name, both the name of a field and its
occurrence can be passed to the program on the Web
Server.

NAME="SAMOUNT” Shows the use of an input field that has a single
occurrence. In this example, there is nothing appended to
the name of the field.
7-14 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough
The HTML form field names used in this example exactly match the Tuxedo field
names expected by the TRANSFER service. This is not required, but doing so
facilitates processing on the server because you do not have to map these inputs to
Tuxedo field names. This is done by the Jolt ASP Connectivity For Tuxedo classes.

The hidden field SVCNAME is assigned a value of TRANSFER. This field does not
appear on the client form, but it is sent to the Web server as part of the request. The
VBScript program retrieves the value of this field in order to determine which Tuxedo
service is to be called (in this example, the service is TRANSFER).

Complete the fields From Account Number, To Account Number, and Amount.
(10000 and 10001 are valid bankapp account numbers). Press the “Transfer” button.
The data entered on the form is sent to the Web server for processing by the program
tlr.asp as specified in the ACTION field of the form.

Processing the Request

When the Web server receives the TRANSFER request, it runs the program tlr.asp.
Client requests are turned into a Request object in the Web server. This Request object
has members containing all the data that was input to the form along with other form
data, such as hidden fields. The Web server makes the Request object available to the
program being invoked.

The program tlr.asp contains only VBScript. The first action performed by this
program verifies that the Jolt Session Pool Manager is initialized. The code example
shown in the following listing performs the initialization check and returns an HTML
error page if the pool is not initialized.
BEA Jolt Developer’s Guide 7-15

7 Using Jolt ASP Connectivity for Tuxedo
Listing 7-4 tlr.asp: Verify the Jolt Session Pool Manager is Initialized

<%
If Not IsObject(Application("mgr")) Then
%>

<HTML>
<HEAD><TITLE>Error</TITLE></HEAD>
<BODY><CENTER>
<H2>Session Manager is not initialized</H2>
<P>Make sure that you access the correct HTML
</CENTER></BODY>
</HTML>

<%
End If
%>

If the session pool is initialized, the program continues to process the request. The
program locates a Session from the Session Pool Manager shown in the following
listing.

Listing 7-5 tlr.asp: Locate a Session

Set pool = Application("mgr").getSessionPool(Null)

Once a valid session is located, the program retrieves an HTML template that is used
to return the results to the client. In this example, these templates were cached in the
initialization section. The template retrieved is identified by the name of the service
being invoked, Request("SVCNAME") shown in the following listing.

Listing 7-6 tlr.asp: Retrieve a Cached HTML Template

'// Choose the response template
If IsEmpty(Application("templates")) Then

Set template = Server.CreateObject("BEAWEB.Template")
Else

Select Case Request("SVCNAME")
Case "INQUIRY"

Set template = Application("templates")(INQUIRY)
7-16 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough
Case "DEPOSIT"
Set template = Application("templates")(DEPOSIT)

Case "WITHDRAWAL"
Set template = Application("templates")(WITHDRAWAL)

Case "TRANSFER"
Set template = Application("templates")(TRANSFER)

End Select
End If

Next, call the Tuxedo service. In this example, the input data from the Request object
is passed to the call() method of the session. The call() method uses the built-in
ASP Request object as input. The results of the call() are stored in the output object
and an array, iodata.

Listing 7-7 tlr.asp: Invoke the Tuxedo Service

Set output = pool.call(Request("SVCNAME"), Null, Nothing)
Set iodata(1) = output

After you invoke the Tuxedo service, the output object and the second element of the
array iodata contain the results of the service call.

Note: In this example, because the initial form specified field names match the
Tuxedo service parameter names, the Request object can be used in the
call() method. If these names do not match, create an input array with
“name=value” elements for each service parameter before invoking the
call() method.

Returning the Results to the Client

At this stage, no results have been returned to the client. The final step sends an HTML
page containing the results of the service call back to the client. The HTML page
consists of the template merged with the data returned by the service call shown in the
previous listing.
BEA Jolt Developer’s Guide 7-17

7 Using Jolt ASP Connectivity for Tuxedo
The template file contains placeholders for variable (call-specific) data. These
placeholders are identified by the special tag <%=NAME%>. In the code example shown
in the following listing, an index is used to indicate which occurrence of a parameter
name is used. For example, ACCOUNT_ID[0] specifies the first occurrence of the field
ACCOUNT_ID.

Listing 7-8 transfer.temp: Placeholders for TRANSFER Results

<TABLE BORDER=1>
<TR><TD></TD><TD ALIGN=CENTER>Account #</TD>

<TD ALIGN=CENTER>Balance</TR>
<TR><TD ALIGN=RIGHT>From:</TD><TD><%=ACCOUNT_ID[0]%></TD>

<TD><%=SBALANCE[0]%></TR>
<TR><TD ALIGN=RIGHT>To:</TD><TD><%=ACCOUNT_ID[1]%></TD>

<TD><%=SBALANCE[1]%></TR>
</TABLE>

To substitute the placeholders in the template with the actual values of the data
returned from the service call, use the eval() method of the Template object shown
in the following listing. This method matches placeholders in the template file with
fields of the same name in the results data and replaces them accordingly. A check for
valid results (output object) is done as shown in the following listing. If there is no
output object, an error template page is returned.

Listing 7-9 tlr.asp: Template Processing

path = Application("templatedir")
If (Not IsObject(output)) Or (output is Nothing) Then

Call template.evalFile(path & "\nosession.temp", Null)
Elseif output.noError() Then

Call template.eval(iodata)
Elseif output.applicationError() Then

Call template.evalFile(path & "\error.temp", iodata)
Else

'// System error
Dim errdata(0)
Set errdata(0) = Server.CreateObject("BEAWEB.TemplateData")
Call errdata(0).setValue("ERRNO", output.getError())
Call errdata(0).setValue("ERRMSG", output.getStringError())
7-18 BEA Jolt Developer’s Guide

TRANSFER Request Walkthrough
Call template.evalFile(path & "\syserror.temp", errdata)
End If

Note: The array iodata contains both the input request and the results from the
service call. This is useful if you want the results page to contain data that is
part of the input.

