‘.."‘

o 7
2 bea
L/

BEATuxedo

File Formats, Data
Descriptions, MIBs, and
System Processes
Reference

Version 9.1
Document Released: May 16, 2006

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebL ogic are registered trademarks of BEA Systems, Inc. BEA Aqualogic, BEA Aqualogic Data Services Platform,
BEA Aqualogic Enterprise Security, BEA AquaLogic Interaction, BEA Aqualogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA Aqualogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA Aqualogic Interaction Integration Services, BEA Aqualogic Interaction Process, BEA Aqualogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for

WebL ogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebL ogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebL ogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

About This Document
What You Need t0 KNOWo ix
e-doCS Web Site o iX
How to Print the DOCUMENt oo e X
Related Information X
Contact US! .. X
Documentation CONVENLIONSottt e Xi

Section 5 - File Formats, Data Descriptions, MIBs, and System
Processes Reference

Introductionto Tablesand Files. 4
ACL_MIB(D) . . e et e e 5
T _ACLGROUP Class Definition i 6
T_ACLPERM Class Definition. i i 8
T _ACLPRINCIPAL Class Definition it 10
ACL_MIB(5) Additional Information., 13
APPQ MIB(5) . v eeee e e e e e 16
T _APPQClass Definition e e 18
T_APPQMSG Class Definition. i i, 25
T_APPQSPACE Class Definition i 31
T_APPQTRANS Class Definition 44
APPQ_MIB(5) Additional Information. 46

File Formats, Data Descriptions, MIBs, and System Processes Reference iii

iv

AUTHSVR() . . e vt e e 53

SECURITY USER_AUTH. e 53
SECURITY ACL or MANDATORY _ACL 55
AUTHSVR Additional Information........... 56
CompPilation(5)t 58
DMADM(B) . . v eet et et 63
DMCONFIG(5). . .+ e vttt e e e e e e e e e 65
DM_LOCAL SECLION . .. oottt e 69
DM_REMOTE SECLION. . . .o\ttt e 75
DM_EXPORT SeCtiONottt 79
DM_IMPORT SECLION .. .ottt e 81
DM_RESOURCES. e 84
DM_ROUTING SeCtiON.ttt e 84
DM_ACCESS_CONTROL SeCtioN. . ..ottt iiie e 87
DM_TDOMAIN SeCtion e 87
DMCONFIG(5) Additional Information 95
DM MIB(5) . .ottt e e e e e 100
T_DM_ACL Class Definition ... 104
T_DM_CONNECTION Class Definition 106
T_DM_EXPORT Class Definition. i, 108
T_DM_IMPORT Class Definition 112
T_DM_LOCAL Class Definition.cooo i 116
T_DM_OSITP Class Definition. 124
T_DM_OSITPX Class Definition 127
T_DM_PASSWORD Class Definition. 132
T_DM_PRINCIPAL_MAP Class Definition 134
T_DM_REMOTE Class Definition oo, 136
T_DM_RESOURCES Class Definition, 142

File Formats, Data Descriptions, MIBs, and System Processes Reference

T_DM_ROUTING Class Definition., 143

T_DM_RPRINCIPAL Class Definition 146
T_DM_SNACRM Class Definition, 148
T_DM_SNALINK Class Definition.. ..., 150
T_DM_SNASTACK Class Definition ..., 154
T_DM_TDOMAIN Class Definition 156
T_DM_TRANSACTION Class Definition., 164
DM_MIB(5) Additional Information 169
EVENTS(5) . . v ettt et et e e e e 170
EVENT MIB(5) « .ottt e e et 176
T_EVENT_CLIENT Class Definition iiiiin.. 177
T_EVENT_COMMAND Class Definition. 179
T_EVENT_QUEUE Class Definition.o i, 180
T_EVENT_SERVICE Class Definition 184
T_EVENT_USERLOG Class Definition oo, 185
EVENT_MIB(5) Additional Information. 187
factory_finder.ini(5). i 188
Ferror, Ferror32(5).ot 192
field_tables(5)o 194
GWADM(). « . . ettt et e e e 198
GWTDOMAIN(S) . . . oottt e e et 200
]) 202
KAUTHSVR(5). . o ettt et e e e e e 211
aNgiNfO(D) . . .o 214
LAUTHSVR(5) . . o ettt ettt e e e e 218
SECURITY USER_AUTH. 219
SECURITY ACL or MANDATORY _ACL ... 219
LAUTHSVR Additional Information............. 219

File Formats, Data Descriptions, MIBs, and System Processes Reference

vi

MIB(5). . . .o v ettt e e e e e 233
USa0E . . ottt e 241
T_CLASS Class Definitionc.co i 252
T_CLASSATT Class Definition. ... 254
MIB(5) Additional Information i 258

N Y PES (D). ottt 262

SBIVOPES (D) .« v v ettt 263

TV MIB(B). . . oottt et e e e e e e e 269
T_BRIDGE Class Definition it 272
T_CLIENT Class Definition. e 276
T_CONN Class Definition 284
T_DEVICE Class Definition 287
T_DOMAIN Class Definition oo 289
T FACTORY MIB e 308
T_GROUP Class Definition 309
T IFQUEUE Class . . o vttt et ettt 319
T INTERFACE ClasS. . . oottt e e et 323
T_MACHINE Class Definition i 331
T_MSG Class Definition i 350
T_NETGROUP Class Definition oo 352
T_NETMAP Class Definition i 354
T_QUEUE Class Definition 358
T_ROUTING Class Definition.t 362
T_SERVER Class Definitiont 367
T_SERVERCTXT Class Definition, 385
T_SERVICE Class Definition. 388
T_SVCGRP Class Definition 393

File Formats, Data Descriptions, MIBs, and System Processes Reference

T_TLISTEN Class Definition. 401

T_TLOG Class Definition. 402
T_TRANSACTION Class Definition. ..., 404
T_ULOG Class Definition ... 409
TM_MIB(5) Additional Information 413
TMEENAME(S) .. oottt et e e e 423
TMIFRSVR(B). . .« e ev ot ettt e e e e e e 426
TMMETADATA(D) - o vt e 427
TMQFORWARD(5) . . . ettt et e e e e e e e 429
TMQUEUE(B) . . . ettt et e et e e e e e 434
TMSYSEVT(5) . v ettt ettt e e e 438
INErACE(D). o o et 440
TMUSREVT(5) . . . ettt ettt e e e e e e e 446
TPEITNO(D) . o v et 448
TPUICOAR(D). « v ettt 452
TUXENV(D) ot 454
TUXEYPES(D) .« vttt 465
1077 0151 () 473
UBBCONFIG(5) . . . vttt et e et e e e e 475
RESOURCES SeCtioN. . . . oot 478
MACHINES Section.t 490
GROUPS SECLION . .. oottt e 498
NETGROUPS SeCtiont 503
NETWORK SECHIONot e 504
SERVERS SeCliON. . . . oot 506
SERVICES SECHION . . . ottt 513
INTERFACES SECHION . .. oot e 516
ROUTING SECLIONottt e e 518

File Formats, Data Descriptions, MIBs, and System Processes Reference vii

viii

UBBCONFIG(5) Additional Information 521

VIEWTTlE(D) . . . oo 525
WS MIB(5). . . oottt e e e e e e e 532
T_WSH Class Definition o 533
T_WSL Class Definition 538
WS_MIB(5) Additional Information 545
LY S () 552

File Formats, Data Descriptions, MIBs, and System Processes Reference

About This Document

This document provides reference information on file formats, data descriptions, Management
Information Bases (MIBs), and system processes for the BEA Tuxedo system. The reference
pages are arranged in alphabetical order by the name of the file format, data description, MIB, or
system process.

What You Need to Know

This document is intended for the following audiences:

e Administrators who are interested in configuring and managing applications in a BEA
Tuxedo environment

e Application developers who are interested in programming applications in a BEA Tuxedo
environment

This document assumes a familiarity with the BEA Tuxedo platform and either C or COBOL
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

File Formats, Data Descriptions, MIBs, and System Processes Reference ix

http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com.

Related Information

Related documents are listed in the See Also section of each reference page. For MIBs, related
information is listed for the MIB as a whole rather than for each class.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.1 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
e Your name, e-mail address, phone number, and fax number
e Your company name and company address
e Your machine type and authorization codes
e The name and version of the product you are using

e A description of the problem and the content of pertinent error messages

X File Formats, Data Descriptions, MIBs, and System Processes Reference

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
monospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz
chmod u+w *
\tux\data\ap
.doc
tux.doc
BITMAP
float
monospace Identifies significant words in code.
boldface Example:
rext void commit ()
monospace Identifies variables in code.
italic Example:
text \
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

File Formats, Data Descriptions, MIBs, and System Processes Reference

Xi

Xii

Convention

ltem

[

]

Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:

buildobjclient [-v] [-o0 name] [-f file-list]...
[-1 file-1ist]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

e That an argument can be repeated several times in a command line

e That the statement omits additional optional arguments

e That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-1ist]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

File Formats, Data Descriptions, MIBs, and System Processes Reference

Section 9 - File Formats, Data
Descriptions, MIBs, and System
Processes Reference

Table 1 BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes

Name Description

Introduction to Tables and Files Overview of this document

ACL_MIB(5) Management Information Base for ACLs
APPQ_MIB(5) Management Information Base for /Q
AUTHSVR (5) Server providing per-user authentication
compilation(5) Instructions for compilation of BEA Tuxedo system application components
DMADM (5) Domains administrative server

DMCONFIG (5) Text version of a Domains configuration file
DM_MIB(5) Management Information Base for Domains
EVENTS (5) List of system-generated events
EVENT_MIB(5) Management Information Base for EventBroker
factory_finder.ini (5) FactoryFinder Domains configuration file
Ferror, Ferror32(5) FML error codes

field_tables(5) FML mapping files for field names

File Formats, Data Descriptions, MIBs, and System Processes Reference 1

Table 1 BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes (Continued)

Name

Description

GWADM (5)

Domains gateway administrative server

GWTDOMAIN (5)

TDomain gateway process

ISL(5) Enables access to BEA Tuxedo objects by remote BEA Tuxedo clients
using 11OP.
KAUTHSVR(5) Kerberos-based Tuxedo authorization server

langinfo (5)

Language information constants

LAUTHSVR (5) WebLogic Server embedded LDAP-based authentication server
METAREPOS(5) Tuxedo service metadata repository buffer format
MIB(5) Management Information Base

nl_types(5)

Native language data types

servopts (5)

Run-time options for server processes

TM_MIB(5)

Management Information Base for core BEA Tuxedo system

TMFFNAME (5)

Server that runs the FactoryFinder and NameManager services

TMIFRSVR(5)

The Interface Repository server

TMMETADATA(5)

Tuxedo service metadata repository server

TMQFORWARD (5)

Message Forwarding Server

TMQUEUE (5)

Message Queue Manager

TMSYSEVT (5)

System event reporting process

tmtrace (5)

Run-time tracing facility

TMUSREVT (5)

User event reporting process

tperrno(5)

BEA Tuxedo system error codes

tpurcode (5) BEA Tuxedo system global variable for an application-specified return code
tuxenv (5) List of environment variables in the BEA Tuxedo system
2 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 1 BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes (Continued)

Name

Description

tuxtypes (5)

Buffer type switch; descriptions of buffer types provided by the BEA Tuxedo
system

typesw(5)

Buffer type switch structure; parameters and routines needed for each buffer

type

UBBCONFIG(5)

Text version of a BEA Tuxedo configuration file

viewfile(5)

Source file for view descriptions

WS_MIB(5)

Management Information Base for Workstation

WSL (5)

Workstation Listener server

File Formats, Data Descriptions, MIBs, and System Processes Reference

Introduction to Tables and Files

Description
This section describes the format of miscellaneous tables and files.

The page named compilation (5) summarizes information about header files, libraries, and
environment variables needed when compiling application source code.

The section includes descriptions of BEA Tuxedo system-supplied servers. Applications wishing
to use the BEA Tuxedo system-supplied servers should specify them in the configuration file for
the application.

The servopts page describes options that can be specified in the configuration file as the cLopT
parameter of application servers.

The BEA Tuxedo Management Information Base is documented in the m1B (5) reference page
and in the following component MIB pages:

e ACL_MIB(5)
e APPQ MIB(5)

® DM_MIB(5)

EVENT_MIB(5)

™ _MIB(5)

WS_MIB(5)

4 File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

ACL_MIB(5)

Name
acL_mMIB—Management Information Base for ACLS

Synopsis

#include <fml32.h>
#include <tpadm.h>

Description

The BEA Tuxedo MIB defines the set of classes through which access control lists (ACLs) may
be managed. A BEA Tuxedo configuration with SECUrRITY Set t0 USER_AUTH, ACL, OF
MANDATORY_ACL must be created before accessing or updating these classes. act._m1B (5) should
be used in combination with the generic MIB reference page m18(5) to format administrative
requests and interpret administrative replies. Requests formatted as described in M1 (5) using
classes and attributes described in this reference page may be used to request an administrative
service using any one of a number of existing ATMI interfaces in an active application. For
additional information pertaining to all act._m1B(5) class definitions, see “ACL_MIB(5)
Additional Information” on page 13.

act,_m1B(5) consists of the following classes.

Table 2 ACL_MIB Classes

Class Name Attribute

T_ACLGROUP ACL group

T_ACLPERM ACL permissions
T_ACLPRINCIPAL ACL principal (users or domains)

Each class description section has four subsections:

Overview
High level description of the attributes associated with the class.

Attribute Table
A table that lists the name, type, permissions, values and default for each attribute in the
class. The format of the attribute table is described below.

File Formats, Data Descriptions, MIBs, and System Processes Reference 5

Attribute Semantics
Tells how each attribute should be interpreted.

Limitations
Limitations in the access to and interpretation of this class.

Attribute Table Format

As described above, each class that is a part of this MIB is defined below in four parts. One of
these parts is the attribute table. The attribute table is a reference guide to the attributes within a
class and how they may used by administrators, operators and general users to interface with an
application. There are five components to each attribute description in the attribute tables: name,
type, permissions, values and default. Each of these components is discussed in Mm1B (5).

TA_FLAGS Values

miB(5) defines the generic Ta_FLAGs attribute which is a 1ong containing both generic and
component MIB specific flag values. At this time, there are no act._m1B(5) specific flag values
defined.

FML32 Field Tables

The field tables for the attributes described in this reference page are found in the file
udataobj/tpadm relative to the root directory of the BEA Tuxedo system software installed on
the system. The directory $ {TUXDIR} /udataobj should be included by the application in the
colon-separated list specified by the FL.DTBLDIR environment variable and the field table name
tpadm () should be included in the comma-separated list specified by the FIELDTBLS
environment variable.

Limitations

Access to the header files and field tables for this MIB is provided only at sites running BEA
Tuxedo release 6.0 and later, both native and Workstation.

T _ACLGROUP Class Definition

Overview
The T_acr.group class represents groups of BEA Tuxedo application users and domains.

6 File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

Attribute Table

Table 3 ACL_MIB(5): T_ACLGROUP Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_GROUPNAME(I)(*) string rU------- string[l1..30] N/A
TA_GROUPID(k) long rw------- 0 <= num <16,384 lowest id
TA_STATE string rw------- GET: “INA” N/A

SET: “{NEW | INV}” N/A

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

Attribute Semantics

TA_GROUPNAME: string[l..30]
Logical name of the group. A group name is a string of printable characters and cannot
contain a pound sign, comma, colon, or newline.

TA_GROUPID: 0 <= num < 16,384
Group identifier associated with this user. A value of 0 indicates the default group “other.”

If not specified at creation time, it defaults to the next available (unique) identifier greater
than 0.

TA_STATE!

GET: {VALid}
A ceT operation will retrieve configuration information for the selected
T_ACLGROUP object(s). The following states indicate the meaning of a TA_sTATE
returned in response to a GET request.

VALid T_aACLGROUP object is defined and inactive. Note that this
is the only valid state for this class. ACL groups are never
active.

File Formats, Data Descriptions, MIBs, and System Processes Reference 1

SET: {NEW | INValid}
A seT operation will update configuration information for the selected
T_ACLGROUP object. The following states indicate the meaning of a Ta_sTATE set
in a sET request. States not listed may not be set.

NEW Create T_acLGrouP object for application. State change
allowed only when in the 1nva1id state. Successful
return leaves the object in the varid state.

unset Modify an existing T_acLGroup object. This
combination is not allowed in the 1nvalid state.
Successful return leaves the object state unchanged.

INvalid Delete T_acrcroup object for application. State change
allowed only when in the vaLid state. Successful return
leaves the object in the INvalid state.

Limitations

A user can be associated with exactly one ACL group. For someone to take on more than one role
or be associated with more than one group, multiple user entries must be defined.

T_ACLPERM Class Definition

Overview

The T_acL.pERM class indicates what groups are allowed to access BEA Tuxedo system entities.
These entities are named via a string. The names currently represent service names, event names,
and application queue names.

Attribute Table

Table 4 ACL_MIB(5): T_ACLPERM Class Definition: Attribute Table

Attribute Type Permissions Values Default
TA_ACLNAME(r)(*) string rw------- string[1..30] N/A
TA_ACLTYPE(r)(*) string rw------- “ENQ | DEQ | N/A
SERVICE |
POSTEVENT”

8 File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

Table 4 ACL_MIB(5): T_ACLPERM Class Definition: Attribute Tahle

Attribute Type Permissions Values Default
TA_ACLGROUPIDS string rw------- string N/A
TA_STATE string rw------- GET: “INA” N/A

SET: “{NEW | INV}” N/A

(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

Attribute Semantics

TA_ACLNAME: string
The name of the entity for which permissions are being granted. The name can represent
a service name, an event name, and/or a queue name. An ACL name is a string of printable
characters and cannot contain a colon, pound sign, or newline.

TA_ACLTYPE: ENQ | DEQ | SERVICE | POSTEVENT
The type of the entity for which permissions are being granted.

TA_ACLGROUPIDS: string
A comma-separated list of group identifiers (numbers) that are permitted access to the
associated entity. The length of stringis limited only by the amount of disk space on the
machine.

TA_STATE:

GeT: {vALid}
A ceT operation will retrieve configuration information for the selected
T_acLPERM object(s). The following states indicate the meaning of a Ta_sSTATE
returned in response to a GET request.

VvALid T_ACLPERM oObject is defined and inactive. Note that this
is the only valid state for this class. ACL permissions are
never active.

SET: {NEW | INValid}
A seT operation will update configuration information for the selected T_acr.pErRM
object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed may not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 9

NEW Create T_acr.pERM Object for application. State change
allowed only when in the 1nvalid state. Successful
return leaves the object in the varid state.

unset Modify an existing T_acLpERM object. This combination
is not allowed in the 1Nvalid state. Successful return
leaves the object state unchanged.

INvalid Delete T_acr.perM Object for application. State change
allowed only when in the vaLid state. Successful return
leaves the object in the INvalid state.

Limitations
Permissions are defined at the group level, not on individual user identifiers.

T_ACLPRINCIPAL Class Definition

Overview

The T_aAcLPRINCIPAL class represents users or domains that can access a BEA Tuxedo
application and the group with which they are associated. To join the application as a specific
user, it is necessary to present a user-specific password.

10 File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

Attribute Table
Attribute Semantics
Table 5 ACL_MIB(5): T_ACLPRINCIPAL Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_PRINNAME(r)(*) string rU------- string[l1..30] N/A
TA_PRINCLTNAME(K) string rw------- string[l..30] WK
TA_PRINID(K) long rU------- 1 <= num< 131,072 lowest id
TA_PRINGRP(K) long rw------- 0 <= num< 16,384 0
TA_PRINPASSWD string TWR--———- string N/A
TA_STATE string rw------- GET: “INA” N/A
SET: “{NEW | INV}” N/A

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

TA_PRINNAME:. string
Logical name of the user or domain (a principal). A principal name is a string of printable
characters and cannot contain a pound sign, colon, or newline.

TA_PRINCLTNAME: string
The client name associated with the user. It generally describes the role of the associated
user, and provides a further qualifier on the user entry. If not specified at creation time,
the default is the wildcard asterisk (*). A client name is a string of printable characters and
cannot contain a colon, or newline.

TA_PRINID: 1 <= num< 131,072
Unique user identification number. If not specified at creation time, it defaults to the next
available (unique) identifier greater than 0.

TA_PRINGRP: 0 <= num < 16,384
Group identifier associated with this user. A value of 0 indicates the default group “other.”
If not specified at creation time, the default O is assigned.

File Formats, Data Descriptions, MIBs, and System Processes Reference 1

TA_PRINPASSWD: string
TA_STATE:

GET: {vaLid}
A ceT operation will retrieve configuration information for the selected
T_ACLPRINCIPAL object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

VvAaLid T_ACLPRINCIPAL Object is defined and inactive. Note
that this is the only valid state for this class. ACL
principals are never active.

SET: {NEW | INValid}
A sET operation will update configuration information for the selected
T_ACLPRINCIPAL Object. The following states indicate the meaning of a
TA_STATE Set in a SET request. States not listed may not be set.

NEW Create T_ACLPRINCIPAL object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the vALid state.

unset Modify an existing T_ACLPRINCIPAL object. This
combination is not allowed in the INValid state. Successful
return leaves the object state unchanged.

INValid Delete T_ACLPRINCIPAL object for application. State change
allowed only when in the vaL1d state. Successful return leaves
the object in the INValid state.

Limitations

A user or domain can be associated with exactly one ACL group. For someone to take on more
than one role or be associated with more than one group, multiple principal entries must be
defined.

12 File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

ACL_MIB(5) Additional Information

Diagnostics

There are two general types of errors that may be returned to the user when interfacing with
ACL_MIB (5). First, any of the three ATMI verbs (tpcall (), tpgetrply () and tpdequeue())
used to retrieve responses to administrative requests may return any error defined for them. These
errors should be interpreted as described on the appropriate reference pages.

If, however, the request is successfully routed to a system service capable of satisfying the request
and that service determines that there is a problem handling the request, failure may be returned
in the form of an application level service failure. In these cases, tpcall () and tpgetrply ()
will return an error with tperrno () Set to TPESVCFAIL and return a reply message containing
the original request along with Ta_ERROR, TA_sTaTus and Ta_BaprLD fields further qualifying
the error as described below. When a service failure occurs for a request forwarded to the system
through the TMororRwARD (5) server, the failure reply message will be enqueued to the failure
queue identified on the original request (assuming the -a option was specified for TMQFORWARD).

When a service failure occurs during processing of an administrative request, the FML32 field
TA_STATUS is set to a textual description of the failure, the FML32 field Ta_ERROR is set to
indicate the cause of the failure as indicated below. All error codes specified below are
guaranteed to be negative.

The following diagnostic codes are returned in TA_ERROR to indicate successful completion of an
administrative request. These codes are guaranteed to be non-negative.

[other]
Other return codes generic to any component MIB are specified in the m1B(5) reference
page. These return codes are guaranteed to be mutually exclusive with any ac1._M1B(5)
specific return codes defined here.

Interoperability

The header files and field tables defined in this reference page are available on BEA Tuxedo
release 6.0 and later. Fields defined in these headers and tables will not be changed from release
to release. New fields may be added which are not defined on the older release site. Access to the
AdminAPI is available from any site with the header files and field tables necessary to build a
request. The T_ACLPRINCIPAL, T_ACLGROUP, and T_AcCLPERM classes are new with BEA Tuxedo
release 6.0.

File Formats, Data Descriptions, MIBs, and System Processes Reference 13

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo system MIBs, as well as the header file and field table defined in this reference
page, are available on all supported native and Workstation platforms.

Example

Following is a sequence of code fragments that adds a user to a group and adds permissions for
that group to a service name.

Field Tables

The field table tpadm must be available in the environment to have access to attribute field
identifiers. This can be done at the shell level as follows:

$ FIELDTBLS=tpadm
$ FLDTBLDIR=${TUXDIR}/udataobj
$ export FIELDTBLS FLDTBLDIR

Header Files

The following header files are included.

#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

Add User

14

The following code fragment adds a user to the default group “other.”

/* Allocate input and output buffers */

ibuf = tpalloc("FML32", NULL, 1000);

obuf = tpalloc("FML32", NULL, 1000);

/* Set MIB(5) attributes defining request type *
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T ACLPRINCIPAL", O0);
/* Set ACL_MIB(5) attributes */

Fchg32 (ibuf, TA_PRINNAME, 0, ta_prinname, 0);

File Formats, Data Descriptions, MIBs, and System Processes Reference

ACL_MIB(5)

Fchg32 (ibuf, TA_PRINID, 0, (char *)ta_prinid, 0);
Fchg32 (ibuf, TA_STATE, 0, (char *)"NEW", 0);

Fchg32 (ibuf, TA_PRINPASSWD, 0, (char *)passwd, 0);

/* Make the request */

if (tpcall(".TMIB", (char *)ibuf, 0, (char **)obuf, olen, 0) 0) {
fprintf (stderr, "tpcall failed: %s\en", tpstrerror (tperrno));

if (tperrno == TPESVCFAIL) {

Fget32 (obuf, TA_ERROR, 0, (char *)ta_error, NULL);

ta_status = Ffind32 (obuf, TA_ STATUS, 0, NULL);

fprintf (stderr, "Failure: %1d, %s\en",

ta_error, ta_status);

}

/* Additional error case processing */

}

Files

${TUXDIR}/include/tpadm.h, ${TUXDIR}/udataobj/tpadm,

See Also

tpacall (3c), tpalloc(3c), tpcall (3¢c), tpdequeue (3c), tpenqueue (3c),
tpgetrply (3c), tprealloc (3c), Introduction to FML Functions, Fadd, Fadd32 (3fml),
Fchg, Fchg32(3fml), Ffind, Ffind32(3fml),MIB(5), TM _MIB(5)

Setting Up a BEA Tuxedo Application
Programming a BEA Tuxedo ATMI Application Using C
Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference 15

APPQ_MIB(5)

Name

appQ_mMIB—Management Information Base for /Q

Synopsis

#include <fml32.h>
#include <tpadm.h>

Description

16

The /Q MIB defines classes through which application queues can be managed.

appQ_Mm1B(5) should be used in combination with the generic MIB reference page m1B(5) to
format administrative requests and interpret administrative replies. Requests formatted as
described inm1B (5) using classes and attributes described on this reference page may be used to
request an administrative service using any one of a number of existing ATMI interfaces in an
active application. Application queues in an inactive application may also be administered using
the tpadmcall () function interface. For additional information pertaining to all Appo_MIB(5)
class definitions, see “APPQ_MIB(5) Additional Information” on page 46.

appQ_M1B(5) consists of the following classes.

Table 6 APPQ_MIB Classes

Class Name Attributes

T_APPQ Application queues within a queue space
T_APPQMSG Messages within an application queue
T_APPQSPACE Application queue spaces

T_APPQTRANS Transactions associated with application queues

Note that this MIB refers to application-defined persistent (reliable disk-based) and
non-persistent (in memory) queues (that is, /Q queues), and not server queues (the T_gQurUE class
of the TM_m1B (5) component).

Each class description section has four subsections:

Overview
High level description of the attributes associated with the class.

File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

Attribute Table
A table that lists the name, type, permissions, values and default for each attribute in the
class. The format of the attribute table is described below.

Attribute Semantics
Tells how each attribute should be interpreted.

Limitations
Limitations in the access to and interpretation of this class.

Attribute Table Format

Each class that is a part of this MIB is documented in four parts. One part is the attribute table.
The attribute table is a reference guide to the attributes within a class and how they may used by
administrators, operators, and general users to interface with an application.

There are five components to each attribute description in the attribute tables: name, type,
permissions, values and default. Each of these components is discussed in MTB (5).

TA_FLAGS Values

mMIB(5) defines the generic Ta_rraGs attribute which is a 1ong containing both generic and
component MIB-specific flag values. The following flag values are defined for the aprg_m1B(5)
component. These flag values should be OR’d with any generic MIB flags.

QMIB_FORCECLOSE
When setting the Ta_sTaTE attribute of a T_aprpospack object to cLEaning, this flag
indicates that the state change should succeed even if the state of the queue space is
ACTive.

OMIB_FORCEDELETE
When setting the Ta_sTaTE attribute of a T_arPpospacE object to 1nvalid, this flag
indicates that the state change should succeed even if the queue space is AcTive or if
messages are present in any of its queues. Similarly, when setting the Ta_sTaTE attribute
of a T_aPpQ object to INvalid, this flag allows the queue to be deleted even if messages
are present or processes are attached to the queue space.

QMIB_FORCEPURGE
When setting the Ta_sTaTE attribute of a T_appg object to 1nvalig, this flag indicates
that the state change should succeed even if messages are present on the queue. If,
however, a message stored in the selected T_appg object is currently involved in a
transaction, the state change will fail and an error will be written to the user log.

File Formats, Data Descriptions, MIBs, and System Processes Reference 17

FML32 Field Table

The field table for the attributes described on this reference page is found in the file
udataobj/tpadm relative to the root directory of the BEA Tuxedo software installed on the
system. The directory ${TUXDIR}/udataobj should be included by the application in the path
list (semicolon-separated list on Windows and colon-separated list otherwise) specified by the
FLDTBLDIR environment variable and the field table name tpadm should be included in the
comma-separated list specified by the FTELDTBLS environment variable.

Limitations
This MIB is provided only on BEA Tuxedo system 6.0 sites and later, both native and
Workstation.

If a site running a BEA Tuxedo release earlier than release 6.0 is active in the application,
administrative access through this MIB is limited as follows.

e SET operations are not allowed.

e Local information access for sites earlier than release 6.0 is not available.

T_APPQ Class Definition

Overview

The T_appg class represents application queues. One or more application queues may exist in a
single application queue space.

Limitations

It is not possible to retrieve all instances of this class by leaving all key fields unset. Instead,
sufficient key fields must be supplied to explicitly target a single application queue space. These
required key fields are Ta_aAPPQSPACENAME, TA_QMCONFIG, and Ta_rmID, except when the
application is unconfigured (that is, when the TuxconrF1G environment variable is not set), in
which case Ta_1.M1D must be omitted. For example, if the TA_APPQSPACENAME, TA_QMCONFIG,
and Ta_r.MID attributes are set in a request using tpcall (), all T_aprpg objects within the
specified queue space will be retrieved.

18 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

Attribute Table

Table 7 APPQ_MIB(5): T_APPQ Class Definition Attribute Table

Attribute @ Type Permissions Values Default
TA_APPQONAME(K)(r)(*) string ru-r--r-- string[l..15] N/A
TA_APPQSPACENAME(K)(r)(*) string ru-r--r-- string[l..15] N/A
TA_QMCONFIG(K)(r)(*) string ru-r--r-- string[l..78] N/A
Ta_LMID(K)((*) ° string ru-r--r-- string[1..30] N/A
TA_STATE © string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_APPQORDER ¢ string rw-r--r-- {PRIO|TIME|LIFO|FIFO FIFO
| EXPIR}
TA_DEFEXPIRATIONTIME string rw-r--r-- {+seconds | NONE} N/A
TA_DEFDELIVERYPOLICY string rw-r--r-- {PERSIST | NONPERSIST} PERSIST
TA_CMD string rw-r--r-- shell-command A

-string[0..127] ¢

TA_CMDHW string rw-r--r-- 0 <= num [bBm%] 100%
TA_CMDLW string rw-r--r-- 0 <= num [bBm%] 0%
TA_CMDNONPERSIST string rw-r--r-- shell-command-string “”
[0..127]

TA_CMDNONPERSISTHW string rw-r--r-- 0 <= num[bB%] 100%
TA_CMDNONPERSISTLW string rw-r--r-- 0 <= num[bB%] 0%
TA_MAXRETRIES long rw-r--r-- 0 <= num 0
TA_OUTOFORDER string rw-r--r-- {NONE | TOP | MSGID} NONE

File Formats, Data Descriptions, MIBs, and System Processes Reference 19

Table 7 APPQ_MIB(5): T_APPQ Class Definition Attribute Table (Continued)

Attribute ° Type Permissions Values Default
TA_RETRYDELAY long rw-r--r-- 0 <= num 0
TA_CURBLOCKS long r--r--r-- 0 <= num N/A
TA_CURMSG long r--r--r-- 0 <= num N/A
TA_CURNONPERSISTBYTES long r--r--r-- 0 <= num N/A
TA_CURNONPERSISTMSG long r--r--r-- 0 <= num N/A

(k)—GET key field f
(r)—required field for object creation
(*)—required SET key field

2 All attributes of class T_aAPPQ are local attributes.
bra_r.MID must be specified as a key field except when the application is unconfigured (that is,
the TUXCONFIG environment variable is not set).
¢ All operations on T_APPQ objects—both GET and seT—silently open the associated queue
space (that is, implicitly set the state of the queue space to OPEn if it is not already OPEn or

ACTive). This may be a time-consuming operation if the queue space is large.
draA_APPQORDER cannot be modified after the application queue is created.
€ Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

f Sufficient key fields must be supplied in a GET operation to explicitly target a single application

queue space.

Attribute Semantics

TA_APPQNAME: string[l..15]
Name of the application queue.

TA_APPQSPACENAME: string[l..15]

Name of the application queue space containing the application queue.

TA_QMCONFIG: string[l..78]

Absolute pathname of the file or device where the application queue space is located.

TA_LMID: string[1..30] (N0 comma)

Identifier of the logical machine where the application queue space is located.

20 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

TA_STATE!

GET: {vaLid}
A GET operation retrieves information about the selected application queues. The
following list describes the meaning of the Ta_sTaTk attribute returned in
response to a GET request.

VALid The specified queue exists. This state is INActive
equivalent for purposes of permissions checking.

SET: {NEW | INValid}
A sET operation changes characteristics of the selected application queue or
creates a new queue. The following list describes the meaning of the Ta_sTaTE
attribute returned by a seT request. States not listed cannot be set.

NEW Create a new queue in the specified queue space. The
queue is left in state varid following successful creation.

INValid Delete the specified queue. The queue must be in state vALid
to be deleted. If the queue space has processes attached to it
(that is, it is in the ACTive state), the queue will not be deleted
unless the TA_FLAGS attribute includes the
QMIB_FORCEDELETE flag. In addition, if the queue has
messages in it, it will not be deleted unless
QMIB_FORCEPURGE is specified. Successful return leaves the
object in the INValid state.

unset Modify an application queue. Successful return leaves the state
unchanged.

TA_APPQORDER:
The order in which messages in the queue are to be processed. Legal values are pr10,
TIME, Or EXPIR. A combination of sort criteria may be specified with the most significant
criterion specified first, followed by other criteria, and optionally followed by either L1ro
or r1ro, which are mutually exclusive. If Exp1r is specified, messages with no expiration
time are dequeued after all messages with an expiration time. If neither F1ro nor LIFoO is
specified, rrro is assumed. If no order is specified when a queue is created, the default
order is rIro. For example, the following are settings are legal:

PRIO
PRIO, TIME, LIFO

File Formats, Data Descriptions, MIBs, and System Processes Reference 21

22

TIME, PRIO, FIFO

TIME, FIFO

EXPIR

EXPIR, PRIO, FIFO
TIME, EXPIR, PRIO,FIFO

TA_CMD: shell-command-string[0..127]

The command to be automatically executed when the high water mark for persistent
(disk-based) messages, Ta_cmpHw, is reached. The command will be re-executed when the
high water mark is reached again after the low water mark, Ta_cmprLw, has been reached.

For BEA Tuxedo 8.0 or earlier, the maximum string length for the Ta_cwup attribute is 78
bytes.

TA_CMDHW: 0 <= num[bBm$]

TA_CMDLW: 0 <= num[bBm$%]

The high and low water marks that control the automatic execution of the command
specified in the Ta_cwmp attribute. Each is an integer greater than or equal to zero. Both
Ta_cMDHW and Ta_cMpLw must be followed by one of the following keyletters and the
keyletters must be consistent for Ta_cyMpuw and TA_cMDLW.

b
The high and low water marks pertain to the number of bytes used by persistent
(disk based) messages in the queue.

B
The high and low water marks pertain to the number of blocks used by persistent
messages in the queue.

m

The high and low water marks pertain to the number of messages (both persistent
and non-persistent) in the queue.

The high and low water marks are expressed in terms of a percentage of queue
capacity. This pertains only to persistent messages.

For example, if Ta_cuprw is 50m and TA_cMDHW IS 100m, the command specified in
Ta_cup Will be executed when 100 messages are on the queue, and it will not be executed
again until the queue has been drained below 50 messages and has filled again to 100
messages.

File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

TA_CMDNONPERSIST. shell-command-string[0..127]
This attribute specifies the command to be executed automatically when the high water
mark for non-persistent (memory-based delivery) messages, TA_CMDNONPERSISTHW, is
reached. The command is re-executed when the high-water mark is reached again after the
low-water mark for non-persistent (memory-based delivery) messages,
TA_CMDNONPERSISTLW, has been reached.

For BEA Tuxedo 8.0 or earlier, the maximum string length for the TA_CMDNONPERSIST
attribute is 78 bytes.

TA_CMDNONPERSISTHW: 0 <= num[bB%]

TA_CMDNONPERSISTLW: 0 <= num[bB%]
These attributes specify the high and low water marks that control the automatic execution
of the command specified in the Ta_cMpNoNPERSTST attribute. Each is an integer greater
than or equal to zero followed by one of the following keyletters. The keyletters must be
consistent for TA_cMDNONPERSISTHW and TA_CMDNONPERSISTLW.

b
The high and low water marks are expressed as the number of bytes used by
non-persistent (in memory) messages in the queue.

The high and low water marks are expressed as the number of blocks used by
non-persistent (in memory) messages in the queue.

The high and low water marks are expressed as a percentage of the shared memory
capacity reserved for non-persistent messages in the queue space used by the
queue.

The messages threshold type specified via the Ta_cvpaw and Ta_cmprw attributes (when
followed by an m) applies to all messages in a queue, including both persistent and
non-persistent messages, and therefore is not available as a threshold type for
TA_CMDNONPERSISTHW and TA_CMDNONPERSISTLW.

TA_CURBLOCKS: 0 <= num
The number of disk pages currently consumed by the queue.

TA_CURMSG: 0 <= num
The number of persistent messages currently in the queue. To determine the total number
of messages in the queue, add TA_CURMEMMSG to this value.

File Formats, Data Descriptions, MIBs, and System Processes Reference 23

TA_DEFAULTEXPIRATIONTIME:
This attribute specifies an expiration time for messages enqueued with no explicit
expiration time. The expiration time may be either a relative expiration time or NoNE. The
relative expiration time is determined by associating a fixed amount of time with a
message after the message arrives at the queue manager process. When a message's
expiration time is reached and the message has not been dequeued or administratively
deleted, all resources associated with the message are reclaimed by the system and
statistics are updated. If a message expires during a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired. If no default expiration time is specified for a
queue, messages without an explicit expiration time do not expire. When the queue's
expiration time is modified, the expiration times of messages that were in the queue before
the modification are not changed.

The format is +seconds Where seconds is the number of seconds allowed to lapse
between the time that the queue manager successfully completes the operation and the
time that the message is to expire. If seconds is set to zero (0) the message expires
immediately.

The value of this attribute may also be set to the string NoNE. The NONE string indicates
that messages enqueued to the queue with no explicit expiration time do not expire. You
may change the expiration time for messages already in a queue with the Ta_EXPIRETIME
attribute of the T_aprpgumsc class in the appg_Mm1B.

TA_DEFDELIVERYPOLICY:
This attribute specifies the default delivery policy for the queue when no delivery mode
is specified for a message enqueued to the queue. When the value is PERSIST, messages
engueued to the queue without an explicitly specified delivery mode are delivered using
the persistent (disk-based) delivery method. When the value is NONPERSTST, messages
engueued to the queue without an explicitly specified delivery mode are delivered using
the non-persistent (in memory) delivery method.When a queue's default delivery policy is
modified, the delivery quality of service of messages that are in the queue before the
modification are not changed. If the queue being modified is the reply queue named for
any messages currently in the queue space, the reply quality of service is not changed for
those messages as a result of changing the default delivery policy of the queue.

For non-persistent delivery, if the memory area is exhausted or fragmented such that a
message cannot be enqueued, the enqueuing operation fails, even if there is sufficient
persistent storage for the message. Similarly, if the persistent storage area is exhausted or
fragmented such that a message cannot be enqueued, the enqueuing operation fails, even
if there is sufficient non-persistent storage for the message. If the TA_MEMNONPERSTIST

24 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

attribute of the T_apprgspace class is zero (0) for a queue space, no space is reserved for
non-persistent messages. In such a case, any attempt to enqueue a non-persistent message
fails. This type of failure results, for example, when no delivery quality of service has been
specified for a message and the Ta_DEFDELIVERYPOLICY attribute for the target queue
has been set to NONPERSIST.

TA_MAXRETRIES: 0 <= num
The maximum number of retries for a failed queue message. When the number of retries
is exhausted, the message is placed on the error queue of the associated application queue
space. If there is no error queue, the message is dropped. The default is zero.

TA_OUTOFORDER: {NONE | TOP | MSGID}
The way in which out-of-order message processing is to be handled. The default is NONE.

TA_RETRYDELAY: 0 <= num
The delay, in seconds, between retries for a failed queue message. The default is zero.

TA_CURNONPERSISTBYTES: 0 <= num
This attribute specifies the number of shared memory bytes currently consumed by the
non-persistent messages on the queue.

TA_CURNONPERSISTMSG. 0 <= num
This attribute specifies the number of non-persistent messages currently in the queue. To
determine the total number of messages in the queue, add TA_CURMSG to this value.

T_APPQMSG Class Definition

Overview
The T_arpomsc class represents messages stored in application queues. A message is not created
by an administrator; instead, it comes into existence as a result of a call to tpenqueue (). A
message can be destroyed either by a call to tpdequeue () or by an administrator. In addition,
certain attributes of a message can be modified by an administrator. For example, an
administrator can move a message from one queue to another queue within the same queue space
or change its priority.

Limitations
It is not possible to retrieve all instances of this class by leaving all key fields unset. Instead,
sufficient key fields must be supplied to explicitly target a single application queue space. These
required key fields are Ta_aAPPQSPACENAME, TA_QMCONFIG, and Ta_rmID, except when the
application is unconfigured (that is, the TuxconrF1c environment variable is not set), in which

File Formats, Data Descriptions, MIBs, and System Processes Reference 25

case Ta_LMID must be omitted. For example, if the TA_APPQSPACENAME, TA_QMCONFIG, and
TA_LMID attributes are set in a request using tpcall (), all T_appomsc objects in all queues of
the specified queue space will be retrieved.

Attribute Table

Table 8 APPQ_MIB(5): T_APPQMSG Class Definition Attribute Table

Attribute? Type Permissions Values Default
TA_APPOMSGID(K)(*) string r--r--r-- string[l..32] N/A
TA_APPONAME(K)(*) string r--r--r-- string[l..15] N/A
TA_APPQSPACENAME(K) (*) string r--r--r-- string[l..15] N/A
TA_QMCONFIG(K)(*) string r--r--r-- string[l..78] N/A
Ta_LMID(K)(*)° string r--r--r-- string[1..30] N/A
TA_STATES string rw-r--r-- GET: “VAL” N/A
SET: “INV” N/A
TA_NEWAPPQNAME string -W--w---- string[l..15] N/A
TA_PRIORITY long rW-rw-r-- {1<=num<=100|-1} N/A
TA_TIME string rw-rw-r-- {vy[MMDD[hh[mm[ss]]]]] N/A
| +seconds}
TA_EXPIRETIME string rw-rw-r-- {vv[mDD[hh[mm[ss]]]]] N/A
| +seconds}
TA_CORRID(K) string r--r--r-- string]0..32] N/A
TA_PERSISTENCE (K) string r--r--r-- {PERSIST|NONPERSIST} N/A
TA_REPLYPERSISTENCE string r--r--r-- {PERSIST|NONPERSIST N/A
| DEFAULT}

26 File Formats, Data Descriptions, MIBs, and System Processes Reference

Tahle 8 APPQ_MIB(5): T_APPQMSG Class Definition Attribute Table (Continued)

APPQ_MIB(5)

Attribute? Type Permissions Values Default
TA_LOWPRIORITY(K) long k--k--k-- 1 <= num <=100 1
TA_HIGHPRIORITY(K) long k--k--k-- 1 <= num<=100 100
TA_MSGENDTIME(K) string k--k--k-- {vy{MM{DD[hh[mm[ss]]]]] MAXLONG
| +seconds}
TA_MSGSTARTTIME(K) string k--k--k-- { vyl DD[hh[mm[ss]]]]] O
| +seconds}
TA_MSGEXPIREENDTIME(K) string k--k--k-- {vy[MM[DD[hh[mm[ss]]]]] MAXLONG
| +seconds | NONE}
TA_MSGEXPIRESTARTTIME(K) string k--k--k-- { vy{mMDD[hh[mm[ss]]]]] O
| +seconds}
TA_CURRETRIES long r--r--r-- 0 <= num N/A
TA_MSGSIZE long r--r--r-- 0 <= num N/A

(k)—GET key field®
(*)—required SET key field

aAll attributes of class T_APPQMSG are local attributes.
bra_1.MID must be specified as a key field except when the application is unconfigured (that is,
the TUXCONFIG environment variable is not set).
CAll operations on T_APPQMSG objects—both GET and SET—silently open the associated queue
space (that is, implicitly set the state of the queue space to OPEn if it is not already OPEn or
ACTive). This may be a time-consuming operation if the queue space is large.
dsufficient key fields must be supplied in a GET operation to explicitly target a single application

gueue space.

Attribute Semantics

TA_APPQMSGID: string[l..32]

A unique identifier for the queue message, which can be used to select the message for

GET or sET operations. No significance should be placed on this value beyond using it for
equality comparisons.

File Formats, Data Descriptions, MIBs, and System Processes Reference

21

TA_APPQNAME: string[l..15]
Name of the application queue in which the message is stored.

TA_APPQSPACENAME: string{l..15]
Name of the application queue space containing the message.

TA_QMCONFIG: string[l..78]
Absolute pathname of the file or device where the application queue space is located.

TA_LMID: string[l1..30] (no comma)
Identifier of the logical machine where the application queue space is located.

TA_STATE:

GET: {vaLid}
A GET operation retrieves information about the selected messages. The following
list describes the meaning of the Ta_sTaTE attribute returned in response to a GET
request.

VvAaLid The message exists. This state is INActive equivalent
for purposes of permissions checking.

SET: {INValid}
A seT operation changes characteristics of the selected message. The following list
describes the meaning of the Ta_sTATE attribute returned by a seT request. States
not listed cannot be set.

28 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

INValid The message is deleted from its queue space. The message must
be in state vALid before attempting this operation. Successful
return leaves the object in the INValid state.

unset Modify a message. Successful return leaves the state
unchanged.

TA_CURRETRIES. 0 <= num
The number of retries that have been attempted so far on this message.

TA_CORRID: string[0..32]
The correlation identifier for this message provided by the application in the
tpenqueue (3c) request. The empty string indicates that a correlation identifier is not
present.

TA_EXPIRETIME:
This attribute specifies the time at which a message expires (that is, the time at which the
message should be removed from the queue if it has not already been dequeued or
administratively deleted). When a message expires, all resources used by it are reclaimed
by the system and statistics are updated. If a message expires during a transaction, the
expiration does not cause the transaction to fail. Messages that expire while being
enqueued or dequeued within a transaction are removed from the queue when the
transaction ends. There is no notification that the message has expired.

Expiration times cannot be added to messages enqueued by versions of the BEA Tuxedo
system that do not support message expiration, even when the queue manager responsible
for changing this value supports message expiration. Attempts to add an expiration time
fail.

The empty string is returned by a GeT operation if the expiration time is not set. The
TA_EXPIRETIME format is one of the following:

+seconds
Specifies that the message will be removed after the specified number of seconds.
If the value of seconds is set to zero (0), the message is removed immediately
from the queue. Relative expiration time is calculated on the basis of the time at
which the MIB request arrives and has been processed by the corresponding queue
manager.

vy{204 D[hb]mm ss]]]]
Specifies the year, month, day, hour, minute, and second when the message will be
removed if it has not been dequeued or administratively deleted already. Omitted
units default to their minimum possible values. For example, 9506 is equivalent to

File Formats, Data Descriptions, MIBs, and System Processes Reference 29

30

950601000000. The years 00 through 37 are treated as 2000 through 2037, 70
through 99 are treated as 1970 through 1999, and 38 through 69 are invalid. An
absolute expiration time is determined by the clock on the machine where the
gueue manager process resides.

NONE
Specifies that the message will never expire.

TA_LOWPRIORITY: 1 <= num <= 100

TA_HIGHPRIORITY: 1 <= num <= 100
The lowest and highest priority within which to search for occurrences of T_arroMsc
objects. These attributes may only be used as key fields with ceT operations.

TA_MSGEXPIRESTARTTIME:

TA_MSGEXPIREENDTIME:
The expiration start and end times within which to search for occurrences of T_aprrousc
objects. The range is inclusive. A start or end time must be specified as an absolute time
value; see TA_EXPIRETIME for the format. These attributes may only be used as key fields
with GeT operations.

TA_MSGSIZE: 0 <= num
The size of the message, in bytes.

TA_MSGSTARTTIME:

TA_MSGENDTIME.
The start and end time within which to search for occurrences of T_aprousc objects. The
range is inclusive. A start or end time must be specified as an absolute time value; see
TA_TIME for the format. These attributes may only be used as key fields with GeT
operations.

TA_NEWAPPQNAME: string[l..15]
Name of the queue into which to move the selected message. This queue must be an
existing queue in the same queue space. The message must be in state varid for this
operation to succeed. This attribute is not returned by a ceT operation. The delivery
quality of service of messages that are moved will not be changed as a result of the default
delivery policy of the new queue. When messages with an expiration time are moved, the
expiration time is considered an absolute expiration time in the new queue, even if it was
previously specified as a relative expiration time.

TA_PERSISTENCE:
The quality of service with which the message is being delivered. This read-only state is
set to NONPERSIST for non-persistent messages and pPErsIST for persistent messages.

File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

TA_PRIORITY: 1 <= num <= 100
The priority of the message.

TA_REPLYPERSISTENCE!:
The quality of service with which replies to the message should be delivered. This
read-only state is set to NoNPERSIST for non-persistent, PERsIST for persistent, and
DEFAULT When the reply is to use the default persistence established for the queue
where the reply is to be enqueued.

Note that the default delivery policy is determined when the reply to a message is
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TA_TIME:
The time when the message will be made available. The format is one of the following:

+seconds
Specifies that the message will be processed seconds in the future. The value zero
(0) specifies that the message should be processed immediately.

vy[ra Do[hb[mmss]]]1]
Specifies the year, month, day, hour, minute, and second when the message should
be processed. Omitted units default to their minimum possible values. For
example, 9506 is equivalent to 950601000000. The years 00 through 37 are treated
as 2000 through 2037, 70 through 99 are treated as 1970 through 1999, and 38
through 69 are invalid.

T_APPQSPACE Class Definition

Overview
The T_approspack class represents application queue spaces. An application queue space is an
area in a BEA Tuxedo system device; see the T_pevicE classin t_mIB (5) for more information
about devices and their attributes. Each queue space typically contains one or more application
queues, and each queue may have messages stored in it.

A queue space is uniquely identified by several attributes: its name (TA_APPQSPACENAME
attribute), the device that contains it (Ta_gmconr1c attribute), and the logical machine where the
device is located (Ta_rm1D attribute).

File Formats, Data Descriptions, MIBs, and System Processes Reference 3

A queue space is typically associated with exactly one server group in a configured application.
The queue space name as well as the device name are components of the Ta_opENINFO attribute
of the T_croup object.

Limitations

It is not possible to retrieve all instances of this class by leaving all key fields unset. Instead, all
three key fields must be supplied to explicitly target a single application queue space. The single
exception occurs when accessing a local queue space via tpadmcall () in the context of an
unconfigured application (that is, the TuxconrF1G environment variable is not set). In this case the
Ta_1M1D key field must be omitted.

The above limitation regarding accessibility of queue spaces also applies to T_apprg, T_APPQMSG,
and T_aprpQTRANS objects because operations on all objects in the /Q MIB implicitly involve
queue spaces.

Attribute Table

Table 9 APPQ_MIB(5): T_APPQSPACE Class Definition Attribute Tahle

Attribute? Type Permissions Values Default
TA_APPQSPACENAME(K)(r)(*) string ru-r--r-- string[l..15] N/A
TA_QMCONFIG(K)(r)(*) string ru-r--r-- string[l..78] N/A
Ta_1MID(K)(r)(*)b string ru-r--r-- string[1..30] N/A
TA_STATE(K)C string TWXTWXL -~ GET: “{INA | INI | OPE | N/A
ACT}”
SET: “{NEW | OPE | CLE | N/A
INV}”

32 File Formats, Data Descriptions, MIBs, and System Processes Reference

Tahle 9 APPQ_MIB(5): T_APPQSPACE Class Definition Attribute Table (Continued)

APPQ_MIB(5)

Attribute? Type Permissions Values Default
TA_BLOCKING long rw-r--r-- 0 <= num 16
TA_ERRORQNAME string rw-r--r-- string[0..15] v
TA_FORCEINIT string TW-r--r--— {y | N} N
TA_IPCKEY(r) long rw-r--r-- 32769 <= num <= 262143 N/A
TA_MAXMSG(r) long rTW-r--r--— 0 <= num N/A
TA_MAXPAGES(r) long rw-r--r-- 0 <= num N/A
TA_MAXPROC(r) long rw-r--r-- 0 <= num N/A
TA_MAXQUEUES(r)? long rW-r--r-- 0 <= num N/A
TA_MAXTRANS(r) long TW-r--r-- 0 <= num N/A
TA_MAXACTIONS long TW-r--r-- 0 <= num 0
TA_MAXHANDLES long rw-r--r-- 0 <= num 0
TA_MAXOWNERS long rw-r--r-- 0 <= num 0
TA_MAXTMPQUEUES long rw-r--r-- 0 <= num 0
TA_MAXCURSORS long IW-r--r-- 0 <= num 0
TA_MEMNONPERSIST string IW-r--r-- 0 <= num[bB] 0
TA_MEMFILTERS long IW-r--r-- 0 <= num 0
TA_MEMOVERFLOW long rw-r--r-- 0 <= num 0
TA_MEMSYSTEMRESERVED long r--r--r-- 0 <= num N/A
TA_MEMTOTALALLOCATED long r--r--r-- 0 <= num N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference

33

Tahle 9 APPQ_MIB(5): T_APPQSPACE Class Definition Attribute Table (Continued)

Attribute? Type Permissions Values Default
TA_CUREXTENT long r--r--r-- 0 <= num<=100 N/A
TA_CURMSG long r--r--r-- {0<=num|-1} N/A
TA_CURPROC long r--r--r-- 0 <= num N/A
TA_CURQUEUES long r--r--r-- {0<=num|-1} N/A
TA_CURTRANS long R--R--R-- 0 <= num N/A
TA_CURACTIONS long r--r--r-- 0 <= num N/A
TA_CURHANDLES long r--r--r-- 0 <= num N/A
TA_CUROWNERS long r--r--r-- 0 <= num N/A
TA_CURTMPQUEUES long r--r--r-- 0 <= num N/A
TA_CURCURSORS long r--r--r-- 0 <= num N/A
TA_CURMEMNONPERSIST long r--r--r-- 0 <= num N/A
TA_CURMEMFILTERS long r--r--r-- 0 <= num N/A
TA_CURMEMOVERFLOW long r--r--r-- 0 <= num N/A
TA_HWMSG long R--R--R-- 0 <= num N/A
TA_HWPROC long R--R--R-- 0 <= num N/A
TA_HWQUEUES long R--R--R-- 0 <= num N/A
TA_HWTRANS long R--R--R-- 0 <= num N/A
TA_HWACTIONS long R--R--R-- 0 <= num<=100 N/A
TA_HWHANDLES long R--R--R-- 0 <= num N/A
TA_HWOWNERS long R--R--R-- 0 <= num N/A
TA_HWTMPQUEUES long R--R--R-- 0 <= num N/A
TA_HWCURSORS long R--R--R-- 0 <= num N/A
TA_HWMEMNONPERSIST long R--R--R-- 0 <= num N/A
TA_HWMEMFILTERS long R--R--R-- 0 <= num N/A
TA_HWMEMOVERFLOW long R--R--R-- 0 <= num N/A
TA_PERCENTINIT long r--r--r-- 0 <= num N/A

(k)—GET key field
('r)—required field for object creation
(*)—required SET key field

34 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

a.All attributes of class T_APPQSPACE are local attributes.

b.TA_1MID must be specified as a key field except when the application is unconfigured (that is,
the TUXCONFIG environment variable is not set).

c.All operations on T_APPQ, T_APPQMSG, and T_APPQTRANS objects (both GET and SET)
silently open the associated queue space (that is, implicitly set the state of the queue space to OPEn
if it is not already OPEn or ACTive). This may be a time-consuming operation if the queue space
is large.

d.TA_MAXQUEUES cannot be modified after the queue space is created.

Attribute Semantics

TA_APPQSPACENAME: string[1..15]
Name of the application queue space.

TA_QMCONFIG: string[1..78]
Absolute pathname of the file or device where the application queue space is located.

TA_LMID: string[1..30] (no comma)
Identifier of the logical machine where the application queue space is located.

TA_STATE:

GET: {INActive | INITtializing | OPEn |ACTive}
A cET operation retrieves information about the selected application queue space.
The following list describes the meaning of the Ta_sTaTE attribute returned in
response to a GET request.

INActive The queue space exists; that is, disk space for it has been
reserved in a device and the space has been initialized (if
requested or if necessary).

INItializing Disk space for the queue space is currently being
initialized. This state is ACTive equivalent for
purposes of permissions checking.

File Formats, Data Descriptions, MIBs, and System Processes Reference 35

OPEn

Shared memory and other IPC resources for the queue
space have been allocated and initialized, but no
processes are currently attached to the shared memory.
This state is INActive equivalent for purposes of
permissions checking.

ACTive

Shared memory and other IPC resources for the queue
space have been allocated and initialized, and at least
one process is currently attached to the shared memory.
These processes can be the queue servers (TMS_QM,
TMQUEUE, and perhaps TMQFORWARD) associated with
the queue space, or they can be administrative processes
such as gmadmin (1), or they can be processes
associated with another application.

SET: {NEW | OPEn | CLEaning | INValid}
A seT operation changes the selected application queue space or creates a new one.
The following list describes the meaning of the Ta_sTaTE attribute returned by a
SET request. States not listed cannot be set.

NEW

Create a new queue space. The state of the queue space
becomes either INItializing or INActive
following a successful SET to this state.

OPEn

Allocate and initialize shared memory and other IPC
resources for the queue space. This is allowed only if the
queue space is in the INActive state.

CLEaning

Remove the shared memory and other IPC resources for
the queue space. This is allowed only when the queue
space is in the OPEn or ACTive state. The
QMIB_FORCECLOSE flag must be specified if the state
is ACTive. When successful, all non-persistent
messages are permanently lost.

36 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

INValid Delete the queue space. Unless the
QMIB_FORCEDELETE flag is passed, an error is
reported if the state is ACTive or if messages exist on
any queues in the queue space. Successful return leaves
the object in the INValid state. When successful, all
non-persistent messages are permanently lost.

unset Modify an application queue space. Successful return
leaves the state unchanged.

TA_BLOCKING: 0 <= num
The blocking factor used for disk space management of the queue space. The default when
a new queue space is created is 16.

TA_CURACTIONS: 0 <= num
This attribute specifies the current number of actions in use in the queue space. This
number can be determined if the queue space is oPEn Or ACTive, Or if the queue space is
newly created. If none of the conditions apply, the value —1 is returned.

TA_CURCURSORS: 0 <= num
This attribute specifies the current number of cursors in use in the queue space. This
number can be determined if the queue space is orPEn Or AcTive, Or if the queue space is
newly created. If none of the conditions apply, the value -1 is returned.

TA_CUREXTENT: 0 <= num <= 100
The current number of extents used by the queue space. The largest number allowed is
100. Each time the value of the Ta_maxPAGES attribute is increased, a new extent is
allocated. When this attribute is modified, all non-persistent messages in the queue space
are permanently lost.

TA_CURHANDLES: 0 <= num
This attribute specifies the current number of handles in use in the queue space. This
number can be determined if the queue space is oPEn Or ACTive, Or if the queue space is
newly created. If none of the conditions apply, the value -1 is returned.

TA_CURMEMFILTERS:. 0 <= num
This attribute specifies the current number of bytes in use for filters in the queue space.
This number can be determined if the queue space is oPEn Or ACTive, Or if the queue space
is newly created. If none of the conditions apply, the value -1 is returned.

File Formats, Data Descriptions, MIBs, and System Processes Reference 37

TA_CURMEMNONPERSIST: 0 <= num
The current amount of memory in bytes consumed by non-persistent messages in the
queue space. This number can be determined if the queue space is 0PEn Or ACTive, Or if
the queue space is newly created. If none of the conditions apply, the value -1 is returned.

TA_CURMEMOVERFLOW: 0 <= num
This attribute specifies the current number of bytes in use of the overflow memory in the
queue space. This number can be determined if the queue space is 0PEn Or ACTive, Of if
the queue space is newly created. If none of the conditions apply, the value -1 is returned.

TA_CURMSG: 0 <= num
The current number of messages in the queue space. This number can be determined only
if the queue space is oPEn Or ACTive, Or if the queue space is newly created. If none of
these conditions are met, the value -1 is returned.

TA_CUROWNERS: 0 <= num
This attribute specifies the current number of owners in use in the queue space. This
number can be determined if the queue space is orPEn Or AcTive, Or if the queue space is
newly created. If none of the conditions apply, the value -1 is returned.

TA_CURPROC: 0 <= num
The current number of processes accessing the queue space.

TA_CURQUEUES: 0 <= num
The current number of queues existing in the queue space. This number can be determined
only if the queue space is oPEn Or ACTive, Or if the queue space is newly created. If none
of these conditions are met, the value -1 is returned.

TA_CURTMPQUEUES: 0 <= num
This attribute specifies the current number of temporary queues in use in the queue space.
This number can be determined if the queue space is oPEn Or ACTive, Or if the queue space
is newly created. If none of the conditions apply, the value -1 is returned.

TA_CURTRANS: 0 <= num
The current number of outstanding transactions involving the queue space.

TA_ERRORQNAME: string[0..15]
Name of the error queue associated with the queue space. If there is no error queue, an
empty string is returned by a GeT request.

TA_FORCEINIT: {Y | N}
Whether or not to initialize disk pages on new extents for the queue space. The default is
not to initialize. Depending on the device type (for example, regular file or raw slice),
initialization can be done even if it is not requested.

38 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

TA_HWACTIONS: 0 <= num
This attribute specifies the highest number of concurrent actions reached in the queue
space since the queue space was last opened. The number is reset to 0 when the queue
space state is set t0 CLEaning.

TA_HWCURSORS: 0 <= num
This attribute specifies the highest number of concurrent cursors created in the queue
space since the queue space was last opened. The number is reset to 0 when the queue
space state is set to CLEaning.

TA_HWHANDLES: 0 <= num
This attribute specifies the highest number of concurrent handles opened in the queue
space since the queue space was last opened. The number is reset to 0 when the queue
space state is set to CLEaning.

TA_HWMEMFILTERS: 0 <= num
This attribute specifies the highest number of bytes used for filters in the queue space
since the queue space was last opened. The number is reset to 0 when the queue space state
is set to CLEaning.

TA_HWMEMNONPERSIST:. 0 <= num
The largest amount of memory in bytes consumed by non-persistent messages since the
queue space was last opened. The number is reset to 0 when the queue space state is set to
CLEaning.

TA_HWMEMOVERFLOW: 0 <= num
This attribute specifies the highest number of bytes used in the overflow memory in the
queue space since the queue space was last opened. The number is reset to 0 when the
queue space state is set to CLEaning.

TA_HWMSG: 0 <= num
The highest number of messages in the queue space at a given time since the queue space
was last opened. The number is reset to 0 when the queue space state is set t0 cLEaning.

TA_HWOWNERS: 0 <= num
This attribute specifies the highest number of concurrent owners reached in the queue
space since the queue space was last opened. The number is reset to 0 when the queue
space state is set to CLEaning.

TA_HWPROC: 0 <= num
The highest number of processes simultaneously attached to the queue space since the
queue space was last opened. The number is reset to 0 when the queue space state is set to
CLEaning.

File Formats, Data Descriptions, MIBs, and System Processes Reference 39

40

TA_HWQUEUES: 0 <= num

The highest number of queues existing in the queue space at a given time since the queue
space was last opened. The number is reset to 0 when the queue space state is set to
CLEaning.

TA_HWTMPQUEUES: 0 <= num

This attribute specifies the highest number of concurrent temporary queues opened in the
queue space since the queue space was last opened. The number is reset to 0 when the
queue space state is set to CLEaning.

TA_HWTRANS: 0 <= num

The highest number of outstanding transactions at a given time involving the queue space
since the queue space was last opened. If the queue space is accessed by more than one
application, this number reflects all applications, not just the application represented by
the TuxconNF1G environment variable. The number is reset to 0 when the queue space state
is set to CLEaning.

TA_IPCKEY: 32769 <= num <= 262143

The IPC key used to access queue space shared memory.

TA_MAXACTIONS: 0 <= num

This attribute specifies the number of additional actions that the Queuing Services
component of the BEA Tuxedo infrastructure can handle concurrently. When a blocking
operation is encountered and additional actions are available, the blocking operation is set
aside until it can be satisfied. After setting aside the blocking operation, another operation
request can be handled. When the blocking operation completes, the action associated
with the operation is made available for a subsequent operation. The system reserves
actions equivalent to the number of processes that can attach to a queue space, so that each
queue manager process may have at least one blocking action. Beyond the
system-reserved number of blocking actions, the administrator may configure the system
to be able to accommodate additional blocking actions beyond the reserve. An operation
fails if a blocking operation is requested and cannot be immediately satisfied and there are
no actions available.

TA_MAXCURSORS: 0 <= num

This attribute specifies the number of cursors that users of that the Queuing Services
component of the BEA Tuxedo infrastructure may use concurrently. Cursors are used to
navigate a queue. When a cursor is destroyed, the cursor resources are made available for
subsequent cursor creation operations. When the cursors are used by an application, the
administrator must configure the system to accommodate the maximum number of
cursors that will be allocated concurrently. An operation fails if a user attempts to create
a cursor and there are no cursor resources available. BEA Tuxedo applications need not

File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

adjust this value. Adjusting this value has no effect on BEA Tuxedo applications other
than unnecessarily consuming shared memory resources.

TA_MAXHANDLES: 0 <= num
This attribute specifies the number of handles that users of that the Queuing Services
component of the BEA Tuxedo infrastructure may use concurrently. Objects manipulated
by the queuing services API require handles to access the objects. When an object is
opened by a call to the Queuing Services API, a new handle is created and returned to the
user. When an object handle is closed, the handle is made available for subsequent open
object operations. When the Queuing Services API is used by an application, the
administrator must configure the system to accommodate the maximum number of
handles that will be opened concurrently. An operation fails if a user attempts to open a
queuing services object and there are no handles available. Adjusting this value has no
effect on BEA Tuxedo applications other than unnecessarily consuming shared memory
resources.

TA_MAXMSG: 0 <= num
The maximum number of messages that the queue space can contain at a given time.

TA_MAXOWNERS: 0 <= num
This attribute specifies the number of additional BEA Tuxedo infrastructure authenticated
users that may concurrently use Queuing Services resources. There is one owner record
per user, regardless of the number of open handles for the user. When there are no open
handles for a user, the owner record is made available for subsequent users. The system
reserves owners equivalent to the number of actions so that each action may be initiated
by a different owner. Beyond the system-reserved number of owners that may be
concurrently using queuing services resources, the administrator may configure the
system to accommodate additional owners beyond the reserve. An operation fails if a user
attempts to open a handle when they currently do not have any open handles, and there are
no owners available. Adjusting this value has no effect on BEA Tuxedo applications other
than unnecessarily consuming shared memory resources.

TA_MAXPAGES: 0 <= num
The maximum number of disk pages for all queues in the queue space. Each time the
TA_MAXPAGES attribute is increased, a new extent is allocated (see TA_CUREXTENT). It is
not possible to decrease the number of pages by setting this attribute to a lower humber;
an error is reported in this case.

TA_MAXPROC: 0 <= num
The maximum number of processes that can attach to the queue space.

TA_MAXQUEUES: 0 <= num
The maximum number of queues that the queue space can contain at a given time.

File Formats, Data Descriptions, MIBs, and System Processes Reference 4

TA_MAXTMPQUEUES: 0 <= num
This attribute specifies the number of temporary queues that may be opened concurrently
in the Queuing Services component of the BEA Tuxedo infrastructure. Temporary queues
reduce the need for administrators to configure each queue used by an application. They
are used by dynamic self-configuring applications. Messages enqueued to temporary
queues are not persistent. When all handles to a temporary queue are closed, the temporary
queue resources are made available for subsequent temporary queue creation. When the
temporary queues are used by an application, the administrator must configure the system
to accommodate the maximum number of temporary queues that will be active
concurrently. An open operation fails if a user attempts to open a temporary queue and
there are no temporary queue resources available. Adjusting this value has no effect on
BEA Tuxedo applications other than unnecessarily consuming shared memory resources.

TA_MAXTRANS: 0 <= num
The maximum number of simultaneously active transactions allowed by the queue space.

TA_MEMFILTERS: 0 <= num
This attribute specifies the size of the memory area to reserve in shared memory to hold
the compiled representation of user defined filters. The memory size is specified in bytes.
Filters are used by the Queuing Services component of the BEA Tuxedo infrastructure for
message selection in dequeuing and cursor operations. Filters may be specified using
various grammars but are compiled into an BEA Tuxedo infrastructure normal form and
stored in shared memory. Filters are referenced by a handle returned when they are
compiled. When a filter is destroyed, the memory used by the filter is made available for
subsequent compiled filters. When the filters are defined by an application, the
administrator must configure the system to accommodate the maximum number of filters
that will be concurrently compiled. An operation fails if a user attempts to create a new
filter and there is not enough memory allocated for the compiled version of the filter.
Adjusting this value has no effect on BEA Tuxedo applications other than unnecessarily
consuming shared memory resources.

TA_MEMNONPERSIST: O <= num [bB]
This attribute specifies the size of the area reserved in shared memory to hold
non-persistent messages for all queues in the queue space. The memory size may be
specified in bytes (b) or blocks (B). (The size of a block, in this context, is equivalent to
the size of a disk block.) The [bB] suffix is optional and, if not specified, the default is
blocks (B).

If the value is specified in bytes (b) for this attribute, the system divides the specified value
by the number of bytes per page (page size is equivalent to the disk page size), rounds

down the result to the nearest integer, and allocates that number of pages of memory. For
example, assuming a page size of 1024 bytes (1KB), a requested value of 2000b results in

42 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

a memory allocation of 1 page (1024 bytes), and a requested value of 2048b results in a
memory allocation of 2 pages (2048 bytes). Requesting a value less than the number of
bytes per page results in an allocation of 0 pages (0 bytes).

If the value is specified in blocks (B) for this attribute and assuming that one block of
memory is equivalent to one page of memory, the system allocates the same value of
pages. For example, a requested value of 50B results in a memory allocation of 50 pages.

All non-persistent messages in the specified queue space are permanently lost when
TA_MEMNONPERSIST is successfully changed.

If Ta_mEMNONPERSTST fOr a queue space is zero (0) for a queue space, no space is reserved
for non-persistent messages. In this case, any attempt to enqueue a non-persistent message
fails. This type of failure results, for example, when no delivery quality of service has been
specified for a message and the TA_DEFDELIVERYPOLICY attribute of the T_appq class for
the target queue has been set to NoNPERSIST. FOr non-persistent delivery, if the memory
area is exhausted or fragmented such that a message cannot be enqueued, the enqueuing
operation fails, even if there is sufficient persistent storage for the message. Similarly, if
the persistent storage area is exhausted or fragmented such that a message cannot be
engueued, the enqueuing operation fails, even if there is sufficient non-persistent storage
for the message.

TA_MEMOVERFLOW. 0 <= num
This attribute specifies the size of the memory area to reserve in shared memory to
accommodate peek load situations where some or all of the allocated shared memory
resources are exhausted. The memory size is specified in bytes. Additional objects are
allocated from this additional memory on a first-come-first-served basis. When an object
created in the additional memory is closed or destroyed, the memory is released for
subsequent overflow situations. This additional memory space may yield more objects
than the configured number, but there is no guarantee that additional memory is available
for any particular object at any given point in time. Currently, only actions, handles,
cursors, owners, temporary queues, timers, and filters use the overflow memory.

TA_MEMSYSTEMRESERVED: 0 <= num
This attribute specifies the total amount of memory (in bytes) reserved from shared
memory for queuing services system use.

TA_MEMTOTALALLOCATED: 0 <= num
This attribute specifies the total amount of memory (in bytes) allocated from shared for
all queuing services objects.

TA_PERCENTINIT. 0 <= num <= 100
The percentage of disk space that has been initialized for the queue space.

File Formats, Data Descriptions, MIBs, and System Processes Reference 43

T_APPQTRANS Class Definition

Overview

The T_aprpoTRANS class represents run-time attributes of transactions associated with application
queues.

Limitations

It is not possible to retrieve all instances of this class by leaving all key fields unset. Instead,
sufficient key fields must be specified to explicitly target a single application queue space. For
example, if all key fields except Ta_x1D are set in an request using tpcall (), all T_APPQTRANS
objects associated with the specified queue space will be retrieved.

It is important to keep in mind that transactions represented by objects of this class are not
necessarily associated with the application in which they are retrieved. Care must be taken when
heuristically committing or aborting a transaction because the transaction may actually belong to
or have an effect on another application. The value of the Ta_x1D attribute is not guaranteed to
be unique across applications.

Attribute Table

Tahle 10 APPQ_MIB(5): T_APPQTRANS Class Definition Attribute Table

Attribute? Type Permissions Values Default
TA_XID(K)(*) string R--R--R-- string[l..78] N/A
TA_APPQSPACENAME(K)(*) string r--r--r-- string[l..15] N/A
TA_QMCONFIG(k)(*) string r--r--r-- string[l..78] N/A
TA_LMID(K)(*) string r--r--r-- string[l1..30] N/A
TA_STATE? string R-XR-XR-- GET: “{ACT|ABY|ABD|COM|REA N/A

| DEC | HAB | HCO}”
SET: “{HAB | HCO}” N/A

(k)—GET key field®
(*)—required SET key field

a. All attributes of class T_APPQTRANS are local attributes.

44 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

b. All operations on T_APPQTRANS objects—hoth GET and SET-silently open the associated
queue space (that is, implicitly set the state of the queue space to OPEn if it is not already OPEn
or ACTive). This may be a time-consuming operation if the queue space is large.

c. Sufficient key fields must be supplied in a GET operation to explicitly target a single application
queue space.

Attribute Semantics

TA_XID: string[1..78]
Transaction identifier as returned by tx_info () and mapped to a string representation.
The data in this field should not be interpreted directly by the user except for equality
comparison.

TA_APPQSPACENAME: string{l..15]
Name of the application queue space associated with the transaction.

TA_QMCONFIG: string[l..78]
Absolute pathname of the file or device where the application queue space is located.

TA_LMID: string[l1..30] (no comma)
Identifier of the logical machine where the application queue space is located.

TA_STATE:

GET: {ACTive | ABortonlY | ABorteD | COMcalled | REAdy | DECided |

HAbord | HCommit}
A GET operation retrieves run-time information about the selected transactions.
The following list describes the meaning of the Ta_sTaTE attribute returned in
response to a GeT request. All states are acTive equivalent for purposes of
permissions checking.

ACTive The transaction is active.
ABortonlY The transaction has been identified for rollback.
ABorteD The transaction has been identified for rollback and

rollback has been initiated.

COMcalled The initiator of the transaction has called tpcommit ()
and the first phase of two-phase commit has begun.

REAdy All of the participating groups on the retrieval site have
successfully completed the first phase of two-phase
commit and are ready to be committed.

File Formats, Data Descriptions, MIBs, and System Processes Reference 45

DECided The second phase of the two-phase commit has begun.

SUSpended The initiator of the transaction has suspended
processing on the transaction.

SET: {HABort | HCOmmit}
A sET operation updates the state of the selected transactions. The following list
describes the meaning of the Ta_sTATE attribute returned by a seT request. States
not listed cannot be set.

HABort Heuristically abort the transaction. Successful return
leaves the object in the HABort state.

HCOmmit Heuristically commit the transaction. Successful return
leaves the object in the HCOmmi t state.

APPQ_MIB(5) Additional Information

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo system MIBs, as well as the header file and field table mentioned on this reference
page, are available on all supported native and Workstation platforms.

Interoperability
This MIB is provided only on BEA Tuxedo 6.0 sites and later, both native and Workstation.

If a site running a BEA Tuxedo release earlier than release 6.0 is active in the application,
administrative access through this MIB is limited as follows:

e SET operations are not allowed.

e Local information access for sites earlier than release 6.0 is not available. If the class being
accessed also has global information, the global information only is returned. Otherwise,
an error is returned.

If sites of differing releases, both greater than or equal to release 6.0, are interoperating,
information on the older site is available for access and update as defined on the MIB reference
page for that release and may be a subset of the information available in the later release.

46 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

Examples

Following is a set of code fragments that illustrate how to perform various operations on
application queue spaces, queues, messages, and transactions.

Each fragment should be preceded by code that allocates an FML32 typed buffer, such as the
following:

rgbuf = tpalloc("FML32", NULL, O0);

After the buffer is populated, each fragment should be followed by code that sends the request
and receives the reply, such as the following:

flags = TPNOTRAN | TPNOCHANGE | TPSIGRSTRT;

rval = tpcall(".TMIB", rgbuf, 0, rpbuf, rplen, flags);

See m1B(5) for additional information.

Field Tables

The field table tpadm must be available in the environment to allow access to attribute field
identifiers. This can be done at the shell level as follows:

$ FIELDTBLS=tpadm
$ FLDTBLDIR=${TUXDIR} /udataobj
¢ export FIELDTBLS FLDTBLDIR

Header Files
The following header files are needed.

#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

Libraries

${TUXDIR}/1lib/libtmib.a, ${TUXDIR}/lib/libagm.a,
S{TUXDIR}/1lib/libtmib.so.<rel>, ${TUXDIR}/lib/libgm.so.<rel>,
${TUXDIR}/1lib/libgm.1lib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1ib -ltmib -lgm

File Formats, Data Descriptions, MIBs, and System Processes Reference 47

Create an Application Queue Space

Creating an application queue space typically involves two operations: the first to create the BEA
Tuxedo system device in which the queue space will be allocated, and the second to create the
queue space itself.

/* Allocate the buffer; see above */

/* Build the request to create a new device on SITEl1l */
Fchg32 (rgbuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (rgbuf, TA_CLASS, 0, "T_DEVICE", 0);

Fchg32 (rgbuf, TA_STATE, 0, "NEW", 0);

Fchg32 (rgbuf, TA_CFGDEVICE, 0, "/dev/qg/dsk001", 0);
Fchg32 (rgbuf, TA_LMID, 0, "SITEl", 0);

size = 500;

Fchg32 (rgbuf, TA_DEVSIZE, 0, (char *)size, 0);

/* Make the request; see above */

/* Reinitialize the same buffer for reuse */
Finit32 (rgbuf, (FLDLEN) Fsizeof32 (rgbuf));

/* Build the request to create the queue space */
Fchg32 (rgbuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (rgbuf, TA_CLASS, 0, "T_APPQSPACE", 0);
Fchg32 (rgbuf, TA_STATE, 0, "NEW", 0);

Fchg32 (rgbuf, TA_APPQSPACENAME, 0, "QSPACEl", 0);
Fchg32 (rgbuf, TA_QMCONFIG, 0, "/dev/g/dsk001", 0);
Fchg32 (rgbuf, TA_LMID, 0, "SITEl", 0);

Fchg32 (rgbuf, TA_ERRORQNAME, 0, "errque", 0);
ipckey = 123456;

Fchg32 (rgbuf, TA_IPCKEY, 0, (char *)ipckey, 0);
maxmsg = 100;

Fchg32 (rgbuf, TA_MAXMSG, 0, (char *)maxmsg, O0);
maxpages = 200;

Fchg32 (rgbuf, TA_MAXPAGES, 0, (char *)maxpages, 0);
maxproc = 50;

Fchg32 (rgbuf, TA_MAXPROC, 0, (char *)maxproc, 0);

maxqueues = 10;

48 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

Fchg32 (rgbuf, TA_MAXQUEUES, 0, (char *)maxgueues, 0);
maxtrans = 100;
Fchg32 (rgbuf, TA_MAXTRANS, 0, (char *)maxtrans, O0);

/* Make the request; see above */

Add a Queue to an Application Queue Space
The following code creates a new queue in the queue space created in the previous example.

/* Build the request */

Fchg32 (rgbuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (rgbuf, TA_CLASS, 0, "T_APPQ", 0);

Fchg32 (rgbuf, TA_STATE, 0, "NEW", 0);

Fchg32 (rgbuf, TA_APPQNAME, 0, "errque", 0);

Fchg32 (rgbuf, TA_APPQSPACENAME, 0, "QSPACEl", 0);
Fchg32 (rgbuf, TA_QMCONFIG, 0, "/dev/qg/dsk001", 0);
Fchg32 (rgbuf, TA_LMID, 0, "SITEl", 0);

Fchg32 (rgbuf, TA_APPQORDER, 0, "PRIO", 0);

/* Make the request; see above */

List Application Queue Spaces Known to the Application

To list the application queue spaces known to an application, a two-level search is used. First, the
groups using the /Q transaction manager Tvs_ow are retrieved from the application configuration,
and then the queue space referenced by each group is retrieved. The following code fragment
assumes that each croup entry involving a queue space has a single logical machine associated
with it (that is, server migration is not used).

Listing 1 List Application Queue Spaces Known to the Application

/* Build the request to retrieve all TMS_QM groups */
Fchg32 (rgbuf, TA_OPERATION, 0, "GET", O0);

Fchg32 (rgbuf, TA_CLASS, 0, "T _GROUP", 0);

Fchg32 (rgbuf, TA_TMSNAME, 0, "TMS_QM", O0);

f1didl = TA_OPENINFO;

f£1did2 = TA_LMID;

Fchg32 (rgbuf, TA_FILTER, 0, (char *)fldidl, 0);
Fchg32 (rgbuf, TA_FILTER, 0, (char *)fldid2, 1);

/* Make the request, assuming we are joined to the application */

File Formats, Data Descriptions, MIBs, and System Processes Reference 49

rval = tpcall(".TMIB", rgbuf, 0, rpbuf, rplen, flags);

/* For each TMS_QM group, build the request to retrieve its queue space */
rval = Fget32 (*rpbuf, TA_OCCURS, 0, (char *)occurs, NULL) ;
for (1 = 0; i occurs; i++) {

/* Reinitialize the buffer and set all common attributes */
Finit32 (rgbuf, (FLDLEN) Fsizeof32 (rgbuf));

Fchg32 (rgbuf, TA_OPERATION, 0, "GET", 0);

Fchg32 (rgbuf, TA_CLASS, 0, "T_APPQSPACE", O0);

/* Get the OPENINFO to determine device and queue space name */

/* OPENINFO has the format <resource-mgr>:<gmconfig>:<appgspacename> */
/* or on Windows <resource-mgr>:<gmconfig>;<appgspacename> */

rval = Fget32 (rpbuf, TA_OPENINFO, i, openinfo, NULL) ;

/* The device is the 2nd field in OPENINFO */
gmconfig = strchr(openinfo, ':') + 1;
/* The queue space name is the 3rd field in OPENINFO */

#1if defined(_TMDOWN) || defined(_TM_NETWARE)

#define pathsep ";" /* separator for PATH */

#else

#define pathsep ":" /* separator for PATH */

#endif
appgspacename = strchr (gmconfig, pathsep);
appgspacename[0] = '\e0'; /* NULL-terminate gmconfig */

appdgspacename++; /* bump past the NULL */

/* Set the APPQSPACENAME and QMCONFIG keys */
Fchg32 (rgbuf, TA_APPQSPACENAME, 0, appgspacename, 0);
Fchg32 (rgbuf, TA_QMCONFIG, 0, gmconfig, 0);

/* Get the LMID (assume no migration for this group) */
rval = Fget32(rpbuf, TA_LMID, i, 1lmid, NULL);
Fchg32 (rgbuf, TA_LMID, 0, 1mid, 0);

/* Make the request */
rval = tpcall(".TMIB", rgbuf, 0, rpbuf2, rplen2, flags):;

The above technique does not find any queue space that has been created but does not yet have a
corresponding crouPp entry in the application configuration. Such queue spaces must be retrieved

50 File Formats, Data Descriptions, MIBs, and System Processes Reference

APPQ_MIB(5)

by knowing a priori the key fields (that is, TA_APPQSPACENAME, TA_QMCONFIG, and TA_LMID)
for the queue space.

List Messages in an Application Queue

The following code retrieves all messages in the queue sTRING in the queue space QSPACE1 in
device /dev/q/dsk001 on logical machine s1TE1.

/* Build the request */ Fchg32(rgbuf, TA_OPERATION, 0, "GET", 0);
Fchg32 (rgbuf, TA_CLASS, 0, "T_APPQMSG", 0);

Fchg32 (rgbuf, TA_APPQONAME, 0, "STRING", 0);

Fchg32 (rgbuf, TA_APPQSPACENAME, 0, "QSPACEl", 0);

Fchg32 (rgbuf, TA_QMCONFIG, 0, "/dev/g/dsk001", 0);

Fchg32 (rgbuf, TA_LMID, 0, "SITEl", 0);

/* Make the request; see above */

List Transactions Involving a Queue Space

The following fragment retrieves all transactions involving (any queue in) the queue space
QSPACEL.

/* Build the request */ Fchg32(rgbuf, TA_OPERATION, 0, "GET", 0);
Fchg32 (rgbuf, TA_CLASS, 0, "T_APPQTRANS", 0);

Fchg32 (rgbuf, TA_APPQSPACENAME, 0, "QSPACEl", 0);

Fchg32 (rgbuf, TA_QMCONFIG, 0, "/dev/g/dsk001", 0);

Fchg32 (rgbuf, TA_LMID, 0, "SITEL", 0);

/* Make the request; see above */

Files

S{TUXDIR}/include/tpadm.h
${TUXDIR} /udataobj/tpadm

See Also

tpacall (3c), tpadmcall (3¢c), tpalloc(3c), tpcall (3c), tpdequeue (3c),
tpenqueue (3c), tpgetrply (3c), tprealloc (3c), Introduction to FML Functions, Fadd,
Fadd32(3fml), Fchg, Fchg32(3fml),Ffind, Ffind32(3fml),MIB(5), TM MIB(5)

Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference 51

Programming a BEA Tuxedo ATMI Application Using FML

52 File Formats, Data Descriptions, MIBs, and System Processes Reference

AUTHSVR(5)

AUTHSVR(3)

Name
AUTHSVR—Server providing per-user authentication

Synopsis

AUTHSVR SRVGRP="identifier" SRVID=number other parms CLOPT="-A"

Description

AUTHSVR is a BEA Tuxedo provided server that offers the authentication service. This server may
be used in a secure application to provide per-user authentication when clients join the
application. This server accepts service requests containing TpINIT typed buffers for client
processes requesting access to the application. It uses the data field of the Tprn1T typed buffer
as a user password and validates it against the configured password. If the request passes
validation, an application key is returned with a successful return as the ticket to be used by the
client.

The rcode parameter of tpreturn (3c) is used to set the application key. It is returned (in
tpurcode) to the code that has called tpinit (3c) upon either successful validation or
permission failure.

For additional information pertaining to AuTHSVR, see “AUTHSVR Additional Information” on
page 56.

SECURITY USER_AUTH

If SECURITY is set to USER_AUTH, per-user authentication is enforced. The name of the
authentication service can be configured for the application using the autusvc parameter in the
RESOURCES section of the uBsconr1c file. For example, the following auTasvc parameter
setting specifies the authentication service (AUTHSVC) advertised by auTHSVR When SECURITY iS
set to USER_AUTH.

*RESOURCES
SECURITY USER_AUTH
AUTHSVC AUTHSVC

If the auTHSsVC parameter is not specified, the authentication service defaults to auTusvc.

By default, the file tpusr in the directory referenced by the first pathname defined in the
application’s appp1R variable is searched for password information; /etc/passwd is used if this

File Formats, Data Descriptions, MIBs, and System Processes Reference 53

54

file does not exist (although this file cannot be used correctly on systems that have a shadow
password file). The file can be overridden by specifying the filename using a "-£ £ilename"
option in the server command-line options (for example, cLopT="-a -- -f
/usr/tuxedo/users"). Note that automatic propagation of the user file from the master
machine to other machines in the configuration is done only if $APPDIR/tpusr is used.

The user file is searched for a matching username and client name. There are four types of entries
in the user file. They are listed below in order of matching precedence when validating a user
against the file.

1. Exact username/exact clientname
2. Wildcard username (*)/exact clientname
3. Exact username/wildcard clientname (*)

4. Wildcard username (*)/wildcard clienthame (*)

An authentication request is authenticated against only the first matching password file entry.
These semantics allow for a single user to have multiple entries (usually with different client
names) and the username may be a wildcard. These semantics are allowed if the user file is
maintained using tpaddusr (), tpdelusr (), and tpmodusr (). Note that use of these semantics
is not compatible with the semantics for acr. and MaNDATORY_acL and will make migration to
these security levels difficult. To get the restricted semantics for compatibility with ACL security,
use the tpusradd (), tpusrdel (), and tpusrmod () programs to maintain the user file.

Note: To use tpusradd(), tpusrdel (), and tpusrmod (), SECURITY for the target
application must be set to USER_AUTH, ACL, Of MANDATORY_ACL. Otherwise, the system
returns an error when you attempt to use these programs.

The reserved client name values tpsysadm (System administrator) and tpsysop (System
operator) are treated specially by auTasvr(5) when processing authentication requests. These
values are not allowed to match wildcard client names in the user file.

The application key that is returned by the auTrsvR is the user identifier. This application key is
passed to every service in the appkey element of the TpsvcINFO Structure.

Note that a standard auTHSVR is shipped as part of the system in ¢ {TUXDIR} /bin/AUTHSVR and
has the semantics as described above. Sample source code is provided in
${TUXDIR}/1ib/AUTHSVR.c. The AUTHSVR can be replaced by an application authentication
server that validates users and user data (which may not be a password) in an
application-dependent fashion (for example, using Kerberos). If you plan to replace AuTHSVR,
take special note of the warning later in this reference page. It is also up to the application to

File Formats, Data Descriptions, MIBs, and System Processes Reference

AUTHSVR(5)

determine what value is returned from the authentication service to be used for the application
key (which is passed to each service).

The application keys that correspond to tpsysadm and tpsysop are 0x80000000 and
0xC0000000, respectively.

SECURITY ACL or MANDATORY_ACL

If SECURITY IS Set t0 ACL Or MANDATORY_ACL, per-user authentication is enforced, and access
control lists are supported for access to services, application queues, and events. The name of the
authentication service can be configured for the application using the autusvc parameter in the
RESOURCES section of the uBsconr1c file. For example, the following auTasvc parameter
setting specifies the authentication service (. . autasvc) advertised by AuTHSVR When SECURITY
iS set t0 ACL Or MANDATORY_ACL.

*RESOURCES
SECURITY ACL
AUTHSVC . .AUTHSVC

If the auTHSVC parameter is not specified, the authentication service defaults to . . AuTHSVC.

Note: AuTHSVR advertises the authentication service as AuTHsvC when SECURITY is set to
USER_AUTH, and as . . AUTHSVC When SECURITY iS Set t0 ACL OFf MANDATORY_ACL.
AUTHSVC and . . AUTHSVC point to the same authentication service.

The user file must be $sappPDIR/tpusr. It is automatically propagated from the master machine
to other active machines in the configuration. One instance of the auTasvR must be run on the
master machine. Additional copies can be run on other active machines in the configuration.

The user file is searched for a matching username and client name. The entry must match exactly
on the username. The client name must either match exactly, or the client name value in the user
file can be specified as the wildcard (*) which will match any client name. A single user can have
only one entry in the user file and cannot be a wildcard. The user file can be maintained through
the tpusradd(), tpusrdel (), and tpusrmod () programs, the graphical user interface, or the

administrative interface.

The reserved client name values tpsysadm (System administrator) and tpsysop (System
operator) are treated specially by auTasvr(5) when processing authentication requests. These
values are not allowed to match wildcard client names in the user file.

The application key that is returned by the auTusvr is the user identifier in the low order 17 bits
and the group identifier in the next 14 bits (the high order bit is reserved for administrative keys).
The application keys that correspond t0 tpsysadm and tpsysop are 0x80000000 and

File Formats, Data Descriptions, MIBs, and System Processes Reference L1

0xC0000000, respectively. This application key is passed to every service in the appkey element
of the TpsvcINFO Structure.

For SECURITY ACL OF MANDATORY_ACL, YOU must use the standard auTHsvRr shipped as part of
the system in $ {TUXDIR} /bin/AUTHSVR.

AUTHSVR Additional Information

Usage

Warning: ${TUXDIR}/1lib/AUTHSVR.c iS not the source file used to generate
${TUXDIR}/bin/AUTHSVR (don't clobber this executable); if you provide your own
AUTHSVR, it is recommended that you install it in $ {APPDIR}.

Portability

AUTHSVR is supported as a BEA Tuxedo-supplied server on non-Workstation platforms.

Examples

56

Using USER_AUTH
*RESOURCES

SECURITY USER_AUTH
AUTHSVC AUTHSVC

*SERVERS

AUTHSVR SRVGRP="AUTH" CLOPT="-A -- -f /usr/tuxedo/users" \
SRVID=100 RESTART=Y GRACE=0 MAXGEN=2

#

#

Using ACLs

*RESOURCES

SECURITY ACL

AUTHSVC . .AUTHSVC

*SERVERS

AUTHSVR SRVGRP="AUTH" SRVID=100 RESTART=Y GRACE=0 MAXGEN=2
#

#

Using a custom authentication service

*RESOURCES

File Formats, Data Descriptions, MIBs, and System Processes Reference

AUTHSVR(5)

SECURITY USER_AUTH
AUTHSVC KERBEROS

*SERVERS
KERBEROSSVR SRVGRP="AUTH1" SRVID=100 RESTART=Y GRACE=0 MAXGEN=2

See Also
tpaddusr (1), tpusradd (1), UBBCONFIG (5)

Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference

51

compilation(5)

Name

compilation—Instructions for compilation of BEA Tuxedo ATMI system application
components.

Description
In order to compile application clients and servers, and subroutines that are link edited with the
BEA Tuxedo system, programmers need to know:
e Which header files to include, and the order in which to specify them

e Which environment variables to set and export

e Which utilities are used to compile the application modules

A programmer who has finished writing code modules and is ready to build an executable
program must:

e Compile the source files

e Link edit the executables with the required libraries

The BEA Tuxedo system provides two commands that perform both of these operations for client
and server modules: buildclient () and buildserver (), respectively. If you run one of these
commands to perform both operations, be sure to specify, on the command line, the libraries with
which your files need to be link edited. (For details, see buildclient (1) Of buildserver (1)
in BEA Tuxedo Command Reference.)

Link editing must be done by running buildclient Ofr buildserver, but the system allows
more flexibility about how compiling is done. If you prefer, you can use the compile command
of your choice to compile your files, and then run buildclient Or buildserver to perform the
link editing.

This rest of this reference page specifies the header files and environment variables required for
various types of programs.

Basic BEA Tuxedo System

In terms of header file sequence, UNIX header files should always be included before any BEA
Tuxedo system header files. Commonly used UNIX header files are stdio.h and ctype.h.

58 File Formats, Data Descriptions, MIBs, and System Processes Reference

compilation(5)

Environment Variables
The following environment variables should be set and exported:

TUXDIR
Specifies the topmost directory in which the BEA Tuxedo system software resides.

PATH
Should include $TUXDIR/bin.

ULOGPFX
Prefix of the filename of the central event log; by default, the value of urL.ogpFx is ULOG.

If... Then you must first set and export the following environment variables
You want to run * TUXDIR—always required for servers; also required for native

- buildclient(1) clients

e buildserver (1) e cc—if you want to use a non-default compiler

e CFLAGS—if you want to specify flags to be passed to the compiler

A default or validation routine e FIELDTBLS—a comma-separated list of field table files

references FML fields « FLDTBLDIR—a colon-separated list of directories to search for the
FIELDTBLS

You want to execute a server TUXCONFIG—Tfull pathname of the binary configuration file (default is

the current directory)

File Formats, Data Descriptions, MIBs, and System Processes Reference 59

If... Then you must first set and export the following environment variables

e Security is turned on in your e APP_PW—application password

application e USR_PW—user password
e You are going to supply input

indirectly (that is, from a source

other than standard input) for any of

the following system-supplied

clients: tmadmin (1), tmconfig

orwtmconfig (see tmconfig,

wtmconfig (1)), or ud or wud

(seeud, wud(1))

You want to execute a Workstation WSENVF ILE—file containing environment variable settings
client + WSDEVICE—network device to use for connection

e WSTYPE—workstation machine type

Note: More information about these variables can be found in Programming a BEA Tuxedo
ATMI Application Using C, Programming a BEA Tuxedo ATMI Application Using
COBOL, and Setting Up a BEA Tuxedo Application.

After the system has been built with shared libraries and before you execute a client, you must
set a variable that defines the location of the shared libraries.

On this platform . .. Set the following environment variable . . .
All platforms except HP-UX LD_LIBRARY_PATH=$TUXDIR/1lib
and AIX

HP-UX SHLIB_PATH=$TUXDIR/1lib
AIX LIBPATH=$TUXDIR/1ib

Note: More information about options for servers can be found on the servopts (5) reference
page.

FML Programs

In terms of header file sequence, C programs that call FML functions should include the
following header files, in the following order:

60 File Formats, Data Descriptions, MIBs, and System Processes Reference

compilation(5)

#include <UNIX header files> (if needed by the application)
#include "fml.h"

Compilation of FML Programs
To compile a program that contains FML functions, execute:
cc pgm.c -I $TUXDIR/include -L $TUXDIR/lib -1fml -lengine -o pgm
where pgm is the name of the executable file.
If the -1, option is not locally supported, use the following command, instead:
cc pgm.c -I STUXDIR/include STUXDIR/1lib/libfml.a STUXDIR/lib/libengine.a -o pgm

Note: The order in which the libraries are specified is significant. Use the order given above.

Compiling FML VIEWS
To use the FML view compiler, execute the following:
viewc view file
Here view file s a set of one or more files containing source view descriptions.

Note: viewc invokes the C compiler. The environment variable cc can be used to designate the

compiler to use. The environment variable crFLacs can be used to pass a set of parameters
to the compiler.

Environment Variables for FML

The following environment variables should be set and exported when running an application that
uses FML.

FIELDTBLS
A comma-separated list of field table files.

FLDTBLDIR
A colon-separated list of directories to search for the FIELDTBLS.

The following environment variables should be set and exported when executing viewc.

FIELDTBLS
A comma-separated list of field table files.

FLDTBLDIR
A colon-separated list of directories to search for the FTELDTBLS.

File Formats, Data Descriptions, MIBs, and System Processes Reference 61

VIEWDIR
A directory containing viewfiles; the default is the current directory.

See Also

buildclient (1), buildserver (1), viewc, viewc32 (1)
cc(1), me(1) in a UNIX system reference manual

62 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMADM(5)

DMADM(3)

Name
pMADM—Domains administrative server

Synopsis
DMADM SRVGRP = "identifier"
SRVID = "number"
REPLYQ = "N"

Description

The Domains administrative server (pmapm) is a BEA Tuxedo system-supplied server that
provides run-time access to the BpmMconr1G file.

pMaDM is described in the servERS section of the uBsconr1c file as a server running within a
group, for example, pMabpMcrp. There should be only one instance of the pMapwm running in this
group, and it must not have a reply queue (REpLYQ must be set to “n”).

The following server parameters can also be specified for the pmMapu server in the SERVERS
SeCﬂOHZSEQUENCE,ENVFILE,MAXGEN,GRACE,RESTART,RQPERM,andSYSTEM_ACCESS

The BDMCONFIG environment variable should be set to the pathname of the file containing the
binary version of the pmconr1c file.

Portability
pMaDM is supported as a BEA Tuxedo system-supplied server on all supported server platforms.

Interoperability

pMaDM must be installed on BEA Tuxedo release 5.0 or later; other machines in the same domain
with a release 5.0 gateway may be release 4.1 or later.

Examples
The following example illustrates the definition of the administrative server and a gateway group
in the uBBconF1G file. This example uses the cwTpomMaTN gateway process to provide
connectivity with another BEA Tuxedo domain.

#

*GROUPS

DMADMGRP LMID=machl GRPNO=1
gwgrp LMID=machl GRPNO=2

File Formats, Data Descriptions, MIBs, and System Processes Reference 63

#

*SERVERS

DMADM SRVGRP="DMADMGRP" SRVID=1001 REPLYQ=N RESTART=Y GRACE=0

GWADM SRVGRP="gwgrp" SRVID=1002 REPLYQ=N RESTART=Y GRACE=0

GWTDOMAIN SRVGRP="gwgrp" SRVID=1003 RQADDR="gwgrp" REPLYQ=Y RESTART=Y MIN=1
MAX=1

See Also
dmadmin (1), tmboot (1), DMCONFIG(5), GWADM (5), servopts (5), UBBCONFIG (5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Using the BEA Tuxedo TOP END Domain Gateway with ATMI Applications

64 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

DMCONFI1G(5)

Name
DMCONFIG—Text version of a Domains configuration file

Description

A Domains configuration is a set of two or more domains (business applications) that can
communicate and share services with the help of the BEA Tuxedo Domains component. How
multiple domains are connected and which services they make accessible to each other are
defined in a Domains configuration file for each BEA Tuxedo domain participating in the
Domains configuration. The text version of a Domains configuration file is known as the
pmcoNFIG file, although the configuration file may have any name as long as the content of the
file conforms to the format described on this reference page.

The pmconr1c file is parsed and loaded into a binary version, called Bomconr1G, by the
dmloadcf (1) utility. Aswith pMcoNFIG, the BDMCONFIG file may be given any name; the actual
name is the device or system filename specified in the BDMcoNFIG environment variable. One
BDMCONFIG file is required for each Tuxedo domain participating in a Domains configuration.

The pMconFIc and BDMCONFIG files are analogous to the usscoNFIG and TuxcoNFIG files used
to define a BEA Tuxedo domain. For a description of the usBconr1G and Tuxconric files, see
UBBCONFIG(5).

For additional information pertaining to the omMconr1c file, including examples, see
“DMCONFIG(5) Additional Information” on page 95. For a detailed description of the BEA
Tuxedo Domains component for both ATMI and CORBA environments, see Using the BEA
Tuxedo Domains Component.

Definitions

A BEA Tuxedo domain is defined as the environment described in a single Tuxconric file. In
BEA Tuxedo terminology, a domain is the same as an application—a business application.

There is one Domains administrative server (bMapm) process running in each BEA Tuxedo
domain involved in a Domains configuration. The pmMapu is the administrative server for all
domain gateway groups running in a particular BEA Tuxedo domain.

A domain gateway group consists of a BEA Tuxedo system gateway administrative server
(cwapm) process and a BEA Tuxedo system domain gateway process.

A BEA Tuxedo system domain gateway process provides communication services with a specific
type of transaction processing (TP) domain; for example, the cwrpoma1n process enables BEA

File Formats, Data Descriptions, MIBs, and System Processes Reference 65

{noValueProvidedFor-DOCROOT}/interm/admin.htm#dom
{noValueProvidedFor-DOCROOT}/interm/admin.htm#dom

Tuxedo applications to communicate with other BEA Tuxedo applications. A domain gateway
relays requests to another domain and receives replies.

A local domain access point is a user-specified logical name representing a set of services of the
BEA Tuxedo domain that is made available to other domains (remote domains). A local domain
access point maps to a domain gateway group; both terms are used as synonyms.

A remote domain access point is a user-specified logical name representing a set services of a
remote domain that is made available to the local domain. The remote domain may be another
BEA Tuxedo application or an application running on another TP system.

A remote service is a service provided by a remote domain that is made available to the local
domain through a remote domain access point and a local domain access point.

A local service is a service of the local domain that is made available to remote domains through
a local domain access point.

Configuration File Purpose

You use a bMCONFIG file to:

e Define the local domain access points through which application clients on a remote
domain can access services on the local domain

e Define the local services available through each local domain access point

e Define the remote domain access points through which application clients on the local
domain can access services on a remote domain

e Define the remote services available through each remote domain access point

e Map local domain access points and remote domain access points to specific domain
gateway groups and network addresses

Configuration File Format

66

The puconri1c file is made up of the following specification sections:
e DM_LOCAL (also known as DM_LOCAL_DOMAINS)
e DM_REMOTE (also known as bM_REMOTE_DOMAINS)

e DM_EXPORT (also known as bM_LOCAIL_SERVICES)

DM_IMPORT (also known as pM_REMOTE_SERVICES)

DM_RESOURCES

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

DM_ROUTING

DM_ACCESS_CONTROL
e DM_TDOMAIN (section for domain gateways of type TpomMa1N)

e DM_dom, Where dom may be any of the following sections for other domain gateway types:
SNACRM, SNASTACKS, SNALINKS, OSITP, OSITPX.

Lines in a pmMconr1c file beginning with an asterisk (*) indicate the beginning of a specification
section. Each such line contains the name of the section immediately following the *. The asterisk
is required when specifying a section name. The pM_LocaL section must precede the bM_REMOTE
section.

This reference page describes how to configure a domain gateway of type TooMaIN (the
TDomain gateway), which is implemented by the cwrpomaIn gateway process. For information
about how to configure a sNax, osITP, or osTTPx domain gateway, see BEA eLink
Documentation at http: //e-docs.bea.com/elink/mainfram/mainfram.hhtm.

Parameters are generally specified by: kEyworD = value; white space (space or tab character) is
allowed on either side of the equal sign (=). This format sets kEyworD to value. Valid keywords
are described below within each section.

Lines beginning with the reserved word DEFAULT contain parameter specifications that apply to
all lines that follow them in the section in which they appear. Default specifications can be used
in all sections. They can appear more than once in the same section. The format for these lines is:

DEFAULT: [KEYWORD1 = valuel [KEYWORDZ2 = value2 [...]]1]

The values set on this line remain in effect until reset by another perauLT line, or until the end
of the section is reached. These values can also be overridden on non-perauLT lines by placing
the optional parameter setting on the line. If on a non-peErFaULT line, the parameter setting is valid
for that line only; lines that follow revert to the default setting. If pEFAULT appears on a line by
itself, all previously set defaults are cleared and their values revert to the system defaults.

If a value is numeric, standard C notation is used to denote the base, that is, Ox prefix for base
16 (hexadecimal), 0 prefix for base 8 (octal), and no prefix for base 10 (decimal). The range of
values acceptable for a numeric parameter are given under the description of that parameter.

If avalue is an identifier (a string value already known to the BEA Tuxedo Domains
component such as ToomMa1n for the TypE parameter), standard C rules are typically used. A
standard C identifier starts with an alphabetic character or underscore and contains only
alphanumeric characters or underscores. The maximum allowable length of an identifier is 30
bytes (not including the terminating NULL).

File Formats, Data Descriptions, MIBs, and System Processes Reference 67

http://e-docs.bea.com/elink/mainfram/mainfram.htm
http://e-docs.bea.com/elink/mainfram/mainfram.htm

There is no need to enclose an identifier in double quotes. A value that is neither an integer
number nor an identifier must be enclosed in double quotes.

Input fields are separated by at least one space (or tab) character.
"#" introduces a comment. A newline ends a comment.

Blank lines and comments are ignored.

Comments can be freely attached to the end of any line.

Lines are continued by placing at least one tab after the newline. Comments cannot be continued.

Domains Terminology Improvements

68

For BEA Tuxedo release 7.1 or later, the Domains MIB uses improved class and attribute
terminology to describe the interaction between local and remote domains. The improved
terminology has been applied to the pmMconFIG (5) reference page, section names, parameter
names, and error messages, and to the pm_m1B(5) reference page, classes, and error messages.

For backwards compatibility, aliases are provided between the pmconrF1c terminology used prior
to BEA Tuxedo 7.1 and the improved Domains MIB terminology. For BEA Tuxedo release 7.1
or later, both versions of pmconrzc terminology are accepted. The following table shows the
mapping of the previous and improved terminology for the omconr1c file.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

Previous Terminology Improved Terminology
Section Name Parameter Name Section Name Parameter Name
DM_LOCAL_DOMAINS DM_LOCAL
DM_REMOTE_DOMAINS DM_REMOTE
DOMAINID ACCESSPOINTID
MAXRDOM MAXACCESSPOINT
MAXRDTRAN MAXRAPTRAN
DM_LOCAL_SERVICES DM_EXPORT
DM_REMOTE_SERVICES DM__IMPORT
LDOM LACCESSPOINT
RDOM RACCESSPOINT

For BEA Tuxedo release 7.1 or later, the dmun1oadcf command generates by default a
pMcoNFIG file that uses the improved domains terminology. Use the -c option to print a
pMcoNFIG file that uses the previous domains terminology. For example:

prompt> dmunloadcf -c > dmconfig_prev

DM_LOCAL Section

This section, also known as the pv_r.ocar_poma1ns section, defines one or more local domain
access point identifiers and their associated gateway groups. The section must have a local
domain access point entry for each active gateway group defined in the uBsconr1g file. Each
entry specifies the parameters required for the domain gateway process running in that group.

Entries within the pv_r.ocar section have the following form:
LocalAccessPoint required_parameters [optional_parameters]

where LocalAccessPoint is the local domain access point identifier (logical name) that you
choose to represent a particular gateway group defined in the ussconr1c file.
LocalAccessPoint must be unique across the local and remote domains involved in a Domains
configuration. As you will see in the description of the pm_ExPoRrT section, you use the local
domain access point to associate local services with the gateway group. The local services

File Formats, Data Descriptions, MIBs, and System Processes Reference 69

10

available through the local domain access point will be available to clients in one or more remote
domains.

Required parameters for the DM_LOCAL section

GWGRP = identifier
Specifies the name of the domain gateway group (the name provided in the croups
section of the Tuxconr1c file) representing this local domain access point. There is a
one-to-one relationship between a local domain access point and a domain gateway group.

TYPE = identifier
Specifies the type of domain gateway associated with this local domain access point. TYPE
can be set to one of the following values: TDOMAIN, SNAX, OSITP, Of OSITPX.

The TpoMaIN value indicates that this local domain access point is associated with a
GWTDOMAIN gateway instance and therefore can communicate with another BEA Tuxedo
application.

The snax value indicates that this local domain access point is associated with a cwsnax
gateway instance and therefore can communicate with another TP domain via the SNA
protocol.

The os1TP Or 0s1TPx Value indicates that this local domain access point is associated with
a ewosI1Tp gateway instance and therefore can communicate with another TP domain via
the OSI TP protocol. The oszTP value indicates the use of the OSI TP 1.3 protocol, and
the oszTPx value indicates the use of the OSI TP 4.0 or later protocol. The os1TPx Value
is supported only by BEA Tuxedo 8.0 or later software.

Domain types must be defined in the pmMTvPE file: $TUXDIR% \udataobi\DMTYPE for
Windows or $TUXDIR/udataobj/DMTYPE for UNIX.

ACCESSPOINTID (also known as DoMAINID) = string]1..30]
Used to identify the domain gateway group associated with this local domain access point
for purposes of security when setting up connections to remote domains. ACCESSPOINTID
must be unique across all local and remote domain access points.

