
BEATuxedo ®

Using Security in ATMI
Applications

Version 9.1
Document Released: May 16, 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Using Security in ATMI Applications iii

Contents

About This Document
What You Need to Know . xiii

e-docs Web Site . xiii

How to Print the Document . xiv

Related Information . xiv

Contact Us! . xiv

Documentation Conventions .xv

Introducing ATMI Security
What Security Means . 1-1

Security Plug-ins . 1-2

ATMI Security Capabilities . 1-3

Operating System (OS) Security . 1-6

Authentication . 1-7

Authentication Plug-in Architecture . 1-7

Understanding Delegated Trust Authentication . 1-7

Establishing a Session. 1-8

Getting Authorization and Auditing Tokens. 1-10

Replacing Client Tokens with Server Tokens . 1-10

Implementing Custom Authentication . 1-12

Authorization . 1-12

Authorization Plug-in Architecture . 1-12

iv Using Security in ATMI Applications

How the Authorization Plug-in Works. 1-14

Default Authorization . 1-15

Custom Authorization. 1-16

Implementing Custom Authorization. 1-17

Auditing. 1-18

Auditing Plug-in Architecture . 1-18

How the Auditing Plug-in Works. 1-19

Default Auditing . 1-20

Custom Auditing. 1-20

Implementing Custom Auditing. 1-21

Link-Level Encryption . 1-22

How LLE Works . 1-22

Encryption Key Size Negotiation . 1-23

Determining Min-Max Values . 1-23

Finding a Common Key Size . 1-23

Backward Compatibility of LLE . 1-24

Interoperating with Release 6.5 BEA Tuxedo Software. 1-24

Interoperating with Pre-Release 6.5 BEA Tuxedo Software 1-25

WSL/WSH Connection Timeout During Initialization . 1-26

LLE Installation and Licensing . 1-26

Public Key Security. 1-27

PKCS-7 Compliant . 1-27

Supported Algorithms for Public Key Security . 1-28

Public Key Algorithms . 1-28

Digital Signature Algorithms . 1-28

Symmetric Key Algorithms . 1-29

Message Digest Algorithms . 1-29

Public Key Installation and Licensing . 1-30

Using Security in ATMI Applications v

Message-based Digital Signature . 1-31

Digital Certificates . 1-33

Certification Authority . 1-33

Certificate Repositories . 1-34

Public-Key Infrastructure . 1-34

Message-based Encryption . 1-36

Public Key Implementation . 1-38

Public Key Initialization. 1-38

Key Management . 1-38

Certificate Lookup . 1-39

Certificate Parsing . 1-39

Certificate Validation . 1-39

Proof Material Mapping . 1-39

Implementing Custom Public Key Security . 1-39

Default Public Key Implementation. 1-40

Default Authentication and Authorization. 1-40

Client Naming . 1-43

User-Client Names . 1-43

Application Key . 1-45

User, Group, and ACL Files . 1-46

Optional and Mandatory ACLs . 1-48

Security Interoperability . 1-49

Interoperating with Pre-Release 7.1 Software . 1-51

Interoperability for Link-Level Encryption . 1-51

Interoperability for Public Key Security . 1-52

Security Compatibility. 1-54

Mixing Default/Custom Authentication and Authorization 1-54

Mixing Default/Custom Authentication and Auditing . 1-54

vi Using Security in ATMI Applications

Compatibility Issues for Public Key Security . 1-54

Compatibility/Interaction with Data-dependent Routing 1-55

Compatibility/Interaction with Threads . 1-55

Compatibility/Interaction with the EventBroker . 1-56

Compatibility/Interaction with /Q. 1-57

Compatibility/Interaction with Transactions . 1-58

Compatibility/Interaction with Domain Gateways . 1-58

Compatibility/Interaction with Other Vendors’ Gateways 1-62

Administering Security
What Administering Security Means . 2-2

Security Administration Tasks . 2-3

Setting the BEA Tuxedo Registry. 2-4

Purpose of the BEA Tuxedo Registry . 2-4

Registering Plug-ins . 2-5

Configuring an ATMI Application for Security . 2-5

Editing the Configuration File . 2-6

Changing the TM_MIB . 2-6

Using the BEA Administration Console . 2-7

Setting Up the Administration Environment. 2-7

Administering Operating System (OS) Security. 2-8

Recommended Practices for OS Security . 2-8

Administering Authentication . 2-9

Specifying Principal Names . 2-10

How System Processes Acquire Credentials . 2-12

Why System Processes Need Credentials . 2-14

Example UBBCONFIG Entries for Principal Names . 2-14

Mandating Interoperability Policy . 2-15

Using Security in ATMI Applications vii

Establishing an Identity for an Older Client. 2-19

How the WSH Establishes an Identity for an Older Client. 2-20

How the Domain Gateway Establishes an Identity for an Older Client 2-20

How the Server Establishes an Identity for an Older Client 2-21

Summarizing How the CLOPT -t Option Works . 2-21

Example UBBCONFIG Entries for Interoperability . 2-21

Establishing a Link Between Domains . 2-24

Example DMCONFIG Entries for Establishing a Link . 2-27

Setting ACL Policy . 2-29

Impersonating the Remote Domain Gateway. 2-32

Example DMCONFIG Entries for ACL Policy . 2-33

Setting Credential Policy . 2-34

Administering Authorization . 2-34

Administering Link-Level Encryption . 2-35

Understanding min and max Values . 2-35

Verifying the Installed LLE Version. 2-36

How to Configure LLE on Workstation Client Links . 2-36

How to Configure LLE on Bridge Links . 2-37

How to Configure LLE on tlisten Links. 2-38

How to Configure LLE on Domain Gateway Links . 2-39

Administering Public Key Security . 2-41

Recommended Practices for Public Key Security . 2-41

Assigning Public-Private Key Pairs . 2-41

Setting Digital Signature Policy . 2-42

Setting a Postdated Limit for Signature Timestamps . 2-43

Setting a Predated Limit for Signature Timestamps . 2-44

Enforcing the Signature Policy for Incoming Messages. 2-44

How the EventBroker Signature Policy Is Enforced. 2-46

viii Using Security in ATMI Applications

How the /Q Signature Policy Is Enforced. 2-46

How the Remote Client Signature Policy Is Enforced 2-47

Setting Encryption Policy . 2-47

Enforcing the Encryption Policy for Incoming Messages 2-47

How the EventBroker Encryption Policy Is Enforced 2-49

How the /Q Encryption Policy Is Enforced . 2-50

How the Remote Client Encryption Policy Is Enforced 2-50

Initializing Decryption Keys Through the Plug-ins . 2-50

Failure Reporting and Auditing . 2-54

Digital Signature Error Handling . 2-54

Encryption Error Handling . 2-55

Administering Default Authentication and Authorization . 2-55

Designating a Security Level . 2-55

Establishing Security by Editing the Configuration File 2-56

Establishing Security by Changing the TM_MIB . 2-56

Establishing Security by Using the BEA Administration Console. 2-56

Configuring the Authentication Server . 2-56

How to Enable Application Password Security . 2-58

How to Enable User-Level Authentication Security. 2-59

Setting Up the UBBCONFIG File . 2-59

Setting Up the User and Group Files . 2-60

Converting System Security Data Files to BEA Tuxedo User and Group Files 2-61

Adding, Modifying, or Deleting Users and Groups . 2-61

Enabling Access Control Security. 2-63

How to Enable Optional ACL Security . 2-64

Setting Up the UBBCONFIG File . 2-64

Setting Up the ACL File . 2-65

How to Enable Mandatory ACL Security . 2-66

Using Security in ATMI Applications ix

Setting Up the UBBCONFIG File . 2-67

Setting Up the ACL File . 2-68

Using the Kerberos Authentication Plug-in. 2-68

Kerberos Plug-In . 2-68

Kerberos Supported Platforms . 2-68

Kerberos Plug-in Features . 2-69

Kerberos Plug-In Pre-configuration . 2-69

Kerberos Plug-In Configuration . 2-69

Configure the Kerberos Plug-in . 2-70

Restore Default Plug-in. 2-71

Configure KAUTHSVR . 2-71

Configure Tuxedo Native Client . 2-73

Limitations . 2-73

See Also . 2-74

Using the Cert-C PKI Encryption Plug-in . 2-74

Cert-C PKI Encryption Plug-In . 2-75

Cert-C PKI Encryption Plug-In Pre-configuration . 2-75

Cert-C PKI Encryption Plug-In Configuration . 2-75

Configure Certificate Lookup. 2-75

ldapUserCertificate . 2-76

ldapBaseObject . 2-76

ldapFilterAttribute . 2-76

ldapBaseDNAttribute . 2-76

Configure Key Management . 2-77

decPassword . 2-77

privateKeyDir . 2-77

Configure Certificate Parsing . 2-77

Configure Certificate Validation. 2-78

x Using Security in ATMI Applications

caCertificateFile . 2-78

crlFile . 2-78

Sample Registry Command File . 2-78

Limitations . 2-80

See Also . 2-80

Programming Security
What Programming Security Means . 3-1

Programming an ATMI Application with Security. 3-3

Setting Up the Programming Environment. 3-3

Writing Security Code So Client Programs Can Join the ATMI Application 3-4

Getting Security Data . 3-5

Joining the ATMI Application . 3-7

Transferring the Client Security Data . 3-11

Calling a Service Request Before Joining the ATMI Application 3-13

Writing Security Code to Protect Data Integrity and Privacy. 3-14

ATMI Interface for Public Key Security . 3-15

Recommended Uses of Public Key Security . 3-22

Sending and Receiving Signed Messages . 3-23

Writing Code to Send Signed Messages . 3-23

Step 1: Opening a Key Handle for Digital Signature . 3-25

Step 2 (Optional): Getting Key Handle Information . 3-26

Step 3 (Optional): Changing Key Handle Information. 3-28

Step 4: Allocating a Buffer and Putting a Message in the Buffer. 3-29

Step 5: Marking the Buffer for Digital Signature . 3-29

Step 6: Sending the Message . 3-30

Step 7: Closing the Signer’s Key Handle . 3-30

How the System Generates a Digital Signature . 3-30

Using Security in ATMI Applications xi

How a Signed Message Is Received. 3-32

Verifying Digital Signatures . 3-33

Verifying and Transmitting an Input Buffer’s Signatures 3-33

Replacing an Output Buffer’s Signatures . 3-34

Sending and Receiving Encrypted Messages . 3-34

Writing Code to Send Encrypted Messages . 3-34

Step 1: Opening a Key Handle for Encryption . 3-36

Step 2 (Optional): Getting Key Handle Information. 3-37

Step 3 (Optional): Changing Key Handle Information 3-39

Step 4: Allocating a Buffer and Putting a Message in the Buffer 3-40

Step 5: Marking the Buffer for Encryption . 3-40

Step 6: Sending the Message. 3-41

Step 7: Closing the Encryption Key Handle . 3-41

How the System Encrypts a Message Buffer . 3-41

Writing Code to Receive Encrypted Messages . 3-44

Step 1: Opening a Key Handle for Decryption . 3-44

Step 2 (Optional): Getting Key Handle Information. 3-45

Step 3 (Optional): Changing Key Handle Information 3-47

Step 4: Closing the Decryption Key Handle . 3-47

How the System Decrypts a Message Buffer . 3-48

Examining Digital Signature and Encryption Information . 3-52

What Happens When an Originating Process Calls tpenvelope. 3-52

What Happens When a Receiving Process Calls tpenvelope. 3-53

Understanding the Composite Signature Status . 3-55

Example Code for tpenvelope . 3-56

Externalizing Typed Message Buffers. 3-58

How to Create an Externalized Representation . 3-59

How to Convert an Externalized Representation . 3-59

xii Using Security in ATMI Applications

Example Code for tpexport and tpimport . 3-59

Implementing Single Point Security Administration
What Single Point Security Administration Means . 4-1

Single Point Security Administration Tasks . 4-2

Setting up LAUTHSVR as the Authentication Server. 4-2

LAUTHSVR Command Line Interface . 4-3

Setting Up the LAUTHSVR Configuration File . 4-3

Sample UBBCONFIG Using LAUTHSVR . 4-7

Using Multiple Network Addresses for High Availability 4-9

Configuring the Database Search Order . 4-9

Using tpmigldap to Migrate User Information to WebLogic Server 4-10

Assigning New Passwords for the tpusr File . 4-10

tpmigldap Command Line Options. 4-11

Adding New Tuxedo User Information . 4-12

Adding New User Information in tpusr or tpgrp . 4-13

Adding New User Information Using the WebLogic Administration Console 4-13

Using Security in ATMI Applications xiii

About This Document

This document provides detailed descriptions of BEA Tuxedo Application-to-Transaction
Monitor Interface (ATMI) security.

This document covers the following topics:

Chapter 1, “Introducing ATMI Security,” describes the various security capabilities
available with the BEA Tuxedo system for ATMI applications.

Chapter 2, “Administering Security,” explains how to set security policies for a BEA
Tuxedo ATMI application by setting security policies for the clients and server machines,
and the gateway links that interact with the application.

Chapter 3, “Programming Security,” describes how to build security for your BEA Tuxedo
ATMI application into your code.

What You Need to Know
This document is intended for users who want to familiarize themselves with BEA Tuxedo ATMI
security to create secure ATMI applications using the BEA Tuxedo system.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

http://e-docs.bea.com

xiv Using Security in ATMI Applications

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com.

Related Information
The following BEA Tuxedo documents contain information that is relevant to BEA Tuxedo
ATMI security:

BEA Tuxedo Product Overview

Introducing BEA Tuxedo ATMI

Using the BEA Tuxedo Domains Component

For more information about ATMI, transaction processing, and C++ programming, see
Bibliography.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.1 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

{noValueProvidedFor-DOCROOT}/interm/admin.htm#runtime
{noValueProvidedFor-DOCROOT}/interm/over.htm
{noValueProvidedFor-DOCROOT}/interm/atmiintr.htm
mailto:docsupport@bea.com
http://www.bea.com
http://www.adobe.com
{noValueProvidedFor-DOCROOT}/interm/bibliogr.htm

Using Security in ATMI Applications xv

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

xvi Using Security in ATMI Applications

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Using Security in ATMI Applications 1-1

C H A P T E R 1

Introducing ATMI Security

The following sections describe the various security capabilities available with the BEA Tuxedo
system for ATMI applications:

What Security Means

Security Plug-ins

ATMI Security Capabilities

Default Authentication and Authorization

Security Interoperability

Note: The BEA Tuxedo product includes environments that allow you to build both
Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications. This
topic explains how to implement security in an ATMI application. For information about
implementing security in a CORBA application, see Using Security in CORBA
Applications.

What Security Means
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve passwords and data encryption,
where a password is a secret word or phrase that gives a user access to a particular program or
system, and data encryption is the translation of data into a form that is unintelligible without a
deciphering mechanism.

1-2 Using Security in ATMI Applications

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The BEA Tuxedo product provides several security capabilities for ATMI applications, most of
which can be customized for your particular needs.

See Also
“Security Plug-ins” on page 1-2

“ATMI Security Capabilities” on page 1-3

“What Administering Security Means” on page 2-2

“What Programming Security Means” on page 3-1

Security Plug-ins
As shown in the following figure, all but one of the security capabilities available with the ATMI
environment of the BEA Tuxedo product are implemented through a plug-in interface, which
allows BEA Tuxedo customers to independently define and dynamically add their own security
plug-ins. A security plug-in is a code module that implements a particular security capability.

ATMI Secur i t y Capab i l i t i es

Using Security in ATMI Applications 1-3

Figure 1-1 BEA Tuxedo ATMI Plug-in Security Architecture

The specifications for the security plug-in interface are not generally available, but are available
to third-party security vendors. Third-party security vendors can enter into a special agreement
with BEA Systems to develop security plug-ins for BEA Tuxedo. BEA Tuxedo customers who
want to customize a security capability must contact one of these vendors. For example, a BEA
Tuxedo customer who wants a custom implementation of public key security must contact a
third-party security vendor who can provide the appropriate plug-ins. For more information about
security plug-ins, including installation and configuration procedures, see your BEA account
executive.

See Also
“ATMI Security Capabilities” on page 1-3

ATMI Security Capabilities
The BEA Tuxedo system can enforce security in a number of ways, which includes using the
security features of the host operating system to control access to files, directories, and system

BEA Tuxedo Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Public Key Security

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Authentication Authorization Auditing
Public KeyLink-Level

Encryption Security

1-4 Using Security in ATMI Applications

resources. The following table describes the security capabilities available with the ATMI
environment of the BEA Tuxedo product.

Table 1-1 ATMI Security Capabilities

Security Capability Description Plug-in Interface Default Implementation

Operating system
security

Controls access to files,
directories, and system
resources.

N/A N/A

Authentication Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

The default authentication
plug-in provides security at
three levels: no
authentication, application
password, and user-level
authentication. This plug-in
works the same way the BEA
Tuxedo implementation of
authentication has worked
since it was first made
available with the BEA
Tuxedo system.

Authorization Controls access to resources
based on identity or other
information.

Implemented as a
single interface

The default authorization
plug-in provides security at
two levels: optional access
control lists and mandatory
access control lists. This
plug-in works the same way
the BEA Tuxedo
implementation of
authorization has worked
since it was first made
available with the BEA
Tuxedo system.

Auditing Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented by the BEA
Tuxedo EventBroker and
user log (ULOG) features.

ATMI Secur i t y Capab i l i t i es

Using Security in ATMI Applications 1-5

See Also
“Operating System (OS) Security” on page 1-6

“Authentication” on page 1-7

“Authorization” on page 1-12

“Auditing” on page 1-18

Link-level encryption Uses symmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machines in an ATMI
application.

N/A RC4 symmetric key
encryption.

Public key security Uses public key (or asymmetric
key) encryption to establish
end-to-end digital signing and
data privacy between ATMI
application clients and servers.
Complies with the PKCS-7
standard.

Implemented as six
interfaces

Default public key security
supports the following
algorithms:
• RSA public key

algorithm
• RSA and DSA digital

signature algorithms
• DES-CBC, two-key

triple-DES, and RC2
symmetric key
algorithms

• MD5 and SHA-1
message digest
algorithms

Table 1-1 ATMI Security Capabilities (Continued)

Security Capability Description Plug-in Interface Default Implementation

1-6 Using Security in ATMI Applications

“Link-Level Encryption” on page 1-22

“Public Key Security” on page 1-27

Operating System (OS) Security
On host operating systems with underlying security features, such as file permissions, the
operating-system level of security is the first line of defense. An application administrator can use
file permissions to grant or deny access privileges to specific users or groups of users.

Most ATMI applications are managed by an application administrator who configures the
application, starts it, and monitors the running application dynamically, making changes as
necessary. Because the ATMI application is started and run by the administrator, server programs
are run with the administrator’s permissions and are therefore considered secure or “trusted.”
This working method is supported by the login mechanism and the read and write permissions on
the files, directories, and system resources provided by the underlying operating system.

Client programs are run directly by users with the users’ own permissions. In addition, users
running native clients (that is, clients running on the same machine on which the server program
is running) have access to the UBBCONFIG configuration file and interprocess communication
(IPC) mechanisms such as the bulletin board (a reserved piece of shared memory in which
parameters governing the ATMI application and statistics about the application are stored).

For ATMI applications running on platforms that support greater security, a more secure
approach is to limit access to the files and IPC mechanisms to the application administrator and
to have “trusted” client programs run with the permissions of the administrator (using the setuid
command on a UNIX host machine or the equivalent command on another platform). For the
most secure operating system security, allow only Workstation clients to access the application;
client programs should not be allowed to run on the same machines on which application server
and administrative programs run.

See Also
“Security Administration Tasks” on page 2-3

“Administering Operating System (OS) Security” on page 2-8

“About the Configuration File” on page 2-1 and “Creating the Configuration File” on
page 3-1 in Setting Up a BEA Tuxedo Application

UBBCONFIG(5) in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Authent i cat ion

Using Security in ATMI Applications 1-7

Authentication
Authentication allows communicating processes to mutually prove identification. The
authentication plug-in interface in the ATMI environment of the BEA Tuxedo product can
accommodate various security-provider authentication plug-ins using various authentication
technologies, including shared-secret password, one-time password, challenge-response, and
Kerberos. The interface closely follows the generic security service (GSS) application
programming interface (API) where applicable; the GSSAPI is a published standard of the
Internet Engineering Task Force. The authentication plug-in interface is designed to make
integration of third-party vendor security products with the BEA Tuxedo system as easy as
possible, assuming the security products have been written to the GSSAPI.

Authentication Plug-in Architecture
The underlying plug-in interface for authentication security is implemented as a single plug-in.
The plug-in may be the default authentication plug-in or a custom authentication plug-in.

Understanding Delegated Trust Authentication
Direct end-to-end mutual authentication in a distributed enterprise middleware environment such
as the BEA Tuxedo system can be prohibitively expensive, especially when accomplished with
security mechanisms optimized for long-duration connections. It is not efficient for clients to
establish direct network connections with each server process, nor is it practical to exchange and
verify multiple authentication messages as part of processing each service request. Instead, the
ATMI applications use a delegated trust authentication model, as shown in the following figure.

1-8 Using Security in ATMI Applications

Figure 1-2 ATMI Delegated Trust Authentication Model

A Workstation client authenticates to a trusted system gateway process, the workstation handler
(WSH), at initialization time. A native client authenticates within itself, as explained later in this
discussion. After a successful authentication, the authentication software assigns a security token
to the client. A token is an opaque data structure suitable for transfer between processes. The
WSH safely stores the token for the authenticated Workstation client, or the authenticated native
client safely stores the token for itself.

As a client request flows through a trusted gateway, the gateway attaches the client’s security
token to the request. The security token travels with the client’s request message, and is delivered
to the destination server process(es) for authorization checking and auditing purposes.

In this model, the gateway trusts that the authentication software will verify the identity of the
client and generate an appropriate token. Servers, in turn, trust that the gateway process will
attach the correct security token. Servers also trust that any other servers involved in the
processing of a client request will safely deliver the token.

Establishing a Session
The following figure shows the control flow inside the ATMI environment of the BEA Tuxedo
system while a session is being established between a Workstation client and the WSH. The

WSH

Initiator

Server

Target

Server

Server

Server

Server

Server

Trusted Server Computing Base

(Client) (Trusted Gateway)

Workstation Client

Authent i cat ion

Using Security in ATMI Applications 1-9

Workstation client and WSH are attempting to establish a long-term mutually authenticated
connection by exchanging messages.

Figure 1-3 Client-WSH Authentication

The initiator process (may be thought of as a middleware client process) creates a session context
by repeatedly calling the BEA Tuxedo “initiate security context” function until a return code
indicates success or failure. A session context associates identity information with an
authenticated user.

When a Workstation client calls tpinit(3c) for C or TPINITIALIZE(3cbl) for COBOL to join
an ATMI application, the BEA Tuxedo system begins its response by first calling the internal
“acquire credentials” function to obtain a session credential handle, and then calling the internal
“initiate security context” function to obtain a session context. Each invocation of the “initiate
security context” function takes an input session token (when one is available) and returns an
output session token. A session token carries a protocol for verifying a user’s identity. The
initiator process passes the output session token to the session’s target process (WSH), where it
is exchanged for another input token. The exchange of tokens continues until both processes have
completed mutual authentication.

A security-provider authentication plug-in defines the content of the session context and session
token for its security implementation, so ATMI authentication must treat the session context and
session token as opaque objects. The number of tokens passed back and forth is not defined, and
may vary based on the architecture of the authentication system.

BEA Tuxedo Library

Authentication
Plug-in (1)

BEA Tuxedo
Security

Application
Client

Communication
Protocol

Authentication
Plug-in (1)

BEA Tuxedo
Security

WSH Process

Initiate Connection

Obtain a Session
Credential Handle

Obtain a Session
Context Handle and

a Session Token

Accept Received Session
Token and Return
a Session Token

Obtain a Session
Credential Handle

(at Startup)

(Exchange of Session
Tokens)

1-10 Using Security in ATMI Applications

For a native client initiating a session, the initiator process and the target process are the same;
the process may be thought of as a middleware client process. The middleware client process calls
the security provider’s authentication plug-in to authenticate the native client.

Getting Authorization and Auditing Tokens
After a successful authentication, the trusted gateway calls two BEA Tuxedo internal functions
that retrieve an authorization token and an auditing token for the client, which the gateway stores
for safekeeping. Together, these tokens represent the user identity of a security context. The term
security token refers collectively to the authorization and auditing tokens.

When default authentication is used, the authorization token carries two pieces of information:

Principal name—the name of an authenticated user.

Application key—a 32-bit value that uniquely identifies the client initiating the request
message. See “Application Key” on page 1-45 for more detail.

In addition, when default authentication is used, the auditing token carries the same two pieces
of information: principal name and application key.

Like the session token, the authentication and auditing tokens are opaque; their contents are
determined by the security provider. The authorization token can be used for performing
authorization (permission) checks. The auditing token can be used for recording audit
information. In some ATMI applications, it is useful to keep separate user identities for
authorization and auditing.

Replacing Client Tokens with Server Tokens
As shown in the following figure, there are situations where a client service request forwarded by
a server takes on the identity of the server. The server replaces the client tokens attached to the
request with its own tokens and then forwards the service request to the destination service.

Authent i cat ion

Using Security in ATMI Applications 1-11

Figure 1-4 Server Permission Upgrade Example

Note: See “Specifying Principal Names” on page 2-10 for an understanding of how servers
acquire their own authorization and auditing tokens and why they need them.

The feature demonstrated in the preceding figure is known as server permission upgrade, which
operates in the following manner: whenever a server calls a dot service (a system-supplied service
having a beginning period in its name—such as .TMIB), the service request takes on the identity
of the server and thus acquires the access permissions of the server. A server’s access permissions
are those of the application (system) administrator. Thus, certain requests that would be denied if
the client called the dot service directly would be allowed if the client sent the requests to a server,
and the server forwarded the requests to the dot service. For more information about dot services,
see the .TMIB service description on the MIB(5) reference page in the BEA Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference.

C

.TMIB

Client
tpcall (“TOLOWER”, ...)

tpcall (“.TMIB”, ...)

tpcall (“TRANSFER”, ...)

TRANSFER

Server

Service

TOLOWER

S

C

C

C Service Request Sent with Client’s Authorization and Auditing Tokens

S Service Request Sent with Server’s Authorization and Auditing Tokens

1-12 Using Security in ATMI Applications

Implementing Custom Authentication
You can provide authentication for your ATMI application by using the default plug-in or a
custom plug-in. You choose a plug-in by configuring the BEA Tuxedo registry, a tool that
controls all security plug-ins.

If you want to use the default authentication plug-in, you do not need to configure the registry. If
you want to use a custom authentication plug-in, however, you must configure the registry for
your plug-in before you can install it. For more detail about the registry, see “Setting the BEA
Tuxedo Registry” on page 2-4.

See Also
“Default Authentication and Authorization” on page 1-40

“Security Administration Tasks” on page 2-3

“Administering Authentication” on page 2-9

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

Authorization
Authorization allows administrators to control access to ATMI applications. Specifically, an
administrator can use authorization to allow or disallow principals (authenticated users) to use
resources or facilities in an ATMI application.

Authorization Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in the following figure, the authorization plug-in interface is implemented as a fanout.

Author i zat ion

Using Security in ATMI Applications 1-13

Figure 1-5 Authorization Plug-in Architecture

The default authorization implementation consists of a fanout plug-in and a default authorization
plug-in. A custom implementation consists of the fanout plug-in, the default authorization
plug-in, and one or more custom authorization plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in passes
the request to each of the subordinate plug-ins, and receives a response from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caller.

The purpose of an authorization request is to determine whether a client operation should be
allowed or whether the results of an operation should be kept unchanged. Each authorization
plug-in returns one of three responses: permit, deny, or abstain. The abstain response gives
writers of authorization plug-ins a graceful way to handle situations that are not accommodated
by the original plug-in, such as names of operations that are added to the system after the plug-in
is installed.

The authorization fanout plug-in forms a composite response as described in the following table.
For default authorization, the composite response is determined solely by the default
authorization plug-in.

Fanout Plug-in

Plug-in Interface

Default
Authorization

Plug-in

Custom
Authorization

Plug-in

Custom
Authorization

Plug-in

Table 1-2 Authorization Composite Responses

If Plug-ins Return . . . The Composite Response Is . . .

All permit or a combination of
permit and abstain

permit

1-14 Using Security in ATMI Applications

As an example of custom authorization, consider a banking application in which a user is
identified as a member of the Customer group, and the following conditions are in effect:

The default authorization plug-in allows any user in the Customer group to withdraw
money from a particular account.

A custom authorization plug-in allows any user in the Customer group to withdraw money
from a particular account but only on Monday through Friday between 9:00 A.M. and 5:00
P.M.

A second custom authorization plug-in allows any user in the Customer group to withdraw
money from a particular account but only if the amount being withdrawn is less than
$10,000.

So, if a user in the Customer group attempts to withdraw $500.00 on Monday at 10 A.M., the
operation is allowed. If the same user attempts the same withdrawal on Saturday morning, the
operation is not allowed.

Many other custom authorization scenarios are possible. Feel free to improvise; define the
conditions that best serve the needs of your business.

How the Authorization Plug-in Works
Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together.

At least one deny deny

All abstain deny
If the SECURITY parameter in the ATMI

application’s UBBCONFIG file is set to
MANDATORY_ACL

permit
If the SECURITY parameter is not set in the ATMI

application’s UBBCONFIG file or is set to any value
other than MANDATORY_ACL

Table 1-2 Authorization Composite Responses

If Plug-ins Return . . . The Composite Response Is . . .

Author i zat ion

Using Security in ATMI Applications 1-15

A BEA Tuxedo system process or server (such as /Q server TMQUEUE(5) or EventBroker server
TMUSREVT(5)) calls the authorization plug-in when it receives a client request. In response, the
authorization plug-in performs a pre-operation check and returns whether the operation should be
allowed.

If allowed, the system carries out the client request.

If not allowed, the system does not carry out the client request.

If the client operation is allowed, the BEA Tuxedo system process or server may call the
authorization plug-in after the client operation completes. In response, the authorization plug-in
performs a post-operation check and returns whether the results of the operation are acceptable.

If acceptable, the system accepts the operation results.

If not unacceptable, the system either modifies the operation results or rolls back (reverses)
the operation.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the authorization plug-in.

The authorization process is somewhat different for (1) users of the default authorization plug-in
provided by the BEA Tuxedo system and (2) users of one or more custom authorization plug-ins.
The default plug-in does not support post-operation checks. If the default authorization plug-in
receives a post-operation check request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation checks.

Default Authorization
When default authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

Because the authorization token is created by the authentication plug-in, the authorization
plug-in has no record of the token’s content. This information is necessary for the
authorization process.

2. Performs a pre-operation check.

The authorization plug-in determines whether that operation should be allowed by
examining the client’s authorization token, the access control list (ACL), and the
configured security level (optional or mandatory ACL) of the ATMI application.

1-16 Using Security in ATMI Applications

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in receives a decision (permit or deny) from the default
authorization plug-in and operates on its behalf.

– If the decision is to permit the client operation, the fanout plug-in returns permit to the
calling process. The system carries out the client request.

– If the decision is to deny the operation, the fanout plug-in returns deny to the calling
process. The system does not carry out the client request.

Custom Authorization
Users of one or more custom authorization plug-ins may take advantage of additional
functionality offered by the ATMI environment of the BEA Tuxedo product. Specifically, the
custom plug-ins may perform an additional check after an operation occurs.

When custom authorization is called by an ATMI process to perform a pre-operation check in
response to a client request, the authorization plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

2. Performs a pre-operation check.

The authorization plug-in determines whether the operation should be allowed by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

If necessary, in order to satisfy authorization requirements, the authorization plug-in may
modify the user data before the operation is performed.

3. Issues a decision about whether the operation will be performed.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

– If the fanout plug-in allows the client operation, it returns permit to the calling process.
The system carries out the client request.

– If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system does not carry out the client request.

If the client operation is allowed, custom authorization may be called by the ATMI process to
perform a post-operation check after the client operation completes. If so, the authorization
plug-in performs the following tasks.

1. Gets information from the client’s authorization token by calling the authentication plug-in.

Author i zat ion

Using Security in ATMI Applications 1-17

2. Performs a post-operation check.

The authorization plug-in determines whether the operation results are acceptable by
examining the operation, the client’s authorization token, and associated data. “Associated
data” may include user data and the security level of the ATMI application.

3. Issues a decision about whether the operation results are acceptable.

The authorization fanout plug-in makes the ultimate decision by checking the individual
responses (permit, deny, abstain) of its subordinate plug-ins.

– If the fanout plug-in decides that the operation results are acceptable, it returns permit
to the calling process. The system accepts the operation results.

– If the fanout plug-in does not allow the operation, it returns deny to the calling process.
The system either modifies the operation results or rolls back (reverses) the operation.

A post-operation check is useful for label-based security models. For example, suppose that a
user is authorized to access CONFIDENTIAL documents but performs an operation that retrieves
a TOP SECRET document. (Often, a document’s classification label is not easily determined
until after the document has been retrieved.) In this case, the post-operation check is an efficient
means to either deny the operation or modify the output data by expunging any restricted
information.

Implementing Custom Authorization
You can provide authorization for your ATMI application by using the default plug-in or adding
one or more custom plug-ins. You choose a plug-in by configuring the BEA Tuxedo registry, a
tool that controls all security plug-ins.

If you want to use the default authorization plug-in, you do not need to configure the registry. If
you want to add one or more custom authorization plug-ins, however, you must configure the
registry for your additional plug-ins before you can install them. For more detail about the
registry, see “Setting the BEA Tuxedo Registry” on page 2-4.

See Also
“Default Authentication and Authorization” on page 1-40

“Security Administration Tasks” on page 2-3

“Administering Authorization” on page 2-34

“Programming an ATMI Application with Security” on page 3-3

1-18 Using Security in ATMI Applications

Auditing
Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the security levels of an ATMI application. They may
also be used to determine which operations were attempted, which ones failed, and which ones
successfully completed.

How auditing is done (that is, how information is collected, processed, protected, and distributed)
depends on the auditing plug-in.

Auditing Plug-in Architecture
A fanout is an umbrella plug-in to which individual plug-in implementations are connected. As
shown in the following figure, the auditing plug-in interface is implemented as a fanout.

Figure 1-6 Auditing Plug-in Architecture

The default auditing implementation consists of a fanout plug-in and a default auditing plug-in.
A custom implementation consists of the fanout plug-in, the default auditing plug-in, and one or
more custom auditing plug-ins.

In a fanout plug-in model, a caller sends a request to the fanout plug-in. The fanout plug-in passes
the request to each of the subordinate plug-ins, and receives a response from each. Finally, the
fanout plug-in forms a composite response from the individual responses, and sends the
composite response to the caller.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of two
responses: success (the audit succeeded—logged the event) or failure (the audit failed—did not

Fanout Plug-in

Plug-in Interface

Default
Auditing
Plug-in

Custom
Auditing
Plug-in

Custom
Auditing
Plug-in

Aud i t ing

Using Security in ATMI Applications 1-19

log the event). The auditing fanout plug-in forms a composite response in the following manner:
if all responses are success, the composite response is success; otherwise, the composite response
is failure.

For default auditing, the composite response is determined solely by the default auditing plug-in.
For custom auditing, the composite response is determined by the fanout plug-in after collecting
the responses of the subordinate plug-ins. For more insight into how fanouts work, see
“Authorization Plug-in Architecture” on page 1-12.

How the Auditing Plug-in Works
Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together.

An ATMI system process or server (such as /Q server TMQUEUE(5) or EventBroker server
TMUSREVT(5)) calls the auditing plug-in when it receives a client request. Because it is called
before an operation begins, the auditing plug-in can audit operation attempts and store data if that
data will be needed later for a post-operation audit. In response, the auditing plug-in performs a
pre-operation audit and returns whether the audit succeeded.

The ATMI system process or server may call the auditing plug-in after the client operation is
performed. In response, the auditing plug-in performs a post-operation audit and returns whether
the audit succeeded.

In addition, an ATMI system process or server may call the auditing plug-in when a potential
security violation occurs. (Suspicion of a security violation arises when a pre-operation or
post-operation authorization check fails, or when an attack on security is detected.) In response,
the auditing performs a post-operation audit and returns whether the audit succeeded.

These calls are system-level calls, not application-level calls. An ATMI application cannot call
the auditing plug-in.

The auditing process is somewhat different for (1) users of the default auditing plug-in provided
by the BEA Tuxedo system and (2) users of one or more custom auditing plug-ins. The default
plug-in does not support pre-operation audits. If the default auditing plug-in receives a
pre-operation audit request, it returns immediately and does nothing.

The custom plug-ins support both pre-operation and post-operation audits.

1-20 Using Security in ATMI Applications

Default Auditing
The default auditing implementation consists of the BEA Tuxedo EventBroker component and
userlog (ULOG). These utilities report only security violations; they do not report which operations
were attempted, which ones failed, and which ones successfully completed.