When the template is processed, the resulting HTML is returned to the client as shown
in the following figure.

Figure 7-4 tlr.asp Results Page
BEA Jolt Developer’s Guide 7-19

7 Using Jolt ASP Connectivity for Tuxedo
7-20 BEA Jolt Developer’s Guide

APPENDIX
A Tuxedo Errors

This appendix describes the Jolt Class Library errors and exceptions. The Jolt Class
Library returns both Jolt and Tuxedo errors and exceptions. The Jolt Class Library
errors and exceptions are also listed for each class, constructor, and method listed in
the API Reference in Javadoc. Tuxedo Errors are described briefly in this appendix.
For a complete explanation of Tuxedo errors, refer to BEA Tuxedo System Messages.
BEA Jolt Developer’s Guide A-1

A Tuxedo Errors
Tuxedo Errors

Expanded references to Tuxedo will be available in a future release of the Jolt product
documentation. If you require an immediate, expanded reference for Tuxedo related
errors, see the Tuxedo System Reference Manual.

Table A-1 Tuxedo Errors

Error Description

TPEABORT A transaction could not commit because the work performed by the
initiator, or by one or more of its participants, could not commit.

TPEBADDESC A call descriptor is invalid or is not the descriptor with which a
conversational service was invoked.

TPEBLOCK A blocking condition exists and TPNOBLOCK was specified.

TPEDIAGNOSTIC Dequeuing a message from the specified queue failed. The reason for
failure can be determined by the diagnostic value returned through
ctl structure.

TPEEVENT An event occurred; the event type is returned in revent.

TPEHAZARD Due to a failure, the work done on behalf of the transaction can have
been heuristically completed.

TPEHEURISTIC Due to a heuristic decision, the work done on behalf of the transaction
was partially committed and partially aborted.

TPEINVAL An invalid argument was detected.

TPEITYPE The type and subtype of the input buffer is not one of the types and
subtypes that the service accepts.

TPELIMIT The caller’s request was not sent because the maximum number of
outstanding requests or connections has been reached.

TPEMATCH svcname is already advertised for the server but with a function other
then func.

TPEMIB The administrative request failed. outbuf is updated and returned to
the caller with FML32 fields indicating the cause of the error as is
discussed in MIB(5) and TM_MIB(5).
A-2 BEA Jolt Developer’s Guide

Tuxedo Errors
TPENOENT Cannot send to svc because it does not exist or is not the correct type
of service.

TPEOS An operating system error has occurred.

TPEOTYPE The type and subtype of the reply are not known to the caller.

TPEPERM A client cannot join an application because it does not have permission
to do so or because it has not supplied the correct application
password.

TPEPROTO A library routine was called in an improper context.

TPERELEASE tpadmcall() was called with the TUXCONFIG environment
variable pointing to a different release version configuration file.

TPERMERR A resource manager failed to open or close correctly.

TPESVCERR A service routine encountered an error either in tpreturn(3) or
tpforward(3). For example, bad arguments were passed.

TPESVCFAIL The service routine sending the caller’s reply called.

TPESYSTEM A System/T error occurred.

TPETIME A time-out occurred.

TPETRAN The caller cannot be placed in transaction mode.

TPGOTSIG A signal was received and TPSIGRSTRT was not specified.

Table A-1 Tuxedo Errors

Error Description
BEA Jolt Developer’s Guide A-3

A Tuxedo Errors
A-4 BEA Jolt Developer’s Guide

Tuxedo Errors
BEA Jolt Developer’s Guide A-5

A Tuxedo Errors
A-6 BEA Jolt Developer’s Guide

APPENDIX
B System Messages

Jolt system messages and code references will be available in a future release of the
Jolt product documentation. If you require an immediate, expanded reference, refer to
BEA Tuxedo System Messages.

This appendix includes:

� Jolt System Messages

� Repository Messages

� FML Error Messages

� Information Messages

� Jolt Relay Adapter (JRAD) Messages

� Jolt Relay (JRLY) Messages

� Bulk Loader Utility Messages
BEA Jolt Developer’s Guide B-1

B System Messages
Jolt System Messages

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Message Manual, Volume 2, under “WSNATIVE MESSAGES
(WSNAT_CAT).

1503 ERROR Could not initialize Jolt administration services.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine
the proper course of action.

See Also Tuxedo Administration Guide

1504 ERROR Failed to advertise local Jolt administration service <service
name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine
the proper course of action.

See Also Tuxedo Administration Guide

1505 ERROR Failed to advertise global Jolt administration service <service
name>.

Description Jolt administration services cannot be started.

Action Check the userlog for other messages to determine
the proper course of action.

See Also Tuxedo Administration Guide
B-2 BEA Jolt Developer’s Guide

Jolt System Messages
1506 ERROR Terminating Jolt administration services in preparation for
shutdown.

Description The JSL has completed its shutdown and is exiting
the system.

Action Informational message, no action required.

See Also Tuxedo Administration Guide

1510 ERROR Received network message with unknown context.

Description BEA Jolt protocol failure. Received a corrupted or
an improper message.

Action Restart Jolt client.

1511 ERROR _tprandkey() failed tperrno = %d, could not generate random
encryption key.

Description Tuxedo internal failure.

Action Restart Jolt servers.

1512 ERROR Sending of reply to challenge call to client failed.

Description JSH was unable to reply to Jolt client due to
network error.

Action Restart client.

1513 ERROR Failed to encrypt ticket information.

Description BEA Tuxedo internal failure.

Action Retry the option. If the problem persists, contact
BEA Technical Support.

1514 ERROR Incorrect ticket value sent by workstation client.

Description BEA Jolt protocol failure.

Action Retry the option. If the problem persists, contact
BEA Technical Support.
BEA Jolt Developer’s Guide B-3

B System Messages
1515 ERROR Tried to process unexpected message opcode 0x%1x.