The value of string can be a sequence of characters (for example, “Ba . CENTRALO01”), OF
a sequence of hexadecimal digits preceded by ox (for example,
“0x0002FF98C0000B9D6”). ACCESSPOINTID must be 30 bytes or fewer in length. If the
value is a string, it must be 30 characters or fewer (counting the trailing NULL).

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

Optional parameters for the DM_LOCAL section

The following optional parameters for the pm_r.0car section describe resources and limits used
in the operation of domain gateways:

AUDITLOG = string[1..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the name of the audit log file for this local domain access point. The audit log
feature is activated from the dmadmin (1) command and records all the operations for this
local domain access point. If the audit log feature is active and this parameter is not
specified, the file bMmmddyy . LoG (Where mm=month, dd=day, and yy=year) is created in
the directory specified by the sappDIR environment variable or the apppIR parameter of
the macHINES section of the Tuxconr1g file.

BLOCKTIME = numeric

Specifies the maximum wait time allowed for a blocking call for this local domain access
point. The value is a multiplier of the scanuntT parameters specified in the RESOURCES
section of the Tuxconr1g file. The value scANUNIT * BLOCKTIME must be greater than
or equal to scanuntT and less than 32,768 seconds. If this parameter is not specified, the
default is set to the value of the BLockTTME parameter specified in the RESOURCES section
of the Tuxconr1c file. A blocking timeout condition implies that the affected service
request has failed.

Be aware that interdomain transactions generate blocking timeout conditions when
transaction duration exceeds BLockTIME. That is, for an interdomain transaction, if the
BLOCKTIME Value is less than (a) the TrRanTIME timeout value specified in the sErvICES
section of the Tuxconrzc file or (b) the timeout value passed in a tpbegin () call to start
the transaction, the timeout for the transaction is reduced to the BLockTIME value. In
contrast, for intradomain transactions (that is, transactions handled within a single BEA
Tuxedo domain), the BLockTIME value specified in the RESOURCES section of the
TUuxCONFIG file has no effect on the timeout of an intradomain transaction.

CONNECTION_POLICY = {ON_DEMAND | ON_STARTUP | INCOMING_ONLY}
Specifies the conditions under which the domain gateway associated with this local
domain access point tries to establish connections to remote domains. Supported values
are ON_DEMAND, ON_STARTUP, OF INCOMING_ONLY. This parameter applies only to domain
gateways of type TDOMATN.

A connection policy of on_DEMAND means that a domain gateway attempts to establish a
connection with a remote domain only when requested by either a client request to a
remote service or a dmadmin (1) connect command. The default for
CONNECTION_POLICY iS ON_DEMAND. Connection retry processing is not allowed when
the connection policy is oN_DEMAND.

File Formats, Data Descriptions, MIBs, and System Processes Reference n

A connection policy of on_sTarTuP means that a domain gateway attempts to establish a
connection with its remote domains at gateway server initialization time. If
CONNECTION_POLICY iS set to oN_sTARTUP, the remote services for a particular remote
domain (that is, services advertised by the domain gateway) are advertised only if a
connection is successfully established to the remote domain. Thus, if there is no active
connection to the remote domain, the remote services are suspended. By default, this
connection policy retries failed connections every 60 seconds, but you can specify a
different value for this interval using the RETRY_INTERVAL parameter. Also, see the
MAXRETRY parameter.

A connection policy of tncoMING _ONLY means that a domain gateway does not attempt
an initial connection upon startup and that remote services are initially suspended. The
domain gateway is available for incoming connections from remote domains, and remote
services are advertised when the domain gateway receives an incoming connection or an
administrative connection (using the dmadmin (1) connect command) is made.
Connection retry processing is not allowed when the connection policy is
INCOMING_ONLY.

Note: For domain gateways of type TooMaIn running BEA Tuxedo 8.1 or later software,
CONNECTION_POLICY can be specified on a per remote domain basis in the
DM_TDOMAIN Section.

MAXRETRY = {numeric | MAXLONG}
Specifies the number of times that the domain gateway associated with this local domain
access point tries to establish connections to remote domains. This parameter applies only
to domain gateways of type TpoMaIn and is valid only when the coNNECTTION_POLICY
parameter for this local domain access point is set to on_sTarTup. For other connection
policies, automatic retries are disabled.

The minimum value for MAxRETRY is 0, and the maximum value is MAXLONG
(2147483647). MAXL.ONG, the default, indicates that retry processing will be repeated
indefinitely, or until a connection is established. Setting MaxRETRY=0 turns off the
automatic retry mechanism.

RETRY_INTERVAL = numeric
Specifies the number of seconds that the domain gateway associated with this local
domain access point waits between automatic attempts to establish a connection to remote
domains. This parameter applies only to domain gateways of type Tpoma1n and is valid
only when the connEcTION_POLICY parameter for this local domain access point is set to
oN_sTARTUP. For other connection policies, automatic retries are disabled.

The minimum value for RETRY_INTERVAL is 0, and the maximum value is 2147483647.
The default is 60. If MAXRETRY is set to 0, setting RETRY_INTERVAL is not allowed.

12 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

CONNECTION_PRINCIPAL_NAME = string|0..511]

Specifies the connection principal name identifier, which is the principal name for
verifying the identity of the domain gateway associated with this local domain access
point when establishing a connection to a remote domain. This parameter applies only to
domain gateways of type TooMaIN running BEA Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511
characters (excluding the terminating NULL character). If this parameter is not specified,
the connection principal name defaults to the accesspornTID string for this local domain
access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this local domain access point, it must be
the same as the value assigned to the accesspoinTID parameter for this local domain
access point. If these values do not match, the local TDomain gateway process will not
boot, and the system will generate the following userlog (3c) message: ERROR: Unable

to acquire credentials.

DMTLOGDEV = string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the BEA Tuxedo filesystem that contains the Domains transaction log (TLoG)
for this local domain access point. The TLog is stored as a BEA Tuxedo system VTOC
table on the device. If this parameter is not specified, the domain gateway group
associated with this local domain access point is not allowed to process requests in
transaction mode. Multiple local domain access points for the same machine can share the
same BEA Tuxedo filesystem, but each local domain access point must have its own log
(a table in the pMTL.OGDEV) Nnamed as specified by the pMTLoGNAME parameter.

DMTLOGNAME = string[1..30]
Specifies the name of the Tr.0G for this local domain access point. This name must be
unique when the same BEA Tuxedo filesystem (as specified in pmTLOGDEV) is used for
several local domain access points. If this parameter is not specified, the default is the
string pMTL.0G. The name must be 30 characters or less.

DMTLOGSIZE = numeric
Specifies the numeric size, in pages, of the Tr.og for this local domain access point. It must
be greater than 0 and less than the amount of available space on the BEA Tuxedo
filesystem. If this parameter is not specified, the default is 100 pages.

MAXRAPTRAN (also known as MAXRDTRAN) = numeric
Specifies the maximum number of domains that can be involved in a transaction for this
local domain access point. It must be greater than 0 and less than 32,768. If this parameter
is not specified, the default is 16.

File Formats, Data Descriptions, MIBs, and System Processes Reference 13

MAXTRAN = numeric
Specifies the maximum number of simultaneous global transactions allowed for this local
domain access point. It must be greater than or equal to 0 and less than or equal to the
MaxcTT parameter specified in the REsources section of the Tuxconr1c file. If MAXTRAN
is not specified, the default is the value of maxcTT.

MTYPE = string[l..15]
Used for grouping domains so that encoding/decoding of messages can be bypassed
between the machine associated with this local domain access point and the machines
associated with the remote domain access points. This parameter applies only to domain
gateways of type TDOMAIN.

If MTYPE is not specified, the default is to turn encoding/decoding on. If the value set for
the wrvpE field is the same in both the pv_r.ocar and the pvM_REMOTE section of a
pmcoNFIG file, data encoding/decoding is bypassed. The value set for mTypE can be any
string value up to 15 characters in length. It is used only for comparison.

SECURITY = {NONE | APP_PW | DM_PW}
Specifies the type of application security to be enforced for this local domain access point.
The securITY parameter currently has three valid values for domain gateways of type
TDOMAIN: NONE, APP_Pw, Of DM_Pw. The value NoNE (the default) indicates that no security
is used. The value app_prw indicates that the application password security is to be
enforced when a connection is established from a remote domain; the application
password is defined in the Tuxconr1g file. The value pv_pw indicates that Domains
password security is to be enforced when a connection is established from a remote
domain; Domains passwords are defined through the dmadmin (1) command.

The securITY parameter does not apply to domain gateways of type ostTp. For gateways
of type os1TPX, the values NoNE or pM_pw can be used. For gateways of type snax, the
values NONE or DM_USER_PW can be used.

14 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

Non-TDomain parameters for the DM_LOCAL section
The following pM_r.ocar section parameters do not apply to domain gateways of type TpoMATN
but are included here for completeness:

e BLOB_SHM_SIZE = numeric — applicable to domain gateways of type snax

e MAXACCESSPOINT (also known as MAXRDOM) = numeric — applicable to domain gateways
of type os1TP

e MAXDATALEN = numeric — applicable to domain gateways of type osITp

For detailed descriptions of snax and os1TP parameters, see BEA eLink Documentation at

http://e-docs.bea.com/elink/mainfram/mainfram.htm.

DM_REMOTE Section

This section, also known as the bM_REMOTE_DOMAINS Section, defines one or more remote
domain access point identifiers and their characteristics.

Entries within the pv_reEMOTE section have the following form:

RemoteAccessPoint required_parameters [optional_parameters]

where RemoteAccessPoint IS aremote domain access point identifier (logical name) that you
choose to identify each remote domain known to the local BEA Tuxedo application.
RemoteAccessPoint Must be unique across the local and remote domains involved in a
Domains configuration. As you will see in the description of the pm_1MPORT Section, you use a
remote domain access point to associate remote services with a particular remote domain. The
remote services available through the remote domain access point will be available to clients in
the local domain through a remote domain access point and a local domain access point.

Required parameters for the DM_REMOTE section

TYPE = identifier
Specifies the type of local domain gateway needed to communicate with the remote
domain associated with this remote domain access point. TYPE can be set to one of the
following values: TDOMATN, SNAX, OSITP, Of OSTITPX.

The poMa1n value indicates that a local instance of the cgwrpomMaIN process will
communicate with a remote BEA Tuxedo application.

The snax value indicates that a local instance of the cwsnax process will communicate
with a remote TP domain via the SNA protocol.

File Formats, Data Descriptions, MIBs, and System Processes Reference 15

http://e-docs.bea.com/elink/mainfram/mainfram.htm

16

The os1Tp value indicates that a local instance of the gwoszTp process will communicate
with a remote TP domain via the OSI TP 1.3 protocol.

The os1Tpx value indicates that a local instance of the cwoszTp process will
communicate with a remote TP domain via the OSI TP 4.0 or later protocol. The os1Tpx
value is supported only by BEA Tuxedo 8.0 or later software.

ACCESSPOINTID (also known as DoMAINID) = string][1..30]
Used to identify the remote domain associated with this remote domain access point for
purposes of security when setting up a connection to the remote domain. For a local
domain gateway of type Tpoma1n, this value may also be used by the TDomain gateway
(local instance of the cwrpoMaIN process) as the user ID for incoming requests from this
remote domain access point connection. ACCESSPOINTID must be unique across local and
remote domain access points.

AccEssPOINTID must be 30 bytes or fewer in length. If the value is a string, it must be 30
characters or fewer (counting the trailing NULL). The value of string can be a sequence
of characters or a sequence of hexadecimal digits preceded by o0x.

Optional parameters for the DM_REMOTE section

The following optional parameters for the oM_rEMOTE section describe resources and limits used
in the operation of the local domain gateways:

ACL_POLICY = {LOCAL | GLOBAL}
Specifies the access control list (ACL) policy for this remote domain access point. This
parameter applies only to domain gateways of type TpomMatn running BEA Tuxedo 7.1 or
later software and domain gateways of type ostTpx running BEA Tuxedo 8.0 or later
software.

LocAL means that the local domain replaces the credential (identity) of any service request
received from the remote domain with the principal name specified in the
LOCAL_PRINCIPAL_NAME parameter for this remote domain access point. GLOBAL means
that the local domain does not replace the credential received with a remote service
request; if no credential is received with a remote service request, the local domain
forwards the service request to the local service as is (which usually fails). If this
parameter is not specified, the default is L.ocaL.

Note that the acL_rorIcy parameter controls whether or not the local domain replaces
the credential of a service request received from a remote domain with the principal name
specified in the LoCAL_PRINCIPAL_NAME parameter. The CREDENTIAL_POLICY
parameter is related to this parameter and controls whether or not the local domain

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

removes the credential from a local service request before sending the request to a remote
domain.

LOCAL_PRINCIPAL_NAME = string[0..511]
The local principal name identifier (credential) assigned by the local domain to service
requests received from the remote domain when the acL._porzcy parameter for this
remote domain access point is set (or defaulted) to Locar. This parameter applies only to
domain gateways of type TpoMa1N running BEA Tuxedo 7.1 or later software and domain
gateways of type os1Tpx running BEA Tuxedo 8.0 or later software.

The L.OCAL_PRINCIPAIL_NAME parameter may contain a maximum of 511 characters
(excluding the terminating NULL character). If this parameter is not specified, the local
principal name defaults to the accesspornTID string for this remote domain access point.

CONNECTION_PRINCIPAL_NAME = string[0..511]
Specifies the connection principal name identifier, which is the principal name for
verifying the identity of this remote domain access point when establishing a connection
to the local domain. This parameter applies only to domain gateways of type TpoMaATN
running BEA Tuxedo 7.1 or later software.

The CONNECTION_PRINCIPAL_NAME parameter may contain a maximum of 511
characters (excluding the terminating NULL character). If this parameter is not specified,
the connection principal name defaults to the accEsspoINTID string for this remote
domain access point.

For default authentication plug-ins, if a value is assigned to the
CONNECTION_PRINCIPAL_NAME parameter for this remote domain access point, it must
be the same as the value assigned to the accesspoInTID parameter for this remote
domain access point. If these values do not match, any attempt to set up a connection
between the local TDomain gateway and the remote TDomain gateway will fail, and the
system will generate the following userlog(3c) message: ERROR: Unable to
initialize administration key for domain domain_name.

CREDENTIAL_POLICY = {LOCAL | GLOBAL}
Specifies the credential policy for this remote domain access point. This parameter applies
only to domain gateways of type TpoMaIn running BEA Tuxedo 8.0 or later software.

L.ocAL means that the local domain removes the credential (identity) from a local service
request destined for this remote domain access point. cL.oBar, means that the local domain
does not remove the credential from a local service request destined for this remote
domain access point. If this parameter is not specified, the default is Locar.

File Formats, Data Descriptions, MIBs, and System Processes Reference 11

Note that the cREDENTIAL_POLICY parameter controls whether or not the local domain
removes the credential from a local service request before sending the request to a remote
domain. The act._poLrIcy parameter is related to this parameter and controls whether or
not the local domain replaces the credential of a service request received from a remote
domain with the principal name specified in the L.ocAL,_PRINCIPAL_NAME parameter.

MTYPE = string[l..15]
Used for grouping domains so that encoding/decoding of messages can be bypassed
between the machine associated with this remote domain access point and the machine
associated with the local domain access point. This parameter applies only to domain
gateways of type TDOMAIN.

If MTYPE is not specified, the default is to turn encoding/decoding on. If the value set for
the wrvpE field is the same in both the pv_r.ocar and the pvM_REMOTE section of a
pmcoNFIG file, data encoding/decoding is bypassed. The value set for mTypE can be any
string value up to 15 characters. It is used only for comparison.

PRIORITY_TYPE ={LOCAL_RELATIVE | LOCAL_ABSOLUTE | GLOBAL}

INPRIORITY = numeric
Together, the PRIORITY TYPE and INPRIORITY parameters specify the message priority
handling for this remote domain access point. These parameters are supported by BEA
Tuxedo 8.0 or later software.

For the PRTORITY_TYPE parameter, the LoCAL_RELATIVE and LOCAIL_ABSOLUTE values
are valid for all remote domain types; the cL.osarL value is valid only for remote domains
of type TpomaIN. If not set, the PRTORITY_TYPE parameter defaults to LOCAL_RELATIVE.

PRIORITY_TYPE=LOCAL_RELATIVE means that the priority associated with a request
from this remote domain access point (for example, via the tpsprio call) is not used by
the local domain. Instead, the priority of incoming requests from this remote domain
access point is set relative to the tnpPrIORITY Value; this value may be greater than or
equal to -99 (lowest priority) and less than or equal to 99 (highest priority), with 0 being
the default. The setting of InPrRIORITY increments or decrements a service’s default
priority as follows: up to a maximum of 100 or down to a minimum of 1, depending on its
sign, where 100 is the highest priority. For requests to the remote domain access point, the
priority associated with a request will accompany the request to the remote domain access
point.

PRIORITY_TYPE=LOCAIL_ABSOLUTE means that the priority associated with a request
from this remote domain access point is not used by the local domain. Instead, the priority
of incoming requests from this remote domain access point is set relative to the
INPRIORITY Value; this value may be greater than or equal to 1 (lowest priority) and less

18 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

than or equal to 100 (highest priority), with 50 being the default. The setting of
INPRIORITY increments or decrements a service’s default priority as follows: up to a
maximum of 100 or down to a minimum of 1, depending on its sign, where 100 is the
highest priority. For requests to the remote domain access point, the priority associated
with a request will accompany the request to the remote domain access point.

PRIORITY_TYPE=GLOBAL Mmeans that the priority associated with a request from this
remote domain access point is adjusted by the local domain. The priority of incoming
requests from this remote domain access point is adjusted relative to the INPRIORITY
value; this value may be greater than or equal to -99 (lowest priority) and less than or equal
to 99 (highest priority), with 0 being the default. If tNPRIORITY iS Set, the priority
accompanying the incoming request is added to the INPRIORITY value to create an
absolute priority setting for the incoming request. If INPRIORITY iS not set or is set to 0,
the priority accompanying the incoming request is used as is by the local domain. For
requests to the remote domain access point, the priority associated with a request will
accompany the request to the remote domain access point.

Non-TDomain parameters for the DM_REMOTE section

The following bM_REMOTE section parameter does not apply to domain gateways of type TDoMAIN
but is included here for completeness:

CODEPAGE = string— applicable to domain gateways of type snax and osTTPx

For detailed descriptions of snax and osITPx parameters, see BEA eLink Documentation at

http://e-docs.bea.com/elink/mainfram/mainfram.htm.

DM_EXPORT Section

This section, also known as the pvM_LoCAL_SERVICES section, provides information on the
services exported by each local domain access point. If this section is absent, or is present but
empty, all local domain access points defined in the bM_r.0cAL section accept remote requests to
all services advertised by the local BEA Tuxedo application. If this section is specified, it should
be used to restrict the set of local services that can be requested from a remote domain.

Alocal service is a service made available to one or more remote domains through a local domain
access point.

Entries within the pvm_gxporT section have the following form:

service |[optional_parameters]

File Formats, Data Descriptions, MIBs, and System Processes Reference 19

http://e-docs.bea.com/elink/mainfram/mainfram.htm

80

where service is the identifier name of a particular local service; it must be 15 characters or
fewer in length. This name is advertised by one or more servers running within the local BEA
Tuxedo application.

A local service made available to one or more remote domains inherits many of its properties
from the servIcEs section of the Tuxconr1g file, or their defaults. Some of the properties that
may be inherited are L.OAD, PRTO, AUTOTRAN, ROUTING, BUFTYPE, and TRANTIME.

Optional parameters for the DM_EXPORT section

LACCESSPOINT (also known as Loow) = identifier
Specifies the name of the local domain access point exporting this service. If this
parameter is not specified, all local domain access points defined in the pv_rocarL section
accept remote requests to this local service.

ACL = identifier
Specifies the name of the access control list (ACL) to be used by the local domain access
point to restrict requests made to this local service by remote domains. The name of the
ACL is defined in the pM_acCESS_CONTROL section.

conv = {v | N}
Specifies whether (¥) or not () this local service is a conversational service. The default
IS N.

RNAME = string[l..30]
Specifies an alternative identity, or “alias,” for the name of this local service to the remote
domains. This name will be used by the remote domains to request this service. If this
parameter is not specified, the actual name of this local service name—the service
identifier—is the name used by the remote domains to request this service.

Non-TDomain parameters for the DM_EXPORT section

The following pM_ExPORT section parameters do not apply to domain gateways of type TpoMAIN
but are included here for completeness.

e INBUFTYPE = string— applicable to domain gateways of type snax, os1TP, and 0sITPX

e OUTBUFTYPE = string — applicable to domain gateways of type snax, os1Tp, and
OSITPX

e COUPLING = {TIGHT | LoOSE} — applicable to domain gateways of type os1TPX

e INRECTYPE = string— applicable to domain gateways of type os1TPx

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

® OUTRECTYPE = string— applicable to domain gateways of type os1TPx

For detailed descriptions of snax, os1Tp, and osTTPX parameters, see BEA eLink Documentation

at http://e-docs.bea.com/elink/mainfram/mainfram.htm.

DM_IMPORT Section

This section, also known as the bM_REMOTE_SERVICES Section, provides information on services
imported and available to the local domain through remote domain access points defined in the
DM_REMOTE Section. If the pv_1MPORT section is absent, or is present but empty, no remote
services are available to the local domain.

A remote service is a service made available to the local domain through a remote domain access
point and a local domain access point.

Entries within the pm_1MPORT Section have the following form:
service [optional_parameters]

where service is the identifier name advertised by the local BEA Tuxedo application for a
particular remote service; it must be 15 characters or fewer in length. A remote service may be
imported from one or more remote domains.

A remote BEA Tuxedo service made available to the local domain inherits many of its properties
from the sErvICES section of the remote Tuxconr1c file, or their defaults. Some of the
properties that may be inherited are 1.oAD, PRTO, AUTOTRAN, ROUTING, BUFTYPE, and TRANTIME.

Optional parameters for the DM_IMPORT section

RACCESSPOINT (also known as rRoom) =
identifierl[, identifier2][, identifier3][, identifierd]..[, indentifier 10]
Specifies the remote domain access point through which this service is imported. If a
remote domain access point is specified for this service and a local domain access point
is specified (using the LaccesspoINT parameter) for this service, only the named local
domain access point is allowed to send local requests to this remote service through the
named remote domain access point.

If a remote domain access point is specified for this service but no local domain access
point is specified, any local domain access point defined in the pv_1.0cAL section having
the same gateway type (TDOMATN, ...) as the remote domain access point is allowed to send
local requests to this remote service through the named remote domain access point.

If no remote domain access point is specified for this service and no local domain access
point is specified, any local domain access point defined in the pM_rocaL section may

File Formats, Data Descriptions, MIBs, and System Processes Reference 81

http://e-docs.bea.com/elink/mainfram/mainfram.htm

send requests to this service through any remote domain access point defined in the
DM_REMOTE Section.

If you want to configure alternate remote domain access points with the identifier2,
identifier3, identifier4 arguments, you must specify on_sTaArRTUP as the value of
the coNNECTION_POLICY parameter in the pM_LocaL section. (CONNECTION_POLICY
may also be specified in the bm_Tpoma1n section for a BEA Tuxedo 8.1 or later
application.) If identifierz is configured, it is used for failover: When the remote
domain associated with identifier1 is unavailable, the remote domain associated with
identifierzisused. Similarly, if identifier3 ND identifierd4 are configured,
they are used for failover: When the remote domains associated with identifieri,
identifier2 and identifier3 are unavailable, the remote domain associated with
identifier4 iS used.

LACCESSPOINT (also known as 1.ooMm) = identifier
Specifies the name of a local domain access point that is allowed to send requests to this
remote service. The gateway group associated with this local domain access point
advertises the name—the service identifier—of the remote service in the BEA Tuxedo
system bulletin board.

BLOCKTIME numeric_value
Specifies the nontransactional client blocking time value, in seconds, per service
indicating the minimum amount of time a blocking API call will delay before timing out
for a particular service. The blocktime value is controlled by the local domain.

This parameter lets the client know that (after a specified time in seconds), no reply has
been received by the server while the service request is still processing.

numeric_value can be between 0 and 32,767 inclusive. If not specified, the default is 0
which indicates that the system-wide Br.ockrIME value specified in the uBBcONFIG
RESOURCES section is used for the service.

conv = {v | n}
Specifies whether (v) or not () this remote service is a conversational service. The default
is N.

LOAD = numeric

Specifies the service load for this remote service. The value must be greater than or equal
to 1 and less than or equal to 32767. The default is 50. Interface loads are used for load
balancing purposes, that is, queues with higher enqueued workloads are less likely to be
chosen for a new request.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

RNAME = string[l..30]

Specifies an alternative identity, or “alias,” for the name of this remote service to the local
domain. This name will be used by the local domain to request this service. If this
parameter is not specified, the actual name of this remote service name—the service
identifier—is the name used by the local domain to request this service.

ROUTING = identifier

Specifies the name of the routing criteria table used for data-dependent routing for this
remote service. When more than one remote domain access point offers the same service,
a local domain access point can perform data-dependent routing if this optional parameter
is specified. If this parameter is not specified, data-dependent routing is not used for this
service.

The identifierisaRrRouTING_crRITERTA_NAMEdefined in the pm_rouTING section. The
value of identifier must be 15 characters or less in length. If multiple entries for the
same service name are included with different remote domain access points (specified
using the rRaccEsspoINT parameter), the value of the rouTING parameter should be the
same for all of these entries.

Non-TDomain parameters for the DM_IMPORT section

The following pM_1MpoRT Section parameters do not apply to domain gateways of type TooMaTn
but are included here for completeness:

INBUFTYPE = string — applicable to domain gateways of type sNax, 0SITP, and 0SITPX

OUTBUFTYPE = string— applicable to domain gateways of type snax, osITP, and
OSITPX

AUTOPREPARE = {Y | N} — applicable to domain gateways of type os1Tpx
INRECTYPE = string — applicable to domain gateways of type os1Tpx
OUTRECTYPE = string— applicable to domain gateways of type osITPx

TPSUT_TYPE = {INTEGER | PRINTABLESTRING} — applicable to domain gateways of type
OSITPX

REM_TPSUT = string — applicable to domain gateways of type os1TpPx

For detailed descriptions of snax, os1Tp, and osTTPX parameters, see BEA eLink Documentation

at http://e-docs.bea.com/elink/mainfram/mainfram.htm.

File Formats, Data Descriptions, MIBs, and System Processes Reference 83

http://e-docs.bea.com/elink/mainfram/mainfram.htm

DM_RESOURCES

This optional section is used for defining global Domains configuration information, specifically
a user-supplied configuration version string. This field is not checked by the software.

The only parameter for the pv_RESOURCES section is:

VERSION = string

where stringis a field in which users can enter a version number for the current pMconr1G file.

DM_ROUTING Section

84

This section provides information for data-dependent routing of local service requests using
FML, FML32, VIEW, VIEW32, X_C_TYPE, X_COMMON, or XML typed buffers to one of
several remote domains offering the same service.

Entries within the pm_rouTIng section have the following form:

ROUTING_CRITERIA NAME required parameters

where ROUTING_CRITERTA_NAME iS the identifier name assigned to the rRouTING parameter
for the particular service entry in the pM_IMPORT Section. ROUTING_CRITERIA_NAME must be 15
characters or less in length.

Required parameters for the DM_ROUTING section

FIELD = identifier
Specifies the name of the routing field. It must be 30 characters or less. It is assumed that
the value of identifieris one of the following: a field name that is identified in an FML
field table (for FML and FML32 buffers); an XML element or element attribute (for XML
buffers); or an FML view table (for VIEW, X_C_TYPE, or X_COMMON buffers). Two
environment variables, FLDTBLDIR and FIELDTBLS Of FLDTBLDIR32 and FIELDTBLS32,
are used to locate FML field tables. Similarly, two environment variables, viewpIr and
VIEWFILES OF VIEWDIR32 and VIEWFILES32, are used to locate FML view tables. If a
field in an FML or FML32 buffer is used for routing, the value of that field must be a
number less than or equal to 8191.

An XML element content encoded in UTF-8 can be used for routing. When used for
routing, the element content cannot contain character references, entity references, or
CDATA sections. An XML element attribute encoded in UTF-8 can also be used for
routing if the element to which the attribute belongs is defined.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

When XML documents are being routed on the basis of element content or element
attribute, the rIELD parameter must be defined with the following syntax:

FIELD = “root_element[/child _element] [/child element][/. . .][/@attribute name]”

The value of r1ELD specifies the name of a routing element or an element attribute. It is
assumed that the value of root_element is an element type (or name) or an element
attribute name for an XML document or datagram. This information is used to identify the
element content or element attribute value for data-dependent routing while sending a
document or datagram. The element name and attribute name combined may contain no
more than 30 characters. Because indexing is not supported, the BEA Tuxedo system
recognizes only the first occurrence of a given element type when processing an xmL
buffer for data-dependent routing.

XML strictly defines the set of characters that may be used in an attribute name. An
attribute name must be a string consisting of a single letter, underscore, or colon, followed
by one or more name characters. Both element names and attribute names are
case-sensitive.

You can find more information about XML on the World Wide Web Consortium Web site
at http://www.w3c.org/XML.

FIELDTYPE = type
Indicates the type of routing field specified in the FTELD parameter. This parameter is used
only for routing XML buffers. The value type can be set to one of the following: cHAR,
SHORT, LONG, FLOAT, DOUBLE, Of STRING. The default type of the routing field is sTRING.

An XML element content and attribute value encoded in UTF-8 can be used for routing if
they can be converted to the data type specified by the FIELDTYPE parameter.

RANGES = “string[l1..4096]"
Specifies the ranges and associated remote domain access point names for the routing
field. string must be enclosed in double quotes. The format of stringis a
comma-separated ordered list of pairs, where each pair consists of a range and a remote
domain access point separated by a colon (;); for example,
RANGES = “MIN-1000:b01,1001-3000:b02,*:b03"”.

A range is either a single value (a signed numeric value or a character string enclosed in
single quotes), or a range of the form 1ower - upper (Where Iower and upper are both

signed numeric values or character strings in single quotes). Note that the value of 1ower
must be less than or equal to the value of upper.

To embed a single quote in a character string value (as in o' Brien, for example), you
must precede it with two backslashes (0\\ 'Brien).

File Formats, Data Descriptions, MIBs, and System Processes Reference 85

86

The value M1n can be used to indicate the minimum value for the data type of the
associated r1eLD; for strings and carrays, it is the NULL string; for character fields, it is 0;
for numeric values, it is the minimum numeric value that can be stored in the field.

The value Max can be used to indicate the maximum value for the data type of the
associated r1ELD; for strings and carrays, it is effectively an unlimited string of octal-255
characters; for a character field, it is a single octal-255 character; for numeric values, it is
the maximum numeric value that can be stored in the field. Thus, “MIn - -5 isall
numbers less than or equal to -5 and “6 - max” is all numbers greater than or equal to 6.
The meta-character » (wildcard) in the position of a range indicates any values not covered
by the other ranges previously seen in the entry; only one wildcard range is allowed per
entry and it should be last (ranges following it will be ignored).

A numeric routing field must have numeric range values and a string routing field must
have string range values. String range values for string, carray, and character field types
must be placed inside a pair of single quotes and cannot be preceded by a sign. Short and
long integer values are a string of digits, optionally preceded by a plus or minus sign.
Floating point numbers are of the form accepted by the C compiler or atof (3): an
optional sign, then a string of digits optionally containing a decimal point, then an optional
e or & followed by an optional sign or space, followed by an integer.

When a field value matches a range, the associated remote domain access point indicates
the remote domain to which the request should be routed. A remote domain access point
value of “+” indicates that the request can go to any remote domain known by the gateway

group.

BUFTYPE = “typel[: subtypell, subtypez...]]|[;type2[:subtype3[,... 1] . ."

A list of types and subtypes of data buffers for which this routing entry is valid. The types
are restricted to FML, FML32, VIEW, VIEW32, X_C_TYPE, X_COMMON, Or xML. NO subtype
can be specified for type Fur, FM1.32, Or xML; Subtypes are required for types view,
VIEW32, X_C_TYPE, and x_common (“*” is not allowed). Duplicate type/subtype pairs
cannot be specified for the same routing criteria name; more than one routing entry can
have the same criteria name as long as the type/subtype pairs are unique. This parameter
is required. If multiple buffer types are specified for a single routing entry, the data types
of the routing field for each buffer type must be the same.

If the field value is not set (for FML or FML32 buffers), or does not match any specific
range and a wildcard range has not been specified, an error is returned to the application
process that requested the execution of the remote service.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

DM_ACCESS_CONTROL Section

This section specifies one or more access control list (ACL) names and associates one or more
remote domain access points with each specified ACL name. You can use the act, parameter in
the pM_EXPORT section by setting acr.=acr,_NaAME to restrict access to a local service exported
through a particular local domain access point to just those remote domain access points
associated with the acr, nawme.

Entries within the bm_access_coNTROL section have the following form:
ACL_NAME required_parameters

where acr_nawme is an identifier value used to specify an access control list; it may contain no
more than 15 characters.

The only required parameter for the pM_AccESS_CONTROL section is:
ACLIST = identifier[, identifier]

where an acLIsT is composed of one or more remote domain access point names separated by
commas. The wildcard character (*) can be used to specify that all remote domain access points
defined in the pM_REMOTE section can access a particular local service exported through a
particular local domain access point.

DM_TDOMAIN Section

This section defines the network-specific information for TDomain gateways. The pM_TDOMAIN
section should have an entry per local domain access point if requests from remote domains to
local services are accepted through that local domain access point, and at least one entry per
remote domain access point if requests from the local domain to remote services are accepted
through that access point.

The pmM_tpomMa1N section is used to configure the following network properties for an access
point entry:

e For a local domain access point entry, specify the network address to be used for listening
for incoming connections.

e For a remote domain access point entry, specify the destination network address to be used
when connecting to the remote domain associated with that access point.

e For alocal or remote domain access point entry, specify the conditions under which the
TDomain gateway tries to establish connections. This optional configuration is available
only to BEA Tuxedo 8.1 or later applications.

File Formats, Data Descriptions, MIBs, and System Processes Reference 87

e For a local or remote domain access point entry, specify whether the TDomain gateway
sends keepalive messages on the connection to the remote domain. This optional
configuration is available only to BEA Tuxedo 8.1 or later applications.

Entries within the pm_Tpoma1n section have the following form:
AccessPoint required parameters [optional_ parameters]

where accessPoint is an identifier value used to identify either a local domain access point or
a remote domain access point. The AccessPoint identifier must match a previously defined
local domain access point in the pm_1.0car section or a previously defined remote domain access
point in the pM_REMOTE Section.

Required parameters for the DM_TDOMAIN section

NWADDR = string[1..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the network address associated with this local or remote domain access point.
For a local domain access point, this parameter supplies the address to be used for
listening for incoming connections from other BEA Tuxedo applications. For a remote
domain access point, this parameter supplies the destination address to be used when
connecting to the BEA Tuxedo application associated with the remote domain access
point. The value of this parameter must be unique across all bM_TDOMAIN entries.

If string has the form “0xhex-digits” OF “\\xhex-digits”, it must contain an even
number of valid hexadecimal digits. These forms are translated internally into a character
array containing TCP/IP addresses. The value of string may also be represented in either
of the following forms:

"/ /hostname: port_number"
v“//#.#.#.#: port_number"

In the first of these formats, hostname is resolved to a TCP/IP host address at the time the
address is bound using the locally configured name resolution facilities accessed via
gethostbyname(3cC). The string #. #. #. # is the dotted decimal format where each #
represents a decimal number in the range 0 to 255.

pPort_number i$ a decimal number in the range 0 to 65535.

Note: Some port numbers may be reserved for the underlying transport protocols (such
as TCP/IP) used by your system. Check the documentation for your transport
protocols to find out which numbers, if any, are reserved on your system.

88 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

Optional parameters for the DM_TDOMAIN section

NWDEVICE = string[l..78]
Specifies the network device to be used when binding to the network address of this local
or remote domain access point. For a local domain access point, this attribute specifies the
device to be used for listening. For a remote domain access point, this attribute specifies
the device to be used when connecting to the remote domain access point.

The nwoEVICE parameter is not required. In earlier releases, if the networking
functionality is TLI-based, the network device name must be an absolute pathname.

CMPLIMIT = numeric
Specifies the compression threshold to be used when sending data to this remote domain
access point. This parameter is relevant only to remote domain access points. Its minimum
value is 0, and its maximum value is 2147483647. The default is 2147483647. Application
buffers larger than the cupr.IMIT Value are compressed.

MINENCRYPTBITS = {0 | 40 | 56 | 128}
Specifies the minimum level of encryption required when establishing a network link to
the remote domain associated with this remote domain access point. This parameter is
relevant only to remote domain access points.

A value of 0 means no encryption, while a value of 40, 56, or 128 specifies the encryption
key length (in bits). (The value of 40 bits is provided for backward compatibility.) The
default is 0. If the minimum level of encryption cannot be met, link establishment fails.

MAXENCRYPTBITS = {0 | 40 | 56 | 128}
Specifies the maximum level of encryption allowed when establishing a network link to
the remote domain associated with this remote domain access point. This parameter is
relevant only to remote domain access points.

A value of 0 means no encryption, while a value of 40, 56, or 128 specifies the encryption
key length (in bits). (The value of 40 bits is provided for backward compatibility.) The
default is 128.

CONNECTION_POLICY = {LOCAL | ON_DEMAND | ON_STARTUP | INCOMING_ONLY}
Specifies the conditions under which the TDomain gateway associated with this local or
remote domain access point tries to establish connections. Supported values are L.ocar,
ON_DEMAND, ON_STARTUP, Of INCOMING_ONLY. LOCAL is relevant only to remote domain
access points.

The coNNECTION_POLICY parameter is available in the pv_Tpoma1n section when
running BEA Tuxedo 8.1 or later software. Its value in the pM_Tpoma1n section for a
particular local or remote domain access point takes precedence over its global value in

File Formats, Data Descriptions, MIBs, and System Processes Reference 89

90

the om_r.ocaL section. The ability to override the global connection policy enables you to
configure connection policy on a per TDomain session basis.

Specifying no connection policy for a local domain access point defaults to the global
connection policy specified in the pm_rocar section. If you choose to specify a global
connection policy in the pM_TpoMaIN Section, do not specify a global connection policy
in the bM_LoOCAL section.

A connection policy of Locar. means that a remote domain access point accepts the global
connection policy defined in the pM_r.0carL section. LocaL is the default connection policy
for remote domain access points. Excluding r.ocar, the connection policy value for a
remote domain access point takes precedence over the connection policy value for a local
domain access point.

A connection policy of oN_DEMAND means that the TDomain gateway attempts a
connection only when requested by either a client request to a remote service or a
dmadmin (1) connect command. Connection retry processing is not allowed when the
connection policy is ON_DEMAND.

A connection policy of on_sTarRTUP means that the TDomain gateway attempts to
establish a connection at gateway server initialization time. For on_sTarTUP, the remote
services for a particular remote domain (that is, services advertised by the TDomain
gateway) are advertised only if a connection is successfully established to the remote
domain. Thus, if there is no active connection to the remote domain, the remote services
are suspended. By default, this connection policy retries failed connections every 60
seconds, but you can specify a different value for this interval using the RETRY_INTERVAL
parameter in the pM_TDOMAIN Section. Also, see the MAXRETRY parameter in this section.

A connection policy of tncoMING_oNLY means that the TDomain gateway does not
attempt an initial connection upon startup and that remote services are initially suspended.
The TDomain gateway is available for incoming connections from a remote domain, and
remote services are advertised when the gateway receives an incoming connection or an
administrative connection (using the dmadmin (1) connect command) is made.
Connection retry processing is not allowed when the connection policy is
INCOMING_ONLY.

FAILOVERSEQ = -1 <= num<= 32767

Specifies the failover sequence and establishes the primary record for a TDomain session
between remote and local access points in Tuxedo release 9.0 and later. The TDomain
session record with the lowest FATL.OVERSEQ humber is the primary record for that
session. If not specified, FATL.OVERSEQ defaults to -1.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

There is only one primary record for a TDomain session, all remaining records for the
same TDomain session are called secondary/backup records. With the exceptions of
NWADDR, NWDEVICE, and FATLOVERSEQ, the primary record is the source for all TDomain
session configuration parameters and attributes. All other parameters and attributes listed
in secondary/backup records are ignored.

Based on the coNnNECTION_POLICY attribute you select, the local domain will try to
connect to a TDomain session’s primary record. If the primary record fails to connect, it
will then try to connect to the next sequential secondary/backup record. If all secondary
record connections fail, it will retry the primary record information at a later time as
determined by RETRY_INTERVAL until MAXRETRY is exhausted.

LACCESSPOINT (also known as 1.oom) = “string~[1..30]
Specifies the name of a local domain access point listed in the pm_r.0car section of the
DMCONFIG file in Tuxedo release 9.0 and later. The LaccEsspoINT parameter is used
exclusively to define TDomain session gateways and can contain only one local domain
access point as its value.

If not specified, LaccesspoINT defaults to“*” and the TDomain session will connect to
all local domain access points listed in the pM_1r.0caL section. You can substitute .oowm for
the LACCESSPOINT parameter.

Note: rACCESSPOINT can also use regular expression values to define multiple local
domain access points. When the pMconr1a file is compiled using dmloadcf, the
regular expression values are expanded to their full local domain names in the
BDMCONFIG file. LaccESsPOINT can only use regular expressions in the
pMconFIG file.

[MAXRETRY = {numeric | MAXLONG}
Specifies the number of times that the TDomain gateway associated with this local or
remote domain access point tries to establish a connection. This parameter is available in
the pm_TpoMaIN section when running BEA Tuxedo 8.1 or later software, and is valid
when the connEcTTON_POLICY parameter for this access point is set to on_sTarTup. For
other connection policies, automatic retries are disabled.

The minimum value for MAXRETRY is 0, and the maximum value is MAXL.ONG
(2147483647). maxL.oNG, the default, indicates that retry processing will be repeated
indefinitely, or until a connection is established.

RETRY_INTERVAL = numeric
Specifies the number of seconds that the TDomain gateway associated with this local or
remote domain access point waits between automatic attempts to establish a connection.
This parameter is available in the pmM_Tpoma 1N section when running BEA Tuxedo 8.1 or

File Formats, Data Descriptions, MIBs, and System Processes Reference 91

later software, and is valid when the conNEcTTON_POLICY parameter for this access point
is set to on_sTaRTUP. For other connection policies, automatic retries are disabled.

The minimum value for RETRY_INTERVAL is 0, and the maximum value is 2147483647.
The default is 60. If MAXRETRY is Set to 0, setting RETRY_INTERVAL is not allowed.

TCPKEEPALIVE = {LOCAL | NO | YES}
Enables TCP-level keepalive for this local or remote domain access point. Supported
values are r.ocar, N (no), or v (yes). LocaL is relevant only to remote domain access
points.

The TcPREEPALIVE parameter applies only to domain gateways of type TboMAIN running
BEA Tuxedo 8.1 or later software. Its value for a remote domain access point takes
precedence over its value for a local domain access point. The ability to override the local
domain access point value enables you to configure TCP-level keepalive on a per remote
domain basis.

A value of LocaL means that a remote domain access point accepts the TCP-level
keepalive value defined for the local domain access point. LocaL is the default TCP-level
keepalive value for remote domain access points.

A value of no means that TCP-level keepalive is disabled for this access point. v is the
default TCP-level keepalive value for local domain access points.

A value of YEs means that TCP-level keepalive is enabled for this access point. When
TCP-level keepalive is enabled for a connection, the keepalive interval used for the
connection is the system-wide value configured for the operating system’s TCP keepalive
timer. This interval is the maximum time that the TDomain gateway will wait without
receiving any traffic on the connection. If the maximum time is exceeded, the gateway
sends a TCP-level keepalive request message. If the connection is still open and the
remote TDomain gateway is still alive, the remote gateway responds by sending an
acknowledgement. If the local TDomain gateway does not receive an acknowledgement
within a fixed period of time of sending the request message, it assumes that the
connection is broken and releases any resources associated with the connection.

Not only does TCP-level keepalive keep BEA Tuxedo interdomain connections open
during periods of inactivity, but it also enable TDomain gateways to quickly detect
connection failures.

Note: The TcPKEEPALIVE and DMKEEPALIVE parameters are not mutually exclusive,
meaning that you can configure an interdomain connection using both
parameters.

92 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

DMKEEPALIVE = numeric
Controls application-level keepalive for this local or remote domain access point. This
value must be greater than or equal to -1 and less than or equal to 2147483647. The value
-1 is relevant only to remote domain access points.

The DMKEEPALIVE parameter applies only to domain gateways of type TDoMAIN running
BEA Tuxedo 8.1 or later software. Its value for a remote domain access point takes
precedence over its value for a local domain access point. The ability to override the local
domain access point value enables you to configure application-level keepalive on a per
remote domain basis.

A value of -1 means that a remote domain access point accepts the application-level
keepalive value defined for the local domain access point. -1 is the default
application-level keepalive value for remote domain access points.

A value of 0 means that application-level keepalive is disabled for this access point. 0 is
the default application-level keepalive value for local domain access points.

A value greater than or equal to 1 and less than or equal to 2147483647, in milliseconds,
currently rounded up to the nearest second by the Domains software, means that
application-level keepalive is enabled for this access point. The time that you specify is
the maximum time that the TDomain gateway will wait without receiving any traffic on
the connection. If the maximum time is exceeded, the gateway sends an application-level
keepalive request message. If the connection is still open and the remote TDomain
gateway is still alive, the remote gateway responds by sending an acknowledgement. If
the local TDomain gateway does not receive an acknowledgement within a configurable
period of time (see the DMKEEPALIVEWAIT parameter) of sending the request message, it
assumes that the connection is broken and releases any resources associated with the
connection.

Not only does application-level keepalive keep BEA Tuxedo interdomain connections
open during periods of inactivity, but it also enable TDomain gateways to quickly detect
connection failures.

Note: The DMKEEPALIVE and TCPKEEPALIVE parameters are not mutually exclusive,
meaning that you can configure an interdomain connection using both
parameters.

DMKEEPALIVEWAIT = numeric
Specifies the maximum time for this local or remote domain access point that the
TDomain gateway will wait without receiving an acknowledgement to a sent keepalive
message. This value must be greater than or equal to 0 and less than or equal to
2147483647, in milliseconds, currently rounded up to the nearest second by the Domains

File Formats, Data Descriptions, MIBs, and System Processes Reference 93

94

software. The default is 0. This parameter applies only to domain gateways of type
TDOMAIN running BEA Tuxedo 8.1 or later software.

If omxeEPALIVE iS 0 (keepalive disabled) for this access point, setting DMKEEPALIVEWAIT
has no effect.

If oMKEEPALTVE is enabled for this access point and DMKEEPALIVEWAIT iS Set to a value
greater than pMREEPALIVE, the local TDomain gateway will send more than one
application-level keepalive message before the pMKEEPALTVEWATT timer expires. This
combination of settings is allowed.

If poMKEEPALIVE is enabled for this access point and DMKEEPALIVEWAIT is Set to 0,
receiving an acknowledgement to a sent keepalive message is unimportant: any such
acknowledgement is ignored by the TDomain gateway. The gateway continues to send
keepalive messages every time the pMKEEPALIVE timer times out. Use this combination
of settings to keep an idle connection open through a firewall.

Multiple entries for the same access point in the DM_TDOMAIN section

If this pm_TpoMAIN entry is a local domain access point (as specified in the pM_r.ocar section),
its NwADDR is a network address to be used to listen for incoming connections. Entries associated
with a local domain access point can be specified more than once in the pv_TDoMAIN Section, to
allow for migration of the services associated with a local access point to another machine in the
BEA Tuxedo domain.

Entries associated with a remote domain access point (as specified in the pv_rREMOTE section) can
also be specified more than once in the pM_Tpoma1n section. If FATLOVERSEQ is not specified,
the first entry is considered to be the primary address, which means its NwaDDR is the first network
address tried when a connection is being attempted to the remote domain access point. The
second entry is considered to be the secondary address, which means its NwaDDR is the second
network address tried when a connection cannot be established using the primary address.

Note: If the FATLOVERSEQ parameter is used, it determines the primary and secondary
addresses for TDomain session connection policies.

If this pM_TpoMaIN entry is another occurrence of a remote domain access point, the entry points
to a secondary remote gateway that must reside in a different BEA Tuxedo domain than the BEA
Tuxedo domain in which the primary remote gateway resides. The secondary and primary remote
gateways must have the same accesspoINTID defined in the pv_r.ocar section of their
associated pmMconFIG files; this arrangement is often referred to as a mi rrored gateway. This
feature is not recommended for use with transactions or conversations. In addition, the mirrored
gateway is not recommended for use when the primary remote gateway is available.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

Note: For multiple entries of a local or remote domain access point in the pv_TDoMATN Section,
only the multiple instances of the NwaDDR parameter are read by the Domains software.
For multiple instances of any other parameter, only the first instance of the parameter is

read by the Domains software; all other instances are ignored.

DMCONFIG(5) Additional Information

Files

The BpoMcoNFIG environment variable is used to find the spmMconr1Ic configuration file.

Example 1

The following Domains configuration file defines a five-site Domains configuration. The

example shows four Bank Branch domains communicating with a Central Bank Branch. Three
of the Bank Branches run within other BEA Tuxedo domains. The fourth Branch runs under the
control of another TP domain. OSI TP is used for communication between that domain and the
Central Bank. The example shows the Domains configuration file from the Central Bank point of

view.

BEA Tuxedo Domains Configuration File for the Central Bank

#

#

*DM_LOCAL

#

DEFAULT: SECURITY = NONE

c0l GWGRP = bankgl
TYPE = TDOMAIN

ACCESSPOINTID = "BA.CENTRALOL"
DMTLOGDEV = "/usr/apps/bank/DMTLOG"
DMTLOGNAME = "DMTLG_CO1"

c02 GWGRP = bankg2
TYPE = OSITP

ACCESSPOINTID = "BA.CENTRALO2"
DMTLOGDEV = "/usr/apps/bank/DMTLOG"
DMTLOGNAME = "DMTLG_CO02"

#

*DM_REMOTE

#

b01 TYPE = TDOMAIN
ACCESSPOINTID = "BA.BANKO1"

b02 TYPE = TDOMAIN

File Formats, Data Descriptions, MIBs, and System Processes Reference

95

ACCESSPOINTID = "BA.BANKO2"

b03 TYPE = TDOMAIN
ACCESSPOINTID = "BA.BANKO3"

b04 TYPE = OSITP
ACCESSPOINTID = "BA.BANKO04"

*DM_TDOMAIN

#
local network addresses
c0l NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"

remote network addresses

b0l NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
*DM_OSITP
#
c02 APT = "BA.CENTRALOL"

AEQ = "TUXEDO.R.4.2.1"

AET = "{1.3.15.0.3},{1}"

ACN = "XATMI"
b04 APT = "BA.BANK04"

AEQ = "TUXEDO.R.4.2.1"

AET = "{1.3.15.0.4},{1}"

ACN = "XATMI"

*DM__EXPORT

#

open_act ACL = branch

close_act ACL = branch

credit

debit

balance

loan LACCESSPOINT = c02 ACL = loans

*DM_IMPORT

#

tlr_add LACCESSPOINT = c0l1 ROUTING = ACCOUNT

tlr_bal LACCESSPOINT = c0l1 ROUTING = ACCOUNT

tlr_add RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU002"
tlr_bal RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU0O3"
tlr_bal RACCESSPOINT = b02,b03” LACCESSPOINT = c02

*DM_ROUTING

#
ACCOUNT FIELD = branchid BUFTYPE = “VIEW:account”

96 File Formats, Data Descriptions, MIBs, and System Processes Reference

RANGES =

*DM_ACCESS_CONTROL

#
branch ACLIST = “b01,b02,b03”

loans ACLIST = b04

DMCONFIG(5)

“"MIN-1000:001,1001-3000:b02, *:b03"

File Formats, Data Descriptions, MIBs, and System Processes Reference

91

Example 2
This example shows the BEA Tuxedo Domains configuration file for one of the Bank Branches

(BaNKO1).
#
#BEA Tuxedo Domains Configuration file for a Bank Branch
#
#
*DM_LOCAL
#

b01 GWGRP = auth
TYPE = TDOMAIN

ACCESSPOINTID = "BA.BANKO1"
DMTLOGDEV = "/usr/apps/bank/DMTLOG"
*DM_REMOTE
#
c0l TYPE = TDOMAIN
ACCESSPOINTID = "BA.CENTRALOL1"

*DM_TDOMAIN

#

b01 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
c0l NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
*DM_EXPORT

#

tlr_add ACL = central
tlr _bal ACL = central

*DM_IMPORT

#

OPAOO1 RNAME = "open_act"
CLAOOL RNAME = "close_act"
CRDOO1 RNAME = "credit"
DBTO001 RNAME = "debit"
BALOO1 RNAME = "balance"

*DM_ACCESS_CONTROL
#
central ACLIST = cO01

Network Addresses

Suppose the local machine on which a TDomain is being run is using TCP/IP addressing and is
named backus . company . com, With address 155.2.193.18. Further suppose that the port
number at which the TDomain should accept requests is 2334. Assume that port number 2334

98 File Formats, Data Descriptions, MIBs, and System Processes Reference

DMCONFIG(5)

has been added to the network services database under the name bankapp-gwtaddr. The address
can be represented in the following ways:

//155.2.193.18:bankapp-gwtaddr
//155.2.193.18:2334

/ /backus.company.com: bankapp-gwtaddr
/ /backus.company.com:2334
0x0002091E9B02C112

The last of these representations is hexadecimal format. The 0002 is the first part of a TCP/IP
address. The 091k is the port number 2334 translated into a hexadecimal number. After that each
element of the IP address 155.2.193.12 is translated into a hexadecimal number. Thus the 155
becomes 9B, 2 becomes 02 and so on.

See Also

dmadmin (1), dmloadcf (1), dmunloadcf (1), tmboot (1), tmshutdown (1), DMADM(5),
GWADM (5), GWTDOMAIN (5)

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time
Using the BEA Tuxedo Domains Component
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference 99

DM_MIB(5)

Name
pv_m1B—Management Information Base for Domains

Synopsis
#include <fml32.h>
#include <tpadm.h> /* MIB Header, includes DOMAINS */

Domains Terminology Improvements

For BEA Tuxedo release 7.1 or later, the Domains MIB uses improved class and attribute
terminology to describe the interaction between local and remote domains. This improved
terminology has also been applied to pmconrFzc file syntax.

These terminology improvements eliminate multiple uses of the term “domain” and introduce
terms that more clearly describe the actions that occur. For example, the term access point defines
an object through which you gain access to another object. Therefore, you access a remote
domain through a remote domain access point, and remote domains gain access to a local domain
through a local domain access point. The following table reflects the pMmconrF1G section name
changes that result from eliminating multiple uses of the term “domain.”

This pMconFIc section name. . . Has changed to. . .
DM_LOCAL_DOMAINS DM_LOCAL
DM_REMOTE_DOMAINS DM_REMOTE

Within these sections, the following parameter names have changed.

This parameter name. . . Has changed to. . .
DOMAINID ACCESSPOINTID
MAXRDOM MAXACCESSPOINT
MAXRDTRAN MAXRAPTRAN

The equivalent pm_m1B classes for these pmconF 1 sections are T_pM_r.0cAL and T_DM_REMOTE,
respectively.

100 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

In certain configurations, both available services and resources, such as queue spaces and queue
names, need to be imported and exported. As such, the pMCoNFIG section names
DM_LOCAL_SERVICES and DM_REMOTE_SERVICES no longer accurately describe the necessary
activity. Replacing these section names with pmM_ExpPorT and pM_1MPORT, respectively, clearly
describes the actions that occur; that is, from the perspective of a single BEA Tuxedo domain,
resources are exported from the domain through local access points and imported into the domain
through remote domain access points. These pMCONFIG section name changes are shown in the
following table.

This pMconF1c section name. . . Has changed to. . .
DM_LOCAL_SERVICES DM__EXPORT
DM_REMOTE_SERVICES DM_IMPORT

Within these sections, the following parameter names have changed.

This parameter name. . . Has changed to. ..
LDOM LACCESSPOINT
RDOM RACCESSPOINT

The equivalent om_m1B classes for these pmconFIG sections are T_pM_EXPORT and
T_DM_IMPORT, respectively.

Backwards Compatibility

The improved Domains terminology introduced in BEA Tuxedo release 7.1 has been applied to
the om_wm1B reference page, classes, and error messages, and to the pMmconr1G reference page,
section names, parameter names, and error messages.

For backwards compatibility, aliases are provided between the pmconrF1c terminology used prior
to BEA Tuxedo 7.1 and the improved Domains MIB terminology. For BEA Tuxedo release 7.1
or later, amloadcf accepts both versions of the pmconrF1c terminology. dmunloadcf, however,
generates a bMcoNFIG file that uses the improved domains terminology by default. Use the -c

option of dmunloadcf to generate a pMcoNFIG file that uses the previous domains terminology.

File Formats, Data Descriptions, MIBs, and System Processes Reference 101

Description

The Domains MIB defines the set of classes through which a domain may import or export
services using domain gateways and domain gateway administrative servers. This reference page
assumes the reader is familiar with the BEA Tuxedo System Domains component, which is
described in Using the BEA Tuxedo Domains Component.

Use ov_wm1B(5) in combination with the generic MIB reference page m18 (5) to format
administrative requests and interpret administrative replies.

Requests formatted as described in m1B (5) using classes and attributes described in pM_M1B may

be used to request an administrative service using existing ATMI interfaces in an active
application. For additional information pertaining to all pm_wm1B (5) class definitions, see
“DM_MIB(5) Additional Information” on page 169.

pv_M1B(5) consists of the following classes:

Table 11 DM_MIB Classes

Class Name

Attributes

T _DM_ACL

Domain access control list

T_DM_CONNECTION

Connection status between two domains

T_DM_EXPORT Exported resource

T_DM_IMPORT Imported resource

T_DM_LOCAL Local access point

T_DM_OSITP OSI TP 1.3 specific configuration for an access point
T_DM_OSITPX OSI TP 4.0 or later specific configuration for an access point

T_DM_PASSWORD

Domain password entry

T_DM_PRINCIPAL_MAP

Principal mapping entry

T_DM_REMOTE

Remote access point

T_DM_RESOURCES

Global Domains configuration information

T_DM_ROUTING

Access point routing criteria

T_DM_RPRINCIPAL

Remote principal entry

File Formats, Data Descriptions, MIBs, and System Processes Reference

{noValueProvidedFor-DOCROOT}/interm/admin.htm#dom

DM_MIB(5)

Tahle 11 DM_MIB Classes

Class Name Attributes

T_DM_SNACRM SNA-CRM-specific configuration for a local access point
T_DM_SNALINK SNAX-specific configuration for a remote domain access point
T_DM_SNASTACK SNA stack to be used by a specific SNA CRM
T_DM_TDOMAIN TDomain-specific configuration for an access point

T_DM_TRANSACTION Transaction entry associated with a local access point

Each class description consists of four sections:
e Overview—high level description of the attributes associated with the class.

e Attribute Table—a table that lists the name, type, permissions, values, and default for each
attribute in the class. The format of the attribute table is described below.

e Attribute Semantics—defines the interpretation of each attribute that is part of the class.

e Limitations—Ilimitations in the access to and interpretation of this class.

Attribute Table Format
The attribute table is a reference guide to the attributes within a class and how they may used by
administrators, operators, and general users to interface with an application.

There are five components to each attribute description in an attribute table: name, type,
permissions, values, and default. Each of these components is discussed in MIB (5).

TA_FLAGS Values
m1B(5) defines the generic Ta_FLAGs attribute which is a long-valued field containing both
generic and component MIB-specific flag values. At this time, there are no om_m1B-specific flag
values defined.

FML32 Field Tables
The field tables for the attributes described in this reference page are found in the file
udataobj/tpadm relative to the root directory of the BEA Tuxedo System software installed on
the system. The directory $ {TUXDIR} /udataobj should be included by the application in the
colon-separated list specified by the FL.DTBLDIR environment variable. The field table name

File Formats, Data Descriptions, MIBs, and System Processes Reference 103

tpadm should be included in the comma-separated list specified by the FTELDTBLS environment
variable.

Interoperability

Access to the header files and field tables for this MIB is provided only on BEA Tuxedo release
7.1 sites and later, both native and Workstation. If a release 5.0 or earlier site is active in the
application, global information updates (seT~ operations) are not allowed to gateway groups on
those sites.

Local information access for release 5.0 and earlier sites is not available. If the class accessed also
has global information, only the global information is returned. Otherwise, an error is returned.

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo System MIBs, as well as the header file and field tables defined in this reference
page, are available on all supported native and Workstation platforms.

T _DM_ACL Class Definition

Overview
The T_pM_acL class represents access control information for domains.

Attribute Table

Table 12 DM_MIB(5): T_DM_ACL Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMACLNAME (r) (k) (*) string rw-r--r-- string[1..15] N/A
TA_DMRACCESSPOINTLIST (*) string rW-r--r-- string[0..1550] o
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

104 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Semantics

TA_DMACLNAME: string [1..15]
The access control list name, unique within the scope of the T_pm_acL entry names in the
Domains configuration.

TA_DMRACCESSPOINTLIST: string [0..1550]
The list of remote domain access points associated with this access control list.
TA_DMRACCESSPOINTLIST iS a comma-separated list of remote domain access point
names (that is, the value of the Ta_pmMraccEsspoINT attribute of a valid T_pv_REMOTE
object). The list can contain up to 50 remote domain access point identifier elements.
Setting this attribute to ~*~ means that all the remote domains in the configuration are
associated with this entry. ~~ means no remote domain access points are associated with
this entry. The default is ~~.

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the T_pm_acL object. The
following state indicates the meaning of a Ta_sTaTE attribute value returned in
response to a GET request. States not listed are not returned.

“WALid” The object is defined and inactive. This is the only valid state
for this class. ACL groups are never active.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected T_pm_act,
object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed may not be set.

“NEW” A new object is created. A state change is allowed only
when in the *INvalid” state. A successful return leaves
the object in the “vaLid” state.

unset Modify an existing object. This combination is not allowed
in the “INvalid” state. A successful return leaves the
object state unchanged.

“INValid” The object is deleted. A state change is allowed only when
in the *vALid” state. A successful return leaves the object
inthe “INValid” state.

File Formats, Data Descriptions, MIBs, and System Processes Reference 105

Limitations
None.

T _DM_CONNECTION Class Definition

Overview
The T_pM_coNNECTION class represents the status of connections between domain access points.

Attribute Table

Tahle 13 DM_MIB(5): T_DM_CONNECTION Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_DMLACCESSPOINT(K)(*) string rTw-r--r-- string[1..30] N/A
TA_DMRACCESSPOINT(K) string rw-r--r-- string[1..30] N/A
TA_DMTYPE string r--r--r-- “{TDOMAIN }” N/A
TA_STATE(K)(*) string TWXL-XT-- GET: “{ACT|SUS|INI|INA N/A

| UNK}” N/A

SET: “{ACT | INA}"

Attributes available when Ta_DMTYPE=TDOMAIN:

TA_DMCURENCRYPTBITS string r——------ »{0]40|56|128}~Notel “0”

(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Note 1The link-level encryption value of 40 bits is provided for backward compatibility.

Attribute Semantics

TA_DMLACCESSPOINT: string{l..30]
The name of the local domain access point identifying the connection between the
domains.

On ceT and seT operations, a specific local domain access point must be specified for this
attribute.

106 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMRACCESSPOINT: string[l..30]

The name of the remote domain access point identifying the connection between the
domains.

On geT and seT operations, if TA_ DMRACCESSPOINT is absent, all the T_pM_coNNECTION
entries for the local access point specified by Ta_pMLACCESSPOINT are selected.

TA_DMTYPE: “{TDOMAIN }”
The type of domain, which can be “TpoMaAIN”.

TA_STATE!

GET: “{ACTive |SUSpended|INItializing|INActive | UNKnown}”
A GET operation retrieves run-time information for the connection. The following
states indicate the meaning of a Ta_sTaTE attribute value returned in response to
a GET request. States not listed are not returned.

“ACTive” The connection is active.
“SUSpended” The connection is awaiting retry.
“INItializing” The connection is initializing.
“INActive” The specified domain access points are

disconnected. (This state is only returned by
gateways running BEA Tuxedo release 7.1 or
later.)

“UNKnown” The connection state of the specified domain
access points cannot be determined.

SET: “{ACTive | INActive}”
A sET operation updates run-time information for the connection. The following

states indicate the meaning of a TaA_sTATE in a SET request. States not listed may
not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 107

“ACTive” Connect the specified domain access points. If the
current state is *SUSpended” or *INActive”,
SET: “ACTive” placesthe connection into the state
“INItializing”, otherwise there is no change.

“INActive” Disconnect the specified domain access points and

destroy the object.

Attributes available when TA_DMTYPE=TDOMAIN

TA_DMCURENCRYPTBITS: “{0 |40 |56 | 128}"

The level of encryption in use on this connection. *0~ means no encryption, while ~40~,
»56~, and “128~ specify the encryption length (in bits). This attribute is valid only for
gateways running BEA Tuxedo release 7.1 or higher. For all other gateways, this value is

setto “o0”.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

Limitations

The Domain gateway administration (cwapm) server and the domain gateway supporting the local
domain access point specified in the Ta_bMLACCESSPOINT attribute must be active in order to

perform GET or SET operations on connections to that access point.

T_DM_EXPORT Class Definition

Overview

The T_pm_exporT class represents local resources that are exported to one or more remote

domains through a local access point.

Attribute Table
Table 14 DM_MIB(5): T_DM_EXPORT Class Definition Attribute Tahle
Attribute Type Permissions Values Default
TA_DMRESOURCENAME(r)(K)(*) string rw-r--r-- string[l..15] N/A
TA_DMLACCESSPOINT(K)(*) string rw-r--r-- string[1..30] * (meaning
all)

108 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 14 DM_MIB(5): T_DM_EXPORT Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_DMACLNAME string rw-r--r-- string[l..15] N/A
TA_DMCONV string rw-r--r-- “{v | N}~ “N”
TA_DMREMOTENAME string rw-r--r-- string[1..30] N/A

Attributes available from remote domain access points of Ta_DMTYPE=SNAX]|OSITP|OSITPX:

TA_DMINBUFTYPE string rw-r--r-- string[0..513] N/A

TA_DMOUTBUFTYPE string rw-r--r-- string[0..513] N/A

Attributes available from remote domain access points of TA_DMTYPE=OSITPX:

TA_DMCOUPL ING(r) string rw-r--r-- “{TIGHT | LOOSE}" “*LOOSE”
TA_DMINRECTYPE(r) string rw-r--r-- string[0..78] w
TA_DMOUTRECTYPE(r) string rw-r--r-- stringl0..78] o

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMRESOURCENAME: string[l..15]
The local resource name for entries of resource type servicE (the service name), QspPacCE
(the queue space name), and onaME (the queue name). For a SERVICE entry, the value of
this attribute corresponds to the value of the Ta_servIiceENaME attribute of an active
T_SVCGRP 0bject. This resource is exported to remote domains with the same name or
with the alias defined in the TA_DMREMOTENAME OF TA_DMTE™ attributes.

TA_DMLACCESSPOINT: string[l..30]
The local access point name through which this local resource is available. Setting this
attribute to »*~ means the resource is available at all local access points.

File Formats, Data Descriptions, MIBs, and System Processes Reference 109

110

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the T_pm_EXPORT Object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected T_pM_EXPORT

object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed may not be set.

“NEW” A new object is created.

unset Modify an existing object. This combination is not
allowed in the *INValid” state. A successful return
leaves the object state unchanged.

“INValid” The object is deleted.

TA_DMACLNAME: string[l..15]

The name of a T_pm_acL object to use for security for this local resource. This attribute
is not permitted if TA_DMRESOURCETYPE="QNAME".

TA_pMCcONV: “{Y | N}~
Specifies whether this local resource is conversational.

TA_DMREMOTENAME: string[l..30]
Specifies the name of this local resource exported through the remote domain access

points. If this attribute is not specified, the name of the local resource defaults to the name
specified in TA_DMRESOURCENAME.

Attributes available from remote domain access points of TA_DMTYPE=SNAXIOSITPIOSITPX

TA_DMINBUFTYPE: string[0..513]

typel:subtype]—Specifies the input buffer type, optionally followed by the subtype, for
this local resource. If this attribute is present, it defines the buffer type [and subtype]
accepted. This attribute should be defined for entries of

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMRESOURCETYPE="SERVICE” When using sNax, or when access is permitted from
remote domain access points using osITp or osITrx With the UDT application context.

TA_DMOUTBUFTYPE: string[0..513]
type[:subtype]— Specifies the output buffer type, optionally followed by subtype, for
this local resource. If this attribute is present, it defines the buffer type [and subtype]
output by the service. This attribute should be defined for entries of
TA_DMRESOURCETYPE="SERVICE” When using sNax, or when access is permitted from
remote domain access points using osITp or osITpx With the UDT application context.

Attributes available from remote domain access points of TA_DMTYPE=0SITPX

TA_DMCOUPLING: string“{TIGHT | LOOSE}"
Specifies whether the transaction coupling is to be tight or loose when requests for this
local service come through the same remote domain access point. The default is “L.oosE".
Setting TA_DMCOUPLING="LOOSE” means that database updates made by the first request
to this local service cannot be seen by the second request to the local service even though
both requests are involved in the same global transaction. Setting
TA_DMCOUPLING="TIGHT” means that multiple calls to the same local service through the
same remote domain access point are tightly coupled: database updates made by the first
request can be seen by the second request.

TA_DMCOUPLING="TIGHT” applies only when duplicate service requests come through
the same remote domain access point. When the service requests are through different
remote domain access points, the requests are always loosely coupled.

TA_DMINRECTYPE: string[l..78]
type[:subtype]—Specifies the type, optionally followed by subtype, and in some case
the format of the reply buffer that a particular client requires for this local service. This
attribute can be omitted if the local service sends a buffer that is identical in type and
structure to the buffer that the remote client expects. If you do not specify
TA_DMINRECTYPE, the type of buffer is unchanged.

TA_DMOUTRECTYPE:. string{l..78]
type[:subtype]—Specifies the type, optionally followed by subtype, of the buffer sent
by the remote client for this local service. This attribute is used to enforce stronger type
checking.

Limitations

On seT operations that add or update an instance of this class, and where a specific local domain
access point is specified in the Ta_pMLACCESSPOINT attribute, the access point must exist in the

File Formats, Data Descriptions, MIBs, and System Processes Reference m

T DM_LOCAL class. If it does not, a “not defined” error is returned for the TA_ DMLACCESSPOINT
attribute, and the operation fails.

T _DM_IMPORT Class Definition

Overview

The T_pM_1MPORT class represents remote resources that are imported through one or more
remote domain access points and made available to the local domain through one or more local
domain access points.

Attribute Table

Table 15 DM_MIB(5): T_DM_IMPORT Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_DMRESOURCENAME(r)(K)(*) string rw-r--r-- string[l..15]
TA_DMRACCESSPOINTLIST(K)(*) string rw-r--r-- string[l1.92] *
(meaning all)
TA_DMLACCESSPOINT(K)(*) string rw-r--r-- string[1..30] *
(meaning all)
TA_STATE(r) string rwxr-xr-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA DMBLOCKTIME long rwyr--r-- 0 <= num<= 32,767 0
TA_DMCONV string rw-r--r-- “{v | N}~ “N”
TA_DMLOAD short rw-r--r-- 1 <= num<= 32,767 50
TA_DMREMOTENAME string rw-r--r-- string[1..30] N/A
TA_DMRESOURCETYPE string rw-r--r-- “{SERVICE | QSPACE | “SERVICE”
QNAME}”
TA_DMROUT INGNAME string rw-r--r-- string[l..15] N/A

Attributes available from remote domain access points of TA_DMTYPE=SNAX]OSITP|OSITPX:

TA_DMINBUFTYPE string rw-r--r-- string]0..256] N/A

112 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 15 DM_MIB(5): T_DM_IMPORT Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default

TA_DMOUTBUFTYPE string rw-r--r-- string[0..256] N/A

Attributes available from remote domain access points of TA_ DMTYPE=0S I TPX:

TA_DMAUTOPREPARE(r) string rw-r--r-- “{y | N}~ N~
TA_DMINRECTYPE(r) string rw-r--r-- string[0..78] wr
TA_DMOUTRECTYPE(r) string rw-r--r-- string[0..78] w
TA_DMTPSUTTYPE(r) string rw-r--r-- “{INTEGER | wr
PRINTABLESTRING} "
TA_DMREMTPSUT(r) string rw-r--r-- string[0..64] w

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMRESOURCENAME: string[l..15]
The remote resource name used for entries of resource type service (the service name),
QsPACE (the queue space name), and oName (the queue hame). This resource is imported
from remote domains with the same name or with the alias defined in the
TA_DMREMOTENAME Of TA_DMTE™ attributes.

TA_DMRACCESSPOINTLIST: string[l..92]
Identifies the remote domain access point through which this remote resource should be
imported. TA_ DMRACCESSPOINTLIST iS a comma-separated failover domain list; it can
contain up to ten remote domain access points of up to 30 characters each. If this attribute
is set to ~*~, the resource can be imported from all remote domain access points.

TA_DMLACCESSPOINT: string[l..30]
The name of the local domain access point through which this remote resource should be
made available. If this attribute is set to »*, the resource is made available through all
local domain access points.

File Formats, Data Descriptions, MIBs, and System Processes Reference 113

114

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the T_pm_IMPORT Object.
The following states indicate the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A sgT operation updates the configuration information for the selected
T_pM_1MPORT object. The following states indicate the meaning of Ta_sTaTEin a
SET request. States not listed may not be set.

“NEW” A new object is created. A state change is allowed in
the state “INvalid~” and results in the state
“ACTive”.

unset Modify an existing object. This combination is not

allowed inthe *INvValid~” state. A successful return
leaves the object state unchanged.

“INValid” The object is deleted. A state change is allowed in the
state “ACTive” and results in the state
“INValid”.

TA_DMBLOCKTIME: 0 <= num <= 32,767

Blocktime limit, in seconds, indicating the minimum amount of time a blocking API call
will delay before timing out for a particular service. This attribute lets the client know that
(after a specified time in seconds), no reply has been received by the server while the
service request is still processing.

If not specified, the default is 0 which indicates that the system-wide BLockTIME value
specified in the uBBCONFIG RESOURCES Section is used for the service.

TA_pMCcONV: “{Y | N}~
A boolean value (»y~ or ~x~) specifying whether this remote resource is conversational.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMLOAD: 1 <= num <= 32,767

The service load for this remote resource. Interface loads are used for load balancing
purposes, that is, queues with higher enqueued workloads are less likely to be chosen for
a new request.

TA_DMREMOTENAME: string[1..30]
Specifies the name of this remote resource imported through the remote domain access
points. If this attribute is not specified, the name of the remote resource defaults to the
name specified in TA_DMRESOURCENAME.

TA_DMROUTINGNAME: string{l..15]
The name of a T_pM_RrouTING 0Object to use for routing criteria for this remote resource
“SERVICE” OF “QSPACE”").

Attributes available from remote domain access points of TA_DMTYPE=SNAXIOSITPIOSITPX

TA_DMINBUFTYPE: string[0..256]
typel[:subtype]—Specifies the input buffer type, optionally followed by subtype, for this
remote resource. If this attribute is present, it defines the buffer type [and subtype]
accepted. This attribute should be defined for entries of DMRESOURCETYPE="SERVICE"
when using sNax, or when access is permitted to remote domain access points using
0SITP Or osITPx With the UDT application context.

TA_DMOUTBUFTYPE: string|[0..256]
typel:subtype]—Specifies the output buffer type, optionally followed by subtype, for
this remote resource. If this attribute is present, it defines the buffer type [and subtype]
output by the service. This attribute should be defined for entries of pMTYPE="SERVICE"
when using snax, or when access is permitted to remote domain access points using
osITP Or os1TPx With the UDT application context.

Attributes available from remote domain access points of TA_DMTYPE=0SITPX

TA_DMAUTOPREPARE: string“{Y | N}~
Allows a single tpcall () involved in a global transaction to this remote service to
automatically prepare the call. This optimization reduces the two-phase commit process
to a single step. The remote OSITP domain must support this feature. The default is *n~.

TA_DMINRECTYPE: string[l..78]
type[:subtype]—Specifies the type, optionally followed by subtype, and in some case
the format of the request buffer that this remote service requires. This attribute can be
omitted if the local client sends a buffer that is identical in type and structure to the buffer

File Formats, Data Descriptions, MIBs, and System Processes Reference 115

that this remote service expects. If you do not specify Ta_bpMINRECTYPE, the type of buffer
is unchanged.

TA_DMOUTRECTYPE: string[l..78]
type[: subtype]—Specifies the type, optionally followed by subtype, of the buffer sent
by this remote service. This attribute is used to enforce stronger type checking.

TA_DMTPSUTTYPE: string“{INTEGER | PRINTABLESTRING}”
Specifies the type of encoding to be performed on the Ta_pMrEMTPSUT Value for this
remote service. *INTEGER” and “PRINTABLESTRING” are ASN.1 types. The default is
“PRINTABLESTRING”.

TA_DMREMTPSUT: string[l..64]
Identifies the TP service user title for the remote system providing this remote service.
Some users of OSI TP implementations require this attribute. It is not required for OS
2200 OLTP-TM2200, OpenTl, A Series Open/OLTP, or BEA eLink OSI TP. If the
TA_DMTPSUTTYPE value iS “PRINTABLESTRING”, the maximum length is 60 characters,
which must comply with the ASN.1 type of PRINTABLESTRING. If the TA_DMTPSUTTYPE
value is *INTEGER”, the maximum length must fit into a .one. The value must be defined
prior to defining the remote TpsuT.

Limitations
None.

T_DM_LOCAL Class Definition

Overview
The T_pMm_r.ocar class defines a local domain access point. A local domain access point is used
to control access to local services exported to remote domains and to control access to remote
services imported from remote domains.

Attribute Table

Table 16 DM_MIB(5): T_DM_LOCAL Class Definition Attribute Table
Attribute Type Permissions Values Default
TA_DMACCESSPOINT(r)(k)(*) string rw-r--r-- string[1..30] N/A
TA_DMACCESSPOINTID(r) string rw-r--r-- string[1..30] N/A

116 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 16 DM_MIB(5): T_DM_LOCAL Class Definition Attribute Table (Continued)

DM_MIB(5)

Attribute Type Permissions Values Default
TA_DMSRVGROUP(r) string rw-r--r-- string[1..30] N/A
TA_DMTYPE string rw-r--r-- “{TDOMAIN | SNAX | “TDOMAIN"
OSITP|OSITPX}”
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA DMAUDITLOG string rw-r--r-- string[1..256] Note3 N/A
TA DMBLOCKTIME short rw-r--r-- 0 <= num<= 32,767 TA_BLOCKTIME in
T_DOMAIN Notel
TA_DMTLOGDEV string rw-r--r-- string[l..256] Note3 N/A
TA_DMTLOGNAME string rw-r--r-- string[1..30] “DMTLOG”
TA_DMTLOGSIZE long rTW-r--r-- 1 <= num <= 2048 100
TA_DMMAXRAPTRAN short rw-r--r-- 0 <= num <= 32,767 16
TA DMMAXTRAN short rw-r--r-- 0 <= num<= 32,767 TA_MAXGTT in
T _DOMATIN Not2
TA_DMSECURITY string rw-r--r-- *{NONE | APP_PW | “NONE”

DM_PW | DM_USER_PW |

CLEAR | SAFE |
PRIVATE}”

File Formats, Data Descriptions, MIBs, and System Processes Reference 117

Table 16 DM_MIB(5): T_DM_LOCAL Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default

Attributes available when Ta_DMTYPE=TDOMAIN:

TA_DMCONNECTION_POLICY string rwxr--r-- *{ON_DEMAND | “ON_DEMAND”
ON_STARTUP |
INCOMING_ONLY}”

TA_DMMAXRETRY long ITWXL--T-- 0 <= num <= MAXLONG 0

TA_DMRETRY__INTERVAL long TWXr--r--— 0 <= num <= MAXLONG 60

Attributes available when Ta_DMTYPE=TDOMAIN:

TA_DMCONNPRINCIPALNAME ~ string rwxr--r-- string[0..511]

TA_DMMACHINETYPE string rw-r--r-- string[0..15] w

Attributes available when TA_DMTYPE=SNAX:

TA DMBLOB_SHM_SIZE long rw-r--r-- 1 <= num <= MAXLONG 1000000

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Note I Cyrrent value of TA_ BLOCKTIME in the T_DOMAIN class.
Note 2 Cyrrent value of TA_ MAXGTT in the T_DOMATIN class.
Note 3 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_DMACCESSPOINT: string{l..30]
The name of this T_pm_1r.0cAL entry—a user-specified local domain access point
identifier (logical name) unique within the scope of the T_pmM_r.0cAL and T_DM_REMOTE
access point names in this Domains configuration.

TA_DMACCESSPOINTID: string[l..30]
The identifier of the domain gateway group associated with this local domain access point
for purposes of security when setting up connections to remote domains. This identifier is
unique across all local and remote domain access points.

118 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMSRVGROUP: string{l..30]
The group name of the domain gateway group (the name provided in the croups section
of the Tuxconr1c file) representing this local domain access point. There is a one-to-one
relationship between a local domain access point and a gateway server group.

TA_DMTYPE: “{TDOMAIN | SNAX | OSITP | OSITPX}"”
The type of domain for this local domain access point: “~tpomaIn” for a BEA Tuxedo
domain, *snax~ for an SNA domain, “oszTp~ for an OSI TP 1.3 domain, or *0SITPX”
for an OSI TP 4.0 or later domain. The presence or absence of other attributes depends on
the value of this attribute.

Setting Ta_pMTYPE="0SITPX" is supported only by BEA Tuxedo 8.0 or later software.
TA_STATE!

GET: “{vaLid}~
A GET operation retrieves configuration information for the T_pm_r.ocaL object.
The following state indicates the meaning of a Ta_sTaTE attribute value returned
in response to a GET request. States not listed are not returned.

“WALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected T_pm_r.ocar
object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed may not be set.

“NEW” A new object is created. This state change is allowed
in the state ~INValid~ and results in the state
“WALid”.

unset Modify an existing object. This combination is not

allowed inthe “INvValid~” state. A successful return
leaves the object state unchanged.

“INValid” The object is deleted. This state change is allowed in
the state *vALid” and results in the state
“INValid”.

TA_DMAUDITLOG:string[1..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
The name of the audit log file for this local domain access point.

File Formats, Data Descriptions, MIBs, and System Processes Reference 119

120

TA_DMBLOCKTIME: 0 <= num <= 32,767

Specifies the maximum wait time allowed for a blocking call for this local domain access
point. The value is a multiplier of the scanuntT parameters specified in the T_bomMaIN
object. The value scaNUNIT * TA_BLOCKTIME Must be greater than or equal to
scanuNIT and less than 32,768 seconds. If this attribute is not specified, the default is set
to the value of the Ta_BrockTIME attribute specified for the T_poma1n object. A blocking
timeout condition implies that the affected service request has failed.

Be aware that interdomain transactions generate blocking timeout conditions when
transaction duration exceeds the value of the Ta_pMBLOCKTIME attribute. That is, for an
interdomain transaction, if the value of the Ta_bpmMBLOCKTIME attribute is less than (a) the
value of the Ta_TraNnTIME attribute specified for the T_servIcE object or (b) the timeout
value passed in the tpbegin () call to start the transaction, the timeout for the transaction
is reduced to the Ta_pMBLOCKTIME value. In contrast, for intradomain transactions (that
is, transactions handled within a single BEA Tuxedo domain), the value of the
TA_BLOCKTIME attribute specified for the T_pomaIn object has no effect on the timeout
value of an intradomain transaction.

TA_DMTLOGDEV: string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)

The device (raw slice) or file containing the Domains transaction log (Tr.oc) for this local
domain access point. The Trog is stored as a BEA Tuxedo System VTOC table on the
device. For reliability, the use of a device (raw slice) is recommended.

If this attribute is not specified, the domain gateway group associated with this local
domain access point is not allowed to process requests in transaction mode. Multiple local
domain access points for the same machine can share the same BEA Tuxedo filesystem,
but each local domain access point must have its own log (a table in the Ta_DMTLOGDEV)
named as specified by the Ta_pmrr.ocNaME keyword.

TA_DMTLOGNAME: string[1..30]

The Tr.oG name for this local domain access point. If more than one Tr.0G exists on the
same device, each TLoGc must have a unique name.

TA_DMTLOGSIZE. 1 <= num <= 2048

The size in pages of the Tr.og for this local domain access point. This size is constrained
by the amount of space available on the device identified in Ta_DMTLOGDEV.

TA_DMMAXRAPTRAN: 0 <= num <= 32,767

The maximum number of remote domain access points that can be involved in a single
transaction for this local domain access point.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMMAXTRAN: 0 <= num <= 32,767
The maximum number of simultaneous transactions allowed for this local domain access
point. This number must be greater than or equal to the T_poma1N:TA_MAXGTT attribute
value.

TA_DMSECURITY: “{NONE | APP_PW | DM_PW | DM_USER_PW }"
The type of security enabled for the domain gateway associated with this local domain
access point. This attribute must be set to one of the following values:

“NONE "
No security is enabled.

“APP_PW”
Valid only when Ta_puTyPE="TDOMAIN". Application password-based security is
enabled.

“DM_PW”

Valid only when TA_DMTYPE="TDOMAIN” Of *0SITPX”. Domain password-based
security is enabled.

“DM_USER_PW”
Valid only when Ta_pmTyPE="sNax~. Translation of principal names is enabled.

Attributes available when TA_DMTYPE=TDOMAIN

TA_DMCONNECTION_POLICY: “{ON_DEMAND | ON_STARTUP | INCOMING_ONLY}”
Specifies the conditions under which the domain gateway associated with this local
domain access points tries to establish connections to remote domains. Supported values
aré “ON_DEMAND”, “ON_STARTUP”, O *INCOMING_ONLY”".

“ON_DEMAND”
Means that a connection is attempted only when requested by either a client
request to a remote service or a dmadmin (1) connect command. The default
setting for TA_DMCONNECTION_POLICY attribute is oN_peMaND”. The
»oN_DEMAND” policy provides the equivalent behavior to previous releases, in
which the Ta_pMconNECTTON_POLICY attribute was not explicitly available.
Connection retry processing is not allowed with this policy.

“ON_STARTUP”
Means that a domain gateway attempts to establish a connection with its remote
domains at gateway server initialization time. Remote services for a particular
remote domain (that is, services advertised by the domain gateway) are advertised
only if a connection is successfully established to the remote domain. Therefore, if
there is no active connection to a remote domain, the remote services are
suspended. By default, this connection policy retries failed connections every 60

File Formats, Data Descriptions, MIBs, and System Processes Reference 121

122

seconds; however, you can specify a different value for this interval using the
TA_ DMRETRY_INTERVAL attribute. Also, see the Ta_DMMAXRETRY attribute.

“INCOMING_ONLY"”
Means that a domain gateway does not attempt an initial connection to remote
domains upon startup and that remote services are initially suspended. The domain
gateway is available for incoming connections from remote domains, and remote
services are advertised when the domain gateway receives an incoming connection
or an administrative connection (using the dmadmin (1) connect command) is
made. Connection retry processing is not allowed when the connection policy is
“INCOMING_ONLY".

TA_DMMAXRETRY : 0 <= num <= MAXLONG

The number of times that the domain gateway associated with this local domain access
point tries to establish connections to remote domains. The minimum value is 0 and the
maximum is Max1T.oNG (2147483647). maxL.oNG indicates that retry processing is repeated
indefinitely, or until a connection is established. For a connection policy of
“ON_sTARTUP”, the default setting for Ta_DMMAXRETRY iS MAXT.ONG. Setting this attribute
to 0 turns off the automatic retry mechanism. For other connection policies, automatic
retries are disabled.

The Ta_DMMAXRETRY attribute is valid only when the connection policy is
“ON_STARTUP”.

TA_DMRETRY_INTERVAL: 0 <= num <= MAXLONG

The number of seconds that the domain gateway associated with this local domain access
point waits between automatic attempts to establish a connection to remote domains. The
minimum value is 0 and the maximum value is MAXT.0NG (2147483647). The default is 60.
If TA_DMMAXRETRY iS Set to 0, setting TA_DMRETRY_INTERVAL iS not allowed.

This attribute is valid only when the Ta_pmcoNNECTTON_POLICY attribute is set to
“ON_STARTUP”. For other connection policies, automatic retries are disabled.

Attributes available when TA_DMTYPE=TDOMAIN

TA_DMCONNPRINCIPALNAME: string[0..511]

The connection principal name identifier, which is the principal name used for verifying
the identity of the domain gateway associated with this local domain access point when
establishing a connection to a remote domain. This attribute applies only to domain
gateways of type TpomMaIN running BEA Tuxedo 7.1 or later software.

The Ta_DMCONNPRINCIPALNAME attribute may contain a maximum of 511 characters
(excluding the terminating NULL character). If this attribute is not specified, the

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

connection principal name defaults to the Ta_pmaccesspoINTID string for this local
domain access point.

For default authentication plug-ins, if a value is assigned to the
TA_DMCONNPRINCIPALNAME attribute for this local domain access point, it must be the
same as the value assigned to the Ta_pMaAcCcESSPOINTID attribute for this local domain
access point. If these values do not match, the local domain gateway process will not boot,
and the system will generate the following userlog (3c) message: ERROR: Unable to
acquire credentials.

TA_DMMACHINETYPE: string]0..15]
Used for grouping domains so that encoding/decoding of messages can be bypassed
between the machine associated with this local domain access point and the machines
associated with the remote domain access points. This attribute applies only to domain
gateways of type TDOMAIN.

If TA_DMMACHINETYPE iS not specified, the default is to turn encoding/decoding on. If the
value set for the Ta_pMMACHINETYPE attribute is the same in both the T_pm_r.ocar and
T_DM_REMOTE classes for a connection, data encoding/decoding is bypassed. The value set
for Ta_DMMACHINETYPE can be any string value up to 15 characters in length. It is used
only for comparison.

Attributes available when TA_DMTYPE=SNAX

TA_DMBLOB_SHM_SIZE: 1 <= num <= MAXLONG
Specifies the shared memory allocated to storing binary large object log information
specific to this snax local domain access point. This attribute applies only to local domain
access points and domain gateways of type sNax.

Limitations
When the Domain gateway administration (cwapm) server supporting the local domain access
point specified in the Ta_pMLACCESSPOINT attribute is active, you cannot seT the TA_STATE to
INValid or update the following attributes: TA_DMACCESSPOINTID, TA_DMSRVGROUP,
TA_DMTYPE, TA_DMTLOGDEV, TA_DMTLOGNAME, TA_DMTLOGSIZE, TA_DMMAXRAPTRAN,
TA_DMMAXTRAN, Of TA_DMMACHINETYPE.

File Formats, Data Descriptions, MIBs, and System Processes Reference 123

T_DM_OSITP Class Definition

Overview

The T_pm_os1Tp class defines the OSI TP 1.3 protocol related configuration information for a
specific local or remote domain access point.

Attribute Table

Table 17 DM_MIB(5): T_DM_OSITP Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMACCESSPOINT(r)(K)(*) string rw-r--r-- string[1.30] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_DMAPT(r) string rw-r--r-- string[l..78] N/A
TA_DMAEQ(r) string rw-r--r-- string[l..78] N/A
TA_DMNWDEVICE string rw-r--r-- string[l..78] N/A
TA_DMACN string rw-r--r-- “{XATMI | UDT}” “XATMI”
TA_DMAPID short rw-r--r-- 0 <= num<= 32767 N/A
TA_DMAEID short rw-r--r-- 0 <= num <= 32767 N/A
TA_DMURCH string rw-r--r-- stringl0..30] N/A
TA_DMMAXLISTENINGEP short rw-r--r-- 1 <= num <= 32767 3
TA_DMXATMIENCODING string rw-r--r-- “{CAE | PRELIMINARY | “CAE”

OLTP_TM2200}”

(r) - required when a new object is created
(k) - a key field for object retrieval
(*) - arequired key field for all SET operations on the class

124 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Semantics

TA_DMACCESSPOINT: string[l..30]
The local or remote domain access point name for which this entry provides the
protocol-specific configuration information. This field matches the domain access point
name given in the T_bM_LOCAL Or T_DM_REMOTE entry that defines the protocol
independent configuration of the domain access point.

TA_STATE!

GET: “{vAaLid}”
A GET operation retrieves configuration information for the T_pm_os1TP 0object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected T_pm_ostTP
object. The following states indicate the meaning of Ta_STATE in a SET request.
States not listed may not be set.

“NEW” A new object is created. This state change is allowed
in the state “INvalid” and results in the state
“WALid”.

unset Modify an existing object. This combination is not

allowed inthe “INvValid~” state. A successful return
leaves the object state unchanged.

“INValid” The object is deleted. This state change is allowed in
the state “vALid~ and results in the state
“INValid”.

TA_DMAPT: string[l..78]

The application process title of this local or remote domain access point in object identifier
form.

TA_DMAEQ: string[l..78]
The application entity qualifier of this local or remote domain access point in integer form.

File Formats, Data Descriptions, MIBs, and System Processes Reference 125

TA_DMNWDEVICE: string{l..78]
Specifies the network device to be used for this local domain access point. This attribute
is relevant only when defining a local domain access point; it is ignored for a remote
domain access point.

TA_DMACN: “{XATMI | UDT}"”
The application context name to use with this local or remote domain access point. When
establishing a dialogue to a remote domain access point, the application context name
from the remote domain access point is used, if it is present. If it is absent, the application
context name from the local domain access point is used. The value “xaTm1~ selects the
use of the X/Open defined XATMI Application Service Element (ASE) and encoding.
The value *upt~ selects the use of the ISO/IEC 10026-5 User Data Transfer encoding.

TA_DMAPID: 0 <= num <= 32767
This optional attribute defines the application process invocation identifier to be used on
this local or remote domain access point.

TA_DMAEID: 0 <= num <= 32767
This optional attribute defines the application entity invocation identifier to be used on
this local or remote domain access point.

TA_DMURCH: string[0..30]
Specifies the user portion of the OSI TP recovery context handle for this local domain
access point. It may be required by an OSI TP provider in order to perform recovery of
distributed transactions after a communications line or system failure.

This attribute is relevant only when defining a local domain access point; it is ignored for
a remote domain access point.

TA_DMMAXLISTENINGEP: 0 <= num <= 32767
Specifies the number of endpoints awaiting incoming OSI TP dialogues for this local
domain access point. This attribute is relevant only when defining a local domain access
point; it is ignored for a remote domain access point.

TA_DMXATMIENCODING: “{CAE | PRELIMINARY | OLTP_TM2200}"
Specifies the version of the XATMI protocol used to communicate with a remote system.
This attribute is valid only when describing a remote domain access point. Valid values
are:

vcar~ (default)
“PRELIMINARY” (used with Unisys MCP OLTP systems)

vorLTP_TM2200” (used with Unisys TM 2200 systems)

126 File Formats, Data Descriptions, MIBs, and System Processes Reference

Limitations

DM_MIB(5)

Deleting or updating an instance of this class is not permitted in the following scenarios:

e The instance of the class corresponds to a local domain access point and the domain
gateway group associated with the local domain access point is active.

e The instance of the class corresponds to a remote domain access point and the domain
gateway group associated with the remote domain access point is active.

On seT operations that add or update an instance of this class, the specific local or remote domain
access point specified in the Ta_pmMacceEsspoInT attribute must exist in the T_pmM_r.ocar class or
the T_pm_rEMOTE class. If the domain access point does not exist, a “not defined” error is

returned for the Ta_pMaccESsPOINT attribute, and the operation fails.

T _DM_OSITPX Class Definition

Overview

The T_pm_os1Tpx class defines the OSI TP 4.0 or later protocol related configuration
information for a specific local or remote domain access point. The T_pm_osITpx class is
supported only by BEA Tuxedo 8.0 or later software.

Attribute Table

Table 18 DM_MIB(5): T_DM_OSITPX Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMACCESSPOINT(N(K)(*) string rw-r--r-- string[1..30] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A

SET: “{NEW | INV}” N/A
TA_DMAET(r) string rw-r--r-- string[l..78] N/A
TA_DMNWADDR(r) string rw-r--r-- string[l..631] N/A
TA_DMTSEL string rw-r--r-- string[l..66] N/A
TA_DMDNSRESOLUTION string rw-r--r-- “{STARTUP | RUNTIME}” “STARTUP”
TA_DMPSEL short rw-r--r-- string[l1..10] w

File Formats, Data Descriptions, MIBs, and System Processes Reference 127

Table 18 DM_MIB(5): T_DM_0OSITPX Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_DMSSEL short TW-r—--r-- string[l..34] w
TA_DMTAILORPATH short rw-r--r-- string[l..78] w
TA_DMXATMIENCODING string rw-r--r-- “{CAE | PRELIMINARY | “CAE”

OLTP_TM2200 |

NATIVE A_SERIES}”
TA_DMEXTENSIONS short rw-r--r-- string[l.78] wn
TA_DMOPTIONS short rwW-r--r-- “{SECURITY_ SUPPORTED}” w

(r)—required when a new object is created

(k)—a key field for object retrieval

(*)—a required key field for all SET operations on the class

128 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Semantics

TA_DMACCESSPOINT: string[l..30]
The local or remote domain access point name for which this entry provides the
protocol-specific configuration information. This field matches the domain access point
name given in the T_bM_LOCAL Or T_DM_REMOTE entry that defines the
protocol-independent configuration of the domain access point.

TA_STATE!

GET: “{vAaLid}”
A GET operation retrieves configuration information for the T_pm_os1Tpx object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected T_pm_ostTPx
object. The following states indicate the meaning of Ta_STATE in a SET request.
States not listed may not be set.

“NEW” A new T_DM_OSITPX object is created. This state
change is allowed in the state “INvValid” and
results in the state “vALid”.

unset Modify an existing T_DM_0SITPX object. This
combination is not allowed in the “INvalid” state.
A successful return leaves the object state
unchanged.

“INvValid” The T_DM_0SITPX object is deleted. This state
change is allowed in the state *vaLid” and results
in the state “INvalid”.

TA_DMAET: string[l..78]
The application entity title of this local or remote domain access point. This address must
be unique among all hosts communicating in the OSI TP network; it matches the local AE
Title on the remote (OLTP) node.

File Formats, Data Descriptions, MIBs, and System Processes Reference 129

The value of this attribute consists of the application process title as an object identifier
form followed by the application entity qualifier as an integer, using the following form:
“{object identifier},{integer qualifier}”. The braces are part of the syntax

and must be included within the quotes.

TA_DMNWADDR: string[l..631]
The semicolon-separated list of network addresses to use for this local or remote domain
access point. A network address may be either an IP address, if using TCP/IP networks,
or a DNS name. The network address takes one of the following forms:

“#. #.#. #:port_number” |P Address
v/ /hostname: port_number” DNS Name
“//hostname: port_number; //hostname:port_number; ..."

If the port_number component is absent, the default port 102 is used.

For a local domain access point, the value of this attribute contains a semicolon-separated
list of up to eight addresses on which to listen for connection requests. For a remote
domain access point, the value of this attribute contains the preferred address for the
destination domain followed by up to seven alternative addresses (in preference order) to
be tried if the first is unavailable.

TA_DMTSEL: string[l..66]
The Transport Service Access Point address to be used for this local or remote domain
access point. The value may be one to 32 ASCII non-control characters (those represented
by the hexadecimal numbers 20 to 7E), one to 32 hexadecimal octets preceded by 0x, or
“NONE”—the NULL string.

TA_DMDNRESOLUTION: “{STARTUP | RUNTIME}"
Specifies when the DNS name for the network address defined by the Ta_DvNWADDR
attribute should be resolved for the domain gateway (cwoszTp) associated with this local
domain access point. If this attribute is set (or defaulted) to sTarTuP~, the resolution of
hostname to an actual IP address takes place at gateway startup. If this attribute is set to
“RUNTIME”, the resolution of hostname to an actual IP address takes place at gateway run
time.

This attribute is relevant only when defining a local domain access point; it is ignored for
a remote domain access point. On et calls for remote domain access point instances, this
attribute is set to the nuLL string.

130 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMPSEL: string[l..10]
The Presentation Service Access Point address to be used for this local or remote domain
access point. Values may be one to four ASCII non-control characters (those represented
by the hexadecimal numbers 20 to 7E), one to four hexadecimal octets preceded by o0x, or
*NoNE” (default).

TA_DMSSEL: string[l..34]
The Session Service Access Point address to be used for this local or remote domain
access point. Values may be one to 16 ASCII non-control characters (those represented
by the hexadecimal numbers 20 to 7E), one to 16 hexadecimal octets preceded by 0x, or
“NoNE” (default).

TA_DMTATILORPATH: string[l..78]
Indicates the full pathname of the optional OSI TP tailor file used for tuning the OSI TP
stack for this local domain access point. Double quotes are required. If no value is
supplied or the value is set to the NULL string, the OSI TP stack will run using defaults for
tuning parameters.

This attribute is relevant only when defining a local domain access point; it is ignored for
a remote domain access point.

TA_DMXATMIENCODING: “{CAE | PRELIMINARY | OLTP_TM2200 | NATIVE A_SERIES}”
Specifies the version of the xatm1 protocol used to communicate with a remote system.
This attribute is valid only when describing a remote domain access point. Valid values
are:

vcar” (default)
“PRELIMINARY” (used with Unisys MCP OLTP systems)
oL TP_TM2200” (used with Unisys TM 2200 systems)

“NATIVE_A_SERTES” (used with Unisys MCP OLTP systems that support
this encoding type)

TA_DMEXTENSIONS: string][l..78]
Controls operations for the remote domain associated with this remote domain access
point. Valid values are separated by a semicolon (;) and include “oNLINE=N/Y” (Y is the
default) and “RdomassocRetry=nn", where nn is the number of seconds to retry
connecting to the online remote domain. This attribute defaults to the RdomassocRetry
tailor parameter if present, or 60 seconds if RdomassocRetry is not present and nn is not
specified.

File Formats, Data Descriptions, MIBs, and System Processes Reference 131

TA_DMOPTIONS: “ {SECURITY_SUPPORTED} "

Indicates optional parameters for this remote domain access point. The

“SECURITY_SUPPORTED” Value indicates that the remote domain associated with this
remote domain access point supports the OSITP security extension. This attribute
provides backward compatibility; it is valid only when describing a remote domain access

point.

Limitations

Deleting or updating an instance of this class is not permitted in the following scenarios:

e The instance of the class corresponds to a local domain access point and the domain

gateway group associated with the local domain access point is active.

e The instance of the class corresponds to a remote domain access point and the domain

gateway group associated with the remote domain access point is active.

On seT operations that add or update an instance of this class, the specific local or remote domain
access point specified in the Ta_pMACCESSPOINT attribute must exist in the T_pm_r.ocar class or
the T_pm_RrREMOTE class. If the domain access point does not exist, a “not defined” error is

returned for the Ta_pMaccESSPOINT attribute, and the operation fails.

T_DM_PASSWORD Class Definition

Overview

The T_pM_prassworD class represents configuration information for interdomain authentication

through access points of type TpoMAIN.

Attribute Table

Table 19 DM_MIB(5): T_DM_PASSWORD Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMLACCESSPOINT(r)(K)(*) string rwW-r--r-- string[1..30] N/A
TA_DMRACCESSPOINT(r)(K)(*) string rw-r--r-- string[1..30] N/A
TA_DMLPWD(r) string —W-—————— string[1..30] N/A
TA_DMRPWD(r) string -W——————- string[l1..30] N/A

132 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 19 DM_MIB(5): T_DM_PASSWORD Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_STATE(r) string rw-r--r-- GET: “VAL" N/A
SET: “{NEW | INV | REC}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMLACCESSPOINT: string{l..30]
The name of the local domain access point to which the password applies.

TA_DMRACCESSPOINT: string[l..30]
The name of the remote domain access point to which the password applies.

TA_DMLPWD: string[l1..30]
The local password to be used to authenticate connections between the local domain
access point identified by Ta_pmraccesspoINT and the remote domain access point
identified by TA_DMRACCESSPOINT.

TA_DMRPWD: string[l..30]
The remote password to be used to authenticate connections between the local domain
access point identified by Ta_pmr.accesspoInT and the remote domain access point
identified by Ta_DMRACCESSPOINT.

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the selected
T_pM_PasswoRD object. The following state indicates the meaning of a Ta_staTe
attribute value returned in response to a GeT request. States not listed are not
returned.

“WALid” The object exists.

File Formats, Data Descriptions, MIBs, and System Processes Reference 133

SET: “{NEW | INValid | RECrypt}”
A seT operation updates configuration information for the selected
T_DM_PASSWORD object. The following states indicate the meaning of Ta_sTATE
in a sET request. States not listed may not be set.

“NEW” A new object is created. A state change is allowed in
the state *INvValid” and results in the state
“WALid".

unset Modify an existing object. This combination is not

allowed in the state “INValid”.

“INValid” The object is deleted. A state change is allowed in the
state “VALid” and results in the state “INValid”.

“RECrypt” Re-encrypt all passwords using a new encryption
key. Applies to all password instances in the
T_DM_PASSWORD classes.

Limitations

Passwords cannot be re-encrypted (SET Ta_STATE t0 “RECrypt”) when any domain gateway
administration server (cwapw) is running.

T_DM_PRINCIPAL_MAP Class Definition

Overview

The T_pM_pPRINCIPAL_MAP class represents configuration information for mapping principal
names to and from external principal names across access points of type snax.

Attribute Table

Tabhle 20 DM_MIB(5): T_DM_PRINCIPAL_MAP Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_DMLACCESSPOINT(r)(K)(*) string rw-r--r-- string[1..30] N/A
TA_DMRACCESSPOINT(r)(K)(*) string rw-r--r-- string[l1.30] N/A
TA_DMPRINNAME(r)(K)(*) string rw------- string[1..30] N/A

134 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 20 DM_MIB(5): T_DM_PRINCIPAL_MAP Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_DMRPRINNAME(r)(K)(*) string rw------- string[1..30] N/A
TA_DMDIRECT ION(K) string rw-r----- *{IN|OUT | BOTH}" “BOTH"”
TA_STATE(r) string rw-r--r-- GET:“VAL" N/A
SET:“{NEW | INV}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMLACCESSPOINT: string{l..30]
The local domain access point to which the principal mapping applies.

TA_DMRACCESSPOINT: string[l..30]
The remote domain access point to which the principal mapping applies.

TA_DMPRINNAME: string[l..30]
The local principal name in the principal mapping.

TA_DMRPRINNAME. string[l..30]
The remote principal name in the principal mapping.

TA_DMDIRECTION: “{IN | OUT | BOTH}"
The direction to which the principal mapping applies.

SN
Is INcoming to this BEA Tuxedo domain through the given remote domain access
point and local domain access point.

“OUT*
Is OUTgoing from this BEA Tuxedo domain through the given local domain
access point and remote domain access point.

“BOTH”
Applies to both INcoming and OUTgoing.

File Formats, Data Descriptions, MIBs, and System Processes Reference 135

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the selected
T_DM_PRINCIPAL entry. The following state indicates the meaning of a Ta_sTATE
attribute value returned in response to a GeT request. States not listed are not
returned.

“WALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected
T_DM_PRINCIPAL entry. The following states indicate the meaning of Ta_sTaTE
in a seT request. States not listed may not be set.

“NEW” A new object is created. A state change is allowed in
the state “INvalid~” and results in the state
“WALid”".

unset Modify an existing object. This combination is not

allowed in the state “INValid”.

“INValid” The object is deleted. A state change is allowed in the
state “vALid” and results in the state “INValid”.

Limitations

In BEA Tuxedo release 7.1 or later, the T_pm_prINCIPAL_MAP class applies only to the snax
domain gateway type.

T_DM_REMOTE Class Definition

Overview

136

The T_pv_rEMOTE class represents remote domain access point configuration information. Local
resources that may be exported through one or more local domain access points are made
accessible to a remote domain through a remote domain access point. Similarly, remote resources
are imported from a remote domain through a remote domain access point.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Table

Table 21 DM_MIB(5): T_DM_REMOTE Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMACCESSPOINT(r)(k)(*) string rw-r--r-- string[1..30] N/A
TA_DMACCESSPOINTID(r) string rw-r--r-- string[1..30] N/A
TA_DMTYPE(K) string rw-r--r-- “{TDOMAIN | SNAX | “TDOMAIN”
OSITP|OSITPX}”
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_DMPRIORITY_TYPE string rw-r--r-- “{LOCAL_RELATIVE | “LOCAL_
LOCAL_ABSOLUTE | RELATIVE”
GLOBAL}”
TA_DMINPRIORITY string rw-r—--r-- -99 <= num <= 100 0or 50
Attributes available when TA_DMTYPE=TDOMAIN | OSITPX:
TA_DMACLPOLICY string rwxr--r-- “{LOCAL | GLOBAL}" “LOCAL”"
TA_DMLOCALPRINCIPALNAME string TWXr--r-- string[0..511] w
Attributes available when TA DMTYPE=TDOMAIN:
TA_DMCONNPRINCIPALNAME string TWXr--r-- string[0..511] w
TA_DMCREDENTIALPOLICY string rwxr--r-- “{LOCAL | GLOBAL}" “LOCAL”"
TA_DMMACHINETYPE string rw-r--r-- string[0..15] o
Attributes available when TA_DMTYPE=SNAX | OSITPX:
TA_DMCODEPAGE string rw-r--r-- string[1..20] N/A

(r)—required when a new object is created

(k)—a key field for object retrieval

(*)—a required key field for all SET operations on the class

File Formats, Data Descriptions, MIBs, and System Processes Reference 137

Attribute Semantics

TA_DMACCESSPOINT: string(l..30]
The name of this T_pM_REMOTE entry—a user-specified remote domain access point
identifier (logical name) unique within the scope of the T_pM_r.ocaL and T_DM_REMOTE
access point names in this Domains configuration.

TA_DMACCESSPOINTID: string{l..30]
The identifier for the remote domain associated with this remote domain access point for
purposes of security when setting up a connection to the remote domain. This identifier is
unique across all local and remote domain access points.

TA_DMTYPE: “{TDOMAIN | SNAX | OSITP | OSITPX}”
The type of domain for this remote domain access point: *Tpomain~ for a BEA Tuxedo
domain, »snax~ for an SNA domain, ~oszTp~ for an OSI TP 1.3 domain, or *0SITPX”
foran OSI TP 4.0 or later domain. The presence or absence of other attributes depends on
the value of this attribute.

Setting TAa_pMTYPE="0SITPX” IS supported only by BEA Tuxedo 8.0 or later software.
TA_STATE:

GET: “{VALid}”
A GET operation retrieves configuration information for the T_pm_rREMOTE object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“WALid” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected T_pv_rEMOTE
object. The following states indicate the meaning of Ta_STATE in a SET request.
States not listed may not be set.

“NEW” A new object is created.

unset Modify an existing object. This combination is not
allowed in the “INvValid~ state. A successful return
leaves the object state unchanged.

“INValid” The object is deleted.

138 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMPRIORITY_TYPE = “{LOCAL_RELATIVE | LOCAL_ABSOLUTE | GLOBAL}”

TA_DMINPRIORITY = -99 <= num<= 100
Together, the TA_DMPRIORITY_TYPE and TA_DMINPRIORITY attributes specify the
message priority handling for this remote domain access point. These attributes are
supported by BEA Tuxedo 8.0 or later software.

For the Ta_ DMPRIORITY_ TYPE attribute, the *Locar_rELATIVE” and
“L,OCAL_ABSOLUTE” Values are valid for all remote domain types; the *cLosar~ value is
valid only for remote domains of type Tooma1n. If not set, the TA_DMPRIORITY_TYPE
attribute defaults to “LoCAL_RELATIVE”.