When default auditing is called by an ATMI process to perform a post-operation audit when a
security violation is suspected, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

Because the auditing token is created by the authentication plug-in, the auditing plug-in has
no record of the token’s content. This information is necessary for the auditing process.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token and the security violation
delivered in the post-operation audit request.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in receives a decision (success or failure) from the default
auditing plug-in and operates on its behalf.

– If the decision is success, the post-operation audit succeeded. The auditing fanout
plug-in returns success to the calling process and logs the security violation.

– If the decision is failure, the post-operation audit failed. The auditing fanout returns
failure to the calling process.

Custom Auditing
Users of one or more custom auditing plug-ins may take advantage of additional functionality
offered by the ATMI environment of the BEA Tuxedo product. Specifically, the custom plug-ins
may perform an additional audit before an operation occurs.

When custom auditing is called by an ATMI process to perform a pre-operation audit in response
to a client request, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a pre-operation audit.

The auditing plug-in examines the client’s auditing token and may store user data if that
data will be needed later for a post-operation audit.

Aud i t ing

Using Security in ATMI Applications 1-21

3. Issues a decision about whether the pre-operation audit succeeded.

The auditing fanout plug-in makes the ultimate decision by checking the individual
responses (success or failure) from its subordinate plug-ins.

– If the composite decision is success, the pre-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the client’s attempt to
perform the operation.

– If the composite decision is failure, the pre-operation audit failed. The auditing fanout
returns failure to the calling process.

Custom auditing may be called by the ATMI process to perform a post-operation audit after the
client operation is performed. If so, the auditing plug-in performs the following tasks.

1. Gets information from the client’s auditing token by calling the authentication plug-in.

2. Performs a post-operation audit.

The auditing plug-in examines the client’s auditing token, the completion status delivered
in the post-operation audit request, and any data stored during the pre-operation audit.

3. Issues a decision about whether the post-operation audit succeeded.

The auditing fanout plug-in decides if the post-operation audit succeeded or failed by
checking the individual responses (success or failure) from its subordinate plug-ins.

– If the composite decision is success, the post-operation audit succeeded. The auditing
fanout plug-in returns success to the calling process and logs the completion status of
the operation.

– If the composite decision is failure, the post-operation audit failed. The auditing fanout
returns failure to the calling process.

An operation is considered successful if it passes both pre- and post-operation audits, and the
operation itself is successful. Some companies collect and store both pre- and post-operation
auditing data, even though such data can occupy a lot of disk space.

Implementing Custom Auditing
You can provide auditing for your ATMI application by using the default plug-in or adding one
or more custom plug-ins. You choose a plug-in by configuring the BEA Tuxedo registry, a tool
that controls all security plug-ins.

If you want to use the default auditing plug-in, you do not need to configure the registry. If you
want to add one or more custom auditing plug-ins, however, you must configure the registry for

1-22 Using Security in ATMI Applications

your additional plug-ins before you can install them. For more detail about the registry, see
“Setting the BEA Tuxedo Registry” on page 2-4.

Link-Level Encryption
Link-level encryption (LLE) establishes data privacy for messages moving over the network
links that connect the machines in an ATMI application. It employs the symmetric key encryption
technique (specifically, RC4), which uses the same key for encryption and decryption.

When LLE is being used, the BEA Tuxedo system encrypts data before sending it over a network
link and decrypts it as it comes off the link. The system repeats this encryption/decryption process
at every link through which the data passes. For this reason, LLE is referred to as a point-to-point
facility.

LLE can be used on the following types of ATMI application links:

Workstation client to workstation handler (WSH)

Bridge-to-Bridge

Administrative utility (such as tmboot or tmshutdown) to tlisten

Domain gateway to domain gateway

There are three levels of LLE security: 0-bit (no encryption), 56-bit (International), and 128-bit
(United States and Canada). The International LLE version allows 0-bit and 56-bit encryption.
The United States and Canada LLE version allows 0, 56, and 128-bit encryption.

How LLE Works
LLE control parameters and underlying communication protocols are different for various link
types, but the setup is basically the same in all cases:

An initiator process begins the communication session.

A target process receives the initial connection.

Both processes are aware of the link-level encryption feature, and have two configuration
parameters.

The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as a key length: 0, 56, or 128 bits.

The second configuration parameter is the maximum encryption level a process can
support. It also is expressed as a key length: 0, 56, or 128 bits.

L ink-Leve l Encrypt ion

Using Security in ATMI Applications 1-23

For convenience, the two parameters are denoted as (min, max) in the discussion that follows. For
example, the values “(56, 128)” for a process mean that the process accepts at least 56-bit
encryption but can support up to 128-bit encryption.

Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

Determining Min-Max Values
When either of the two processes starts up, the local BEA Tuxedo software (1) checks the
bit-encryption capability of the installed LLE version by checking the LLE licensing information
in the lic.txt file and (2) checks the LLE min-max values for the particular link type as
specified in the two configuration files. The local software then proceeds as follows:

If the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

If the configured min-max values do not accommodate the installed LLE version, for
example, if the International LLE version is installed but the configured min-max values
are (0, 128), then the local software issues a run-time error; link-level encryption is not
possible at this point.

If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(0, 128) for the United States and Canada LLE version.

Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

The following table shows which key size, if any, is agreed upon by two processes when all
possible combinations of min-max values are negotiated. The header row holds the min-max
values for one process; the far left column holds the min-max values for the other.

1-24 Using Security in ATMI Applications

Backward Compatibility of LLE
The ATMI environment of the BEA Tuxedo product offers some backward compatibility for
LLE.

Interoperating with Release 6.5 BEA Tuxedo Software
The following table shows which key size, if any, is agreed upon by two ATMI applications when
one of them is running under release 6.5 and the other under release 7.1 or later. The header row
holds the min-max values for the process running under release 7.1 or later; the far left column
holds the min-max values for the process running under release 6.5.

Table 1-3 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 1-4 Negotiation Results When Interoperating with Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(40, 40) ERROR 56 56 56 56 ERROR

L ink-Leve l Encrypt ion

Using Security in ATMI Applications 1-25

If your current BEA Tuxedo installation is configured for (0, 56), (0, 128), (56, 56), or (56, 128),
and you want to interoperate with a release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits, then any negotiation results in an automatic upgrade to 56.

The negotiation result in this case is the same as the negotiation result for two sites running
release 6.5 and configured for a maximum LLE level of 40 bits. In both scenarios, the negotiation
results in an automatic upgrade to 56.

Interoperating with Pre-Release 6.5 BEA Tuxedo Software
The following table shows which key size, if any, is agreed upon by two ATMI applications when
one of them is running under pre-release 6.5 and the other under release 7.1 or later. The header
row holds the min-max values for the process running under release 7.1 or later; the far left
column holds the min-max values for the process running under pre-release 6.5.

If your current BEA Tuxedo installation is configured for (0, 56) or (0, 128), and you want to
interoperate with a pre-release 6.5 ATMI applications that is configured for a maximum LLE
level of 40 bits, then the result of any negotiation is 40.

(40, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 1-4 Negotiation Results When Interoperating with Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

Table 1-5 Negotiation Results When Interoperating with Pre-Release 6.5 BEA Tuxedo Software

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 40) 0 40 40 ERROR ERROR ERROR

(0, 128) 0 40 128 ERROR 128 128

(40, 40) ERROR 40 40 ERROR ERROR ERROR

(40, 128) ERROR 40 128 ERROR 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

1-26 Using Security in ATMI Applications

If your current BEA Tuxedo installation is configured for (56, 56), (56, 128), or (128, 128), then
your system cannot interoperate with a pre-release 6.5 ATMI application that is configured for a
maximum LLE level of 40 bits. Attempts to negotiate a common key size fail.

WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an ATMI application not using LLE, and 60 seconds in an ATMI
application using LLE. The 60-second interval includes the time needed to negotiate an encrypted
link. This time limit can be changed when LLE is configured by changing the value of the
MAXINITTIME parameter for the workstation listener (WSL) server in the UBBCONFIG file, or the
value of the TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

LLE Installation and Licensing
As part of the BEA Tuxedo system, LLE software is delivered on the BEA Tuxedo CD-ROM. If
you have a BEA Tuxedo release 7.1 license to use LLE in the United States and Canada, you can
use 56-bit or 128-bit encryption. If you have a license to use LLE on a BEA Tuxedo system
outside the United States and Canada, you can use 56-bit encryption.

All BEA Tuxedo licenses are stored in the $TUXDIR/udataobj/lic.txt file on a UNIX host
machine, or in the %TUXDIR%\udataobj\lic.txt file on a Windows host machine.

The following listing is an excerpt from a sample license file for running LLE in the United States
and Canada.

[BEA Tuxedo]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

EXPIRATION=2006-01-31

SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUAhStj

znBQdL9n=

[LINK ENCRYPTION]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

Publ i c Key Secur i t y

Using Security in ATMI Applications 1-27

USERS=1000

STRENGTH=128

EXPIRATION=2006-01-31

SIGNATURE=TXUAhSPnx2C9kMC0CFG+e6Rgr3UzmsFKRBPdJASAhU7KctjznBqFQsj

jznBdh0h=

.

.

.

See Also
“Security Administration Tasks” on page 2-3

“Administering Link-Level Encryption” on page 2-35

“Distributing ATMI Applications Across a Network” on page 9-1 and “Creating the
Configuration File for a Distributed ATMI Application” on page 10-1 in Setting Up a BEA
Tuxedo Application

Public Key Security
Public key security provides two capabilities that make end-to-end digital signing and data
encryption possible:

Message-based digital signature

Message-based encryption

Message-based digital signature allows the recipient (or recipients) of a message to identify and
authenticate both the sender and the sent message. Digital signature provides solid proof of the
originator and content of a message; a sender cannot falsely repudiate responsibility for a
message to which that sender’s digital signature is attached. Thus, for example, Bob cannot issue
a request for a withdrawal from his bank account and later claim that someone else issued that
request.

In addition, message-based encryption protects the confidentiality of messages by ensuring that
only designated recipients can decrypt and read them.

PKCS-7 Compliant
Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called

1-28 Using Security in ATMI Applications

Public-Key Cryptography Standards, or PKCS. The public key software in the ATMI
environment of the BEA Tuxedo software complies with the PKCS-7 standard.

PKCS-7 is a hybrid cryptosystem architecture. A symmetric key algorithm with a random session
key is used to encrypt a message, and a public key algorithm is used to encrypt the random session
key. A random number generator creates a new session key for each communication, which
makes it difficult for a would-be attacker to reuse previous communications.

Supported Algorithms for Public Key Security
All the algorithms on which public key security is based are well known and commercially
available. To select the algorithms that will best serve your ATMI application, consider the
following factors: speed, degree of security, and licensing restrictions (for example, the United
States government restricts the algorithms that it allows to be exported to other countries).

Public Key Algorithms
The public key security in the ATMI environment of the BEA Tuxedo product supports any
public key algorithms supported by the underlying plug-ins, including RSA, ElGamal, and Rabin.
(RSA stands for Rivest, Shamir, and Adelman, the inventors of the RSA algorithm.) All these
algorithms can be used for digital signatures and encryption.

Public key (or asymmetric key) algorithms such as RSA are implemented through a pair of
different but mathematically related keys:

A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.

Digital Signature Algorithms
The public key security in the ATMI environment of the BEA Tuxedo product supports any
digital signature algorithms supported by the underlying plug-ins, including RSA, ElGamal,
Rabin, and Digital Signature Algorithm (DSA). With the exception of DSA, all these algorithms
can be used for digital signatures and encryption. DSA can be used for digital signatures but not
for encryption.

Digital signature algorithms are simply public key algorithms used to provide digital signatures.
DSA is also a public key algorithm (implemented through public-private key pairs), but it can
only be used to provide digital signatures, not encryption.

Publ i c Key Secur i t y

Using Security in ATMI Applications 1-29

Symmetric Key Algorithms
Public key security supports the following three symmetric key algorithms:

DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable outside the
United States.

Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key) and is not
exportable outside the United States.

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, although the ATMI public key
security restricts the key length to 128 bits.

BEA Tuxedo customers cannot expand or modify this list of algorithms.

In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 times faster than public
key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

Message Digest Algorithms
Public key security supports any message digest algorithms supported by the underlying plug-ins,
including MD5, SHA-1 (Secure Hash Algorithm 1), and many others. Both MD5 and SHA-1 are

1-30 Using Security in ATMI Applications

well known, one-way hash algorithms. A one-way hash algorithm takes a message and converts
it into a fixed string of digits, which is referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

Public Key Installation and Licensing
As part of the BEA Tuxedo system, the software for message-based digital signature and
message-based encryption is delivered on the BEA Tuxedo CD-ROM, but cannot be used without
a separate license. All BEA Tuxedo licenses are in the $TUXDIR/udataobj/lic.txt file on a
UNIX host machine, or in the %TUXDIR%\udataobj\lic.txt file on a Windows 2003 host
machine.

The following listing is an excerpt from a sample license file for message-based digital signature
and message-based encryption.

[BEA Tuxedo]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

EXPIRATION=2006-01-31

SIGNATURE=TXmtx+AhQdJgr3sjjznBqRB7SP9Jgr3UzAKctjz+e6RmsFSAhUAhStj

znBQdL9n=

.

.

.

[PK ENCRYPTION]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

STRENGTH=128

EXPIRATION=2006-01-31

SIGNATURE=TX0CFHkaBpKpAlXGEtQqi+/jJvMo1VB9AhUAUAkizwsgYefRwQJDNTF

0205b1ik=

Message-based D ig i ta l S ignature

Using Security in ATMI Applications 1-31

[PK SIGNATURE]

VERSION=9.1

LICENSEE=ACME CORPORATION

SERIAL=155566678

ORDERID=

USERS=1000

STRENGTH=128

EXPIRATION=2006-01-31

SIGNATURE=TX0CiqA5FCAXJFXUEGvAki+gL+i09eRep9hYdshS/8a70MIJQChUAk9

zIAhUIH4=

See Also
“Message-based Digital Signature” on page 1-31

“Message-based Encryption” on page 1-36

“Public Key Implementation” on page 1-38

“Security Administration Tasks” on page 2-3

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Message-based Digital Signature
Message-based digital signatures enhance ATMI security by allowing a message originator to
prove its identity, and by binding that proof to a specific message buffer. Mutually authenticated
and tamper-proof communication is considered essential for ATMI applications that transport
data over the Internet, either between companies or between a company and the general public.
It also is critical for ATMI applications deployed over insecure internal networks.

The scope of protection for a message-based digital signature is end-to-end: a message buffer is
protected from the time it leaves the originating process until the time it is received at the
destination process. It is protected at all intermediate transit points, including temporary message
queues, disk-based queues, and system processes, and during transmission over inter-server
network links.

The following figure shows how end-to-end message-based digital signature works.

1-32 Using Security in ATMI Applications

Figure 1-7 ATMI PKCS-7 End-to-End Digital Signing

Message-based digital signature involves generating a digital signature by computing a message
digest on the message, and then encrypting the message digest with the sender’s private key. The
recipient verifies the signature by decrypting the encrypted message digest with the signer’s
public key, and then comparing the recovered message digest to an independently computed
message digest. The signer’s public key either is contained in a digital certificate included in the
signer information, or is referenced by an issuer-distinguished name and issuer-specific serial
number that uniquely identify the certificate for the public key.

Digest Encrypt

Signer’s
Private Key

Decrypt

Signer’s
Public Key

Digital Signature Algorithm

Message Digest Algorithm

Signer’s Assigned Public Key Pair

Clear Data Buffer Clear DataBuffer

To RecipientFrom Signer

Public Key Security

tpsign()

Yes

Compare

OK
?

Digest

Decrypt

Store

No
Discard

Message-based D ig i ta l S ignature

Using Security in ATMI Applications 1-33

Digital Certificates
Digital certificates are electronic files used to uniquely identify individuals and resources over
networks such as the Internet. A digital certificate securely binds the identity of an individual or
resource, as verified by a trusted third party known as a Certification Authority, to a particular
public key. Because no two public keys are ever identical, a public key can be used to identify its
owner.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific subscriber. A recipient of a certificate can use the public key listed in the certificate to
verify that the digital signature was created with the corresponding private key. If such
verification is successful, this chain of reasoning provides assurance that the corresponding
private key is held by the subscriber named in the certificate, and that the digital signature was
created by that particular subscriber.

A certificate typically includes a variety of information, such as:

The name of the subscriber (holder, owner) and other identification information required to
uniquely identify the subscriber, such as the URL of the Web server using the certificate,
or an individual’s e-mail address.

The subscriber’s public key.

The name of the Certification Authority that issued the certificate.

A serial number.

The validity period (or lifetime) of the certificate (defined by a start date and an end date).

The most widely accepted format for certificates is defined by the ITU-T X.509 international
standard. Thus, certificates can be read or written by any ATMI application complying with
X.509. The public key security in the ATMI environment of the BEA Tuxedo product recognizes
certificates that comply with X.509 version 3, or X.509v3.

Certification Authority
Certificates are issued by a Certification Authority, or CA. Any trusted third-party organization
or company that is willing to vouch for the identities of those to whom it issues certificates and
public keys can be a CA. When it creates a certificate, the CA signs the certificate with its private
key, to obtain a digital signature. The CA then returns the certificate with the signature to the
subscriber; these two parts—the certificate and the CA’s signature—together form a valid
certificate.

1-34 Using Security in ATMI Applications

The subscriber and others can verify the issuing CA’s digital signature by using the CA’s public
key. The CA makes its public key readily available by publicizing that key or by providing a
certificate from a higher-level CA attesting to the validity of the lower-level CA’s public key. The
second solution gives rise to hierarchies of CAs.

The recipient of an encrypted message can develop trust in the CA’s private key recursively, if
the recipient has a certificate containing the CA’s public key signed by a superior CA whom the
recipient already trusts. In this sense, a certificate is a stepping stone in digital trust. Ultimately,
it is necessary to trust only the public keys of a small number of top-level CAs. Through a chain
of certificates, trust in a large number of users’ signatures can be established.

Thus, digital signatures establish the identities of communicating entities, but a signature can be
trusted only to the extent that the public key for verifying the signature can be trusted.

Note that BEA Systems has no plans to become a CA. By offering a public key plug-in interface,
BEA Systems extends the opportunity to all BEA Tuxedo customers to select a CA of their
choice.

Certificate Repositories
To make a public key and its identification with a specific subscriber readily available for use in
verification, the digital certificate may be published in a repository or made available by other
means. Repositories are databases of certificates and other information available for retrieval and
use in verifying digital signatures. Retrieval can be accomplished automatically by having the
verification program directly request certificates from the repository as needed.

Public-Key Infrastructure
The Public-Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes “PKI” simply refers to a trust hierarchy based on
public key certificates; in other contexts, it embraces digital signature and encryption services
provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to define
one. It is not yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide-area network technology in the 1980s, before there
was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:

Message-based D ig i ta l S ignature

Using Security in ATMI Applications 1-35

Key registration: for issuing a new certificate for a public key

Certificate revocation: for canceling a previously issued certificate

Key selection: for obtaining a party’s public key

Trust evaluation: for determining whether a certificate is valid and which operations it
authorizes

The following figure shows the PKI process flow.

Figure 1-8 PKI Process Flow

1. Subscriber applies to Certification Authority (CA) for digital certificate.

2. CA verifies identity of subscriber and issues digital certificate.

3. CA publishes certificate to repository.

4. Subscriber digitally signs electronic message with private key to ensure sender authenticity,
message integrity, and non-repudiation, and then sends message to recipient.

5. Recipient receives message, verifies digital signature with subscriber’s public key, and goes
to repository to check status and validity of subscriber’s certificate.

6. Repository returns results of status check on subscriber’s certificate to recipient.

Note that BEA Systems has no plans to become a PKI vendor. By offering a public key plug-in
interface, BEA Systems extends the opportunity to all BEA Tuxedo customers to use a PKI
security solution with the PKI software from their vendor of choice.

See Also
“Public Key Implementation” on page 1-38

“Security Administration Tasks” on page 2-3

Subscriber

Certification
Authority

Recipient

Repository

1

3

4

2 5 6

1-36 Using Security in ATMI Applications

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Message-based Encryption
Message-based encryption keeps data private, which is essential for ATMI applications that
transport data over the Internet, whether between companies or between a company and its
customers. Data privacy is also critical for ATMI applications deployed over insecure internal
networks.

Message-based encryption also helps ensure message integrity, because it is more difficult for an
attacker to modify a message when the content is obscured.

The scope of protection provided by message-based encryption is end-to-end; a message buffer
is protected from the time it leaves the originating process until the time it is received at the
destination process. It is protected at all intermediate transit points, including temporary message
queues, disk-based queues, and system processes, and during transmission over interserver
network links.

The following figure shows how end-to-end message-based encryption works.

Message-based Encrypt ion

Using Security in ATMI Applications 1-37

Figure 1-9 ATMI PKCS-7 End-to-End Encryption

The message is encrypted by a symmetric key algorithm and a session key. Then, the session key
is encrypted by the recipient’s public key. Next, the recipient decrypts the encrypted session key
with the recipient’s private key. Finally, the recipient decrypts the encrypted message with the
session key to obtain the message content.

Note: The figure does not show two other steps in this process: (1) the data is compressed
immediately before the message is encrypted; and (2) the data is uncompressed
immediately after the message is decrypted.

Because the unit of encryption is an ATMI message buffer, message-based encryption is
compatible with all existing ATMI programming interfaces and communication paradigms. The
encryption process is always the same, whether it is being performed on messages shipped
between two processes in a single machine, or on messages sent between two machines through
a network.

Session
Key

Recipient’s Assigned Public Key Pair

Encrypt

Encrypt

Recipient’s
Public Key

Decrypt

Decrypt

Recipient’s
Private Key

Symmetric Key Algorithm

Public Key Algorithm

Clear Data Buffer Clear DataBuffer

To RecipientFrom Sender

Public Key Security

tpseal()

1-38 Using Security in ATMI Applications

See Also
“Public Key Implementation” on page 1-38

“Security Administration Tasks” on page 2-3

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Public Key Implementation
The underlying plug-in interface for public key security consists of six component interfaces,
each of which requires one or more plug-ins. By instantiating these interfaces with your preferred
plug-ins, you can bring custom message-based digital signature and message-based encryption to
your ATMI application.

The six component interfaces are:

Public key initialization

Key management

Certificate lookup

Certificate parsing

Certificate validation

Proof material mapping

Public Key Initialization
The public key initialization interface allows public key software to open public and private keys.
For example, gateway processes may need to have access to a specific private key in order to
decrypt messages before routing them. This interface is implemented as a fanout.

Key Management
The key management interface allows public key software to manage and use public and private
keys. Note that message digests and session keys are encrypted and decrypted using this interface,

Publ ic Key Implementat ion

Using Security in ATMI Applications 1-39

but no bulk data encryption is performed using public key cryptography. Bulk data encryption is
performed using symmetric key cryptography.

Certificate Lookup
The certificate lookup interface allows public key software to retrieve X.509v3 certificates for a
given principal. Principals are authenticated users. The certificate database may be stored using
any appropriate tool, such as Lightweight Directory Access Protocol (LDAP), Microsoft Active
Directory, Netware Directory Service (NDS), or local files.

Certificate Parsing
The certificate parsing interface allows public key software to associate a simple principal name
with an X.509v3 certificate. The parser analyzes a certificate to generate a principal name to be
associated with the certificate.

Certificate Validation
The certificate validation interface allows public key software to validate an X.509v3 certificate
in accordance with specific business logic. This interface is implemented as a fanout, which
allows BEA Tuxedo customers to use their own business rules to determine the validity of a
certificate.

Proof Material Mapping
The proof material mapping interface allows public key software to access the proof materials
needed to open keys, provide authorization tokens, and provide auditing tokens.

Implementing Custom Public Key Security
You can provide public key security for your ATMI application by using custom plug-ins. You
choose a plug-in by configuring the BEA Tuxedo registry, a tool that controls all security
plug-ins.

If you want to use custom public key plug-ins, you must configure the registry for your public
key plug-ins before you can install them. For more detail about the registry, see “Setting the BEA
Tuxedo Registry” on page 2-4.

1-40 Using Security in ATMI Applications

Default Public Key Implementation
The default public key implementation supports the following algorithms:

Public key algorithms: RSA

Digital signature algorithms: RSA and DSA

Symmetric key algorithms:

– DES-CBC

– Two-key triple-DES

– RC2

Message digest algorithms:

– MD5

– SHA-1

See Also
“Public Key Security” on page 1-27

“Security Administration Tasks” on page 2-3

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

Default Authentication and Authorization
The default authentication and authorization plug-ins provided by the ATMI environment of the
BEA Tuxedo product work in the same manner that implementations of authentication and
authorization have worked since they were first made available with the BEA Tuxedo system.

An application administrator can use the default authentication and authorization plug-ins to
configure an ATMI application with one of five levels of security. The five levels are:

No authentication

Application password security

Defau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 1-41

User-level authentication

Optional access control list (ACL) security

Mandatory ACL security

At the lowest level, no authentication is provided. At the highest level, an access control checking
feature determines which users can execute a service, post an event, or enqueue (or dequeue) a
message on an application queue. The security levels are briefly described in the following table.

Table 1-6 Security Levels for Default Authentication and Authorization

Security Level Description

No authentication Clients do not have to be verified before joining the ATMI
application.

When joining an ATMI application at this security level, a user
has access to all application resources.

Application password The application administrator defines a single password for the
entire ATMI application, and clients must provide the password
to join the application.

When successfully joining an ATMI application at this security
level, a user has access to all application resources.

User-level authentication In addition to the application password, each client must
provide a valid username and user-specific data, such as a
password, to join the ATMI application.

When successfully joining an ATMI application at this security
level, a user has access to all application resources.

1-42 Using Security in ATMI Applications

Note: The term client is synonymous with client process, meaning a specific instance of a client
program in execution. An ATMI client program can exist in active memory in any
number of individual instances.

Optional ACL security Clients must provide the application password, a username, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the ATMI application is set to optional ACL
security, all users are permitted to access the resource.

Mandatory ACL security Clients must provide the application password, a username, and
user-specific data such as a password.

For a user who successfully joins an ATMI application at this
security level, access to application resources is restricted in the
following way. The ACL database contains a list of application
resources and, for each resource, a list of users with permission
to use it. A user who is not included in the list for a particular
resource is not allowed to access that resource, regardless of
whether optional ACL or mandatory ACL security is being
used.

If there is no entry in the ACL database for a resource and the
security level for the ATMI application is set to mandatory
ACL security, users are not permitted to access the resource.

Table 1-6 Security Levels for Default Authentication and Authorization

Security Level Description

Defau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 1-43

An application administrator can designate a security level by setting the SECURITY parameter in
the UBBCONFIG configuration file to the appropriate value.

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then the
application administrator must configure a system-supplied authentication server named
AUTHSVR. AUTHSVR performs per-user authentication.

An application developer can replace AUTHSVR with an authentication server that has logic
specific to the ATMI application. For example, a company may want to develop a custom
authentication server so that it can use the popular Kerberos mechanism for authentication.

Client Naming
Upon joining an ATMI application, a client process has two names: a combined user-client name
and a unique client identifier known as an application key.

The user-client name consists of a username and a client name and is used for security,
administration, and communications.

The application key is a 32-bit value that is called on behalf of the client and used by the
access control checking feature.

Two client names are reserved for special semantics: tpsysadm and tpsysop. tpsysadm is
treated as the application administrator, and tpsysop is treated as the application operator.

User-Client Names
When an authenticated client joins an ATMI application, it passes a username and client name to
tpinit(3c) in a TPINIT buffer if the application is written in C, or to TPINITIALIZE(3cbl) in
a TPINFDEF-REC record if the application is written in COBOL. The username and client name,

For This Security Level Set SECURITY Parameter to . . .

No authentication NONE

Application password security APP_PW

User-level authentication USER_AUTH

Optional ACL security ACL

Mandatory ACL security MANDATORY_ACL

1-44 Using Security in ATMI Applications

as well as other security-related fields in the TPINIT buffer/ TPINFDEF-REC record, are described
in the following table.

For an authenticated security level (USER_AUTH, ACL, or MANDATORY_ACL), the username, client
name, and user-specific data are transferred to AUTHSVR without interpretation by the BEA
Tuxedo system. The only manipulation of this information is its encryption when transmitted
over the network from a Workstation client.

Table 1-7 Security-Related Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT TPINFDEF-REC Description

usrname USRNAME A user name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The username represents
the caller.

cltname CLTNAME A client name consisting of a string of up to 30
characters. Required for security level USER_AUTH,
ACL, or MANDATORY_ACL. The client name
represents the client program.

passwd PASSWD Application password. Required for security level
APP_PW, USER_AUTH, ACL, or MANDATORY_ACL.
tpinit() or TPINITIALIZE() validates this
password by comparing it to the configured
application password stored in the TUXCONFIG file.*

datalen DATALEN Length of the user-specific data** that follows.

data N/A User-specific data.** Required for security level
USER_AUTH, ACL, or MANDATORY_ACL.
tpinit() or TPINITIALIZE() forwards the
user-specific data to the authentication server for
validation. The authentication server is AUTHSVR.

* The binary equivalent of the UBBCONFIG file.

** Usually a user password.

Defau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 1-45

Application Key
Every time a client joins an ATMI application, it is assigned a 32-bit application key by the BEA
Tuxedo system. The client cannot reset the key other than by terminating its association and
joining the ATMI application as a different user.

The assigned application key is the client’s security credential. The client provides its application
key with every service invocation as part of the TPSVCINFO structure in the appkey field. (See
tpservice(3c) in the BEA Tuxedo ATMI C Function Reference for more information about
TPSVCINFO.)

The following table shows how the application key is set for various security levels and clients.
All application key assignments are hardcoded except the last item in the table.

Table 1-8 Application Key Assignments

At This Security Level Messages of This Type Are Assigned the Following Application
Key

Any security level Messages from native ATMI clients that
must be run by the administrator (like
tmadmin(1))

0x80000000
(Application key of the administrator)

NONE or APP_PW Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysadm and are
run by the administrator

0x80000000
(Application key of the administrator)

Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysop and are
run by the administrator

0xC0000000
(Application key of the operator)

Messages from any ATMI client other
than tpsysadm or tpsysop

-1

1-46 Using Security in ATMI Applications

In addition, any message that originates from tpsvrinit(3c) or tpsvrdone(3c) in a C
program (TPSVRINIT(3cbl) or TPSVRDONE(3cbl) in COBOL) is assigned the application key
of the administrator: 0x80000000. The application key of the client is assigned to messages that
pass through a server but originate at a client; an exception to this rule is described in “Replacing
Client Tokens with Server Tokens” on page 1-10.

A user identifier (UID) is an integer, between 0 and 128K, that is used by the application to refer
to a particular user. A group identifier (GID) is an integer, between 0 and 16K, that is used by the
application to refer to an application group.

User, Group, and ACL Files
To use access control, an application administrator must maintain lists of (1) users, (2) groups,
and (3) and mappings of groups to application entities (such as services, events, and application

USER_AUTH, ACL, or
MANDATORY_ACL

Messages from native ATMI clients that
call tpinit()/ TPINITIALIZE()
with a client name of tpsysadm and are
run by the administrator and bypass
authentication

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysadm

0x80000000
(Application key of the administrator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name of
tpsysop

0xC0000000
(Application key of the operator)

Messages from authenticated ATMI
clients that call tpinit()/
TPINITIALIZE() with a client name
other than tpsysadm or tpsysop

Application key = user
identifier (UID) in the lower 17
bits and group identifier (GID)
in the next higher 14 bits; remaining
upper bit is 0. AUTHSVR returns this
application key value

Table 1-8 Application Key Assignments (Continued)

At This Security Level Messages of This Type Are Assigned the Following Application
Key

Defau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 1-47

queues). The third type of list, a mapping of groups to application entities, is known as the access
control list (ACL).

When a client tries to access an application resource, such as a service, the system checks the
client’s application key and thus identifies the group to which the user belongs. Next, the system
checks the ACL for the target resource and determines whether the client’s group has access
permission. The application administrator, application operator, and processes or service requests
running with the privileges of the application administrator or operator are not subject to ACL
permission checking.

The user, group, and ACL files are located in the application_root directory, where
application _root is the first pathname defined for the APPDIR variable. The following figure
identifies these files and specifies the administrative commands available for controlling each
list.

Figure 1-10 Default User, Group, and ACL Files

Note: For an ATMI application running on the Compaq VMS operating system, the names of
the user, group, and ACL files have .dat extensions: tpusr.dat, tpgrp.dat, and
tpacl.dat.

The files are colon-delimited, flat text files that can be read and written only by the application
administrator—the owner of the TUXCONFIG file referenced by the TUXCONFIG variable. The
format of the files is irrelevant, since the files are fully administered with a set of dedicated
commands. Only the application administer is allowed to use these commands.

application_root

tpgrp tpacltpusr

Administrative Commands
for User File

Administrative Commands
for ACL File

Administrative Commands
for Group File

tpusradd(1)n

tpusrdel(1)n

tpusrmod(1)n

tpgrpadd(1)n

tpgrpdel(1)n

tpgrpmod(1)n

tpacladd(1)n

tpacldel(1)n

tpaclmod(1)n

1-48 Using Security in ATMI Applications

An application administer can use the tpaclcvt(1) command to convert security data files to
the format needed by the ACL checking feature. For example, on a UNIX host machine, an
administrator can use tpaclcvt to convert the /etc/password file and store the converted
version in the tpusr file. The same administrator can use tpaclcvt to convert the /etc/group
file and store the converted version in the tpgrp file.

The AUTHSVR server uses the user information stored in the tpusr file to authenticate users who
want to join the ATMI application.

Optional and Mandatory ACLs
The ACL and MANDATORY_ACL security levels constitute the default authorization implementation
for the ATMI environment in the BEA Tuxedo product.

When the security level is ACL, if there is no entry in the tpacl file associated with the target
application entity, the client is permitted to access the entity. This security level enables an
administrator to configure access for only those resources that need more security. That is, there
is no need to add entries to the tpacl file for services, events, or application queues that are open
to everyone.

When the security level is MANDATORY_ACL, if there is no entry in the tpacl file associated with
the target application entity, the client is not permitted to access the entity. For this reason, this
level is called mandatory. There must be an entry in the tpacl file for each and every application
entity that the client needs to access.

For both the ACL and MANDATORY_ACL security levels, if an entry for an application entity exists
in the tpacl file and the client attempts to access that entity, the user associated with that client
must be a member of a group that is allowed to access that entity; otherwise, permission is denied.

For some ATMI applications, it may be necessary to use both system-level and application-level
authorization. An entry in the tpacl file can be used to control which users can access a service,
and application logic can control data-dependent access, for example, which users can handle
transactions for more than a million dollars.

Note that there is no ACL permission checking for administrative services, events, and
application queues with names that begin with a dot (.). For example, any client can subscribe to
administrative events such as .SysMachineBroadcast, .SysNetworkConfig, and
.SysServerCleaning. In addition, there is no ACL permission checking for the application
administrator, application operator, or processes or service requests running with the privileges
of the application administrator or operator.

Secur i t y In te rope rab i l i t y

Using Security in ATMI Applications 1-49

See Also
“What Administering Security Means” on page 2-2

“Security Administration Tasks” on page 2-3

“Administering Authentication” on page 2-9

“Administering Authorization” on page 2-34

“What Programming Security Means” on page 3-1

“Programming an ATMI Application with Security” on page 3-3

“Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

“About the Configuration File” on page 2-1 and “Creating the Configuration File” on
page 3-1 in Setting Up a BEA Tuxedo Application

UBBCONFIG(5) in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

AUTHSVR(5) in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Security Interoperability
Application developers and administrators must be aware of certain security issues when
configuring ATMI applications to interoperate with BEA Tuxedo pre-release 7.1 (6.5 or earlier)
software.

Interoperability, as defined in this discussion, is the ability of the current release of BEA Tuxedo
software to communicate over a network with a previous release of BEA Tuxedo software.
Specifically, inter-domain interoperability and intra-domain interoperability have the following
meanings:

Inter-domain interoperability

Involves one ATMI application running BEA Tuxedo release 7.1 or later software, and
another ATMI application running BEA Tuxedo pre-release 7.1 software. See the diagram
“Inter-Domain Interoperability” on page 1-50 for clarification.

Intra-domain interoperability

1-50 Using Security in ATMI Applications

Involves one machine in a multiple-machine ATMI application running BEA Tuxedo
release 7.1 or later software, and another machine in the same application running BEA
Tuxedo pre-release 7.1 software. See the figure “Intra-Domain Interoperability” on
page 1-51 for clarification.

Figure 1-11 Inter-Domain Interoperability

Server Server

GWTDOMAIN

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Application 1 Running

GWTDOMAIN

BEA Tuxedo Release 7.1 or Later Software
Application 2 Running

BEA Tuxedo Pre-Release 7.1 Software

Network
Connection (Link)

Server Server

Secur i t y In te rope rab i l i t y

Using Security in ATMI Applications 1-51

Figure 1-12 Intra-Domain Interoperability

Interoperating with Pre-Release 7.1 Software
Interoperating with BEA Tuxedo pre-release 7.1 software is allowed or disallowed at the
authentication security level. Authentication, as implemented by BEA Tuxedo release 7.1 or later
software, allows communicating processes to mutually prove their identities.