Description BEA Jolt protocol failure. Client is sending Jolt
messages with unknown opcodes.

Action Retry the option. If the problem persists, contact
BEA Technical Support.

1516 ERROR Unrecognized message format, release %1d.

Description BEA Jolt protocol failure.

Action Make sure the client classes are at the appropriate
version level.

1517 ERROR Commit handle and clientid have no matching requests.

Description Received a copy from Tuxedo that has no
corresponding client.

Action No action required.

1518 ERROR Call handle and clientid have no matching requests.

Description Received a reply from Tuxedo that has no
corresponding client.

Action No action required.

1519 ERROR Application password does not match.

Description Authentication error.

Action Check the application password.

1520 ERROR Init handle and clientid have no matching requests

Description A reply could not be sent to client. (May be due to
client disconnect.)

Action No action required.

1521 ERROR Unrecognized message magic %ld.

Description Inappropriate message is sent to JSH/JSL.

Action Check the client sending erroneous messages.
B-4 BEA Jolt Developer’s Guide

Jolt System Messages
1522 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1523 ERROR Memory allocation failure.

Description Machine does not have enough memory.

Action Check the machine resources.

1524 ERROR Failed to create encryption/decryption schedule.

Description BEA Tuxedo internal error.

Action Retry the option. If the problem persists, contact
BEA Technical Support.

1525 ERROR Tried to process unexpected message opcode 0x%1x.

Description Received a message with invalid opcode.

Action Check the client.

1526 ERROR Jolt license has expired.

Description License for Jolt use has expired.

Action Contact BEA Technical Support.

1527 ERROR Expected argument to -c option.

Description Option -c needs an argument.

Action Provide a valid argument.

1528 ERROR Request for inappropriate session type.

Description Received a message without valid session
information.

Action Restart the client.
BEA Jolt Developer’s Guide B-5

B System Messages
1529 ERROR Session type must be RETAINED or TRANSIENT.

Description Server configuration does not match client
request.

Action Check the -c argument of the JSL.

1530 ERROR Received RECONNECT message with invalid context.

Description Client context is cleaned. A -T option is specified
to the JSL.

Action Check the -T option. Check the network errors
also.

1531 ERROR Received invalid RECONNECT request

Description Received a RECONNECT request.

Action Restart client.

1532 ERROR Received J_CLOSE message with invalid context.

Description Timeout in connection.

Action If a request is sent after a timeout that is longer
than the session timeout of the JSL, the JSH
cannot validate the session ID.

1533 ERROR Sending of reply of close protocol failed.

Description BEA Jolt protocol failure.

Action Check the client.

1534 ERROR Sending of reply of reconnect protocol failed.

Description BEA Jolt protocol failed.

Action Check the client.

1535 ERROR Timestamp mismatch in close protocol.

Description BEA Jolt protocol failed.

Action Restart the client.
B-6 BEA Jolt Developer’s Guide

Jolt System Messages
1536 ERROR Received J_RECONNECT message with invalid context.

Description BEA Jolt protocol failed. Session timed out before
RECONNECT request arrived.

Action Restart the client.

1537 ERROR Timestamp mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.

1538 ERROR Client address mismatch in reconnect protocol.

Description BEA Jolt protocol failure.

Action Restart the client.

1539 ERROR Failed to decrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1540 ERROR Failed to encrypt reconnect information.

Description BEA Jolt protocol failure.

Action Restart the client.

1541 ERROR Received RECONNECT request for nonTRANSIENT client.

Description Improper request from client.

Action Restart the client.

1542 ERROR Unlicensed Jolt server.

Description The JSL is not licensed. The installation is
incomplete, or it failed to burn the license into the
JSL.

Action Reinstall Jolt with a valid Jolt license.
BEA Jolt Developer’s Guide B-7

B System Messages
1543 ERROR Invalid Jolt license.

Description The license used for the Jolt installation is not for
the Jolt product. The Tuxedo license may have
been used during installation instead of the Jolt
license.

Action Reinstall Jolt with a valid Jolt license.

1544 ERROR This Tuxedo is not Release <Tuxedo release number>.

Description Jolt is compatible with Tuxedo Release 6.1 or 6.2.
The JSL has determined that the Tuxedo release is
not compatible.

Action Install Tuxedo 6.1 or Tuxedo 6.2.

1545 ERROR Cannot determine if this Tuxedo is <Tuxedo release number>:
service.TMIB failed.

Description This version of Tuxedo does not support the MIB.
The Tuxedo release may be Tuxedo 6.0 or earlier.

Action Install Tuxedo 6.1 or 6.2 or check to ensure that
your Tuxedo release is 6.1 or 6.2.

1546 WARN The version of this Tuxedo is not available; <Tuxedo release
number> is assumed.

Description The MIB is supported with this version of Tuxedo,
but the release number is unavailable. The Tuxedo
version might not be a master binary. It might also
be an internal version of Tuxedo.

Action No action is required.

1547 ERROR Memory allocation failure in JOLT_SUBSCRIBE.

Description Check resources of the machine.

Action Restart Tuxedo after increasing system resources.
B-8 BEA Jolt Developer’s Guide

Jolt System Messages
1548 ERROR jolt_tpset_enq failed.

Description Internal system failure.

Action Restart the client. If problem persists, check field
table files and directories and then restart the
servers.

1549 ERROR [JOLT_EVENTS failed to set %s field. Ferror32=%d].

Description Unable to get the field definition for Tuxedo
internal fields.

Action Check Tuxedo installation and restart the servers.

1550 ERROR JOLT_UNSUBSCRIBE - Invalid Subscription ID.

Description Application error.

Action Check the client and restart the client.

1551 ERROR Memory allocation failure in JOLT_UNSUBSCRIBE.

Description Resources are not enough.

Action Increase resources and restart Tuxedo.

1552 WARN Dropping notification message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.

1553 WARN Dropping broadcast message for Transient client %d.

Description Notification arrived when a transient client is not
connected.