TA_DMPRIORITY_TYPE="LOCAL_RELATIVE” means that the priority associated with a
request from this remote domain access point (for example, via the tpsprio call) is not
used by the local domain. Instead, the priority of incoming requests from this remote
domain access point is set relative to the Ta_pminpPrIORITY Value; this value may be
greater than or equal to -99 (lowest priority) and less than or equal to 99 (highest priority),
with 0 being the default. The setting of Ta_pMINPRIORITY increments or decrements a
service’s default priority as follows: up to a maximum of 100 or down to a minimum of
1, depending on its sign, where 100 is the highest priority. For requests to the remote
domain access point, the priority associated with a request will accompany the request to
the remote domain access point.

TA_DMPRIORITY_TYPE=“LOCAL_ABSOLUTE” means that the priority associated with a
request from this remote domain access point is not used by the local domain. Instead, the
priority of incoming requests from this remote domain access point is set relative to the
TA_DMINPRIORITY Value; this value may be greater than or equal to 1 (lowest priority)
and less than or equal to 100 (highest priority), with 50 being the default. The setting of
TA_DMINPRIORITY increments or decrements a service’s default priority as follows: up to
a maximum of 100 or down to a minimum of 1, depending on its sign, where 100 is the
highest priority. For requests to the remote domain access point, the priority associated
with a request will accompany the request to the remote domain access point.

TA_DMPRIORITY_TYPE="GLOBAL” means that the priority associated with a request from
this remote domain access point is adjusted by the local domain. The priority of incoming
requests from this remote domain access point is adjusted relative to the
TA_DMINPRIORITY Value; this value may be greater than or equal to -99 (lowest priority)
and less than or equal to 99 (highest priority), with 0 being the default. If
TA_DMINPRIORITY IS Set, the priority accompanying the incoming request is added to the
TA_DMINPRIORITY Value to create an absolute priority setting for the incoming request.
If TA_DMINPRIORITY iS Not set or is set to O, the priority accompanying the incoming
request is used as is by the local domain. For requests to the remote domain access point,

File Formats, Data Descriptions, MIBs, and System Processes Reference 139

140

the priority associated with a request will accompany the request to the remote domain
access point.

Attributes available when TA_DMTYPE=TDOMAINIOSITPX

TA_DMACLPOLICY: {LOCAL | GLOBAL}

The access control list (ACL) policy for this remote domain access point. This attribute
applies only to domain gateways of type TpoMaIN running BEA Tuxedo 7.1 or later
software and domain gateways of type os1Tpx running BEA Tuxedo 8.0 or later software.

rocaL means that the local domain replaces the credential (identity) of any service request
received from the remote domain with the principal name specified in the
TA_DMLOCALPRINCIPALNAME attribute for this remote domain access point. GLOBAL
means that the local domain does not replace the credential received with a remote service
request; if no credential is received with a remote service request, the local domain
forwards the service request to the local service as is (which usually fails). If this attribute
is not specified, the default is L.ocar.

Note that the Ta_pmacr.poLIcy attribute controls whether or not the local domain replaces
the credential of a service request received from a remote domain with the principal name
specified in the TA_DMLOCALPRINCIPALNAME attribute. The TA_DMCREDENTIALPOLICY

attribute is related to this attribute and controls whether or not the local domain removes
the credential from a local service request before sending the request to a remote domain.

TA_DMLOCALPRINCIPALNAME: string[0..511]

The local principal name identifier (credential) assigned by the local domain to service
requests received from the remote domain when the Ta_pMacLpoLICY attribute for this
remote domain access point is set (or defaulted) to r.ocar. This attribute applies only to
domain gateways of type Tpoma1n running BEA Tuxedo 7.1 or later software and domain
gateways of type os1Tpx running BEA Tuxedo 8.0 or later software.

The TA_DMLOCALPRINCIPALNAME attribute may contain a maximum of 511 characters
(excluding the terminating NULL character). If this attribute is not specified, the local
principal name defaults to the Ta_pmaccesspoINTID string for this remote domain access
point.

Attributes available when TA_DMTYPE=TDOMAIN

TA_DMCONNPRINCIPALNAME: string[0..511]

The connection principal name identifier, which is the principal name used for verifying
the identity of this remote domain access point when establishing a connection to the local
domain access point. This attribute applies only to domain gateways of type TpoMaIN
running BEA Tuxedo 7.1 or later software.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

The TA_DMCONNPRINCIPALNAME attribute may contain a maximum of 511 characters
(excluding the terminating NULL character). If this attribute is not specified, the
connection principal name defaults to the Ta_pMaccEsspoINTID string for this remote
domain access point.

For default authentication plug-ins, if a value is assigned to the
TA_DMCONNPRINCIPALNAME attribute for this remote domain access point, it must be the
same as the value assigned to the Ta_pMaccESSPOINTID attribute for this remote domain
access point. If these values do not match, any attempt to set up a connection between the
local domain gateway and the remote domain gateway will fail, and the system will
generate the following userlog (3c) message: ERROR: Unable to initialize
administration key for domain domain_name.

TA_DMCREDENTIALPOLICY: {LOCAL | GLOBAL}
The credential policy for this remote domain access point. This attribute applies only to
domain gateways of type TpoMa1n running BEA Tuxedo 8.0 or later software.

LocAL means that the local domain removes the credential (identity) from a local service
request destined for this remote domain access point. c.oBaL. means that the local domain
does not remove the credential from a local service request destined for this remote
domain access point. If this attribute is not specified, the default is LocaL.

Note that the TA_DMCREDENTIALPOLICY attribute controls whether or not the local
domain removes the credential from a local service request before sending the request to
a remote domain. The Ta_pmacLpoLICy attribute controls whether or not the local
domain replaces the credential of a service request received from a remote domain with
the principal name specified in the TA_DMLOCALPRINCIPALNAME attribute.

TA_DMMACHINETYPE. string[0..15]
Used for grouping domains so that encoding/decoding of messages can be bypassed
between the machine associated with this remote domain access point and the machine
associated with the local domain access point. If Ta_pMMACHINETYPE is not specified, the
default is to turn encoding/decoding on. If the value set for the Ta_DMMACHINETYPE
attribute is the same in both the T_pm_rocar and T_pM_REMOTE classes for a connection,
data encoding/decoding is bypassed. The value set for Ta_pMMACHINETYPE can be any
string value up to 15 characters in length. It is used only for comparison.

Attributes available when TA_DMTYPE=SNAXIOSITPX

TA_DMCODEPAGE: string[l..20]
The name of the default translation tables to use in translating requests and replies sent
through this remote domain access point.

File Formats, Data Descriptions, MIBs, and System Processes Reference M

Limitations

When any gateway administrative server (cwapm) supporting a local domain access point of the
same domain type as this request is active, you cannot seT the Ta_sTATE to INvalid or update
the following attributes: Ta_DMACCESSPOINTID, TA_DMTYPE, TA_DMMACHINETYPE, OF
TA_DMCODEPAGE.

You cannot delete an instance of the T_pm_REMOTE class if it is referenced by any instances of
the following classes: T_pM_aAcCL, T_DM_IMPORT, T_DM_OSITP, T_DM_OSITPX, T_DM_ROUTING,
Of T_DM_TDOMAIN.

T_DM_RESOURCES Class Definition

Overview

The T_pM_RESOURCES class represents Domains-specific configuration information.

Attribute Table

Table 22 DM_MIB(5): T_DM_RESOURCES Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_DMVERSION(r) string rw-r--r-- string[1..30] N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMVERSION: string[l..30]
A user-supplied identifier for the Domains configuration.

Limitations
None.

142 File Formats, Data Descriptions, MIBs, and System Processes Reference

T _DM_ROUTING Class Definition

Overview

DM_MIB(5)

The T_bM_ROUTING class represents routing criteria information for routing requests to a domain

through a remote domain access point.

Attribute Table

Table 23 DM_MIB(5): T_DM_ROUTING Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMROUTINGNAME(r)(k)(*) string rw-r--r-- string[l..15] N/A
TA_DMBUFTYPE(r)(K)(*) string rw-r--r-- string[l..256] N/A
TA_DMFIELD(r) string rw-r--r-- string[l1..30] N/A
TA_DMFIELDTYPE string rw-r--r-- “{CHAR | SHORT | LONG | N/A
FLOAT | DOUBLE |
STRING}”
TA_DMRANGES(r) string rw-r--r-- string[l..4096] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMROUTINGNAME: string(l..15]

The name of the routing criteria table entry—an identifier unique within the scope of
T_DM_ROUTING entries in the Domains configuration.

TA_DMBUFTYPE: string[l..256]

" t:ypel[:subtypel[,subtype2 Ca]][;typeZ[ZsubtypeB[,subtypeél ..]] e]”

List of types and subtypes of data buffers for which this routing entry is valid. A maximum
of 32 type/subtype combinations is allowed. The types are restricted to the following: Fmr.,
FML32, XML, VIEW, VIEW32, X_C_TYPE, Or x_comMoN. No subtype can be specified for
type FML, FML32, OF XML; subtypes are required for types view, vIEW32, X_C_TYPE, and

File Formats, Data Descriptions, MIBs, and System Processes Reference 143

144

x_common (“*” is not allowed). Note that subtype hames should not contain semicolon,
colon, comma, or asterisk characters. Duplicate type/subtype pairs cannot be specified for
the same routing criterion name; more than one routing entry can have the same criterion
name as long as the type/subtype pairs are unique. If multiple buffer types are specified
for a single routing entry, the data types of the routing field for each buffer type must be
the same.

TA_DMFIELD: string[l1..30]

The name of the field to which routing is applied.

For v (and FM1.32) buffer types, Ta_pMr1ELD contains an FML field name that must be
defined in an FML field table. When routing is performed, the field name is retrieved
using the FLDTBLDIR and FIELDTBLS (FLDTBLDIR32 and FIELDTBLS32 for FML32)
environment variables.

For view (and view32) buffer types, Ta_pMrIELD contains a VIEW field name that must
be defined inan FML VIEW table. When routing is performed, the field name is retrieved
using the viEwpIr and vIEWFILES (VIEWDIR32 and vIEWFILES32 for VIEW32)
environment variables.

When routing a buffer to its correct remote domain access point, the appropriate table is
used to get the data-dependent routing field value within a buffer.

For an xmr, buffer type, Ta_pmMrIELD contains either a routing element type (or name) or
a routing element attribute name.

The syntax of the Ta_pmrIELD attribute for an xmr buffer type is as follows:

vroot_element[/child_element][/child_element]
[/..]/@attribute name]”

The element is assumed to be an XML document or datagram element type. Indexing is
not supported. Therefore, the BEA Tuxedo system recognizes only the first occurrence of
a given element type when processing an XML buffer for data-dependent routing. This
information is used to get the associated element content for data-dependent routing while
sending a message. The content must be a string encoded in UTF-8.

The attribute is assumed to be an XML document or datagram attribute of the defined
element. This information is used to get the associated attribute value for data-dependent
routing while sending a message. The value must be a string encoded in UTF-8.

The combination of element name and attribute name may contain up to 30 characters.

The type of the routing field can be specified by the Ta_pvrIELDTYPE attribute.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMFIELDTYPE: “{CHAR | SHORT | LONG | FLOAT | DOUBLE | STRING}”
The type of the routing field specified in the Ta_pmrIELD attribute. The type can be cHAR,
SHORT, LONG, FLOAT, DOUBLE, Of STRING; only one type is allowed. This attribute is
required if TA_DMBUFTYPE is xML; it must be absent if TA_DMBUFTYPE iS FML, VIEW,
X_C_TYPE, Of X_COMMON .

TA_DMRANGES: string[l..4096]
The ranges and associated remote domain access points for the Ta_pmrIELD routing field.
The format of the string is a comma-separated, ordered list of range/group name pairs. A
range/group name pair has the following format:

“1 ower[-upper]:raccesspoin t”

lower and upper are signed numeric values or character strings in single quotes. 1ower
must be less than or equal to upper. To embed a single quote in a character string value,
it must be preceded by two backslashes (for example, 'o\\ 'Brien'). The value MIN can
be used to indicate the minimum value for the data type of the associated field on the
machine. The value max can be used to indicate the maximum value for the data type of
the associated field on the machine. Thus, *mIN--5~ is all numbers less than or equal to
-5, and 6-max~ is all numbers greater than or equal to 6.

The meta-character »*~ (wildcard) in the position of a range indicates any values not
covered by the other ranges previously seen in the entry. Only one wildcard range is
allowed per entry and it should be last (ranges following it are ignored).

A numeric routing field must have numeric range values, and a string routing field must
have string range values.

String range values for string, carray, and character field types must be placed inside a pair
of single quotes and cannot be preceded by a sign. Short and long integer values are a
string of digits, optionally preceded by a plus or minus sign. Floating point numbers are
of the form accepted by the C compiler or atof (3) : an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or & followed by an optional sign
or space, followed by an integer.

The raccesspoint parameter indicates the remote domain access point to which the
request is routed if the field matches the range. A raccesspoint of »*~ indicates that the
request can go to any remote domain access point that imports the desired service.

File Formats, Data Descriptions, MIBs, and System Processes Reference 145

TA_STATE!

GET: “{vALid}”

A GET operation retrieves configuration information for the T_pm_RrRouTING Object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected

T_DM_ROUTING Object. The following states indicate the meaning of Ta_sTaTE in
a SET request. States not listed may not be set.

“NEW” A new object is created.

unset Modify an existing object. This combination is not
allowed in the “INValid” state. Successful return
leaves the object state unchanged.

“INValid” The object is deleted.

Limitations

You cannot delete an instance of the T_pm_rouTINg class if it is referenced by an instance of the
T_DM_TIMPORT class.

T_DM_RPRINCIPAL Class Definition

Overview

The T_pM_RPRINCIPAL class represents password configuration information for remote principal
names.

146 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Table

Table 24 DM_MIB(5): T_DM_RPRINCIPAL Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMRACCESSPOINT(r)(K)(*) string rw-r--r-- string(1..30] N/A
TA_DMRPRINNAME(r)(K)(*) string rw------- string[1..30] N/A
TA_DMRPR INPASSWD(r)(*) string —w----—--- string[0..8] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMRACCESSPOINT: string{l..30]
The remote domain access point to which the principal is applicable.

Note: The combination of Ta_pMRACCESSPOINT and TA_DMRPRINNAME must be unique
within the scope of Ta_pM_RPRINCIPAL entries in the Domains configuration.

TA_DMRPRINNAME: string[l..30]
The remote principal name.

Note: The combination of Ta_DMRACCESSPOINT and TA_DMRPRINNAME must be unique
within the scope of Ta_pM_RPRINCIPAL entries in the Domains configuration.

TA_DMRPRINPASSWD: stringl0..8]
The remote password to be used for the principal name when communicating through the
remote domain access point identified in TA_DMRACCESSPOINT.

TA_STATE:

GET: “{VALid}”
A GET operation retrieves configuration information for the T_bpM_RPRINCIPAL
object. The following state indicates the meaning of a Ta_sTaTE attribute value
returned in response to a GeT request. States not listed are not returned.

File Formats, Data Descriptions, MIBs, and System Processes Reference 147

“VALid” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected
T_DM_RPRINCIPAL Object. The following states indicate the meaning of Ta_staTe
in a seT request. States not listed may not be set.

“NEW” A new object is created. A state change is allowed in the
state “INValid” and results in the state “vaLid”.

unset Modify an existing object. This combination is not
allowed in state “*INValid”.

“INValid” The object is deleted. A state change is allowed in the
state “VALid~ and results in the state “INValid”.

Limitations

In BEA Tuxedo release 7.1 or later, the T_pv_RrRPRINCIPAL class applies only to the snax domain
gateway type.

T _DM_SNACRM Class Definition

Overview

The T_pm_snacru class defines the SNA-CRM-specific configuration for the named local
domain access point.

Attribute Table

Table 25 DM_MIB(5): T_DM_SNACRM Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMSNACRM(K)(r)(*) string rw-r--r-- string[l1..30] N/A
TA_DMLACCESSPOINT(K)(r) string rw-r--r-- string[1..30] N/A

148 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 25 DM_MIB(5): T_DM_SNACRM Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_DMNWADDR(r) string rw-r--r-- string[l1..78] N/A
TA_DMNWDEV I CE(r) string rw-r--r-- string[l.78] N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMSNACRM: string[l..30]
The name of this T_pM_sNacrM entry. Ta_DMSNACRM is an identifier unique within the

scope of the SNA CRM entries within the Domains configuration used to identify this
SNA CRM entry.

TA_DMLACCESSPOINT: string[l..30]
The name of the local domain access point entry with which this SNA CRM is used.

TA_STATE:

GeT: “{vaLid}”
A cET operation retrieves configuration information for the T_pm_snacrum object.
The following state indicates the meaning of a Ta_sTaTE attribute value returned
in response to a GeT request. States not listed are not returned.

“WALig” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected T_pM_SNACRM
object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed may not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 149

“NEW” A new object is created. This state change is allowed in
the state “INValid” and results in the state “vaLid”.

unset Modify an existing entry. This combination is not allowed
in the state “INValid”.

“INvValid” The object is deleted. This state change is allowed in the
state “vaLid” and results in the state “INvalid”.

TA_DMNWADDR: string[l..78]
Specifies the network address for communication between the domain gateway for the
local domain access point and the SNA CRM.

TA_DMNWDEVICE: string[l..78]
Specifies the network device to be used for communication between the domain gateway
for the local domain access point and the SNA CRM.

Limitations
Deleting or updating an instance of the T_pm_snacru class is not permitted if the Domain
gateway administration (cwapm) server for the referenced local access point is active.

On seT operations that add or update an instance of this class, the local domain access point
specified in the Ta_DMLACCESSPOINT must exist in the T_bM_r.ocaL class. If the access point
does not exist, a “not defined” error is returned for the Ta_pMLACCESSPOINT attribute, and the
operation fails.

T_DM_SNALINK Class Definition

Overview

The T_pmM_sNarLINK class represents SNAX-specific configuration information for a remote
domain access point.

150 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Attribute Table

Table 26 DM_MIB(5): T_DM_SNALINK Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMSNAL INK(r)(K)(*) string rw-r--r-- string[l1..30] N/A
TA_DMSNASTACK(r)(K) string rw-r--r-- string[1..30] N/A
TA_DMRACCESSPOINT(r)(k) string rw-r--r-- string[1..30] N/A
TA_DMLSYSID(r) string rw-r--r-- string[l.4] N/A
TA_DMRSYSID(r) string rw-r--r-- string[l..4] N/A
TA_DMLUNAME(r) string rw-r--r-- string[l..8] N/A
TA_DMMINWIN(r) short rw-r--r-- 0 <= num <= 32767 N/A
TA_DMMODENAME(r) string rw-r--r-- string[l..8] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_DMSECTYPE string rw-r--r-- “{LOCAL | IDENTIFY | “LOCAL"
VERIFY | PERSISTENT |
MIXIDPE}”
TA_DMSTARTTYPE string rw-r--r-- «{auTO | cOLD}” “AUTO"
TA_DMMAXSNASESS short rw-r--r-- 0 <= num<= 32767 64
TA_DMMAXSYNCLVL short r--r--r-- 0<=num<=2 0

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMSNALINK: string[l..30]
The name of the T_pm_sNarnINk entry. An identifier, unique within the scope of the SNA
LINK entries within the Domains configuration, used to identify this Ta_DMSNALINK
entry.

File Formats, Data Descriptions, MIBs, and System Processes Reference 151

152

TA_DMSNASTACK: string[l..30]

The name of the SNAX stack entry to be used to reach this remote domain access point.

TA_DMRACCESSPOINT: string[l..30]

Identifies the remote domain access point name for which this entry provides the SNAX
configuration data.

TA_DMLSYSID:. string[l..4]

The local SYSID to be used when establishing an SNA link to the remote logical unit
(LV).

TA_DMRSYSID: string(l..4]

The remote SYSID to be used when establishing an SNA link to the remote LU.

TA_DMLUNAME: string[l..8]

Specifies the LU name associated with the remote domain access point.

TA_DMMINWIN: O <= num <= 32767

The minimum number of winner sessions to the remote LU.

TA_DMMODENAME: string[l..8]

Specifies the name associated with the session characteristics for sessions to the remote
LU.

TA_STATE:

GeT: “{vaLid}”
A GET operation retrieves configuration information for the T_pm_sNar1Nk object.
The following state indicates the meaning of a Ta_sTaTE attribute value returned
in response to a GeT request. States not listed are not returned.

“WALig” The object exists.

SET: “{NEW | INValid}”
A sET operation updates configuration information for the selected
T_DM_SNALINK object. The following states indicate the meaning of a Ta_STATE
set in a SET request. States not listed may not be set.

“NEW” A new object is created.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

unset Modify an existing object. This combination is not
allowed in state “INValid”.

“INValid” The object is deleted.

TA_DMSECTYPE: “{LOCAL | IDENTIFY | VERIFY | PERSISTENT | MIXIDPE}”
Specifies the type of SNA security to be used on sessions to the remote LU. Valid values
for this attribute are “LocaAL”, *IDENTIFY”, “VERIFY”, “PERSISTENT”, and *“MIXIDPE".

TA_DMSTARTTYPE: “{AUTO | cOLD}”
Specifies the type of session start-up for the destination LU. Setting this attribute to
vcorLp” forces a COLDSTART with the LU. If set to »auTo~, the SNACRM in
conjunction with the domain gateway choose whether to COLDSTART or
WARMSTART the LU.

TA_DMMAXSNASESS: 0 <= num <= 32767
Specifies maximum number of sessions to establish with the remote LU.

TA_DMMAXSYNCLVL: 0 <= num <=2
The maximum SYNC LEVEL that can be supported to this remote LU.

Limitations
Deleting or updating an instance of the T_pm_sNar.INK class that refers to a T_pM_sNasTack
class instance is not permitted under the following condition: the T_pmM_sNasTack class instance
refers to a T_pm_snacrM class instance that references a local domain access point for which the
Domain gateway administration (cwapwm) server is active.

On seT operations that add or update an instance of this class:

e The remote domain access point specified in the TA_DMRACCESSPOINT attribute must exist
in the T_pm_rEMOTE class. If the access point does not exist, a "not defined" error is
returned for the Ta_pMrACCESSPOINT attribute, and the operation fails.

e The SNA stack reference name specified in the Ta_pMsNasTACK attribute must exist in the
T_DM_SNASTACK class. If the reference name does not exist, a “not defined” error is
returned for the Ta_pMsNASTACK attribute, and the operation fails.

File Formats, Data Descriptions, MIBs, and System Processes Reference 153

T _DM_SNASTACK Class Definition

Overview
The T_pM_sNasTack class defines an SNA stack to be used by a specific SNA CRM.

Attribute Table

Table 27 DM_MIB(5): T_DM_SNASTACK Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMSNASTACK(r)(K)(*) string rw-r--r-- string[l..30] N/A
TA_DMSNACRM(r)(K) string rw-r--r-- string[l1..30] N/A
TA_DMSTACKTYPE(r) string rw-r--r-- string[l..30] N/A
TA_DMLUNAME(r) string rw-r--r-- string[l..8] N/A
TA_DMTPNAME(r) string rw-r--r-- string[1..8] N/A
TA_DMSTACKPARMS(r) string rw-r--r-- string[l..128] N/A
TA_STATE(r) string rw-r--r-- GET: “VAL” N/A
SET: “{NEW | INV}” N/A

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMSNASTACK: string[l..30]
The name of this T_DM_SNASTACK entry. TA_DMSNASTACK is an identifier unique within
the scope of T_DM_SNASTACK entry names in the Domains configuration.

TA_DMSNACRM: string[l..30]
Identifies the T_pm_snacru entry of the SNA CRM in which this SNA protocol stack
definition is used.

TA_DMSTACKTYPE: string[l..30]
Identifies the protocol stack to be used.

154 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

TA_DMLUNAME: string(l..8]
Specifies the LU name to be used on sessions established using this stack definition.

TA_DMTPNAME: string[l..8]
Specifies the TP name associated with the SNA stack. A value of “*” means accept any
TP name.

TA_DMSTACKPARMS: string[l..128]
Provides protocol stack specific parameters.

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the T_pm_sNasTack
object. The following state indicates the meaning of a Ta_sTaTE attribute value
returned in response to a GET request. States not listed are not returned.

“WALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected
T_DM_SNASTACK object. The following states indicate the meaning of Ta_sTaTE
in a seT request. States not listed may not be set.

“NEW” A new object is created. This state change is allowed in
the state *INvValid~ and results in the state “vaLid”.

unset Modify an existing object. This combination is not
allowed in the state *INValid”.

“INValid” The object is deleted. This state change is allowed in the
state “vALid” and results in the state “INValid”.

Limitations

Deleting or updating an instance of this class is not permitted if the instance of the class references
aT_bpM_sNACRM object which references a local domain access point for which the Domain
gateway administration (Gwapm) server is active.

File Formats, Data Descriptions, MIBs, and System Processes Reference 155

On seT operations that add or update an instance of this class, the SNA CRM name specified in
the Ta_pMsNACRM attribute must exist in the T_pm_snacru class. If the name does not exist, a
“not defined” error is returned for the Ta_pMsNACRM attribute, and the operation fails.

T_DM_TDOMAIN Class Definition

Overview

The T_pm_rpomMa1n class defines the TDomain specific configuration for a local or remote

domain access point.

Attribute Table

Tahle 28 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_DMACCESSPOINT(r)(k)(*) string rw-r--r-- string[l1..30] N/A
TA_DMNWADDR(r)(K)(*) string rw-r--r-- string[l..256] Note! N/A
TA_STATE(r) string rw-r--r-- GET: “VAL" N/A

SET: “{NEW | INV}” N/A
TA_DMNWDEVICE string rw-r--r-- string[l..78] N/A
TA_DMCMPLIMIT long rw-rw-r-- 0 <= num<= MAXLONG MAXLONG
TA_DMMINENCRYPTBITS string o C— “{0|40|56|128}~ Notez 0~
TA_DMMAXENCRYPTBITS string rW--————- ~{0]40|56|128}~ Note2 “128”
TA_DMCONNECTION_POLICY string rwXr--r-- “{LOCAL | ON_DEMAND | wI,0CAL,~ Note3

ON_STARTUP |

INCOMING_ONLY}” (Also see ")
TA_DMMAXRETRY long rWXY—-I—— 0 <= num <= MAXLONG 0
TA DMRETRY_INTERVAL long rwXr--r-- 0 <= num <= MAXLONG 60
TA_DMTCPKEEPALIVE string rWXr--1r-- “{LOCAL |NO | YES}” “I,0CAT,~ Note3

“NO” Note 4

156 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 28 DM_MIB(5): T_DM_TDOMAIN Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_DMKEEPALIVE long rwxr--r-- -1<= num<= 2147483647 .1 Note3
0 Note 4
TA_DMKEEPAL IVEWAIT long rwxr--r-- 0<= num<=2147483647 0
TA_DMLACCESSPOINT(r)(k)(*) string rw-r--r-- string[1..30] o
TA_DMFAILOVERSEQ short rw-r--r-- -1<= num<= 32767 -1

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Note 1 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Note 2| ink-level encryption value of 40 bits is provided for backward compatibility.

Note 3 Default for remote domain access points.

Note 4 Default for local domain access points.

Note 5 Default TA_ DMCONNECTION_POLICY value for a local domain access point is
the TA_DMCONNECTION_POLICY value specified in the T_DM_I.OCAL class.

Attribute Semantics

TA_DMACCESSPOINT: string[l..30]
The local or remote domain access point name for which this entry provides the
TDomain-specific configuration data.

When Domains link-level failover is in use, more than one T_bm_TpoMAIN class entry can
be defined with the same Ta_pMaccESSPOINT attribute value.

TA_DMNWADDR: string[1..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the network address associated with the access point. For a local domain access
point, this attribute supplies the address to be used for listening for incoming connections.
For a remote domain access point, this attribute supplies the destination address to be used
when connecting to a remote domain access point. The value of this field must be unique
across all T_bpM_TDOMAIN entries.

File Formats, Data Descriptions, MIBs, and System Processes Reference 157

158

TA_STATE!

GET: “{vALid}”
A GET operation retrieves configuration information for the T_pm_TpDoMAIN Object.
The following state indicates the meaning of a Ta_sTATE attribute value returned
in response to a GET request. States not listed are not returned.

“VALid” The object exists.

SET: “{NEW | INValid}”
A seT operation updates configuration information for the selected
T_pM_TpoMAIN object. The following states indicate the meaning of a Ta_STATE
set in a sET request. States not listed may not be set.

“NEW” A new object is created. This state change is allowed in
the state *INvalid~ and results in the state “vaLid”.

unset Modify an existing object. This combination is not
allowed in state “INValid”.

“INValid” The object is deleted. This state change is allowed in the
state “vALid” and results in the state “INValid”.

TA_DMNWDEVICE:. string{l..78]
Specifies the network device to be used. For a local domain access point, this attribute
specifies the device to be used for listening. For a remote domain access point, this
attribute specifies the device to be used when connecting to the remote domain access
point.

TA_DMCMPLIMIT: 0 <= num <= MAXLONG
Relevant to remote domain access points only. Threshold message at which compression
occurs for traffic to this access point.

TA_DMMINENCRYPTBITS: “{0]|40|56]|128}"
Relevant to remote domain access points only. When establishing a connection to this
access point, this attribute specifies the minimum level of encryption required. * 0~ means
no encryption, while *40~, ~56~, and »128~ specify the encryption length (in bits). If this
minimum level of encryption is not met, link establishment fails. The default is »0~.

The value of 40 bits is provided for backward compatibility.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Note: Modifications to this attribute do not affect established connections.

TA_DMMAXENCRYPTBITS: “{0]40|56]|128}"
Relevant to remote domain access points only. When establishing a network link to this
access point, this attribute specifies the maximum level of encryption allowed. * 0~ means
no encryption, while »40~, *56~, and *128~ specify the encryption length (in bits). The
default is »128~.

The value of 40 bits is provided for backward compatibility.

Note: Modifications to this attribute do not affect established connections.

TA_DMCONNECTION_POLICY = “{LOCAL | ON_DEMAND | ON_STARTUP | INCOMING_ONLY}”
Specifies the conditions under which the TDomain gateway associated with this local or
remote domain access point tries to establish connections. Supported values are “1.ocaL",
“ON_DEMAND”, “ON_STARTUP”, OF *INCOMING_ONLY”. “LOCAL” is relevant only to
remote domain access points.

The TA_DMCONNECTION_POLICY attribute is available in the T_bpM_TpoMaIn class when
running BEA Tuxedo 8.1 or later software. Its value in the T_pM_TpomMaIN class for a
particular local or remote domain access point takes precedence over its global value in
the T_pm_rocaL class. The ability to override the global connection policy enables you to
configure connection policy on a per remote domain basis.

Specifying no connection policy for a local domain access point defaults to the global
connection policy specified in the T_pm_r.ocar class. If you choose to specify a global
connection policy in the T_pm_TpoMa1n class, do not specify a global connection policy
in the T_pM_r.0caL class.

“LOCAL”
A connection policy of *Locar” means that a remote domain access point accepts
the global connection policy specified in the T_pm_r.ocaL class. *rL.ocan” is the
default connection policy for remote domain access points. Excluding “1.ocar”,
the connection policy value for a remote domain access point takes precedence
over the connection policy value for a local domain access point.

“ON_DEMAND”
A connection policy of *on_pemanD” means that the TDomain gateway attempts
a connection only when requested by either a client request to a remote service or
a dmadmin (1) connect command. Connection retry processing is not allowed
when the connection policy is “oN_DEMAND”.

“ON_STARTUP”
A connection policy of *onN_sTarTurp” means that the TDomain gateway attempts
to establish a connection at gateway server initialization time. For “oN_sTaRTUP",

File Formats, Data Descriptions, MIBs, and System Processes Reference 159

160

the remote services for a particular remote domain (that is, services advertised by
the TDomain gateway) are advertised only if a connection is successfully
established to the remote domain. Thus, if there is no active connection to the
remote domain, the remote services are suspended. By default, this connection
policy retries failed connections every 60 seconds, but you can specify a different
value for this interval using the Ta_DMRETRY_INTERVAL attribute in the

T DM_TDOMAIN class. Also, see the TA_DMMAXRETRY attribute in this class.

“INCOMING_ONLY"”
A connection policy of *1NcoMING_onNLY~ means that the TDomain gateway does
not attempt an initial connection upon startup and that remote services are initially
suspended. The TDomain gateway is available for incoming connections from a
remote domain, and remote services are advertised when the gateway receives an
incoming connection or an administrative connection (using the dmadmin (1)
connect command) is made. Connection retry processing is not allowed when the
connection policy is * INCOMING_ONLY”.

TA_DMFAILOVERSEQ = -1 <= num<= 32767

Specifies or requests failover sequences and primary records for a TDomain session
record in the BoMconF1G file. If apv_mMIB SET request does not specify a
TA_DMFAILOVERSEQ value or a DM_MIB SET TA_DMFAILOVERSEQ request is from
Tuxedo releases prior to 9.0, the output TDomain session record in the Bomcomr1c file
uses the default FATLOVERSEQ = -1.

The record with the lowest FaTL.OVERSEQ Value is the primary record for that TDomain
session. There is only one primary record for a TDomain session, all remaining records
for the same TDomain session are called secondary/backup records. With the exceptions
of NWADDR, NWDEVICE, and FAILOVERSEQ, the primary record is the source for all
TDomain session configuration parameters and attributes. All other parameters and
attributes listed in secondary/backup records are ignored.

Based on the connEcTTON_POLICY attribute you select, the local domain will try to
connect to a TDomain session’s primary record. If the primary record has a failover, it will
then try to connect to the next sequential secondary/backup record. If all secondary record
connections fail, it will retry the primary record information at a later time as determined
by RETRY_INTERVAL until MAXRETRY is exhausted.

TA_DMLACCESSPOINT: string{l..30]

Specifies or requests a local domain access point found in the pm_r.ocar section for a
TDomain session record in the BbuconF1G file. The Ta_pMLACCESSPOINT parameter is
used exclusively to define TDomain session gateways and can contain only one local
domain accesspoint as its value.

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

IfapM_mIB SET request does not specify a Ta_DMLACCESSPOINT Value or a DM_MIB SET
TA_DMLACCESSPOINT request is from Tuxedo releases prior to 9.0, the output TDomain
session record in the BoMcomr1G file uses the default LACCESPOINT =7+*~.

Note: pm_m1B does not allow regular expression use with TA_DMLACCESSPOINT.

TA_DMMAXRETRY : 0 <= num <= MAXLONG
The number of times that the TDomain gateway associated with this local or remote
domain access point tries to establish a connection. This attribute is available in the
T_DM_TDOMAIN class when running BEA Tuxedo 8.1 or later software, and is valid when
the TA_DMCONNECTION_POLICY attribute for this access point is set to “oN_STARTUP”.
For other connection policies, automatic retries are disabled.

The minimum value for Ta_pMMAXRETRY is 0, and the maximum value is MAXL.ONG
(2147483647). maxL.oNg, the default, indicates that retry processing will be repeated
indefinitely, or until a connection is established.

TA_DMRETRY_INTERVAL: 0 <= num <= MAXLONG
The number of seconds that the TDomain gateway associated with this local or remote
domain access point waits between automatic attempts to establish a connection. This
attribute is available in the T_pM_TDpoMaIN class when running BEA Tuxedo 8.1 or later
software, and is valid when the Ta_pMcoNNECTION_PoLICY attribute for this access point
is set to “on_sTarTuP~. For other connection policies, automatic retries are disabled.

The minimum value for Ta_ DMRETRY INTERVAL iS 0, and the maximum value is MAXL.ONG
(2147483647). The default is 60. If Ta_pMMAXRETRY iS Set to 0, setting
TA_DMRETRY_INTERVAL iS not allowed.

TA_DMTCPKEEPALIVE = “{LOCAL | NO | YES}”
Enables TCP-level keepalive for this local or remote domain access point. Supported
values are “LOoCAL”, “NO”, Or “YES”. “LOCAL” is relevant only to remote domain access
points.

The TA_DMTCPKEEPALIVE attribute applies only to domain gateways of type TooMa1n
running BEA Tuxedo 8.1 or later software. Its value for a remote domain access point
takes precedence over its value for a local domain access point. The ability to override the
local domain access point value enables you to configure TCP-level keepalive on a per
remote domain basis.

A value of “Locar” means that a remote domain access point accepts the TCP-level
keepalive value defined for the local domain access point. “LocaL~ is the default
TCP-level keepalive value for remote domain access points.

File Formats, Data Descriptions, MIBs, and System Processes Reference 161

162

A value of *no” means that TCP-level keepalive is disabled for this access point. *no” is
the default TCP-level keepalive value for local domain access points.

A value of “vEs” means that TCP-level keepalive is enabled for this access point. When
TCP-level keepalive is enabled for a connection, the keepalive interval used for the
connection is the system-wide value configured for the operating system’s TCP keepalive
timer. This interval is the maximum time that the TDomain gateway will wait without
receiving any traffic on the connection. If the maximum time is exceeded, the gateway
sends a TCP-level keepalive request message. If the connection is still open and the
remote TDomain gateway is still alive, the remote gateway responds by sending an
acknowledgement. If the local TDomain gateway does not receive an acknowledgement
within a fixed period of time of sending the request message, it assumes that the
connection is broken and releases any resources associated with the connection.

Not only does TCP-level keepalive keep BEA Tuxedo interdomain connections open
during periods of inactivity, but it also enable TDomain gateways to quickly detect
connection failures.

Note: The Ta_DMTCPKEEPALIVE and TA_DMKEEPALIVE attributes are not mutually
exclusive, meaning that you can configure an interdomain connection using both
attributes.

TA_DMKEEPALIVE = -1 <= num <= 2147483647

Controls application-level keepalive for this local or remote domain access point. This
value must be greater than or equal to -1 and less than or equal to 2147483647. The value
-1 is relevant only to remote domain access points.

The Ta_DMKEEPALIVE attribute applies only to domain gateways of type TooMaTN
running BEA Tuxedo 8.1 or later software. Its value for a remote domain access point
takes precedence over its value for a local domain access point. The ability to override the
local domain access point value enables you to configure application-level keepalive on a
per remote domain basis.

A value of -1 means that a remote domain access point accepts the application-level
keepalive value defined for the local domain access point. -1 is the default
application-level keepalive value for remote domain access points.

A value of 0 means that application-level keepalive is disabled for this access point. 0 is
the default application-level keepalive value for local domain access points.

A value greater than or equal to 1 and less than or equal to 2147483647, in milliseconds,
currently rounded up to the nearest second by the Domains software, means that

application-level keepalive is enabled for this access point. The time that you specify is
the maximum time that the TDomain gateway will wait without receiving any traffic on

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

the connection. If the maximum time is exceeded, the gateway sends an application-level
keepalive request message. If the connection is still open and the remote TDomain
gateway is still alive, the remote gateway responds by sending an acknowledgement. If
the local TDomain gateway does not receive an acknowledgement within a configurable
period of time (see the Ta_DMKEEPALIVEWAIT attribute) of sending the request message,
it assumes that the connection is broken and releases any resources associated with the
connection.

Not only does application-level keepalive keep BEA Tuxedo interdomain connections
open during periods of inactivity, but it also enable TDomain gateways to quickly detect
connection failures.

Note: The TA_DMKEEPALIVE and TA_DMTCPKEEPALTVE attributes are not mutually
exclusive, meaning that you can configure an interdomain connection using both
attributes.

TA_DMKEEPALIVEWAIT = 0 <= num <= 2147483647

Limitations

Specifies the maximum time for this local or remote domain access point that the
TDomain gateway will wait without receiving an acknowledgement to a sent keepalive
message. This value must be greater than or equal to 0 and less than or equal to
2147483647, in milliseconds, currently rounded up to the nearest second by the Domains
software. The defaultis 0. This attribute applies only to domain gateways of type TpoMAIN
running BEA Tuxedo 8.1 or later software.

If Ta_pMxeEPALIVE is O (keepalive disabled) for this access point, setting
TA_DMKEEPALIVEWAIT has no effect.

If Ta_DMKEEPALIVE is enabled for this access point and TA_DMKEEPALIVEWAIT iS Set to
a value greater than Ta_DMKEEPALIVE, the local TDomain gateway will send more than
one application-level keepalive message before the Ta_DMKEEPALTVEWATT timer expires.
This combination of settings is allowed.

If Ta_DMKEEPALIVE is enabled for this access point and TA_DMKEEPALIVEWAIT iS Set to
0, receiving an acknowledgement to a sent keepalive message is unimportant: any such
acknowledgement is ignored by the TDomain gateway. The gateway continues to send
keepalive messages every time the Ta_pMKEEPALTVE timer times out. Use this
combination of settings to keep an idle connection open through a firewall.

Deleting an instance of this class or updating the Ta_pvnwpEVICE attribute of an instance of this
class is not permitted in the following scenarios:

File Formats, Data Descriptions, MIBs, and System Processes Reference 163

o |f the instance of the class corresponds to a local domain access point and the Domain
gateway administration (cwapwm) server for the local access point is active.

e The instance of the class corresponds to a remote domain access point and any TDomain
Domain gateway administration (Gwapwm) server is active.

T_DM_TRANSACTION Class Definition

Overview

The T_pM_TRANSACTION class represents run-time information about transactions that span
domains. This object can be used to find out what remote domain access points are involved in
the transaction, the parent domain access point, the transaction state, and other information.

For ceT operations, the attributes TA_DMTPTRANID, TA_DMTXACCESSPOINT and
TA_DMTXNETTRANID may be supplied to select a particular transaction.

Attribute Table

Table 29 DM_MIB(5): T_DM_TRANSACTION Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_DMLACCESSPOINT(K)(*) string rw-r--r-- string[1..30] N/A
TA_DMTPTRANID(K) string rw-r--r-- string[1..78] N/A
TA_STATE(r)(k) string TWXL-Xr—— GET: “{aBD|ABY|ACT| N/A

COM|DEC | DON | HAB|HCO
| HEU | REA | UNK}”

SET: “INV” N/A
TA_DMTXACCESSPOINT(K) string r--r--r-- string[1..30] N/A
TA_DMTXNETTRANID(K) string r--r--r-- string[l1..78] N/A
TA_DMBRANCHCOUNT long r--r--r-- 0 <= num N/A
TA_DMBRANCH INDEX long r--r--r-- 0 <= num N/A
Per branch attributes:
TA_DMBRANCHNO long r--r--r-- 0 <= num N/A
TA_DMRACCESSPOINT string r--r--r-- string[1..30] N/A

164 File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

Table 29 DM_MIB(5): T_DM_TRANSACTION Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_DMNETTRANID string r--r--r-- string[l1..78] N/A
TA_DMBRANCHSTATE string r--r--r-- GET: “{ABD |ABY |ACT| N/A

COM | DEC | DON | HAB | HCO
| HHZ | HMI | REA | UNK}”

(r)—required when a new object is created
(k)—a key field for object retrieval
(*)—a required key field for all SET operations on the class

Attribute Semantics

TA_DMLACCESSPOINT: string[l..30]
Name of the local domain access point with which the transaction is associated. This is a
required field for cET operations. For seT operations, TA_DMLACCESSPOINT must be
specified.

TA_DMTPTRANID: string{l..78]
Transaction identifier returned from tpsuspend (3c) mapped to a string representation.
The data in this field should not be interpreted directly by the user except for equality
comparison.

TA_STATE!

GET: “{ABorteD | ABortonlY | ACTive | COMcalled | DECided | DONe | HABort |
HCOmmit | HEUristic | REAdy | UNKnown}”
A GET operation retrieves run-time information for the T_pM_TRANSACTION
object. The following states indicate the meaning of a Ta_staTe attribute value
returned in response to a GET request. States not listed are not returned.

“ABorteD” The transaction is being rolled back.

“ABortonlY” The transaction has been identified for rollback.

“ACTive” The transaction is active.

“COMcalled” The transaction has initiated the first phase of
commitment.

File Formats, Data Descriptions, MIBs, and System Processes Reference 165

166

“DECided” The transaction has initiated the second phase of

commitment.
“DONe” The transaction has completed the second phase of
commitment.
“HABort” The transaction has been heuristically rolled back.
“HCOmmit” The transaction has been heuristically committed.
“HEUristic” The transaction commitment or rollback has completed

heuristically. The branch state may give further detail
on which branch has completed heuristically.

“REAdy” The transaction has completed the first phase of a two
phase commit. All the participating groups and remote
domains have completed the first phase of
commitment and are ready to be committed.

“UNKnown” It was not possible to determine the state of the
transaction.

SET: “{INValid}”
A sET operation updates run-time information for the selected
T_DM_TRANSACTION Object or objects. The following state indicates the meaning
of a Ta_sTaTE set in a SET request. States not listed may not be set.

“INvValid” Forget the specified transaction object or objects. This
state change is only valid in states “HCOmmit”,
“HABort”,and “HEUristic”.|fa TA_DMTPTRANID
attribute value is not supplied, all heuristic transaction log
records for the specified local domain access point are
forgotten.

TA_DMTXACCESSPOINT: string[l..30]
If the transaction originated from a remote domain, TA_DMTXACCESSPOINT is the name of
the remote domain access point through which it originated. If the transaction originated
within this domain, Ta_pMTxAcCCcESSPOINT iS the name of the local domain access point.

TA_DMTXNETTRANID: string[l..78]
If the transaction originated from a remote domain, Ta_DMTXNETTRANTD i$ the external
transaction identifier received from the remote domain access point through which it

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

originated. If the transaction originated within this domain, TA_DMTXNETTRANID contains
the same value as the Ta_pmMTPTRANTID attribute.

Note: This attribute is available only to gateways running BEA Tuxedo release 7.1 or later,
and is set to the NULL string »~ for gateways running earlier releases of the BEA
Tuxedo system.

TA_DMBRANCHCOUNT: 0 <= num
The number of branches to remote domain access points involved in the transaction. For
a domain gateway that does not make branch information available, this value is zero.

TA_DMBRANCHINDEX: 0 <= num
The index of the first branch-specific attribute values (Ta_DMBRANCHNO,
TA_DMRACCESSPOINT, TA_DMNETTRANID, and TA_DMBRANCHSTATE) corresponding to
this object.

Per branch attributes

TA_DMBRANCHNO: 0 <= num
The branch number of the participating branch (numbered from zero).

TA_DMRACCESSPOINT: string[l..30]
The name of the remote domain access point for this branch.

TA_DMNETTRANID: string[l..78]
The external transaction identifier used with the remote domain access point for this
branch. Some types of domain gateways do not return this information; in this scenario
this attribute is set to the empty string. For example, TDomains uses the local transaction
identifier in Ta_pmTPTRANTD fOr branches to remote domain access points and sets this
value to the empty string.

TA_DMBRANCHSTATE:

GET: “{ABD | ABY | ACT | COM | DEC | DON | HAB | HCO | HHZ | HMI | REA | UNK}”
A ceT operation will retrieve run-time information for the transaction branch
(when it is available for a particular domain gateway type).

“ABorteD” The transaction branch is being rolled back.
“ABortonlY"” The transaction branch has been identified for rollback.
“ACTive” The transaction branch is active.

File Formats, Data Descriptions, MIBs, and System Processes Reference 167

“COMcalled”

The transaction branch has initiated the first phase of
commitment.

“DECided”

The transaction branch has initiated the second phase
of commitment.

“DONe”

The transaction branch has completed the second phase
of commitment.

“HABort”

The transaction has been heuristically rolled back.

“HCOmmit”

The transaction has been heuristically committed.

“Heuristic
HaZard”

Communications for the transaction branch failed, and
it has not been determined if rollback completed
successfully.

“Heuristic
MIxed”

The commitment or rollback for the transaction branch
has completed and the remote domain has reported that
the state of some of the resources used for the
commitment or rollback is not consistent with the
outcome of the transaction.

“REAJy"”

The transaction has completed the first phase of a
two-phase commit. All the participating groups and
remote domains have completed the first phase of
commitment and are ready to be committed.

“UNKnown”

The state of the transaction could not be determined.

Note: This attribute is available only to gateways running BEA Tuxedo release 7.1 or later,
and is set to “uNknown” for gateways running earlier releases of the BEA Tuxedo

system.

Limitations

This object is never explicitly created by the administrator; it comes into existence when the
application starts a multi-domain transaction. The only action an administrator can perform on
this object is to set its state to ~Tnva1id~, which has the effect of causing the transaction to forget
heuristic transaction log records. No other attributes are writable. When a transaction state is set
to “1Nvalid~, the state in the returned buffer is that of the transaction before the heuristic
transaction log records are forgotten, not after.

168

File Formats, Data Descriptions, MIBs, and System Processes Reference

DM_MIB(5)

On ceT and seT operations, a specific local domain access point must be specified for the
TA_DMLACCESSPOINT attribute.

On ceT and ST operations, the Domain gateway administration (cwapwm) server for the local
access point identified in the Ta_bMLACCESSPOINT attribute must be active. Otherwise, a “not
defined” error is returned.

DM_MIB(5) Additional Information

Files

S{TUXDIR}/include/tpadm.h
S{TUXDIR} /udataobj/tpadm

See Also

tpacall (3c), tpalloc (3c), tpcall (3c), tpdequeue (3¢), tpengqueue (3¢),
tpgetrply (3c), tprealloc (3c), Introduction to FML Functions, Fadd, Fadd32 (3fml),
Fchg, Fchg32(3fml), Ffind, Ffind32 (3fml),MIB(5), TM_MIB(5)

Administering a BEA Tuxedo Application at Run Time
Setting Up a BEA Tuxedo Application

Programming a BEA Tuxedo ATMI Application Using C
Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference 169

EVE

Name

Descr

NTS(3)

EVENTS—L.ist of system-generated events

iption

The System Event Monitor feature detects and reports certain predefined events, primarily
failures, that a system operator should be aware of. Each event report is an FML32 buffer
containing generic fields that describe the event plus other fields that describe the object
associated with the event.

The BEA Tuxedo system periodically checks system capacities. If the system finds that a
resource is exhausted or near capacity, it posts a system warN or ERROR event. The system will
continue to post these events until the condition subsides.

This reference page first defines the generic event reporting fields, and then lists all system events
detected in the current BEA Tuxedo release. System event names begin with adot (.).

Limitations

Event reporting is currently limited to classes defined in Tv_m1B(5) andthe T_DM_CONNECTION
class defined in pm_m1B(5). Event reporting uses the MIB information base. See m1B(5) and
™™ _MIB(5) for a definition and the availability of “local attributes,” and be aware that the
availability of a local attribute depends on the state of communication within the application's
network.

Itis possible that the system will not post an event related to a system capacity limit (for example,
.SysMachineFullMaxgtt) if the condition only exists for a very short period of time.

Generic Event Reporting Fields

170

TA_OPERATION: string
The literal string v, which identifies this buffer as an event report notification.

TA_EVENT_NAME. string
A string that uniquely identifies this event. All system-generated events begin with . sys.

TA_EVENT_SEVERITY. string
The string ERROR, WARN, OF INFO, to indicate the severity of this event.

TA_EVENT_LMID:. string
A string identifying the machine where the event was detected.

File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENTS(5)

TA_EVENT_ TIME: Iong
A long integer containing the event detection time, in seconds, according to the clock on
the machine where detection took place.

TA_EVENT_USEC: Iong
A long integer containing the event detection time, in microseconds, according to the
clock on the machine where detection took place. While the units of this value will always
be microseconds, the actual resolution depends on the underlying operating system and
hardware.

TA_EVENT_DESCRIPTION:. string
A one-line string summarizing the event.

TA_CLASS. string
The class of the object associated with the event. Depending on Ta_crL.ass, the event
notification buffer will contain additional fields specific to an object of this class.

TA_ULOGCAT: string
Catalog name from which the message was derived, if any.

TA_ULOGMSGNUM: num
Catalog message number, if the message was derived from a catalog.

Event Lists
T ACLPERM Event List

.SysAclPerm
INFO: .SysACLPerm: system ACL permission change

T_DOMAIN Event List

.SysResourceConfig
INFO: .SysResourceConfig: system configuration change

.SysLicenseInfo
INFO: .SysLicenseInfo: reached 100% of Tuxedo System Binary
Licensed User Count, DBBL/BBL lockout canceled

.SysLicenseInfo: reached 90% of Tuxedo System Binary
Licensed User Count

.SysLicenseInfo: reached 90% of Tuxedo System Binary
Licensed User Count, DBBL/BBL lockout canceled

.SysLicenseInfo: reached below 90% of Tuxedo System
Binary Licensed User Count, DBBL/BBL lockout canceled

File Formats, Data Descriptions, MIBs, and System Processes Reference m

172

SysLicenseWarn
WARN: .SysLicenseWarn: reached 100% of Tuxedo System Binary
Licensed User Count

SysLicenseError
ERROR: .SysLicenseError: exceeded 110% of Tuxedo System Binary
Licensed User Count, DBBL/BBL lockout occurs,
no new clients can join the application

.SysLicenseError: exceeded 110% of Tuxedo System Binary
Licensed User Count, %hour, %minutes, $seconds left before
DBBL/BBL lockout occurs

T_DM_CONNECTION Event List
.SysConnectionSuccess

INFO: .SysConnectionSuccess: Connection successful between
$TA_DMLACCESSPOINT and %TA_DMRACCESSPOINT

.SysConnectionConfig
INFO: .SysConnectionConfig: Configuration change for connection
between $TA_DMLACCESSPOINT and %$TA_DMRACCESSPOINT

.SysConnectionDropped
INFO: .SysConnectionDropped: Connection dropped between
$TA_DMLACCESSPOINT and %TA_DMRACCESSPOINT

.SysConnectionFailed
INFO: .SysConnectionFailed: Connection failed between
$TA_DMLACCESSPOINT and $TA_DMRACCESSPOINT

T_GROUP Event List

.SysGroupState
INFO: .SysGroupState: system configuration change

T MACHINE Event List

.SysMachineBroadcast
WARN: .SysMachineBroadcast: %TA_LMID broadcast delivery failure

.SysMachineConfig
INFO: .SysMachineConfig: %TA_LMID configuration change

.SysMachineFullMaxaccessers
WARN: .SysMachineFullMaxaccessers: $TA_LMID capacity limit

.SysMachineFullMaxconv
WARN: .SysMachineFullMaxconv: $TA_LMID capacity limit

File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENTS(5)

.SysMachineFullMaxgtt
WARN: .SysMachineFullMaxgtt: %TA_LMID capacity limit

.SysMachineFullMaxwsclients
WARN: .SysMachineFullMaxwsclients: $TA_LMID capacity limit

.SysMachineMsgqg
WARN: .SysMachineMsgg: $%TA_LMID message queue blocking

.SysMachinePartitioned
ERROR: .SysMachinePartitioned: $TA_LMID is partitioned

.SysMachineSlow
WARN: .SysMachineSlow: $%$TA_LMID slow responding to DBBL

.SysMachineState
INFO: .SysMachineState: %TA_LMID state change to %TA_STATE

.SysMachineUnpartitioned
ERROR: .SysMachinePartitioned: $TA_LMID is unpartitioned

T BRIDGE Event List

.SysNetworkConfig
INFO: .SysNetworkConfig: $TA_LMID[0]->%TA_LMID[1l] configuration
change

.SysNetworkDropped
ERROR: .SysNetworkDropped: $TA_LMID[0]->%TA_LMID[1] connection
dropped

.SysNetworkFailure
ERROR: .SysNetworkFailure: $TA_LMID[0]->%TA_LMID[1] connection
failure

.SysNetworkFlow
WARN: .SysNetworkFlow: %TA_LMID[O0]->%TA_LMID[1] flow control

.SysNetworkState
INFO: .SysNetworkState: %TA_LMID[O0]->%TA_LMID[1] state change to
$TA_STATE

T_SERVER Event List
.SysServerCleaning

ERROR: .SysServerCleaning: $%$TA_SERVERNAME, group $%TA_SRVGRP, id
$TA_SRVID server cleaning

File Formats, Data Descriptions, MIBs, and System Processes Reference 173

.SysServerConfig
INFO: .SysServerConfig: $TA_SERVERNAME, group %TA_SRVGRP, id $TA_SRVID
configuration change

.SysServerDied
ERROR: .SysServerDied: $TA_SERVERNAME, group $TA_SRVGRP, id %TA_SRVID
server died

.SysServerInit
ERROR: .SysServerInit: $TA_SERVERNAME, group $TA_SRVGRP, id $TA_SRVID
server initialization failure

.SysServerMaxgen
ERROR: .SysServerMaxgen: $TA_SERVERNAME, group $TA_SRVGRP, id
$TA_SRVID server exceeded MAXGEN restart limit

.SysServerRestarting
ERROR: .SysServerRestarting: $TA_SERVERNAME, group $%$TA_SRVGRP, id
$TA_SRVID server restarting

.SysServerState
INFO: .SysServerState: %TA_SERVERNAME, group %TA_SRVGRP, id %TA_SRVID
state change to $TA_STATE

.SysServerTpexit
ERROR: .SysServerTpexit: $%$TA_SERVERNAME, group $TA_SRVGRP, id
$TA_SRVID server requested TPEXIT

T_SERVICE Event List
.SysServiceTimeout

ERROR: .SysServiceTimeout: $%$TA_SERVERNAME, group $%TA_SRVGRP, id
$TA_SRVID server killed due to a service timeout

T_CLIENT Event List
.SysClientConfig

INFO: .SysClientConfig: User $TA_USRNAME on $%TA_LMID configuration
change

.SysClientDied
WARN: .SysClientDied: User $%TA_USRNAME on $TA_LMID client died

.SysClientSecurity
WARN: .SysClientSecurity: User %TA_USRNAME on %TA_LMID authentication
failure

174 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENTS(5)

.SysClientState
INFO: .SysClientState: User $%TA_USRNAME on %TA_LMID state change to
$TA_STATE

T TRANSACTION Event List
.SysTransactionHeuristicAbort

ERROR: .SysTransactionHeuristicAbort: Transaction %TA_GTRID in group
$TA_GRPNO

.SysTransactionHeuristicCommit
ERROR: .SysTransactionHeuristicCommit: Transaction $TA_GTRID in group
$TA_GRPNO

T_EVENT Event List

.SysEventDelivery
ERROR: .SysEventDelivery: System Event Monitor delivery failure on
$TA_LMID
.SysEventFailure
ERROR: .SysEventFailure: System Event Monitor subsystem failure on
$TA_LMID
Files
S{TUXDIR} /udataobj/evt_mib
See Also

MIB(5), TM_MIB(5),DM_MIB(5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 175

EVENT_MIB(3)

Name

EVENT MIB—Management Information Base for EventBroker

Synopsis

#include <tpadm.h>
#include <fml32.h>

#include <evt_mib.h>

Description

176

The BEA Tuxedo EventBroker MIB defines the set of classes through which the EventBroker can
be managed.

EVENT_MIB(5) should be used in combination with the generic MIB reference page, MIB (5), to
format administrative requests and interpret administrative replies. Requests formatted as
described in m1B (5) and a component MIB reference page may be used to request an
administrative service using any one of a number of existing ATMI interfaces in an active
application. For additional information pertaining to all eEvent_m1B(5) class definitions, see
“EVENT_MIB(5) Additional Information” on page 187.

EVENT_MIB consists of the following classes.

Table 30 EVENT_MIB Classes

Class Name Attributes

T_EVENT_CLIENT Subscriptions that trigger unsolicited notification
T_EVENT_COMMAND Subscriptions that trigger system commands
T_EVENT_QUEUE Subscriptions for queue-based notification

T _EVENT_SERVICE Subscriptions for server-based notification
T_EVENT_USERLOG Subscriptions for writing userlog messages

Each object in these classes represents a single subscription request.

The pattern expression of Ta_EVENT EXPR in each class determines whether it is a sysTeEM
EVENT request or an User EVENT request. The determination on which one to query is made as
follows:

File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

e A basic GET request without TA_EVENT_EXPR OF TA_EVENT_SERVER specified will always
go to the system EVENT request and will not return USER EVENT request.

e A GET request with Ta_rvenT_expPr specified but not Ta_rvenT_server will go to the
SYSTEM EVENT request if the expressions starts with ~\ . ~. Otherwise, it will go to the
USER EVENT request.

e A GET request with Ta_evENT_SERVER specified with a value of ~system~ will go to the
SYSTEM EVENT request. A value of user~ will direct the request to the user EVENT.

FML32 Field Tables

The field table for the attributes described in this reference page is found in the file
udataobj/evt_mib (relative to the root directory of the BEA Tuxedo system software). The
directory $ {TUXDIR} /udataobj should be included by the application in the colon-separated list
specified by the FL.DTBLDIR32 environment variable and the field table name evt_mib should be
included in the comma-separated list specified by the FTELDTBLS32 environment variable.

T_EVENT_CLIENT Class Definition

Overview

The T_EVENT_CLIENT class represents a set of subscriptions registered with the EventBroker for
client-based notification.

When an event is detected, it is compared to each T_EVENT_cLIENT object. If the event name
matches the value in Ta_evENT ExPR and the optional filter rule is TRUE, the event buffer is sent
to the specified client's unsolicited message handling routine.

Attribute Table

Table 31 T_EVENT_CLIENT Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_EVENT_EXPR(r) (*) string R--R--R-- string[l..255] N/A
TA_EVENT_FILTER(K) string R--R--R-- string[1..255] none
TA_EVENT_FILTER_BINARY(K) carray R--R--R-- carray[1..64000] none
TA_STATE(r) string R-xR-xR-x GET: ACT N/A
SET: {NEW | INV} N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 1717

Table 31 T_EVENT_CLIENT Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_CLIENTID(r) (*) string R--R--R-- string[l..78] N/A

(k)—a key field for object retrieval
(r)—the field is required when a new object is created
(*)—GET/SET key, one or more required for SET operations

Check m1B (5) for an explanation of Permissions.

Attribute Semantics

TA_EVENT_EXPR: string[l..255]
Event pattern expression. This expression, in regular expression format, controls which
event names match this subscription.

TA_EVENT_FILTER: string[l..255]
Event filter expression. This expression, if present, is evaluated with respect to the posted
buffer's contents. It must evaluate to TRUE or this subscription is not matched.

TA_EVENT FILTER BINARY: carrayll..64000]
Event filter expression, in binary (carray) format. Same as Ta_EVENT FILTER, but may
contain arbitrary binary data. Only one of TA_EVENT_FILTER Or
TA_EVENT_FILTER_BINARY May be specified.

TA_STATE!

GET: ACTive
A cET operation will retrieve configuration information for the matching
T_EVENT_CLIENT Object(s).

SET: {NEW|INvValid}
A seT operation will update configuration information for the T_EVENT _CLIENT
object. The following states indicate the meaning of a Ta_sTaTE set in a SET
request. States not listed may not be set.

178 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

NEW Create T_rvENT_CLIENT object. Successful return leaves
the object in the acTive state.

INvalid Delete T_rveENT_cLIENT Object. Successful return leaves
the object in the Invalid state.

TA_CLIENTID:. string[l..78]

Send an unsolicited notification message to this client when a matching event is detected.

T _EVENT _COMMAND Class Definition

Overview

The T_EVENT coMMaND class represents a set of subscriptions registered with the EventBroker
that trigger execution of system commands. When an event is detected, it is compared to each
T_EVENT_COMMAND object. If the event name matches the value in Ta_evenT_ExPR and the
optional filter rule is TRUE, the event buffer is formatted and passed to the system's command

interpreter.
Attribute Table

Table 32 T_EVENT_COMMAND Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_EVENT_EXPR(r) (*) string R-------- string[l..255] N/A
TA_EVENT_FILTER(K) string R-------- string[l..255] none
TA_EVENT_FILTER_BINARY(K) carray R-------- carray[1..64000] none
TA_STATE(r) string R-x------ GET: ACT N/A

SET: {NEW | INV} N/A
TA_COMMAND(F) (*) string R-------- string[l..255] N/A
(k)—a key field for object retrieval
(r)—the field is required when a new object is created
(*)—GET/SET key, one or more required for SET operations

Check m1B (5) for an explanation of Permissions.
File Formats, Data Descriptions, MIBs, and System Processes Reference 179

Attribute Semantics

TA_EVENT_EXPR: string[l..255]

Event pattern expression. This expression, in regular expression format, controls which
event names match this subscription.

TA_EVENT_FILTER: string[l..255]

Event filter expression. This expression, if present, is evaluated with respect to the posted
buffer's contents. It must evaluate to TRUE or this subscription is not matched.

TA_EVENT_FILTER_BINARY: carray[l..64000]

Event filter expression, in binary (carray) format. Same as Ta_EVENT_FILTER, but may
contain arbitrary binary data. Only one of TA_EVENT_FILTER OF
TA_EVENT_FILTER_BINARY may be specified.

TA_STATE:

GET: ACTive

A ceT operation will retrieve configuration information for the matching
T_EVENT_COMMAND oObject(s).

SET: {NEW|INValid}
A seT operation will update configuration information for the T_EvVENT_coMMAND

object. The following states indicate the meaning of a Ta_sTaATE set in a SET
request. States not listed may not be set.

NEW Create T_EVENT_COMMAND 0bject. Successful return
leaves the object in the acTive state.

INValid Delete T_rvENT_comMMaNnD object. Successful return
leaves the object in the Invalid state.

TA_COMMAND: string[l..255]

Execute this system command when an event matching this object is detected. For UNIX
system platforms, the command is executed in the background using system(3).

T_EVENT _QUEUE Class Definition

Overview

The T_rvENT_QUEUE class represents a set of subscriptions registered with the EventBroker for
queue-based notification. When an event is detected, it is compared to each T_EVENT_QUEUE

180 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

object. If the event name matches the value in Ta_eveNT_xpPr and the optional filter rule is

TRUE, the event buffer is stored in the specified reliable queue.
Attribute Table

Table 33 T_EVENT_QUEUE Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_EVENT_EXPR(r) (*) string R-------- string[l..255] N/A
TA_EVENT_FILTER(K) string R-x------ string[l..255] none
TA_EVENT_FILTER_BINARY(K) carray R-x------ carray[1..64000] none
TA_STATE(r) string R-x------ GET: ACT N/A

SET: {NEW | INV} N/A
TA_QSPACE(r) (*) string R-------- string[l..15] N/A
TA_QNAME(r) (*) string R-------- string[l..15] N/A
TA_QCTL_QTOP short R-X---—-— short 0
TA_QCTL_BEFOREMSGID short R-x------ short 0
TA_QCTL_QTIME_ABS short R-x------ short 0
TA_QCTL_QTIME_REL short R-x------ short 0
TA_QCTL_DEQ_TIME short R-x------ short 0
TA_QCTL_PRIORITY short R-x------ short 0
TA_QCTL_MSGID string R-x------ string[l..31] none
TA_QCTL_CORRID(K) string R-x------ string[l..31] none
TA_QCTL_REPLYQUEUE string R-x------ string[l..15] none
TA_QCTL_FAILUREQUEUE string R-x------ string[l..15] none
TA_EVENT_ PERSIST short R-x------ short 0
TA_EVENT_TRAN short R-x------ short

(k)—a key field for object retrieval
(r)—the field is required when a new object is created
(*)—GET/SET key, one or more required for SET operations

Check m1B (5) for an explanation of Permissions.

File Formats, Data Descriptions, MIBs, and System Processes Reference

181

Attribute Semantics

TA_EVENT_EXPR: string[l..255]
Event pattern expression. This expression, in regular expression format, controls which
event names match this subscription.

TA_EVENT_FILTER: string[l..255]
Event filter expression. This expression, if present, is evaluated with respect to the posted
buffer's contents. It must evaluate to TRUE or this subscription is not matched.

TA_EVENT_FILTER_BINARY: carray[l..64000]
Event filter expression, in binary (carray) format. Same as Ta_EVENT_FILTER, but may
contain arbitrary binary data. Only one of TA_EVENT_FILTER OF
TA_EVENT_FILTER_BINARY may be specified.

TA_STATE:

GET: ACTive
A ceT operation will retrieve configuration information for the matching
T_EVENT_QUEUE object(s).

SET: {NEW|INValid}
A seT operation will update configuration information for the T_EVENT_QUEUE
object. The following states indicate the meaning of a Ta_sTaATE set in a SET
request. States not listed may not be set.

NEW Create T_EVENT_QUEUE Object. Successful return leaves
the object in the acTive state.

INvalid Delete T_rvENT QUEUE Object. Successful return leaves
the object in the Invalid state.

TA_QSPACE: string[l..15]
Enqueue a notification message to a reliable queue in this queue space when a matching
event is detected.

TA_QNAME: string[l..15]
Enqueue a notification message to this reliable queue when a matching event is detected.

TA_QCTL_QTOP: short
This value, if present, is passed in to tpenqueue () 'S TPQCTL control structure to request
notification via the /Q subsystem with the message to be placed at the top of the queue.

182 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

TA_QCTL_BEFOREMSGID: short
This value, if present, is passed in to tpenqueue () 'S TPQCTL control structure to request
notification via the /Q subsystem with the message to be placed on the queue ahead of the
specified message.

TA_QCTL_QTIME_ABS: short
This value, if present, is passed in to tpenqueue ()'s TPQCTL control structure to request
notification via the /Q subsystem with the message to be processed at the specified time.

TA_QCTL_QTIME_REL:. short
This value, if present, is passed in to tpenqueue () 'S TPQCTL control structure to request
notification via the /Q subsystem with the message to be processed relative to the dequeue
time.

TA_QCTL_DEQ_TIME: short
This value, if present, is passed in to tpenqueue () 'S TPQCTL control structure.

TA_QCTL_PRIORITY. short
This value, if present, is passed in to tpenqueue () 's TPQCTL control structure.

TA_QCTL_MSGID: string[1..31]
This value, if present, is passed in to tpenqueue () 's TPQCTL Structure.

TA_QCTL_CORRID: string[l..31]
This value, if present, is passed in to tpenqueue () 'S TPQCTL control structure.

TA_QCTL_REPLYQUEUE: string[l..15]
This value, if present, is passed in to tpenqueue () 's TPQCTL control structure.

TA_QCTL_FAILUREQUEUE: string{l..15]
This value, if present, is passed in to tpenqueue () 's TPQCTL control structure.

TA_EVENT_PERSIST. short
If non-zero, do not cancel this subscription if the designated queue is no longer available.

TA_EVENT_TRAN:. short
If non-zero and the client's tppost () call is transactional, include the tpengueue () call
in the client's transaction.

File Formats, Data Descriptions, MIBs, and System Processes Reference 183

T _EVENT SERVICE Class Definition

Overview

The T_EVENT SERVICE class represents a set of subscriptions registered with the EventBroker

for service-based notification. When an event is detected, it is compared to each

T_EVENT_SERVICE object. If the event name matches the value in Ta_EveENT ExPR and the
optional filter rule is TRUE, the event buffer is sent to the specified BEA Tuxedo service routine.

Attribute Table

Table 34 T_EVENT_SERVICE Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_EVENT_EXPR(r) (*) string R--R--R-- string[l..255] N/A
TA_EVENT_FILTER(K) string R--R--R-- string[l..255] none
TA_EVENT_FILTER_BINARY(K) carray R--R--R-- carray[l. .64000] none
TA_STATE(r) string R-xXR-xXR-x GET: ACT N/A
SET: {NEW | INV} N/A
TA_SERVICENAME(r) (*) string R--R--R-- string[l..15] N/A
TA_EVENT_PERSIST short R-xR-xR-x short
TA_EVENT_TRAN short R-xR-xR-x short

(k)—a key field for object retrieval
(r)—the field is required when a new object is created
(*)—GET/SET key, one or more required for SET operations

Check m1B (5) for an explanation of permissions.

Attribute Semantics

TA_EVENT_EXPR:. string[l..255]

Event pattern expression. This expression, in regular expression format, controls which

event names match this subscription.

TA_EVENT_FILTER: string[l..255]

Event filter expression. This expression, if present, is evaluated with respect to the posted

buffer's contents. It must evaluate to TRUE or this subscription is not matched.

184 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

TA_EVENT_FILTER_BINARY: carray[l..64000]

Event filter expression, in binary (carray) format. Same as Ta_EVENT_FILTER, but may
contain arbitrary binary data. Only one of TA_EVENT_FILTER OF
TA_EVENT_FILTER_BINARY may be specified.

TA_STATE:

GET: ACTive

A ceT operation will retrieve configuration information for the matching
T_EVENT_SERVICE object(s).

SET: {NEW|INValid}
A seT operation will update configuration information for the T_EVENT_SERVICE

object. The following states indicate the meaning of a Ta_sTaATE set in a SET
request. States not listed may not be set.

NEW Create T_EVENT_SERVICE object. Successful return
leaves the object in the acTive state.

INvalid Delete T_EVENT_SERVICE object. Successful return
leaves the object in the 1nvalid state.

TA_SERVICENAME: string[l..15]
Call this BEA Tuxedo service when a matching event is detected.

TA_EVENT_PERSIST. short

If non-zero, do not cancel this subscription if the Ta_sErRvVICENAME Service is no longer
available.

TA_EVENT_TRAN:. short

If non-zero and the client's tppost () call is transactional, include the TA_SERVICENAME
service call in the client's transaction.

T _EVENT _USERLOG Class Definition

Overview

The T_EVENT_USERLOG class represents a set of subscriptions registered with the EventBroker
for writing system userlog (3c) messages. When an event is detected, it is compared to each
T_EVENT_USERLOG Object. If the event name matches the value in Ta_EvENT ExPR and the

File Formats, Data Descriptions, MIBs, and System Processes Reference 185

optional filter rule is TRUE, the event buffer is formatted and passed to the BEA Tuxedo
userlog (3c) function.

Attribute Table

Table 35 T_EVENT _USERLOG Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_EVENT_EXPR(r) string R--R----- string[l..255] N/A
TA_EVENT_FILTER(K) string R--R----- string[l..255] none
TA_EVENT_FILTER_BINARY(K) carray R--R----- carray[1..64000] none
TA_STATE(r) string R-xR-x--- GET: ACT N/A
SET: {NEW | INV} N/A
TA_USERLOG(r) string R--R----- string[l..255] N/A

(k)—a key field for object retrieval
(r)—the field is required when a new object is created

Check m1B (5) for an explanation of Permissions.

Attribute Semantics

TA_EVENT_EXPR: string[l..255]
Event pattern expression. This expression, in regular expression format, controls which
event names match this subscription.

TA_EVENT_FILTER: string|[l..255]
Event filter expression. This expression, if present, is evaluated with respect to the posted
buffer's contents. It must evaluate to TRUE or this subscription is not matched.

TA_EVENT_FILTER_BINARY: carray[l..64000]
Event filter expression, in binary (carray) format. Same as Ta_EVENT FILTER, but may
contain arbitrary binary data. Only one of TA_EVENT_FILTER OF
TA_EVENT_FILTER_BINARY May be specified.

TA_STATE!

GET: ACTive
A GceT operation will retrieve configuration information for the matching
T_EVENT_USERLOG object(s).

186 File Formats, Data Descriptions, MIBs, and System Processes Reference

EVENT_MIB(5)

SET: {NEW|INValid}
A seT operation will update configuration information for the T_EVENT_USERLOG

object. The following states indicate the meaning of a Ta_sTaATE set in a SET
request. States not listed may not be set.

NEW Create T_EVENT_USERLOG 0bject. Successful return
leaves the object in the acTive state.

INValid Delete T_EVENT_USERLOG 0bject. Successful return
leaves the object in the 1nvalid state.

TA_USERLOG: string[l..255]
Write a userlog (3c) message when a matching event is detected.

EVENT_MIB(5) Additional Information

Files

${TUXDIR} /udataobj/evt_mib ${TUXDIR}/include/evt_mib.h

See Also

EVENTS (5), TM_MIB(5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 187

factory_finder.ini(5)

Name

factory_finder.ini—FactoryFinder Domains configuration file

Description

factory_finder.ini is the FactoryFinder configuration file for Domains. This text (ASCII)
file is parsed by the TMFFNAME Service when it is started as a Master NameManager. The file
contains information used by NameManagers to control the import and the export of object
references for factory objects with other domains. To use the information in the

factory finder.ini file, you must specify the factory finder.ini file inthe -£ option of
the TMFFNAME server process.

The FactoryFinder Domains configuration file may have any name as long as the content of the
file conforms to the format described on this reference page.

Definitions

A BEA Tuxedo domain is defined as the environment described in a single Tuxconrzc file. A
BEA Tuxedo domain can communicate with another BEA Tuxedo domain or with another TP
application—an application running on another TP system—via a domain gateway group. In
BEA Tuxedo terminology, a domain is the same as an application—a business application.

A Remote Factory is a factory object that exists in a remote domain that is made available to the
application through a BEA Tuxedo FactoryFinder.

A Local Factory is a factory object that exists in the local domain that is made available to remote
domains through a BEA Tuxedo FactoryFinder.

File Format

188

The file is made up of two specification sections. Allowable section names are:
DM_REMOTE_FACTORIES and DM_LOCAL_FACTORIES.

e Formatting Guidelines

Parameters are generally specified by: kEyworp = value, Which sets kEYWorRD t0 value.
Valid keywords are described within each section. keEvyworps are reserved; they cannot be
used as values, unless they are quoted.

If a value is an identifier, standard C rules are used. An identifier must start with an
alphabetic character or underscore and must contain only alphanumeric characters or
underscores. An identifier cannot be the same as any KEYwoRrD.

File Formats, Data Descriptions, MIBs, and System Processes Reference

factory_finder.ini(5)

A value that is not an identifier must be enclosed in double quotes.
Input fields are separated by at least one space or tab character.
The # character introduces a comment. A newline ends a comment.
Blank lines and comments are ignored.

Lines are continued by placing at least one tab after the newline. Comments can not be
continued.

e DM_LOCAL_FACTORIES Section

This section provides information about the factories exported by each local domain. This
section is optional; if it is not specified, all local factory objects can be exported to remote
domains. If this section is specified, it should be used to restrict the set of local factory
objects that can be retrieved from a remote domain. The reserved

factory_id. factory_kind identifier of NoNE can be used to restrict any local factory
from being retrieved from a remote domain.

Lines within this section have the form:
factory_id. factory_ kind

where factory id. factory kindis the local name (identifier) of the factory. This name
must correspond to the identifier of a factory object registered by one or more BEA
Tuxedo server applications with the BEA Tuxedo FactoryFinder.

The factory kind must be specified for TMrFNAME to locate the appropriate factory. An
entry that does not contain a factory_kind value does not default to a value of
FactoryInterface.

e DM_REMOTE_FACTORIES Section

This section provides information about factory objects imported and available on remote
domains. Lines within this section have the form:

factory id. factory_ _kind required_parameters

where factory id. factory_kind is the name (identifier) of the factory object used by
the local BEA Tuxedo domain for a particular remote factory object. Remote factory
objects are associated with a particular remote domain.

Note: If you use the TobjFactoryFinder interface, the factory. kind must be
FactoryInterface

The required parameter is:

DOMAINID = domain_id

File Formats, Data Descriptions, MIBs, and System Processes Reference 189

This parameter specifies the identity of the remote domain in which the factory object is to
be retrieved. The domain_id must not be greater than 32 octets in length. If the value is a
string, it must be 32 characters or fewer (counting the trailing NULL). The value of
domain_id can be a sequence of characters or a sequence of hexadecimal digits preceded
by 0x.

The optional parameter is:
RNAME = string

This parameter specifies the name exported by remote domains. This value will be used by
a remote domain to request this factory object. If this parameter is not specified, the remote
factory object name is the same as the named specified in factory id. factory kind.

Multiple entries with the same name can be specified as long as the values associated with
either the poMAINID or RNAME parameter results in the identification of a unique factory
object.

Examples

190

e Example 1

The following FactoryFinder Domains configuration file defines two entries for a factory
object that will be known in the local domain by the identifier Teller.FactoryIdentity
that is imported from two different remote domains:

BEA Tuxedo FactoryFinder Domains
Configuration File
#
*DM_REMOTE_FACTORIES
Teller.FactoryIdentity
DOMAINID="Northwest”
RNAME=Teller.FactoryType
Teller.FactoryIdentity
DOMAINID="Southwest”

In the first entry, a factory object is to be imported from the remote domain with an
identity of Northwest that has been registered with a factory identity of
Teller.FactoryType

In the second entry, a factory object is to be imported from the remote domain with an
identity of southwest that has been registered with a factory identity of
Teller.FactoryIdentity. Note that because no RNAME parameter was specified, the
name of the factory object in the remote domain is assumed to be the same as the factory’s
name in the local domain.

e Example 2

File Formats, Data Descriptions, MIBs, and System Processes Reference

factory_finder.ini(5)

The following FactoryFinder Domains configuration file defines that only factory objects
registered with the identity of Tel ler.Factorylnterface in the local domain are
allowed to be exported to any remote domain. Requests for any other factory should be
denied.

BEA Tuxedo FactoryFinder Domains

Configuration File

#

*DM_LOCAL_FACTORIES
Teller.FactoryInterface

e Example 3

The following FactoryFinder Domains configuration file defines that none of the factory
objects registered with the BEA Tuxedo FactoryFinder are to be exported to a remote
domain.

BEA Tuxedo FactoryFinder Domains
Configuration File
#
*DM_LOCAL_FACTORIES
NONE

See Also

UBBCONFIG(5), DMCONFIG (5), TMFFNAME (5), TMIFRSVR(5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 191

Ferror, Ferror32(5)

Name

Ferror, Ferror32—FML error codes

Synopsis

#include “fml.h”
#include “fml32.h”

Description

192

The numerical value represented by the symbolic name of an error condition is assigned to
Ferror for errors that occur when executing many FML library routines.

The name Ferror expands to a modifiable 1vaiue that has type int, the value of which is set to
a positive error number by several FML library routines. Ferror need not be the identifier of an
object; it might expand to a modifiable 1vaiue resulting from a function call. It is unspecified
whether Ferror isa macro or an identifier declared with external linkage. If a tperrno () macro
definition is suppressed to access an actual object, or if a program defines an identifier with the
name rFerror, the behavior is undefined.

The reference pages for FML routines list possible error conditions for each routine and the
meaning of the error in that context. The order in which possible errors are listed is not significant
and does not imply precedence. The value of Ferror should be checked only after an error has
been indicated; that is, when the return value of the component indicates an error and the
component definition specifies that tperrno () be set. An application that checks the value of
Ferror must include the £m1 .n header file.

Ferror32 provides a similar capability for users of FML32 routines. An application that checks
the value of Ferror32 must include the £m132 . h header file.

The following list shows error codes that may be returned by FML and FML32
routines.

#define FMINVAL 0 /* bottom of error message codes */

#define FALIGNERR 1 /* fielded buffer not aligned */

#define FNOTFLD 2 /* buffer not fielded */

#define FNOSPACE 3 /* no space in fielded buffer */

#define FNOTPRES 4 /* field not present */

#define FBADFLD 5 /* unknown field number or type */

#define FTYPERR 6 /* illegal field type */

#define FEUNIX 7 /* unix system call error */

File Formats, Data Descriptions, MIBs, and System Processes Reference

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Usage

Ferror, Ferror32(5)

FBADNAME 8 /* unknown field name */

FMALLOC 9 /* malloc failed */

FSYNTAX 10 /* bad syntax in boolean expression */
FFTOPEN 11 /* cannot find or open field table */
FFTSYNTAX 12 /* syntax error in field table */
FEINVAL 13 /* invalid argument to function */
FBADTBL 14 /* destructive concurrent access to field table */
FBADVIEW 15 /* cannot find or get view */
FVFSYNTAX 16 /* bad viewfile */

FVFOPEN 17 /* cannot find or open viewfile */
FBADACM 18 /* ACM contains negative value */
FNOCNAME 19 /* cname not found */

Some routines do not have an error return value. Because no routine sets Ferror to zero, an
application can set Ferror to zero, call a routine and then check rerror again to see if an error
has occurred.

In DOS and OS/2 environments, this variable is known as FMLerror.

See Also

See the ErRrRORS section of the individual FML library routines for a more detailed description of
the meaning of the error codes returned by each routine.

Introduction to the C Language Application-to-Transaction Monitor Interface,
tperrordetail (3¢), tpstrerror (3c¢), tpstrerrordetail (3c), Introduction to FML
Functions, F_error, F_error32(3fml)

File Formats, Data Descriptions, MIBs, and System Processes Reference 193

field_tables(d)

Name

field_tables—FML mapping files for field names

Description

The Field Manipulation Language functions implement and manage fielded buffers. Each field
in a fielded buffer is tagged with an identifying integer. Fields that can variable in length (for
example, a string) have an additional length modifier. The buffer then consists of a series of
numeric-identifier/data pairs and numeric-identifier/length/data triples.

The numeric-identifier of a field is called its field identifier and is typedef'd by rLp1D. A field is
named by relating an alphanumeric string (the name) to a FLp1D in a field table.

The original FML interface supports 16-bit field identifiers, field lengths, and buffer sizes. A
newer 32-bit interface, FML32, supports larger identifiers, field lengths, and buffer sizes. All
types, function names, etc. are suffixed with “32” (for example, the field identifier type definition
iS FLDID32).

Field Identifiers

FML functions allow field values to be typed. Currently the following types are supported: char,
string, short, long, float, double, carray (character array), ptr (pointer to a buffer),
rFML32 (embedded FML32 buffer), and view32 (embedded VIEW32 buffer). The ptr, FML32,
and vIew32 types are supported only for the FML32 interface. Constants for field types are
defined in £fml1.h (fm132.h for FML32). So that fielded buffers can be truly self-describing, the
type of a field is carried along with the field by encoding the field type in the FLDID. Thus, a
FLDID is composed of two elements: a field type, and a field number. In 32-bit FML, field
numbers must be between 10,001 and 30,000,000. The numbers 1-10,000 and
30,000,001-33,554,431 are reserved for system use. In 16-bit FML, field numbers must be
between 101 and 8,191. The numbers 1-100 are reserved for system use.

Field Mapping

194

For efficiency, it is desirable that the field name to field identifier mapping be available at
compile time. For utility, it is also desirable that these mappings be available at run time. To
accommaodate both these goals, FML represents field tables in text files, and provides commands
to generate corresponding C header files. Thus, compile time mapping is done by the C
preprocessor, cpp, by the usual #define macro. Run-time mapping is done by the function

File Formats, Data Descriptions, MIBs, and System Processes Reference

field_tables(5)

Fldid () (or r1didasz () for FML32), which maps its argument, a field name, to a field identifier
by consulting the source field table files.

Field Table Files
Files containing field tables have the following format:

e Blank lines and lines beginning with # are ignored.

e Lines beginning with $ are ignored by the mapping functions but are passed through
(without the $) to header files generated by mkf1dandr () (the command name is
mkfldhdr32 () for FML32; see mkfldhdr, mkfldhdr32 (1)). For example, this would
allow the application to pass C comments, what strings, etc. to the generated header file.

e Lines beginning with the string *base contain a base for offsetting subsequent field
numbers. This optional feature provides an easy way to group and renumber sets of related
fields.

e Lines that don't begin with either * nor # should have the form:
name rel-numb type

where:

— name is the identifier for the field. It should not exceed the C preprocessor identifier
restrictions (that is, it should contain only alphanumeric characters and the underscore
character). Internally, the name is truncated to 30 characters, so names must be unique
within the first 30 characters.

— rel-numb iS the relative numeric value of the field. It is added to the current base to
obtain the field number of the field.

— type is the type of the field, and is specified as one of the following: char, string,
short, long, float, double, carray, ptr, FML32, Of VIEW3 2.

Entries are white-space separated (any combination of tabs and spaces).

Conversion of Field Tables to Header Files

The command mk£1dhdr (Or mk£1dhdr32) converts a field table, as described above, into a file
suitable for processing by the C compiler. Each line of the generated header file is of the form:

#define name fldid

where name is the name of the field, and £1did is its field identifier. The field identifier includes
the field type and field number, as previously discussed. The field number is an absolute number,
that is, base + rel-number. The resulting file is suitable for inclusion in a C program.

File Formats, Data Descriptions, MIBs, and System Processes Reference 195

Environment Variables

Functions such as F1did (), which access field tables, and commands such as mkf1dhdr () and
vuform (), which use them, both need the shell variables FL.DTBLDIR and FIELDTBLS
(FLDTBLDIR32 and FIELDTBLS32 for FML32) to specify the source directories and files,
respectively, from which the in-memory version of field tables should be created. FIELDTBLS
specifies a comma-separated list of field table filenames. If FTELDTBLS has no value, f14. tbl is
used as the name of the field table file. The FL.oTBLDIR environment variable is a colon-separated
list of directories in which to look for each field table whose name is not an absolute pathname.
(The search for field tables is very similar to the search for executable commands using the pATH
variable.) If FLDTBLDIR is not defined, it is taken to be the current directory. Thus, if FIELDTBLS
and FLDTBLDIR are not set, the default is to take £14.tb1 from the current directory.

The use of multiple field tables is a convenient way to separate groups of fields, such as groups
of fields that exist in a database from those which are used only by the application. However, in
general field names should be unique across all field tables, since such tables are capable of being
converted to C header files (by the mkf1dhdr command), and identical field names would
produce a compiler name conflict warning. In addition, the function r1did, which maps a name
to a FL.DID, does so by searching the multiple tables, and stops upon finding the first successful
match.

Example

196

The following is a sample field table in which the base shifts from 500 to 700:

employee ID fields are based at 500
*base 500

#name rel-numb type comment

#____ ________ e

EMPNAM 1 string emp's name

EMPID 2 long emp's id

EMPJOB 3 char Jjob type: D,M,F or T
SRVCDAY 4 carray service date

address fields are based at 700

*base 700
EMPADDR 1 string street address
EMPCITY 2 string city

File Formats, Data Descriptions, MIBs, and System Processes Reference

field_tables(5)

EMPSTATE 3 string state
EMPZIP 4 long zip code

The associated header file would be:

#define EMPADDR
#define EMPCITY
#define EMPID (
#define EMPJOB (

((FLDID)41661) /* number: 701 type: string */
(
(
(
#define EMPNAM ((
(
(
(

(

(FLDID)41662) /* number: 702 type: string */
FLDID) 8694) /* number: 502 type: long */
FLDID)16887) /* number: 503 type: char */
FLDID)41461) /* number: 501 type: string */
#define EMPSTATE ((FLDID)41663) /* number: 703 type: string */
#define EMPZIP ((FLDID)8896) /* number: 704 type: long */
#define SRVCDAY (FLDID)49656) /* number: 504 type: carray */

See Also
mkfldhdr, mkfldhdr32 (1)

Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference 197

GWADM(5)

Name

cwapM—Domains gateway administrative server

Synopsis
GWADM SRVGRP = "identifier" SRVID = "number" REPLYQ = "N"
CLOPT = "-A -- [-a {on | off}] [-t {on | off}]"
Description

198

The gateway administrative server (cwapm) is a BEA Tuxedo system-supplied server that
provides administrative functions for a Domains gateway group.

cwapm should be defined in the servERs section of the ussconF1c file as a server running within
a particular gateway group, that is, sRverp must be set to the corresponding GRpNaAME tag
specified in the croups section. The svrRID parameter is also required and its value must consider
the maximum number of gateways allowed within the gateway group.

There should be only one instance of a cwapuM per Domains gateway group, and it should not be
part of the MSSQ defined for the gateways associated with the group. Also, cwapm should have
the REPLYQ attribute set to .

The cropT option is a string of command-line options that is passed to the gwapm when it is
booted. This string has the following format:

CLOPT="-A -- gateway group runtime parameters"

The following run-time parameters are recognized for a gateway group:

-a{on| off}
This option turns o££ or on the audit log feature for this local domain access point. The
default is of £. The dmadmin program can be used to change this setting while the gateway
group is running (see dmadmin (1)).

-t {on| of£}
This option turns of £ or on the statistics gathering feature for the local domain domain
access point. The default is of £. The dmadmin program can be used to change this setting
while the gateway group is running (see dmadmin (1)).

The ecwapu server must be booted before the corresponding gateways.

File Formats, Data Descriptions, MIBs, and System Processes Reference

GWADM(5)

Portability
cwapM is supported as a BEA Tuxedo system-supplied server on all supported server platforms.

Interoperability

cwapM must be installed on BEA Tuxedo release 4.2.1 or later; other machines in the same
domain with a release 4.2.2 gateway can be release 4.1 or later.

Examples

The following example illustrates the definition of the administrative server in the uBBCONFIG
file. This example uses the cwrpoMaAIN gateway process to provide connectivity with another
BEA Tuxedo domain.

#

*GROUPS

DMADMGRP GRPNO=1

gwgrp GRPNO=2

#

*SERVERS

DMADM SRVGRP="DMADMGRP" SRVID=1001 REPLYQ=N RESTART=Y GRACE=0
GWADM SRVGRP="gwgrp" SRVID=1002 REPLYQ=N RESTART=Y GRACE=0

CLOPT="-A -- -a on -t on"
GWTDOMAIN SRVGRP="gwgrp" SRVID=1003 RQADDR="gwgrp" REPLYQ=N RESTART=Y MIN=1
MAX=1
See Also

dmadmin (1), tmboot (1), DMADM (5), DMCONFIG (5), servopts (5), UBBCONFIG(5)
Administering a BEA Tuxedo Application at Run Time
Setting Up a BEA Tuxedo Application

Using the BEA Tuxedo Domains Component

File Formats, Data Descriptions, MIBs, and System Processes Reference 199

GWTDOMAIN(3)

Name

GWTDOMAIN—TDomain gateway process

Synopsis

GWTDOMAIN SRVGRP = "identifier" SRVID = "number" RQADDR = "queue_name"
REPLYQ = value RESTART = Y [MAXGEN = value] [GRACE = value]

CLOPT = "-A -- [-s][-U inbound-message-size-limit-in-bytes 1"

Description

200

GWTDOMAIN is the domain gateway process that provides interdomain communication.
GWTDOMAIN processes communicate with other cwrpoMaTN processes in remote domains.

Note: From Tuxedo release 9.0 and later, the cwrpoMaIn default is multithread mode. This
default mode is only useful for machines with multiple CPUs.

Domain gateways are described in the serveRs section of the uBsconr1c file and the
BDMCONFIG file. Domain gateways must be always associated with a particular gateway group,
that is, SRvGRP must be set to the corresponding crpNaME tag specified in the croups section.

The svrID parameter is also required and its value must consider the maximum number of
gateways allowed within the domain group. The REsTART parameter should be set to v. The
REPLYQ parameter may be set to v or .

The cropT option is a string of command-line options that is passed to ewrpomMaTn when it is
booted. The following run-time parameter is recognized for a gateway process:

=S
This optional parameter turns off the default multithread mode. On a single CPU machine,
turning off multithread mode helps to avoid possible negative performance impact.

-U inbound-message-size-limit-in-bytes
This option specifies the upper-size limit of incoming network message for
GWTDOMAIN. The message size includes internal data items for Tuxedo (should be less
then 1024 bytes) and user data. The limit also takes effect when message is compressed,
i.e., it also checks the original message size.

The ewTpoMAIN process must be in the same group as the gwapm (5) process, with the cwapm
listed first. Multiple cwrpoma1N processes can be configured for a domain; each must be
configured in a different BEA Tuxedo group.

File Formats, Data Descriptions, MIBs, and System Processes Reference

GWTDOMAIN(5)

Examples
The following example shows the definition of a Domains gateway group in the useconr1G file.

*GROUPS

DMADMGRP LMID=machl GRPNO=1

gwgrp LMID=machl GRPNO=2

*SERVERS

DMADM SRVGRP="DMADMGRP" SRVID=1001 REPLYQ=N RESTART=Y MAXGEN=5 GRACE=3600
GWADM SRVGRP="gwgrp" SRVID=1002 REPLYQ=N RESTART=Y MAXGEN=5 GRACE=3600
GWTDOMAIN SRVGRP="gwgrp" SRVID=1003 RQADDR="gwgrp" REPLYQ=N RESTART=Y
MAXGEN=5 GRACE=3600 CLOPT="-A -r -- -U 65536"

Additional examples are available in the “EXAMPLES” sections of uBBcoNFIG (5) and

DMCONFIG (5).

See Also

tmadmin (1), tmboot (1), DMADM(5), DMCONFIG (5), GWADM (5), servopts (5),
UBBCONFIG(5)

Using the BEA Tuxedo Domains Component
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time

File Formats, Data Descriptions, MIBs, and System Processes Reference 201

ISL(3)

Name

Enables access to BEA Tuxedo objects by remote BEA Tuxedo clients using 11OP.

Synopsis

ISL SRVGRP="identifier"

SRVID="number"

CLOPT="[-A
[-C
[-d

[-H

] [servopts options] -- -n netaddr
{detect |warn|none}]

device]

principal_name]

{client|handler |both|none}]

minh]

maxh]

Client-timeout]

mpx-factor]

external -netaddr]

#options for Outbound IIOP

[-0]

[-o
[-s

[-u

outbound-max-connections]
Server-timeout]

out-mpx-users]

#options for SSL

[-al

[-R
[-S
[-v
[-z

[-2

Description

renegotiation-intervall]
secure port]

{detect |warn|none}]
[0|40]56|128]1]
[0]40]56]1281]"

The 11OP Server Listener (ISL) is a BEA Tuxedo-supplied server command that enables access
to BEA Tuxedo objects by remote BEA Tuxedo clients using 11OP. The application administrator
enables access to the application objects by specifying the 11OP Server Listener as an application

202 File Formats, Data Descriptions, MIBs, and System Processes Reference

ISL(5)

server in the sErvERS section. The associated command-line options are used to specify the
parameters of the IIOP Server Listener and 11OP Server Handlers.

The location, server group, server 1p, and other generic server-related parameters are associated
with the ISL using the standard configuration file mechanisms for servers. ISL command-line
options allow for customization.

Each ISL booted as part of an application facilitates application access for a large number of
remote BEA Tuxedo clients by providing access via a single, well-known network address. The
I1OP Server Handlers are started and stopped dynamically by the ISL, as necessary, to meet the
incoming load.

For joint client/servers, if the remote joint client/server ORB supports bidirectional 11OP
connections, the ISL can use the same inbound connection for outbound invokes to the remote
joint client/server. The ISL also allows outbound invokes (outbound 110P) to objects located in
a joint client/server that is not connected to an ISH. This capability is enabled when the -o option
is specified. The associated command-line options allow configuration of outbound 110P
support:

Parameters
-A
Indicates that the ISL is to be booted to offer all its services. This is a default, but it is
shown to emphasize the distinction between system-supplied servers and application
servers. The latter can be booted to offer only a subset of their available services. The
double-dash (--) marks the beginning of parameters that are passed to the ISL after it has
been booted.

You specify the following options in the cLopr string after the double-dash (--) in the cLopT
parameters:

-n netaddr
Specifies the network address to be used by a server listener to accept connections from
remote CORBA clients. The remote client must set the environment variable (ToBJADDR)
to this value, or specify the value in the Bootstrap object constructor. See the C++
Programming Reference for details. This is the only required parameter.

TCP/IP addresses must be specified in one of the following two formats:

"/ /hostname:port_number"
“//# . # . # . #:port_number"

In the first format, the domain finds an address for hostname using the local name
facilities (usually DNS). The host must be the local machine, and the local name

File Formats, Data Descriptions, MIBs, and System Processes Reference 203

resolution facilities must unambiguously resolve hostname to the address of the local
machine.

Note: The hostname must begin with a letter character.

In the second format, the "#.#.#.#" is the dotted decimal format. In dotted decimal
format, each # must be a number from 0 to 255. This dotted decimal number represents
the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which the domain
process listens for incoming requests. port_number can be a number between 0 and
65535 or a name. If port_number is a name, it must be found in the network services
database on your local machine.

Note: The Java Tobj_Bootstrap Object uses a short type to store the port_number.
Therefore, you must use a port_number in the range of 0 to 32767 if you plan to
support connections from Java clients.

Note: The network address that is specified by programmers in the Bootstrap constructor or
in TOBJADDR must exactly match the network address in the application’s uBBCONF1G
file. The format of the address as well as the capitalization must match. If the
addresses do not match, the call to the Bootstrap constructor will fail with a seemingly
unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:=3500 in the 1sL.
command line option string, specifying either //192_.12_.4_6:3500 or
//trixie:3500 in the Bootstrap constructor or in TOBJADDR will cause the
connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows NT systems, see the host system's Network control
panel to determine the capitalization used.

Note: Unlike the BEA Tuxedo system Workstation Listener (WSL), the format of the
network addresses is limited to / /host :port. The reason for this limitation is that
the host name and port number are used by BEA Tuxedo servers; the host name does
not appear as such in the hexadecimal format, and it could only be passed to the
servers using the dotted IP address format.

[-a]
Specifies that certificate-based authentication should be enabled when accepting an SSL
connection from a remote application.

204 File Formats, Data Descriptions, MIBs, and System Processes Reference

ISL(5)

[-C detect|warn|none]
Determines how the 11OP Listener/Handler will behave when unofficial connections are
made to it. The default value is detect.

The official way for the CORBA client to connect to the 11OP Listener/Handler is via a
Bootstrap object. The unofficial connection is established directly from an IOR. For
example, a client could connect to one I1OP Listener/Handler via a Bootstrap object and
then, perhaps inadvertently, connect to a second I1OP Listener/Handler by using an IOR
that contains the host and port of the second I1OP Listener/Handler. Typically, this is not
the case. Usually, the client uses IORs that contain the host and port of the 11OP
Listener/Handler that the client connected to via a Bootstrap object. Use of such IORs
does not cause an additional connection to be made.

Caution: The use of unofficial connections can cause problems for remote client applications
that use transactions. The application may have the notion that invocations on both
the official and unofficial connections within the same transaction have succeeded;
however, in reality, only invocations on the official connection are ACID (Atomicity,
Consistency, Isolation, and Durability).

A value of detect causes the ISL/ISH to raise a NO_PERMISSION exception when an
unofficial connection is detected. A value of warn causes the ISL/ISH to log a message to
the user log exception when an unofficial connection is detected; no exception will be
raised. A value of none causes the ISL/ISH to ignore unofficial connections.

[-d devicel]
Specifies the device filename used for network access by the server listener and its server
handlers. This parameter is optional because some transport providers (for example,
sockets) do not require a device name. However, other providers (for example, TLI) do
require a device name. In the case of TLI, this option is mandatory. There is no default for
this parameter. (This does not apply to Windows 2003 systems.)

[-E principal_ name]
An optional parameter that indicates the identity of the principal that is required in order
to establish a trusted connection pool. A trusted connection pool can only be established
if a CORBA application is configured to require users to be authenticated.

If a remote client application attempts to propagate per-request security information over
a connection that is not part of a trusted connection pool, the accompanying propagated
security information will be ignored.

[-K {client|handler |both|none}]
Directs the client, or the ISH process, or both, to activate the network provider's
KEEPALIVE option. This option improves the speed and reliability of network failure

File Formats, Data Descriptions, MIBs, and System Processes Reference 205

206

detection by actively testing an idle connection’s state at the protocol stack level. The
availability and timeout thresholds for this feature are determined by operating system
tunable parameters.

A value of client configures this option for the client; a value of handler configures
this option for the ISL; and a value of both will configure both sides of the connection.
The default value is none, in which case neither side has the kEEPALIVE option
configured.

Note: The keEEPALIVE interval is an operating system parameter, so changing the value

affects any other applications that enable keepALIVE. Many platforms have a
two-hour default value that may be longer than desired.

This option is not available on all platforms. A userlog warning message is generated if
the kEEPALTVE option is specified but is not available on the ISH's machine. If
KEEPALIVE IS requested but is not available on the client’s machine, the setting is ignored.

[-m minh]

Specifies the minimum number of handlers that should be available in conjunction with
this ISL at any given time. The default is 0. The ISL will start this many ISHs immediately
upon being booted and will not deplete the supply of ISHs below this number until the
administrator issues a shutdown to the ISL. The default value for this parameter is 0. The
legal range is between 0 and 255.

[-M maxh]

Specifies the maximum number of handlers that should be available in conjunction with
this ISL at any given time. The Handlers are started as necessary to meet the demand of
remote BEA Tuxedo clients attempting to access the system. The default value for this

parameter is equal to the setting for maxwscr.zENTS on the logical machine, divided by the
multiplexing factor for this ISL (see -x option below), rounded up by one. The legal range
for this parameter is between 1 and 4096. The value must be equal to or greater than minh.

[-T Client-timeout]

Specifies the inactive client timeout option. The inactive client timeout is the time (in
minutes) allowed for a client to stay idle. If a client does not make any requests within this
time period, the I10OP Listener/Handler disconnects the client. If this argument is not given
or is set to 0, the timeout is infinite.

[-x mpx-factor]

This is an optional parameter used to control the degree of multiplexing desired within
each ISH. The value for this parameter indicates the number of remote BEA Tuxedo
clients that can be supported simultaneously by each ISH. The ISH ensures that new
handlers are started as necessary to handle new remote BEA Tuxedo clients. This value

File Formats, Data Descriptions, MIBs, and System Processes Reference

ISL(5)

must be greater than or equal to 1 and less than or equal to 4096. The default value for this
parameter is 10.

[-H external netadder]

Specifies the external network address to be set as the host and port in interoperable object
references returned to clients of the ISL. It has the same format as the ISL CLOPT -n
netaddr option. This feature is useful when an I1OP, or remote, client needs to connect
to an ISL through a firewall.

This option (uppercase letter O) enables outbound I1OP to objects that are not located in
a client that is connected to an ISH. Since the -o option requires a small amount of extra
resources, the default is to not allow outbound I10P.

[-o outbound-max-connections]

This option (lowercase letter 0) specifies the maximum number of outbound connections
that each ISH may have. In effect, it limits the number of simultaneous Outbound 11OP
sockets that any single ISH under the control of this ISL will have active at one time.

This option requires that the —o (uppercase letter O) option is also specified. The value of
this option must be greater than 0, but not more than 4096. An additional requirement is
that the value of this option, (outbound-max-connections) times the maximum number
of handlers, must be less than 32767. The default for this option is 20.

[-R renegotiation-interval]

Specifies the renegotiation internal in minutes. If a connection does not have a
renegotiation in the specified interval, the 11OP Listener/Handler will request that the
client renegotiate the session for inbound connections or actually perform the
renegotiation in the case of outbound connections. The default is 0 minutes which results
in no periodic session renegotiations.

[-S secure-port]

Specifies the port number that the 11OP Listener/Handler should use to listen for secure
connections using the SSL protocol. You can configure the I1OP Listener/Handler to
allow only secure connections by setting the port numbers specified by the -s and -n
options to the same value.

[-s Server-timeout]

Server-timeout is the time, in minutes, allowed for a remote server to remain idle. If a
remote server does not receive any requests within this time period, the ISL disconnects
the outbound 11OP connection to the server. The ISH reconnects to the remote server on
subsequent requests. This option can be used for server platforms that are unstable. Note
that this is a best-attempt value in that the ISL does not disconnect the connection before
this time is up, but does not guarantee to disconnect the connection once the exact time

File Formats, Data Descriptions, MIBs, and System Processes Reference 207

208

has elapsed. This option requires that the —o (uppercase letter O) option is also specified.
The value must be greater than or equal to 1. If this option is not specified, the default is
60 (one hour).

[-u out-mpx-users]

An optional parameter used to control the degree of outbound multiplexing desired within
each ISH. The value for this option indicates the number of outbound 11OP users (native
clients or servers) that can be supported simultaneously by each outbound I10P
connection in the ISH. The ISL ensures that new ISHSs are started, as necessary, to handle
new users up to the value of this option (out-mpx-users). This option requires that the
-0 (uppercase letter O) option is also specified. This option must be greater than 0 (zero),
but not more than 1024; the default value is 10.

[-v {detect|warn|none}]

Determines how the 11OP Listener/Handler will behave when a digital certificate for a
peer of an outbound connection initiated by the BEA object request broker (ORB) is
received as part of the Secure Sockets Layer (SSL) protocol handshake. The validation is
only performed by the initiator of a secure connection and confirms that the peer server is
actually located at the same network address as specified by the domain name in the
server’s digital certificate. This validation is not technically part of the SSL protocol but
is similar to the check done in web browsers.

A value of detect causes the BEA ORB to verify that the host specified in the object
reference used to make the connection matches the domain name specified in the peer
server’s digital certificate. If the comparison fails, the BEA ORB refuses the authenticate
the peer and drops the connection. The detect value is the default value.

A value of warn causes the BEA ORB to verify that the host specified in the object
reference used to make the connection matches the domain name specified in the peer’s
digital certificate. If the comparison fails, the BEA ORB logs a message to the user log
but continues to process the connection.

A value of none causes the BEA ORB to not perform the peer validation and to continue
to process the connection.

The -v parameter is only available if licenses for SSL and LLE (link level encryption) are
installed.

[-z |0]|40|56]128]]

Specifies the minimum level of encryption when establishing a network connection
between a client and the 11OP Listener/Handler. 0 means no encryption while 40, 56, and
128 specify the length (in bits) of the encryption key. If this minimum level of encryption
cannot be met, a connection will not be established. This option is only available if
licenses for SSL and LLE (link level encryption) are installed.

File Formats, Data Descriptions, MIBs, and System Processes Reference

ISL(5)

[-z |0]|40]56]128]]
Specifies the maximum level of encryption when establishing a network connection
between a client and the 11OP Listener/Handler. 0 means no encryption while 40, 56, and
128 specify the length (in bits) of the encryption key. The default is whatever capability
is specified by the license. This option is only available if licenses for SSL and LLE (link
level encryption) are installed.

Portability

The I10OP Server Listener is supported as a BEA Tuxedo-supplied server on UNIX and Microsoft
Windows NT operating systems.

Interoperability
The ISL works with any I1OP compliant ORB.

Depending on the type of remote object and the desired outbound I1OP configuration, you may
have to perform additional programming tasks. Table 36 lists the requirements for each type of
object and outbound I1OP configuration.

Table 36 Programming Requirements for Using Outbound I10P

Types of Asymmetric Paired-connection Requirements Bidirectional Requirements
Objects Requirements
Remote joint ~ SetTsL cLopT Use the Use the
client/servers -0 option. Tobj_Bootstrap::register CORBA::0RB::create_policy
_callback_port method to method to set BiDirPolicy on the
register the callback port. POA.
Foreign Set1sL cLopT Not applicable. If the foreign ORB supports the POA
(non-CORBA) -0 option. and BiDirPolicy, use the
ORBs CORBA: :ORB: :create_policy
method to set BiDirPolicy on the
POA.

Remote clients Remote clients are not servers, so outbound I1OP is not possible.

Native joint Outbound I1OP is not used.
client/servers

Native clients ~ Outbound I1OP is not used.

File Formats, Data Descriptions, MIBs, and System Processes Reference 209

Network Addresses

Suppose the local machine on which the ISL is being run is using TCP/IP addressing and is named
backus . company . com, With address 155.2.193.18. Further suppose that the port number at
which the ISL should accept requests is 2334. The address specified by the -1 option could be:

//155.2.193.18:2334
//backus.company.com:2334
Examples
*SERVERS
ISL SRVGRP="ISLGRP" SRVID=1002 RESTART=Y GRACE=0

CLOPT="-A -- -n //piglet:1900 -d /dev/tcp"

210 File Formats, Data Descriptions, MIBs, and System Processes Reference

KAUTHSVR(5)

KAUTHSVR(3)

Name
kaUuTHSVR—Tuxedo Kerberos-based network authentication server

Synopsis
KAUTHSVR SRVGRP=SECGRP SRVID=100 GRACE=0 MAXGEN=2 CLOPT="-A -- -k
/etc/krbauth.kt -p krbauth@host.yourcomany.com"

Description
KAUTHSVR is a Kerberos-based Tuxedo authentication server. Its purpose is two fold:

e it authenticates a user with the kerberos system, and

e it uses the accompanying user information to create a user AppkEY to handle Tuxedo
Access Control.