By default, interoperability with a machine running BEA Tuxedo pre-release 7.1 software is not
allowed. To change the default, an application administrator can use the CLOPT -t option to
allow workstation handlers (WSHs), domain gateways (GWTDOMAINs), and servers in the release
7.1 or later ATMI application to interoperate with BEA Tuxedo pre-release 7.1 software.
“Mandating Interoperability Policy” on page 2-15 provides instructions for using the CLOPT -t
option as well as the security ramifications for authentication and authorization when using
CLOPT -t.

Interoperability for Link-Level Encryption
Whenever a network link is established between machines running BEA Tuxedo software,
link-level encryption may be used to encrypt data before sending it over the network link, and
decrypt it as it comes off the link. Of course, link-level encryption is possible only if LLE is
installed on both the sending and receiving machines.

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Server

WSH

Workstation
Client

WSH

Workstation
Client

Machine 2 Running BEA TuxedoMachine 1 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same BEA Tuxedo Application

1-52 Using Security in ATMI Applications

LLE interoperability with BEA Tuxedo pre-release 7.1 software is described in “Backward
Compatibility of LLE” on page 1-24.

Interoperability for Public Key Security
The following interoperability rules for public key security apply to a machine running
release 7.1 or later BEA Tuxedo software that is configured to interoperate with a machine
running BEA Tuxedo pre-release 7.1 software. To clarify the rules, each rule has an
accompanying example scenario involving a Workstation client running BEA Tuxedo
pre-release 7.1 software.

Table 1-9 Interoperability Rules for Public Key Security

Interoperability Rule Example Comments

Encrypted outgoing message buffers
destined for a machine running BEA
Tuxedo pre-release 7.1 software are not
transmitted to the machine.

Encrypted outgoing message buffers
destined for a pre-release 7.1
Workstation client are not transmitted
to the Workstation client.

“Encrypted” refers to public
key message-based
encryption, not link-level
encryption.

Incoming message buffers from a
machine running a BEA Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring
encryption.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have encryption envelopes
attached, and are not accepted if routed
to a process requiring encryption.

See “Setting Encryption
Policy” on page 2-47 for a
description of the
ENCRYPTION_REQUIRED
configuration parameter.

For outgoing message buffers destined
for the machine running BEA Tuxedo
pre-release 7.1 software, any digital
signatures are verified and then removed
before the message buffers are
transmitted to the older machine.

Digital signatures are verified and then
removed from outgoing message
buffers destined for a pre-release 7.1
Workstation client.

It is assumed that the
outgoing message buffer is
digitally signed but not
encrypted. If the outgoing
message buffer is digitally
signed and encrypted, the
message is not decrypted,
the digital signatures are not
verified, and the message is
not transmitted to the older
machine.

Incoming message buffers from a
machine running BEA Tuxedo
pre-release 7.1 software are not accepted
if routed to a process requiring digital
signatures.

Incoming message buffers from a
pre-release 7.1 Workstation client do
not have digital signatures attached,
and are not accepted if routed to a
process requiring digital signatures.

See “Setting Digital
Signature Policy” on
page 2-42 for a description
of the
SIGNATURE_REQUIRED
configuration parameter.

Secur i t y In te rope rab i l i t y

Using Security in ATMI Applications 1-53

For inter-domain interoperability, release 7.1 or later domain gateway (GWTDOMAIN) processes
enforce the interoperability rules for public key security.

For intra-domain interoperability, release 7.1 or later native clients, workstation handlers
(WSHs), or server processes communicating with the local bridge process enforce the
interoperability rules for public key security, as shown in the following figure. A bridge process
operates only as a conduit; it does not decrypt message buffer content or verify digital signatures.

Figure 1-13 Enforcing Intra-Domain Interoperability Rules for Public Key Security

Note: Typically, a release 7.1 or later WSH does not verify digital signatures. But when routing
a digitally signed message buffer to a process running BEA Tuxedo pre-release 7.1
software, the WSH verifies any digital signatures before removing them.

See Also
“Security Compatibility” on page 1-54

“Mandating Interoperability Policy” on page 2-15

“Setting Digital Signature Policy” on page 2-42

“Setting Encryption Policy” on page 2-47

Server Server

Native
Client Server

Bridge

Workstation
Client

WSH

Workstation
Client

Machine 2 Running BEA TuxedoMachine 1 Running BEA Tuxedo
Release 7.1 or Later Software Pre-Release 7.1 Software

Network
Connection (Link)

Same BEA Tuxedo Application

Local Bridge

Enforcers

Bridge

Native
Client

WSH

Server

1-54 Using Security in ATMI Applications

Security Compatibility
For an ATMI application running BEA Tuxedo release 7.1 or later software, it is possible to have
any combination of default or custom authentication, authorization, auditing, and public key
security. In addition, any combination of these four security capabilities is compatible with
link-level encryption.

Mixing Default/Custom Authentication and Authorization
It is possible to have default authentication and custom authorization, or custom authentication
and default authorization, as long as the application developer is aware of the following
restriction: the authorization security token must carry at a minimum (1) an authenticated
username, or principal name, and (2) an application key value as defined in “Application Key”
on page 1-45.

Authorization decisions are based partly on user identity, which is stored in an authorization
token. Because authorization tokens are generated by the authentication security plug-in,
providers of authentication and authorization plug-ins need to ensure that these plug-ins work
together. (See “Authentication” on page 1-7 and “Authorization” on page 1-12 for more detail.)

Mixing Default/Custom Authentication and Auditing
It is possible to have default authentication and custom auditing, or custom authentication and
default auditing, as long as the application developer is aware of the following restriction: the
auditing security token must carry at a minimum (1) an authenticated username, or principal
name, and (2) an application key value as defined in “Application Key” on page 1-45.

Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication security plug-in, providers of authentication
and auditing plug-ins need to ensure that these plug-ins work together. (See “Authentication” on
page 1-7 and “Auditing” on page 1-18 for more detail.)

Compatibility Issues for Public Key Security
Public key security is compatible with all features and processes supported by BEA Tuxedo
release 7.1 or later software except the compression feature. Encrypted message buffers cannot
be compressed using the compression feature. But, because the public key software compresses
the message content just before it encrypts the message buffer, any size savings are still achieved.

This topic describes the compatibility/interaction of public key security with the following ATMI
features and processes:

Secur i t y Compat ib i l i t y

Using Security in ATMI Applications 1-55

Data-dependent routing

Threads

EventBroker

/Q

Transactions

Domain gateways (GWTDOMAINs)

Other vendors’ gateways

Compatibility/Interaction with Data-dependent Routing
Central to the data-dependent routing feature is the ability of a process to examine the content of
incoming message buffers. If an incoming message buffer is encrypted, a process configured for
data-dependent routing must have opened a recipient’s private key so that the public key software
can use that key to decrypt the message buffer. For data-dependent routing, the public key
software does not verify digital signatures.

If a decryption key is not available, the routing operation fails. The system generates an ERROR
userlog(3c) message to report the failure.

If a decryption key is available, the process makes a routing decision based on a decrypted copy
of the encrypted message buffer. The chain of events is as follows:

1. The public key software makes a copy of the encrypted message buffer and uses the
decryption key to decrypt the buffer.

2. The process reads the resulting plaintext (unencrypted text) message content to make the
routing decision.

3. The public key software overwrites the plaintext message content with zero values to
preserve privacy.

The system then transmits the original encrypted message buffer in accordance with the routing
decision.

Compatibility/Interaction with Threads
Public-private keys are represented and manipulated via handles. A handle has data associated
with it that is used by the public key application programming interface (API) to locate or access

1-56 Using Security in ATMI Applications

the item named by the handle. A process opens a key handle for digital signature generation,
message encryption, or message decryption.

A key handle is a process resource; it is not bound to any specific thread or context. Any
communication necessary to open a key is performed within the thread’s currently active context.
Thereafter, the key is available to any context in the process, whether or not the context is
associated with the same ATMI application.

A key’s internal data structures are thread safe. As such, a key may be accessed concurrently by
multiple threads.

Compatibility/Interaction with the EventBroker
In general, a TMUSREVT(5) system server handles encrypted message buffers without decrypting
them, that is, both digital signatures and encryption envelopes remain intact as messages flow
through the BEA Tuxedo EventBroker component. However, the following cases require that the
EventBroker component decrypt posted message buffers:

To evaluate subscription filter expressions based on message content.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
filter expression is assumed to be false, and the subscription is not considered a match.

To perform subscription notification actions that require access to message content:
userlog(3c) processing or system command execution.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog(3c) message to
report the failure.

To perform subscription notification actions that, based on system configurations, need to
access message content for data-dependent routing.

If the EventBroker does not have access to a suitable decryption key, the subscription’s
notification action fails, and the system generates an ERROR userlog() message to
report the failure.

For a transactional subscription, the system also marks the transaction as rollback-only.

To comply with an administrative system policy requiring encryption (as explained in
“Setting Encryption Policy” on page 2-47).

If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

Secur i t y Compat ib i l i t y

Using Security in ATMI Applications 1-57

To verify that a posted encrypted message has a valid digital signature attached, if required
to do so by an administrative system policy requiring digital signatures (as explained in
“Setting Digital Signature Policy” on page 2-42).

If the EventBroker does not have access to a suitable decryption key, the tppost(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

Compatibility/Interaction with /Q
In general, a TMQUEUE(5) or TMQFORWARD(5) system server handles encrypted message buffers
without decrypting them, that is, both signatures and encryption envelopes remain intact as
messages flow through the BEA Tuxedo /Q component. However, the following cases require
that the /Q component decrypt enqueued message buffers:

To perform TMQFORWARD operations that, based on system configurations, need to access
message content for data-dependent routing.

If TMQFORWARD does not have access to a suitable decryption key, the forward operation
fails. The system returns the message to the queue and generates an ERROR userlog(3c)
message to report the failure.

After a number of periodic retry attempts, TMQFORWARD might place the unreadable
message on an error queue.

To comply with an administrative system policy requiring encryption (as explained in
“Setting Encryption Policy” on page 2-47).

If the /Q component does not have access to a suitable decryption key, the tpenqueue(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

To verify that an enqueued encrypted message has a valid signature attached, if required to
do so by an administrative system policy requiring digital signatures (as explained in
“Setting Digital Signature Policy” on page 2-42).

If the /Q component does not have access to a suitable decryption key, the tpenqueue(3c)
operation fails, and the system generates an ERROR userlog() message to report the
failure.

A non-transactional tpdequeue(3c) operation has the side effect of destroying an encrypted
queued message if the invoking process does not hold a valid decryption key.

If a message with an invalid signature is placed in a queue (or if the message is corrupted or
tampered with while on the queue), any attempt to dequeue it fails. A non-transactional

1-58 Using Security in ATMI Applications

tpdequeue() operation has the side effect of destroying such a message. A transactional
tpdequeue() operation causes transaction rollback, and all future transactional attempts to
dequeue the message will continue to fail.

Compatibility/Interaction with Transactions
Public key security operations—opening and closing keys, requesting a digital signature, or
requesting encryption—are not transactional, and are not undone by transaction rollback.
However, transactions might rollback due to failure conditions associated with the following
public key operations:

If a transactional request or reply message cannot be decrypted, its associated transaction is
rolled back.

If a transactional request or reply message is discarded because of an invalid or missing
digital signature, its associated transaction is rolled back.

If a transactional request or reply message is rejected because it violates an administrative
system policy requiring encryption or digital signatures, its associated transaction is rolled
back.

Compatibility/Interaction with Domain Gateways
Domain gateway (GWTDOMAIN) processes connecting two ATMI applications running BEA
Tuxedo release 7.1 or later software preserve digital signatures and encryption envelopes. In
addition, the domain gateway processes verify digital signatures and enforce administrative
system policies regarding digital signatures and encryption.

The following figure is an aid to understanding how domain gateway processes interact with local
and remote ATMI applications. The table following the figure describes how release 7.1 or later
domain gateway processes handle digitally signed and encrypted message buffers.

Secur i t y Compat ib i l i t y

Using Security in ATMI Applications 1-59

Figure 1-14 Communication Between ATMI Applications

ATMI Application 1 ATMI Application 2

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client Server

Server Server

Native
Client

Network
Connection (Link)

GWTDOMAIN GWTDOMAIN

outbound

inboundoutbound

inbound

1-60 Using Security in ATMI Applications

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Inbound message—
originating from a
remote process and
received over a
network connection

Has encryption envelope and
may or may not have digital
signature

The domain gateway process accepts the message and
forwards it in encrypted form.

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “Compatibility/Interaction with
Data-dependent Routing” on page 1-55 for
clarification.)

Inbound message Does not have encryption
envelope or digital signature

If the domain gateway process is running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “Setting
Encryption Policy” on page 2-47 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts and forwards the message.

Inbound message Has digital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached.

Inbound message Does not have digital
signature and is not
encrypted

If the domain gateway process is running within a
domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See “Setting Digital Signature Policy” on page 2-42 for
clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts and forwards
the message.

Secur i t y Compat ib i l i t y

Using Security in ATMI Applications 1-61

Outbound message—
originating from a local
process and
transmitted over a
network connection

Has encryption envelope and
may or may not have digital
signature

The domain gateway process accepts the message and
forwards it in encrypted form over the network.

If the data-dependent routing feature applies and the
domain gateway process does not have a suitable
decryption key, the gateway process rejects the
message. (See “Compatibility/Interaction with
Data-dependent Routing” on page 1-55 for
clarification.)

If the encrypted message is destined for a process
running BEA Tuxedo pre-release 7.1 (6.5 or earlier)
software, the domain gateway process rejects the
message. (See “Interoperating with Pre-Release 7.1
Software” on page 1-51 and “Interoperability for Public
Key Security” on page 1-52 for clarification.)

Outbound message Does not have encryption
envelope or digital signature

If the domain gateway process is running within a
domain, machine, or group requiring encryption, the
gateway process rejects the message. If a service
advertised by the domain gateway requires encryption,
the gateway process rejects the message. (See “Setting
Encryption Policy” on page 2-47 for clarification.)

If the domain gateway does not require encryption, the
gateway process accepts the message and forwards it
over the network.

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

1-62 Using Security in ATMI Applications

Compatibility/Interaction with Other Vendors’ Gateways
A domain gateway (GWTDOMAIN) process connecting a release 7.1 or later ATMI application to
another vendor’s gateway process operates on outbound message buffers as follows:

1. Decrypts encrypted messages.

2. Verifies digital signatures (if any) and then removes digital signatures.

3. Transmits messages in plaintext format over the network to the vendor’s gateway process.

In addition, the domain gateway process enforces the administrative system policies regarding
encryption and digital signatures for the ATMI application. As an example, if encryption and/or

Outbound message Has digital signature but is
not encrypted

The domain gateway process verifies the digital
signature and forwards the message with digital
signature attached over the network.

If the message is destined for a process running BEA
Tuxedo pre-release 7.1 software and assuming
interoperability with BEA Tuxedo pre-release 7.1
software is allowed, the domain gateway process
verifies and then removes the digital signature before
forwarding the message over the network. (See
“Interoperating with Pre-Release 7.1 Software” on
page 1-51 and “Interoperability for Public Key
Security” on page 1-52 for clarification.)

Outbound message Does not have digital
signature and is not
encrypted

If the domain gateway process is running within a
domain, machine, or group requiring digital signatures,
the gateway process rejects the message. If a service
advertised by the domain gateway requires digital
signatures, the gateway process rejects the message.
(See “Setting Digital Signature Policy” on page 2-42 for
clarification.)

If the domain gateway does not require digital
signatures, the gateway process accepts the message
and forwards it over the network.

Table 1-10 Operation of Release 7.1 or Later Domain Gateway (GWTDOMAIN) Processes

Message Type Condition Resulting Operation

Secur i t y Compat ib i l i t y

Using Security in ATMI Applications 1-63

digital signatures are required at the domain level for the ATMI application, the local domain
gateway process rejects any message coming from the other vendor’s gateway process.

See Also
“Security Interoperability” on page 1-49

“Mandating Interoperability Policy” on page 2-15

“Setting Digital Signature Policy” on page 2-42

“Setting Encryption Policy” on page 2-47

1-64 Using Security in ATMI Applications

Using Security in ATMI Applications 2-1

C H A P T E R 2

Administering Security

The following sections explain how to set security policies for a BEA Tuxedo ATMI application:

What Administering Security Means

Security Administration Tasks

Setting the BEA Tuxedo Registry

Configuring an ATMI Application for Security

Setting Up the Administration Environment

Administering Operating System (OS) Security

Administering Authentication

Specifying Principal Names

Mandating Interoperability Policy

Establishing a Link Between Domains

Setting ACL Policy

Setting Credential Policy

Administering Authorization

Administering Link-Level Encryption

Administering Public Key Security

2-2 Using Security in ATMI Applications

Administering Default Authentication and Authorization

Using the Kerberos Authentication Plug-in

Kerberos Plug-In

Kerberos Plug-In Pre-configuration

Kerberos Plug-In Configuration

Using the Cert-C PKI Encryption Plug-in

Cert-C PKI Encryption Plug-In

Cert-C PKI Encryption Plug-In Pre-configuration

Cert-C PKI Encryption Plug-In Configuration

What Administering Security Means
Administering security for an ATMI application involves setting and enforcing security policies
for the components of the application, including its clients, server machines, and gateway links.
The application administrator sets the security policies for the ATMI application, and the BEA
Tuxedo system upon which the ATMI application is built enforces those policies.

The BEA Tuxedo system offers the following ATMI security capabilities:

Authentication

Authorization

Auditing

Link-level encryption

Public key security

All but one of the security capabilities can be configured by the application administrator. The
exception is auditing, which cannot be configured, as shown in the following figure.

Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 2-3

Figure 2-1 Administering ATMI Security

See Also
“Security Administration Tasks” on page 2-3

“What Security Means” on page 1-1

“What Programming Security Means” on page 3-1

Security Administration Tasks
Security administration consists of the following tasks:

ATMI Application Administration

BEA Tuxedo Library

ATMII Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Custom

Default
Public Key Security

Authentication Authorization
Public Key
Security

Link-Level
Encryption

Commands API GUI

Management Information Base (MIB)

2-4 Using Security in ATMI Applications

Setting the BEA Tuxedo registry

Configuring an ATMI application for security

Setting up the administration environment

Administering operating system (OS) security

Administering authentication

Administering authorization

Administering link-level encryption

Administering public key security

See Also
“Setting the BEA Tuxedo Registry” on page 2-4

Setting the BEA Tuxedo Registry
The application administrator needs to know about the BEA Tuxedo registry if the ATMI
application is to be configured with one or more custom security capabilities. On the other hand,
if the ATMI application is to be configured only with default security, the BEA Tuxedo registry
does not need to be changed.

The BEA Tuxedo registry is a disk-based repository for storing information related to plug-in
modules. Initially, this registry holds registration information about the default security plug-ins.

Purpose of the BEA Tuxedo Registry
Most BEA middleware products use a common transaction processing (TP) infrastructure that
consists of a set of core services, such as security. The TP infrastructure is available to ATMI
applications through well defined interfaces. These interfaces allow application administrators to
change the default behavior of the TP infrastructure by loading and linking their own service code
modules, referred to as plug-in modules or simply plug-ins.

The first step in loading a plug-in is to register the plug-in with the host operating system.
Registering a plug-in adds an entry for the plug-in to the BEA Tuxedo registry, which is a set of
binary files that stores information about active plug-ins. There is one registry per BEA Tuxedo
installation.

Conf igur ing an ATMI Appl i cat ion fo r Secur i t y

Using Security in ATMI Applications 2-5

On a UNIX host machine, the BEA Tuxedo registry is in the $TUXDIR/udataobj
directory.

On a Windows 2003 host machine, the BEA Tuxedo registry is in the
%TUXDIR%\udataobj directory.

Every Workstation client and server machine in an ATMI application must use the same set of
plug-in modules.

Registering Plug-ins
The administrator of an ATMI application in which custom plug-ins will be used is responsible
for registering those plug-ins and performing other registry related tasks. An administer can
register plug-ins in the BEA Tuxedo registry only from the local machine. That is, an
administrator cannot register plug-ins while logged on to the host machine from a remote
location.

Three commands are available for administering plug-ins:

epifreg—for registering a plug-in

epifunreg—for unregistering a plug-in

epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services for ATMI
and CORBA Environments. (This document contains the specifications for the security plug-in
interface, and describes the plug-in framework feature that makes the dynamic loading and
linking of security plug-in modules possible.) Also, when installing custom plug-ins, the
supplying third-party security vendor should provide instructions for using these commands to
set up the BEA Tuxedo registry to access the custom plug-ins.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

See Also
“Configuring an ATMI Application for Security” on page 2-5

Configuring an ATMI Application for Security
An application administrator configures security for the ATMI application on the MASTER
machine when the application is inactive. The underlying BEA Tuxedo system propagates the

2-6 Using Security in ATMI Applications

configuration information to the other machines in the ATMI application when the application is
booted.

As the administrator, you can configure security for your ATMI application by:

Editing the configuration file (UBBCONFIG)

Changing the TM_MIB, or

Using the BEA Administration Console

The set of security parameters involved depends upon the security capability (authentication,
authorization, link-level encryption, or public key) and whether you are using the default or
custom security software.

Editing the Configuration File
You can edit the UBBCONFIG configuration file to set security policies for an ATMI application.
The UBBCONFIG configuration file may have any filename, as long as the content of the file
conforms to the format described on the UBBCONFIG(5) reference page in the BEA Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference.

For more details about UBBCONFIG and its binary equivalent, TUXCONFIG, see “About the
Configuration File” on page 2-1 and “Creating the Configuration File” on page 3-1 in Setting Up
a BEA Tuxedo Application.

Changing the TM_MIB
The TM_MIB defines a set of classes through which the fundamental aspects of an ATMI
application may be configured and managed. Separate classes are designated for machines,
servers, networks, and so on. You should use the reference page TM_MIB(5) in combination with
the generic Management Information Base (MIB) reference page MIB(5) to format
administrative requests and interpret administrative replies. The MIB reference pages are defined
in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference.

Other component MIBs, including the ACL_MIB, DM_MIB, and WS_MIB, also play a role in
managing security for an ATMI application. The reference page ACL_MIB(5) defines the
ACL_MIB, the reference page DM_MIB(5) defines the DM_MIB, and the reference page WS_MIB(5)
defines the WS_MIB.

For more information about BEA Tuxedo MIBs, start with MIB(5) in the BEA Tuxedo File
Formats, Data Descriptions, MIBs, and System Processes Reference. Also, see Introducing BEA
Tuxedo ATMI.

Se t t ing Up the Admin is t ra t i on Env i ronment

Using Security in ATMI Applications 2-7

Using the BEA Administration Console
You can also use the BEA Administration Console to change security policies for an ATMI
application. The BEA Administration Console is a Web-based tool used to configure, monitor,
and dynamically re-configure an application.

For details about the BEA Administration Console, see Introducing BEA Tuxedo ATMI.

See Also
“Setting Up the Administration Environment” on page 2-7

Setting Up the Administration Environment
The application administrator defines certain environment variables for an ATMI application as
part of configuring the application. The values defined for the variables are absolute pathnames
that reference BEA Tuxedo executables and data libraries.

Being able to find such files is essential to the job of administering an ATMI application. For
example, all commands needed to manage application security are located in $TUXDIR/bin on a
UNIX host machine, and in %TUXDIR%\bin on a Windows 2003 host machine.

For details on setting up the administration environment, see Administering a BEA Tuxedo
Application at Run Time.

See Also
“Administering Operating System (OS) Security” on page 2-8

“Administering Authentication” on page 2-9

“Administering Authorization” on page 2-34

“Administering Link-Level Encryption” on page 2-35

“Administering Public Key Security” on page 2-41

“Security Administration Tasks” on page 2-3

2-8 Using Security in ATMI Applications

Administering Operating System (OS) Security
In addition to the security features in the ATMI environment of the BEA Tuxedo product, the
application administrator needs to take full advantage of the security features of the host
operating system to control access to files, directories, and system resources.

Most ATMI applications are managed by an application administrator who configures and boots
the application, monitors the running application, and makes changes to it dynamically, as
necessary. Because the ATMI application is started and run by the administrator, server programs
are run with the administrator’s permissions and are therefore considered secure or “trusted.”
This working method is supported by the login mechanism and the read and write permissions on
the files, directories, and system resources provided by the underlying operating system.

Clients, on the other hand, are not started by the administrator. Instead, they are run directly by
users with their own permissions. As a result, clients are not trusted.

In addition, users running native clients (that is, clients running on the same machine on which
the server is running) have access to the configuration file and interprocess communication (IPC)
mechanisms such as the bulletin board (in shared memory). Users running native clients always
have such access, even when additional ATMI security is configured.

Recommended Practices for OS Security
As the administrator, you can improve operating system security by observing the following
general rules:

Limit access to files and IPC resources to the application administrator.

Have “trusted” client programs run only with the permissions of the administrator (using a
setuid utility).

For maximum security on your operating system, allow only Workstation clients to access
the application; client programs should not be allowed to run on the same machines on
which application servers and administrative programs run.

Combine all of these practices with ATMI security so that the application can identify any
client making a request.

See Also
“Operating System (OS) Security” on page 1-6

“Security Administration Tasks” on page 2-3

Admin is te r ing Authent i cat ion

Using Security in ATMI Applications 2-9

Administering Authentication
Authentication allows communicating processes to prove their identities. It is the foundation for
most other security capabilities.

Except for the configuration instructions identified in this topic, the procedures for administering
authentication depend upon the underlying authentication system of the application. For
procedures to administer a custom authentication system, see the documentation for that system.
For procedures to administer the default authentication system, see “Administering Default
Authentication and Authorization” on page 2-55.

The following figure demonstrates the use of the delegated trust authentication model by
applications running BEA Tuxedo release 7.1 or later software. Workstation handlers (WSHs)
and domain gateways (GWTDOMAINs) are known as trusted system gateway processes in the
delegated trust authentication model, which is described in “Understanding Delegated Trust
Authentication” on page 1-7.

Figure 2-2 Mutual Authentication in the Delegated Trust Authentication Model

Note: Mutual authentication is not used for a native client, which authenticates with itself.

The following topics provide the instructions needed to set up the configuration shown in the
preceding figure. All of the topics involve authentication and the authentication plug-in.

Specifying principal names

Server Server

ATMI Application 2

GWTDOMAIN

Workstation
Client

Trusted Gateways

Server

ATMI Application 1

GWTDOMAIN

Workstation
Client

Trusted Gateways
WSHWSH

= Mutual Authentication

Server
Native
Client

Native
Client Server

Network
Connection (Link)

Server

2-10 Using Security in ATMI Applications

Mandating interoperability policy

Establishing a link between domains

Setting ACL policy

Setting credential policy

See Also
“Authentication” on page 1-7

“Default Authentication and Authorization” on page 1-40

“Administering Default Authentication and Authorization” on page 2-55

“Security Administration Tasks” on page 2-3

“Security Interoperability” on page 1-49

“Security Compatibility” on page 1-54

“BEA Tuxedo Domains (Multiple-Domain) Servers” on page 3-14 in Introducing BEA
Tuxedo ATMI

Specifying Principal Names
As the administrator, you use the following configuration parameters to specify principal names
for the workstation handler (WSH), domain gateway (GWTDOMAIN), and server processes running
in your ATMI application built with release 7.1 or later of the BEA Tuxedo software.

Spec i f y ing P r inc ipa l Names

Using Security in ATMI Applications 2-11

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in
UBBCONFIG
(TA_SEC_PRINCIPAL_NAME in
TM_MIB)

During application booting, each
WSH, domain gateway, and server
process in the ATMI application calls
the authentication plug-in to acquire
security credentials for the security
principal name specified in
SEC_PRINCIPAL_NAME.*

1 - 511 characters. If not
specified at any level in the
configuration hierarchy, the
security principal name defaults
to the DOMAINID string
specified in the UBBCONFIG
file.

CONNECTION_PRINCIPAL_NAME
for local domain access point in
DMCONFIG
(TA_DMCONNPRINCIPALNAME for
LACCESSPOINT in DM_MIB)

During application booting, each
domain gateway process in the ATMI
application calls the authentication
plug-in a second time to acquire
security credentials for the connection
principal name specified in
CONNECTION_PRINCIPAL_NAME.*

1 - 511 characters. If not
specified, the connection
principal name defaults to the
ACCESSPOINTID** string for
the local domain access point
specified in the DMCONFIG file.

* The topics that follow explain how the system processes acquire credentials and why they need them.

**The ACCESSPOINTID parameter is also known as DOMAINID.

2-12 Using Security in ATMI Applications

SEC_PRINCIPAL_NAME may be specified any of the following four levels in the configuration
hierarchy:

RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB

A security principal name at a particular configuration level can be overridden at a lower level.
For example, suppose you configure terri as the principal name for machine mach1, and john
as the principal name for server serv1 running on mach1. The processes on mach1 behave as
follows:

All WSH, domain gateway, and server processes on mach1 except serv1 processes use
terri as a principal name.

All serv1 processes use john as a principal name.

How System Processes Acquire Credentials
During application booting, each WSH, domain gateway, and server process in the ATMI
application includes its security principal name as an argument when calling the authentication
plug-in to (1) acquire security credentials and (2) get authorization and auditing tokens for itself.
The following figure demonstrates the procedure.

Spec i f y ing P r inc ipa l Names

Using Security in ATMI Applications 2-13

Figure 2-3 Acquiring Credentials and Tokens During Application Booting

Each domain gateway process in the application calls the authentication plug-in a second time to
acquire credentials and tokens for its assigned connection principal name.

Myubbconfig

Mytuxconfig

tmloadcf -y myubbconfig
Enter New Application Password:
password

(User Input)
(System Response)
(User Input)

Re-enter New Application Password:
password

(System Response)
(User Input)

1. Call “acquire
credentials”

Function

2. Call “initiate
security context”

Function

3. Call “accept
security context”

5. Call “get
auditing token”

Function Function

4. Call “get
authorization token”

Function

BEA Tuxedo Library

“Tommy”
Length of APP_PW,
APP_PW

ATMI Security

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”
SECURITY USER_AUTH

Call tmboot()

Tokens for WSH,
Domain Gateway,

or Server

Authentication Plug-in

Credentials

2-14 Using Security in ATMI Applications

Why System Processes Need Credentials
A WSH needs credentials so that it can authenticate Workstation clients that want to join the
application, and to get authorization and auditing tokens for the authenticated Workstation
clients. A WSH needs its own authorization and auditing tokens when handling requests from
pre-release 7.1 clients (clients running BEA Tuxedo release 6.5 or earlier software) so that it can
call the authentication plug-in to establish identities for the older clients. This behavior is
described in “Mandating Interoperability Policy” on page 2-15.

A domain gateway needs one set of credentials so that it can authenticate remote domain
gateways for the purpose of establishing links between ATMI applications, as described in
“Establishing a Link Between Domains” on page 2-24. (No authorization or auditing tokens are
assigned to authenticated remote domain gateways.) A domain gateway acquires these
credentials for the principal name specified in the CONNECTION_PRINCIPAL_NAME parameter.

A domain gateway needs a second set of credentials so that it can handle requests from
pre-release 7.1 clients, which involves calling the authentication plug-in to establish identities for
the older clients. This behavior is described in “Mandating Interoperability Policy” on page 2-15.
It also needs these credentials to establish identities when enforcing the local access control list
(ACL) policy, as described in “Setting ACL Policy” on page 2-29. A domain gateway acquires
these credentials for the principal name specified in the SEC_PRINCIPAL_NAME parameter.

A system or application server needs its own authorization and auditing tokens when handling
requests from pre-release 7.1 clients so that it can call the authentication plug-in to establish
identities for the older clients. This behavior is described in “Mandating Interoperability Policy”
on page 2-15.

A server also needs its own tokens when performing a server permission upgrade, which occurs
when the authorization and auditing tokens of the server are assigned to messages that pass
through the server but originate at a client. The service upgrade capability is described in
“Replacing Client Tokens with Server Tokens” on page 1-10.

Note: An application server cannot call the authentication plug-in itself. It is the underlying
system code that calls the authentication plug-in for the application server.

Example UBBCONFIG Entries for Principal Names
The following example pertains to specifying security principal names in the UBBCONFIG file
using the SEC_PRINCIPAL_NAME parameter. For an example of specifying connection principal
names in the DMCONFIG file using the CONNECTION_PRINCIPAL_NAME parameter, see “Example
DMCONFIG Entries for Establishing a Link” on page 2-27.

Mandat ing In te roperab i l i t y Po l i c y

Using Security in ATMI Applications 2-15

*RESOURCES

SEC_PRINCIPAL_NAME "Tommy"

.

.

.

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1

CLOPT="-t -s secsdb:TMQUEUE"

SEC_PRINCIPAL_NAME="TOUPPER"

See Also
“Mandating Interoperability Policy” on page 2-15

“Establishing a Link Between Domains” on page 2-24

“Setting ACL Policy” on page 2-29

“Security Administration Tasks” on page 2-3

Mandating Interoperability Policy
As the administrator, you use the CLOPT -t option in the UBBCONFIG file to allow WSH, domain
gateway (GWTDOMAIN), and server processes in your ATMI application to interoperate with
machines running BEA Tuxedo pre-release 7.1 (6.5 or earlier) software. In addition, you use the
WSINTOPPRE71 environment variable to allow Workstation clients to interoperate with machines
running BEA Tuxedo pre-release 7.1 software. The following four figures show what
interoperability means for these processes.

2-16 Using Security in ATMI Applications

Figure 2-4 WSH Operating with Older Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an older
(pre-release 7.1) authentication protocol, calls the internal impersonate user function to get
authorization and auditing tokens for the client, and attaches the tokens to the client request. If
the CLOPT -t option is not specified for the workstation listener (WSL) that controls the WSH,
no communication is possible between the newer WSH and the older Workstation client.

Note: The impersonate user function involves calling the authentication plug-in to establish an
identity for the older client. See “Establishing an Identity for an Older Client” on
page 2-19 for details.

ATMI Application Running
BEA Tuxedo Release 7.1 or Later Software

CLOPT -t

Workstation Client Running
BEA Tuxedo Pre-Release 7.1 Software

Server
Native
Client

Server

GWTDOMAIN

Server

WSH

Mandat ing In te roperab i l i t y Po l i c y

Using Security in ATMI Applications 2-17

Figure 2-5 Older WSH Operating with Workstation Client

In the preceding figure, the WSH authenticates with the Workstation client using an older
(pre-release 7.1) authentication protocol; the client request does not receive authorization and
auditing tokens. If the WSINTOPPRE71 environment variable is not set at the Workstation client
or is set to N, no communication is possible between the older WSH and the newer Workstation
client.

BEA Tuxedo Pre-Release 7.1 Software

WSINTOPPRE71=Y Workstation Client Running
BEA Tuxedo Release 7.1 or Later Software

Server
Native
Client

Server

GWTDOMAIN

Server

WSH

ATMI Application Running

2-18 Using Security in ATMI Applications

Figure 2-6 Server Interoperating with Older ATMI Application

In the preceding figure, the local domain gateway (GWTDOMAIN) in application 1 authenticates
with the remote domain gateway in application 2 using an older (pre-release 7.1) authentication
protocol. Upon receiving a request from a remote client, the local domain gateway calls the
internal impersonate user function to get authorization and auditing tokens for the remote client
and then attaches the tokens to the client request. For any outbound client request (client request
originating in application 1 and destined for application 2), the local domain gateway strips the
tokens from the request before sending the request along with the client’s application key to the
older application. (See “Application Key” on page 1-45 for a description of the application key.)

If the CLOPT -t option is not specified for the domain gateway, no communication is possible
between the newer ATMI application and the older ATMI application.

Server Server

GWTDOMAIN

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Client Request
GWTDOMAIN

Network
Connection (Link)

ATMI Application 2 Running
BEA Tuxedo Pre-Release 7.1 Software

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

CLOPT -tServer Server

Mandat ing In te roperab i l i t y Po l i c y

Using Security in ATMI Applications 2-19

Figure 2-7 Server Interoperating with Older BEA Tuxedo Systems

In the preceding figure, the destination server on machine 1 calls the internal impersonate user
function to get authorization and auditing tokens for the remote client on machine 2, attaches the
tokens to the client request, and then performs the request assuming the client passes any
authorization checks. If the CLOPT -t option is not specified for the server, no communication is
possible between the newer server and the older client.

Note: Also, in the preceding figure, if the WSH on machine 1 receives a client request destined
for a server on machine 2, the WSH strips the tokens from the request before sending the
request along with the client’s application key to the older system. Similarly, if the native
client on machine 1 sends a request to a server on machine 2, the native client strips the
tokens from the request before sending the request along with the client’s application key
to the older system. See “Application Key” on page 1-45 for a description of the
application key.