Action Information message only; no action required.
BEA Jolt Developer’s Guide B-9

B System Messages
1554 ERROR Expected numeric argument for -Z option.

Description -Z option expects 0, 40, or 128 as the argument.

Action Check the configuration file and specify a valid
numeric argument for JSL.

1555 ERROR %d - Illegal argument for -Z option.

Description Incorrect argument value is specified.

Action Check the argument for -Z option and correct it.

1556 ERROR %d - Illegal argument for -Z option due to international license.

Description For international release only 0 or 40 are allowed.

Action Specify correct argument.

1557 ERROR Incorrect number of encrypted bit values from workstation client.

Description BEA Jolt protocol failure.

Action Call BEA Technical Support.

1558 ERROR Expected argument to -E option.

Description An argument is expected for -E option.

Action Specify correct option and restart Tuxedo.

1559 ERROR %s - Illegal argument to -E option.

Description Incorrect value is specified as argument to -E
option.

Action Specify the correct option.

1560 ERROR Cannot initialize the code conversion for local %s.

Description Cannot find function to do the code conversion for
internationalization.

Action Check the shared library.
B-10 BEA Jolt Developer’s Guide

Jolt System Messages
1561 ERROR TUXDIR is not set.

Description TUXDIR environment variable is not set.

Action Set the variable to Tuxedo directory and restart
Tuxedo.

1562 ERROR Error reading license file.

Description Jolt is not able to open Tuxedo license file in
$TUXDIR/udataobj/lic.txt.

Action Copy the correct license file to
$TUXDIR/udataobj/lic.txt.

1563 INFO Serial Number: <%s>, Expiration Date: <%s>.

Description Serial number and expiration date displays.

Action No action required.

1564 INFO Licensee: <%s>.

Description Licensee information displays.

Action No action required.

1565 ERROR Call handle and clientid have no matching requests.

Description Received a reply from Tuxedo that has no
corresponding client.

Action No action required.

1566 INFO Message received without handle, ignored.

Description A Tuxedo message arrived without an identifying
handle.

Action No action required.
BEA Jolt Developer’s Guide B-11

B System Messages
1567 ERROR Expected argument to -j option.

Description -j requires an argument.

Action Specify -j argument
(ANY/RETAINED/RECONNECT) in UBB and
reboot Tuxedo system.

1568 INFO Compression threshold is set to %d.

Description Informative message.

Action No action required.

1569 ERROR No Tuxedo Encryption installed. Cannot use Diffie-Hellman.

Description Cannot find encryption libraries.

Action Contact Tuxedo support.

1570 WARN Jolt Client Connection Request timed out.

Description Jolt client sent connect request for JSH too late.

Action If problem persists, increase the value of-I option
in JSL.

1571 WARN A Jolt Client has incorrect APPADDR.

Description A Jolt client has specified JSH address instead of
JSL.

Action Change the client and specify correct address.

1572 WARN A Non Jolt Opcode is sent to JSH.

Description A request received by JSh has non Jolt opcode.

Action Check client’s APPADDR.
B-12 BEA Jolt Developer’s Guide

Repository Messages
Repository Messages

ERROR Usage: JREPSVR [-W] -P path -W writable repository.

Description An invalid option is specified or -P is not
specified properly.

Action Review the Jolt documentation and ensure that the
options are specified correctly.

ERROR Not enough memory

Description Not enough memory; please add more swap space.

Action Configure additional memory. Make sure the operating
system parameters are set correctly for the amount of
memory on the machine and the amount of memory that
can be used by a process. Reduce the memory usage on
the machine or increase the amount of physical memory
on the machine.

ERROR Not enough disk space for “<repository-file-path>”

Description Ran out of disk space while adding or deleting
Repository entries, or during garbage collection.

Action Configure additional disk space.

ERROR Cannot modify read-only repository “<repository-file-path>”

Description Denies attempt to add or delete an entry from a
read-only repository.

Action Check the file permission and ensure that the file is
writable.

ERROR “<repository-file-path>” is not a valid repository file.

Description The specified file is not valid; a valid repository file
must have the string, “#!JOLT1.0” in the first line.

Action Extract the file from the Jolt distribution CD-ROM.
BEA Jolt Developer’s Guide B-13

B System Messages
ERROR Can’t open <repository-file-path>.

Description Unable to open the repository file.

Action Check to ensure that the file path is valid or its
permission is correct.

ERROR Can’t create <repository-file-path>: check permission or path.

Description Unable to create the repository file during garbage
collection.

Action Check the file or directory permission.

ERROR Syntax error: <service definition>.

Description An invalid entry was detected when an attempt was
made to add an entry to the repository. The entry must
have ‘:’ as a field separator.

Action Contact BEA Technical Support.

ERROR Garbage collection failed: <key> not found.

Description When the writable repository is shutdown, it performs
garbage collection to collapse the repository file. If it
detects an inconsistency, the garbage collection fails.

Action Contact BEA Technical Support.
B-14 BEA Jolt Developer’s Guide

FML Error Messages
FML Error Messages

ERROR Fielded buffer not aligned.

Description An FML function was called with a fielded buffer that is
not properly aligned. Most machines require half-word
alignment.

Action Use Falloc to retrieve an allocated, properly
aligned buffer.

See Also Tuxedo Reference Manual

ERROR Buffer not fielded.

Description A buffer was passed to an FML function that has not
been initialized.

Action Use Finit to initialize a buffer allocated directly by

the application, or use Falloc to allocate and
initialize a fielded buffer.

See Also Tuxedo Reference Manual

ERROR Invalid argument to function.

Description An invalid argument (other than an invalid field buffer,
field identifier, or field type) was passed to an FML
function. This can be a parameter where a non-NULL
parameter was expected (for example, it can be an
invalid buffer size, etc.).

Action See the manual page associated with the error for the
correct parameter values.

See Also Tuxedo Reference Manual
BEA Jolt Developer’s Guide B-15

B System Messages
ERROR Unknown field number or type.

Description An invalid field number was specified for an FML
function, an invalid field number (0 or greater than

8192) was specified, or Fname could not find the
associated field identifier for the specified name.