KAUTHSVR must be manually configured in the useconr1c file in order to complete Tuxedo user
authentication if you want to use Kerberos the default authentication mechanism. There is a slight
difference in how xauTasvr is configured for UNIX and Windows platforms. For more
information, see “Using the Kerberos Authentication Plug-in.”

Principal Name and UNIX Key Table Configuration

Kerberos allows you to store principal names and service keys in a local file based database called
a Key Table. This key table allows services running on a host to authenticate themselves to the
Key Distribution Center. xauTasvr does not replace Kerberos Key Distribution Center
authentication; however, it does replace AuTHSVR (5) and LAUTHSVR (5) when you want to use
Kerberos-based authentication.

Principal Name Configuration

KAUTHSVR must have its own principal name associated with it. To specify which principal name
KAUTHSVR USes, you must configure it in the uBBconr1c file. The cropT option uses the -p
parameter to establish its principal name. For example, -p <principal name>. The principal name
and its password must be configured in the Kerberos database and the local key table.

Note: The principal name can also be configured by using the KAUTHSVRPRINC parameter or
the same name environment variable. For more information, see “Using the Kerberos
Authentication Plug-in.”

File Formats, Data Descriptions, MIBs, and System Processes Reference 21

UNIX Key Table Configuration

Before a server can be setup to use Kerberos, you must setup a key table on a host running the
server. KAUTHSVR must access the server Key Table (xtaB) when it is booted. There are two
ways to specify the server key table:

e you can use the cr.opT option to tell kKauTHSVR Where its XTaB is. The KAUTHSVR CLOPT
option uses the -k parameter to specify where kTas is located. For example,”-k <key table
full path name>".

e you can also specify the kTar location as an environmental variable. For example,
"KrRB5_KTNAME=<key table full path name>".

Note: Any updates made to the key table do not affect the Kerberos database. If you change the
keys in the key table, you must also make the corresponding changes to the Kerberos
database.

Account Password on Windows Platform

212

When xauTHSVR is configured on a Windows platform a key table is not needed. However, it
must have an account password. There are two ways to setup a KAUTHSVR password:

e Configure in the uBBconFIG file SERVERS section related with kauTasvR. For example:

Listing 2 KAUTHSVR Example in UBBCONFIG

*SERVERS

KAUTHSVR

SRVGRP=AUTHGRP SRVID=10

SEC_PRINCIPAL_NAME="kauthsvc " SEC_PRINCIPAL_PASSVAR=passvar
CLOPT="-A -- -p kauthsvc/bjwin2k3.bea.com@KRB.BEA.COM"

When TuxcoNFIG is created, you must input the password at the command prompt.
Note: The name kauthsvc in SEC_PRINCIPAI_NAME iS used as an example only.

e Specify in the kauTHSVR environment variable KAUTHSVRPASS

File Formats, Data Descriptions, MIBs, and System Processes Reference

KAUTHSVR(5)

See Also
AUTHSVR (5)
LAUTHSVR (5)

“Using the Kerberos Authentication Plug-in,” in the Using Security in ATMI Applications

Kerberos Introduction from MIT (http://web.mit.edu/kerberos/www/)

File Formats, Data Descriptions, MIBs, and System Processes Reference 213

http://web.mit.edu/kerberos/www/

langinfo(5)

Name
langinfo—Language information constants

Synopsis

#include <langinfo.h>

Description

This header file contains the constants used to identify items of 1anginfo data. The mode of
items iS given in nl_types(5).

DAY_1
Locale's equivalent of “sunday”

DAY_2
Locale's equivalent of “monday”

DAY_3
Locale's equivalent of “tuesday”

DAY 4
Locale's equivalent of “wednesday”

DAY_5
Locale's equivalent of “thursday"”’

DAY_6
Locale's equivalent of “friday”

DAY_7
Locale's equivalent of “saturday”

ABDAY 1
Locale's equivalent of “sun”

ABDAY_2
Locale's equivalent of “mon”

ABDAY_3
Locale's equivalent of “tue”

214 File Formats, Data Descriptions, MIBs, and System Processes Reference

ABDAY_4
Locale's equivalent of “wed”

ABDAY_5
Locale's equivalent of “thur”

ABDAY_6
Locale's equivalent of “fri”

ABDAY_7
Locale's equivalent of “sat”

MON_1
Locale's equivalent of “january”

MON_2
Locale's equivalent of “february”

MON_3
Locale's equivalent of “march”

MON_4
Locale's equivalent of “april”

MON_5
Locale's equivalent of “may”

MON_6
Locale's equivalent of “june”

MON_7
Locale's equivalent of “july”

MON_8
Locale's equivalent of “august”

MON_9
Locale's equivalent of “september”

MON_10
Locale's equivalent of “october”

MON_11
Locale's equivalent of “november”

File Formats, Data Descriptions, MIBs, and System Processes Reference

langinfo(5)

215

MON_12
Locale's equivalent of “december”

ABMON_ 1
Locale's equivalent of “jan”

ABMON__ 2
Locale's equivalent of “feb”

ABMON_ 3
Locale's equivalent of “mar”

ABMON_ 4
Locale's equivalent of “apr”

ABMON_5
Locale's equivalent of “may”

ABMON_ 6
Locale's equivalent of “jun”

ABMON_7
Locale's equivalent of “jul”

ABMON__8
Locale's equivalent of “aug”

ABMON_ 9
Locale's equivalent of “sep”

ABMON_10
Locale's equivalent of “oct”

ABMON_11
Locale's equivalent of “nov”

ABMON_12
Locale's equivalent of “dec”

RADIXCHAR
Locale's equivalent of “.”

THOUSEP
Locale's equivalent of “,”

216 File Formats, Data Descriptions, MIBs, and System Processes Reference

langinfo(5)

YESSTR
Locale's equivalent of “yes”

NOSTR
Locale's equivalent of “no”

CRNCYSTR
Locale's currency symbol

D_T_FMT
Locale's default format for date and time

D_FMT
Locale's default format for the date

T _FMT
Locale's default format for the time

AM_STR
Locale's equivalent of “AM”

PM_STR
Locale's equivalent of “PM”

This information is retrieved by n1_1langinfo (3c).

The items are retrieved from a special message catalog named LancINFoO, which should be
generated for each locale supported and installed in the appropriate directory (see
mklanginfo(l))

See Also

mklanginfo(1l),nl_langinfo(3c), strftime (3c),nl_types(5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 217

LAUTHSVR(3)

Name

LauTHSVR—WebLogic Server embedded LDAP-based authentication server

Synopsis

LAUTHSVR SRVGRP="identifier" SRVID=number other._ parms CLOPT="-A -- -f
filename"

Description

218

LAUTHSVR i a System/T provided server that offers the authentication service while the user
security information is located in WebLogic Server. This server may be used in a secure
application to provide per-user authentication when clients join the application. This server
accepts service requests containing TPINIT typed buffer as a user password and validates it
against the configured password that is stored in WebLogic Server. If the request passes
validation, then an application key is returned with a successful return as the ticket for the client
to use.

e [f a user belongs to the “Administrators” group in WebLogic Server, then LAUTHSVR
will return Tpsysapwm as its application key.

o If a user belongs to the “Operators” group in WebLogic Server, then LAUTHSVR will
return Tpsysop as its application key.

Note: The application keys that correspond to tpsysadm and tpsysop must be 0x80000000
and 0xC0000000, respectively.

By default, the file $TUxDIR/udataobj/tpldap is used for obtaining LDAP configuration
information. The file can be overridden by specifying the file name, usinga "-£ filename”
option in the server command line option. For example, cLopT="-A --
-f/usr/tuxedo/myapp/myldap”. There is no automatic propagation of this configuration file
from the master machine to other machines in the Tuxedo UBBCONFIG file. To use multiple
LAUTHSVRs, you must provide separate configurations on the various machines.

For additional information pertaining to LAUTHSVR, see “LAUTHSVR Additional Information”
on page 219.

File Formats, Data Descriptions, MIBs, and System Processes Reference

LAUTHSVR(5)

SECURITY USER_AUTH

If sEcURITY is set to usEr_auTH or higher, per-user authentication is enforced. The name of the
authentication service can be configured for the application. If not specified, it defaults to
auTHsvc which is the default service advertised for LAUTHSVR.

An authentication request is authenticated against only the first matching user name in the LDAP
database. It does not support authentication against multiple entries.

SECURITY ACL or MANDATORY_ACL

If SECURITY is set to ACL Or MANDATORY_ACL, per-user authentication is enforced and access
control lists are supported for access to services, application queues, and events. The name of the
authentication service must be autasvc which is the default service advertised by LauTusVR for
these security levels.

The application key that is returned by the LauTHsVR is the user identifier in the low-order 17
bits. The group identifier is the next 14 bits (the high-order bit is reserved for the administrative
keys).

LAUTHSVR Additional Information

Portability
LAUTHSVR i$ supported as a Tuxedo System/T-supplied server on non-Workstation platforms.

Examples
Using LAUTHSVR
*RESOURCES
AUTHSVC " . .AUTHSVC"

SECURITY ACL

*SERVERS
LAUTHSVR SRVGRP="AUTH" SRVID=100
CLOPT="-A -- -f /usr/tuxedo/udataobj/tpldap"

File Formats, Data Descriptions, MIBs, and System Processes Reference 219

METAREPOS(5)

Name

METAREPOS - Tuxedo service metadata repository buffer format

#include <fml32.h>
#include <fmll1632.h> /* optional */
#inlcude <tpadm.h>

Description

220

This reference page describes the interfaces through which an administrator, operator or user
interacts with the defined components of the Tuxedo metadata repository. The service metadata
repository can be programmatically accessed and updated through the . TmMETAREPOS Service
offered by TMMETADATA (5) Server or can be accessed and updated directly using

tpgetrepos (3c) and tpsetrepos (3c).

Programmatic access to the Tuxedo service metadata repository is accomplished through the use
of rm132 buffers very similar in format to those used by the Tuxedo m1B. In fact, the Tuxedo
service metadata repository uses and supports the same kind of generic M1B (5) FML32 input and
output buffer fields:

Input buffer fields
TA_OPERATION, TA_CLASS, TA_CURSOR, TA_OCCURS, TA_FLAGS, TA_FILTER,
TA_MIBTIMEOUT, and TA_CURSORHOLD

Output buffer fields
TA_CLASS, TA_OCCURS, TA_MORE, TA_CURSOR, and TA_ERROR

Note: The METAREPOS has the following generic m1B (5) field limitations:

e Only m1B_PrREIMAGE (a TA_FLAGS field flag) is used in metadata repository
operation. The other two flags, m1B_r.0car, and MIB_SELF, are omitted.

e TA_MIBTIMEOUT i$ ignored by .TMMETAREPOS Service, tpsetrepos (3c) and
tpgetrepos (3c).

e TA_CURSORHOLD does not work with tpgetrepos ().

® TA_ERROR applies specific definitions to generic return codes
when initiated with a metadata repository setting operation. The
generic codes are defined as follows:

TAOK - No service updates were made to the metadata repository

TAUPDATED - All service updates were made to the metadata repository

File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS(5)

TAPARTIAL - Partial service updates were made to the metadata repository

FML32 fields related to specific metadata repository attributes use the prefix Ta_repos followed
by the name of the repository keyword in upper case. For more information on Metadata
Repository service and parameter key words, see tmloadrepos (1) .

METAREPOS Attribute Fields
Service-Level Attribute Fields

METAREPOS Service-level attribute fields are used to describe services. The TA_REPOSSERVICE
attribute is a key field that is used to name services and uniquely identify them for retrieval or
get Operations. TA_REPOSSERVICE can accept regular expressions as defined in rex (1) . For
example, using the regular expression value " *" with TA_ REPOSSERVICE retrieves all service
information in a metadata repository.

For set operations, TA_REPOSSERVICE must include a Tuxedo service name and cannot be
interpreted as a regular expression.

For more information on service-level keywords, see Managing The Tuxedo Service Metadata
Repository, Creating The Tuxedo Service Metadata Repository.

Parameter-Level Attribute Fields

METAREPOS parameter-level attribute fields are used to describe service parameters. Common
occurrence numbers are used to associate different attribute fields as part of a common
parameter.The nth service parameter is described by the occurrence number n-1 of all
parameter-level attribute fields.

For example, the first service parameter is described by the first occurrence of the attribute field
as “0”; the second service parameter is described by the second occurrence of the attribute field
as “1”, and so on.

If a specific attribute field occurrence is required by a later numbered parameter, but not by one
or more earlier numbered parameters, you must specify a value for the earlier attribute field
occurrences so that the later occurrences are properly numbered.

Sub-Parameter Values
TA_REPOSEMBED is used to provide information about service parameters that have
sub-parameter values, or in other words, embedded data.

Because the Tuxedo service metadata repository requests input and output in
FML32 format, when Ta_rePosEMBED is specified with sub-parameter values
(other than the default empty record), it must contain an FML32 record. This
FML32 record consists of parameter-level fields corresponding to each

File Formats, Data Descriptions, MIBs, and System Processes Reference 221

sub-parameter (ML field or view element) in the record described by the
associated Ta_reprosparam field.

The Ta_REPOSEMBED parameter value corresponds to the information contained
between matching parentheses ~ (» and *) »in the repository_input file or the
unloaded -t repository._file. For more information on the
repository_input file and repository file, S€€ tmloadrepos (1) and
tmunloadrepos (1).

Table 37 METAREPOS Attribute Field Table

Attribute Field Level Type Permissions Values Default

TA_REPOSSERVICE service string rwxr--r-- string[1..15] N/A

(x) (r) (*)

TA_STATE (k) N/A string rwxr-xr-- GET:"VAL" N/A
SET:"{NEW | unset N/A
| 1INV}

TA_REPOSTUXSERVICE service string rwXr--r-- string[1..15] N/A

TA_REPOSSEVICETYPE service string rwxr--r-- “{service|oneway| service
queue}”

TA_REPOSEXPORT service string rwxr--r-- "{Y | N} "Y"

TA_REPOSINBUF service string rwxr--r-- string[l...8] N/A

TA_REPOSOUTBUF service string rwXr--r-- string[0...8] N/A

TA_REPOSINVIEW service string rwxr--r-- string[0..16] N/A

TA_REPOSOUTVIEW service string rwXr--r-- string[0..16] N/A

TA_ service string rwxr--r-- string[0..1024] N/A

REPOSSVCDESCRIPTION

TA_REPOSSENDQSPACE service string rwXr--r-- string[0..15] N/A

TA_REPOSSENDQUEUE service string rwxr--r-- string[0..15] N/A

TA_REPOSRPLYQUEUE service string rwXr--r-- string[0..15] N/A

TA_REPOSERRQUEUE service string rwxr--r-- string[0..15] N/A

TA_REPOSRCVQSPACE service string rwXr--r-- string[0..15] N/A

222 File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS(5)

Table 37 METAREPOS Attribute Field Table (Continued)

Attribute Field Level Type Permissions Values Default
TA_REPOSRCVQUEUE service string rwxr-r-- string[0..15] N/A
TA_REPOSVERSION service string rwxr--r-- string[0..1024] N/A
TA_REPOSATTRIBUTES service string rwWXr--r-- string[0..1024] N/A
TA_REPOSFIELDTBLS service string rwxr--r-- string[0..1024] N/A
TA_REPOSPARAM parameter string rwxr-r-- string[l..32] N/A
TA_REPOSTYPE parameter string = rwxr--r-- "{ byte | short | N/A

integer | float |
double | string |
carray | dec_t |
xml | ptr | fml32
| view32 |
mbstring }

TA_REPOSSUBTYPE parameter string = rwxr--r-- string[0..32] N/A

TA_REPOSACCESS parameter string rwxr--r-- "{ in | out | N/A
inout | noaccess }

TA_REPOSCOUNT parameter long rwXr--r-- 0<=num<=32767 1
TA_REPOSPARAMDES parameter string = rwxr--r-- string[0...1024] N/A
CRIPTION

TA_REPOSSIZE parameter long IWXr--r-- O<=num N/A
TA_REPOSREQUIRED parameter long TWXr--I-- 0<=num<=32767 N/A
COUNT

TA_REPOSFLDNUM parameter long IWXr--r-- O<=num N/A
TA_REPOSFLDID parameter long r--r--r-- 0<=num N/A
TA_REPOSVFBNAME parameter string rwXr--r-- string[0...30] N/A
TA_REPOSVFLAG parameter string rwxr--r-- stringl[0...6] N/A
TA_REPOSVNULL parameter String rwxr--r-- string[0...32] N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 223

Table 37 METAREPOS Attribute Field Table (Continued)

Attribute Field Level Type Permissions Values Default
TA_REPOSEMBED parameter FML32 rwxr--r-- Empty
record

(x) - Regular expression GET key field

(r) - Required field for object creation(SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations
(k) - GET key

METAREPOS Attribute Semantics

TA_REPOSSERVICE: stringl[l..15]
Service name. This attribute accepts regular expressions as defined in rex (1) for
metadata repository service information retrieval. Regular expressions cannot be used to
update metadata repository service information.

TA_STATE:

GET: "{ VALid }"
A GET operation retrieves information for the selected service object(s). The
following state(s) define Ta_sTATE returned in response to a GET request.

VALid Service object is defined. Note that this is the only valid state for
service metadata repository.

SET: "{ NEW | unset | INvalid }"
A seT operation updates information for the selected service object(s). The
following state(s) define Ta_sTATE set in a set request. States not listed cannot be
set

NEW Create new service object. Successful return leaves the object in
the VALId state.

224 File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS(5)

unset Modify an existing service object. This combination is not
allowed in the INValid state. Successful return leaves the object
state unchanged.

INValid Delete service object. State change allowed only when in the
VAL.id state. Successful return leaves the object in the INValid
state.

TA_REPOSTUXSERVICE: string[1..15]
Actual tuxedo service name. By default, it has the same value as
TA_REPOSSERVICE.

TA_REPOSSERVICETYPE: "{service|oneway|queue}"
Service invocation type. This term comes from the Tuxedo Control.
-"service" supports synchronous request/response.
- "oneway" supports request without response.
-"queue" supports tpenqueue and tpdequeue.

TA_REPOSEXPORT: "{ Y | N }"
Indicates whether a service object is available or not. This attribute is for Jolt Repository
compatibility only. The default value is "Y".

TA_REPOSINBUF: string[l... 8]
The service(s) input buffer type. Valid values : Fu1, FML32, VIEW, VIEW32, STRING,
CARRAY, XML, X_OCTET, X_COMMON, X_C_TYPE, MBSTRING Of a custom-defined type. Only
one type is allowed.

Note: Limitation: A string of custom type may contains up to 8 characters. See
"Managing Typed Buffers" in Programming a BEA Tuxedo ATMI Application
Using C

A_REPOSOUTBUF: string[0..8]
The service(s) output buffer type. Valid value is same as Ta_RrREPoSINBUF. Note that this
attribute can be null.

TA_REPOSINVIEW: string[0..16]
View name for input parameters. This information is optional only if one of the following
buffer types is used: VIEW, VIEW32, X_COMMON, X_C_TYPE.

TA_REPOSOUTVIEW: string[0..16]
View name for output parameters. Similar with TA_REPOSOUTVIEW.

TA_ REPOSSVCDESCRIPTION: string[0..1024]
String value for service description.

File Formats, Data Descriptions, MIBs, and System Processes Reference 225

226

TA_REPOSSENDQSPACE: string[0..15]
String value for send queue space name. Optional only when TA_REPOSSERVICETYPE iS
"queue".

TA_REPOSSENDQUEUE: string[0..15]
String value for send queue name. Optional only when TA_REPOSSERVICETYPE iS
"queue".

TA_REPOSRPLYQUEUE: string[0..15]
String value for reply queue name. Optional only when TA_REPOSSERVICETYPE iS
"queue".

TA_REPOSERRQUEUE: stringl[0..15]
String value for error queue name. Optional only when TA_REPOSSERVICETYPE iS
"queue".

TA_REPOSRCVQSPACE: string[0..15]
String value for receive queue space name. Optional only when Ta_REPOSSERVICETYPE
is "queue”.

TA_REPOSRCVQUEUE: string[0..15]

String value for receive queue name. Optional only when TA_REPOSSERVICETYPE iS
"queue".

TA_REPOSVERSION: string[0...1024]
Any string defined by the user. Tuxedo does not interpret this attribute.

TA_REPOSATTRIBUTES: string[0...1024]
Any string defined by the user. Tuxedo does not interpret this attribute.

TA_REPOSFIELDTBLS: string([0...1024]
Optionally specifies a comma-separated list of field tables where the Fmr, or Fv132 fields
used by this service can be found. Use the absolute path to describe each field table file.

TA_REPOSPARAM: string[0...32]
Parameter name.

TA_REPOSTYPE: "{ byte | short | integer | float | double | string | carray
| dec_t | xml | ptr | fml32 | view32 | mbstring }"
Parameter type.

TA_REPOSSUBTYPE : string[0..32]
A view name for view32 typed parameter.

TA_REPOSACCESS: '{ in | out | inout | noaccess }'
Parameter access method.

File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS(5)

TA_REPOSCOUNT: O<=num<=32767
Maximum number of parameter occurrences. Default value is 1.

TA_REPOSPARAMDESC: string[0...1024]
Parameter description string.

TA_REPOSSIZE: O<=num
Optional only if the following parameter types are used: carray, string, xml,
mbstring.

TA_REPOSREQUIREDCOUNT: O<=num<=32767
Minimum number of parameter occurrences.

TA_REPOSFLDNUM: O<=num
Optional only for rvr./FML32 field parameter, field number definition.

TA_REPOSFLDID: 0O<=num
Optional only for v /FML32 field parameter, field id. Note that this field cannot be
written or updated.

TA_REPOSVFBNAME: string[0...30]
Optional only when parameter type is view/view32. It is used to specify the
corresponding field name for views mapped to rmL buffers.

TA_REPOSVFLAG: string[0...6]
Optional only when parameter type is view/view32. Using this field by following the
rules of the "F1ag" option defined in viewfile(5).

TA_REPOSVNULL: string[0...32]
Optional only when parameter type is view/view32. It is used to define user-specified
NULL as the default NULL value for that parameter.

TA_REPOSEMBED
Optional only if the parameter is one of following types: £m132, view32. Itisan
embedded ru132 field to describe sub-parameters of the parameter.

Note: Ta_reroseMBED field also is used to encapsulate attributes of each service once
there might be multiple services in one FML32 buffer. Please see figure 6-1 and
6-2 for more information.

METAREPOS Buffer Format Diagram

Currently, METAREPOS input and output is in Fur.32 buffer format and is used to describe one or
more instances of service metadata information. This FuM1.32 typed buffer format is define in two
modes: Standard Mode and Single Mode.

File Formats, Data Descriptions, MIBs, and System Processes Reference 221

Figure 1 Standard Mode

e

Sérwvige - Level atmibute s Paramn-Leve | attrfboate s Param-Lewe] atmibate s .
First Parameter Second Parameter .-

T4 _REPOSEMEBED T4 REPOSEMEEL

In standard mode, each service is encapsulated into one embedded Ta_rerposemMBED FML32
field. Users fill in METAREPOS attributes by following the restrictions defined in the METAREPOS
service-level and parameter-level attribute tables.

e Output Buffers: All output buffers returned by the Tuxedo service metadata repository
must use standard mode, no matter if one or more service objects are returned.

Note: For seT operations, Ta_ERROR and Ta_sTaTus are included in each TA_REPOSEMBED
buffer to indicate the set result of each service.

e Input Buffers: When using input buffer to specify services, standard mode is applied under
the following conditions:

1. seT operations (adding or updating) to outstanding multiple services

2. When a user wants to use standard mode instead of single mode

Figure 2 Single Mode

Sererr a-Tewe 1 atribatte o Paran-Level attribnates Param- Lewe] atiribigtes
First Parameter Second Parameter

Single mode can only be used in METAREPOS input buffers that specify one service only. Single
mode can be applied under the following conditions:

1. seT operations to only one outstanding particular service

2. GET operations

228 File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS Request Examples

1. Adding a service deposit to repository

Figure 3 Single Mode Request

METAREPOS(5)

TA_OPERATION SET
TA_CLASS T_REPOSITORY TA_REPOSPARAM USERNAME
TA_STATE NEW TA_REPOSTYPE string
TA_REPOSACCESS -
TA_REPOSSERVICE deposit TA_REPOSCOUNT 1
TA_REPOSEXPORT Y TA_REPOSPARAMDESC "username"
TA_REPOSINBUF FML32 TA_REPOSSIZE 8
TA_REPOSOUTBUF FML32 TA_REPOSREQUIREDCOUNT 1
TA_REPOSFLDNUM 20001

TA_REPOSPARAM USER_INFO
TA_REPOSTYPE FML32 TA_REPOSPARAM SEX
TA_REPOSACCESS in TA_REPOSTYPE string
TA_REPOSCOUNT 1 TA_REPOSACCESS -
TA_REPOSPARAMDESC "user account TA_REPOSCOUNT 1

information® TA_REPOSPARAMDESC -
TA_REPOSSIZE -(null) TA_REPOSSIZE 6
TA_REPOSREQUIREDCOUNT 1 TA_REPOSREQUIREDCOUNT 1
TA_REPOSFLDNUM 20000 TA_REPOSFLDNUM 20002
TA_REPOSEMBED -

These parameters

TA_REPOSPARAM ACCOUNT_ID are embedded in
TA_REPOSTYPE integer
TA_REPOSACCESS in TA_REPOSEMBED
TA_REPOSCOUNT 1

TA_REPOSPARAMDESC
TA_REPOSSIZE

TA_REPOSREQUIREDCOUNT
TA_REPOSFLDNUM
TA_REPOSEMBED

TA_REPOSPARAM
TA_REPOSTYPE
TA_REPOSACCESS
TA_REPOSCOUNT
TA_REPOSPARAMDESC
TA_REPOSSIZE
TA_REPOSREQUIREDCOUNT
TA_REPOSFLDNUM20004

"deposit account"

1
20003
-(null)

SAMOUNT

string

in

"deposit amount"
15

File Formats, Data Descriptions, MIBs, and System Processes Reference

229

TA_REPOSPARAM SBALANCE

TA_REPOSTYPE string
TA_REPOSACCESS out
TA_REPOSCOUNT -
TA_REPOSPARAMDESC "account balance"
TA_REPOSSIZE 15
TA_REPOSREQUIREDCOUNT -

TA_REPOSFLDNUM 20005
TA_REPOSPARAM STATLIN
TA_REPOSTYPE string
TA_REPOSACCESS out

TA_REPOSCOUNT -
TA_REPOSPARAMDESC -

TA_REPOSSIZE 15
TA_REPOSREQUIREDCOUNT -
TA_REPOSFLDNUM 20006

230 File Formats, Data Descriptions, MIBs, and System Processes Reference

METAREPOS(5)

Figure 4 Standard Mode Request

TA_OPERATION SET

TA_CLASS T_REPOSITORY The entire service

TA_STATE NEw definnition is embedded

TA_iEPOSEMBED in TA_ REPOSEMBED

TA_REPOSSERVICE deposit

TA_REPOSEXPORT Y TA_REPOSPARAM USERNAME
TA_REPOSTYPE string

TA_REPOSINBUF FML32 TA_REPOSACCESS -

TA_REPOSOUTBUF FML32 TA_REPOSCOUNT 1
TA_REPOSPARAMDESC "user name"

TA_REPOSPARAM USER_INFO TA_REPOSSIZE 8

TA_REPOSTYPE FML32 TA_REPOSREQUIREDCOUNT1

TA_REPOSACCESS in TA_REPOSFLDNUM 20001

TA_REPOSCOUNT 1

TA_REPOSPARAMDESC "user account TA_REPOSPARAM SEX

information" TA_REPOSTYPE string

TA_REPOSSIZE -(null) TA_REPOSACCESS -

TA_REPOSREQUIREDCOUNT 1 TA_REPOSCOUNT 1

TA_REPOSFLDNUM 20000 TA_REPOSPARAMDESC -

TA_REPOSEMBED - TA_REPOSSIZE 6
TA_REPOSREQUIREDCOUNT1

TA_REPOSPARAM ACCOUNT_ID TA_REPOSFLDNUM 20002

TA_REPOSTYPE integer

TA_REPOSACCESS in

TA REPOSCOUNT 1 These parameters are

TA_REPOSPARAMDESC "deposit account" embedded in

TA_REPOSSIZE -

TA_REPOSEMBED
TA_REPOSREQUIREDCOUNT 1

TA_REPOSFLDNUM 20003
TA_REPOSEMBED - (null)
TA_REPOSPARAM SAMOUNT
TA_REPOSTYPE string
TA_REPOSACCESS in
TA_REPOSCOUNT -
TA_REPOSPARAMDESC "deposit amount"
TA_REPOSSIZE 15
TA_REPOSREQUIREDCOUNT -
TA_REPOSFLDNUM 20004
TA_REPOSPARAM SBALANCE

File Formats, Data Descriptions, MIBs, and System Processes Reference 231

TA_REPOSTYPE
TA_REPOSACCESS
TA_REPOSCOUNT
TA_REPOSPARAMDESC
TA_REPOSSIZE
TA_REPOSREQUIREDCOUNT
TA_REPOSFLDNUM

TA_REPOSPARAM
TA_REPOSTYPE
TA_REPOSACCESS
TA_REPOSCOUNT
TA_REPOSPARAMDESC
TA_REPOSSIZE
TA_REPOSREQUIREDCOUNT
TA_REPOSFLDNUM

string

out

"account balance"
15

20005

STATLIN
string
out

15

20006

2. Delete service deposit and transfer

Listing 3

TA_OPERATION
A_CLASS
TA_STATE

TA_REPOSSERVICE

SET
T_REPOSITORY
DEL

deposit, transfer

See Also

tmloadrepos (1), tpgetrepos (3c), tpsetrepos(3c), MIB(5), TMMETADATA (5).

232

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

MIB(5)

Name
mrB—Management Information Base

#include <fml32.h>
#include <fmll1632.h> /* Optional */
#include <tpadm.h>

#include <cmib.h> /* Component MIB Header */

Description

A BEA Tuxedo system application consists of distinct components (for example, BEA Tuxedo,
Workstation), each administered using a Management Information Base (MIB) defined
specifically for that component. These component MIBs are defined in individual reference pages
each addressing the MIB for a particular part of the system. For example, the reference page
m™_MIB(5) defines the MIB used to administer the fundamental aspects of a BEA Tuxedo
application.

However, component MIBs do not provide sufficient definition of the interfaces involved to
provide the necessary access. This reference page, M18(5), describes the generic interfaces
through which an administrator, operator or user interacts with any of the defined component
MIBs. The generic interface to each BEA Tuxedo system MIB consists of two main parts.

The first part of the generic interface is a description of how existing BEA Tuxedo system
interfaces are used to provide access to administrative services responsible for supporting the
component MIBs. FML32, a BEA Tuxedo system buffer type, is used as the vehicle for passing
input to and receiving output from component MIBs. ATMI request/response verbs are used as
the interface to component MIBs, which are implemented as system-supplied services. Details on
interaction between an administrative user and component MIBs using FML32 buffers ATMI
verbs are provided in the “FML32”and “ATMI” sections later in this reference page.

The second part of the generic interface is the definition of additional input and output FML32
fields that are used in interactions with all component MIBs. The additional FML32 fields extend
the power of requests (for example, by allowing operation codes to be specified) and add generic
response attributes (for example, error codes and explanatory text). Details on additional FML32
fields are provided in the “Input” and “Output” sections found later in this reference page.

The “Usage” section gives examples of the use of existing ATMI verbs and the additional FML32
fields as they might be used for administrative interaction with component MIBs.

File Formats, Data Descriptions, MIBs, and System Processes Reference 233

In addition to defining how users interface with component MIBs to administer an application,
this reference page establishes the format used in the component MIB reference pages to define
classes (see “Class Descriptions”).

Two generic classes are defined in this reference page: T_crass and T_crLassaTT. These two
classes are used to identify administrative classes and to tune class/attribute permissions. For
additional information pertaining to all 1B (5) class definitions, see “MIB(5) Additional
Information” on page 258. The “Diagnostics” section lists error codes that may be returned by
component MIB system services.

Authentication

234

Users are authenticated as they attempt to join the application (see tpinit (3c)). At tpinit ()
time, administrators and operators can ask to join the application with a client name of either
tpsysadm Of tpsysop. These two c1tname values are reserved and can only be associated with
administrators and operators of the application.

The administrator who initially configures an application determines the level of security to be
included by choosing a particular security type. Available security types are:

e No security
e Application password authentication

e Application password plus an application specific authentication service

The choice of security type determines the flexibility and security in allowing administrator and
operator access to the component MIBs via the AdminAPI.

The most secure and flexible security type is an application password plus an application-specific
authentication server (see auTHSVR (5)). This method allows the administrator to permit access
to any user or to only specified users provided they supply the appropriate password to the
authentication server.

In the absence of an application specific authentication server, a client must satisfy the
authentication requirements of the application (either none or application password), specify one
of the special client names in the c1tname field of the TpINIT Structure and be running as the
BEA Tuxedo administrator for the local UNIX system to qualify for special administrator or
operator permissions. In any case, a successfully joined client is assigned a key by the system;
the key is delivered with all requests it makes. Clients properly authenticated as either tpsysadm
or tpsysop are assigned an authentication key that lets the system know they have special
privileges.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Administrative authentication, as specified, is applicable only to clients that join the system prior
to accessing the API. Servers making use of the API are treated the same as the client on whose
behalf they are processing. Service requests made from within tpsvrinit () Of tpsvrdone ()
are treated as coming from the administrator.

FML32

Application administration using BEA Tuxedo system defined component MIBs is supported
exclusively through the FML32 buffer type. Application programs accessing MIB information
must be written to allocate, manipulate and update FML32 typed buffers. There are two main
approaches to using FML32 as detailed in Fintro () and summarized here.

The most direct way to interface to FML32 is to include the <fm132.h> header file instead of the
standard <fm1.h> header file and then to use the FML32 version of each relevant FML interface
specified in the BEA Tuxedo ATMI FML Function Reference. For example, one would use
Fchg32 () instead of using Fchg ().

Another method for interfacing with FML32 is to include both the <fm132.h> header file and the
<fml11632.h> header file. These two header files work together to allow the user to program to
the base FML interfaces (for example, rchg ()) and yet actually invoke the FML32 version of
each interface.

ATMI

Application programs access and update component MIB specific attribute information by
allocating FML32 typed buffers, populating them with request data, sending the requests for
servicing, receiving the replies to the service requests and extracting information regarding the
results from the reply. The population and extraction of information to and from the FML32 typed
buffers involves the FML32 interfaces as described above. Buffer allocation, sending requests
and receiving replies is done using the general purpose ATMI routines listed below within the
guidelines and restrictions listed. MIB requests for all components should be sent to the core BEA
Tuxedo component MIB service, ".tm1B". This service not only acts as an agent for servicing
TM_MIB(5) requests, it also directs requests targeted for other component MIBs so that the user
need not be concerned with matching service names to MIBs and classes.

tpalloc ()
Allocate FML32 typed buffers to be used in sending requests and/or receiving replies
to/from BEA Tuxedo system MIB services. The FML32 buffer type has no subtypes and
a minimum default size of 1024 bytes.

tprealloc ()
Reallocate FML32 typed buffers.

File Formats, Data Descriptions, MIBs, and System Processes Reference 235

Input

236

tpcall ()
Call BEA Tuxedo system MIB service, ". 18", with a populated FML32 typed buffer
as input and with an allocated FML32 typed buffer in which to store the output returned
from the service. The buffer length for the input buffer may be specified as 0 since FML32
is a self-describing buffer type. The TenoTRAN flag should be used if the call is being made
within a transaction; otherwise, there are no specific requirements or restrictions on the
use of the flags defined for this verb.

tpacall ()
Asynchronously call BEA Tuxedo system MIB service, " . TMIB", With a populated
FML32 typed buffer as input. The buffer length for the input buffer may be specified as 0
since FML32 is a self-describing buffer type. The renoTrAN flag should be used if the call
is being made within a transaction; otherwise, there are no specific requirements or
restrictions on the use of the flags defined for this verb.

tpgetrply ()
Get reply for a previously generated asynchronous call to the BEA Tuxedo system MIB
service, ". 18", The reply is received into a previously allocated FML32 typed buffer.
There are no specific requirements or restrictions on the use of the flags defined for this
verb.

tpengqueue ()
Enqueue a request to the BEA Tuxedo system MIB service, ". Tm1B", for later processing.
The buffer length for the input buffer may be specified as 0 since FML32 is a
self-describing buffer type. There are no specific requirements or restrictions on the use
of the flags defined for this verb; however, the TmororwARD (5) Server configured by the
application to handle forwarding of these requests should be started with the -n
(tpcall () with TeNoTRAN flag set) and -4 (delete) options.

tpdequeue ()
Dequeue the reply for a previously enqueued request to the BEA Tuxedo system MIB
service, "'. TMIB". The reply is received into a previously allocated FML32 typed buffer.
There are no specific requirements or restrictions on the use of the flags defined for this
verb.

There are certain FML32 fields used to characterize and control administrative requests to any
BEA Tuxedo system MIB. These fields are defined in this reference page as well as in the header
file <tpadm.h>. The corresponding field table file can be found in

$ {TUXDIR} /udataobj/tpadm. These fields are added to an FML32 request buffer in addition to
any component MIB specific fields necessary before making the administrative service request.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

The fields are described below and followed by a table summarizing the operations for which
each field is required, optional or unused.

TA_OPERATION
String valued field identifying the operation to be performed. Valid operations are GeT,
GETNEXT and SET.

TA_CLASS
String valued field identifying the class being accessed. Class names are defined within
component MIB specific reference pages.

TA_CURSOR
String valued FML32 field returned by the system on a previous GET Of GETNEXT
operation. The value returned must be transferred by the application to the subsequent
request buffer so that the system can determine current retrieval position.

TA_OCCURS
Long valued FML32 field identifying how many objects are to be retrieved on a GeT or
GETNEXT operation. If this field is not specified, all matching objects are returned, space
permitting.

TA_FLAGS
Long valued FML32 field identifying generic and component MIB specific flag values.
Component MIB specific values that may be set in this attribute are defined within each
component MIB reference page. Generic flag values and uses are listed below.

MIB_LOCAL

This flag is used to modify retrievals from certain classes defined in this M1B. For
a number of classes in this m1B, there exists both global information (available at
any site in an active application) and local information (available on the particular
site where the object is active). Requests to retrieve information from these classes
will by default retrieve only the global information and not the local for efficiency.
If the application user is willing to wait for local information to be collected,
possibly from multiple sites, this flag should be set on the retrieval request. Classes
with local information have local attributes listed last in the attribute table with a
subheading indicating that they are local attributes. Classes which have only local
information will automatically default to retrieving local information even if this
flag value is not set.

MIB_PREIMAGE
indicates that a pre-image check must be passed before a seT operation will be
performed. A pre-image check insures that occurrence 0 of any m1B specific class
attributes match the existing object. If so, the object is updated using occurrence 1

File Formats, Data Descriptions, MIBs, and System Processes Reference 2317

238

of any m1B specific class attributes. Attributes occurring less than two times are not
considered for pre-image checking. Multiply occurring fields are checked if their
associated count attribute is specified twice.

MIB_SELF
This flag is used as a shorthand to indicate that identification attributes for the
client or server originating the request should be added to the request buffer prior
to processing. For clients, Ta_crLIeNTID is added and for servers, Ta_GrpNO and
TA_SRVID are added.

TA_FILTER
Long valued FML32 field that may be specified with up to 32 occurrences to indicate the
specific class attributes that should be returned. An occurrence with the value 0 may be
specified to end the list but is not required. A list with an initial attribute value of 0 will
return no class specific attributes but will return a count of class objects matched.

TA_MIBTIMEOUT
Long valued FML32 field identifying the time, in seconds, that should be allowed within
the component MIB service to satisfy the request. A value less than or equal to 0 indicates
that the component MIB service should not undertake any blocking operation. If
unspecified, this value defaults to 20.

TA_CURSORHOLD
Long valued FML32 field identifying the time, in seconds, that a system snapshot
generated from an initial ceT operation should be held after the current GET or GETNEXT
operation is satisfied before disposing of it. A value less than or equal to 0 indicates that
the snapshot should be disposed of after satisfying the current request. If unspecified, this
value defaults to 120.

In the following table, R indicates a required 1npuT attribute, O an optional tnpuT attribute, and
— an unused INPUT attribute.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Table 38 Input Table

Attribute Type GET GETNEXT SET
TA_OPERATION string R R R
TA_CLASS string R — R
TA_CURSOR string — R —
TA_OCCURS long O 0} —
TA_FLAGS long O o} 0]
TA_FILTER long O — —
TA_MIBTIMEOUT long O o} 0]
TA_CURSORHOLD long ¢} 0} —

Output

Output from successful administrative requests consists of one or more MIB specific objects and
one occurrence of the generic output fields. In general, multiple MIB specific objects are reflected
in the output buffer by multiple occurrences of each class attribute returned. Occurrence 0 of each
attribute relates to the first object, occurrence 1 to the second object, and so on. Exceptions to this
guideline are noted in the component MIB reference pages. Intermediate occurrences without

values for certain attributes may have FML32-defined nurt field values inserted as place holders.
A successful seT operation returns a single object reflecting the object after the operation was

performed. A successful GET or GETNEXT operation may return 0 or more occurrences depending
on how many occurrences were requested (see Ta_occurs below), how many occurrences were
matched by the specified key fields and space limitations within the MIB specific system service.

It is important to note that not all attributes defined for any class may necessarily be returned for
any request depending on object state, interoperating release environments and/or input request
filters. Administrative programmers should avoid implicit dependencies on the presence of
certain attributes in output buffers and should instead explicitly check for the presence of attribute
values.

To repeat, the reply to a successfully processed administrative request includes certain generic
fields that apply to all MIBs. The fields are defined in the header file <tpadm.h>. The
corresponding field table file can be found in $ {TUXDIR} /udataobj/tpadm. The generic reply

File Formats, Data Descriptions, MIBs, and System Processes Reference 239

240

fields are added to a the reply buffer and returned with the component MIB specific fields. The
generic reply fields are described below.

TA_CLASS
String valued field identifying the class represented in the reply buffer. Class names are
defined within component MIB specific reference pages.

TA_OCCURS
Long valued FML32 field identifying how many objects are in the reply buffer.

TA_MORE
Long valued FML32 field identifying how many additional objects matching the request
key fields are being held in a system snapshot for later retrieval. This field is not returned
for seT operations.

TA_CURSOR
String valued FML32 field identifying the position within a system held snapshot. This
field must be added to the request buffer for a subsequent ceTnexT operation. The value
of this field should not be interpreted or modified by the application user. This field is not
returned for seT operations.

TA_ERROR
Long valued FML32 field identifying a non-negative return code characterizing the
successful return. Generic return codes and their meaning are defined below.

TAOK
The operation was successfully performed. No updates were made to the
application.

TAUPDATED
An update was successfully made to the application.

TAPARTIAL
A partial update was successfully made to the application.

Administrative requests that fail within MIB specific system service processing return an
application service failure to the application including the original request and generic fields used
to characterize the error. Application service failures are indicated by a TPESVCFAIL error return
from tpcall () or tpgetrply (). Application service failures returned via the TMOFORWARD (5)
server will appear on the error queue specified on the original request (assuming the -a option
was specified on the server command line). Generic fields used to characterize failed
administrative requests are listed below.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

TA_ERROR
Long valued FML32 field identifying the particular error that occurred. Error codes may
be generic in which case they are listed in the "pIacNosTICS" section of this reference
page, or they may be specific to a component MIB, in which case they are described on
the individual component MIB reference page.

TA_STATUS
String valued FML32 field providing a textual description of the error.

TA_BADFLD
Long valued FML32 field providing the field identifier of the offending field in cases
where an error can be attributed to the value in a particular field. In cases where errors are
caused by the combination of values in multiple fields, there may be multiple occurrences
of this field.

Usage

Include Files

Application programs written to interface with component MIBs must include certain header
files. <fm132.h> defines macros, structures and function interfaces necessary for accessing and
updating FML32 typed buffers. <fm11632 . h> defines a mapping from the generic FML interface
macros, structures and functions to the FML32 versions and may optionally be included.
<tpadm.h> defines the FML32 field names contained in this reference page. Additionally, any
component MIB specific header files must be included to gain access to FML32 field definitions
specific to that component MIB.

Example:

#include <fml32.h>
#include <tpadm.h>

#include <cmib.h> /* Component MIB Header */

Buffer Allocation

Interaction with a component MIB requires an FML32 typed buffer to carry the request to the
service that acts on it. The ATMI verb tpalloc () allocates the buffer using FMLTYPE3 2 (defined
in <fm132.h>) as the value for the type argument. There is no subtype for FML32 buffers so the
subtype argument of tpalloc () can be NULL. The default minimum size for an FML32 buffer
is 1024 bytes. Specifying 0 for the size argument of tpalloc () results in a buffer of minimum
size. If the user knows that a larger buffer is needed, it may be allocated by specifying a value
larger than the system minimum for size.

File Formats, Data Descriptions, MIBs, and System Processes Reference 241

Example:

rgbuf = tpalloc (FMLTYPE32, NULL, 0);

Building MIB Requests

Once an FML32 typed buffer is allocated, the user needs to populate it with both generic MIB
field values and values specific to the component MIB being addressed. The most common
interfaces used to add values to a request buffer are the FML verbs Fadd32 () and Fchg32 (). In
the event that a field cannot be added because the request buffer is full, the buffer may need to be
reallocated using the ATMI verb tprealloc ().
Example:
/*
* Does not include error processing, bigger_size provided
* by the user, not by the system. Fchg32 used to insure that
* field occurrence 0 is set if we are reusing a buffer.
*/
if (Fchg32(rgbuf, TA_MIBFIELD, 0, "ABC", 0) == -1) {
if (Ferror32 == FNOSPACE) {
rgbuf = tprealloc(rgbuf, bigger size);
Fchg32 (rgbuf, TA_MIBFIELD, 0, "ABC", 0);

}

Controlling MIB Requests

242

In addition to attributes specific to each component MIB, there are required and optional
attributes defined in this reference page that control the operation requested of the component
MIB.

The required generic attributes are Ta_oPERATTION and TA_CLASS.

TA_OPERATION specifies the operation to be performed on the MIB being accessed. Valid
operations are GET, GETNEXT and SET.

TA_cLass specifies the MIB class being accessed. Class names are defined within the component
MIB reference pages. If TA_OPERATION iS GETNEXT, an additional attribute, Ta_CURSOR, is
required. TA_cursor is a field returned on a previous GET or GETNEXT operation. It is used by the
system on the subsequent request to determine retrieval position.

The optional attributes Ta_ocCURs, TA_FLAGS, TA_FILTER, TA_MIBTIMEOUT and
TA_CURSORHOLD may be used in addition to the required attributes to further tailor the request.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

TA_OCCURS
Specifies how many objects are to be retrieved on a GET or GETNEXT operation. If
unspecified, all occurrences are retrieved, space permitting.

TA_FLAGS
Used to specify flag values. Some generic flags are defined in this reference page; others
are defined in each component MIB reference page.

TA_FILTER
Restricts the attribute values returned for a ceT operation. If unspecified, is a long valued
FML32 field used to all available class attribute values are returned.

TA_MIBTIMEOUT
Specifies the time, in seconds, that should be allowed within the component MIB service
to satisfy the request. A value less than or equal to O indicates that the component MIB
service should not undertake any blocking operation. If unspecified, this value defaults to
20.

TA_CURSORHOLD
Specifies the time, in seconds, that a system snapshot generated from an initial GeT
operation should be held after the current GeT or GETNEXT operation is satisfied before
disposing of it. A value less than or equal to 0 indicates that the snapshot should be
disposed of after satisfying the current request. If unspecified, this value defaults to 120.

Example:

/* GET 1st 5 objects */
Fchg32 (rgbuf, TA_OPERATION, 0, "GET", O0);
Fchg32 (rgbuf, TA_CLASS, 0, "classname", 0);
n =>5;
Fchg32 (rgbuf, TA_OCCURS, 0, n, 0);
/* Make request, see Sending MIB Requests below */
/* Reply is stored in rpbuf and contains cursor */
/*
* GETNEXT 5 objects. Transfer TA_CURSOR from rpbuf.
* Reuse rgbuf generated above. Dispose of snapshot after
* request, that is, set TA_CURSORHOLD to O.
*/
Fchg32 (rgbuf, TA_OPERATION, 0, "GETNEXT", 0);
Fchg32 (rgbuf, TA_CURSOR, 0, Ffind32 (rpbuf, TA_CURSOR, 0, NULL), 0);

n = 0;

File Formats, Data Descriptions, MIBs, and System Processes Reference 243

Fchg32 (rgbuf, TA_CURSORHOLD, 0, n, 0);

/* Make request, see Sending MIB Requests below */

Component MIB Fields

244

Component MIB key fields specified on a GeT or GETNEXT are used to select a set of objects.
Non-key fields are ignored by the component MIB.

Component MIB key fields specified on a seT operation are used to identify the particular object
to be updated. Non-key fields are processed as updates to the object identified by the key fields.
The user may optionally specify a pre-image which must match the current object image before
an update (seT) is allowed. A user indicates that a pre-image is provided by setting the
MIB_PREIMAGE bit in the Ta_rracs attribute of the request. The key fields specifying the object
to be updated are taken from the pre-image (field occurrence 0). If key fields are also specified
in the post-image, they must match exactly or the request fails. Only attributes that are part of the
class and have two attribute values specified in the input buffer are considered for pre-image
matching. Attributes with single values are processed as new values to be set for the indicated
class object.

Example:

Fchg32 (rgbuf, TA_OPERATION, 0, "GET", O0);
Fchg32 (rgbuf, TA_CLASS, 0, "classname", 0);
Fchg32 (rgbuf, TA_MIBKEY, 0, "keyvalue", 0);
n=1;
Fchg32 (rgbuf, TA_OCCURS, 0, n, 0); /* GET lst matching occurrence */
/* Make request, see Sending MIB Requests below, reply in rpbuf */
/* Use rpbuf as pre-image and update TA_MIBFIELD value
* if matching
*/
Fcpy32 (newrqg, rpbuf);
Fconcat32 (newrq, rpbuf); /* Add 2nd identical copy */
Fchg32 (newrqg, TA_OPERATION, 0, "SET", O0);
n = MIB_PREIMAGE;
Fchg32 (newrq, TA_FLAGS, 0, n, 0);
Fchg32 (newrqg, TA_MIBFIELD, 1, "newval", 0); /* Post-image */

/* Make request, see Sending MIB Requests below */

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Sending MIB Requests

All component MIB requests flow through the core BEA Tuxedo component MIB service,
".1B". This service not only acts as an agent for servicing TM_MIB (5) requests, it also directs
requests targeted for other component MIBs so that the user need not be concerned with matching
service names to MIBs and classes. Service requests can be generated using any of the
request/response oriented service verbs in ATMI: tpcall (), tpacall () and tpenqueue ().
The user has access to all flags and capabilities defined for these interface functions. The only
constraint imposed here is that the ". TM1B" service must be invoked outside the scope of any
transaction. This means that when using tpcall () or tpacall () to direct administrative
requests within a transaction, the TenoTraN flag should be used or the user will get a failure
(TPETRAN). When using tpenqueue () to direct requests, the TMQFORWARD Server must be started
with the -n option so that the forwarded service requests may be made outside of transactional
boundaries.

Example:

/* Build request as shown above */

/* Send request and wait for reply */

flags = TPNOTRAN | TPNOCHANGE | TPSIGRSTRT;

rval = tpcall(".TMIB", rgbuf, 0, rpbuf, rplen, flags);

/* Send request and get descriptor back */

flags = TPNOTRAN | TPSIGRSTRT;

cd = tpacall(".TMIB", rgbuf, 0, flags);

/* Enqueue request, assumes gctl already setup */

flags = TPSIGRSTRT;

rval = tpenqueue("queue", ".TMIB", gctl, rgbuf, 0, flags);

Receiving MIB Replies

Replies from component MIBs may be received in one of three ways depending on how the
original request was generated. If the original request was generated using tpcall (), a
successful return from tpcalil () indicates that the reply has been received. If the original request
was generated using tpacall (), the reply may be received using tpgetrply (). If the original
request was generated using tpenqueue () and a reply queue was specified in the queue control
structure, the reply may be received using tpdequeue (). All supported flags on these various
calls may be used as appropriate.

Example:

/* Build request as shown above */

/* Send request and wait for reply */

File Formats, Data Descriptions, MIBs, and System Processes Reference 245

flags = TPNOTRAN | TPNOCHANGE | TPSIGRSTRT;

rval = tpcall(".TMIB", rgbuf, 0, rpbuf, rplen, flags);

/* Receive reply using call descriptor */

flags = TPNOCHANGE | TPSIGRSTRT;

rval = tpgetrply(cd, rpbuf, rplen, flags);

/* Receive reply using TPGETANY, may need to change buffer type */
flags = TPGETANY | TPSIGRSTRT;

rval = tpgetrply(rd, rpbuf, rplen, flags):;

/* Dequeue reply, assumes gctl already setup */

flags = TPNOCHANGE | TPSIGRSTRT;

rval = tpdequeue ("queue", "replyqg", gctl, rpbuf, rplen, flags);

Interpreting MIB Replies

In addition to attributes specific to a component MIB certain generic MIB fields may be returned
in response to an administrative request, These additional attributes characterize the results of the
original request and provide values that can be used in subsequent requests if necessary.

Successful GET or GETNEXT operations return:
® TA_CLASS
Class name.
® TA_OCCURS
Number of matching objects retrieved.
® TA_MORE
Number of matching objects left to be retrieved.
® TA_CURSOR
Cursor to be provided on subsequent retrieval.
® TA_ERROR
Set to the non-negative return value Taox.

e All available component MIB specific attributes

Occurrence 0 of each attribute represents the first retrieved object, occurrence 1 the second,
and so on. Exceptions to this rule are identified as appropriate in the component MIB
reference pages.

246 File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Successful seT operations return:

® TA_ CLASS

Class name.

® TA_ ERROR

Set to a non-negative return value. Taox indicates that the request was successful but no
information was updated. This can happen because no changes were specified or because
the changes specified match the current state of the object. TaurpaTED indicates that the
request was successful and the information was updated. TaparTIAL indicates that the
request was successful but the update was only made partially within the system. This may
occur because of network failures or message congestion and the system will synchronize
the unupdated sites as soon as possible.

e All available component MIB specific attributes

Since only one object may be updated at once, only one object will be returned. The
returned attributes reflect the object after the update.

Failed operations of any type return:
e Fields specified on the original request

® TA_ ERROR

Set to a negative return value indicating the cause of the failure. Generic error codes are
specified in the Diagnostics section of this reference page. Component MIB specific error
codes (non-overlapping, both with each other and with the generic codes) are specified on
each MIB reference page.

® TA BADFLD

Field identifier of the offending field.

® TA_STATUS

Textual description of error condition.

Limitations

FML32 buffers with multiple occurrences of fields do not allow for empty fields in a sequence of
occurrences. For example, if you set a value for occurrence 1 and occurrence 0 does not yet exist,
FML32 automatically creates occurrence 0 with an FML32 defined nuLL value. FML32-defined
NULL values are 0 for numeric fields, 0-length (NULL) strings for string fields and the character
\O' for character fields. Because of this limitation, GeT operations, which may at times return

File Formats, Data Descriptions, MIBs, and System Processes Reference 2417

objects with different sets of attributes, may artificially break up the sets of objects returned to
the user so as to not include nurz FML32 fields that do not accurately reflect the state of the
object.

Workstation clients on DOS, Windows and OS/2 are currently limited to 64K FML32 buffers;
therefore, the system restricts return buffers to be less than 64K per buffer.

Administrative API access is not available through the COBOL version of ATMI since COBOL
has limited support for FML32 buffer type.

Requests to any component MIB cannot be part of an application transaction. Therefore, any calls
to tpcall () Or tpacall () directed to a component MIB and made within an active transaction
should set the TenoTRAN flag on the call. However, requests may be enqueued for future delivery
to a component MIB using the ATMI verb tpenqueue () within a transaction. The enqueuing of
the request will take place within a transaction while the processing within the component MIB
will not. The use of the TMoFORWARD (5) server in this context requires that TMoFORWARD be
started with the -n command line option so that request may be forwarded to the MIB service in
non-transactional mode. Because of the non-transactional nature of component MIB services, it
is also recommended that the -a option for TMororwaRD be used so that service failures are
delivered to the failure queue immediately rather than retrying the request.

Field identifiers for generic MIB fields and for component MIBs will be allocated in the range
6,000 to 8,000 inclusive. Therefore, applications which intend to mix administrative actions with
user actions should make sure to allocate field identifiers appropriately.

Class Descriptions

248

Each class description section has four subsections:

Overview
High level description of the attributes associated with the class.

Attribute Table
A table that lists the name, type, permissions, values and default for each attribute in the
class. The format of the attribute table is described below.

Attribute Semantics
Tells how each attribute should be interpreted.

Limitations
Limitations in the access to and interpretation of this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Attribute Table Format

As described above, each class is defined in four parts. One part is the attribute table. The attribute
table is a reference guide to the attributes within a class and how they may used by administrators,
operators and general users to interface with an application. There are five components to each

attribute description in the attribute tables: name, type, permissions, values and default. Each of

these ¢

Name:

Type:

omponents is discussed in detail below:

FML32 field identifier name used to identify this attribute value within an FML32 buffer.
Attributes may be arranged in groups of closely related attributes. No special meaning
should be implied from the groupings; they are intended only to improve the usability of
the table. A notation (r), (k), (X) or (*) may appear after an attribute name or value. The
meaning of the notation is as follows:

(r)—the field is required when a new object is created
(k)—indicates a key field for object retrieval

(x)—indicates a regular expression key field for object retrieval
(*)—the field is a seT key for object modification

SET operations on classes with one or more seT keys defined (see * above) must include
values for one or more of the attribute values defined as seT keys. The st keys specified
must be sufficient to identify exactly one object within the class. seT keys are always key
fields for object retrieval and therefore the (k) notation is implied though not specified.
seT keys are not however always required fields when creating new objects and will be
marked with the (r) notation if they are required.

Data type of the attribute value. Data types are defined in C language notation, that is,
long, char and string. In a program, data type can be determined by using the FML32
function F1dtype32 (), which returns the FML32 define representing the data type; that
iS, FLD_LONG, FLD_CHAR and FLD_STRING (See Fldtype, Fldtype32 (3fml).

Permissions:

Access and update permissions are split into three groups of three each, in the manner of
UNIX system permissions. However, in the attribute tables the three groups represent
permissions for administrators, operators and others rather than for owner, group and
others as is the case in UNIX. For each group there are three permissions positions that
have the following meanings.

File Formats, Data Descriptions, MIBs, and System Processes Reference 249

Position 1—Retrieval permissions

r Attribute may be retrieved.

R Attribute may be retrieved only when the object state is ACTive or ACTive
equivalent. See the description of the TA_STATE attribute value for each class
to determine which states qualify as AcTive equivalent. This attribute
represents transient information that is not persistent across distinct activations
of the object.

k Attribute may be specified only as a key field for retrieval or update.

K Attribute may be specified only as a key field for retrieval or update and then
only when the object state is ACTive or ACTive equivalent. See the description
of the Ta_STATE attribute value for each class to determine which states qualify
as ACTive equivalent.

Position 2—Inactive update permissions

w Attribute may be updated when the object is in an INActive or INActive
equivalent state. See the description of the TA_STATE attribute value for each
class to determine which states qualify as INActive equivalent.

u Attribute may be updated as described for the w permissions value. In addition,
the combination of all attribute values identified with the u permissions character
must be unique within the class.

U Attribute may be updated as described for the w permissions value. In addition,
the attribute value must be unique for the attribute within the class.

Position 3—Active update permissions

x Attribute may be updated when the object is in an ACTive or ACTive
equivalent state. See the description of the TA_STATE attribute value for each
class to determine which states qualify as ACTive equivalent.

250 File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Attribute may be updated when the object is in an ACTive or ACTive
equivalent state. See the description of the TA_STATE attribute value for each
class to determine which states qualify as ACTive equivalent. This attribute
represents transient information and updates to this attribute value are not
persistent across distinct activations of the object.

Attribute may be updated when the object is in an ACTive or ACTive

equivalent state. However, there are limitations on when the change will affect
objects of this or other classes. Consult the textual description of the attribute in
the Attribute Semantics section for the class for more details. See the description
of the TA_ STATE attribute value for each class to determine which states qualify

as ACTive equivalent.

Values

Values that may be set and/or retrieved with respect to this attribute. Certain
formatting conventions are followed in listing attribute values.

LITSTRING

Literal string value.

num

Numeric value.

string[x..y]

String value between x and y characters in length, not
including the terminating NULL character.

LMID Shorthand for string[1..30] (no commas allowed). Represents a
logical machine identifier.

{x|v]| z} Select one of x, y or z.

{x|yv]| z} Select zero or one of x, y or z.

{x|y|z}.* Zero or more occurrences of x, y or z in a comma-separated
list.

low = num Numeric value greater than or equal to Zow.

low= numhigh

Numeric value greater than or equal to Zowand less than high.

File Formats, Data Descriptions, MIBs, and System Processes Reference 251

GET: State attribute values that may be returned or specified as key
values on a retrieve (GET) operation. Values shown are always
the three letter state abbreviation. The expanded state name is
shown in the text describing the Ta_STATE for the class. Input
specifications may be made in either the shorthand or expanded
form and are case-insensitive. Output states are always returned
in expanded format with all upper case.

SET: State attribute values that may be set on an update (SET)
operation. Use of abbreviations is allowed as described above.

Default:
Default used when creating a new object, that is, state change from Invalid to
NEW. The value N/A is shown in this column for attributes that are required, derived
or only available when the object is active.

TA_STATE Syntax

The Ta_sTaTE attribute field is a member of each class defined. The semantics of this attribute
are defined on a class by class basis. For the sake of brevity, Ta_statE values are often specified
in athree character shorthand notation. When an expanded version of a Ta_staTe value is shown,
the three shorthand letters are capitalized and the rest of the letters (if any) are displayed in
lowercase. Input Ta_sTaTE values may be in either shorthand or long notation and are case
insensitive. Output Ta_sTaTE values are always full length uppercase. The following example
should help clarify the use of the Ta_sTaTE attribute:

Full Name : ACTive

Shorthand : ACT

Output Value : ACTIVE

Valid Input : ACT, act, AcTiVe, active

T_CLASS Class Definition

Overview

The T_cLass class represents attributes of administrative classes within a BEA Tuxedo system
application. Its primary use is to identify class hames.

252 File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Attribute Table

Table 39 T_CLASS Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_CLASSNAME(K) string r--r--r-- string N/A
TA_STATE(K) string r--r--r-- GET: VAL GET: N/A
SET: N/A SET: N/A
TA_GETSTATES string r--r--r—- string N/A
TA_INASTATES string r--r--r-- string N/A
TA_SETSTATES string r--r--r—- string N/A

(k)—a key field for object retrieval

Attribute Semantics

TA_CLASSNAME: string
Class name.

TA_STATE!.
GET:
A GET operation retrieves information for the selected T_cr.ass object(s). The
following state indicates the meaning of a Ta_sTaTE returned in response to a GET
request. States not listed are not returned.

VALid T_crLass object is defined. All objects of this class exist in
this state. This state is INActive-equivalent for the
purposes of permissions checking.

SET:
SET operations are not permitted on this class.

TA_GETSTATES: string
Delimited list (| delimiter) of the states that may be returned for an object in this class or
as the result of a ceT operation. States are returned in their full length uppercase format.

File Formats, Data Descriptions, MIBs, and System Processes Reference 253

TA_INASTATES:. string
Delimited list ('|' delimiter) of the inactive equivalent states that may be returned for an
object in this class or as the result of a ceT operation. States are returned in their full length
uppercase format.

TA_SETSTATES: string
Delimited list ('|' delimiter) of the states that may be set for an object in this class as part
of a sET operation. States are returned in their full length uppercase format.

Limitations
None identified.

T_CLASSATT Class Definition

Overview

The T_crassaTT class represents characteristics of administrative attributes on a class/attribute
basis.

Attribute Table

Tahle 40 T_CLASSATT Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_CLASSNAME(r)(*) string ru-r--r-- string N/A
TA_ATTRIBUTE(r)(*) long ru-r--r-- 0 <= num N/A
TA_STATE(K) string rTW-r--r-- GET: VAL GET: N/A

SET: {NEW | INV} SET: N/A
TA_PERM(r) long rTW-r--r-- 0000 <= num <= 0777 N/A
TA_FACTPERM long r--r--r-- 0000 <= num <= 0777 N/A
TA_MAXPERM long r--r--r-- 0000 <= num <= 0777 N/A

254 File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

Tahle 40 T_CLASSATT Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_ATTFLAGS long r--r--r-- long N/A
TA_DEFAULT string r--r--r-- string N/A

TA_VALIDATION string r--r--r-- string N/A

(k)—CGET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

Attribute Semantics

TA_CLASSNAME: string
Class name. Only class names known to the system are accessible.

TA_ATTRIBUTE:. Iong
Attribute field identifier as defined in the system provided header file, for example,
tpadm.h.

TA_STATE!

GET: VALid
A cET operation will retrieve information for the selected T_cLassaTT object(s).
The following states indicate the meaning of a Ta_sTATE returned in response to
a GET request.

vaLid T_crLassaTT object is defined. All objects of this class exist
in this state. This state is INactive equivalent for the
purposes of permissions checking.

SET: {NEW|INValid}
A seT operation will update configuration information for the selected
T_cLASSATT object. The following states indicate the meaning of a Ta_sTATE set
in a sET request. States not listed may not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 255

256

NEW Create T_CLASSATT object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the vALid state.

unset Modify T_cLaSSATT object. Allowed only when in the
VALid state. Successful return leaves the object state
unchanged.

INValid Delete or reset T_CLASSATT object for application. State
change allowed only when in the VAL 1id state. Successful
return leaves the object in either the INValid state or the
VALid state. Objects of this class that are built-in, that is,
explicitly known to the system, will revert to their default
permissions on this state change and continue to exist in the
VALid state. Objects of this class that belong to add-on
components for which the class attributes are not explicitly
known will be deleted on this state change and transition to the
INValid state.

TA_PERM: 0000 <= num <= 0777

Access permissions for this class attribute combination. When setting permissions, the
actual value set may be automatically reset if the requested setting exceeds the
permissions available for the attribute. The maximum permissions available for an
attribute are the permissions documented for the administrator repeated in the operator
and other permissions positions. For example, the Ta_tvpE attribute of the T_MACHINE
class is documented with permissions rw-r--r-- and has maximum permissions of

IwW—-IXrw-rw-.

TA_FACTPERM:. 0000 <= num <= 0777

Permissions for this class attribute combination as set on delivery of the BEA Tuxedo
system from the factory. These permissions will apply after a seT operation changing the
TA_STATE Of an object to INvalid.

TA_MAXPERM: 0000 <= num <= 0777

Maximum permissions for this class attribute combination.

TA_ATTFLAGS: long

Bitwise or of none, some or all of the following flags indicating special characteristics of
this attribute.

MIBATT_KEYFIELD
Attribute is a key field for this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

MIBATT_LOCAL
Attribute represents local information.

MIBATT_ REGEXKEY
Attribute is a regular expression key field for this class.

MIBATT_REQUIRED
Attribute is required when creating a New object in this class.

MIBATT_SETKEY
Attribute is a seT key for this class.

MIBATT_ NEWONLY
Attribute is writable for inactive equivalent objects in this class only when creating
a NEw object by changing the Ta_sTaTE from INvalid to NEW.

TA_DEFAULT. string
Default for this attribute when creating a New object in this class. Note that for classes
where NEw objects may not be created through the Admin API, this attribute will always
be returned as a 0 length string. Attributes that may not be seT when creating a NEw object
are also returned as 0 length strings. Attributes which have 1ong values will have defaults
returned as the string representing the long value. Some attributes have special
characteristics indicated by the special values indicated below that may be returned here.

Inherited:Classname[:Attribute]
Attribute default is inherited from the attribute of the same name in the indicated
class. If attribute is specified, the value is inherited from the indicated attribute
rather than the one of the same name.

Required
Attribute is required when creating a NEw object.

Special
Attribute has special rules for defining the default. The appropriate component
MIB reference page should be consulted for further details.

TA_VALIDATION: string
String representing the validation rule applied to this class/attribute combination when a
new value is being set. This string will take one of the following formats:

CHOICES=stringl|string2|...
String attribute value that must match exactly one of the choices shown.

File Formats, Data Descriptions, MIBs, and System Processes Reference 257

RANGE=min-max
Numeric attribute value that must be between min and max, inclusive.

SIZE=min-max
String or carray attribute value that must have a length between min and max bytes
long, inclusive.

READONLY=Y
Read-only attribute with no validation rule for write operations.

SPECIAL=Y
Special validation rule. Consult the appropriate component MIB reference page for
more details.

UNKNOWN=Y
Unknown validation rule. Commonly associated with add-on component attribute
entries for which the details are not known by the core system.

MIB(5) Additional Information

Limitations

None identified.

Diagnostics

258

There are two general types of errors that may be returned to the user when interfacing with
component MIBs. First, any of the three ATMI verbs (tpcall (), tpgetrply () and
tpdequeue ()) used to retrieve responses to administrative requests may return any error defined
on their respective reference pages.

Second, if the request is successfully routed to a system service capable of satisfying the request
and that service determines that there is a problem handling the request, failure may be returned
in the form of an application level service failure. In these cases, tpcall () Or tpgetrply ()
returns an error with tperrno () set to TPESVCFAIL and returns a reply message containing the
original request along with Ta_ERROR, Ta_sTaTUS or TA_BADFLD fields further qualifying the
error as described below. When a service failure occurs for a request forwarded to the system
through the TMororwaARD (5) server, the failure reply message will be enqueued to the failure
queue identified on the original request (assuming the -a option was specified for TMQFORWARD).

When a service failure occurs during processing of an administrative request, the FML32 field
TA_STATUS is Set to a textual description of the failure, the FML32 field Ta_ERROR is set to
indicate the cause of the failure as indicated below. Ta_BADFLD is set as indicated in the

File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

description of the individual errors below. All error codes specified below are guaranteed to be
negative.

[TaEAPP]
The originating request required application cooperation to be successfully completed and
the application did not allow the operation to be completed. For example, server shutdown
requires application cooperation.

[TAECONFIG]
The configuration file associated with the component MIB could not be accessed as
needed to satisfy the requested operation.

[TaEINVAL]
A specified field is invalid. Ta_BaDFLD is set to indicate the invalid field identifier.

[TaEos]
An operating system error occurred while attempting to satisfy the request. Ta_sTaTus is
updated with the translation of the system error code errno.

[TAEPERM]
An attempt was made to seT an attribute for which the user does not have write
permissions or the user attempted a ceT on a class for which the user does not have read
permissions. Ta_BADFLD is set to indicate the field identifier that failed permissions
checking.

[TAEPREIMAGE]
A seT operation failed due to a mismatch between the specified pre-image and the current
object. Ta_BADFLD is set to indicate the field identifier that failed the pre-image checking.

[TaEPROTO]
The administrative request was made in an improper context. Ta_sTaTus is populated
with additional information.

[TAEREQUIRED]
A required field value is not present. Ta_BADFLD is Set to indicate the missing field
identifier.

[TaESUPPORT]
The administrative request is not supported in the current version of the system.

[TaESYSTEM]
A BEA Tuxedo system error occurred while attempting to satisfy the request. Ta_sTaTus
is updated with more information on the error condition.

File Formats, Data Descriptions, MIBs, and System Processes Reference 259

[TaEUNTIQ]
A seT operation did not specify class keys identifying a unique object to be updated.

[other]
Other error return codes specific to particular component MIBs are specified in the
component MIB reference pages. These error codes are guaranteed to be mutually
exclusive both amongst all component MIBs and with generic codes defined here.

The following diagnostic codes are returned in TA_ERROR to indicate successful completion of an
administrative request. These codes are guaranteed to be non-negative.

[T2a0K]
The operation succeeded. No updates were done to the component MIB object(s).

[TauPDATED]
The operation succeeded. Updates were made to the component MIB object.

[TaPARTIAL]
The operation partially succeeded. Updates were made to the component MIB object.

Interoperability
Access to the FML32 interfaces, and therefore to the component MIBs available for
administration of a BEA Tuxedo system application, are available on BEA Tuxedo release 4.2.2
and later. The header files and field tables defining generic MIB attributes are available on BEA
Tuxedo release 5.0 and later. Interoperability concerns specific to a particular component MIB
are discussed in the reference page for that component MIB.

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo system MIBs, as well as the header file and field table defined in this reference
page, are available on all supported native and Workstation platforms.

Examples

See the "usace" section earlier for some brief example uses of existing APIs in interfacing with
generic MIB processing. More detailed examples are provided with each component MIB
reference page that make use of real component MIB classes and attributes.

Files

S{TUXDIR}/include/tpadm.h,
${TUXDIR} /udataobj/tpadm

260 File Formats, Data Descriptions, MIBs, and System Processes Reference

MIB(5)

See Also

tpacall (3c), tpalloc(3c), tpcall (3¢c), tpdequeue (3c), tpenqueue (3c),
tpgetrply (3c), tprealloc (3c), Introduction to FML Functions, Fadd, Fadd32 (3fml),
Fchg, Fchg32(3fml), Ffind, Ffind32(3fml), AUTHSVR(5), TM_MIB(5), TMQFORWARD (5)

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C
Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference 261

nl_types(d)

Name

nl_types—Native language data types

Synopsis

Descr

See A

262

#include <nl_types.h>

iption

The n1_types.h header file contains the following definitions:
nl_catd

Used by the message catalog functions catopen (), catgets () and catclose() t0
identify a catalogue.

nl_item
Used by n1_langinfo () to identify items of 1anginfo () data. Values for objects of
type n1_item are defined in 1anginfo.h.

NL_SETD
Used by gencat () when no sset directive is specified in a message text source file. This
constant can be used in subsequent calls to catgets () as the value of the set identifier
parameter.

NL_MGSMAX
Maximum number of messages per set.

NL_SETMAX
Maximum number of sets per catalogue.

NL_TEXTMAX
Maximum size of a message.

DEF_NLSPATH
The default search path for locating catalogues.

Iso

gencat (1), catgets(3c), catopen, catclose(3c),nl_langinfo(3c), langinfo(5)

File Formats, Data Descriptions, MIBs, and System Processes Reference

servopts(h)

servopts(9)

Name

servopts—Run-time options for server processes

Synopsis
AOUT CLOPT= [-A] [—s{@filename| servicel,service...] [:funcl}]
[-e stderr_ file]l[-h][-1 locktypel [-n prio]

[-0 stdout_file] [-P][-p [L][low _water] [, [terminate_time]]
[:[high_water] [, create_time]][-r][-t]l[-- uargs][-v]
Description
servopts IS not a command. Rather, it is a list of run-time options recognized by servers in a
BEA Tuxedo system.

The server using these options may be one of the BEA Tuxedo system-supplied servers, or it may
be an application-supplied server built with the buildserver (1) command.

Running servers in a BEA Tuxedo system is accomplished through the tmboot (1) and
tmadmin (1) commands working with servers (and other resources) specified in the application
configuration file. Desired selections from the servopts list are specified with the server in the
configuration file. The following options are recognized:
-A
Indicates that the server should initially offer all services with which it was constructed.
For BEA Tuxedo system-supplied servers, -a is the only way of specifying services.

-s{ @filename| service[,service..][: func] }
Specifies the names of services to be advertised when the server is booted. In the most
common case, a service is performed by a function that carries the same name; that is, the
x service is performed by function x. For example, the specification:

-s X,¥Y,2

will run the associated server initially offering services x, v, and z, each processed by a
function of the same name. In other cases, a service (or several services) may be
performed by a function of a different name. The specification:

-s X,y,z:abc

runs the associated server with initial services x, y, and z, each processed by the function
abc.

File Formats, Data Descriptions, MIBs, and System Processes Reference 263

Spaces are not allowed between commas. Function name is preceded by a colon. Service
names (and implicit function names) must be less than or equal to 15 characters in length.
An explicit function name (that is, a name specified after a colon) can be up to 128
characters in length. Names longer than these limits are truncated with a warning message.
When retrieved by tmadmin (1) or TM_MIB (5), only the first 15 characters of a name are
displayed.

A filename can be specified with the -s option by prefacing the filename with the ‘@’
character. Each line of this file is treated as an argument to the -s option. You may put
comments in this file. All comments start with ‘#’ or “:”. The -s option may be specified
multiple times.

The run-time association of service name with processing function within a server load
module is called the dynamic service capability. The tmadmin advertise command can
be used to change the list of services offered as the server continues to run.

Service names beginning with the “.” character are reserved for system servers.
Application servers specifying such services will fail to boot.

Specifies the name of a file to be opened as the server's standard error file. Providing this
option ensures that a restarted server has the same standard error file as its predecessors.
If this option is not used, a default diversion file called stderr is created in the directory
specified by $APPDIR.

-h
Do not run the server immune to hangups. If not supplied, the server ignores the hangup
signal.

-1 locktype
Lock the server in core. The argument for 1ocktypeiis t, 4, or p according to whether the
text (TxTLOCK), data (DATLOCK), Or the entire process (text and data—pRrocLoCK), should
be locked. See plock(2) for details. The lock fails if the server is not run as root. There is
no way to unlock a server once it is locked.

-nprio

nice the server according to the prio argument. Giving the process better priority (a
negative argument) requires it to be run with the uIDp of root. See nice(2) for details.

-0 stdout_file
Specifies the name of a file to be opened as the server’s standard output file. Providing
this option ensures that a restarted server has the same standard output file as its
predecessors. If this option is not used, a default diversion file called stdout is created in
the directory specified by sapppIR.

264 File Formats, Data Descriptions, MIBs, and System Processes Reference

servopts(h)

Specifies that services advertise running status as:

e susp (suspended) when booting and tpsvrinit () is running. Requests to a
suspended service will fail and return TeNOENT immediately.

If tpsvrinit () runs for an extended period of time, the -p option helps avoid
service requests timeout at the booting stage.

e AvATL (available) after tpsvrinit () has completed and the server is ready to
receive requests.

Note: Itis highly recommended to use this c.opT with application servers only. Do not
use it as the default cropr, since it may affect all system servers, for example,
TMUSREVT, TMSYSEVT, GWTDOMAIN, GWADM, TMS, TMQUEUE, efcC.

The "-pr option can also be used with CORBA application servers.

-p [L][1ow_water][,[terminate_time]][:[high_water][,create_timel]]

This option can be used to support the automatic spawning and decaying of servers, both
single-threaded RPC servers and conversational servers. For RPC servers, this option
must be used on an MSSQ set with MAX greater than 1. For conversational servers, the
MAX must be greater than 1.

The decision to spawn/decay servers is based on the number of requests per server on the
queue. However, if the load [r.] argument is used with RPC servers, than the load factor
of each request is also considered.

If the —p option is specified with the L argument, then, if the load meets or exceeds a
threshold (specified by the high_water argument) for a specified amount of time (in
seconds), the system will spawn additional servers. If, however, the value of high_water
is 1, then the single server responsible for spawning another server will not do so as long
as it is handling messages.

This problem will persist as long as there is only one request waiting on the queue: the
server will process it once it finishes its current request and it will not need to start a new
Server.

However, when additional requests start arriving and waiting on the queue, then you
should eventually see new servers getting started. Again, the new servers will be started
when the currently running server finishes processing the current request and starts
checking for the next one.

File Formats, Data Descriptions, MIBs, and System Processes Reference 265

266

Every time a server returns to its queue to get a new message to process, it checks the
conditions governing the need for new servers. If those conditions are met, the server
spawns exactly one new server.

Note: For UNIX platforms only—the a1arm () system call does not work as expected
in servers running under server pool management. Because the code that
terminates idle servers uses the alarm() call, user-written code intended to
establish a customized signal handler fails to do so, despite the fact that calls to
Usignal () do not result in errors.

Depending on which type of server is being used, arguments to the -p option have the
following meanings:

RPC Servers

L
The load argument works only with RPC servers. It also only works in SHM mode
with load balancing turned on. The decision to spawn more servers is based on the
request load, rather than the number of messages per server. If suM/LDBAL=Y iS hot
set, a user log message (LIBTUX_CAT:1542) is printed and no spawning or
decaying occurs.

low _water, terminate_time, high water, and create_time
These arguments are used to control when RPC servers are spawned or deactivated
based on the number of messages per server. If the load exceeds high_water for
at least create_time seconds, a new server is spawned. If the load drops below
low_water for at least terminate time Seconds, a server is deactivated.
low_water defaults to an average of 1 message per server on the MSSQ or a
workload of 50. high_water defaults to an average of 2 messages per server, or a
workload of 100. create_time defaults to 50 and terminate_time defaults to
60.

Conversational Servers

L
The load option is not applicable to conversational servers.

Note: For BEA Tuxedo 8.0 or later, there are no restrictions for the automatic spawning of
multi-threaded or non-MSSQ conversational servers. However, the automatic decay
feature will not be implemented for these types of servers.

low _water, terminate_time, high water, and create_time
These arguments are used to control when conversational servers are spawned or
deactivated. Since conversational servers typically run for a longer time than RPC
servers, a conversational server checks the minimum Iow water percentage and

File Formats, Data Descriptions, MIBs, and System Processes Reference

-V

servopts(h)

the maximum high_water percentage of other servers that are currently engaged
in conversations. If the percentage exceeds the value set for the related time
parameters, terminate_time and create_time respectively, a server may be
decayed or spawned, provided that the minimum or maximum number of servers
has not been reached.

Also, you can specify a value of 0 seconds for the time parameters so that either a
spawn or decay action will occur as soon as the server detects that the percentage
has been exceeded. 1ow_water percentage defaults to 0% and the high_water
percentage defaults to 80%. terminate_time defaults to 60 seconds and
create_time defaults to 0 seconds.

Specifies that the server should record, on its standard error file, a log of services
performed. This log may be analyzed by the txrpt (1) command. When the -r option is
used, make sure that the uL.oeDEBUG Vvariable is not set to “y”. The ULOGDEBUG Variable
prevents debugging messages from being sent to stderr. Debugging messages in the file
will be misinterpreted by txrpt.

Specifies that the server in this BEA Tuxedo 7.1 or later application is allowed to
interoperate with pre-release 7.1 BEA Tuxedo software. The server may be a workstation
listener (WSL) process (which when started with the -t option allows interoperability for
all of its workstation handler—WSH—processes), a domain gateway (GWTDOMAIN)
process, or a system or application server process.

Marks the end of system-recognized arguments and the start of arguments to be passed to
a subroutine within the server. This option is needed only if the user wishes to supply
application-specific arguments to the server. The system-recognized options precede the
-—; application arguments should follow it. Application arguments may be processed by
a user-supplied version of the tpsvrinit () function. getopt () should be used to parse
them. Because all system arguments are processed prior to the call to tpsvrinit (), when
the call is made the external integer, opt ind points to the start of the user flags. The same
option letters (for example, -a) may be reused after the -- argument, and given any
meaning appropriate to the application.

Prints out the service name/function name list to standard output, beginning with the
following comment lines:

#

List of services and corresponding handler functions built into the

File Formats, Data Descriptions, MIBs, and System Processes Reference 267

server

#
<servicename>:<functionname><NEWLINE>
<servicename>:<functionname><NEWLINE>
<servicename>:<functionname><NEWLINE>

where the first three lines are comments and begin with a pound sign (#) character. Each
following line includes a service name and its corresponding function name built into the
executable. The servicename field on any line can be an empty string if an “-s:
functionname” is included on the buildserver command line. The functionname
field is always present.

Note: At run time the BEA Tuxedo system automatically adds the following option to each
command line for each server:

-c dom=domainid

The -c option adds a comment line, in which the specified domain ID is reported, to any
command output that reports on the processes associated with the domain in question,
such as the output of the ps command. This comment helps an administrator who is
managing multiple domains to interpret a single output stream that refers to several
domains.

Examples
See the Examples section of UBBCONFIG(5).

See Also

buildserver (1), tmadmin (1), tmboot (1), txrpt (1), tpsvrinit (3c), UBBCONFIG (5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time

nice(2), plock(2), getopt(3) in a UNIX system reference manual

268 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TM_MIB(3)

Name
m™_MT1B—Management Information Base for core BEA Tuxedo system

Synopsis
#include <fml32.h>
#include <tpadm.h>

Description

The BEA Tuxedo System MIB defines the set of classes through which the fundamental aspects
of an application can be configured and managed. This includes management of machines,
servers, networking.

m™_MIB(5) should be used in combination with the generic MIB reference page MIB(5) to
format administrative requests and interpret administrative replies. Requests formatted as
described in M1B (5) using classes and attributes described in this reference page may be used to
request an administrative service using any one of a number of existing ATMI interfaces in an
active application. Inactive applications may also be administered using the tpadmcall ()
function interface. For additional information pertaining to all Tm_m1B (5) class definitions, see
“TM_MIB(5) Additional Information” on page 413.

m™_MIB(5) consists of the following classes.

Table 41 TM_MIB Classes

Class Name Controls . ..

T_BRIDGE Network connections
T_CLIENT Clients

T_CONN Conversations

T_DEVICE Devices

T_DOMAIN Global application attributes
T_FACTORY Factories

T_GROUP Server groups

File Formats, Data Descriptions, MIBs, and System Processes Reference 269

210

Table 41 TM_MIB Classes (Continued)

Class Name

Controls . ..

T_IFQUEUE

Server queue interfaces

T_INTERFACE

Interfaces

T_MACHINE Machine specific attributes
T_MSG Message queues
T_NETGROUP Network groups
T_NETMAP Machines to Netgroups
T_QUEUE Server queue

T_ROUTING Routing criteria

T _SERVER Servers

T_SERVERCTXT

Server context

T_SERVICE Services

T_SVCGRP Service group

T_TLISTEN BEA Tuxedo system listeners
T_TLOG Transaction log

T_TRANSACTION

Transaction

T_ULOG

User log

Each class description consists of four sections:

e ovErRvIEW—high level description of the attributes associated with the class.

e ATTRIBUTE TABLE—the format of the attribute table is summarized below and described

in detail in MIB (5).

e ATTRIBUTE SEMANTICS—defines the interpretation of each attribute that is part of the

class.

e L.IMITATIONS—Iimitations in the access to and interpretation of this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Attribute Table Format

Each class that is a part of this MIB is defined in four parts in sections that follow. One of the four
parts is the attribute table. The attribute table is a reference guide to the attributes within a class
and how they may used by administrators, operators, and general users to interface with an
application.

There are five columns for each attribute described in an attribute table: name, type, permissions,
values, and default. Each of these components is discussed in MTB (5).

TA_FLAGS Values

mMIB(5) defines the generic Ta_rraGs attribute, which is a 1ong containing both generic and
component MIB specific flag values. The following are the Tm_wm1B(5) specific flag values
supported. These flag values should be or’d with any generic MIB flags.

TMIB_ADMONLY
A flag used to indicate that only administrative processes should be activated when
changing the state of a T_macHINE object from INActive t0 ACTive.

TMIB_APPONLY
A flag used to indicate that only application processes should be considered when
activating or deactivating a T_MACHINE object. It may also be used on T_sERrRVER and
T_SERVERCTXT retrievals to restrict the retrieval to application servers only.

TMIB_CONFIG
A flag used to indicate that only configured groups and servers should be considered in
satisfying the request.

TMIB_NOTIFY
A flag used when activating or deactivating T_MACHINE, T_GROUP, Of T_SERVER 0Objects
to cause unsolicited notification messages to be sent to the originating client just prior to
and just after the activation or deactivation of each server object selected.

FML3?2 Field Tables

The field table for the attributes described in this reference page is found in the file
udataobj/tpadm relative to the root directory of the BEA Tuxedo system software installed on
the system. The directory $ {TUXDIR} /udataobj should be included by the application in the
colon-separated list specified by the FL.DTBLDIR environment variable, and the field table name
tpadm should be included in the comma-separated list specified by the FIELDTBLS environment
variable.

File Formats, Data Descriptions, MIBs, and System Processes Reference 2N

Limitations

Access to the header files and field tables for this MIB is being provided only on BEA Tuxedo
release 6.1 sites and later, both native and Workstation.

Workstation access to this MIB is limited to run-time only access; the function tpadmcall (3c)
is not supported on workstations.

For the purpose of preimage processing (M1B_pREIMAGE flag bit set), local attributes for classes
that have global attributes are not considered. Additionally, indexed fields and the indexes that
go with them are not considered, for example, T_T1.0G class, TA_TLOGCOUNT, TA_TLOGINDEX,

TA_GRPNO, TA_TLOGDATA attributes.

T_BRIDGE Class Definition

Overview

The T_BRIDGE class represents run-time attributes pertaining to connectivity between logical
machines making up an application. These attribute values represent connection status and

statistics.

Attribute Table

Table 42 TM_MIB(5): T_BRIDGE Class Definition Attribute Table

Attribute! Type Permissions Values Default
TA_LMID(*)? string r--r--r-- “LMIDI[, LMID2]" N/A
TA_NETGROUP(K)? string R--R--R-- string[l..30] “DEFAULTNET”
TA_STATE(K) string rwxrwxr-- GET: “{ACT | INA | SUS | PEN}” N/A

SET: “{ACT | INA | SUS | PEN}” N/A
TA_CURTIME long R--R--R-- 0 <= num N/A
TA_CONTIME long R-XR-XR-- 0 <= num N/A
TA_SUSPTIME long rWXYWXY - - 0 <= num 300 4
TA_RCVDBYT long R-XR-XR-- 0 <= num N/A
TA_SENTBYT long R-XR-XR-- 0 <= num N/A

212 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Table 42 TM_MIB(5): T_BRIDGE Class Definition Attribute Tahle

Attribute! Type Permissions Values Default
TA_RCVDNUM long R-XR-XR-- 0 <= num N/A
TA_SENTNUM long R-XR-XR-- 0 <= num N/A
TA_FLOWCNT long R-XR-XR-- 0 <= num N/A
TA_CURENCRYPTBIT string R--R----- ~{0]40|56]128}" 5 N/A

(K)—GET key field
(*)—GET/SET key, one or more required for SET operations

L Al attributes in the T_BRIDGE class are local attributes.

27a_LMID attribute must be fully specified for SET operations, that is, LMID1, LMID2.

3 SET operation may only use TA_NETGROUP DEFAULTNET in BEA Tuxedo release 6.4. GET
operation may use any TA_NETGROUP defined for both LMID values.

4TA_SUSPTIME may be SET only if the TA_STATE is currently SUSPENDED or is being SET to
SUSPENDED.

5 Link-level encryption value of 40 bits is provided for backward compatibility.

Attribute Semantics

TA_LMID: “LMIDI[, LMID2]"
Source logical machine identifier (zx1p1) and destination logical machine identifier
(zmrD2) for network connection.

TA_NETGROUP: string[l..30]
Logical name of the network group.When both source and destination Ta_rm1D identifiers
are in the same Ta_NETGROUP, the T_BRIDGE class will present all instances of related
fields per Ta_NETGROUP. TA_NETGROUP may be used as a key field on GET requests.
TA_NETGROUP Values other than DEFAULTNET may not be used on seT operations in this
BEA Tuxedo release (release 6.4).

TA_STATE!

GET: “{ACTive | INActive | SUSpended | PENding}”
A cET operation will retrieve run-time information for the selected T_BRIDGE
object(s). A Ta_rM1D attribute value with only one logical machine identifier
matches all active connections from r.ux1p1 to other machines in the application. In
this case, each retrieved record will contain an expanded Ta_1mM1D attribute value

File Formats, Data Descriptions, MIBs, and System Processes Reference 273

with the destination r.m1D filled in. The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

ACTive

The connection is established and active.

INActive

The connection is inactive. This state is only returned when
status is requested on a particular connection, that is, both
Lands specified in the Ta_LMID attribute and the source
logical machine is reachable.

SUSpended

An established connection was terminated due to an error
condition, and reconnection has been suspended for at least
the amount of time indicated in the TA_SUSPTIME attribute
value. This state is ACcTive equivalent for the purpose of
determining permissions.

PENding

An asynchronous connection has been requested, but has not
yet been completed. The final outcome of the connection
request has not been determined.

SET: “{ACTive | INActive | SUSpended | PENding}”
A seT operation will update run-time information for the selected T_BrIDGE
object. The following states indicate the meaning of a Ta_sTaTE set in a SET
request. States not listed may not be set.

unset

Modify an existing T_BRIDGE object. This combination is
allowed only when in the ACTive or SUSpended state.
Successful return leaves the object state unchanged.

ACTive

Activate the T_BRIDGE object by establishing a connection
between the indicated logical machines. This operation will
fail if only one logical machine is specified, if either of the
two machines is not active, or if the source logical machine
is not reachable. While the T_BRIDGE object is establishing
the asynchronous connection, the Bridge process will do
other work. Using the state change to PENding is
recommended. State change allowed in the INActive and
SUSpended states. For the purpose of determining
permissions for this state transition, the active object
permissions are considered (that is, --x--x--x). Successful
return leaves the object in the PENding State.

214 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

INActive Deactivate the T_BRIDGE object by closing the connection
between the indicated logical machines. This operation will
fail if only one logical machine is specified or if the two
machines are not connected. State change allowed only
when in the ACcTive state. Successful return leaves the
object in the INActive state.

SUSpended Suspend the T_BRIDGE object by closing the connection

between the indicated logical machines and by setting the
TA_SUSPTIME attribute as indicated. State change allowed
only when in the AcTive state. Successful return leaves the
object in the sUSpended state. Limitation: Note that since
the statistics reported are from the viewpoint of the source
logical machine, resetting those statistics will cause them to
be out of sync with the statistics reported by the destination
logical machine for the same connection.

PENding Activate the T_BRIDGE object by establishing an
asynchronous connection between the indicated logical
machines. This operation will fail if only one logical
machine is specified, if either of the two machines is not
active, or if the source machine is not reachable. When in the
PENding state, the success or failure of the connection
request has not yet been determined. However, the Bridge
process may continue to process other events and data while
the connection is outstanding. State change allowed in the
INActive and SUSpended states. For the purpose of
determining permissions for this state transition, the active
object permissions are considered (that is, --x--x--X).
Successful return leaves the object in the PENding state.

TA_CURTIME: 0 <= num
Current time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2)
system call on T_BrI1DGE:TA_LMID. This attribute can be used to compute elapsed time
from the following attribute value.

TA_CONTIME: 0 <= num
Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2) system
call on T_BrIDGE:TA_1MID, When this connection was first established. Elapsed open
time in seconds can be computed using TA_CURTIME - TA_CONTIME.

File Formats, Data Descriptions, MIBs, and System Processes Reference 275

TA_SUSPTIME: 0 <= num
Time, in seconds, remaining in the suspension of this connection. After this amount of
time, the connection will automatically change to a Ta_staTe of INACTIVE and may be
activated by normal application traffic.

TA_RCVDBYT. 0 <= num
Number of bytes sent from the destination logical machine to the source logical machine.

TA_SENTBYT: 0 <= num
Number of bytes sent from the source logical machine to the destination logical machine.

TA_RCVDNUM: 0 <= num
Number of messages sent from the destination logical machine to the source logical
machine.

TA_SENTNUM: 0 <= num
Number of messages sent from the source logical machine to the destination logical
machine.

TA_FLOWCNT: 0 <= num
Number of times flow control has been encountered over this connection.

TA_CURENCRYPTBITS: “{0| 40|56 | 128}~
The current encryption level for this link. The level is negotiated between machines when
the link is established.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

Limitations
None.

T_CLIENT Class Definition

Overview

The T_crL1ENT class represents run-time attributes of active clients within an application. These
attribute values identify and track the activity of clients within a running application.

276 File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Table

Table 43 TM_MIB(5): T_CLIENT Class Definition Attribute Table

TM_MIB(5)

Attribute 1 Type Permissions Values Default
TA_STATE(K) string R-XR-XR-- GET: “{ACT | SUS | DEA} * N/A
SET: “{ACT | SUS | DEA}" N/A
TA_CLIENTID(*) string R--R--R-- string[l1..78] N/A
TA_CLTNAME(K) string R--R--R-- stringl0..30] N/A
TA_IDLETIME(K) long R--R--R-- 0 <= num N/A
TA_TPBLK_ALL long R--R--R-- 0 <= num 0
TA_LMID(K) string R--R--R-- LMID N/A
TA_PID(K) long R--R--R-- 1<=num N/A
TA_CONTEXTID long R--R--R-- -2 <= num < 30,000 N/A
TA_SRVGRP(K) string R--R--R-- string[0..30] N/A
TA_USRNAME(K) string R--R--R-- string[0..30] N/A
Ta_wsc(k) string R--R--R-- “{y | N}~ N/A
TA_WSH(K) string R--R--R-- “{v N}~ N/A
TA_WSHCLIENTID(K) string R--R--R-- string[l..78] N/A
TA_RELEASE long R--R--R-- 0 <= num N/A
TA_WSPROTO long R--R--R-- 0 <= num N/A
TA_NUMCONV long R-XR-XR-- 0 <= num N/A
TA_NUMDEQUEUE long R-XR-XR-- 0 <= num N/A
TA_NUMENQUEUE long R-XR-XR-- 0 <= num N/A
TA_NUMPOST long R-XR-XR-- 0 <= num N/A
TA_NUMREQ long R-XR-XR-- 0 <= num N/A
File Formats, Data Descriptions, MIBs, and System Processes Reference 211

Table 43 TM_MIB(5): T_CLIENT Class Definition Attribute Table (Continued)

Attribute 1 Type Permissions Values Default
TA_NUMSUBSCRIBE long R-XR-XR-- 0 <= num N/A
TA_NUMTRAN long R-XR-XR-- 0 <= num N/A
TA_NUMTRANABT long R-XR-XR-- 0 <= num N/A
TA_NUMTRANCMT long R-XR-XR-- 0 <= num N/A
TA_CMTRET string R--R--R-- “{COMPLETE | LOGGED}"” N/A
TA_CURCONV long R--R--R-- 0 <= num N/A
TA_CURENCRYPTBIT string R--R----- “{0]40|56]|128}" 2 N/A
TA_CURREQ long R--R--R-- 0 <= num N/A
TA_CURTIME long R--R--R-- 1 <= num N/A
TA_LASTGRP long R--R--R-- 1 <= num < 30,000 N/A
TA_NADDR string R--R--R-- string[l1..256]3 N/A
TA_NOTIFY string R--R--R-- “{DIPIN | SIGNAL | THREAD | N/A
IGNORE}”
TA_NUMUNSOL long R--R--R-- 0 <= num N/A
TA_RPID long R--R--R-- 1 <= num N/A
TA_TIMELEFT long R--R--R-- 0 <= num N/A
TA_TIMESTART long R--R--R-- 1 <= num N/A
TA_TRANLEV long R--R--R-- 0 <= num N/A

(K)—GET key field

(*)—GET/SET key, one or more required for SET operations

L All attributes in the T_CLIENT class are local attributes.
2 Link-level encryption value of 40 bits is provided for backward compatibility.
8 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

218 File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Semantics

TA_STATE:

TM_MIB(5)

GET: “{ACTive | SUSpended | DEAG}"
A ceT operation will retrieve run-time information for the selected T_cLITENT
object(s). Note that client information is kept in local bulletin board tables only.
Therefore, for maximum performance, inquiries on client status should be
restricted using key fields as much as possible. The following states indicate the
meaning of a TA_sTATE returned in response to a GET request.

ACTive

T_CLIENT object active. This is not an indication of
whether the client is idle or busy. A non 0 value retrieved for
either the TA_CURCONV attribute or the TA_CURREQ
attribute indicates a busy client.

SUSpended

T_CLIENT object active and suspended from making
further service requests (tpcall () or tpacall ())and
from initiating further conversations (tpconnect ()). See
SET SUSpended below for details. This state is ACTive
equivalent for the purpose of determining permissions.

DEAd

T_CLIENT object identified as active in the bulletin board
but currently not running due to an abnormal death. This
state will exist only until the BBL local to the client notices
the death and takes action to clean up the client's bulletin
board resources. This state is ACTive equivalent for the
purpose of determining permissions.

SET: “{ACTive | SUSpended | DEAd}”
A seT operation will update run-time information for the selected T_cLIENT
object. The following states indicate the meaning of a TA_sTATE setin a SET
request. States not listed may not be set.

ACTive

Activate a SUSpended T_CLIENT object. State change
allowed only when in the SuSpended state. Successful
return leaves the object in the ACTive state.

unset

Modify an existing T_CLIENT object. This combination is
allowed only when in the ACTive or SUSpended state.
Successful return leaves the object state unchanged.

File Formats, Data Descriptions, MIBs, and System Processes Reference 219

SUSpended

Suspend the T_CLIENT object from making service
requests (tpcall () or tpacall ()), initiating
conversations (tpconnect ()), beginning transactions
(tpbegin ()), and enqueuing new requests

(tpengueue ()). Clients within a transaction will be
permitted to make these calls until they abort or commit the
current transaction, at which time they will become
suspended. Invocations of these routines will result in a
TPESYSTEM error return and a system log message being
generated indicating the situation. State change allowed only
when in the ACcTive state. Successful return leaves the
object in the SUSpended state.

DEAd

Abortively deactivate the T_CLIENT object. State change
allowed only when in the ACTive or SUSpended state. The
recommended method for deactivating clients is to first
broadcast a warning message (tpbroadcast)), then to
suspend them (see SET SuUSpended above), and finally to
abortively deactivate them by setting the state to DEAG.
Successful return leaves the object in the DEAA state.

Limitation: Workstation handlers (T_CLIENT:TA_WSH ==
Y) may not be set to a state of DEAG.

The system may not be able to k111 the client due to
platform or signaling restrictions. In this case, a native client
will be abortively terminated at its next access to ATMI, and
a Workstation client's connection to a WSH will be
preemptively torn down.

TA_CLIENTID: string[l..78]

Client identifier. The data in this field should not be interpreted directly by the end user

except for equality comparison.

TA_CLTNAME: string{0..30]

Client name associated with client at tpinit () time via the c1tname element of the

TPINIT Structure.

TA_IDLETIME: 0 <= num

Approximate amount of time, in seconds, since this client last interacted with the system
viaan ATMI call. This value is accurate to within Ta_scanun1T (See the T_pomMa1n class)
seconds. When specified as a key field, a positive value indicates that all clients with idle
times of at least the indicated value match, a negative value indicates that all clients with
no more than the indicated value match, and a 0 value matches all clients.

280 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_TPBLK_ALL: 0 <= num
Reports the current tpsblktime (TPBLK_ALL) blocktime value per client. If TPBLK_ALL
has not been set, then the Ta_TrBLK_ALL value is 0.

TA_LMID: LMID
Logical machine where client is running (native clients) or where client is connected
(Workstation clients).

TA_PID: 1 <= num
Process identifier of client. Note that for Workstation clients, this identifier indicates the
workstation handler through which the Workstation client is connected. A negative
number may be specified on a ceT operation for the purpose of retrieving client
information for the calling process. If the calling process is not a client, an error will be
returned.

TA_CONTEXTID: -2 <= num < 30,000
Identifier for this particular application association.

TA_SRVGRP: string[0..30]
Server group with which the client is associated. This information is set via the grpname
element of the TPINIT structure at tpinit () time.

TA_USRNAME: string[0..30]
User name associated with client at tpinit () time via the usrname element of the
TPINIT Structure.

Ta_wsc: “{y | N}~
Workstation client. If this attribute is set to “v~, the indicated client is logged in to the
application from a remote workstation.

Ta_wsH: “{v | N}~

Workstation handler. If this attribute is set to ~v~, the indicated client is a workstation
handler process.

TA_WSHCLIENTID: string[l..78]
Client identifier for the associated workstation handler (WSH) if this client is a
Workstation client (Ta_wsH == v); otherwise, this attribute will be returned as a 0-length
string.

TA_RELEASE: 0 <= num
The BEA Tuxedo system major protocol release number for the machine where the client
is running. This may be different from the Ta_swreLEASE for the same machine. Note that
for Workstation clients (Ta_wsc == v), this value may be different than the major release

File Formats, Data Descriptions, MIBs, and System Processes Reference 281

associated with the application administered machine through which the Workstation
client accesses the application.

TA_WSPROTO: 0 <= num
The BEA Tuxedo system Workstation protocol version number for a Workstation client.
This value is changed with each update to the Workstation protocol. A value of 0 is
returned for this attribute when associated with non-Workstation clients (Ta_wsc == N).

TA_NUMCONV: 0 <= num
Number of conversations initiated by this client via tpconnect ().

TA_NUMDEQUEUE! 0 <= num
Number of dequeue operations initiated by this client via tpdequeue ().

TA_NUMENQUEUE: 0 <= num
Number of enqueue operations initiated by this client via tpenqueue ().

TA_NUMPOST: 0 <= num
Number of postings initiated by this client via tppost ().

TA_NUMREQ: 0 <= num
Number of requests made by this client via tpcall () oOr tpacall ().

TA_NUMSUBSCRIBE: 0 <= num
Number of subscriptions made by this client via tpsubscribe ().

TA_NUMTRAN: 0 <= num
Number of transactions begun by this client.

TA_NUMTRANABT: 0 <= num
Number of transactions aborted by this client.

TA_NUMTRANCMT: 0 <= num
Number of transactions committed by this client.

TA_CMTRET: “{COMPLETE | LOGGED}”
Setting of the Tp_comm1T_coNTROL characteristic for this client. See the description of
the BEA Tuxedo System ATMI function tpscmt () for details on this characteristic.

TA_CURCONV: 0 <= num
Number of conversations initiated by this client via tpconnect () that are still active.

TA_CURENCRYPTBITS: “{0] 4056|128}~
The current encryption level for this client. The level is negotiated when the link is
established.

282 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

TA_CURREQ: 0 <= num
Number of requests initiated by this client via tpcall () or tpacall () that are still
active.

TA_CURTIME: 1 <= num
Current time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2)
system call on T_cr1eENT:TA_LMID. This attribute can be used to compute elapsed time
from the T_cLIENT:TA_TIMESTART attribute value.

TA_LASTGRP: 1 <= num < 30,000
Server group number (T_cRrRouPp.TA_GRPNO) Of the last service request made or
conversation initiated from this client.

TA_NADDR: string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
For Workstation clients, this attribute indicates the network address of the client. Network
addresses with unprintable characters are converted to one of the following formats:

® “Oxhex-digits”

® “\\xhex-digits”
A string in either format must contain an even number of valid hex digits. Such a string is
translated internally into a character array containing the hexadecimal representations of
the string specified.
For TCP/IP addresses one of the following formats is used:

® “//hostname:port”

® “//#.#.#.#:port_number”

Each # (pound) sign represents a decimal number in the range of 0 to 255. The value of
port_number is a decimal number in the range of 0 to 65535.

Note: Some port numbers may be reserved for the underlying transport protocols (such as
TCP/IP) used by your system. Check the documentation for your transport protocols
to find out which numbers, if any, are reserved on your system.

Non-Workstation clients have a 0-length string associated with them for this attribute
value.

Limitation: The ability of the system to provide this information is determined by the
transport provider in use. In some cases, Workstation clients may not have addresses
associated with them if the provider does not make this information available.

File Formats, Data Descriptions, MIBs, and System Processes Reference 283

TA_NOTIFY. “{DIPIN | SIGNAL | THREAD | IGNORE}"
Setting of the notification characteristic for this client. See the T_poma1n class description
of this attribute for more details.

TA_NUMUNSOL: 0 <= num
Number of unsolicited messages queued for this client awaiting processing.

TA_RPID: 1 <= num
UNIX system message queue identifier for the client's reply queue. Limitation: This is a
UNIX system specific attribute that may not be returned if the platform on which the
application is being run is not UNIX-based.

TA_TIMELEFT: 0 <= num
Time left, in seconds, for this client to receive the reply for which it is currently waiting
before it will timeout. This time out may be a transactional timeout or a blocking timeout.

TA_TIMESTART. 1 <= num
Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2) system
call on T_crLIENT:TA_LMID, Since the client joined the application.

TA_TRANLEV: 0 <= num
Current transaction level for this client. 0 indicates that the client is not currently involved
in a transaction.

Limitations
None.

T _CONN Class Definition

Overview
The T_conn class represents run-time attributes of active conversations within an application.

Attribute Table

Table 44 TM_MIB(5): T_CONN Class Definition Attribute Table

Attribute ! Type Permissions Values Default

TA_LMID(K) string R--R--R-- LMID N/A

TA_STATE(K) string R--R--R-- GET: “ACT” N/A
SET: N/A N/A

284 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Table 44 TM_MIB(5): T_CONN Class Definition Attribute Tahle

Attribute ! Type Permissions Values Default
TA_SERVICENAME string R--R--R-- string[l..15] N/A
TA_CLIENTID(K) string R--R--R-- string[l..78] N/A
TA_CONNOGRPNO long R--R--R-- 1 <= num < 30,001 N/A
TA_CONNOLMID string R--R--R-- LMID N/A
TA_CONNOPID long R--R--R-- 1 <= num N/A
TA_CONNOSNDCNT long R--R--R-- 0 <= num N/A
TA_CONNOSRVID long R--R--R-- 1 <= num < 30,001 N/A
TA_CONNSGRPNO long R--R--R-- 1 <= num < 30,001 N/A
TA_CONNSLMID string R--R--R-- LMID N/A
TA_CONNSPID long R--R--R-- 1 <= num N/A
TA_CONNSSNDCNT long R--R--R-- 0 <= num N/A
TA_CONNSSRVID long R--R--R-- 1 <= num < 30,001 N/A

(k)—GET key field

L All attributes in the T_CONN class are local attributes.

Attribute Semantics

TA_LMID:. LMID
Retrieval machine logical machine identifier.

TA_STATE!

GET: “{ACTive}”
A GeT operation will retrieve run-time information for the selected T_conn
object(s). The following states indicate the meaning of a Ta_sTATE returned in
response to a GET request.

ACTive The object returned reflects one or both sides of an active
conversation within the application.

SET:
SET operations are not permitted on this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference 285

TA_SERVICENAME: string[l..15]
Service name of the conversational service invoked by the originator and processed by the
subordinate.

TA_CLIENTID: string[l..78]
Client identifier. The data in this field should not be interpreted directly by the end user
except for equality comparison.

TA_CONNOGRPNO: 1 <= num < 30,001
Server group number for the originator of the conversation. If the originator is a client,
30,000 is returned as the value for this attribute.

TA_CONNOLMID: LMID
Logical machine identifier indicating where the originator is running or is accessing the
application (in the case of Workstation clients).

TA_CONNOPID: 1 <= num
Process identifier for the originator of the conversation.

TA_CONNOSNDCNT. 0 <= num
Number of tpsend () calls done by the originator.

TA_CONNOSRVID: 1 <= num < 30,001
Server identifier for the originator of the conversation.

TA_CONNSGRPNO: 1 <= num < 30,001
Server group number for the subordinate of the conversation.

TA_CONNSLMID: LMID
Logical machine identifier indicating where the subordinate is running or is accessing the
application (in the case of Workstation clients).

TA_CONNSPID: 1 <= num
Process identifier for the subordinate in the conversation.

TA_CONNSSNDCNT: 0 <= num
Number of tpsend () calls done by the subordinate.

TA_CONNSSRVID: 1 <= num < 30,001
Server identifier for the subordinate in the conversation.

Limitations
None.

286 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

T_DEVICE Class Definition

Overview

The T_pEvICE class represents configuration and run-time attributes of raw disk slices or UNIX
system files being used to store BEA Tuxedo system device lists. This class allows for the
creation and deletion of device list entries within a raw disk slice or UNIX system file.