Establishing an Identity for an Older Client
For a WSH, domain gateway (GWTDOMAIN), or server process to establish an identity for an older
client, the process calls the internal impersonate user function to obtain authorization and auditing
tokens for the older client. The following figure demonstrates the procedure.

Machine 1

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Client Request

CLOPT -t
Server

Machine 2
Running BEA Tuxedo Pre-Release 7.1 SoftwareRunning BEA Tuxedo Release 7.1 or Later Software

WSH

Workstation
Client

WSH

Workstation
Client

Network
Connection (Link)

Same ATMI Application

2-20 Using Security in ATMI Applications

Figure 2-8 Obtaining Authorization and Auditing Tokens for an Older Client

How the WSH Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the WSH establishes an identity for an older client using
the usrname field of the TPINIT buffer for C, or the USRNAME field of the TPINFDEF-REC record
for COBOL. (The WSH receives a TPINIT buffer/ TPINFDEF-REC record from a client when the
client attempts to join the application, as described in “Joining the ATMI Application” on
page 3-7.) The WSH includes the user name as the principal name when calling the impersonate
user function.

For default authentication plug-ins, the impersonate user function finds the user name and its
associated application key (user identifier, group identifier combination) in the local tpusr file,
and then includes the user name and application key in both the authorization and auditing tokens
created for the older client. The tpusr file is briefly described in “Setting Up the User and Group
Files” on page 2-60.

How the Domain Gateway Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the domain gateway establishes an identity for an older
client using the LOCAL_PRINCIPAL_NAME string configured for the remote domain access point.
(The domain gateway searches the DM_REMOTE section of the local BDMCONFIG file—the binary

WSH, Domain Gateway, or Server Process

2. WSH/ Domain Gateway/ Server Authorization Token
3. WSH/ Domain Gateway/ Server Auditing Token

Tokens for
Older Client

Call impersonate user Function

ATMI Security

Authentication Plug-in

1. Name of Older Client or LOCAL_PRINCIPAL_NAME
Configured for Remote Domain Access Point

Mandat ing In te roperab i l i t y Po l i c y

Using Security in ATMI Applications 2-21

equivalent of the DMCONFIG(5) file—to find the LOCAL_PRINCIPAL_NAME string for the remote
domain access point. If not specified, the identity defaults to the ACCESSPOINTID string for the
remote domain access point.) The domain gateway uses the LOCAL_PRINCIPAL_NAME string as
the principal name when calling the impersonate user function.

For default authentication plug-ins, the impersonate user function finds the
LOCAL_PRINCIPAL_NAME string and its associated application key in the local tpusr file, and
then includes that string (identity) and application key in both the authorization and auditing
tokens created for the older client.

How the Server Establishes an Identity for an Older Client
When the CLOPT -t option is specified, the server establishes an identity for an older client using
the client’s assigned application key. (The client request received by the server contains the
client’s assigned application key.) The server finds the application key and its associated name in
the local tpusr file, and then includes the name as the principal name when calling the
impersonate user function.

For default authentication plug-ins, the impersonate user function finds the name and its
associated application key in the local tpusr file, and then includes the name and application key
in both the authorization and auditing tokens created for the older client.

Summarizing How the CLOPT -t Option Works
The following table summarizes the functionality of WSH, domain gateway, and server processes
when interoperability is and is not allowed using the CLOPT -t option.

Example UBBCONFIG Entries for Interoperability
In the following example, all WSHs controlled by the workstation listener (WSL) are configured
for interoperability.

*SERVERS

WSL SRVGRP="group_name" SRVID=server_number ...

CLOPT="-A -t ..."

See Also
“Specifying Principal Names” on page 2-10

2-22 Using Security in ATMI Applications

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and Is Not
Allowed

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

Workstation
Handler (WSH)

If the WSH receives a request from a pre-release
7.1 Workstation client to join the application,
the WSH authenticates the client using a
pre-release 7.1 authentication protocol and calls
the impersonate user function to get
authorization and auditing tokens for the client
based on the user name given in the request.

When the WSH receives a service request from
the authenticated Workstation client, it attaches
the tokens to the client request and forwards the
request to the destination server.

If the WSH receives a request from a
pre-release 7.1 Workstation client to
join the application, the WSH rejects
the request. No communication is
possible between the newer WSH and
the older Workstation client.

Mandat ing In te roperab i l i t y Po l i c y

Using Security in ATMI Applications 2-23

“Establishing a Link Between Domains” on page 2-24

“Setting ACL Policy” on page 2-29

“Security Administration Tasks” on page 2-3

“Security Interoperability” on page 1-49

Domain gateway
(GWTDOMAIN)

When the domain gateway sets up a connection
to a pre-release 7.1 remote domain gateway, it
authenticates the remote domain gateway using
a pre-release 7.1 authentication protocol and
then sets up the network connection.

When the domain gateway receives a client
request from the older domain, the domain
gateway calls the impersonate user function to
get authorization and auditing tokens for the
client based on the
LOCAL_PRINCIPAL_NAME (defaults to
ACCESSPOINTID) identity configured for the
remote domain access point, attaches the tokens
to the client request, and then forwards the
request to the destination server. The client has
the same access permissions as the
LOCAL_PRINCIPAL_NAME identity.

For any outbound client request, the domain
gateway strips the tokens from the request
before sending the request along with the
client’s application key to the older domain.

The domain gateway does not set up a
connection to a pre-release 7.1 remote
domain gateway. No communication is
possible between the newer and older
domains.

System or
application server

If the server receives a request from a remote
client running BEA Tuxedo pre-release 7.1
software, the server calls the impersonate user
function to get authorization and auditing
tokens for the client based on the client’s
assigned application key, and then performs the
client request assuming the client passes any
authorization checks.

If the server receives a request from a
remote client running BEA Tuxedo
pre-release 7.1 software, the server
rejects the client request. No
communication is possible between the
newer server and the older client.

Table 2-1 Functionality of WSH, Domain Gateway, and Server Processes When Interoperability Is and Is Not
Allowed (Continued)

Process Interoperability Allowed (CLOPT -t) Interoperability Not Allowed

2-24 Using Security in ATMI Applications

“Setting Up Security in a Domains Configuration” on page 2-41 and “Setting Up
Connections in a Domains Configuration” on page 2-55 in Using the BEA Tuxedo Domains
Component

Establishing a Link Between Domains
When a domain gateway (GWTDOMAIN) attempts to establish a network link with another domain
gateway, the following major events occur.

1. The initiator domain gateway and the target domain gateway exchange link-level encryption
(LLE) min-max values to be used to set up LLE on the link between the gateways. LLE is
described in “Link-Level Encryption” on page 1-22.

2. The initiator and target domain gateways authenticate one another through the exchange of
security tokens assuming that both gateways are running BEA Tuxedo release 7.1 or later
software.

If one or both of the domain gateways are running BEA Tuxedo pre-release 7.1 software,
the gateway processes use an older (pre-release 7.1) authentication protocol when setting
up the connection.

As the administrator, you use the following configuration parameter to establish a link between
domain gateways running BEA Tuxedo release 7.1 or later software.

Estab l i sh ing a L ink Be tween Domains

Using Security in ATMI Applications 2-25

Parameter Name Description Setting

CONNECTION_PRINCIPAL_NAME
in DMCONFIG
(TA_DMCONNPRINCIPALNAME in
DM_MIB)

When this parameter appears in the DM_LOCAL
section* of the DMCONFIG file, its value becomes
the principal name of the local domain access
point when setting up a connection with a remote
domain access point.

For default authentication plug-ins, if a value is
assigned to CONNECTION_PRINCIPAL_NAME
for the local domain access point, it must be the
same as the value assigned to the
ACCESSPOINTID parameter* for the local
domain access point. If these values do not match,
the local domain gateway process will not boot,
and the system will generate the following
userlog(3c) message: ERROR: Unable to
acquire credentials.

1-511 characters. If
not specified, the
principal name
defaults to the
ACCESSPOINTID
string for the local
domain access point.

When this parameter appears in the DM_REMOTE
section* of the DMCONFIG file for a particular
remote domain access point, its value becomes
the principal name of the remote domain access
point when setting up a connection with the local
domain access point.

For default authentication plug-ins, if a value is
assigned to CONNECTION_PRINCIPAL_NAME
for a remote domain access point, it must be the
same as the value assigned to the
ACCESSPOINTID parameter* for the remote
domain access point. If these values do not match,
any attempt to set up a connection between the
local domain gateway and the remote domain
gateway will fail, and the system will generate the
following userlog(3c) message: ERROR:
Unable to initialize administration
key for domain domain_name.

1-511 characters. If
not specified, the
principal name
defaults to the
ACCESSPOINTID
string for the remote
domain access point.

*The DM_LOCAL section is also known as DM_LOCAL_DOMAINS; the DM_REMOTE section is also known as
DM_REMOTE_DOMAINS; and the ACCESSPOINTID parameter is also known as DOMAINID.

2-26 Using Security in ATMI Applications

The following figure demonstrates how a link is established between domains using default
authentication plug-ins.

Figure 2-9 Establishing a Link Between Domains Using Default Authentication

“acquire
credentials”

Function

1. Call “initiate
security context”

Function

Credentials

ATMI Security

Authentication Plug-in

dmconfig1

bdmconfig1

*DM_LOCAL
c01 GWGRP=bankg1

TYPE=TDOMAIN
ACCESSPOINTID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"
SECURITY=DM_PW

*DM_REMOTE
b01 TYPE=TDOMAIN

ACCESSPOINTID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"

dmconfig2

*DM_LOCAL
b01 GWGRP=auth

TYPE=TDOMAIN
ACCESSPOINTID="BA.BK1"
CONNECTION_PRINCIPAL_NAME="BA.BK1"
SECURITY=DM_PW

*DM_REMOTE
c01 TYPE=TDOMAIN

ACCESSPOINTID="BA.CEN1"
CONNECTION_PRINCIPAL_NAME="BA.CEN1"

"BA.CEN1"

dmloadcf -y dmconfig1

“acquire
credentials”

Function

2. Call “accept
security context”

Function

Credentials

Authentication Plug-in

bdmconfig2

dmloadcf -y dmconfig2

"BA.BK1"

Network Link

ATMI Security

password
(encrypt)

DM_PW

Part of ATMI Application 2Part of ATMI Application 1

Initiator Domain Gateway (GWTDOMAIN) Target Domain Gateway (GWTDOMAIN)

Estab l i sh ing a L ink Be tween Domains

Using Security in ATMI Applications 2-27

Note: The “Credentials” shown in the preceding figure were acquired by each domain gateway
process at application booting using the CONNECTION_PRINCIPAL_NAME identity
configured for the local domain access point.

In the preceding figure, notice that the information exchanged between the initiator and target
domain gateways involves the CONNECTION_PRINCIPAL_NAME strings configured for the domain
gateways, as specified in the BDMCONFIG files. Each authentication plug-in uses the password
assigned to the remote domain access point (as defined in the DM_PASSWORDS section of the
BDMCONFIG file) to encrypt the string before transmitting it over the network, and uses the
password assigned to the local domain access point (as defined in the DM_PASSWORDS section of
the BDMCONFIG file) to decrypt the received string. The encryption algorithm used is 56-bit DES,
where DES is an acronym for the Data Encryption Standard.

For the encryption/decryption operation to succeed, the assigned password for the remote domain
access point in the local BDMCONFIG file must be the same as the assigned password for the local
domain access point in the remote BDMCONFIG file. (Similarly, if the domain security level is set
to APP_PW, the application passwords in the respective TUXCONFIG files must be identical for the
encryption/decryption operation to succeed.) For the authentication process to succeed, the
received string must match the CONNECTION_PRINCIPAL_NAME string configured for the sender.

When the domain gateways pass the security checks, the link is established, and the gateways can
forward service requests and receive replies over the established link.

Example DMCONFIG Entries for Establishing a Link
In the following example, the configurations shown in the local DMCONFIG file are used when
establishing a connection through the local domain access point c01 and the remote domain
access point b01.

*DM_LOCAL

<local domain access point name> <gateway group name> <domain type>

<domain id> [<connection principal name>] [<security>]...

c01 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=DM_PW

.

.

.

2-28 Using Security in ATMI Applications

*DM_REMOTE

<remote domain access point name> <domain type> <domain id>

[<connection principal name>]...

b01 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

See Also
“Specifying Principal Names” on page 2-10

“Mandating Interoperability Policy” on page 2-15

“Setting ACL Policy” on page 2-29

“Security Administration Tasks” on page 2-3

“Setting Up Security in a Domains Configuration” on page 2-41 in Using the BEA Tuxedo
Domains Component

Set t ing ACL Po l i cy

Using Security in ATMI Applications 2-29

Setting ACL Policy
As the administrator, you use the following configuration parameters to set and control the access
control list (ACL) policy between ATMI applications running BEA Tuxedo release 7.1 or later
software.

The following three figures show how the ACL_POLICY configuration affects the operation of
local domain gateway (GWTDOMAIN) processes.

Parameter Name Description Setting

ACL_POLICY in DMCONFIG
(TA_DMACLPOLICY in DM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG file for each remote domain access
point. Its value for a particular remote domain
access point determines whether or not the local
domain gateway modifies the credential
(identity) of service requests received from the
remote domain.

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means replace
credential of any service
request received from
remote domain, and
GLOBAL means pass
service requests with no
change.

LOCAL_PRINCIPAL_NAME in
DMCONFIG
(TA_DMLOCALPRINCIPALNAM
E in DM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG file for each remote domain access
point. If the ACL_POLICY parameter is set (or
defaulted) to LOCAL for a particular remote
domain access point, the local domain gateway
replaces the credential of any service request
received from the remote domain with the
principal name specified in the
LOCAL_PRINCIPAL_NAME parameter for this
remote domain access point.

1-511 characters. If not
specified, the principal
name defaults to the
ACCESSPOINTID string
for the remote domain
access point.

2-30 Using Security in ATMI Applications

Figure 2-10 Establishing a Local ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) modifies inbound client requests
(requests originating from the remote application and received over the network connection) so
that they take on the LOCAL_PRINCIPAL_NAME identity configured for the remote domain access
point and thus have the same access permissions as that identity. Each domain gateway passes
outbound client requests without change.

In this configuration, each ATMI application has an ACL database containing entries only for
users in its own domain. One such user is the LOCAL_PRINCIPAL_NAME identity configured for
the remote domain access point.

Note: The preceding description also applies to ATMI applications running BEA Tuxedo
pre-release 7.1 software except that the system uses the ACCESSPOINTID identity
configured for the remote domain access point. Essentially, the local ACL policy is
hardcoded in BEA Tuxedo release 6.5 or earlier software.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=LOCAL
(Default)

ACL_POLICY=LOCAL
(Default)

GWTDOMAIN GWTDOMAIN

Set t ing ACL Po l i cy

Using Security in ATMI Applications 2-31

Figure 2-11 Establishing a Global ACL Policy

In the preceding figure, each domain gateway (GWTDOMAIN) passes inbound and outbound client
requests without change. In this configuration, each ATMI application has an ACL database
containing entries for users in its own domain as well as users in the remote domain.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)
ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)

2-32 Using Security in ATMI Applications

Figure 2-12 Establishing a One-way Local and One-way Global ACL Policy

In the preceding figure, the domain gateway (GWTDOMAIN) in ATMI application 1 modifies
inbound client requests so that they take on the LOCAL_PRINCIPAL_NAME identity configured for
the remote domain access point for ATMI application 2 and thus have the same access
permissions as that identity; the domain gateway passes outbound client requests without change.
The domain gateway (GWTDOMAIN) in ATMI application 2 passes inbound and outbound client
requests without change.

In this configuration, ATMI application 1 has an ACL database containing entries only for users
in its own domain; one such user is the LOCAL_PRINCIPAL_NAME identity configured for the
remote domain access point for application 2. ATMI application 2 has an ACL database
containing entries for users in its own domain as well as users in ATMI application 1.

Impersonating the Remote Domain Gateway
If the domain gateway receives a client request from a remote domain for which the ACL_POLICY
parameter is set (or defaulted) to LOCAL in the local DMCONFIG file, the domain gateway performs
the following tasks.

Network
Connection (Link)

ATMI Application 1 Running
BEA Tuxedo Release 7.1 or Later Software

ATMI Application 2 Running
BEA Tuxedo Release 7.1 or Later Software

inbound

outbound

outbound

inbound

Server Server

Workstation
Client

Workstation
Client

WSHWSH

Server
Native
Client

Native
Client Server

Server Server

ACL_POLICY=LOCAL

GWTDOMAIN

(Default)
ACL_POLICY=GLOBAL

GWTDOMAIN

(Pass-through)

Set t ing ACL Po l i cy

Using Security in ATMI Applications 2-33

1. Calls the internal impersonate user function to get authorization and auditing tokens for the
client based on the LOCAL_PRINCIPAL_NAME identity configured for the remote domain
access point.

2. Uses these tokens to overwrite the tokens already attached to the client request.

3. Forwards the request to the destination server.

For more detail on the impersonate user function, see “Establishing an Identity for an Older
Client” on page 2-19.

Example DMCONFIG Entries for ACL Policy
In the following example, the connection through the remote domain access point b01 is
configured for global ACL in the local DMCONFIG file, meaning that the domain gateway process
for domain access point c01 passes client requests from and to domain access point b01 without
change. For global ACL, the LOCAL_PRINCIPAL_NAME entry for domain access point b01 is
ignored.

*DM_LOCAL

<local domain access point name> <gateway group name>

<domain type> <domain id> [<connection principal name>]

[<security>]...

c01 GWGRP=bankg1

TYPE=TDOMAIN

ACCESSPOINTID="BA.CENTRAL01"

CONNECTION_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=DM_PW

.

.

.

*DM_REMOTE

<remote domain access name> <domain type> <domain id>

[<ACL policy>] [<connection principal name>]

[<local principal name>]...

b01 TYPE=TDOMAIN

ACCESSPOINTID="BA.BANK01"

ACL_POLICY=GLOBAL

CONNECTION_PRINCIPAL_NAME="BA.BANK01"

LOCAL_PRINCIPAL_NAME="BA.BANK01.BOB"

2-34 Using Security in ATMI Applications

See Also
“Specifying Principal Names” on page 2-10

“Mandating Interoperability Policy” on page 2-15

“Establishing a Link Between Domains” on page 2-24

“Security Administration Tasks” on page 2-3

Setting Credential Policy
As the administrator, you use the following configuration parameter to set and control the
credential policy between ATMI applications running BEA Tuxedo release 8.0 or later software.

Administering Authorization
Authorization enforces limitations on user access to resources or facilities within an ATMI
application in accordance with application-specific rules. Only when users are authenticated to
join an ATMI application does authorization go into effect.

Parameter Name Description Setting

CREDENTIAL_POLICY in
DMCONFIG
(TA_DMCREDENTIALPOLICY in
DM_MIB)

May appear in the DM_REMOTE section of the
DMCONFIG file for each remote domain access
point. Its value for a particular remote domain
access point determines whether or not the local
domain gateway removes the credential
(identity) from a local service request destined
for this remote domain access point.

Note that the CREDENTIAL_POLICY parameter
controls whether or not the local domain gateway
removes the credential from a local service
request before sending the request to a remote
domain. The ACL_POLICY parameter controls
whether or not the local domain gateway replaces
the credential of a service request received from
a remote domain with the principal name
specified in the LOCAL_PRINCIPAL_NAME
parameter.

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means remove
the credential from a
local service request
destined for this remote
domain access point, and
GLOBAL means do not
remove the credential
from a local service
request destined for this
remote domain access
point.

Admin is te r ing L ink-Leve l Encrypt ion

Using Security in ATMI Applications 2-35

The procedures for administering authorization depend upon the underlying authorization system
of the ATMI application. For procedures to administer a custom authorization system, see the
documentation for that system. For procedures to administer the default authorization system, see
“Administering Default Authentication and Authorization” on page 2-55.

See Also
“Authorization” on page 1-12

“Default Authentication and Authorization” on page 1-40

“Administering Default Authentication and Authorization” on page 2-55

“Security Administration Tasks” on page 2-3

“Security Compatibility” on page 1-54

Administering Link-Level Encryption
Link-level encryption establishes data privacy for messages moving over the network links that
connect the machines in an ATMI application. There are three levels of link-level encryption
(LLE) security: 0-bit (no encryption), 56-bit (International), and 128-bit (United States and
Canada). The International LLE version allows 0-bit and 56-bit encryption. The United States
and Canada LLE version allows 0, 56, and 128-bit encryption.

LLE applies to the following types of ATMI links:

Workstation client to workstation handler (WSH)

Bridge-to-Bridge

Administrative utility (such as tmboot) to tlisten

Domain gateway to domain gateway

Understanding min and max Values
Before you can configure LLE for your ATMI application, you need to be familiar with the LLE
notation: (min, max). The defaults for these parameters are:

For min: 0

For max: Number of bits that indicates the highest level of encryption possible for the
installed LLE version

2-36 Using Security in ATMI Applications

For example, the default min and max values for the United States and Canada LLE version are
(0, 128). If you want to change the defaults, you can do so by assigning new values to min and
max in the UBBCONFIG file for your application.

For more information, see “How LLE Works” on page 1-22 and “Encryption Key Size
Negotiation” on page 1-23.

Verifying the Installed LLE Version
You can verify the LLE version installed on a machine by running the tmadmin command in
verbose mode.

tmadmin -v

Key lines from the local BEA Tuxedo lic.txt file will appear on your computer screen, similar
to the sample display shown below. The sample entry STRENGTH=128 indicates a United States
and Canada LLE version.

[BEA Tuxedo] VERSION=9.1

[LINK ENCRYPTION] VERSION=9.1

STRENGTH=128

.

.

.

All BEA Tuxedo licenses are in the $TUXDIR/udataobj/lic.txt file on a UNIX host machine,
or in the %TUXDIR%\udataobj\lic.txt file on a Windows 2003 host machine.

How to Configure LLE on Workstation Client Links
If Workstation clients are included in an application, the administrator must configure one or
more workstation listeners (WSLs) to listen for connection requests from Workstation clients.
Each WSL uses one or more associated workstation handlers (WSHs) to handle the Workstation
client workload. Each WSH can manage multiple Workstation clients by multiplexing all
requests and replies with a particular Workstation client over a single connection.

As the administrator, you enable Workstation client access to the ATMI application by specifying
a WSL server in the SERVERS section of the application’s UBBCONFIG file. You need to specify
the -z and -Z command-line options for the WSL server if you want to override the defaults for
the LLE min and max parameters. (See “Understanding min and max Values” on page 2-35 for
details.) Of course, link-level encryption is possible only if LLE is installed on both the local
machine and the Workstation client.

Admin is te r ing L ink-Leve l Encrypt ion

Using Security in ATMI Applications 2-37

Note: At the Workstation client end of a network connection, you use environment variables
TMMINENCRYPTBITS and TMMAXENCRYPTBITS to override the defaults for the LLE min
and max parameters.

To configure LLE on Workstation client links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the SERVERS section:

*SERVERS
WSL SRVGRP="group_name" SRVID=server_number ...

CLOPT="-A -- -z min -Z max ..."

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the "-A --
-z min -Z max" command-line options to the WSL server. When establishing a network link
between a Workstation client and the WSH, the Workstation client and WSL negotiate the key
size until they agree on the largest key size supported by both.

See WSL(5), WS_MIB(5), and UBBCONFIG(5) in the BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference for additional information.

How to Configure LLE on Bridge Links
The BEA Tuxedo system architecture optimizes network communications by establishing a
multiplexed channel among the machines in a multiple-machine application. BEA Tuxedo
messages flow in both directions over this channel, and the message traffic is managed by a
specialized ATMI server known as a Bridge server.

As the administrator, you place an entry in the NETWORK section of the UBBCONFIG file for each
machine in an ATMI application on which a Bridge server resides. You need to specify the
MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters for the Bridge server if
you want to override the defaults for the LLE min and max parameters. (See “Understanding min
and max Values” on page 2-35 for details.) Of course, Bridge-to-Bridge link-level encryption is
possible only if LLE is installed on the machines where the Bridge servers reside.

To configure LLE on Bridge links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the
application is inactive.

2-38 Using Security in ATMI Applications

2. Open UBBCONFIG with a text editor and add the following lines to the NETWORK section:

*NETWORK
LMID NADDR="bridge_network_address" BRIDGE="bridge_device"

NLSADDR="listen_network_address"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

LMID is the logical machine where the Bridge server resides; it has direct access to the
network device specified in the BRIDGE parameter.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, the Bridge server reads
the TUXCONFIG file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS. When establishing a network link with a remote Bridge server, the local and
remote Bridge servers negotiate the key size until they agree on the largest key size supported by
both.

See TM_MIB(5) and UBBCONFIG(5) in the BEA Tuxedo File Formats, Data Descriptions, MIBs,
and System Processes Reference for additional information.

How to Configure LLE on tlisten Links
tlisten(1) is a network-independent listener process that provides connections between nodes
of a multiple-machine application, on which administrative utilities such as tmboot(1) can run.
The application administrator installs tlisten on all machines defined in the NETWORK section
of the UBBCONFIG file.

To configure LLE on tlisten links, follow the steps given in the previous topic, “How to
Configure LLE on Bridge Links” on page 2-37. If you so desire, you can start a separate instance
of tlisten on the local machine by entering a command such as:

tlisten -l nlsaddr [-z min -Z max]

The nlsaddr value must be the same as that specified for the NLSADDR parameter for this
machine in the NETWORK section of the UBBCONFIG file. See tlisten(1) in the BEA Tuxedo
Command Reference, and TM_MIB(5) and UBBCONFIG(5) in the BEA Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference for additional information.

Admin is te r ing L ink-Leve l Encrypt ion

Using Security in ATMI Applications 2-39

How to Configure LLE on Domain Gateway Links
A domain gateway is a GWTDOMAIN process that relays service requests and service replies
between two or more ATMI applications. It provides interoperability through a specially
designed transaction processing (TP) protocol that flows over network transport protocols such
as TCP/IP.

A domain gateway belongs to a domain gateway group, for which a Domains configuration file
is required. A domain gateway group represents a local domain access point that communicates
with one or more remote domain access points. Like the application configuration files,
UBBCONFIG and TUXCONFIG, a Domains configuration file is created in text format and then
converted to binary format. The text and binary files are referred to as DMCONFIG and BDMCONFIG,
respectively. The DMCONFIG and BDMCONFIG files, and the environment variables associated with
them, are described on reference page DMCONFIG(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference.

As the administrator, you must place an entry in the DM_TDOMAIN section of the DMCONFIG file
for each:

Local domain access point that will accept requests for local services from remote domain
access points

Remote domain access point accessible by a defined local domain access point

TDomain session between specific local and remote access points

You need to specify the MINENCRYPTBITS and MAXENCRYPTBITS optional run-time parameters
for each domain access point and TDomain session for which you want to override the defaults
for the LLE min and max parameters. (See “Understanding min and max Values” on page 2-35
for details.) Of course, domain-to-domain link-level encryption is possible only if LLE is
installed on the machines where the domains reside.

2-40 Using Security in ATMI Applications

To configure LLE on domain gateway links, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open DMCONFIG with a text editor and add the following lines to the DM_TDOMAIN section:

*DM_TDOMAIN
Local network addresses
LDOM NWADDR="local_domain_network_address"

NWDEVICE="local_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max
.
.
.

Remote network addresses
RDOM NWADDR="remote_domain_network_address"

NWDEVICE="remote_domain_device"
MINENCRYPTBITS=min
MAXENCRYPTBITS=max
.
.
.

TDomain network addresses
RDOM NWADDR="remote_domain_network_address"

NWDEVICE="remote_domain_device"
CONNECTION_POLICY=ON_START
LACCESSPOINT="local_domain_access_point_identifier"
FAILOVERSEQ=100
MINENCRYPTBITS=min
MAXENCRYPTBITS=max

LDOM is replaced with a local domain access point identifier, and RDOM
is replaced with a remote domain access point identifier.

3. Load the configuration by running dmloadcf(1). The dmloadcf command parses
DMCONFIG and loads the binary BDMCONFIG file to the location referenced by the
BDMCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, each domain gateway
reads the BDMCONFIG file to access various parameters, including MINENCRYPTBITS and
MAXENCRYPTBITS, and propagates those parameters to its local and remote domains. When the
local domain is establishing a network link with a remote domain, the two domains negotiate the
key size until they agree on the largest key size supported by both.

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-41

See DMCONFIG(5) in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference for additional information. Also, see “Setting Up Security in a Domains
Configuration” on page 2-41“ in Using the BEA Tuxedo Domains Component.

See Also
“Link-Level Encryption” on page 1-22

“Security Administration Tasks” on page 2-3

“Security Interoperability” on page 1-49

“Security Compatibility” on page 1-54

Administering Public Key Security
The most effective way to make a distributed ATMI application secure is to combine link-level
encryption with public key encryption. Public key encryption is the framework on which public
key security is built.

Public key security allows you to incorporate message-based digital signatures and
message-based encryption into your ATMI applications. Together, these capabilities provide data
integrity and privacy, which are especially important when an ATMI application interacts with
other ATMI applications or Workstation clients from outside the company.

Recommended Practices for Public Key Security
The ATMI application’s operating environment largely determines the level of security
achieved. For maximum safety, install hardware devices that protect private key
information.

Establish policies regarding key expiration intervals and key renewal procedures.
Expiration of a Certification Authority’s certificate might have a dramatic impact on
system operation, and should be anticipated so updated user certificates can be issued in
advance.

Assigning Public-Private Key Pairs
Application administrators and developers need to choose a Certification Authority to provide
public-private key pairs and the digital certificates associated with them. Then they must decide

2-42 Using Security in ATMI Applications

how to assign the key pairs to the ATMI application. There are many options for assigning key
pairs. An administrator can assign one or more of the following:

One public-private key to an entire ATMI application

A public-private key pair to each machine in an ATMI application

A public-private key pair to each server in an ATMI application

A public-private key pair to each service in an ATMI application

A public-private key pair to each end user

Application administrators and developers are responsible for choosing a method of assigning
key pairs and assigning them. Once key pairs are assigned, however, no more administrative
work is required; the plug-ins for public key security distribute and manage the keys.

Setting Digital Signature Policy
As the administrator, you use the following configuration parameters to set the digital signature
policy for your ATMI application.

Parameter Name Description Setting

SIGNATURE_AHEAD in
UBBCONFIG
(TA_SIGNATURE_AHEAD in
TM_MIB)

Maximum permissible time
difference between (1) the
timestamp value attached to a
digitally signed message buffer and
(2) the time at which the message
buffer is received. If the signature
timestamp is too far into the future,
the receiving process rejects the
message buffer.

1-2147483647
seconds. Default is
3600 seconds (one
hour).

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-43

Setting a Postdated Limit for Signature Timestamps
SIGNATURE_AHEAD is specified at the domain-wide level of the configuration hierarchy, meaning
that the value you assign to it applies to all processes running in the ATMI application.
Domain-wide parameters are set in the RESOURCES section in the UBBCONFIG file, and the
T_DOMAIN class in the TM_MIB.

The SIGNATURE_AHEAD parameter establishes the maximum permissible time difference between
(1) the timestamp attached to the incoming message buffer and (2) the current time shown on the
verifying system’s local clock. The minimum value is 1 second; the maximum, 2147483647
seconds. The default is 3600 seconds (one hour).

If the attached timestamp shows a time too far into the future, the signature is considered invalid.
This parameter is useful for rejecting signatures that are postdated, while allowing a certain
amount of leeway for unsynchronized local clocks.

Example UBBCONFIG Entries for Postdated Limit
*RESOURCES

SIGNATURE_AHEAD 2400

SIGNATURE_BEHIND in
UBBCONFIG
(TA_SIGNATURE_BEHIND in
TM_MIB)

Maximum permissible time
difference between (1) the time at
which a digitally signed message
buffer is received and (2) the
timestamp value attached to the
message buffer. If the signature
timestamp is too far into the past,
the receiving process rejects the
message buffer.

1-2147483647
seconds. Default is
604800 seconds
(one week).

SIGNATURE_REQUIRED in
UBBCONFIG
(TA_SIGNATURE_REQUIRED
in TM_MIB)

Determines whether a receiving
process will accept only message
buffers that are digitally signed.

Y (yes—digital
signature is
required) or N (no—
digital signature is
not required).
Default is N.

Parameter Name Description Setting

2-44 Using Security in ATMI Applications

Setting a Predated Limit for Signature Timestamps
SIGNATURE_BEHIND is specified at the domain-wide level of the configuration hierarchy,
meaning that the value you assign to it applies to all processes running in the ATMI application.
Domain-wide parameters are set in the RESOURCES section in the UBBCONFIG file, and the
T_DOMAIN class in the TM_MIB.

The SIGNATURE_BEHIND parameter establishes the maximum permissible time difference
between (1) the current time shown on the verifying system’s local clock and (2) the timestamp
attached to the incoming message buffer. The minimum value is 1 second; the maximum,
2147483647 seconds. The default is 604800 seconds (one week).

If the attached timestamp shows a time too far into the past, the signature is considered invalid.
This parameter is useful for resisting replay attacks, in which a valid signed buffer is injected into
the system a second time. However, in a system with asynchronous communication—for
example, in a system in which disk-based queues are used—buffers signed a long time ago may
still be considered valid. So, in a system with asynchronous communication, you may want to
increase the SIGNATURE_BEHIND setting.

Example UBBCONFIG Entries for Predated Limit
*RESOURCES

SIGNATURE_BEHIND 300000

Enforcing the Signature Policy for Incoming Messages
SIGNATURE_REQUIRED may be specified any of the following four levels in the configuration
hierarchy:

RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB

Setting SIGNATURE_REQUIRED to Y (yes) at a particular level means that signatures are required
for all processes running at that level or below. For example, setting SIGNATURE_REQUIRED to Y
for a machine named mach1 means that all processes running on mach1 will accept only incoming
messages that are digitally signed.

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-45

Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this parameter
covers all application services advertised within the domain, including those advertised by
gateway processes. The default is N.

Set at the machine level (MACHINES section or T_MACHINE class), this parameter covers all
application services advertised on a particular machine, including those advertised by
gateway processes. The default is N.

Set at the group level (GROUPS section or T_GROUP class), this parameter covers all
application services advertised by a particular group, including those advertised by
gateway processes. The default is N.

Set at the service level (SERVICES section T_SERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default is N.

You may specify both SIGNATURE_REQUIRED=Y and ENCRYPTION_REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See “Enforcing the Encryption
Policy for Incoming Messages” on page 2-47 for a description of ENCRYPTION_REQUIRED.

Qualifier
The enforcement policy for SIGNATURE_REQUIRED applies only to application services,
application events, and application enqueue requests. It does not apply to system-generated
service invocations and system event postings.

Example
To configure SIGNATURE_REQUIRED for a machine named mach1, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the MACHINES section:

*MACHINES
mach1 LMID="machine_logical_name"

TUXCONFIG="absolute_path_name_to_tuxconfig_file"
TUXDIR="absolute_path_name_to_BEA_Tuxedo_directory"
APPDIR="absolute_path_name_to_application_directory"
SIGNATURE_REQUIRED=Y

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

2-46 Using Security in ATMI Applications

In the preceding example, when tmboot(1) starts the ATMI application, it passes the
SIGNATURE_REQUIRED=Y parameter to the machine named mach1. At that point, all application
services advertised by mach1, including those advertised by gateway processes, are allowed to
accept only messages that include valid digital signatures. If a process controlled by mach1
receives a message that does not include a valid digital signature, the system takes the following
actions:

Generates a userlog(3c) message (severity WARN)

Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be digitally signed, meaning that the system rejects any
NULL buffer received by a process requiring digital signatures, in the manner stated in
the preceding bullet list.

How the EventBroker Signature Policy Is Enforced
When digital signatures are attached to a posted message buffer, these signatures are preserved
and forwarded along with the message buffer to subscribers for the relevant event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group that requires
digital signatures, it rejects any incoming posting without a TPSIGN_OK composite signature
status—see “Understanding the Composite Signature Status” on page 3-55.

Possible subscription notification actions that the TMUSREVT server might take include invoking
a service or enqueuing a message. If the target service or queue requires a valid digital signature,
but one is not attached to the posted message, the subscription notification action fails.

System events (events that are posted by the system itself and processed by the TMSYSEVT server)
may be digitally signed. The administrative policies regarding digital signature do not apply to
the TMSYSEVT(5) server.

How the /Q Signature Policy Is Enforced
When digital signatures are attached to a queued buffer, the signatures are preserved in the queue
and forwarded to the dequeuing process. Also, if a message is processed by TMQFORWARD(5) to
invoke a service, signatures are preserved.

If the TMQUEUE(5) system server is running in a domain, machine, or server group that requires
digital signatures, it rejects any incoming enqueue request without a TPSIGN_OK composite
signature status—see “Understanding the Composite Signature Status” on page 3-55. In addition,
the TMQUEUE server requires a digital signature if such a policy is in effect for the service name
associated with the queue space.

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-47

How the Remote Client Signature Policy Is Enforced
If the workstation handler (WSH) is running in a domain, machine, or server group that requires
digital signatures, it rejects any incoming message buffer containing application data without a
TPSIGN_OK composite signature status—see “Understanding the Composite Signature Status” on
page 3-55.

