
BEATuxedo ®

Setting Up a BEA Tuxedo
Application

Version 9.1
Document Released: May 16, 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Setting Up a BEA Tuxedo Application iii

Contents

About This Document
What You Need to Know . xvi

e-docs Web Site . xvi

How to Print the Document . xvi

Related Information .xvii

Contact Us! .xvii

Documentation Conventions . xix

Administrative Tasks and Tools
Tasks an Administrator Performs . 1-1

Setup Tasks . 1-2

Run-time Tasks . 1-3

Differences Between the BEA Tuxedo ATMI and CORBA Environments 1-4

Planning the Design of Your Application . 1-6

Tools to Help You Administer Your Application . 1-8

About the Configuration File
What Is the Configuration File?. 2-1

Text and Binary Versions of the Configuration File . 2-1

Contents of the Configuration File. 2-2

CORBA Administrative Requirements and Performance . 2-4

Configuring NameManager . 2-4

Reliability Requirements . 2-5

iv Setting Up a BEA Tuxedo Application

Performance Hint . 2-5

Creating the Configuration File
How to Create a Configuration File . 3-2

How to Create the Configuration File for a Single-machine Application. 3-2

How to Create the Configuration File for a Multiple-machine (Distributed) Application 3-3

How to Create the Configuration File for a Multiple-domain Application. 3-4

How to Create the RESOURCES Section of the Configuration File 3-7

Sample RESOURCES Section. 3-9

Defining the Application Type . 3-9

Characteristics of the MODEL and OPTIONS Parameters 3-10

Example Settings . 3-10

Controlling the Number of Buffer Types and Subtypes . 3-10

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters 3-11

Example Settings . 3-11

Controlling the Number of Conversations . 3-11

Characteristics of the MAXCONV Parameter. 3-11

Example Setting . 3-12

Defining IPC Limits . 3-12

Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES,
MAXINTERFACES, and MAXOBJECTS Parameters 3-13

Example Settings . 3-15

Enabling Load Balancing . 3-15

Characteristics of the LDBAL Parameter . 3-15

Example Settings . 3-16

Identifying the Master Machine . 3-16

Characteristics of the MASTER Parameter . 3-16

Example Settings . 3-17

Setting Up a BEA Tuxedo Application v

Specifying the Maximum Number of Network Groups . 3-17

Specifying the Number of Sanity Checks and Blocking Timeouts 3-17

Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters3-18

Timeouts for Blocking ATMI Operations . 3-18

Example Settings . 3-19

Establishing Operating System-level Security . 3-19

Characteristics of the UID, GID, and PERM Parameters . 3-20

Specifying the Security Level . 3-20

Characteristics of the SECURITY and AUTHSVC Parameters 3-21

Defining the Security Attributes of a Server . 3-22

Protecting Shared Memory . 3-23

Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters . .
3-24

Example Settings . 3-24

Setting the Address of the System Resources for an Application 3-24

Characteristics of the IPCKEY Parameter . 3-24

Example Settings . 3-25

Specifying How Clients Receive Unsolicited Notification . 3-25

Characteristics of the NOTIFY and USIGNAL Parameters 3-26

How to Create the MACHINES Section of the Configuration File 3-26

Sample MACHINES Section . 3-30

Specifying the Maximum Number of ACL Entries in the Cache 3-32

Defining an Additional Service Request Load . 3-32

Reserving the Physical Address and Machine ID . 3-32

Characteristics of the Address and the LMID Parameter . 3-33

Setting the Number of Lock Spins. 3-33

Characteristics of the SPINCOUNT Parameter . 3-33

Specifying Machines as Types . 3-34

vi Setting Up a BEA Tuxedo Application

Characteristics of the TYPE Parameter . 3-34

Identifying the Location of the Configuration File . 3-34

Characteristics of the TUXCONFIG Parameter . 3-34

Indicating the Size of the DTP Transaction Log. 3-35

Defining the DTP Transaction Log Name . 3-35

Specifying Environment Variable Settings . 3-35

Characteristics of the ENVFILE Parameter. 3-36

Defining the BEA Tuxedo Filesystem Containing the TLOG . 3-36

Specifying a Machine’s Maximum Number of Simultaneous Global Transactions. . . . 3-36

Defining the Number of Accesser Entries on a Workstation Client 3-36

Defining Space Limits for Messages Transmitted by the BRIDGE 3-37

Indicating the Offset for the DTP Transaction Log . 3-37

Defining the Offset for TUXCONFIG . 3-38

Characteristics of the TUXOFFSET Parameter. 3-38

Identifying the Locations of the System Software and Application Server Software . . 3-38

Characteristics of the APPDIR and TUXDIR Parameters. 3-39

Indicating a Threshold Message Size for Compression . 3-39

Example . 3-39

Specifying the Pathname for the ULOG . 3-39

Characteristics of the ULOGPFX Parameter . 3-40

How to Create the GROUPS Section of the Configuration File 3-41

Sample GROUPS Section for ATMI . 3-42

Sample GROUPS Section for CORBA . 3-42

Specifying a Group Name, Number, and LMID. 3-44

Characteristics of the Group Name, Group Number, and LMID. 3-44

Indicating a Transaction Manager Server Name and Numbers per Group 3-45

Identifying the Environment File Location for Servers in a Group 3-45

Defining Information Needed When Opening and Closing the Resource Manager. . . . 3-46

Setting Up a BEA Tuxedo Application vii

How to Create the NETWORK Section of the Configuration File 3-48

Sample NETWORK Section . 3-48

Specifying a Device Name for the BRIDGE Process . 3-49

Assigning a BRIDGE Network Address . 3-49

Assigning Encryption Levels. 3-50

Example . 3-50

Assigning a tlisten Network Address . 3-50

How to Create the NETGROUPS Section of the Configuration File 3-52

Sample Network Groups Configuration. 3-52

Configuring a Sample UBBCONFIG File with Netgroups 3-54

Assigning a Name to a Network Group. 3-55

Assigning a Network Group Number . 3-55

Assigning a Priority to the Network Group. 3-56

How to Create the SERVERS Section of the Configuration File 3-56

Sample SERVERS Section. 3-60

Specifying a Server as Conversational . 3-62

Characteristics of the CONV Parameter. 3-62

Setting the Order in Which Servers Are Booted . 3-63

Required Order in Which to Boot CORBA C++ Servers . 3-63

Characteristics of the SEQUENCE, MIN, and MAX Parameters. 3-66

Specifying Server Command-line Options . 3-67

Characteristics of the CLOPT Parameter . 3-68

Identifying the Location of the Server Environment File . 3-68

Characteristics of the Server Environment File . 3-69

Defining Server Name, Group, and ID . 3-69

Characteristics of the Server Name, SRVGRP, and SRVID Parameters 3-70

Identifying Server Queue Information. 3-70

MSSQ Example . 3-70

viii Setting Up a BEA Tuxedo Application

Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters 3-71

Defining Server Restart Information. 3-72

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters . . 3-72

Defining Server Access to Shared Memory . 3-73

Characteristics of the SYSTEM_ACCESS Parameter. 3-73

Defining the Server Dispatch Threads . 3-73

Setting Security Parameters for ISL Servers. 3-75

How to Create the SERVICES Section of the Configuration File 3-75

Sample SERVICES Section . 3-77

Specifying Automatic Starts and Timeout Intervals for Transactions 3-77

Specifying a List of Allowable Buffer Types for a Service . 3-78

Examples of the BUFTYPE Parameter . 3-78

Designating How Much Time to Process a Request . 3-78

What Happens When a Timeout Occurs . 3-79

How a Service Timeout Is Reported . 3-79

Specifying Nontransactional Service-Level Blocktime . 3-80

Enabling Load Balancing . 3-81

Characteristics of the LDBAL Parameter . 3-81

Defining the Name of the Routing Criteria . 3-82

Specifying Service Parameters for Different Server Groups . 3-82

Controlling the Flow of Data by Service Priority . 3-82

Characteristics of the PRIO Parameter . 3-82

Sample SERVICES Section Using Different Priorities . 3-83

Indicating Service Processing Time . 3-83

How to Create the INTERFACES Section of the Configuration File. 3-83

Specifying CORBA Interfaces in the INTERFACES Section. 3-84

Specifying FACTORYROUTING Criteria . 3-86

Enabling Load Balancing. 3-88

Setting Up a BEA Tuxedo Application ix

Controlling the Flow of Data by Interface Priority . 3-88

Specifying Different Interface Parameters for Different Server Groups 3-89

How to Create the ROUTING Section of the Configuration File 3-89

ROUTING Section Example . 3-90

Defining the Routing Buffer Field and Field Type . 3-90

Specifying Range Criteria . 3-92

Defining Buffer Types. 3-92

CORBA Factory-based Routing in the University Production Sample Application. . . . 3-92

CORBA Factory-based Routing in the Bankapp Sample Application 3-96

How to Configure the BEA Tuxedo System to Take Advantage of Threads 3-97

How to Compile a Configuration File . 3-100

About Transactions
What Is a Transaction? . 4-1

What Are the ACID Properties?. 4-2

How a Transaction Succeeds or Fails. 4-4

Benefits of Using Transactions . 4-4

Example of a Global Transaction . 4-5

What Is the BEA Tuxedo Transaction Manager (TM)? . 4-5

How the System Tracks Distributed Transaction Processing . 4-7

How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking 4-7

How the System Uses a Transaction Log (TLOG) for Tracking 4-8

How the System Uses a Two-Phase Commit to Commit Transactions. 4-8

How the System Handles Transaction Infection . 4-9

How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit . . 4-10

See Also . 4-11

x Setting Up a BEA Tuxedo Application

Configuring Your ATMI Application to Use Transactions
Modifying the UBBCONFIG File to Accommodate ATMI Transactions 5-1

Specifying Global Transaction Parameters in the RESOURCES Section 5-3

Creating a Transaction Log (TLOG) in the MACHINES Section 5-4

Creating the UDL. 5-4

Defining Transaction-related Parameters in the MACHINES Section 5-4

Creating the Domains Transaction Log . 5-5

See Also . 5-6

Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
5-6

Sample of the GROUPS Section . 5-6

Enabling a Service to Begin a Transaction in the SERVICES Section 5-8

Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters. . . . 5-8

Modifying the Domains Configuration File to Support Transactions. 5-9

Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE,
MAXRAPTRAN, and MAXTRAN Parameters . 5-9

Characteristics of the AUTOTRAN and TRANTIME Parameters 5-10

Example: A Distributed Application with Transactions . 5-12

Sample RESOURCES Section. 5-13

Sample MACHINES Section. 5-14

Sample GROUPS and NETWORK Sections. 5-15

Sample SERVERS, SERVICES, and ROUTING Sections 5-17

See Also . 5-18

Using Tuxedo with Oracle Real Application Clusters (RAC)
Overview . 6-1

Limitations . 6-2

Prerequisites . 6-2

Setting Up a BEA Tuxedo Application xi

Software Requirements . 6-2

Configuring Tuxedo for Oracle RAC . 6-3

Configuring Transaction Propagation . 6-3

Configuring Transaction Recovery . 6-13

See Also . 6-17

Managing The Tuxedo Service Metadata Repository
Tuxedo Service Metadata Repository . 7-1

JOLT Repository Similarities and Differences. 7-2

MIB(5) Similarities and Differences . 7-3

Creating The Tuxedo Service Metadata Repository . 7-3

The Tuxedo Service Metadata Repository Input File. 7-4

Configuring The Tuxedo Service Metadata Repository Server 7-12

Configuring Multiple Tuxedo Service Metadata
Repository Servers . 7-12

Accessing The Tuxedo Service Metadata Repository File . 7-13

Managing CORBA Interface Repositories
Administration Considerations . 8-3

Using Administration Commands to Manage Interface Repositories 8-3

Prerequisites . 8-4

Creating and Populating an Interface Respository . 8-5

Displaying or Extracting the Content of an Interface Repository 8-5

Deleting an Object from an Interface Repository. 8-5

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers . 8-6

Distributing ATMI Applications Across a Network
What Is a Distributed ATMI Application? . 9-1

Example of a Distributed Application . 9-3

xii Setting Up a BEA Tuxedo Application

Implementing a Distributed Application . 9-4

Why Distribute an ATMI Application Across a Network?. 9-5

Features of a Distributed Application . 9-6

Creating the Configuration File for a Distributed ATMI
Application

Configuration File Requirements for a Distributed BEA Tuxedo ATMI Application . . 10-1

Creating the RESOURCES Section . 10-3

Creating the MACHINES Section . 10-5

Creating the GROUPS Section . 10-7

Creating the SERVICES Section . 10-8

Creating the ROUTING Section . 10-10

Example Configuration File for a Distributed Application. 10-11

Modifying the Domain Gateway Configuration File to Support Routing 10-12

Description of ROUTING Section Parameters in DMCONFIG 10-13

Setting Up the Network for a Distributed Application
Configuring the Network for a Distributed Application . 11-1

How Data Moves Over a Network . 11-5

How Data Moves Over Parallel Networks . 11-6

Example of a Network Configuration for a Simple Distributed Application 11-8

How Failover and Failback Work in Scheduling Network Data 11-8

Example Configuration of Multiple Netgroups . 11-8

Configuration File for the Sample Network . 11-10

Assigning Priorities for Each Network Group. .11-11

About Workstation Clients
What Is the Workstation Component? . 12-1

Sample Application with Four Workstation Clients . 12-2

Setting Up a BEA Tuxedo Application xiii

How the Workstation Client Connects to an Application . 12-4

Setting Up Workstation Clients
Defining Workstation Clients . 13-1

Specifying the Maximum Number of Workstation Clients. 13-4

Defining a Workstation Listener (WSL) as a Server. 13-4

Passing Information to a WSL Process . 13-5

Using Command-line Options Set with CLOPT . 13-5

Detecting Network Failures. 13-7

Using the Keep-alive Option . 13-8

Limitations When Using the Keep-alive Option . 13-9

Using the Network Timeout Option . 13-10

How Network Timeout Works . 13-10

Limitations When Using the Network Timeout Option . 13-10

Setting the Network Timeout Option . 13-11

Sample Configuration File that Supports Workstation Clients 13-11

Modifying the MACHINES and SERVERS Sections . 13-11

Managing Remote BEA Tuxedo CORBA Client Applications
CORBA Object Terminology . 14-2

Remote CORBA Client Overview. 14-4

Illustration of an Application with Remote CORBA Clients. 14-4

How the Remote Client Connects to an Application . 14-6

Setting Environment Variables for Remote CORBA Clients . 14-6

Setting the Maximum Number of Remote CORBA Clients . 14-7

Configuring a Listener for a Remote CORBA Client . 14-8

Format of the CLOPT Parameter . 14-8

Modifying the Configuration File to Support Remote CORBA Clients 14-8

xiv Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers 14-10

Functional Description . 14-10

Using the ISL Command to Configure Outbound IIOP Support 14-15

Types of Object References . 14-16

User Interface . 14-16

Setting Up a BEA Tuxedo Application xv

About This Document

This document explains how to plan, design, and configure the BEA Tuxedo® system, for either
an data-dependent ATMI environment or an object-oriented CORBA environment.

This document includes the following topics:

Chapter 1, “Administrative Tasks and Tools,” introduces the BEA Tuxedo administrator’s
tasks.

Chapter 2, “About the Configuration File,” provides an overview of the BEA Tuxedo
configuration file, a repository that contains all the information necessary to boot and run
an application, as well as an overview of the NameManager for CORBA environments.

Chapter 3, “Creating the Configuration File,” explains how to create a configuration file
for single-machine running in an ATMI or CORBA environment.

Chapter 4, “About Transactions,” provides an overview of BEA Tuxedo transactions.

Chapter 5, “Configuring Your ATMI Application to Use Transactions,” describes how to
configure transactions in a BEA Tuxedo ATMI environment.

Chapter 7, “Managing The Tuxedo Service Metadata Repository,” describes how to create
a Service Metadata Repository file, configure the server to use the Service Metadata
Repository, and access the repository to update, add, or delete service parameter
information in the repository.

Chapter 8, “Managing CORBA Interface Repositories,” describes how to create an
interface repository for CORBA objects implemented within the BEA Tuxedo domain.

xvi Setting Up a BEA Tuxedo Application

Chapter 9, “Distributing ATMI Applications Across a Network,” describes how to
distribute a Tuxedo ATMI application for local or remote clients over one or more servers
on several machines through a single BEA Tuxedo configuration file.

Chapter 10, “Creating the Configuration File for a Distributed ATMI Application,”
describes how to create a configuration file for multiple machines in an ATMI
environment.

Chapter 11, “Setting Up the Network for a Distributed Application,” describes how to
configure your network environment in order to support a distributed application within the
BEA Tuxedo system.

Chapter 12, “About Workstation Clients,” provides an explanation of the BEA Tuxedo
Workstation component of the BEA Tuxedo system.

Chapter 13, “Setting Up Workstation Clients,” describes how to configure the BEA Tuxedo
environment so that a Tuxedo Workstation client can join an application.

Chapter 14, “Managing Remote BEA Tuxedo CORBA Client Applications,” explains how
to configure connections from remote CORBA client applications to CORBA objects via
the standard Internet Inter-ORB Protocol (IIOP).

What You Need to Know
This document is intended mainly for administrators who configure operational parameters that
support mission-critical the BEA Tuxedo systems. It assumes a familiarity with the BEA Tuxedo
platform.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the

Setting Up a BEA Tuxedo Application xvii

PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
The following documents provide related information about BEA Tuxedo software.

Installing the BEA Tuxedo System—paper copy distributed with the CD

BEA Tuxedo Release Notes—paper copy distributed with the CD

Administering a BEA Tuxedo Application at Run Time—available through the BEA Tuxedo
Online Documentation CD, this guide describes the command-line interface access to BEA
Tuxedo administration tasks.

Using the BEA Tuxedo Domains Component—available through the BEA Tuxedo Online
Documentation CD, this guide describes how to configure and manage BEA Tuxedo
domains.

Scaling, Distributing, and Tuning CORBA Applications—available through the BEA
Tuxedo Online Documentation CD, this guide describes how to tune and scale CORBA
applications that run in the BEA Tuxedo environment.

Using CORBA Transactions—available through the BEA Tuxedo Online Documentation
CD, this guide describes how to configure CORBA transactions in a BEA Tuxedo
environment.

For more information about configuring and administering BEA Tuxedo ATMI and BEA Tuxedo
CORBA environments, see the CORBA Bibliography in the BEA Tuxedo online documentation.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at

xviii Setting Up a BEA Tuxedo Application

www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Setting Up a BEA Tuxedo Application xix

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

xx Setting Up a BEA Tuxedo Application

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Setting Up a BEA Tuxedo Application 1-1

C H A P T E R 1

Administrative Tasks and Tools

This topic includes the following sections:

Tasks an Administrator Performs

Planning the Design of Your Application

Tools to Help You Administer Your Application

Tasks an Administrator Performs
An administrator’s job can be viewed as two broadly defined tasks:

Setup tasks—all the tasks required to prepare your system before booting your application.

Run-time administration—any tasks performed on an application that has been booted.

1-2 Setting Up a BEA Tuxedo Application

Setup Tasks
During the setup phase, an administrator is responsible for the planning, design, installation,
security, and configuration of the BEA Tuxedo system. The following table describes the
required and optional tasks during the setup phase.

Setup Task Required Optional

Collect information from designers, programmers, and
business users of the application

X

Set up the hardware and software, and install the BEA Tuxedo
system and the application (installation)

X

Set up the BEA Tuxedo system parameters that govern how the
application uses components (configuration)

X

Configure transactions for domains, machines, groups,
interfaces, services, and other required components
(configuration)

X

Select and implement security methods for protecting the
application and data

X

For CORBA environments, configure an Internet Inter-ORB
Protocol (IIOP) Listener/Handler and modify the machine
configuration

X

Set up distributed applications with routing tools:
factory-based routing for CORBA environments and
data-dependent routing for ATMI environments

X

Set up networked applications X

Configure local and remote domains X

Set up Workstation clients: add environment tables and a
workstation listener, and modify the machine configuration

X

Create an application queue space and modify the
configuration to support queued messages

X

Tasks an Admin is t ra to r Pe r fo rms

Setting Up a BEA Tuxedo Application 1-3

Run-time Tasks
With your BEA Tuxedo system installed and your TUXCONFIG file loaded, you are ready to boot
your application. When your application is launched, you must start monitoring its activities for
problems—both actual and potential. The following table describes the required and optional
tasks during the run-time phase.

During run time, you may need to respond quickly to potential problems or evolving
requirements of an application. To help you perform these functions, you have a choice of three

Run-time Task Required Optional

Start up and shut down an application X

Manage buffers X

Administer the security of your application X

Monitor the activities, problems, and performance of your
application

X

For ATMI environments, manage transactions X

For CORBA environments, manage interfaces X

Manage networked applications X

Manage remote Workstation clients X

Subscribe to events X

Use queued messaging X

Identify and resolve problems as they occur (troubleshoot) X

Reassign primary responsibility for your application from the
MASTER machine to an alternate (BACKUP) machine
(migration) when problems occur on the MASTER (migration)

X

Change system parameters and the selection of services to meet
evolving needs (dynamic modification)

X

Refine your application to reflect additional components, such
as new machines or servers (dynamic reconfiguration)

X

1-4 Setting Up a BEA Tuxedo Application

tools: the BEA Tuxedo Administration Console, the command-line interface, and the AdminAPI.
The following chart describes some of the circumstances in which your intervention may be
needed.

See Also
“Planning the Design of Your Application” on page 1-6

“Tools to Help You Administer Your Application” on page 1-8

Differences Between the BEA Tuxedo ATMI and CORBA
Environments
For the BEA Tuxedo CORBA environment, the BEA Tuxedo administration facilities support the
administration of applications running within the context of the Object Request Broker (ORB)
and the TP Framework.

The UBBCONFIG configuration file for BEA Tuxedo CORBA environments supports the
configuration of client and server applications, as follows:

The RESOURCES section provides application-wide defaults for the sizing of bulletin board
tables.

The MACHINES section allows the specification of processor-specific values for sizing of
those tables.

The INTERFACES, section allows the specification of information about CORBA interfaces
used by the application.

To... You May Want to...

Maximize performance Adds load balancing or set priorities for
interfaces and services.

Fix problems that may develop on the
MASTER machine

Replaces it with a designated BACKUP
machine.

Change processing and resource usage
requirements

Adds machines, servers, clients, interfaces,
services, and so on.

Tasks an Admin is t ra to r Pe r fo rms

Setting Up a BEA Tuxedo Application 1-5

The ROUTING section provides support for a different type of routing criteria used with
Tuxedo CORBA environments. Also, existing ROUTING sections that specify BEA Tuxedo
ATMI data-dependent routing parameters continue to work without modification.

In the BEA Tuxedo ATMI environment, you configure workstation handlers and listeners
for connections from client applications to server applications. From an administrative
viewpoint, this task is similar in BEA Tuxedo CORBA environments.

However, the BEA Tuxedo CORBA environment uses a different communications protocol
to connect remote and foreign clients to BEA Tuxedo server applications. The protocol is
the standard Internet Inter-ORB Protocol (IIOP). Instead of the BEA Tuxedo Workstation
Handler (WSH) process and Workstation Listener (WSL) process, the CORBA
environment calls its gateway processes the IIOP Handler (ISH) and the IIOP Listener
(ISL). This results in a slight syntax difference, ISL instead of WSL, in the SERVERS section
of each application’s UBBCONFIG configuration file.

Overall, the administration tasks for the BEA Tuxedo CORBA and ATMI environments are
similar. There are a few principal differences between the environments, however, as follows:

In both environments, you use a routing criteria to distribute processing to specific server
groups. The routing mechanism in a BEA Tuxedo CORBA environment system is known
as factory-based routing. It is fundamentally different than the BEA Tuxedo ATMI
data-dependent routing mechanism.

In the BEA Tuxedo ATMI environment, you can examine any FML field used for a service
invocation to determine the data-dependent routing criteria. In BEA Tuxedo CORBA
environments, the system designer must personally communicate the routing criteria of
CORBA interfaces. For BEA Tuxedo CORBA environments, there is no service request
message data or associated buffer information available for routing. This occurs because
CORBA routing is performed at the factory, not on a method invocation on the target
CORBA object.

You cannot dynamically advertise CORBA interfaces at run time. However, you can
suspend or reactivate CORBA interfaces.

No direct ACL control is provided for CORBA interfaces. No control over servants is
provided at the administrative level. In the UBBCONFIG configuration file, the
MANDATORY_ACL parameter to the SECURITY parameter is ignored.

The LDAP single security administration feature is not supported by the CORBA interface.

Note: The Management Information Base (MIB) defines the set of classes through which the
fundamental aspects of an application can be configured and managed. The MIB classes

1-6 Setting Up a BEA Tuxedo Application

provide an administrative programming interface to the BEA Tuxedo CORBA and
ATMI environments.

Planning the Design of Your Application
An administrator needs to know a customer’s business requirements and how the software will
be used. Once these needs are understood, administrators can work with their system designers
and application developers to make sure that the application’s configuration can support its
requirements.

Answers to the following preliminary questions may help in planning the design of your
application.

1. How many machines will be used? ____________________

2. Will client applications reside on machines that are remote from the server applications?

3. For ATMI, which services will your application offer?

4. For CORBA, which interfaces will your client or server application use?

5. What resource managers (database) will the application use and where will they be located?

6. What “open” strings will the resource managers need?

7. What setup information will be needed for an RDBMS?

__

8. Will transactions be distributed? ________________

9. Will the application use global transactions? ________________

Planning the Des ign o f Your App l i cat ion

Setting Up a BEA Tuxedo Application 1-7

10. What buffer types will be used?
__

11. Will data be distributed across machines?

12. To which external domains will the application export services? From which external
domains will the application import services?

__

13. Will factory-based or data-dependent routing be used in your application?

14. What are the names of the CORBA interfaces or ATMI services?

__

15. In what order of priority should the interfaces or services be available?

__

16. What are the reliability requirements? Will redundant listener and handler ports be needed?
Will replicated server applications be needed?

17. For CORBA environments, will the domain need an Interface Repository (IR) database? If
so, will the domain benefit from having IR replicas, and how many IR server applications
should be defined?

18. Are there any conversational services? What resource managers do they access? What
buffer types do they use?

__

See Also
“Tools to Help You Administer Your Application” on page 1-8

1-8 Setting Up a BEA Tuxedo Application

Tools to Help You Administer Your Application
The BEA Tuxedo system gives you a choice of several methods for performing the same set of
administrative tasks for either BEA Tuxedo ATMI or CORBA environments. Whether you are
more comfortable using a graphical user interface or entering commands at a shell prompt, you
will be able to find a comfortable method of doing your job as the administrator of a BEA Tuxedo
application. The following figure illustrates the tools you can use to write the configuration file
and administer your BEA Tuxedo application during run time.

Figure 1-1 Administration Tools

BEA Tuxedo Administration Console—a Web-based tool used to monitor an application,
and to dynamically configure its operation.