Attribute Table

Table 45 TM_MIB(5): T_DEVICE Class Definition Attribute Table

Attribute! Type Permissions Values Default
TA_LMID(*) string ru-r--r-- LMID *“local_lmid”
TA_CFGDEVICE(r)(*) string ru-r--r-- string[2..64] N/A
TA_DEVICE(*) string ru-r--r-- string[2..64] “TA_ CFGDEVICE”
TA_DEVOFFSET(*) long ru-r--r-- 0 <= num 0
TA_DEVSIZE(r) long rw-r--r-- 0 <= num 10003
TA_DEVINDEX(*)? long r--r--r-- 0 <= num N/A
TA_STATE(K) string rWXr--r-- GET: “VAL” N/A

SET: “{NEW | N/A

INV}”

(K)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

L Al attributes in the T_DEVICE class are local attributes.

27A_DEVINDEX is required for SET operations to identify the particular device list entry except
when setting the state to NEw for the purpose of creating a new device list entry. In the latter case,
TA_DEVINDEX must not be set; a value will be assigned by the system and returned after a
successful creation.

3TA_DEVSIZE may only be SET on object creation.

File Formats, Data Descriptions, MIBs, and System Processes Reference 287

Attribute Semantics

TA_LMID: LMID
Logical machine identifier where the device is located. Note that this attribute may be
used as a key field in both unbooted and booted applications as long as they are already
configured (that is, at least one T_macHINE entry is defined). It is required as a key field
on seT operations when accessing a booted application. If specified when accessing the
T_DEVICE class in an unconfigured application, this attribute is ignored.

TA_CFGDEVICE: string[2..64]
Absolute pathname of the file or device where the BEA Tuxedo filesystem is stored or is
to be stored.

TA_DEVICE: string|[2..64]
Absolute pathname of the device list entry.

TA_DEVOFFSET. 0 <= num
The offset, in blocks, at which space on this Ta_bpevzick begins for use within the BEA
Tuxedo System VTOC specified by Ta_crepevIce. Limitation: This attribute must be set
to O for the first device list entry (Ta_bpevicg) on the BEA Tuxedo filesystem
(TA_CFGDEVICE).

TA_DEVSIZE: 0 <= num
The size in pages of the disk area to be used for the device list entry. Limitation: This
attribute may be set only in conjunction with a state change to nEw.

TA_DEVINDEX: 0 <= num
Device index for Ta_pevIce within the device list addressed by Ta_crepEVICE. This
attribute value is used for identification purposes only in getting and setting attribute
values relating to particular devices within a BEA Tuxedo filesystem.

TA_STATE:

GeT: “{vaLid}”
A cET operation will retrieve run-time information for the selected T_bpevice
object(s). The following states indicate the meaning of a Ta_sTATE returned in
response to a GET request.

VALid The BEA Tuxedo filesystem indicated by TA_CFGDEVICE exists
and contains a valid device list. TA_DEVICE is a valid device
within that filesystem with the device index telnet lchome3.

288 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

SET: “{NEW | INValid}”
A seT operation will update information for the selected T_pevIce object or add
the indicated object. The following states indicate the meaning of a Ta_sTATE set
in a sET request. States not listed may not be set.

NEW Create or reinitialize T_DEVICE object for application. State
change allowed only when in the INValid or VALid state.
Successful return leaves the object in the vaLid state. If this
state transition is invoked in the INValid state, the object is
created; otherwise, it is reinitialized. The creation of the first
TA_DEVICE device list entry on the TA_CFGDEVICE BEA
Tuxedo filesystem will automatically create and initialize the
necessary VTOC and UDL structures on TA_CFGDEVICE. The
first device list entry created for a particular TA_CFGDEVICE
must have equivalent values for the TA_DEVICE attribute.

INValid Delete T_DEVICE object for application. State change allowed
only when in the vALid state. Successful return leaves the
object in the INValid state. Note that TA_DEVINDEX 0 is
special and must be deleted last.

Limitations
None.

T_DOMAIN Class Definition

Overview

The T_poma1n class represents global application attributes. These attribute values serve to
identify, customize, size, secure, and tune a BEA Tuxedo system application. Many of the
attribute values represented here serve as application defaults for other classes represented in this
MIB.

There is exactly one object of the T_poma1n class for each application. Because of this, there are
no key fields defined for this class. A ceT operation on this class will always return information
representing this single object. Likewise, a seT operation will update it. GETNEXT is not permitted
with this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference 289

Attribute Table

Table 46 TM_MIB(5): T_DOMAIN Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_IPCKEY(r) long rw-r--r-- 32,769 <= num < 262,144 N/A
TA_MASTER(r) string rwxr-xr-- “LMIDI[, LMID2]" N/A
TA_MODEL(r) string rw-r--r-- v{sSHM | MP}” N/A
TA_STATE string rwxr--r-- GET: “{ACT | INA}" N/A
SET: “{NEW | INV | ACT | N/A
INA | FIN}”
TA_DOMAINID string rwxr--r-- string]0..30] W
TA_PREFERENCES string rwxr--r-- string[0..1023] wr
TA_UID long rTwyr--r-- 0 <= num (YH
TA_GID long TWyr--r-- 0 <= num (H
TA_PERM long TWyr--r-- 0001 <= num <= 0777 0666
TA_LICEXPIRE long R--R--R-- string[0..78] N/A
TA_LICMAXUSERS long R--R--R-- 0<=num< 32,768 N/A
TA_LICSERIAL string R--R--R-- string]0..78] N/A
TA_MIBMASK long rTwWX-—-———- 0 <= num <= 0777 0000
TA_MAXACCESSERS long rwyr--r-- 1 <= num< 32,768 50
TA_MAXCONV long rwyr--r-- 0 <= num< 32,768 64
TA_MAXGTT long rwyr--r-- 0 <= num< 32,768 100

290 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 46 TM_MIB(5): T_DOMAIN Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_MAXBUFSTYPE long rw-r--r-- 1 <= num< 32,768 32
TA_MAXBUFTYPE long rw-r--r-- 1 <= num< 32,768 16
TA_MAXDRT long rw-r--r-- 0 <= num< 32,768 0
TA_MAXGROUPS long rw-r--r-- 100 <= num < 32,766 100
TA_MAXNETGROUPS long rw-r--r-- 1<=num<8,192 8
TA_MAXMACHINES long rw-r--r-- 256 <= num < 8,191 256
TA_MAXQUEUES long rw-r--r-- 1<=num<8,192 50
TA_MAXRFT long rw-r--r-- 0 <= num< 32,766 0
TA_MAXRTDATA long rw-r--r-- 0<=num< 32,761
TA_MAXSPDATA long rw-r--r-- 1 <= num <= 2147483640
TA_MAXTRANTIME long rwyr--r-- 1 <= num <= 2147483647
TA_MAXSERVERS long rw-r--r-- 1<=num<8§,192 50
TA_MAXSERVICES long rw-r--r-- 1 <= num< 32,766 100
TA_MAXACLGROUPS long rw-r--r-- 1<=num< 16,384 16,384
TA_CMTRET string rwyr--r-- “{COMPLETE | LOGGED}” “COMPLETE”
TA_LDBAL String rwyr--r-- “{Y | N} " wy
TA_NOTIFY string rwyr--r-- “{DIPIN | SIGNAL | “DIPIN”

THREAD | IGNORE}”
TA_SYSTEM_ACCESS string rwyr--r-- “{FASTPATH | “FASTPATH”

PROTECTED}

[, NO_OVERRIDE]”
TA_OPTIONS string rwyr--r-- “{[LAN | MIGRATE | W

ACCSTATS | NO_XA |

NO_AA],*}”
TA_USIGNAL string rw-r--r-- “{SIGUSR1 | SIGUSR2}” “SIGUSR2"

File Formats, Data Descriptions, MIBs, and System Processes Reference 291

Table 46 TM_MIB(5): T_DOMAIN Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default

TA_SECURITY string rw-r--r-- “{NONE | APP_PW | “NONE”
USER_AUTH | ACL |
MANDATORY_ACL}”

TA_PASSWORD string -wx------ string[0..30] N/A
TA_AUTHSVC string rwxr--r-- stringl0..15] wr
TA_SCANUNIT long TWXT-XT—— 0 <= num <= 60 102
TA_BBLQUERY long TWXT-XT-— 0 <= num <32,768 3003
TA_BLOCKTIME long TWXY-XT—- 0 <= num< 32,768 603
TA_DBBLWAIT long rWXY-Xr-- 0 <= num< 32,768 203
TA_SANITYSCAN long WXL -XT—— 0 <= num< 32,768 1203
TA_CURDRT long r--r--r-- 0 <= num< 32,768 N/A
TA_CURGROUPS long r--r--r-- 0 <= num< 32,768 N/A
TA_CURMACHINES long r--r--r-- 0 <= num< 32,768 N/A
TA_CURQUEUES long r--r--r-- 0 <= num< 32,768 N/A
TA_CURRFT long r--r--r-- 0 <= num< 32,768 N/A
TA_CURRTDATA long r--r--r-- 0 <= num< 32,768 N/A
TA_CURSERVERS long r--r--r-- 0 <= num< 32,768 N/A
TA_CURSERVICES long r--r--r-- 0 <= num< 32,768 N/A
TA_CURSTYPE long r--r--r-- 0 <= num< 32,768 N/A
TA_CURTYPE long r--r--r-- 0 <= num< 32,768 N/A

292 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 46 TM_MIB(5): T_DOMAIN Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_HWDRT long r--r--r-- 0 <= num< 32,768 N/A
TA_HWGROUPS long r--r--r-- 0 <= num< 32,768 N/A
TA_HWMACHINES long r--r--r-- 0 <= num< 32,768 N/A
TA_HWQUEUES long r--r--r-- 0 <= num< 32,768 N/A
TA_HWRFT long r--r--r-- 0 <= num< 32,768 N/A
TA_HWRTDATA long r--r--r-- 0<=num< 32,768 N/A
TA_HWSERVERS long r--r--r-- 0 <= num< 32,768 N/A
TA_HWSERVICES long r--r--r-- 0<=num< 32,768 N/A
TA_SEC_PRINCIPAL_NAME string rwxr--r-- string[0..511] wr
TA_SEC_PRINCIPAL_LOCATION string rwxr--r-- string[0..511] wr
TA_SEC_PRINCIPAL_PASSVAR string rwxr--r-- string[0..511] wr
TA_SIGNATURE_AHEAD long rWXr--r--— 1 <= num <= 2147483647 3600
TA_SIGNATURE_BEHIND long rWXYr—--Ir--— 1 <= num<= 2147483647 604800
TA_SIGNATURE_REQUIRED string rwxr--r-- “{y | N}~ “N”
TA_ENCRYPTION_REQUIRED string rwxr--r-- Ly | N}~ “N”

(r)—required field for object creation (SET TA_STATE NEW)

Ly1D and GID as known to the UNIX system
2 num must be a multiple of 2 or 5
3 Specify num so that num times TA_SCANUNIT is approximately "Default"

Attribute Semantics
TA_IPCKEY: 32,769 <= num < 262,144

Numeric key for the well-known address in a BEA Tuxedo system bulletin board. In a
single processor environment, this key “names” the bulletin board. In a multiple processor
or LAN environment, this key names the message queue of the DBBL. In addition, this
key is used as a basis for deriving the names of resources other than the well-known

address, such as the names for bulletin boards throughout the application.

File Formats, Data Descriptions, MIBs, and System Processes Reference 293

294

TA_MASTER: “LMIDI1[, LMID2]"

Master (z.x1p1) and backup (r.mzrp2) logical machine identifiers. The master identifier
(z1p1) must correspond to the local machine for 1NActive applications. sum mode
applications (see Ta_moptL below) may set only the master logical machine identifier.
Modifications to this attribute value in an acTive Mp application (see Ta_MODEL below)
have the following semantics:

Assuming current active master LMID a, current backup master LMID B, and secondary
LMIDsc, o, . . .,thefollowing scenarios define the semantics of permitted changes
to the Ta_masTER attribute in a running Mmp mode application.

A,B -> B,A - Master migration from A to B.

A,B -> A,C - Change backup master LMID designation to C.

Note that master migration may be either orderly or partitioned. Orderly migration takes
place when the master machine is acTive and reachable. Otherwise, partitioned migration
takes place. All newly established or reestablished network connections will verify that
the two sites connecting share a common view of where the master machine is. Otherwise,
the connection will be refused and an appropriate log message generated. The master and
backup machines in an active application must always have a BEA Tuxedo release
number greater than or equal to all other machines active in the application. The master
and backup machines must be of the same release. Modifications to the Ta_MASTER
attribute must preserve this relationship.

TA_MODEL: “{SHM | MP}”

Configuration type. sum specifies a single machine configuration; only one T_MACHINE
object may be specified. mp specifies a multi-machine or network configuration; mp must
be specified if a networked application is being defined.

TA_STATE!

GET: “{ACTive | INActive}”
A cET operation will retrieve configuration and run-time information for the
T_DOMAIN object. The following states indicate the meaning of a Ta_sTATE
returned in response to a GET request.

ACTive T_DOMATIN object defined and the master machine is active.

INActive T_DOMAIN object defined and application is inactive.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

SET: “{NEW | INValid | ACTive | INActive | FINactive}”
A seT operation will update configuration and run-time information for the
T_DOMAIN Object. The following states indicate the meaning of a Ta_sTATE set in
a SET request. States not listed may not be set.

NEW

Create T_DOMAIN object for application. State change
allowed only when in the INvalid state. Successful return
leaves the object in the INActive state. Note that this state
change will also create a NEW T_MACHINE object with
TA_LMID inferred from TA_MASTER, TA_PMID based on
the local system name, and TA_TUXCONFIG and
TA_TUXDIR determined from the environment variables
TUXCONFIG and TUXDIR respectively. Other configurable
attributes of the T_MACHINE class may be set at this time by
including values in the T_DOMAIN NEW request. If a value
for Ta_APPDIR is not specified, it will default to the current
directory.

unset

Modify T_DOMAIN object. Allowed only when in the
ACTive Or INActive state. Successful return leaves the
object state unchanged.

INValid

Delete T_DOMAIN object for application. State change
allowed only when in the INActive state. Successful
return leaves the object in the INValid state.

ACTive

Activate administrative processes (DBBL, BBL, etc.) on the
master machine. For the purpose of determining permissions
for this state transition, the active object permissions are
considered (that is, --x--X--x). State change allowed only
when in the INActive state. Successful return leaves the
object in the INActive state.

INActive

Deactivate administrative processes (DBBL, BBL, etc.) on
the master machine. State change allowed only when in the
ACTive state. Successful return leaves the object in the
INActive state.

FINactive

Forcibly deactivate administrative processes (DBBL, BBL,
etc.) on the master machine. Attached clients will be ignored
for the purpose of determining if shutdown should be
allowed. State change allowed only when in the ACTive
state. Successful return leaves the object in the INActive
state.

File Formats, Data Descriptions, MIBs, and System Processes Reference 295

296

TA_DOMAINID: string[0..30]

Domain identification string.

TA_PREFERENCES: string[0..1023]

Application defined field. This field is used by the BEA Tuxedo system /Admin GUI
product to store and save GUI display preferences.

TA_UID: 0 <= num

Default attribute setting for newly configured objects in the T_macuINE class. Limitation:
Changes to this attribute do not affect active or already configured T_MaACHINE objects.

TA_GID: 0 <= num

Default attribute setting for newly configured objects in the T_macrINE class. Limitation:
Changes to this attribute do not affect active or already configured T_macHINE objects.

Ta_ PERM: 0001 <= num <= 0777

Default attribute setting for newly configured objects in the T_macuINE class. Limitation:
Changes to this attribute do not affect active or already configured T_mMACHINE objects.

TA_LICEXPIRE: string]0..78]

Expiration date for the binary on that machine or a 0-length string if binary is not a BEA
Tuxedo system master binary.

TA_LICMAXUSERS: 0 <= num < 32,768

Licensed maximum number of users on that machine or -1 if binary is not a BEA Tuxedo
system master binary.

TA_LICSERIAL: string [0..78]

Serial number of license.

TA_MIBMASK: 0 <= num <= 0777

Attribute access mask. User type/access mode combinations specified by this attribute
value will no longer be allowed for all class/attribute combinations defined in this
reference page. For example, a setting of 0003 disallows all updates to users other than
the administrator or the operator.

TA_MAXACCESSERS: 1 <= num< 32,768

Default maximum number of clients and servers that can be simultaneously connected to
the bulletin board on any particular machine in this application. If not specified, the
default maximum number is 50. The T_bpoma1n value for this attribute can be overridden
in the T_MACHINE class on a per-machine basis.

System administration processes, such as the BBL, restartsrv, cleanupsrv,
tmshutdown (), and tmadmin (), need not be accounted for in this value, but the DBBL,

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

all bridge processes, all system-supplied and application server processes, and all
potential client processes at a particular site need to be counted. (Examples of
system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT,
TMS (See T_GROUP:TA_TMSNAME attribute), TMs_owm, cwrbomMaIN, and wstL.) If the
application is booting workstation listeners (WSLs) at a particular site, both the WSLs and
the number of potential workstation handlers (WSHSs) that may be booted need to be
counted.

Note that for BEA Tuxedo pre-release 7.1 (6.5 or earlier), both the Ta_maxacceEssers and
TA_MAXSERVERS attributes for an application play a part in the user license checking
scheme. Specifically, a machine is not allowed to boot if the number of
TA_MAXACCESSERS for that machine + the number of Ta_maxaccessgrs for the machine
(or machines) already running in the application is greater than the number of
TA_MAXSERVERS + user licenses for the application. Thus, the total number of
TA_MAXACCESSERS for an application must be less than or equal to the number of
TA_MAXSERVERS + user licenses for the application.

Note also that the user license checking scheme in BEA Tuxedo release 7.1 or later
considers only the following two factors when performing its checks: the number of user
licenses for an application and the number of licenses currently in use for the application.
When all user licenses are in use, no new clients are allowed to join the application.

Limitation: Changes to this attribute do not affect active or already configured T_MACHINE
objects.

TA_MAXCONV: 0 <= num < 32,768
Maximum number of simultaneous conversations in which clients and servers on any
particular machine in this application can be involved. If not specified, the default is 64 if
any conversational servers are defined in the T_servER class, or 1 otherwise. The
maximum number of simultaneous conversations per server is 64. The T_poMa1n value
for this attribute can be overridden in the T_macHINE class on a per-machine basis.

Limitation; Changes to this attribute do not affect active or already configured T_MACHINE
objects.

TA_MAXGTT: 0 <= num < 32,768
Maximum number of simultaneous global transactions in which any particular machine in
this application can be involved. If not specified, the default is 100. The T_poma1n value
for this attribute can be overridden in the T_macHINE class on a per-machine basis.

Limitation: Changes to this attribute do not affect active or already configured T_MACHINE
objects.

File Formats, Data Descriptions, MIBs, and System Processes Reference 297

TA_MAXBUFSTYPE: 1 <= num < 32,768
Maximum number of buffer subtypes that can be accommodated in the bulletin board
buffer subtype table.

TA_MAXBUFTYPE: 1 <= num < 32,768
Maximum number of buffer types that can be accommodated in the bulletin board buffer
type table.

TA_MAXDRT. 0 <= num < 32,768
Maximum number of routing table entries that can be accommodated in the bulletin board
routing table. One entry per T_rouTING class object is required. Additional entries should
be allocated to allow for run-time growth.

TA_MAXGROUPS: 100 <= num < 32,766
Maximum number of server groups that can be accommodated in the bulletin board server
group table. Limitation: BEA Tuxedo release 4.2.2 and earlier sites have a fixed setting of
100 for this attribute. Interoperability with these sites requires that no more than 100
server group entries be in use at any time. Release 4.2.2 and earlier sites will not be
allowed to join an application that has more than 100 defined server groups. Additionally,
applications already including release 4.2.2 or earlier sites will not be allowed to add
server groups beyond 100.

TA_MAXNETGROUPS: 1 <= num < 8,192
Specifies the maximum number of configured network groups to be accommodated in the
NETWORK Section of the Tuxconrzc file. This value must be greater than or equal to 1 and
less than 8192. If not specified, the default is 8.

TA_MAXMACHINES: 256 <= num < 8,191
Maximum number of machines that can be accommodated in the bulletin board machine
table. Limitation: BEA Tuxedo release 4.2.2 has a fixed setting of 256 for this attribute.
Releases prior to release 4.2.2 have a fixed setting of 50 for this attribute. Interoperability
with release 4.2.2 and earlier sites requires that no more than the lowest fixed setting
number of machine table entries be in use at any time. Release 4.2.2 sites will not be
allowed to join an application that has more than 256 defined machines. Pre-release 4.2.2
sites will not be allowed to join an application that has more than 50 defined machines.
Additionally, applications already including active release 4.2.2 or earlier sites will not be
allowed to add machines beyond the lowest applicable limit.

TA_MAXQUEUES: 1 <= num < 8,192
Maximum number of queues to be accommodated in the bulletin board queue table.
Limitation: release 4.2.2 and earlier sites may join an active application only if the setting
for Ta_mMaxQUEUES is equal to the setting for Ta_MAXSERVERS.

298 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_MAXRFT: 0 <= num < 32,768
Maximum number of routing criteria range table entries to be accommodated in the
bulletin board range criteria table. One entry per individual range within a TA_RANGES
specification is required plus one additional entry per T_rouT1ing class object. Additional
entries should be allocated to allow for run-time growth.

TA MAXRTDATA: 0 <= num < 32,761
Maximum string pool space in bytes to be accommodated in the bulletin board string pool
table. Strings and carrays specified within Ta_raNGES values are stored in the string pool.
Additional space should be allocated to allow for run-time growth.

TA_MAXSPDATA 0 <= num <= 2147483640
Maximum string pool space in bytes to be accommodated in the bulletin board common
string pool. This value must be greater than or equal to 0 and less than or equal to
2147483640. The default is 0. This attribute applies only to applications running BEA
Tuxedo 8.1 or later software.

In most cases, accepting the default for this attribute will result in the BEA Tuxedo system
allocating sufficient string pool space for the following TuxcoNFIG parameter strings
whose maximum allowed length has been increased to 256 bytes in BEA Tuxedo 8.1:
TUXCONFIG, TUXDIR, APPDIR, TLOGDEVICE, ULOGPFX, ENVFILE, TMSNAME, RCMD, NADDR,
NLSADDR, FADDR, and the SERVERS section A0UT.

For applications for which extensive dynamic configuration is anticipated (for example,
anticipating the addition of six more machines to a BEA Tuxedo application),
administrators can use the TA_MAxXSPDATA attribute to increase the size of the common
string pool. Note that adjusting the size of the common string pool has no effect on the
size of the of the routing string pool controlled by the Ta_maxrTDATA attribute. The two
string pools are separate.

Regardless of the value specified for Ta_maxsepata, the BEA Tuxedo system will not
allocate an amount of string pool space outside of a system-calculated range based on (1)
the strings actually specified in the Tuxconrzc file and (2) the amount of space that would
be required if all 256-byte capable strings were specified. The tmloadcf (1) command
will report a warning if the user-specified value is outside of this range and then set the
value to the closest acceptable value.

Note that of the TuxconrF1c parameters whose maximum allowable length has been
increased to 256 bytes, only the croups section TmMsNaMe parameter and the SERVERS
section aouT and rRcMD parameters are actually stored in the bulletin board. The others are
read in at process startup time and stored in process memory.

File Formats, Data Descriptions, MIBs, and System Processes Reference 299

TA_MAXTRANTIME O <= num <= 2147483647
Maximum timeout in seconds allowed for transactions started in or received by this BEA
Tuxedo application. This value must be greater than or equal to 0 and less than or equal
to 2147483647. The default is 0, which indicates that no global transaction timeout limit
is in effect. This attribute applies only to applications running BEA Tuxedo 8.1 or later
software.

If the Ta_MAXTRANTIME timeout value is less than the TRaNTIME timeout value specified
for an auToTRAN Service or the timeout value passed in a tpbegin (3c) call to start a
transaction, the timeout for a transaction is reduced to the Ta_MAXTRANTIME Value.
TA_MAXTRANTIME has no effect on a transaction started on a machine running BEA
Tuxedo 8.0 or earlier software, except that when a machine running BEA Tuxedo 8.1 or
later software is infected by the transaction, the transaction timeout value is capped—
reduced if necessary—to the Ta_maxTrRaNTIME Value configured for that machine.

Even if the TrRanTTME Value specified in the servIcEs section of the usBconric file is
greater than the Ta_maxTRANTIME Value, the tmloadcf (1) command loads the
configuration without error. Any BEA Tuxedo 8.1 or later machine infected with the
AUTOTRAN transaction will automatically reduce the transaction timeout to the
TA_MAXTRANTIME value configured for that machine.

Limitation: Run-time modifications to this attribute do not affect transactions started
before the update takes place.

TA_MAXSERVERS: 1 <= num < 8,192
Maximum number of servers to be accommodated in the bulletin board server table for
this application. If not specified, the default is 50.

All instances of system-supplied and application servers available to an application need
to be accounted for in the bulletin board server table, which is a global table, meaning that
the same server table resides on each machine in the application. Examples of
system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT,
TMS (See T_GROUP:TA_TMSNAME attribute), TMs_oM, GwTDOMAIN, and wsL.

Administration of each BEA Tuxedo system site adds approximately one system-supplied
server. Additionally, the DBBL process and all BBL, bridge, and WSH processes must be
accounted for in the TaA_MAXSERVERS value.

TA_MAXSERVICES: 1 <= num < 32,766
Maximum number of services to be accommodated in the bulletin board service table.
This value must be greater than 0 and less than 32,766. If not specified, the default is 100.

300 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

To calculate an adequate value, be sure to count the number of services used by both
application servers and system servers, such as the BBL, DBBL, BRIDGE, TMS, and any
other system-supplied servers needed for administrative purposes. For each BEA Tuxedo
system site, add approximately five services to accommodate administration for the site.
You should also include any administrative services that are added to support
administrative components such as Workstation, /Q, and Domains.

TA_MAXACLGROUPS: 1 <= num < 16, 384
Maximum number of group identifiers that can be used for ACL permissions checking.
The maximum group identifier that can be defined is Ta_mMaxacLGROUPS - 1.

TA_CMTRET: “{COMPLETE | LOGGED}”
Initial setting of the Tp_commrT_conTROL Characteristic for all client and server processes
in a BEA Tuxedo system application. L.ocGED initializes the Tp_coMMIT_CONTROL
characteristic to Tp_cMT_LOGGED; otherwise, it is initialized to Tp_cMT_coMPLETE. See
the description of the BEA Tuxedo System ATMI function tpsemt () for details on the
setting of this characteristic.

Limitation: Run-time modifications to this attribute do not affect active clients and
servers.

Ta_LDBAL: “{Y | N}~
Load balancing is/will be on ("v") or off ("n").
Limitation: Run-time modifications to this attribute do not affect active clients and
servers.

TA_NOTIFY. “{DIPIN | SIGNAL | THREAD | IGNORE}"
Default notification detection method to be used by the system for unsolicited messages
sent to client processes. This default can be overridden on a per-client basis using the
appropriate tpinit () flag value. Note that once unsolicited messages are detected, they
are made available to the application through the application defined unsolicited message
handling routine identified via the tpsetunsol () function.

The value prp1n specifies that dip-in-based notification detection should be used. This
means that the system will detect notification messages only on behalf of a client process
while within ATMI calls. The point of detection within any particular ATMI call is not
defined by the system, and dip-in detection will not interrupt blocking system calls. prpIN
is the default notification detection method.

The value s1GNAL specifies that signal-based notification detection should be used. This
means that the system sends a signal to the target client process after the notification
message has been made available. The system installs a signal-catching routine on behalf
of clients selecting this method of notification.

File Formats, Data Descriptions, MIBs, and System Processes Reference 301

302

Note:

The value THREAD specifies that THREAD notification should be used. This means that the
system dedicates a separate thread for the receipt of unsolicited messages and dispatches
the unsolicited message handler in that thread. Only one unsolicited message handler
executes at one time per BEA Tuxedo application association. This value is allowed only
on platforms that offer support for multithreading. COBOL clients cannot use THREAD
notification, and will default to prpIn if THREAD iS in effect.

The value zeNORE specifies that by default, notification messages are to be ignored by
application clients. This would be appropriate in applications where only clients that
request notification at tpinit () time should receive unsolicited messages.

Limitations: Run-time modifications to this attribute do not affect active clients. All
signaling of native client processes is done by administrative system processes and not by
application processes. Therefore, only native clients running with the same UNIX system
user identifier as the application administrator can be notified using the sTenar method.
Workstation clients may use the stenan method, regardless of which user identifier they
are running under.

The s1GNAL notification method is not available for MS-DOS clients.

TA_SYSTEM_ACCESS: {FASTPATH | PROTECTED}[, NO_OVERRIDE]

Default mode used by BEA Tuxedo system libraries within application processes to gain
access to BEA Tuxedo system’s internal tables. FasTpaTH specifies that BEA Tuxedo
system’s internal tables are accessible by BEA Tuxedo system libraries via unprotected
shared memory for fast access. PRoTECTED specifies that BEA Tuxedo system’s internal
tables are accessible by BEA Tuxedo system libraries via protected shared memory for
safety against corruption by application code. No_ovERRIDE can be specified to indicate
that the mode selected cannot be overridden by an application process using flags
available for use with tpinit (3c) OF TPINITIALIZE (3cbl).

Limitations: (1) Updates to this attribute value in a running application affect only newly
started clients and newly configured T_sERVER objects.

(2) Setting TA_SYSTEM_ACCESS t0 PROTECTED may not be effective for multithreaded
servers because it is possible that while one thread is executing BEA Tuxedo code, which
means it is attached to the bulletin board, another thread might be executing user code.
The BEA Tuxedo system cannot prevent such situations.

TA_OPTIONS: “{[LAN | MIGRATE | ACCSTATS | NO_XA | NO_Aa], *}~

Comma-separated list of application options in effect. Valid options are defined below:
LaN—~networked application.

mIGRATE—allow server group migration.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

AccsTATS—exact statistics (sum mode only).

No_xA—do not allow XA transactions.

No_aa—the auditing and authorization plugin functions will not be called.
Limitation: Only the accsTaTs may be set or reset in an active application.

TA_USIGNAL: “{SIGUSR1 | SIGUSR2}"
Signal to be used for signal-based notification (see Ta_NoTIFY above).

TA_SECURITY. “{NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}”
Type of application security. A 0-length string value or nonE for this attribute indicates
that security is/will be turned off. The identifier app_pw indicates that application
password security is to be enforced (clients must provide the application password during
initialization). Setting this attribute requires a non-0 length Ta_passworp attribute. The
identifier user_auTH is similar to app_pw but, in addition, indicates that per-user
authentication will be done during client initialization. The identifier act is similar to
USER_AUTH but, in addition, indicates that access control checks will be done on service
names, queue names, and event names. If an associated act is not found for a name, it is
assumed that permission is granted. The identifier manpaTORY_AcCL is similar to acL but
permission is denied if an associated act is not found for the name.

Note: If the no_aa value is enabled in the Ta_oprIONS attribute, the security values NONE,
app_pw, and user_auTa will continue to work properly—except that no authorization or
auditing will take place. The remaining modes of security, ac1, and MANDATORY_AcT Will
continue to work properly—but will only use the default BEA security mechanism.

TA_PASSWORD: stringl[0 .. 30]
Clear text application password. This attribute is ignored if the Ta_srecurITyY attribute is
set to nothing. The system automatically encrypts this information on behalf of the
administrator.

TA_AUTHSVC: string[0..15]
Application authentication service invoked by the system for each client joining the
system. This attribute is ignored if the Ta_sEcURITY attribute is set to nothing or to
APP_PW.

TA_SCANUNIT: 0 <= num <= 60 (multiple of 5)
Interval of time (in seconds) between periodic scans by the system. Periodic scans are
used to detect old transactions and timed-out blocking calls within service requests. The
TA_BBLQUERY, TA_BLOCKTIME, TA_DBBLWAIT, and TA_ SANITYSCAN attributes are
multipliers of this value. Passing a value of 0 for this attribute on a seT operation will
cause the attribute to be reset to its default.

File Formats, Data Descriptions, MIBs, and System Processes Reference 303

304

TA_BBLQUERY: 0 <= num < 32,768

Multiplier of the Ta_scanun1T attribute indicating time between DBBL status checks on
registered BBLs. The DBBL checks to ensure that all BBLs have reported in within the
TA_BBLQUERY cycle. If a BBL has not been heard from, the DBBL sends a message to that
BBL asking for status. If no reply is received, the BBL is partitioned. Passing a value of
0 for this attribute on a seT operation will cause the attribute to be reset to its default. This
attribute value should be set to at least twice the value set for the Ta_san1Tyscan attribute
value (see below).

TA_BLOCKTIME: 0 <= num < 32,768

Multiplier of the Ta_scanunzt attribute indicating the minimum amount of time a
blocking ATMI call will block before timing out. Passing a value of 0 for this attribute on
a seT operation will cause the attribute to be reset to its default.

TA_DBBLWAIT. 0 <= num < 32,768

Multiplier of the Ta_scanuntT attribute indicating maximum amount of time a DBBL
should wait for replies from its BBLs before timing out. Passing a value of 0 for this
attribute on a seT operation will cause the attribute to be reset to its default.

TA_SANITYSCAN: 0 <= num < 32,768

Multiplier of the Ta_scanuN1T attribute indicating time between basic sanity checks of
the system. Sanity checking includes client/server viability checks done by each BBL for
clients/servers running on the local machine as well as BBL status check-ins (Mp mode
only). Passing a value of 0 for this attribute on a seT operation will cause the attribute to
be reset to its default.

TA_CURDRT; 0 <= num < 32,768

Current number of in use bulletin board routing table entries.

TA_CURGROUPS: 0 <= num < 32,768

Current number of in use bulletin board server group table entries.

TA_CURMACHINES: 0 <= num < 32,768

Current number of configured machines.

TA_CURQUEUES: 0 <= num < 32,768

Current number of in use bulletin board queue table entries.

TA_CURRFT; 0 <= num < 32,768

Current number of in use bulletin board routing criteria range table entries.

TA_CURRTDATA: 0 <= num < 32,768

Current size of routing table string pool.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_CURSERVERS: 0 <= num < 32,768
Current number of in use bulletin board server table entries.

TA_CURSERVICES: 0 <= num < 32,768
Current number of in use bulletin board service table entries.

TA_CURSTYPE: 0 <= num < 32,768
Current number of in use bulletin board subtype table entries.

TA_CURTYPE: 0 <= num< 32,768
Current number of in use bulletin board type table entries.

TA_HWDRT: 0 <= num < 32,768
High water number of in use bulletin board routing table entries.

TA_HWGROUPS: 0 <= num < 32,768
High water number of in use bulletin board server group table entries.

TA_HWMACHINES: 0 <= num < 32,768
High water number of configured machines.

TA_HWQUEUES: 0 <= num < 32,768
High water number of in use bulletin board queue table entries.

TA_HWRFT. 0 <= num < 32,768
High water number of in use bulletin board routing criteria range table entries.

TA_HWRTDATA: 0 <= num < 32,768
High water size of routing table string pool.

TA_HWSERVERS: 0 <= num < 32,768
High water number of in use bulletin board server table entries.

TA_HWSERVICES: 0 <= num < 32,768
High water number of in use bulletin board service table entries.

TA_SEC_PRINCIPAL_NAME: string[0..511]

Security principal name identification string to be used for authentication purposes by an

application running BEA Tuxedo 7.1 or later software. This attribute may contain a
maximum of 511 characters (excluding the terminating NULL character). The principal
name specified for this attribute becomes the identity of one or more system processes
running in this domain.

TA_SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: T_pomMa1N class, T_MACHINE class, T_Group class, and

File Formats, Data Descriptions, MIBs, and System Processes Reference 305

T_SERVER class. A principal name at a particular configuration level can be overridden at
a lower level. If Ta_sEc_PRINCIPAL_NAME is not specified at any of these levels, the
principal name for the application defaults to the Ta_pomaIN1D string for this domain.

Note that TA_SEC_PRINCIPAL_NAME iS one of a trio of attributes, the other two being
TA_SEC_PRINCIPAL_LOCATION and TA_SEC_PRINCIPAL_PASSVAR. The latter two
attributes pertain to opening decryption keys during application booting for the system
processes running in a BEA Tuxedo 7.1 or later application. When only
TA_SEC_PRINCIPAL_NAME is Specified at a particular level, the system sets each of the
other two attributes to a NuLL (zero length) string.

TA_SEC_PRINCIPAL_LOCATION: string[0..511]
Location of the file or device where the decryption (private) key for the principal specified
in TA_SEC_PRINCIPAL_NAME resides. This attribute may contain a maximum of 511
characters (excluding the terminating NULL character).

TA_SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(Ta_sEC_PRINCIPAL_PASSVAR is optional; if not specified, the system sets it to a NULL—
zero length—string.)

TA_SEC_PRINCIPAL_PASSVAR: string]0..511]
Variable in which the password for the principal specified in TA_SEC_PRINCIPAL_NAME
is stored. This attribute may contain a maximum of 511 characters (excluding the
terminating NULL character).

TA_SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(TA_SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a
NULL—zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with Ta_SEC_PRINCIPAL_PASSVAR. The system
automatically encrypts the password entered by the administrator and assigns each
encrypted password to the associated password variable.

TA_SIGNATURE_AHEAD: 1 <= num <= 2147483647
Number of seconds into the future that a digital signature's timestamp is allowed to be,
when compared to the local machine's clock. If not specified, the default is 3600 seconds

306 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

(one hour). This attribute applies only to applications running BEA Tuxedo 7.1 or later
software.

TA_SIGNATURE_BEHIND: 1 <= num <= 2147483647

Number of seconds into the past that a digital signature's timestamp is allowed to be, when
compared to the local machine's clock. If not specified, the default is 604800 seconds (one
week). This attribute applies only to applications running BEA Tuxedo 7.1 or later
software.

TA_SIGNATURE_REQUIRED: “{Y | N}~

If setto “v~, every process running in this domain requires a digital signature on its input
message buffer. If not specified, the default is ~x~. This attribute applies only to
applications running BEA Tuxedo 7.1 or later software.

TA_SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVICE class. Setting SIGNATURE_REQUIRED t0 “v~ at a particular level means that
signatures are required for all processes running at that level or below.

TA_ENCRYPTION_REQUIRED: “{v | N}~

Limitations

If set to “v~, every process running in this domain requires an encrypted input message
buffer. If not specified, the default is “x~. This attribute applies only to applications
running BEA Tuxedo 7.1 or later software.

TA_ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVICE class. Setting TA_ENCRYPTION_REQUIRED t0 “Y~ at a particular level means
that encryption is required for all processes running at that level or below.

Many attributes of this class are tunable only when the application is inactive. Therefore, use of
the ATMI interface routines to administer the application is not possible. The function
tpadmcall () is being provided as a means of configuring or reconfiguring an unbooted
application. This interface may only be used for configuration (seT operations) in an inactive
application and only on the site being configured as the master site for the application. Once an
initial configuration is created and activated, administration is available through the standard
ATMI interfaces as described in MIB(5).

File Formats, Data Descriptions, MIBs, and System Processes Reference 307

T_FACTORY MIB

Overview

The T_racTory MIB class represents occurrences of factories registered with the FactoryFinder.
The available factories for the application are reflected in this MIB and can be shown to the
administrator via the Administration Console or command-line tools. The scope is global.

Attribute Table

Tahle 47 TM_MIB(5): T_FACTORY Attributes

Attribute Usage Type Permissions Values Default
TA_STATE k string R--R--R-- GET: "{ACT}" N/A
TA_FACTORYID k string R--R--R-- string[l..25] N/A
TA_INTERFACENAME k string R--R--R-- string[l..128] N/A

(k) - GET key field

Attributes Semantics

TA_STATE
GET: {ACTive }
A ceT operation will retrieve configuration and run-time information for the
selected T_FACTORY Objects.
The following state indicates the meaning of a Ta_sTtaTE returned in response to
a GET request:

ACTive The T_FACTORY Object is registered with the
FactoryFinder.

TA_FACTORY
The registered ID for the factory.

TA_INTERFACENAME
The fully qualified interface name for the factory. The interface repository ID for the
factory. The format of this name is dependent on the options specified in the IDL which

generates the interface implementation. See CORBA 2.1 Specification Section 7.6 for
details.

308 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

T_GROUP Class Definition

Overview

The T_croup class represents application attributes pertaining to a particular server group. These
attribute values represent group identification, location, and DTP information.

Attribute Table

Table 48 TM_MIB(5): T_GROUP Class Definition Attribute Tabhle

Attribute Type Permissions Values Default
TA_SRVGRP()(*) string rU-r--r-- string[l..30] N/A
TA_GRPNO(K)(r) long rU-r--r-- 1 <= num < 30,000 N/A
a_1MID(K)(r) ! string rwyr--r-- “LMIDI1[, LMID2]" N/A
TA_STATE(K) string rwxr-xr-- GET: “{ACT| INA | MIG}” N/A
SET: “{NEW | INV | ACcT |Rac N/A
|INA | MIG}H”
TA_CURLMID(K) string R--R--R-- LMID N/A
TA_ENVFILE string rwyr--r-- stringl0..256] 2 o
TA_OPENINFO string rwyr--r-- string[0..256] W
TA_CLOSEINFO string rwyr--r-- string[0..256] W
TA_TMSCOUNT long rw-r--r-- Oor2<=num<11 3
TA_TMSNAME(K) string rw-r--r-- string[0..256] 2 n
TA_SEC_PRINCIPAL_NAME string rwxr--r-- string[0..511] wr
TA_SEC_PRINCIPAL_LOCATION String rwxr--r-- string[0..511] W
TA_SEC_PRINCIPAL_PASSVAR string rwxr--r-- string[0..511] wr
TA_SIGNATURE_REQUIRED string rwxr--r-- “{v N}~ N7
TA_ENCRYPTION_REQUIRED string rwxr--r-- “{v | N}~ “N”

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

File Formats, Data Descriptions, MIBs, and System Processes Reference 309

L ra_1.MID must be unique within this class.
2 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_SRVGRP: string[l..30]
Logical name of the server group. The group name must be unique within all group names
in the T_croup class and Ta_tm1D values in the T_macHINE class. Server group names
cannot contain an asterisk (*), comma, or colon.

TA_GRPNO: 1 <= num < 30,000
Group number associated with this server group.

TA_LMID: “LMID1[,L.MID2]"
Primary machine logical machine identifier for this server group (rvrp1) and optional
secondary logical machine identifier (zx1p2). The secondary LMID indicates the
machine to which the server group can be migrated (if the MmIGrRATE option is specified in
the T_poMaIN:TA_oPTIONS attribute). A single LMID specified on a GET operation will
match either the primary or secondary LMID. Note that the location of an active group is
available in the Ta_currMID attribute. Logical machine identifiers specified with the
TA_LMID attribute must be already configured. Limitation: Modifications to this attribute
for an active object may only change the backup LMID designation for the group.

TA_STATE:

GET: “{ACTive | INActive | MIGrating}”
A ceT operation will retrieve configuration and run-time information for the
selected T_croup object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

ACTive T_GROUP object defined and active (TMS and/or
application servers). Server groups with non NULL strings
for the TA_TMSNAME attribute are considered active if the
TMSs associated with the group are active. Otherwise, a
group is considered active if any server in the group is
active.

310 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

INActive T_GROUP object defined and inactive.

MIGrating T_GROUP object defined and currently in a state of
migration to the secondary logical machine. The secondary
logical machine is the one listed in Ta_LMID that does not
match TA_CURLMID. This state is ACTive equivalent for
the purpose of determining permissions.

SET: “{NEW | INValid | ACTive | ReACtivate | INActive | MIGrating}”
A seT operation will update configuration and run-time information for the
selected T_croup object. The following states indicate the meaning of a Ta_sTATE
set in a sET request. States not listed may not be set.

NEW Create T_GROUP object for application. State change
allowed only when in the INvValid state. Successful
return leaves the object in the INActive state.

unset Modify an existing T_GROUP object. This combination
is allowed only when in the ACTive or INActive
state. Successful return leaves the object state
unchanged.

INValid Delete T_GROUP object for application. State change
allowed only when in the INActive state. Successful
return leaves the object in the INValid state.

File Formats, Data Descriptions, MIBs, and System Processes Reference N

312

ACTive

Activate the T_GROUP object. State change allowed
only when in the INActive Or MIGrating state. For
the purpose of determining permissions for this state
transition, the active object permissions are considered
(that is, - -x--x--x).

If the group is currently in the INActive state, TMS
and application servers (subject to restriction by
TA_FLAGS settings) are started on the primary logical
machine if the primary logical machine is active;
otherwise, the TMS and application servers are started
on the secondary logical machine if it is active. If
neither machine is active, the request fails.

If the group is currently in the MIGrating state, the
active secondary logical machine (identified as the
alternate to TA_CURLMID in the TA_LMID list) is used
to start TMS and application servers if it is active.
Otherwise, the request fails. The TMIB_NOTIFY
TA_FLAG value should be used when activating a server
group if status on individual servers is required.

Successful return leaves the object in the AcTive state.

ReACtivate

Identical to a transition to the ACTive state except that
this state change is also allowed in the ACTive state in
addition to being allowed in the INActive and
MIGrating States.

The TMIB_NOTIFY TA_FLAG value should be used
when reactivating a server group if status on individual
servers is required.

INActive

Deactivate the T_GROUP object. TMS and application
servers (subject to restriction by TA_FLAGS settings)
are deactivated. State change allowed only when in the
ACTive Or MIGrating state. Successful return leaves
the object in the INActive state.

The TMIB_NOTIFY TA_FLAG value should be used
when deactivating a server group if status on individual
servers is required.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

MIGrating Deactivate the T_GROUP object on its active primary
logical machine (Ta_CURLMID) and prepare the group
to be migrated to the secondary logical machine. State
change allowed only when in the ACTive state.
Successful return leaves the object in the MIGrating
state.

UnAvailable Suspend all application services in the group. (Note:
Individual services can be suspended through the
T_SVCGROUP class.) A SET operation to this state is
allowed only when the group is in the ACTive state.
The operation leaves the group in the ACTive state, but
with all its application services in a suspended state.
Limitation: Operation will fail in a mixed-release
application where any pre-release 6.4 machine is active.

AvVailLable Unsuspend all application services in the group marked
as suspended. A SET operation to this state value is
allowed only when the group is in the ACTive state.
The operation leaves the group in the ACTive state.

Limitation: Operation will fail in a mixed-release application where any
pre-release 6.4 machine is active.

TA_CURLMID: LMID
Current logical machine on which the server group is running. This attribute will not be
returned for server groups that are not active.

TA_ENVFILE: string]0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Environment file for servers running in this group. If the value specifies an invalid
filename, no values are added to the environment. the value of string is placed in the
environment.

When booted, local servers inherit the environment of tmboot (1) and remote servers (not
on the MASTER) inherit the environment of t1isten (1). TUXCONFIG, TUXDIR, and
APPDIR are also put in the environment when a server is booted based on the information
in the associated T_croup object.

PATH is set in the environment to:

APPDIR:TUXDIR/bin:/bin:/usr/bin:path

where path is the value of the first paTa= line in the machine environment file, if one
exists (subsequent paTH= lines is ignored). This paTH is used as a search path for servers

File Formats, Data Descriptions, MIBs, and System Processes Reference 313

that are specified with a simple or relative pathname (that is, one that does not begin with
slash).

LD_LIBRARY PATH iS Set in the environment to:

APPDIR:TUXDIR/1lib:/1lib:/usr/lib:1ib

where 1ib is the value of the first L.b_r.I1BRARY_PATH= line appearing in the machine
environment file, if one exists (subsequent .o_r.TBRARY_PATH= lines are ignored).

As part of server initialization (before tpsvrinit (3c) is called), a server reads and
exports variables from both the machine and server exnvrrLE files. If a variable is set in
both the machine and server envrILE, the value in the server envrILE Will override the
value in the machine envrILE With the exception of paTa which is appended. A client
processes only the machine exvr1LE file. When the machine and server envr1LE files are
processed, lines that are not of the form ident= is ignored, where ident contains only
underscore or alphanumeric characters.

If a paTH= line is encountered, PATH is set to:

APPDIR:TUXDIR/bin:/bin:/usr/bin:path

where path is the value of the first paTa= line appearing in the environment file
(subsequent paTH= lines are ignored). If paTH appears in both the machine and server
files, path is defined as pathi :path2, where pathi is from the machine EnvriLE, and
pathz is from the server ENvFILE. If a LD_LIBRARY_PATH= line is encountered,
LD_LIBRARY PATH IS set to:

APPDIR:TUXDIR/1lib:/1ib:/usr/lib:1ib

where 1ipis the value of the first Lb_r1BRARY_PATH= line appearing in the environment
file (subsequent Lp_r1BRARY_PATH= lines are ignored). Attempts to reset TUXDIR,
APPDIR, OF TUXCONFIG are ignored and a warning is displayed if the value does not match
the corresponding T_croup attribute value. Limitation: Modifications to this attribute for
an active object DO not affect running servers or clients.

TA_OPENINFO: string[0..256]
The resource manager instance-dependent information needed when opening the resource
manager for this group. The value must be enclosed in double quotes and must be less than
or equal to 256 characters in length.

If a non NULL string other than Tus is specified for the Ta_TtMsnamE attribute, the
TA_OPENINFO attribute value provides the resource manager dependent information
needed when initiating access to the resource manager. Otherwise, the Ta_0OPENINFO
attribute value is ignored.

314 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

A NULL string value for the Ta_opENINFO attribute means that the resource manager for
this group (if specified) does not require any application specific information to open
access to the resource.

The format of the Ta_opENINFO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor must
be prefixed with the published name of the vendor's transaction (XA) interface followed
immediately by a colon (:).

For BEA Tuxedo /Q databases, the format is:

#0n UNIX #
OPENINFO = "TUXEDO/QM: gmconfig: gspace"

On Windows
OPENINFO = "TUXEDO/QM: gmconfig; gspace"

where TUxeEDO /M is the published name of the BEA Tuxedo /Q XA interface, gmconfig
is replaced with the name of the gMcoNFIG (See gqmadmin (1)) on which the queue space
resides, and gspace is replaced with the name of the queue space. For Windows, the
separator after gmconfig must be a semicolon (;).

For other vendors’ databases, the format of the Ta_opENINFO string is specific to the
particular vendor providing the underlying resource manager.

Limitation: Run-time modifications to this attribute will not affect active servers in the
group.

TA_CLOSEINFO: string[0..256]
The resource manager instance-dependent information needed when closing the resource
manager for this group. The value must be enclosed in double quotes and must be less than
or equal to 256 characters in length. Note that a Ta_croseInro string is not used for BEA
Tuxedo /Q databases.

If a non NULL string other than Tus is specified for the Ta_TmsNaME attribute, the
TA_CLOSEINFO attribute value provides the resource manager-dependent information
needed when terminating access to the resource manager. Otherwise, the TA_CLOSEINFO
attribute value is ignored.

A NULL string value for the Ta_crLosEINFoO attribute means that the resource manager for
this group (if specified) does not require any application specific information to close
access to the resource.

File Formats, Data Descriptions, MIBs, and System Processes Reference 315

316

The format of the Ta_croseINFO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor must
be prefixed with the published name of the vendor's transaction (XA) interface followed
immediately by a colon (:).

Limitation: Run-time modifications to this attribute will not affect active servers in the
group.

TA_TMSCOUNT: 0 Or 2 <= num< 11

If a non NULL string is specified for the Ta_TMsNaME attribute, the Ta_TMscounT attribute
value indicates the number of transaction manager servers to start for the associated group.
Otherwise, this attribute value is ignored.

TA_TMSNAME: string]0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)

Transaction manager server a.out associated with this group. This attribute must be
specified for any group entry whose servers will participate in distributed transactions
(transactions across multiple resource managers and possibly machines that are started
with tpbegin (), and ended with tpcommit ()/tpabort ()).

The value Tus is reserved to indicate use of the NULL XA interface. If a non-empty value
other than Tws is specified, a TLogDEVICE must be specified for the machine(s) associated
with the primary and secondary logical machines for this object.

A unique server identifier is selected automatically for each TM server, and the servers
will be restartable an unlimited number of times.

TA_SEC_PRINCIPAL_NAME: string[0..511]

Security principal name identification string to be used for authentication purposes by an
application running BEA Tuxedo 7.1 or later software. This attribute may contain a
maximum of 511 characters (excluding the terminating NULL character). The principal
name specified for this attribute becomes the identity of one or more system processes
running in this group.

TA_SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: T_pomMa1N class, T_MACHINE class, T_Group class, and
T_SERVER class. A principal name at a particular configuration level can be overridden at
a lower level. If Ta_sec_prINCIPAI_NAME is not specified at any of these levels, the
principal name for the application defaults to the Ta_pomaINID String for this domain.

Note that Ta_srEc_pPRINCIPAL_NAME is one of a trio of attributes, the other two being
TA_SEC_PRINCIPAL_LOCATION and TA_SEC_PRINCIPAL_PASSVAR. The latter two
attributes pertain to opening decryption keys during application booting for the system
processes running in a BEA Tuxedo 7.1 or later application. When only

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_SEC_PRINCIPAL_NAME is specified at a particular level, the system sets each of the
other two attributes to a NULL (zero length) string.

TA_SEC_PRINCIPAL_LOCATION: string[0..511]
Location of the file or device where the decryption (private) key for the principal specified
in TA_SEC_PRINCIPAL_NAME resides. This attribute may contain a maximum of 511
characters (excluding the terminating NULL character).

TA_SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(TA_SEC_PRINCIPAIL_PASSVAR is optional; if not specified, the system sets it to a NULL—
zero length—string.)

TA_SEC_PRINCIPAL_PASSVAR: string[0..511]
Variable in which the password for the principal specified in TA_SEC_PRINCIPAIL_NAME
is stored. This attribute may contain a maximum of 511 characters (excluding the
terminating NULL character).

TA_SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_MACHINE class, T_Group class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(TA_SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a
NULL—zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with Ta_sEC_PRINCIPAL_PASSVAR. The system
automatically encrypts the password entered by the administrator and assigns each
encrypted password to the associated password variable.

TA_SIGNATURE_REQUIRED: “{Y | N}~
If set to »v~, every process running in this group requires a digital signature on its input
message buffer. If not specified, the default is *n~. This attribute applies only to
applications running BEA Tuxedo 7.1 or later software.

TA_SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_pomMa1N class, T_MACHINE class, T_Group class, and
T_SERVICE class. Setting SIGNATURE_REQUIRED t0 v~ at a particular level means that
signatures are required for all processes running at that level or below.

File Formats, Data Descriptions, MIBs, and System Processes Reference 317

TA_ENCRYPTION_REQUIRED: “{v | N}~
If set to »v~, every process running in this group requires an encrypted input message
buffer. If not specified, the default is “x~. This attribute applies only to applications
running BEA Tuxedo 7.1 or later software.

318 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_mMacHINE class, T_croup class, and
T_SERVICE class. Setting TA_ENCRYPTION_REQUIRED t0 “v~ at a particular level means
that encryption is required for all processes running at that level or below.

Limitations
None.

T_IFQUEUE Class

Overview

The T_1rQUEUE MIB class represents run-time attributes of an interface as it pertains to a
particular server queue (T_queug) in a CORBA environment. This is primarily a read-only class
providing access to the inherited configuration attributes of an interface as well as statistics
relating to the interface on the queue. Additionally, this class gives administrators finer
granularity in suspending and activating interfaces. This class provides the link between an
interface name and the server processes capable of processing method invocations on the
interface, that is, Ta_RQADDR can be used as a key search field on the T_sErVER class.

Attribute Table

Table 49 TM_MIB(5): T_IFQUEUE Class Definition Attribute Table

Attribute Usage Type Permissions Values Default
TA_INTERFACENAME * string R--R--R-- string[l..128] N/A
TA_SRVGRP * string R--R--R-- string[1..30] N/A
TA_RQADDR * string R--R--R-- string[l1..30] N/A
TA_STATE k string R-XR-XR-- GET: “{acT|sus|Par}” N/A

SET: “{ACT | SUS}”

TA_AUTOTRAN string R--R--R-- “{y | N}~ N/A
TA_LOAD long R--R--R-- 1<=num< 32K N/A
TA_PRIO long R--R--R-- 1<=num<101 N/A
TA_TIMEOUT long R--R--R-- 0 <= num N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 319

Table 49 TM_MIB(5): T_IFQUEUE Class Definition Attribute Table (Continued)

TA_TRANTIME long R--R--R-- 0 <= num N/A
TA_FBROUTINGNAME string R--R--R-- string[1..15] N/A
TA_LMID k string R--R--R-- LMID N/A
TA_NUMSERVERS long R--R--R-- 0 <= num N/A
TA_RTPOLICY string R--R--R-- “{always | never}” never
TA_TPPOLICY string R--R--R-- “{method|transaction N/A
| process}”
TA_TXPOLICY string R--R--R-- “{always | never | N/A

optional | ignore}”

TA_NCOMPLETED | long R-XR-XR-- 0 <= num N/A
TA_NQUEUED | long R--R--R-- 0 <= num N/A
TA_CUROBJECTS | long R--R--R-- 0 <= num N/A
TA_CURTRANSACTIONS | long R--R--R-- 0 <= num N/A

(k) - GET key field
(1) - local Field
(*) - GET/SET key, one or more required for SET operations

Attribute Semantics

TA_INTERFACENAME: string[l..128]
The fully qualified interface name. The interface repository id for the interface. The
format of this name is dependent on the options specified in the IDL which generates the
interface implementation. See CORBA 2.1 Specification Section 7.6 for details.

TA_SRVGRP: string[0..30]
Server group name. Server group names cannot contain an asterisk, comma or colon.

TA_RQADDR: string[l..30]
Symbolic address of the request queue for an active server offering this interface. See
T_SERVER:TA_RQADDR for more information on this attribute.

320 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_STATE:

GET: “{ACTive | SUSpended | PARtitioned}”
A ceT operation will retrieve configuration information for the selected
T_IFQUEUE objects. The following states indicate the meaning of a Ta_sTATE
returned in response to a GET request. States not listed will not be returned.

ACTive T_IFQUEUE object represents an available interface in the
running system.

SUSpended T_IFQUEUE object represents a currently suspended
interface in the running system.

PARtitioned T_IFQUEUE object represents a currently partitioned
interface in the running system.

SeET: “{aCTive | SUSpended}”

The following states indicate the meaning of a Ta_sTATE set in a SET request.
States not listed may not be set.

ACTive Activate the T_IFQUEUE object. State change only
allowed when in the Suspended state. Successful
return leaves object in ACTive state.

SUSpended Suspend the T_IFQUEUE object. State change only
allowed when in the ACTive state. Successful return
leaves object in SUSpended state.

Limitation: Dynamic advertisement of interfaces (i.e., state change from 1NActive oOr

INValidto AcTive) is not supported, nor is unadvertisement (i.e., state change from
ACTive t0 INActive).

TA_AUTOTRAN: “{Y | N}~
Signifies whether a transaction will be automatically started for invocations made outside

a transaction context. See T_1NTERFACE description of this attribute for discussion of
limitations regarding this attribute.

TA_LOAD: 1 <= num <= 32K
This T_1nTERFACE object imposes the indicated load on the system. Interface loads are

used for load balancing purposes, that is, queues with higher enqueued workloads are less
likely to be chosen for a new request.

File Formats, Data Descriptions, MIBs, and System Processes Reference N

TA_PRTIO: 1 <= num<=101
This T_1NTERFACE Object has the indicated dequeuing priority. If multiple interface
requests are waiting on a queue for servicing, the higher priority requests will be handled
first.

TA_TIMEOUT: 0 <= num
Time limit (in seconds) for processing individual method invocations for this interface.
Servers processing method invocations for this interface will be abortively terminated if
they exceed the specified time limit in processing the request. A value of 0 for this
attribute indicates that the server should not be abortively terminated.

TA_TRANTIME: 0 <= num
Transaction timeout value in seconds for transactions automatically started for this
T_INTERFACE object. Transactions are started automatically when a requests not in
transaction mode is received and the T_INTERFACE: TA_AUTOTRAN attribute value for the
interface is "Y".

TA_FBROUTINGNAME: string[l..15]
The factory-based routing criteria associated with this interface.

TA_LMID: LMID
Current logical machine on which the queue offering this interface is located.

TA_NUMSERVERS : 0 <= num
Number of corresponding servers offering this interface on this queue.

TA_RTPOLICY: “{always | never |}”
Used to mark an interface implementation as idempotent in the implementation
configuration file (ICF). An idempotent implementation can be repeated without any
negative side-effects. For example, SET BALANCE.

TA_TPPOLICY: “{method | transaction | process}”
The TP framework deactivation policy. This reflects the policy registered with the
framework at server startup. The first server to register the interface sets the value in
T_INTERFACE. This value cannot be changed.

TA_TXPOLICY: “{optional | always | never | ignore}”
The transaction policy for the interface. The setting in this attribute affects the effect of
the Ta_auToTRAN attribute. See Ta_auToTraN for further explanation. This attribute is
always read-only. It is set by the developer when the server is built and registered at server
startup.

322 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_NCOMPLETED: 0 <= num
Number of interface method invocations completed since the interface was initially
offered.

TA_NQUEUED: 0 <= num
Number of requests currently enqueued for this interface.

TA_CUROBJECTS: 0 <= num
Number of active objects for this interface for associated queue. This number represents
the number of entries in the active object table for this queue on the associated machine.
This includes objects that are not in memory but that were invoked within an active
transaction.

TA_CURTRANSACTIONS: 0 <= num
Number of active global transactions associated with this interface for its associated
queue.

T_INTERFACE Class

Overview

The T_1NTERFACE MIB class represents configuration and run-time attributes of CORBA
interfaces at both the domain and server group levels.

A domain-level T_INTERFACE Object is one that is not associated with a Server Group. Its
TA_SRVGRP attribute contains a NULL string (string of length 0, ™).

A server group level T_tNTERFACE 0bject is one that has an associated server group (i.e., its
TA_SRVGRP attribute contains a valid server group name for the domain). This Server Group level
representation of an interface also provides a container for managing interface state (Ta_sTATE)
and for collecting accumulated statistics.

An associated server group level T_1NTERFACE Object must exist for any CORBA Interfaces that
are activated in a server. The activation of interfaces in a server is controlled by the state of a
T_IFQUEUE object for the interface. Activation of a T_IFQUEUE object causes its attributes to be
initialized with the values specified for the associated server group level T_inTERFACE oObject. If
such an object does not exist, one will be dynamically created. This dynamically-created server
group level _inTERFACE object will be initialized with the attributes of the domain level
T_INTERFACE Object for the interface if one exists. If an associated domain level T_INTERFACE
object does not exist, system specified default configuration values will be applied. Once
activated, interfaces are always associated with a server group level T_INTERFACE oObject.

File Formats, Data Descriptions, MIBs, and System Processes Reference 323

The specification of configuration attributes for interfaces at any level is completely optional,
system defined defaults will be provided and run-time server group level T_INTERFACE Objects
will be created. Interfaces to be offered by a server are identified via the ICF file used to generate
server skeletons and advertised automatically by the system at server activation time.

324 File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Table

Table 50 TM_MIB(5): T_INTERFACE Class Definition Attribute Table

TM_MIB(5)

Attribute Usage Type Permissions Values Default
TA_INTERFACENAME r string ru-r--r-- string[l..12] N/A
TA_SRVGRP r= string m-r--r-- stringl0..30] N/A
TA_STATE k string TWXY-XT -~ GET: “{acT|INA| N/A

SUS | PAR}”

SET: “{NEW|INV|

ACT | REA | SUS}”
TA_AUTOTRAN string TWXL-XT—— “{y | N}~ N~
TA_LOAD long TWXT-XT-- 1<=num<32K 501
TA_PRIO long TWXL-XT—— 1<= num< 101 50
TA_TIMEOUT long IrWXY-XIr-— 0 <= num 0
TA_TRANTIME long TWXL-XT—— 0 <= num 30
TA_FBROUTINGNAME string ITWYyr-yr-- string[l...15] (2)
TA_LMID k string R--R--R-- LMID N/A
TA_NUMSERVERS long R--R--R--- 0<=num N/A
TA_RTPOLICY string R--R--R-- “{always | never

never}”
TA_TPPOLICY string R--R--R-- “{method | N/A

transaction |

process}”
TA_TXPOLICY string R--R--R-- “{always|never N/A

| optional |

ignore}”
TA_NCOMPLETED I long R-XR-XR-- 0<=num N/A 3

File Formats, Data Descriptions, MIBs, and System Processes Reference 325

Table 50 TM_MIB(5): T_INTERFACE Class Definition Attribute Table (Continued)

Attribute Usage Type Permissions Values Default

TA_NQUEUED | long R--R--R-- 0 <= num N/A

(k) - GET key field

(1) - local Field

(r) - required field for object creation (SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations

1. Group level T_INTERFACE objects (TA_SRVGRP != “7) determine their defaults from the domain
level T_INTERFACE object with a matching TA_INTERFACENAME setting if one exists. The listed
defaults apply if no domain level object exists or if a domain level object is being created.

2. All T _INTERFACE objects with the same TA_ INTERFACENAME must have matching
TA_FBROUTINGNAME Values. Therefore, the default for a newly configured object is the 0 length string
("") if there are currently no matching objects with the same Ta_ INTERFACENAME. Otherwise, the default
(and in fact only legal value) is the currently configured TA_FBROUTINGNAME value for the existing
matched objects.

3. TA_NCOMPLETED and TA_IMPLID (locals) require TA_LDBAL="Y" in the T_DOMAIN MIB class.

Attribute Semantics

TA_INTERFACENAME: string{l..128]
The fully qualified interface name. The interface repository ID for the interface. The
format of this name is dependent on the options specified in the IDL which generates the
interface implementation. See CORBA 2.1 Specification Section 7.6 for details.

TA_SRVGRP: string[0..30]
Server group name. Server group names cannot contain an asterisk, comma or colon. An
explicitly specified O length string for this attribute is used to specify and query domain
level configuration and run-time information for an interface. There are certain limitations
and semantic differences noted in other attributes with respect to domain and group level
objects in this class.

TA_STATE:
Following are the semantics for GeT and SET TA_STATE values on the T_INTERFACE
class. Where semantics differ between group and domain level objects, those differences
are noted.

GET: “{ACTive | INActive | SUSpended | PARtitioned}”
A ceT operation will retrieve configuration information for the selected
T_INTERFACE Objects. The following states indicate the meaning of a Ta_sTaTE
returned in response to a GeT request. States not listed will not be returned.

326 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

ACTive T_INTERFACE object is defined and at least one
corresponding T_IFQUEUE entry is in the ACTive state.

Note: For a group level T_INTERFACE object,
corresponding T_IFQUEUE entries are those with
matching TA_INTERFACENAME and TA_SRVGRP
attributes. For a domain level T_INTERFACE object,
corresponding T_IFQUEUE entries are those with
matching TA_INTERFACENAME attributes regardless of
their TA_SRVGRP value.

INActive T_INTERFACE object is defined and there are no
corresponding T_IFQUEUE entries in any ACTive
equivalent state.

SUSpended T_INTERFACE object is defined and amongst all
corresponding T_IFQUEUE entries there are none in the
ACTive state and at least one in the SUSpended state.
This state is AcTive equivalent for the purpose of
determining permissions.

PARtitioned T_INTERFACE object is defined and amongst all
corresponding T_IFQUEUE entries there are:

1. None in the ACTive state
2. None in the SUSpended state and

3. Atleastone inthe PARtitioned state. This state is
ACTive equivalent for the purpose of determining
permissions.

SET: “{NEW | INValid | ACTive | REActivate | SUSpended}”
A seT operation will update configuration and run-time information for the
selected T_INTERFACE Object. Note that modifications may affect more than one
server group when making domain level changes and run-time modifications may
affect more than one server if multiple servers are currently offering an interface.
The following states indicate the meaning of a Ta_sTATE set in a SET request.
States not listed may not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 327

NEW

Create T_ INTERFACE object for application. State change
only allowed when in the INValid state. Successful return
leaves object in INActive state. Creation of a domain
level T_INTERFACE object will affect existing group level
objects with the same TA_INTERFACENAME value by
resetting all TA_FBROUTINGNAME values if a new value is
explicitly specified. All other configuration attribute
settings will not affect existing group level T_INTERFACE
objects.

INValid

Delete T_INTERFACE object for application. State change
only allowed when in the INActive state. Successful
return leaves object in INValid state.

ACTive

Activate the T_INTERFACE object. Setting this state on the
domain level object has the effect of activating all
corresponding T_IFQUEUE entries that are currently
SUSpended throughout the domain. Setting this state on
the group level object will affect only servers within the
group offering the interface. State change only allowed
when in the SUSpended state. Successful return leaves
object in ACTive state.

REActivate

Reactivate the T_INTERFACE object. Setting this state on
the domain level object has the effect of activating all
corresponding T_IFQUEUE entries that are currently
SuSpended throughout the domain. Setting this state on
the group level object will affect only servers within the
group offering the interface. State change only allowed
when in the ACTive or SUSpended states. Successful
return leaves object in ACTive state. This state permits
global activation of T_IFQUEUE entries suspended at the
group level without having to individually activate each
group level T_INTERFACE object.

SUSpended

Suspend the T_INTERFACE object. Setting this state on the
domain level object has the effect of suspending all
corresponding T_IFQUEUE entries that are currently
ACTive throughout the domain. Setting this state on the
group level object will affect only servers within the group
offering the interface. State change only allowed when in
the AcTive state. Successful return leaves object in
SUSpended state.

328 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Limitation: Dynamic advertisement of interfaces (i.e., state change from 1NActive oOr
INValid to AcTive) is not supported, nor is unadvertisement (i.e., state change from
ACTive t0 INActive).

TA_AUTOTRAN: “{Y | N}~
Signifies whether a transaction will be automatically started for invocations made outside
a transaction context.
Limitations: Run-time updates to this attribute are not reflected in active equivalent
T_INTERFACE Objects and Ta_txpoLIcy may override the value specified for this
attribute in the usBconr1c file. If TaA_TXPOLICY iS:

always A value of N will have no effect at run time. Behavior will be as though
the setting was Y.

never A value of Y will have no effect at run time. The interface will never be
involved in a transaction.

ignore A value of Y will have no effect at run time. The interface will never be
involved in a transaction.

TA_LOAD: 1 <= num <= 32K
This T_INTERFACE object imposes the indicated load on the system. Interface loads are
used for load balancing purposes, that is, queues with higher enqueued workloads are less
likely to be chosen for a new request.
Limitation: Run-time updates to this attribute for domain level objects will not affect
corresponding group level objects for the same interface.

TA_PRIO: 1 <= num<=101
This T_1nTERFACE Object has the indicated dequeuing priority. If multiple interface
requests are waiting on a queue for servicing, the higher priority requests will be handled
first.
Limitation: Run-time updates to this attribute for domain level objects will not affect
corresponding group level objects for the same interface.

TA_TIMEOUT: 0 <= num
Time limit (in seconds) for processing individual method invocations for this interface.
Servers processing method invocations for this interface will be abortively terminated if
they exceed the specified time limit in processing the request. A value of 0 for this
attribute indicates that the server should not be abortively terminated.
Limitation: Run-time updates to this attribute for domain level objects will not affect
corresponding group level objects for the same interface.

File Formats, Data Descriptions, MIBs, and System Processes Reference 329

330

TA_TRANTIME: 0 <= num
Transaction timeout value in seconds for transactions automatically started for this
T_INTERFACE Object. Transactions are started automatically when a requests not in
transaction mode is received and the T_INTERFACE: TA_AUTOTRAN attribute value for the
interface is "vy".
Limitation: Run-time updates to this attribute for domain level objects will not affect
corresponding group level objects for the same interface.
Note: Updating this value at run-time for domain level objects should cause a warning,
since the only use would be to set the default for a subsequent boot of the application.

TA_FBROUTINGNAME: string[l..15]
The factory-based routing criteria associated with this interface. The name
FBROUTINGNAME is used to allow for the future possibility of other routing criteria for
message-based routing. This will be less confusing than trying to overload ROUTINGNAME.
Limitation: This attribute may be set only for a domain level T_INTERFACE Object, i.e.,
TA_SRVGRP is ""

TA_LMID: LMID
Current logical machine with which the active equivalent group level T_INTERFACE
object is associated. This attribute is blank, i.e., ™ for domain level objects unless a local
query is performed, i.e., Ta_rr.aGs has the MmIB_r.ocaL bit set. In the local case, multiple
domain level objects will be returned for the same interface, one per machine, with the
local values retrieved from each machine represented in the separate objects.

TA_NUMSERVERS: 0 <= num
Number of corresponding servers offering this interface.

TA_RTPOLICY: “{always |never}”
Used to mark an interface implementation as idempotent in the implementation
configuration file (ICF). An idempotent implementation can be repeated without any
negative side-effects. For example, SET BALANCE.

TA_TPPOLICY: “{method | transaction | process}”
The TP framework deactivation policy. This reflects the policy registered with the
framework at server startup. The first server to register the interface sets the value in
T_INTERFACE. This value cannot be changed.

TA_TXPOLICY: “{optional | always | never | ignore}”
The transaction policy for the interface. The setting in this attribute affects the effect of
the Ta_auTOTRAN attribute. See Ta_auToTrAN for further explanation. This attribute is
always read-only. Itis set by the developer when the server is built and registered at server
startup.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_NCOMPLETED: 0 <= num
Number of interface method invocations completed with respect to the corresponding
T_IFQUEUE Objects since they were initially offered. Local queries (Ta_rLAGS
MIB_LOCAL bit set) on domain level objects will return one object per machine with the
statistics for the indicated interface on that machine.

TA_NQUEUED: 0 <= num
Number of requests currently enqueued for this interface. Local queries (Ta_FLAGS
MIB_LOCAL bit set) on domain level objects will return one object per machine with the
statistics for the indicated interface on that machine.

Implementation Hint

The T_1nTERFACE MIB is a mapping from an interface to a BEA Tuxedo service. The MIB server
can implement some of the get/set operations for an interface by calling the existing logic for the
associated T_SERVICE object.

T_MACHINE Class Definition

Overview

The T_macHINE class represents application attributes pertaining to a particular machine. These
attribute values represent machine characteristics, per-machine sizing, statistics, customization
options, and UNIX system filenames.

Attribute Table

TM_MIB(5): T_MACHINE Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_LMID(r)(*) ! string rU-r--r-- string[l1..30] N/A
TA_PMID(r)(*) ! string rU-r--r-- string[1..30] N/A
TA_TUXCONFIG(r) string rw-r--r-- string]2.256]° N/A
TA_TUXDIR(r) string rw-r--r-- stringl2..256] ¢ N/A
TA_APPDIR(r) string rw-r--r-- string[?2..256] © N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 33

TM_MIB(5): T_MACHINE Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_STATE(K) string rwyr-yr-- GET: “{ACT | INA | PAR}” N/A
SET: “{NEW| INV|ACT |RAC N/A
| INA | FIN | CLE}”
TA_UID long rTW-r--r-- 0 <= num ®
TA_GID long IW-r--r-- 0 <= num ®
TA_ENVFILE string rwyr--r-- stringl0..256] © W
TA_PERM long rwyr--r-- 0001 <= num<= 0777 (2)
TA_ULOGPFX string rwyr--r-- string[0..256] ® ®
TA_TYPE string rw-r--r-- stringl0..15] w
TA_MAXACCESSERS long rw-r--r-- 1<=num<32,768 ®
TA_MAXCONV long rTW-r--r-- 0 <= num< 32,768 ®
TA_MAXGTT long rw-r--r-- 0 <= num< 32,768 ®

332 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5): T_MACHINE Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_MAXWSCLIENTS long rTwW-r--r-- 0 <= num< 32,768 0
TA_MAXACLCACHE long ITW-r--r-- 10 <= num <= 32,000 100
TA_TLOGDEVICE string rw-r--r-- string[0..256] ® o
TA_TLOGNAME string rw-r--r-- stringl0..30] “TLOG"”
TA_TLOGSIZE long IW-r--r-- 1 <= num< 2,049 100
TA_BRIDGE string rw-r--r-- string[0..78] N/A
TA_BRTHREADS string rw-r--r-- “{y | N}~ “N”
TA_NADDR string rw-r--r-- stringl0..256] ¢ N/A
TA_NLSADDR string rw-r--r-- string[0..256] © N/A
TA_FADDR string rw-r--r-- string[0..256] © o
TA_FRANGE long ITW-r--r-- 1 <= num <= 65,535 1
TA_CMPLIMIT string rwyr-yr-- “remote[, locall]” MAXLONG
TA_TMNETLOAD long rwyr-yr-- 0 <= num< 32,768 0
TA_SPINCOUNT long TWYyr-yr-- 0 <= num 0
TA_ROLE string r--r--r-- “{MASTER | BACKUP | N/A
OTHER}”
TA_MINOR long R--R--R-- 1 <= num N/A
TA_RELEASE long R--R--R-- 1 <= num N/A
TA_MINENCRYPTBITS string rwXIrwxX—---— “{0|40]|56|128}" 4 0"
TA_MAXENCRYPTBITS string rwxrwx--- ~{0]40|56]|128}" 4 128"
TA_MAXPENDINGBYTES long IW-r--r-- 100000 <= num <=MAXLONG 2147483647
TA_SICACHEENTRIESMAX string rw-r--r-- “0”="32767" “500"
File Formats, Data Descriptions, MIBs, and System Processes Reference 333

TM_MIB(5): T_MACHINE Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_SEC_PRINCIPAL_NAME string rwxr--r-- string[0..511] w
TA_SEC_PRINCIPAL_LOCATION String rwxr--r-- string[0..511] W
TA_SEC_PRINCIPAL_PASSVAR string rwxr--r-- string[0..511] wo
TA_SIGNATURE_REQUIRED string rwxr--r-- w{v N}~ “N”
TA_ENCRYPTION_REQUIRED string rwxr--r-- “{y |}~ N~
T_MACHINE Class: LOCAL Attributes

TA_CURACCESSERS long R--R--R-- 0 <= num< 32,768 N/A
TA_CURCLIENTS long R--R--R-- 0<=num< 32,768 N/A
TA_CURCONV long R--R--R-- 0 <= num< 32,768 N/A
TA_CURGTT long R--R--R-- 0 <= num< 32,768 N/A
TA_CURRLOAD long R--R--R-- 0<=num N/A
TA_CURWSCLIENTS long R--R--R-- 0<=num< 32,768 N/A
TA_HWACCESSERS long R--R--R-- 0 <= num< 32,768 N/A
TA_HWCLIENTS long R--R--R-- 0<=num< 32,768 N/A
TA_HWCONV long R--R--R-- 0 <= num< 32,768 N/A
TA_HWGTT long R--R--R-- 0 <= num< 32,768 N/A
TA_HWWSCLIENTS long R--R--R-- 0 <= num< 32,768 N/A
TA_NUMCONV long R-XR-XR-- 0<=num N/A
TA_NUMDEQUEUE long R-XR-XR-- 0 <= num N/A
TA_NUMENQUEUE long R-XR-XR-- 0<=num N/A
TA_NUMPOST long R-XR-XR-- 0 <= num N/A
TA_NUMREQ long R-XR-XR-- 0<= num N/A
TA_NUMSUBSCRIBE long R-XR-XR-- 0 <= num N/A
TA_NUMTRAN long R-XR-XR-- 0<=num N/A

334 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5): T_MACHINE Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_NUMTRANABT long R-XR-XR-- 0<= num N/A
TA_NUMTRANCMT long R-XR-XR-- 0<=num N/A
TA_PAGESIZE long R--R--R-- 1 <= num N/A
TA_SWRELEASE string R--R--R-- string[0..78] N/A
TA_HWACLCACHE long R--R--R-- 0<=num N/A
TA_ACLCACHEHITS long R--R--R-- 0<=num N/A
TA_ACLCACHEACCESS long R--R--R-- 0 <= num N/A
TA_ACLFAIL long R--R--R-- 0<=num N/A
TA_WKCOMPLETED long R--R--R-- 0<=num N/A
TA_WKINITIATED long R--R--R-- 0<=num N/A

(k)—GET key field

(r)—required field for object creation (SET TA_STATE NEW)

(*)—GET/SET key, one or more required for SET operations

Lra_1MID and TA_PMID must each be unique within this class. Only one of these fields is
required as a key field for a SET operation. If both are specified, they must match the same object.
2 Default is same as value set for this attribute in the T_DOMAIN class.
8 Default is Ta_aAPPDIR for this machine followed by /ULOG.

4 Link-level encryption value of 40 bits is provided for backward compatibility.
5 Maximum string length for this attribute is 64 bytes for BEA Tuxedo 8.0 or earlier.
& Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_LMID: string[l..30]

Logical machine identifier. This identifier is used within the rest of the Tv_m1B definition

as the sole means of mapping application resources to T_MACHINE Objects.

TA_PMID: string[1..30]

Physical machine identifier. This identifier should match the UNIX system nodename as

returned by the “uname -n” command when run on the identified system.

File Formats, Data Descriptions, MIBs, and System Processes Reference

335

TA_TUXCONFIG: string][2..256] (up to 64 bytes for BEA Tuxedo 8.0 or earlier)
Absolute pathname of the file or device where the binary BEA Tuxedo system
configuration file is found on this machine. The administrator need only maintain one
such file, namely the one identified by the Ta_Tuxconrzg attribute value on the master
machine. The information contained in this file is automatically propagated to all other
T_MACHINE oObjects as they are activated. See Ta_eNvFILE in this class for a discussion of
how this attribute value is used in the environment.

TA_TUXDIR: string[2..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Absolute pathname of the directory where the BEA Tuxedo system software is found on
this machine. See Ta_eNvrILE in this class for a discussion of how this attribute value is
used in the environment.

TA_APPDIR: string[2..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
colon-separated list of application directory absolute pathnames. The first directory serves
as the current directory for all application and administrative servers booted on this
machine. All directories in the list are searched when starting application servers. See
Ta_ENVFILE in this class for a discussion of how this attribute value is used in the
environment.

TA_STATE!

GET: “{ACTive | INActive | PARtitioned}”
A cET operation will retrieve configuration and run-time information for the
selected T_macHINE object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

ACTive T_MACHINE object defined and active (administrative
servers, that is, DBBL, BBL, and Bridge).

INActive T_MACHINE object defined and inactive.

PARtitioned T_MACHINE object defined, listed in accessible bulletin
boards as active, but currently unreachable. This state is
ACTive equivalent for the purpose of determining
permissions.

SET: “{NEW | INValid | ACTive | ReACtivate | INActive | ForceINactive |
CLEaning}”
A sET operation will update configuration and run-time information for the
selected T_macHINE object. The following states indicate the meaning of a
TA_STATE Set in a SET request. States not listed may not be set.

336 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

NEW

Create T_MACHINE object for application. State
change allowed only when in the INValid state.
Successful return leaves the object in the INActive
state.

unset

Modify an existing T_MACHINE object. This
combination is allowed only when in the ACTive or
INActive state. Successful return leaves the object
state unchanged.

INValid

Delete T_MACHINE object for application. State
change allowed only when in the INActive state.
Successful return leaves the object in the INValid
state.

ACTive

Activate the T_MACHINE object. Necessary
administrative servers such as the DBBL, BBL, and
Bridge are started on the indicated site as well as
application servers configured to run on that site
(subject to restriction by Ta_FLAGS settings). For the
purpose of determining permissions for this state
transition, the active object permissions are considered
(that is, --x--x--X). State change allowed only when in
the INActive state. Successful return leaves the
object in the ACTive state.

The TMIB_NOTIFY TA_FLAG value should be used
when activating a machine if status on individual
servers is required.

ReACtivate

Activate the T_MACHINE object. Necessary
administrative servers such as the DBBL, BBL, and
Bridge are started on the indicated site as well as
application servers configured to run on that site
(subject to restriction by TA_FLAGS settings). For the
purpose of determining permissions for this state
transition, the active object permissions are considered
(that is, --x--X--X). State change allowed only when in
either the ACTive or INActive state. Successful
return leaves the object in the ACTive state.

The TMIB_NOTIFY TA_FLAG value should be used
when reactivating a machine if status on individual
servers is required.

File Formats, Data Descriptions, MIBs, and System Processes Reference 337

INActive

Deactivate the T_MACHINE object. Necessary
administrative servers such as the BBL and Bridge are
stopped on the indicated site as well as application
servers running on that site (subject to restriction by
TA_FLAGS settings). State change allowed only when
in the AcTive state and when no other application
resources are active on the indicated machine.
Successful return leaves the object in the INActive
state.

The TMIB_NOTIFY TA_FLAG value should be used
when deactivating a machine if status on individual
servers is required.

ForceINactive

Deactivate the T_MACHINE object without regard to
attached clients. Necessary administrative servers
such as the BBL and Bridge are stopped on the
indicated site as well as application servers running on
that site (subject to restriction by TA_FLAGS settings).
State change allowed only when in the AcTive state.
Successful return leaves the object in the INActive
state.

The TMIB_NOTIFY TA_FLAG value should be used
when deactivating a machine if status on individual
servers is required.

CLEaning

Initiate cleanup/scanning activities on and relating to
the indicated machine. If there are dead clients or
servers on the machine, they will be detected at this
time. If the machine has been partitioned from the
application MASTER site, global bulletin board entries
for that machine will be removed. This combination is
allowed when the application is in the ACTive state
and the T_MACHINE object is in either the ACTive or
PARtitioned state. Successful return for a
non-partitioned machine leaves the state unchanged.
Successful return for a partitioned machine leaves the
object in the INActive state.

Limitation: State change to ForceINactive Or INActive allowed only for
non-master machines. The master site administrative processes are deactivated via

the T_poMAIN class.

338 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_UID: 0 <= num
UNIX system user identifier for the BEA Tuxedo system application administrator on this
machine. Administrative commands such as tmboot (1), tmshutdown (1), and
tmadmin (1) must run as the indicated user on this machine. Application and
administrative servers on this machine will be started as this user.

Limitation: This is a UNIX system-specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_GID: 0 <= num
UNIX system group identifier for the BEA Tuxedo system application administrator on
this machine. Administrative commands such as tmboot (1), tmshutdown (1), and
tmadmin (1) must run as part of the indicated group on this machine. Application and
administrative servers on this machine will be started as part of this group.

Limitation: This is a UNIX system-specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_ENVFILE: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Environment file for clients and servers running on this machine. If the value specifies an
invalid filename, no values are added to the environment. the value of string is placed
into the environment.

When booting servers, local servers inherit the environment of tmboot (1) and remote
servers (not on the MmasTER) inherit the environment of t1isten (1). TUXCONFIG,
TUXDIR, and APPDIR are also put into the environment when a server is booted based on
the information in the associated T_macHuINE object. paTH will be set in the environment
to:

APPDIR:TUXDIR/bin:/bin:/usr/bin:path

where path is the value of the first paTu= line appearing in the machine environment file,
if one exists (subsequent paTu= lines will be ignored). This paTu will be used as a search
path for servers that are specified with a simple or relative pathname (that is, that doesn't
begin with slash). .o_r.1Brary_paTH Will be set in the environment to:

APPDIR:TUXDIR/1lib:/1ib:/usr/lib:1ib

where 1ibis the value of the first Lb_rL1BRARY_pPATH= line appearing in the machine
environment file, if one exists (subsequent 1.o_r.1BRARY_PATH= lines will be ignored).

As part of server initialization (before tpsvrinit () is called), a server will read and
export variables from both the machine and server exnvr1LE files. If a variable is set in
both the machine and server ENvFILE, the value in the server EnvrILE Will override the
value in the machine envr1LE with the exception of paTa which is appended. A client will

File Formats, Data Descriptions, MIBs, and System Processes Reference 339

process only the machine exvrILE file. When the machine and server exvrILE files are
processed, lines that are not of the form i dent= will be ignored, where i dent begins with
an underscore or alphabetic character, and contains only underscore or alphanumeric
characters. If a paTH= line is encountered, paTH will be set to:

APPDIR:TUXDIR/bin:/bin:/usr/bin:path

where path is the value of the first paTu= line appearing in the environment file
(subsequent paTH= lines are ignored). If paTH appears in both the machine and server
files, path is pathl :path2, where pathi is from the machine ENVFILE, and path2 is
from the server envrILE. If a LD_LIBRARY_PATH= line is encountered,
LD_LIBRARY_PATH Will be set to:

APPDIR:TUXDIR/1lib:/1ib:/usr/lib:1ib

where 1ipis the value of the first Lp_r1BRARY PATH= line appearing in the environment
file (subsequent Lp_r1BRARY PATH= lines are ignored). Attempts to reset TUXDIR,
APPDIR, OF TUXCONFIG Will be ignored and a warning will be printed if the value does not
match the corresponding T_macHINE attribute value. Limitation: Modifications to this
attribute for an active object will not affect running servers or clients.

TA_PERM: 0001 <= num <= 0777
UNIX system permissions associated with the shared memory bulletin board created on
this machine. Default UNIX system permissions for system and application message
queues.

Limitations: Modifications to this attribute for an active object will not affect running
servers or clients.

This is a UNIX system-specific attribute that may not be returned if the platform on which
the application is being run is not UNIX-based.

TA_ULOGPFX: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Absolute pathname prefix of the path for the useriog () file on this machine. The
userlog () filename is formed by appending the string . mmddyy to the Ta_ULOGPFx
attribute value. mmddyy represents the month, day, and year that the messages were
generated. All application and system userlog () messages generated by clients and
servers running on this machine are directed to this file.

Limitation: Modifications to this attribute for an active object will not affect running
servers or clients.

TA_TYPE: string[0..15]
Machine type. Used to group machines into classes of like data representations. Data
encoding is not performed when communicating between machines of identical types.

340 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

This attribute can be given any string value; values are used only for comparison. Distinct
TA_TYPE attributes should be set when the application spans a heterogeneous network of
machines or when compilers generate dissimilar structure representations. The default for
this attribute, a 0-length string, matches any other machine with a 0-length string as its
TA_TYPE attribute value.

TA_MAXACCESSERS: 1 <= num < 32,768
Maximum number of clients and servers that can be simultaneously connected to the
bulletin board on this machine. If not specified, the default is the Ta_maxacceEsseRs value
specified in the T_poMaIN class.

System administration processes, such as the BBL, restartsrv, cleanupsrv,
tmshutdown (), and tmadmin (), need not be accounted for in this value, but the DBBL,
all bridge processes, all system-supplied and application server processes, and all
potential client processes at this site need to be counted. (Examples of system-supplied
Servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT, TMS—S€€ T_GROUP
TA_TMSNAME attribute, TMs_om, cwrpoma1n, and wst.) If the application is booting
workstation listeners (WSLSs) on this site, both the WSLs and the number of potential
workstation handlers (WSHSs) that may be booted need to be counted.

Note that for BEA Tuxedo pre-release 7.1 (6.5 or earlier), both the Ta_maxacceEssers and
TA_MAXSERVERS (See T_DOMAIN.TA_MAXSERVERS attribute) attributes for an application
play a part in the user license checking scheme. Specifically, a machine is not allowed to
boot if the number of Ta_maxaccessers for that machine + the number of
TA_MAXACCESSERS for the machine (or machines) already running in the application is
greater than the number of Ta_mMaxSERVERS + user licenses for the application. Thus, the
total number of Ta_mMaxaccessers for an application must be less than or equal to the
number of Ta_MAXSERVERS + user licenses for the application.

Note also that the user license checking scheme in BEA Tuxedo release 7.1 or later
considers only the following two factors when performing its checks: the number of user
licenses for an application and the number of licenses currently in use for the application.
When all user licenses are in use, no new clients are allowed to join the application.

TA_MAXCONV: 0 <= num < 32,768
Maximum number of simultaneous conversations in which clients and servers on this
machine can be involved. If not specified, the default is the Ta_maxconv value specified
in the 7_poma1n class. The maximum number of simultaneous conversations per server
is 64.

TA_MAXGTT: 0 <= num < 32,768
Maximum number of simultaneous global transactions in which this machine can be
involved. If not specified, the default is the value specified in the T_pomMaIN class.

File Formats, Data Descriptions, MIBs, and System Processes Reference N

342

TA_MAXWSCLIENTS: 0 <= num< 32,768
Number of accesser entries on this machine to be reserved for Workstation clients (as
opposed to native clients). If Ta_maxwscLIENTS is not specified, the default is 0.

The number specified here takes a portion of the total accesser slots specified with
TA_MAXACCESSERS, meaning that the accesser slots reserved for Ta_MAXWSCLIENTS are
unavailable for use by other clients and servers on this machine. It is an error to set this
number greater than TA_MAXACCESSERS.

The Ta_maxwscLIENTS attribute is only used when the BEA Tuxedo system Workstation
feature is used. The appropriate setting of this attribute helps to conserve interprocess
communication (IPC) resources since Workstation client access to the system is
multiplexed through a BEA Tuxedo system-supplied surrogate, the workstation handler
(WSH).

TA_MAXACLCACHE: 10 <= num <= 32,000
Number of entries in the cache used for ACL entries when TA_SECURITY iS Set to ACL or
MANDATORY_ACL. The appropriate setting of this attribute helps to conserve on shared
memory resources and yet reduce the number of disk access to do ACL checking.

TA_TLOGDEVICE: string[0..256] (up to 64 bytes for BEA Tuxedo 8.0 or earlier)
The device (raw slice) or UNIX system file containing the BEA Tuxedo filesystem that
holds the DTP transaction log for this machine. The DTP transaction log is stored as a
BEA Tuxedo system VTOC table on the device. This device or file may be the same as
that specified for the Ta_tuxconr1g attribute for this machine.

TA_TLOGNAME: string[0..30]
The name of the DTP transaction log for this machine. If more than one DTP transaction
log exists on the same Ta_TLOGDEVICE, they must have unique names. TA_TLOGNAME
must be different from the name of any other table on the Ta_Tr.06DEVICE Where the DTP
transaction log table is created.

TA_TLOGSIZE: 1 <= num< 2,049
The numeric size, in pages, of the DTP transaction log for this machine. The
TA_TLOGSIZE attribute value is subject to limits based on available space in the BEA
Tuxedo filesystem identified by the Ta_TroGDEVICE attribute.

TA_BRIDGE: string[0..78]
Device name to be used by the Bridge process for this logical machine to access the
network. This value is required for participation in a networked application via a
TLI-based BEA Tuxedo system binary. This attribute is not needed for sockets-based
BEA Tuxedo system binaries.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_BRTHREADS: “{v | N}~
The Bridge process for this logical machine is configured for multithreaded execution
vy ~) or single-threaded execution (*n~). The default is *n~. This attribute applies only
to applications running BEA Tuxedo 8.1 or later software.

Setting TA_BRTHREADS t0 v~ makes sense only if a machine has multiple CPUSs.
However, having multiple CPUs is not a prerequisite for setting TA_BRTHREADS t0 “v”.

Configurations with Ta_BRTHREADS set to “v~ on the local machine and TA_BRTHREADS
set (or defaulted) to *n~ on the remote machine are allowed, but the throughput between
the machines will not be greater than that for the single-threaded Bridge process.

A Bridge process configured for single-threaded or multithreaded execution can
interoperate with a Bridge process running in an earlier release of BEA Tuxedo or
WebLogic Enterprise: BEA Tuxedo release 8.0 or earlier, WebLogic Enterprise release
5.1 or earlier. In general, a threaded Bridge can interoperate with an unthreaded Bridge
because there are no external functional or behavioral changes due to the threading.

Note: If BRTHREADS=Y and the Bridge environment contains TMNOTHREADS=Y, the
Bridge starts up in threaded mode and logs a warning message to the effect that
the Bridge is ignoring the TMnOTHREADS Setting. The TMNOTHREADS environment
variable was added to the BEA Tuxedo product in release 8.0.

TA_NADDR: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network address to be used by the Bridge process placed on the
logical machine as its listening address. The listening address for a Bridge is the means by
which it is contacted by other Bridge processes participating in the application. This
attribute must be set if the logical machine is to participate in a networked application, that
is, if the Lan option is set in the T_DOMAIN:TA_ OPTIONS attribute value.

If string has the form “0xhex-digits” OF “\\xhex-digits”, it must contain an even
number of valid hex digits. These forms are translated internally into a character array
containing the hexadecimal representations of the string specified. For TCP/IP addresses
either the

“//hostname:port"”

or

N/ #C#H#H:port”

format is used.

File Formats, Data Descriptions, MIBs, and System Processes Reference 343

TA_NLSADDR: string]0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Network address used by the t1isten (1) process servicing the network on the node
identified by this logical machine. This network address is of the same format as that
specified for the Ta_NaDDR attribute above.

This attribute must be set if the logical machine is to participate in a networked
application, that is, if the Lan option is set in the T_poMAIN:TA_OPTIONS attribute value.

TA_FADDR: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network address to which local processes such as tmboot,
tmloadcf, and Bridge can bind before making an outbound connection. This address
must be a TCP/IP address. This attribute, along with the Ta_rranGE attribute, determines
the range of TCP/IP ports to which a process attempts to bind before making an outbound
connection. If this attribute is set to the NULL or empty string, the operating system
randomly chooses a local port with which to bind.

If string has the form “0xhex-digits”, it must contain an even number of valid hex
digits. These forms are translated internally into a character array containing the
hexadecimal representations of the string specified.

For TCP/IP addresses, one of the following formats is used:
® “//hostname:port”

o “//# #.#.#:port”

TA_FRANGE: 1<= num <= 65,535
Specifies the range of TCP/IP ports to which local processes attempt to bind before
making an outbound connection. The Ta_raDDR attribute specifies the base address of the
range.

TA_CMPLIMIT: “remote[, locall”
Threshold message size at which compression will occur for remot e traffic and optionally
local traffic. remoteand 1ocal may be either non-negative numeric values or the string
MAXLONG, Which is dynamically translated to the maximum long setting for the machine.
Setting only the remote value will default 10ca1 to MAXT.ONG.

Limitation; This attribute value is not part of the T_macHINE object for active sites running
BEA Tuxedo system release 4.2.2 or earlier. However, site release identification is not
determined until run time, so this attribute may be set and accessed for any inactive object.
When a BEA Tuxedo release 4.2.2 or earlier site is activated, the configured value is not
used.

TA_TMNETLOAD: 0 <= num < 32,768
Service load added to any remote service evaluated during load balancing on this machine.

344 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Limitation: This attribute value is not part of the T_macHINE object for active sites running
BEA Tuxedo release 4.2.2 or earlier. However, site release identification is not
determined until run time, so this attribute may be set and accessed for any inactive object.
When a BEA Tuxedo release 4.2.2 or earlier site is activated, the configured value is not
used.

TA_SPINCOUNT: 0 <= num
Spincount used on this machine for pre-ticket user level semaphore access. Defaults are
built into the BEA Tuxedo system binaries on each machine. These defaults may be
overridden at run time for tuning purposes using this attribute. The spincount may be reset
to the default built-in value for the site by resetting this attribute value to 0. There is also
a TMSPINCOUNT environment variable, which the system uses if the value is not set here
or in the uBcoNF1G file.

Limitation; This attribute value is not part of the T_macHINE object for active sites running
BEA Tuxedo release 4.2.2 or earlier. However, site release identification is not
determined until run time, so this attribute may be set and accessed for any inactive object.
When a BEA Tuxedo release 4.2.2 or earlier site is activated, the configured value is not
used.

TA_ROLE: “{MASTER | BACKUP | OTHER}"
The role of this machine in the application. *MasTER” indicates that this machine is the
master machine, *Backup~ indicates that it is the backup master machine, and “oTHER”
indicates that the machine is neither the master nor backup master machine.

TA_MINOR: 1 <= num
The BEA Tuxedo system minor protocol release number for this machine.

TA_RELEASE: 1 <= num
The BEA Tuxedo system major protocol release number for this machine. This may be
different from the Ta_swreLEASE for the same machine.

TA_MINENCRYPTBITS: “{0| 40|56 | 128}~
Specifies the minimum level of encryption required when establishing a network link to
this machine. 0 means no encryption, while 40, s6, and 128 specify the encryption key
length (in bits). If this minimum level of encryption cannot be met, link establishment will
fail. The default is o.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

Limitation: Modifications to this attribute will not effect established network links.

File Formats, Data Descriptions, MIBs, and System Processes Reference 345

TA_MAXENCRYPTBITS: “{0| 40|56 | 128}~
Specifies the maximum level of encryption that can be negotiated when establishing a
network link. 0 means no encryption, while 40, 56, and 128 specify the encryption length
(in bits). The default is 128.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.
Limitation: Modifications to this attribute will not effect established network links.

TA_MAXPENDINGBYTES: 100000 <= num <= MAXLONG
Specifies a limit for the amount of space that can be allocated for messages waiting to be
transmitted by the Bridge process.

TA_SICACHEENTRIESMAX: “0”-"32767"
The number of service and interface cache entries kept on this machine. If not specified,
the value will be set to “500”. A value of “0” implies that service caching is not used on
this machine.

TA_SEC_PRINCIPAL_NAME: string[0..511]
Security principal name identification string to be used for authentication purposes by an
application running BEA Tuxedo 7.1 or later software. This attribute may contain a
maximum of 511 characters (excluding the terminating NULL character). The principal
name specified for this attribute becomes the identity of one or more system processes
running on this machine.

TA_SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. A principal name at a particular configuration level can be overridden at
a lower level. If Ta_sEc_PRINCIPAI_NAME is not specified at any of these levels, the
principal name for the application defaults to the Ta_pomarnzD string for this domain.

Note that Ta_sEC_PRINCIPAL_NAME is one of a trio of attributes, the other two being
TA_SEC_PRINCIPAL_LOCATION and TA_SEC_PRINCIPAL_PASSVAR. The latter two
attributes pertain to opening decryption keys during application booting for the system
processes running in a BEA Tuxedo 7.1 or later application. When only
TA_SEC_PRINCIPAL_NAME is specified at a particular level, the system sets each of the
other two attributes to a NULL (zero length) string.

TA_SEC_PRINCIPAL_LOCATION: string[0..511]
Location of the file or device where the decryption (private) key for the principal specified
in TA_SEC_PRINCIPAL_NAME resides. This attribute may contain a maximum of 511
characters (excluding the terminating NULL character).

346 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_mMacHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(Ta_sSEC_PRINCIPAL_PASSVAR is optional; if not specified, the system sets it to a NULL—
zero length—string.)

TA_SEC_PRINCIPAL_PASSVAR: string]0..511]
Variable in which the password for the principal specified in TA_SEC_PRINCIPAL_NAME
is stored. This attribute may contain a maximum of 511 characters (excluding the
terminating NULL character).

TA_SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(TA_SEC_PRINCIPAIL_LOCATION is optional; if not specified, the system sets it to a
NULL—zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with Ta_sEC_PRINCIPAL_PASSVAR. The system
automatically encrypts the password entered by the administrator and assigns each
encrypted password to the associated password variable.

TA_SIGNATURE_REQUIRED: “{Y | N}~
If setto “v~, every process running on this machine requires a digital signature on its input
message buffer. If not specified, the default is “x~. This attribute applies only to
applications running BEA Tuxedo 7.1 or later software.

TA_SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVICE class. Setting SIGNATURE_REQUIRED t0 v at a particular level means that
signatures are required for all processes running at that level or below.

TA_ENCRYPTION_REQUIRED: “{v | N}~
If set to “v~, every process running on this machine requires an encrypted input message
buffer. If not specified, the default is “x~. This attribute applies only to applications
running BEA Tuxedo 7.1 or later software.

TA_ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_pomMa1N class, T_MACHINE class, T_Group class, and
T_SERVICE class. Setting TA_ENCRYPTION REQUIRED t0 “v~ at a particular level means
that encryption is required for all processes running at that level or below.

File Formats, Data Descriptions, MIBs, and System Processes Reference 347

348

TA_CURACCESSERS: 0 <= num< 32,768

Number of clients and servers currently accessing the application either directly on this
machine or through a workstation handler on this machine.

TA_CURCLIENTS: 0 <= num < 32,768

Number of clients, both native and Workstation, currently logged in to this machine.

TA_CURCONV: 0 <= num < 32,768

Number of active conversations with participants on this machine.

TA_CURGTT: 0 <= num < 32,768

Number of in use transaction table entries on this machine.

TA_CURRLOAD: 0 <= num

Current service load enqueued on this machine. Limitation: If the T_poMAIN:TA LDBAL
attribute is *~~ or the T_pomaIN:TA MODEL attribute is "mp", an FML32 nuLL value is
returned (0).

TA_CURWSCLIENTS: 0 <= num < 32,768

Number of Workstation clients currently logged in to this machine.

TA_HWACCESSERS: 0 <= num < 32,768

High water number of clients and servers accessing the application either directly on this
machine or through a workstation handler on this machine.

TA_HWCLIENTS: 0 <= num< 32,768

High water number of clients, both native and Workstation, logged in to this machine.

TA_HWCONV: 0 <= num < 32,768

High water number of active conversations with participants on this machine.

TA_HWGTT: 0 <= num < 32,768

High water number of in use transaction table entries on this machine.

TA_HWWSCLIENTS: 0 <= num < 32,768

High water number of Workstation clients currently logged in to this machine.

TA_NUMCONV: 0 <= num

Number of tpconnect () operations performed from this machine.

TA_NUMDEQUEUE: 0 <= num

Number of tpdequeue () operations performed from this machine.

TA_NUMENQUEUE: 0 <= num

Number of tpenqueue () operations performed from this machine.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_NUMPOST: 0 <= num
Number of tppost () operations performed from this machine.

TA_NUMREQ: 0 <= num
Number of tpacall () Or tpcall () operations performed from this machine.

TA_NUMSUBSCRIBE: 0 <= num
Number of tpsubscribe () operations performed from this machine.

TA_NUMTRAN: 0 <= num
Number of transactions initiated (tpbegin ()) from this machine.

TA_NUMTRANABT. 0 <= num
Number of transactions aborted (tpabort ()) from this machine.

TA_NUMTRANCMT: 0 <= num
Number of transactions committed (tpcommit ()) from this machine.

TA_PAGESIZE: 1 <= num
Disk pagesize used on this machine.

TA_SWRELEASE: string[0..78]
Software release for binary on that machine or a 0-length string if binary is not a BEA
Tuxedo system master binary.

TA_HWACLCACHE. 0 <= num
High water number of entries used in the ACL cache.

TA_ACLCACHEHITS: 0 <= num
Number of accesses to the ACL cache that resulted in a “hit” (that is, the entry was already
in the cache).

TA_ACLCACHEACCESS: 0 <= num
Number of accesses to the ACL cache.

TA_ACLFAIL: 0 <= num
Number of accesses to the ACL cache that resulted in a access control violation.

TA_WKCOMPLETED: 0 <= num
Total service load dequeued and processed successfully by servers running on this
machine. Note that for long running applications this attribute may wraparound, that is,
exceed the maximum value for a long, and start back at 0 again.

File Formats, Data Descriptions, MIBs, and System Processes Reference 349

TA_WKINITIATED:. 0 <= num
Total service load enqueued by clients/servers running on this machine. Note that for long
running applications this attribute may wraparound, that is, exceed the maximum value
for a long, and start back at 0 again.

Limitations
sHMmode (See T_DOMAIN:TA MODEL attribute) applications can have only one T_MACHINE Object.
MP mode (See T_DOMAIN:TA_MODEL attribute) applications with the r.an option set (see
T_DOMAIN.TA_OPTIONS attribute) may have up to the maximum number of configurable
T_MACHINE Objects as defined by the T_poMaTN:TA_MAXMACHINES attribute. Many attributes of
this class are tunable only when the application is inactive on the site. Since the master machine
must at least be active in a minimally active application, the use of the ATMI interface routines
to administer the application is not possible with respect to the master machine object. The
function tpadmcall () is being provided as a means configuring an unbooted application and
may be used to set these attributes for the master machine.

T_MSG Class Definition

Overview

The T_wmsac class represents run-time attributes of the BEA Tuxedo system managed UNIX
system message queues.

Attribute Table
Table 51 TM_MIB(5): T_MSG Class Definition Attribute Table

Attribute ! Type Permissions Values Default

TA_1MID(K) string R--R--R-- LMID N/A

TA_MSGID(K) long R--R--R-- 1 <= num N/A

TA_STATE(K) string R--R--R-- GET: “ACT” N/A
SET: N/A N/A

TA_CURTIME long R--R--R-- 1 <= num N/A

TA_MSG_CBYTES long R--R--R-- 1 <= num N/A

TA_MSG_CTIME long R--R--R-- 1 <= num N/A

350 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Table 51 TM_MIB(5): T_MSG Class Definition Attribute Tahle

Attribute ! Type Permissions Values Default
TA_MSG_LRPID long R--R--R-- 1 <= num N/A
TA_MSG_LSPID long R--R--R-- 1 <= num N/A
TA_MSG_QBYTES long R--R--R-- 1 <= num N/A
TA_MSG_QNUM long R--R--R-- 1 <= num N/A
TA_MSG_RTIME long R--R--R-- 1<=num N/A
TA_MSG_STIME long R--R--R-- 1 <= num N/A

(k)—GET key field

LAIl attributes in the T_MSG class are local attributes.

Attribute Semantics

TA_LMID: LMID
Logical machine identifier.

TA_MSGID: 1 <= num

UNIX system message queue identifier. Limitation: This is a UNIX system-specific
attribute that may not be returned if the platform on which the application is being run is
not UNIX-based.

TA_STATE:

GET: “{ACTive}”
A ceT operation will retrieve run-time information for the selected T_msc
object(s). The following state indicates the meaning of a Ta_sTATE returned in
response to a GET request.

ACTive T_MSG object active. This corresponds exactly to the related
T_MACHINE object being active.

SET:
SET operations are not permitted on this class.

File Formats, Data Descriptions, MIBs, and System Processes Reference 351

TA_CURTIME: 1 <= num
Current time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2)
system call on T_msc:Ta_1mID. This attribute can be used to compute elapsed time from
the T_msG:Ta_?TIME attribute values.

TA_MSG_CBYTES: 1 <= num
Current number of bytes on the queue.

TA_MSG_CTIME: 1 <= num
Time of the last msgctl(2) operation that changed a member of the msgid_ds structure
associated with the queue.

TA_MSG_LRPID: 1 <= num
Process identifier of the last process that read from the queue.

TA_MSG_LSPID: 1 <= num
Process identifier of the last process that wrote to the queue.

TA_MSG_QBYTES: 1 <= num
Maximum number of bytes allowed on the queue.

TA_MSG_ONUM: 1 <= num
Number of messages currently on the queue.

TA_MSG_RTIME: 1 <= num
Time since the last read from the queue.

TA_MSG_STIME: 1 <= num
Time since the last write to the queue.

Limitations

This class is UNIX system-specific and may not be supported in non-UNIX implementations of
BEA Tuxedo system.

T _NETGROUP Class Definition

Overview

The T_nETGROUP class represents application attributes of network groups. Network groups are
groups of LMIDs which can communicate over the Ta_NaDDR network addresses defined in the
T_NETMAP class.

352 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Attribute Table

Table 52 TM_MIB(5): T_NETGROUP Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_NETGROUP(r)(*) string rU------- string[l1..30] “DEFAULTNET”
TA_NETGRPNO(r)(*) long rU---———- 1 <= num< 8192 N/A
TA_STATE(K) string IW-r--r-- GET: “VAL” N/A

SET: “{NEW | INV}” N/A
TA_NETPRIO(*) long TWyrWw--—-- 1 <= num< 8,192 100

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

Attribute Semantics

TA_NETGROUP: string[l..30]
Logical name of the network group. A group name is a string of printable characters and
cannot contain a point sign, comma, colon, or newline.

TA_NETGRPNO: 1 <= num <= 8192
Group identifier associated with network group.

TA_STATE:

GET: “{vALid}”
A ceT operation will retrieve configuration information for the selected
T_NETGROUP object(s). The following states indicate the meaning of a Ta_staTe
returned in response to a GET request.

VALid T_NETGROUP object is defined and inactive. Note that this is the
only valid state for this class. NETGROUPs are never ACTive.