Setting Encryption Policy
As the administrator, you use the following configuration parameter to set the encryption policy
for your ATMI application.

Enforcing the Encryption Policy for Incoming Messages
ENCRYPTION_REQUIRED may be specified at any of the following four levels in the configuration
hierarchy:

Parameter Name Description Setting

ENCRYPTION_REQUIRED in
UBBCONFIG
(TA_ENCRYPTION_REQUIRED
in TM_MIB)

Determines whether a receiving
process will accept only message
buffers that are encrypted.

Y (yes—encryption
is required) or N
(no—encryption is
not required).
Default is N.

2-48 Using Security in ATMI Applications

RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

SERVICES section in UBBCONFIG or T_SERVICE class in TM_MIB

Setting ENCRYPTION_REQUIRED to Y (yes) at a particular level means that encryption is required
for all processes running at that level or below. For example, setting ENCRYPTION_REQUIRED to
Y for a machine named mach1 means that all processes running on mach1 will accept only
incoming messages that are encrypted.

Set at the domain-wide level (RESOURCES section or T_DOMAIN class), this parameter
covers all application services advertised within the domain, including those advertised by
gateway processes. The default is N.

Set at the machine level (MACHINES section or T_MACHINE class), this parameter covers all
application services advertised on a particular machine, including those advertised by
gateway processes. The default is N.

Set at the group level (GROUPS section or T_GROUP class), this parameter covers all
application services advertised by a particular group, including those advertised by
gateway processes. The default is N.

Set at the service level (SERVICES section T_SERVICE class), this parameter covers all
instances of a particular service advertised within the domain, including those advertised
by gateway processes. The default is N.

You may specify both ENCRYPTION_REQUIRED=Y and SIGNATURE_REQUIRED=Y together at the
domain-wide level, machine level, group level, or service level. See “Enforcing the Signature
Policy for Incoming Messages” on page 2-44 for a description of SIGNATURE_REQUIRED.

Qualifier
The enforcement policy for ENCRYPTION_REQUIRED applies only to application services,
application events, and application enqueue requests. It does not apply to system-generated
service invocations and system event postings.

Example
To configure ENCRYPTION_REQUIRED for a server group named STDGRP, follow these steps.

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-49

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the GROUPS section:

*GROUPS
STDGRP LMID="machine_logical_name"

GRPNO="server_group_number"
ENCRYPTION_REQUIRED=Y

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

In the preceding example, when tmboot(1) starts the ATMI application, it passes the
ENCRYPTION_REQUIRED=Y parameter to the server group named STDGRP. At that point, all
application services advertised by STDGRP, including those advertised by gateway processes, are
allowed to accept only messages protected by an encryption envelope. If a process controlled by
STDGRP receives an unencrypted message, the system takes the following actions:

Generates a userlog(3c) message (severity ERROR)

Discards the buffer as if it were never received by the process

Note: A NULL (empty) buffer cannot be encrypted, meaning that the system rejects any NULL
buffer received by a process requiring encryption, in the manner stated in the preceding
bullet list.

How the EventBroker Encryption Policy Is Enforced
When a posted message buffer is encrypted, encryption envelopes are preserved and forwarded,
along with the encrypted message content, to subscribers for the relevant event.

If the TMUSREVT(5) system server is running in a domain, machine, or server group that requires
encryption, it rejects any incoming posting message that is not encrypted.

Possible subscription notification actions that the TMUSREVT server might take include invoking
a service or enqueuing a message. If the target service or queue requires encrypted input, but the
posted message is not encrypted, the subscription notification action fails. Also, if the subscriber
does not possess an appropriate decryption key, the event notification action fails.

System events (events that are posted by the system itself and processed by the TMSYSEVT server)
may be encrypted. The administrative policies regarding encryption do not apply to the
TMSYSEVT(5) server.

2-50 Using Security in ATMI Applications

How the /Q Encryption Policy Is Enforced
When a queued message buffer is encrypted, this status is preserved in the queue, and the buffer
is forwarded, in encrypted form, to the dequeuing process. Also, if a message is processed by
TMQFORWARD(5) to invoke a service, encryption status is preserved.

If the TMQUEUE(5) system server is running in a domain, machine, or server group that requires
encryption, it rejects any incoming enqueue request that is not encrypted. In addition, the
TMQUEUE server requires encryption if such a policy is in effect for the service name associated
with the queue space.

How the Remote Client Encryption Policy Is Enforced
If the workstation handler (WSH) is running in a domain, machine, or server group that requires
encryption, it rejects any incoming message buffer containing an unencrypted application data
buffer.

Initializing Decryption Keys Through the Plug-ins
As the administrator, you use the following configuration parameters to specify principal names
and decryption keys for the system processes running in your ATMI application.

This trio of configuration parameters can be specified at any of the following four levels in the
configuration hierarchy:

Parameter Name Description Setting

SEC_PRINCIPAL_NAME in
UBBCONFIG
(TA_SEC_PRINCIPAL_NAME in
TM_MIB)

The name of the target
principal, which becomes the
identity of one or more
system processes.

1-511 characters.

SEC_PRINCIPAL_LOCATION in
UBBCONFIG
(TA_SEC_PRINCIPAL_LOCATION
in TM_MIB)

The location of the file or
device where the decryption
(private) key for the target
principal resides.

1-511 characters. If
not specified,
defaults to a NULL
(zero length) string.

SEC_PRINCIPAL_PASSVAR in
UBBCONFIG
(SEC_PRINCIPAL_PASSVAR in
TM_MIB)

The variable in which the
password for the target
principal is stored.

1-511 characters. If
not specified,
defaults to a NULL
(zero length) string.

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-51

RESOURCES section in UBBCONFIG or T_DOMAIN class in TM_MIB

MACHINES section in UBBCONFIG or T_MACHINE class in TM_MIB

GROUPS section in UBBCONFIG or T_GROUP class in TM_MIB

SERVERS section in UBBCONFIG or T_SERVER class in TM_MIB

A principal name and decryption key at a particular configuration level can be overridden at a
lower level. For example, suppose you configure a principal name and decryption key for
machine mach1, and a principal name and decryption key for a server called serv1 running on
mach1. The processes on mach1 behave as follows:

All processes on mach1 except serv1 processes use the decryption key assigned to mach1
to decrypt any received message buffer that is encrypted.

All serv1 processes use the decryption key assigned to serv1 to decrypt any received
message buffer that is encrypted.

Configured decryption keys are automatically opened when an ATMI application is booted. The
following figure demonstrates how the process works.

2-52 Using Security in ATMI Applications

Figure 2-13 How a Decryption Key Is Initialized Example

*RESOURCES
SEC_PRINCIPAL_NAME “Tommy”

SEC_PRINCIPAL_PASSVAR “TOMMY_VAR”
SEC_PRINCIPAL_LOCATION “/home/...”

Public Key Initialization

PKi_init

Public Key Security Plug-in Interface

Myubbconfig

Mytuxconfig

tmloadcf -y myubbconfig
Enter password for Tommy:
password

(User Input)
(System Response)
(User Input)

Proof Material Mapping

map_proof

tpkey_open(key_handle, “Tommy”, “/home/...”,
“password”, password_len, TPKEY_DECRYPT);

Decryption Key Handle for Tommy

Re-enter password for Tommy:
password

(System Response)
(User Input)

tmboot()

BEA Tuxedo Library

 ATMI Security

Admin is te r ing Publ i c Key Secur i t y

Using Security in ATMI Applications 2-53

The following is a detailed description of how the operation shown in the preceding figure is
performed.

1. The administrator defines SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR at a particular level in the ATMI application’s UBBCONFIG file.

2. The administrator loads the configuration by running tmloadcf(1). The tmloadcf
command parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced
by the TUXCONFIG variable.

3. When prompted, the administrator enters and then re-enters the password for the target
principal.

4. The administrator enters the tmboot(1) command to boot the ATMI application.

5. During the boot process, the map_proof plug-in reads SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR, analyzes their values, and
then determines whether the calling process has proven its right to access the requested
decryption key. (Having access to a decryption key, or private key, is equivalent to
possessing the principal’s identity.)

6. If the password associated with SEC_PRINCIPAL_PASSVAR matches the assigned password
for the principal specified in SEC_PRINCIPAL_NAME, the map_proof plug-in passes the
name, location, and password of the principal to the PKi_init plug-in.

7. The PKi_init plug-in calls tpkey_open(3c) with the name, location, and password of the
principal as arguments. It returns a decryption key handle for the principal.

Each time you invoke tmloadcf to load the configuration, you are prompted to enter the
password for each of the decryption keys configured with SEC_PRINCIPAL_PASSVAR. If you
want to avoid having to enter each password manually, you can write a script that automatically
enters the passwords. The script must include a definition of each password variable, and it must
end with the following line:

tmloadcf -y ubbconfig_name < /dev/null

No application process has permission to close a decryption key opened during ATMI application
booting. The decryption keys stay open until you run the tmshutdown(1) command to shut down
the ATMI application.

Example UBBCONFIG Entries for Principal Names and Decryption Keys
*RESOURCES

SEC_PRINCIPAL_NAME "Tommy"

SEC_PRINCIPAL_LOCATION "/home/jhn/secsapp/cert/tommy.pvk"

2-54 Using Security in ATMI Applications

SEC_PRINCIPAL_PASSVAR "TOMMY_VAR"

.

.

.

*SERVERS

"TMQUEUE" SRVGRP="QUEGROUP" SRVID=1

CLOPT="-s secsdb:TMQUEUE"

SEC_PRINCIPAL_NAME= "TOUPPER"

SEC_PRINCIPAL_LOCATION="/home/jhn/secsapp/cert/TOUPPER.pvk"

SEC_PRINCIPAL_PASSVAR= "TOUPPER_VAR"

Failure Reporting and Auditing
This topic explains how the system manages errors found through digital signatures and message
encryption.

Digital Signature Error Handling
If message tampering is detected (that is, if the composite signature status is either
TPSIGN_TAMPERED_MESSAGE or TPSIGN_TAMPERED_CERT—see “Understanding the Composite
Signature Status” on page 3-55), the system takes the following actions:

Generates a userlog(3c) message (severity ERROR)

Discards the buffer as if it were never received by the process

If any individual signature associated with an expired certificate, revoked certificate, expired
signature, or postdated signature is detected, the system takes the following actions:

Generates a userlog() message (severity WARN)

Discards the buffer as if it were never received by the process unless the buffer’s
composite signature status is TPSIGN_OK or TPSIGN_UNKNOWN

If a process that requires a valid digital signature (based on the SIGNATURE_REQUIRED=Y setting)
receives a message with the composite signature status TPSIGN_UNKNOWN, the system takes the
following actions:

Generates a userlog() message (severity WARN)

Discards the buffer as if it were never received by the process

Admin is te r ing De fau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 2-55

Encryption Error Handling
If a process receives an encrypted message but does not possess an open decryption key matching
one of the message’s encryption envelopes, the system takes the following actions:

Generates a userlog(3c) message (severity ERROR)

Discards the buffer as if it were never received by the process

If a process that requires encrypted input (based on the ENCRYPTION_REQUIRED=Y setting)
receives an unencrypted message, the system takes the following actions:

Generates a userlog() message (severity ERROR)

Discards the buffer as if it were never received by the process

See Also
“Public Key Security” on page 1-27

“Public Key Implementation” on page 1-38

“Security Administration Tasks” on page 2-3

“Security Interoperability” on page 1-49

“Security Compatibility” on page 1-54

Administering Default Authentication and Authorization
Default authentication and authorization work in the same manner that authentication and
authorization have worked since they were first made available with the BEA Tuxedo system.

Default authentication provides three levels of security: no authentication (NONE), application
password (APP_PW), and user-level authentication (USER_AUTH). Default authorization provides
two levels of security: optional access control list (ACL) and mandatory access control list
(MANDATORY_ACL). Only when users are authenticated to join an ATMI application does the
access control list become active.

Designating a Security Level
As the administrator, you can use one of three ways to designate a security level for an ATMI
application: by editing the UBBCONFIG configuration file, by changing the TM_MIB, or by using
the BEA Administration Console.

2-56 Using Security in ATMI Applications

Establishing Security by Editing the Configuration File
In your UBBCONFIG file, set the SECURITY parameter to the appropriate value:

SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}

The default is NONE. If SECURITY is set to USER_AUTH, ACL, or MANDATORY_ACL, then a
system-supplied authentication server named AUTHSVR is invoked to perform per-user
authentication.

If you select any value other than NONE, make sure that the value of the APPDIR variable is unique
for each ATMI application running on the MASTER site. Multiple ATMI applications cannot share
the same application directory if security features are being used.

Establishing Security by Changing the TM_MIB
To designate a security level through the TM_MIB, you must assign a value to the TA_SECURITY
attribute in the T_DOMAIN class. When an ATMI application is inactive, the administrator can SET
the value of TA_SECURITY to any of the values that are valid in UBBCONFIG. To complete this
task, run the administrative interface tpadmcall(3c).

Establishing Security by Using the BEA Administration Console
You can also designate a security level through the BEA Administration Console. The BEA
Administration Console is a Web-based tool used to configure, monitor, and dynamically
reconfigure an ATMI application.

Configuring the Authentication Server
The BEA Tuxedo server called AUTHSVR provides a single service, AUTHSVC, which performs
authentication. AUTHSVC is advertised by the AUTHSVR server as ..AUTHSVC when the security
level is set to ACL or MANDATORY_ACL.

To add AUTHSVC to an ATMI application, you need to define AUTHSVC as the authentication
service and AUTHSVR as the authentication server in the UBBCONFIG file. For example:

*RESOURCES

SECURITY USER_AUTH

AUTHSVC AUTHSVC

.

.

.

Admin is te r ing De fau l t Authent ica t ion and Author i zat ion

Using Security in ATMI Applications 2-57

*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry AUTHSVC AUTHSVC, the system calls AUTHSVC by default.

As another example:

*RESOURCES

SECURITY ACL

AUTHSVC ..AUTHSVC

.

.

.

*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry AUTHSVC ..AUTHSVC, the system calls ..AUTHSVC by
default.

AUTHSVR may be replaced with an authentication server that implements logic specific to the
ATMI application. For example, a company may want to develop a custom authentication server
so that it can use the popular Kerberos mechanism for authentication.

To add a custom authentication service to an ATMI application, you need to define your
authentication service and server in the UBBCONFIG file. For example:

*RESOURCES

SECURITY USER_AUTH

AUTHSVC KERBEROS

.

.

.

*SERVERS

KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2

CLOPT="-A"

Note: To use the WebLogic Server as your security database to authenticate Tuxedo users, you
must implement single point security administration using LAUTHSVR as your
authentication server. For information about LAUTHSVR and single point security
administration with WebLogic Server, refer to “Implementing Single Point Security
Administration” on page 4-1.

2-58 Using Security in ATMI Applications

See Also
“How to Enable Application Password Security” on page 2-58

“How to Enable User-Level Authentication Security” on page 2-59

“Enabling Access Control Security” on page 2-63

“Default Authentication and Authorization” on page 1-40

“Security Administration Tasks” on page 2-3

“Implementing Single Point Security Administration” on page 4-1

AUTHSVR(5) in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

How to Enable Application Password Security
Default authentication offers an application password security level that you invoke by
specifying SECURITY APP_PW in your configuration file. This level requires that every client
provide an application password as part of the process of joining the ATMI application. The
administrator defines a single password for the entire ATMI application and gives the password
only to authorized users.

To enable the APP_PW security level, follow these steps.

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. Set the SECURITY parameter in the RESOURCES section of the UBBCONFIG file to APP_PW.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

How to Enab le User-Leve l Au thent i cat ion Secur i t y

Using Security in ATMI Applications 2-59

See Also
“Default Authentication and Authorization” on page 1-40

“Administering Default Authentication and Authorization” on page 2-55

“Security Administration Tasks” on page 2-3

How to Enable User-Level Authentication Security
Default authentication offers a user-level authentication security level that you invoke by
specifying SECURITY USER_AUTH in your configuration file. This security level requires that in
addition to the application password, each client must provide a valid username and user-specific
data, such as a password, to join the ATMI application. The per-user password must match the
password associated with the combination user-client name stored in a file named tpusr. The
checking of per-user password against the password and user-client name in tpusr is carried out
by the authentication service AUTHSVC, which is provided by the authentication server AUTHSVR.

To enable the USER_AUTH security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the user and group files.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

2-60 Using Security in ATMI Applications

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked
by "-A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses
the client user information in a file named tpusr to authenticate clients that want to join
the ATMI application. tpusr resides in the directory referenced by the first pathname
defined in the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

Setting Up the User and Group Files
AUTHSVR and the access control checking feature available with the default authorization system
require a user file named tpusr, which contains a list of client users allowed to join the ATMI
application. tpusr is maintained by the application administrator using the tpusradd(1),
tpusrdel(1), and tpusrmod(1) commands. The AUTHSVR server takes as input the client user
information stored in the tpusr file; it uses this information to authenticate clients that want to
join the ATMI application.

The following display is a sample entry in the tpusr file.

AUTHSVR and the access control checking feature also require a group file named tpgrp, which
contains a list of groups associated with the client users allowed to join the ATMI application;
tpgrp is maintained by the application administrator using the tpgrpadd(1), tpgrpdel(1),
and tpgrpmod(1) commands.

AUTHSVC assigns an authenticated client user an application key, which contains a user identifier
and associated group identifier for the USER_AUTH, ACL, or MANDATORY_ACL security level. (See
“Application Key” on page 1-45 for more information about application keys.)

The following display is a sample entry in the tpgrp file.

user name password user identifier client namegroup identifier

smith: 86V7BzAdwrNVs: 9: 156: TPCLTNM,*::

How to Enab le User-Leve l Au thent i cat ion Secur i t y

Using Security in ATMI Applications 2-61

As the administrator, you must define lists of users and groups in the tpusr and tpgrp files, both
of which are located in the directory referenced by the first path name defined in the ATMI
application’s APPDIR variable. The files are colon-delimited, flat text files, readable and writable
only by the application’s administrator.

Converting System Security Data Files to BEA Tuxedo User and Group Files
You may already have files containing lists of users and groups on your host system. You can use
them as the user and group files for your ATMI application, but only after converting them to the
format required by the BEA Tuxedo system. To convert your files, run the tpaclcvt(1)
command, as shown in the following sample procedure. The sample procedure is written for a
UNIX host machine.

1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI
application is inactive.

2. To convert the /etc/password file into the format needed by the BEA Tuxedo system,
enter the following command.

tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted data in it. If the tpusr file
already exists, tpaclcvt adds the converted data to the file, but it does not add duplicate
user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to enter a
password for each user in the file.

3. To convert the /etc/group file into the format needed by the BEA Tuxedo system, enter
the following command.

tpaclcvt -g /etc/group

This command creates the tpgrp file and stores the converted data in it. If the tpgrp file
already exists, tpaclcvt adds the converted data to the file, but it does not add duplicate
group information to the file.

Adding, Modifying, or Deleting Users and Groups
The BEA Tuxedo system requires that you maintain a list of your application users in a file named
tpusr, and a list of groups, in a file named tpgrp. There are two methods of modifying the

group identifiergroup name

Administrators:: 156:

2-62 Using Security in ATMI Applications

entries in these files: by issuing commands or by changing the values of the appropriate attributes
in the ACL_MIB.

Changing Entries for Users and Groups Through Commands
You can add, modify, or delete entries in the tpusr and tpgrp files at any time by running one
of the following commands.

To run any of these commands, follow these steps.

1. For an inactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command in BEA
Tuxedo Command Reference.

Changing Entries for Users and Groups Through the ACL_MIB
If you prefer not to use the command-line interface, you can add, modify, or delete user entries
in tpusr by changing the appropriate attribute values in the T_ACLPRINCIPAL class in the
ACL_MIB(5). This method is more efficient than the command-line interface if you want to add
several user entries simultaneously, since tpusradd(1) allows you to add only one user at a time.

Similarly, you can add, modify, or delete group entries in tpgrp by changing the appropriate
attribute values in the T_ACLGROUP class in the ACL_MIB(5). This method is more efficient than
the command-line interface if you want to add several group entries simultaneously, since
tpgrpadd(1) allows you to add only one group at a time.

Run . . . To . . . An Entry in This File

tpusradd(1) Add tpusr

tpusrmod(1) Modify

tpusrdel(1) Delete

tpgrpadd(1) Add tpgrp

tpgrpmod(1) Modify

tpgrpdel(1) Delete

Enabl ing Access Cont ro l Secur i t y

Using Security in ATMI Applications 2-63

Of course, the easiest way to access the MIB is via the BEA Administration Console.

See Also
“Default Authentication and Authorization” on page 1-40

“Administering Default Authentication and Authorization” on page 2-55

“Security Administration Tasks” on page 2-3

Enabling Access Control Security
Default authorization consists of an access control checking feature that determines which users
can execute a service, post an event, or enqueue (or dequeue) a message on an application queue.
There are two levels of access control security: optional access control list (ACL) and mandatory
access control list (MANDATORY_ACL). Only when users are authenticated to join an ATMI
application does the access control list become active.

By using an access control list, an administrator can organize users into groups and associate the
groups with objects that the member users have permission to access. Access control is done at
the group level for the following reasons:

System administration is simplified. It is easier to give a group of people access to a new
service than it is to give individual users access to the service.

Performance is improved. Because access permission needs to be checked for each
invocation of an entity, permission should be resolved quickly. Because there are fewer
groups than users, it is quicker to search through a list of privileged groups than it is to
search through a list of privileged users.

The access control checking feature is based on three files that are created and maintained by the
application administrator:

tpusr contains a list of users

tpgrp contains a list of groups

tpacl contains a list of mappings of groups to application entities (such as services)
known as the access control list (ACL)

By parsing the client’s application key, which contains information identifying the client as a
valid user and valid group member, an entity (such as a service, event, or application queue) can
identify the group to which the user belongs; by checking the tpacl file, an entity can determine
whether the client’s group has access permission.

2-64 Using Security in ATMI Applications

The application administrator, application operator, and processes or service requests running
with the privileges of the application administrator/operator are not subject to ACL permission
checking.

If user-level ACL entries are needed, they may be implemented by creating a group for each user,
and then mapping the group to the appropriate application entities in the tpacl file.

How to Enable Optional ACL Security
Default authentication offers an optional ACL (ACL) security level that you invoke by specifying
SECURITY ACL in your configuration file. This security level requires that each client provide an
application password, a username, and user-specific data, such as a password, to join the ATMI
application. If there is no entry in the tpacl file associated with the target application entity, the
user is permitted to access the entity.

This security level enables an administrator to configure access for only those resources that need
more security. That is, there is no need to add entries to the tpacl file for services, events, or
application queues that are open to everyone. Of course, if there is an entry in the tpacl file
associated with the target application entity and a user attempts to access that entity, the user must
be a member of a group that is allowed to access that entity; otherwise, permission is denied.

To enable the ACL security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY ACL
AUTHSVC ..AUTHSVC

.

.

.

Enabl ing Access Cont ro l Secur i t y

Using Security in ATMI Applications 2-65

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked
by "-A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses
the client user information in a file named tpusr to authenticate clients that want to join
the ATMI application. tpusr resides in the directory referenced by the first pathname
defined in the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

Setting Up the ACL File
The access control checking feature requires a user file named tpusr, a group file named tpgrp,
and an ACL file named tpacl. The ACL file contains mappings of groups to application entities.
An entity may be a service, event, or application queue.

The following display is a sample entry in the tpacl file.

As the administrator, you must define the entries in the tpacl file, which is located in the
directory referenced by the first pathname defined in the ATMI application’s APPDIR variable.
The file is a colon-delimited, flat text file, readable and writable only by the application’s
administrator.

There are two methods of modifying the ACL entries in the tpacl file: by issuing commands or
by changing the values of the appropriate attributes in the ACL_MIB.

entity name entity type group identifiers

TOLOWER: SERVICE: 156,281,282,305:

2-66 Using Security in ATMI Applications

Changing ACL Entries Through Commands
You can add, modify, or delete ACL entries in the tpacl file at any time by running one of the
following commands.

To run any of these commands, follow these steps.

1. For an inactive ATMI application, make sure you are working from the application MASTER
machine. For an active ATMI application, you may work from any machine in the
configuration.

2. For specific instructions on running a command, see the entry for that command in BEA
Tuxedo Command Reference.

Changing ACL Entries Through the ACL_MIB
If you prefer not to use the command-line interface, you can add, modify, or delete ACL entries
in tpacl by changing the appropriate attribute values in the T_ACLPERM class in the ACL_MIB(5).
This method is more efficient than the command-line interface if you want to add several ACL
entries simultaneously, since tpacladd(1) allows you to add only one ACL entry at a time.

Of course, the easiest way to access the MIB is via the BEA Administration Console.

How to Enable Mandatory ACL Security
Default authentication offers a mandatory ACL security level that you invoke by specifying
SECURITY MANDATORY_ACL in your configuration file. This security level requires that each
client provide an application password, a username, and user-specific data, such as a password,
to join the ATMI application. If there is no entry in the tpacl file associated with the target
application entity, the client is not permitted to access the entity. In other words, an entry must
exist in the tpacl file for every application entity that a client needs to access. For this reason,
this level is called mandatory.

Run . . . To . . .

tpacladd(1) Add an entry

tpaclmod(1) Modify an entry

tpacldel(1) Delete an entry

Enabl ing Access Cont ro l Secur i t y

Using Security in ATMI Applications 2-67

Of course, if there is an entry in the tpacl file associated with the target application entity and a
user attempts to access that entity, the user must be a member of a group that is allowed to access
that entity; otherwise, permission is denied.

To enable the MANDATORY_ACL security level, follow these steps.

1. Set up the UBBCONFIG file.

2. Set up the ACL file.

Instructions for these steps are provided in the following two topics.

Setting Up the UBBCONFIG File
1. Ensure that you are working on the ATMI application MASTER machine and that the ATMI

application is inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY MANDATORY_ACL
AUTHSVC ..AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes tmboot(1) to pass only the default command-line options (invoked
by "-A") to AUTHSVR when tmboot starts the ATMI application. By default, AUTHSVR uses
the client user information in a file named tpusr to authenticate clients that want to join
the ATMI application. tpusr resides in the directory referenced by the first pathname
defined in the ATMI application’s APPDIR variable.

3. Load the configuration by running tmloadcf(1). The tmloadcf command parses
UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the ATMI application and remains in effect
until you change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the ATMI application through an
offline means such as telephone or letter.

2-68 Using Security in ATMI Applications

Setting Up the ACL File
See “Setting Up the ACL File” on page 2-65.

See Also
“Default Authentication and Authorization” on page 1-40

“Administering Default Authentication and Authorization” on page 2-55

“Security Administration Tasks” on page 2-3

Using the Kerberos Authentication Plug-in
Kerberos is a network authentication protocol. It is designed to provide strong authentication for
client/server applications by using secret-key cryptography. The Kerberos authentication
protocol provides a mechanism for mutual authentication between a client and a server, or
between one server and another, before opening a network connection between them. The
protocol assumes that initial transactions between clients and servers take place on an open
network where most computers are not physically secure. It also assumes that packets traveling
along the network can be monitored and modified at will.

After using Kerberos to prove the identity of a client and server, their communications can be
encrypted to ensure privacy and data integrity. Refer to the See Also section for more information
about Kerberos.

The following sections describe the Kerberos authentication plug-in feature included in Tuxedo:

Kerberos Plug-In

Kerberos Plug-In Pre-configuration

Kerberos Plug-In Configuration

Kerberos Plug-In
Tuxedo provides a general security framework that can be customized. This framework is further
enhanced with the inclusion of a Kerberos plug-in.

Kerberos Supported Platforms
Currently the Kerberos plug-in supports the following platforms:

Kerberos P lug- In Pre-conf igurat ion

Using Security in ATMI Applications 2-69

Microsoft Kerberos bundled with Windows 2000/2003 server

Kerberos V systems on HP-UX(PA-RISC) provided by HP

Kerberos V systems on Solaris 9 (SPARC) provided by Sun Microsystems

Kerberos Plug-in Features
The Kerberos Plug-in is a dynamic library that must be registered into the Tuxedo system, and a
Kerberos authentication server (KAUTHSVR(5)). The Tuxedo implementation of the Kerberos
plug-in supports the following:

Authentication between Tuxedo native client and server

Full support of Tuxedo ACL security mechanism

Note: Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are not supported.

Kerberos Plug-In Pre-configuration
To use Kerberos authentication, you must make sure the following system requirements are set
up properly:

Supported systems run well with the correct Kerberos settings

User/service accounts are set correctly

The Kerberos authentication server key table is created correctly on UNIX

Kerberos interoperability between UNIX and Windows is set correctly and verified if a
heterogeneous (UNIX/Windows mixed) environment is needed.

Kerberos Plug-In Configuration
This section provides configuration information to get the Kerberos plug-in set up and running.

1. Configure the Kerberos Plug-in

2. Configure KAUTHSVR

3. Configure Tuxedo Native Client

Each of these steps are explained in more detail in the subsections that follow.

2-70 Using Security in ATMI Applications

Configure the Kerberos Plug-in
You must first register the Kerberos plug-in on UNIX and Windows platforms.

The Kerberos plug-in must be configured using the EPIF commands epifreg and epifregedt.
These commands will automatically add the plug-in to the Tuxedo registry in UNIX and
Windows. For example:

Listing 2-1 UNIX Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0 \

-f $TUXDIR/lib/libkrb5atn.so \

-e krb5_plugin_entry \

-u KRB5_CONFIG=/etc/krb5.conf \

-u KRB5_KDC=/etc/krb5.kdc\

-u KAUTHSVRPRINC="krbauth@host.yourcomany.com"

epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \

-a Selector=native/security/authentication \

-a native/security/authentication=krb5/atn

Listing 2-2 Windows Registration

epifreg -r -p krb5/atn -i engine/security/authentication -o SYSTEM -v 1.0 \

-f %TUXDIR%\bin\libkrb5atn.dll \

-e krb5_plugin_entry \

-u KAUTHSVRPRINC="krbauth/host.yourcomany.com@REALM"

epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \

-a Selector=native/security/authentication \

-a native/security/authentication=krb5/atn

Notes: On a Windows platform, the plug-in KRB5_CONFIG and KRB5_KDC parameters are not
required. These parameters are used on a UNIX platform to locate the Kerberos-related

Kerbe ros P lug- In Conf igurat ion

Using Security in ATMI Applications 2-71

configuration files. KAUTHSVRPRINC specifies the principal name for the KAUTHSVR
server and Tuxedo clients use it as the server principal name.

On UNIX platforms, the GSS format is used. Because Microsoft does not support
standard GSS name representation, the KAUTHSVRPRINC parameter must be given a
complete Kerberos realm name.

The name format is illustrated as follows:

A UNIX Tuxedo client must use GSS format to access KAUTHSVR.

A WindowsTuxedo client always uses the complete Kerberos realm name to
access KAUTHSVR.

KAUTHSVRPRINC can also be set as an environment variable.

Restore Default Plug-in
The following commands restore the plug-in to its default state.

Listing 2-3 Restore Default Plug-In Settings

epifreg -r -p bea/native/atn \

-i engine/security/authentication \

-v 1.0 -f libtux.so -e _ep_dl_atnlcl

epifregedt -s -k SYSTEM/interfaces/engine/security/authentication \

-a Selector=native/security/authentication \

-a native/security/authentication=bea/native/atn

Note: In Listing 2-3, libtux.so is used as an example. You must use the file name libtux
plus your platform specific dynamic library extension.

Configure KAUTHSVR
KAUTHSVR is a Tuxedo server located in TUXDIR/bin directory and must be manually configured
in the UBBCONFIG file. KAUTHSVR authenticates client identity by validating the client security
token. It addresses the Tuxedo ACL mechanism when the security level is set above
"USER_AUTH" in the UBBCONFIG file.

2-72 Using Security in ATMI Applications

The following are examples of how KAUTHSVR is configured in the UBBCONFIG file for both UNIX
and Windows:

Listing 2-4 UNIX UBBCONFIG KAUTHSVR Configuration

*RESOURCES

IPCKEY 66666

MASTER SITE1

MODEL MP

SECURITY MANDATORY_ACL

*SERVERS

KAUTHSVR SRVGRP=SECGRP SRVID=100 GRACE=0 MAXGEN=2 CLOPT="-A -- -k

/etc/krbauth.kt -p krbauth@host.yourcomany.com"

Notes: The -k option allows you to provide the KAUTHSVR Kerberos key table file location.

The -p option indicates KAUTHSVR principal name.

KAUTHSVR running on UNIX platforms must use the GSS format.

Listing 2-5 Windows UBBCONFIG KAUTHSVR Configuration

*RESOURCES

IPCKEY 66666

MASTER SITE1

MODEL MP

SECURITY MANDATORY_ACL

*SERVERS

KAUTHSVR SRVGRP=GROUP3 SRVID=100 GRACE=0 MAXGEN=2

Kerbe ros P lug- In Conf igurat ion

Using Security in ATMI Applications 2-73

SEC_PRINCIPAL_NAME="kauthsvc" SEC_PRINCIPAL_PASSVAR=test CLOPT="-A -- -p

krbauth/host.yourcomany.com@REALM"

Notes: The -p option indicates KAUTHSVR principal name.

Instead of using the -k option, Windows platforms must use the following two
arguments:

SEC_PRINCIPAL_NAME represents KAUTHSVR, it does not represent the server
principal name (which is represented by the -p option).

SEC_PRINCIPAL_PASSVAR is the internal password variable. It is not the true
password that is required when tmloadcf creates the TUXCONFIG file. The
tmloadcf password input must be same as the KAUTHSVR account password in a
Windows domain.

KAUTHSVR running on Windows platform must use the complete Kerberos realm name.

Configure Tuxedo Native Client
To use the Tuxedo native client with Kerberos enabled, you must first obtain a valid TGT from
the KDC using kinit or other similar commands.

No programming APIs are required. Also, if USER_AUTH is specified, the Tuxedo user name is
not required in the tpusr file. However, a user name is required for ACL and MANDATORY_ACL
security level.

Limitations
Kerberos Plug-In only works on systems where the plug-in is installed and registered to
Tuxedo through epif* commands. If the Tuxedo administrator does not register the
libkrb5atn to Tuxedo, the default plug-in still works and the default Tuxedo security
mechanism takes effect. KAUTHSVR supports full function of AUTHSVR in addition to
Kerberos authentication.

Even if the Kerberos plug-in is configured on a system running WSH, the workstation
clients connected to this system use the Tuxedo default security mechanism. This is
because the protocol between workstation client and WSH is not affected using this
feature.

2-74 Using Security in ATMI Applications

Although CORBA native clients can take advantage of Kerberos support, we do not
support CORBA remote clients using Kerberos. ISH will report an error when the
Kerberos plug-in is installed.

Note: Authentication between the security protocols of Tuxedo workstation client and
workstation handler, authentication between two domain gateways and CORBA
components are not supported.

See Also
KAUTHSVR(5)

Kerberos Introduction from MIT (tap://web.mit.edu/kerberos/wow/)

Microsoft White Papers and Guide for Kerberos
(tap://www.microsoft.com/windows2000/technologies/security/kerberos/default.asp)

RFC 1510, Kerberos protocol (tap://www.ietf.org/raft/rfc1510.txt)

RFC 2743, GSSAPI (tap://www.ietf.org/raft/rfc2743.txt)

RFC 1509, GSSAPI, c-bindings.(http://www.ietf.org/raft/rfc1509.txt)

Using the Cert-C PKI Encryption Plug-in
The Cert-C based PKI (public key infrastructure) plug-in utilizes the public key encryption
algorithm to provide you with the ability to:

sign - assign a signature to a Tuxedo typed buffer

seal - encrypt a Tuxedo typed buffer, and

envelope - provide access to the user signature and encryption information associated with
the Tuxedo typed buffer

The following sections describe the Cert-C PKI encryption feature included in Tuxedo:

Cert-C PKI Encryption Plug-In

Cert-C PKI Encryption Plug-In Pre-configuration

Cert-C PKI Encryption Plug-In Configuration

http://web.mit.edu/kerberos/www/

Cer t -C PK I Enc rypt ion P lug- In

Using Security in ATMI Applications 2-75

Cert-C PKI Encryption Plug-In
The Tuxedo Cert-C PKI encryption plug-in plug-in uses LDAP version 2 or higher as the storage
mechanism for the publicly accessible user certificates. LDAP is a commonly used and deployed
network directory service.

Cert-C PKI Encryption Plug-In Pre-configuration
To use the Tuxedo Cert-C PKI encryption plug-in, you must make sure of the following system
requirements:

Access to a configured LDAP server

User certificates stored in the LDAP are entered in the following format: cn=user name

Cert-C PKI Encryption Plug-In Configuration
To use this plug-in, you must run a command script to configure Tuxedo in order to use this
plug-in as the default PKI plug-in.