BEA Tuxedo MIB Application Programming Interface—an interface to a set of procedures
for accessing and modifying information in the MIBs.

Command-line utilities—a set of commands used to manage, activate, configure, and
deactivate the application (that is, tmadmin(1), tmboot(1), tmconfig, wtmconfig(1),
tmshutdown(1), respectively). For more information, refer to the BEA Tuxedo Command
Reference.

../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#5173411
../rfcm/rfcmd.htm#2468411
../rfcm/rfcmd.htm#5331611

Too ls t o He lp You Admin is te r Your App l i cat ion

Setting Up a BEA Tuxedo Application 1-9

See Also
“Management Operations Using the BEA Tuxedo Administration Console” in Introducing
BEA Tuxedo ATMI

“Managing Operations Using the MIB” in Introducing BEA Tuxedo ATMI

“Managing Operations Using Command-Line Utilities” in Introducing BEA Tuxedo ATMI

“Tasks an Administrator Performs” on page 1-1

“BEA Tuxedo ATMI Architecture” in Introducing BEA Tuxedo ATMI

“The Tuxedo CORBA Programming Environment,” in Getting Started with BEA Tuxedo
CORBA Applications

ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5), and
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

tmshutdown(1) in the BEA Tuxedo Command Reference

If You Use This Tool... You Must...

BEA Tuxedo Administration
Console

Use a graphical user interface (GUI) to create and edit the
TUXCONFIG file. Full descriptions of the GUI are
available by accessing Help directly from the GUI.

BEA Tuxedo MIB Application
Programming Interface

Write a program that modifies the TUXCONFIG file for
you.

Command-line interface 1. Create and edit the UBBCONFIG file (a text version of
TUXCONFIG) with a text editor.

2. Run tmloadcf to convert the UBBCONFIG file into a
TUXCONFIG (binary) file.

(For specific details about the tmloadcf command
options, see tmloadcf(1) in the BEA Tuxedo Command
Reference.)

../rfcm/rfcmd.htm#9061611
../int/intman.htm#384541
../int/intman.htm#392601
../int/intman.htm#497981
../int/intatm.htm#348382
../rf5/rf5.htm#9125915
../rf5/rf5.htm#3813815
../rf5/rf5.htm#2718115
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../rf5/rf5.htm#5102915
../rf5/rf5.htm#365105
../rfcm/rfcmd.htm#5331611

1-10 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 2-1

C H A P T E R 2

About the Configuration File

This topic includes the following sections:

 What Is the Configuration File?

Contents of the Configuration File

What Is the Configuration File?
Configuring each BEA Tuxedo application is a central task of the administrator. By configuring
a file, you are describing your application using a set of parameters that the software interprets to
create a viable application. The configuration file is a repository that contains all the information
necessary to boot and run an application, such as specifications for application resources,
machines, machine groups, servers, available services, interfaces, and so on.

Text and Binary Versions of the Configuration File
The configuration file exists in two versions:

The UBBCONFIG file is a text version of the configuration file, created and edited with any
text editor. Except for sample configuration files distributed with BEA Tuxedo sample
applications, no UBBCONFIG file is provided. You must create a UBBCONFIG file for each
new application. The syntax used for entries in the file is described in UBBCONFIG(5) in
the File Formats, Data Descriptions, MIBs, and System Processes Reference.

Note: The BEA Tuxedo software provides three sample UBBCONFIG files—ubbshm, ubbmp,
and ubbsimple—as part of the bankapp and simpapp applications. (See Tutorials
for Developing BEA Tuxedo ATMI Applications.)

../rf5/rf5.htm#365105

2-2 Setting Up a BEA Tuxedo Application

The TUXCONFIG file is a binary version of the configuration file, created from the text
version by the tmloadcf(1) command. Before tmloadcf is executed, the environment
variable TUXCONFIG must be set to the full pathname of the device or system file where
TUXCONFIG is to be loaded. If necessary, many parameters in TUXCONFIG can be changed
while the application is running by using tmconfig, wtmconfig(1) or the MIB.

Contents of the Configuration File
The following table lists the nine sections of the configuration file and describes the purpose of
each section.

The file must also contain a minimum of nine parameters. There are 80 different parameters, and
all sections but the first, may contain multiple entries, each with its own selection of parameters.
In all sections other than RESOURCES, you can use a default to specify parameters that are included
in multiple entries.

Section
Required or
Optional Purpose

RESOURCES Required Defines all system parameters.

MACHINES Required Specifies all the machines in your application.

GROUPS Required Defines all groups, group names, and group IDs for your
application.

SERVERS Optional Specifies the initial conditions for servers started in the
system.

SERVICES Optional Provides information on services used by the application.

INTERFACES Optional For CORBA environments, provides information on
application-wide, default parameters for interfaces used
by the application.

NETWORK Optional Describes the network configuration for a LAN
environment.

NETGROUPS Optional Describes the network groups available to the application
in the LAN environment.

ROUTING Optional Provides information for data-dependent routing of
service requests using FML buffers and views.

../rfcm/rfcmd.htm#9061611
../rfcm/rfcmd.htm#2468411

Contents o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 2-3

You can use the command-line interface or BEA Tuxedo Administration Console to create the
binary version of the configuration file (TUXCONFIG). First you need to determine the type of
configuration you are defining in the file.

A single-machine application—one or more local or remote clients communicate with one
or more servers residing on the same machine.

A multiple-machine (distributed) application—one or more local or remote clients
communicate with one or more servers residing on several machines.

A multiple-domain application—two or more applications communicate with each other
through the use of the BEA Tuxedo Domains extension. Each application included in such
a configuration is called a domain.

2-4 Setting Up a BEA Tuxedo Application

CORBA Administrative Requirements and Performance
This section provides information to assist you in administering your CORBA environment in the
BEA Tuxedo system.

Configuring NameManager
Adhering to the following requirements is fundamental to successful CORBA administration.

NameManagers should coordinate their activities with each other using the BEA Tuxedo
EventBroker without administrative or operations intervention. The EventBroker must be
started before any servers provide the NameManager service. If the EventBroker is not
configured into the application and is not running when the NameManager service is
booted, the NameManager aborts its startup and writes an error message to the user log.

At least two servers must be configured to run the NameManager service as part of any
application. This requirement is to ensure that a working copy of the “name-to-IOR”
mapping is always available. If the servers are on different machines, and one machine
crashes, when the machine and application are restarted, the new NameManager obtains
the mapping from the other NameManager. If an application is solely contained on one
machine and the machine crashes, the NameManagers are rebooted as part of the
application startup because the application must be rebooted. If two NameManagers are not
configured in the application when a NameManager service is booted, the NameManager
aborts its startup and writes an error message to the user log.

NameManagers can be designated as either master or slave, the default being slave. If a
master NameManager server is not configured in the application and is not running when a
slave NameManager server starts, the server terminates itself during boot and writes an
error message to the user log.

If a NameManager service is not configured in the application when a FactoryFinder
service is booted, the FactoryFinder aborts its startup and writes an error message to the
user log. It is not necessary for the NameManager service to start before a FactoryFinder
service because the FactoryFinder only communicates with a NameManager when a
“find” request is received from an application. NameManagers, on the other hand,
attempt to communicate with each other when they boot. FactoryFinders do not
communicate with each other except when a request is received to find a factory that is in a
remote domain.

BEA Tuxedo EventBroker, NameManager, and FactoryFinder services must be started
before any of the application-specific servers. However, if more than one EventBroker is to
be configured in the application, all secondary EventBrokers must be started after all

CORBA Admin is t ra t ive Requ i rements and Per fo rmance

Setting Up a BEA Tuxedo Application 2-5

application servers are started. There is no system protocol to enforce this in an application
server; therefore, you accomplish this by positioning all secondary EventBrokers after the
application servers.

The Master NameManager must be started and must be running before any application
server can register a reference to a factory object. The existence of an executing Slave
NameManager is not sufficient.

Reliability Requirements
This section contains information that will improve CORBA reliability.

Managing Factory Entries
When application servers “die,” they often fail to unregister their factories with the
NameManager. In some cases, the FactoryFinder may give out object references for factories that
are no longer active. This occurs because the servers containing those factories have become
unavailable, have failed to unregister their factories with the NameManager, and there is no other
server capable of servicing the interface for that factory.

In general, an application factory can restart shortly thereafter, and then offer the factories.
However, to ensure that factory entries are not kept indefinitely, the NameManager is notified
when application servers die. Upon receipt of this notification, the NameManager may remove
those factory entries that are not supported in any currently active server.

Configuring Multiple NameManagers and FactoryFinders
At a minimum, two NameManagers, a master and a slave, must be configured in an application,
preferably on different machines, to provide querying capabilities for a FactoryFinder. Multiple
FactoryFinders can also be configured in an application.

Designating a Master NameManager
A Master NameManager must be designated in the UBBCONFIG file. All registration activities are
sent to the Master NameManager. The Master NameManager then notifies the Slave
NameManagers about the updates. If the Master NameManager is down,
registration/unregistration of factories is disabled until the Master restarts.

Performance Hint
You can optimize FactoryFinder and NameManager performance by running these services on
separate servers within the same machine rather than running these services on different

2-6 Setting Up a BEA Tuxedo Application

machines. This provides a quicker response because it eliminates the need for
machine-to-machine communication.

See Also
“How to Create a Configuration File” on page 3-2

“How to Create the Configuration File for a Multiple-machine (Distributed) Application”
on page 3-3.

“BEA Tuxedo Domains (Multiple-Domain) Servers” in Introducing BEA Tuxedo ATMI

“How to Create the TUXCONFIG File” on page 1-4 in Administering a BEA Tuxedo
Application at Run Time

For distributed BEA Tuxedo CORBA applications, refer to the Scaling, Distributing, and
Tuning CORBA Applications guide.

../int/intarch.htm#764601
../ada/adboot.htm#974261

Setting Up a BEA Tuxedo Application 3-1

C H A P T E R 3

Creating the Configuration File

This topic includes the following sections:

How to Create a Configuration File

How to Create the Configuration File for a Single-machine Application

How to Create the Configuration File for a Multiple-machine (Distributed) Application

How to Create the Configuration File for a Multiple-domain Application

How to Create the RESOURCES Section of the Configuration File

How to Create the MACHINES Section of the Configuration File

How to Create the GROUPS Section of the Configuration File

How to Create the NETWORK Section of the Configuration File

How to Create the NETGROUPS Section of the Configuration File

How to Create the SERVERS Section of the Configuration File

How to Create the SERVICES Section of the Configuration File

How to Create the INTERFACES Section of the Configuration File

How to Create the ROUTING Section of the Configuration File

How to Configure the BEA Tuxedo System to Take Advantage of Threads

How to Compile a Configuration File

3-2 Setting Up a BEA Tuxedo Application

How to Create a Configuration File
Configuration file requirements are determined by the needs of your application. Following are
instructions for several types of configurations:

How to Create the Configuration File for a Single-machine Application

How to Create the Configuration File for a Multiple-machine (Distributed) Application

How to Create the Configuration File for a Multiple-domain Application

How to Configure the BEA Tuxedo System to Take Advantage of Threads

See Also
“About the Configuration File” on page 2-1

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

How to Create the Configuration File for a Single-machine
Application

For a single-machine configuration, you need to create the following sections of the configuration
file. Click on each task for instructions on completing that task.

1. Create the RESOURCES section of the configuration file

2. Create the MACHINES section of the configuration file

3. Create the GROUPS section of the configuration file

4. Create the SERVERS section of the configuration file

5. Create the SERVICES section of the configuration file

6. Create the INTERFACES section of the configuration file (CORBA only)

7. Create the ROUTING section of the configuration file

You can also click on any area of the following diagram to learn how to create the section named
in that area.

../rf5/rf5.htm#365105

How to Create the Conf igurat ion F i l e f o r a Mul t ip le-machine (D is t r ibuted) App l i cat ion

Setting Up a BEA Tuxedo Application 3-3

How to Create the Configuration File for a Multiple-machine
(Distributed) Application

For a distributed ATMI application, you need to create the following sections of the configuration
file. Click any of the following tasks for instructions on completing that task.

1. Create the RESOURCES section of the configuration file

2. Create the MACHINES section of the configuration file

3. Create the GROUPS section of the configuration file

4. Create the NETWORK section of the configuration file

5. Create the NETGROUPS section of the configuration file

6. Create the SERVERS section of the configuration file

7. Create the SERVICES section of the configuration file

8. Create the ROUTING section of the configuration file (optional)

Note: For detailed information about creating a configuration file for a distributed CORBA
application in the BEA Tuxedo system, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

You can also click on any area of the following diagram to learn how to create the section named
in that area.

3-4 Setting Up a BEA Tuxedo Application

How to Create the Configuration File for a Multiple-domain
Application

For a multiple-domain configuration, you need to create two configuration files for each
participating domain:

UBBCONFIG—the application configuration file

DMCONFIG—the domains configuration file

For an application that consists of two domains (for example, lapp and rapp for local and remote
domains, respectively), the following tasks are required.

Click on each task for instructions on completing that task.

How to Crea te the Conf igurat ion F i l e fo r a Mul t ip le-domain Appl i cat ion

Setting Up a BEA Tuxedo Application 3-5

Figure 3-1 Configuration Tasks for a Sample Multiple-domain Application

The following diagram shows which sections of the UBBCONFIG and DMCONFIG files you need to
configure for a two-domain application. One domain represents the local domain; the other, the
remote domain.

3-6 Setting Up a BEA Tuxedo Application

Click on any area of the following diagram for instructions on creating that section of the
configuration file.

Figure 3-2 Configuring a Multiple-domain Application

See Also
“About Domains” on page 1-1 in Using the BEA Tuxedo Domains Component

../add/addom.htm#258231

How to Crea te the RESOURCES Sec t ion o f the Conf igu rat ion F i l e

Setting Up a BEA Tuxedo Application 3-7

“Planning and Configuring ATMI Domains” in Using the BEA Tuxedo Domains
Component

DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

How to Create the RESOURCES Section of the Configuration File

The first section of every configuration file must be the RESOURCES section. The parameters
defined in this section control the application as a whole and serve as system-wide defaults. The
values of RESOURCES parameters can be overridden, however, on a per-machine basis by
assigning other values in the MACHINES section.

For each parameter in the RESOURCES section, the following table provides a description and links
to reference pages and additional information.

To Specify This Information in the
RESOURCES Section

Set This Parameter
(Required/Optional)

For More Information, Click the
Following

Unique address of interprocess
communication (IPC) resources

IPCKEY (Required) Shared memory address

Security access UID, GID, and PERM (Optional) Security access

Maximum number of processes that
can be simultaneously connected to a
bulletin board

MAXACCESSERS (Optional) IPC limits

Maximum number of server table
entries in a bulletin board

MAXSERVERS (Optional) IPC limits

Maximum number of service table
entries in a bulletin board

MAXSERVICES (Optional) IPC limits

Maximum number of CORBA
interfaces

MAXINTERFACES (Optional) IPC limits

Maximum number of CORBA objects MAXOBJECTS (Optional) IPC limits

../add/addomc.htm#796872
../rf5/rf5.htm#2885315

3-8 Setting Up a BEA Tuxedo Application

Distinguished Bulletin Board Liaison
(DBBL) location at which booting,
shutdown, and other administrative
tasks are performed

MASTER (Required) Master processor

Bulletin board architecture MODEL, SHM or MP, and LAN or
MIGRATE options (Required)

Application type

Security level SECURITY, AUTHSVC (Optional) Security levels

Principal name of the process used for
identification, location of private key
of principal user, and the environment
variable containing the password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION,
and SEC_PRINCIPAL_PASSVAR

Security attributes

Default method for clients to detect
unsolicited messages

NOTIFY, USIGNAL (Optional) Unsolicited notification

Protecting shared memory SYSTEM_ACCESS (Optional) Shared memory protection

Whether server load balancing is
enabled

LDBAL (Optional) Load balancing

Maximum number of buffer types and
subtypes

MAXBUFTYPE, MAXBUFSTYPES
(Optional)

Buffer types/subtypes

Maximum number of conversations
allowed on a machine

MAXCONV (Optional) Conversation limits

Maximum number of network groups MAXNETGROUPS (Optional) Network groups

Sanity check frequency and amount of
time allowed for blocking calls

SCANUNIT, SANITYSCAN,
BLOCKTIME (Optional)

Sanity check frequency and
blocking timeouts

To Specify This Information in the
RESOURCES Section

Set This Parameter
(Required/Optional)

For More Information, Click the
Following

Def in ing the App l i cat i on Type

Setting Up a BEA Tuxedo Application 3-9

Sample RESOURCES Section
The following is a sample RESOURCES section of a configuration file.

*RESOURCES

IPCKEY 39211

UID 0

GID 1

PERM 0660

MAXACCESSERS 75

MAXSERVERS 40

MAXSERVICES 55

MASTER SITE1, SITE2

MODEL MP

OPTIONS LAN, MIGRATE

SECURITY APP_PW

AUTHSVC "AUTHSVC"

NOTIFY DIPIN

SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

LDBAL Y

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the MACHINES Section of the Configuration File” on page 3-26

Defining the Application Type
Among the architectural decisions needed for a BEA Tuxedo application are the following:

Should this application run on a single processor or multiprocessor with global shared
memory?

Will the application be networked?

Will server migration be supported?

Use the MODEL and OPTIONS parameters to define the application type.

../rf5/rf5.htm#365105

3-10 Setting Up a BEA Tuxedo Application

The MODEL parameter specifies whether an application runs on a single processor. It is set to SHM
for uniprocessors and also for multiprocessors with global shared memory. A MODEL value of MP
is used for multiprocessors that do not have global shared memory, as well as for networked
applications. This is a required parameter.

The OPTIONS parameter is a comma-separated list of application configuration options. Two
available options are LAN (indicating a networked configuration) and MIGRATE (indicating that
application server migration is allowed).

Characteristics of the MODEL and OPTIONS Parameters

Example Settings
The following is a sample setting in the RESOURCES section of a configuration file.

 *RESOURCES

 MODEL MP

 OPTIONS LAN, MIGRATE

Controlling the Number of Buffer Types and Subtypes

You can control the number of buffer types and subtypes allowed in the application with the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. Unless you are creating many
user-defined buffer types, you can omit MAXBUFTYPE. If you intend to use many different VIEW
types, you may want to set MAXBUFSTYPE to a value higher than its current default.

Parameter Characteristics

MODEL It is a required parameter. A value of SHM indicates a single machine with
global shared memory. A value of MP indicates either multiple machines
without global shared memory, or a networked application.

OPTIONS It is a comma-separated list of application configuration options. A value
of LAN indicates a local area network. A value of MIGRATE enables
server migration.

In the sample RESOURCES section, MODEL is set to MP; OPTIONS is set
to LAN and MIGRATE.

Cont ro l l ing the Number o f Conve rsat ions

Setting Up a BEA Tuxedo Application 3-11

Characteristics of the MAXBUFTYPE and MAXBUFSTYPES
Parameters

l

Example Settings
In this example, the maximum number of buffer types is 20; the maximum number of subtypes
is 40.

*RESOURCES

 MAXBUFTYPE 20

 MAXBUFSTYPE 40

Controlling the Number of Conversations
You can specify the maximum number of simultaneous conversations on a machine with the
MAXCONV parameter. The value of MAXCONV must be greater than 0 and less than 32,768.

Characteristics of the MAXCONV Parameter
The MAXCONV parameter has the following characteristics:

It defines the maximum number of simultaneous conversations allowed on each machine.

The default for an application that has conversational servers listed in the SERVERS section
is 10; otherwise, the default is 1.

Parameter Characteristics

MAXBUFTYPE Maximum number of buffer types allowed in the system. Use
only if you create 8 or more user-defined buffer types. The
value of MAXBUFTYPE must be greater than 0 and less than
32,768. If not specified, the default is 16.

Example: MAXBUFTYPE 20

MAXBUFSTYPE Maximum number of buffer subtypes allowed in the system.
The value of MAXBUFSTYPE must be greater than 0 and less
than 32,768. If not specified, the default is 32.

Example: MAXBUFSTYPE 40

3-12 Setting Up a BEA Tuxedo Application

You can overwrite this parameter for any machine by specifying a different value in the
MACHINES section.

Example Setting
In this example, the maximum number of simultaneous conversations allowed on each machine
is 15.

*RESOURCES

 MAXCONV 15

Defining IPC Limits
Because most interprocess communication (IPC) and shared memory bulletin board tables are
statically allocated for speedy processing, it is important to tune them correctly. If they are sized
too generously, memory and IPC resources are wasted; if too small, processes fail when the limits
are exceeded. You can use the tmloadcf -c command to find out the maximum IPC resources
required by a specific application. (See tmloadcf(1) in the BEA Tuxedo Command Reference.)

MAXACCESSERS, MAXSERVERS, MAXSERVICES, MAXINTERFACES, and MAXOBJECTS are the tunable
parameters that control IPC sizing. The amount of shared memory allocated in an application is
controlled by the MAXGTT and MAXCONV parameters.

../rfcm/rfcmd.htm#9061611

Def in ing IPC L imi ts

Setting Up a BEA Tuxedo Application 3-13

Characteristics of MAXACCESSERS, MAXSERVERS,
MAXSERVICES, MAXINTERFACES, and MAXOBJECTS
Parameters

Parameter Characteristics

MAXACCESSERS Maximum number of overall processes that can be
simultaneously connected to the bulletin board at any particular
site in the BEA Tuxedo application. This number includes all
clients and system-supplied and application servers, but does
not include administrative processes such as the Bulletin Board
Liaison (BBL) and tmadmin(), which have reserved access
slots to the bulletin board.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. If not specified, the default is 50. You can
overwrite MAXACCESSERS, on a per-machine basis, in the
MACHINES section.

MAXSERVERS Maximum number of server processes available to the
application. This number includes all system-supplied and
application servers.

The value of MAXSERVERS must be greater than 0 and less than
8,192. If not specified, the default is 50.

MAXSERVICES Maximum number of different BEA Tuxedo services that can
be advertised in the application. The value of MAXSERVICES
must be greater than 0 and less than 32,768. If not specified, the
default is 100.

Note: For CORBA environments, each CORBA interface is
mapped to a BEA Tuxedo service. Make sure you
account for the number of services generated.

3-14 Setting Up a BEA Tuxedo Application

Note: Examples of system-supplied servers are AUTHSVR, TMQUEUE, TMQFORWARD, TMUSREVT,
TMSYSEVT, TMS, TMS_QM, GWTDOMAIN, and WSL.

The cost incurred by increasing MAXACCESSERS is one additional semaphore per site per client or
server process (accesser—see note that follows). There is a small fixed semaphore overhead for
system processes in addition to that added by the MAXACCESSERS value. The cost of increasing
MAXSERVERS and MAXSERVICES is a small amount of shared memory that is kept for each server,
service, and client entry, respectively. The general idea for these parameters is to allow for future
growth of the application. It is more important to scrutinize MAXACCESSERS.

Note: The system allocates one semaphore for each access slot to the bulletin board. A
semaphore is a latch circuit that prevents more than one process from accessing the same
shared memory in the bulletin board at the same time.

For BEA Tuxedo releases prior to release 7.1, both the MAXACCESSERS and MAXSERVERS
parameters for an application play a part in the user license checking scheme. Specifically, a
machine is not allowed to boot if the number of MAXACCESSERS for that machine + the number
of MAXACCESSERS for the machine (or machines) already running in the application is greater than
the number of MAXSERVERS + user licenses for the application. Thus, the total number of
MAXACCESSERS for an application must be less than or equal to the number of MAXSERVERS + user
licenses for the application.

MAXINTERFACES For CORBA environments, the maximum number of CORBA
interfaces that can be advertised in the application. The value
of MAXINTERFACES must be greater than 0 and less than
32,766. If not specified, the default is 100.

Note: All instances of an interface occupy and reuse the same
slot in the interface table in the bulletin board. For
example, if server SVR1 advertises interfaces IF1 and
IF2, server SVR2 advertises interfaces IF2 and IF3,
and server SVR3 advertises interfaces IF3 and IF4,
the interface count is 4 (not 6) when calculating
MAXINTERFACES.

MAXOBJECTS For CORBA environments, the maximum number of active
CORBA objects in the application. The value of MAXOBJECTS
must be greater than 0 and less than 32,766. If not specified, the
default is 100.

Parameter Characteristics

Enabl ing Load Balanc ing

Setting Up a BEA Tuxedo Application 3-15

The user license checking scheme in BEA Tuxedo release 7.1 or later considers only the
following two factors when performing its checks: the number of user licenses for an application
and the number of licenses currently in use for the application. When all user licenses are in use,
no new clients are allowed to join the application.

Example Settings
In this example, at most 75 processes (clients and servers) can access the system at any one time.
There is room for 40 servers advertising 55 services in the bulletin board.

*RESOURCES

 MAXACCESSERS 75

 MAXSERVERS 40

 MAXSERVICES 55

Enabling Load Balancing
You can control whether a load balancing algorithm is used on the BEA Tuxedo application as a
whole. When load balancing is used, a load factor is applied to each service within the system,
allowing you to track the total load on every server. Every service request is sent to the qualified
server that is least loaded.

To specify whether load balancing should be used, set the LDBAL parameter to Y (Yes) or N (No).
By default, it is set to N.

You should use load balancing only if necessary; that is, whenever a service is offered by servers
that use more than one queue. Load balancing is not appropriate for services offered by only one
server, or by servers in an MSSQ (Multiple Server, Single Queue) set. If you have only these
types of services in your configuration, set the LDBAL parameter to N. If LDBAL is set to N and
multiple queues offer the same service, the first available queue is selected.

Characteristics of the LDBAL Parameter
The LDBAL parameter has the following characteristics:

If LDBAL is set to Y, then load balancing is used.

If LDBAL is set to Y and the application is networked, you can use TMNETLOAD for local
preference.

If LDBAL is set to N, the server assigned is the first available server.

3-16 Setting Up a BEA Tuxedo Application

The default is N.

Because LDBAL incurs overhead, use it only when necessary.

Do not use load balancing if every BEA Tuxedo service is offered by only one server.

Do not use load balancing if every BEA Tuxedo service is offered by one MSSQ server set.

Example Settings
In this example, load balancing is enabled for the application.

*RESOURCES

 LDBAL Y

See Also
“What Is Load Balancing?” in Introducing BEA Tuxedo ATMI

Identifying the Master Machine
The MASTER machine controls the booting and administration of the entire application. You must
specify a MASTER machine for every application by setting the MASTER parameter. The value of
MASTER is the Logical Machine Identifier (LMID) for the appropriate computer. The LMID, in turn,
is defined as an alphanumeric string, chosen by the administrator, that is assigned to the LMID
parameter in the MACHINES section. Therefore, for example, if the value of the LMID parameter is
SITE1, then the value of MASTER must also be SITE1.

If you want to be able to bring down the MASTER machine without shutting down the application,
you must be able to migrate the MASTER. To enable migration, you must specify two values for
LMID: the primary MASTER and the backup MASTER.