Action Most of the FML functions return this error; see the
manual page associated with the function that returned
this error. Check your code to make sure the field
specified is valid.

See Also Tuxedo Reference Manual
B-16 BEA Jolt Developer’s Guide

Information Messages
Information Messages

INFO Repository “<repository-file-path>” (### records) is writable.

Description When a writable Repository server is brought up, it
reports the number of records it found.

Action No action required.

INFO Repository “<repository-file-path>” (### records) is read-only.

Description When a read-only Repository server is brought up, it
reports the number of records it found.

Action No action required.
BEA Jolt Developer’s Guide B-17

B System Messages
Jolt Relay Adapter (JRAD) Messages

Note: You can find error messages numbered 1000 to 1299 in the BEA Tuxedo
System Message Manual, Volume 2, under “WSNATIVE MESSAGES
(WSNAT_CAT).

1500 ERROR Needs both -l -c options with arguments.

Description Needed options are without arguments.

Action Check and correct configuration file for JRAD
entry.

1501 ERROR Malloc failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1502 ERROR Memory allocation failed.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1503 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.
B-18 BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages
1504 INFO Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1505 ERROR Memory allocation failed. Cannot send ESTCON.

Description JRAD is not able to allocate dynamic memory.

Action Increase the system resources and restart the
JRAD.

1506 ERROR Connection to JSL failed.

Description JSL is not running.

Action Check the address given with option -c.

1507 ERROR Sending message to JSL failed.

Description JSL is not running or network connection is down.

Action Restart the JRAD/JSL.

1508 INFO Sending message to JSH failed.

Description Network is down. Connection to the JSH failed.

Action Check the network and restart the JSL.

1509 ERROR Sending CONNECT reply to JRLY.

Description Unable to reach JRLY. Probably problem in the
network.

Action Restart the JRLY and JRAD after check the
network addresses.
BEA Jolt Developer’s Guide B-19

B System Messages
1510 ERROR Sending SHUTDOWN reply to JRLY.

Description Unable to reach JRLY. Probably problem in the
network.

Action Restart the JRLY and JRAD after check the
network addresses.

1511 ERROR Incorrect Jolt message received from JRLY.

Description A non Jolt message is sent by JRLY.

Action No action required. JRLY process filters non Jolt
messages already.

1512 ERROR Sending SHUTDOWN to JRLY failed.

Description Unable to send shutdown message to JRLY.

Action No action required.

1513 ERROR Sending CLOSE to JRLY failed for ID <%d>.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1514 ERROR Sending CLOSE to JRLY failed.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1515 ERROR Sending CLOSE to JRLY failed for ID <%d>.

Description Unable to send CLOSE message for Relay ID to
JRLY.

Action No action required.

1516 ERROR Sending ESTCON to JRLY failed for ID <%d>.

Description Sending ESTCON message failed.

Action No action required.
B-20 BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages
1517 ERROR Invalid Handler Id. No corresponding address.

Description JRAD received a message without JSH
identification.

Action No action required.

1518 ERROR Cannot connect to JSH with id <%d>.

Description JRAD received a message without JSH
identification.

Action No action required.

1519 ERROR Invalid request from JRLY.

Description JRAD received a message without JSH
identification.

Action No action required.

1521 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1522 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1523 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.

1525 ERROR JRLY connection is down.

Description JRLY connection is down.

Action No action required.
BEA Jolt Developer’s Guide B-21

B System Messages
1526 INFO JRLY connection is UP.

Description A JRLY-JRAD connection is established.

Action No action required.

1531 ERROR Sending R_CLOSE | R_ACK failed.

Description Failed to send Relay protocol ack.

Action No action required.

1532 INFO JRLY connection is closed.

Description JRLY connection is down.

Action No action required.

1533 ERROR Bad hex number provided for external jrly address: %s.

Description Invalid -H option value.

Action Check -H option and provide correct value.

1534 ERROR Convert external jrly address to hex format failed: %s.

Description Invalid -H option value.

Action Check -H option and provide correct value.

1535 ERROR Bad hex number provided for connecting address: %s.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1536 ERROR address conversion failed.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1537 WARN Convert listening address to hex format failed: %s.

Description Invalid -l option value

Action Check -l option and provide correct value.
B-22 BEA Jolt Developer’s Guide

Jolt Relay Adapter (JRAD) Messages
1538 WARN Convert connecting address to hex format failed: %s.

Description Invalid -c option value.

Action Check -c option and provide correct value.

1539 WARN Refusing connection to JRAD. JRLY connection exists.

Description A second JRLY is trying to connect to JRAD.
Connection is refused by JRAD.

Action Provide correct CONNECT address for JRLY.

1540 WARN No JRLY process connected.

Description A dubious message arrived for JSL/JSH with no
relay connected.

Action Check the network address in configuration.
BEA Jolt Developer’s Guide B-23

B System Messages
Jolt Relay (JRLY) Messages

The following table lists the Jolt Relay messages.

ERROR Ignoring syntax error in configuration file line %d

Description The line in question doesn't contain an equal sign or (in
case of the LISTEN and CONNECT tag) is missing the
colon.

Action Verify the syntax of the configuration file at the
specified line.

ERROR Ignoring unknown tag '%s' in configuration file line %d.

Description The line in question is does not contain one of the valid
tags: LOGDIR, ACCESS_LOG, ERROR_LOG,
LISTEN, CONNECT.

Action Verify the syntax of the configuration file at the
specified line.

ERROR MSG_MALLOC: perror().

Description Memory allocation failed. The relay will exit.

Action Make more memory available on the machine on which
the relay is running. Remove other unnecessary
processes which may be running on the same host as the
relay. Restart the relay.

ERROR Client structure != NULL for file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.
B-24 BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages
ERROR Invalid file descriptor %ld

Description An internal error occurred. The relay will continue to
run, but a client process may have been disconnected.

Action None. If this message appears repeatedly and can be
reproduced consistently notify BEA Technical Support.