The Tuxedo Cert-C plug-in utilizes four interface groups in the Tuxedo Security PIF and is
configured using PIF registry commands. The required interface groups are:

Configure Certificate Lookup

Configure Key Management

Configure Certificate Parsing

Configure Certificate Validation

In the Tuxedo environment, only user names are available in the plug-in at runtime. In order to
get the proper search information, it assumes that a certificate stored in the LDAP with a cn=user
name entry is a Tuxedo user name.

Configure Certificate Lookup
This interface group expects a user certificate to be located on an LDAP server and it has access
permission to read these certificates. The certificate lookup interface has four parameters that
must be configured. The parameters are described as follows:

2-76 Using Security in ATMI Applications

ldapUserCertificate
LDAP server configuration parameter that identifies where the plug-in can obtain user
certificates. The network address for the LDAP host is specified in this parameter as a string
variable. It also contains the TCP LDAP port number. The syntax of this parameter is LDAP:URL.
For example:
ldapUserCertificate=ldap://sagamore:389

This example tells the Cert-C plug-in that the LDAP server is located on a machine called
“sagamore”, and it is listening on port 389.

ldapBaseObject
LDAP server configuration parameter that identifies the base DN where the LDAP search should
start. For example:
ldapBaseObject="ou=Engineer Test,o=ABC Company,c=US"

This example initiates a search from the directory information tree "ou=Engineer Test, o=ABC
Company, c=US"

ldapFilterAttribute
LDAP server configuration parameter that identifies the search filter used in an LDAP search
when retrieving a certificate by subject name. This parameter is a string variable and follows the
same syntax as ldapBaseDNAttribute. For example:
ldapFilterAttribute="cn"

This example tells the Cert-C plug-in to use "cn" as a filter.

ldapBaseDNAttribute
LDAP server configuration parameter that is used in an LDAP search to build the base DN. This
parameter is a string variable consisting of a comma-separated list of DN attributes, such as c, o.
An optional blank space can follow the commas. For example:

ldapBaseDNAttribute="c, o, ou, cn"

This example tells the Cert-C plug-in to use the "c", "o", "ou", "cn" attributes when
constructing the DN for a search.

Cer t-C PK I Encr ypt ion P lug- In Conf igurat ion

Using Security in ATMI Applications 2-77

Configure Key Management
The location of the private key is the only configuration parameter that must be specified for key
management interface.

decPassword
Optional parameter. It is a string variable that gives the Cert-C PKI encryption plug-in the
password to decrypt the private key wrapped in encrypted private key information format. For
example:
decPassword="abc123"

The plug-in assumes the private key information file follows the "<subject_name>.epk"
naming scheme.

Note: decPassword and privateKeyDir can be overridden by using the tpkey_open(3c)
identity_proof and location parameters.

privateKeyDir
A string variable parameter in file URL format. It indicates the default location of the private key.
For example:
privateKeyDir=file:///c:\home\certs\

This example tells the Cert-C PKI encryption plug-in to look for a private key in the
c:\home\certs directory. The private key can be a binary file that conforms with PKCS #8. It
must have a .pvt or .epk extension.

If the password is given in the "decPassword" path or tpkey_open(..., identity_proof,
...), then the .epk file will be searched first, if not found then it will try .pvt file. If the
password is not given in the "decPassword" path or tpkey_open(..., identity_proof,
...), then only .pvt file is searched.

Configure Certificate Parsing
No special configuration parameter is needed to utilize the certificate parsing interface. It is
initialized automatically.

Note: Certificates must be X.509-compatible in DER format.

2-78 Using Security in ATMI Applications

Configure Certificate Validation
This interface group allows the Cert-C PKI encryption plug-in to examine a certificate and to
determine its validity based on trusted certificate authorities, chains of trust, certificate revocation
list. There are two configuration parameters associated wither certificate validation:

caCertificateFile
A string variable configuration parameter in file URL format. It points to a single certificate whose
public key is trusted by the user. The certificate can be self-signed. If the certificate chain
validates this trusted certificate the certificate is deemed a “good” certificate.For example:

Note: There is only one certificate validation chain level. That is, all user certificates are issued
directly by the root CA configured in caCertificateFile.

caCertificateFile=file:///c:\home\certs\root.cer

This example indicates that the trusted root certificate is located at directory called
c:\home\certs and is named root.cer.

crlFile
A string variable configuration parameter in file URL format. It points to a single CRL that is to be
used to verify the resulting certificate path; in another word, it determines whether the certificate
in question is being revoked by its issuer or not. For example:
crlFile=file:///c:\home\certs\revoke.crl

This example indicates which CRL is used to determine if the certificate has not been revoked by
its issuer.

Sample Registry Command File
The following is a sample command for modifying the Tuxedo registry database on a Windows
platform using the Cert-C PKI encryption plug-in.

Note: On a UNIX platform, you must:

use the file name libcertctux plus your platform specific dynamic library
extension instead of certctux.dll used in Windows. For example:

Solaris: libcertctux.so.71
HP-UX: libcertctux.sl

change the file URL to UNIX format

Cer t-C PK I Encr ypt ion P lug- In Conf igurat ion

Using Security in ATMI Applications 2-79

Listing 2-6 Sample Command for Modifying Tuxedo Registry Database on Windows

REM **
REM ** Modify Validation Interface **
REM **
epifreg -r -p bea/cert-c/certificate_validation -i
engine/security/certificate_validation -v 1.0 -f certctux.dll -e
_ep_dl_certc_validate_certificate -u
caCertificateFile=file:///c:\home\certs\root.cer -u
crlFile=file:///c:\home\certs\revoke.crl

epifreg -s -k SYSTEM/impl/bea/valfile -a
InterceptionSeq=bea/cert-c/certification_validation

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_validation
-a DefaultImpl=bea/valfile

REM **
REM ** Modify Lookup Interface **
REM **

epifreg -r -p bea/cert-c/certificate_lookup -i
engine/security/certificate_lookup -v 1.0 -f certctux.dll -e
_ep_dl_certc_certificate_lookup -u ldapUserCertificate=ldap://sagamore:389
-u ldapBaseObject="ou=Engineer Test,o=ABC Company,c=US" -u
ldapFilterAttribute="cn" -u ldapBaseDNAttribue="c,o,ou,cn"

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_lookup -a
DefaultImpl=bea/cert-c/certificate_lookup

REM **
REM ** Modify Key Management Interface **
REM **

epifreg -r -p bea/cert-c/key_management -i engine/security/key_management
-v 1.0 -f certctux.dll -e _ep_dl_certc_key_management -u
privateKeyDir=file:///c:\home\certs\

epifregedt -s -k SYSTEM/interfaces/engine/security/key_management -a
DefaultImpl=bea/cert-c/key_management

REM **
REM ** Modify Certificate Parsing Interfaces **
REM **

2-80 Using Security in ATMI Applications

epifreg -r -p bea/cert-c/certificate_parsing -i
engine/security/certificate_parsing -v 1.0 -f certctux.dll -e
_ep_dl_certc_certificate_parsing

epifregedt -s -k SYSTEM/interfaces/engine/security/certificate_parsing -a
DefaultImpl=bea/cert-c/certificate_parsing

Limitations
The "cn" attribute of distinguished name is used as key for certificate lookup, so the DN
must contains the "cn=" attribute.

There are two possible places to put a name in an X.509 v3 KC:

– One is the subject field in the base PKC, often called the Distinguished Name or DN
field.

– The other is the subjectAltName extension. This plug-in does not support
subjectAltName extension.

Note: Wildcards used in a name are not supported. Empty subject fields are not allowed.

The following tpkey_getinfo() attributes cannot retrieve ENCRYPT_ALG,
ENCRYPT_BITS, SIGNATURE_ALG, or SIGNATURE_BITS information using the Cert-C PKI
encryption plug-in:

– TPKEY_SIGNATURE: cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS

– TPKEY_ENCRYPT: cannot retrieve SIGNATURE_BITS

– TPKEY_AUTOSIGN: cannot retrieve ENCRYPT_ALG, ENCRYPT_BITS

– TPKEY_AUTOENCRYPT: cannot retrieve SIGNATURE_BITS

Note: TPKEY_DECRYPT: can retrieve ENCRYPT_ALG, ENCRYPT_BITS, SIGNATURE_ALG, or
SIGNATURE_BITS information

TPKEY_AUTOSIGN|TPKEY_DECRYPT: can retrieve ENCRYPT_ALG, ENCRYPT_BITS,
SIGNATURE_ALG, or SIGNATURE_BITS information

See Also
tpkey_open(3c)

Using Security in ATMI Applications 3-1

C H A P T E R 3

Programming Security

The following sections describe how to build security for your BEA Tuxedo ATMI application
into your code.

What Programming Security Means

Programming an ATMI Application with Security

Writing Security Code So Client Programs Can Join the ATMI Application

Writing Security Code to Protect Data Integrity and Privacy

What Programming Security Means
Programming security is the task of writing security code for Application-to-Transaction Monitor
Interface (ATMI) applications. In addition to the code that expresses the logic of the program,
application programmers use ATMI to link their application code with the BEA Tuxedo
transaction monitor. The ATMI programming interfaces enable communication among
application clients and servers running under the control of the BEA Tuxedo transaction monitor.
C and COBOL implementations of the ATMI are available.

As shown in the following figure, application programmers have access to the ATMI functions
for authenticating users and controlling user access, and for incorporating public key encryption
techniques into their applications. Also shown is the absence, at the application level, of ATMI
functions for auditing or link-level encryption. Auditing is accessed at the BEA Tuxedo system
level, and link-level encryption is configured by the application administrator.

3-2 Using Security in ATMI Applications

Figure 3-1 Programming BEA Tuxedo Security

See Also
“Programming an ATMI Application with Security” on page 3-3

“What Security Means” on page 1-1

“What Administering Security Means” on page 2-2

ATMI Applications

BEA Tuxedo Library

ATMI Security

Plug-in Interface

Security Plug-ins

Link-Level
Encryption

Custom

Default
Authentication

Custom

Default
Authorization

Custom

Default
Auditing

Custom

Default
Public Key Security

ATMI for Public Key
Security

Authentication Authorization
Public Key
Security

ATMI for Clients to
Join Application

Programming an ATMI App l i cat i on wi th Secur i t y

Using Security in ATMI Applications 3-3

Programming an ATMI Application with Security
The BEA Tuxedo system offers various ATMI functions for different security needs.

See Also
“Setting Up the Programming Environment” on page 3-3

Setting Up the Programming Environment
To be able to write security code, an application programmer needs:

Access to BEA Tuxedo libraries and commands

Read and execute permissions on the directories and files in the BEA Tuxedo system
directory structure

To obtain access to the required libraries and commands, you must set the TUXCONFIG, TUXDIR,
APPDIR, and other environment variables in your environment. For details, see “How to Set Your
Environment” on page 1-2 in Administering a BEA Tuxedo Application at Run Time.

The application administrator is responsible for setting the permissions on directories and files.
See your administrator to get the permissions you need.

See Also
“Writing Security Code So Client Programs Can Join the ATMI Application” on page 3-4

“Writing Security Code to Protect Data Integrity and Privacy” on page 3-14

If You Are Writing Security Code for . . . Then You Use the ATMI Functions Available
for . . .

Client programs so that clients can join a
ATMI application and access application
services.

Clients joining an ATMI application, which
in turn invoke system-level calls to the
authentication and authorization plug-ins.

Both client and server programs to protect the
integrity and privacy of the data they
exchange.

Public key security, which supports
end-to-end digital signing and data
encryption.

3-4 Using Security in ATMI Applications

Writing Security Code So Client Programs Can Join the ATMI
Application

Client programs are responsible for gathering data from outside the application or computer,
bundling the data into messages, and forwarding the messages to servers for processing. Client
programs are made available to users through devices such as automatic teller machines (ATMs),
data entry terminals, and graphics devices.

For default authentication and authorization, application security may be set to one of five levels.
At the lowest level, no authentication is performed. At the highest level, an access control
checking feature determines which users can execute a service, post an event, or enqueue (or
dequeue) a message on an application queue. Setting the security level for an ATMI application
is the responsibility of the application administrator.

An application programmer needs to perform two tasks so that a client program can join an ATMI
application:

Get the security data for the specific client process

Pass that data to the BEA Tuxedo system

The following pseudo-code summarizes the operation of a basic client program. The
security-related statements are highlighted in bold.

Listing 3-1 Pseudo-code for a Client

main()

{

call tpchkauth() to check security level of ATMI application

get usrname, cltname

prompt for application password

prompt for per-user password

allocate a TPINIT buffer

place initial client identification into TPINIT buffer

call tpinit() to enroll as a client of the ATMI application

allocate buffer

do while true {

place user input in buffer

send service request

receive reply

Get t ing Secur i t y Data

Using Security in ATMI Applications 3-5

pass reply to user }

leave application

}

Most of the statements in the preceding listing are implemented by ATMI functions in either C
or COBOL. The preceding listing shows only the C language implementation.

A client program written in C uses tpinit(3c) to comply with the level of security set for the
ATMI application and to join the application. The argument to tpinit() is a pointer to a TPINIT
buffer. To perform the same tasks in a COBOL application, a client program calls
TPINITIALIZE(3cbl), specifying a pointer to a TPINFDEF-REC record as an argument.

See Also
“Getting Security Data” on page 3-5

“Joining the ATMI Application” on page 3-7

“Writing Clients” on page 4-1 in Programming a BEA Tuxedo ATMI Application Using C
and Programming a BEA Tuxedo ATMI Application Using COBOL

tpinit(3c) in BEA Tuxedo ATMI C Function Reference

TPINITIALIZE(3cbl) in the BEA Tuxedo ATMI COBOL Function Reference

“Administering Public Key Security” on page 2-41

“Administering Authorization” on page 2-34

“Default Authentication and Authorization” on page 1-40

“Programming an ATMI Application with Security” on page 3-3

Getting Security Data
For general-purpose client programs that are written to work with a variety of applications, the
BEA Tuxedo system provides an ATMI function that enables a client to determine the level of
security required by the ATMI application that the client is trying to join. This ATMI function,
implemented as tpchkauth(3c) for C and TPCHKAUTH(3cbl) for COBOL, is designed to work
with ATMI applications using default authentication and authorization. The tpchkauth() and
TPCHKAUTH() functions can also be used in ATMI applications in which custom authentication

3-6 Using Security in ATMI Applications

and/or authorization is used. How they are used, however, depends on how the custom security
features are implemented. For the most part, this discussion focuses on default authentication and
authorization.

An application programmer writing in C uses tpchkauth() to check the ATMI application’s
security level before calling tpinit(3c), so that the client program can prompt for the
application password and the user authentication data needed for the tpinit() call;
tpchkauth() is called without arguments.

An application programmer writing in COBOL uses TPCHKAUTH() for the same purpose before
calling TPINITIALIZE(3cbl). The syntax and functionality of TPCHKAUTH(3cbl) and
TPINITIALIZE(3cbl) are the same as those of tpchkauth(3c) and tpinit(3c).

The tpchkauth() function (or TPCHKAUTH() routine) returns one of the following values.

TPNOAUTH
Nothing is required beyond the normal operating system login and file permission
security. TPNOAUTH is returned for security level NONE.

TPSYSAUTH
An application password is required. The client program should prompt the user to
provide the password, and should put it in the password field of the TPINIT buffer for C,
or TPINFDEF-REC record for COBOL. TPSYSAUTH is returned for security level APP_PW.

The application administrator informs users of the application password, and the
application programmer writes client-program code to prompt users for the application
password and to put the user-supplied password, as plain text, in the password field of the
TPINIT buffer or TPINFDEF-REC record. The password should not be displayed on the
user’s screen.

BEA Tuxedo system-supplied client programs, such as ud, wud(1), prompt for an
application password. ud() allows fielded buffers to be read from standard input and sent
to a service.

TPAPPAUTH
The application password is required. The client is expected to provide a value to be
passed to the authentication service in the data field of the TPINIT buffer for C, or the
TPINFDEF-REC record for COBOL. TPAPPAUTH is returned for security level USER_AUTH,
ACL, or MANDATORY_ACL.

The application programmer writes client-program code to furnish additional information
for the application authentication service, which is provided by the AUTHSVR server for
default authentication and authorization. AUTHSVR is configured by the administrator to

J o in ing the ATMI Appl i cat ion

Using Security in ATMI Applications 3-7

validate the per-user authentication information with client and usernames, indicating
whether the client program is allowed to join the ATMI application.

See Also
“Joining the ATMI Application” on page 3-7

“Writing Clients” on page 4-1 in Programming a BEA Tuxedo ATMI Application Using C
and Programming a BEA Tuxedo ATMI Application Using COBOL

tpinit(3c) and tpchkauth(3c) in the BEA Tuxedo ATMI C Function Reference

TPINITIALIZE(3cbl) and TPCHKAUTH(3cbl) in the BEA Tuxedo ATMI COBOL Function
Reference

“Default Authentication and Authorization” on page 1-40

“Programming an ATMI Application with Security” on page 3-3

Joining the ATMI Application
In a secure ATMI application, it is necessary to pass security information to the BEA Tuxedo
system via a TPINIT buffer for C, or a TPINFDEF-REC record for COBOL. The TPINIT buffer is
a special typed buffer used by a client program to pass client identification and authentication
information to the system as the client attempts to join the ATMI application. The TPINFDEF-REC
record serves the same purpose in a COBOL application.

3-8 Using Security in ATMI Applications

TPINIT is defined in the atmi.h header file, and TPINFDEF-REC is defined in the COBOL COPY
file. They have the following structures.

The fields in the TPINIT buffer/ TPINFDEF-REC record are described in the following table.

TPINIT Structure TPINFDEF-REC Structure

char usrname[MAXTIDENT+2];
char cltname[MAXTIDENT+2];
char passwd[MAXTIDENT+2];
char grpname[MAXTIDENT+2];
long flags;
long datalen;
long data;

Note: MAXTIDENT may contain up to 30
characters.

05 USRNAME PIC X(30).
05 CLTNAME PIC X(30).
05 PASSWD PIC X(30).
05 GRPNAME PIC X(30).
05 NOTIFICATION-FLAG PIC S9(9) COMP-5.

88 TPU-SIG VALUE 1.
88 TPU-DIP VALUE 2.
88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.
88 TPSA-FASTPATH VALUE 1.
88 TPSA-PROTECTED VALUE 2.

05 DATLEN PIC S9(9) COMP-5.

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record

TPINIT Fields TPINFDEF-REC Fields Description

usrname USRNAME Username.* A null-terminated string of up to 30
characters.

The username represents the caller; writers of client
programs might use the same login names used to
log in to the host operating system.

cltname CLTNAME Client name.* A null-terminated string of up to 30
characters.

The client name represents the client program;
writers of client programs might use this field to
indicate the job function or role of the user when
executing the client program.

* This field is required for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default
authentication and authorization.

** The binary equivalent of the UBBCONFIG file; created using tmloadcf(1).

*** Usually a user password.

J o in ing the ATMI Appl i cat ion

Using Security in ATMI Applications 3-9

passwd PASSWD Application password.* A null-terminated string of
up to eight characters.

tpinit() or TPINITIALIZE() validates this
password by comparing it to the configured
application password stored in the TUXCONFIG
file.**

grpname GRPNAME Group name. A null-terminated string of up to 30
characters. This field is not related to security.

The group name allows a client to be associated with
a resource manager group that is defined in the
UBBCONFIG file.

flags NOTIFICATION-FLAG
TPU-SIG

TPU-DIP

TPU-IGN

ACCESS-FLAG

TPSA-FASTPATH

TPSA-PROTECTED

Notification and access flags. This field is not
related to security.

The flag settings specify the notification mechanism
and system access mode to be used for the client.
Selections override (with some exceptions) the
values set in the RESOURCES section of the
UBBCONFIG file.

datalen DATALEN Length of the user-specific data*** that follows.*

To get a size value for this field, writers of client
programs written in C can call TPINITNEED with
the number of bytes of user-specific data expected to
be sent. TPINITNEED is a macro provided in the
atmi.h header file.

data N/A User-specific data*** of no fixed length.*

tpinit() or TPINITIALIZE() forwards the
user-specific data to the authentication server for
validation. For default authentication, the
authentication server is AUTHSVR.

Table 3-1 Fields in TPINIT Buffer/ TPINFDEF-REC Record (Continued)

TPINIT Fields TPINFDEF-REC Fields Description

* This field is required for the USER_AUTH, ACL, and MANDATORY_ACL security levels provided by default
authentication and authorization.

** The binary equivalent of the UBBCONFIG file; created using tmloadcf(1).

*** Usually a user password.

3-10 Using Security in ATMI Applications

The client program calls tpalloc(3c) to allocate a TPINIT buffer. The following sample code
prepares to pass eight bytes of application-specific data to tpinit() and enables the client to join
an ATMI application.

Listing 3-2 Allocating a TPINIT Buffer and Joining an ATMI Application

.

.

.
TPINIT *tpinfo;

.

.

.
if ((tpinfo = (TPINIT *)tpalloc("TPINIT",(char *)NULL,

TPINITNEED(8))) == (TPINIT *)NULL){
Error Routine

}
.
.
.

tpinit(tpinfo) /* join an ATMI application */
.
.
.

When a Workstation client calls the tpinit() function or the TPINITIALIZE() routine to join
an ATMI application, the following major events occur.

1. The initiator Workstation client and the target workstation listener (WSL) exchange
link-level encryption (LLE) min-max values to be used to set up LLE on the link between the
initiator Workstation client and the target WSH. LLE is described in “Link-Level Encryption”
on page 1-22.

2. The initiator Workstation client and target WSH authenticate one another through the
exchange of security tokens. For default authentication, a successful authentication ends
with the transfer of client security data from the TPINIT buffer or TPINFDEF-REC record to
the target WSH.

3. After a successful authentication, the initiator Workstation client sends another buffer to the
target WSH containing the values of the usrname, cltname, and flags fields, to ensure
that the target WSH receives this information for the authenticated Workstation client.

J o in ing the ATMI Appl i cat ion

Using Security in ATMI Applications 3-11

When a native client calls the tpinit() function or the TPINITIALIZE() routine to join an
ATMI application, only authentication occurs. In essence, the native client authenticates with
itself.

Transferring the Client Security Data
The following figure demonstrate the transfer of data from the TPINIT buffer for a Workstation
client. The transfer of data from the TPINFDEF-REC record is similar to what is shown in the
figure.

3-12 Using Security in ATMI Applications

Figure 3-2 Transferring Data from the TPINIT Buffer for a Workstation Client

usrname datalen data

passwd

1. Call “acquire
credentials”

Function

2. Call “initiate
security context”

Function

3. Call “accept
security context”

5. Call “get
auditing token”

Function Function

4. Call “get
authorization token”

Function

usrname cltname passwd grpname flags datalen data

TPINIT Buffer

BEA Tuxedo Library

usrname,
datalen,
data

Workstation Client — Application Client Running on Workstation Machine

Workstation Handler (WSH)

(encrypt)

Call tpinit()

Network Link

ATMI SecurityATMI Security

Authentication Plug-in Authentication Plug-in

usrname cltname grpname flags datalen

Information Sent for Default Authentication

data

Information Sent for Custom Authentication

custom data

Credentials

Credentials

J o in ing the ATMI Appl i cat ion

Using Security in ATMI Applications 3-13

Note: The authorization procedure shown in the preceding figure is essentially the same for a
native client attempting to join an ATMI application except that no network link or WSH
is involved. A native client authenticates with itself.

In the preceding diagram, notice that the information sent to the BEA Tuxedo system differs
between default and custom authentication. For default authentication, the values of the cltname,
grpname, and flags fields are delivered to the default authentication plug-in at the Workstation
client by a means other than through the plug-in interface. However, for custom authentication,
writers of client programs can include these values as well as any other values they so choose in
the variable length data field.

For a Workstation client and assuming default authentication, the authentication plug-in at the
Workstation client uses the passwd/ PASSWD field to encrypt the information when transmitting
the information over the network. The encryption algorithm used is 56-bit DES, where DES is an
acronym for the Data Encryption Standard. The authentication plug-in at the target WSH uses the
application password stored in the TUXCONFIG file to decrypt the information. For a native client,
the system simply compares the passwd/ PASSWD field with the application password stored in
the TUXCONFIG file.

Note: At the Workstation client, the passwd/ PASSWD field is delivered to the authentication
plug-in by a means other than through the authentication plug-in interface. At the WSH,
the application password in the TUXCONFIG file is delivered to the authentication plug-in
through the authentication plug-in interface during application booting.

After a successful authentication of a Workstation client, the tpinit() function ends with the
sending of another buffer to the WSH containing the values of the usrname, cltname, and flags
fields, to ensure that the WSH receives this information for the authenticated Workstation client.
Similarly, the TPINITIALIZE() routine ends with the sending of another buffer containing the
same information. A custom authentication plug-in might not send this information to the WSH
during the authentication procedure, and the WSH needs this information for reporting purposes,
that is, during an invocation of the tmadmin(1) printclient (pclt) command.

When a Workstation or native client passes the security check, it may initiate service requests and
receive replies.

Calling a Service Request Before Joining the ATMI Application
If a client calls a service request (or any ATMI function) before invoking tpinit() or
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI application is
not set or is set to NONE, the BEA Tuxedo system automatically invokes tpinit()/
TPINITIALIZE() with a NULL parameter. This behavior has the following consequences:

3-14 Using Security in ATMI Applications

The TPINIT/ TPINFDEF-REC feature cannot be used.

Default values are used for client naming, unsolicited notification type, and system access
mode.

The client cannot be associated with a resource manager group.

An application password cannot be specified.

If a client calls a service request (or any ATMI function) before invoking tpinit() or
TPINITIALIZE() and assuming the SECURITY configuration for the target ATMI application is
set to APP_PW, USER_AUTH, ACL, or MANDATORY_ACL, the BEA Tuxedo system rejects the service
request.

See Also
“Writing Clients” on page 4-1 in Programming a BEA Tuxedo ATMI Application Using C
and Programming a BEA Tuxedo ATMI Application Using COBOL

tpinit(3c) and tpalloc(3c) in the BEA Tuxedo ATMI C Function Reference

TPINITIALIZE(3cbl) in the BEA Tuxedo ATMI COBOL Function Reference

“Default Authentication and Authorization” on page 1-40

“Programming an ATMI Application with Security” on page 3-3

Writing Security Code to Protect Data Integrity and Privacy
Public key security comprises end-to-end digital signing and data encryption. Both features are
supported by BEA Tuxedo ATMI functions. ATMI applications protected by public key security
are much safer for use across the Internet than programs in which this type of security is not used.

The capabilities that make end-to-end digital signing and data encryption possible are
message-based digital signature and message-based encryption. Both capabilities are built upon
the PKCS-7 standard, which is one of a set of Public-Key Cryptography Standards (PKCS)
developed by RSA Laboratories in cooperation with several other leading communications
companies.

Message-based digital signature ensures data integrity and non-repudiation by having the sending
party bind proof of its identity to a specific message buffer. Message-based encryption protects
the confidentiality of messages; only parties for whom messages are intended can decrypt and
read them.

Wr i t ing Secur i t y Code to P ro tect Data In tegr i t y and Pr ivacy

Using Security in ATMI Applications 3-15

Because the unit of digital signing and encryption is an ATMI message buffer, both capabilities
are compatible with existing ATMI programming interfaces and communication paradigms. It is
possible for a message buffer to be both signed and encrypted. There is no required relationship
between the number of digital signatures and the number of encryption envelopes associated with
a message buffer.

Note: Each encryption envelope identifies a recipient of the message, and contains information
needed by the recipient to decrypt the message.

ATMI Interface for Public Key Security
The ATMI interface for public key security is a compact set of functions used to:

Open and close key resources

View and change key optional parameters

Sign and seal (encrypt) message buffers

Access the digital signature and encryption information associated with a message buffer

Convert a typed message buffer into an exportable, machine-independent string
representation, which includes the generation of any digital signatures or encryption
envelopes associated with the buffer

The ATMI interfaces for public key security are available in both C and COBOL
implementations. The ATMI COBOL language binding, however, does not support message
buffers; thus, explicit signature, encryption, and query operations on individual buffers cannot be
used in a COBOL application. However, key management interfaces do have a COBOL language
binding, which enables signature generation in the AUTOSIGN mode and encryption-envelope
generation in the AUTOENCRYPT mode. All operations related to automatic signature verification
or automatic decryption apply to COBOL client and server processes.

Note: The COBOL TPKEYDEF record is used to manage public-private keys for performing
message-based digital signature and encryption operations. See “COBOL Language
ATMI Return Codes and Other Definitions” in the introduction part of the BEA Tuxedo
ATMI COBOL Function Reference for a description of the TPKEYDEF record.

3-16 Using Security in ATMI Applications

The following tables summarize the ATMI interfaces for public key security. Each function is
also documented in the BEA Tuxedo ATMI C Function Reference and the BEA Tuxedo ATMI
COBOL Function Reference.

Wr i t ing Secur i t y Code to P ro tect Data In tegr i t y and Pr ivacy

Using Security in ATMI Applications 3-17

Table 3-2 C Functions in ATMI Interface for Public Key Security

Use This Function To . . .

tpkey_open(3c) Open a key handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access the item
named by the handle.

A key may play one or more of the following roles:
• Signature Generation

The key identifies the calling process as being authorized to generate a digital
signature under the principal’s identity. (A principal may be a person or a
process.) Calling tpkey_open() with the principal’s name and either the
TPKEY_SIGNATURE or TPKEY_AUTOSIGN flag returns a handle to the
principal’s private key and digital certificate.

• Signature Verification
The key represents the principal associated with a digital signature. Signature
verification does not require a call to tpkey_open(); the verifying process uses
the public key specified in the digital certificate accompanying the digitally signed
message to verify the signature.

• Encryption
The key represents the intended principal of an encrypted message. Calling
tpkey_open() with the principal’s name and either the TPKEY_ENCRYPT or
TPKEY_AUTOENCRYPT flag returns a handle to the principal’s public key via the
principal’s digital certificate.

• Decryption
The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. Calling tpkey_open() with the principal’s
name and the TPKEY_DECRYPT flag returns a handle to the principal’s private
key and digital certificate.

3-18 Using Security in ATMI Applications

tpkey_getinfo(3c) Get information associated with a key handle. Some information is specific to a
cryptographic service provider, but the following set of attributes is supported by all
providers:
• PRINCIPAL

The name of the principal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an application
developer sets up public key security. Any principal specified in an ATMI
application’s UBBCONFIG file using the SEC_PRINCIPAL_NAME parameter
become the identity of one or more system processes. (See “Specifying Principal
Names” on page 2-10 and “Initializing Decryption Keys Through the Plug-ins” on
page 2-50 for more detail.)

• PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key algorithm used by the key for public key encryption. See the
tpkey_getinfo(3c) reference page for details.

• PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

• SIGNATURE_ALG
An ASN.1 DER object identifier of the digital signature algorithm used by the key
for digital signature. See the tpkey_getinfo(3c) reference page for details.

• SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

• ENCRYPT_ALG
An ASN.1 DER object identifier of the symmetric key algorithm used by the key
for bulk data encryption. See the tpkey_getinfo(3c) reference page for
details.

• ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 bits, inclusive.

• DIGEST_ALG
An ASN.1 DER object identifier of the message digest algorithm used by the key
for digital signature. See the tpkey_getinfo(3c) reference page for details.

• PROVIDER
The name of the cryptographic service provider.

• VERSION
The version number of the cryptographic service provider’s software.

Table 3-2 C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function To . . .

Wr i t ing Secur i t y Code to P ro tect Data In tegr i t y and Pr ivacy

Using Security in ATMI Applications 3-19

tpkey_setinfo(3c) Set optional attribute parameters associated with a key handle. A core set of key
handle attributes is identified in the preceding description of tpkey_getinfo().
Other attributes, specific to a certain cryptographic service provider, may also be
available.

tpkey_close(3c) Close a previously opened key handle. A key handle may be opened explicitly using
tpkey_open(), or implicitly (automatically) using tpenvelope().

tpsign(3c) Mark a typed message buffer for digital signature. The public key software generates
the digital signature just before the message is sent.

tpseal(3c) Mark a typed message buffer for encryption. The public key software encrypts the
message just before the message is sent.

tpenvelope(3c) Access the digital signature and encryption information associated with a typed
message buffer. tpenvelope() returns status information about the digital
signatures and encryption envelopes attached to a particular message buffer. It also
returns the key handle associated with each digital signature or encryption envelope.
The key handle for a digital signature identifies the signer, and the key handle for an
encryption envelope identifies the recipient of the message.

tpexport(3c) Convert a typed message buffer into an exportable, machine-independent
(externalized) string representation. tpexport() generates any digital signatures or
encryption envelopes associated with a typed message buffer just before it converts
that buffer into an externalized string representation.

An externalized string representation can be transmitted between processes, machines,
or domains through any communication mechanism. It can be archived on permanent
storage.

tpimport(3c) Convert an externalized string representation back into a typed message buffer.
During the conversion, tpimport() decrypts the message, if necessary, and verifies
any associated digital signatures.

Table 3-2 C Functions in ATMI Interface for Public Key Security (Continued)

Use This Function To . . .

3-20 Using Security in ATMI Applications

Table 3-3 COBOL Routines in ATMI Interface for Public Key Security

Use This Routine . . . To . . .

TPKEYOPEN(3cbl) Open a key handle for digital signature generation, message encryption, or message
decryption. Keys are represented and manipulated via handles. A handle has data
associated with it that is used by the ATMI application to locate or access the item
named by the handle.

A key may play one or more of the following roles:
• Signature Generation

The key identifies the calling process as being authorized to generate a digital
signature under the principal’s identity. (A principal can be a person or a
process.) Calling TPKEYOPEN() with the principal’s name and the
TPKEY-SIGNATURE and TPKEY-AUTOSIGN settings returns a handle to the
principal’s public key and enables signature generation in AUTOSIGN mode. The
public key software generates and attaches the digital signature to the message
just before the message is sent.

• Signature Verification
The key represents the principal associated with a digital signature. Signature
verification does not require a call to TPKEYOPEN(); the verifying process uses
the public key specified in the digital certificate accompanying the digitally
signed message to verify the signature.

• Encryption
The key represents the intended principal of an encrypted message. Calling
TPKEYOPEN() with the principal’s name and the TPKEY-ENCRYPT and
TPKEY-AUTOENCRYPT settings returns a handle to the principal’s public key
(via the principal’s digital certificate) and enables encryption in AUTOENCRYPT
mode. The public key software encrypts the message and attaches an encryption
envelope to the message; the encryption envelope enables the receiving process
to decrypt the message.

• Decryption
The key identifies the calling process as being authorized to decrypt a private
message for the intended principal. Calling TPKEYOPEN() with the principal’s
name and the TPKEY-DECRYPT setting returns a handle to the principal’s
private key and digital certificate.

Wr i t ing Secur i t y Code to P ro tect Data In tegr i t y and Pr ivacy

Using Security in ATMI Applications 3-21

TPKEYGETINFO(3cbl) Get information associated with a key handle. Some information is specific to a
cryptographic service provider, but the following set of attributes is supported by all
providers:
• PRINCIPAL

The name of the principal associated with the specified key (key handle). A
principal may be a person or a process, depending on how an ATMI application
developer sets up public key security. Any principal specified in an ATMI
application’s UBBCONFIG file using the SEC_PRINCIPAL_NAME parameter
become the identity of one or more system processes. (See “Specifying Principal
Names” on page 2-10 and “Initializing Decryption Keys Through the Plug-ins”
on page 2-50 for more detail.)

• PKENCRYPT_ALG
An ASN.1 Distinguished Encoding Rules (DER) object identifier of the public
key algorithm used by the key for public key encryption. See the
TPKEYGETINFO(3cbl) reference page for details.

• PKENCRYPT_BITS
The key length of the public key algorithm (RSA modulus size). The value must
be within the range of 512 to 2048 bits, inclusive.

• SIGNATURE_ALG
An ASN.1 DER object identifier of the digital signature algorithm used by the key
for digital signature. See the TPKEYGETINFO(3cbl) reference page for details.

• SIGNATURE_BITS
The key length of the digital signature algorithm (RSA modulus size). The value
must be within the range of 512 to 2048 bits, inclusive.

• ENCRYPT_ALG
An ASN.1 DER object identifier of the symmetric key algorithm used by the key
for bulk data encryption. See the TPKEYGETINFO(3cbl) reference page for
details.

• ENCRYPT_BITS
The key length of the symmetric key algorithm. The value must be within the
range of 40 to 128 bits, inclusive.

• DIGEST_ALG
An ASN.1 DER object identifier of the message digest algorithm used by the key
for digital signature. See the TPKEYGETINFO(3cbl) reference page for details.

• PROVIDER
The name of the cryptographic service provider.

• VERSION
The version number of the cryptographic service provider’s software.

Table 3-3 COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . . . To . . .

3-22 Using Security in ATMI Applications

Recommended Uses of Public Key Security
Use tpkey_close() to release key handles used for digital signature generation or for
data decryption as soon as they are no longer needed.