Characteristics of the MASTER Parameter
The MASTER parameter has the following characteristics:

It is required and it controls booting and administration.

Two LMIDs are required for migration to back up the master machine.

In the sample RESOURCES section, the master site is SITE1; the backup site is SITE2.

../int/intatm.htm#769121

Spec i f y ing the Max imum Number o f Ne twork Groups

Setting Up a BEA Tuxedo Application 3-17

Example Settings
Site1 is the MASTER machine; SITE2 is the backup machine.

*RESOURCES

 MASTER SITE1, SITE2

Specifying the Maximum Number of Network Groups
To specify the maximum number of configured network groups, set the MAXNETGROUPS
parameter. The value must be greater than or equal to 1 and less than 8192. The default is 8. This
parameter is optional.

Specifying the Number of Sanity Checks and Blocking Timeouts
Periodically (every 120 seconds, by default) the Bulletin Board Liaison (BBL) checks the sanity
of the servers on its machine. You can change the frequency of these checks, however, by setting
the SCANUNIT and SANITYSCAN parameters.

Use the SANITYSCAN parameter to specify how many SCANUNITs elapse between sanity checks
of the servers. Its current default is set so that SANITYSCAN * SCANUNIT is approximately 120
seconds.

In addition, you can specify the number of timeout periods for blocking messages, transactions,
and other system activities by setting the BLOCKTIME parameter.

Note: Nontransactional blocking time values can be set on a per service, per ATMI call, and
per context basis. These blocktime values override the system-wide default BLOCKTIME
values set in the RESOURCES section of the UBBCONFIG file. For further information see
Specifying Nontransactional Service-Level Blocktime.

3-18 Setting Up a BEA Tuxedo Application

Characteristics of the SCANUNIT, SANITYSCAN, and
BLOCKTIME Parameters

Timeouts for Blocking ATMI Operations
The term timeout is used to refer, collectively, to the amount of time that elapses while a client:

Waits to send a message into the request queue

Waits to receive a message from the reply queue

Is processed by the server

Travels on the network

The term blocking timeout refers to the amount of time spent by a client request waiting for a
blocking condition to clear up. Block timeouts for asynchronous service requests and
conversations apply to individual send and receive operations. When a process sends a message
using tpacall (3c), tpconnect (3c), or tpsend (3c), the timeout applies only to the period
during which the request waits to get on the queue if the queue is full. When a client process

Parameter Characteristics

SCANUNIT Controls the granularity of check intervals and timeouts.
SCANUNIT must be a multiple of 2 or 5 between 0 and 60
seconds.
Example: SCANUNIT 10

The default is 10.

SANITYSCAN Specifies how many scan units elapse between sanity checks of
the servers.

SANITYSCAN may be any number up to 32,767.

The default is such that SCANUNIT * SANITYSCAN is
approximately 120 seconds.

BLOCKTIME Controls how long a message can block before it times out.

SCANUNIT * BLOCKTIME must not exceed 32,767.

The default is such that SCANUNIT * BLOCKTIME is
approximately 60 seconds.

Es tab l ish ing Opera t ing Sys tem- leve l Secur i t y

Setting Up a BEA Tuxedo Application 3-19

issues a tpgetrply (3c) or tprecv(3c) call to receive a message, the timeout specifies how long
the client may wait for the incoming message if its queue is empty.

Example Settings
In this example, sanity scans are performed every 30 seconds and requests block for no more than
10 seconds. A SCANUNIT of 10 and a SANITYSCAN of 3 allow 3 blocks of 10 seconds or 30
seconds to elapse before the BBL scans.

*RESOURCES

 SCANUNIT 10

 SANITYSCAN 3

 BLOCKTIME 1

Establishing Operating System-level Security
You can restrict access to BEA Tuxedo administrative functions to authorized administrators
only, by setting three parameters: UID, GID, and PERM.

The defaults of UID and GID are the user ID and group ID, respectively, of the person who runs
the tmloadcf(1) command on the configuration, unless overriding values have been specified
in the MACHINES section.

3-20 Setting Up a BEA Tuxedo Application

Characteristics of the UID, GID, and PERM Parameters

Note: You can overwrite the values assigned to these parameters for remote machines. The user
and group IDs on a remote machine are not required to be the same as the user and group
IDs on the MASTER machine. You can override the defaults by specifying different user
and group IDs in the MACHINES section of the configuration file. If not specified, values
specified in the RESOURCES section are used.

Specifying the Security Level
You can set the following three levels of security:

PERM parameter—provides minimal security by restricting, through permissions, the ability
to write to the application queues.

SECURITY parameter—provides greater security. When this parameter is set, a client must
supply a password when joining the application. This password is checked against the

Parameter Characteristics

UID The user ID of the administrator. The value is a numeric string
corresponding to the UNIX system user ID of the person who boots and
shuts down the system.

The default is the user ID of the person who runs tmloadcf(1).

Example: UID=3002

Note: On Windows, this value must be set to 0.

GID The numeric group ID of the administrator.

The default is the group ID of the person who runs tmloadcf(1).

Example: GID=100

Note: On Windows, this value must be set to 0.

PERM The value is an octal number that specifies permissions for the IPC
resources created when the application is booted. This parameter
provides the first level of defense of the BEA Tuxedo system IPC
structures against unauthorized access. These values should be specified
for production applications.

The default is 0666, which gives read/write access to all.

Example: PERM=0660

Spec i f y ing the Secur i t y Leve l

Setting Up a BEA Tuxedo Application 3-21

password supplied by the administrator when the TUXCONFIG file is generated from the
UBBCONFIG file.

AUTHSVC parameter—sets the maximum level of security. When this parameter is set, any
client request to join the application is sent to an authentication service. The authentication
service may be the default service supplied by the BEA Tuxedo system or a third-party
vendor service, such as a Kerberos service. This level of security cannot be used unless the
SECURITY parameter is set.

LAUTHSVR must be set in the SERVERS section of the UBBCONFIG file to enable
LDAP single security administration.

Characteristics of the SECURITY and AUTHSVC Parameters

See Also
“Introducing ATMI Security” in Using Security in ATMI Applications

Using Security in CORBA Applications

File Formats, Data Descriptions, MIBs, and System Processes Reference

BEA Tuxedo Command Reference

Parameter Characteristics

SECURITY Security level that requires a password to join an application.
Accepted values are: NONE (default), APP_PW, USER_AUTH,
ACL, and MANDATORY_ACL.

To enable the LDAP single security administration the
SECURITY level must be set to USER_AUTH,
MANDATORY_ACL, or ACL.

Default is NONE.

Example: SECURITY APP_PW

AUTHSVC The name of the authentication service.

SECURITY APP_PW or higher must be specified.

Default is no authentication service.

Client authentication with Kerberos is possible.

Example: AUTHSVC “AUTHSVC’’

../sec/secovr.htm#270901

3-22 Setting Up a BEA Tuxedo Application

Defining the Security Attributes of a Server
You can use the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters to identify the security attributes of any servers used for
authentication.

SEC_PRINCIPAL_NAME—defines the principal name used by the server for various security
operations.

SEC_PRINCIPAL_LOCATION—specifies the location of the private key of the principal user.

SEC_PRINCIPAL_PASSVAR—specifies the environment variable that contains the password
used to open the private key of the principal user.

Note: These policies apply to the Workstation handler, Domains gateway processes, and
interoperating application servers.

See Also
“Introducing ATMI Security” in Using Security in ATMI Applications

“Administering Security” in Using Security in CORBA Applications

If Specified in
This Section

This Parameter Defines And Overrides Parameter
Settings in This Section

RESOURCES All system servers booted in the
domain.

N/A

MACHINES All system servers booted on a
machine.

RESOURCES

GROUPS All system and interoperating
application servers booted within a
group.

MACHINES

SERVERS All system and interoperating
application services booted within a
server.

GROUPS

../sec/secovr.htm#270901
../sec/secadm.htm#665722

Pro tec t ing Shared Memory

Setting Up a BEA Tuxedo Application 3-23

Protecting Shared Memory
You can shield system tables kept in shared memory from application clients and/or servers using
the SYSTEM_ACCESS parameter. This parameter is useful when applications are being developed
because faulty application code can inadvertently corrupt shared memory with a bad pointer.
Once an application is fully debugged and tested, the value of this parameter can be changed to
allow for faster responses. Following are valid values for this parameter:

PROTECTED—BEA Tuxedo libraries compiled with application code do not attach to shared
memory while executing system code.

FASTPATH—BEA Tuxedo libraries attach to shared memory at all times.

Once you select a value, you can specify NO_OVERRIDE, which means that the selected option
cannot be changed either by the client, in the TPINIT structure of the tpinit() call, or by the
administrator, in the SERVERS section for servers.

3-24 Setting Up a BEA Tuxedo Application

Characteristics of the PROTECTED, FASTPATH, and
NO_OVERRIDE Parameters

Example Settings
 SYSTEM_ACCESS PROTECTED, NO_OVERRIDE

Setting the Address of the System Resources for an Application
To set the address of shared memory, set the IPCKEY parameter. This parameter is used by the
BEA Tuxedo system to allocate application IPC resources such that they may be located easily
by new processes joining the application. This key and its variations are used internally to allocate
the bulletin board, message queues, and semaphores that must be available to new application
processes. In single processor mode, this key names the bulletin board; in multiprocessor mode,
this key names the message queue of the DBBL.

Characteristics of the IPCKEY Parameter
The IPCKEY parameter has the following characteristics:

It is required.

It is used to access the bulletin board and other IPC resources.

Its value must be an integer in the range 32,769 to 262,144.

No other application on the system may use this specific value for its IPCKEY. Its value
must be unique among all applications.

Parameter Characteristics

PROTECTED Internal structures in shared memory are not corrupted inadvertently by
application processes.

FASTPATH

(Default)
Application processes join the application with access to shared
memory at all times.

NO_OVERRIDDE The specified option (either PROTECTED or FASTPATH) cannot be
changed.

Spec i f y ing How C l ients Rece ive Unso l i c i ted Not i f i cat ion

Setting Up a BEA Tuxedo Application 3-25

Example Settings
*RESOURCES

 IPCKEY 39211

Specifying How Clients Receive Unsolicited Notification
You can select the default method by which clients receive unsolicited messages by setting the
NOTIFY parameter. The client, however, can override this choice when calling tpinit().

Following are four possible methods:

IGNORE—clients ignore unsolicited messages.

DIPIN—clients receive unsolicited messages only when they call tpchkunsol() or when
they make an ATMI call.

SIGNAL—clients receive unsolicited messages by having the system generate a signal that
has the signal handler call the function, that is, set with tpsetunsol().

Note: This method is not allowed for multithreaded or multicontexted applications.

THREAD—unsolicited messages are handled by a separate thread managed by the BEA
Tuxedo system for this purpose.

The USIGNAL parameter specifies the signal to be used if SIGNAL-based notification is used. Two
types of signals can be generated: SIGUSR1 and SIGUSR2. The default is SIGUSR2. This method
has the advantage of immediate notification, but is limited when you are running a native client.
In that case, you must have the same user ID as the sending process. Workstation clients do not
have this limitation.

Note: This method is not available on all platforms.

3-26 Setting Up a BEA Tuxedo Application

Characteristics of the NOTIFY and USIGNAL Parameters

How to Create the MACHINES Section of the Configuration File
The second section of every configuration file must be the MACHINES section. The MACHINES
section defines parameters for each machine in an application. These parameters provide the
following information:

The mapping of the machine address to a logical identifier (LMID)

The location of the configuration file (TUXCONFIG)

The location of the installed BEA Tuxedo software (TUXDIR)

The location of the application servers (APPDIR)

The location of the application log file (ULOGPFX)

The location of the environment file (ENVFILE)

Note: For a particular machine, you can override the following system-wide parameters: UID,
GID, PERM, MAXACCESSERS, MAXOBJECTS, MAXCONV, and MAXGTT. Each parameter,
except MAXGTT, is described in the RESOURCES section.

Parameter Characteristics

NOTIFY Value of IGNORE means clients should ignore unsolicited
messages.

Value of DIPIN means clients should receive unsolicited
messages only when they call tpchkunsol() or when they
make an ATMI call.

Value of SIGNAL means clients should receive unsolicited
messages by signals.

Default is DIPIN

Example: NOTIFY SIGNAL

USIGNAL Value of SIGUSR1 and SIGUSR2 means notify clients with
this type of signal.

Default is SIGUSR2

Example: USIGNAL SIGUSR1

How to Create the MACHINES Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-27

For each parameter in the MACHINES section, the following table provides a description and links
to reference pages and additional information.

To Specify This Information in the MACHINES
Section

Set This Parameter
(Required/Optional)

For More Information, Click
the Following

The number of entries in the cache used for ACL
entries when SECURITY is set to ACL or
MANDATORY_ACL.

MAXACLCACHE
(Optional)

ACL entries in the cache

The additional load to be added when computing the
cost of sending a service request from this machine
to another machine.

NETLOAD (Optional) Additional loads

The address is the name of the physical processor,
which all other entries describe. The LMID
parameter specifies the logical name of the
computer.

LMID (Required) Address and machine ID

The number of attempts that should be made at user
level to lock the bulletin board before blocking
processes on a UNIX semaphore.

SPINCOUNT (Optional) Bulletin board locking limit

A value used for grouping machines into classes. TYPE (Optional) Class grouping value

The absolute pathname of the file or device where
the binary TUXCONFIG file is found on this
machine.

Note: The pathname specified for this parameter
must match exactly (including case) the
pathname specified for the TUXCONFIG
environment variable. Otherwise,
tmloadcf(1) cannot be run
successfully.

TUXCONFIG (Required) Configuration file location

The maximum number of simultaneous
conversations in which processes on a particular
machine can be involved.

MAXCONV (Optional) Conversation limits

The numeric size, in pages, of the DTP transaction
log for this machine.

TLOGSIZE (Optional) DTP TLOG size

The name of the DTP transaction log for this
machine.

TLOGNAME (Optional) DTP transaction log name

3-28 Setting Up a BEA Tuxedo Application

A value that specifies that all clients and servers on
the machine are to be executed with the
environment specified in the named file.

ENVFILE (Optional) Environment variable
settings

The BEA Tuxedo filesystem that contains the DTP
transaction log (TLOG) for this machine.

TLOGDEVICE (Optional) Filesystem containing the
TLOG

The maximum number of processes that can have
access to the bulletin board on this processor at any
one time.

MAXACCESSERS
(Optional)

IPC limits

For CORBA environments, the maximum number
of CORBA objects that can be accommodated in the
Active Object Table on this processor at any one
time.

MAXOBJECTS (Optional) IPC limits

The maximum number of simultaneous global
transactions in which a particular machine can be
involved.

MAXGTT (Optional) Limit of simultaneous global
transactions

The number of accesser entries on this processor to
be reserved for Workstation clients. The parameter
is only used when the BEA Tuxedo system
Workstation component is used.

MAXWSCLIENTS
(Optional)

Limit of workstation
accesser entries

A limit for the amount of space that can be allocated
for messages waiting to be transmitted by the bridge
process.

MAXPENDINGBYTES
(Optional)

Message space limits

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo
filesystem that contains the DTP transaction log for
this machine.

TLOGOFFSET (Optional) Numeric offset containing
the DTP TLOG

The numeric offset in pages (from the beginning of
the device) to the start of the BEA Tuxedo
filesystem that contains the TUXCONFIG file for this
machine.

TUXOFFSET (Optional) Numeric offset containing
the TUXCONFIG

To Specify This Information in the MACHINES
Section

Set This Parameter
(Required/Optional)

For More Information, Click
the Following

How to Create the MACHINES Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-29

The numeric group ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

GID (Optional) Security access

The numeric permissions associated with the IPC
structures that implement the bulletin board. This
parameter is used to specify the read/write
permissions for processes in the usual UNIX system
fashion (that is, with an octal number such as 0600).
The value can be between 0001 and 0777, inclusive.
If not specified, the default is the value specified in
the RESOURCES section.

PERM (Optional) Security access

The numeric user ID to be associated with the IPC
structures created for the bulletin board. The valid
range is 0-2147483647. If not specified, the default
is the value specified in the RESOURCES section.

UID (Optional) Security access

Principal name of the process used for
identification, location of private key of principal
user, and the environment variable containing the
password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCA

TION,
SEC_PRINCIPAL_PASS
VAR

Security attributes

The absolute pathname of the application directory
(APPDIR), which is the current directory for all
application and administrative servers booted on
this machine; and the absolute pathname of the
directory where the BEA Tuxedo system software is
found on this machine.

TUXDIR (Required) System and application
software locations

The threshold message size for messages—bound
to remote processes (string_value1) and local
processes (string_value2), respectively—on
which automatic data compression will be
performed.

CMPLIMIT (Optional) Threshold message size

The full pathname to be used as the prefix of the
name of the userlog(3c) message file on this
machine.

ULOGPFX (Optional) ULOG pathname

To Specify This Information in the MACHINES
Section

Set This Parameter
(Required/Optional)

For More Information, Click
the Following

3-30 Setting Up a BEA Tuxedo Application

Sample MACHINES Section
Following is a sample MACHINES section of a configuration file in an ATMI environment.

*MACHINES

gumby LMID=SITE1

 TUXDIR=”/tuxdir”

 APPDIR=”/home/apps/mortgage”

 TUXCONFIG=”/home/apps/mortgage/tuxconfig”

 ENVFILE=”/home/apps/mortgage/ENVFILE”

 ULOGPFX=”/home/apps/mortgage/logs/ULOG”

 MAXACCESSERS=100

 MAXCONV=15

Following is a sample MACHINES section of a configuration file in a CORBA environment.

*MACHINES

gumby LMID=SITE1

 TUXDIR=”/tuxdir”

 APPDIR=”/home/apps/mortgage”

 TUXCONFIG=”/home/apps/mortgage/tuxconfig”

 ENVFILE=”/home/apps/mortgage/ENVFILE”

 MAXOBJECTS=700

 ULOGPFX=”/home/apps/mortgage/logs/ULOG”

 MAXACCESSERS=100

Sample MACHINES Parameters
In the preceding sample MACHINES section, the following parameters and values are specified.

Parameter Meaning

gumby The machine name obtained with the command uname -n on UNIX
systems. On a Windows system, the value can be set using the
Computer Name value in the Network Control Panel and must be
specified in uppercase.

LMID=SITE1 The logical machine identifier of the machine gumby.

TUXDIR The full path to the installed BEA Tuxedo software (shown in double
quotation marks).

How to Create the MACHINES Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-31

How to Customize the Sample MACHINES Section
You can customize the MACHINES section by indicating the following:

Your machine name for gumby

Note: On a Windows system, the machine name must be specified in UPPERCASE.

The full path of your BEA Tuxedo software directory as the value of TUXDIR

The full path of your application directory as the value of APPDIR

The full pathnames for ENVFILE, TUXCONFIG, and ULOGPFX on your system

APPDIR The full path to the application directory (shown in double quotation
marks).

TUXCONFIG The full pathname of the configuration file (shown in double quotation
marks).

Note: The pathname specified for this parameter must match exactly
(including case) the pathname specified for the TUXCONFIG
environment variable. Otherwise, tmloadcf(1) cannot be
run successfully.

ENVFILE The full pathname of a file containing environment information (shown
in double quotation marks).

ULOGPFX The full pathname to be used as the prefix of the name of the log file
(shown in double quotation marks).

MAXACCESSERS For this machine, override the system-wide value (defined in the
RESOURCES section) with 100.

MAXOBJECTS (For the CORBA example.) For this machine, override the system-wide
value (defined in the RESOURCES section) with 700.

MAXCONV For this machine, override the system-wide value (defined in the
RESOURCES section) with 15.

Parameter Meaning

3-32 Setting Up a BEA Tuxedo Application

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the GROUPS Section of the Configuration File” on page 3-41

Specifying the Maximum Number of ACL Entries in the Cache
You can use the MAXACLCACHE parameter to specify the number of ACL entries in the cache when
SECURITY is set to ACL or MANDATORY_ACL. By setting of this parameter to an appropriate value,
you can:

Help conserve shared memory resources

Reduce the number of disk accesses performed in order to do ACL checking

The value must be a number greater than or equal to 10, and less than or equal to 30,000. The
default is 100.

Defining an Additional Service Request Load
You can use the NETLOAD parameter to specify a load to be added when computing the cost of
sending a service request from one machine to another. The value must be a number greater than
or equal to 0, and less than 32,768. The default is 0.

See Also
“What Is Load Balancing?” in Introducing BEA Tuxedo ATMI

Reserving the Physical Address and Machine ID
You initially define the address of your MASTER machine in the address portion, which is the basis
for a MACHINES section entry. All other parameters in the entry describe the machine specified by
this address. You must set the address to the value printed by calling uname -n on UNIX systems.
On Windows systems, see the Computer Name value in the Network Identification dialog from
the Network Control Panel.

The LMID parameter is mandatory. It specifies a logical name used to designate the computer for
which an address has just been provided. It may be any alphanumeric value, but it must be unique
among other machines in the application.

../rf5/rf5.htm#365105
../int/intatm.htm#769121

Set t ing the Number o f Lock Sp ins

Setting Up a BEA Tuxedo Application 3-33

Characteristics of the Address and the LMID Parameter
The address and machine ID have the following characteristics:

The address and machine ID are specified as follows:

address LMID=logical_machine_name

The address identifies the physical processor name.

The LMID is specified as follows:
LMID=logical_machine_name

The LMID is the logical machine name for a physical processor. It may be any
alphanumeric string, but it must be unique within the MACHINES section.

Setting the Number of Lock Spins
For some BEA Tuxedo system operations (such as service name lookups and transactions), the
bulletin board must be locked for exclusive access: that is, it must be accessible by only one
process. If a process or thread finds that the bulletin board is locked by another process or thread,
it retries, or spins on the lock for SPINCOUNT number of times before giving up and going to sleep
on a waiting queue. Because sleeping is a costly operation, it is efficient to do some amount of
spinning before sleeping.

Characteristics of the SPINCOUNT Parameter
Though the value of the SPINCOUNT parameter is application- and system-dependent, it may be
helpful to keep the following basic guidelines in mind:

A process on a uniprocessor system should not spin. If the bulletin board is locked when a
uniprocessor process tries to access it, then the process with the lock should be allowed to
run as quickly as possible. This is possible only if the newcomer process gives up
immediately.

A SPINCOUNT value of 1 is appropriate for uniprocessors.

On multiprocessors, a good starting value is 5,000, but some customers have benefited
from a SPINCOUNT value as high as 100,000.

Set the SPINCOUNT value and observe your application throughput. Because you can tune
the SPINCOUNT value using the TMIB, you can adjust it while the system is running.

3-34 Setting Up a BEA Tuxedo Application

Specifying Machines as Types
You can use the TYPE parameter to group machines into classes. You can set TYPE to any string
that contains 15 or fewer characters.

Characteristics of the TYPE Parameter
If two machines have the same TYPE value, data encoding/decoding is not performed when
data is sent between the machines.

TYPE can be given any string value. It is used simply for comparisons.

The TYPE parameter should be used when the application involves a heterogeneous
network of machines or when different compilers are used on the machines in the network.

If a value not specified, the default is the null string, which matches any other entry for
which a value has not been specified.

Identifying the Location of the Configuration File
To identify the configuration file location and filename for an entry that identifies a machine, set
TUXCONFIG, a required parameter. The value of the TUXCONFIG parameter is enclosed in double
quotes and represents a full pathname, which may contain up to 64 characters.

Note: The pathname specified for this parameter must match exactly (including case) the
pathname specified for the TUXCONFIG environment variable. Otherwise, tmloadcf(1)
cannot be run successfully.

Characteristics of the TUXCONFIG Parameter
The TUXCONFIG parameter has the following characteristics:

The syntax of the TUXCONFIG parameter is TUXCONFIG=”full_path_of_tuxconfig”.

This parameter identifies the location and name of the configuration file.

The value of TUXCONFIG can include up to 64 characters.

The value of TUXCONFIG must match the value of the TUXCONFIG environment variable.

Ind i cat ing the S i ze o f the DTP T ransact ion Log

Setting Up a BEA Tuxedo Application 3-35

Indicating the Size of the DTP Transaction Log

Use the TLOGSIZE parameter to indicate the size, in pages, of the DTP transaction log for this
machine. The value must be a number greater than 0, and less than or equal to 2048, subject to
the amount of space available on the operating system filesystem. The default is 100 pages.

Defining the DTP Transaction Log Name
Use the TLOGNAME parameter to define the name of the DTP transaction log for this machine. The
default is TLOG. If more than one TLOG exists on the same TLOGDEVICE, each must have a unique
name. The value of TLOGNAME must be different from the name of any other table in the VTOC
(Volume Table of Contents) on the TLOGDEVICE where the TLOG table is created. The value of
TLOGNAME must be an alphanumeric string containing 30 or fewer characters.

Specifying Environment Variable Settings
With the ENVFILE parameter, you can specify a file that contains environment variable settings
for all processes to be booted by the BEA Tuxedo system. The system sets TUXDIR and APPDIR
for each process, so these parameters should not be specified in this file.

You can, however, specify settings for the following parameters because they affect an
application’s operation:

FIELDTBLS, FLDTBLDIR

VIEWFILES, VIEWDIR

TMCMPLIMIT

TMNETLOAD

3-36 Setting Up a BEA Tuxedo Application

Characteristics of the ENVFILE Parameter
ENVFILE is an optional parameter with the following characteristics:

The syntax of the value of the ENVFILE parameter is a string enclosed in double quotes:
ENVFILE=”envfile”.

ENVFILE is the file containing environment variable settings for all processes booted by the
BEA Tuxedo system. (The UBBCONFIG file issues warnings in a similar way, that is, using
fully qualified pathnames.)

Set FIELDTBLS, FLDTBLDIR, and so on, but do not set TUXDIR and APPDIR.

All settings must be hard coded. No evaluations such as FLDTBLDIR=$APPDIR are allowed.

The format for entries in the file is VARIABLE=string.

For more information about setting environment variables, refer to tuxenv(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Defining the BEA Tuxedo Filesystem Containing the TLOG
Use the TLOGDEVICE parameter to specify the BEA Tuxedo filesystem that contains the DTP
transaction log (TLOG) for this machine. The TLOG is stored as a BEA Tuxedo system VTOC table
on the specified device. The value of TLOGDEVICE must be a string containing a maximum of 64
characters.

If this parameter is not specified, then it is assumed that the machine does not have a TLOG.

Specifying a Machine’s Maximum Number of Simultaneous
Global Transactions

Use the MAXGTT parameter to indicate the maximum number of simultaneous global transactions
in which a particular machine can be involved. The value must be a number greater than or equal
to 0, and less than 32,768. You can override the value specified in the RESOURCES section with a
value specified in the MACHINES section for an individual machine.