ERROR Could not open configuration file %s

Description The specified configuration file does not exist or is
not readable. The relay will exit.

Action Check the file name and the permissions on the file
and the directory.

ERROR No log directory specified.

Description LOGDIR was not specified in the configuration
file or no value for it was given.

Action Verify the entry for the tag LOGDIR in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No access log file specified.

Description ACCESS_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for the tag ACCESS_LOG in the
configuration file.Check that the correct
configuration file is being used (-f parameter).

ERROR No error log file specified.

Description ERROR_LOG was not specified in the
configuration file or no value for it was given.

Action Verify the entry for the tag ERROR_LOG in the
configuration file. Check that the correct
configuration file is being used (-f parameter).
BEA Jolt Developer’s Guide B-25

B System Messages
ERROR No JRLY host specified

Description The value for the LISTEN tag does not contain the
host name or IP address or the relay host, e.g.,
LISTEN=host:port.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No JRAD host specified.

Description The value for the CONNECT tag does not contain
the host name or IP address or the JRAD host, e.g.,
CONNECT=host:port.

Action Verify the entry for the tag CONNECT in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No listener port specified or listener port <= 0.

Description The value for the LISTEN tag does not contain a
valid port number on the relay host.

Action Verify the entry for the tag LISTEN in the
configuration file. Check that the correct
configuration file is being used (-f parameter).

ERROR No JRAD port specified or JRAD port <= 0.

Description The value for the CONNECT tag does not contain
a valid port number on the relay host.

Action Verify the entry for the tag CONNECT in the
configuration file.Check that the correct
configuration file is being used (-f parameter).
B-26 BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages
ERROR Could not determine IP address of listener host

Description The relay could not look up the IP address of the
host machine.

Action If the host was specified as a host name replace it
with the IP address and restart the relay. If it
already was given as IP address make sure that the
IP address is correct and that you're trying to start
the relay on this host. Note that the address
specified must be the address of the host on which
the relay is running.

ERROR Cannot bind socket

Description The listener port specified in the configuration file is
already being used by another application or still in a
final wait state from a previous run of jrly.

Action Either specify a different port number in the
configuration file (and all HTML files containing the IP
address and port number of the relay) or wait a few
minutes. The command "netstat -a" displays existing
connections.

ERROR Can’t open log file %s

Description Either the error log file or access log file (or both) could
not be opened for writing.

Action Check the configuration file for correct spelling of the
LOGDIR. Make sure you have write permissions on this
directory and the files specified. On Windows NT, the
directory separators must be back slashes, not forward
slashes.
BEA Jolt Developer’s Guide B-27

B System Messages
ERROR WSAStartup failed (NT only)

Description The Winsock driver could not initialize. Possible causes:

� The underlying network subsystem is not
ready for network communication Version
2.0 of Windows Sockets support is not
provided by this particular Windows Sockets
implementation.

� Limit on the number of tasks supported by the
Windows Sockets implementation has been
reached.

Action Check the networking software configuration on
your system.

ERROR Couldn't load Winsock Driver version 2.X. (NT only)

Description The relay requires Winsock version 2 or higher, but
could not load it.

Action Check the networking software configuration on your
system. An older version of Windows Sockets support
was detected.

ERROR FATAL ERROR: unknown message code %ld.

Description Internal error. The relay will exit

Action Restart the relay. If this message appears repeatedly and
can be reproduced consistently notify BEA Technical
Support.

ERROR connect: Connection refused

Description The relay could not connect to JRAD.

Action Make sure the relay adapter (JRAD) is running. Check
that the CONNECT tag in the relay configuration file
identifies the correct host and port on which the JRAD
is running.
B-28 BEA Jolt Developer’s Guide

Jolt Relay (JRLY) Messages
ERROR accept(): accept failed, errno: 24, strerror: Too many open files

Description The relay tried to open more files/sockets than the
system limit.

Action The default maximum number of open file descriptors
for a process is 64 on most UNIX systems. Set this
number to at least 1024 (with the limit or ulimit
commands).
BEA Jolt Developer’s Guide B-29

B System Messages
Bulk Loader Utility Messages

ERROR File not found: %s

Description The specified file is not found.

Action Check the path again.

ERROR Error on line %d: %s value is null

Description A value is expected for this keyword.

Action Input the value.

ERROR Error on line %d: Invalid keyword: %s=%s

Description Keyword is not recognized.

Action Input the correct keyword value.

ERROR Error on line %d: Invalid number: %s

Description The numeric number is malformed.

Action Input the correct value.

ERROR Error on line %d: Invalid value: %s

Description The value of the parameter is out of range.

Action Input the correct value.

ERROR Error on line %d: Invalid value: %s

Description The data type of the parameter is invalid.

Action Input the correct value.
B-30 BEA Jolt Developer’s Guide

Index

A
applets

client-side execution 4-57
Java 4-1, 4-2, 4-58
Jolt 1-11, 4-4
localizing 4-59

appletview
Repository Editor 3-5

applications
deployment 4-57
localization 4-57
multithreaded 4-37

ASP Connectivity 7-1

B
BEA Tuxedo

access 4-1
ATMI interface 4-4
buffer types

using with Jolt 4-14
customizing 4-1
data types

using with Jolt 4-14
logging

off 4-5
on 4-5

server requirements 4-57
services

executing 4-5
requests 4-4

transaction
begin 4-5
complete 4-5
new 4-5
rollback 4-5

buffer type
CARRAY 4-21, 4-30
FML 4-23
STRING 4-15
VIEW 4-30

buffer types
STRING 4-15
Tuxedo 4-14

bulk loader
bulk load file 2-2, 2-3
command line options 2-2
data file syntax 2-3
getting started 2-2
introduction 2-1
keywords 2-4, 2-5, 2-7
messages B-30
sample data 2-9
troubleshooting 2-8
using Windows NT 2-2