To inhibit replay attacks, generate digital signatures only on message buffers that contain
details identifying a specific operation. For example, a buffer that contains the message
“Your deposit is confirmed” is dangerously vague. An attacker who intercepts such a
message can easily reuse it. On the other hand, a message that contains many
operation-specific details is much safer. An attacker who intercepts a message such as the
one that follows will not be able to reuse it easily: “John Smith’s deposit of $100.00,
account 987654321, confirmation code 123456789, 7/31/2001, is confirmed.”

See Also
“Sending and Receiving Signed Messages” on page 3-23

“Sending and Receiving Encrypted Messages” on page 3-34

“Examining Digital Signature and Encryption Information” on page 3-52

“Externalizing Typed Message Buffers” on page 3-58

“Public Key Security” on page 1-27

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

TPKEYSETINFO(3cbl) Set optional attribute parameters associated with a key handle. A core set of key
handle attributes is identified in the preceding description of TPKEYGETINFO().
Other attributes, specific to a certain cryptographic service provider, may also be
available.

TPKEYCLOSE(3cbl) Close a key handle previously opened using TPKEYOPEN().

Table 3-3 COBOL Routines in ATMI Interface for Public Key Security (Continued)

Use This Routine . . . To . . .

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-23

Sending and Receiving Signed Messages
Message-based digital signature provides end-to-end authentication and message integrity
protection. For a diagram that illustrates how it works, see the figure “ATMI PKCS-7 End-to-End
Digital Signing” on page 1-32.

To add a digital signature to an ATMI message buffer, the originating process or user signs the
message buffer. This signature contains a cryptographically secure checksum of the message
buffer’s content and a timestamp based on the signer’s local clock.

Any party with access to the message buffer can verify that the signing party’s signature is
authentic, that the message buffer content is unchanged, and that the timestamp is within a
configured tolerance of the verifier’s local clock. In addition, time-independent verification by a
third party guarantees non-repudiation: the originating process or user cannot later deny
authorship or claim the message was altered.

Writing Code to Send Signed Messages
The following flowchart provides the procedure for writing code to send signed messages.

3-24 Using Security in ATMI Applications

Figure 3-3 Procedure for Sending Signed Messages

End

Start

Continue

Continue

1. Open key handle for signer to receive
a key handle to signer’s private key and
digital certificate.

tpkey_open()

2. (Optional): Get information about
signer’s key handle.

tpkey_getinfo()

4. Allocate a typed message buffer and
put message in buffer.

tpalloc()

3. (Optional): Change information
associated with signer’s key handle.

tpkey_setinfo()

5. Mark the message buffer for digital
signature, thus attaching a copy of the
signer’s key handle to the message buffer.

tpsign()

6. Send message in buffer by calling
tpsend(), tpcall(), . . .

tpsend()

7. Close signer’s key handle to release
key handle and all resources associated
with it.

tpkey_close()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Adds timestamp from local system’s
clock.

3. Computes hash value using message
digest algorithm.

5. Attaches timestamp, digital signature
(encrypted hash value), signer’s digital

and digital signature algorithm to
message.

certificate, message digest algorithm,

4. Encrypts hash value, using signer’s
private key and digital signature
algorithm, to create a digital signature.

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-25

For details about these steps and insight into how the system signs a message buffer, see the
following topics.

Step 1: Opening a Key Handle for Digital Signature
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private key and
the associated digital certificate of the signer available to the originating process. The private key
is highly protected, and possession of it is equivalent to possessing the signer’s identity.

In order to access the signer’s private key, the originating process must prove its right to act as
the signer. Proof requirements depend on the implementation of the public key plug-in interface.
The default public key implementation requires a secret password from the calling process.

When the originating process calls tpkey_open() to open the key handle, it specifies either the
TPKEY_SIGNATURE or TPKEY_AUTOSIGN flag to indicate that the handle will be used to digitally
sign a message buffer. Typically, a client makes this call after calling tpinit(), and a server
makes this call as part of initializing through tpsvrinit().

Opening a key handle with the TPKEY_AUTOSIGN flag enables automatic signature generation:
subsequently, the originating process signs message buffers automatically whenever they are
sent. Using the TPKEY_AUTOSIGN flag is beneficial for three reasons:

Less work is required from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

Existing ATMI applications can leverage digital signature technology with minimal coding
changes.

The possibility of programming errors that might result in an unsigned buffer being sent
over an insecure network is reduced.

The following example code shows how to open a signer’s key handle. TPKEY is a special data
type defined in the atmi.h header file.

3-26 Using Security in ATMI Applications

Listing 3-3 Opening a Signer’s Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY sdo_key;

char *sdo_location;

.

.

.

if (tpkey_open(&sdo_key, “sdo”, sdo_location,

NULL, 0, TPKEY_SIGNATURE) == -1) {

(void) fprintf(stderr, “tpkey_open sdo failed

tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));

exit(1);

}

.

.

.

}

Step 2 (Optional): Getting Key Handle Information
You may want to get information about a signer’s key handle to establish the validity of the key.
To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While some
of the information returned may be specific to a cryptographic service provider, a core set of
attributes is common to all providers.

The default public key implementation supports the following signature modes for computing
signatures on a message buffer:

MD5 message digest algorithm with RSA public key signature

SHA-1 message digest algorithm with RSA public key signature

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-27

The message digest algorithm is controlled by the DIGEST_ALG key attribute, and the public key
signature is controlled by the SIGNATURE_ALG key attribute. Public key sizes from 512 to 2048
bits are supported, to allow a wide range of safety and performance options. The public key size
is controlled by the SIGNATURE_BITS key attribute.

The default public key implementation recognizes only those digital certificate signatures that are
created with these algorithm and key size choices.

The following example code shows how to get information about a signer’s key handle.

Listing 3-4 Getting Information About a Signer’s Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY sdo_key;

char principal_name[PNAME_LEN];

long pname_len = PNAME_LEN;

.

.

.

if (tpkey_getinfo(sdo_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {

(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,

tperrno, tpstrerror(tperrno));

.

.

.

exit(1);

}

.

.

.

}

3-28 Using Security in ATMI Applications

Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with a signer’s key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

The following example code shows how to change information associated with a signer’s key
handle.

Listing 3-5 Changing Information Associated with a Signer’s Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY sdo_key;

static const unsigned char sha1_objid[] = {

0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a

};

.

.

.

if (tpkey_setinfo(sdo_key, “DIGEST_ALG”, (void *) sha1_objid,

sizeof(sha1_objid), 0) == -1) {

(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,

tperrno, tpstrerror(tperrno));

return(1);

}

.

.

.

}

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-29

Step 4: Allocating a Buffer and Putting a Message in the Buffer
To allocate a typed message buffer, call the tpalloc(3c) function. Then put a message in the
buffer.

Step 5: Marking the Buffer for Digital Signature
To mark, or register, the message buffer for digital signature, call the tpsign(3c) function. By
calling this function, you attach a copy of the signer’s key handle to the message buffer. If you
open the key with the TPKEY_AUTOSIGN flag, each message that you send is automatically
marked for digital signature without an explicit call to tpsign(); signature parameters are stored
and associated with the buffer for later use.

Note: In COBOL applications, use the AUTOSIGN settings member to create a digital signature.
See TPKEYOPEN(3cbl).

The following example code shows how to mark a message buffer for digital signature.

Listing 3-6 Marking a Message Buffer For Digital Signature Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY sdo_key;

char *sendbuf, *rcvbuf;

.

.

.

if (tpsign(sendbuf, sdo_key, 0) == -1) {

(void) fprintf(stderr, “tpsign failed tperrno=%d(%s)\n”,

tperrno, tpstrerror(tperrno));

tpfree(rcvbuf);

tpfree(sendbuf);

tpterm();

(void) tpkey_close(sdo_key, 0);

exit(1);

}

3-30 Using Security in ATMI Applications

.

.

.

}

Step 6: Sending the Message
After the message buffer has been marked for digital signature, transmit the message buffer using
one of the following C functions or COBOL routines:

– tpcall() or TPCALL

– tpbroadcast() or TPBROADCAST

– tpconnect() or TPCONNECT

– tpenqueue() or TPENQUEUE
– tpforward()

– tpnotify() or TPNOTIFY

– tppost() or TPPOST

– tpreturn() or TPRETURN

– tpsend() or TPSEND

Step 7: Closing the Signer’s Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the signer’s key
handle and all resources associated with it.

How the System Generates a Digital Signature
Just before a message buffer is sent, the public key software digitally signs the message. If a
signed buffer is transmitted more than once, the software generates a new signature for each
communication. This process makes it possible to modify a message buffer after marking the
buffer to be digitally signed.

The public key software generates a digital signature by performing the following three-step
procedure.

1. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] = hash1

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-31

2. digest[hash1 + local_timestamp + PKCS-7_message_type] = hash2

3. {hash2}signer’s_private_key = encrypted_hash2 = digital_signature

The notation digest[something] means that a hash value has been computed for something using
a message digest algorithm—in this case, MD5 or SHA-1. The notation {something}key means
that something has been encrypted or decrypted using key. In this case, the computed hash value
is encrypted using the signer’s private key.

Signature Timestamp
A digital signature includes a timestamp from the local system’s clock. Inclusion of such a
timestamp ensures that any tampering with the timestamp value will be detected when the
recipient verifies the signature. In addition, a copy of the timestamp accompanies the digitally
signed message when the message is routed to its destination.

Time resolution is to the second. Timestamps are stored in PKCS-9 SigningTime format.

Multiple Signatures
More than one signature can be associated with a message buffer, which means that any number
of signers can sign a message buffer in parallel. A signer can be a person or a process. Each signer
signs the message buffer using his, her, or its private key.

Different signatures may be based on different message digest or digital signature algorithms. If
two signers use the same message digest and digital signature algorithm, the hash value is
computed for only one of them.

Signed Message Content
A digitally signed message buffer is represented in the PKCS-7 format as a version 1
SignedData content type. The SignedData content type, as used by the BEA Tuxedo system,
consists of the following items:

One or more digital signatures, each with its own set of signer-specific information, such
as:

– Signer’s X.509v3 certificate

– Message digest and digital signature algorithm identifiers

– Timestamp based on the local clock

3-32 Using Security in ATMI Applications

Message content, which is a composite of message buffer data, buffer type string, and
buffer subtype string represented in the BEA Tuxedo encoded format. The encoded format
allows a message buffer’s signature to be verified on any machine architecture.

As shown in the following figure, the message content is enveloped by SignedData content type.

Figure 3-4 SignedData Content Type

How a Signed Message Is Received
No ATMI application code is needed to receive a signed message buffer. The public key software
automatically verifies the attached digital signatures and passes the message to the receiving
process.

Upon receiving a signed message buffer, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1. Reads the digital signature information attached to the received message, including the
signer’s digital certificate, message digest algorithm, digital signature algorithm, and
signature timestamp.

2. Decrypts the attached digital signature (encrypted hash value) using the signer’s public key
(found in the signer’s digital certificate) and the digital signature algorithm.

3. Recomputes the hash value for the received message, as shown in the following two-step
procedure.

a. digest[message_buffer_data + buffer_type_string + buffer_subtype_string] = hash1

b. digest[hash1 + received_timestamp + PKCS-7_message_type] = hash2

The notation digest[something] means that a hash value has been computed for something
using a message digest algorithm—in this case, MD5 or SHA-1.

TUXBUF Content Type

(Message Content—Contains Composite Encoded Data)

SignedData Content Type

(Signing Operation—Contains Digital Signatures and Associated Signer-Specific Information)

Sending and Rece iv ing S igned Messages

Using Security in ATMI Applications 3-33

4. Compares the recomputed hash value with the received hash value; if the two are not
identical, discards the message buffer.

5. Compares the received timestamp with the local system’s clock; if the timestamp is not
within a configured tolerance, discards the message buffer.

6. If the message buffer successfully passes the checks performed in Steps 4 and 5, the public
key software decodes the message buffer data, buffer type string, and buffer subtype string,
and then passes the message to the receiving process. This step reverses the encoding
performed by the originating process. (The BEA Tuxedo encoded format allows a message
buffer’s signature to be verified on any machine architecture.)

Note: If none of the attached digital signatures can be verified, the receiving process does not
receive the message buffer. Moreover, the receiving process has no knowledge of the
message buffer.

Verifying Digital Signatures
The public key software automatically verifies digital signatures whenever a signed message
buffer enters a client process, server process, or any system process that needs to access the
content of the message buffer. If a system process is acting as a conduit (that is, if it is not reading
the content of the message), then the attached digital signatures need not be verified. Bridges and
workstation handlers (WSHs) are examples of system processes acting as conduits.

The signature timestamp is based on an unsynchronized clock, and therefore cannot be fully
trusted, especially if the signature is performed on a PC or personal workstation. However, a
server may reject requests with timestamps that are too old or dated too far into the future. The
capability to reject a request based on the timestamp provides a measure of protection against
replay attacks.

Verifying and Transmitting an Input Buffer’s Signatures
If a message buffer is passed to an ATMI function (such as tpacall()) as an input parameter,
the public key software verifies any signatures previously attached to the message and then
forwards the message. This behavior enables a secure, verified transfer of information with
signatures from multiple processes.

If a server modifies a received message buffer and then forwards the buffer, the original signature
is no longer valid. In this case, the public key software detects the invalid signature and silently
discards it. For an example of the process, see “Discarding an Input Buffer’s Encryption
Envelopes” on page 3-49.

3-34 Using Security in ATMI Applications

Replacing an Output Buffer’s Signatures
If a message buffer is passed to an ATMI function (such as tpgetreply()) as an output
parameter, the public key software deletes any signature information associated with the buffer.
This information includes any pending signatures and signatures from previous uses of the buffer.
(A pending signature is a signature that is registered with a message buffer.)

New signature information might be associated with the new buffer content after successful
completion of this operation.

See Also
“Sending and Receiving Encrypted Messages” on page 3-34

“Examining Digital Signature and Encryption Information” on page 3-52

“Externalizing Typed Message Buffers” on page 3-58

“Public Key Security” on page 1-27

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

Sending and Receiving Encrypted Messages
Message-based encryption provides end-to-end data privacy. For a diagram that illustrates how
it works, see the figure “ATMI PKCS-7 End-to-End Encryption” on page 1-37.

A message is encrypted just before it leaves the originating process, and remains encrypted until
it is received by the final destination process. It is opaque at all intermediate transit points
(including operating system message queues, system processes, and disk-based queues) and
during network transmission over inter-server network links.

Writing Code to Send Encrypted Messages
The following flowchart provides the procedure for writing code to send encrypted messages.

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-35

Figure 3-5 Procedure for Sending Encrypted Messages

Start

EndContinue

Continue

2. (Optional): Get information about
encryption key handle.

tpkey_getinfo()

4. Allocate a typed message buffer and
put message in buffer.

tpalloc()

3. (Optional): Change information
associated with encryption key handle.

tpkey_setinfo()

1. Open key handle for target recipient to
receive a key handle to recipient’s digital
certificate.

tpkey_open()

5. Mark the message buffer for encryp-
tion, thus attaching a copy of the encryp-
tion key handle to the message buffer.

tpseal()

6. Send message in buffer by calling
tpsend(), tpcall(), . . .

tpsend()

7. Close encryption key handle to
release key handle and all resources
associated with it.

tpkey_close()

Just before message is sent, public key
software performs the following tasks:

1. Encodes message buffer data, buffer
type string, and buffer subtype string.

2. Generates digital signatures (if any).

4. Encrypts compressed message and
digital signatures (if any) using

key algorithm.
random session key and symmetric

5. Encrypts session key using recipient’s
public key (found in recipient’s digital
certificate) and public key algorithm.

6. Includes encrypted session key and
recipient’s name in a digital
encryption envelope.

3. Compresses message and digital
signatures (if any) using Deflate
compression algorithm.

7. Attaches encryption envelope to
encrypted message.

3-36 Using Security in ATMI Applications

For details about these steps and insight into how the system encrypts a message buffer, see the
following topics.

Step 1: Opening a Key Handle for Encryption
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the digital certificate
of the target recipient available to the originating process. The target recipient might be a client,
a service, a server group, a gateway group, a server machine, or an entire domain of servers.

When the originating process calls tpkey_open() to open the key handle, it specifies either the
TPKEY_ENCRYPT or TPKEY_AUTOENCRYPT flag to indicate that the handle will be used to encrypt
a message buffer. Typically, a client makes this call after calling tpinit(), and a server makes
this call as part of initializing through tpsvrinit().

Opening a key handle with the TPKEY_AUTOENCRYPT flag enables automatic encryption:
subsequently, the originating process encrypts message buffers automatically whenever they are
sent. Using the TPKEY_AUTOENCRYPT flag is beneficial for three reasons:

Less work is required from application programmers because fewer ATMI calls are
required when operating in a secure ATMI application.

Existing ATMI applications can leverage encryption technology with minimal coding
changes.

The possibility of programming errors that might result in an unencrypted (plaintext) buffer
being sent over an insecure network is reduced.

The following example code shows how to open an encryption key handle. TPKEY is a special
data type defined in the atmi.h header file.

Listing 3-7 Opening an Encryption Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY tu_key;

.

.

.

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-37

if (tpkey_open(&tu_key, “TOUPPER”, NULL,

NULL, 0, TPKEY_ENCRYPT) == -1) {

(void) fprintf(stderr, “tpkey_open tu failed

tperrno=%d(%s)\n”, tperrno, tpstrerror(tperrno));

exit(1);

}

.

.

.

}

Step 2 (Optional): Getting Key Handle Information
You may want to get information about an encryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While
some of the information returned may be specific to a cryptographic service provider, a core set
of attributes is common to all providers.

The default public key implementation supports three algorithms for bulk data encryption of
message content:

DES (DES-CBC)—a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It
provides 56-bit keys (8 parity bits are stripped from the full 64-bit key) and is exportable
outside the United States. (DES stands for the Data Encryption Standard.)

3DES (two-key triple-DES)—a 128-bit block cipher run in Encrypt-Decrypt-Encrypt
(EDE) mode. 3DES provides two 56-bit keys (in effect, a 112-bit key) and is not
exportable outside the United States.

RC2—a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC2 can be used with keys of virtually unlimited length, but the public key software
restricts the key length to 128 bits. (RC2 stands for Rivest’s Cipher 2.)

Encryption strength is controlled by the ENCRYPT_BITS key attribute, and the algorithm is
controlled by the ENCRYPT_ALG key attribute. When an algorithm with fixed key length is set in
ENCRYPT_ALG, the value of ENCRYPT_BITS is automatically adjusted to match.

The following example code shows how to get information about an encryption key handle.

3-38 Using Security in ATMI Applications

Listing 3-8 Getting Information About an Encryption Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY tu_key;

char principal_name[PNAME_LEN];

long pname_len = PNAME_LEN;

.

.

.

if (tpkey_getinfo(tu_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {

(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,

tperrno, tpstrerror(tperrno));

.

.

.

exit(1);

}

.

.

.

}

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-39

Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with an encryption key handle, call the
tpkey_setinfo(3c) function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary,
depending on the cryptographic service provider.

The following example code shows how to change information associated with an encryption key
handle.

Listing 3-9 Changing Information Associated with an Encryption Key Handle Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY tu_key;

static const unsigned char rc2_objid[] = {

0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02

};

.

.

.

if (tpkey_setinfo(tu_key, “ENCRYPT_ALG”, (void *) rc2_objid,

sizeof(rc2_objid), 0) == -1) {

(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,

tperrno, tpstrerror(tperrno));

return(1);

}

.

.

.

}

3-40 Using Security in ATMI Applications

Step 4: Allocating a Buffer and Putting a Message in the Buffer
To allocate a typed message buffer, call the tpalloc(3c) function. Then put a message in the
buffer.

Step 5: Marking the Buffer for Encryption
To mark, or register, the message buffer for encryption, call the tpseal(3c) function. By calling
this function, you attach a copy of the encryption key handle to the message buffer. If you open
the key with the TPKEY_AUTOENCRYPT flag, each message that you send is automatically marked
for encryption without an explicit call to tpseal().

Note: In COBOL applications, use the AUTOENCRYPT settings member to encrypt a message
buffer. See TPKEYOPEN(3cbl).

The following example code shows how to mark a message buffer for encryption.

Listing 3-10 Marking a Message Buffer for Encryption Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY tu_key;

char *sendbuf, *rcvbuf;

.

.

.

if (tpseal(sendbuf, tu_key, 0) == -1) {

(void) fprintf(stderr, “tpseal failed tperrno=%d(%s)\n”,

tperrno, tpstrerror(tperrno));

tpfree(rcvbuf);

tpfree(sendbuf);

tpterm();

(void) tpkey_close(tu_key, 0);

exit(1);

}

.

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-41

.

.

}

Step 6: Sending the Message
After the message buffer has been marked for encryption, transmit the message buffer using one
of the following C functions or COBOL routines:

– tpcall() or TPCALL

– tpbroadcast() or TPBROADCAST

– tpconnect() or TPCONNECT

– tpenqueue() or TPENQUEUE
– tpforward()

– tpnotify() or TPNOTIFY

– tppost() or TPPOST

– tpreturn() or TPRETURN

– tpsend() or TPSEND

Step 7: Closing the Encryption Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the encryption
key handle and all resources associated with it.

How the System Encrypts a Message Buffer
Just before a message buffer is sent, the public key software encrypts the message and attaches
an encryption envelope; the encryption envelope enables the target recipient to decrypt the
message. If a sealed buffer is transmitted more than once, encryption is performed for each
transmission. This process makes it possible to modify a message buffer after marking the buffer
to be encrypted.

The public key software encrypts the content of the message buffer and generates an encryption
envelope for the recipient of the encrypted message by performing the following two-step
procedure.

3-42 Using Security in ATMI Applications

1. {message_buffer_data + buffer_type_string + buffer_subtype_string}session_key =
encrypted_message

2. {session_key}recipient’s_public_key = encrypted_session_key =
encryption_envelope_for_recipient

The notation {something}key means that something has been encrypted or decrypted using key.
In Step 1, a message buffer is encrypted using the session key, and in step 2, the session key is
encrypted using the recipient’s public key.

Multiple Message Recipients
More than one encryption envelope can be associated with a message buffer, which means that
multiple recipients, with different private keys, can receive and decrypt an encrypted message. A
recipient can be a person or a process. When a message is encrypted for multiple recipients, it is
encrypted only once, but the session key is encrypted with the public key of each recipient. All
encryption envelopes are attached to the encrypted message.

If several encryption envelopes are associated with one message buffer, all of them must use the
same symmetric key algorithm and the same key size for that algorithm.

Encrypted Message Content
An encrypted message buffer is represented in the PKCS-7 format as a version 0 EnvelopedData
content type. The EnvelopedData content type, as used by the BEA Tuxedo system, consists of
the following items:

A list of recipients (in plaintext) that can be read by any ATMI process

Encryption envelopes for one or more recipients

Public key algorithm (and any associated parameters) under which the session key was
encrypted

Symmetric key algorithm (and any associated parameters) under which the bulk data was
encrypted

Encrypted bulk data, which is a composite of message buffer data, buffer type string,
buffer subtype string, and digital signatures (if any) that have undergone the following
transformations:

– Conversion of the message buffer data, buffer type string, and buffer subtype string into
the BEA Tuxedo encoded format to form the composite encoded data. (The BEA

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-43

Tuxedo encoded format allows a message buffer to be decrypted on any machine
architecture.)

– Compression of the composite encoded data and digital signatures (if any) using the
Deflate compression algorithm to form the composite compressed data.

– Encryption of the composite compressed data under a randomly generated session key
and symmetric key algorithm (identified earlier in this list) to form the encrypted bulk
data.

The following figure shows the envelope hierarchy for the EnvelopedData content type. The
SignedData content type is part of the hierarchy only if the message to which it belongs has one
or more associated digital signatures.

Figure 3-6 EnvelopedData Content Type

As shown in the preceding figure, a message buffer may be both signed and encrypted. No
relationship is required between the number of digital signatures and the number of encryption
envelopes associated with a message buffer.

When both processes are performed on a message buffer, signatures are generated first, on
unencrypted data. The number of attached signatures and the identity of signing parties are then
obscured by the bulk data encryption.

TUXBUF Content Type

(Message Content)

SignedData Content Type

(Signing Operation)

CompressedData Content Type

(Compressing Operation)

EnvelopedData Content Type

(Encrypting Operation)

3-44 Using Security in ATMI Applications

Note: A suitable decryption key must be available to access message data before signatures can
be verified.

Writing Code to Receive Encrypted Messages
The procedure for writing code to receive encrypted messages consists of the following steps.

1. Call tpkey_open() to open a key handle for the target recipient. tpkey_open returns a key
handle to the recipient’s private key and digital certificate.

2. (Optional): Call tpkey_getinfo() to get information about the decryption key handle.

3. (Optional): Call tpkey_setinfo() to change information associated with the decryption
key handle.

4. Call tpkey_close() to close the decryption key handle. tpkey_close() releases the key
handle and all resources associated with it.

For details about these steps and insight into how the system decrypts a message buffer, see the
following topics.

Step 1: Opening a Key Handle for Decryption
Call the tpkey_open(3c) function or TPKEYOPEN(3cbl) routine to make the private key and
the associated digital certificate of the target recipient available to the receiving process. The
receiving process might be a client, a service, a server group, a gateway group, a server machine,
or an entire domain of servers.

An application administrator can configure the ATMI application’s UBBCONFIG file such that
decryption key handles are opened automatically when the ATMI application is booted. No more
than one decryption key handle per server may be used with this method. See “Initializing
Decryption Keys Through the Plug-ins” on page 2-50 for details.

If an ATMI application is not configured to open a decryption key handle for the receiving
process during booting, the receiving process initiates its own tpkey_open() call. Or, if the
receiving process wants to open another decryption key handle, the receiving process makes an
additional tpkey_open() call.

In order to access the target recipient’s private key, the receiving process must prove its right to
act as the target recipient. Proof requirements depend on the implementation of the public key
plug-in interface. The default public key implementation requires a secret password from the
calling process.

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-45

When the receiving process calls tpkey_open() to open the key handle, it specifies the
TPKEY_DECRYPT flag to indicate that the handle will be used to decrypt a message buffer.
Typically, a client makes this call after calling tpinit(), and a server makes this call as part of
initializing through tpsvrinit().

The following example code shows how to open a decryption key handle. TPKEY is a special data
type defined in the atmi.h header file.

Listing 3-11 Opening a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)

int argc;

char **argv;

#endif

{

char *tu_location;

.

.

.

if (tpkey_open(&tu_key, “TOUPPER”, tu_location,

NULL, 0, TPKEY_DECRYPT) == -1) {

userlog(“Unable to open private key: %d(%s)”,

tperrno, tpstrerror(tperrno));

return(-1)

}

.

.

.

}

Step 2 (Optional): Getting Key Handle Information
You may want to get information about a decryption key handle to establish the validity of the
key. To do so, call the tpkey_getinfo(3c) function or TPKEYGETINFO(3cbl) routine. While

3-46 Using Security in ATMI Applications

some of the information returned may be specific to a cryptographic service provider, a core set
of attributes is common to all providers.

The following example code shows how to get information about a decryption key handle.

Listing 3-12 Getting Information About a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)

int argc;

char **argv;

#endif

{

char principal_name[PNAME_LEN];

long pname_len = PNAME_LEN;

.

.

.

if (tpkey_getinfo(tu_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {

(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,

tperrno, tpstrerror(tperrno));

.

.

.

exit(1);

}

.

.

.

}

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-47

Step 3 (Optional): Changing Key Handle Information
To set optional attributes associated with a decryption key handle, call the tpkey_setinfo(3c)
function or TPKEYSETINFO(3cbl) routine. Key handle attributes vary, depending on the
cryptographic service provider.

The following example code shows how to change information associated with a decryption key
handle.

Listing 3-13 Changing Information Associated with a Decryption Key Handle Example

TPKEY tu_key;

tpsvrinit(argc, argv)

int argc;

char **argv;

#endif

{

TM32U mybits = 128;

.

.

.

if (tpkey_setinfo(tu_key, “ENCRYPT_BITS”, &mybits,

sizeof(mybits), 0) == -1) {

(void) fprintf(stderr, “tpkey_setinfo failed

tperrno=%d(%s)\n”,

tperrno, tpstrerror(tperrno));

return(1);

}

.

.

.

}

Step 4: Closing the Decryption Key Handle
Call the tpkey_close(3c) function or TPKEYCLOSE(3cbl) routine to release the decryption
key handle and all resources associated with it.

3-48 Using Security in ATMI Applications

How the System Decrypts a Message Buffer
The public key software automatically decrypts an encrypted message buffer whenever it enters
a BEA Tuxedo client process, server process, or any system process that needs to access the
content of the message buffer. For automatic decryption to succeed, the receiving process must
have opened a decryption key (type TPKEY_DECRYPT) corresponding to a recipient identified in
one of the attached encryption envelopes.

Upon receiving an encrypted message, the public key software, operating on behalf of the
receiving process, performs the following tasks.

1. Reads the target recipient’s name on the attached encryption envelope.

2. To recover the session key, decrypts the recipient’s encryption envelope using the
recipient’s private key and the public key algorithm.

3. Decrypts the message using the recovered session key and the symmetric key algorithm.

4. Uncompresses the message.

5. Verifies digital signatures if any. (See “How a Signed Message Is Received” on page 3-32.)

6. If the message buffer successfully passes the check performed in step 5, the public key
software decodes the message buffer data, buffer type string, and buffer subtype string, and
then passes the plaintext message to the receiving process. This step reverses the encoding
performed by the originating process. (The BEA Tuxedo encoded format allows a message
buffer to be decrypted on any machine architecture.)

Note: If none of the attached digital signatures can be verified or the message buffer cannot be
decrypted, the receiving process does not receive the message buffer. Moreover, the
receiving process has no knowledge of the message buffer.

If a system process is acting as a conduit (that is, if it is not reading the content of the message),
then the message need not be decrypted. Bridges and workstation handlers (WSHs) are examples
of system processes acting as conduits.

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-49

The WSH is a special example of a conduit. If a WSH is configured for data-dependent routing,
it needs to read the received message buffer to determine how to route the buffer. The public key
software makes a copy of the received message buffer, decrypts the copy, and then passes the
decrypted copy to the WSH. The WSH analyzes the decrypted copy to determine how to route
the buffer, and then routes the original message buffer unchanged to the appropriate server. (For
more detail about the interaction between data-dependent routing and public key security, see
“Compatibility/Interaction with Data-dependent Routing” on page 1-55.)

Discarding an Input Buffer’s Encryption Envelopes
If a message buffer is passed to an ATMI function (such as tpacall()) as an input parameter,
the public key software discards any encryption envelopes previously attached to the message.
This behavior prevents the target recipients for the original message from receiving any
modifications made by an intermediate process.

As an example of this process, consider the scenario shown in the following figure.

Figure 3-7 Forwarding a Signed and Encrypted Message Example

Server

Employee

Server

Purchasing

Message

Sig 1

EnvelopedData

Encrypt Message & Forward Encrypted Message
Decrypt, Read, Sign, Seal,

Read Message
Decrypt &

Message

EnvelopedData

Sig 2

Message

EnvelopedData

Workstation
Client

& Forward Encrypted Message
Decrypt, Read,

Message

EnvelopedData

Sig 1Sig 1

Encrypt Env 1

Server

Manager

Encrypt Env 2

Encrypt Env 3

Sig 2

Sig 1

Encrypt Env 3

Encrypt Env 1

Encrypt Env 2

Encrypt Env 1

Encrypt Env 2

WSH

(Data-dependent Routing)

3-50 Using Security in ATMI Applications

A server process named Manager receives a signed and encrypted message buffer from a client
process named Employee, decrypts and reads the received message buffer, signs and seals it for
a service named Purchasing, and then forwards the message to Purchasing.

The following is a detailed description of how this operation is performed.

1. The workstation handler (WSH) receives the signed and encrypted message buffer from the
employee and forwards it as is.

The WSH process is configured for data-dependent routing, which is briefly described in
“How the System Decrypts a Message Buffer” on page 3-48. The public key software uses
a decryption key previously opened for the WSH process to decrypt a copy of the received
message buffer, and then passes the decrypted copy to the WSH. After analyzing the
decrypted copy, the WSH routes the received message buffer to the Manager process as is.

If the WSH process is not configured for data-dependent routing, the Employee process
does not need to tpseal() the message buffer for the WSH process, and the WSH process
does not need to open a decryption key.

Regardless of how it is configured, the WSH does not verify digital signatures.

2. When the message buffer arrives at the Manager process, the public key software:

a. Decrypts the message buffer using a decryption key previously opened for the Manager
process.

b. Verifies the employee’s signature.

c. Passes the message without digital signature or encryption information to the Manager.

When a process receives a message buffer, it receives only the message content. Any
digital signatures or encryption envelopes associated with the message buffer are not
included.

3. The Manager calls tpenvelope() repeatedly to find out about the digital signature and
encryption information associated with the message buffer. tpenvelope() returns:

Sending and Rece iv ing Encr ypted Messages

Using Security in ATMI Applications 3-51

– Digital signature information, including the signer’s public key and a digital-signature
status of TPSIGN_OK

– Encryption information, including the public keys of the WSH process and the
Manager process itself

4. The Manager calls tpkey_getinfo() with the signer’s public key as an argument, to
obtain more information about the signer, including the signer’s principal name.

5. If the Manager determines that the signer is a known employee and that the employee’s
request (as stated in the message content) is valid, the Manager proceeds as follows.

a. Calls tpsign() to mark the message buffer for digital signature by the Manager.

a. Calls tpseal() to mark the message buffer to be encrypted for Purchasing.

b. Calls tpforward() (or some other function used to transmit data) to send the message to
Purchasing.

Just before the message is transmitted, the public key software performs the following tasks.

1. Generates a digital signature for the Manager.

2. Verifies the employee’s digital signature.

3. Encrypts the message content and associated digital signatures.

4. Creates an encryption envelope for Purchasing.

Replacing an Output Buffer’s Encryption Envelopes
If a message buffer is passed to an ATMI function (such as tpgetrply()) as an output
parameter, the public key software deletes any encryption information associated with the buffer.
This information includes any pending seals, or seals from previous uses of the buffer. (A
pending seal is a recipient’s seal that is registered with a message buffer.)

New encryption information might be associated with the new buffer content after successful
completion of the operation.

See Also
“Examining Digital Signature and Encryption Information” on page 3-52

“Externalizing Typed Message Buffers” on page 3-58

“Public Key Security” on page 1-27

3-52 Using Security in ATMI Applications

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

Examining Digital Signature and Encryption Information
The public key software maintains the order in which:

Digital-signature registration requests and digital signatures are attached to a message
buffer

Encryption registration requests and encryption envelopes are attached to a message buffer

A process obtains this information by calling the tpenvelope() function with the target message
buffer as an argument. tpenvelope() is described on the tpenvelope(3c) reference page in
the BEA Tuxedo ATMI C Function Reference.

There may be multiple occurrences of digital-signature registration requests, digital signatures,
encryption registration requests, and encryption envelopes associated with a message buffer. The
occurrences are stored in sequence, with the first item at the zero position and subsequent items
in consecutive positions. The occurrence input parameter for tpenvelope() indicates which
item is being requested. When the value of occurrence is beyond the position of the last item,
tpenvelope() fails with the TPENOENT error condition. A process can examine all items by
calling tpenvelope() repeatedly until TPENOENT is returned.

In an originating process, digital signature and encryption information is generally in a pending
state, waiting until the message is sent. In a receiving process, digital signatures have already
been verified, and encryption and decryption have already been performed.

What Happens When an Originating Process Calls tpenvelope
When an originating process calls tpenvelope() with the originating message buffer as an
argument, tpenvelope() reports:

Any digital signature request explicitly registered with the message buffer as being in the
TPSIGN_PENDING state. The originating process explicitly registers a digital signature
request by calling the tpsign(3c) function.

Any digital signature request implicitly registered with the message buffer as also being in
the TPSIGN_PENDING state. The originating process implicitly registers a digital signature
request by calling tpkey_open(3c) with the TPKEY_AUTOSIGN flag specified.

Examin ing D ig i ta l S ignature and Enc ryp t i on In fo rmat ion

Using Security in ATMI Applications 3-53

Any encryption (seal) request explicitly registered with the message buffer as being in the
TPSEAL_PENDING state. The originating process explicitly registers an encryption request
by calling the tpseal(3c) function.

Any encryption (seal) request implicitly registered with the message buffer as also being in
the TPSEAL_PENDING state. The originating process implicitly registers an encryption
request by calling tpkey_open() with the TPKEY_AUTOENCRYPT flag specified.

In addition to the status, tpenvelope() returns the key handle associated with a digital signature
or encryption registration request. A process can call the tpkey_getinfo(3c) function with the
key handle as an argument, to get more information about the key handle.

What Happens When a Receiving Process Calls tpenvelope
When a process receives a message buffer, it receives only the message content. Any digital
signatures or encryption envelopes associated with the message buffer are not included. The
receiving process must call tpenvelope() to obtain information about any attached digital
signatures or encryption envelopes.