Defining the Number of Accesser Entries on a Workstation
Client

Use the MAXWSCLIENTS parameter to define the number of entries on a machine to be reserved
for Workstation clients. Set the number of accesser slots reserved for MAXWSCLIENTS cautiously,

../rf5/rf5.htm#9873115

Def in ing Space L imi ts fo r Messages T ransmit ted by the BRIDGE

Setting Up a BEA Tuxedo Application 3-37

since this number takes a portion of the total accesser slots specified with MAXACCESSERS for this
machine; the accesser slots reserved for MAXWSCLIENTS are unavailable for use by other clients
and servers on this machine. By setting this parameter to an appropriate value, you can help
conserve IPC resources because Workstation client access to the system is multiplexed through
a BEA Tuxedo system-supplied surrogate, the BEA Tuxedo Workstation Handler (WSH).

The value of MAXWSCLIENTS must be greater than or equal to 0 and less than 32,768. If not
specified, the default is 0. It is an error to set this parameter to a number greater than
MAXACCESSERS.

Note: The value of MAXWSCLIENTS is constrained by the number of your licensed users.

Defining Space Limits for Messages Transmitted by the BRIDGE
Use the MAXPENDINGBYTES parameter to define a limit for the amount of space that can be
allocated for messages waiting to be transmitted by the BRIDGE process. This number must be
between 100,000 and MAXLONG.

There are two situations when MAXPENDINGBYTES is significant:

When the BRIDGE requests an asynchronous connection

When all circuits are busy

You can configure larger computers that have more memory and disk space, with larger
MAXPENDINGBYTES, and smaller computers with smaller MAXPENDINGBYTES.

Indicating the Offset for the DTP Transaction Log
Every BEA Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on the
devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for BEA Tuxedo system tables. In a BEA Tuxedo system application, all
system files might be stored together on the same raw disk slice or operating system filesystem
file.

Use the TLOGOFFSET parameter to indicate the offset in pages (from the beginning of the device)
to the start of the BEA Tuxedo filesystem that contains the DTP transaction log for this machine.
The offset must be a number greater than or equal to 0, and less than the number of pages on the
device. The default is 0.

3-38 Setting Up a BEA Tuxedo Application

Defining the Offset for TUXCONFIG
Every BEA Tuxedo filesystem has a Volume Table of Contents (VTOC): a list of the files on the
devices named in the Universal Device List (UDL). The UDL specifies the location of the
physical storage space for BEA Tuxedo system tables. In a BEA Tuxedo system application, all
system files might be stored together on the same raw disk slice or operating system filesystem
file.

Use the TUXOFFSET parameter to define the offset in pages (from the beginning of the device) to
the start of the BEA Tuxedo filesystem that contains the TUXCONFIG for this machine. (For
information on how this value is used in the environment, see the ENVFILE parameter in the
MACHINES section.)

Characteristics of the TUXOFFSET Parameter
The offset must be a number greater than or equal to 0, and less than the number of pages
on the device.

The default offset is 0.

The value of TUXOFFSET, if non-zero, is placed in the environment of all servers booted on
a machine.

Identifying the Locations of the System Software and
Application Server Software

Each machine in an application that supports servers must have a copy of the BEA Tuxedo system
software and application software. You identify the location of system software with the TUXDIR
parameter. You identify the location of the application software with the APPDIR parameter. Both
parameters are mandatory. The APPDIR parameter becomes the current working directory of all
server processes. The BEA Tuxedo software looks in TUXDIR/bin and APPDIR for executables.

Ind i cat ing a Thresho ld Message S i ze fo r Compress ion

Setting Up a BEA Tuxedo Application 3-39

Characteristics of the APPDIR and TUXDIR Parameters

Indicating a Threshold Message Size for Compression
Use the CMPLIMIT parameter to define the threshold message sizes at which automatic data
compression is performed for messages bound to remote processes (string_value1) and local
processes (string_value2), respectively.

Both values must be either a non-negative numeric value or the string MAXLONG. If not specified,
the default is MAXLONG,MAXLONG.

Note: Set the CMPLIMIT value and observe your application throughput. Because you can tune
the CMPLIMIT value using the TMIB, you can adjust it while the system is running.

Example
CMPLIMIT=string_value1,string_value2

Specifying the Pathname for the ULOG
Set the ULOGPFX parameter to specify the full pathname to be used as the prefix of the name of
the userlog(3c) message file on this machine. The value of ULOGPFX for a given machine is used
to create the userlog(3c) message file for all servers, clients, and administrative processes
executed on that machine. If this parameter is not specified, the path specified by the APPDIR

Parameter Characteristics

APPDIR The syntax requires a full pathname enclosed in double quotes:
APPDIR=“APPDIR”.

APPDIR identifies the location of application software.

APPDIR is a required parameter.

APPDIR becomes the current working directory of server processes.

TUXDIR The syntax requires a full pathname enclosed in double quotes:
TUXDIR=“TUXDIR”.

TUXDIR identifies the location of the BEA Tuxedo software.

TUXDIR is a required parameter.

3-40 Setting Up a BEA Tuxedo Application

environment variable is used. mmddyy (month, day, year) is appended to the prefix to form the
full name of the log file.

Characteristics of the ULOGPFX Parameter
The ULOGPFX parameter has the following characteristics:

The syntax of the value of the ULOGPFX parameter is a string enclosed in double quotes:
ULOGPFX=“ULOGPFX”.

The application log contains all messages for TPESYSTEM and TPEOS errors.

You can use the user log to log application errors.

The ULOGPFX defaults to APPDIR/ULOG.

For the sample filename BANKLOG.022667, the prefix of the name of the userlog is
specified as follows.
ULOGPFX=“/mnt/usr/appdir/logs/BANKLOG”

How to Create the GROUPS Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-41

See Also
“How to Create the GROUPS Section of the Configuration File” on page 3-41

How to Create the GROUPS Section of the Configuration File
Use the GROUPS section to designate logically grouped sets of servers, which can later be used to
access resource managers, and facilitate server group migration. The GROUPS section of the
configuration file contains definitions of server groups. You must define at least one server group
for a machine to have application servers running on it. If no group is defined for a machine, the
group can still be part of the application and you can run the administrative command
tmadmin(1) from that site.

For nontransactional, nondistributed systems, groups are relatively simple. You only need to map
the group name to the number and logical machine ID for each group. Additional flexibility is
available to support distributed transactional systems.

For each parameter in the GROUPS section, the following table provides a description and links to
reference pages and additional information.

To Specify This Information in the GROUPS Section Set This Parameter
(Required/Optional)

For More Information, Click
the Following

The logical name of the group. GROUPNAME (Required) Group name

The group number associated with this server group.
This number must be greater than 0 and less than
30000, and must be unique among all entries in the
GROUPS section.

GRPNO (Required) Group number

The resource manager dependent information needed
when closing the resource manager.

CLOSEINFO (Optional) Information for closing the
resource manager

The resource manager dependent information needed
when opening the resource manager.

OPENINFO (Optional) Information for opening the
resource manager

The number of transaction manager servers to start for
the associated group, if TMSNAME is specified.

TMSCOUNT (Optional) Number of TMS servers in
the group

3-42 Setting Up a BEA Tuxedo Application

Sample GROUPS Section for ATMI
Following is a sample GROUPS section of a configuration file in an ATMI environment.

##EVBGRP1 LMID=SITE1 GRPNO=104

DEFAULT:TMSNAME=TMS_SQL TMSCOUNT=2 LMID=SITE1
BANKB1GRPNO=1 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl1:bankdb:readwrite"
BANKB2GRPNO=2 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl2:bankdb:readwrite"
BANKB3GRPNO=3 OPENINFO="TUXEDO/SQL:APPDIR1/bankdl3:bankdb:readwrite"

Sample GROUPS Section for CORBA
The followiing sample GROUPS section is from the UBBCONFIG file in the Tuxedo CORBA
University sample Production application. In this sample, the groups specified by the RANGES
identifier in the ROUTING section of the UBBCONFIG file need to be identified and configured.

The Production sample specifies four groups: ORA_GRP1, ORA_GRP2, APP_GRP1, and
APP_GRP2. These groups mst be configured, and the machines on which they run on must be
identified.

Principal name of the process used for identification,
location of private key of principal user, and the
environment variable containing the password.

SEC_PRINCIPAL_NAM

E,
SEC_PRINCIPAL_LOC

ATION,
SEC_PRINCIPAL_PAS
SVAR

Security attributes

A value that specifies that all servers in the group are
to be executed with the environment specified in the
named file.

ENVFILE (Optional) Server group environment

A value that specifies that this group of servers resides
on the machine symbolically named by
string_value1 in the MACHINES section (or the
default in SHM mode).

LMID (Required) Server group location

The name of the transaction manager server process
associated with this group.

TMSNAME (Optional) Transaction manager server
for group

To Specify This Information in the GROUPS Section Set This Parameter
(Required/Optional)

For More Information, Click
the Following

How to Create the GROUPS Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-43

*GROUPS

APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS

APP_GRP2
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS

ORA_GRP1
 LMID = SITE1
 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

ORA_GRP2
 LMID = SITE1
 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""
TMSNAME = "TMS_ORA"

The preceding example shows how the ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2
groups are configured. See the section “CORBA Factory-based Routing in the University
Production Sample Application” on page 3-92 to understand how the names in the GROUPS
section match the group names specified in the ROUTING section. This match is critical for the
routing function to work correctly. Also, any change in the way groups are configured in an
application must be reflected in the ROUTING section.

Note: The Production sample application packaged with the BEA Tuxedo software is
configured to run entirely on one machine. However, you can easily configure this
application to run on multiple machines by specifying the other machines in the LMID
parameter. This step assumes that you specify the MODEL MP parameter in the RESOURCES
section.

See Also
“How to Create the SERVERS Section of the Configuration File” on page 3-56

3-44 Setting Up a BEA Tuxedo Application

Specifying a Group Name, Number, and LMID
The group name, which is the basis for a GROUPS section entry, is an alphanumeric name by which
the group is identified; it specifies the logical name (string_value) of the group. It is given a
mandatory, unique group number (GRPNO). Each group must reside wholly on one logical
machine (LMID).

The LMID specifies that this group of servers resides on the machine symbolically named by
string_value1 in the MACHINES section.

Characteristics of the Group Name, Group Number, and LMID

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the NETWORK Section of the Configuration File” on page 3-48

Parameter Characteristics

Group_name required_
parameters [optional_
parameters]

It is required.

It is an alphanumeric name by which the group is identified.

It is unique and specifies the logical name of the group.

GRPNO (Group Number) It is required and is unique.

LMID=string_value1
[,string_value2]

It is required.

Each LMID value must be an alphanumeric string
containing 30 or fewer characters.

Up to two logical machine names can be specified. If a
second logical name is given and server group migration is
enabled, the machine with which the server group is
associated can be migrated.

../rf5/rf5.htm#365105

I nd icat ing a T ransact i on Manager Serve r Name and Numbers per Group

Setting Up a BEA Tuxedo Application 3-45

Indicating a Transaction Manager Server Name and Numbers
per Group

The name of the transaction manager server (TMS) must be specified in the entry for any group
with servers that will participate in distributed transactions (transactions across multiple resource
managers—and possibly machines). To specify a TMS, set the TMSNAME parameter. This
parameter specifies the file (string_value) to be executed by tmboot(1) when booting the
server group.

The value TMS is reserved to indicate use of the null XA interface. This interface can be used for
server groups that do not have resource managers. If you do not have a resource manager, you
may not need a TMS. This server group may be infected with transactional messages. If a
non-empty value other than TMS is specified, then a TLOGDEVICE must be specified for the
machine(s) associated with the LMID value(s) for this entry. A unique server identifier is selected
automatically for each TM server. Servers are restartable an unlimited number of times.

If TMSNAME is specified, TMSCOUNT=number must also be specified to indicate the number of
transaction manager servers to start for the associated group. The default for TMSCOUNT is 3. If
specified and the value is non-zero, the minimum value is 2 and the maximum value is 256. The
servers are set up in an MSSQ set automatically.

Identifying the Environment File Location for Servers in a Group
If the value of the ENVFILE environment variable (ENVFILE=string_value) is an invalid
filename, no values are added to the environment. Lines must be of the form ident=value where
ident contains only underscores or alphanumeric characters.

Within value, strings of the form ${env} are expanded when the file is processed using variables
already defined for the environment. (Forward referencing is not supported. If a value is not set,
the variable is replaced with an empty string.) You can use a back slash (\) to escape dollar signs
and other back slashes. All other shell quoting and escape mechanisms are ignored and the
expanded value is placed in the environment.

Environment files are provided in at least two sections of the configuration file. The BEA Tuxedo
system reads them in the following order:

1. MACHINES section ENVFILE

2. GROUPS section ENVFILE

3. SERVERS section ENVFILE (Optional)

3-46 Setting Up a BEA Tuxedo Application

Values in the SERVERS section override values in the GROUPS section. Values in the GROUPS
section override values in the MACHINES section.

Defining Information Needed When Opening and Closing the
Resource Manager

The values of both the OPENINFO and CLOSEINFO parameters must be alphanumeric strings that
contain a maximum of 256 characters, and are enclosed in double quotation marks. These settings
specify the resource manager dependent information needed when opening and closing the
resource manager for this group (that is, for this group name).

This value is ignored if the TMSNAME parameter for this group is not set or is set to TMS. If the
TMSNAME parameter is set to a value other than TMS but the OPENINFO string is set to the null string
("") or is not specified, a resource manager exists for the group but does not require any
information for executing an open operation. If the TMSNAME parameter is set to a value other than
TMS but the CLOSEINFO string is set to the null string ("") or is not specified, a resource manager
exists for the group but does not require any information for executing a close operation.

The format of the OPENINFO string is dependent on the requirements of the vendor providing the
underlying resource manager. The information required by the vendor must be prefixed with the
published name of the vendor’s transaction (XA) interface, followed immediately by a colon (:).

For BEA Tuxedo /Q databases, the format of OPENINFO is as follows:

On UNIX
OPENINFO = "TUXEDO/QM:qmconfig:qspace"

On Windows
OPENINFO = "TUXEDO/QM:qmconfig;qspace"

In all these settings, TUXEDO/QM is the published name of the BEA Tuxedo /Q XA interface,
qmconfig is replaced with the name of the QMCONFIG (see qmadmin(1) in the BEA Tuxedo
Command Reference) on which the queue space resides, and qspace is replaced with the name
of the queue space. For Windows, the separator after qmconfig must be a semicolon (;).

Note: The CLOSEINFO string is not used for BEA Tuxedo /Q databases.

For other vendors’ databases, the format of the OPENINFO string is specific to the particular
vendor providing the underlying resource manager. As an example, the following OPENINFO
string demonstrates the type of information needed when opening the Oracle resource manager.

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp"

../rfcm/rfcmd.htm#9270011

Def in ing In fo rmat ion Needed When Open ing and C los ing the Resource Manager

Setting Up a BEA Tuxedo Application 3-47

Oracle_XA is the published name of the Oracle XA interface. The series of five asterisks (*) in
the OPENINFO string pertains to the encrypting of a password, which is described in the
paragraphs that follow.

Passwords passed to a resource manager in the OPENINFO string can be stored in either clear text
or encrypted form. To encrypt a password, first enter a series of five or more continuous asterisks
in the OPENINFO string at the place where you want the password to go. Then load the UBBCONFIG
file by running tmloadcf(1). When tmloadcf() encounters the string of asterisks, it prompts
you to create a password. For example:

tmloadcf -y /usr5/apps/bankapp/myubbconfig

Password for OPENINFO (SRVGRP=BANKB3):

password

tmloadcf() stores the password in the TUXCONFIG file in encrypted form. If you then regenerate
the UBBCONFIG file from the TUXCONFIG file using tmunloadcf(1), the password is printed in
the regenerated UBBCONFIG file in encrypted form with @@ as delimiters. For example:

OPENINFO="Oracle_XA:

Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

When tmloadcf() encounters an encrypted password in a UBBCONFIG file generated by
tmunloadcf(), it does not prompt the user to create a password.

3-48 Setting Up a BEA Tuxedo Application

How to Create the NETWORK Section of the Configuration File
If you have more than one machine in your distributed application, you need to create a NETWORK
section in your configuration file. This section sets up communications among your machines.
You can configure network groups in both the NETGROUPS and NETWORK sections of an
application’s UBBCONFIG file.

For each parameter in the NETWORK section, the following table provides a description and links
to reference pages and additional information.

Sample NETWORK Section
The following configuration file excerpt shows a NETWORK section for a two-site configuration.

 *NETWORK

 SITE1 NADDR="//mach1:80952"

 NLSADDR="//mach1:serve"

SITE2 NADDR="//mach386:80952"

 NLSADDR="//mach386:serve"

To Specify This Information in the NETWORK Section Set This Parameter
(Required/Optional)

For More Information,
Click the Following

The device name to be used by the BRIDGE process placed
on that LMID to access the network.

BRIDGE (Optional) BRIDGE device name

The complete network address to be used by the BRIDGE
process; that is, the listening address on the LMID.

NADDR (Required) BRIDGE network
address

The minimum level of encryption required when a network
link to this machine is being established.

MINENCRYPTBITS
(Optional)

Encryption levels

The maximum level of encryption allowed when a network
link is being established.

MAXENCRYPTBITS

(Optional)
Encryption levels

The network group associated with this network entry. If
unspecified, then the default, DEFAULTNET, is assumed. (If
not set to DEFAULTNET, this parameter must be defined as
a group name in the NETGROUPS section.)

NETGROUP (Optional) Network group

The network address used by the tlisten(1) process
servicing the network on the node identified by the LMID.

NLSADDR (Optional) tlisten network
address

Spec i f y ing a Dev ice Name fo r the BRIDGE Process

Setting Up a BEA Tuxedo Application 3-49

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the NETGROUPS Section of the Configuration File” on page 3-52

Specifying a Device Name for the BRIDGE Process
To specify the device name to be used by the BRIDGE process placed on the LMID to access the
network, set the BRIDGE parameter as follows:

BRIDGE=string_value

If you are using TCP/IP, you do not need to specify the device name for the BRIDGE.

The pathname for the network transport endpoint file has the following form:

/dev/provider_name

Assigning a BRIDGE Network Address
To specify the complete network address to be used by the BRIDGE process placed on the LMID
as its listening address, set the NADDR parameter as follows:

NADDR = string_value

The listening address for a BRIDGE is the location at which it is contacted by other BRIDGE
processes participating in the application.

The listening address for a BRIDGE may also be specified in one of the following three forms:

//host.name:port_number

//#.#.#.#:port_number

0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host address at
the time the address is bound. This format is based on locally configured name resolution
facilities accessed via an operating system command. The value of port_number can be a
symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of which is
between 0 and 255), separated by periods. The value of port_number is a decimal number in the

../rf5/rf5.htm#365105

3-50 Setting Up a BEA Tuxedo Application

range 0 to 65,535 (the hexadecimal representations of the string specified). The value of
port_number can be a symbolic name or a decimal number.

In the third format, the string 0xhex-digits or \\xhex-digits must contain an even number
of valid hex digits. A string in either of these forms is translated internally into a character array
containing TCP/IP addresses.

Note: On some platforms lower numbers may be reserved for the system.

Assigning Encryption Levels
To set up the minimum level of encryption required when establishing a network link to the
machine, set the MINENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no
encryption, while 56, and 128 specify the encryption key length (in bits). If this minimum level
of encryption cannot be met, link establishment fails. The default is 0.

To set up a maximum level of encryption when establishing a network link, set the
MAXENCRYPTBITS parameter. Valid values are 0, 56, and 128. 0 means no encryption, while 56,
and 128 specify the encryption key length (in bits). The default is 128.

Example
MAXENCRYPTBITS=128

MINENCRYPTBITS=0

See Also
“Link-Level Encryption” in Using Security in CORBA Applications

Assigning a tlisten Network Address
To specify the network address used by the tlisten(1) process servicing the network on the
machine identified by the LMID, set the NLSADDR parameter as follows:

NLSADDR=string_value

The value of string is a network address in the same format as that specified for the NADDR
parameter.

The tlisten address for NLSADDR may be specified in one of the following three forms:

//host.name:port_number

//#.#.#.#:port_number

../sec/secovr.htm#790791

Ass ign ing a t l i s ten Ne twork Address

Setting Up a BEA Tuxedo Application 3-51

0xhex-digits or \\xhex-digits

In the first of these formats, host.name is resolved to the address of the TCP/IP host address at
the time the address is bound. This format is based on locally configured name resolution
facilities accessed via an operating system command. The value of port_number can be a
symbolic name or a decimal number.

In the second format, the string #.#.#.# represents four decimal numbers (each of which is
between 0 and 255), separated by periods. The value of port_number is a decimal number in the
range 0 to 65,535 (the hexadecimal representations of the string specified). The value of
port_number can be a symbolic name or a decimal number.

In the third format, the string 0xhex-digits or \\xhex-digits must contain an even number
of valid hex digits. A string in either of these forms is translated internally into a character array
containing TCP/IP addresses.

tmloadcf(1) prints an error if NLSADDR is missing from an entry for any machine besides the
MASTER LMID, for which it prints a warning. If NLSADDR is missing from the MASTER LMID,
tmadmin(1)cannot run in administrator mode on remote machines; it is limited to read-only
operations. In addition, the backup site cannot reboot the MASTER site after failure.

3-52 Setting Up a BEA Tuxedo Application

How to Create the NETGROUPS Section of the Configuration File
The NETGROUPS section of the UBBCONFIG file describes the network groups available to an
application in a LAN environment. There is no limit to the number of network groups to which
you can assign a pair of machines. The method of communication to be used by members of
different networks in a network group is determined by the priority mechanism (NETPRIO).

Every LMID must be a member of the default network group (DEFAULTNET). The network group
number for this group (that is, the value of NETGRPNO) must be zero. However, you can modify
the default priority of DEFAULTNET. Networks defined in the BEA Tuxedo system prior to release
6.4 are assigned to the DEFAULTNET network group.

For each parameter in the NETGROUPS section, the following table provides a description and links
to reference pages and additional information.

Sample Network Groups Configuration
You can associate network addresses with a network group. The following example illustrates
how this capability may be useful.

First State Bank has a network of five machines (A-E). Each machine belongs to two or three of
four netgroups that you have defined in the following way:

DEFAULTNET (the default network, which is the corporate WAN)

To Specify This Information in the NETGROUPS Section
(Optional)

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

Allow more netgroups to be defined than the default (8).
This value is specified in the RESOURCES section.

MAXNETGROUPS
(Optional)

Maximum netgroups

The maximum size of data waiting for the network to
become available. This value is specified in the MACHINES
section.

MAXPENDINGBYTES
(Optional)

Message space limits

The network group associated with this network entry. NETGROUP (Required) Network group name

A unique network group number that you must assign to use
in failover and failback situations.

NETGRPNO (Required) Network group
number

The priority of this network group. NETPRIO (Optional) Network group
priority

How to Create the NETGROUPS Sec t ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-53

MAGENTA_GROUP (a LAN)

BLUE_GROUP (a LAN)

GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point links between
member machines)

Every machine belongs to DEFAULTNET (the corporate WAN). In addition, each machine is
associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some machines in the
MAGENTA_GROUP LAN also belong to the private GREEN_GROUP. The following illustration shows
machines A through E in the networks for which they have addresses.

Figure 3-3 Example of a Network Grouping

3-54 Setting Up a BEA Tuxedo Application

The following table shows which machines have addresses for which groups.

Note: Because the local area networks are not routed among locations, machine D (in the
BLUE_GROUP LAN) may contact machine A (in the GREEN_GROUP LAN) only by using
the single address they have in common: the corporate WAN network address.

Configuring a Sample UBBCONFIG File with Netgroups
To set up the configuration just described, the First State Bank system administrator defines each
group in the NETGROUPS section of the UBBCONFIG file, as shown in the following configuration
file sample.

Listing 3-1 Sample NETGROUPS and NETWORK Sections

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default

BLUE_GROUP NETGRPNO = 9 NETPRIO = 200

MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200

GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”

A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

This Machine Has Addresses for These Groups

A and B DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

GREEN_GROUP (LAN)

C DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

D and E DEFAULTNET (the corporate WAN)

BLUE_GROUP (LAN)

Ass ign ing a Name to a Network Group

Setting Up a BEA Tuxedo Application 3-55

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"

B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"

C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"
E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the SERVERS Section of the Configuration File” on page 3-56

“Setting Up the Network for a Distributed Application” on page 11-1

Assigning a Name to a Network Group
To assign a name to a network group, set the NETGROUP parameter as follows:

NETGROUP required_parameters [optional_parameters]

If you set NETGROUP to DEFAULTNET, then the entry describes the default network group. All
network entries with a NETGROUP parameter of DEFAULTNET are represented in the T_MACHINE
class of the TM_MIB, while NETWORK entries associated with any other NETGROUP are represented
in the T_NETMAP class of the TM_MIB, so they can interoperate with previous releases.

Assigning a Network Group Number
To accommodate circumstances in which you may need to use failover and failback, you must
set the NETGRPNO parameter as follows:

NETGRPNO=numeric_value

If this entry describes DEFAULTNET, the value of NETGRPNO must be zero.

../rf5/rf5.htm#365105

3-56 Setting Up a BEA Tuxedo Application

Assigning a Priority to the Network Group
A pair of machines in multiple network groups of the same priority can communicate
simultaneously over the circuits with the highest priority. To assign network group priorities, use
the NETPRIO parameter. If all network circuits of a certain priority are torn down by an
administrator or by network conditions, the next lower priority circuit is used. Retries of the
higher priority circuits are attempted. The value of the NETPRIO parameter must be a number
greater than zero and less than 8,192. The default is 100.

How to Create the SERVERS Section of the Configuration File
The SERVERS section of the configuration file contains information specific to a server process.
While this section is not required, an application without this section has no application servers
and little functionality. Each entry in this section represents a server process to be booted in the
application and includes the following information:

The name, group, and numeric identifier for a server (SRVGRP, SRVID)

Server command-line options defined by servopts (CLOPT)

Parameters to determine the booting order and number of servers to boot (SEQUENCE, MIN,
MAX)

A server-specific environment file (ENVFILE)

Server queue-related information (RQADDR, RQPERM, REPLYQ, RPPERM)

Restart information (RESTART, RCMD, MAXGEN, GRACE)

Designation as a conversational server (CONV)

Overriding of system-wide shared memory access (SYSTEM_ACCESS)

Setting security parameters for IIOP Listener (ISL) servers

Note: Command-line options supported by the BEA Tuxedo system are described in
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

For each parameter in the SERVERS section, the following table provides a description and links
to reference pages and additional information.

../rf5/rf5.htm#7588415

How to Create the SERVERS Sec t ion o f the Conf igu rat ion F i l e

Setting Up a BEA Tuxedo Application 3-57

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional) For More Information,
Click the Following

Whether the server is a conversational
server. Connections can be made only to
conversational servers, and rpc requests
(via tpacall(3c) or tpcall(3c)) can be
made only to non-conversational servers.