C
CARRAY

buffer type 4-17, 4-19, 4-21, 4-24, 4-30
classes 4-6

functionality 4-8
Jolt Developer’s Guide I-1

hierarchy 4-7
Jolt 4-1, 4-6, 4-8
JoltRemoteService 4-8
JoltSession 4-8
JoltSessionAttributes 4-6, 4-8
JoltTransaction 4-10
relationships 4-7
subdirectory 4-58

client
Jolt 4-5
logon/logoff 4-8

connection attributes 4-10
hostname 4-10
portnumber 4-10

connection modes
connection-less 4-46
retained 4-46

D
data types

Tuxedo 4-14
DES 1-3

E
ECHO service parameters

INPUT/OUTPUT 4-21
encryption 1-3
errors

Jolt 4-3
Jolt interpreter 4-3
summary of Tuxedo A-2
Tuxedo generated in Jolt 4-3

Event Subscription 4-44
classes for 4-44
supported types 4-47

events
subscribing to 4-44

exceptions
Jolt 4-3

ServiceException 4-11
System.in.read 4-39

exporting services 3-39

F
FML buffer type 4-23

G
group services

package organizer
how to use 3-32

H
HTML

applet tag 4-58
page 4-58

J
Java

applets 4-1, 4-2, 4-58
class files 4-58
clients 1-7, 4-4
Developer’s Kit (JDK) 1.0 4-38
language classes 4-1
packages 4-58
programs 4-2
Thread.yield() method 4-38
Virtual Machine (VM) 4-37

Jolt
applets 1-11

deploying 4-57
localizing 4-59

architecture 1-3, 1-5, 1-6
bulk loader 2-1
classes 4-1, 4-6, 4-58

functionality 4-8
hierarchy 4-7
relationships 4-7
I-2 Jolt Developer’s Guide

subdirectory 4-58
client

interface objects 4-5
logon/logoff 4-8
populating variables 4-5
requests 4-5

client/server
interaction 4-5
relationship 4-4

clients
communication with servers 1-10

connection manager 4-4
defined 1-2
features 1-3
international use 4-59
JRAD B-18
JRLY B-24
Repository 4-5

Editor
using 3-1

service attributes 4-5
Repository Editor 1-2
server 4-4, 4-5, 4-58

requirements 4-57
servers 1-2

communication with clients 1-10
components 1-6
proxy for Tuxedo client 1-5

Transaction Protocol 1-10, 4-4
using threads with 4-39

Jolt Class Library 1-2, 1-7, 4-2, 4-6, 4-8, 4-10
application development 4-57
errors 4-3

handling 4-3
list of Tuxedo related A-2

exceptions 4-3
handling 4-3

functionality 4-8
object/class reusability 4-51

Jolt Reply 4-44

Jolt Repository Server 1-6
Jolt Server Handler 1-6
Jolt Server Listener 1-6
JoltBeans 5-1
JoltMessage 4-44
JoltRemoteService 4-10

calls 4-10
class 4-8
object 4-8
resetting parameters 4-9
reusing 4-51

JoltSession 4-5, 4-10, 4-44, 4-49
class 4-8, 4-10, 4-49
object 4-7, 4-8

instantiating 4-10
JoltSessionAttributes 4-6, 4-7, 4-8, 4-10
JoltTransaction 4-5, 4-7, 4-9, 4-10

class 4-10
JoltUserEvent 4-44
JRAD

messages B-18
JREPSVR
JRLY

messages B-24
JSH
JSL

L
logoff 4-8
logon 4-8

Repository Editor 3-6

M
messages

bulk loader B-30
FML B-15
information B-17
Jolt system B-2
JRAD B-18
Jolt Developer’s Guide I-3

JRLY B-24
repository B-13

methods
clear() 4-9
Thread.yield() 4-38

multithreaded applications 4-37

N
Netscape Navigator 3-5
notifications

brokered event 4-44
data buffers 4-46
event handler for 4-45
unsolicited 4-44
unsubscribing 4-48
using Jolt to receive 4-49

O
objects

relationships 4-7
reusability 4-44
reusing 4-53

P
package organizer

description 3-31
group services

how to 3-32
using 3-30

packages
add a package 3-20
adding 3-19
delete a package 3-37
deleting 3-38
modifying 3-34
package organizer 3-30
Repository Editor 3-12, 3-13

parameters 3-17

delete a parameter 3-37
deleting 3-37
edit a parameter 3-37
editing 3-36
modifying 3-34

R
RC4 1-3
Repository Editor 1-2, 1-10

appletviewer 3-5
exiting the 3-8
introduction 3-2
logon 3-6
main components of 3-10
Netscape Navigator 3-5
packages 3-12, 3-13

setting up 3-19
parameters 3-17
process flow 3-10
sample window 3-2
sample window description 3-4
saving your work 3-19
services 3-15

description of 3-16
setting up 3-19
view services 3-16

troubleshooting 3-48

S
saving your work 3-19
security 1-3
server

Jolt 4-5
Tuxedo requirements for 4-57
web 4-58

servers
components 1-6
Jolt 1-2
Jolt Repository 1-6
I-4 Jolt Developer’s Guide

services
add a parameter 3-26

data type selection 3-28
how to 3-27
window description 3-26

add a service 3-21
buffer type selection 3-25
how to 3-23, 3-24

calling synchronous 4-8
definitions 4-11
delete a service 3-37
deleting 3-37
edit a service 3-34
editing 3-35
export status

reviewing 3-41, 3-42
exporting 3-39, 3-40
grouping 3-30
Jolt client

make service available to 3-39
modifying 3-34
parameters 3-17
service test window 3-44, 3-45
test a service

failure, reasons for 3-47
how to 3-46
process flow 3-46

testing 3-43
unexport 3-39
unexport a service 3-40
unexport status

reviewing 3-41, 3-42
using the Repository Editor 3-15
view parameters 3-17
view services 3-16

Servlets 6-1
STRING buffer type 4-15

T
testing

services 3-43
threads 4-37

BLOCKED 4-37
non-preemptive 4-38
RUNNABLE 4-37
RUNNING 4-37
using Jolt with non-preemptive 4-38
using with Jolt 4-39