When a receiving process calls tpenvelope() with the received message buffer as an argument,
tpenvelope() reports:

Any digital signature attached to the message buffer. A digital signature has one of the
following states:
– TPSIGN_OK

Digital signature has been verified.
– TPSIGN_TAMPERED_MESSAGE

Digital signature is not valid because the content of the message buffer has been
altered.

– TPSIGN_TAMPERED_CERT

Digital signature is not valid because the signer’s digital certificate has been altered.
– TPSIGN_REVOKED_CERT

Digital signature is not valid because the signer’s digital certificate has been revoked.
– TPSIGN_POSTDATED

Digital signature is not valid because its timestamp is too far into the future.
– TPSIGN_EXPIRED_CERT

Digital signature is not valid because the signer’s digital certificate has expired.

3-54 Using Security in ATMI Applications

– TPSIGN_EXPIRED

Digital signature is not valid because its timestamp is too old.

– TPSIGN_UNKNOWN

Digital signature is not valid because the signer’s digital certificate was issued by an
unknown Certification Authority (CA).

Any encryption envelope attached to the message buffer. An encryption envelope has one
of the following states:

– TPSEAL_OK

Encryption envelope is valid.

– TPSEAL_TAMPERED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
been altered. (Target recipient will not receive the message buffer.)

– TPSEAL_REVOKED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
been revoked. (Target recipient will not receive the message buffer.)

– TPSEAL_EXPIRED_CERT

Encryption envelope is not valid because the target recipient’s digital certificate has
expired. (Target recipient will not receive the message buffer.)

– TPSEAL_UNKNOWN

Encryption envelope is not valid because the target recipient’s digital certificate was
issued by an unknown CA. (Target recipient will not receive the message buffer.)

In addition to the status, tpenvelope() returns the key handle associated with a digital signature
or encryption envelope. A process can call the tpkey_getinfo(3c) function with the key
handle as an argument, to get more information about the key handle.

If a receiving process calls tpsign() to register a digital signature request after receiving the
message buffer, tpenvelope() reports the status of the registration as TPSIGN_PENDING.
Similarly, if a receiving process calls tpseal() to register an encryption (seal) request after
receiving the message buffer, tpenvelope() reports the status of the registration as
TPSEAL_PENDING.

Examin ing D ig i ta l S ignature and Enc ryp t i on In fo rmat ion

Using Security in ATMI Applications 3-55

If a receiving process modifies the content of a signed message buffer after receiving it, the
attached signatures are no longer valid. As a result, tpenvelope() cannot verify the signatures,
and reports a signature status of TPSIGN_TAMPERED_MESSAGE.

Understanding the Composite Signature Status
For a message buffer with multiple digital signatures, the public key software calls an internal
function equivalent to tpenvelope() to examine the state of each digital signature. Then, by
observing certain rules, the public key software forms a composite signature status. The rules for
forming a composite signature status are shown in the following table.

Table 3-4 Composite Signature Status

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .

TPSIGN_TAMPERED_MESSAGE . . . TPSIGN_TAMPERED_MESSAGE

TPSIGN_TAMPERED_CERT TPSIGN_TAMPERED_MESSAGE TPSIGN_TAMPERED_CERT

TPSIGN_REVOKED_CERT TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT

TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT

TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED

TPSIGN_EXPIRED_CERT

TPSIGN_OK TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT

TPSIGN_OK

3-56 Using Security in ATMI Applications

Any incoming message buffer without a composite signature status of TPSIGN_OK or
TPSIGN_UNKNOWN is discarded as if it were never received. If the SIGNATURE_REQUIRED
parameter is set to Y (yes) in the ATMI application’s UBBCONFIG file, then any incoming message
buffer without a composite signature status of TPSIGN_OK is discarded as if it were never
received. See “Enforcing the Signature Policy for Incoming Messages” on page 2-44 for more
detail.

An exception to the handling of signed message buffers described in the previous paragraph is
the tpimport(3c) function. The tpimport(3c) function delivers an incoming message buffer
regardless of the composite signature status.

Example Code for tpenvelope
The following example code shows how to use tpenvelope() to examine the digital signature
and encryption information associated with a message buffer.

TPSIGN_EXPIRED TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK

TPSIGN_EXPIRED

TPSIGN_UNKNOWN TPSIGN_TAMPERED_MESSAGE
TPSIGN_TAMPERED_CERT
TPSIGN_REVOKED_CERT
TPSIGN_POSTDATED
TPSIGN_EXPIRED_CERT
TPSIGN_OK
TPSIGN_EXPIRED

TPSIGN_UNKNOWN

Table 3-4 Composite Signature Status (Continued)

If Any Status Is . . . And There Is No Status of . . . Then the Composite Status Is . . .

Examin ing D ig i ta l S ignature and Enc ryp t i on In fo rmat ion

Using Security in ATMI Applications 3-57

Listing 3-14 Using tpenvelope Example

main(argc, argv)

int argc;

char *argv[];

#endif

{

TPKEY tu_key;

TPKEY sdo_key;

TPKEY output_key;

char *sendbuf, *rcvbuf;

int ret;

int occurrence = 0;

long status;

char principal_name[PNAME_LEN];

long pname_len = PNAME_LEN;

int found = 0;

.

.

.

output_key = NULL;

ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,

&status, NULL, 0);

while (ret != -1) {

if (status == TPSIGN_OK) {

if (tpkey_getinfo(output_key, “PRINCIPAL”,

principal_name, &pname_len, 0) == -1) {

(void) fprintf(stdout, “Unable to get information

about principal: %d(%s)\n”,

tperrno, tpstrerror(tperrno));

tpfree(sendbuf);

tpfree(rcvbuf);

tpterm();

(void) tpkey_close(tu_key, 0);

(void) tpkey_close(sdo_key, 0);

(void) tpkey_close(output_key, 0);

3-58 Using Security in ATMI Applications

exit(1);

}

/* Do not forget to free resources */

(void) tpkey_close(output_key, 0);

output_key = NULL;

found = 1;

break;

}

/* Do not forget to free resources */

(void) tpkey_close(output_key, 0);

output_key = NULL;

occurrence++;

ret = tpenvelope(rcvbuf, 0, occurrence, &output_key,

&status, NULL, 0);

}

.

.

.

}

See Also
“Externalizing Typed Message Buffers” on page 3-58

“Public Key Security” on page 1-27

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

Externalizing Typed Message Buffers
An externalized representation is a message buffer that does not include any ATMI header
information that is normally added to a message buffer just before the buffer is transmitted. An
externalized representation of a signed message buffer enables “pass through” transmission of
signed data and long-term storage of the signed buffer for non-repudiation. It also enables an

Exte rna l i z ing Typed Message Buf fe rs

Using Security in ATMI Applications 3-59

encrypted message buffer to be transported through intermediate processes without access to a
decryption key.

How to Create an Externalized Representation
An ATMI process converts a typed message buffer into an externalized representation by calling
the tpexport(3c) function. Pending signatures associated with a message buffer are generated
at the time tpexport() is called, just as if the buffer were being transmitted to another process
by an ATMI function. Similarly, pending seals associated with a message buffer are generated at
the time tpexport() is called, just as if the buffer were being transmitted to another process by
an ATMI communication function.

The externalized representation of a message buffer is stored in the PKCS-7 format, which is a
binary format. If a string format is required, the calling process must call tpexport() with the
TPEX_STRING flag specified.

Note: The ability to create an externalized representation of a typed message buffer is not
unique to public key security. A process may call tpexport() to externalize a typed
message buffer regardless of whether a message buffer is marked for digital signature or
encryption.

How to Convert an Externalized Representation
A receiving process calls the tpimport(3c) function to convert the externalized representation
of a message buffer into a typed message buffer. The tpimport() function also performs
decryption, if necessary, and verifies any associated digital signatures.

Example Code for tpexport and tpimport
The following example code shows how to use tpexport() to convert a typed message buffer
into an externalized representation, and how to use tpimport() to convert the externalized
representation back into a typed message buffer.

3-60 Using Security in ATMI Applications

Listing 3-15 Using tpexport and tpimport Example

static void hexdump _((unsigned char *, long));

#define MAX_BUFFER 80000

main(argc, argv)

int argc;

char *argv[];

#endif

{

char *databuf;

char exportbuf[MAX_BUFFER];

long exportbuf_size = 0;

char *importbuf = NULL;

long importbuf_size = 0;

int go_on = 1;

.

.

.

exportbuf_size = 0;

while (go_on == 1) {

if (tpexport(databuf, 0, exportbuf, &exportbuf_size, 0)

== -1) {

if (tperrno == TPELIMIT) {

printf(“%d tperrno is TPELIMIT, exportbuf_size=%ld\n”,

__LINE__, exportbuf_size);

if (exportbuf_size > MAX_BUFFER) {

return(1);

}

}

else {

printf(“tpexport(%d) failed: tperrno=%d(%s)\n”,

__LINE__, tperrno, tpstrerror(tperrno));

return(1);

}

}

else {

Exte rna l i z ing Typed Message Buf fe rs

Using Security in ATMI Applications 3-61

go_on = 0;

}

}

.

.

.

hexdump((unsigned char *) exportbuf, (long) exportbuf_size);

if (tpimport(exportbuf, exportbuf_size, &importbuf,

&importbuf_size, 0) == -1) {

printf(“tpimport(%d) failed: tperrno=%d(%s)\n”,

__LINE__, tperrno, tpstrerror(tperrno));

return(1);

}

.

.

.

}

See Also
“Public Key Security” on page 1-27

“Administering Public Key Security” on page 2-41

“Programming an ATMI Application with Security” on page 3-3

3-62 Using Security in ATMI Applications

Using Security in ATMI Applications 4-1

C H A P T E R 4

Implementing Single Point Security
Administration

The following sections explain how to implement single point security administration for Tuxedo
and WebLogic Server from the Tuxedo point of view:

What Single Point Security Administration Means

Single Point Security Administration Tasks

Note: Before setting up single point security, be sure you are familiar with the Tuxedo security
architecture and requirements. You may also want to coordinate this effort with your
WebLogic or LDAP Administrator.

What Single Point Security Administration Means
If you have both Tuxedo and WebLogic Server deployed in your environment, then you have to
manage two sets of security information. Single point security administration allows you to
leverage the WebLogic Server security to manage your security database by eliminating user and
group information from Tuxedo. You can use WebLogic Server as your security database to
authenticate Tuxedo users.

Note: The Tuxedo ACL information will continue to reside in Tuxedo and is not currently
integrated with WebLogic Server 7.0.

If you are specifying SECURITY=ACL or SECURITY=MANDATORY_ACL in the RESOURCES
section of the UBBCONFIG file, then you must continue to maintain tpgrp and tpacl files
in Tuxedo.

The single point security administration feature leverages the enhanced WebLogic Server 7.0
security and the LDAP to allow single point security administration. You can maintain user

4-2 Using Security in ATMI Applications

security information in WebLogic Server embedded LDAP server and use the WebLogic Server
Console to administer the security information from a single system. You must modify the
UBBCONFIG file to enable single point security.

See Also
Security information for WebLogic Server 8.1at the following URL:

http://e-docs.bea.com/wls/docs81/security.html

Single Point Security Administration Tasks
To set up single point security, you must provide the Tuxedo security information to the
WebLogic Server-embedded LDAP server. This includes migrating or setting up the Tuxedo user
(UID) and group (GID) information in WebLogic Server LDAP server so that authentication can
be successful. For Tuxedo UID and GID values to be available to WebLogic Server, you must
use the tpmigldap utility, modify the tpusr file manually with a text editor, or enter the user
information via the WebLogic Administration Console.

Note: The WebLogic Administration Console may be the method used when adding one or two
users after the security database is set up. For efficiency and time management, you may
prefer using the tpmigldap utility or the tpusr file as a general rule.

Single point security administration consists of the following tasks:

Setting up LAUTHSVR as the Authentication Server

Using tpmigldap to Migrate User Information to WebLogic Server

Adding New Tuxedo User Information

Setting up LAUTHSVR as the Authentication Server
LAUTHSVR is a System /T provided server that offers the authentication service while the user
security information is located in WebLogic Server. To enable the single security administration
feature, you must configure LAUTHSVR as the authentication server. At runtime, the LAUTHSVR
will retrieve the user information from the WebLogic Server-embedded LDAP and authenticate
users. If the authentication is successful, an appkey is returned to the user, otherwise,
authentication fails.

To define LAUTHSVR as the authentication server, you must define the following parameters in the
UBBCONFIG file:

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-3

SECURITY must be set to USER_AUTH, ACL, or MANDATORY_ACL in the RESOURCES section.

LAUTHSVR must be specified in the SERVERS section.

Note: If LAUTHSVR cannot find a valid configuration file or the file does not exist, it will log
an error message in USERLOG and fail to boot. The default LAUTHSVR configuration
file is $TUXDIR/udataobj/tpldap and is provided with the product.

LAUTHSVR Command Line Interface
The LAUTHSVR is the LDAP-based authentication server for Tuxedo. It requires a configuration
file, that by default is $TUXDIR/udataobj/tpldap. You can create your own LAUTHSVR
configuration file or use the default tpldap file that is available with the product.

The command line interface syntax for LAUTHSVR is as follows:

-f full_pathname

Specifies the full pathname of the LAUTHSVR configuration file.

Note: If -f option is omitted, the default LAUTHSVR configuration file tpldap is used.

The following sample instructs LAUTHSVR to use the default configuration file, tpldap, in the
$TUXDIR/udataobj directory.

LAUTHSVR SRVGRP=GROUP1 SRVID=2 CLOPT=”-A-”

In the following sample, LAUTHSVR will use the myauthsvr.conf configuration file in the
/home/tuxedo/bankapp directory.

LAUTHSVR SRVGRP=GROUP1 SRVID=2

CLOPT=”-A-- -f/home/tuxedo/bankapp/myauthsvr.conf”

Setting Up the LAUTHSVR Configuration File
LAUTHSVR supports an input configuration file that contains information such as bind DN and an
unencrypted password for bind DN. This configuration file is a plain text file and can be edited
using any text editor and must be protected by the system using file permissions. By default the
configuration file, named tpldap, is located in $TUXDIR/udataobj directory. You can
overwrite this file in the command line for LAUTHSVR. The LAUTHSVR configuration file contains
keyword and value pairs as defined in Table 4-1.

4-4 Using Security in ATMI Applications

Syntax Requirements for LAUTHSVR Configuration File
Although the default values for the LAUTHSVR configuration file are usually sufficient, a system
administrator may choose to configure it with different names. Therefore, you should be aware
of the following requirements for the LAUTHSVR configuration file:

The LAUTHSVR configuration file is a plain text file.

Keyword order does not matter; however, there must be at least one space character
between the keyword and its value.

Comments begin with the pound symbol (#). Text after the # is ignored.

The upper limit of a line is 255 characters. If a line exceeds this upper limit, it will be
truncated.

The bind DN must have privileges to access the LDAP database (usually this is the LDAP
administrator).

Note: Before an administrator can set up and use the Tuxedo LDAP-based security
authentication server, the administrator must change the LDAP administrator
password through the WebLogic Administration Console.

LAUTHSVR Configuration File Keywords
The following table defines the LAUTHSVR configuration file keywords.

Note: The only required keyword in the LAUTHSVR configuration file is PASSWORD, which
specifies the password for bind DN. All other keywords are optional.

Table 4-1 LAUTHSVR Configuration File Keywords

Keyword Value Type Usage

FILE_VERSION numeric The configuration file version. This should
always be 1. The default is 1.

LDAP_VERSION numeric The LDAP protocol version. Valid values are 2 or
3. The default is 3.

BINDDN string The DN used to bind to an LDAP server, usually
the DN for the LDAP administrator. The default
is “cn=admin”.

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-5

BASE string LDAP search base. The default is “ou=people,
ou=myrealm, dc=mydomain”, where
myrealm is the name of the security realm and
mydomain is the name of the WebLogic Server
domain.

UID string The userid attribute that is used to logon to
WebLogic Server and Tuxedo. The default is
uid.

PASSWORD string The password for bind DN. This is a required
keyword and the password is in clear text format.

LDAP_ADDR string A comma separated list of WebLogic hostnames
and ports. The syntax is
[//]hostname[:port][,[//]hostname[
:port]...]. The default value for port is 7001.
If LDAP_ADDR is not specified, LAUTHSVR
assumes localhost:7001 is the location to
contact the LDAP server.

For more information about specifying multiple
network addresses, refer to “Using Multiple
Network Addresses for High Availability.”

EXPIRE numeric A numeric value that represents the number of
seconds the cached entry is available in the local
process memory. A value other than zero will
enable caching. A value of zero specifies no
caching. The default is zero.

For more information about enabling caching,
refer to “Using Multiple Network Addresses for
High Availability.”

SRCH_ORDER string Valid values are LDAP or LOCAL, or both
separated by a comma. If you specify LOCAL, the
search order will use the tpusr file. The default
is LDAP.

For more information about database search
order, refer to “Configuring the Database Search
Order.”

Keyword Value Type Usage

4-6 Using Security in ATMI Applications

Sample LAUTHSVR Configuration File
The following listing is a sample LAUTHSVR configuration file.

Listing 4-1 Sample LAUTHSVR Configuration File

#

Tuxedo LDAP Authentication Server configuration file.

LOCAL_FILE string The full pathname of the tpusr file to be used if
LOCAL search order is enabled. The default value
is $APPDIR/tpusr.

For more information about database search
order, refer to “Configuring the Database Search
Order.”

Note: If a directory path is specified other than
the default $APPDIR/tpusr, the file
must be generated using Tuxedo MIB or
tpusradd command line utility. Failure
to do this may cause authentication
failure.

WLS_DOMAIN string The WebLogic Server domain name. The default
value is mydomain.

WLS_REALM string The WebLogic Server security realm name. The
default is myrealm.

ADM_GROUP string The WebLogic Server administrator group name.
The default is Administrators.

OP_GROUP string The WebLogic Server operators group name. The
default is Operators.

TUX_UID_KW string The keyword used in the description to identify
the Tuxedo userid. The default is TUXEDO_UID.

TUX_GID_KW string The keyword used in the description to identify
the Tuxedo group ID. The default is
TUXEDO_GID.

Keyword Value Type Usage

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-7

#

created: Thu May 26 15:36:59 2002

#

FILE_VERSION 1

LDAP_VERSION 3

BINDDN cn=Admin

BASE ou=people,ou=myrealm,dc=mydomain

UID uid

PASSWORD secret

LDAP_ADDR //PLUTO:7001,//Saturn:7001

EXPIRE 0

SRCH_ORDER LDAP

WLS_DOMAIN mydomain

WLS_REALM myrealm

ADM_GROUP Administrators

OP_GROUP Operators

TUX_UID_KW TUXEDO_UID

TUX_GID_KW TUXEDO_GID

end of file

Warning: Because the PASSWORD for the LDAP administrator is in clear text, it is
recommended that the system administrator guards this file with correct access
permission.

Sample UBBCONFIG Using LAUTHSVR
A sample configuration follows with SECURITY set to ACL and LAUTHSVR defined.

Listing 4-2 Sample UBBCONFIG File Using LAUTHSVR

*RESOURCES

IPCKEY 51002

MASTER site1

MAXACCESSERS 50

MAXSERVERS 20

4-8 Using Security in ATMI Applications

MAXSERVICES 20

MODEL SHM

LDBAL N

BLOCKTIME 10

SECURITY ACL

AUTHSVC "..AUTHSVC"

*MACHINES

DEFAULT:

APPDIR="/home/tuxedo/application"

TUXCONFIG="/home/tuxedo/application/TUXCONFIG"

TUXDIR="/home/tuxedo/tux81"

Server1 LMID=site1

MAXWSCLIENTS=20

*GROUPS

GROUP1 LMID=site1 GRPNO=1

GROUP2 LMID=site1 GRPNO=2

GROUP3 LMID=site1 GRPNO=3

GROUP4 LMID=site1 GRPNO=4

*SERVERS

DEFAULT:

CLOPT="-A" RESTART=N MAXGEN=5

LAUTHSVR SRVGRP=GROUP1 SRVID=10

CLOPT="-A -- -F /home/tuxedo/application/lauthsvr.conf "

DMADM SRVGRP=GROUP2 SRVID=20

GWADM SRVGRP=GROUP3 SRVID=30

GWTDOMAIN SRVGRP=GROUP3 SRVID=31

Simpserv SRVGRP=GROUP4 SRVID=40

*SERVICES

TOUPPER

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-9

Using Multiple Network Addresses for High Availability
It is possible to configure more than one network address for a WebLogic Server domain. This
may be a favorable configuration in order to provide high availability for user authentication. The
user security information is replicated to all WebLogic Server-embedded LDAP servers in a
WebLogic domain. LAUTHSVR can only connect to one server at a time; however, when a network
error occurs, LAUTHSVR will try to connect to the next available address.

To configure multiple network addresses for LAUTHSVR, use the LDAP_ADDR keyword in the
LAUTHSVR configuration file. The order in which the hostnames are specified is the order in which
LAUTHSVR will try to connect. To use caching during authentication, specify the EXPIRE
keyword. The value in this keyword will determine the number of seconds the cached entry is
available in the local process memory.

Note: It is not required to have WebLogic Server available when you boot Tuxedo using
tmboot; however, without the availability of at least one WebLogic Server, LAUTHSVRs
ability to authenticate users is limited.

Without the availability of WebLogic Server, you can boot Tuxedo and authenticate
users using SRCH_ORDER LOCAL. In this case, the user authentication is verified against
the tpusr file. For more information about search order, refer to “Configuring the
Database Search Order” on page 4-9.

Sample LAUTHSVR Configuration of Multiple Network Addresses
The following sample specifies multiple network addresses in the LDAP_ADDR keyword.

LDAP_ADDR //Pluto:8000,//Saturn,Jupiter

The previous sample specifies three WebLogic Server hostnames. The first server runs on Pluto
and uses address 8000. The second server runs on Saturn and uses the default address 7001. The
third server runs on Jupiter and also uses the default address 7001.

Configuring the Database Search Order
By default the LAUTHSVR authentication server will search the user information in the WebLogic
Server-embedded LDAP server. To enable the use of the tpusr file in the database search, you
must specify LOCAL in the SRCH_ORDER keyword. The order that the comma separated values are
defined in the SRCH_ORDER keyword will specify the order in which LAUTHSVR searches for user

4-10 Using Security in ATMI Applications

information. LAUTHSVR will search the LDAP server or the tpusr file or both (according to the
order of the values specified).

If there are two or more SRCH_ORDER entries specified in the LAUTHSVR configuration file, only
the last entry takes effect. In this case a warning message is logged in USERLOG as well. A warning
message also results if you specify a value other than LDAP or LOCAL in the SRCH_ORDER
keyword. In this case, the invalid entry is discarded and the default value or a previous valid
SRCH_ORDER entry is used.

Sample LAUTHSVR Configuration for Database Search Order
The following sample specifies that LAUTHSVR should search the WebLogic Server-embedded
LDAP server first for user information. If the user information is not found in the LDAP server,
then LAUTHSVR should look in the tpusr file.

SRCH_ORDER LDAP,LOCAL

The following sample specifies that LAUTHSVR should search the tpusr file first for user
information. If the user information is not found in the tpusr file, then LAUTHSVR should look in
the WebLogic Server-embedded LDAP server for the information.

SRCH_ORDER LOCAL,LDAP

The following sample specifies that LAUTHSVR should search the tpusr file only for user
information.

SRCH_ORDER LOCAL

See Also
“LAUTHSVR(5)” in the BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

Using tpmigldap to Migrate User Information to WebLogic
Server
You should use the tpmigldap command utility to migrate Tuxedo user and group information
to WebLogic Server.

Assigning New Passwords for the tpusr File
Before migrating the user and group information, the administrator must assign new passwords
for each user so the migration can be successful. This step is required because the passwords in

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-11

the tpusr file are encrypted with one-way encryption; therefore, it is impossible to retrieve the
original password from the file.

There are two ways to handle this password situation:

Modify the tpusr file.

You can modify the tpusr file using a text editor and change the user password for each
user in the file. The password field is the second field in the tpusr file. The field delimiter
is a colon (:). Each user takes up a line in the tpusr file.

The following sample:

TuxedoUser1:ADdg0w8nfGMag:6001:601:TPCLTNM,*::
TuxedoUser2:0Yq2s6FjbvuU2:6002:601:TPCLTNM,*::

could be modified to:

TuxedoUser1:User1Password:6001:601:TPCLTNM,*::
TuxedoUser2:User2Password:6002:601:TPCLTNM,*::

Use the -f option with the tpmigldap utility to define a default password for all users.

If a -f option is used, then the argument that follows will be used as a substitute for the
password field in the tpusr file for every user in the file.

The following sample command:

tpmigldap -f userpassword -c

will cause “userpassword” to be assigned to every user in the tpusr file. After the
migration, all users will have to use “userpassword” as their password in order to join the
Tuxedo application.

tpmigldap Command Line Options
The following table defines the command line options for the tpmigldap utility. The order of the
command line options does not matter.

Note: The tpmigldap command requires the use of -w or -c so the user or group can be added
to the WebLogic Server-embedded LDAP database.

4-12 Using Security in ATMI Applications

Table 4-2 tpmigldap Command Line Options

See Also
“tpmigldap(1)” in the BEA Tuxedo Command Reference

Adding New Tuxedo User Information
There are two methods for adding new user and group information to the single security LDAP
database:

Command Line
Option

Option Argument Default Value Usage

-h hostname localhost Hostname of WebLogic Server.

-p port 7001 Port number for WebLogic Server
Administration Console.

-d domain mydomain WebLogic Server domain name.

-r realm myrealm WebLogic Server security realm name.

-i TUXEDO_UID
keyword string

TUXEDO_UID The keyword string for Tuxedo UID that the
administrator wants to use in the WebLogic
Server user “description” attribute.

-e TUXEDO_GID
keyword string

TUXEDO_GID The keyword string for Tuxedo GID that the
administrator wants to use in the WebLogic
Server user “description”.

-f user password No default. The default user password for every user in the
tpusr file.

-b binddn cn=Admin LDAP connection bind DN.

-w password No default. The password for bind DN.

-c Not applicable. No default. A prompt for entering a password for bind DN.

-u full path name $APPDIR/tpusr The full directory path for the tpusr file.

-g full path name $APPDIR/tpgrp The full directory path for the tpgrp file.

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-13

Add new information to the tpusr text file and then specify the updated file when using
the migration utility tpmigldap. Refer to “Adding New User Information in tpusr or
tpgrp” on page 4-13.

Use the WebLogic Administration Console to add user or group information. Refer to
“Adding New User Information Using the WebLogic Administration Console” on
page 4-13.

Note: Using the WebLogic Administration Console may not be efficient for adding large
numbers of users to the LDAP database. In the case of adding several users, you may
want to use the tpmigldap utility.

Adding New User Information in tpusr or tpgrp
To add new user information to the single point security LDAP database:

1. Use your existing tpusr file and tpgrp file to add the new user and group information. Be
sure to use the same format previously defined in the file. Be sure to use clear text passwords
to add to the LDAP database.

2. Run the tpmigldap utility using the -u option and specify the updated tpusr file and the
-g option and specify the updated tpgrp file. For example:

tpmigldap -u $APPDIR/tpusr -g $APPDIR/tpgrp

Adding New User Information Using the WebLogic Administration Console
To add new user information to the single point security LDAP database using the WebLogic
Administration Console:

1. Access the WebLogic Administration Console and select Security →Realms→ myrealm
where myrealm represents the LDAP security realm.

4-14 Using Security in ATMI Applications

2. Click Configure a new User... and access the General tab.

S ing le Po int Secur i t y Admin is t ra t ion Tasks

Using Security in ATMI Applications 4-15

Enter the user information:

In the Name field specifies the user name.

In the Description field specify the Tuxedo UID and GID values as a string in the
following syntax:

<TUXEDO UID KEYWORD>=<decimal value>
<TUXEDO GID KEYWORD>=<decimal value>

where by default, the TUXEDO UID KEYWORD is TUXEDO_UID and TUXEDO GID KEYWORD
by default is TUXEDO_GID. For example:

TUXEDO_UID=2504 TUXEDO_GID=601.

In the Password field, specify the password for the user. Then confirm the password by
entering the password again in the Confirm Password field.

3. Click Apply to update the LDAP database with the new user information.

4-16 Using Security in ATMI Applications

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introducing ATMI Security
	What Security Means
	Security Plug-ins
	ATMI Security Capabilities
	Operating System (OS) Security
	Authentication
	Authentication Plug-in Architecture
	Understanding Delegated Trust Authentication
	Establishing a Session
	Getting Authorization and Auditing Tokens
	Replacing Client Tokens with Server Tokens
	Implementing Custom Authentication

	Authorization
	Authorization Plug-in Architecture
	How the Authorization Plug-in Works
	Default Authorization
	Custom Authorization

	Implementing Custom Authorization

	Auditing
	Auditing Plug-in Architecture
	How the Auditing Plug-in Works
	Default Auditing
	Custom Auditing

	Implementing Custom Auditing

	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining Min-Max Values
	Finding a Common Key Size

	Backward Compatibility of LLE
	Interoperating with Release 6.5 BEA Tuxedo Software
	Interoperating with Pre-Release 6.5 BEA Tuxedo Software

	WSL/WSH Connection Timeout During Initialization
	LLE Installation and Licensing

	Public Key Security
	PKCS-7 Compliant
	Supported Algorithms for Public Key Security
	Public Key Algorithms
	Digital Signature Algorithms
	Symmetric Key Algorithms
	Message Digest Algorithms

	Public Key Installation and Licensing

	Message-based Digital Signature
	Digital Certificates
	Certification Authority
	Certificate Repositories
	Public-Key Infrastructure

	Message-based Encryption
	Public Key Implementation
	Public Key Initialization
	Key Management
	Certificate Lookup
	Certificate Parsing
	Certificate Validation
	Proof Material Mapping
	Implementing Custom Public Key Security
	Default Public Key Implementation

	Default Authentication and Authorization
	Client Naming
	User-Client Names
	Application Key

	User, Group, and ACL Files
	Optional and Mandatory ACLs

	Security Interoperability
	Interoperating with Pre-Release 7.1 Software
	Interoperability for Link-Level Encryption
	Interoperability for Public Key Security

	Security Compatibility
	Mixing Default/Custom Authentication and Authorization
	Mixing Default/Custom Authentication and Auditing
	Compatibility Issues for Public Key Security
	Compatibility/Interaction with Data-dependent Routing
	Compatibility/Interaction with Threads
	Compatibility/Interaction with the EventBroker
	Compatibility/Interaction with /Q
	Compatibility/Interaction with Transactions
	Compatibility/Interaction with Domain Gateways
	Compatibility/Interaction with Other Vendors’ Gateways

	Administering Security
	What Administering Security Means
	Security Administration Tasks
	Setting the BEA Tuxedo Registry
	Purpose of the BEA Tuxedo Registry
	Registering Plug-ins

	Configuring an ATMI Application for Security
	Editing the Configuration File
	Changing the TM_MIB
	Using the BEA Administration Console

	Setting Up the Administration Environment
	Administering Operating System (OS) Security
	Recommended Practices for OS Security

	Administering Authentication
	Specifying Principal Names
	How System Processes Acquire Credentials
	Why System Processes Need Credentials
	Example UBBCONFIG Entries for Principal Names

	Mandating Interoperability Policy
	Establishing an Identity for an Older Client
	How the WSH Establishes an Identity for an Older Client
	How the Domain Gateway Establishes an Identity for an Older Client
	How the Server Establishes an Identity for an Older Client

	Summarizing How the CLOPT -t Option Works
	Example UBBCONFIG Entries for Interoperability

	Establishing a Link Between Domains
	Example DMCONFIG Entries for Establishing a Link

	Setting ACL Policy
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Setting Credential Policy
	Administering Authorization
	Administering Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed LLE Version
	How to Configure LLE on Workstation Client Links
	How to Configure LLE on Bridge Links
	How to Configure LLE on tlisten Links
	How to Configure LLE on Domain Gateway Links

	Administering Public Key Security
	Recommended Practices for Public Key Security
	Assigning Public-Private Key Pairs
	Setting Digital Signature Policy
	Setting a Postdated Limit for Signature Timestamps
	Setting a Predated Limit for Signature Timestamps
	Enforcing the Signature Policy for Incoming Messages
	How the EventBroker Signature Policy Is Enforced
	How the /Q Signature Policy Is Enforced
	How the Remote Client Signature Policy Is Enforced

	Setting Encryption Policy
	Enforcing the Encryption Policy for Incoming Messages
	How the EventBroker Encryption Policy Is Enforced
	How the /Q Encryption Policy Is Enforced
	How the Remote Client Encryption Policy Is Enforced

	Initializing Decryption Keys Through the Plug-ins
	Failure Reporting and Auditing
	Digital Signature Error Handling
	Encryption Error Handling

	Administering Default Authentication and Authorization
	Designating a Security Level
	Establishing Security by Editing the Configuration File
	Establishing Security by Changing the TM_MIB
	Establishing Security by Using the BEA Administration Console

	Configuring the Authentication Server

	How to Enable Application Password Security
	How to Enable User-Level Authentication Security
	Setting Up the UBBCONFIG File
	Setting Up the User and Group Files
	Converting System Security Data Files to BEA Tuxedo User and Group Files
	Adding, Modifying, or Deleting Users and Groups

	Enabling Access Control Security
	How to Enable Optional ACL Security
	Setting Up the UBBCONFIG File
	Setting Up the ACL File

	How to Enable Mandatory ACL Security
	Setting Up the UBBCONFIG File
	Setting Up the ACL File

	Using the Kerberos Authentication Plug-in
	Kerberos Plug-In
	Kerberos Supported Platforms
	Kerberos Plug-in Features

	Kerberos Plug-In Pre-configuration
	Kerberos Plug-In Configuration
	Configure the Kerberos Plug-in
	Restore Default Plug-in

	Configure KAUTHSVR
	Configure Tuxedo Native Client
	Limitations
	See Also

	Using the Cert-C PKI Encryption Plug-in
	Cert-C PKI Encryption Plug-In
	Cert-C PKI Encryption Plug-In Pre-configuration
	Cert-C PKI Encryption Plug-In Configuration
	Configure Certificate Lookup
	ldapUserCertificate
	ldapBaseObject
	ldapFilterAttribute
	ldapBaseDNAttribute

	Configure Key Management
	decPassword
	privateKeyDir

	Configure Certificate Parsing
	Configure Certificate Validation
	caCertificateFile
	crlFile

	Sample Registry Command File
	Limitations
	See Also

	Programming Security
	What Programming Security Means
	Programming an ATMI Application with Security
	Setting Up the Programming Environment
	Writing Security Code So Client Programs Can Join the ATMI Application
	Getting Security Data
	Joining the ATMI Application
	Transferring the Client Security Data
	Calling a Service Request Before Joining the ATMI Application

	Writing Security Code to Protect Data Integrity and Privacy
	ATMI Interface for Public Key Security
	Recommended Uses of Public Key Security

	Sending and Receiving Signed Messages
	Writing Code to Send Signed Messages
	Step 1: Opening a Key Handle for Digital Signature
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Allocating a Buffer and Putting a Message in the Buffer
	Step 5: Marking the Buffer for Digital Signature
	Step 6: Sending the Message
	Step 7: Closing the Signer’s Key Handle
	How the System Generates a Digital Signature

	How a Signed Message Is Received
	Verifying Digital Signatures
	Verifying and Transmitting an Input Buffer’s Signatures
	Replacing an Output Buffer’s Signatures

	Sending and Receiving Encrypted Messages
	Writing Code to Send Encrypted Messages
	Step 1: Opening a Key Handle for Encryption
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Allocating a Buffer and Putting a Message in the Buffer
	Step 5: Marking the Buffer for Encryption
	Step 6: Sending the Message
	Step 7: Closing the Encryption Key Handle
	How the System Encrypts a Message Buffer

	Writing Code to Receive Encrypted Messages
	Step 1: Opening a Key Handle for Decryption
	Step 2 (Optional): Getting Key Handle Information
	Step 3 (Optional): Changing Key Handle Information
	Step 4: Closing the Decryption Key Handle
	How the System Decrypts a Message Buffer

	Examining Digital Signature and Encryption Information
	What Happens When an Originating Process Calls tpenvelope
	What Happens When a Receiving Process Calls tpenvelope
	Understanding the Composite Signature Status
	Example Code for tpenvelope

	Externalizing Typed Message Buffers
	How to Create an Externalized Representation
	How to Convert an Externalized Representation
	Example Code for tpexport and tpimport

	Implementing Single Point Security Administration
	What Single Point Security Administration Means
	Single Point Security Administration Tasks
	Setting up LAUTHSVR as the Authentication Server
	LAUTHSVR Command Line Interface
	Setting Up the LAUTHSVR Configuration File
	Sample UBBCONFIG Using LAUTHSVR
	Using Multiple Network Addresses for High Availability
	Configuring the Database Search Order

	Using tpmigldap to Migrate User Information to WebLogic Server
	Assigning New Passwords for the tpusr File
	tpmigldap Command Line Options

	Adding New Tuxedo User Information
	Adding New User Information in tpusr or tpgrp
	Adding New User Information Using the WebLogic Administration Console