CONV (optional run-time parameter) Conversational server

Principal name of the process used for
identification, location of the principal user’s
private key, and the environment variable
containing the password

SEC_PRINCIPAL_NAME,
SEC_PRINCIPAL_LOCATION,
SEC_PRINCIPAL_PASSVAR

Security attributes

When this server should be booted or shut
down relative to other servers.

SEQUENCE (Optional boot parameter) Server boot order

The minimum number of occurrences of the
server to be booted by tmboot.

MIN (Optional boot parameter) Server boot order

The maximum number of occurrences of the
server that can be booted.

MAX (Optional boot parameter) Server boot order

A list of servopts(5) options to be passed
to a server process at boot time. If none are
specified, the default is -A. string_value
may contain up to 256 characters.

CLOPT (Optional boot parameter) Server command-line
options

A request for the addition of the values in this
file to the environment of the server during
its initialization. If a server is associated with
a server group that can be migrated to a
second machine, the ENVFILE must be in
the same location on both machines.

ENVFILE (Optional run-time
parameter)

Server environment
file

The name of the group in which the server is
to run. string_value must be the logical
name associated with a server group in the
GROUPS section.

SRVGRP (Required) Server group

An integer that uniquely identifies a server
within a group. Identifiers must be between 1
and 30,000 inclusive.

SRVID (required) Server ID

3-58 Setting Up a BEA Tuxedo Application

The symbolic name of the request queue for
the process.

RQADDR (Optional run-time parameter) Server queue
information

The numeric permissions on the request
queue.

RQPERM (Optional run-time parameter) Server queue
information

Whether a reply queue should be established
for the process.

REPLYQ (Optional run-time parameter) Server queue
information

The numeric permissions on the reply queue. RPPERM (Optional run-time parameter) Server queue
information

The command that should be executed when
the process abnormally terminates, if the
process is restartable.

RCMD (Optional run-time parameter) Server restart
information

The maximum number minus one time that
the process can be restarted within the period
specified by GRACE, if the process is
restartable.

MAXGEN (Optional run-time parameter) Server restart
information

A parameter that specifies that the process
can have up to MAXGEN lives within the
specified number of seconds, if the process is
restartable.

GRACE (Optional run-time parameter) Server restart
information

Whether the process is restartable. Default is
N. If server migration is specified, RESTART
must be set to Y. (A server terminated with a
SIGTERM signal must be rebooted.)

RESTART (Optional run-time
parameter)

Server restart
information

The default mode used by BEA Tuxedo
system libraries within application processes
to gain access to BEA Tuxedo system
internal tables.

SYSTEM_ACCESS (Optional run-time
parameter)

System access to
servers

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional) For More Information,
Click the Following

How to Create the SERVERS Sec t ion o f the Conf igu rat ion F i l e

Setting Up a BEA Tuxedo Application 3-59

The minimum number of server dispatch
threads started on initial server boot. The
separate dispatched thread that is used when
MAXDISPATCHTHREADS>1 is not counted
as part of the MAXDISPATCHTHREADS
value. It is required that
MINDISPATCHTHREADS<=
MAXDISPATCHTHREADS. The default for
this parameter is 0.

MINDISPATCHTHREADS Threads

The maximum number of concurrently
dispatched threads that each server process
may spawn. If MAXDISPATCHTHREADS>1,
then a separate dispatcher thread is used and
does not count against this limit. It is
required that MINDISPATCHTHREADS<=
MAXDISPATCHTHREADS. The default for
this parameter is 1.

MAXDISPATCHTHREADS Threads

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional) For More Information,
Click the Following

3-60 Setting Up a BEA Tuxedo Application

Sample SERVERS Section
Following is a sample SERVERS section of a configuration file.

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 GRACE=3600

 REPLYQ=N CLOPT=”-A”

 ENVFILE=”/usr/home/envfile”

 SYSTEM_ACCESS=PROTECTED

The stack size in bytes for each server thread
after the initial thread. If not specified or
specified as 0, the operating system default is
used. This option has an affect on the server
only when a value greater than 1 is specified
for MAXDISPATCHTHREADS.

THREADSTACKSIZE threads

The WebLogic Server embedded
LDAP-based authentication server. It is a
System /T provided server that offers the
authentication service while the user security
information is located in WebLogic Server.
This server may be used in a secure
application to provide per-user
authentication when clients join the
application.

SECURITY USER_AUTH or higher must be
specified.

Default uses the file
$TUXDIR/udataobj/tpldap to get
LDAP configuration information.

Example: LAUTHSVR SRVGRP=
“AUTH’’SRVID=100

CLOPT=”-A--

-f/usr/tuxedo/udataobj/tpldap”

LAUTHSVR (Optional) LAUTHSVR(5)

To Specify This Information in the SERVERS
Section (Optional)

Set This Parameter (Required/Optional) For More Information,
Click the Following

../rf5/rf5.htm#402831

How to Create the SERVERS Sec t ion o f the Conf igu rat ion F i l e

Setting Up a BEA Tuxedo Application 3-61

RINGUP1 SRVGRP=GROUP1 SRVID=1 MIN=3

 RQADDR=”ring1"

RINGUP2 SRVGRP=GROUP1 SRVID=4 MIN =3

 RQADDR=”ring2"

Note: Omitted from this sample are SEQUENCE (the order of booting is 1 to 6), REPLYQ and
RPPERM (the server does not receive replies), RCMD (no special commands are desired on
restart), and CONV (servers are not conversational). Defaults are applied to all servers
unless a different setting is specified for a specific server.

Sample SERVERS Section Parameters
In the preceding sample SERVERS section, the following parameters and values are specified.

Parameter Meaning

RESTART=Y (default) Restart the servers.

MAXGEN=5 (default) The MAXGEN parameter specifies a number greater than 0 and less
than 256 that controls the number of times a server can be started
within the period specified by the GRACE parameter. The default is
1. If the server is to be restartable, MAXGEN must be >= 2. The
number of restarts is at most number - 1 times. RESTART must
be Y or MAXGEN is ignored.

GRACE=3600 (default) If RESTART is Y, the GRACE parameter specifies the time period (in
seconds) during which this server can be restarted as MAXGEN - 1
times. The number assigned must be equal to or greater than 0. The
maximum is 2,147,483,648 seconds (or a little more than 68 years).
If GRACE is not specified, the default is 86,400 seconds (24 hours).
As soon as one GRACE period is over, the next grace period begins.
Setting the grace period to 0 removes all limitations; the server can
be restarted an unlimited number of times.

REPLYQ=N (default) There is no reply queue.

CLOPT=”-A” (default) Specify -A on the command line of each server.

ENVFILE=”/usr/home/envfile”
(default)

Read environment settings from the file ENVFILE.

SYSTEM_ACCESS=PROTECTED (default) Deny access to internal tables outside system code.

RINGUP1 Sample name of the first server to be booted.

3-62 Setting Up a BEA Tuxedo Application

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the SERVICES Section of the Configuration File” on page 3-75

Specifying a Server as Conversational
If a server is conversational (that is, if it establishes a two-way connection between a client and
a dedicated server), the CONV parameter is required and must be set to Y. The default is N,
indicating that the server will not be part of a conversation.

Characteristics of the CONV Parameter
The CONV parameter has the following characteristics:

 A Y value indicates a server is conversational; an N value indicates a server is not
conversational.

A Y value is required if the server is to receive conversational requests.

The default is N.

SRVGRP=GROUP1 SRVID=1 MIN=3

RQADDR=”ring1"

Three instances of the sample server will be booted in group
GROUP1 with server IDs of 1, 2, and 3, respectively. The three
servers will form an MSSQ set and will read requests from queue
ring1.

Note: RQADDR assigns a symbolic name to the request queue of
this server. MSSQ sets are established by using the same
symbolic queue name for more than one server, as well as
same executable name for all the servers (and by
specifying a value greater than 1 for MIN).

RINGUP2 Name of the second sample server to be booted.

Parameter Meaning

../rf5/rf5.htm#365105

Set t ing the Orde r in Which Se rve rs Are Boo ted

Setting Up a BEA Tuxedo Application 3-63

Setting the Order in Which Servers Are Booted
To specify the sequence of servers to be booted, set the SEQUENCE parameter for each server. The
value of SEQUENCE can be any number between 1 and 10,000. A server with a smaller SEQUENCE
value is booted before a server with a larger value. If the SEQUENCE parameter is not set for any
servers, the servers are booted in the order in which they are listed in the SERVERS section. If
some, but not all servers are sequenced, the sequenced servers are booted first. The order in which
servers are shut down is the reverse of the order in which they were booted.

The SEQUENCE parameter is optional. It may be helpful in a large application in which control
over boot order is important.

Warning: In CORBA environments, there is a strict order in which the system EventBroker,
the FactoryFinder object, and the application factories must be booted. A CORBA
application program will not boot if the order is changed. See the section “Required
Order in Which to Boot CORBA C++ Servers” on page 3-63 for details.

To boot multiple servers, set the MIN parameter, which provides a shortcut to booting. All servers
share the same options. If you specify RQADDR, the servers form an MSSQ set. The default for
MIN is 1.

To specify the maximum number of servers that can be booted, set the MAX parameter. The
tmboot(1) command boots MIN servers at run time. Additional servers can be booted up to MAX.
The default is MIN.

The MIN and MAX parameters are helpful in keeping the size of the configuration files for large
applications manageable. Allowances for MAX values must be made in the IPC resources. The MIN
and MAX parameters are also used for conversational services and automatic server spawning.

Required Order in Which to Boot CORBA C++ Servers
The following is the correct order in which to boot the servers In a BEA Tuxedo CORBA
environment. A CORBA application program will not boot if the order is changed.

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the
NameManager service (as a Master). This service maintains a mapping of
application-supplied names to object references.

3. The TMFFNAME server with the -N option only, to start a Slave NameManager service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder object.

3-64 Setting Up a BEA Tuxedo Application

5. The application C++ servers that are advertising factories.

Listing 3-2 shows the order in which servers are booted for the BEA Tuxedo CORBA University
Basic application, which is one of the sample applications included with the BEA Tuxedo
software. This SERVERS section is excerpted from an edited version of the ubb_b.nt
configuration file.

Listing 3-2 Edited SERVERS Section from a University Sample UBBCONFIG

*SERVERS

 # By default, restart a server if it crashes, up to 5 times

 # in 24 hours.

 #

 DEFAULT:

 RESTART = Y

 MAXGEN = 5

 # Start the BEA Tuxedo System EventBroker. This event broker

 # must be started before any servers providing the

 # NameManager Service

 #

 TMSYSEVT

 SRVGRP = SYS_GRP

 SRVID = 1

 # TMFFNAME is a BEA Tuxedo CORBA provided server that

 # runs the NameManager and FactoryFinder services.

 # The NameManager service is a BEA Tuxedo CORBA-specific

 # service that maintains a mapping of application-supplied names

 # to object references.

 # Start the NameManager Service (-N option). This name

 # manager is being started as a Master (-M option).

 #

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

Set t ing the Orde r in Which Se rve rs Are Boo ted

Setting Up a BEA Tuxedo Application 3-65

 CLOPT = "-A -- -N -M"

 # Start a slave NameManager Service

 #

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

 # Start the FactoryFinder (-F) service

 #

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

 # Start the interface repository server

 #

 TMIFRSVR

 SRVGRP = SYS_GRP

 SRVID = 5

 # Start the university server

 #

 univb_server

 SRVGRP = ORA_GRP

 SRVID = 6

 RESTART = N

 # Start the listener for IIOP clients

 #

 # Specify the host name of your server machine as

 # well as the port. A typical port number is 2500

 #

 ISL

 SRVGRP = SYS_GRP

 SRVID = 7

 CLOPT = "-A -- -n //TRIXIE:2500"

3-66 Setting Up a BEA Tuxedo Application

In the example, after the TMSYSEVT and TMFFNAME servers are started, servers are started for:

An Interface Repository. For information about this feature and the command-line options
(CLOPT parameter), see Chapter 8, “Managing CORBA Interface Repositories.”

The univb_server, for the University Basic sample application. For details about the
sample applications, see the Guide to the CORBA University Sample Applications.

An Internet Inter-ORB Protocol (IIOP) Server Listener (also known as an ISL). For
information about this feature and the CLOPT parameter, refer to Chapter 14, “Managing
Remote BEA Tuxedo CORBA Client Applications.”

Note: When migrating or shutting down and restarting groups or machines for any reason, if
there are active slave NameManagers in other groups, be sure to organize your
UBBCONFIG file so that a FactoryFinder or a slave NameManager is never restarted before
the master NameManager is active. For example, if you have a FactoryFinder in the same
group as the master NameManager, arrange the order of these servers in the UBBCONFIG
file so the master NameManager is started first.

Characteristics of the SEQUENCE, MIN, and MAX Parameters

Parameter Characteristics

SEQUENCE It is an optional parameter with a numeric range of 1 - 10,000.

Smaller values are booted before larger values.

Servers for which this parameter is not set are booted in the order in which
they are listed in the SERVERS section.

All sequenced servers are booted before any unsequenced servers.

Spec i f y ing Se rve r Command- l ine Opt ions

Setting Up a BEA Tuxedo Application 3-67

Specifying Server Command-line Options
The BEA Tuxedo system allows you to specify options that are used when a server processes a
request. These options are defined in servopts, which lists the run-time options for server
processes. The server may need to obtain information from the command line. The CLOPT
parameter allows you to specify command-line options that can change some defaults in the
server, or pass user-defined options to the tpsvrinit() function.

The standard main() of a server parses one set of options ending with the argument --, and passes
the remaining options to tpsvrinit(). The default for CLOPT is -A, which tells the server to
advertise all the services built into it with buildserver(1) or buildobjserver(1). The
following table provides a partial list of the available options.

MIN It represents the minimum number of servers to boot during run time.

If RQADDR is specified and MIN>1, an MSSQ set is created.

All instances have the same server options.

The range of values is 0 to 1000.

The default is 1.

MAX It represents the maximum number of servers to boot.

The range of values for MAX is 0 to 1000. If MAX is not specified, the
default is the value of MIN.

Parameter Characteristics

Use This Option To

-o filename Redirect standard output to file filename.

-e filename Redirect standard error to file filename.

-s services Advertise services. For example, -s x,y,z to advertise services
x, y, and z.

-s x,y,z:funcname Advertise services x, y, and z, but process requests for those
services with function funcname. This is called aliasing a
function name.

3-68 Setting Up a BEA Tuxedo Application

Note: You can find other standard main() options listed on servopts(5) in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Characteristics of the CLOPT Parameter
The syntax is CLOPT=”servopts -- application_opts”.

This is an optional parameter with a default of -A.

Both main() and tpsvrinit() use server command-line options.

servopts(5) options are passed to main().

Application options are passed to tpsvrinit().

In the BANKAPP sample application, command-line options are specified as follows:

CLOPT=”-A -- -T 10"

The server is given the option of advertising all services (-A) and teller ID of 10 so it can update
a specific teller record with each operation. The use of this option, especially the options passed
to tpsvrinit(), require communication between the system administrator and the application
programmer.

See Also
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Identifying the Location of the Server Environment File
Use the ENVFILE parameter in the MACHINES section to specify environment settings. You can
also specify the same parameter for a specific server process; the semantics are the same. If both

-r Specify that the server should log the services performed.

-v Print out the list of the service name/function name to standard
output.

This option cannot be used in the CLOPT in the UBBCONFIG. It
must be used when manually invoking the server.

Use This Option To

../rf5/rf5.htm#7588415
../rf5/rf5.htm#7588415

Def in ing Se rver Name, Group , and ID

Setting Up a BEA Tuxedo Application 3-69

the MACHINES section ENVFILE and the SERVERS section ENVFILE are specified, both go into
effect. For any overlapping variable defined in both the MACHINES and SERVERS sections, the
setting in the SERVERS section prevails.

Characteristics of the Server Environment File
ENVFILE, the parameter that defines the server environment file, has the following
characteristics:

It is an optional parameter that contains the same semantics as the ENVFILE parameter in
the MACHINES section, but defines only one server.

For overlapping variables, the setting in the SERVERS section ENVFILE overrides the setting
in the MACHINES and GROUPS sections ENVFILE.

For more information about setting environment variables, refer to tuxenv(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.

Defining Server Name, Group, and ID
You initially assign a name to a server in the SERVERS section. The name you specify must be the
name of an executable file built with one of the following commands:

buildserver(1) for ATMI applications

buildobjserver(1) for CORBA C++ server applications

You must also specify a group identifier (SRVGRP) for each server. The value of SRVGRP must be
the name specified in the beginning of a GROUPS section entry. Finally, you must also provide
each server process in a given group with a unique numeric identifier (SRVID). Every server entry
must include the SRVGRP and SRVID parameters. Because the entries describe machines to be
booted and not just applications, it is possible that in some cases the same server name will be
displayed in many entries.

../rf5/rf5.htm#9873115

3-70 Setting Up a BEA Tuxedo Application

Characteristics of the Server Name, SRVGRP, and SRVID
Parameters

Identifying Server Queue Information
Server queue information controls the creation and access of server message queues. On a BEA
Tuxedo system, you can create Multiple Server, Single Queue (MSSQ) sets by using the RQADDR
parameter. For any given server, you can set this parameter to an alphanumeric value. By
specifying the same value for RQADDR on all servers that offer the same services, you can
consolidate those services under one message queue, thus creating an MSSQ set and establishing
load balancing.

MSSQ Example
An MSSQ set is similar to a bank staff. Four tellers may be available to handle the business
requests of many customers who wait in a single line. All customers are assured of an equitable
wait in line. Understandably, a loan officer is not included in the group of tellers handling
requests from customers in that line. The loan officer cannot handle requests for deposits and
withdrawals (as the tellers can), and not all customers want loans. Similarly, a server cannot join
an MSSQ set if the services it offers are not the same as the services offered by the servers in an
MSSQ set.

Parameter Characteristics

Server_name It identifies the executable to be booted.

It is built with buildserver(1) for ATMI.

It is built with buildobjserver(1) for CORBA.

It is required, but may not be unique within a server group.

SRVGRP (Server Group) It identifies the group affiliation.

The group name begins with a GROUPS section entry.

It is required.

SRVID (Server ID) It is numeric.

It is required and unique within a server group.

I dent i f y ing Se rve r Queue In fo rmat ion

Setting Up a BEA Tuxedo Application 3-71

The RQPERM parameter allows you to specify the permissions for server request queues, along the
lines of the UNIX system convention (for example, 0666). This setting allows services to control
access to the request queue.

If the service routines within an MSSQ server perform service requests, they must receive replies
to their requests on a reply queue. You can set up such a reply queue by specifying REPLYQ=Y.
By default, REPLYQ is set to N. If REPLYQ is set to Y, you can also assign permissions to it with the
RPPERM parameter.

Characteristics of the RQADDR, RQPERM, REPLYQ, and
RPPERM Parameters

Parameter Characteristics

RQADDR It is an alphanumeric value that allows MSSQ sets to be created. The
value is the same for all members of an MSSQ set. All members of an
MSSQ set must offer the same set of services and the servers in an MSSQ
set should have the same executable name. In order to boot multiple
servers, set the value greater than 1 for Min parameter.

RQPERM Represents the permissions on a request queue. If no parameter is
specified, the permissions of the bulletin board, as specified by PERM in
the RESOURCES section, are used. If no value is specified there, the
default of 0666 is used. When the default is used, your application is
available to anyone with a login on the system.

REPLYQ Specifies whether a reply queue, separate from the request queue, is to be
set up for this server. If only one server is using the request queue, replies
can be picked up from the request queue without causing problems. On a
BEA Tuxedo system, if the server is a member of an MSSQ set and
contains services programmed to receive reply messages, REPLYQ
should be set to Y so that an individual reply queue is created for this
server. If not, the reply is sent to the request queue shared by all servers
of the MSSQ set, and there is no way of assuring that it will be picked up
by the server that is waiting for it. Multithreaded servers automatically
create REPLYQs even if this parameter is not set.

RPPERM Assigns permissions to the reply queue. This parameter is useful only
when REPLYQ=Y. If requests and replies are read from the same queue,
only RQPERM is needed; RPPERM is ignored.

3-72 Setting Up a BEA Tuxedo Application

Defining Server Restart Information
A properly debugged server should not terminate on its own. By default, servers that do terminate
while the application is running are not restarted by the BEA Tuxedo system. You can set the
RESTART parameter to Y if you want the server to restart. The RCMD, MAXGEN, and GRACE
parameters are relevant to a server if RESTART=Y.

The RCMD parameter lets you specify a command to be performed in parallel with restarting a
server. For example, you may want to have e-mail sent to the developer of the server or to
someone who is auditing such activity.

The MAXGEN parameter represents the total number of lives to which a server is entitled within the
period specified by GRACE. The server can then be restarted MAXGEN-1 times during GRACE
seconds. If GRACE is set to zero, there is no limit on server restarts. MAXGEN defaults to 1 and may
not exceed 256. GRACE must be greater than or equal to zero and must not exceed 2,147,483,647
(231 - 1).

Note: A fully debugged server should not need to be restarted. RESTART and associated
parameters should have two settings: one for the testing phase, and another for
production.

Characteristics of the RESTART, RCMD, MAXGEN, and GRACE
Parameters

Parameter Characteristics

RESTART A setting of Y enables a server to restart.

The default is N.

RCMD Specifies an executable file to be run at restart time.

Allows you to take an action when a server is restarted.

MAXGEN Represents the maximum number of server lives in a specific interval.

The default is 1; the maximum is 256.

GRACE Represents the interval used by MAXGEN.

Zero represents unlimited restart.

It must be between 0 and 2147,483,647 (231 - 1).

The default is 24 hours.

Def in ing Serve r Access to Shared Memory

Setting Up a BEA Tuxedo Application 3-73

Defining Server Access to Shared Memory

The SYSTEM_ACCESS parameter determines whether a server process may attach to shared
memory and thus have access to internal tables outside system code. During application
development, we recommend that such access be denied (PROTECTED). When the application is
fully tested, you can change the value of SYSTEM_ACCESS to FASTPATH to yield better
performance.

This parameter setting overrides the value specified in the RESOURCES section unless the
NO_OVERRIDE value has been specified. In this case, the parameter is ignored. The NO_OVERRIDE
value may not be used in this section.

Characteristics of the SYSTEM_ACCESS Parameter
The SYSTEM_ACCESS parameter has the following characteristics:

A value of PROTECTED indicates that the server may not attach to shared memory outside
of system code.

A value of FASTPATH indicates that the server will attach to shared memory at all times.

If NO_OVERRIDE is specified in the RESOURCES section, this parameter is ignored.

The default is the value of the SYSTEM_ACCESS parameter in the RESOURCES section.

The BEA Tuxedo system runs more slowly when a value of PROTECTED is set.

Defining the Server Dispatch Threads

MAXDISPATCHTHREADS is the maximum number of concurrently dispatched threads that each
server process may spawn. If MAXDISPATCHTHREADS>1, then a separate dispatcher thread is used
and does not count against this limit. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. If not specified, the default for this parameter
is 1.

MINDISPATCHTHREADS is the minimum number of server dispatch threads started on initial server
boot. The separate dispatched thread that is used when MAXDISPATCHTHREADS>1 is not counted
as part of the MAXDISPATCHTHREADS value. It is required that
MINDISPATCHTHREADS<=MAXDISPATCHTHREADS. The default for this parameter is 0.

3-74 Setting Up a BEA Tuxedo Application

You must specify the stack size in bytes for each server thread after the initial thread. If not
specified or specified as 0, the operating system default is used. This option has an affect on the
server only when a value greater than 1 is specified for MAXDISPATCHTHREADS.

Se t t ing Secur i t y Pa ramete rs fo r ISL Se rve rs

Setting Up a BEA Tuxedo Application 3-75

Setting Security Parameters for ISL Servers
In CORBA environments the IIOP Listener (ISL) process listens for remote clients requesting a
connection. The ISL process is specified in one entry as a server supplied by the BEA Tuxedo
system.

The Secure Socket Layer (SSL) protocol defines how processes can communicate in a secure
manner over IIOP. Use the -s option on the ISL command to set the required parameters. You
only need to set these parameters if you are using the SSL protocol, which is installed in the BEA
Tuxedo Security Pack.

Table 3-1 lists the SSL parameters characteristics.
:

For more information about setting these parameters, see Using Security in CORBA Applications.

How to Create the SERVICES Section of the Configuration File

Detailed information about the services in your application can be entered in the SERVICES
section of the configuration file. For nontransactional, nondistributed applications, such
information is relatively simple. The SERVICES section includes the following types of
information:

Load balancing information (SRVGRP)

Assignment of priorities to services

Different service parameters for different server groups

Buffer type checking information (BUFTYPE)

Nontransactional service-level blocktime values

Table 3-1 ISL and SSL Parameters Characteristics

Parameter Characteristics

SEC_PRINCIPAL_NAME Specifies the identity of the IIOP Listener/Handler.

SEC_PRINCIPAL_LOCATION Specifies the location of the private key for the IIOP Listener/Handler.

SEC_PRINCIPAL_PASSWORD Specifies the phrase for the private key of the IIOP Listener/Handler.

3-76 Setting Up a BEA Tuxedo Application

There are no required parameters for services. You need to list services only if you are setting
optional parameters.

For each parameter in the SERVICES section, the following table provides a description and links
to reference pages and additional information.

To Specify This Information in the
SERVICES Section

Set This Parameter
(Required/Optional)

For More Information, Click
the Following

Whether a transaction should be started
automatically when a request message is
received that is not already in transaction
mode.

AUTOTRAN (For DTP
applications only)

Automatic starts for
transactions

A list of types and subtypes of data buffers
accepted by this service. This parameter
may contain up to 256 characters with a
maximum of 32 type/subtype
combinations.

BUFTYPE (Optional) Buffer types

A load factor to be imposed on the system
by SVCNAM.

LOAD (Optional) Load balancing

The name of the routing criteria used for
this service when data- dependent routing is
used.

ROUTING (Optional) Routing criteria name

The name of the sever group from which
SVCNAM gets all group parameter settings.

SRVGRP (Optional) Server group parameters

The dequeuing priority of SVCNM. PRIO (Optional) Service priorities

Set the nontransactional blocking time
value, in seconds, of the indicated service.

BLOCKTIME (Optional) Specifying Nontransactional
Service-Level Blocktime

The amount of time, in seconds, that is
allowed for processing of the indicated
service.

SVCTIMEOUT (Optional) Service processing time

The default timeout interval, in seconds, for
a transaction automatically started for the
associated service.

TRANTIME (For DTP
applications only)

Timeout values for transactions

Spec i f y ing Automat ic Star ts and T imeout In te rva ls fo r T ransact ions

Setting Up a BEA Tuxedo Application 3-77

Sample SERVICES Section
Following is a sample of the SERVICES section of a configuration file.

*SERVICES

#

DEFAULT: LOAD=50 PRIO=50

RINGUP BUFTYPE=”VIEW:ringup”

In this example, the default load and priority of a service are 50; the one service declared is a
RINGUP service that accepts a RINGUP VIEW as its required buffer type.