SET: “{NEW | INValid}”
a seT operation will update configuration information for the selected
T_NETGROUP object. The following states indicate the meaning of a Ta_sTATE set
in a sET request. States not listed may not be set.

File Formats, Data Descriptions, MIBs, and System Processes Reference 353

NEW Create T_NETGROUP object for application. State change
allowed only when in the TNValid state. Successful return
leaves the object in the vaLid state.

unset Modify an existing T_NETGROUP object. Only allowed in the
VALid state. Successful return leaves the object state
unchanged.

INValid Delete T_NETGROUP object from application. State change

allowed only when in the vAL i d state and only if there are no
objects in the T_NETMAP class which have this network
group object as a key. Successful return leaves the object in
the INValid state.

TA_NETPRIO: 1 <= num< 8,192
The priority band for this network group. All network groups of equivalent band priority
will be used in parallel. If all network circuits of a certain priority are torn down by the
administrator or by network conditions, the next lower priority circuit is used. Retries of
the higher priority are attempted.

Note: In BEA Tuxedo release 6.4, parallel data circuits are prioritized by network group
number (NETGRPNO) Within priority group number. In future releases, a different
algorithm may be used to prioritize parallel data circuits.

Limitations

None.

T_NETMAP Class Definition

Overview

354

The T_NETMAP class associates Ta_1mMIDs from the T_macHINE class in the Tv_mMI1B to a
TA_NETGROUP Object from the T_NETGROUP class. In other words, this class contains assignments
of logical machines to network groups. A Ta_r.mMIp may be included in many Ta_NETGROUP
groups. When one LMID connects to another LMID, the Bridge process determines the subset of
network groups to which the two LMIDs belong. When the pair of LMIDs are in several common
groups, they are sorted in descending Ta_NETPRIO order (TA_NETGRPNO is the secondary sort
key). The Network groups with the same Ta_~eTprI0 Will flow network data in parallel. Should
a networking error prevent data from flowing through all the highest priority group(s), only then

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

the next lower priority network group(s) are used for network traffic (failover). All network
groups with a higher priority than the ones flowing data are retried periodically. Once a network
connection is established with a higher Ta_neTPRrIO Value, no further data is scheduled for the
lower priority one. Once the lower priority connection is drained, it is disconnected in an orderly
fashion (failback).

Attribute Table

Table 53 TM_MIB(5): T_NETMAP Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_NETGROUP(r)(*) string ru------- string[l1..30] N/A
TA_LMID(r)(*) string ru------- LMID N/A
TA_STATE string RW------- GET: “VAL” N/A
SET: “{NEW | INV}” N/A
TA_NADDR string rw-r--r-- string[l1..256]* b
TA_FADDR string rw-r--r-- string[0..256] v
TA_FRANGE long TW-r—--r-- 1 <= num <= 65,535 1
TA_MINENCRYPTBITS string rwxrwx--- “{0]40|56]128}" 2 *0”
TA_MAXENCRYPTBITS string rwxrwx--- “{0|40|56|128}~2 ™128~

(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

1 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.
2 Link-level encryption value of 40 bits is provided for backward compatibility.

Attribute Semantics

TA_NETGROUP: string[l..30]
This is the name of the associated network group found in the T_NETGROUP class.

TA_LMID: LMID
The logical machine name for the T_macHINE class (in Tv_wm1B) for this network mapping.

File Formats, Data Descriptions, MIBs, and System Processes Reference 355

356

TA_STATE!

GET: “{vALid}”
A cET operation will retrieve run-time information for the selected T_NETMAP
object(s). The following states indicate the meaning of a Ta_sTaTE returned in
response to a GET request.

VALid T_NETMAP object is defined. Note that this is the only valid state
for this class. Network mappings are never ACTive.

SET: “{NEW | INValid}”
A set operation will update configuration information for the selected T_nETMAP
object. The following states indicate the meaning of a Ta_sTATE set in a SET
request. States not listed cannot be set.

NEW Create T_NETMAP object for application. State change allowed
only when in the INValid state. Successful return leaves the
object in the vAaLid state.

unset Modify an existing T_NETMAP object. Successful return leaves
the object state unchanged.

INValid Deletes the given network mapping. If any network links were
active as a result of the mapping, they will be disconnected.
This disconnection may cause a state change in T_BRIDGE
objects (in TM_M1B) associated with the network links.

TA_NADDR: string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network address to be used by the Bridge process placed in the
logical machines as its listening address. The listening address for a Bridge is the means
by which one Bridge process is contacted by others that are participating in the
application, that is, if the Lax option is set in the T_DpoMAIN:TA OPTIONS attribute value.

If string has the form “0xhex-digits”, it must contain an even number of valid hex
digits. These forms are translated internally into a character array containing the
hexadecimal representations of the string specified.

For TCP/IP addresses one of the following formats is used:
® “//hostname:port”

o “//# . #.#.#:port”

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_FADDR: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network address to which local processes such as tmboot,
tmloadcf, and Bridge and can bind before making an outbound connection. This address
must be a TCP/IP address. This attribute, along with the Ta_rFRANGE attribute, determines
the range of TCP/IP ports to which a process attempts to bind before making an outbound
connection. If this attribute is set to the NULL or empty string, the operating system
randomly chooses a local port with which to bind.

If string has the form »0xhex-digits”, it must contain an even number of valid hex
digits. These forms are translated internally into a character array containing the
hexadecimal representations of the string specified.

For TCP/IP addresses, one of the following formats is used:
® “//hostname:port”

o “//# . #.#.#:port”

TA_FRANGE: 1<= num <= 65,535
Specifies the range of TCP/IP ports to which local processes attempt to bind before
making an outbound connection. The Ta_rADDR attribute specifies the base address of the
range.

TA_MINENCRYPTBITS: “{0| 40|56 |128}"
Specifies the minimum level of encryption required when a network link is being
established. 0 means no encryption, while 40, 56, and 128 specify the encryption key
length (in bits). If this minimum level of encryption cannot be met, link establishment
fails. The default is o.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.
Limitation: Modifications to this attribute will not effect established network links.

TA_MAXENCRYPTBITS: “{0| 40|56 | 128}~
Specifies the maximum level of encryption allowed when a link is being established. o
means no encryption, while 40, 56, and 128 specify the encryption length (in bits). The
default is 128.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.
Limitation: Modifications to this attribute will not effect established network links.

When 128-bit encryption is licensed, Ta_MaXENCRYPTBITS defaults to 128. When 56-bit
encryption is licensed, the default is 56. When no encryption is licensed, the default is o
bits. Note that when Bridge processes connect, they negotiate to the highest common
TA_MAXENCRYPTBITS.

File Formats, Data Descriptions, MIBs, and System Processes Reference 357

Limitations
None.

T_QUEUE Class Definition

Overview

The T_QUEUE class represents run-time attributes of queues in an application. These attribute
values identify and characterize allocated BEA Tuxedo system request queues associated with
servers in a running application. They also track statistics related to application workloads
associated with each queue object.

Note that when a GeT operation with the Mm1B_rocaL flag is performed in a multi-machine
application, multiple objects will be returned for each active queue—one object for each logical
machine where local attribute values are collected.

Attribute Table

Table 54 TM_MIB(5): T_QUEUE Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_RQADDR(*) string R--R--R-- string[l1..30] N/A
TA_SERVERNAME(K) string R--R--R-- string[l..78] N/A
TA_STATE(K) string R--R--R-- GET: “{ACT | MIG | SUS | PAR}” N/A
SET: N/A N/A
TA_GRACE long R--R--R-- 0 <= num N/A
TA_MAXGEN long R--R--R-- 1 <= num< 256 N/A
TA_RCMD string R--R--R-- stringl0..256] 1 N/A
TA_RESTART string R--R--R-- “{y | N}~ N/A
TA_CONV string R--R--R-- “{v|N}~ N/A
TA_1MID(K) string R--R--R-- LMID N/A
TA_RQID long R--R--R-- 1 <= num N/A
TA_SERVERCNT long R--R--R-- 1<=num<8§,192 N/A

358 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Table 54 TM_MIB(5): T_QUEUE Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default

T_QUEUE Class:LOCAL Attributes

TA_TOTNQUEUED long R-XR-XR-- 0 <= num N/A
TA_TOTWKQUEUED long R-XR-XR-- 0 <= num N/A
TA_SOURCE(K) string R--R--R-- LMID N/A
TA_NQUEUED long R--R--R-- 0 <= num N/A
TA_WKQUEUED long R--R--R-- 0 <= num N/A

(k)—GET key field
(*)—GET/SET key, one or more required for SET operations

1 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_RQADDR: string[l..30]
Symbolic address of the request queue. Servers with the same T_SERVER!TA_RQADDR
attribute value are grouped into a Multiple Server Single Queue (MSSQ) set. Attribute
values returned with a T_QUEUE object apply to all active servers associated with this
symbolic queue address.

TA_SERVERNAME: string[l..78]
Full pathname of the server executable file. The server identified by TA_SERVERNAME iS
running on the machine identified by the T_ourur:TA_1MID attribute. When specified as
a key field on a ceT operation, this attribute may specify a relative pathname; all
appropriate full pathnames will be matched.

TA_STATE!

GET: “{ACTive | MIGrating | SUSpended | PARtitioned}”
A cET operation will retrieve run-time information for the selected T_QUEUE
object(s). The T_ouruk class does not address configuration information directly.
Configuration related attributes discussed here must be set as part of the related
T_SERVER Objects. The following states indicate the meaning of a Ta_sTATE
returned in response to a GET request.

File Formats, Data Descriptions, MIBs, and System Processes Reference 359

360

SET.

ACTive

At least one server associated with this T_QUEUE object
is active.

MIGrating

The server(s) associated with this T_QUEUE object is
currently in the MIGrating state. See the T_SERVER
class for more details on this state. This state is ACTive
equivalent for the purpose of determining permissions.

SUSpended

The server(s) associated with this T_QUEUE object is
currently in the SUSpended state. See the T_SERVER
class for more details on this state. This state is ACTive
equivalent for the purpose of determining permissions.

PARtitioned

The server(s) associated with this T_QUEUE object is
currently inthe PARt i t i oned state. See the T_SERVER
class for more details on this state. This state is ACTive
equivalent for the purpose of determining permissions.

A seT operation will update run-time information for the selected T_ouEUE object.
State changes are not allowed when updating T_oUEUE object information.

Modification of an existing T_ouUEUE object is allowed only when the object is in
the acTive State.

TA_GRACE: 0 <= num

The period of time, in seconds, over which the T_gureue:Ta_maxcen limit applies. This
attribute is meaningful only for restartable servers, that is, if the T_QUEUE:TA_RESTART
attribute is set to "v". A value of 0 for this attribute indicates that a server should always

be restarted.

TA_MAXGEN: 1 <= num < 256
Number of generations allowed for restartable servers (T_QUEUE:TA_RESTART == "Y")
associated with this queue over the specified grace period (T_QUEUE:TA_GRACE). The
initial activation of each server counts as one generation and each restart also counts as

one.

TA_RCMD: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Application specified command to be executed in parallel with the system restart of
application servers associated with this queue.

TA_RESTART: “{v | N}~

Servers associated with this queue are restartable (~v~) or non-restartable (*n~).

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_conv: “{y | N}~
Servers associated with this queue are conversational-based (~v~) or
request/response-based (n~).

TA_LMID: LMID
Logical machine on which servers associated with this queue are active.

TA_RQID: 1 <= num
UNIX system message queue identifier.
Limitation: This is a UNIX system specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_SERVERCNT. 1 <= num < 8,192
Number of active servers associated with this queue.

TA_TOTNQUEUED: 0 <= num
The sum of the queue lengths of this queue while it has been active. This sum includes
requests enqueued to and processed by servers that are no longer active on the queue. Each
time a new request is assigned to the queue, the sum is incremented by the length of the
queue immediately before the new request is enqueued.

Limitation; If the T_pomaIN:TA_LDBAL attribute is "N" or the T_DOMAIN:TA_MODEL
attribute is "mMp", TA_TOTNQUEUED is not returned. In the same configuration, updates to
this attribute are ignored. Consequently, when this attribute is returned Ta_r.mM1D and
TA_SOURCE have the same value.

TA_TOTWKQUEUED: 0 <= num
The sum of the workloads enqueued to this queue while it has been active. This sum
includes requests enqueued to and processed by servers that are no longer active on the
queue. Each time a new request is assigned to the queue, the sum is incremented by the
workload on the queue immediately before the new request is enqueued.

Limitation: If the T_DoMAIN:TA_LDBAL attribute is "N" or the T_DOMAIN:TA_MODEL
attribute is "mp", TA_TOTWKQUEUED is not returned. In the same configuration, updates to
this attribute are ignored. Consequently, when this attribute is returned Ta_r.m1p and
TA_SOURCE have the same value.

TA_SOURCE:. LMID
Logical machine from which local attribute values are retrieved.

TA_NQUEUED: 0 <= num
Number of requests currently enqueued to this queue from the Ta_source logical
machine. This value is incremented at enqueue time and decremented when the server
dequeues the request.

File Formats, Data Descriptions, MIBs, and System Processes Reference 361

Limitation: If the T_DoMAIN:TA_LDBAL attribute is *N” or the T_DOMAIN:TA_MODEL
attribute is “Mp~, TA_NQUEUED is not returned. Consequently, when this attribute is
returned Ta_1.MID and TA_SOURCE have the same value.

TA_WKQUEUED: 0 <= num

Workload currently enqueued to this queue from the Ta_source logical machine. If the
T DOMAIN:TA_MODEL attribute is set to sum and the T_DoOMAIN:TA_LDBAL attribute is set

to "vy", the Ta_wkQUEUED attribute reflects the application-wide workload enqueued to this

queue. However, if TA_MODEL is Set to Mp and Ta_LDBAL is set to "v", this attribute reflects
the workload enqueued to this queue from the Ta_sourck logical machine during a recent
timespan. This attribute is used for load balancing purposes. So as to not discriminate
against newly started servers, this attribute value is zeroed out on each machine

periodically by the BBL.

Limitations
None.

T_ROUTING Class Definition

Overview

The T_rourINe class represents configuration attributes of routing specifications for an
application. These attribute values identify and characterize application data-dependent routing
criteria with respect to field names, buffer types, and routing definitions.

Attribute Table

Table 55 TM_MIB(5): T_ROUTING Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_ROUTINGNAME(r)(*) string ru-r--r-- string[l..15] N/A
TA_ROUTINGTYPE (r) string ru-r--r-- SERVICE Of FACTORY “SERVICE”
TA_BUFTYPE(r)(*) string ru-r--r-- string[l1..256] N/AL
TA_FIELD(r)(K)(*) string ru-r--r-- string[1..30] N/AL
TA_FIELDTYPE string ru-r--r-- [char | short | long | “string”

float |double|
string]

362 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Table 55 TM_MIB(5): T_ROUTING Class Definition Attribute Tahle

Attribute Type Permissions Values Default

TA_FIELDTYPE (r) string rw-r--r-- string[1..30] N/A
(factory-based routing only)

TA_RANGES(r) carray rw-r--r-- carray[1..2048] N/A
TA_TYPE string ru-r--r-- string[1..15] “SERVICE”
TA_STATE(K) string rw-r--r-- GET: “VAL” N/A

SET: “{NEW | INV}” N/A

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

lta_BUFTYPE applies only to ATMI data-dependent routing criteria. TA_FIELDTYPE applies
only to CORBA factory-based routing criteria. The specified u (uniqueness) permission applies
only in the relevant case. That is: the combination of TA_ROUTINGNAME, TA_TYPE and
TA_BUFTYPE must be unique for TA_TYPE=SERVICE, and TA_ROUTINGNAME, TA_TYPE and
TA_FIELD must be unique for TA_TYPE=FACTORY.

The TA_TYPE attribute determines the permissible attributes for the TA_ROUTING object.
TYPE=SERVICE corresponds to ATMI data-dependent routing criteria. TYPE=FACTORY
corresponds to CORBA factory-based routing. The default is SERVICE. SET operations are
assumed to be for data-dependent routing if no TA_TvYPE is specified. Specification of
TA_FIELDTYPE is invalid for data-dependent routing. Specification of TA_BUFTYPE is invalid
for factory-based routing.

Attribute Semantics

TA_ROUTINGNAME: string{l..15]
Routing criteria name.

TA_ROUTINGTYPE: type
Specifies the routing type. The default is TyPE=SERVICE to ensure that existing
uBBCONFIG files used in ATMI environments continue to work properly. Use
TYPE=FACTORY if you are implementing factory-based routing for a CORBA interface.

TA_BUFTYPE: “typel[:subtypell,subtypez...]][;tyvpe2[:subtype3[,.. J]] ...~
List of types and subtypes of data buffers for which this routing entry is valid. A maximum
of 32 type/subtype combinations are allowed. The types are restricted to the following:
FML, FML32, XML, VIEW, VIEW32, X_C_TYPE, and x_common. No subtype can be specified

File Formats, Data Descriptions, MIBs, and System Processes Reference 363

for types FML, FML32, OF XML; subtypes are required for types vIEwW, VIEW32, X_C_TYPE,
and x_common (“*” is not allowed). Note that subtype names should not contain
semicolon, colon, comma, or asterisk characters. Duplicate type/subtype pairs cannot be
specified for the same routing criteria name; more than one routing entry can have the
same criteria name as long as the type/subtype pairs are unique. If multiple buffer types
are specified for a single routing entry, the data types of the routing field for each buffer
type must be the same.

TA_FIELD: string{l..30]

The routing field name. When Ta_TvyPE=FACTORY, this is assumed to be a field that is
specified in an NvList parameter to PortableServer::POA::create
_reference_with_criteria for an interface that has this factory routing criteria associated
with it. See section on factory-based routing for more details.

When Ta_TYPE=SERVICE, the Ta_rIELD field is assumed to be an FML or FML32 buffer,
XML buffer, view field name that is identified in an FML field table (using the
environment variables FLDTBLDIR and FIELDTBLS OF FLDTBLDIR32 and FIELDTBLS32),
or an FML view table (using the environment variables vIEwDIR and VIEWFILES Or
VIEWDIR32 and VIEWFILES32), respectively. This information is used to get the
associated field value for data-dependent routing while sending a message.

For an xmr buffer type, Ta_rIELD contains either: a routing element type (or name) or a
routing element attribute name.

The syntax of the Ta_r1ELD attribute for an xmr, buffer type is as follows:

“root_element[/child _element] [/child element][/. . .][/@Qattribute_name]"”

364

The element is assumed to be an XML document or datagram element type. Indexing is
not supported. Therefore, the BEA Tuxedo system recognizes only the first occurrence of
a given element type when processing an xmr. buffer for data-dependent routing. This
information is used to get the associated element content for data-dependent routing while
sending a message. The content must be a string encoded in UTF-8.

The attribute is assumed to be an XML document or datagram attribute of the defined
element. This information is used to get the associated attribute value for data-dependent
routing while sending a message. The value must be a string encoded in UTF-8.

The combination of element name and attribute name may contain up to 30 characters.

The type of the routing field can be specified by the Ta_rIELDTYPE attribute.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_FIELDTYPE: “{char | short | long | float | double | string}”
The type of the routing field specified in the Ta_rIELD attribute. The type can be char,
short, long, float, double, OFr string; only one type is allowed. This attribute is used
only for routing XML buffers. The default type of the routing field is string.

TA_FIELDTYPE (factory-based routing only)
Routing field type. This field is only valid if Ta_TypPE=FACTORY. Valid types are: SHORT,
LONG, FLOAT, DOUBLE, CHAR, STRING. Specification of this attribute is only valid for
factory-based routing criteria.

TA_RANGES: carray[l..2048]
The ranges and associated server groups for the routing field. The format of stringisa
comma-separated, ordered list of range/group name pairs. A range/group name pair has
the following format:

lower [-upper] :group

lower and upper are signed numeric values or character strings in single quotes. 1ower
must be less than or equal to upper. To embed a single quote in a character string value,
it must be preceded by two backslashes (for example, '0\\ 'Brien"). The value MIN can
be used to indicate the minimum value for the data type of the associated field on the
machine. The value max can be used to indicate the maximum value for the data type of
the associated field on the machine. Thus, *MIN--5~ is all numbers less than or equal to
-5, and »6-max~ is all numbers greater than or equal to 6.

The meta-character “+” (wildcard) in the position of a range indicates any values not
covered by the other ranges previously seen in the entry; only one wildcard range is
allowed per entry and it should be last (ranges following it will be ignored).

The routing field can be of any data type supported in FML. A numeric routing field must
have numeric range values, and a string routing field must have string range values.

String range values for string, carray, and character field types must be placed inside a pair
of single quotes and cannot be preceded by a sign. Short and long integer values are a
string of digits, optionally preceded by a plus or minus sign. Floating point numbers are
of the form accepted by the C compiler or atof (3) : an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or followed by an optional sign
or space, followed by an integer.

The group name indicates the associated group to which the request is routed if the field
matches the range. A group name of “»” indicates that the request can go to any group
where a server offers the desired service.

File Formats, Data Descriptions, MIBs, and System Processes Reference 365

366

Limitation: Attribute values greater than 256 bytes in length will disable interoperability
with BEA Tuxedo release 4.2.2 and earlier.

TA_STATE:

GeT: “{vaLid}”
A ceT operation will retrieve configuration information for the selected
T_ROUTING Object(s). The following state indicates the meaning of a Ta_STATE
returned in response to a GET request. States not listed will not be returned.

VALid T_ROUTING object is defined. Note that this is the only valid state
for this class. Routing criteria are never ACTive; rather, they are
associated through the configuration with service names and are
acted upon at run-time to provide data-dependent routing. This
state is INActive equivalent for the purpose of permissions
checking.

SET: “{NEW | INValid}”
A seT operation will update configuration information for the selected T_rouTING
object. The following states indicate the meaning of a TA_sTATE set in a SET
request. States not listed may not be set.

NEW Create T_ROUTING object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the vAL1id state.

unset Modify an existing T_ROUTING object. This combination is
not allowed in the INValid state. Successful return leaves the
object state unchanged.

INValid Delete T_ROUTING object for application. State change
allowed only when in the vaL1d state. Successful return leaves
the object in the INValid state.

TA_TYPE
Routing criteria type. Valid values are “FACTORY” Or “SERVICE”. “FACTORY” specifies
that the routing criteria applies to factory-based routing for a CORBA interface. The
specification of TyPE=FACTORY iS mandatory for a factory-based routing criteria.
“SERVICE” specifies that the routing criteria applies to data-dependent routing for an
ATMI service. Default is “service”. Specification of this attribute is optional for
data-dependent routing criteria. Note that the type specified affects the validity and

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

possible values for other fields defined for this MIB class. These are noted for each field.
TA_TYPE is required for seT operations for factory-based routing criteria.

Limitations
None.

T_SERVER Class Definition

Overview

The T_sERVER class represents configuration and run-time attributes of servers within an
application. These attribute values identify and characterize configured servers as well as provide
run-time tracking of statistics and resources associated with each server object. Information
returned will always include fields that are common among all contexts of a server. In addition,
for those servers that are not defined to the system as multicontexted (that is, those for which the
value of Ta_MAXDISPATCHTHREADS iS 1), this class includes information about the server’s
context. For those servers that are defined to the system as multicontexted, placeholder values are
reported for per-context attributes. Per-context attributes can always be found as part of the
T_SERVERCTXT class. The T_servErRcTXT class is defined even for single-contexted servers.

The TA_CLTLMID, TA_CLTPID, TA_CLTREPLY, TA_CMTRET, TA_CURCONV, TA_CURREQ,
TA_CURRSERVICE, TA_LASTGRP, TA_SVCTIMEOUT, TA_TIMELEFT, and TA_TRANLEV attributes
are specific to each server dispatch context. All other attributes are common to all server dispatch
contexts.

Attribute Table

Table 56 TM_MIB(5): T_SERVER Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_SRVGRP()(*) string ru-r--r-- string[l1..30] N/A
TA_SRVID(r)(*) long ru-r--r-- 1 <= num< 30,001 N/A
TA_SERVERNAME(K)(r) string rw-r--r-- string[l..78] N/A
TA_GRPNO(K) long r--r--r-- 1 <= num < 30,000 N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 367

Table 56 TM_MIB(5): T_SERVER Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_STATE(K) string rwxr-xr-- GET: “{ACT|INA|MIG|CLE| N/A

RES | SUS | PAR | DEA}”

SET: “{NEW | INV |ACT|INA| N/A

DEA}”
TA_BASESRVID long r--r--r-- 1 <= num < 30,001 N/A
TA_CLOPT string rwyr--r-- string[0..256] “-A"
TA_ENVFILE string rwyr--r-- string0..256] 2 wr
TA_GRACE long rwyr--r-- 0 <= num 86,400
TA_MAXGEN long rwyr--r-- 1 <= num< 256 1
TA_MAX long rWXr--r-- 1<=num<1,001 1
TA_MIN long rwyr--r-- 1<=num<1,001 1
TA_MINDISPATCHTHREADS long ITWyr--r-- 1 <= num < 1,000 1
TA_MAXDISPATCHTHREADS long rwyr--r-- 0 <= num < 1,000 0
TA_THREADSTACKSIZE long rwyr--r-- 0 <= num<= 2147483647 0
TA_CURDISPATCHTHREADS long R-XR-XR-- 0 <= num N/A
TA_HWDISPATCHTHREADS long R-XR-XR-- 0 <= num N/A
TA_NUMDISPATCHTHREADS long R-XR-XR-- 0 <= num N/A
TA_RCMD string rwyr--r-- stringl0..256] 2 w
TA_RESTART string rwyr--r-- “{y | N}~ N
TA_SEQUENCE(K) long rwXr--r-- 1 <= num < 10,000 >= 10,000
TA_SYSTEM_ACCESS string rwyr--r-- “{FASTPATH | PROTECTED}” (1)
TA_CONV(K) string rw-r--r-- “{v N}~ “N”
TA_REPLYQ string rw-r--r-- “{v N}~ “N”

368 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 56 TM_MIB(5): T_SERVER Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_RPPERM long rw-r--r-- 0001 <= num <= 0777 ®
TA_RQADDR(K) string rw-r--r-- string[0..30] “GRPNO.
SRVID”
TA_RQPERM long rw-r--r-- 0001 <= num <= 0777 ®
TA_LMID(K) string R--R--R-- LMID N/A
TA_GENERATION long R--R--R-- 1<=num<32,768 N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference

369

Table 56 TM_MIB(5): T_SERVER Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
TA_PID(K) long R--R--R-- 1 <= num N/A
TA_RPID long R--R--R-- 1<=num N/A
TA_RQID long R--R--R-- 1<=num N/A
TA_TIMERESTART long R--R--R-- 1<=num N/A
TA_TIMESTART long R--R--R-- 1<=num N/A
TA_SEC_PRINCIPAL_NAME string rwxr--r-- string[0..511] wo
TA_SEC_PRINCIPAL_LOCATION string TWXI--I-- string[0..511] wa
TA_SEC_PRINCIPAL_PASSVAR sfring TWxXr——1=- string{0.511] wn
TA_SICACHEENTRIESMAX string rw-r--r-- {*0"-32767" | “DEFAULT”
“DEFAULT"}
T_SERVER Class: LOCAL Attributes
TA_NUMCONV long R-XR-XR-- 0<=num N/A
TA_NUMDEQUEUE long R-XR-XR-- 0<=num N/A
TA_NUMENQUEUE long R-XR-XR-- 0<=num N/A
TA_NUMPOST long R-XR-XR-- 0<=num N/A
TA_NUMREQ long R-XR-XR-- 0<=num N/A
TA_NUMSUBSCRIBE long R-XR-XR-- 0<=num N/A
TA_NUMTRAN long R-XR-XR-- 0<=num N/A
TA_NUMTRANABT long R-XR-XR-- 0<=num N/A
TA_NUMTRANCMT long R-XR-XR-- 0<=num N/A
TA_TOTREQC long R-XR-XR-- 0<=num N/A
TA_TOTWORKL long R-XR-XR-- 0<=num N/A
TA_CLTLMID string R--R--R-- LMID N/A

370 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 56 TM_MIB(5): T_SERVER Class Definition Attribute Table (Continued)

TM_MIB(5)

Attribute Type Permissions Values Default
TA_CLTPID long R--R--R-- 1<=num N/A
TA_CLTREPLY string R--R--R-- “{v N}~ N/A
TA_CMTRET string R--R--R-- “{COMPLETE | LOGGED}" N/A
TA_CURCONV long R--R--R-- 0<=num N/A
TA_CUROBJECTS long R--R--R-- 0<=num N/A
TA_CURINTERFACE string R--R--R-- string[0..128] N/A
TA_CURREQ long R--R--R-- 0<=num N/A
TA_CURRSERVICE string R--R--R-- string[0..15] N/A
TA_CURTIME long R--R--R-- 1<=num N/A
TA_LASTGRP long R--R--R-- 1 <= num < 30,000 N/A
TA_SVCTIMEOUT long R--R--R-- 0<=num N/A
TA_TIMELEFT long R--R--R-- 0<=num N/A
TA_TRANLEV long R--R--R-- 0<=num N/A

(K)—GET key field

(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

1 Defaults to value set for this attribute in the T_DOMAIN class.

2 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_SRVGRP: string[l..30]
Logical name of the server group. Server group names cannot contain an asterisk (*),
comma, or colon.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number.

File Formats, Data Descriptions, MIBs, and System Processes Reference

in

TA_SERVERNAME: string{l..78]

Name of the server executable file. The server identified by Ta_seErvERNAME Will run on
the machine(s) identified by the T_croup:Ta_rM1D attribute for this server's server group.
If a relative pathname is given, the search for the executable file is done first in
TA_APPDIR, then in TA_TUXDIR/bin, thenin /bin and /usr/bin, and then in path,
where path is the value of the first paTa= line appearing in the machine environment file,
if one exists. Note that the attribute value returned for an active server will always be a
full pathname. The values for Ta_appDIR and Ta_TUXDIR are taken from the appropriate
T_MACHINE Object. See the discussion of the T_mMACHINE:TA_ ENVFILE attribute fora more
detailed discussion of how environment variables are handled.

TA_GRPNO: 1 <= num < 30,000

Group number associated with this server's group.

TA_STATE!

GET: “{ACTive | INActive | MIGrating | CLEaning | REStarting |

suspended | EXIting | PARtitioned | DEAG}”
A GceT operation will retrieve configuration and run-time information for the
selected T_sERVER object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

ACTive

T_SERVER object defined and active. This is not an
indication of whether the server is idle or busy. An active
server with a non 0-length TA_ CURRSERVICE attribute
should be interpreted as a busy server, that is, one that is
processing a service request.

INActive

T_SERVER object defined and inactive.

MIGrating

T_SERVER object defined and currently in a state of
migration to the server group’s secondary logical
machine. The secondary logical machine is the one listed
in T_GROUP:TA_LMID attribute that does not match the
T_GROUP:TA_CURLMID attribute. This state is ACTive
equivalent for the purpose of determining permissions.

CLEaning

T_SERVER object defined and currently being cleaned up
by the system after an abnormal death. Note that
restartable servers may enter this state if they exceed
TA_MAXGEN starts/restarts within their TA_GRACE
period. This state is ACTive equivalent for the purpose
of determining permissions.

312 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

REStarting

T_SERVER object defined and currently being restarted
by the system after an abnormal death. This state is
ACTive equivalent for the purpose of determining
permissions.

SUSpended

T_SERVER object defined and currently suspended
pending shutdown. This state is ACTive equivalent for
the purpose of determining permissions.

PARtitioned

T_SERVER object defined and active; however, the
machine where the server is running is currently
partitioned from the T_DOMAIN:TA_MASTER site. This
state is ACTive equivalent for the purpose of
determining permissions.

EXIting

T_SERVER object defined and currently pending on
exit (). This state is ACTive equivilent for the purpose
of determining permissions

DEAd

T_SERVER object defined, identified as active in the
bulletin board, but currently not running due to an
abnormal death. This state will exist only until the BBL,
local to the server notices the death and takes action
(REStarting|CLEaning). Note that this state will
only be returned if the MIB_LOCAL TA_FLAGS value is
specified and the machine where the server was running
is reachable. This state is ACTive equivalent for the
purpose of determining permissions.

SET: “{NEW | INValid | ACTive | INActive | DEAG}”
A seT operation will update configuration and run-time information for the
selected T_sERVER object. The following states indicate the meaning of a
TA_STATE Set in a SET request. States not listed may not be set.

NEW Create T_SERVER object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the INActive state.

unset Modify an existing T_SERVER object. This combination is
allowed only when in the ACTive or INActive state.
Successful return leaves the object state unchanged.

File Formats, Data Descriptions, MIBs, and System Processes Reference 373

INValid Delete T_SERVER object for application. State change
allowed only when in the INActive state. Successful return
leaves the object in the INValid state.

ACTive Activate the T_SERVER object. State change allowed only
when in the INActive state. (Servers in the MIGrating
state must be restarted by setting the T_GROUP:TA_STATE to
ACTive.) For the purpose of determining permissions for this
state transition, the active object permissions are considered
(that is, --x--x--x). Successful return leaves the object in the
ACTive state. The TMIB_NOTIFY TA_FLAG value should
be used when activating a server if status on the individual
server is required.

INActive Deactivate the T_SERVER object. State change allowed only
when in the ACTive state. Successful return leaves the object
inthe INActive state. The TMIB_NOTIFY TA_FLAG value
should be used when deactivating a server if status on the
individual server is required.

DEAd Deactivate the T_SERVER object by sending the server a
SIGTERM signal followed by a STGKILL signal if the server
is still running after the appropriate timeout interval (see
TA_MIBTIMEOUT in MIB (5)). Note that by default, a
SIGTERM signal will cause the server to initiate orderly
shutdown and the server will become inactive even if it is
restartable. If a server is processing a long running service or
has chosen to disable the SIGTERM signal, STGKILL may be
used and will be treated by the system as an abnormal
termination. State change allowed only when in the AcTive
or SUSpended state. Successful return leaves the object in
the INActive, CLEaning Or REStarting state.

TA_BASESRVID: 1 <= num < 30,001
Base server identifier. For servers with a Ta_wmax attribute value of 1, this attribute will
always be the same as Ta_srvip. However, for servers with a Ta_max value greater than
1, this attribute indicates the base server identifier for the set of servers configured
identically.

TA_CLOPT: string|0..256]
Command line options to be passed to server when it is activated. See reference page
servopts (5) for details. Limitation: Run-time modifications to this attribute will not
affect a running server.

374 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_ENVFILE: string]0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Server specific environment file. See T_mMacHINE:TA_ENVFILE for a complete discussion
of how this file is used to modify the environment. Limitation: Run-time modifications to
this attribute will not affect a running server.

TA_GRACE: 0 <= num
The period of time, in seconds, over which the T_serRVER:TA_MaxGEN limit applies. This
attribute is meaningful only for restartable servers, that is, if the T_SERVER:TA_RESTART
attribute is set to "v". When a restarting server would exceed the Ta_maxcen limit but the
TA_GRACE period has expired, the system resets the current generation
(T_SERVER:TA_GENERATION) to 1 and resets the initial boot time
(T_SERVER:TA_TIMESTART) to the current time. A value of O for this attribute indicates
that a server should always be restarted.

Note that servers sharing a request queue (that is, equal values for T_SERVER:TA_RQADDR)
should have equal values for this attribute. If they do not, the first server activated will
establish the run-time value associated with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running server and all
other active servers with which it is sharing a request queue. However, only the selected
server’s configuration parameter is modified. Thus, the behavior of the application
depends on the order of boot in subsequent activations unless the administrator ensures
that all servers sharing a queue have the same value for this attribute.

TA_MAXGEN: 1 <= num < 256
Number of generations allowed for a restartable server (T_SERVER:TA_RESTART == "Y")
over the specified grace period (T_SERVER:TA_GRACE). The initial activation of the server
counts as one generation and each restart also counts as one. Processing after the
maximum generations is exceeded is discussed above with respect to TA_GRACE.

Note that servers sharing a request queue (that is, equal values for T_SERVER:TA_RQADDR)
should have equal values for this attribute. If they do not, the first server activated will
establish the run-time value associated with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running server and all
other active servers with which it is sharing a request queue. However, only the selected
server's configuration parameter is modified. Thus, the behavior of the application
depends on the order of boot in subsequent activations unless the administrator ensures
that all servers sharing a queue have the same value for this attribute.

TA_MAX: 1 <= num < 1,001
Maximum number of occurrences of the server to be booted. Initially, tmboot () boots
T_SERVER.TA_MIN objects of the server, and additional objects may be started

File Formats, Data Descriptions, MIBs, and System Processes Reference 375

376

individually (by starting a particular server ID) or through automatic spawning
(conversational servers only). Run-time modifications to this attribute will affect all
running servers in the set of identically configured servers (see Ta_BASESRVID above) as
well as the configuration definition of the server.

TA_MIN: 1 <= num< 1,001

Minimum number of occurrences of the server to be booted by. If aT_SERVER:TA_RQADDR
is specified and Ta_m1N is greater than 1, the servers will form an MSSQ set. The server
identifiers for the servers will be T_SERVER:TA_SRVID Up {0 TA_SRVID +
T_SERVER!TA_MAX - 1. All occurrences of the server will have the same sequence number,
as well as any other server parameters.

Limitation: Run-time modifications to this attribute will not affect a running server.

TA_MINDISPATCHTHREADS: 1 <= num < 1,000

Specifies the number of server dispatch threads started on initial server boot. This attribute
is effective only if the server has been built with the buildserver -t command.

The separate dispatcher thread that is used when TA_MAXDISPATCHTHREADS > 1 is not
counted as part of the TA_ MINDISPATCHTHREADS Value. It is required that
TA_MINDISPATCHTHREADS <=TA_MAXDISPATCHTHREADS. If TA_MINDISPATCHTHREADS
is not specified, the default is 0.

Limitation: Run-time modifications to this attribute will not affect a running server.

TA_MAXDISPATCHTHREADS: 0 <= num < 1,000

Specifies the maximum number of concurrently dispatched threads which each server
process may spawn. This attribute is effective only if the server has been built with the
buildserver -t command.

If TA_MAXDISPATCHTHREADS > 1, a separate dispatcher thread is used and does not count
against this limit. It is required that TA_MINDISPATCHTHREADS <=
TA_MAXDISPATCHTHREADS. If TA_MAXDISPATCHTHREADS iS not specified, the default is
1.

Limitation: Run-time modifications to this attribute will not affect a running server.

TA_THREADSTACKSIZE: 0 <= num <= 2147483647

Size of the stack created for each dispatch thread in a multithreaded server. This option
has an effect on the server only when a value greater than 1 is specified for
TA_MAXDISPATCHTHREADS.

If this attribute is not specified or if the value specified is 0, a default thread stack size is
used. If the value specified is bigger than 0 and less than a minimum thread stack size, the

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

minimum thread stack size is used. If the value specified is bigger than that minimum
thread stack size, value specified is used.

The default size used is the operating system default size unless that value is known to be
insufficient for a multithreaded BEA Tuxedo application, in which case the BEA Tuxedo
default size is used. The purpose of the minimum thread stack size is to allow customer to
specify less thread stack size than Tuxedo default thread stack size. Currently, the BEA
Tuxedo default thread stack size is 1,024,000, and minimum thread stack size is 100,000.

Note that if the thread stack size is exceeded, the server will core dump.
Limitation: Run-time modifications to this attribute will not affect a running server.

TA_CURDISPATCHTHREADS!: 0 <= num
Current number of active service dispatch threads for this server.

TA_HWDISPATCHTHREADS: 0 <= num
Highest number of active service dispatch threads created for this server since its last
restart. This number may differ from the number of service calls, since an administrator
may specify parameters that control the caching of idle service threads.

TA_NUMDISPATCHTHREADS: 0 <= num
Total number of active service dispatch threads for this server since its last restart.

TA_RCMD: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Application specified command to be executed in parallel with the system restart of an
application server.

Note that servers sharing a request queue (that is, equal values for T_SERVER:TA_RQADDR)
should have equal values for this attribute. If they do not, the first server activated will
establish the run-time value associated with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running server and all
other active servers with which it is sharing a request queue. However, only the selected
server's configuration parameter is modified. Thus, the behavior of the application
depends on the order of boot in subsequent activations unless the administrator ensures
that all servers sharing a queue have the same value for this attribute.

Note: If you choose to do redirection or piping on a Windows 2003 system, you must use
one of the following methods:

e Do redirection or piping from within a command file or script.

File Formats, Data Descriptions, MIBs, and System Processes Reference 3717

e To do redirection from within the queue manager administration program, precede
the command with cmd. For example:
cmd /c ipconfig > out.txt

o If you choose to create a binary executable, you must allocate a console within the
binary executable using the Windows Al1locconsole () API function

TA_RESTART: “{v | N}~
Restartable (»v~) or non-restartable (~n~) server. If server migration is specified for this
server group (T_DOMAIN:TA_OPTIONS/MIGRATE attribute and T_GROUP:TA_LMID
attribute with alternate site), Ta_rRESTART must be set to “v~.

Note that servers sharing a request queue (that is, equal values for T_SERVER:TA_RQADDR)
should have equal values for this attribute. If they do not, the first server activated will
establish the run-time value associated with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running server and all
other active servers with which it is sharing a request queue. However, only the selected
server's configuration parameter is modified. Thus, the behavior of the application
depends on the order of boot in subsequent activations unless the administrator ensures
that all servers sharing a queue have the same value for this attribute.

TA_SEQUENCE: 1 <= num < 10,000
Specifies when this server should be booted (tmboot (1)) or shutdown (tmshutdown (1))
relative to other servers. T_sERVER objects added without a Ta_sEQUENCE attribute
specified or with an invalid value will have one generated for them that is 10,000 or more
and is higher than any other automatically selected default. Servers are booted by
tmboot () in increasing order of sequence number and shutdown by tmshutdown () in
decreasing order. Run-time modifications to this attribute affect only tmboot () and
tmshutdown () and will affect the order in which running servers may be shutdown by a
subsequent invocation of tmshutdown ().

TA_SYSTEM_ACCESS: “{FASTPATH | PROTECTED}”
Mode used by BEA Tuxedo system libraries within this server process to gain access to
BEA Tuxedo system's internal tables. See the T_DOMAIN:TA_SYSTEM_ACCESS attribute
for a complete discussion of this attribute.

Limitations: (1) Run-time modifications to this attribute will not affect a running server.
(2) Setting TA_SYSTEM_ACCESS t0 PROTECTED may not be effective for multithreaded
servers because it is possible that while one thread is executing BEA Tuxedo code, which
means it is attached to the bulletin board, another thread might be executing user code.
The BEA Tuxedo system cannot prevent such situations.

378 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_conv: “{y|N}”
Conversational server (*v~) or request/response server (*n~).

TA_REPLYQ: “{Y | N}~
Allocate a separate reply queue for the server (Ta_repPLYQ == *y~). MSSQ servers that
expect to receive replies should set this attribute to “v~.

Note: If you choose to do redirection or piping on a Windows 2003 system, you must use
one of the methods listed in the description of the Ta_rcwup attribute.

TA_RPPERM: 0001 <= num <= 0777
UNIX system permissions for the server's reply queue. If a separate reply queue is not
allocated (T_SERVER:TA_REPLYQ == “N”), TA_RPPERM i$ ignored.

Note: If you choose to do redirection or piping on a Windows 2003 system, you must use
one of the methods listed in the description of the Ta_rcwp attribute.

TA_RQADDR: string[0..30]
Symbolic address of the request queue for the server. Specifying the same Ta_RQADDR
attribute value for more than one server is the way Multiple Server, Single Queue (MSSQ)
sets are defined. Servers with the same Ta_RQADDR attribute value must be in the same
server group.

Ta_ RQPERM: 0001 <= num <= 0777
UNIX system permissions for the server's request queue.

Limitation: This is a UNIX system specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_LMID: LMID
Current logical machine on which the server is running.

TA_GENERATION: 1 <= num< 32,768
Generation of the server. When a server is initially booted via tmboot (1) or activated
through the ™v_m1B(5), its generation is set to 1. Each time the server dies abnormally
and is restarted, its generation is incremented. Note that when T_SERVER:TA_MAXGEN i$
exceeded and T_sSERVER:TA_GRACE has expired, the server will be restarted with the
generation reset to 1.

TA_PID: 1 <= num
UNIX system process identifier for the server. Note that this may not be a unique attribute
since servers may be located on different machines allowing for duplication of process
identifiers.

File Formats, Data Descriptions, MIBs, and System Processes Reference 379

380

Limitation: This is a UNIX system specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_RPID: 1 <= num

UNIX system message queue identifier for the server's reply queue. If a separate reply
queue is not allocated (T_SERVER:TA_REPLYQ == "N"), the Ta_RPID Value will be the
same as T_SERVER.TA_RQID.

Limitation: This is a UNIX system specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_RQID: 1 <= num

UNIX system message queue identifier for the server's request queue. If a separate reply
queue is not allocated (T_SERVER.TA_REPLYQ == "N")the Ta_rQ1D value will be the
same as T_SERVER:TA_RPID.

Limitation: This is a UNIX system specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_TIMERESTART: 1 <= num

Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2) system
call on T_sErRVER:TA_1LMID, When the server was last started or restarted.

TA_TIMESTART. 1 <= num

Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2) system
call on T_sERVER:TA_LMID, when the server was first started. Restarts of the server do not
reset this value; however, if T_SERVER:TA_MAXGEN IS exceeded and T_SERVER:TA_GRACE
is expired, this attribute will be reset to the time of the restart.

TA_SICACHEENTRIESMAX: {*0”-“32767" | "DEFAULT" }

The number of service and interface cache entries kept on this machine. A value of ~0~
implies that service caching is not used on this machine. If the value is “pDErFaULT”, the
value for this server will come from the corresponding T_MACHINE class entry.

TA_SEC_PRINCIPAL_NAME: string[0..511]

Security principal name identification string to be used for authentication purposes by an
application running BEA Tuxedo 7.1 or later software. This attribute may contain a
maximum of 511 characters (excluding the terminating NULL character). The principal
name specified for this attribute becomes the identity of the system processes running on
this server.

TA_SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. A principal name at a particular configuration level can be overridden at

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

a lower level. If Ta_sEc_PRINCIPAL_NAME is not specified at any of these levels, the
principal name for the application defaults to the Ta_pomaIN1D string for this domain.

Note that TA_SEC_PRINCIPAL_NAME iS one of a trio of attributes, the other two being
TA_SEC_PRINCIPAL_LOCATION and TA_SEC_PRINCIPAL_PASSVAR. The latter two
attributes pertain to opening decryption keys during application booting for the system
processes running in a BEA Tuxedo 7.1 or later application. When only
TA_SEC_PRINCIPAL_NAME is Specified at a particular level, the system sets each of the
other two attributes to a NULL (zero length) string.

TA_SEC_PRINCIPAL_LOCATION: string[0..511]
Location of the file or device where the decryption (private) key for the principal specified
in TA_SEC_PRINCIPAL_NAME resides. This attribute may contain a maximum of 511
characters (excluding the terminating NULL character).

TA_SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_mMacHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(Ta_sSEC_PRINCIPAL_PASSVAR is optional; if not specified, the system sets it to a NULL—
zero length—string.)

TA_SEC_PRINCIPAL_PASSVAR: string]0..511]
Variable in which the password for the principal specified in TA_SEC_PRINCIPAL_NAME
is stored. This attribute may contain a maximum of 511 characters (excluding the
terminating NULL character).

TA_SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVER class. When specified at any of these levels, this attribute must be paired with
the TA_SEC_PRINCIPAL_NAME attribute; otherwise, its value is ignored.
(TA_SEC_PRINCIPAIL_LOCATION is optional; if not specified, the system sets it to a
NULL—zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with Ta_sEC_PRINCIPAL_PASSVAR. The system
automatically encrypts the password entered by the administrator and assigns each
encrypted password to the associated password variable.

TA_NUMCONV: 0 <= num
Number of conversations initiated by this server via tpconnect ().

File Formats, Data Descriptions, MIBs, and System Processes Reference 381

TA_NUMDEQUEUE: 0 <= num
Number of dequeue operations initiated by this server via tpdequeue ().

TA_NUMENQUEUE: 0 <= num
Number of enqueue operations initiated by this server via tpenqueue ().

TA_NUMPOST: 0 <= num
Number of postings initiated by this server via tppost ().

TA_NUMREQ: 0 <= num
Number of requests made by this server via tpcall () Or tpacall ().

TA_NUMSUBSCRIBE: 0 <= num
Number of subscriptions made by this server via tpsubscribe ().

TA_NUMTRAN: 0 <= num
Number of transactions begun by this server since its last (re)start.

TA_NUMTRANABT: 0 <= num
Number of transactions aborted by this server since its last (re)start.

TA_NUMTRANCMT. 0 <= num
Number of transactions committed by this server since its last (re)start.

TA_TOTREQC: 0 <= num
Total number of requests completed by this server. For conversational servers
(T_sERVER:TA_CONV == "v"), this attribute value indicates the number of completed
incoming conversations. This is a run-time attribute that is kept across server restart but is
lost at server shutdown.

TA_TOTWORKL: 0 <= num
Total workload completed by this server. For conversational servers (T_SERVER:TA_CONV
== "y"), this attribute value indicates the workload of completed incoming conversations.
This is a run-time attribute that is kept across server restart but is lost at server shutdown.

TA_CLTLMID:. LMID
Logical machine for the initiating client or server.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multicontext servers.

The initiating client or server is the process that made the service request on which the
server is currently working. The value in this field has meaning only for single-context
servers. In multicontext servers, a NULL string is returned as a placeholder.

382 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_CLTPID: 1 <= num
UNIX system process identifier for the initiating client or server.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multicontext servers.

The value in this field has meaning only for single-context servers; in multicontexted
servers 0 is returned as a placeholder.

Limitation: This is a UNIX system-specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_CLTREPLY: “{Y | N}~
The initiating client or server is expecting a reply (*v~) or is not expecting a reply (*n*).

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multi-context servers.

The value in this field has meaning only for single-context servers; in multicontexted
servers a NULL string is returned as a placeholder.

TA_CMTRET: “{COMPLETE | LOGGED}"
Setting of the Tp_commIT_coNTROL characteristic for this server.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multi-context servers.

See the description of the ATMI function call tpscmt () for details on this characteristic.
The value in this field has meaning only for single-context servers; in multicontext servers
a NULL string is returned as a placeholder.

TA_CURCONV: 0 <= num
Number of conversations initiated by this server via tpconnect () thatare still active. For
multicontext servers, this field represents the total for all server contexts. Values for
individual server contexts can be found in the T_sErvERCTXT class.

TA_CUROBJECTS: 0 <= num
The number of entries in use in the bulletin board object table for this server. Scope is
local.

TA_CURINTERFACE: string]0..128]
The interface name of the interface currently active in this server. Scope is local.

File Formats, Data Descriptions, MIBs, and System Processes Reference 383

TA_CURREQ: 0 <= num
Number of requests initiated by this server via tpcall () or tpacall () that are still
active. For multicontext servers, this field represents the total for all server contexts.
Values for individual server contexts can be found in the T_sErRVERCTXT class.

TA_CURRSERVICE: string[0..15]
Service name that the server is currently working on, if any.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multicontext servers.

The value in this field has meaning only for single-context servers; in multicontext servers
0 is returned as a placeholder.

TA_CURTIME: 1 <= num
Current time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the time(2)
system call on T_sERVER:TA_LMID. This attribute can be used to compute elapsed time
from the T_SERVER:TA_TIMESTART and T_SERVER.TA_TIMERESTART attribute values.

TA_LASTGRP: 1 <= num < 30,000
Server group number (T_croup:Ta_crpNO) of the last service request made or
conversation initiated from this server outward.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multicontext servers.

The value in this field has meaning only for single-context servers; in multicontexted
servers 0 is returned as a placeholder.

TA_SVCTIMEOUT: 0 <= num
Time left, in seconds, for this server to process the current service request, if any.

This field element is also contained in the T_seErvERCTXT class, both for single-context
servers and for multicontext servers.

A value of 0 for an active service indicates that no timeout processing is being done. See
T_SERVICE:TA_svcTIMEOUT for more information. The value in this field has meaning
only for single-context servers; in a multicontext server 0 is returned as a placeholder.

TA_TIMELEFT: O <= num
Time left, in seconds, for this server to receive the reply for which it is currently waiting
before it will time out.

This field element is also contained in the T_servERCTXT class, both for single-context
servers and for multicontext servers.

384 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

This timeout may be a transactional timeout or a blocking timeout.

The value in this field has meaning only for single-context servers; in a multicontext
server 0 is returned as a placeholder.

TA_TRANLEV: 0 <= num
Current transaction level for this server.

This field element is also contained in the T_seErvERCTXT class, both for single-context
servers and for multicontext servers.

0 indicates that the server is not currently involved in a transaction. The value in this field
has meaning only for single-context servers; in multicontext servers 0 is returned as a
placeholder.

Limitations
None.

T_SERVERCTXT Class Definition

Overview

The T_seErRVERCTXT class represents configuration and run-time attributes of individual server
dispatch contexts within an application. This class is defined for both single-context and
multi-context servers. For single-context servers, the values in this class are repeated as part of
the T_sERVER class. The attributes in the T_serRVERCTXT class are read-only.

These attribute values provide run-time tracking of statistics and resources associated with each
server dispatch context.

Attribute Table

Table 57 TM_MIB(5): T_SERVERCTXT Class Definition Attribute Table
Attribute! Type Permissions Values Default
TA_SRVGRP(K) string r--r--r-- string[1..30] N/A
TA_SRVID(K) long r--r--r-- 1 <= num < 30,001 N/A
TA_CONTEXTID(K) long r--r--r-- -2 <= num < 30,000 N/A
TA_CLTLMID string r--r--r-- LMID N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 385

Table 57 TM_MIB(5): T_SERVERCTXT Class Definition Attribute Tahle

Attribute! Type Permissions Values Default
TA_CLTPID long r--r--r-- 1 <= num N/A
TA_CLTREPLY string r--r--r-- “{y | N}~ N/A
TA_CMTRET string R--R--R-- *{COMPLETE | LOGGED}” N/A
TA_CURCONV long r--r--r-- 0 <= num N/A
TA_CURREQ long r--r--r-- 0 <= num N/A
TA_CURRSERVICE string r--r--r-- string[0..15] N/A
TA_LASTGRP long r--r--r-- 1 <= num <30,000 N/A
TA_SVCTIMEOUT long r--r--r-- 0 <= num N/A
TA_TIMELEFT long r--r--r-- 0 <= num N/A
TA_TRANLEV long r--r--r-- 0 <= num N/A

(K)—GET key field

LAIl attributes in the T_SERVERCTXT class are local attributes.

Attribute Semantics

TA_SRVGRP: string[l..30]
Logical name of the server group. Server group names cannot contain an asterisk (*),
comma, or colon.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number.

TA_CONTEXTID: 0 <= num < 30000
Identifier of this particular server context.

TA_CLTLMID:. LMID
Logical machine for the initiating client or server. The initiating client or server is the
process that made the service request that the server is currently working on.

TA_CLTPID: 1 <= num
UNIX system process identifier for the initiating client or server.

386 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Limitation: This is a UNIX system-specific attribute that may not be returned if the
platform on which the application is being run is not UNIX-based.

TA_CLTREPLY: “{Y | N}~
The initiating client or server is expecting a reply (*y~) or is not expecting a reply (*n~).

TA_CMTRET: “{COMPLETE | LOGGED}”
Setting of the Tp_comm1T_coNTROL characteristic for this server. See the description of
the BEA Tuxedo ATMI function tpscmt (3c) for details on this characteristic.

TA_CURCONV: 0 <= num
Number of conversations initiated by this server via tpconnect () that are still active.

TA_CURREQ: 0 <= num
Number of requests initiated by this server via tpcall () or tpacall () that are still
active.

TA_CURRSERVICE: string]0..15]
Service name that the server is currently working on, if any.

TA_LASTGRP: 1 <= num < 30,000
Server group number (T_croup.TA_GRPNO) Of the last service request made or
conversation initiated from this server outward.

TA_SVCTIMEOUT:. 0 <= num
Time left, in seconds, for this server to process the current service request,
if any. A value of O for an active service indicates that no timeout processing is being done.
See T_SERVICE.TA_svcTIMEOUT for more information.

TA_TIMELEFT: 0 <= num
Time left, in seconds, for this server to receive the reply for which it is currently waiting
before it will timeout. This timeout may be a transactional timeout or a blocking timeout.

TA_TRANLEV: 0 <= num
Current transaction level for this server. 0 indicates that the server is not currently
involved in a transaction.

Limitations
None.

File Formats, Data Descriptions, MIBs, and System Processes Reference 387

T_SERVICE Class Definition

Overview

388

The T_sERvVICE class represents configuration attributes of services within an application. These
attribute values identify and characterize configured services. A T_sERVICE object provides
activation time configuration attributes for services not specifically configured as part of the
T_svcGrp class. Run-time information about services active in the application is provided solely
through the T_svcarp class. Run-time updates to the T_service class are usually not reflected
in active T_svcGrp objects (TA_ROUTINGNAME is the exception).

Both the T_sEervIcE class and the T_svcerp class define activation time attribute settings for
service names within the application. When a new service is activated (advertised), either due to
initial activation of a server or due to a call to tpadvertise (), the following hierarchy exists for
determining the attribute values to be used at service startup time.

1. If a matching configured T_svcerp object exists (matching service name and server group),
the attributes defined in that object are used to initially configure the advertised service.

2. Otherwise, if a matching configured T_sErvICE object exists (matching service name), the
attributes defined in that object are used to initially configure the advertised service.

3. Otherwise, if any configured T_svcGrpe objects are found with matching Ta_sSERVICENAME
attribute values, the first one found is used to initially configure the advertised service.

4. If none of the preceding cases is used, the system defaults for service attributes are used to
initially configure the advertised service.

The specification of configuration attributes for application services is completely optional, that
is, services advertised by servers as they are activated will take on the established default service
attribute values if configured values are not available (see above for a description of how attribute
values are identified at service activation time). Service names to be offered by a server are built
in at run time (see buildserver (1)) and may be overridden by the command-line options
specified for a server object (see T_SERVER:TA_CLOPT and servopts (5)).

File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Table

Table 58 TM_MIB(5): T_SERVICE Class Definition Attribute Table

TM_MIB(5)

Attribute Type Permissions Values Default
TA_SERVICENAME(r)(*) string ru-r--r-- string[l..15] N/A
TA_STATE(K) string rTW-r--r-- GET: “{ACT | INA}" N/A
SET: “{NEW | INV}” N/A
TA_AUTOTRAN string TWyr--r-- “{y | N}~ “N”
TA_LOAD long rwyr--r-- 1<=num< 32,768 50
TA_PRIO long rwyr--r-- 1<=num<101 50
TA_BLOCKTIME long rTwyr--r-- 0 <= num< 32,768 0
TA_SVCTIMEOUT long rwyr--r-- 0 <= num 0
TA_TRANTIME long rwyr--r-- 0 <= num 30
TA_BUFTYPE string rTW-r--r-- string[l..256] “ALL"
TA_ROUTINGNAME string ITWXL—--T-- string[0..15] w
TA_SIGNATURE_REQUIRED string rWXr--r—- “{v | N}~ “N”
TA_ENCRYPTION_REQUIRED string TWXr--r-- “{v N}~ “N”
TA_BUFTYPECONV string rTwyr--r-- XML2FML, NOCONVE
XML2FML32, RT
NOCONVERT
(K)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations
Attribute Semantics
TA_SERVICENAME: string{l..15]
Service name.
File Formats, Data Descriptions, MIBs, and System Processes Reference 389

TA_STATE!

GET: “{ACTive | INActive}”
A cET operation will retrieve configuration information for the selected
T_SERVICE object(s). The following states indicate the meaning of a TA_STATE
returned in response to a GET request.

ACTive T_SERVICE object is defined and at least one T_SVCGRP
object with a matching TA_SERVICENAME value is active.

INActive T_SERVICE objectisdefinedandnoT_SVCGRP object with
a matching TA_SERVICENAME value is active.

SET: “{NEW | INValid}”
A seT operation will update configuration information for the selected T_seErvIcE
object. The following states indicate the meaning of a Ta_sTaATE set in a SET
request. States not listed may not be set.

NEW Create T_SERVICE object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the INActive state. Limitation:
Unconfigured services may still be active by virtue of a server
advertising them. In this case, the creation of a new
T_SERVICE object is not allowed.

unset Modify an existing T_SERVICE object. This combination is
not allowed in the INValid state. Successful return leaves the
object state unchanged.

INValid Delete T_SERVICE object for application. State change
allowed only when in the INActive state. Successful return
leaves the object in the INValid state.

TA_AUTOTRAN: “{Y | N}~
Automatically begin a transaction (»v~) when a service request message is received for
this service if the request is not already in transaction mode. Limitation: Run-time updates
to this attribute are not reflected in active T_svcGrp objects.

TA_LOAD: 1 <= num < 32,768
This T_sERVICE object imposes the indicated load on the system. Service loads are used
for load balancing purposes, that is, queues with higher enqueued workloads are less

390 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

likely to be chosen for a new request. Service loads have meaning only if the
T_DOMAIN:.TA_LDBAL attribute value is set to *v~.

Limitation: Run-time updates to this attribute are not reflected in active T_svccrp
objects.

TA_PRIO: 1 <= num< 101
This T_servIcE object has the indicated dequeuing priority. If multiple service requests
are waiting on a queue for servicing, the higher priority requests will be serviced first.

Limitation: Run-time updates to this attribute are not reflected in active T_svcerp
objects.

TA_BLOCKTIME: 0 <= num < 32,768

Blocktime limit, in seconds, indicating the minimum amount of time a blocking API call
will delay before timing out for a particular service. This attribute lets the client know that
(after a specified time in seconds), no reply has been received by the server while the
service request is still processing.

If not specified, the default is 0 which indicates that the system-wide BLockTIME value
specified in the UBBCONFIG RESOURCES Section is used for the service.

Limitations: Run-time updates to this attribute are not reflected in active T_svcGrp
objects.

TA_SVCTIMEOUT: 0 <= num
Time limit (in seconds) for processing requests for this service name. Servers processing
service requests for this service will be abortively terminated (kill -9) if they exceed the
specified time limit in processing the request. A value of 0 for this attribute indicates that
the service should not be abortively terminated.

Limitations: Run-time updates to this attribute are not reflected in active T_svcerp
objects. This attribute value is not enforced on BEA Tuxedo release 4.2.2 sites or earlier.

TA_TRANTIME: 0 <= num
Transaction timeout value in seconds for transactions automatically started for this
T_SERVICE Object. Transactions are started automatically when a request not in
transaction mode is received and the T_SERVICE:TA_ AUTOTRAN attribute value for the

service is "y".

Limitation: Run-time updates to this attribute are not reflected in active T_svcere
objects.

File Formats, Data Descriptions, MIBs, and System Processes Reference 3N

TA_BUFTYPE: “typel|:subtypell,subtype2 . . . |I;type2|:subtype3[,...]I]..."
List of types and subtypes of data buffers accepted by this service. Up to 32 type/subtype
combinations are allowed. Types of data buffers provided with the BEA Tuxedo system
are rML and FuL32 (for FML buffers), xur (for XML buffers), view, VIEW32, X_C_TYPE,
or x_commoN (for FML views), sTrInG (for NULL terminated character arrays), and
CcARRAY Or x_ocTET (for a character array that is neither encoded nor decoded during
transmission). Of these types, only vieEw, VIEW32, X_C_TYPE, and X_CcoMMON have
subtypes. A view subtype gives the name of the particular view expected by the service.
Application types and subtypes can also be added (see tuxtypes (5)). For a buffer type
that has subtypes, “*” can be specified for the subtype to indicate that the service accepts
all subtypes for the associated buffer type.

A single service can only interpret a fixed number of buffer types, namely those found in
its buffer type switch (see tuxtypes (5)). If the TA_BUFTYPE attribute value is setto ALz,
that service accepts all buffer types found in its buffer type switch.

A type name can be 8 characters or less in length and a subtype name can be 16 characters
or less in length. Note that type and subtype names should not contain semicolon, colon,
comma, or asterisk characters.

Limitation: This attribute value represents the buffer types that must be supported by each
and every instance of an application service with this service name. Since this attribute
value is processed at service activation time, updates to this attribute are allowed only
when there are no active T_svcerp objects with matching service names.

TA_ROUTINGNAME: string[0..15]
This T_sERVICE object has the indicated routing criteria name. Active updates to this
attribute will be reflected in all associated T_svccre objects.

TA_SIGNATURE_REQUIRED: “{Y | N}~
If setto “v~, every instance of this service requires a digital signature on its input message
buffer. If not specified, the default is *n~. This attribute applies only to applications
running BEA Tuxedo 7.1 or later software.

TA_SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_macHINE class, T_croup class, and
T_SERVICE class. Setting SIGNATURE_REQUIRED t0 “v~ at a particular level means that
signatures are required for all processes running at that level or below.

TA_ENCRYPTION_REQUIRED: “{Y | N}~
If set to ~v~, every instance of this service requires an encrypted input message buffer. If
not specified, the default is *n~. This attribute applies only to applications running BEA
Tuxedo 7.1 or later software.

392 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: T_poma1n class, T_mMacHINE class, T_croup class, and
T_SERVICE class. Setting TA_ENCRYPTION_REQUIRED t0 v ata particular level means that
encryption is required for all processes running at that level or below.

TA_BUFTYPECONV. s tring[XMLZ FML32, XML2FML, NOCONVERT]

Limitations

None.

Converts an input XML buffer to an FML/FML32 buffer before being delivered to the
service and converts the output FML/FML32 buffer to an XML buffer before being
returned.

The xur.2FM132 value initiates XML to FML32 conversion. The xmr.2ruML value initiates
XML to FML conversion. The noconveRT Value indicates no conversion takes place.

Limitation: Run-time updates to this attribute are not reflected in active T_svcere
objects.

T _SVCGRP Class Definition

Overview

The T_svcarp class represents configuration and run-time attributes of services/groups within an
application. These attribute values identify and characterize configured services/groups, and
provide run-time tracking of statistics and resources associated with each object.

Both the T_sEerviIcE class and the T_svcere class define activation time attribute settings for
service names within the application. When a new service is activated (advertised), either due to
initial activation of a server or due to a call to tpadvertise (), the following hierarchy exists for
determining the attribute values to be used at service startup time.

1. If amatching configured T_svcGarp object exists (matching service name and server group),
the attributes defined in that object are used to initially configure the advertised service.

2. Otherwise, if a matching configured T_sErRvVICE object exists (matching service name), the
attributes defined in that object are used to initially configure the advertised service.

3. Otherwise, if any configured T_svccrp objects are found with matching TA_SERVICENAME
attribute values, the first one found is used to initially configure the advertised service.

4. If none of the preceding cases is used, the system defaults for service attributes are used to
initially configure the advertised service.

File Formats, Data Descriptions, MIBs, and System Processes Reference 393

394

The specification of configuration attributes for application services is completely optional, that
is, services advertised by servers as they are activated will take on the established default service
attribute values if configured values are not available (see above for a description of how attribute
values are identified at service activation time). Service names to be offered by a server are built
in at run time (see buildserver (1)) and may be overridden by the command-line options
specified for a server object (see T_SERVER:TA_CLOPT and servopts (5)).

Once a T_svcGrp object is active, it is represented solely by the T_svcarp class. A particular
service name/group name combination may have more than one associated T_svccrp class at run
time if there are multiple servers within the group offering the service.

File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Table

TM_MIB(5)

Table 53 TM_MIB(5): T_SVCGRP Class Definition Attribute Table

Attribute Type Permissions Values Default
TA_SERVICENAME(r)(*) string ru-r--r-- string[l..15] N/A
TA_SRVGRP(r)(*) string ru-r--r-- string[1..30] N/A
TA_GRPNO(K) long r--r--r-- 1<=num< 30,000 N/A
TA_STATE(K) string rwxr-xr-- GET: “{ACT|INA|SUS|PAR}"” N/A
SET: “{NEW | INV |ACT | INA | SUS}” N/A
TA_AUTOTRAN string rwxr-xr-- “{y | N}~ “N”
TA_LOAD long rwxr-xr-- 1<=num< 32,768 50
TA_PRIO long WX -XT—- 1<=num<101 50
TA_BLOCKTIME long rwyr--r-- 0<=num< 32,768 0
TA_SVCTIMEOUT long rwyr-yr-- 0 <= num 0
TA_TRANTIME long IrWXY-XIr--— 0 <= num 30
TA_1MID(K) string R--R--R-- LMID N/A
TA_RQADDR(¥) string R--R--R-- string[l1..30] N/A
TA_SRVID(*) long R--R--R-- 1<=num< 30,001 N/A
TA_SVCRNAM string R-XR-XR-- string[l..15] @)
TA_BUFTYPE string r--r--r-- string[l..256] N/A
TA_ROUTINGNAME string r--r--r-- string[0..15] N/A
TA_SvCTYPE(K) string r--r--r-- “{APP | CALLABLE | SYSTEM}"” “APP”
T_SVCGRP Class: LOCAL Attributes
TA_NCOMPLETED long R-XR-XR-- 0 <= num N/A
File Formats, Data Descriptions, MIBs, and System Processes Reference 395

Table 59 TM_MIB(5): T_SVCGRP Class Definition Attribute Tahle

Attribute Type Permissions Values Default

TA_NQUEUED long R--R--R-- 0<=num< 32,768 N/A

(k)—CGET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/ SET key, one or more required for SET operations®

IsET operations on this class must specify sufficient key fields to uniquely identify the object
being addressed. If the object is active, it may be necessary to augment the TA_SERVICENAME
and TA_SRVGRP key fields with either TA_RQADDR or Ta_SRvVID. Madifications to an active
object will affect that object and the related configuration record but not other active objects that
may have derived their run-time attributes from the same configuration record.

2If nothing is specified for this attribute, it defaults to TA_SERVICENAME.

Attribute Semantics

TA_SERVICENAME: string{l..15]
Service name.

TA_SRVGRP: string[l..30]
Server group name. Server group hames cannot contain an asterisk (*), comma, or colon.
The hierarchy of the search for service attributes to be used at service activation time is
described in the previous T_svCGRP OVERVIEW Section.

TA_GRPNO: 1 <= num < 30,000
Server group number.

TA_STATE!

GET: “{ACTive | INActive | SUSpended | PARtitioned}”
A cET operation will retrieve configuration and run-time information for the
selected T_svccrp object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

396 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

ACTive

T_SVCGRP object is active within the server identified by
the returned values for the TA_SRVGRP and TA_SRVID
attributes. Attribute values returned indicate the current
run-time instance of the service and may not be reflected
in the configuration instance if temporary updates have
been performed.

INActive

T_SVCGRP object is defined and inactive.

SUSpended

T_SVCGRP object defined, active, and currently
suspended. This service is not available for access by the
application in this state. This state is ACTive equivalent
for the purpose of determining permissions.

PARtitioned

T_SVCGRP object defined, active, and currently
partitioned from the master site of the application. This
service is not available for access by the application in
this state. This state is ACTive equivalent for the purpose
of determining permissions.

SET: “{NEW | INValid | ACTive | INActive | SUSpended}”
A seT operation will update configuration and run-time information for the
selected T_svcerp object. Note that run-time modifications to a service object
may affect more than one active server. The following states indicate the meaning
of a Ta_sTATE set in a SET request. States not listed may not be set.

NEW

Create T_SVCGRP object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the INActive state.

Limitation: Unconfigured services may still be active by
virtue of a server advertising them. In this case, the service
class state is ACTive and cannot be updated.

unset

Modify an existing T_SVCGRP object. This combination is
not allowed in the INValid state. Successful return leaves
the object state unchanged.

INValid

Delete T_svCGRP object for application. State change
allowed only when in the INActive state. Successful
return leaves the object in the INValid state.

File Formats, Data Descriptions, MIBs, and System Processes Reference 397

ACTive Activate (advertise) the T_SVCGRP object. State change
allowed only when in the INActive, SUSpended or
INValidstates. Either TA__SRVID Or TA_RQADDR must be
specified with this state change. For the purpose of
determining permissions for this state transition, the active
object permissions are considered (that is, --x--X--X).
Successful return leaves the object in the ACTive state.

Limitation: State change not permitted for service names
(TA_SERVICENAME) beginning with the reserved string

INActive Deactivate the T_SVCGRP object. State change allowed only
when in the SUSpended state. Successful return leaves the
object in either the INActive (configured entries) or
INValid (unconfigured entries) state.

Limitation: State change not permitted for service names
(TA_SERVICENAME) beginning with the reserved string

SUSpended Suspend the T_SVCGRP object. State change allowed only
when in the ACTive state. Successful return leaves the
object in the SUSpended state.

Limitation: State change not permitted for service names
(TA_SERVICENAME) beginning with the reserved string

TA_AUTOTRAN: “{Y | N}~
Automatically begin a transaction (»v~) when a service request message is received for
this service if the request is not already in transaction mode.

TA_LOAD: 1 <= num < 32,768
This T_svcerp object imposes the indicated load on the system. Service loads are used
for load balancing purposes, that is, queues with higher enqueued workloads are less
likely to be chosen for a new request.

TA_PRIO: 1 <= num<101
This T_svcerp object has the indicated dequeuing priority. If multiple service requests
are waiting on a queue for servicing, the higher priority requests will be serviced first.

398 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

TA_BLOCKTIME: 0 <= num < 32,768
Blocktime limit (in seconds) indicating the minimum amount of time a blocking ATMI
call will block before timing out for this service name. The per service blocktime is
applicable only when receiving a reply to the service.

If not specified, the default is 0 which indicates that the system-wide BLockTIME Value
specified in the UBBCONFIG RESOURCES Section is used for the service.

TA_SVCTIMEOUT: 0 <= num
Time limit (in seconds) for processing requests for this service name. Servers processing
service requests for this service will be abortively terminated (kill -9) if they exceed the
specified time limit in processing the request. A value of 0 for this attribute indicates that
the service should not be abortively terminated.

Limitation: This attribute value is not enforced on BEA Tuxedo release 4.2.2 sites or
earlier.

TA_TRANTIME: 0 <= num
Transaction timeout value in seconds for transactions automatically started for this
T_SVCGRP Object. Transactions are started automatically when a request not in transaction
mode is received and the T_svCGRP:TA_AUTOTRAN attribute value for the service is "v".

TA_LMID: LMID
Current logical machine on which an active server offering this service is running.

TA_RQADDR: string[l..30]
Symbolic address of the request queue for an active server offering this service. See
T_SERVER!TA_RQADDR for more information on this attribute.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number for an active server offering
this service. See T_servER:TA_srRvID for more information on this attribute.

TA_SVCRNAM: string[l..15]
Function name within the associated server assigned to process requests for this service.
On a seT request, the server must be able to map the function name to a function using its
symbol table to successfully advertise the service. In some situations (for example, direct
calls to tpadvertise () by the server), the function name for an acTive service object
will not be known and the string "»" will be returned as the attribute value.

Limitation: This attribute may only be set along with a state change from 1Nactive to
ACTive.

File Formats, Data Descriptions, MIBs, and System Processes Reference 399

TA_BUFTYPE: string[l..256]
Configured buffer types accepted by this service.

Limitation: This attribute is settable only via the corresponding T_servIck class object.

TA_ROUTINGNAME: string]0..15]
Routing criteria name.

Limitation: This attribute is settable only via the corresponding T_servicke class object.

TA_NCOMPLETED: 0 <= num
Number of service requests completed with respect to the retrieved AcTive Or SUSpended
object since it was activated (advertised).

Limitation: This attribute is returned only when the T_pomMa1n:Ta_1.DBAL attribute value
issetto “v.

TA_SVCTYPE: “{APP | CALLABLE | SYSTEM}”
Type of service. app indicates an application defined service name. cALLABLE indicates a
system provided callable service. sysTem indicates a system provided and system callable
service. syYSTEM services are not available to application clients and servers for direct
access. Note that when used as a et key field, a delimited list ('|' delimiter) may be used
to retrieve multiple types of service group entries on one request. By default, only app
services are retrieved.

Number of requests currently enqueued to this service. This attribute is incremented at
enqueue time and decremented when the server dequeues the request. Limitation: This
attribute is returned only when the T_poMaAIN:TA_ LDBAL attribute value is setto “v~.

TA_NQUEUED: 0 <= num < 32,768
Number of requests currently enqueued to this service. This attribute is incremented at
enqueue time and decremented when the server dequeues the request.

Limitation: This attribute is returned only when the T_poMaAIN:TA_LDBAL attribute value
issetto “v-.

Limitations
None.

400 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

T_TLISTEN Class Definition

Overview

The T_tL1sTEN class represents run-time attributes of the BEA Tuxedo system listener processes
for a distributed application.

Attribute Table

Table 60 TM_MIB(5): T_TLISTEN Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_LMID(K) string R--R--R-- LMID N/A

TA_STATE(K) string R--R--R-- GET: “{ACT | INA}" N/A
SET: N/A N/A

(k)—GET key field

Attribute Semantics

TA_LMID: LMID
Logical machine identifier.

TA_STATE:

GET: “{INActive | ACTive}”
A ceT operation will retrieve run-time information for the selected T_Tr1STEN
object(s). The following states indicate the meaning of a Ta_sTaTE returned in
response to a GET request.

INActive T_TLISTEN object not active.

ACTive T_TLISTEN object active.

SET.

SET operations are not permitted on this class. This attribute is settable only via the
corresponding T_SERVICE class object.

File Formats, Data Descriptions, MIBs, and System Processes Reference 401

Limitations

This class is not available through the tpadmcal1 () interface.

T _TLOG Class Definition

Overview

The T_tL0G class represents configuration and run-time attributes of transaction logs. This class
allows the user to manipulate logs within an application, that is, create, destroy, migrate, and so

on.

Attribute Table

Table 61 TM_MIB(5): T_TLOG Class Definition Attribute Table

Attribute! Type Permissions Values Default
TA_LMID(*) string r--r--r-- LMID N/A
TA_STATE(K) string r-xr-xr-- GET: “{ACT | INA |WAR}” N/A
SET: “WAR” N/A
TA_TLOGCOUNT long r-Xr-Xr-- 1 <= num N/A
TA_TLOGINDEX long r-Xr-Xr-- 0 <= num N/A
TA_GRPNO(K) long r--r--r-- 1 <= num < 30,000 @)
TA_TLOGDATA string r-xr-xr-- string[l..256] @)

(K)—GET key field

(*)—GET/SET key, one or more required for SET operations

L All attributes in the T_TLOG class are local attributes
20ne or more TA_GRPNO and TA_TLOGDATA attribute values may be returned with each object
of the T_TLOG class. The attribute values for each of these attributes belonging to the particular
object are the TA_TLOGCOUNT number of occurrences beginning with the TA_TLOGINDEX.

Attribute Semantics

TA_LMID: LMID

Transaction log logical machine identifier.

402 File Formats, Data Descriptions, MIBs, and System Processes Reference

TA_STATE!

TM_MIB(5)

GET: “{ACTive | INActive | WARmstart}”
A cET operation will retrieve log configuration and run-time information for the
selected T_TLoG object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GET request.

ACTive

The transaction log exists and is actively logging commit
records for transactions coordinated on the site. This
corresponds to the associated T_MACHINE object being
active.

INActive

The transaction log exists but is currently inactive. This state
corresponds to the associated T_MACHINE object being
inactive and can only be returned if the site has a
tlisten (1) process running; otherwise, the site is
unreachable and a object will not be returned.

WARmstart

The transaction log exists, is currently active, and is marked
for warmstart processing. Warmstart processing will occur
when the next server group is started on the site. This state
is ACTive equivalent for the purposes of determining
permissions.

SET: “{WARmstart}”

A seT operation will update log configuration and run-time information for the
selected T_tr.0G object. The following states indicate the meaning of a Ta_sTATE
set in a SET request. States not listed may not be set.

unset

Modify T_TLOG object. Allowed only when in the ACTive
state. Successful return leaves the object state unchanged.
The only object modifications permitted on this class are
additions to the transaction log. In this case,
TA_TLOGINDEX and TA_TLOGCOUNT indicate the objects
of TA_TLOGDATA to be added.

WARmstart

Initiate warmstart for the T_TLOG object. State change
allowed only when in the AcTive state. Successful return
leaves the object in the WwARmstart state.

File Formats, Data Descriptions, MIBs, and System Processes Reference 403

TA_TLOGCOUNT: 1 <= num
Number of transaction log data records (Ta_TLoGDATA) counted, retrieved, or to be added.
This attribute is ignored for seT operations with a state change indicated. For valid seT
operations with no state change, this attribute indicates the number of log records to be
added to an active transaction log. A GeT operation with neither Ta_GRrRpNoO nor
TA_TLOGDATA specified returns a count of in-use log records. A GeT operation with only
TA_GRPNO set will return a count of in use log records with a coordinator group matching
the indicated group. A GeT operation with only Ta_trocpaTa set (") will return a count
of in use log records and populate arrays of Ta_Tr.ocpaTa and Ta_GrpPNoO attribute values
corresponding to the in use log records. A GeT operation with both Ta_crpno and
Ta_TLOGDATA set (") will return a count of in use log records with a coordinator group
matching the indicated group and populate arrays of Ta_TL.oGDATA and TA_GRPNO
attribute values corresponding to the in use log records.

TA_TLOGINDEX: 0 <= num
Index of the first object specific attribute values (Ta_crpNO and TA_TLOGDATA)
corresponding to this object.

TA_GRPNO: 1 <= num < 30,000
Transaction coordinator's group number.

TA_TLOGDATA: string[l..256]
Formatted transaction log entry. This attribute value should not be interpreted directly.
Rather, it should be used solely as a means of migrating log records as part of server group
migration.
Limitations
None

T_TRANSACTION Class Definition

Overview

The T_transacTION class represents run-time attributes of active transactions within the
application.

404 File Formats, Data Descriptions, MIBs, and System Processes Reference

Attribute Table

Table 62 TM_MIB(5): T_TRANSACTION Class Definition Attribute Table

TM_MIB(5)

Attribute! Type Permissions Values Default
TA_COORDLMID(K) string R--R--R-- LMID N/A
TA_1MID(K) string R--R--R-- LMID N/A
TA_TPTRANID(*) string R--R--R-- string[l..78] N/A
TA_XID(*) string R--R--R-- string[l..78] N/A
TA_STATE(K) string R-XR-XR-- GET: “{ACT|ABY|ABD|COM|REA N/A

| DEC | sus}”

SET: “ABD” N/A
TA_TIMEOUT long R--R--R-- 1 <= num N/A
TA_GRPCOUNT long R--R--R-- 1 <= num N/A
TA_GRPINDEX long R--R--R-- 0 <= num N/A
TA_GRPNO long R--R--R-- 1 <= num < 30,000 @)
TA_GSTATE long R-XR-XR-- GET: “PREP | PABT | PCOM” N/A

SET:"{HCO | HAB}" N/A

(K)—GET key field

(*)—GET/SET key, one or more required for SET operations

L All attributes in the T_TRANSACTION class are local attributes.

2One or more TA_GRPNO and TA_GSTATE attribute values may be returned with each object of
the T_TRANSACTION class. The attribute values for each of these attributes belonging to the
particular object are the TA_GRPCOUNT number of occurrences beginning with the

TA_GRPINDEX.

Attribute Semantics

TA_COORDLMID: LMID

Logical machine identifier of the server group responsible for coordinating the

transaction.

File Formats, Data Descriptions, MIBs, and System Processes Reference

405

TA_LMID: LMID
Retrieval machine logical machine identifier. Note that transaction attributes are primarily
kept local to a site and coordinated via common transaction identifiers by transaction
management servers (TMSS).

TA_TPTRANID: string[l..78]
Transaction identifier as returned from tpsuspend () mapped to a string representation.
The data in this field should not be interpreted directly by the user except for equality
comparison.

TA_XID: string[l..78]
Transaction identifier as returned from tx_info () mapped to a string representation. The
data in this field should not be interpreted directly by the user except for equality
comparison.

TA_STATE!

GET: “{ACTive | ABortonlY | ABorteD | COMcalled | REAdy | DECided |

SuSpended}”
A cET operation will retrieve run-time information for the selected
T_TRANSACTION Object(s). The following states indicate the meaning of a
TA_STATE returned in response to a GeT request. Note that distinct objects
pertaining to the same global transaction (equivalent transaction identifiers) may
indicate differing states. In general, the state indicated on the coordinator's site
(Ta_coorpLMID) indicates the true state of the transaction. The exception is when
a non-coordinator site notices a condition that transitions the transaction state to
ABortonly. This transition will eventually be propagated to the coordinator site
and result in the rollback of the transaction, but this change may not be
immediately reflected on the coordinator site. All states are acTive equivalent for
the purpose of determining permissions.

406 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

PREPrepare Indicates that the transaction group contains servers that
have called xa_end (TMSUSPEND) during the course of
transactional work and that commit processing is
beginning. This state will exist until either all servers that
called xa_end (TMSUSPEND) have caused a call to
xa_end (TMSUCESS), at which point the group state will
become READy, or until one of the target servers does a
rollback of the transaction at which point the group state
will become either PostABorT Or ABorteD.

PostABorT Indicates that a server called xa_end (TPFAIL) and that
the TMS has not yet called xa_rol1lback(). (that is, that
other servers that had called xa_end (TMSUSPEND) are
being notified by the TMS in order to clean up their
associated CORBA objects.

PostCOMmit Not yet implemented.

SET: “{ABorteD}"
A set operation will update run-time information for the selected
T_TRANSACTION object. The following states indicate the meaning of a Ta_staTe
set in a sET request. States not listed may not be set.

unset Modify an existing T_TRANSACTION object. This
combination is allowed only when in the REAdy state and only
for the purpose of updating an individual group's state (see
TA_GSTATE below). Successful return leaves the object state
unchanged.

ABorteD Abort the T_TRANSACTION object for the application. State
change allowed only when in the ACTive, ABortonly, or
COMcalled states. Successful return leaves the object in the
ABorteD State.

TA_TIMEOUT: 1 <= num
Time left, in seconds, before the transaction will timeout on the retrieval site. Note that
this attribute value is returned only when the transaction state (TA_STATE) iS ACTive.

File Formats, Data Descriptions, MIBs, and System Processes Reference 407

TA_GRPCOUNT: 1 <= num
Number of groups identified as participants in the transaction by the information returned
from the retrieval site.

TA_GRPINDEX: 1 <= num
Index of the first group specific attribute values (Ta_GRPNO and TA_GSTATE)
corresponding to this object.

TA_GRPNO: 1 <= num < 30,000
Group number of the participating group.

TA_GSTATE:

GET: “{ACTive | ABorteD | ReaDOnly | REAdy | HCOmmit | HABort | DONe}”
A cET operation will retrieve run-time information for the selected
T_TRANSACTION Object(s) pertaining to the indicated group. The following states
indicate the meaning of a Ta_csTATE returned in response to a GET request. States
not listed will not be returned. Note that distinct objects pertaining to the same
global transaction (equivalent transaction identifiers) may indicate differing states
for individual groups. In general, the state indicated on the group's site indicates
the true state of the group's participation in the transaction. The exception is when
the coordinator site determines that the transaction should abort and sets each
participant group state to aBorteD. This transition will be propagated to the
group's site and result in the rollback of the group’s work in the transaction but may
not be reflected immediately.

ACTive The transaction is active in the indicated group.

ABorteD The transaction has been identified for rollback and rollback
has been initiated for the indicated group.

ReaDOnly The group has successfully completed the first phase of
two-phase commit and has performed only read operations on
the resource manager, thus making it unnecessary to perform
the second phase of commit for this group.

REAdy The group has successfully completed the first phase of
two-phase commit and is ready to be committed.

HCOmmit The group has been heuristically committed. This may or may
not agree with the final resolution of the transaction.

408 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

HABort The group has been heuristically rolled back. This may or may
not agree with the final resolution of the transaction.

DONe This group has completed the second phase of the two-phase
commit.

SET: “{HCOmmit | HABort}”
A seT operation will update run-time information for the first group in the
originating request within the selected T_transacTIoN object. The following
states indicate the meaning of a TA_GsTATE set in a SET request. States not listed
may not be set. State transitions are allowed only when performed within the object
representing the group's site (Ta_1.MID).

HCommit Heuristically commit the group's work as part of the indicated
transaction. State change allowed only when TA_GSTATE is
REAdy, TA_STATE iS REAdy, and the indicated group is not on
the coordinator's site. Successful return leaves the object in the
HCOmmit State.

HABort Heuristically rollback the group's work as part of the indicated
transaction. State change allowed only when TA_GSTATE is
ACTive OFr REAdy, TA_STATE is REAdy, and the indicated
group is not on the coordinator's site. Successful return leaves
the object in the HABort state.

Limitations
None.

T _ULOG Class Definition

Overview
The T_uroc class represents run-time attributes of userlog () files within an application.

File Formats, Data Descriptions, MIBs, and System Processes Reference 409

Attribute Table

Table 63 TM_MIB(5): T_ULOG Class Definition Attribute Table

Attribute! Type Permissions Values Default
TA_1LMID(K) string R--R--R-- LMID @)
TA_PMID(X) string R--R--R-- string[l..30] A
TA_MMDDYY/(K) long R--R--R-- mmddyy Current date
TA_STATE string R--R--R-- GET: “ACT” N/A
SET: N/A N/A
TA_ULOGTIME(K) long R--R--R-- hhmmss 000000
TA_ENDTIME(K) long K--K--K-- hhmmss 235959
TA_ULOGLINE(K) long R--R--R-- 1 <= num 1
TA_ULOGMSG(X) string R--R--R-- string[l..256] N/A
TA_TPTRANID(K) string R--R--R-- string[l1..78] N/A
TA_XID(K) string R--R--R-- string[l..78] N/A
Ta_PID(K) long R--R--R-- 1 <= num N/A
TA_THREADID integer r--r--r-- 0<=num NA
TA_CONTEXTID(K) long r--r--r-- -2 <= num < N/A
30,000
TA_SEVERITY(X) string R--R--R-- string[l1..30] N/A
TA_ULOGCAT(X) string R--R--R-- string[1..30] N/A
TA_ULOGMSGNUM(K) long R--R--R-- 1 <= num N/A
TA_ULOGPROCNM(X) string R--R--R-- string[1..30] N/A

(K)—GET key field
(x)—regular expression GET key field

L All attributes in the T_ULOG class are local attributes.

410 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

27a_LMID is a required field used by the system to determine which application log file should
be accessed. It is not used to restrict returned records to only those generated from processes
running on the indicated machine. In cases where multiple machines share a log file via a
networked filesystem, multiple TA_1.M1ID values may be returned even though a specific value has
been provided as a key field. For the same reasons, TA_PMID is not considered in directing the
request to a particular machine, but is used in determining which records should be returned. In
this capacity, it may be useful to leverage Ta_PMID as a regular expression key field.

Attribute Semantics

TA_LMID: LMID
Retrieval machine logical machine identifier.

TA_PMID: string[l..30]
Physical machine identifier.

TA_MMDDYY. mmddyy
Date of user log file found or to be accessed.

TA_STATE!

GET: “{ACTive}”
A GeT operation will retrieve run-time information for the selected T_uvr.oc
object(s). The following states indicate the meaning of a Ta_sTATE returned in
response to a GET request.

ACcTive The object returned reflects an existing user log file on the
indicated logical machine.

SET:
SET operations are not permitted on this class.

TA_ULOGTIME. hhmmss
The time of the user log message represented by this object. The value of this attribute is
formed by multiplying the hour by 10,000, adding to that the minute multiplied by 100,
and finally adding in the seconds. When used as a key field, this attribute represents the
start of the time range to be accessed for messages.

TA_ENDTIME. hhmmss
The latest time to be considered in a GeT operation when accessing this userlog file.

File Formats, Data Descriptions, MIBs, and System Processes Reference 411

TA_ULOGLINE: 1 <= num
The line number of the user log message returned/requested within the user log file. When
used as a key field for retrieval, this value indicates the starting line within the log file.

TA_ULOGMSG: string[l..256]
The entire text of the user log message as it appears in the user log file.

TA_TPTRANID: string[l..78]
Transaction identifier as returned from tpsuspend (). The data in this field should not be
interpreted directly by the user except for equality comparison. Messages not associated
with transactions will retrieve a 0-length string as the value for this attribute.

TA_XID: string[l..78]
Transaction identifier as returned from tx_info (). The data in this field should not be
interpreted directly by the user except for equality comparison. Messages not associated
with transactions will retrieve a 0-length string as the value for this attribute.

TA_PID: 1 <= num
Process identifier of the client or server that generated the user log message.

TA_THREADID: 0 <= num
Identifier for the thread that wrote this user log message.

TA_CONTEXTID: -2 <= num < 30,000
Identifier for this particular application association.

TA_SEVERITY: string[l..30]
Severity of message, if any.

TA_ULOGCAT: string{l1..30]
Catalog name from which the message was derived, if any.

TA_ULOGMSGNUM: 1 <= num
Catalog message number, if the message was derived from a catalog.

TA_ULOGPROCNM: string{l..30]
Process name of the client or server that generated the user log message.

Limitations
Retrievals may be done only if the associated T_macHINE object is also acTive.

Retrievals for this class must be directed, that is, the Ta_r.m1D attribute must be specified.
Retrievals of log records written by Workstation clients are available only if the log file used by

412 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

the client is shared with one of the machines defined in the T_macHINE class for the application.
Otherwise, these log records are unavailable through this class.

Retrievals on this class which cannot be completely satisfied will always return a Ta_mMoRe value
of 1 indicating only that more information may be available for the originating request.

TM_MIB(5) Additional Information

Diagnostics

There are two general types of errors that may be returned to the user when interfacing with
™™_MIB(5). First, any of the three ATMI verbs (tpcall (), tpgetrply (), and tpdequeue())
used to retrieve responses to administrative requests may return any error defined for them. These
errors should be interpreted as described on the appropriate reference pages.

If, however, the request is successfully routed to a system service capable of satisfying the request
and that service determines that there is a problem handling the request, failure may be returned
in the form of an application level service failure. In these cases, tpcall () and tpcall () will
return an error with tpgetrply () Setto TPESVCFAIL and return a reply message containing the
original request along with Ta_ERROR, TA_sTaTUS, and Ta_BaDFLD fields further qualifying the
error as described below. When a service failure occurs for a request forwarded to the system
through the TmMororwaARD (5) server, the failure reply message will be enqueued to the failure
queue identified on the original request (assuming the -a option was specified for TMQFORWARD).

When a service failure occurs during processing of an administrative request, the FML32 field
TA_STATUS is Set to a textual description of the failure, and the FML32 field Ta_ERROR is set to
indicate the cause of the failure as indicated below. All error codes are guaranteed to be negative.

[other]
Other error return codes generic to any component MIB are specified in the M1B (5)
reference page. These error codes are guaranteed to be mutually exclusive with any
m_MI1B(5) specific error codes defined here.

The following diagnostic codes are returned in Ta_ERROR to indicate successful completion of an
administrative request. These codes are guaranteed to be non-negative.

[other]
Other return codes generic to any component MIB are specified in the m1B (5) reference
page. These return codes are guaranteed to be mutually exclusive with any Tv_m1B(5)
specific return codes defined here.

File Formats, Data Descriptions, MIBs, and System Processes Reference 413

Interoperability

The header files and field tables defined in this reference page are available on BEA Tuxedo
release 6.1 and later. Fields defined in these headers and tables will not be changed from release
to release. New fields may be added which are not defined on the older release site. Access to the
AdminAPI is available from any site with the header files and field tables necessary to build a
request.

If sites of differing releases, both greater than or equal to BEA Tuxedo release 6.1, are
interoperating, information on the older site is available for access and update as defined in the

MIB reference page for that release and may be a subset of the information available in the later
release.

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo system MIBs, as well as the header file and field table defined in this reference
page, are available on all supported native and workstation platforms.

Examples

This section contains a sequence of code fragments that configure, activate, query, and deactivate
a two node application using both tpadmcall () and tpcall (). Variable names are used in
places where reasonable values for a local environment are required, for example, TUXCONFIG is
a two element array of character pointers with each element identifying the full pathname of the
TuxcoNFIG file on that machine.

Field Tables

The field table tpadm must be available in the environment to have access to attribute field
identifiers. This can be done at the shell level as follows:

$ FIELDTBLS=tpadm
$ FLDTBLDIR=${TUXDIR}/udataobj
$ export FIELDTBLS FLDTBLDIR

Header Files

414

The following header files are included.

#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Libraries
${TUXDIR}/1lib/libtmib.a, ${TUXDIR}/lib/libgm.a,
${TUXDIR}/1lib/libtmib.so.<rel>, ${TUXDIR}/lib/libgm.so.<rel>,
${TUXDIR}/1lib/libtmib.1lib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/1lib -ltmib -lgm

Initial Configuration

The following code creates and populates an FML32 buffer that is then passed to tpadmcall ()
for processing. This example also shows interpretation of tpadmcall () return codes. The
request shown creates the initial configuration for the application.

/* Allocate and initialize the buffer */
ibuf = (FBFR32 *)tpal loc("FML32", NULL, 4000);
obuf = (FBFR32 *)tpalloc("FML32", NULL, 4000);
/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);
Fchg32 (ibuf, TA_CLASS, 0, "T_DOMAIN", O0);
Fchg32 (ibuf, TA_STATE, 0, "NEW", 0);
/* Set TM_MIB(5) attributes to be set in T_DOMAIN class object */
Fchg32 (ibuf, TA_OPTIONS, 0, "LAN,MIGRATE", 0);
Fchg32 (ibuf, TA_IPCKEY, 0, (char *)&ipckey, 0);
Fchg32 (ibuf, TA_MASTER, 0, "LMID1", 0);
Fchg32 (ibuf, TA_MODEL, 0, "MP", 0);
/* Set TM_MIB(5) attributes for TA_MASTER T_MACHINE class object */
Fchg32 (ibuf, TA_LMID, 0, "LMID1", O0);
Fchg32 (ibuf, TA_PMID, 0, pmid[0], O0);
Fchg32 (ibuf, TA_TUXCONFIG, 0, tuxconfig[0], 0);
Fchg32 (ibuf, TA_TUXDIR, 0, tuxdir[0], 0);
Fchg32 (ibuf, TA_APPDIR, 0, appdir[0], 0);

(

(

(

(

(
(
(
(

0]
, 0]
Fchg32 (ibuf, TA_ENVFILE, 0, envfile[0], 0);

Fchg32 (ibuf, TA_ULOGPFX, 0, ulogpfx[0], 0);

Fchg32 (ibuf, TA_BRIDGE, 0, "/dev/tcp", 0);

Fchg32 (ibuf, TA_NADDR, 0, naddr[0], 0);

Fchg32 (ibuf, TA_NLSADDR, 0, nlsaddr[0], 0);

/* Perform the action via tpadmcall() */

if (tpadmcall (ibuf, obuf, 0) 0) {

fprintf (stderr, "tpadmcall failed: %s\n", tpstrerror (tperrno));

File Formats, Data Descriptions, MIBs, and System Processes Reference 415

/* Additional error case processing */
}

Add Second Machine

The following code reuses the buffers allocated in the previous section to build a request buffer.
The request shown below adds a second machine to the configuration established earlier.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32(ibuf));

/* Set MIB(5) attributes defining request type */

Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T _MACHINE", 0);

Fchg32 (ibuf, TA_STATE, 0, "NEW", O0);

/* Set TM_MIB(5) attributes to be set in T_MACHINE class object */
Fchg32 (ibuf, TA_LMID, 0, "LMID2", O0);
Fchg32 (ibuf, TA_PMID, 0, pmid[1l], O0);
Fchg32 (ibuf, TA_TUXCONFIG, 0, tuxconfigl[l], 0);
Fchg32 (ibuf, TA_TUXDIR, 0, tuxdir[l], 0);
Fchg32 (ibuf, TA_APPDIR, 0, appdir[l], 0);
Fchg32 (ibuf, TA_ENVFILE, 0, envfile[l], 0);
Fchg32 (ibuf, TA_ULOGPFX, 0, ulogpfx[1l], 0);
Fchg32 (ibuf, TA_BRIDGE, 0, "/dev/tcp", 0);
Fchg32(
Fchg32(

ibuf, TA_NADDR, 0, naddr[1l], O0);
ibuf, TA_NLSADDR, 0, nlsaddr([1l], O0);

tpadmcall(...) /* See earlier example for detailed error processing */

Make Second Machine Backup Master

The existing buffers are again reused to identify the newly configured second machine as the
backup master site for this application.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));
/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_DOMAIN", 0);

/* Set TM_MIB(5) T_DOMAIN attributes changing *
Fchg32 (ibuf, TA_MASTER, 0, "LMID1,LMID2", 0);

416 File Formats, Data Descriptions, MIBs, and System Processes Reference

tpadmcall (...

Add Two Server Groups

TM_MIB(

); /* See earlier example for detailed error processing */

Reuse the buffers to generate two requests, each adding one server group to the configured
application. Note how the second request simply modifies the necessary fields in the existing

input buffer.

/* Clear the r

/* Set MIB(5)
Fchg32 (ibuf,
Fchg32 (ibuf,
Fchg32 (ibuf,

equest buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

attributes defining request type */
TA_OPERATION, 0, "SET", 0);
TA_CLASS, 0, "T_GROUP", 0);
TA_STATE, 0, "NEW", 0);

/* Set TM_MIB(5) attributes defining first group */

Fchg32 (ibuf,
Fchg32 (ibuf,
Fchg32 (ibuf,

tpadmcall (...

TA_SRVGRP, 0, "GRP1", O0);
TA_GRPNO, 0, (char *)&grpno[0], 0);
TA_LMID, 0, "LMID1,LMID2", O0);

); /* See earlier example for detailed error processing */

/* Set TM_MIB(5) attributes defining second group */

Fchg32 (ibuf,
Fchg32 (ibuf,
Fchg32 (ibuf,

tpadmcall (...

TA_SRVGRP, 0, "GRP2", 0);
TA_GRPNO, 0, (char *)&grpno[l], O0);
TA_LMID, 0, "LMID2,LMID1", 0);

); /* See earlier example for detailed error processing */

Add One Server Per Group
Reuse the allocated buffers to add one server per group to the configured application.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32(ibuf));

/* Set MIB(5)
Fchg32 (ibuf,
Fchg32 (ibuf,
Fchg32 (ibuf,

attributes defining request type */
TA_OPERATION, 0, "SET", 0);
TA_CLASS, 0, "T_SERVER", 0);
TA_STATE, 0, "NEW", 0);

File Formats, Data Descriptions, MIBs, and System Processes Reference

5)

a1

/* Set TM_MIB(5) attributes defining first server */
Fchg32 (ibuf, TA_SRVGRP, 0, "GRP1l", 0);

Fchg32 (ibuf, TA_SRVID, 0, (char *)é&srvid[0], 0);
Fchg32 (ibuf, TA_SERVERNAME, 0, "ECHO", 0)

tpadmcall(...); /* See earlier example for detailed error processing */

/* Set TM_MIB(5) attributes defining second server */
Fchg32 (ibuf, TA_SRVGRP, 0, "GRP2", 0);
Fchg32 (ibuf, TA_SRVID, 0, (char *)é&srvid[1l], 0);

tpadmcall(...); /* See earlier example for detailed error processing */

Add Routing Criteria

Add arouting criteria definition. Note that routing criteria may be dynamically added to a running
application using a similar operation via the tpca11 () interface.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_ROUTING", O0);

Fchg32 (ibuf, TA_STATE, 0, "NEW", 0);

/* Set TM_MIB(5) attributes defining routing criteria */
Fchg32 (ibuf, TA_ROUTINGNAME, 0, "ECHOROUTE", O0);

(

Fchg32 (ibuf, TA_BUFTYPE, 0, "FML", 0);

Fchg32 (ibuf, TA_FIELD, 0, "LONG_DATA", 0);

Fchg32 (ibuf, TA_RANGES, 0, "MIN-100:GRP1,100-MAX:GRP2", 26);

tpadmcall(...); /* See earlier example for detailed error processing */

Add Service Definition

Define a service object that maps the advertised service name to the routing criteria defined
above.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

/* Set MIB(5) attributes defining request type */

418 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);
Fchg32 (ibuf, TA_CLASS, 0, "T_SERVICE", 0);
Fchg32 (ibuf, TA_STATE, 0, "NEW", 0);

/* Set TM_MIB(5) attributes defining service entry */
Fchg32 (ibuf, TA_SERVICENAME, 0, "ECHO", 0);
Fchg32 (ibuf, TA_ROUTINGNAME, 0, "ECHOROUTE", O0);

tpadmcall(...); /* See earlier example for detailed error processing */

Activate Master Site Admin

Activate the master site administrative processes (DBBL, BBL, Bridge) by setting the T_poma1n
class object state to ACTTVE.

/* Clear the request buffer */ Finit32(ibuf, Fsizeof32(ibuf));

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_DOMAIN", O0);

Fchg32 (ibuf, TA_STATE, 0, "ACT", 0);

tpadmcall(...); /* See earlier example for detailed error processing */

Switch to Active Application Administration

Now that the application is active, we need to join the application and make our AdminAPI
requests via the tpcall () interface.

/* Now that the system is active, join it as the administrator */ tpinfo =
(TPINIT *)tpalloc("TPINIT", NULL, TPINITNEED(O)) ;

sprintf (tpinfo->usrname, "appadmin") ;

sprintf (tpinfo->cltname, "tpsysadm");

if (tpinit(tpinfo) < 0) {

fprintf (stderr, "tpinit() failed: %s\n", tpstrerror (tperrno)) ;

/* Additional error case processing */

}

/* Reinitialize buffers as typed buffers */

Finit32 (ibuf, Fsizeof32 (ibuf));
Finit32 (obuf, Fsizeof32 (obuf));

File Formats, Data Descriptions, MIBs, and System Processes Reference 419

Activate Rest of Application

Activate the remaining portions of the application. Note that the administrative user may request
unsolicited notification messages be sent just before and just after the attempted boot of each
server by setting the TmM1B_NoTIFY flag in the Ta_rFLaGs attribute of the request. This example
shows handling of an error return from tpcall ().

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_MACHINE", O0);

Fchg32 (ibuf, TA_STATE, 0, "RAC", 0);

/* Set TM_MIB(5) attributes identifying machine */
Fchg32 (ibuf, TA_LMID, 0, "LMID1", O0);

/* Invoke the /AdminAPI and interpret results */

if (tpcall(".TMIB", (char *)ibuf, 0, (char **)&obuf, &olen, 0) < 0) {
fprintf (stderr, "tpcall failed: %s\n", tpstrerror (tperrno));

if (tperrno == TPESVCFAIL) {

Fget32 (obuf, TA_ERROR, 0, (char *)&ta_error,NULL) ;

ta_status = Ffind32 (obuf, TA_STATUS, 0, NULL);

fprintf (stderr, "Failure: %1d, %s\n",

ta_error, ta_status);

/* Additional error case processing */

}

Query Server Status
Generate a query on the status of one of the activated servers.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "GET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T _SERVER", 0);

flags = MIB_LOCAL;

Fchg32 (ibuf, TA_FLAGS, 0, (char *)&flags, 0);

420 File Formats, Data Descriptions, MIBs, and System Processes Reference

TM_MIB(5)

/* Set TM_MIB(5) attributes identifying machine */
Fchg32 (ibuf, TA_SRVGRP, 0, "GRP1l", 0);
Fchg32 (ibuf, TA_SRVID, 0, (char *)é&srvid[0], 0);

tpcall(...); /* See earlier example for detailed error processing */

Deactivate Application

Deactivate the application by setting the state of each machine to tnacTIve. Note that the
TMIB_NOTIFY flag could be used with this operation also.

/* Clear the request buffer */ Finit32 (ibuf, Fsizeof32 (ibuf));

/* Shutdown Remote Machine First */

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T MACHINE", 0);

Fchg32 (ibuf, TA_LMID, 0, "LMID2", 0);

Fchg32 (ibuf, TA_STATE, 0, "INA", 0);

tpcall(....); /* See earlier example for detailed error processing */

/* And now application servers on master machine *
flags = TMIB_APPONLY;

Fchg32 (ibuf, TA_FLAGS, 0, (char *)&flags, 0);
Fchg32 (ibuf, TA_LMID, 0, "LMID1", O0);

tpcall(...); /* See earlier example for detailed error processing */

/* Terminate active application access */

tpterm() ;

/* Finally, shutdown the master admin processes */
Finit32 (ibuf, Fsizeof32(ibuf));

Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_DOMAIN", O0);

Fchg32 (ibuf, TA_STATE, 0, "INA", 0);

tpadmcall(...); /* See earlier example for detailed error processing */

File Formats, Data Descriptions, MIBs, and System Processes Reference 421

Files
S{TUXDIR}/include/tpadm.h, S${TUXDIR}/udataobj/tpadm

See Also

tpacall (3c), tpalloc (3c), tpcall (3c), tpdequeue (3¢c), tpenqueue (3¢),
tpgetrply (3c), tprealloc (3c¢), Introduction to FML Functions, Fadd, Fadd32 (3fml),
Fchg, Fchg32(3fml), Ffind, Ffind32 (3fml),MIB(5), WS_MIB(5)

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C
Programming a BEA Tuxedo ATMI Application Using FML

422 File Formats, Data Descriptions, MIBs, and System Processes Reference

TMFFNAME(5)

TMFFNAME(3)

Synopsis
Server that runs the FactoryFinder and supporting NameManager services.

Syntax
TMFFNAME SRVGRP=“identifier” SRVID=“number”
[CLOPT="[-A] [servopts options]
[-- [-F] [-N | -N -M [-f filename]]]”]
Description

TMFFNAME i$ a server provided by BEA Tuxedo that runs the FactoryFinder and supporting
NameManager services which maintain a mapping of application-supplied names to object
references.

Parameters

-A
Advertise all services built into the server

-F

FactoryFinder service
-N

Slave NameManager service; this is the default.
-M

Master NameManager service

-f filename
Location of FactoryFinder import/export file

The FactoryFinder service is a CORBA-derived service that provides client applications with the
ability to find application factories that correspond to application-specified search criteria.
Consult the BEA Tuxedo CORBA Programming Reference for a complete description on the
FactoryFinder APl and Creating CORBA Server Applications for a description of registering and
unregistering factories. The FactoryFinder service is the “default” service if no services are
specified in the CLOPT.

The NameManager service is a BEA Tuxedo-specific service that maintains a mapping of
application-supplied names to object references. One usage of this service is to maintain the
application factory name-to-object reference list. The NameManager service can be booted with

File Formats, Data Descriptions, MIBs, and System Processes Reference 423

an - option that designates a Master role. If the -m option is not specified, the NameManager
is assumed to be a Slave. Slave NameManagers obtain updates from the Master. Only one Master
NameManager can be specified in an application.

The master NameManager can be configured to make factory objects residing in remote domains
accessible in the local domain. It can also be configured to make factory objects residing in the
local domain accessible from remote domains. Either or both of these configuration options can
be specified in the FactoryFinder Domains configuration file, factory_finder.ini.

The location of the factory_finder.ini file is specified with the - £ command-line option for
the master NameManager. If the - £ option is specified and the factory_finder. ini file is not
found, the initialization of the master NameManager fails. If the - £ option is not specified, only
locally registered factory objects are accessible to the local application, and none of the local
factory objects are accessible to applications in remote domains.

Note: Itis possible to boot one or more TMFFNAME processes running the same service. To
provide increased reliability, at least two NameManager services must be configured,
preferably on different machines.

Interoperability

Notes

424

The TMrFFNAME Servers run on BEA Tuxedo version 4.0 software and later.

If there are less than two NameManager services configured in the application’s uBBCONFIG
(TMrFNAME -N), the server terminates itself during boot and writes an error message to the user
log.

If a Master NameManager service is not configured in the application’s useconr1c file and is
running when a Slave NameManager service starts, the server terminates itself during boot and
writes an error message to the user log. Additionally, if the Master is down, registration and
unregistration of factories is disabled until the Master restarts.