TOUPPER
service 4-15

TPEABORT A-2
TPEBADDESC A-2
TPEBLOCK A-2
TPEDIAGNOSTIC A-2
TPEEVENT A-2
TPEHAZARD A-2
TPEHEURISTIC A-2
TPEINVAL A-2
TPEITYPE A-2
TPELIMIT A-2
TPEMATCH A-2
TPEMIB A-2
TPENOENT A-2
TPEOS A-2
TPEOTYPE A-2
TPEPERM A-3
TPEPROTO A-3
TPERELEASE A-3
TPERMERR A-3
TPESVCERR A-3
TPESVCFAIL A-3
TPESYSTEM A-3
TPETIME A-3
TPETRAN A-3
TPGOTSIG A-3
Transaction

Protocol 4-4
transaction

begin 4-9
commit 4-9
object 4-9
Jolt Developer’s Guide I-5

rollback 4-9
troubleshooting

Repository Editor 3-48
Tuxedo

distributing services 1-11
errors A-2

U
unexporting services 3-39

V
VIEW buffer type 4-30
view parameters 3-17

W
web server

considerations 4-58
I-6 Jolt Developer’s Guide

	Copyright
	1 Introducing BEA Jolt
	What is BEA Jolt?
	Key Features
	How It Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	ASP Connectivity for Tuxedo
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Repository Editor

	Jolt Internet Relay

	How to Jolt your Tuxedo Applications

	2 Bulk Loading Tuxedo Services
	Using the Bulk Loader
	To Activate The Bulk Loader
	Command Line Options
	About the Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	3 Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor Using Your Web Browser
	Logging on to the Repository Editor
	Repository Editor Logon Window Description

	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What is a Package?
	Packages Window Description
	Instructions for Viewing a Package

	What is a Service?
	Services Window Description
	Instructions for Viewing a Service

	Working With Parameters
	Instructions for Viewing a Parameter

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Instructions for Adding a Package

	Adding a Service
	Adding a Service Window Description
	Instructions for Adding a Service
	Selecting CARRAY or STRING as a Service Buffer Type

	Adding a Parameter
	Parameters Window Description
	Instructions for Adding a Parameter
	Selecting CARRAY or STRING as a Parameter Data Type

	Grouping Services Using the Package Organizer
	Package Organizer Description
	Instructions for Grouping Services with the Package Organizer

	Modifying Packages/Services/Parameters
	Editing a Service
	Instructions for Editing a Service

	Editing a Parameter
	Editing a Parameter

	Deleting Parameters/Services/Packages
	Deleting a Parameter
	Deleting a Service
	Deleting a Package

	Making a Service Available to the Jolt Client
	Exporting/Unexporting Services
	Exporting/Unexporting a Service

	Reviewing the Exported/Unexported Status
	Reviewing the Exported/Unexported Status

	Testing a Service
	Repository Editor Service Test Window
	Service Test Window Description

	Testing a Service Process Flow
	Testing a Service

	Troubleshooting
	Repository Enhancements for Jolt

	4 Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications vs. Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Functionality
	Logon/Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Jolt Class Library Walk-through
	Using Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Define TOUPPER in the Repository Editor
	ToUpper.java Client Code

	Using the CARRAY Buffer Type
	Define ECHO in the Repository Editor
	tryOnCARRAY.java Client Code

	Using the FML Buffer Type
	tryOnFml.java Client Code
	FML Field Definitions
	Define PASSFML in the Repository Editor
	tryOnFml.c Server Code

	Using the VIEW Buffer Type
	simpview.java Client Code
	VIEW Field Definitions
	Define VIEW in the Repository Editor
	simpview.c Server Code

	Multithreaded Applications
	Threads of Control
	Preemptive Threading
	Non-preemptive Threading

	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	API for Event Subscription
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	Tuxedo Event Subscription
	Supported Subscription Types
	Subscribing to Notifications
	Unsubscribing from Notifications

	Using the Jolt API to Receive Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Application Deployment and Localization
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	5 Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Runtime JoltBeans

	Basic Steps For Using JoltBeans
	JavaBeans Events and Tuxedo Events
	Using Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Placing JoltBeans onto the Form Designer

	Wiring the JoltBeans Together
	Step 1: Wire the JoltSessionBean logon
	Step 2: Wire JoltSessionBean to JoltServiceBean using propertyChange
	Step 3: Wire the accountID JoltTextField as input to the JoltServiceBean using JoltInputEvent
	Step 4: Wire Button to JoltServiceBean using JoltAction
	Step 5: Wire JoltServiceBean to the balance JoltTextField using JoltOutputEvent
	Step 6: Wire the JoltSessionBean logoff
	Step 7: Compile the applet
	Running the Sample Application

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	6 Using Servlet Connectivity for Tuxedo
	What is a Servlet?
	How Servlets Work With Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	Requirements for Running the Simpapp Sample
	Installing the SimpApp Sample

	BankApp Sample
	Requirements for Running the Bankapp Sample
	Installation Instructions

	Admin Sample
	Requirements for Running the Admin Sample
	Installation Instructions

	Additional Information on Servlets

	7 Using Jolt ASP Connectivity for Tuxedo
	Key Features
	ASP Connectivity Enhancements for Jolt
	How the Jolt ASP Connectivity for Tuxedo Works
	The ASP Connectivity for Tuxedo Toolkit
	Jolt ASP Connectivity for Tuxedo Walkthrough
	Overview of the ASP for Tuxedo Walkthrough
	Getting Started Checklist
	Overview of the TRANSFER Service
	TRANSFER Request Walkthrough
	Initializing the Jolt Session Pool Manager
	Submitting a TRANSFER Request from the Client
	Processing the Request
	Returning the Results to the Client

	A Tuxedo Errors
	Tuxedo Errors

	B System Messages
	Jolt System Messages
	Repository Messages
	FML Error Messages
	Information Messages
	Jolt Relay Adapter (JRAD) Messages
	Jolt Relay (JRLY) Messages
	Bulk Loader Utility Messages

	Index