See Also
UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“How to Create the ROUTING Section of the Configuration File” on page 3-89

Specifying Automatic Starts and Timeout Intervals for
Transactions

You can determine whether a transaction should be started automatically if a request message is
already in transaction mode by coding the AUTOTRAN ={Y|N} parameter. The default is N.

You can specify a timeout interval between the time at which a transaction for a service begins
and the time at which it is rolled back if not completed. To specify a timeout interval that will be
used automatically, set the TRANTIME parameter as follows:

TRANTIME=number

The default is 30 seconds. A value of 0, the maximum timeout value for the computer, means a
transaction will never time out.

An additional transaction timeout property named MAXTRANTIME is available from the
RESOURCES section of the UBBCONFIG file. If the MAXTRANTIME timeout value is less than the
TRANTIME timeout value or the timeout value passed in a tpbegin(3c) call to start a transaction,
the timeout for a transaction is reduced to the MAXTRANTIME value.

Note: MAXTRANTIME has no effect on a transaction started on a machine running BEA Tuxedo
8.0 or earlier, except that when a machine running BEA Tuxedo 8.1 or later is infected
by the transaction, the transaction timeout value is capped—reduced if necessary—to the
MAXTRANTIME value configured for that node.

../rf5/rf5.htm#365105

3-78 Setting Up a BEA Tuxedo Application

See Also
Using the BEA Tuxedo Domains Component

For more information about MAXTRANTIME, see MAXTRANTIME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

Specifying a List of Allowable Buffer Types for a Service
With the BUFTYPE parameter, you can tune a service to check buffer types independently of the
service code. Set this parameter with a list of allowable buffer types for a service in the following
format:

type[:subtype[,subtype]]

To allow all subtypes, set the value of subtype to *.

If the value of the BUFTYPE parameter for a service is ALL, this service accepts all buffer types.
The default is ALL.

Examples of the BUFTYPE Parameter

Designating How Much Time to Process a Request
Sometimes an unexpected system error occurs, freezing a service or causing it to run out of
control while it is processing a request. Obviously, it is a good idea to remove these processes,
but it is difficult to detect them or determine how they developed errors. The BEA Tuxedo system
provides a mechanism for terminating such processes even when you cannot identify them. To
use this mechanism, set the SVCTIMEOUT parameter.

The SVCTIMEOUT parameter allows you to designate an amount of time (in seconds) in which a
service should be able to process a request. If the interval defined by this parameter elapses and

BUFTYPE Example Meaning

BUFTYPE=”FML;VIEW:aud,aud2" FML and VIEW buffer types with subtypes aud and
aud2 are allowed.

BUFTYPE=”FML;VIEW:*” All FML and VIEW buffer types are allowed.

BUFTYPE=ALL All buffer types are allowed (the default).

Des ignat ing How Much T ime to P rocess a Request

Setting Up a BEA Tuxedo Application 3-79

a service has not finished processing a request, the process for that request is killed. In essence,
the service timeout mechanism acts like a scavenger for frozen or out of control application
servers. By default, the BEA Tuxedo system does not terminate any service process; you must set
the SVCTIMEOUT parameter to activate this feature.

You can assign a value to the SVCTIMEOUT parameter in the UBBCONFIG file or by dynamically
changing the TA_SVCTIMEOUT attribute in TM_MIB. We recommend that you set the value of
SVCTIMEOUT or TA_SVCTIMEOUT to at least two to three times the number of seconds it takes for
your longest running service to process a request. Setting the service timeout in this way
guarantees that the BEA Tuxedo system removes only frozen processes.

This section describes the causes and results of service timeout errors, and explains how the BEA
Tuxedo system reports such errors. Advice about how to handle errors is also provided.

What Happens When a Timeout Occurs
When a timeout occurs, the BEA Tuxedo system terminates the server process running the frozen
service (but not its child processes, if any). It then returns a TPESVCERR error, indicating that an
unknown problem occurred during processing. In a conversational service, the conversation
event TPEV_SVCERR is returned.

How a Service Timeout Is Reported
The BEA Tuxedo system reports a service timeout through the following three mechanisms:

TPED_SVCTIMEOUT—timeout error detail that provides more information than
tpstrerror(3c)

.SysServiceTimeout—a system event

ULOG information about .SysServiceTimeout

Because the SVCTIMEOUT value is configurable, it is important for clients to be able to easily
distinguish between a TPESVCERR caused by exceeding the value set for SVCTIMEOUT, and a
TPESVCERR caused by other situations. Although the ULOG contains this information, it is difficult
for client programs to extract it. To differentiate a service timeout TPESVCERR from others, a
program can include a call to the tperrordetail(3c) routine (after a TPESVCERR has been
detected), which yields TPED_SVCTIMEOUT when a service timeout occurs.

In addition, a system event, .SysServiceTimeout, is generated when a service timeout occurs.
When a .SysServiceTimeout event occurs, it is reflected in the ULOG in the following way:

3-80 Setting Up a BEA Tuxedo Application

ERROR: .SysServiceTimeout: %TA_SERVERNAME, group %TA_SRVGRP, id %TA_SRVID

server killed due to a service timeout

How to Control a Service Timeout
Application administrators may control the service timeout by changing the SVCTIMEOUT
parameter in the SERVICES section of the UBBCONFIG file, or by modifying the
TA_SVCTIMEOUT attribute of the T_SERVER or T_SERVICE class of the TM_MIB. They may
also monitor the ULOG file for service timeout activity.

In addition to monitoring the ULOG file for service timeout activity, application operators
can subscribe to the .SysServiceTimeout event, which alerts them when a service
timeout occurs.

Application programmers can use the tperrordetail(3c) and tpstrerrordetail(3c)
functions, and the TPED_SVCTIMEOUT error detail code. They may want to add one or
more subscriptions to the.SysServiceTimeout system event, which is generated when a
service timeout occurs.

Specifying Nontransactional Service-Level Blocktime
Different services take different amounts of time and need individual BLOCKTIME values.
Sometimes, an application needs or desires to override the default blocktime value for an
individual client or for an individual service call.

The UBBCONFIG file SERVICES section BLOCKTIME parameter allows you to designate the
blocking time value, per second, for individual nontransactional services. It overrides the default
RESOURCES section BLOCKTIME parameter value for the designated service. Per service
BLOCKTIME parameter values can also be set for remote services using the DMCONFIG file. For
more information, see UBBCONFIG(5), SERVICES section and DMCONFIG(5), DM_IMPORT
section.

Unlike the SVCTIMEOUT parameter, the BLOCKTIME parameter does not terminate a service
application. Instead, it lets the client know that (after a specified time in seconds), no reply has
been received by the server while the service request is still processing.

Note: Application programmers can also set nontransactional blocktime requests and retrieve
blocktime values by using the tpsblktime(3c) and tpgblktime(3c)functions.

../rf5/rf5.htm#365105
../rf5/rf5.htm#2885315
../rf3c/rf3c.htm#725653
../rf3c/rf3c.htm#310703

Enabl ing Load Balanc ing

Setting Up a BEA Tuxedo Application 3-81

Enabling Load Balancing
To activate load balancing, set the RESOURCES section parameter LDBAL to Y. A load factor is
assigned to each service performed (via the LOAD parameter) and the BEA Tuxedo system keeps
track of the total load of services that each server has performed. Each service request is routed
to the server with the smallest total load. The routing of that request causes the server’s total to
be increased by the LOAD factor of the service requested.

Load information is stored only on the site originating the service request. It would be inefficient
for the BEA Tuxedo system to make continuous attempts to propagate load information to all
sites in a distributed application. When performing load balancing in such an environment, each
site knows only about the load it originated and performs load balancing accordingly. This means
that each site has different load statistics for a given server (or queue). The server perceived as
being the least busy differs from site to site.

When load balancing is not activated, and multiple servers offer the same service, the first
available queue receives the request.

Characteristics of the LDBAL Parameter
The LDBAL parameter has the following characteristics:

Load balancing is used if the RESOURCES LDBAL parameter is set to Y.

The load factor is added to a server’s total load.

The load is relative to other services.

3-82 Setting Up a BEA Tuxedo Application

Defining the Name of the Routing Criteria

When using data-dependent routing, you need to specify the routing criteria to be used for a
service. To specify such criteria, set the ROUTING parameter as follows:

ROUTING=string_value

If this parameter is not set, the service does not perform data-dependent routing.

The maximum value of string is 15 characters. No more than one value may be assigned to the
ROUTING parameter for a given service. Even if you have multiple entries for one service and
those entries contain different SRVGRP parameters, the value of ROUTING must be the same in all
entries.

Specifying Service Parameters for Different Server Groups

You can assign the same service to multiple groups and assign different values to the various
service-specific parameters you set for the service entries for the different groups. To do this,
create a separate entry for the service for each group, specifying a group-specific value for the
SRVGRP parameter.

Controlling the Flow of Data by Service Priority
You can exert significant control over the flow of data in an application by assigning service
priorities using the PRIO parameter. The value of PRIO must be a number between 0 and 100.
The higher the number, the higher the priority of the service to which it is assigned. Higher
priority services are dequeued before lower priority services, but the system dequeues every tenth
request in FIFO order to prevent a message from waiting indefinitely on the queue.

For instance, Server 1 offers Services A, B, and C. Services A and B have a priority of 50 and
Service C has a priority of 70. A service requested for C will always be dequeued before a request
for A or B. Requests for A and B are dequeued equally with respect to one another.

Note: A priority can also be changed dynamically with the tpsprio()call.

Characteristics of the PRIO Parameter
The PRIO parameter has the following characteristics:

It determines the priority of a service on the server’s queue.

Ind i cat ing Serv i ce P rocess ing T ime

Setting Up a BEA Tuxedo Application 3-83

The highest assigned priority gets first preference.

Every tenth request is dequeued FIFO.

Sample SERVICES Section Using Different Priorities
The following sample from the SERVICES section of a configuration file shows how priorities are
assigned to services:

*SERVICES

A SRVGRP=GRP1 PRIO=50 LOAD=60

A SRVGRP=GRP2 PRIO=70 LOAD=30

In this example, different service-specific parameters are assigned to two server groups. Service
A is assigned a priority of 50 and a load of 60 in server group GRP1, and a priority of 70 and a
load of 30 in server group GRP2.

Indicating Service Processing Time
To indicate the maximum amount of time, in seconds, allowed for processing a service, set the
SVCTIMEOUT parameter as follows:

SVCTIMEOUT=number

The value must be greater than or equal to 0. A value other than 0 indicates that the service will
be timed out: the server processing the server request will be terminated with a SIGKILL signal.
The default for this parameter is 0.

How to Create the INTERFACES Section of the Configuration File
Note: This section applies only to the CORBA environments.in BEA Tuxedo.

The INTERFACES section in the configuration file is used to define parameters for CORBA
environments in the BEA Tuxedo system. In this section, you define application-wide default
parameters for CORBA interfaces used by the application. For a CORBA interface participating
in factory-based routing, you define the interface names and specify the name of the routing
criteria that the Tuxedo CORBA environment should apply to each interface. Factory-based
routing is a feature that lets you distribute processing to specific server groups.

In addition to defining the INTERFACES section, you must specify routing criteria in the ROUTING
section and the names of groups in the GROUPS section when you implement factory-based

3-84 Setting Up a BEA Tuxedo Application

routing. For details about the parameters and more information about factory-based routing, see
the section “How to Create the ROUTING Section of the Configuration File” in this chapter.

Specifying CORBA Interfaces in the INTERFACES Section
You indicate specific information about CORBA interfaces used by your application in the
INTERFACES section of the configuration file. There are no required parameters. CORBA
interfaces need not be listed if no optional parameters are desired. The INTERFACES section
includes the following types of information:

Whether transactions should be started automatically (AUTOTRAN) (CORBA only)

The routing criteria to be used for factory-based routing for this CORBA interface
(FACTORYROUTING) (CORBA only)

Load balancing information (LOAD)

Assignment of priorities to interfaces (PRIO)

Different service parameters for different server groups (SRVGRP)

Timeout value for transactions associated with this CORBA interface (TRANTIME)

Timeout value for processing a method for this CORBA interface (TIMEOUT)

Table 3-2 lists the AUTOTRAN, FACTORYROUTING, LOAD, PRIO, SRVGRP, TRANTIME, and TIMEOUT
parameters characteristics.

How to Create the INTERFACES Sec t ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-85

Table 3-2 INTERFACES Section Parameters Characteristics

Parameter Characteristic

AUTOTRAN = {Y | N } For each CORBA interface, set AUTOTRAN to Y if you want a transaction to start
automatically when an operation invocation is received. AUTOTRAN=Y has no
effect if the interface is already in transaction mode. The default is N.

The effect of specifying a value for AUTOTRAN is dependent on the transactional
policy specified by the system designer in the implementation configuration file
(ICF) or Server Description File (XML) for the interface. This transactional policy
will become the transactional policy attribute of the associated T_IFQUEUE MIB
object at run time. The only time this value actually affects the behavior of the
application is if the system designer specified a transaction policy of optional.

Note: To work properly, this feature may be dependent on personal
communication between the system designer and the system administrator.
If the system administrator sets this value to Y without prior knowledge of
the ICF or XML parameters set by the programmer, the actual run-time
effort of the parameter might be unknown.

FACTORYROUTING =
criterion-name

Specify the name of the routing criteria to be used for factory-based routing for this
CORBA interface. You must specify a FACTORYROUTING parameter for
interfaces requesting factory-based routing.

LOAD = number This is an arbitrary number between 1 and 100 that represents the relative load that
the CORBA interface is expected to impose on the system. The numbering scheme
is relative to the LOAD numbers assigned to other CORBA interfaces used by this
application. The default is 50. The number is used by the BEA Tuxedo system to
select the best server to route the request.

PRIO = number Specify the dequeuing priority number for all methods of the CORBA interface.
The value must be greater than 0 and less than or equal to 100. 100 is the highest
priority. The default is 50.

SRVGRP =
server-group-name

Use SRVGRP to indicate that any parameter defined in this portion of the
INTERFACES section applies to the interface within the specified server group. For
a given CORBA interface, this feature lets you define different parameter values in
different server groups.

3-86 Setting Up a BEA Tuxedo Application

Specifying FACTORYROUTING Criteria
For each CORBA interface, the INTERFACES section specifies what kinds of criteria the interface
routes on. The INTERFACES section specifies the routing criteria via an identifier,
FACTORYROUTING.

University Sample
The University Production sample application demonstrates how to code factory-based routing
(see Listing 3-3). You can find the UBBCONFIG files (ubb_p.nt or ubb_p.mk) for this sample in
the directory where the BEA Tuxedo software is installed. Look in the
\samples\corba\university\production subdirectory.

TRANTIME = number If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the
transaction timeout in seconds, for the transactions to be computed. The value must
be greater than or equal to zero and must not exceed 2,147,483,647 (231 - 1), or
about 70 years. A value of 0 (zero) implies there is no timeout for the transaction.
(The default is 30 seconds.)

TIMEOUT=number The amount of time, in seconds, to allow for processing of a method for this
CORBA interface. The values must be greater than or equal to 0. A value of 0
indicates that the interface cannot time out. A timed-out method causes the server
processing the method for the interface to terminate with a SIGKILL event. You
should consider specifying a timeout value for the longest-running method for the
interface.

Table 3-2 INTERFACES Section Parameters Characteristics (Continued)

Parameter Characteristic

How to Create the INTERFACES Sec t ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-87

Listing 3-3 Production Sample INTERFACES Section

*INTERFACES

 "IDL:beasys.com/UniversityP/Registrar:1.0"

 FACTORYROUTING = STU_ID

 "IDL:beasys.com/BillingP/Teller:1.0"

 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in the
University Production sample. The FACTORYROUTING identifier specifies the names of the
routing values, which are STU_ID and ACT_NUM, respectively.

To understand the connection between the INTERFACES FACTORYROUTING parameter and the
ROUTING section, see the section “CORBA Factory-based Routing in the University Production
Sample Application” on page 3-92.

Bankapp Sample
Listing 3-4 shows how factory-based routing is specified in the Bankapp sample application.

Listing 3-4 Bankapp Sample Factory-based Routing

*INTERFACES

 "IDL:BankApp/Teller:1.0"

 FACTORYROUTING=atmID

*ROUTING

 atmID

 TYPE = FACTORY

 FIELD = "atmID"

 FIELDTYPE = LONG

 RANGES = "1-5:BANK_GROUP1,

 6-10: BANK_GROUP2,

 *:BANK_GROUP1

3-88 Setting Up a BEA Tuxedo Application

In this example, the IDL:Bankapp/Teller interface uses a factory-based routing scheme called
atmID, as defined in the ROUTING section. In the ROUTING section, the sample indicates that the
processing will be distributed across two groups. BANK_GROUP1 processes interfaces used by the
application when the atmID field is between 1 and 5, or greater than 10. BANK_GROUP2 processes
interfaces used by the application when the atmID field is between 6 and 10, inclusive.

Enabling Load Balancing
In BEA Tuxedo CORBA envirionments, load balancing is always enabled.

A LOAD factor is assigned to each CORBA interface invoked, which keeps track of the total load
of CORBA interfaces that each server process has performed. Each interface request is routed to
the server with the smallest total load. The routing of that request causes the server’s total to be
increased by the LOAD factor of the CORBA interface requested. When load balancing is not
activated, and multiple servers offer the same CORBA interface, the first available queue
receives the request.

For more information about load balancing in BEA Tuxedo CORBA environments, refer to
“Enabling System-controlled Load Balancing,” in the Scaling, Distributing, and Tuning CORBA
Applications manual.

Support for parallel objects in CORBA environments has been added for release 8.0 of BEA
Tuxedo, which introduces load balancing across mulitple servers in a local domain. For more
information about parallel objects in BEA Tuxedo CORBA environments, refer to the “Using
Parallel Objects” section in Scaling, Distributing, and Tuning CORBA Applications.

Controlling the Flow of Data by Interface Priority
You can control the flow of data in a BEA Tuxedo client or server application by assigning
interface priorities using the PRIO parameter. For instance, Server 1 offers Interfaces A, B, and
C. Interfaces A and B have a priority of 50 and Interface C has a priority of 70. An interface
requested for C will always be dequeued before a request for A or B. Requests for A and B are
dequeued equally with respect to one another. The system dequeues every tenth request in FIFO
order to prevent a message from waiting indefinitely on the queue.

The PRIO parameter has the following characteristics:

It determines the priority of a CORBA interface on the server’s queue.

The highest assigned priority gets first preference.

Every tenth request is dequeued FIFO.

How to Create the ROUT ING Sect ion o f the Conf igurat ion F i l e

Setting Up a BEA Tuxedo Application 3-89

Specifying Different Interface Parameters for Different Server
Groups
You can specify different load, priority, or other interface-specific parameters for different server
groups. To do this, you should repeat the interface’s entry for each group with different values
for the SRVGRP parameter.

How to Create the ROUTING Section of the Configuration File
The ROUTING section of UBBCONFIG allows you to provide a full definition of the routing criteria
named in the SERVICES section (for ATMI data-dependent routing) or in the INTERFACES section
(for CORBA factory-based routing).

Note: For more information about configuring factory-based routing for CORBA
environments, refer to the Scaling, Distributing, and Tuning CORBA Applications guide.

For each parameter in the ROUTING section, the following table provides a description and links
to reference pages and additional information.

To Specify This Information in the ROUTING Section
(Optional)

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

Ranges and associated server groups for the routing field. RANGES (Required) Range criteria

The value must be a string with a maximum length of 15
characters.

For ATMI, the routing criteria name specified as the value
of the ROUTING parameter in the SERVICES section for
data-dependent routing.

For CORBA, the routing criteria name specified in the
INTERFACES section as the FACTORYROUTING parameter
factory-based routing.

criterion_name
(required)

Specifies the routing type.

For ATMI, the default is TYPE=SERVICE to ensure that
existing UBBCONFIG files used in Tuxedo ATMI
environments continue to work properly.

For CORBA, use TYPE=FACTORY when implementing
factory-based routing for a CORBA interface.

TYPE

3-90 Setting Up a BEA Tuxedo Application

ROUTING Section Example
The following is a sample ROUTING section from a configuration file:

BRNCH FIELD=B_FLD

RANGES="0-2:DBG1,3-5:DBG2,6-9:DBG3"

BUFTYPE="FML"

Defining the Routing Buffer Field and Field Type
The following table describes the routing buffer field and field type.

Name of the routing field, which is assumed to be an FML
buffer, XML element or element attribute, view field name
identified in an FML field table (using FLDTBLDIR and
FIELDTBLS environment variables), or an FML view table
(using the VIEWDIR and VIEWFILES environment
variables), respectively. This information is used to obtain
the associated field value for data-dependent routing when
sending a message.

In CORBA factory-based routing, this value specifies the
name of the routing field. The maximum length is 30
characters. It must correspond to a field name specified for
factory-based routing in a factory’s call to:
TP::create_object_reference (C++) or
com.beasys.Tobj.TP::create_object_
reference (Java) for the interface.

FIELD (Required) Routing buffer field
and type

A list of types and subtypes of data buffers for which this
routing entry is valid. This parameter may contain up to 256
characters with a maximum of 32 type/subtype
combinations.

BUFTYPE (required) Buffer types and
subtypes

To Specify This Information in the ROUTING Section
(Optional)

Set This Parameter
(Required/Optional)

For More Information,
Click the Following

Def in ing the Rout ing Buf fe r F ie ld and F ie ld Type

Setting Up a BEA Tuxedo Application 3-91

Parameter Characteristics

FIELD The name of the buffer field on which the routing is performed. It may contain up to 30 characters.

In BEA Tuxedo data-dependent routing, the value of this parameter is one of the following: the
name of an FML field (for FML buffers); an XML element or attribute; a VIEW field name identified
in an FML field table (using the FLDTBLDIR and FIELDTBLS environment variables); or an FML
view table (using the VIEWDIR and VIEWFILES environment variables). This information is used
to obtain the associated field value for data-dependent routing during message processing. If a
field in an FML32 buffer is used for routing, it must have a field number less than or equal to 8191.

In routing XML documents, the FIELD syntax contains either a routing element type (or name) or
a routing element attribute name. You must define the FIELD parameter with the following
syntax:

root_element[/child_element][/child_element][/. .

.][/@attribute_name]

The element is assumed to be an element type (or name) or an element attribute name of an XML
document or datagram. This information is used to obtain the associated element content or
element attribute value for data-dependent routing when a document or datagram is being sent.
Because indexing is not supported, the BEA Tuxedo system recognizes only the first occurrence
of a given element type when processing an XML buffer for data-dependent routing.

In CORBA factory-based routing, this value specifies the name of the routing field. The maximum
length is 30 characters. It must correspond to a field name specified for factory-based routing in a
factory’s call to:

TP::create_object_reference (C++) or
com.beasys.Tobj.TP::create_object_reference (Java) for the interface.

FIELDTYPE This parameter is used only for routing XML buffers. It indicates the type of the routing field
specified in FIELD.The syntax is as follows:
FIELDTYPE=type

where type is one of the following: string, char, short, long, float, or double.

The default type of the routing field is string.

3-92 Setting Up a BEA Tuxedo Application

Specifying Range Criteria
The RANGES parameter allows you to map field values to a group name as follows:

RANGES=”[val1[-val2]:group1] [,val3[-val4]:group2]...[,*:groupn]”

where val1, val2, and so on, are values of a field and groupn may be either a group name or the
wildcard character (*) denoting that any group may be selected. The * character occupying the
place of val at the end is a catch-all choice, that is, it specifies if the data does not fall into any
range that has been specified then it goes to the default group on the other hand if the data fall
into the range but there is no viable server in the group associated with the range entry, then the
service request is forwarded to the default group specified on the wildcard “*” range entry. The
value of val1 may be:

A number (when it is used in a numeric field)

A STRING or CARRAY buffer (enclosed in single quotation marks)

MIN or MAX, to show a machine minimum or maximum data value

There is no limit to the number of ranges that may be specified, but routing information incurs a
cost because it is stored in shared memory.

Note: Overlapping ranges are allowed, but values that belong to both ranges map to the first
group. For example, if RANGES is specified as RANGES=”0-5:Group1,3-5:Group2",
then a range value of 4 routes to Group1.

Defining Buffer Types
For BEA Tuxedo data-dependent routing, the BUFTYPE parameter determines the buffer type
allowed. This parameter is similar to its SERVICES section counterpart in that it restricts the
routing criteria to a specific set of buffer types and subtypes. Only FML, XML and VIEW types can
be used for routing. The syntax is the same as the syntax in the SERVICES section, a
semicolon-separated list of type:subtype[,subtype]. You can specify only one type for
routing criteria. This restriction limits the number of buffer types allowed in routing services.

CORBA Factory-based Routing in the University Production
Sample Application

The CORBA University Production sample application demonstrates how to implement
factory-based routing in BEA Tuxedo. You can find the ubb_p.nt or ubb_p.mk UBBCONFIG files

CORBA Facto r y -based Rout ing in the Un ive rs i t y P roduct ion Sample App l i cat ion

Setting Up a BEA Tuxedo Application 3-93

for this sample in the directory where the BEA Tuxedo software is installed. Look in the
\samples\corba\university\production subdirectory.

The following INTERFACES, ROUTING, and GROUPS sections from the ubb_b.nt
configuration file show how you can implement factory-based routing in a CORBA application
in BEA Tuxedo.

The INTERFACES section lists the names of the interfaces for which you want to enable
factory-based routing. For each interface, this section specifies what kinds of criteria the interface
routes on. This section specifies the routing criteria via an identifier, FACTORYROUTING, as in the
example in Listing 3-5.

Listing 3-5 Production Sample INTERFACES Section

*INTERFACES

 "IDL:beasys.com/UniversityP/Registrar:1.0"

 FACTORYROUTING = STU_ID

 "IDL:beasys.com/BillingP/Teller:1.0"

 FACTORYROUTING = ACT_NUM

The preceding example shows the fully qualified interface names for the two interfaces in the
Production sample in which factory-based routing is used. The FACTORYROUTING identifier
specifies the names of the routing values, which are STU_ID and ACT_NUM, respectively.

The ROUTING section specifies the following data for each routing value:

The TYPE parameter, which specifies the type of routing. In the Production sample, the
type of routing is factory-based routing. Therefore, this parameter is defined to FACTORY.

The FIELD parameter, which specifies the variable name that the factory inserts as the
routing value. In the Production sample, the field parameters are student_id and
account_number, respectively.

The FIELDTYPE parameter, which specifies the data type of the routing value. In the
Production sample, the field types for student_id and account_number are long.

3-94 Setting Up a BEA Tuxedo Application

The RANGES parameter, which associates a server group with a subset of the valid ranges
for each routing value.

Listing 3-6 shows the ROUTING section of the UBBCONFIG file used in the Production sample
application.