If a TMsYSEVT server is not configured in the application’s ussconr1c file and is not running
when a NameManager service is being started, the server terminates itself during boot and writes
an error message to the user log.

If a NameManager service is not configured in the application’s useconr1G file and a
FactoryFinder service is being started, the server terminates itself during boot and writes an error
message to the user log.

If running an MP configuration, all name managers (TMrrFNaME -N) Should configured to boot
before any slave event service servers(tMsysevT -s). The master TMsysevT must still be booted

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMFFNAME(5)

before any name managers. If slave TMsysevT booted before name managers, a slave name
manager could miss update events sent by the master name manager, this can result in some
clients seeing NoFactory exceptions when trying to find a factory, or the factory finder returning
a factory object which is no longer registered (resulting in No_TMPLEMENT OF other exceptions
when invoked on), or unexpected load balancing behavior.

If a slave name manager was shutdown and boot again, and if any customer written CORBA
servers that register (or unregister) a factory are booting (or shutting down), then either boot (or
shutdown) the customer written servers first or wait for the longest polling interval set on all the
slave TmsvsevT's. Default for those with no -p option is 30 seconds.

Example

* SERVERS
TMSYSEVT SRVGRP=ADMIN1 SRVID=44 RESTART=Y
CLOPT="-A"

TMFFNAME SRVGRP=ADMIN1 SRVID=45 RESTART=Y
CLOPT="-A -- -F”

TMFFNAME SRVGRP=ADMIN1 SRVID=46 RESTART=Y

CLOPT="-A -- -N -M -f c:\appdir\import_factories.ini”
TMFFNAME SRVGRP=ADMIN2 SRVID=47 RESTART=Y

CLOPT="-A -- -N”

TMFFNAME SRVGRP=ADMIN3 SRVID=48 RESTART=Y

CLOPT="-A -- -F”

TMFFNAME SRVGRP=ADMIN4 SRVID=49 RESTART=Y

CLOPT="-A -- -F”

See Also

factory_finder.ini (5), TMSYSEVT (5), UBBCONFIG(5), userlog(3c), “TP Framework” in
BEA Tuxedo CORBA Programming Reference.

File Formats, Data Descriptions, MIBs, and System Processes Reference 425

TMIFRSVR(3)

Name
The Interface Repository server

Synopsis
TMIFRSVR SRVGRP=“identifier” SRVID=“number” RESTART=Y GRACE=0
CLOPT="[servopts options] -- [-f repository file namel”
Description

The TMIFRSVR Server is a server provided by BEA for accessing the Interface Repository. The
APl is a subset of the CORBA-defined Interface Repository API. For a description of the
Interface Repository API, see BEA Tuxedo CORBA Programming Reference.

Parameter

[-f repository file_name]
Interface Repository filename. This file must have been generated previously using the
id12ir command. If this parameter is not specified, the default repository filename
repository.ifr located in the application directory (apppIR) for the machine is used.
If the repository file cannot be read, the server fails to boot.

Examples

*SERVERS

#This server uses the default repository TMIFRSVR
SRVGRP="IFRGRP" SRVID=1000 RESTART=Y GRACE=0

#This server uses a non-default repository TMIFRSVR
SRVGRP="IFRGRP" SRVID=1001 RESTART=Y GRACE=0
CLOPT="-- -f /nfs/repository.ifr"

See Also

ir2idl (1), UBBCONFIG(5), servopts (5)

426 File Formats, Data Descriptions, MIBs, and System Processes Reference

TMMETADATA(5)

TMMETADATA(S)

Name

TMMETADATA - Tuxedo service metadata repository server

Synopsis
TMMETADATA SRVGRP="identifier" srvip="number"

cLopT="[-2a] [servopts options] -- - £ repository_file [-r]

Description

TMMETADATA i$ @ Tuxedo system server that processes requests to retrieve and/or update Tuxedo
service metadata repository information.

TMMETADATA provides and supports just one service, . TMMETAREPOS, Which uses FM132 input
and output buffers similar to those used by the Tuxedo MIB. The TMMETADATA FML32 buffer
format is described in M1B(5).

Note: Metadata information retrieval and updating are handled through a service independent
from . vIB in order to avoid burdening the BBL with metadata request processing
overhead since the metadata repository is stored separately from the Tuxedo
configuration.

The cropT option is a string of command link options that is passed to mvMETADATA When it is
booted. The following run-time parameters are recognized by TMMETADATA:

-f
This option is mandatory and specifies the location of the metadata repository_file.
-r
If this option is specified, TmvETADATA Only allows retrieve information requests from the
metadata repository and disallows any metadata repository update requests. The
TMMETADATA default permissions setting is read/write.
Limitation

Because TMMETADATA provides only one service, . TMMETAREPOS, multiple TMMETADATA Servers
running on a particular Tuxedo domain must all be configured for the same permission access.
That is, they either should all be read only or they should all be read and write.

Each TvMETADATA Server must be configured to access the same metadata repository file or an
exact copy of the file to provide consistent request results. Therefore, it is strongly recommended

File Formats, Data Descriptions, MIBs, and System Processes Reference 421

that a stable version of the metadata repository is made available for multiple TMMETADATA Server
access.

Interoperability

TMMETADATA must run on a Tuxedo 9.0 release or later.

Tuxedo Jolt Repository

If invoked on a Tuxedo Jolt repository file with the -r option, TMMETADATA can read and return
records from that file just as it would for a Tuxedo metadata repository file.

If invoked on a Tuxedo Jolt repository file without the -r option, TmveTADATA fails upon server
initialization.

Example(s)

Listing 4 Single TMMETADATA Server Configuration

*SERVERS
TMMETADATA SRVGRP=ADMIN1 SRVID=137 RESTART=Y MAXGEN=5
GRACE=3600 CLOPT="-A -- -f /usr/tuxadmin/METAREPOS"

Listing 5 Multiple TMMETADATA Server Configuration

*SERVERS

TMMETADATA SVRGRP=ADMIN1 SVRID=101 RESTART=N

CLOPT="-A -- -f /usr/tuxadmin/metareposl -r"

TMMETADATA SVRGRP=ADMIN1 SVRID=102 RESTART=Y MAXGEN=5

GRACE=3600 CLOPT="-A -- -f /usr/tuxadmin/metareposl -r"

TMMETADATA SVRGRP=ADMIN1 SVRID=103 RESTART=Y MAXGEN=5

GRACE=3600 CLOPT="-A -- -f /usr/tuxadmin/metareposl -r"
See Also

tpgetrepos (3c), tpsetrepos (3c), MIB(5).

428 File Formats, Data Descriptions, MIBs, and System Processes Reference

TMQFORWARD(5)

TMQFORWARD(3)

Name

TMQFORWARD—Message Forwarding server

Synopsis
TMQFORWARD SRVGRP="identifier" SRVID="number" REPLYQ=N CLOPT="
[-A] [servopts options] -- -g gqueuename|[,gueuename. ..]
[-t trantime] [-1 idletime] [-b timeout] [-e] [-d] [-n] [-f delay] "

Description

The message forwarding server is a BEA Tuxedo system-supplied server that forwards messages
that have been stored using tpenqueue () for later processing. The application administrator
enables automated message processing for the application servers by specifying this server as an
application server in the SERVERS section.

The location, server group, server identifier and other generic server related parameters are
associated with the server using the already defined configuration file mechanisms for servers.
The following is a list of additional command-line options that are available for customization.

-J queuename [, queuename. . .]
Used to specify the names of one or more queues/services for which this server forwards
messages. Queue and service names are strings limited to 15 characters. This option is
required.

-t trantime
Used to indicate the transaction timeout value used on tpbegin () for transactions that
dequeue messages and forward them to application servers. If not specified, the default
is 60 seconds.

-i idletime
Used to indicate the amount of time (in seconds) that the server remains idle after
draining the queue(s) that it is reading. A negative value indicates an amount of time in
milliseconds. For example if you specify -i -10, the idletime will be 10 milliseconds.

If a value of zero is specified, the server will read the queue(s) continually, which can
be inefficient if the queues do not continually have messages. If no value is specified,
the default is 30 seconds.

File Formats, Data Descriptions, MIBs, and System Processes Reference 429

430

-b timeout

Used to limit nontransaction block waiting time, in seconds, for a forwarded service to
complete. The -b option can only be used with the - £ option.

Used to cause the server to exit if it finds no messages on the queue(s). This, combined
with the threshold command associated with the queue(s), can be used to start and stop the
TMQFORWARD Server in response to fluctuations of messages that are enqueued.

Used to cause messages that result in service failure and have a reply message (non-zero
in length) to be deleted from the queue after the transaction is rolled back. That is, the
original request message is deleted from the queue—not put back on the queue—if the
service fails and a reply message (non-zero in length) is received from the server.

The reply message is enqueued to the failure queue, if one is associated with the message
and the queue exists. If the message is to be deleted at the same time as the retry limit
configured for the queue is reached, the original request message is put into the error
queue.

Used to cause messages to be sent using the TenoTrRAN flag. This flag allows for
forwarding to server groups that are not associated with a resource manager.

-f delay

Used to cause the server to forward the message to the service instead of using tpcalil.

The message is sent such that a reply is not expected from the service. The TMQFORWARD
server does not block waiting for the reply from the service and can continue processing
the next message from the queue. To throttle the system such that TmororwARD does not
flood the system with requests, the de1ay numeric value can be used to indicate a delay,
in seconds, between processing requests; use zero for no delay.

Messages are sent to a server providing a service whose name matches the queue name from
which the message is read. The message priority is the priority specified when the message is
enqueued, if set. Otherwise, the priority is the priority for the service, as defined in the
configuration file, or the default (50).

Messages are dequeued and sent to the server within a transaction. If the service succeeds, the
transaction is committed and the message is deleted from the queue. If the message is associated
with a reply queue, any reply from the service is enqueued to the reply queue, along with the
returned tpurcode. If the reply queue does not exist, the reply is dropped.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMQFORWARD(5)

An application may be able to specify the quality of service for a reply to a message when the
original message is enqueued. If a reply quality of service is not specified, the default delivery
policy specified for the reply queue is used. Note that the default delivery policy is determined
when the reply to a message is enqueued. That is, if the default delivery policy of the reply queue
is modified between the time that the original message is enqueued and the reply to the message
is enqueued, the policy used is the one in effect when the reply is finally enqueued.

If the service fails, the transaction is rolled back and the message is put back on the queue, up to
the number of times specified by the retry limit configured for the queue. When a message is put
back on the queue, the rules for ordering and dequeuing that applied when it was first put on the
queue are (in effect) suspended for de1ay seconds; this opens up the possibility, for example, that
a message of a lower priority may be dequeued ahead of the restored message on a queue ordered
by priority.

If the -a option is specified, the message is deleted from the queue if the service fails and a reply
message is received from the server, and the reply message (and associated tpurcode) are
engueued to the failure queue, if one is associated with the message and the queue exists. If the
message is to be deleted at the same time as the retry limit for the queue is reached, the original
request message is put into the error queue.

Any configuration condition that prevents TMororwARD from dequeuing or forwarding messages
will cause the server to fail to boot. These conditions include the following:

e The srRVGRP must have TMSNAME Set t0 TMS_ QM.
e OPENINFO Must be set to indicate the associated device and queue name.
e The SERVER entry must not be part of an MSSQ set.

e REPLYQ Must be set to N.

The -q option must be specified in the command-line options.

e The server must not advertise any services (that is, the -s option must not be specified).

Handling Application Buffer Types

As delivered, TmororwaRD handles the standard buffer types provided with the BEA Tuxedo
system. If additional application buffer types are needed, a customized version of TMQFORWARD
needs to be built using buildserver (1) with a customized type switch. See the description in
Using the ATMI /Q Component.

The files included by the caller should include only the application buffer type switch and any
required supporting routines. buildserver is used to combine the server object file,

File Formats, Data Descriptions, MIBs, and System Processes Reference 431

$TUXDIR/1ib/TMQFORWARD. o, With the application type switch file(s), and link it with the
needed BEA Tuxedo system libraries. The following example provides a sample for further
discussion.

buildserver -v -o TMQFORWARD -r TUXEDO/QM -f ${TUXDIR}/lib/TMQFORWARD.o -f
apptypsw.o

The buildserver options are as follows:

-V
Specifies that buildserver should work in verbose mode. In particular, it writes the cc
command to its standard output.

-0 name

Specifies the filename of the output load module. The name specified here must also be
specified in the seErvERS section of the configuration file. It is recommended that the
name TMQFORWARD be used for consistency. The application specific version of the
command can be installed in $sappD1IR it is booted instead of the version in $TUXDIR/bin.

-r TUXEDO/QM
Specifies the resource manager associated with this server. The value TuxEDO/ QM appears
in the resource manager table located in $TUXDIR/udataobj/RM and includes the library
for the BEA Tuxedo system queue manager.

-f $TUXDIR/1lib/TMQFORWARD. O
Specifies the object file that contains the TmMororwaRD service and should be specified as
the first argument to the - £ option.

-f firstfiles
Specifies one or more user files to be included in the compilation and/or link edit phases
of buildserver. Source files are compiled using the either the cc command or the
compilation command specified through the CC environment variable. These files must
be specified after including the TmororwARD.O object file. If more than one file is
specified, filenames must be separated by white space (space or tab) and the entire list
must be enclosed in quotation marks. This option can be specified multiple times.

The -s option must not be specified to advertise services.

Portability

432

TMQFORWARD i$ supported as a BEA Tuxedo system-supplied server on all supported server
platforms.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMQFORWARD(5)

Interoperability

TMQFORWARD May be run in an interoperating application, but it must run on a BEA Tuxedo
release 4.2 or later node.

Examples
*GROUPS # For Windows, :myqueue becomes ;mygueue
TMQUEUEGRP LMID=1mid GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/device:myqueue"
no CLOSEINFO is required

*SERVERS # recommended values RESTART=Y GRACE=0

TMQFORWARD SRVGRP="TMQUEUEGRP" SRVID=1001 RESTART=Y GRACE=0
CLOPT=" -- -gservicel,service2" REPLYQ=N

TMQUEUE SRVGRP="TMQUEUEGRP" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-s ACCOUNTING:TMQUEUE"

See Also

buildserver (1), tpdequeue (3c), tpenqueue (3c), servopts (5), TMQUEUE (5),
UBBCONFIG(5)

Setting Up a BEA Tuxedo Application
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference 433

TMQUEUE(3)

Name

TMQUEUE—Message Queue Manager

Synopsis

TMQUEUE

SRVGRP="identifier"

SRVID="number" CLOPT=" [-A][servopts options] -- [-t timeout]"
Description

The message queue manager is a BEA Tuxedo system-supplied server that enqueues and
dequeues messages on behalf of programs calling t penqueue () and tpdequeue (), respectively.
The application administrator enables message enqueuing and dequeuing for the application by
specifying this server as an application server in the SERVERS section.

The location, server group, server identifier and other generic server related parameters are
associated with the server using the already defined configuration file mechanisms for servers.
The following additional command-line option is available for customization.

-t timeout
Used to indicate the timeout to be used for queuing operations when not in transaction
mode (for example, tpenqueue () Or tpdequeue () are called when the caller is not in
transaction mode or with the TpnoTRAN flag). This value also has an impact on dequeue
requests with the Trowa1T option since the operation will timeout and an error will be sent
back to the requester based on this value. If not specified, the default is 30 seconds.

A TMQUEUE server is booted as part of an application to facilitate application access to its
associated queue space; a queue space is a collection of queues.

Any configuration condition that prevents the TmMQuEUE from enqueuing or dequeuing messages
will cause the TmQuUEUE to fail at boot time. The srverp must have TMSNAME set to TMS_ow, and
must have oPENTNFO Set to indicate the associated device and queue space name.

Queue Name for Message Submission

434

The tpenqueue () and tpdequeue () functions take a queue space name as their first argument.
This name must be the name of a service advertised by TmMoueuE. By default, TMoUuEUE only offers
the service “tMoureUE”. While this may be sufficient for applications with only a single queue
space, applications with multiple queue spaces may need to have different queue space names.
Additionally, applications may wish to provide more descriptive service names that match the

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMQUEUE(5)

queue space names. Advertising additional service names can be done using the standard server
command line option, -s, as shown below in ExamMpLES. An alternative is to hard-code the service
when generating a custom TMQUEUE program, as discussed in the following section.

While these methods (the server command line option or a customized server) may be used for
static routing of messages to a queue space, dynamic routing may be accomplished using
data-dependent routing. In this case, each TMQUEUE server would advertise the same service
name(s) but a rourIng field in the configuration file would be used to specify routing criteria
based on the application data in the queued message. The routing function returns a croup based
on the service name and application typed buffer data, which is used to direct the message to the
service at the specified group (note that there can be only one queue space per Group, based on
the OPENINFO string).

Handling Application Buffer Types

As delivered, Tmourug handles the standard buffer types provided with BEA Tuxedo system. If
additional application buffer types are needed, a customized version of TMQUEUE needs to be built
using buildserver (1). See the description in Using the ATMI /Q Component.

The customization described in buildserver can also be used to hard-code service names for
the server.

The files included by the caller should include only the application buffer type switch and any
required supporting routines. buildserver is used to combine the server object file,
$TUXDIR/1ib/TMQUEUE. o, With the application type switch file(s), and link it with the needed
BEA Tuxedo system libraries. The following example provides a sample for further discussion.

buildserver -v -o TMQUEUE -s gspacename:TMQUEUE -r TUXEDO/QM \
-f ${TUXDIR}/1lib/TMQUEUE.o -f apptypsw.o

The buildserver options are as follows:

-V
Specifies that buildserver should work in verbose mode. In particular, it writes the cc
command to its standard output.

-0 name

Specifies the filename of the output load module. The name specified here must also be
specified in the servERs section of the configuration file. It is recommended that
TMQUEUE be used for consistency.

-s gspacename, gspacename .TMQUEUE
Specifies the names of services that can be advertised when the server is booted (see
servopts (5)). For this server, they will be used as the aliases for the queue space name

File Formats, Data Descriptions, MIBs, and System Processes Reference 435

to which requests may be submitted. Spaces are not allowed between commas. The
function name, TMQUEUE, is preceded by a colon. The -s option may appear several times.

-r TUXEDO/QM
Specifies the resource manager associated with this server. The value TuxEDO/ Qu appears
in the resource manager table located in $TUXDIR/udataobj/RM and includes the library
for the BEA Tuxedo system queue manager.

-f $TUXDIR/1lib/TMQUEUE.oO
Specifies the object file that contains the TMouEUE service and should be specified as the
first argument to the - £ option.

-f firstfiles
Specifies one or more user files to be included in the compilation and/or link edit phases
of buildserver. Source files are compiled using the either the cc command or the
compilation command specified through the CC environment variable. These files must
be specified after including the TMQUEUE. o object file. If more than one file is specified,
filenames must be separated by white space (space or tab) and the entire list must be
enclosed in quotation marks. This option can be specified multiple times.

Portability

TMQUEUE iS supported as a BEA Tuxedo system-supplied server on all supported server
platforms.

Interoperability

TMQUEUE may be run in an interoperating application, but it must run on a BEA Tuxedo release
4.2 or later node.

Examples

*GROUPS

For Windows, :myqueue becomes ;mygqueue

TMQUEUEGRP1 GRPNO=1 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/devicel :myqueue"

For Windows, :myqueue becomes ;mygqueue

TMQUEUEGRP2 GRPNO=2 TMSNAME=TMS_QM
OPENINFO="TUXEDO/QM: /dev/device2 :myqueue"

*SERVERS
The queue space name, mygueue, is aliased as ACCOUNTING in this example
TMQUEUE SRVGRP="TMQUEUEGRP1" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-s ACCOUNTING:TMQUEUE"
TMQUEUE SRVGRP="TMQUEUEGRP2" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-s ACCOUNTING:TMQUEUE"

436 File Formats, Data Descriptions, MIBs, and System Processes Reference

TMQUEUE(5)

TMQFORWARD SRVGRP="TMQUEUEGRP1" SRVID=1001 RESTART=Y GRACE=0 REPLYQ=N

CLOPT=" -- -gservicel"

TMQFORWARD SRVGRP="TMQUEUEGRP2" SRVID=1001 RESTART=Y GRACE=0 REPLYQ=N
CLOPT=" -- -gservicel"

*SERVICES

ACCOUNTING ROUTING="MYROUTING"

*ROUTING

MYROUTING FIELD=ACCOUNT BUFTYPE="FML"
RANGES="MIN - 60000:TMQUEUEGRP1, 60001-MAX: TMQUEUEGRP2"

In this example, two queues spaces are available. Both TMouEUE servers offer the same services
and routing is done via the account field in the application typed buffer.

See Also

buildserver (1), tpdequeue (3¢c), tpenqueue (3¢c), servopts (5), TMQFORWARD (5),
UBBCONFIG(5)

Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference 431

TMSYSEVT(3)

Name

TMSYSEVT—SYSstem event reporting process

Synopsis

TMSYSEVT SRVGRP="identifier" SRVID="number"
[CLOPT="[-A] [servopts options]
[-- [-8] [-p poll-seconds] [-f control-filell]l"]

Description

TMSYSEVT is a BEA Tuxedo system provided server that processes event reports related to system
failure or potential failure conditions. The event reports are filtered, and may trigger one or more
notification actions.

Filtering and notification rules are stored in control-£ile, which defaults to
${APPDIR}/tmsysevt.dat. Control file syntax is defined in EvENT_MIB (5); specifically, the
attributes of the classes in EVENT_M1B can be set to activate subscriptions under the full range of
notification rules.

It is possible to boot one or more secondary TMsysevT processes for increased availability.
Additional servers must be booted with the -s command-line option, which indicates a
“secondary” server.

When the evenT _M1B(5) configuration is updated, the primary TMSYSEVT Server writes to its
control file. Secondary servers poll the primary server for changes and update their local control
file if necessary. The polling interval is controlled by the -p option, and is 30 seconds by default.

Note: Ifyou are setting up an MP configuration that includes more than one release of the BEA
Tuxedo system and you want to run the TMUSREVT and/or TMSYSEVT server, you must run
these servers on the node with the highest available release of the system.

Interoperability

438

TMSYSEVT must run on a BEA Tuxedo release 6.0 or later machine.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMSYSEVT(5)

Notices

To migrate the primary TMsysSEvT server to another machine, the system administrator must
provide a current copy of control-f£ile. Each secondary TMsYsEVT server automatically
maintains a recent copy.

TMSYSEVT heeds access to the system’s FML32 field table definitions for system events.
FLDTBLDIR32 should include $TUXDIR/udataobj, and FIELDTBLS32 should include evt_mib.
These environment variables may be set in the machine's or server's environment file.

Example

*SERVERS

TMSYSEVT SRVGRP=ADMIN1l SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A --"

TMSYSEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
CLOPT="-A -- -S -p 90"

See Also

tpsubscribe (3¢), EVENTS (5), EVENT_MIB (5), TMUSREVT (5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 439

tmtrace(5)

Name

Descr

440

tmtrace—Run-time tracing facility

iption

The run-time tracing facility allows application administrators and developers to trace the
execution of a BEA Tuxedo application.

Run-time tracing is based on the notion of a trace point, which marks an interesting condition
or transition during the execution of an application. Examples of trace points are the entry to an
ATMI function such as tpcall, the arrival of a BEA Tuxedo message, or the start of a
transaction.

When a trace point is reached, the following things happen. First, a fi1ter is applied to
determine if the trace point is of interest. If s0, a trace recordisemitted to a receiver, which
is a file or (in the future) a buffer. Finally, an action is triggered, such as aborting the process.
Both the emission to a receiver and the trigger are optional, and neither takes place if the trace
point does not pass the filter.

The filter, receiver, and trigger are specified in the trace specification, Whose syntax is
described below. The trace specification is initialized from the TMTRACE environment variable.
The trace specification of a running process may be changed either as a trigger action or by using
the changetrace command of tmadmin (1).

Trace points are classified into trace categories, enumerated below. Each trace point belongs
to a single category. The filter describes the trace categories of interest, and minimal processing
occurs for trace points that do not pass the filter.

Run-time tracing also provides the capability to dye the messages sent by a client to a server, and
transitively by that server to other servers. If a process chooses to dye its messages, the dye is
automatically passed by the originating process to all processes that directly or indirectly receive
messages from the originating process. When a process receives a dyed message, it automatically
turns on the atmi trace category and starts emitting trace records to the user log, if this was not
being done already.

Dyeing can be explicitly turned on or off by the dye and undye triggers in the trace specification.
Dyeing is also implicitly turned on when a dyed message is received, and implicitly turned off by
tpreturn () and tpforward (). When it is implicitly turned off, the tracing specification in
effect when dyeing was turned on is restored.

File Formats, Data Descriptions, MIBs, and System Processes Reference

tmtrace(5)

Trace Categories
The trace categories are:

atmi
Trace points for explicit application calls to the ATMI and TX interfaces, that is, calls to
the tp and tx_ functions, and the invocation of application services There are a few
exceptions. Implicit calls are printed in this category where some TX interfaces directly
call ATMI interfaces, for the implicit call to tpinit when an ATMI call is done with first
calling tpinit (), and for cases where tpreturn is called on error (to aid in debugging).

iatmi
Trace points for zmplicit calls to the ATMI and TX interface. These trace points indicate
all internal calls made while processing application requests and for administration.
Setting this level implies the atmi level, that is, every call to an ATMI or TX interface is
traced (both explicit and implicit).

Xa

Trace points for every call to the XA interface (the interface between the Transaction
Manager and a Resource Manager, for example, a database).

trace
Trace points related to the tracing feature itself, including message dyeing

Trace Specification

The trace specification is a string with the syntax filter-spec: receiver-spec]| :
trigger-spec] Where filter-spec describes the trace categories to be examined or ignored,
receiver-spec is the receiver of trace records, and the optional trigger-spec describes the
action to be performed.

The NULL string is also a legal trace specification. It is the default for all BEA Tuxedo processes
if no other specification is supplied.

The strings on and of £ are also accepted: on is an alias for atmi :ulog:dye, and off is
equivalentto: :undye.

Filter Specification
The filter specification, which is the first component of the trace specification, has the syntax:
[{-+|—}] [category]...

where category is one of the categories listed above. The symbol * can be used in place of
category to denote all categories. The prefix + or - specifies that the following category is to be

File Formats, Data Descriptions, MIBs, and System Processes Reference 441

added or subtracted from the set of categories currently in effect. If no category follows a + or -,
the categories currently in effect are not modified.

An empty filter means that no categories are to be selected, which effectively disables tracing.

When a trace point occurs, its category is compared with the filter specification. If the category
is included, the trace point is processed further—according to the receiver and trigger
specifications. If the category is not included, no further processing of the trace point occurs.

Receiver Specification

A receiver is the entity to which a trace record is sent. There is at most one receiver of each trace
record.

The receiver specification, which is the second component of the trace specification, has the
syntax

[/ regular-expression /] receiver

where the optional regular expression may be used to select a subset of the trace points that pass
the filter. The regular expression is matched with the trace record. An empty receiver
specification is also legal, in which case no trace records are emitted.

Legal receiver values are:

ulog
Outputs trace record information to the user log.

utrace
Outputs trace record information as defined by the user. The utrace receiver calls
user-defined tputrace (3c) for atmi trace category records only. Users can customize
trace record information and output location.

Trigger Specification

442

A trigger is an optional action performed after a trace record is emitted. At most one action is
executed for each trace record that passes the filter.

The trigger specification, which is the optional third part of the trace specification, has the syntax:
[/ regular-expressionl] action

where the optional regular expression may be used to restrict the trigger so that it is executed only
for a subset of the trace points that pass the filter. The regular expression is matched with the trace
record.

The available actions are

File Formats, Data Descriptions, MIBs, and System Processes Reference

tmtrace(5)

abort
Terminate the process by calling abort().

ulog(message)
Write the message to the user log.

system(command)
Execute the command using system(3) (this is not supported for Windows clients);
occurrences of %A are expanded to the value of trace record.

trace(trace-spec)
Reset the trace specification to the supplied trace-spec.

dye
Turn on message dyeing.

undye
Turn off message dyeing.

sleep(seconds)
Sleep the specified number of seconds (this is not supported for Windows clients).

Trace Records
A trace record is a string with the format:

cc:data

where ccis the first two characters of the trace category and data contains additional information
about the trace point.

When a trace record appears in the user log, the line looks like this:

hhmmss . system-name! process-name.pid: TRACE:cc:data

Notices

Match patterns cannot be specified for the receiver and trigger for Workstation clients running on
MAC platforms; the regular expressions will be ignored.

The tmadmin changetrace command cannot be used to affect the tracing level for Workstation
clients.

Examples

To trace a client, as well as to trace all ATMI calls made by an application server on behalf of
that client, set and export TMTRACE=0n in the environment of the client. This specification will

File Formats, Data Descriptions, MIBs, and System Processes Reference 443

444

cause all explicit ATMI trace points in the client to be logged and message dyeing to be turned
on. Any application server process that performs a service on behalf of the client will
automatically log all explicit ATMI trace points.

To see all client trace points, both explicit and implicit, for the previous example, set and export:

TMTRACE="*:ulog:dye:"

To trace service requests from a client as in the previous example, but restrict the tracing output
from the client to the bare minimum of information about tpcal1 requests, set and export:

TMTRACE=atmi: /tpacall/ulog:dye

in the environment of the client. This specification will cause all tpacal1l invocations in the
client to be logged and message dyeing to be turned on. Any application server process that
performs a service on behalf of the client will automatically log all ATMI trace points. The
client's identifier, which is included in the tpacall () trace record, can be correlated with the
value of the TpsvcINFO parameter passed to any service routine invoked on the client's behalf.

To trace the invocations of all service requests performed by application servers, set:
TMTRACE=atmi: /tpservice/ulog
in the server EnvrrLES on all participating machines.

To enable run-time tracing of all trace categories throughout an application, with message dyeing
turned on, set and export:

TMTRACE=*:ulog:dye

in the environment of all clients and in the machine envrFzLEs on all participating machines. This
setting will probably produce an unmanageable amount of output because all processes, including
the BBL and pBaL, will emit trace records.

To turn on ATMI tracing in all running servers in group croup1 after they are booted, invoke the
changetrace command of tmadmin as follows:

changetrace -g GROUP1l on

Note that changetrace affects only currently-existing processes; it does not change the trace
configuration of servers in group croup1 that have not yet been booted. (To set the default trace
configuration of a server, set TMTRACE in itS ENVFILE.)

To turn off tracing in all currently-running application processes, use changetrace as follows:

File Formats, Data Descriptions, MIBs, and System Processes Reference

tmtrace(5)

changetrace -m all off

To cause the running server process whose identifier is 1 in group crour1 to abort when it
executes tpreturn, specify the following to tmadmin:

changetrace -i 1 -g GROUP1 "atmi::/tpreturn/abort"

See Also

tmadmin (1), userlog(3c), tputrace (3c)

File Formats, Data Descriptions, MIBs, and System Processes Reference 445

TMUSREVT(3)

Name

TMUSREVT—USer event reporting process

Synopsis
TMUSREVT SRVGRP="identifier" SRVID="number"
[CLOPT="[-A] [servopts options]
[-- [-S] [-p poll-seconds] [-f control-filell"]
Description

TMUSREVT iS a BEA Tuxedo system provided server that processes event report message buffers
from tppost (3c), and acts as an EventBroker to filter and distribute them.

Filtering and notification rules are stored in control-f£ile, which defaults to
${APPDIR}/tmusrevt.dat. Control file syntax is defined in EveEnT_MIB (5); specifically, the
attributes of the classes in EVENT_M1B can be set to activate subscriptions under the full range of
notification rules.

It is possible to boot one or more secondary TMUSREVT processes for increased availability.
Additional servers must be booted with the -s command-line option, which indicates a
“secondary” server.

When the evenT_m1B (5) configuration is updated, the primary TMUSREVT server writes to its
control file. Secondary servers poll the primary server for changes and update their local control
file if necessary. The polling interval is controlled by the -p option, and is 30 seconds by default.

Note: If you are setting up an MP configuration that includes more than one release of the BEA
Tuxedo system and you want to run the TMUSREVT and/or TMSYSEVT server, you must run
these servers on the node with the highest available release of the system.

Interoperability

TMUSREVT must run on a BEA Tuxedo release 6.0 or later machine.

Notices

446

To migrate the primary TMusREVT server to another machine, the system administrator must
provide a current copy of control-f£ile. Each secondary TMUSREVT Server automatically
maintains a recent copy.

File Formats, Data Descriptions, MIBs, and System Processes Reference

TMUSREVT(5)

If tppost () will be called in transaction mode, all TMUSREVT server groups must have
transactional capability (a TMS process).

The TMusrEVT Server's environment variables must be set so that FML field tables and viewfiles
needed for message filtering and formatting are available. They could be set in the machine's or

server's environment file.

Example
*SERVERS
TMUSREVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y MAXGEN=5 GRACE=3600
CLOPT="-A —--"
TMUSREVT SRVGRP=ADMINZ2 SRVID=100 RESTART=Y MAXGEN=5 GRACE=3600
CLOPT="-A -- -S -p 120"

See Also

tppost (3¢), tpsubscribe (3c¢), EVENTS (5), EVENT_MIB(5), TMSYSEVT (5)

File Formats, Data Descriptions, MIBs, and System Processes Reference 447

tperrno(5)

Name

tperrno—BEA Tuxedo system error codes

Synopsis

#include <atmi.h>

Description

448

The numerical value represented by the symbolic name of an error condition is assigned to
tperrno for errors that occur when executing a BEA Tuxedo system library routine.

The name tperrno expands to a modifiable 1value that has type int, the value of which is set
to a positive error number by several BEA Tuxedo system library routines. tperrno need not be
the identifier of an object; it might expand to a modifiable 1vaiue resulting from a function call.
It is unspecified whether tperrno is a macro or an identifier declared with external linkage. If a
tperrno macro definition is suppressed to access an actual object, or if a program defines an
identifier with the name tperrno, the behavior is undefined.

The reference pages for BEA Tuxedo system library routines list possible error conditions for
each routine and the meaning of the error in that context. The order in which possible errors are
listed is not significant and does not imply precedence. The value of tperrno should be checked
only after an error has been indicated; that is, when the return value of the component indicates
an error and the component definition specifies that tperrno is set on error. An application that
checks the value of tperrno must include the <atmi . h> header file.

The following list describes the general meaning of each error:

TPEABORT
A transaction could not commit because either the work performed by the initiator or by
one or more of its participants could not commit.

TPEBADDESC
A call descriptor is invalid or is not the descriptor with which a conversational service was
invoked.

TPEBLOCK
A blocking condition exists and TpNOBLOCK Was specified.

TPEDIAGNOSTIC
The enqueuing of a message on the specified queue failed. The reason for failure can be
determined by the diagnostic returned via ctl.

File Formats, Data Descriptions, MIBs, and System Processes Reference

tperrno(5)

TPEEVENT
An event occurred; the event type is returned in revent.

TPEGOTSIG
A signal was received and TPSIGRSTRT Was not specified.

TPEHAZARD
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

TPEHEURISTIC
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

TPEINVAL
An invalid argument was detected.

TPEITYPE
The type and subtype of the input buffer is not one of the types and subtypes that the
service accepts.

TPELIMIT
The caller’s request was not sent because the maximum number of outstanding requests
or connections has been reached.

TPEMATCH
svcname is already advertised for the server but with a function other than func.

TPEMIB
The administrative request failed. outbuf is updated and returned to the caller with
FML32 fields indicating the cause of the error, as described in M1B(5) and TM_MIB (5).

TPENOENT
Cannot send to svc because it does not exist or is not the correct type of service.

TPEOS
An operating system error has occurred.

TPEOTYPE
The type and subtype of the reply are not known to the caller.

TPEPERM
A client cannot join an application because it does not have permission to do so or because
it has not supplied the correct application password.

File Formats, Data Descriptions, MIBs, and System Processes Reference 449

TPEPROTO
A library routine was called in an improper context.

TPERELEASE
When the Tpack is set and the target is a client from a prior release of the BEA Tuxedo
system that does not support the acknowledgment protocol.

TPERMERR
A resource manager failed to open or close correctly.

TPESVCERR
A service routine encountered an error either in tpreturn () Or tpforward() (for
example, bad arguments were passed).

TPESVCFAIL
The service routine sending the caller’s reply called tpreturn () with TpFAIL. Thisisan
application-level failure.

TPESYSTEM
A BEA Tuxedo system error has occurred.

TPETIME
This error code indicates that either a timeout has occurred or a transactional ATMI
function has been attempted, in spite of the fact that the current transaction is already
marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if renoBLOCK and/or TeNoTIME is specified.) In either case, no changes are made to
*odata, its contents, or *olen.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TeETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall () with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY Set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME

450 File Formats, Data Descriptions, MIBs, and System Processes Reference

tperrno(5)

TPETRAN
The caller cannot be placed in transaction mode.

Usage

Some routines do not have an error return value. Because no routine sets tperrno to zero, an
application can set tperrno to zero, call a routine and then check tperrno again to see if an error
has occurred.

See Also

See the ErRrRORS section of the individual BEA Tuxedo library routines for a more detailed
description of the meaning of the error codes returned by each routine.

File Formats, Data Descriptions, MIBs, and System Processes Reference 451

tpurcode()

Name

tpurcode—BEA Tuxedo system global variable for an application-specified return code

Synopsis

#include <atmi.h>

Description
tpurcode is a global variable defined in atmi . h. Its value is the same long integer used as the
value of the rcode argument of tpreturn (). tpurcode may be used by the application to return
additional information to the process that calls an application service. For details, see

tpreturn().

Assigning meanings to values in tpurcode is the responsibility of the application.

Examples

452

Following are examples showing the use of tpurcode:

If you return the value myval through rcode in an application service:

tpreturn (TPSUCCESS, myval, rgst->data, 0L, 0);

Then the code in the client module might be as follows:

ret = tpcall ("TOUPPER", (char *)sendbuf, 0, (char **)&rcvbuf,
(long)0) ;

File Formats, Data Descriptions, MIBs, and System Processes Reference

\ &rcvlen,

tpurcode(b)

(void) fprintf(stdout, "Returned string is: %s\n", rcvbuf);
(void) fprintf (stdout, "Returned tpurcode is: %d\n", tpurcode) ;

If we call the sample client, simpc1, with the value of “my string,” the output will look like this:
$simpcl "My String"

Returned string is: MY STRING

Returned tpurcode is: myval

The significance of myval must be defined by the application.

See Also

tpreturn (3c)

File Formats, Data Descriptions, MIBs, and System Processes Reference 453

tuxenv(5)

Name

Descr

tuxenv—L.ist of environment variables in the BEA Tuxedo system
iption
In order to compile application clients and servers, and run the BEA Tuxedo system, it is

important that the proper environment variables be set and exported. This reference page provides
a list of the most frequently used variables.

The environment variables are grouped in the following sections:
e Operating System Variables
e Key BEA Tuxedo system Variables
e Variables for Field Table Files and Viewfiles
e Filesystem and Trn.oG Variables
e \Workstation Variables
e BEA Tuxedo /Q Variables
e COBOL Variables
e DEBUG Variables

Additional Miscellaneous Variables

Operating System Variables

454

cc
Standard C compiler for use by buildserver and other BEA Tuxedo commands.

CFLAGS
Contains flags to be used by the C compiler.

EDITOR
Specifies the editor to be invoked by the BEA Tuxedo system.

LANG
Used to set the locale for language specification. See n1_types (5).

File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxenv(h)

LOGNAME
Specifies the username for use in error messages.

LD_LIBRARY PATH
Must be set to the pathname for run-time shared libraries.

NLSPATH
Specifies the pathname for the message catalog. If not specified, a default path is used.
See nlpaths(5).

PAGER
Specifies the paging command used for paging output in gmadmin (1), tmadmin (1). This
overrides the system default (pg(1) on UNIX operating systems).

PATH
Contains pathnames to be searched for executables.

SHELL
The shell program to be invoked by the BEA Tuxedo system.

TERM
Specifies terminal type, if a terminal is used.

TMPDIR
The pathname of a directory in which temporary files may be written. Temporary files
may also be written to a location specific to an operating system, as specified with the
tmpnam () function, which is called by the BEA Tuxedo MIB and other BEA Tuxedo
code. When a call is made t0 tmpnam (), the BEA Tuxedo system ignores the TMpDIR
variable.

Note that for BEA Tuxedo release 6.5 or earlier, the BEA Tuxedo code responsible for
transferring message files from clients to service queues would write a message file to the
temporary location specified with the tmpnam () function if the service queue was too full
to hold the message file; the code would then place the pathname of the temporary location
on the service queue. For BEA Tuxedo release 7.1 or later, this code operates just like it
did in previous releases except that the temporary location, if needed, is the pathname of
the directory specified by TMpDIR assuming that the variable is set; if TMpDIR is not set,
the temporary location becomes the one specified by the underlying operating system.

TZ
On systems where the ANSI C mkt ime functions does not exist, Tz must be set to use the
BEA Tuxedo gp_mktime (3c) function.

File Formats, Data Descriptions, MIBs, and System Processes Reference 455

More information on these variables is available in the UNIX system reference page

environ(5).

Key BEA Tuxedo System Variables
In general, the following environment variables should be set and exported:

APPDIR
Full pathname of the base directory for application files.

APP_PW
May be used to specify a password for system clients that prompt for an application
password (when security is on). Setting the password in a variable allows the password to
be provided from a script, rather than demanding manual entry.

ENVFILE
This variable is used by tmloadcf (1). It customarily contains setting for other BEA
Tuxedo system environment variable, which are set automatically by the system.

TLOGDEVICE
The pathname for the transaction log. This should be the same as the TLoGDEVICE
specified in the configuration file for the application.

TUXCONFIG
The pathname of the binary configuration file to be loaded by tmloadcf (1).

TUXDIR
Specifies the base directory where the BEA Tuxedo system software is installed.

ULOGPFX
Prefix of the filename of the central event log; default, uLog.

TPMBENC
Specifies the code-set encoding name that the application server or client running BEA
Tuxedo 8.1 or later includes in an allocated MBSTRING typed buffer. When an
application server or client process allocates and sends an MBSTRING buffer, the
code-set encoding name defined in TpMBENC is automatically added as an attribute to the
buffer and sent with the buffer data to the destination process.

When the application server or client process receives an MBSTRING buffer, and
assuming another environment variable named TpMBACONV iS Set, the code-set encoding
name defined in TeMBENC is automatically compared to the code-set encoding name in the
received buffer; if the names are not the same, the MBSTRING buffer data is
automatically converted to the encoding defined in TeMBENC before being delivered to the
server or client process.

456 File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxenv(h)

TPMBENC has no default value. For an application server or client using MBSTRING typed
buffers, TeMBENC must be defined.

Note: TpMBENC is used in a similar way for FL.p_mBsTRING fields in an FML32 typed
buffer.

TPMBACONV
Specifies whether the application server or client running BEA Tuxedo 8.1 or later
automatically converts the data in a received MBSTRING buffer to the encoding defined
in TeMBENC. By default, the automatic conversion is turned off, meaning that the data in
the received MBSTRING buffer is delivered to the destination server or client process as
is—no encoding conversion. Setting TemMBaconv to any non-NULL value, say v (yes),
turns on the automatic conversion.

Note: TpmBaconv isused in a similar way for rFL.o_mBsTrRING fields in an FML32 typed
buffer.

URLENTITYCACHING
Specifies whether the application server or workstation machine running BEA Tuxedo 8.1
or later software caches Document Type Definition (DTD), XML schema, and entity files;
specifically, whether the Apache Xerces-C++ parser running on the application server or
workstation machine caches the DTD and XML schema files when validation is required,
or caches external entity files called out in the DTD. By default, the caching is turned on
(v). Setting URLENTITYCACHING to N (no) turns off the caching.

URLENTITYCACHEDIR
Applies only if URLENTITYCACHING=Y (yes) or is not set; for details, see the description
of URLENTITYCACHING in this list.

Specifies the directory in which the application server or workstation machine running
BEA Tuxedo 8.1 or later software caches DTD, schema, and entity files; specifically,
where the Apache Xerces-C++ parser running on the application server or workstation
machine caches the DTD, XML schema, and entity files. The URLENTITYCACHEDIR
variable specifies the absolute pathname for the cached files. If URLENTITYCACHEDIR iS
not specified, the default directory becomes URLEnt i tyCachedir, which will be created
in the current working directory of the application server or Workstation client process
provided that the appropriate write permissions are set.

More information about these variables can be found in Programming a BEA Tuxedo ATMI
Application Using C, Setting Up a BEA Tuxedo Application, and Administering a BEA Tuxedo
Application at Run Time.

Variables for Field Table Files and Viewfiles
The following environment variables are used by FML and VIEWS:

File Formats, Data Descriptions, MIBs, and System Processes Reference 457

FIELDTBLS
Comma-separated list of field table files.

VIEWFILES
Comma-separated list of binary viewfiles.

FLDTBLDIR
Colon-separated list of directories to search for rTELDTBLS files.

VIEWDIR
Colon-separated list of directories to search for viewr1LES files.

More information about these variables can be found in Setting Up a BEA Tuxedo Application,
Administering a BEA Tuxedo Application at Run Time, Programming a BEA Tuxedo ATMI
Application Using C, and Programming a BEA Tuxedo ATMI Application Using FML.

Filesystem and TLOG Variables
The following variables are used by the BEA Tuxedo system filesystem and the transaction log.

FSCONFIG
The pathname for the Universal Device List.

FSMAXCOMMIT
Sets the maximum size of the commit buffer.

FSMAXUPDATE
Sets the size of the update list and the maximum number of updates.

FSMSGREP
Sets the message repetition interval.

FSOFFSET
Specifies an offset into the Universal Device List.

Workstation Variables
The following variables are used on Workstation client machines:

TPMBENC
See “Key BEA Tuxedo System Variables” on page 456.

TPMBACONV
See “Key BEA Tuxedo System Variables” on page 456.

URLENTITYCACHING
See “Key BEA Tuxedo System Variables” on page 456.

458 File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxenv(h)

URLENTITYCACHEDIR
See “Key BEA Tuxedo System Variables” on page 456.

WSINTOPPRE71
Determines whether the workstation machine running BEA Tuxedo 7.1 or later software
is allowed to interoperate with pre-release 7.1 BEA Tuxedo applications. Setting the
variable to v (wsInTOPPRE71=Y) allows interoperability.

WSBUFFERS
The number of packets per application.

WSDEVICE
The network device to be used for network access. For Workstation clients in BEA
Tuxedo release 6.4 and higher, this variable is no longer required.

WSENVFILE
Pathname of a file containing Workstation client environment variables.

WSFADDR
The network address used by the Workstation client when connecting to other machines.
This variable, along with the wsFrANGE variable, determine the range of TCP/IP ports to
which a process attempts to bind before making an outbound connection.

WSFRANGE
The range of TCP/IP ports to which a native process attempts to bind before making an
outbound connection. The wsrADDR variable specifies the base address of the range.

WSNADDR
The network address of the native site network listener.

WSRPLYMAX
The maximum message size before a message is dumped to a file for transfer.

WSTYPE
The machine type of the workstation machine.

More information on these variables can be found in Using the BEA Tuxedo ATMI Workstation
Component.

BEA Tuxedo /Q Variables

The following environment variable is used by BEA Tuxedo /Q:

QMCONFIG
Sets the device where queue space is available to BEA Tuxedo /Q.

File Formats, Data Descriptions, MIBs, and System Processes Reference 459

ISSANE
Used to enable /Q to continue to work even though TvMoFORWARD is terminated abnormally
without holding locks. When this variable is set to yes /vEs, if TMororwaARD is shutdown
abnormally, (for example, hung due to application server hanging), when shutdown
request is sent to TMQFORWARD, and TMOFORWARD does not hold any /Q locks, the /Q can
work normally and TMororRwARD can be restarted later. Otherwise, if TMQFORWARD
terminated abnormally, /Q will be marked as insane and must be restarted.

There is more information on this in Using the ATMI /Q Component.

COBOL Variables

The following environment variables are used with COBOL.:

ALTCC
Specifies the compiler for use with COBOL compilations.

Note: If using Fujitsu’s NetCOBOL compiler, you must set this variable to cobcc8s,
regardless of the platform.

ALTCFLAGS
Flags to be passed to the COBOL compiler.

Note: On a Windows system, the aLTcc and ALTCFLAGS environment variables are not
applicable and setting them will produce unexpected results. You must compile your
application first using a COBOL compiler and then pass the resulting object file to the
buildclient (1) Or buildserver (1) command.

COBCPY
Directories to be searched for COBOL Copy files.

Note: Ifusing Fujitsu’s NetCOBOL compiler, you may not set this variable. Refer to the
NetCOBOL manuals for specific information about COBOL environment
variables.

COBDIR
Specifies the directory where COBOL compiler software is located.

COBOPT
Contains command-line arguments for the COBOL compiler.

Note: Ifusing Fujitsu’s NetCOBOL compiler, you may not set this variable. Refer to the
NetCOBOL manuals for specific information about COBOL environment
variables.

File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxenv(h)

TM_ORB_ CLTMAXRTY
Used to specify the maximum time an ORB client should retry for a request. Valid values
are the integers 0 through 32767. No setting or setting to O results in no retry limit. For
other invalid values, system will reset interval value to O silently.

There is more information on these variables in the Programming a BEA Tuxedo ATMI
Application Using COBOL.

Additional Miscellaneous Variables
The following additional environment variables may be of use:

MHSCACHE
Specifies the number of message catalog handles to keep open (BEA Tuxedo system
messages only). The default is 3.

PMID
In MP mode, can be used to specify the physical machine ID. In addition, in a high
availability (HA) environment, pmM1D can be used to replace the machine name specified
in the uconrF1G file with an alternate machine name. This allows for moving a master
machine from master to backup in an HA cluster.

TAGENTLOG
Used to set the pathname for the t1isten (1) log.

TMCMPLIMIT
Used to specify whether compression should be used on messages and to set thresholds
for both local and remote messages. The syntax of the variable is:

TMCMPLIMIT=[remote threshold[, local_threshold]]

A threshold is a number in the range 0 to MaxLoNG. It sets the minimum byte size of a
message on which data compression will be performed.

TMCMPPRFM
This variable sets the compression level for any process that picks it up. Valid values are
the integers 1 through 9; 1 results in somewhat less compression that the higher levels, but
takes place faster. An informational ur.oc message is written when a process reads
TMCMPPRFM.

TMNETLOAD
Used to establish load balancing over a network. The value is an arbitrary number of units
to be added to the load factor of remote services. Use of this variable tends to force the use
of a local service.

File Formats, Data Descriptions, MIBs, and System Processes Reference 461

462

TMNOTHREADS

To turn off multithreaded processing, set this variable to yes. For applications that do not
use threads, turning them off should significantly improve performance by reducing the
amount of calls to mutexing functions.

TMSICACHEENTRIESMAX

Used to specify the amount of service and interface caching on a per-process basis. Valid
values are the integers 0 through 32767. The value set for this variable will override any
value in the ussconF1G file.

TM_ENGINE_TMSHMSEGSZ

Through this environment variable, Tuxedo 9.x allows you to adjust the maximum size of
a shared memory segment accessible by Tuxedo to something other than the Tuxedo
imposed default for the operating system. The Tuxedo system imposes a default shared
memory segment maximum on its use of shared memory. This Tuxedo imposed limit can
be lower than the maximum memory segment size tuned in the users kernel.

This environment variable should be set to the number of Mega-bytes that a shared
memory segment should be set to. For example, if you want to set the segment size to
500MB, you would issue the following command in the tuxedo environment:

export TM_ENGINE_TMSHMSEGSZ=500

The logic is implemented such that the maximum shared memory segment used by
Tuxedo will be set to 500 * (1024 * 1024) for a total of 524,288,000 bytes. If the
environment variable is not set, then the Tuxedo default size for the given operating
system will be used.

TM_ICU_COMPATIBILITY

This environment variable is used in MBSTRING codeset conversion to keep compatible
with ICU standard. The default is GNU standard. T™d_IcU_cOMPATIBILITY can be set as
follows:

export TM_ICU_COMPATIBILITY=yes

TM_GWT_OLDSECCHECK

This environment variable is for old-style security check. This should be set in the
environment of cwrpoMa1N. This variable will not affect any other Tuxedo processes even
if set for them. It is used to make interdomain transactional requests between Tuxedo 6.5
and other Tuxedo releases work when the Tuxedo domain running on Tuxedo 6.5 cannot
upgrade to patch level 446.

Note: When the Tuxedo 6.5 domain is upgraded to patch level 446 or later, this
environment variable should be removed.

File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxenv(b)

If TM_GWT_OLDSECCHECK=Y, the old-style security check is used by ewrpomaIn. This is
necessary to interoperate with Tuxedo 6.5 patches before patchlev 446. However, this
implies weaker security. If TM_GWT_OLDSECCHECK=Y, the GWTDOMAIN process writes an
informational ULOG message indicating that fact, when it receives the first incoming
data/connection from the network.

If TM_GWT_OLDSECCHECK=N Of if TM_GWT OLDSECCHECK i$ not set, the latest security
check is used. This implies that all the interoperating Tuxedo 6.5 domains should be at
least at patchlev 446.

T™_LOG_ESYS
This environment variable is used to add detailed information to ULOG when TpSYSTEM
error occurs. ™_LoG_EsYS is limited to ATMI calls and can be set as follows:

export TM_LOG_ESYS=all

export TM_LOG_ESYS=native

export TM_LOG_ESYS=native:ws

export TM_LOG_ESYS=native:ws:domain (same as “all”)

Note: native=native ATMI calls, ws=workstation ATMI calls, domain=ATMI calls
across a domain gateway.

TUX_BLOCKLICIW
Used to help reduce the amount of error messages sent to the user log and event broker.

Note: User should set an arbitrary string to turn Tux_BLOCKLICIW ONn and unset to turn
off.

TUx_BLOCKLICIW blocks the following error messages:

1) User Log:

CMDTUX_CAT:4749 WARN: Reached 100% of TUXEDO System Binary Licensed
User Count

CMDTUX_CAT:4753 INFO: Reached 90% of TUXEDO System Binary Licensed
User Count

CMDTUX_CAT:4729 WARN: Reached 100% of TUXEDO System Binary Licensed
User Count

CMDTUX_CAT:4731 INFO: Reached 90% of TUXEDO System Binary Licensed
User Count

2) Event Broker:

CMDTUX_CAT:4750 WARN: .SysLicenseWarn: Reached 100%% of TUXEDO System
Binary Licensed User Count

File Formats, Data Descriptions, MIBs, and System Processes Reference 463

CMDTUX_CAT:4754 INFO: .SysLicenseInfo: Reached 90%% of TUXEDO System
Binary Licensed User Count

CMDTUX_CAT:4730 WARN: .SysLicenseWarn: Reached 100%% of TUXEDO System
Binary Licensed User Count

CMDTUX_CAT:4732 INFO: .SysLicenseInfo: Reached 90%% of TUXEDO System
Binary Licensed User Count

UIMMEDSIGS
To override deferral of signals, set this variable to v.

See Also
buildclient (1), buildserver(l), viewc, viewc32 (1)

cc (1), environ(5) in a UNIX system reference manual

464 File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxtypes(d)

Name

tuxtypes—Buffer type switch; descriptions of buffer types provided by the BEA Tuxedo

system

Synopsis

Default Buffer Type Switch

/*

tuxtypes(5)

* The following definitions are specified in
* $TUXDIR/lib/tmtypesw.c

*/

#include <stdio.h>

#include <tmtypes.h>

/*
* Initialization of the buffer type switch.
*/
struct tmtype_sw_t tm_typesw[] = {
{
"CARRAY", /* type */
e, /* subtype */
0 /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
NULL, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
NULL, /* encdec */
NULL, /* route */
NULL, /* filter */
NULL, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

File Formats, Data Descriptions, MIBs, and System Processes Reference

465

"STRING", /* type */

ok, /* subtype */
512, /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
_strpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_strencdec, /* encdec */
NULL, /* route */
_sfilter, /* filter */
_sformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

},

{
"FML", /* type */
nE, /* subtype */
1024, /* dfltsize */
_finit, /* initbuf */
_freinit, /* reinitbuf */
_funinit, /* uninitbuf */
_fpresend, /* presend */
_fpostsend, /* postsend */
_fpostrecv, /* postrecv */
_fencdec, /* encdec */
_froute, /* route */
_ffilter, /* filter */
_fformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

},

{
"VIEW", /* type */
nE, /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */

466 File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxtypes(5)

_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */
/* XATMI - identical to CARRAY */
"X_OCTET", /* type */
e, /* subtype */
0 /* dfltsize */
/* XATMI - identical to VIEW */
{'xv,'_v,'cr, ' ,'YY P, 'E Y, /* type */
nEn /* subtype */
1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */
/* XATMI - identical to VIEW */
{xv,'_*,'c¢,'o','™m','™M™m",'0"','N"}, /* type */

File Formats, Data Descriptions, MIBs, and System Processes Reference 467

En, /* subtype */

1024, /* dfltsize */
_vinit, /* initbuf */
_vreinit, /* reinitbuf */
NULL, /* uninitbuf */
_vpresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec, /* encdec */
_vroute, /* route */
_vfilter, /* filter */
_vformat, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */

Y,

{
"FML32", /* type */
nk /* subtype */
1024, /* dfltsize */
_finit32, /* initbuf */
_freinit32, /* reinitbuf */
_funinit32, /* uninitbuf */
_fpresend32, /* presend */
_fpostsend32, /* postsend */
_fpostrecvi2, /* postrecv */
_fencdec32, /* encdec */
_froute32, /* route */
_ffilter32, /* filter */
_fformat32, /* format */
_fpresend232 /* presend2 */
_fmbconv32 /* multibyte code-set encoding conversion */

Y,

{
"VIEW32", /* type */
nk /* subtype */
1024, /* dfltsize */
_vinit32, /* initbuf */
_vreinit32, /* reinitbuf */

468 File Formats, Data Descriptions, MIBs, and System Processes Reference

tuxtypes(5)

NULL, /* uninitbuf */
_vpresend32, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
_vencdec32, /* encdec */
_vroute32, /* route */
_vfilter32, /* filter */
_vformat32, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */
"XML", /* type */

ok, /* subtype */
0, /* dfltsize */
NULL, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
NULL, /* presend */
NULL, /* postsend */
NULL, /* postrecv */
NULL, /* encdec */
_xroute, /* route */
NULL, /* filter */
NULL, /* format */
NULL, /* presend2 */
NULL /* multibyte code-set encoding conversion */
"MBSTRING", /* type */

nE, /* subtype */

0, /* dfltsize */
_mbsinit, /* initbuf */
NULL, /* reinitbuf */
NULL, /* uninitbuf */
_mbspresend, /* presend */
NULL, /* postsend */
NULL, /* postrecv */

File Formats, Data Descriptions, MIBs, and System Processes Reference 469

NULL,
NULL,
NULL,
NULL,
NULL,

_mbsconv

Y,

}
}i

/*
/*
/*
/*
/*

encdec */
route */
filter */
format */

presend2 */

/* multibyte code-set encoding conversion */

struct tmtype_sw_t _TM_FAR *

_TMDLLENTRY

_tmtypeswaddr (void)

{

return (tm_typesw) ;

}

Description

The following table lists the 11 buffer types provided by the BEA Tuxedo system.

CARRAY Character array (possibly containing NULL characters)
that is neither encoded nor decoded during transmission

STRING NULL-terminated character array

FML FML fielded buffer

VIEW C structure or FML view

X_OCTET Equivalent to CARRAY; provided for XATMI
compatibility

X_C_TYPE Equivalent to VIEW; provided for XATMI
compatibility

X_COMMON Equivalent to VIEW; provided for XATMI
compatibility

FML32 FML32 fielded buffer, using 32-bit identifiers and

offsets

File Formats, Data Descriptions, MIBs, and System Processes Reference

Files

tuxtypes(5)

VIEW32 C structure or FML32 view, using 32-bit identifiers,
counter variables, and size variables

XML Buffer for XML documents

MBSTRING Character array for multibyte characters

Note that all VIEW, X_C_TYPE, and X_COMMON buffers are handled by the same set of
routines; the name of a particular view is its subtype name.

An application programmer who wants to supply a custom buffer type can do so by adding an
instance to the tm_typesw array shown above. Whenever a new buffer type is added or one is
deleted, care should be taken to leave a NULL entry at the end of the array as shown above. Note
that a buffer type with a NULL name is not permitted.

A copy of the default array is delivered in $TUXDIR/1ib/tmtypesw.c, and may be used as a
starting point. The recommended procedure for installing a new buffer type switch is to compile
tmtypesw.c and store it as the only element in a library named 1ibbuft.

On systems with shared object capability, build and install a new instance of 1ibbuft.so. under
$TUXDIR/1ib. All processes, including BEA Tuxedo system processes like wss, will then
automatically have access to the new type switch without recompilation. On a Windows
workstation, the shared object for the buffer type switch is named weurT . pL.L. It should be stored
in $TUXDIR\bin.

On systems without shared object capability, build and install a new instance of 1ibbuft.a
under $TUxDIR/1ib. All processes needing to know about the new types must then be rebuilt,
using buildclient (1) Of buildserver (1).System processes like wsz may need to be rebuilt
using special commands such as buildwsh(1).

See puffer (3c) for a description of the elements and routines in the buffer type switch. Also
found there is a description of built in routines provided by the BEA Tuxedo system (for example,
_finit ()) that applications can use when changing the system-provided buffer types.

The three routing functions provided by the system, _froute(), _vroute(), and _xroute (),

are used for data-dependent routing of FML buffers, VIEW buffers, and XML buffers,
respectively. See ursconF1G (5) for instructions on defining the routing criteria to be used by
these three functions.

STUXDIR/tuxedo/include/tmtypes.h—the type switch definition
STUXDIR/1lib/tmtypesw.c—the default type switch instantiation

File Formats, Data Descriptions, MIBs, and System Processes Reference 47

STUXDIR/1lib/libbuft.so.—type switch shared object
STUXDIR/1lib/libbuft.a—type switch archive library

See Also

buffer(3c), typesw(5), UBBCONFIG(5)

472 File Formats, Data Descriptions, MIBs, and System Processes Reference

typesw(5)

typesw()

Name
typesw—DBuffer type switch structure; parameters and routines needed for each buffer type

Synopsis
Buffer Type Structure
/ *
* The following definitions are in $TUXDIR/include/tmtypes.h
*/
#define TMTYPELEN ED_TYPELEN
#define TMSTYPELEN ED_STYPELEN

struct tmtype_sw_t {

char type[TMTYPELEN] ; /* type of buffer */

char subtype[TMSTYPELEN]; /* subtype of buffer */

long dfltsize; /* default size of buffer */
/* buffer initialization function pointer */

int (_TMDLLENTRY *initbuf) _ ((char _TM_FAR *, long)):;

/* buffer reinitialization function pointer */
int (_TMDLLENTRY *reinitbuf) _ ((char _TM_FAR *, long));

/* buffer un-initialization function pointer */
int (_TMDLLENTRY *uninitbuf) _ ((char _TM_FAR *, long));

/* pre-send buffer manipulation func pointer */
long (_TMDLLENTRY *presend) ((char _TM_FAR *, long, long));

/* post-send buffer manipulation func pointer */
void (_TMDLLENTRY *postsend) ((char _TM_FAR *, long, long));

/* post-receive buffer manipulation func pointer*/
long (_TMDLLENTRY *postrecv) ((char _TM_FAR *, long, long));

/* XDR encode/decode function pointer */
long (_TMDLLENTRY *encdec) ((int, char _TM_FAR *, long, char _TM_FAR *,
long)) ;

/* routing function pointer */
int (_TMDLLENTRY *route) _ ((char _TM FAR *, char _TM _FAR *, char _TM_FAR *,
long, char _TM_FAR *));

/* buffer filtering function pointer */
int (_TMDLLENTRY *filter) _ ((char _TM_FAR *, long, char _TM_FAR *, long));

File Formats, Data Descriptions, MIBs, and System Processes Reference 473

i
/*
*

*

*/

/* buffer formatting function pointer */
int (_TMDLLENTRY *format) _ ((char _TM_FAR *, long, char _TM_FAR *,
char _TM_FAR *, long));

/* process buffer before sending, possibly generating copy */
long (_TMDLLENTRY *presend2) _ ((char _TM_FAR *, long,
long, char _TM_FAR *, long, long _TM_FAR *));

/* Multibyte code-set encoding conversion function pointer*/
long (_TMDLLENTRY *mbconv) _ ((char _TM_FAR *, long,
char _TM FAR *, char _TM FAR *, long, long _TM FAR *));

/* this space reserved for future expansion */
void (_TMDLLENTRY *reserved[8]) _ ((void));

application types switch pointer
always use this pointer when accessing the table

extern struct tmtype_sw _t *tm_typeswp;

Description

Each buffer type and subtype must have an entry in the tm_typesw array such that when a buffer
is manipulated the appropriate routines are called. For the buffer types provided by the BEA
Tuxedo system, see tuxtypes (5).

An application programmer who wants to supply a customized buffer type can do so by adding
an instance to the tm_typesw array in $TUXDIR/1ib/tmtypesw.c. (tuxtypes (5) shows how
this can be done.) The semantics of the routines that must be supplied when adding a new type

are specified in buffer (3c).

Files
STUXDIR/tuxedo/include/tmtypes.h—the type switch definition
STUXDIR/1lib/tmtypesw.c—the type switch instantiation

See Also

474

buffer (3c), tuxtypes (5)

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

UBBCONFIG(3)

Name
UBBCONFIG—Text version of a BEA Tuxedo configuration file

Description

When a BEA Tuxedo application is booted, the tmboot command refers to a binary configuration
file called TuxconF1G to get the information necessary for starting application servers and
initializing the bulletin boards in an orderly sequence. This binary file cannot be created directly;
it must be created from a text file called useconr1G. To configure an application, an
administrator creates a uscoNF1G file (with a text editor) and loads the file into a binary version
(TuxconF1c) by running the tmloadcf (1) command. During the life of the application, the
TUxCcoNFIG file is used by various BEA Tuxedo administrative tools. tmadmin (1) uses the
configuration file (or a copy of it) in its monitoring activity. tmshutdown (1) references the
configuration file for information needed to shut the application down.

A BEA Tuxedo ursconr1c file may be given any name as long as the content of the file
conforms to the format described on this reference page. In addition, the Tuxconrzc file may be
given any name; the actual name is the device or system filename specified in the TuxconrIc
environment variable.

For additional information pertaining to the entire ussconr1c file, see “UBBCONFIG(5)
Additional Information” on page 521.

Definitions

A server is a process that accepts requests and sends replies for clients and other servers. A client
originates requests and gets replies.

A resource manager is an interface and associated software providing access to a collection of
information and/or processes. An example of a resource manager is a database management
system; a resource manager instance is a particular instantiation of a database controlled by a
DBMS. A distributed transaction is a transaction that spans multiple resource manager instances,
is started with tpbegin (), and ended with tpcommit () Or tpabort ().

A server group is a resource manager instance and the collection of servers and/or services
providing access to that resource manager instance on a particular machine. The XA interface
associated with the group is used for transaction management. If a server does not access a
resource manager instance or does not access it as part of a distributed transaction, it must be in
a server group with a NULL XA interface. Similarly, clients run in a special client group that does

File Formats, Data Descriptions, MIBs, and System Processes Reference 475

not have to be specified in the croups section. The client group is not associated with a resource
manager.

A remote domain is defined to be an environment for which the bulletin board for this BEA
Tuxedo system configuration is not available. Remote domains are not specified in the
uBBCONF1G file, but rather through host-specific environment variables that are specified in
host-specific reference pages.

Configuration File Format

476

A uBBconFIc file is made up of nine possible specification sections. Lines beginning with an
asterisk (*) indicate the beginning of a specification section. Each such line contains the name of
the section immediately following the *. Allowable section names are:

e RESOURCES
e MACHINES

e GROUPS

e NETGROUPS
e NETWORK

e SERVERS

e SERVICES

e INTERFACES

e ROUTING

The RESOURCES and MACHINES sections must be the first two sections and must be included in
that order. The Groups section must precede the SERVERS, SERVICES, and ROUTING sections.
The NETGROUPS section must precede the NETWORK section.

Parameters (except in the RESOURCES section) are generally specified by: kEYWorD = value;
white space (space or tab character) is allowed on either side of the equal sign (=). This format
sets kEYwORD 10 value. Valid keywords are described within each section.

Lines beginning with the reserved word DEFAULT contain parameter specifications that apply to
any lines that follow them in the section in which they appear. Default specifications can be used
in all sections other than the REsoURCES section. They can appear more than once in the same
section. The format for these lines is:

DEFAULT: [optional KEYWORD=value pairs]

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

The values set on this line remain in effect until reset by another perauLT line, or until the end
of the section is reached. These values can also be overridden on non-perauLT lines by placing
the optional parameter setting on the line. If on a non-perauLT line, the parameter setting is valid
for that line only; lines that follow revert to the default setting. If pEFauLT appears on a line by
itself, all previously set defaults are cleared and their values revert to the system defaults.

If a value is numeric, standard C notation is used to denote the base, that is, 0x prefix for base
16 (hexadecimal), 0 prefix for base 8 (octal), and no prefix for base 10 (decimal). The range of
acceptable values for a numeric parameter is given under the description of that parameter.

If a value is an identifier (astring value already known to the BEA Tuxedo system such as
app_pw for the securITY parameter), standard C rules are typically used. A standard C
identifier starts with an alphabetic character or underscore and contains only alphanumeric
characters or underscores. The maximum allowable length of an identifier is 30 (not including the
terminating NULL).

Note: There is no need to enclose an identifier in double quotes.

A value that is neither an integer number nor an identifier must be enclosed in double quotes. This
value is a user-defined string. The maximum allowable length of a user-defined string is 78
characters (bytes), not including the terminating NULL. Exceptions to this rule are as follows:

e The CLOPT, BUFTYPE, OPENINFO, and cLOSEINFO parameters, which can be 256 characters
in length

e The TUXCONFIG, TUXDIR, APPDIR, TLOGDEVICE, ULOGPFX, ENVFILE, TMSNAME, RCMD,
NADDR, NLSADDR, FADDR, and aouT (in SERVERS section) parameters, which can be 256
characters in length as of BEA Tuxedo release 8.1; string values for these parameters are
limited to 78 characters in length for BEA Tuxedo 8.0 or earlier.

e The SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR
parameters, which can be 511 characters in length (not including the terminating NULL)

e The ranGEs parameter, which can be 2048 characters in length (except in Domains, where
it can be 4096 characters in length)

In the RaNGES parameter of the RouTING Section, certain special characters can be escaped inside
a string using a backslash.

“\” translates to a single backslash
“\"” translates to a double quote
“\n” translates to a newline

“\t” translates to a tab

File Formats, Data Descriptions, MIBs, and System Processes Reference 477

“\f” translates to a formfeed
“\O+” translates to a character whose octal value is O+

where o+ is one, two, or three octal characters. “\0” translates to an embedded NULL character.
“\xH+" or “\xH+" translates to a character whose hexadecimal value is 5+ where 1+ is one or
more hexadecimal characters. “\y” (where ‘y’ is any character other than one of the previously
mentioned characters) translates to ‘y’; this produces a warning.

“4” (pound sign) introduces a comment. A newline ends a comment.

An identifier or a numeric constant must always be followed by white space (space or tab
character), a newline character, or a punctuation character (pound sign, equals sign, asterisk,
colon, comma, backslash, or period).

Blank lines and comments are ignored.
Comments can be freely attached to the end of any line.

Lines are continued by placing at least one tab after the newline. Comments cannot be continued.

RESOURCES Section

This section provides for user specification of the system-wide resources, such as the number of
servers, and services which can exist within a service area. Lines in the RESOURCES section are
of the form: kEYworD value where kEYwWORD is the name of the parameter, and value its
associated value. Valid xkeyworps are as follows:

IPCKEY numeric_value
Specifies the numeric key for the well-known address in a BEA Tuxedo system bulletin
board. In a single processor environment, this key “names” the bulletin board. In a
multiple processor environment, this key names the message queue of the DBBL. In
addition, this key is used as a basis for deriving the names of resources other than the
well-known address, such as the names for bulletin boards throughout a multiprocessor.
IPCKEY must be greater than 32,768 and less than 262,143. This parameter is required.

MASTER string_valuel[,string_valueZ]

Specifies the machine on which the master copy of the Tuxconrzac file is found. Also, if
the application is being run in mp mode, MaSTER names the machine on which the DBBL
should be run. string_value2 names an alternate r.M1D location used during process
relocation and booting. If the primary location is not available, the DBBL is booted at the
alternate location and the alternate Tuxconr1c file found there is used. Both LD values
must name machines found in the macuINES section and must be less than or equal to 30
characters in length. This parameter is required (even in sum mode).

478 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

In an application that supports multiple release levels of the BEA Tuxedo system on
different machines, MasTER and BackuP must always have a release with a number greater
than or equal to all other machines in the application. This rule is not enforced during a
“Hot Upgrade.”

MODEL {SHM | MP}
Specifies the configuration type. This parameter is required and only one of the two
settings can be specified. suum (for shared memory) specifies a single machine
configuration; only one machine may be specified in the MAcHINES section. up specifies
a multi-machine configuration; mp must be specified if a networked application is being
defined. Note: to change value without relinking, servers must be built to support the
models needed (see buildserver (1)).

DOMAINID string value

Specifies the domain identification string. If not specified, the value " is used. If the value
of poMAINID is a character string, it may contain a maximum of 30 characters (including
the trailing NULL). If the value of poMa1NID is a string of hexadecimal digits, it may
contain a maximum of 30 octets. If poMa1NTD is specified, its value is included, as a
parameter (-c dom=domainid), in any command output that reports on the processes
associated with a particular domain, such as the output of the ps command. This comment
is useful for an administrator managing multiple domains, who may have some difficulty,
without this comment, in interpreting a single output stream that refers to several domains.

UID numeric_value
Specifies the numeric user ID to be associated with the IPC structures created for the
bulletin board. This value should be a UNIX system user ID on the local system. If not
specified, the value is taken to be the effective user ID of the user executing
tmloadcf (1). The rRESoUrcEs value for this parameter can be overridden in the
MACHINES Section on a per-processor basis.

GID numeric_value
Specifies the numeric group 1D to be associated with the IPC structures created for the
bulletin board. This value should be a valid UNIX system group ID on the local system.
If cTp is not specified, the effective group ID of the user executing tmloadcf (1) is used.
The rREsouRCEs value for this parameter can be overridden in the MACHINES Section on a
per-processor basis.

PERM numeric_value
Specifies the numeric permissions associated with the IPC structures that implement the
bulletin board. It is used to specify the read/write permissions for processes in the usual
UNIX system fashion (that is, with an octal number such a 0600). If not specified, the
permissions on the IPC structures default to 0666 (read/write access by same user, same

File Formats, Data Descriptions, MIBs, and System Processes Reference 479

480

group, and any other). The value can be between 0001 and 0777, inclusive. The
RESOURCES Vvalue for this parameter can be overridden in the MacHINES section on a
per-processor basis.

MAXACCESSERS numeric_value

Specifies the default maximum number of clients and servers that can be simultaneously
connected to the bulletin board on any particular machine in this application. This value
must be greater than 0 and less than 32,768. If not specified, the default maximum number
is 50. The REsoURCES Vvalue for this parameter can be overridden in the MacHINES section
on a per-machine basis.

System administration processes, such as the BBL, restartsrv, cleanupsrv,
tmshutdown (), and tmadmin (), need not be accounted for in this value, but the DBBL,
all bridge processes, all system-supplied and application server processes, and all
potential client processes at a particular site need to be counted. (Examples of
system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT,
TMS—SEe TMSNAME parameter in GROUPS section, TMS_QM, GWTDOMATN, and wst..) If the
application is booting workstation listeners (WSLs) at a particular site, both the WSLs and
the number of potential workstation handlers (WSHSs) that may be booted need to be
counted.

Note that for BEA Tuxedo pre-release 7.1 (6.5 or earlier), both the MmaxaccEsseRs and
MAXSERVERS parameters for an application play a part in the user license checking
scheme. Specifically, a machine is not allowed to boot if the number of MAXACCESSERS
for that machine + the number of maxaccessers for the machine (or machines) already
running in the application is greater than the number of MaxserRVERS + user licenses for
the application. Thus, the total number of Maxaccessers for an application must be less
than or equal to the number of MaxseERVERS + user licenses for the application.

Note also that the user license checking scheme in BEA Tuxedo release 7.1 or later
considers only the following two factors when performing its checks: the number of user
licenses for an application and the number of licenses currently in use for the application.
When all user licenses are in use, no new clients are allowed to join the application.

MAXSERVERS numeric_value

Specifies the maximum number of servers to be accommodated in the bulletin board
server table for this application. This value must be greater than 0 and less than 8192. If
not specified, the default is 50.

All instances of system-supplied and application servers available to an application need
to be accounted for in the bulletin board server table, which is a global table, meaning that
the same server table resides on each machine in the application. Examples of

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT,
TMS (See TMSNAME parameter in GROUPS section), TMS_QM, GWTDOMAIN, and WSL.

Administration of each BEA Tuxedo system site adds approximately one system-supplied
server. Additionally, the DBBL process and all BBL, bridge, and WSH processes must be
accounted for in the MAXSERVERS value.

MAXSERVICES numeric_value
Specifies the maximum total number of services to be accommodated in the services table
of the bulletin board. This value must be greater than 0 and less than 32,768. To calculate
an adequate value, be sure to count the number of services used by both application
servers and system servers, such as the BBL, DBBL, BRIDGE, TMS, and and any other
system servers needed by the application. If not specified, the default is 100.

MAXGROUPS numeric_value
Specifies the maximum number of configured server groups to be accommodated in the
group table of the bulletin board. This value must be greater than or equal to 100 and less
than 32,768. If not specified, the default is 100.

MAXNETGROUPS numeric_value
Specifies the maximum number of configured network groups to be accommodated in the
NETWORK Section of the Tuxconr1c file. This value must be greater than or equal to 1 and
less than 8192. If not specified, the default is 8.

MAXMACHINES numeric_value
Specifies the maximum number of configured machines to be accommodated in the
machine tables of the bulletin board. This value must greater than or equal to 256 and less
than 8,191. If not specified, the default is 256.

MAXQUEUES numeric_value
Specifies the maximum number of server request queues to be accommodated in the
queue table of the bulletin board. This value must greater than or equal to 1 and less than
8,192. If not specified, the value is set to the configured value for MAXSERVERS.
Interoperability with releases prior to 5.0 requires that this value be equal to the
configured value for MAXSERVERS.

MAXACLGROUPS numeric_value
Specifies the maximum number of group identifiers that can be used for ACL permissions
checking. The maximum group identifier that can be defined is Ta_maxaACL.GROUPS - 1.
This value must be greater than or equal to 1 and less than or equal to 16,384. If not
specified, the default is 16,384.

File Formats, Data Descriptions, MIBs, and System Processes Reference 481

MAXGTT numeric_value
Specifies the maximum number of simultaneous global transactions in which any
particular machine in this application can be involved. It must be greater than or equal to
0 and less than 32,768. If not specified, the default is 100. The rEsources value for this
parameter can be overridden in the MacHINES section on a per-machine basis.

MAXCONV numeric_value
Specifies the maximum number of simultaneous conversations in which clients and
servers on any particular machine in this application can be involved. It must be greater
than 0 and less than 32,768. If not specified, the default is 64 if any conversational servers
are defined in the sErVERsS section, or 1 otherwise. The maximum number of
simultaneous conversations per server is 64. The REsources value for this parameter can
be overridden in the MACHINES Section on a per-machine basis.

MAXBUFTYPE numeric_value
Specifies the maximum number of buffer types that can be accommodated in the buffer
type table in the bulletin board. It must be greater than 0 and less than 32,768. If not
specified, the default is 16.

MAXBUFSTYPE numeric_value
Specifies the maximum number of buffer subtypes that can be accommodated in the
buffer subtype table in the bulletin board. It must be greater than 0 and less than 32,768.
If not specified, the default is 32.

MAXDRT numeric_value
Specifies the maximum number of configured data-dependent routing criteria entries. It
must be greater than or equal to 0 and less than 32,768. If not specified, the default is
determined from the configured rouTING Section entries.

MAXRFT numeric_value
Specifies the maximum number of data-dependent routing range field table entries. It
must be greater than or equal to 0 and less than 32,768. If not specified, the default is
determined from the configured rouTING Section entries.

MAXRTDATA numeric_value
Specifies in bytes the maximum string pool space to be accommodated in the bulletin
board string pool table for data-dependent routing range strings. This value must be
greater than or equal to 0 and less than 32,761. If not specified, the default is determined
from the configured rouTING Section entries.

Strings and carrays specified within the rRangEs values in the rRouTING Section are stored
in the string pool. Additional space should be allocated to allow for run-time growth.

482 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

MAXSPDATA numeric_value
Specifies in bytes the maximum string pool space to be accommodated in the bulletin
board common string pool. This value must be greater than or equal to 0 and less than or
equal to 2147483640. The default is 0. This parameter applies only to applications running
BEA Tuxedo 8.1 or later software.

In most cases, accepting the default for this parameter will result in the BEA Tuxedo
system allocating sufficient string pool space for the following TuxconFIG parameter
strings whose maximum allowed length has been increased to 256 bytes in BEA Tuxedo
8.1: TUXCONFIG TUXDIR, APPDIR, TLOGDEVICE, ULOGPFX, ENVFILE, TMSNAME, RCMD,
NADDR, NLSADDR, FADDR, and the SERVERS section A0UT.

For applications for which extensive dynamic configuration is anticipated (for example,
anticipating the addition of six more machines to a BEA Tuxedo application),
administrators can use the maxsppaTa parameter to increase the size of the common string
pool. Note that adjusting the size of the common string pool has no effect on the size of
the of the routing string pool controlled by the maxrTDATA parameter. The two string
pools are separate.

Regardless of the value specified for maxsppaTa, the BEA Tuxedo system will not
allocate an amount of string pool space outside of a system-calculated range based on (1)
the strings actually specified in the Tuxconr1c file and (2) the amount of space that would
be required if all 256-byte capable strings were specified. The tmloadcf (1) command
will report a warning if the user-specified value is outside of this range and then set the
value to the closest acceptable value.

Note that of the TuxconFIc parameters whose maximum allowable length has been
increased to 256 bytes, only the Groups section TMsNaAME parameter and the SERVERS
section aouT and rcMD parameters are actually stored in the bulletin board. The others are
read in at process startup time and stored in process memory.

MAXTRANTIME numeric_value
Specifies in seconds the maximum timeout allowed for transactions started in or received
by this BEA Tuxedo application. This value must be greater than or equal to 0 and less
than or equal to 2147483647. The default is 0, which indicates that no global transaction
timeout limit s in effect. This parameter applies only to applications running BEA Tuxedo
8.1 or later software.

If the MAXTRANTIME timeout value is less than the TrRanTIME timeout value specified for
an AUTOTRAN Sservice or the timeout value passed in a tpbegin (3c) call to start a
transaction, the timeout for a transaction is reduced to the MmaAxTRANTIME value.
MAXTRANTIME has no effect on a transaction started on a machine running BEA Tuxedo
8.0 or earlier software, except that when a machine running BEA Tuxedo 8.1 or later

File Formats, Data Descriptions, MIBs, and System Processes Reference 483

software is infected by the transaction, the transaction timeout value is capped—reduced
if necessary—to the MaxTrRanTIME value configured for that machine.

Even if the TranTIME value specified in the servicEs section of the uBBconrF1G file is
greater than the MAXTRANTIME value, the tmloadcf (1) command loads the configuration
without error. Any BEA Tuxedo 8.1 or later machine infected with the AuToTrRAN
transaction will automatically reduce the transaction timeout to the MAXTRANTIME value
configured for that machine.

CMTRET {COMPLETE | LOGGED}
Specifies the initial setting of the Tp_commIT_conTrOL characteristic for all client and
server processes in a BEA Tuxedo system application. If vaiue is LOGGED, the
TP_COMMIT CONTROL characteristic is initialized to Tp_cMT LOGGED; otherwise, it is
initialized to Tp_cuT_compLETE. If cMTRET is not specified, the default is compL.ETE. See
the description of the BEA Tuxedo System ATMI function, tpscmt, for details on the
setting of this characteristic.

LDBAL {v | N}
Specifies whether or not load balancing should be performed. If .DBAL is not specified,
the default is v. It is recommended that if each service maps to one and only one queue,
set LDBAL to N because load balancing is automatic.

If you set L.oBAL t0 v, server load balancing is performed automatically. Each interface
request is routed to the server with the smallest total load. The routing of a request to a
server causes the server’s total to be increased by the Loap factor of the CORBA interface
requested.

When load balancing is not activated and multiple servers offer the same CORBA
interface, the first available queue receives the request.

SYSTEM_ACCESS {FASTPATH | PROTECTED}[, NO_OVERRIDE]
Specifies the default mode used by BEA Tuxedo system libraries within application
processes to gain access to internal tables of the BEA Tuxedo system. FasTpaTH specifies
that the internal tables are accessible by BEA Tuxedo system libraries via unprotected
shared memory for fast access. ProTECTED specifies that while the internal tables are
accessible by BEA Tuxedo system libraries via shared memory, the shared memory for
these tables is not accessible outside of the BEA Tuxedo system libraries. No_OVERRIDE
can be specified (either alone or in conjunction with FASTPATH OFr PROTECTED) to indicate
that the mode selected cannot be overridden by an application process using flags
available for use with tpinit (3c) Of TPINITIALIZE (3cbl). If SYSTEM_ACCESS IS not
specified, the default mode is FASTPATH.

484 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

Limitation: Setting sySTEM_ACCESS t0 PROTECTED may hot be effective for
multithreaded servers because it is possible that while one thread is executing BEA
Tuxedo code, which means it is attached to the bulletin board, another thread might be
executing user code. The BEA Tuxedo system cannot prevent such situations.

OPTIONS {[LAN | MIGRATE | NO_XA | NO_aa], *}
Specifies options that are used. If two or more options are given, they are separated by
commas. The identifier Lan indicates that this is a networked application. The identifier
MIGRATE indicates that server group migration can be done. If MIGRATE is specified, Lan
should also be specified (except for the case where the configuration runs on a single
multiprocessor computer). The identifier No_xa indicates that XA transactions are not
allowed. The identifier no_aa indicates that the auditing and authorization functions will
not be called. This parameter is optional, and the default is no options.

USIGNAL {SIGUSR1 | SIGUSR2}
Specifies the signal to be used if stenar-based notification is used. The legal values for
this parameter are s1Gusr1 and sTcUsRr2. s1GUSR2 is the default for this parameter.
USIGNAL may be specified even if stenar-based notification is not selected with the
NOTIFY parameter, because callers of tpinit () may choose signal-based notification.

SECURITY {NONE | APP_PW | USER_AUTH | ACL | MANDATORY_ACL}
Specifies the type of application security to be enforced. If not specified, this parameter
defaults to nonE. The value app_pw indicates that application password security is to be
enforced (clients must provide the application password during initialization). Setting
APP_PW Causes tmloadcf to prompt for an application password. The value USER_AUTH
is similar to app_pw but, in addition, indicates that per-user authentication will be done
during client initialization. The value act is similar to user_auTs but, in addition,
indicates that access control checks will be done on service names, queue names, and
event names. If an associated ACL is not found for a name, it is assumed that permission
is granted. The value MANDATORY_ACL is Similar to AcL but permission is denied if an
associated ACL is not found for the name.

AUTHSVC string value

Specifies the name of an application authentication service that is invoked by the system
for each client joining the system. This parameter requires that the securzTy identifier be
set t0 USER_AUTH, ACL, Of MANDATORY_ACL. (For upward compatibility, setting both
SECURITY APP_PW and AuTHSvC implies SECURITY USER_AUTH.) The parameter value
must be 15 characters or less in length. For secur1Ty level user_auTs, the default
service name, if not specified, is auTHsvC. For SECURITY level ACL Or MANDATORY_ACL,
the default service name, if not specified, is . . auTHSVC.

File Formats, Data Descriptions, MIBs, and System Processes Reference 485

Note that the system-supplied authentication server, AuTHSVR, advertises the
authentication service as AUTHSVC When SECURITY iS Set t0 USER_AUTH, and as

. .AUTHSVC When SECURITY IS set to AcL or MANDATORY_ACL. AUTHSVC and . .AUTHSVC
point to the same authentication service.

Note also that string values autasvc and . . auTHSVC are identifiers, meaning that there
is no need to surround AUTHSVC Or . .AUTHSVC With double quotes.

SCANUNIT numeric_value
The interval of time (in seconds) between which periodic scans are done by the BBL to
find old transactions and timed-out blocking calls within service requests. This value is
used as the basic unit of scanning by the BBL. It affects the granularity with which
transaction timeout values can be specified on tpbegin () and the blocking timeout value
specified with the BL.ockTTME parameter. The SANITYSCAN, BBLQUERY, DBBLWAIT, and
BLOCKTIME parameters are multipliers of this unit for other timed operations within the
system. scanunTT must be a multiple of 2 or 5 greater than 0 and less than or equal to 60
seconds. The default is 10 seconds.

SANITYSCAN numeric_value
Sets a multiplier of the basic scanun1T between sanity checks of the system. The value
SCANUNIT must be greater than 0. If this parameter is not specified, the default is set so
that (scaNUNIT * SANITYSCAN) is approximately 120 seconds. Sanity checks include
checking servers as well as the bulletin board data structure itself. Each BBL checks that
all servers on its machine are viable; that is, the server hasn't terminated abnormally and
is not looping. Processes deemed not viable are either cleaned up, or restarted depending
on the options with which they were started. Following that, the BBL sends a message
(without reply) to the DBBL to indicate it is okay.

DBBLWAIT numeric_value
Sets a multiplier of the basic scanuntT for the maximum amount of wall time a DBBL
should wait for replies from all its BBLs before timing out. Every time the DBBL
forwards a request to its BBLs, it waits for all of them to reply with a positive
acknowledgment before replying to the requester. This option can be used for noticing
dead or insane BBLs in a timely manner. The value of pBRLWAIT must be greater than 0.
If this parameter is not specified, the default is set so that (sSCANUNIT * DBBLWAIT) is the
greater of scanuntT Or 20 seconds.

BBLQUERY numeric_value
Sets a multiplier of the basic scanuntT between status checks by the DBBL of all BBLs.
The DBBL checks to ensure that all BBLs have reported in within the BBLQUERY cycle. If
a BBL has not been heard from, the DBBL sends a message to that BBL asking for status.
If no reply is received, the BBL is partitioned. The value of BBLQUERY must be greater

486 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

than 0. If this parameter is not specified, the default is set so that (SCANUNIT * BBLQUERY)
is approximately 300 seconds.

BLOCKTIME numeric_value
Sets a multiplier of the basic scanunzT after which a blocking call (for example, receiving
areply) times out. The value of BLockTIME must be greater than 0. If this parameter is not
specified, the default is set so that (scaANUNIT * BLOCKTIME) is approximately 60
seconds.

NOTIFY {DIPIN | SIGNAL | THREAD | IGNORE}
Specifies the default notification detection method to be used by the system for unsolicited
messages sent to client processes. This default can be overridden on a per-client basis
using the appropriate tpinit () flag value. Note that once unsolicited messages are
detected, they are made available to the application through the application-defined
unsolicited message handling routine identified via the tpsetunsol () function
(tpnotify())

The value prp1n specifies that dip-in-based notification detection should be used. This
means that the system will only detect notification messages on behalf of a client process
while within ATMI calls. The point of detection within any particular ATMI call is not
defined by the system and dip-in detection will not interrupt blocking system calls. p1pIN
is the default notification detection method.

The value s1eNAL specifies that signal-based notification detection should be used. This
means that the system sends a signal to the target client process after the notification
message has been made available. The system installs a signal catching routine on behalf
of clients selecting this method of notification.

All signaling of native client processes is done by administrative system processes and not
by application processes. Therefore, only native clients running with the same UNIX
system user identifier as the application administrator can be notified using the sTeNAL
method. Workstation clients may use the stenar, method, regardless of which user
identifier they are running under.

Note: The s1eNaL notification method is not available for MS-DOS clients, and is not
available for multithreaded or multicontexted clients.

The value THREAD specifies that THREAD notification detection should be used. This means
that the system dedicates a separate thread for the receipt of unsolicited messages and
dispatches the unsolicited message handler in that thread. Only one unsolicited message
handler executes at one time per BEA Tuxedo application association. This value is
allowed only on platforms that offer support for multi-threading. COBOL clients cannot
use THREAD notification. Clients that are written in COBOL or that run on a platform on

File Formats, Data Descriptions, MIBs, and System Processes Reference 4817

which threads are not supported will have their notification method changed to p1r1N if
they accept the ussconr1c default notification method and the usconr1c default
notification method is THREAD. In contrast, if such a client specifies thread notification
explicitly in the parameters to tpinit () OF TPINITIALIZE (), the call to this function
will return an error.

The value 1eNORE specifies that by default notification messages are to be ignored by
application clients. This would be appropriate in applications where only clients that
request notification at tpinit () time should receive unsolicited messages.

SEC_PRINCIPAL_NAME string_value [0..511]
Specifies the security principal name identification string to be used for authentication
purposes by an application running BEA Tuxedo 7.1 or later software. This parameter
may contain a maximum of 511 characters (excluding the terminating NULL character).
The principal name specified for this parameter becomes the identity of one or more
system processes running in this application.

SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVERS section. A principal name at a particular configuration level can be overridden
at a lower level. If sec_prINCIPAL_NAME is not specified at any of these levels, the
principal name for the application defaults to the poma1N1D String specified in the
RESOURCES section for this application.

Note that sec_PRINCIPAL_NAME is one of a trio of parameters, the other two being
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_PASSVAR. The latter two parameters
pertain to opening decryption keys during application booting for the system processes
running in a BEA Tuxedo 7.1 or later application. When only SEC_PRINCIPAL_NAME iS
specified at a particular level, the system sets each of the other two parameters to a NULL
(zero length) string.

SEC_PRINCIPAL_LOCATION string_value [0..511]
Specifies the location of the file or device where the decryption (private) key for the
principal specified in sEc_PRINCIPAL_NAME resides. This parameter may contain a
maximum of 511 characters (excluding the terminating NULL character).

SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEC_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(sEC_PRINCIPAL_PASSVAR isoptional; if not specified, the system sets it to a NULL—zero
length—string.)

488 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

SEC_PRINCIPAL_PASSVAR string_value [0..511]
Specifies the variable in which the password for the principal specified in
SEC_PRINCIPAL_NAME is stored. This parameter may contain a maximum of 511
characters (excluding the terminating NULL character).

SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRoups section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEc_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a NULL—
zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with SEC_PRINCIPAL_PASSVAR. (tmloadcf (1) prompts for
the password.) The system automatically encrypts the password entered by the
administrator and assigns each encrypted password to the associated password variable.

SIGNATURE_AHEAD numeric_value (1 <= num <= 2147483647)
Specifies the number of seconds into the future that a digital signature’s timestamp is
allowed to be, when compared to the local machine’s clock. If not specified, the default is
3600 seconds (one hour). This parameter applies only to applications running BEA
Tuxedo 7.1 or later software.

SIGNATURE_BEHIND numeric_value (1 <= num <= 2147483647)
Specifies the number of seconds into the past that a digital signature’s timestamp is
allowed to be, when compared to the local machine’s clock. If not specified, the default is
604800 seconds (one week). This parameter applies only to applications running BEA
Tuxedo 7.1 or later software.

SIGNATURE_REQUIRED {Y | N}
Specifies whether or not every process running in this application requires a digital
signature on its input message buffer. If not specified, the default is n. This parameter
applies only to applications running BEA Tuxedo 7.1 or later software.

SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVICES Ssection. Setting STGNATURE_REQUIRED t0 v at a particular level means that
signatures are required for all processes running at that level or below.

ENCRYPTION_REQUIRED {Y | N}
Specifies whether or not every process running in this application requires an encrypted
input message buffer. If not specified, the default is n. This parameter applies only to
applications running BEA Tuxedo 7.1 or later software.

File Formats, Data Descriptions, MIBs, and System Processes Reference 489

ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVICES Section. Setting ENCRYPTION_REQUIRED t0 v at a particular level means that
encryption is required for all processes running at that level or below.

MACHINES Section

The MmacHINES section specifies the logical names for physical machines for the configuration. It
also specifies parameters specific to a given machine. The MACHINES section must contain an
entry for each physical processor used by the application. Entries have the form:

ADDRESS required parameters [optional_parameters]

where apprESs is the physical name of a processor, for example, the value produced by the
UNIX system uname -n command. On a Windows system, the value can be set using the
Computer Name value in the Network Control Panel and must be specified in upper case. The
length of the entire ADDRESS must be 30 characters or less. If the name is not an identifier, it
must be enclosed in double quotes.

If the Lan option is not specified, only one machine name can appear in this section. One of the
required kEYworDS is LMID, Which is the logical machine string_value assigned to the physical
machine. An LMID string_value must be unique within the macuINES section of the
configuration file.

LMID = string value
Specifies that string valueisto be used in other sections as the symbolic name for
ADDRESS. This name cannot contain a comma, and must be 30 characters or less. This
parameter is required. There must be an r.m1D line for every machine used in a
configuration.

These parameters are required:

TUXCONFIG = string_value[2..256] (up to 64 bytes for BEA Tuxedo 8.0 or earlier)
This is the absolute pathname of the file or device where the binary Tuxconr1c file is
found on this machine. The administrator need only maintain one Tuxconr1c file, namely
the one that is pointed to by the TuxconF1G environment variable on the MASTER machine.
Copies on other machines of this master Tuxconric file are synchronized with the
MASTER machine automatically when the system is booted. This parameter must be
specified for each machine. If TuxorrseT is specified, the BEA Tuxedo filesystem starts
at that number of blocks from the beginning of the TuxcoNFIG device (See TUXOFFSET
below). See envFILE in the MACHINES section for a discussion of how this value is used
in the environment.

490 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

Note: The pathname specified for this parameter must match exactly (including case) the
pathname specified for the TuxconrFIc environment variable. Otherwise,
tmloadcf (1) cannot be run successfully.

TUXDIR = string value[2..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
This is the absolute pathname of the directory where the BEA Tuxedo system software is
found on this machine. This parameter must be specified for each machine and the
pathname should be local to each machine; in other words, Tuxp1r should not be on a
remote filesystem. If the machines of a multiprocessor application have different BEA
Tuxedo system releases installed, check the BEA Tuxedo Release Notes for the higher
level release to make sure you will get the functionality you expect. See ENVFILE in the
MACHINES Section for a discussion of how this value is used in the environment.

APPDIR = string._value[2..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
The value specified for this parameter is the absolute pathname of the application
directory and is the current directory for all application and administrative servers booted
on this machine. The absolute pathname can optionally be followed by a colon-separated
list of other pathnames. In a configuration where securITyY is set, each application must
have its own distinct ApPDIR. See ENVFILE in the MACHINES section for a discussion of
how this value is used in the environment.

Optional parameters are:

UID = number
Specifies the numeric user ID to be associated with the IPC structures created for the
bulletin board. The valid range is 0-2147483647. If not specified, the default is the value
specified in the RESOURCES section.

GID = number
Specifies the numeric group ID to be associated with the IPC structures created for the
bulletin board. The valid range is 0-2147483647. If not specified, the default is the value
specified in the RESOURCES section.

PERM = number
Specifies the numeric permissions associated with the IPC structures that implement the
bulletin board. It is used to specify the read/write permissions for processes in the usual
UNIX system fashion (that is, with an octal number such as 0600). The value can be
between 0001 and 0777, inclusive. If not specified, the default is the value specified in the
RESOURCES Section.

File Formats, Data Descriptions, MIBs, and System Processes Reference 491

492

BRTHREADS = {Y | N}

Specifies whether the Bridge process for this machine is configured for multithreaded
execution () or single-threaded execution (n). The default is n. This parameter applies
only to applications running BEA Tuxedo 8.1 or later software.

Setting BRTHREADS t0 Y makes sense only if a machine has multiple CPUs. However,
having multiple CPUs is not a prerequisite for setting BRTHREADS 10 v.

Configurations with BRTHREADS Set to Y on the local machine and BRTHREADS set (or
defaulted) to & on the remote machine are allowed, but the throughput between the
machines will not be greater than that for the single-threaded Bridge process.

A Bridge process configured for single-threaded or multithreaded execution can
interoperate with a Bridge process running in an earlier release of BEA Tuxedo or
WebLogic Enterprise: BEA Tuxedo release 8.0 or earlier, WebLogic Enterprise release
5.1 or earlier. In general, a threaded Bridge can interoperate with an unthreaded Bridge
because there are no external functional or behavioral changes due to the threading.

Note: If BRTHREADS=Y and the Bridge environment contains TMNOTHREADS=Y, the
Bridge starts up in threaded mode and logs a warning message to the effect that
the Bridge is ignoring the TMnOTHREADS Setting. The TMNOTHREADS environment
variable was added to the BEA Tuxedo product in release 8.0.

MAXACCESSERS = number

Specifies the maximum number of clients and servers that can be simultaneously
connected to the bulletin board on this machine. This value must be greater than 0 and less
than 32,768. If not specified, the default is the maxaccEsseRs value specified in the
RESOURCES Section.

System administration processes, such as the BBL, restartsrv, cleanupsrv,
tmshutdown (), and tmadmin (), need not be accounted for in this value, but the DBBL,
all bridge processes, all system-supplied and application server processes, and all
potential client processes at this site need to be counted. (Examples of system-supplied
Servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT, TMSYSEVT, TMS—S€€ TMSNAME
parameter in GRouPs section, TmMs_owm, cwTpoMATN, and wsr.) If the application is booting
workstation listeners (WSLSs) at this site, both the WSLs and the number of potential
workstation handlers (WSHSs) that may be booted need to be counted.

Note that for BEA Tuxedo pre-release 7.1 (6.5 or earlier), both the MmaxaccEsseRs and
MAXSERVERS (S€e MAXSERVERS iN RESOURCES section) parameters for an application play
a part in the user license checking scheme. Specifically, a machine is not allowed to boot
if the number of maxaccessers for that machine + the number of MaxaccesseRrs for the
machine (or machines) already running in the application is greater than the number of

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

MAXSERVERS + user licenses for the application. Thus, the total number of MAXACCESSERS
for an application must be less than or equal to the number of MAXSERVERS + user licenses
for the application.

Note also that the user license checking scheme in BEA Tuxedo release 7.1 or later
considers only the following two factors when performing its checks: the number of user
licenses for an application and the number of licenses currently in use for the application.
When all user licenses are in use, no new clients are allowed to join the application.

MAXWSCLIENTS = number
Specifies the number of accesser entries on this machine to be reserved for Workstation
clients (as opposed to native clients). If specified, the value must be greater than or equal
to 0 and less than 32,768. If not specified, the default is 0.

The number specified here takes a portion of the total accesser slots specified with
MAXACCESSERS, meaning that the accesser slots reserved for MAXWSCLIENTS are
unavailable for use by other clients and servers on this machine. It is an error to set this
number greater than MAXACCESSERS.

The MaxwSCLIENTS parameter is only used when the BEA Tuxedo system Workstation
feature is used. The appropriate setting of this parameter helps to conserve interprocess
communication (IPC) resources since Workstation client access to the system is
multiplexed through a BEA Tuxedo system-supplied surrogate, the workstation handler
(WSH).

MAXACLCACHE = number
Specifies the number of entries in the cache used for ACL entries when sECURITY is set
to ACL or MANDATORY_ACL. The appropriate setting of this parameter helps to conserve on
shared memory resources and yet reduce the number of disk access to do ACL checking.

This value must be greater than or equal to 10 and less than or equal to 32,000. The default
is 100.

MAXCONV = number
Specifies the maximum number of simultaneous conversations in which clients and
servers on this machine can be involved. It must be greater than 0 and less than 32,768. If
not specified, the default is the maxconv value specified in the REsourcEs section. The
maximum number of simultaneous conversations per server is 64.

MAXPENDINGBYTES = number
Specifies a limit for the amount of space that can be allocated for messages waiting to be
transmitted by the bridge process. number must be between 100,000 and MAXT.ONG.

File Formats, Data Descriptions, MIBs, and System Processes Reference 493

MAXGTT = number
Specifies the maximum number of simultaneous global transactions in which this machine
can be involved. It must be greater than or equal to 0 and less than 32,768. If not specified,
the default is the value specified in the RESOURCES section.

TYPE = string value
Used for grouping machines into classes. TypE can be set to any string value that is 15
characters or less. If two machines have the same TvpE value, data encoding/decoding is
bypassed when sending data between the machines. TypE can be given any string value.
It is used simply for comparison. The TvpE parameter should be used when the application
involves a heterogeneous network of machines or when different compilers are used on
the machines in the network. If not specified, the default is the NULL string, which matches
any other entry that does not have a value specified.

CMPLIMIT = string_valuel[, string_value2]
Specifies the threshold message size for messages bound to remote processes
(string_valuel) and local processes (string_value2) respectively, at which
automatic data compression will take place. Both values must be either a non-negative
numeric value or the string Mmaxz.onG. If not specified, the default for this parameter is
MAXLONG.

NETLOAD = numeric_value
Specifies the additional load to be added when computing the cost of sending a service
request from this machine to another machine. It must be greater than or equal to 0 and
less than 32,768. If not specified, the default is 0.

SPINCOUNT = numeric_value
Specifies the number of attempts that should be made at user level to lock the bulletin
board before blocking processes on a UNIX semaphore. This value must be greater than
or equal to 0. A value of 0 indicates that the spincount built into the delivered binary
should be used. If set, this parameter causes the TMspINCOUNT environment variable to be
ignored. This varies from platform to platform. The default for this parameter is 0.

TLOGDEVICE = string_value[0..256] (up to 64 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the BEA Tuxedo filesystem that contains the DTP transaction log (Tr.og) for this
machine. The Tr.oG is stored as a BEA Tuxedo system VTOC table on the device. If this
parameter is not specified, the machine is assumed to not have a TL.oG.

TLOGOFFSET = offset
Specifies the numeric offset in pages (from the beginning of the device) to the start of the
BEA Tuxedo filesystem that contains the DTP transaction log for this machine. The offset
must be greater than or equal to 0 and less than the number of pages on the device. The
default is 0.

494 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

TLOGNAME = string value
Specifies the name of the DTP transaction log for this machine. If not specified, the
default is T.oG. If more than one TL.oG exists on the same TLOGDEVICE, they must have
unique names. TLoeNAME must be different from the name of any other table on the
configuration where the TLoG table is created. It must be 30 characters or less.

TLOGSIZE = size
Specifies the numeric size, in pages, of the DTP transaction log for this machine. It must
be greater than 0 and less than or equal to 2048, subject to the amount of available space
on the BEA Tuxedo filesystem. If not specified, the default is 100 pages.

ULOGPFX = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the absolute pathname prefix of the path for the useriog (3c) message file on
this machine. The value of ur.ocprx for a given machine is used to create the
userlog (3c) message file for all servers, clients, and administrative processes executed
on that machine. If this parameter is not specified, $appDIR/ULOG is used. “mmddyy”
(month, day, year) is appended to the prefix to get the actual log filename.

TUXOFFSET = offset
Specifies the numeric offset in pages (from the beginning of the device) to the start of the
BEA Tuxedo filesystem that contains the Tuxconr1c file for this machine. The offset
must be greater than or equal to 0 and less than the number of pages on the device. The
default offset is 0. The value of TuxorrseT, if non-zero, is placed in the environment of
all servers booted on a machine. See ENVFILE in the MACHINES Section for a discussion of
how this value is used in the environment.

ENVFILE = string value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies that all clients and servers on the machine are to be executed with the
environment specified in the named file. If the value specifies an invalid filename, no
values are added to the environment. Lines must be of the form ident=vaiue where
ident begins with an underscore or alphabetic character, and contains only underscore or
alphanumeric characters. Within the vaiue, strings of the form ${env} are expanded
when the file is processed using variables already in the environment. (Forward
referencing is not supported and if a value is not set, the variable is replaced with the
empty string). Backslash (\) may be used to escape the dollar sign and itself. All other shell
quoting and escape mechanisms are ignored and the expanded vaiue is placed into the
environment.

Client programs process only the MACHINES ENVFILE during tpinit ().

When booting servers, local servers inherit the environment of tmboot (1) and remote
servers (not on the MmasTER) inherit the environment of t1isten (1). TUXCONFIG,
TUXDIR, and APPDIR are also put into the environment when a server is booted based on

File Formats, Data Descriptions, MIBs, and System Processes Reference 495

the information in the associated MACHINES entry. An attempt to reset these three variables
to another value will not be allowed and will result in a warning. tmboot and tlisten
process the machine exvrILE before starting the server, allowing for the environment to
indicate necessary pathnames for finding executable and dynamically loaded files. Once
the server is running, as part of server initialization (before the application gets control in
tpsvrinit ()), aserver will read and export variables from both the machine and server
EnvFILE files. If a variable is set in both the machine and server envrILE, the value in
the server envrILE Will override the value in the machine ENVFILE.

paTH and LD_LIBRARY_PATH are treated specially. Before a server is activated, the
machine ENvFILE is scanned to find the first occurrence of a PATH Or LD_LIBRARY_PATH
variable; embedded environment variables within either paTH variable are not expanded.
paTH and LD_LIBRARY_PATH are used to find pathnames for executable and dynamically
loaded files. paTa will always be prefixed with:

${APPDIR}:${TUXDIR}/bin: /bin:

if the value doesn't already begin with this string. This paTa will be used as a search path
for servers that are specified with a simple or relative pathname. L.o_1.1BRARY_PATH Will
always be prefixed with:

${APPDIR}:${TUXDIR}/1lib:/1lib: /usr/lib:

if the value doesn't already begin with this string. sur.IB_paTH is set on HPUX and
LIBPATH is set on AlX instead of LD_LIBRARY_PATH.

SEC_PRINCIPAL_NAME = string_value [0..511]
Specifies the security principal name identification string to be used for authentication
purposes by an application running BEA Tuxedo 7.1 or later software. This parameter
may contain a maximum of 511 characters (excluding the terminating NULL character).
The principal name specified for this parameter becomes the identity of one or more
system processes running on this machine.

SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVERS section. A principal name at a particular configuration level can be overridden
at a lower level. If sec_prIiNcTPAL_NAME iS not specified at any of these levels, the
principal name for the application defaults to the poma1NID String specified in the
RESOURCES section for this application.

Note that sEc_pPrRINCIPAL_NAME is one of a trio of parameters, the other two being
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_PASSVAR. The latter two parameters
pertain to opening decryption keys during application booting for the system processes
running in a BEA Tuxedo 7.1 or later application. When only sEc_PRINCIPAL_NAME IS

496 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

specified at a particular level, the system sets each of the other two parameters to a NULL
(zero length) string.

SEC_PRINCIPAL_LOCATION = string value [0..511]
Specifies the location of the file or device where the decryption (private) key for the
principal specified in sec_PRINCIPAL_NaME resides. This parameter may contain a
maximum of 511 characters (excluding the terminating NULL character).

SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, Groups section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEC_PRINCIPAIL_NAME parameter; otherwise, its value is ignored.
(SEC_PRINCIPAL_PASSVAR isoptional; if not specified, the system sets it to a NUL.L—zero
length—string.)

SEC_PRINCIPAL_PASSVAR = string_value [0..511]
Specifies the variable in which the password for the principal specified in
SEC_PRINCIPAL_NAME is stored. This parameter may contain a maximum of 511
characters (excluding the terminating NULL character).

SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPps section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEc_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a NULL—
zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with SEC_PRINCIPAL_PASSVAR. (tmloadcf (1) prompts for
the password.) The system automatically encrypts the password entered by the
administrator and assigns each encrypted password to the associated password variable.