Listing 3-6 Production Sample ROUTING Section

*ROUTING

 STU_ID

 FIELD = "student_id"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"

 ACT_NUM

 FIELD = "account_number"

 TYPE = FACTORY

 FIELDTYPE = LONG

 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The preceding example shows that Registrar objects for students with IDs in one range are
instantiated to one server group, and Registrar objects for students with IDs in another range are
instantiated in another group. Likewise, Teller objects for accounts in one range are instantiated
to one server group, and Teller objects for accounts in another range are instantiated in another
group.

The groups specified by the RANGES identifier in the ROUTING section of the UBBCONFIG file need
to be identified and configured. For example, the Production sample specifies four groups:
ORA_GRP1, ORA_GRP2, APP_GRP1, and APP_GRP2. These groups need to be configured, and the
machines where they run need to be identified.

Listing 3-7 shows the GROUPS section of the Production sample UBBCONFIG file. Notice how the
names in the GROUPS section match the group names specified in the ROUTING section; this is
critical for factory-based routing to work correctly. Furthermore, any change in the way groups
are configured in an application must be reflected in the ROUTING section. (Note that the

CORBA Facto r y -based Rout ing in the Un ive rs i t y P roduct ion Sample App l i cat ion

Setting Up a BEA Tuxedo Application 3-95

Production sample packaged with the BEA Tuxedo software is configured to run entirely on one
machine. However, you can easily configure this application to run on multiple machines.)

Listing 3-7 Production Sample GROUPS Section

*GROUPS

APP_GRP1

 LMID = SITE1

 GRPNO = 2

 TMSNAME = TMS

APP_GRP2

 LMID = SITE1

 GRPNO = 3

 TMSNAME = TMS

ORA_GRP1

 LMID = SITE1

 GRPNO = 4

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

 CLOSEINFO = ""

 TMSNAME = "TMS_ORA"

ORA_GRP2

 LMID = SITE1

 GRPNO = 5

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = ""
TMSNAME = "TMS_ORA"

3-96 Setting Up a BEA Tuxedo Application

CORBA Factory-based Routing in the Bankapp Sample
Application

Listing 3-8 shows how the INTERFACES section extends the Bankapp sample application to use
factory-based routing. The sample included with the BEA Tuxedo software does not contain
these parameter settings.

Listing 3-8 Bankapp Sample INTERFACES Section

*INTERFACES

 "IDL:BankApp/Teller:1.0"

 FACTORYROUTING=atmID

*ROUTING

 atmID

 TYPE = FACTORY

 FIELD = "atmID"

 FIELDTYPE = LONG

 RANGES = "1-5:BANK_GROUP1,

 6-10: BANK_GROUP2,

 *:BANK_GROUP1

*GROUPS

 SYS_GRP

 LMID = SITE1

 GRPNO = 1

 BANK_GROUP1

 LMID = SITE1

 GRPNO = 2

 BANK_GROUP2

 LMID = SITE1

 GRPNO = 3

In this example, the IDL:Bankapp/Teller interface employs a factory-based routing scheme
called atmID, as defined in the ROUTING section. The example indicates that the processing will
be distributed across the following two server groups:

How to Conf igu re the BEA Tuxedo Sys tem to Take Advantage o f Threads

Setting Up a BEA Tuxedo Application 3-97

BANK_GROUP1 processes interfaces used by the application when the atmID field is
between 1 and 5 (inclusive), or greater than 10.

BANK_GROUP2 processes interfaces used by the application when the atmID is between 6
and 10, inclusive.

How to Configure the BEA Tuxedo System to Take Advantage of
Threads

To configure a multicontexted application, edit your UBBCONFIG file as usual and add those
parameters, listed in the following table, that are needed for your application. Use a text editor or
the BEA Tuxedo Administration Console.

Table 3-3 Setting Parameters in the Configuration File to Use Threads

In This Section Set These Parameters With These Considerations.

RESOURCES MAXACCESSERS Optional parameter, but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

NOTIFY Optional parameter that defines the
default method to be used for
unsolicited notification. Valid values
for multicontexted applications are:
• DIPIN

• THREAD

• IGNORE

3-98 Setting Up a BEA Tuxedo Application

MACHINES MAXACCESSERS Optional parameter, but you must
assign a value to it you want more than
50 accessers (the default number).

Each context of a multicontexted
client is counted separately for
licensing purposes.

MAXWSCLIENTS Optional parameter.

Each context of a multicontexted
Workstation client is counted
separately for licensing purposes.
Because the default is 0, this parameter
must be set if any Workstation clients
are to access the system via the
machine being defined.

Table 3-3 Setting Parameters in the Configuration File to Use Threads (Continued)

In This Section Set These Parameters With These Considerations.

How to Conf igu re the BEA Tuxedo Sys tem to Take Advantage o f Threads

Setting Up a BEA Tuxedo Application 3-99

SERVERS MINDISPATCHTHREADS Optional parameter.

MAXDISPATCHTHREADS Required parameter in multithreaded
servers.

When making an existing server
multithreaded, an experienced
programmer must verify that the
source code for the server has been
written in a thread-safe manner. In
other words, it is not possible to
convert a single-threaded server,
written with static variables, to a
multithreaded server simply by
increasing the value of
MAXDISPATCHTHREADS in the
configuration file. This server must
also be built for multithreading.

THREADSTACKSIZE Optional parameter.

You may need to set it if your server
dispatch threads require an especially
large stack.

The default, 0, should be sufficient for
most applications. (Keep in mind that
when 0 is passed to the operating
system, the operating system invokes
its own default.)

Table 3-3 Setting Parameters in the Configuration File to Use Threads (Continued)

In This Section Set These Parameters With These Considerations.

3-100 Setting Up a BEA Tuxedo Application

How to Compile a Configuration File
Compiling a configuration file means generating a binary version of the file (TUXCONFIG) from
the text version (UBBCONFIG). To compile a configuration file, run the tmloadcf command.
tmloadcf parses a UBBCONFIG file and loads the binary file.

tmloadcf reads a file (or standard input written in UBBCONFIG syntax), checks the syntax, and
optionally loads a binary configuration file called TUXCONFIG. The TUXCONFIG and (optionally)
TUXOFFSET environment variables point to the TUXCONFIG file and (optional) offset where the
information should be stored. You can run tmloadcf only on the machine designated as MASTER
in the RESOURCES section of the UBBCONFIG file, unless the -c or -n option is specified.

Notes: The user identifier (UID) of the person running tmloadcf must match the UID, if
specified, in the RESOURCES section of the UBBCONFIG file.

The pathname specified for the TUXCONFIG environment variable must match exactly
(including case) the pathname specified for TUXCONFIG parameter within the MACHINES
section of the UBBCONFIG file. Otherwise, tmloadcf(1) cannot be run successfully.

Setting Up a BEA Tuxedo Application 4-1

C H A P T E R 4

About Transactions

This topic includes the following sections:

What Is a Transaction?

Benefits of Using Transactions

Example of a Global Transaction

What Is the BEA Tuxedo Transaction Manager (TM)?

How the System Tracks Distributed Transaction Processing

How the System Uses a Two-Phase Commit to Commit Transactions

Note: For information about using transactions in a BEA Tuxedo CORBA environment, refer
to Using CORBA Transactions.

What Is a Transaction?
A transaction is a set of related actions. A global transaction is a set of related actions that span
multiple programs and resource managers. In this topic, whenever we use the term transaction,
we are referring to a global transaction.

4-2 Setting Up a BEA Tuxedo Application

A simple example of a transaction is a withdrawal from a bank account, which can be described
as a set of actions that changes the state of an account balance (by reducing it). For this
transaction, the system must execute a procedure that consists of three operations.

These steps are performed by a discrete software module created expressly for the purpose of
executing this transaction. The module must also include or use code that launches and ends the
transaction. If the code sections that launch and end the transaction are not part of the main
transaction software module, then they are usually packaged together in a separate module.

A transaction coordinator is a software module that executes the logic to manage a transaction
among all participating resources.

What Are the ACID Properties?
When a transaction such as a bank withdrawal is performed, it is imperative that all its constituent
operations either succeed or fail together. Consider the problems that can occur if one operation
in a transaction succeeds while another operation in the same transaction fails: a bank that allows
a customer to withdraw money without recording the reduced balance in an updated account
record will not stay in business for long!

A transaction that adheres to the rule that all constituent operations either succeed or fail is
characterized by atomicity. The BEA Tuxedo system requires all transactions to be characterized
by atomicity and three related attributes: consistency, isolation, and durability. These four
attributes are known collectively as the ACID properties of transactions performed within the
BEA Tuxedo system.

Procedure for Any Transaction Procedure for Bank Withdrawal Example

1. Verify the activity to be performed 1. Verify that a withdrawal will be made

2. Perform the work of the transaction 2. Withdraw a specified amount from the account

3. Create a permanent record of the completed work 3. Update the record of the balance of the account

What I s a T ransact i on?

Setting Up a BEA Tuxedo Application 4-3

Table 4-1 ACID Properties of BEA Tuxedo Transactions

This Property . . . Means That . . .

Atomicity A transaction is a discrete unit of work: all constituent operations
must either succeed or fail. These operations may include
queuing messages, updating databases, and displaying the results
of a transaction on a screen.

Consistency A transaction must either (a) leave the system in a correct state or
(b) abort. If a transaction cannot achieve a stable state, it must
return to its initial state.

Isolation The behavior of a transaction is not affected by other transactions
being executed simultaneously. A transaction must serialize all
access to shared resources and guarantee that concurrent
programs do not corrupt each other’s operations.

Durability The effects of a committed transaction are permanent. Even if the
system fails, the changes resulting from a transaction are
permanent and durable.

4-4 Setting Up a BEA Tuxedo Application

How a Transaction Succeeds or Fails
Whether a transaction succeeds or fails depends on the requirements of atomicity.

Benefits of Using Transactions
The BEA Tuxedo system, including its communication APIs and protocols, is designed to
support the use of transactions. The BEA Tuxedo communication calls, which make it easy to
create transactions, are indispensable tools for writing distributed applications.

By using transactions you can:

Create distributed applications easily

Commit the effects of your communications as a single unit

Quickly manage potential problems that may occur in a distributed environment, such as
machine, program, or network failures

Undo work, when errors occur, in a simple, programmatic way

If . . . Then . . .

Any operation within the
transaction fails for any reason

• The transaction aborts, that is, it terminates abruptly.
• The transaction rolls back, that is, it undoes its own

work and restores the state of the enterprise to its
pre-transaction state. For example, after an attempt to
withdraw money from a bank account fails and is rolled
back, the bank account contains the same amount of
money it contained before the transaction, and the
record of the account balance shows the same amount
that it showed before the transaction.

All operations within the
transaction succeed

The client commits the transaction. In other words, it
formally signals that it is ready to terminate and the effects
of the transaction should be preserved: the order database
is updated permanently and the order sent to the shipping
department is kept as a permanent record in that
department’s queue.

Example o f a G loba l T ransact i on

Setting Up a BEA Tuxedo Application 4-5

Example of a Global Transaction
An e-retailer uses a service called CUST_ORDER. When a customer places an order through the
company’s Web site, the CUST_ORDER service performs two operations:

It updates the company’s database of orders.

It sends the new order to the shipping department, where it is put on a queue, awaiting
fulfillment.

The company wants to be sure that the CUST_ORDER service adheres to the principle of atomicity:
whenever CUST_ORDER is executed, both the database update and the enqueueing of the customer
request on the shipping department queue must be completed successfully. To make sure that the
CUST_ORDER service always handles customer orders with atomicity, the client that invokes
CUST_ORDER associates its request with a global transaction.

To associate a service with a global transaction, a client:

1. Calls tpbegin() to begin the transaction

2. Issues a service request

3. Calls tpcommit() to end the transaction

As part of a global transaction, the operation is performed as a single unit of work. When the
CUST_ORDER service is invoked, the server is propagated with the client’s transaction. The two
resulting operations, accessing the order database and enqueuing the order to the shipping queue,
become part of the client’s transaction.

If either operation fails for any reason, whether due to a system error or an application error, the
work of the transaction is undone or rolled back. In other words, the transaction is returned to its
initial state.

If both operations succeed, however, the client commits the transaction. In other words, it
formally signals that the effects of the transaction should be made permanent: the order database
is updated permanently and the order sent to the shipping department is kept in that department’s
queue.

What Is the BEA Tuxedo Transaction Manager (TM)?
A resource manager (RM) is a data repository, such as a database management system or the
Application Queuing Manager, with tools for accessing the data. The BEA Tuxedo system uses
one or more RMs to maintain the state of an application. For example, bank records in which
account balances are maintained are kept in an RM. When the state of the application changes

4-6 Setting Up a BEA Tuxedo Application

through a service that allows a customer to withdraw money from an account, the new balance in
the account is recorded in the appropriate RM.

The BEA Tuxedo system helps you manage transactions involving resource managers that
support the XA interface. To coordinate all the operations performed and all the modules affected
by a transaction, the BEA Tuxedo system plays the role of the Transaction Manager (TM).

The TM coordinates global transactions involving system-wide resources. Local resource
managers (RMs) are responsible for individual resources. The Transaction Manager Server
(TMS) begins, commits, and aborts transactions involving multiple resources. The application
code uses the normal embedded SQL interface to the RM to perform reads and updates. The TMS
uses the XA interface to the RM to perform the work of a global transaction.

The following table summarizes the actions taken by the Transaction Manager on behalf of each
transaction.

Table 4-2 Actions Performed by the Transaction Manager

When . . . The Transaction Manager . . .

The application launches a
transaction

Assigns a global transaction identifier (GTRID) to the
transaction.

Other processes communicate with
the process that launched the
transaction

Tracks those communication partners.

The RM is accessed as part of the
work of the transaction

Passes the appropriate GTRID to the RM so the RM
can monitor which database records are being
accessed for the transaction.

The application signals that a
transaction is to be committed

Performs a two-phase commit protocol. Specifically,
it:
(a) contacts communication partners during Phase 1,
(b) logs the successful outcome of Phase 1, and
(c) contacts partners in Phase 2.

The application indicates that the
transaction is to be aborted

Executes a rollback procedure.

A failure occurs Executes a recovery procedure.

How the Sys tem T racks D is t r i buted T ransact ion P rocess ing

Setting Up a BEA Tuxedo Application 4-7

How the System Tracks Distributed Transaction Processing
BEA Tuxedo transactions can be used in a distributed architecture: a local machine involved in a
transaction can communicate with a remote machine which may, in turn, communicate with
another remote machine. The work of transactions executed in this type of arrangement is
referred to as distributed transaction processing.

Because the system must constantly maintain enough information about a transaction to be able
to roll it back (that is, to restore it to its initial state) at any moment, tracking distributed
transaction processing (DTP) can be a complex task. To perform this task successfully, the BEA
Tuxedo system stores tracking information about all the participants in a transaction in a
dedicated file called a transaction log, or TLOG.

The following diagram shows an application in which two Transaction Managers (TMs) are
being used. Both TMs record tracking data in the same TLOG.

Figure 4-1 Transaction Management

Before committing a transaction, the TM must repeatedly answer the question of whether to
proceed. If necessary, the TM makes the decision to roll back.

How the System Uses Global Transaction Identifiers (GTRIDs)
for Tracking
The BEA Tuxedo system tracks the flow of all transactions being executed within a distributed
system, including those being executed concurrently. When it is time to commit a transaction, the
coordinator must know which RMs have participated in the transaction and, therefore, needs to
be able to distinguish among transactions. For this reason the BEA Tuxedo system assigns a
global transaction identifier, or GTRID to each transaction.

4-8 Setting Up a BEA Tuxedo Application

The BEA Tuxedo system communicates with any RM accessed by an application through the XA
interface. The RMs track transactions by assigning local transaction identifiers, and map global
identifiers to local identifiers.

How the System Uses a Transaction Log (TLOG) for Tracking
A global transaction is recorded in the transaction log (TLOG) only when it is in the process of
being committed. At the end of the first phase of a two-phase commit protocol, the TLOG records
the reply from the global transaction participants.

The existence of a TLOG record indicates that a global transaction should be committed; no TLOG
records are written for transactions that are to be rolled back.

In the first “pre-commit” phase, each resource manager must commit to performing the
transaction request. If all parties commit, transaction management performs the second phase: it
commits and completes the transaction. If either task fails because of an application or system
failure, both tasks fail and the work performed is undone or “rolled back” to its initial state.

The TMS that coordinates global transactions uses the TLOG file. Each machine should have its
own TLOG.

If you are using the Domains component in your application, keep in mind that the Domains
gateway performs the functions of the TMS in Domains groups. However, Domains uses its own
transaction log containing information similar to that recorded in the TLOG, in addition to
Domains-specific information.

How the System Uses a Two-Phase Commit to Commit
Transactions

A two-phase commit is an algorithm used to ensure the integrity of a committing transaction.

To understand how this algorithm works, consider the following sample scenario. A group of six
friends wants to rent a house for a one-week vacation. No member of the group can afford to pay
more than one sixth of the rent; if any of the six cannot participate, then the house cannot be
rented.

1. In Phase 1 of this project, the organizer of the vacation contacts each person to verify
availability and collect a sixth of the rent. If the organizer learns that even one person cannot
participate, she contacts every member of the group, individually, to notify him or her that the
house cannot be rented. If, however, each member of the group confirms availability and pays
one sixth of the rent, the Phase 1 concludes successfully.

How the Sys tem Uses a Two-Phase Commit to Commit T ransact ions

Setting Up a BEA Tuxedo Application 4-9

2. In Phase 2 of the project, the organizer notifies each member of the group that the vacation
will take place as planned.

A two-phase transaction commit works in much the same way as the vacation planning project.

1. In Phase 1, the transaction coordinator contacts potential participants in the transaction. The
participants all agree to make the results of the transaction permanent, but do not do so
immediately. The participants log information to disk to ensure they can complete Phase 2. If
all the participants agree to commit, the coordinator logs that agreement and the outcome is
decided. The recording of this agreement in the log ends Phase 1.

2. In Phase 2, the coordinator informs each participant of the decision, and they permanently
update their resources.

How the System Handles Transaction Infection
Any application module called by another module to participate in a transaction is said to be
transactionally infected. Once an application module is infected, the BEA Tuxedo system tracks
all participants to determine which of them should be involved in the two-phase commit. The
following figure shows how the system tracks participants.

Figure 4-2 Transactional Infection

In the preceding figure, Client 1 begins the transaction and calls three services: A, B, and C.
Because they have been called into the transaction, Services A, B, and C are transactionally

4-10 Setting Up a BEA Tuxedo Application

infected. All work performed by servers A, B, and C is part of the transaction begun by Client 1.
All work is performed as one unit; either it is performed together and is successful, or it fails and
is rolled back by calling tpabort. If the transaction fails, it returns to its initial state and its effects
of the transaction on resource managers are undone. (Resource managers that are not
transactionally aware and those that are accessed from outside the transaction cannot be rolled
back.)

How the ATMI Protects a Transaction’s Integrity Before a
Two-Phase Commit
All work performed by each resource involved in a transaction must be completed before a
two-phase commit is begun. The ATMI ensures that all the work of the transaction is stopped
when it is time for the two-phase commit protocol to begin.

The following step-by-step description of a transaction shows how the ATMI stops a transaction
process before a two-phase commit.

1. Client_1 initiates (with tpbegin()) a transaction.

2. Client_1 invokes (with tpcall()) Service_A, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()

d. Completes its work for the transaction

3. Client_1 invokes (with tpcall()) Service_B, which:

a. Is infected with the transaction

b. Executes its operations

c. Calls tpreturn()

d. Completes its work for the transaction

4. Client_1 invokes (with tpcall()) Service_C, which:

a. Is infected with the transaction

b. Executes its operations

How the Sys tem Uses a Two-Phase Commit to Commit T ransact ions

Setting Up a BEA Tuxedo Application 4-11

c. Calls tpreturn()

d. Completes its work for the transaction

5. Client_1 initiates (with tpcommit()) the commitment process.

If, during the transaction, an invoked service is performing another service, or is involved in an
open conversation, the ATMI tracks that activity and prevents the application from proceeding to
the commitment process until the activity is complete.

The ATMI guarantees that the transaction is committed only if all invoked services have
performed their transaction work successfully. When all work has been performed successfully,
the Transaction Manager informs the resource managers that all updates made during the
transaction are permanent.

See Also
“Modifying the UBBCONFIG File to Accommodate ATMI Transactions” on page 5-1

“Modifying the Domains Configuration File to Support Transactions” on page 5-9

“Example: A Distributed Application with Transactions” on page 5-12

“Writing Global Transactions” in Programming BEA Tuxedo ATMI Applications Using C

“What You Can Do Using the ATMI” in Introducing BEA Tuxedo ATMI

For more information about using transactions in a BEA Tuxedo CORBA environment,
refer to Using CORBA Transactions

../pgc/pgglob.htm#115955
../int/intatm.htm#147771

4-12 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 5-1

C H A P T E R 5

Configuring Your ATMI Application to
Use Transactions

This topic includes the following sections:

Modifying the UBBCONFIG File to Accommodate ATMI Transactions

Specifying Global Transaction Parameters in the RESOURCES Section

Creating a Transaction Log (TLOG) in the MACHINES Section

Defining Resource Managers and the Transaction Manager Server in the GROUPS Section

Enabling a Service to Begin a Transaction in the SERVICES Section

Modifying the Domains Configuration File to Support Transactions

Example: A Distributed Application with Transactions

Note: For information about using transactions in a BEA Tuxedo CORBA environment, refer
to Using CORBA Transactions.

Modifying the UBBCONFIG File to Accommodate ATMI
Transactions

To accommodate transactions, you must modify the RESOURCES, MACHINES, GROUPS, and
SERVICES sections of the application’s UBBCONFIG file in the following ways.

5-2 Setting Up a BEA Tuxedo Application

In This Section . . . Specify . . .

RESOURCES The number of transactions allowed in the application, and the value
of the commit control flag.

MACHINES The TLOG information for each machine.

GROUPS Information about each resource manager, and about the Transaction
Manager Server.

SERVICES Enabling of the automatic transaction option.

Spec i f y ing Globa l T ransact ion Paramete rs in the RESOURCES Sect ion

Setting Up a BEA Tuxedo Application 5-3

Specifying Global Transaction Parameters in the RESOURCES
Section

The following table describes the transaction-related parameters in the RESOURCES section.

Set This
Parameter . . . To . . .

MAXGTT Limit the total number of global transaction identifiers (GTRIDs)
allowed on one machine at one time. The maximum value allowed is
2048; the minimum, 0; and the default, 100. You can override the value
of MAXGTT on a per-machine basis in the MACHINES section.

Entries remain in the table only while a global transaction is active, so
this parameter has the effect of setting a limit on the number of
simultaneous transactions.

CMTRET Indicate the initial setting of the TP_COMMIT_CONTROL characteristic
as one of the following:
• LOGGED—the TP_COMMIT_CONTROL characteristic is set to

TP_CMT_LOGGED, which means that tpcommit() returns when
all the participants have successfully pre-committed.

• COMPLETE—the TP_COMMIT_CONTROL characteristic is set to
TP_CMT_COMPLETE, which means that tpcommit() does not
return until all the participants have successfully committed.

The default is COMPLETE.

To determine the appropriate setting, consult your resource manager
(RM) vendors. If any RM in the application uses the late commit
implementation of the XA standard, the setting should be COMPLETE. If
all RMs use the early commit implementation, the setting should be
LOGGED for performance reasons. (You can override this setting with
tpscmt().)

MAXTRANTIME Specify the maximum length of the timeout for the transactions.

Valid values are between 0 and 2,147,483,647 inclusive.

0 represents no limitation on transaction timeout value occurs.

Default is 0.

Note: For more information about MAXTRANTIME, see
MAXTRANTIME in the RESOURCES section in UBBCONFIG(5)
or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

5-4 Setting Up a BEA Tuxedo Application

Creating a Transaction Log (TLOG) in the MACHINES Section
To create a TLOG, complete the following tasks:

Create a Universal Device List (UDL).

Define transaction-related parameters in the MACHINES section.

Create a Domains transaction log.

Creating the UDL
The Universal Device List (UDL) is a map of the BEA Tuxedo filesystem. The UDL gets loaded
into shared memory when an application is booted. The TLOG refers to a log in which information
about transactions is kept until the transaction is completed. To create an entry in the UDL for the
TLOG device, create a UDL on each machine using global transactions. (If the TLOGDEVICE is
mirrored between two machines, it is unnecessary to do this on the paired machine.) The Bulletin
Board Liaison (BBL) then initializes and opens the TLOG during the boot process.

To create a UDL, enter the following command before the application is booted:

tmadmin -c crdl -z config -b blocks

Note: The command fails if the device already exists.

The value of config must be the full pathname of the device on which you create the UDL. It
should match the value of the TLOGDEVICE parameter in the MACHINES section of the
configuration file. The value of blocks must be the number of blocks to be allocated on the
device.

Note: If the value of blocks is less than the value of TLOGSIZE, you risk a performance
degradation. Therefore, you should specify a value for blocks that is greater than that of
TLOGSIZE. For example, if TLOGSIZE is specified as 200 blocks, specifying -b 500 does
not cause a degradation.

For more information about storing the TLOG, see Installing the BEA Tuxedo System.

Defining Transaction-related Parameters in the MACHINES
Section
To define a global transaction log (TLOG), you must set several parameters in the MACHINES
section of the UBBCONFIG file.

Creat ing a T ransact i on Log (TLOG) in the MACHINES Sect ion

Setting Up a BEA Tuxedo Application 5-5

For one of these parameters, TLOGDEVICE, you must manually create a device list entry for the
TLOGDEVICE on each machine where a TLOG is needed. You can do this either before or after
TUXCONFIG has been loaded, but you must complete this step before the system is booted.

The following table describes the transaction-related parameters in the MACHINES section.

Creating the Domains Transaction Log
Before starting a Domains gateway group, you must create a Domains transaction log.
Specifically, you must create a Domains transaction log for the named local domain on the
current machine (that is, the machine on which DMADM is running). To create a log, enter the
following command:

dmadmin crdmlog crdlog -d local_domain_name

The command uses the parameters specified in the DMCONFIG file. This command fails if the
named local domain is active on the current machine or if a log already exists. If a transaction log
has not been created, the Domains gateway group creates one when that group starts.

Set This Parameter . . . To Specify . . .

TLOGNAME The name of the DTP transaction log for the machine.

TLOGDEVICE The BEA Tuxedo filesystem that contains the DTP transaction
log (TLOG) for the machine. If this parameter is not specified,
it is assumed that there is no TLOG on the machine. The value
may contain a maximum of 64 characters.

TLOGSIZEE The size, in physical pages, of the TLOG file. The value must
be between 1 and 2048; the default, 100. Assign a value that
is large enough to hold the number of outstanding transactions
on the machine at a given time. One transaction is logged per
page. The default should be enough for most applications.

TLOGOFFSET The offset, in pages, from the beginning of the TLOGDEVICE
to the start of the VTOC that contains the transaction log for the
machine.The value must be greater than or equal to 0, and less
than the number of pages on the device. The default is 0.