SIGNATURE_REQUIRED = {Y | N}
Specifies whether or not every process running on this machine requires a digital signature
on its input message buffer. If not specified, the default is n. This parameter applies only
to applications running BEA Tuxedo 7.1 or later software.

SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVICES Section. Setting SIGNATURE_REQUIRED t0 v at a particular level means that
signatures are required for all processes running at that level or below.

File Formats, Data Descriptions, MIBs, and System Processes Reference 497

ENCRYPTION_REQUIRED = {Y | N}
Specifies whether or not every process running on this machine requires an encrypted
input message buffer. If not specified, the default is n. This parameter applies only to
applications running BEA Tuxedo 7.1 or later software.

ENCRYPTION_REQUIRED Can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPps section, and
SERVICES Section. Setting ENCRYPTION_REQUIRED t0 v at a particular level means that
encryption is required for all processes running at that level or below.

SICACHEENTRIESMAX = string value
represents the maximum number of service cache entries any process is to hold on this
machine. It must be greater than or equal to 0 and less than 32,768. If a value is not
specified, the default is 500. If the value is set to 0, no service caching will be performed
by any process on this machine. The maximum value this attribute can take is 32,767. All
clients on this machine will use this value.

Note: Unlike the corresponding attribute in the SErvVERS section, this parameter cannot take the
string pEFAULT as a Vvalid value.

GROUPS Section

498

This section provides information about server groups. This section must have at least one server
group defined in it (which can be added via tmconfig, wtmconfig (1) after the TUxcoNFIG
file has been created). A server group entry provides a logical name for a collection of servers
and/or services on a machine. The logical name is used as the value of the srvGre parameter in
the serVERS section to identify a server as part of this group. srvGrp is also used in the
SERVICES section to identify a particular instance of a service with its occurrences in the group.
Other croups parameters associate this group with a specific resource manager instance (for
example, the employee database). Lines within the croups section have the form:

GROUPNAME required_parameters [Op tional_parame ters]

where GrournamE specifies the logical name (string_value) of the group. The group name
must be unique within all group names in the croups section and Lm1D values in the MACHINES
section and cannot contain an asterisk (*), comma, or colon. It must be 30 characters or less.

Required parameters are:

LMID = string valuel [, string valueZ]
Specifies that this group of servers resides on the machine symbolically named by
string valuel inthe MACHINES section (or the default in sim mode). Each LMID value
must be 30 characters or less. Up to two logical machine names can be specified. The

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

second logical name, if given and if server group migration is enabled, indicates the
machine to which the server group can be migrated.

GRPNO = number
Specifies the numeric group number associated with this server group. This number must
be greater than 0 and less than 30000, and must be unique among all entries in the Groups
section.

Optional parameters are:

TMSNAME = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the name of the transaction manager server a . out associated with this group.
This parameter must be specified for any group entry whose servers will participate in
distributed transactions (transactions across multiple resource managers—and possibly
machines—that are started with tpbegin (), and ended with tpcommit ()/ tpabort ()).
It specifies the file (string_value) to be executed by tmboot (1) when booting the
server group. The value Tus is reserved to indicate use of the NULL XA interface. If a
non-empty value other than Tvs is specified, a TLogDEVICE must be specified for the
machine(s) associated with the Lm1D value(s) for this entry. A unique server identifier is
selected automatically for each TM server, and the servers will be restartable an unlimited
number of times.

ENVFILE = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies that all servers in the group are to be executed with the environment specified in
the named file. If the value specifies an invalid filename, no values are added to the
environment. Lines must be of the form ident=vaiue where ident contains only
underscore or alphanumeric characters. Within the vaiue, strings of the form s {env} are
expanded when the file is processed using variables already in the environment. (Forward
referencing is not supported and if a value is not set, the variable is replaced with an empty
string.) A backslash (\) may be used to escape the dollar sign and itself. All other shell
quoting and escape mechanisms are ignored and the expanded vaiue is placed in the
environment.

The envrILE is read after the macuINES section EnvrILE (if one exists) and before the
SERVERS section ENvFILE (if one is specified).

TMSCOUNT = number
Specifies the number of transaction manager servers to start for the associated group, if
TMSNAME is specified. This parameter is optional and the default is 3. If specified and the
value is non-zero, the minimum value is 2 and the maximum value is 10. The servers are
set up in an MSSQ set automatically.

File Formats, Data Descriptions, MIBs, and System Processes Reference 499

SEC_PRINCIPAL_NAME = string_value [0..511]
Specifies the security principal name identification string to be used for authentication
purposes by an application running BEA Tuxedo 7.1 or later software. This parameter
may contain a maximum of 511 characters (excluding the terminating NULL character).
The principal name specified for this parameter becomes the identity of one or more
system processes running in this group.

SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVERS section. A principal name at a particular configuration level can be overridden
at a lower level. If sec_PRINCIPAL_NAME iS not specified at any of these levels, the
principal name for the application defaults to the poma1NID String specified in the
RESOURCES section for this application.

Note that sEc_pPrRINCIPAL_NAME is one of a trio of parameters, the other two being
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_PASSVAR. The latter two parameters
pertain to opening decryption keys during application booting for the system processes
running in a BEA Tuxedo 7.1 or later application. When only sEc_PRINCIPAL_NAME IS
specified at a particular level, the system sets each of the other two parameters to a NULL
(zero length) string.

SEC_PRINCIPAL_LOCATION = string_value [0..511]
Specifies the location of the file or device where the decryption (private) key for the
principal specified in sec_pPrRINCcIPAL_NAME resides. This parameter may contain a
maximum of 511 characters (excluding the terminating NULL character).

SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEc_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(sEC_PRINCIPAL_PASSVAR isoptional; if not specified, the system sets it to a NULL—zero
length—string.)

SEC_PRINCIPAL_PASSVAR = string_value [0..511]
Specifies the variable in which the password for the principal specified in
SEC_PRINCIPAL_NAME is stored. This parameter may contain a maximum of 511
characters (excluding the terminating NULL character).

SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEC_PRINCIPAL_NAME parameter; otherwise, its value is ignored.

500 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

(SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a NUL.L—
zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with SEC_PRINCIPAL_ PASSVAR. (tmloadcf (1) prompts for
the password.) The system automatically encrypts the password entered by the
administrator and assigns each encrypted password to the associated password variable.

SIGNATURE_REQUIRED = {Y | N}
Specifies whether or not every process running in this group requires a digital signature
on its input message buffer. If not specified, the default is 5. This parameter applies only
to applications running BEA Tuxedo 7.1 or later software.

SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GROUPS section, and
SERVICES section. Setting STGNATURE_REQUIRED t0 v at a particular level means that
signatures are required for all processes running at that level or below.

ENCRYPTION_REQUIRED = {Y | N}
Specifies whether or not every process running in this group requires an encrypted input
message buffer. If not specified, the default is n. This parameter applies only to
applications running BEA Tuxedo 7.1 or later software.

ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, Groups section, and
SERVICES Section. Setting ENCRYPTION_REQUIRED to v at a particular level means that
encryption is required for all processes running at that level or below.

OPENINFO = string value
Specifies the resource manager dependent information needed when opening the resource
manager for this group. The value must be enclosed in double quotes and must be less than
or equal to 256 characters in length.

This value is ignored if the Tmsname parameter for this group is not set or is set to Tvs. If
the TMsNAME parameter is set to a value other than TMs but the oPENINFO String is set to
the NULL string () or is not specified, a resource manager exists for the group but does
not require any information for executing an open operation.

The format of the opENTINFO String is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor must
be prefixed with the published name of the vendor's transaction (XA) interface followed
immediately by a colon (:).

For BEA Tuxedo /Q databases, the format is:

File Formats, Data Descriptions, MIBs, and System Processes Reference 501

502

#0n UNIX #
OPENINFO = "TUXEDO/QM: gmconfig: gspace"

On Windows
OPENINFO = "TUXEDO/QM: gmconfig; gspace"

where TUxEDO /M is the published name of the BEA Tuxedo /Q XA interface, gmconfig
is replaced with the name of the gMcoNFIG (See gqmadmin (1)) on which the queue space
resides, and gspace is replaced with the name of the queue space. For Windows, the
separator after gmcon£ig must be a semicolon (;).

For other vendors’ databases, the format of the opENINFO string is specific to the
particular vendor providing the underlying resource manager. As an example, the
following orENINFO string demonstrates the type of information needed when opening
the Oracle resource manager.

OPENINFO="Oracle_XA:
Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

oracle_xa is the published name of the Oracle XA interface. The series of five asterisks
(*) in the oPENINFO String pertains to the encrypting of a password, which is described in
the paragraphs that follow.

Passwords passed to a resource manager in the oPENINFO String can be stored in either
clear text or encrypted form. To encrypt a password, first enter a series of five or more
continuous asterisks in the opENTNFO string at the place where you want the password to
go. Then load the ueconr1G file by running tmloadcf (1). When tmloadcf ()
encounters the string of asterisks, it prompts you to create a password. For example:

tmloadcf -y hBﬁﬂappybankapp/myubbconfig
Password for OPENINFO (SRVGRP=BANKB3) :
password

tmloadcf (1) stores the password in the Tuxconr1c file in encrypted form. If you then
regenerate the uBBcoNFIG file from the Tuxconri1c file using tmunloadct (), the
password is printed in the regenerated useconr1G file in encrypted form with ee as
delimiters. For example:

OPENINFO="Oracle_XA:
Oracle_XA+Acc=P/Scott/@QA0986F7733D4@E+SesTm=30+LogDit=/tmp"

When tmloadcf () encounters an encrypted password in a uBBcoNFIG file generated by
tmunloadcf (), it does not prompt the user to create a password.

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

CLOSEINFO = string value
Specifies the resource manager dependent information needed when closing the resource
manager for this group. The value must be enclosed in double quotes and must be less than
or equal to 256 characters in length. Note that a cL.oseINFo string is not used for BEA
Tuxedo /Q databases.

This value is ignored if the TMsnaME parameter for this group is not set or is set to Tvs. If
the TMsNAME parameter is set to a value other than TMs but the cLosEINFO string is set to
the NULL string (") or is not specified, a resource manager exists for the group but does
not require any information for executing a close operation.

The format of the cLoseINFoO string is dependent on the requirements of the vendor
providing the underlying resource manager. The information required by the vendor must
be prefixed with the published name of the vendor's transaction (XA) interface followed
immediately by a colon (:).

NETGROUPS Section

The NETGROUPS section describes the network groups available to the application in the Lan
environment. Any pair of machines may be in any number of network groups. Two
communicating nodes use the priority mechanism in order to determine how to communicate
between elements of its group.

Every Lm1D must be a member of the default network group, pEFauLTNET. Machines running
BEA Tuxedo releases earlier than release 6.4 (in which NETGROUPS became available) can belong
only to the DEFAULTNET network group. The network group number (NETGRPNO) for
DEFAULTNET is O (zero), and may not be changed. The default priority of bEFAULTNET, however,
may be modified.

The general format for entries in this section is:
NETGROUP required_parameters [optional_parameters]

where NETGROUP S the network group name. If NETGrouUP is equal to DEFAULTNET then the entry
describes the default network group.

Required parameters are:

NETGRPNO = numeric_value
This is a unique network group number which must be assigned by the administrator for
use in failover and failback situations. If this entry describes DEFAULTNET, the numeric
value must be 0 (zero).

Optional parameters are;

File Formats, Data Descriptions, MIBs, and System Processes Reference 503

NETPRIO = numeric_value
Specifies the priority of this network group. A pair of machines in multiple network
groups of the same priority will communicate in parallel over the priority band as long as
no network group of a higher priority is available. If all the network links of a certain
priority band have been torn down by the administrator or by network conditions, the next
lowest priority band is used. Retries of the higher priority bands will be attempted. (For
more information, see Setting Up a BEA Tuxedo Application.) This value must be greater
than zero and less than 8192. If not specified, the default is 100. Note that this is the only
parameter of the DEFAULTNET that can be altered.

Note: Parallel data circuits are prioritized by network group number (NETGRPNO) Within
priority group number.

NETWORK Section

The NETWORK Section describes the network configuration for a LAN environment. For each
processor on which a bridge server is located, an entry must be placed in the NETWORK Section
giving the network address of the bridge process. An error is generated if this section exists and
LAN is not specified for the opTIONS parameter of the RESOURCES section.

The general format for entries in this section is:
LMID required_parameters [optional_parameters]

where Lm1D is the logical machine where the bridge process is placed. vz must have direct
access to the network device to be used (as given in the BRIDGE parameter).

Required parameters are:

NADDR = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network listening address for the Bridge process on this ryzp. The
listening address for a bridge is the means by which it is contacted by other bridge
processes participating in the application. If string_value has the form
“0Oxhex-digits” OF “\\xhex-digits”, it must contain an even number of valid hex
digits. These forms, which are translated internally into a character array containing
TCP/IP addresses, may also be in either of the following two forms:

“//hostname : port_number”
“/#.#.#.#:port_number”

In the first of these formats, hostname is resolved to a TCP/IP host address at the time the
address is bound using the locally configured name resolution facilities accessed via an
operating system command. The “#. #. #. #” is the dotted decimal format where each #

504 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

represents a decimal number in the range 0 to 255. Port_number is a decimal number in
the range 0 to 65535, the hexadecimal representations of the string specified.

Note: Some port numbers may be reserved for the underlying transport protocols (such as
TCP/IP) used by your system. Check the documentation for your transport protocols
to find out which numbers, if any, are reserved on your system.

Optional parameters are:

BRIDGE = string value
Specifies the device name to be used by the Bridge process for this 1D to access the
network. This value is required for participation in a networked application via a
TLI-based BEA Tuxedo system binary. This parameter is not needed for sockets-based
BEA Tuxedo system binaries.

NLSADDR = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the network address used by the t1isten (1) process servicing the network for
this LmtD. The network address used for NLsaDDR is of the same format as that specified
for the NaDDR parameter above. If the address has the form “0xhex-digits” or
“\\xhex-digits”, it must contain an even number of valid hex digits. TCP/IP addresses
may be inthe "//#. #. #. #:port" format. tmloadcf (1) prints an error if NLSADDR is
missing on any entry but the masTeErR 1.MID, for which it prints a warning. However, if
NLSADDR i$ missing on the MASTER LMID, tmadmin (1) Will not be able to runin
administrator mode on remote machines; it will be limited to read-only operations. This
also means that the backup site will be unable to reboot the master site after failure.

FADDR = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the network address used by the local machine when connecting to other
machines. This parameter, along with the FRANGE parameter, determines the range of
TCP/IP ports to which a process attempts to bind before making an outbound connection.
This address must be a TCP/IP address. The port portion of the TCP/IP address represents
the base address from which a range of TCP/IP ports can be bound by the process. The
FRANGE parameter specifies the size of the range. For example, if this address is
/ /mymachine.bea.com:30000 and FRANGE is 200, all native processes attempting to
make outbound connections from this LMID will bind a port on mymachine.bea.com
between 30000 and 30200. If not set, this parameter defaults to the empty string, which
implies the operating system chooses a local port randomly.

FRANGE = number
Specifies the range of TCP/IP ports to which a native process attempts to bind before
making an outbound connection. The FADDR parameter specifies the base address of the
range. For example, if the FADDR parameter is setto / /mymachine.bea.com:30000 and
FRANGE is set to 200, all native processes attempting to make outbound connections from

File Formats, Data Descriptions, MIBs, and System Processes Reference 505

this LMID will bind a port on mymachine. bea . com between 30000 and 30200. The valid
range is 1-65535. The default is 1.

MINENCRYPTBITS = {0 | 40 | 56 | 128}
Specifies the minimum level of encryption required when a network link to this machine
is being established. 0 means no encryption, while 40, 56, and 128 specify the encryption
key length (in bits). If this minimum level of encryption cannot be met, link establishment
fails. The default is o.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

MAXENCRYPTBITS = {0 | 40 | 56 | 128}
Specifies the maximum level of encryption allowed when a network link is being
established. 0 means no encryption, while 40, 56, and 128 specify the encryption length
(in bits). The default is 128.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

NETGROUP = string value
string_value is the network group associated with this network entry. If unspecified,
the default, DEFAULTNET, is assumed. The NETGROUP parameter, if not set to DEFAULTNET,
must have previously appeared as a group name in the NETcroups section of the file. All
network entries with a NETGROUP DEFAULTNET are represented in the T_MAcCHINE class of
the T™_m1B, while NETWORK entries associated with any other NETGROUP are represented
in the T_nETMAP class of the TM_m1B to interoperate with previous releases.

SERVERS Section

506

This section provides information on the initial conditions for servers started in the system. The
notion of a server as a process that continually runs and waits for a server group's service requests
to process, may or may not apply to a particular remote environment. For many environments,
the operating system or perhaps a remote gateway will be the sole dispatcher of services; when
either of these is the case, only servIcE table entries (see next section) and no sERVER table
entries need be specified for remote program entry points; BEA Tuxedo system gateway servers
would advertise and queue remote domain service requests. Host-specific reference pages must
indicate whether or not uBBCONFIG server table entries apply in their particular environments,
and if so, the corresponding semantics. Lines within the servERs section have the form:

AOUT required parameters [optional_parameters]

where aouT specifies the file (string_value) to be executed by tmboot (1) . tmboot executes
aouT on the machine specified for the server group to which the server belongs. tmboot searches
for the aourfile on its target machine. Thus, aouT must exist in a filesystem on that machine. (Of

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

course, the path to aour can include RFS connections to filesystems on other machines.) If a
relative pathname for a server is given, the search for aour is done first in ApPDIR, then in
TUXDIR/bin, thenin /bin, and then in path, where path is the value of the last paTH= line
appearing in the machine environment file, if one exists. The values for AppDIR and TUXDIR are
taken from the appropriate machine entry in the Tuxconr1g file. See ENVFILE in the MACHINES
section for a more detailed discussion.

For BEA Tuxedo 8.1 or later, the maximum length of aouT in the SERVERS section is 256 bytes.
For BEA Tuxedo 8.0 or earlier, the maximum length of aouT in the SERVERS section is 78 bytes.

Required parameters are:

SRVGRP = string_ value
Specifies the group name for the group in which the serveristo run. string value must
be the logical name associated with a server group in the croups section. It must be 30
characters or less. This association with an entry in the croups section means that aour
is executed on the machine with the nvtp specified for the server group. It also specifies
the grewo for the server group and parameters to pass when the associated resource
manager is opened. All server entries must have a server group parameter specified.

SRVID = number
Specifies an integer that uniquely identifies a server within a group. Identifiers must be
between 1 and 30,000 inclusive. This parameter must be present on every server entry.

The optional parameters are divided into two categories: boot options and run-time options. Boot
options are used by tmboot (1) when it executes a server. Once running, a server reads its entry
from the configuration file to determine its run-time options. The unique server ID is used to find
the right entry.

Optional boot parameters are:

CLOPT = string value
Specifies servopts (5) options to be passed to aour when booted. If none is specified,
the default is -a. string_value can be up to 256 bytes in length.

SEQUENCE = number
Specifies when this server should be booted or shutdown relative to other servers. If the
SEQUENCE parameter is not specified, servers are booted in the order found in the SERVERS
section (and shut down in the reverse order). If a mixture of servers with and without
sequence numbers is given, all servers with sequence numbers are booted first from low
to high sequence number, then all servers without sequence numbers are booted in the
order they appear in the configuration file. Sequence numbers must be in the range
between 1 and 9999.

File Formats, Data Descriptions, MIBs, and System Processes Reference 507

MIN = number
Specifies the minimum number of occurrences of the server to boot by tmboot. If an
RQADDR is specified and M1 is greater than 1, the servers will form an MSSQ set. The
server identifiers for the servers will be srviD up to srviD + Max - 1. All occurrences
of the server will have the same sequence number, as well as any other server parameters.

The value range for Mz is 0 to 1000. If not specified, the default is 1. Servers with aMIN=0
value will not be booted when tmboot -y is executed. This gives users in a multi-server
environment the flexibility to boot servers as needed, and therefore reduce boot time.

MAX = number
Specifies the maximum number of occurrences of the server that can be booted. Initially,
tmboot boots M1N servers, and additional servers can be booted up to max occurrences
using the -1 option of tmboot to specify the associated server identifier. The value range
for max is M1 to 1000. If not specified, the default is the same value as mMIN.

Optional run-time parameters are:

ENVFILE = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
requests the addition of the values in this file to the environment of the server during its
initialization. If a server is associated with a server group that can be migrated to a second
machine, the ENVFILE must be in the same location on both machines.

Note that this file is processed after the server starts. Therefore, it cannot be used to set the
pathnames used to find executable or dynamically loaded files needed to execute the
server; use the machine ENVFILE instead. See ENVFILE in the MACHINES Section for a
discussion of how this file is used to modify the environment.

conv = {v | N}
Specifies whether or not the server is a conversational server. Connections can only be
made to conversational servers, and rpc requests (via tpacall () Of tpcall ()) can only
be made to non-conversational servers. The default is n.

RQADDR = string value
Specifies the symbolic name of the request queue for aour. It must be 30 characters or
less. If not specified, a unique key (crpNO. SRVID) is chosen for a queue that aouT
accesses. Specifying the same roaDDR and same executable name for more than one
server is the way multiple server, single queue (MSSQ) sets are achieved. If two servers
are given an RQADDR With the same queue name, they must be in the same server group.

RQPERM = number
Specifies the numeric permissions on the request queue. number is specified in the usual
UNIX fashion (for example, 0600). If ropeRM is not specified, and a pErm is specified in

508 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

the RESOURCES section, that value is used. Otherwise, a value 0666 is used. The value can
be between 0001 and 0777, inclusive.

REPLYQ = {v | N}
Specifies whether a reply queue should be established for the aour. If v is specified, the
reply queue is created on the same LMID as the AouT. The default is n. For servers in an
MSSQ Set, servers that expect replies should have REPLYQ Set to v.

Note: The value of reEPLYQ for conversational servers is always forced to v, regardless
of the value assigned to it in the uBBconF1G file.

RPPERM = number
Specifies the numeric permissions on the reply queue. number is specified in the usual
UNIX fashion (for example, 0600). If RppERM is not specified, the default 0666 is used. If
requests and replies are both read from the same queue, only ropERM need be specified,;
RPPERM is ignored. The value can be between 0001 and 0777, inclusive.

RCMD = string_value[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
If aouTis restartable, this parameter specifies the command that should be executed when
aouT abnormally terminates. The string, up to the first space or tab, must be the name of
an executable UNIX file, either a full pathname or relative to aAppDIR (do not attempt to
set a shell variable at the beginning of the command). The command name may be
optionally followed by command line arguments. Two additional arguments are appended
to the command line: the grpNo and srvID associated with the restarting server.
string_value is executed in parallel with restarting the server.

MAXGEN = number
If aour is restartable, this parameter specifies that it can be restarted at most number - 1
times within the period specified by Grace. The value must be greater than 0 and less than
256. If not specified, the default is 1 (which means that the server can be started once, but
not restarted).

GRACE = number
If aouT is restartable, this parameter specifies that it can have up to maxcen lives within
the specified number of seconds. The value must be greater than or equal to 0 and less than
2147483648. If 0, the aouT can be restarted an unlimited number of times. If GRaCE is not
specified, the default is 86,400 seconds (24 hours).

RESTART = {Y | N}
Specifies whether or not aour is restartable. The default is . If server migration is
specified, RESTART must be set to v. Note that a server terminated with a steTERM signal
cannot be restarted; it must be rebooted.

File Formats, Data Descriptions, MIBs, and System Processes Reference 509

SYSTEM_ACCESS = identifier|, identifier]
Specifies the default mode used by BEA Tuxedo system libraries within application
processes to gain access to BEA Tuxedo system’s internal tables. Valid access types are
FASTPATH Of PROTECTED. FASTPATH specifies that the internal tables should be accessible
by the libraries via shared memory for fast access. PrRoTECTED specifies that while the
internal tables are accessible by BEA Tuxedo system libraries via shared memory, the
shared memory for these tables is not accessible outside of the BEA Tuxedo system
libraries. No_oVERRIDE can be specified (either alone or in conjunction with FASTPATH OF
PROTECTED) to indicate that the mode selected cannot be overridden by an application
process. If sysTEM_accEss is not specified, the default mode is determined by the setting
of the sysTeM_access keyword in the RESOURCES section.

Limitation: Setting sySTEM_ACCESS t0 PROTECTED may hot be effective for
multithreaded servers because it is possible that while one thread is executing BEA
Tuxedo code, which means it is attached to the bulletin board, another thread might be
executing user code. The BEA Tuxedo system cannot prevent such situations.

MAXDISPATCHTHREADS = number
Specifies the maximum number of concurrently dispatched threads which each server
process may spawn. This parameter is effective only if the server has been built with the
buildserver -t command.

If MAXDISPATCHTHREADS > 1, a separate dispatcher thread is used and does not count
against this limit. It is required that MINDI SPATCHTHREADS <= MAXDISPATCHTHREADS. If
this parameter is not specified, the default is 1.

MINDISPATCHTHREADS = number
Specifies the number of server dispatch threads started on initial server boot. This
parameter is effective only if the server has been built with the buildserver -t
command.

The separate dispatcher thread that is used when MAXDISPATCHTHREADS > 1 is not
counted as part of the MINDISPATCHTHREADS Value. It is required that
MINDISPATCHTHREADS <= MAXDISPATCHTHREADS. The default for this parameter is 0.

THREADSTACKSIZE = number
Specifies the size of the stack created for each dispatch thread in a multithreaded server.
This value must be greater than or equal to 0 or less than or equal to 2147483647. The
default is 0. This parameter has an effect on the server only when a value greater than 1 is
specified for MAXDI SPATCHTHREADS.

If this parameter is not specified or if the value specified is 0, a default thread stack size
is used. If the value specified is bigger than 0 and less than a minimum thread stack size,

510 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

the minimum thread stack size is used. If the value specified is bigger than that minimum
thread stack size, value specified is used.

The default size used is the operating system default size unless that value is known to be
insufficient for a multithreaded BEA Tuxedo application, in which case the BEA Tuxedo
default size is used. The purpose of the minimum thread stack size is to allow customer to
specify less thread stack size than Tuxedo default thread stack size. Currently, the BEA
Tuxedo default thread stack size is 1,024,000, and minimum thread stack size is 100,000.

Note that if the thread stack size is exceeded, the server will core dump.

SEC_PRINCIPAL_NAME = string_value [0..511]
Specifies the security principal name identification string to be used for authentication
purposes by an application running BEA Tuxedo 7.1 or later software. This parameter
may contain a maximum of 511 characters (excluding the terminating NULL character).
The principal name specified for this parameter becomes the identity of one or more
system processes running on this server.

SEC_PRINCIPAL_NAME can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPps section, and
SERVERS section. A principal name at a particular configuration level can be overridden
at a lower level. If sec_PRINCIPAL_NAME iS not specified at any of these levels, the
principal name for the application defaults to the poMa1NID string specified in the
RESOURCES section for this application.

Note that sEc_pPrINCIPAL_NAME is one of a trio of parameters, the other two being
SEC_PRINCIPAL_LOCATION and SEC_PRINCIPAL_PASSVAR. The latter two parameters
pertain to opening decryption keys during application booting for the system processes
running in a BEA Tuxedo 7.1 or later application. When only sEC_PRINCIPAL_NAME IS
specified at a particular level, the system sets each of the other two parameters to a NULL
(zero length) string.

SEC_PRINCIPAL_LOCATION = string_value [0..511]
Specifies the location of the file or device where the decryption (private) key for the
principal specified in sec_prRINCIPAL_NAME resides. This parameter may contain a
maximum of 511 characters (excluding the terminating NULL character).

SEC_PRINCIPAL_LOCATION can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEc_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(sEC_PRINCIPAL_PASSVAR isoptional; if not specified, the system sets it to a NULL—zero
length—string.)

File Formats, Data Descriptions, MIBs, and System Processes Reference 5N

512

SEC_PRINCIPAL_PASSVAR = string_value [0..511]

Specifies the variable in which the password for the principal specified in
SEC_PRINCIPAL_NAME is stored. This parameter may contain a maximum of 511
characters (excluding the terminating NULL character).

SEC_PRINCIPAL_PASSVAR can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVERS section. When specified at any of these levels, this parameter must be paired
with the sEc_PRINCIPAL_NAME parameter; otherwise, its value is ignored.
(SEC_PRINCIPAL_LOCATION is optional; if not specified, the system sets it to a NULL—
zero length—string.)

During initialization, the administrator must provide the password for each of the
decryption keys configured with SEC_PRINCIPAL_PASSVAR. (tmloadcf (1) prompts for
the password.) The system automatically encrypts the password entered by the
administrator and assigns each encrypted password to the associated password variable.

SICACHEENTRIESMAX = string value

if the string contains only numeric characters, than number specifies the maximum
number of service cache entries this server can keep. It must be greater than or equal to 0
and less than 32,768. Otherwise, the string can take the value perauLT, in which case the
number of services to cache will come from the macHINE section entry that corresponds
to this server. If a value is not specified, it will take the string pEFauLT as a valid value.
A value of 0 implies that no service caching will be performed by any process on this
machine. The maximum value this parameter can take is 32,767.

CONCURR_STRATEGY=PER_REQUEST
CONCURR_STRATEGY = PER_OBJECT

Use the coNnCcURR_STRATEGY parameter to specify the threading model to be used by a
multithreaded CORBA server application. The CONCURR_STRATEGY parameter accepts
either of the following values:

CONCURR_STRATEGY = PER_REQUEST

CONCURR_STRATEGY = PER_OBJECT

When you specify CONCURR_STRATEGY = PER_REQUEST to employ the
thread-per-request model, each invocation on the CORBA server application is
assigned to an arbitrary thread from the threads pool.

When you specify CONCURR_STRATEGY = PER_OBJECT to employ the
thread-per-object model, each active object is associated with a single thread at any one
time. Each request for an object establishes an association between a dispatch thread and
the object.

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

Note: User-controlled concurrency takes precedence over threading model. Therefore,
once user-controlled concurrency is chosen, the threading models behave the
same so the behavior is consistent for instances of an object in the same process
in multiple threads as it is for instances of an object in separate processes.

For a description of Parallel Objects, refer to “Parallel Objects” in the BEA Tuxedo
CORBA Programming Reference.

SERVICES Section

This section provides information on services used by the application. Lines within the servicEs
section have the form:

SVCNM [op tional_paramet ers]

where svenis the (string_value) name of the service. svenm must be 15 characters or fewer
in length.

There are no required parameters. Services need not be listed if no optional parameters need to
be set. Optional parameters are:

LOAD = number
Specifies that svenm imposes a load on the system of number. number can be between 1
and 32,767 inclusive. If not specified, the default is 50. A higher number indicates a
greater load.

PRIO = number
Specifies that svcnirhas a dequeuing priority of the specified number. The value must be
greater than 0 and less than or equal to 100, with 100 being the highest priority. The
default is 50.
A lower priority message does not remain forever enqueued because every tenth message
is retrieved on a FIFO basis. Response time should not be a concern of the lower priority
interface or service.

SRVGRP = string value
This parameter says that any parameters specified apply to svcnm within server group
string_value. The use of srvGrp allows the same service to have different parameter
settings within different server groups. It must be 30 characters or less.

BUFTYPE = typel[:subtypel[, subtypeZ ..]][type2[:subtype3[, ..]]] A
A list of types and subtypes of data buffers accepted by this service. This parameter can
be up to 256 characters in length and a maximum of 32 type/subtype combinations are
allowed. The BEA Tuxedo system provides the following types of data buffers: Fmz and

File Formats, Data Descriptions, MIBs, and System Processes Reference 513

514

ruL32 (for FML buffers), xvr (for XML buffers), view, VIEW32, X_C_TYPE, Or
x_common (for FML views), sTrING (for NULL terminated character arrays) and cARRAY
or x_ocTeT (for a character array that is neither encoded nor decoded during
transmission). Of these types, only vieEw, VIEW32, X_C_TYPE, and X_CcoMMON have
subtypes. A view subtype gives the name of the particular view expected by the service.
Application types and subtypes can also be added (see tuxtypes (5)). For a TypE that has
subtypes, “*” can be specified for the subtype to indicate that the service accepts all
subtypes for the associated type.

A single service can only interpret a fixed number of buffer types, namely those found in
its buffer type switch (see tuxtypes (5)). If the BUFTYPE parameter is set to ALz, that
service accepts all buffer types found in its buffer type switch. Omitting the BurTYPE
parameter is equivalent to setting it to ar.r. If multiple entries exist for the same service
name but with different srvGrp parameters, the BUFTYPE parameter must be the same for
all of these entries.

A type name can be 8 characters or less in length and a subtype name can be 16 characters
or less in length. Note that type and subtype names should not contain semicolon, colon,
comma, or asterisk characters (this will make it hard to see where type and subtype values
end).

Some examples of valid sBurTyPE specifications are:

BUFTYPE=FML implies that the service takes FML buffers.
BUFTYPE=VIEW:* implies that the service takes all subtypes
of FML views.

BUFTYPECONV = {XML2FML | XML2FML32}

When you boot a server with this parameter, the input buffer is converted from an XML
type buffer to an FML/FML32 type buffer before being delivered to the service. When the
tpreturn(3c) function is called, the FML/FML32 buffer is converted to XML before being
returned back to the client.

ROUTING = string value

Specifies the name of the routing criteria used for this service when doing data-dependent
routing. The string_value, Which is a rRouTING_crRITERTA_NAME defined in the
ROUTING Section, is the name of the routing criteria used for data-dependent routing for
this service. If this parameter is not specified, data-dependent routing is not done for this
service. string_value must be 15 characters or less in length. If multiple entries exist
for the same service name but with different srvGrp parameters, the RouTTNG parameter
must be the same for all of these entries.

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

BLOCKTIME numeric_value
Specifies the nontransactional client blocking time value, in seconds, per service
indicating the minimum amount of time a blocking API call will delay before timing out
for a particular service.

This parameter lets the client know that (after a specified time in seconds), no reply has
been received by the server while the service request is still processing.

numeric_value can be between 0 and 32,767 inclusive. If not specified, the default is 0
which indicates that the system-wide Br.ockrIME value specified in the uBBcONFIG
RESOURCES section is used for the service.

SVCTIMEOUT = number
Specifies the amount of time, in seconds, that is allowed for processing of the indicated
service. The value must be greater than or equal to 0. A value of 0 indicates that the service
will not be timed out. A timed-out service will cause the server processing the service
request to be terminated with a ster1LL signal. Note that this signal affects all threads in
the server. The default for this parameter is 0.

SIGNATURE_REQUIRED = {Y | N}
Specifies whether or not every instance of this service requires a digital signature on its
input message buffer. If not specified, the default is n. This parameter applies only to
applications running BEA Tuxedo 7.1 or later software.

SIGNATURE_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES section, MACHINES Section, GrRoups section, and
SERVICES Section. Setting SIGNATURE_REQUIRED t0 Y at a particular level means that
signatures are required for all processes running at that level or below.

ENCRYPTION_REQUIRED = {Y | N}
Specifies whether or not every instance of this service requires an encrypted input
message buffer. If not specified, the default is 5. This parameter applies only to
applications running BEA Tuxedo 7.1 or later software.

ENCRYPTION_REQUIRED can be specified at any of the following four levels in the
configuration hierarchy: RESOURCES Section, MACHINES Section, GRouPs section, and
SERVICES Section. Setting ENCRYPTION REQUIRED t0 v at a particular level means that
encryption is required for all processes running at that level or below.

The following parameters are for DTP applications only:
AUTOTRAN = {Y | N}

Specifies whether or not a transaction should automatically be started if a request message
is received that is not already in transaction mode. The default is .

File Formats, Data Descriptions, MIBs, and System Processes Reference 515

TRANTIME = number
Specifies the default timeout value in seconds for a transaction automatically started for
the associated service. The value must be greater than or equal to 0 and less than
2147483648. The default is 30 seconds. A value of 0 implies the maximum timeout value
for the machine.

INTERFACES Section

This section provides information for defining application-wide default parameters for CORBA
interfaces used by the application. There are no required parameters for CORBA interfaces unless
you are implementing factory-based routing, a feature that allows you to distribute processing to
specific server groups. If you are implementing factory-based routing, you must specify the
following parameters:

Table 64 Factory-bhased Routing Parameters

In this section... You must specify...
INTERFACES « Names of the interfaces being used
« Names of the routing criteria that the system should apply to each
interface
ROUTING Routing criteria
GROUPS Names of the server groups

For details about factory-based routing and the parameters associated with it, see “ROUTING
Section” on page 518.

You do not need to list any CORBA interfaces if you do not want to specify any parameters.

The following optional parameters are available.

AUTOTRAN = {v |N}
Indicates that you want the system to automatically initiate a transaction on every
operation invocation and end it upon return from the invocation. The auToTrAN parameter
is only honored for interfaces that have the optional transaction policy. Otherwise, this
parameter is ignored. The default is .

The transactional policy is specified in an implementation configuration file. This
transactional policy will become the transactional policy attribute of the associated
T_IFQUEUE MIB Object at run time.

516 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

Before setting the auToTrAN Value, the system administrator must know the value of the
transactional policy assigned to the interface by the programmer. Without knowing the
policy, the administrator’s expectations of run-time auvroTran functionality may be
wrong.

If AUTOTRAN iS set to v, the TRANTIME parameter must also be set.

FACTORYROUTING = criteria_name
Required if you want to use a routing criteria when creating object references for this
interface. The routing criteria is specified in the rouTING section of the uBsconrIc file.

LOAD = number
An arbitrary number between 1 and 100 that represents the relative load that the CORBA
interface is expected to impose on the system. The numbering scheme is relative to the
LoaD numbers assigned to other CORBA interfaces used by this application. The default
is 50. The value of LoaD is used in a CORBA environment to select the best machine to
engqueue a request. The routing of the request causes the server’s total load to be increased
by the .oap factor of the CORBA interface requested.

PRIO = number
Specifies the dequeuing priority number for all methods of the CORBA interface. The
value must be greater than 0 and less than or equal to 100. 100 is the highest priority. The
default is 50.

SRVGRP = server-group-name
Indicates that any parameter defined in this portion of the INTERFACES section applies to
the interface within the specified server group. This feature lets you define, for a given
CORBA interface, different parameter values in different server groups.

TRANTIME = number
The length of the time out (in seconds) for the transactions to be computed. If AUTOTRAN
is set to v, you must set the TRanTIME parameter. The value must be greater than or equal
to zero and must not exceed 2147483647 (2% - 1), or about 68 years. A value of 0 implies
there is no time out for the transaction. (The default is 30 seconds.)

TIMEOUT = number
Indicates the amount of time (in seconds) to allow for processing of a method for this
CORBA interface. The value must be greater than or equal to 0. A value of 0 indicates that
the interface cannot time out. A timed-out method causes the server processing the method
for the interface to terminate with a stekrLL event. We recommend specifying a timeout
value for the longest-running method for the interface.

File Formats, Data Descriptions, MIBs, and System Processes Reference 517

ROUTING Section

This section provides information for data-dependent routing of service requests using FML
buffers, XML buffers, and views. The routing criteria specified here are used only if the default
routing functions _froute, _xroute, and _vroute, are being used (see tuxtypes (5)). Lines
within the rouTING Section have the form:

ROUTING_CRITERIA NAME required parameters

Where ROUTING CRITERIA NAME iS the (string value) name assigned to the RouTING
parameter for a particular service entry in the SERVICES Section. ROUTING_CRITERIA_NAME
must be 15 characters or less in length.

Required parameters are:

FIELD = string value
Specifies the name of the routing field. It must be 30 characters or less. This field is
assumed to be an FML or FML32 buffer, XML element or element attribute, view field
name that is identified in an FML field table (using two environment variables—
FLDTBLDIR and FIELDTBLS or FLDTBLDIR32 and FIELDTBLS32), OF an FML View table
(using two environment variables—vIEWDIR and VIEWFILES or VIEWDIR32 and
VIEWFILES32), respectively. This information is used to get the associated field value for
data-dependent routing during the sending of a message. If a field in an FML or an FML32
buffer is used for routing, the value of that field must be a number less than or equal to
8191.

To route XML documents on the basis of element content or element attribute, you must
define the value of the rFIELD parameter with the following syntax:

FIELD=“root_element|[/child element] |[/child element][/. . .][/@Qattribute namel”

The value of rTELD specifies the name of the routing element or an element attribute. This
element is assumed to be an element type (or name) or an element attribute name of an
XML document or datagram. This information is used to identify the element content or
element attribute value for data-dependent routing while sending a document or datagram.
The element name and attribute name combined may contain no more than 30 characters.
Because indexing is not supported, the BEA Tuxedo system recognizes only the first
occurrence of a given element type when processing an XML buffer for data-dependent
routing.

XML strictly defines the set of characters that may be used in an attribute name. An
attribute name must be a string consisting of a single letter, underscore, or colon followed
by one or more name characters. Both element names and attribute names are
case-sensitive.

518 File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5)

You can find more information about XML on the World Wide Web Consortium Web site
at http://www.w3c.org/XML.

FIELDTYPE = type
Indicates the type of routing field specified in the rTELD parameter. This parameter is used
only for routing XML buffers. The value type can be set to one of the following: cHAR,
SHORT, LONG, FLOAT, DOUBLE, Of STRING. The default type of the routing field is sTRING.

RANGES = string value
Specifies the ranges and associated server groups for the routing field. string must be
enclosed in double quotes. string can be up to 2048 characters in length (except in
Domains, where string can be up to 4096 characters). The format of string is a
comma-separated ordered list of range/group_name pairs; for example,
RANGES=+0-2:DBG1,3-5:DBG2,6-9:’DBG3"".

Arange is either a single value (signed numeric value or character string in single quotes),
or a range of the form “lower - upper” (where lower and upper are both signed numeric
values or character strings in single quotes). Note that “lower” must be less than or equal
to “upper.” To embed a single quote in a character string value (as in o'Brien, for
example), it must be preceded by two backslashes (' o\\ 'Brien'). The value m1n can be
used to indicate the minimum value for the data type of the associated FIELD on the
machine. The value max can be used to indicate the maximum value for the data type of
the associated F1ELD on the machine. Thus, “mIN - -5” is all numbers less than or equal
to-5and “6 - max” is all numbers greater than or equal to 6. The meta-character “*”
(wildcard) in the position of a range indicates any values not covered by the other ranges
previously seen in the entry; only one wildcard range is allowed per entry and it should be
last (ranges following it will be ignored).

The routing field can be of any data type supported in FML. A numeric routing field must
have numeric range values, and a string routing field must have string range values.

String range values for string, carray, and character field types must be placed inside a pair
of single quotes and cannot be preceded by a sign. Short and long integer values are strings
of digits, optionally preceded by a plus or minus sign. Floating point numbers are of the
form accepted by the C compiler or atof (3): an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or & followed by an optional sign
or space, followed by an integer.

The group name indicates the associated group to which the request is routed if the field
matches the range. The meta-character “»” (wildcard) indicates that the request goes to
the default group if the field value does not match the range or if there is match but no
viable server in the group associated with the range entry, the service request is forwarded
to the default group specified on the wildcard “*” range entry.

File Formats, Data Descriptions, MIBs, and System Processes Reference 519

520

Within a range/group pair, the range is separated from the group name by a “:”.

An XML element content and attribute value must be encoded in UTF-8 and can be used
for routing if it can be converted to the data type specified by the FIELDTYPE parameter.

When used for routing, the element content cannot contain character references, entity
references, or CDATA sections.

An XML attribute value (encoded in UTF-8) can be used for routing if the element to
which the attribute belongs is defined.

BUFTYPE = “typel|: subtypell, subtype2...]][; type2|:subtype3[, ... 1] ...~
A list of types and subtypes of data buffers for which this routing entry is valid. This
parameter can be up to 256 characters in length and a maximum of 32 type/subtype
combinations are allowed. The types must be one of the following: FuL, FML32, XML,
VIEW, VIEW32, X_C_TYPE, Or Xx_coMMON. No subtype can be specified for types rFur,
FML32, Or xML. Subtypes are required for type viEw, VIEW32, X_C_TYPE, and X_COMMON
(“*” is not allowed). Note that subtype names should not contain semicolon, colon,
comma, or asterisk characters. Duplicate type/subtype pairs cannot be specified for the
same routing criteria name; more than one routing entry can have the same criteria name
as long as the type/subtype pairs are unique. This parameter is required. If multiple buffer
types are specified for a single routing entry, the data types of the routing field for each
buffer type must be the same.

An example of a routing entry is:

BRNCH FIELD=B_FLD RANGES="0-2:DBG1l,3-5:DBG2,6-9:DBG3" BUFTYPE="FML"

which sends buffers with field 8_r1p values 0-2 to server group pec1, values 3-5 to server group
DBG2, and values 6-9 to pBG3; no other values are allowed.

If the field value is not set (for FML buffers), or does not match any specific range and a wildcard
range has not been specified, an error is returned to the application.

An example of a routing entry based on the XML element copk is:

PRODUCT FIELD="ORDER/CODE" RANGES="'AAA' - 'FFF':DBGl, 'GGG-ZZZ':DBG2"
BUFTYPE="XML"

Here, copk is a child element of the root element orDER.
A routing entry based on the attribute orbErNO might look like the following example.

ORDER FIELD="ORDER/HEADER/E@ORDERNO" FIELDTYPE=long
RANGES="0-9999:DBG1,10000-MAX:DBG3" BUFTYPE="XML"

Here, orRDERNO is the attribute of the XML child element zsEADER of the root element ORDER.

File Formats, Data Descriptions, MIBs, and System Processes Reference

UBBCONFIG(5) Additional Information

Files

UBBCONFIG(5)

The TuxcoNFIG and TUXOFFSET environment variables are used to find the TuxcoNrFIG

configuration file on the masTER machine.

Example

The following configuration file defines a 2-site

configuration with two machine types. Data-dependent

routing is used.

*RESOURCES

IPCKEY 80952 # key for well known address
DOMAINID My_Domain_Name

UID 4196 # user id for ipc structures

GID 601 # group id for ipc structures
PERM 0660 # permissions for ipc access
MAXSERVERS 20 # at most 20 simultaneous servers
MAXSERVICES 40 # offering at most 40 services
MAXGTT 20 # at most 20 simultaneous global transactions
MASTER SITE1l

SCANUNIT 10

SANITYSCAN 12

BBLQUERY 180

BLOCKTIME 30

NOTIFY DIPIN

OPTIONS LAN, MIGRATE

SECURITY USER_AUTH

AUTHSVC AUTHSVC

MP # a multiprocessor based bulletin board
LDBAL Y # perform load balancing
#
*MACHINES
machl LMID=SITE1l TUXDIR="/usr4/tuxbin"
MAXACCESSERS=25

File Formats, Data Descriptions, MIBs, and System Processes Reference 521

APPDIR="/usr2/apps/bank"
ENVFILE="/usr2/apps/bank/ENVFILE"
TLOGDEVICE="/usr2/apps/bank/TLOG" TLOGNAME=TLOG
TUXCONFIG="/usr2/apps/bank/tuxconfig" TYPE="3B2"
ULOGPFX="/usr2/apps/bank/ULOG"
SPINCOUNT=5

mach386 LMID=SITE2 TUXDIR="/usr5/tuxbin"
MAXACCESSERS=100
MAXWSCLIENTS=50
APPDIR="/usr4/apps/bank"
ENVFILE="/usr4/apps/bank/ENVFILE"
TLOGDEVICE="/usr4/apps/bank/TLOG" TLOGNAME=TLOG
TUXCONFIG="/usr4/apps/bank/tuxconfig" TYPE="386"
ULOGPFX="/usr4/apps/bank/ULOG"

#

*GROUPS

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2

For Windows, :bankdb: becomes ;bankdb;
BANKB1 LMID=SITEl GRPNO=1

OPENINFO="TUXEDO/SQL: /usr2/apps/bank/bankdll:bankdb:readwrite"
For Windows, :bankdb: becomes ;bankdb;

BANKB2 LMID=SITE2 GRPNO=2
OPENINFO="TUXEDO/SQL: /usr4/apps/bank/bankdl2:bankdb: readwrite"

DEFAULT:

AUTHGRP LMID=SITE1 GRPNO=3

#

*NETWORK

SITEL NADDR="machl.80952" BRIDGE="/dev/starlan"
NLSADDR="machl.serve"

#

SITE2 NADDR="mach386.80952" BRIDGE="/dev/starlan"
NLSADDR="mach386.serve"

*SERVERS

#

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

TLR SRVGRP=BANKB1 SRVID=1 RQADDR=tlrl

522 File Formats, Data Descriptions, MIBs, and System Processes Reference

CLOPT="-A -- -T 100"
TLR SRVGRP=BANKB1 SRVID=2 RQADDR=tlrl
CLOPT="-A -- -T 200"
TLR SRVGRP=BANKB2 SRVID=3 RQADDR=tlr2
CLOPT="-A -- -T 600"
TLR SRVGRP=BANKB2 SRVID=4 RQADDR=tlr2
CLOPT="-A -- -T 700"
XFER SRVGRP=BANKB1l SRVID=5
XFER SRVGRP=BANKB2 SRVID=6
ACCT SRVGRP=BANKB1l SRVID=7
ACCT SRVGRP=BANKB2 SRVID=8
BAL SRVGRP=BANKB1 SRVID=9
BAL SRVGRP=BANKB2 SRVID=10
BTADD SRVGRP=BANKB1 SRVID=11
BTADD SRVGRP=BANKB2 SRVID=12
AUTHSVR SRVGRP=AUTHGRP SRVID=20 #
*SERVICES
DEFAULT: LOAD=50 AUTOTRAN=N
WITHDRAWAL PRIO=50 ROUTING=ACCOUNT_ID
DEPOSIT PRIO=50 ROUTING=ACCOUNT_ID
TRANSFER PRIO=50 ROUTING=ACCOUNT_ID
INQUIRY PRIO=50 ROUTING=ACCOUNT_ID
CLOSE_ACCT PRIO=40 ROUTING=ACCOUNT_ID
OPEN_ACCT PRIO=40 ROUTING=BRANCH_ID
BR_ADD PRIO=20 ROUTING=BRANCH_ID
TLR_ADD PRIO=20 ROUTING=BRANCH_ID
ABAL PRIO=30 ROUTING=b_id
TBAL PRIO=30 ROUTING=b_id
ABAL_BID PRIO=30 ROUTING=b_id
TBAL_BID PRIO=30 ROUTING=b_id SVCTIMEOUT=300
#
#
*ROUTING

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE="FML"

IN - 9999:*,10000-59999:BANKB1, 60000-109999 :BANKB2, *:
BUFTYPE="FML"

IN - 0:*,1-5:BANKB1, 6-10:BANKB2, *:*"

RANGES="M
BRANCH_ID FIELD=BRANCH_ID
RANGES="M

UBBCONFIG(5)

*xn

File Formats, Data Descriptions, MIBs, and System Processes Reference 523

b_id FIELD=b_id BUFTYPE="VIEW:aud"
RANGES="MIN - 0:*,1-5:BANKB1,6-10:BANKB2, *:*"

Interoperability

In an interoperating application, the master site must be the latest release available. Parameter

values for pM1D (Machine ADDRESS), LMID, TLOGNAME, roup Names, RQADDR, Service names, and
ROUTING (routing criteria names) must be identifiers (valid C identifiers that are not uBBcoNnFIG
keywords) when multiple releases of the BEA Tuxedo system are interoperating with each other.

Network Addresses

Suppose the local machine on which the bridge is being run is using TCP/IP addressing and is
named backus . company . com, With address 155.2.193.18. Further suppose that the port
number at which the bridge should accept requests is 2334. Assume that port number 2334 has
been added to the network services database under the name bankapp-naddr. The address could
be represented in the following ways:

//155.2.193.18:bankapp-naddr//155.2.193.18:2334
//backus.company.com: bankapp-naddr
//backus.company.com:2334

0x0002091E9B02C112

The last of these representations is hexadecimal format. The 0002 is the first part of a TCP/IP

address. The 091E is the port number 2334 translated into a hexadecimal number. After that each
element of the IP address 155.2.193.1 is translated into a hexadecimal number. Thus the 155

becomes 9B, 2 becomes 02 and so on.

See Also

524

buildserver (1), tmadmin(1l), tmboot (1), tmloadcf (1), tmshutdown (1),
tmunloadcf (1), buffer (3c), tpinit(3c), servopts (5)

Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference

viewfile(5)

viewfile(5)

Name
viewfile—Source file for view descriptions

Description

Viewfiles are source files for descriptions of one or more C data structures, or “views.” When
used as input to the viewc () command, the viewfile forms the basis for a binary file (filename
view_ filename.V) and a header file (view_filename.h) (See viewc, viewc32(1)).

The binary . v files are used two ways in the BEA Tuxedo system:

e For programs that use Fvftos () and Fvstof (), the .v file is interpreted at run-time to
effect the mapping between FML buffers and C structures

e For programs allocating typed buffers of type VIEW and VIEW32, the .v file is searched
for a structure of the name provided in the subtype argument of tpalloc().

The .n file must be included in all programs using the view so that structure members can be
referenced by their logical names.
VIEW Descriptions
Each view description in a source viewfile consists of three parts:
e A line beginning with the keyword “view”, followed by the name of the view description;
the name can have a maximum of 33 characters and must be a valid C identifier (that is, it
must start with an underscore or an alphabetic character and contain only alphanumeric or

underscore characters); when used with tpalloc (3c), the name can only have a
maximum of 16 characters.

o A list of member descriptions, each line containing 7 fields.

e A line beginning with the keyword “Enp”.

The first line of each view description must begin with the keyword “view” followed by the name
of the view description. A member description (or mapping entry) is a line with information about
a member in the C structure. A line with the keyword “Exp” must be the last line in a view
description. Lines beginning with a # are treated as comments and ignored.

Thus, a source view description has this general structure:

VIEW vname

type cname fbname count flag size null

File Formats, Data Descriptions, MIBs, and System Processes Reference 525

526

$ oo L o e . .

END
In the view description, the variable fields have the following meaning:

vname
The name of the view description, and should be a valid C identifier name, since it is also
used as the name of a C structure.

type
The type of the member, and is specified as one of the following: int, short, long, char,
float, double, string, carray, mbstring, or dec_t; if type is ‘-’, the type of the member is
defaulted to the type of fbname if the view is mapped to FML buffers.

Note: mbstring member type is supported by VIEW32 typed buffer only.

cname
The identifier for the structure member, and should be a valid C identifier name, since it
is the name of a C structure member. Internally, the cname is truncated to 30 characters,
S0 cnames must be unique within the first 30 characters. If the view is mapped to FML
buffers, it cannot be a valid £fbname.

fbname
The name of the field in the fielded buffer; this name must appear in either a field table
file or a field header file. For views not mapped to FML buffers, this field is ignored but
must contain a place holder value such as a dash ().

count
The number of elements to be allocated (that is, the maximum number of occurrences to
be stored for this member); must be less than or equal to 65535.

flag
A list of options, optionally separated by commas, or ‘-> meaning no options are set; see
below for a discussion of £1ag options. For views not mapped to FML buffers, this field
may contain the ¢ and/or 1. options, or must contain a dash () place holder value.

size
The size of the member if the type is either string or carray; must be less than or equal to
65535. For 32-bit FML, the max size is 2 to the 32nd or several gazillion. For the dec_t
type, size is two numbers separated by a comma, the first being the number of bytes in

File Formats, Data Descriptions, MIBs, and System Processes Reference

null

viewfile(5)

the decimal value (it must be greater than 0 and less than 10) and the second being the
number of decimal places to the right of the decimal point (it must be greater than 0 and
less than two times the number of bytes minus one). For other field types, ‘-’ should be
specified, and the view compiler will compute the size.

The user-specified NULL value or ‘-’ to indicate the default NULL value for that field; see
below for a discussion of NULL values.

Flag Options

The following is a list of the options that can be specified as the f1ag element of a member
description in a view description. Note that the 1. and c options generate additional structure
members even for views that are not FML-based.

C

This option specifies that an additional structure member, called the associated count
member (ACM), be generated, in addition to the structure member described in the
member description (even for views that are not FML-based). When transferring data
from a fielded buffer to a structure, each ACM in the structure is set to the number of
occurrences transferred to the associated structure member. A value of 0 in an ACM
indicates that no fields were transferred to the associated structure member; a positive
value indicates the number of fields actually transferred to the structure member array; a
negative value indicates that there were more fields in the buffer than could be transferred
to the structure member array (the absolute value of the ACM equals the number of fields
not transferred to the structure). During a transfer of data from a structure member array
to a fielded buffer, the ACM is used to indicate the number of array elements that should
be transferred. For example, if a member's ACM is set to N, the first N non-NULL fields
are transferred to the fielded buffer. If N is greater than the dimension of the array, it then
defaults to the dimension of the array. In either event, after the transfer takes place, the
ACM is set to the actual number of array members transferred to the fielded buffer. The
type of an ACM is declared to be short (32-bit long integer for VIEW32), and its name is
generated as "C_cname", where cname is the cname entry for which the ACM is declared.
For example, an ACM for a member named parts would be declared as follows:

short C_parts;

It is possible for the generated ACM name to conflict with structure members whose
names begin with a "C_" prefix. Such conflicts will be reported by the view compiler, and
are considered fatal errors by the compiler. For example, if a structure member has the
name "C_parts", it would conflict with the name of an ACM generated for the member
"parts". Note also that the view compiler will generate structured record definitions for

File Formats, Data Descriptions, MIBs, and System Processes Reference 5217

528

ACM and ALM (see the L option, below) members when you specify the -r
command-line option.

Specifies one-way mapping from structure to fielded buffer (this option is ignored for
views that are not FML-based). The mapping of a member with this option is effective
only when transferring data from structures to fielded buffers.

This option is used only for member descriptions of type carray or string to indicate the
number of bytes transferred for these possibly variable length fields. If a string or carray
field is always used as a fixed length data item, this option provides no benefit. The .
option generates an associated length member (ar.m) for a structure member of type carray
or string (even for views that are not FML-based). When transferring data from a fielded
buffer to a structure, the ar.m is set to the length of the corresponding transferred fields. If
a field's length in the fielded buffer exceeds the space allocated in the mapped structure
member, only the allocated number of bytes is transferred. The corresponding arm is set
to the size of the fielded buffer item. Therefore, if the arm is greater than the dimension
of the structure member array, the fielded buffer information was truncated on transfer.
When transferring data from a structure member to a field in a fielded buffer, the arm is
used to indicate the number of bytes to transfer to the fielded buffer, if it is a carray type
field. For strings, the aru is ignored on transfer, but is set afterwards to the number of
bytes transferred. Note that since carray fields may be of zero length, an a.m of 0 indicates
that a zero length field should be transferred to the fielded buffer, unless the value in the
associated structure member is the NULL value. An aruv is defined to be an unsigned short
(32-bit unsigned long integer for vIEw32), and has a generated name of "1._cname", where
cname is the name of the structure for which the arwm is declared. If the number of
occurrences of the member for which the ar.m is declared is 1 (or defaults to 1), the arm is
declared as:

unsigned short L_cname;

whereas if the number of occurrences is greater than 1, say N, the ALM is declared as:

unsigned short L_cname[N];

and is referred to as an aLm Array. In this case, each element in the ALM array refers to a
corresponding occurrence of the structure member (or field). It is possible for the
generated a.M name to conflict with structure members whose names begin with a "'z._
prefix. Such conflicts will be reported by the view compiler, and are considered fatal
errors by the compiler. For example, if a structure member has the name "L_parts", it
would conflict with the name of an ar.m generated for the member "parts”. Note also that

File Formats, Data Descriptions, MIBs, and System Processes Reference

Null Values

viewfile(5)

the view compiler will generate structured record definitions for acm and arm (see the C
option, above) members when you specify the -r command-line option.

Note: For MBSTRING field in VIEW32 buffer, the viewc32 (1) command
automatically adds the 1. option and the corresponding arm is declared. The size
of the MBSTRING data prepared by Fmbpack32 () must be set in the ALM by
the application and it is used for Fmbunpack32 ().

Specifies zero-way mapping, that is, no fielded buffer is mapped to the C structure (this
option is ignored for views that are not FML-based). This can be used to allocate fillers in
C structures.

This option can be used to affect what value is interpreted as a NULL value for string and
carray type structure members (this option is ignored for views that are not FML-based).
If this option is not used, a structure member is NULL if its value is equal to the
user-specified NULL value (without considering any trailing NULL characters). If this
option is set, however, a member is NULL if its value is equal to the user-specified NULL
value with the last character propagated to full length (without considering any trailing
NULL character). Note that a member whose value is NULL will not be transferred to the
destination buffer when data is transferred from the C structure to the fielded buffer. For
example, a structure member TEST is of type carray[25] and a user-specified NULL value
"abcde" is established for it. If the P option is not set, TEST is considered NULL if the first
five characters are a, b, ¢, d, and e, respectively. If the P option is set, TEST is NULL if the
first four characters are a, b, ¢, and d, respectively, and the rest of the carray must contain
the character 'e' (21 €’s).

Specifies one-way mapping from fielded buffer to structure (this option is ignored for
views that are not FML-based). The mapping of a member with this option is effective
only when transferring data from fielded buffers to structures.

NULL values are used in views to indicate empty C structure members. Default NULL values are
provided, and you may also define your own.

The default NULL value for all numeric types is 0 (0.0 for dec_t); for char types, it is "\"; and for

string, carray, and mbstring types, it is """

Escape convention constants can also be used to specify a NULL value. The view compiler
recognizes the following escape constants: ddd (where 4 is an octal digit), 0, n, t, v, b, r, f,, ", and

File Formats, Data Descriptions, MIBs, and System Processes Reference 529

String, carray, mbstring and char NULL values may be enclosed in double or single quotes.
Unescaped quotes within a user-defined NULL value are not accepted by the view compiler.

Alternatively, an element is NULL if its value is the same as the NULL value for that element, except
in the following cases:

e If the P option is set for the structure member, and the structure member is of string,
carray, or mbstring type; see above for details on the P option flag.

o If a member is of type string, its value must be the same string as the NULL value.
o If a member is of type carray or mbstring, and the NULL value is of length N, the first N
characters in the carray or mbstring must be the same as the NULL value.

You can also specify the keyword "NONE" in the NULL field of a view member description,
which means there is no NULL value for the member.

The maximum size of defaults for string and character array members is 2660 characters.

Note that for string members, which usually end with a 0", a 0" is not required as the last
character of a user-defined NULL value.

Environment Variables

VIEWFILES
Should contain a comma-separated list of object viewfiles for the application. Files given
as full pathnames are used as is; files listed as relative pathnames are searched for through
the list of directories specified by the viEwpIR variable (see below).

VIEWDIR
Specifies a colon-separated list of directories where view object files can be found. If
VIEWDIR i$ not set, its value is taken to be the current directory.

For viEW32, the environment variable vIEWFILES32 and VIEWDIR32 are used.

Examples

530

BEGINNING OF AN FML-BASED VIEWFILE
VIEW custdb

$/* This is a comment */

#

#type cname fbname count flag size null
#

carray bug BUG_CURS 4 - 12 "no bugs"
long custid CUSTID 2 - - -1

File Formats, Data Descriptions, MIBs, and System Processes Reference

viewfile(5)

short super SUPER_NUM 1 - - 999

long youid ID 1 - - -1

float tape TAPE_SENT 1 - - -.001

char ch CHR 1 - - "o

string action ACTION 4 - 20 "no action"
END

BEGINNING OF AN INDEPENDENT VIEWFILE
VIEW viewx

$ /* View structure for viewx information */

#
#type cname fbname count flag size null
#
int in - 1 - - -
short sh - 2 - - -
long lo - 3 - - -
char ch - 1 - - -
float f1l - 1 - - -
double db - 1 - - -
string st - 1 - 15 -
carray ca - 1 - 15 -
END

See Also

viewc, viewc32 (1), tpalloc(3c),Fvftos, Fvftos32(3fml),Fvstof, Fvstof32(3fml)

Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference 531

WS_MIB(3)

Name

ws_mMIB—Management Information Base for Workstation

Synopsis

#include <fml32.h>
#include <tpadm.h>

Description

532

The BEA Tuxedo system MIB defines the set of classes through which a Workstation group (one
WSL and its associated WSH processes) may be managed.

ws_m1B(5) should be used in combination with the generic MIB reference page m1B(5) to
format administrative requests and interpret administrative replies. Requests formatted as
described inM1B (5) using classes and attributes described in this reference page may be used to
request an administrative service using any one of a number of existing ATMI interfaces in an
active application. For additional information pertaining to all ws_m1B(5) class definitions, see
“WS_MIB(5) Additional Information” on page 545.

ws_m1B(5) consists of the following classes.

Tahle 65 WS_MIB Classes

Class Name Attributes
T_WSH Workstation Handler
T_WSL Workstation Listener

Each class description section has four subsections:

Overview
High level description of the attributes associated with the class.

Attribute Table
A table that lists the name, type, permissions, values and default for each attribute in the
class. The format of the attribute table is described below.

Attribute Semantics
Tells how each attribute should be interpreted.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

Limitations
Limitations in the access to and interpretation of this class.

Attribute Table Format

As described above, each class that is a part of this MIB is defined below in four parts. One of

these parts is the attribute table. The attribute table is a one-page reference guide to the attributes
within a class and how they may used by administrator's, operator's and general user's to interface
with an application. There are five components to each attribute description in the attribute tables;
name, type, permissions, values and default. Each of these components is discussed in MIB (5).

TA_FLAGS Values

m1B (5) defines the generic Ta_rracs attribute which is a long valued field containing both
generic and component MIB specific flag values. At this time, there are no ws_m1B(5) specific
flag values defined.

FML3?2 Field Tables

The field tables for the attributes described in this reference page are found in the file
udataobj/tpadm relative to the root directory of the BEA Tuxedo system software installed on
the system. The directory $ {TUXDIR} /udatacbj should be included by the application in the
colon-separated list specified by the FL.DTBLDIR environment variable and the field table name
tpadm should be included in the comma-separated list specified by the FTELDTBLS environment
variable.

Limitations

Access to the header files and field tables for this MIB is being provided only on BEA Tuxedo
system 6.0 sites and later, both native and Workstation.

T_WSH Class Definition

Overview

The T_wsH class represents run-time attributes of WSH client processes. These attribute values
characterize Workstation statistics specific to a particular WSH client process. This class is linked
to the T_wstL class by the common key fields, Ta_srvere and Ta_srvp. It is also linked to the
T_CLIENT class (see Tv_MIB(5)) by the common key field TA_wSHCLIENTID.

File Formats, Data Descriptions, MIBs, and System Processes Reference 533

Attribute Table

Table 66 WS_MIB(5): T_WSH Class Definition Attribute Table

Attribute ! Type Permissions Values Default
TA_CLIENTID(*) string R--R--R-- string[l1..78] N/A
TA_WSHCLIENTID(*) string R--R--R-- string[l1..78] N/A
TA_SRVGRP(¥) string R--R--R-- string[1..30] N/A
TA_SRVID(*) long R--R--R-- 1 <= num< 30,001 N/A
TA_GRPNO(*) long R--R--R-- 1 <= num < 30,000 N/A
TA_STATE(K) string R-XR-XR-- See T_CLIENT Class in
T™_MIB(5)

TA_LMID(*) string R--R--R-- LMID N/A
TA_PID(*) long R--R--R-- 1 <= num N/A
TA_NADDR string R--R--R-- string[1..256] 2 N/A
TA_HWCLIENTS long R--R--R-- 1 <= num< 32,767 N/A
TA_MULTIPLEX long R--R--R-- 1 <= num< 32,767 N/A
TA_CURCLIENTS long R--R--R-- 1 <= num< 32,767 N/A
TA_TIMELEFT long R--R--R-- 0 <= num N/A
TA_ACTIVE string R--R--R-- “{y | N}~ N/A
TA_TOTACTTIME long R--R--R-- 0 <= num N/A
TA_TOTIDLTIME long R--R--R-- 0 <= num N/A
TA_CURWORK long R--R--R-- 0 <= num N/A
TA_FLOWCNT long R--R--R-- 0 <= num N/A

534 File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

Table 66 WS_MIB(5): T_WSH Class Definition Attribute Table (Continued)

Attribute ! Type Permissions Values Default
TA_NUMBLOCKQ long R--R--R-- 0 <= num N/A
TA_RCVDBYT long R--R--R-- 0 <= num N/A
TA_RCVDNUM long R--R--R-- 0 <= num N/A
TA_SENTBYT long R--R--R-- 0 <= num N/A
TA_SENTNUM long R--R--R-- 0 <= num N/A

(k)—GET key field
(*)—GET/SET key, one or more required for SET operations

L All attributes in the T_wsH class are local attributes.
2 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_CLIENTID: string[l..78]
Client identifier for this WSH. The data in this field should not be interpreted directly by
the end user except for equality comparison.

TA_WSHCLIENTID: string[l..78]
Client identifier for this WSH. The data in this field should not be interpreted directly by
the end user except for equality comparison. This field can be used to link the WSH to its
associated Workstation client T_cr.TENT objects. This field value is always equal to the
value for the Ta_cr.1ENTID attribute for this class.

TA_SRVGRP: string[l..30]
Logical name of the server group for the associated WSL.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number for the associated WSL.

TA_STATE.
State for the WSH client within the application. Any state defined for the T_cr.1ENT class
in TM_MTB (5) may be returned or set as indicated on that reference page. State changes to
the SUSpended state are transitive to all clients associated with this WSH as is the
resetting of a SUSpended WSH to ACTive. Additionally, SUSpended WSH clients will

File Formats, Data Descriptions, MIBs, and System Processes Reference 535

536

not be assigned any additional incoming clients by the WSL. Note that the state of a WSH
client may not be set to pEaD when accessing the T_cr.1eNT class; however, the state
transition to peaD is allowed via the T_wsH class and will result in all connections being
handled by the targeted WSH to be dropped abortively.

TA_LMID: LMID

Current logical machine on which the WSH is running.

TA_PID: 1= num

Native operating system process identifier for the WSH client. Note that this may not be
a unique attribute since clients may be located on different machines allowing for
duplication of process identifiers.

TA_NADDR: string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)

Network address of workstation handler. Hexadecimal addresses are converted to an ascii
format with a leading "0x". TCP/IP addresses are reported in the "//#. #. #. #:port"
format.

TA_HWCLIENTS: 1 <= num<32,767

High water number of clients accessing application via this WSH.

TA_MULTIPLEX: 1 <= num <32,767

Maximum number of clients that may access the application via this WSH.

TA_CURCLIENTS: 1 <= num <32,767

Current number of clients accessing application via this WSH.

TA_TIMELEFT. 0 <= num

A non-0 value for this attribute indicates that the WSH has been assigned a newly
connecting Workstation client that has the indicated amount of time, in seconds, to
complete the initialization process with the WSH.

TA_ACTIVE: {Y | N}

A value of v indicates that the WSH is currently performing work on behalf of one of its
associated Workstation clients. A value of n indicates that the WSH is currently waiting
for work to perform on behalf of one of its associated Workstation clients.

TA_TOTACTTIME: 0 <= num

Time, in seconds, that the WSH has been active since it started processing.

TA_TOTIDLTIME: 0 <= num

Time, in seconds, that the WSH has been idle since it started processing.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

TA_CURWORK: 0 <= num
Amount of work processed by this WSH since the last WSH assignment by the WSL. This
value is used by the WSL to load balance new incoming connections amongst a set of
WSH processes.

TA_FLOWCNT. 0 <= num
Number of times flow control has been encountered by this WSH. This attribute should
be considered only in relation to recent past values as it may wrap around during the
lifetime of the WSH.

TA_NUMBLOCKQ: 0 <= num
Number of times this WSH has been unable to enqueue a message to a local UNIX system
message queue due to queue blocking conditions. This attribute should be considered only
in relation to recent past values as it may wrap around during the lifetime of the WSH.

TA_RCVDBYT: 0 <= num
Number of bytes received from the network by this WSH from all of its present and past
Workstation clients. This attribute should be considered only in relation to recent past
values as it may wrap around during the lifetime of the WSH.

TA_RCVDNUM: 0 <= num
Number of BEA Tuxedo system messages received from the network by this WSH from
all of its present and past Workstation clients. This attribute should be considered only in
relation to recent past values as it may wrap around during the lifetime of the WSH.

TA_SENTBYT: 0 <= num
Number of bytes sent to the network by this WSH to all of its present and past Workstation
clients. This attribute should be considered only in relation to recent past values as it may
wrap around during the lifetime of the WSH.

TA_SENTNUM: 0 <= num
Number of BEA Tuxedo system messages sent to the network by this WSH to all of its
present and past Workstation clients. This attribute should be considered only in relation
to recent past values as it may wrap around during the lifetime of the WSH.

Limitations

This class represents a specialization of the T_cr.1ENT class and as such represents certain
attributes that are duplicated in the corresponding T_cr.TENT 0bjects. Attributes not listed that are
included in the T_cr1ENT class must be accessed via that class and are not available through the
T_wsH class.

The attributes of WSH servers are meaningful only in a run-time environment. Therefore they
cannot be changed, in an unbooted environment, by using the tpadmcall (3c¢) function.

File Formats, Data Descriptions, MIBs, and System Processes Reference 537

T_WSL Class Definition

Overview

The T_wsL class represents configuration and run-time attributes of WSL server processes
configured to manage Workstation groups. These attribute values identify and characterize
Workstation specific configuration attributes for WSL T_sERVER objects within the application.
This class is linked to the T_ws# class by the common key fields, Ta_srverp and Ta_SRVID.

Attribute Table

Table 67 WS_MIB(5): T_WSL Class Definition Attribute Tahle

Attribute Type Permissions Values Default
TA_SRVGRP(r)(*) string ru-r--r-- string[l..30] N/A
TA_SRVID(r)(*) long ru-r--r-- 1 <= num< 30,001 N/A
TA_GRPNO(K) long r--r--r-- 1 <= num < 30,001 N/A
TA_STATE(K) string TWXL-XT -~ See T_SERVER Class in TM_MIB(5)
TA_LMID(K) string R--R--R-- LMID N/A
TA_PID(K) long R--R--R-- 1 <= num N/A
TA_DEVICE string IW-r--r-- string[0..78] N/A
TA_NADDR() string rw-r--r-- string[l1..256]3 N/A
TA_EXT_NADDR string IwW-r--r-- string[0..78] v
TA_WSHNAME string rTW-r--r-- string[l1..78] “WSH”
TA_MINHANDLERS long WX -XT—— 0 <= num< 256 0
TA_MAXHANDLERS long rw-r--r-- 0 <= num< 32,767 See note !
TA_MULTIPLEX long IW-r--r-- 1 <= num< 32,767 10
TA_MINENCRYPTBITS string FWXTWX-—— “{0|40|56|128}" 2 n0”
TA_MAXENCRYPTBITS string TWXYWX——— ~{0]40|56]|128}" 2 “128”

538 File Formats, Data Descriptions, MIBs, and System Processes Reference

Table 67 WS_MIB(5): T_WSL Class Definition Attribute Table (Continued)

WS_MIB(5)

Attribute Type Permissions Values Default
TA_MINWSHPORT long TWXL—XT—- 0 <= num< 65,535 2048
TA_MAXWSHPORT long rw-r--r-- 0 <= num< 65,535 65,535
TA_MAXIDLETIME long rWXr-Xr--— 0 <=num < 35,204,650 35,204,649
TA_MAXINITTIME long WXL -XT—— 1 <= num< 32,767 60
TA_CMPLIMIT String rWXY-Xr—-— threshold MAXLONG
TA_CLOPT string TWXL—-T—- string[0..128] “-A"
TA_ENVFILE string rwXr--r-- string[0..256] 2 W
TA_GRACE long rWXr--r-- 0 <= num 0
TA_KEEPALIVE string TWXL-XT -~ “{client | handler | “none”
both | none}”
TA_MAXGEN long TWXY—-T -~ 0 <= num < 256 1
TA_NETTIMEOUT long TWXY-XI-— 0<=num<= 0
MAXLONG
TA_RCMD string rwXr--r-- string[0..256] 2 W
TA_RESTART string ITWXL—--T-- Ly | N}~ vy”
TA_SEQUENCE(K) long TWXL——T—- 1 <= num < 10,000 >= 10,000
T _WSL Class: Local Attributes
TA_CURHANDLERS long R--R--R-- 0 <= num N/A
TA_HWHANDLERS long R--R--R-- 0 <= num N/A
TA_WSPROTO long R--R--R-- 0 <= num N/A
TA_SUSPENDED string R-XR-XR-- “{NEW | ALL | NONE}” N/A

File Formats, Data Descriptions, MIBs, and System Processes Reference 539

Table 67 WS_MIB(5): T_WSL Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default

TA_VIEWREFRESH string —-X--X--- vy N/A

(k)—GET key field
(r)—required field for object creation (SET TA_STATE NEW)
(*)—GET/SET key, one or more required for SET operations

L If a value for this attribute is not specified at the time the object is created, a value of 0 will be
assigned. A value of 0 for this attribute indicates that the effective value is determined at activation
time from the current setting for TA_MAXHANDLERS and the T_MACHINE class setting for
TA_MAXWSCLIENTS. Note that a GET operation with the MIB_LOCAL flag set will get the
effective value for objects with an activation time default setting.

2 Link-level encryption value of 40 bits is provided for backward compatibility.

8 Maximum string length for this attribute is 78 bytes for BEA Tuxedo 8.0 or earlier.

Attribute Semantics

TA_SRVGRP: string[l..30]
Logical name of the server group. Server group names cannot contain an asterisk (*),
comma, or colon.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number.

TA_GRPNO: 1 <= num < 30,001
Group number associated with this servers group.

TA_STATE.
State for the WSL server within the application. Any state defined for the T_serVER class
in TM_MIB(5) may be returned or set as indicated on that reference page.

TA_LMID: LMID
Current logical machine on which the server is running.

TA_PID: 1= num
Native operating system process identifier for the WSL server. Note that this may not be
a unique attribute since servers may be located on different machines allowing for
duplication of process identifiers.

540 File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

TA_DEVICE: string[0..78]
Device name to be used by the WSL process to access the network. This attribute is
optional.

TA_NADDR: string[l..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Specifies the complete network address to be used by the WSL process as its listening
address. The listening address for a WSL is the means by which it is contacted by
Workstation client processes participating in the application. If string has the form
“Oxhex-digits” OfF “\\xhex-digits”, it must contain an even number of valid hex
digits. These forms are translated internally into a character array containing TCP/IP
addresses. The value of string may also be represented in either of the following forms:

//hostname: port_number

//#.#.#.#:port_number

In the first of these formats, hostname is resolved to a TCP/IP host address at the time the
address is bound using the locally configured name resolution facilities accessed via
gethostbyname(3c). The string #. #. #. # is the dotted decimal format in which each #
represents a decimal number in the range 0 to 255. port_number is a decimal number in
the range 0 to 65535.

Note: Some port numbers may be reserved for the underlying transport protocols (such as
TCP/IP) used by your system. Check the documentation for your transport protocols
to find out which numbers, if any, are reserved on your system.

TA_EXT_NADDR: string]0..78]
Specifies the complete network address to be used as a well known address template of
the WSH process. The address is combined with a WSH network address to generate a
well known network address used by the Workstation client to connect to a WSH process.
It has the same format as the Ta_NaDDRr except that it substitutes the port number with
same length of character M to indicate the position of the combined network address will
be copied from the WSH network address. For example when Address template is
0x0002MMMMdddddddd and WSH network address is 0x00021 11 1ffffffff then the well
known network address will be 0x00021111dddddddd. When address template starts with
"/I" network address type assumes to be IP based and the TCP/IP port number of WSH
network address will be copied into the address template to form the combined network
address. This feature is useful when Workstation client needs to connect to a WSH
through a router which performs Network Address Translation. Empty Ta_EXT_NADDR
string in a SET operation on an existing T_wsL object will eliminate the -1 entry from the
TA_CLOPT attribute.

File Formats, Data Descriptions, MIBs, and System Processes Reference 541

542

TA_WSHNAME: string{l..78]

The name of the executable providing workstation handler services for this workstation
listener. The default for this is WSH which corresponds to the system provided
workstation handler. Workstation handlers may be customized using the command
buildwsh (). See the Customization section and the buildwsh (1) reference page for
more details.

TA_MINHANDLERS: 0 <= num < 256

The minimum number of handlers that should be available in conjunction with this WSL
at any given time. The WSL will start this many WSHs immediately upon being activated
and will not deplete the supply of WSHs below this number until the administrator issues
a shutdown to the WSL. Modifications to this attribute for a running WSL may cause
additional handlers to be activated.

TA_MAXHANDLERS: 0 <= num < 32,767

The maximum number of handlers that should be available in conjunction with this WSL
at any given time. Handlers are started as necessary to meet the demand of Workstation
clients attempting to access the system. This attribute must be greater than or equal to the
setting for the minimum number of handlers.

TA_MULTIPLEX: 1 <= num < 32,767

Maximum number of clients that are to be supported by any one handler process
concurrently.

TA_MINENCRYPTBITS: {0 | 40|56 | 128}

Specifies the minimum level of encryption required when connecting to the BEA Tuxedo
system. 0 means no encryption, while 40, 56, and 128 specify the encryption key length
(in bits). If this minimum level of encryption cannot be met, link establishment fails. The
default is 0.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

TA_MAXENCRYPTBITS: {0 | 40|56 | 128}

Specifies the maximum level of encryption that can be negotiated when connecting to the
BEA Tuxedo system. 0 means no encryption, while 40, 56, and 128 specify the encryption
length (in bits). The default is 128.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

TA_MINWSHPORT: 0 <= num < 65,535

The lower end of the range of available port numbers that may be allocated to WSH
processes by this listener.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

TA_MAXWSHPORT: 0 <= num < 65,535
The upper end of the range of available port numbers that may be allocated to WSH
processes by this listener.

TA MAXIDLETIME: 0 <= num < 35,204,650
Maximum amount of time, in minutes, that a Workstation client is permitted to be idle
before it will be abortively disconnected from the application by the handler. A value of
35,204,650 allows clients to be idle as long as they wish without being timed out. A value
of 0 indicates clients may be terminated after any period of inactivity greater than 1
second.

TA_MAXINITTIME: 1 <= num< 32,767
The minimum number of seconds that should be allowed for a Workstation client to
complete initialization processing through the WSH before being timed out by the WSL.

TA_CMPLIMIT. threshold
Threshold message size at which compression will occur for traffic to and from
Workstation clients. The thresho1d value may be either non-negative numeric values or
the string maxr.ong, which is dynamically translated to the maximum long setting for the
machine. Limitation: This attribute value is not used for Workstation clients running BEA
Tuxedo Workstation release 6.1 or earlier.

TA_CLOPT: string[0..128]
Command line options to be passed to WSL server when it is activated. See the
servopts (5) reference page for details. Limitations: Run-time modifications to this
attribute will not affect a running WSL server. Server specific options (that is, those after

a double-dash "--") may not be set and will not be returned.

TA_ENVFILE: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
WSL server specific environment file. See T_MaACHINE: TA_ENVFILE for a complete
discussion of how this file is used to modify the environment. Limitation: Run-time
modifications to this attribute will not affect a running WSL server.

TA_GRACE: 0 <= num
The period of time, in seconds, over which the T_wsL: Ta_maxGEeN limit applies. This
attribute is meaningful only for restartable WSL servers, that is, if the
T_WSL:TA_RESTART attribute is set to "v". When a restarting server would exceed the
TA_MAXGEN limit but the Ta_cRAcE period has expired, the system resets the current
generation (T_SERVER: TA_GENERATION) to 1 and resets the initial boot time
(T_SERVER:TA_TIMESTART) to the current time. A value of O for this attribute indicates
that the WSL server should always be restarted.

File Formats, Data Descriptions, MIBs, and System Processes Reference 543

544

TA_KEEPALIVE: “{client | handler | both | none}”
Here you can turn on the network keep-alive operation for the client, the handler, or both.
You may also turn off this operation for both the client and handler by specifying “none”.

Changes to the value of this attribute affect only new connections.

TA_MAXGEN: 1 <= num < 256
Number of generations allowed for a restartable WSL server (T_wSL: TA_RESTART ==
»yn) over the specified grace period (T_wsL:Ta_GRACE). The initial activation of the
WSL server counts as one generation and each restart also counts as one. Processing after
the maximum generations is exceeded is discussed above with respect to TA_GRACE.

TA_NETTIMEOUT. 0 <= num <= MAXLONG
The value of Ta_NETTIMEOUT is the minimum number of seconds that a Workstation
client is allowed to wait to receive a response from the WSL/WSH. A value of 0 indicates
no network timeout.

Changes to the value of this attribute affect only new connections.

TA_RCMD: string[0..256] (up to 78 bytes for BEA Tuxedo 8.0 or earlier)
Application specified command to be executed in parallel with the system restart of an
application server. This command must be an executable file in the native operating
system.

TA_RESTART: “{v | N}~
Restartable (*v~) or non-restartable (*n~) WSL server. If server migration is specified for
this server group (T_RESOURCE: TA_OPTIONS/MIGRATE T_GROUP:TA_LMID W/ alternate
site), this attribute must be set to “v~.

TA_SEQUENCE: 1 <= num < 10,000
Specifies when this server should be booted (tmboot (1)) or shut down
(tmshutdown (1)) relative to other servers. T_wst objects added without a Ta_sEQUENCE
attribute specified or with an invalid value will have one generated for them that is 10,000
or more and is higher than any other automatically selected default. Servers are booted by
tmboot () in increasing order of sequence number and shutdown by tmshutdown () in
decreasing order. Run-time modifications to this attribute affect only tmboot () and
tmshutdown () and will affect the order in which running servers may be shutdown by a
subsequent invocation of tmshutdown ().

TA_CURHANDLERS.: 0 <= num
Number of currently active handlers associated with this WSL.

TA_HWHANDLERS: 0 <= num
Maximum number of currently active handlers associated with this WSL at any one time.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

TA_WSPROTO: 0 <= num
The BEA Tuxedo Workstation protocol version number for this Workstation group. Note
that Workstation clients connecting to this group may themselves have a different protocol
version number associated with them.

TA_SUSPENDED: “{NEW | ALL | NONE}"
A value of *NEw~ indicates that new incoming clients may not connect through this WSL
object. A value of *ar1.~ indicates that Workstation clients already connected to the
application through this WSL have been suspended (see Tv_wm1B (5)) in addition to
disallowing new incoming connections. A value of *NoNE” indicates that no suspension
characteristics are in effect.

TA_VIEWREFRESH:. Y
Setting a value of v will cause all active WSHSs in the Workstation group to refresh their
vIew buffer type cache.

Limitations

This class represents a specialization of the T_servER class and as such represents certain
attributes that are duplicated in the corresponding T_sERVER objects. Attributes not listed that are
included in the T_sERVER class must be accessed via that class and are not available through the
T_wsL class.

WS_MIB(5) Additional Information

Diagnostics
There are two general types of errors that may be returned to the user when interfacing with
ws_MIB(5). First, any of the three ATMI verbs (tpcall (), tpgetrply () and tpdequeue ())
used to retrieve responses to administrative requests may return any error defined for them. These
errors should be interpreted as described on the appropriate reference pages.

If, however, the request is successfully routed to a system service capable of satisfying the request
and that service determines that there is a problem handling the request, failure may be returned
in the form of an application level service failure. In these cases, tpcall () and tpgetrply ()
will return an error with tperrno set to TPESVCFATL and return a reply message containing the
original request along with Ta_gRROR, TA_sTaTus and Ta_saprLD fields further qualifying the
error as described below. When a service failure occurs for a request forwarded to the system
through the TMoFORWARD (5) server, the failure reply message will be enqueued to the failure
queue identified on the original request (assuming the -a option was specified for TMQFORWARD).

File Formats, Data Descriptions, MIBs, and System Processes Reference 545

When a service failure occurs during processing of an administrative request, the FML32 field
TA_STATUS is Set to a textual description of the failure, the FML32 field Ta_ERROR is set to
indicate the cause of the failure as indicated below. All error codes specified below are
guaranteed to be negative.

[other]
Other error return codes generic to any component MIB are specified in the M1B (5)
reference page. These error codes are guaranteed to be mutually exclusive with any
ws_mIB(5) specific error codes defined here.

The following diagnostic codes are returned in Ta_ERROR to indicate successful completion of an
administrative request. These codes are guaranteed to be non-negative.

[other]
Other return codes generic to any component MIB are specified in the m1B (5) reference
page. These return codes are guaranteed to be mutually exclusive with any ws_m1B(5)
specific return codes defined here.

Interoperability

The header files and field tables defined in this reference page are available on BEA Tuxedo
release 5.0 and later. Fields defined in these headers and tables will not be changed from release
to release. New fields may be added which are not defined on the older release site. Access to the
AdminAPI is available from any site with the header files and field tables necessary to build a
request. The T_wsL and T_wsH classes are new with BEA Tuxedo system release 6.0; therefore,
local administration of WSL and WSH processes on earlier release sites via the AdminAPI is not
available. However, many of the administrative actions defined in this reference page are
available for pre-release 6.0 sites if they are interoperating with a release 6.0 site. If sites of
differing releases, both greater than or equal to release 6.0, are interoperating, information on the
older site is available for access and update as defined in the MIB reference page for that release
and may be a subset of the information available in the later release.

Portability

The existing FML32 and ATMI functions necessary to support administrative interaction with
BEA Tuxedo system MIBs, as well as the header file and field table defined in this reference
page, are available on all supported native and Workstation platforms.

Example

546

Following is a sequence of code fragments that deactivate a Workstation group in an orderly
fashion using a combination of Tv_m1B (5) and ws_mM1B(5).

File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

Field Tables

The field table tpadm must be available in the environment to have access to attribute field
identifiers. This can be done at the shell level as follows:

¢ FIELDTBLS=tpadm
$ FLDTBLDIR=${TUXDIR} /udataobj
$ export FIELDTBLS FLDTBLDIR

Header Files
The following header files are included.

#include <atmi.h>
#include <fml32.h>
#include <tpadm.h>

Suspend Workstation Group

The following code fragment sets the state of the Workstation group to suspended. This disables
the Workstation group from accepting new connections from Workstation clients and suspends
all Workstation clients that are currently part of the group. This code fragment and those that
follow assume that the local variables ta_srvgrp and ta_srvid are already set to identify the
Workstation group with which we are working.

/* Allocate input and output buffers */ ibuf = tpalloc("FML32", NULL, 1000);
obuf = tpalloc("FML32", NULL, 1000);

/* Set MIB(5) attributes defining request type */

Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_WSL", 0);

/* Set WS_MIB(5) attributes */

Fchg32 (ibuf, TA_SRVGRP, 0, ta_srvgrp, 0);

Fchg32 (ibuf, TA_SRVID, 0, (char *)ta_srvid, 0);

Fchg32 (ibuf, TA_SUSPENDED, 0, "ALL", 0);

/* Make the request */

if (tpcall(".TMIB", (char *)ibuf, 0, (char **)obuf, olen, 0) 0) {
fprintf (stderr, "tpcall failed: %s\en", tpstrerror (tperrno));

if (tperrno == TPESVCFAIL) {

Fget32 (obuf, TA_ERROR, 0, (char *)ta_error, NULL) ;

ta_status = Ffind32 (obuf, TA_ STATUS, 0, NULL);

fprintf (stderr, "Failure: %1d, %s\en",

ta_error, ta_status);

File Formats, Data Descriptions, MIBs, and System Processes Reference 5417

}

/* Additional error case processing */

}

/* Copy the logical machine identifier for later use */
strepy (ta_lmid, Ffind32 (obuf, TA_LMID, 0, NULL));

Get List of WSH Objects

Using the existing input buffer, simply change the class and operation and make a new request.
We'll retrieve all T_wsH objects associated with the given T_wsL object key fields, ta_srvgrp
and ta_srvid. Set the Ta_rILTER attribute to limit the retrieval for efficiency.

/* Set MIB(5) attributes defining request type */ Fchg32 (ibuf, TA_CLASS, 0,
"T_WSH", 0);

Fchg32 (ibuf, TA_OPERATION, 0, "GET", 0);

longval = TA_WSHCLIENTID;

Fchg32 (ibuf, TA_FILTER, 0, (char *)longval, 0);

/* Set WS_MIB(5) attributes */

Fchg32 (ibuf, TA_LMID, 0, ta_1lmid, 0);

/* Allocate a separate output buffer to save the TA_WSHCLIENTID values */
wshcltids = tpalloc("FML32", NULL, 1000);

/* Make the request */

tpcall (".TMIB", (char *)ibuf, 0, (char **)wshcltids, olen, 0);

/* See how many we got */

Fget32 (wshcltids, TA_OCCURS, 0, (char *)wshcltcnt, NULL);

Get T_CLIENT Objects

Use the retrieved Ta_wsHCLIENTID Values to get a list of associated Ta_cr1enTID values for
Workstation clients in this Workstation group.

/* Initialize request buffer */ Finit32(ibuf, Fsizeof32(ibuf));
/* Set MIB(5) attributes defining request type */

Fchg32 (ibuf, TA_OPERATION, 0, "GET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_CLIENT", 0);

longval = TA_CLIENTID;

Fchg32 (ibuf, TA_FILTER, 0, (char *)longval, 0);

longval = TA_WSHCLIENTID;

Fchg32 (ibuf, TA_FILTER, 1, (char *)longval, 0);

/* Set WS_MIB(5) attributes */

Fchg32 (ibuf, TA_LMID, 0, ta_lmid, 0);

548 File Formats, Data Descriptions, MIBs, and System Processes Reference

WS_MIB(5)

Fchg32 (ibuf, TA_wsc, 0, "Yy", 0);

if (wshcltent == 1) {

/* Since only 1, use it as key field. */

Fchg32 (ibuf, TA_WSHCLIENTID, O,

Ffind32 (wshcltids, TA_WSHCLIENTID, 0, NULL)) ;

}

/* Allocate output buffer to save TA_CLIENTID/TA_WSHCLIENTID values */
cltids = tpalloc("FML32", NULL, 1000);

/* Make the request */

tpcall (".TMIB", (char *)ibuf, 0, (char **)cltids, olen, 0);
/* See how many we got */

Fget32(cltids, TA_OCCURS, 0, (char *)cltcnt, NULL);
/* Eliminate unassociated clients if necessary */
if (wshcltent > 1) {

for (i=(cltcnt-1); i >= 0 ;i--) {

p = Ffind32(cltids, TA_WSHCLIENTID, i, NULL) ;

for (3j=0; j wshcltcent ;Jj++) {

g = Ffind32 (wshcltids, TA_WSHCLIENTID, j, NULL);
if (stremp(p, g) == 0) {

break; /* This client is in our group */

}

}

if (j >= wshcltcent) {

/* Client not found, delete it from list */
Fdel32(cltids, TA_CLIENTID, 1i);

Fdel32(cltids, TA_WSHCLIENTID, 1i);

cltent--;

}

}

}

Notify T_CLIENT Objects

Use the retrieved Ta_cr1eENTID Values to notify Workstation clients in this Workstation group
that they should log off.

notstr = tpalloc ("STRING", NULL, 100);

(void) strcpy (notstr, "Please logoff now!");

File Formats, Data Descriptions, MIBs, and System Processes Reference 549

/* Now loop through affected clients and suspend/notify them */
for (i=0; 1 cltent ;i++) {
p = Ffind32(cltids, TA_CLIENTID, i, NULL) ;

/* Notify the client to logoff */
tpconvert (p, (char *)ci, TPCONVCLTID) ;
tpnotify(ci, notptr, 0, 0);

}

Deactivate Remaining T_CLIENT Objects

Use the retrieved Ta_cLIENTID Vvalues to deactivate any remaining Workstation clients in this
Workstation group. Note that those that are already gone will return an error on the SET that we
will ignore.

/* Initialize request buffer */

Finit32 (ibuf, Fsizeof32(ibuf));

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_CLIENT", 0);

Fchg32 (ibuf, TA_STATE, 0, "DEAdA", 0);

/* Now loop through affected clients and deactivate them */
for (i=0; 1 cltent ;i++) {

p = Ffind32 (cltids, TA_CLIENTID, i, NULL) ;

Fchg32 (ibuf, TA_CLIENTID, 0, p);

/* Make the request */
tpcall (".TMIB", (char *)ibuf, 0, (char **)obuf, olen, 0);
}

Deactivate T_WSL Object

Now deactivate the T_wsz object. This will automatically deactivate any associated active T_wsu
objects.

/* Set MIB(5) attributes defining request type */
Fchg32 (ibuf, TA_OPERATION, 0, "SET", 0);

Fchg32 (ibuf, TA_CLASS, 0, "T_WSL", 0);

Fchg32 (ibuf, TA_STATE, 0, "INActive", 0);

550 File Formats, Data Descriptions, MIBs, and System Processes Reference

Files

WS_MIB(5)

/* Set WS_MIB(5) attributes */
Fchg32 (ibuf, TA_SRVGRP, 0, ta_srvgrp, 0);
Fchg32 (ibuf, TA_SRVID, 0, (char *)ta_srvid, 0);

/* Make the request */

tpcall(".TMIB", (char *)ibuf, 0, (char **)obuf, olen, 0);
}

${TUXDIR}/include/tpadm.h, ${TUXDIR}/udataobj/tpadm

See Also

tpacall (3c), tpalloc(3c), tpcall (3¢c), tpdequeue (3¢c), tpenqueue (3c),

tpgetrply (3c), tprealloc (3c), Introduction to FML Functions, Fadd, Fadd32 (3fml),

Fchg, Fchg32(3fml), Ffind, Ffind32(3fml), MIB(5), TM_MIB(5)
Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

Programming a BEA Tuxedo ATMI Application Using C

Programming a BEA Tuxedo ATMI Application Using FML

File Formats, Data Descriptions, MIBs, and System Processes Reference

551

WSL(3)

Name

wsL—Workstation Listener server

Synopsis

WSL SRVGRP="identifier"
SRVID="number"

CLOPT="[-A] [servopts options] -- -n netaddr [-d device]
[-w WSHname] [-t timeout-factor] [-T Client-timeout]
[-m minh] [-M maxh] [-x mpx-factor]

[-p minwshport] [-P maxwshport] [-I init-timeout]

[-c compression-threshold] [-k compression-threshold]

[-K {client|handler |both|none}]

[bits] [-Z bits] [-H external-netaddr] [-N network-timeout]
[

-z
-U inbound-message-size-limit-in-bytes]"

Description

552

The workstation listener is a BEA Tuxedo system-supplied server that enables access to native
services by Workstation clients. The application administrator enables workstation access to the
application by specifying the workstation listener server as an application server in the SERVERS
section. The associated command-line options are used to parameterize the processing of the
workstation listener and workstation handlers.

The location, server group, server 1D, and other generic server related parameters are associated
with the workstation listener using the already defined configuration file mechanisms for servers.
Workstation listener specific command-line options are specified to allow for customization.

Each WSL booted as part of an application facilitates application access for a large number of
Workstation clients by providing access via a single well known network address to a set of
workstation handlers (WSHS) acting as surrogate clients for the users running on the
workstations. The WSHs are started and stopped dynamically by the WSL as necessary to meet
the incoming load from the application workstations. The advantages to the application
administrator are that a small number of native site processes (WSHSs) can support a much larger
number of clients, thus reducing the process count on the native site, and that the native site does
not need to incur the overhead of maintaining bulletin board information on the workstation sites,
which may be quite numerous.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WSL(5)

The following WSL-specific command-line options are available and may be listed after the
double-dash (--) in the cLopT parameter.

-n netaddr
Specifies the complete network address to be used by the WSL process as its listening
address. This is the only required parameter.

The listening address for a WSL is the means by which it is contacted by Workstation
client processes participating in the application. If netaddr (which may contain from 1 to
78 characters) has the form “0xhex-digits” Or “\\xhex-digits”, it must contain an
even number of valid hex digits. These forms are translated internally into a character
array containing TCP/IP addresses. The address may also be represented in either of the
following forms:

/ /hostname : port_number
//#.#.#.#:port_number

The string #. #. #. # is the dotted decimal format in which each # represents a decimal
number in the range 0 to 255. The value of port_number is a decimal number in the range
0 to 65535.

Note: Some port numbers may be reserved for the underlying transport protocols (such as
TCP/IP) used by your system. Check the documentation for your transport protocols
to find out which numbers, if any, are reserved on your system.

[-a device]
The name of the device file used for network access by the workstation listener and its
workstation handlers. This parameter is optional. There is no default.

[—w WSHname]
The name of the executable providing workstation handler services for this workstation
listener. The default for this is WSH, which corresponds to the system provided
workstation handler. Workstation handlers may be customized using the command
buildwsh (). See the buildwsh (1) reference page for more details.

[-t timeout-factor]
This option is being replaced by the -1 option and is being supported for upward
compatibility in BEA Tuxedo release 6.0 but may be removed in future releases. The
number, when multiplied by scanun1T, results in the amount of time in seconds that
should be allowed for a Workstation client to complete initialization processing through
the WSH before being timed out by the WSL. The default for this parameter is 3 in a
non-security application and 6 in a security application. The legal range is between 1 and
255.

File Formats, Data Descriptions, MIBs, and System Processes Reference 553

554

[-T client-timeout]
Cclient-timeout isthe amount of time (in minutes) a client is allowed to stay idle. If a
client does not make any requests within this time period, the WSH disconnects the client.
The option can be used for client platforms that are unstable (such as a personal computer
that might be turned off without calling tpterm()). Note that the option also affects
clients that get unsolicited message notifications and do not follow up on them. If - is
specified without an argument, there is no timeout.

[-m minh]
The minimum number of handlers that should be available in conjunction with this WSL
at any given time. The WSL will start this many WSHs immediately upon being booted
and will not deplete the supply of WSHs below this number until the administrator issues
a shutdown to the WSL. The default for this parameter is 0. The legal range is between 0
and 255.

[—M maxh]
The maximum number of handlers that should be available in conjunction with this WSL
at any given time. Handlers are started as necessary to meet the demand of Workstation
clients attempting to access the system. The default for this parameter is equal to the
setting for maxwscrLTENTS on the logical machine divided by the multiplexing factor for
this WSL (see -x option below) rounded up by one. The legal range for this parameter is
between 1 and 4096. The value must be greater than or equal to minh.

[-x mpx-factor]
An optional parameter used to control the degree of multiplexing desired within each
workstation handler. The value for this parameter indicates the number of Workstation
clients that can be supported simultaneously by each workstation handler. The
workstation listener ensures that new handlers are started as necessary to handle new
Workstation clients. This value must be greater than or equal to 1 and less than or equal
to 4096. The default for this parameter is 10.

[-p minwshport]
[-P maxwshport]

This pair of command-line options can be used to specify the number range for port
numbers available for use by WSHSs associated with this listener server. The port numbers
must be in the range between 0 and 65535. The default is 2048 for mi nwshport and 65535

for maxwshport.

Note: Some port numbers may be reserved for the underlying transport protocols (such as
TCP/1P) used by your system. Check the documentation for your transport protocols
to find out which numbers, if any, are reserved on your system.

File Formats, Data Descriptions, MIBs, and System Processes Reference

WSL(5)

[-T init-timeout]
This option is replacing the -t option and is the recommended method for setting client
initialization timeout intervals. The time, in seconds that should be allowed for a
Workstation client to complete initialization processing through the WSH before being
timed out by the WSL. The default for this parameter is 60. The legal range is between 1
and 32,767.

[-c compression-threshold]
This option determines the compression threshold to be used by Workstation clients and
handlers. Any buffers sent between Workstation clients and handlers are compressed if
they are larger than the given value. The default for this parameter is 2147483647, which
means no compression is done since the legal range is between 0 and 2147483647.

[—k compression—threshold]
This is a special compression option for BEA Tuxedo releases prior to release 6.2 with
clients from USL France or ITI. If this situation applies to you, it is acceptable to have
multiple WSL/WSH pairs, some controlling compression threshold with the -c option,
others using the -k option. The -k works exactly like -c.

[-x {client |handler | both |none}]
The -x option turns on the network keep-alive feature for the c1ient, the handler, or
both. You can turn off this option for both the client and handler by specifying none.

[-z [0]40]56]128]]
This option specifies the minimum level of encryption required when a network link is
being established between a Workstation client and the workstation handler. 0 means no
encryption, while 40, 56, and 128 specify the length (in bits) of the encryption key. If this
minimum level of encryption cannot be met, link establishment fails. The defaultis 0. This
option is available only if BEA Tuxedo Security (either International, or US and Canada)
is installed.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

[-z [0]40]|56]128]]
This option specifies the maximum level of encryption allowed when a network link is
being established between a Workstation client and the workstation handler. 0 means no
encryption, while 40, 56, and 128 specify the length (in bits) of the encryption key. The
default is 128. This option is available only if BEA Tuxedo Security (either International,
or US and Canada) is installed.

Note: The link-level encryption value of 40 bits is provided for backward compatibility.

File Formats, Data Descriptions, MIBs, and System Processes Reference 555

[-H external-netaddr]
Specifies the complete network address to be used as a well known address template of
the WSH process. The address is combined with a WSH network address to generate a
well known network address used by the Workstation client to connect to a WSH process.
It has the same format as the -n option except that it substitutes the port number with same
length of character u to indicate the position of the combined network address will be
copied from the WSH network address. For example when address template is
0x0002MMMMdddddddd and WSH network address is 0x00021111ffffffff then the well
known network address will be 0x00021111dddd dddd. When address template starts
with "//" network address type assumes to be IP based and the TCP/IP port number of
WSH network address will be copied into the address template to form the combined
network address. This feature is useful when Workstation client needs to connect to a
WSH through a router which performs Network Address Translation.

[-N network-timeout]
The network timeout option will establish a wait period, in seconds, for any Tuxedo
operation by the Workstation client that receives data from the network. If the period is
exceeded, the operation will fail and the client will be disconnected from the application.
A value of 0 (zero) indicates no timeout; this is the default. Note: setting this value too low
may cause an unacceptably high number of disconnects.

[-U inbound-message-size-1imit-in-bytes]
This option specifies the upper size limit of incoming network message for WSH. The
message size includes internal data items for Tuxedo (should be less then 1024 bytes) and
user data. The limit also takes effect when message is compressed, i.e., it also checks the
original message size.

Any configuration that prevents the WSL from supporting Workstation clients will cause the
WSL to fail at boot time, for example, if the maxwscr.TENTS Value for the site is 0.

Portability

wsL is supported as a BEA Tuxedo system-supplied server on all supported server platforms.

Interoperability
WSL may be run in an interoperating application, but it must run on a BEA Tuxedo release 4.2 or

later node.
Examples
*SERVERS
WSL SRVGRP="WSLGRP" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-A -- -n 0x0002ffffaaaaaaaa -d /dev/tcp"

556 File Formats, Data Descriptions, MIBs, and System Processes Reference

WSL(5)

WSL SRVGRP="WSLGRP" SRVID=1001 RESTART=Y GRACE=0

CLOPT="-A -- -n 0x0002aaaaffffffff -d /dev/tcp -H 0x0002MMMMdddddddd"
WSL SRVGRP="WSLGRP" SRVID=1002 RESTART=Y GRACE=0

CLOPT="-A -- -n //hostname:aaaa -d /dev/tcp -H //external_ hostname:MMMM"
WSL SRVGRP=GROUP1 SRVID=1

CLOPT="-A -r -- -n //hostname:port -ml -M10 -x20 -U 2048"

size limit set to 2048 bytes.

See Also
buildwsh (1), servopts (5), UBBCONFIG (5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time
Programming a BEA Tuxedo ATMI Application Using C

File Formats, Data Descriptions, MIBs, and System Processes Reference 557

558 File Formats, Data Descriptions, MIBs, and System Processes Reference

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions
	Introduction to Tables and Files
	ACL_MIB(5)
	T_ACLGROUP Class Definition
	T_ACLPERM Class Definition
	T_ACLPRINCIPAL Class Definition
	ACL_MIB(5) Additional Information

	APPQ_MIB(5)
	T_APPQ Class Definition
	T_APPQMSG Class Definition
	T_APPQSPACE Class Definition
	T_APPQTRANS Class Definition
	APPQ_MIB(5) Additional Information

	AUTHSVR(5)
	SECURITY USER_AUTH
	SECURITY ACL or MANDATORY_ACL
	AUTHSVR Additional Information

	compilation(5)
	DMADM(5)
	DMCONFIG(5)
	DM_LOCAL Section
	DM_REMOTE Section
	DM_EXPORT Section
	DM_IMPORT Section
	DM_RESOURCES
	DM_ROUTING Section
	DM_ACCESS_CONTROL Section
	DM_TDOMAIN Section
	DMCONFIG(5) Additional Information

	DM_MIB(5)
	T_DM_ACL Class Definition
	T_DM_CONNECTION Class Definition
	T_DM_EXPORT Class Definition
	T_DM_IMPORT Class Definition
	T_DM_LOCAL Class Definition
	T_DM_OSITP Class Definition
	T_DM_OSITPX Class Definition
	T_DM_PASSWORD Class Definition
	T_DM_PRINCIPAL_MAP Class Definition
	T_DM_REMOTE Class Definition
	T_DM_RESOURCES Class Definition
	T_DM_ROUTING Class Definition
	T_DM_RPRINCIPAL Class Definition
	T_DM_SNACRM Class Definition
	T_DM_SNALINK Class Definition
	T_DM_SNASTACK Class Definition
	T_DM_TDOMAIN Class Definition
	T_DM_TRANSACTION Class Definition
	DM_MIB(5) Additional Information

	EVENTS(5)
	EVENT_MIB(5)
	T_EVENT_CLIENT Class Definition
	T_EVENT_COMMAND Class Definition
	T_EVENT_QUEUE Class Definition
	T_EVENT_SERVICE Class Definition
	T_EVENT_USERLOG Class Definition
	EVENT_MIB(5) Additional Information

	factory_finder.ini(5)
	Ferror, Ferror32(5)
	field_tables(5)
	GWADM(5)
	GWTDOMAIN(5)
	ISL(5)
	KAUTHSVR(5)
	langinfo(5)
	LAUTHSVR(5)
	SECURITY USER_AUTH
	SECURITY ACL or MANDATORY_ACL
	LAUTHSVR Additional Information

	METAREPOS(5)
	MIB(5)
	Usage
	T_CLASS Class Definition
	T_CLASSATT Class Definition
	MIB(5) Additional Information

	nl_types(5)
	servopts(5)
	TM_MIB(5)
	T_BRIDGE Class Definition
	T_CLIENT Class Definition
	T_CONN Class Definition
	T_DEVICE Class Definition
	T_DOMAIN Class Definition
	T_FACTORY MIB
	T_GROUP Class Definition
	T_IFQUEUE Class
	T_INTERFACE Class
	T_MACHINE Class Definition
	T_MSG Class Definition
	T_NETGROUP Class Definition
	T_NETMAP Class Definition
	T_QUEUE Class Definition
	T_ROUTING Class Definition
	T_SERVER Class Definition
	T_SERVERCTXT Class Definition
	T_SERVICE Class Definition
	T_SVCGRP Class Definition
	T_TLISTEN Class Definition
	T_TLOG Class Definition
	T_TRANSACTION Class Definition
	T_ULOG Class Definition
	TM_MIB(5) Additional Information

	TMFFNAME(5)
	TMIFRSVR(5)
	TMMETADATA(5)
	TMQFORWARD(5)
	TMQUEUE(5)
	TMSYSEVT(5)
	tmtrace(5)
	TMUSREVT(5)
	tperrno(5)
	tpurcode(5)
	tuxenv(5)
	tuxtypes(5)
	typesw(5)
	UBBCONFIG(5)
	RESOURCES Section
	MACHINES Section
	GROUPS Section
	NETGROUPS Section
	NETWORK Section
	SERVERS Section
	SERVICES Section
	INTERFACES Section
	ROUTING Section
	UBBCONFIG(5) Additional Information

	viewfile(5)
	WS_MIB(5)
	T_WSH Class Definition
	T_WSL Class Definition
	WS_MIB(5) Additional Information

	WSL(5)