TLOGOFFSET is rarely necessary. However, if two VTOCs
share the same device, or if a VTOC is stored on a device (such
as a filesystem) that is shared with another application, you
can use TLOGOFFSET to indicate a starting address relative to
the address of the device.

5-6 Setting Up a BEA Tuxedo Application

See Also
“What Is the Transaction Log (TLOG)?” on page 2-15 in Administering a BEA Tuxedo
Application at Run Time

Defining Resource Managers and the Transaction Manager
Server in the GROUPS Section

The parameters available for GROUPS section entries allow you to define the attributes of
transaction manager servers (TMSs) and resource managers (RMs) for a particular group.

For a TMS, a server that performs most of the work that controls global transactions, you
can define the following parameters:

– TMSNAME contains the name of the executable for the transaction manager server
associated with the group defined in the entry. The BEA Tuxedo system provides a null
transaction manager server called TMS, which is used by groups that participate in
transactions, but do not use an RM. This TMS server does not communicate with any
resource manager; it simply manages transactions without communicating with an RM.

– TMSCOUNT contains the number of TMSs to be booted (minimum of 2, maximum of 10,
default of 3).

For each resource manager you can define the OPENINFO and CLOSEINFO parameters. The
value of each is a string that contains information needed to open or close a resource
manager, respectively. Appropriate values for these parameters are supplied by RM
vendors. For example, if you are using an Oracle database as your RM, you might supply
the value shown in the following entry:

OPENINFO=”ORACLE_XA:

Oracle_XA+Acc=P/Scott/*****+SesTm=30+LogDit=/tmp”

Sample of the GROUPS Section
The following sample entry is from the GROUPS section in bankapp, the sample banking
application you received with the BEA Tuxedo system.

BANKB1 GRPNO=1 TMSNAME=TMS_SQL TMSCOUNT=2

OPENINFO=”TUXEDO/SQL:APPDIR/bankdl1:bankdb:readwrite”

Description of Transaction Values in the Sample GROUPS Section
This table describes the transaction values shown in the sample GROUPS entry.

../ada/admon.htm#851741

Def in ing Resource Managers and the T ransact ion Manager Se rve r in the GROUPS Sect ion

Setting Up a BEA Tuxedo Application 5-7

Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO
Parameters
The following table lists the characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and
CLOSEINFO parameters.

Transaction Value Purpose

BANKB1 GRPNO=1
TMSNAME=TMS_SQL TMSCOUNT=2

Contains the name of the transaction manager
server (TMS_SQL), and the number (2) of these
servers to be booted in the group BANKB1

TUXEDO/SQL Published name of the resource manager

APPDIR/bankdl1 Device name

bankdb Database name

readwrite Access mode

Set This
Parameter . . . To Specify the . . .

TMSNAME Name of the transaction manager server executable.

Required parameter for applications with transactions.

TMS is a null transactional manager server.

TMSCOUNT Number of transaction manager servers (must be between 2 and 10).

Default is 3. This parameter is optional.

OPENINFO,
CLOSEINFO

Information needed to open or close a resource manager.

Content depends on the resource manager.

Value starts with the name of the resource manager.

Omission means the RM needs no information to open or close.

5-8 Setting Up a BEA Tuxedo Application

Enabling a Service to Begin a Transaction in the SERVICES
Section

In certain situations, you may want to set three transaction-related parameters—AUTOTRAN,
TRANTIME, and ROUTING—in the SERVICES section.

If you want a transaction to be started by a service instead of a client, you must set the
AUTOTRAN flag to Y. This setting is useful if a service is not needed as part of any larger
transaction, and if the application wants to relieve the client of making transaction
decisions. If the service is called when a transaction already exists, this call becomes part
of it. (The default is N.)

Note: Generally, clients are the best initiators of transactions because a service can
participate in a larger transaction.

If AUTOTRAN is set to Y, you must set the TRANTIME parameter, which is the length of the
timeout for transactions to be created. The value must be greater than or equal to 0, and
must not exceed 2,147,483,647 (that is, 231 - 1, or about 70 years). A value of zero
implies there is no timeout for the transaction. (The default is 30 seconds.)

You must define the ROUTING parameter for transactions that use data-dependent routing.

Characteristics of the AUTOTRAN, TRANTIME, and ROUTING
Parameters
The following table lists the characteristics of the AUTOTRAN, TRANTIME, and ROUTING
parameters.

Modi fy ing the Domains Conf igurat i on F i l e t o Suppor t T ransact i ons

Setting Up a BEA Tuxedo Application 5-9

Modifying the Domains Configuration File to Support
Transactions

To enable transactions across domains, you need to set parameters in both the DM_LOCAL and the
DM_IMPORT sections of the Domains configuration file (DMCONFIG). Entries in the DM_LOCAL
section define local domain characteristics. Entries in the DM_IMPORT section define services that
are imported, or available from remote domains.

Characteristics of the DMTLOGDEV, DMTLOGNAME,
DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN Parameters
The DM_LOCAL section of the Domains configuration file identifies local domains and the
gateway groups associated with them. For each gateway group (Local Domain), you must create
an entry that specifies the parameters required for the Domains gateway processes running in that
group.

Set This
Parameter . . . To . . .

AUTOTRAN Make a service the initiator of a transaction.

To work properly, may be dependent on personal communication
between the application designer and the application administrator. If the
administrator sets this value to Y without prior knowledge of the ICF
parameters set by the developer, the wrong application behavior, or
failure of the application might be observed.

If a transaction already exists, a new one is not started.

Default is N.

TRANTIME Specify the length of the timeout for the AUTOTRAN transactions.

Valid values are between 0 and 2,147,483,647 inclusive.

0 represents no timeout.

Default is 30 seconds.

ROUTING Point to an entry in the ROUTING section where data-dependent routing
is specified for transactions that request this service.

5-10 Setting Up a BEA Tuxedo Application

The following table describes the five transaction-related parameters in this section: DMTLOGDEV,
DMTLOGNAME, DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN.

Characteristics of the AUTOTRAN and TRANTIME Parameters
The DM_IMPORT section of the Domains configuration file provides information about services
that are imported and thus available from remote domains. Each remote service is associated with
a particular remote domain.

Set This
Parameter . . . To Specify . . .

DMTLOGDEV The BEA Tuxedo filesystem that contains the Domains transaction log
(DMTLOG) for this machine. The DMTLOG is stored as a BEA Tuxedo
VTOC table on the TLOGDEVICE (a BEA Tuxedo filesystem). If this
parameter is not specified, the Domains gateway group is not allowed to
process requests in transaction mode. Local domains running on the same
machine can share the same DMTLOGDEV filesystem, but a separate log (a
table in the DMTLOGDEV) must be created for each local domain. The
name of each log is determined by the DMTLOGNAME parameter.

DMTLOGNAME The name of the Domains transaction log for this domain. If this domain
resides on the same filesystem as other local domains (as reflected by a
common value for DMTLOGDEV), then the value of DMTLOGNAME must
be unique for each log. The value may contain a maximum of 30
characters. The default is DMTLOG.

DMTLOGSIZE The size, in pages, of the Domains transaction log for this machine. The
value must be greater than zero and less than the amount of available
space on the BEA Tuxedo filesystem. The default is 100 pages.

Note: The number of domains in a transaction determines the number
of pages you must specify in the DMTLOGSIZE parameter. There
is no one-to-one mapping between transactions and log pages.

MAXRAPTRAN The maximum number of domains that can be involved in a transaction.
It must be greater than zero and less than 32,768. The default is 16.

MAXTRAN The maximum number of simultaneous global transactions allowed in
this local domain. It must be greater than or equal to zero, and less than
or equal to the MAXGTT parameter (which is defined in the configuration
file). The default is the value of MAXGTT.

Modi fy ing the Domains Conf igurat i on F i l e t o Suppor t T ransact i ons

Setting Up a BEA Tuxedo Application 5-11

You have the option of setting two parameters in the DM_IMPORT section that support
transactions: AUTOTRAN and TRANTIME. The following table describes these parameters.

An additional transaction-timeout property named MAXTRANTIME from the RESOURCES section of
the UBBCONFIG file is also available. If the MAXTRANTIME timeout value is less than the TRANTIME
timeout value or the timeout value passed in a tpbegin(3c) call to start a transaction, the timeout
for a transaction is reduced to the MAXTRANTIME value. MAXTRANTIME has no effect on a
transaction started on a machine running BEA Tuxedo 8.0 or earlier, except that when a machine
running BEA Tuxedo 8.1 or later is infected by the transaction, the transaction timeout value is
capped—reduced if necessary—to the MAXTRANTIME value configured for that node.

This Parameter . . . Is Used . . .

AUTOTRAN By gateways to automatically start and terminate transactions
for remote services. This capability is required if you want to
enforce reliable network communication with remote services.
To request this capability, set the AUTOTRAN parameter to Y in
the entry for the appropriate remote service.

TRANTIME To specify the default timeout, in seconds, for a transaction
automatically started for the service being defined. The value
must be greater than or equal to zero, and less than 2147483648.
A value of zero implies the maximum timeout value for the
machine. The default is 30 seconds.

5-12 Setting Up a BEA Tuxedo Application

For a Domains configuration, the following transaction-handling scenarios are possible:

If an interdomain transaction infects a node that does not understand the MAXTRANTIME
parameter, or the node understands the MAXTRANTIME parameter but the parameter is not
set, the timeout value for the transaction is determined by TRANTIME or by the timeout
value passed in the tpbegin() call that started the transaction. If the TRANTIME or
tpbegin() timeout value is exceeded, all BEA Tuxedo nodes infected with the
transaction—including the node that started the transaction—generate a TMS timeout
message.

If an interdomain transaction infects a node that understands the MAXTRANTIME parameter
and the parameter is set for that node, the timeout value for the transaction is reduced to no
greater than the MAXTRANTIME value on that node.

If the TRANTIME or tpbegin() timeout value is less than or equal to MAXTRANTIME, the
transaction-handling scenario becomes the one previously described.

If the TRANTIME or tpbegin() timeout value is greater than MAXTRANTIME, the infected
node reduces the timeout value for the transaction to MAXTRANTIME. If the MAXTRANTIME
timeout value is exceeded, the infected node generates a TMS timeout message.

For more information about MAXTRANTIME, see MAXTRANTIME in the RESOURCES section in
UBBCONFIG(5) or TA_MAXTRANTIME in the T_DOMAIN class in TM_MIB(5).

Example: A Distributed Application with Transactions
This section provides sample entries from a configuration file that defines bankapp as an
application that supports transactions and is distributed over three sites. The application is
characterized by the following:

Data-dependent routing on ACCOUNT_ID

Data distributed over three databases

BRIDGE processes communicating with the system via the ATMI interface

Application administration from one site

The file includes seven sections: RESOURCES, MACHINES, GROUPS, NETWORK, SERVERS,
SERVICES, and ROUTING.

Example : A D is t r ibu ted App l i cat i on wi th T ransact ions

Setting Up a BEA Tuxedo Application 5-13

Sample RESOURCES Section
The following listing shows a sample RESOURCES section.

Listing 5-1 Sample RESOURCES Section

*RESOURCES

#

IPCKEY 99999

UID 1

GID 0

PERM 0660

MAXACCESSERS 25

MAXSERVERS 25

MAXSERVICES 40

MAXGTT 20

MASTER SITE3, SITE1

SCANUNIT 10

SANITYSCAN 12

BBLQUERY 180

BLOCKTIME 30

DBBLWAIT 6

OPTIONS LAN, MIGRATE

MODEL MP

LDBAL Y

In the preceding listing, note the following:

MAXSERVERS, MAXSERVICES, and MAXGTT are set to values that are smaller than the
defaults, which reduces the size of the bulletin board.

The MASTER is SITE3 and the backup master is SITE1.

It is possible to use a networked configuration with migration because MODEL is set to MP
and OPTIONS is set to LAN, MIGRATE.

Because BBLQUERY is set to 180 and SCANUNIT is set to 10, the DBBL will check the remote
BBLs every 1800 seconds (that is, every half hour).

5-14 Setting Up a BEA Tuxedo Application

Sample MACHINES Section
The following listing shows a sample MACHINES section.

Listing 5-2 Sample MACHINES Section

*MACHINES

giselle LMID=SITE1

 TUXDIR=”/usr/tuxedo”

 APPDIR=”/usr/home”

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”3B600”

romeo LMID=SITE2

 TUXDIR=”/usr/tuxedo”

 APPDIR=”/usr/home”

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”SEQUENT”

juliet LMID=SITE3

 TUXDIR=”/usr/tuxedo”

 APPDIR=’/usr/home”

 ENVFILE=”/usr/home/ENVFILE”

 TLOGDEVICE=”/usr/home/TLOG”

 TLOGNAME=TLOG

 TUXCONFIG=”/usr/home/tuxconfig”

 TYPE=”AMDAHL”

In the preceding listing, note the following:

Example : A D is t r ibu ted App l i cat i on wi th T ransact ions

Setting Up a BEA Tuxedo Application 5-15

TLOGDEVICE and TLOGNAME are specified, which implies that transactions will be done.

The TYPE parameters are all different, which indicates that all messages sent between
machines will be encoded and decoded.

Sample GROUPS and NETWORK Sections
The following listing shows sample GROUPS and NETWORK sections.

Listing 5-3 Sample GROUPS and NETWORK Sections

*GROUPS

DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2

BANKB1 LMID=SITE1 GRPNO=1

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl1:bankdb:readwrite”

BANKB2 LMID=SITE2 GRPNO=2

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl2:bankdb:readwrite”

BANKB3 LMID=SITE3 GRPNO=3

 OPENINFO=”TUXEDO/SQL:/usr/home/bankdl3:bankdb:readwrite”

*NETWORK

SITE1 NADDR=”0X0002ab117B2D4359”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4359”

SITE2 NADDR=”0X0002ab117B2D4360”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4360”

SITE3 NADDR=”0X0002ab117B2D4361”

 BRIDGE=”/dev/tcp”

 NLSADDR=”0X0002ab127B2D4361”

In the preceding listing, note the following:

5-16 Setting Up a BEA Tuxedo Application

The TMSCOUNT is set to 2, which means that only two TMS_SQL transaction manager servers
will be booted per group.

The OPENINFO string indicates that the application will perform database access.

Example : A D is t r ibu ted App l i cat i on wi th T ransact ions

Setting Up a BEA Tuxedo Application 5-17

Sample SERVERS, SERVICES, and ROUTING Sections
The following listing shows sample SERVERS, SERVICES, and ROUTING sections.

Listing 5-4 Sample SERVERS, SERVICES, and ROUTING Sections

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=N CLOPT=”-A”

TLR SRVGRP=BANKB1 SRVID=1 CLOPT=”-A -- -T 100"

TLR SRVGRP=BANKB2 SRVID=3 CLOPT=”-A -- -T 400"

TLR SRVGRP=BANKB3 SRVID=4 CLOPT=”-A -- -T 700"

XFER SRVGRP=BANKB1 SRVID=5 REPLYQ=Y

XFER SRVGRP=BANKB2 SRVID=6 REPLYQ=Y

XFER SRVGRP=BANKB3 SRVID=7 REPLYQ=Y

*SERVICES

DEFAULT: AUTOTRAN=N

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

TRANSFER ROUTING=ACCOUNT_ID

INQUIRY ROUTING=ACCOUNT_ID

*ROUTING

ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”

 RANGES=”MON - 9999:*,

 10000 - 39999:BANKB1

 40000 - 69999:BANKB2

 70000 - 100000:BANKB3

 “”

In the preceding listing, note the following:

Calls to the tpsvrinit() function by TLR servers will include a number (100, 400, or
700) specified with the -T option.

All service requests are routed on the ACCOUNT_ID field.

5-18 Setting Up a BEA Tuxedo Application

No services are performed in AUTOTRAN mode.

See Also
“What Is a Transaction?” on page 4-1

“Using Tuxedo with Oracle Real Application Clusters (RAC)” on page 6-1

“Writing Global Transactions” on page 9-1 in Programming BEA Tuxedo ATMI
Applications Using C

“What You Can Do Using the ATMI” in Introducing BEA Tuxedo ATMI

For more information about using transactions in a BEA Tuxedo CORBA environment,
refer to Using CORBA Transactions

../pgc/pgglob.htm#115955
../int/intatm.htm#147771

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-1

C H A P T E R 6

Using Tuxedo with Oracle Real
Application Clusters (RAC)

This topic includes the following sections:

Overview

Limitations

Prerequisites

Configuring Tuxedo for Oracle RAC

Overview
The Oracle Real Application Clusters (RAC) feature supports clustering of machines that utilize
replicated Oracle database services accessing the same Oracle database. Oracle RAC provides
the ability to concurrently access the same Oracle database from instances physically located on
multiple Oracle server machines, and offers the ability to failover unsuccessful database instances
to alternate locations.

However, specific support for Oracle RAC is required by the Transaction Monitor in order to take
advantage of these replication and failover features in an XA transaction environment and to
obtain optimal RAC performance. This is because Oracle RAC does not allow the same database
to be accessed from multiple RAC instances within the same XA transaction.

In addition, Oracle 10gR1 requires Transaction Monitor involvement when prepared transactions
failover from one RAC instance to another.

Tuxedo 9.1 provides Transaction Monitor support for Oracle RAC by allowing an administrator
to specify lists of groups associated with different RAC instances. This allows Tuxedo to ensure

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-2 Using Tuxedo with Oracle Real Application Clusters (RAC)

that groups associated with different instances of the same RAC database do not participate in the
same transaction. The Tuxedo Oracle RAC support feature also provides a way for Tuxedo
transaction manager server (TMS) processes to be notified of RAC failover events which is
required when using Oracle 10gR1.

Consequently, this allows the TMS to re-obtain a list of Oracle 10gR1 prepared transactions from
Oracle as required for RAC failover recovery.

When using Oracle 10gR2, administrators should use an Oracle DTP Service to access
the Oracle RAC system, and this DTP service name should be specified in the OPENINFO string
for the associated Tuxedo groups. Oracle will ensure that , and will take care of migrating the
service an alternate instance if required.

Limitations
Tuxedo 9.1 supports Oracle RAC only when using Oracle 10g, and does not support
Oracle RAC when using Oracle 9i. For Oracle 10gR1, patch set 10.1.0.3 or later is
required, and for Oracle 10gR2, patch set 10.2.0.2 or above is required. Use of Oracle
10gR2 is encouraged, due to the significant improvements in RAC capabilities.

In some instances, using Oracle RAC with the Dynamic XA switch enabled may generate a
core dump and cause a system crash. Please contact Oracle Support directly if you
encounter this issue and provide the following information:

– BUG 4644880 - Oracle bug fix identification number

– the patch set version for the 10g release you are using

The reason that patchset 10.2.0.2 or above is required for Oracle 10gR2 is due to the bug
described at
https://metalink.oracle.com/metalink/plsql/f?p=130:14:3193163745563425327::::p14_database
_id

Prerequisites

Software Requirements
For specific platform software requirements, refer to the “BEA Tuxedo 9.1 Platform Data Sheets”
in Installing the BEA Tuxedo System.

../install/inspds.htm#5449490

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-3

Configuring Tuxedo for Oracle RAC
Tuxedo support for Oracle RAC requires two steps:

Configuring Transaction Propagation

Configuring Transaction Recovery

The following command and environment variables are used to exclusively configure Tuxedo 9.1
for Oracle RAC support:

Three environment variables

– TUXRACGROUPS (required for all releases of Oracle)

– XARETRYDURATIONSECONDS (required only for Oracle 10gR1)

– XARETRYINTERVAL (required only for Oracle 10gR1)

One Command

– TMS_rac_refresh(1)(required only for Oracle 10gR1)

Configuring Transaction Propagation
Oracle 10gR1 does not allow the same database to be accessed from multiple RAC instances
within the same XA transaction. In addition, Oracle 10gR1 requires Transaction Monitor
involvement when prepared transactions failover from one RAC instance to another.

Oracle 10gR2 permits different RAC instances to operate on different transaction branches in
RAC, but if transaction branches are on different instances, then they are loosely coupled and do
not share locks. Also, for optimum commit performance, it is important to use only a single RAC
instance within a given XA transaction.

For this reason, it is still important to associate an XA transaction with a single RAC instance in
Oracle 10gR2. For more information, see the "Developing Applications with Oracle XA" chapter
in the Oracle Database Application Developer's Guide - Fundamentals.

The TUXRACGROUPS environment variable is used to associate Tuxedo groups with specific
instances of Oracle RAC configurations so that Tuxedo does not include groups from multiple
instances of the same RAC configuration within the same XA transaction.

A single transaction should not span multiple Oracle RAC instances. The groups that participate
in a particular transaction are determined at the time the transaction is started. Each transaction
is assigned to one particular instance of each RAC configuration such that the groups in each
instance of a particular RAC configuration are assigned to an equal number of transactions.

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-4 Using Tuxedo with Oracle Real Application Clusters (RAC)

TUXRACGROUPS

The TUXRACGROUPS environment variable specifies the groups that are associated with a
particular RAC configuration, and will disallow sending service calls in the same
transaction to two or more groups identified as different instances of the same RAC
configuration.

Warning: The TUXRACGROUPS environment variable must be set on all machines in a
configuration, and must have the same sets of groups specified in the same order on
all machines.

If this restriction is not followed, then inconsistent sets of groups can be included
within a transaction. The coordinating group will notice the inconsistency at commit
time, roll back the transaction, and send an error message to the userlog.

TUXRACGROUPS Syntax
The TUXRACGROUPS environment variable is used to define Oracle RAC group configurations. Its
syntax is as follows:
TUXRACGROUPS="G1,G2,…,Gm;H1,H2,…,Hn[;…]:I1,I2,…,Io;J1,J2,…,Jp[;…][:…]"

Comma (,) separated list
Used to specify groups in the same instance of an Oracle RAC configuration. Multiple
groups from a comma separated list can be used together in the same transaction.

Note: Typically, most users place all of the services associated with one database
instance in a single group, therefore commas are not needed in the TUXRACGROUPS
value.

Semicolon (;) separated list
Used to specify sets of groups in different instances of an oracle RAC configuration.
Groups from different RAC instances from the same RAC database configuration cannot
be used together in the same transaction.

Since the purpose of the TUXRACGROUPS environment variable is to specify groups
associated with different instances of the same Oracle RAC configuration, all applications
using the TUXRACGROUPS variable should have at least one semicolon in the environment
variable value.

Colon (:) separated list
Used to separate information about one Oracle RAC configuration from information
about a different Oracle RAC configuration. The colon indicates that multiple Oracle
RAC database configurations are totally independent of each other.

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-5

Note: Typically, most users specify only one RAC database configuration, therefore
colons are not needed in the TUXRACGROUPS value.

TUXRACGROUPS Examples
This section describes four different examples for defining Oracle RAC group configurations:

Example 1: Simple Configuration

Example 2: Oracle RAC Single Instance with Multiple Groups

Example 3: Multiple Oracle RAC Instances with Multiple Groups

Example 4: Routing Transactional/Non-transactional Requests

Example 1: Simple Configuration
TUXRACGROUPS="G1;G2"

Figure 6-1 shows a simple Oracle RAC configuration.

In this example, there is one Oracle database, (ORA1), two Oracle RAC instances with 1 group
per each instance.

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they access
database services through different instances that map to the same Oracle RAC database
configuration.

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-6 Using Tuxedo with Oracle Real Application Clusters (RAC)

Figure 6-1 (ORA1) Simple Configuration

Example 2: Oracle RAC Single Instance with Multiple Groups
TUXRACGROUPS="GROUP1;GROUP2:GROUP3;GROUP4,GROUP5"

Figure 6-2 shows an example of adding multiple groups to a single instance.

In this example, there are two Oracle databases: ORA1 and ORA2. ORA1 offers machine-specific
services ORA1SITE1 and ORA1SITE2, and ORA2 offers machine-specific services ORA2SITE1 and
ORA2SITE2. The objective is to assign an approximately equal number of transactions and
configure the same services to the groups associated with each instance of an Oracle RAC
configuration.

The same transaction request to both GROUP1 and GROUP2 cannot be sent because they access
database services through different instances that map to the same Oracle RAC database
configuration. The same applies to GROUP3 and GROUP4 or GROUP3 GROUP5, the same transaction
cannot be sent to both these groups.

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-7

GROUP4 and GROUP5 both access the same database service of the same Oracle RAC database
configuration, so these groups would be permitted together. GROUP1 and GROUP4 would be
permitted together, because they access different RAC database configurations. If there is also a
GROUP6 in this configuration, it would be permitted with any other group, because GROUP6 is not
an Oracle RAC group.

Note: The number of groups in each Oracle RAC instance does not have to be the same.

Figure 6-2 (ORA2) Single Oracle RAC Instance with Multiple Groups

The *GROUPS and *SERVERS sections of the UBBCONFIG file for this configuration might look as
follows:

Listing 6-1 UBBCONFIG File *GROUPS and *SERVERS Sections Example

*GROUPS

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-8 Using Tuxedo with Oracle Real Application Clusters (RAC)

DEFAULT: TMSNAME=TMS_ORA TMSCOUNT=2

GROUP1 LMID=SITE1 GRPNO=1

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=ORA1SITE1+SesTm=100

+LogDir=.+MaxCur=5"

GROUP2 LMID=SITE2 GRPNO=2

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=ORA1SITE2+SesTm=100

+LogDir=.+MaxCur=5"

GROUP3 LMID=SITE1 GRPNO=3

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=ORA2SITE1+SesTm=100

+LogDir=.+MaxCur=5"

GROUP4 LMID=SITE2 GRPNO=4

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=ORA2SITE2+SesTm=100

+LogDir=.+MaxCur=5"

GROUP5 LMID=SITE2 GRPNO=5

OPENINFO="ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SqlNet=ORA2SITE2+SesTm=100

+LogDir=.+MaxCur=5"

GROUP6 LMID=SITE1 GRPNO=6 TMSNAME=TMS_QM

OPENINFO="TUXEDO/QM:/home/myapplication/QUE:QSPACE"

*SERVERS

DEFAULT: RESTART=Y MAXGEN=5 REPLYQ=Y CLOPT="-A"

EMPLOYEE_SVR SRVGRP=GROUP1 SRVID=1

EMPLOYEE_SVR SRVGRP=GROUP2 SRVID=2

BANKING_SVR SRVGRP=GROUP3 SRVID=3

BANKING_SVR SRVGRP=GROUP4 SRVID=4

BANKING_SVR SRVGRP=GROUP5 SRVID=5

Note: GROUP4 and GROUP5 have the same OPENINFO strings, because they both use the same
database service from the same database.

The specification of the OPENINFO string for Oracle groups in the *GROUPS section is the
same as when using Oracle without RAC. For information on how to specify an
OPENINFO string for an Oracle group, refer to the Developing Applications with Oracle
XA chapter in the Oracle Database Application Developer's Guide - Fundamentals.

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-9

Example 3: Multiple Oracle RAC Instances with Multiple Groups
TUXRACGROUPS="GROUP11,GROUP12,GROUP13;GROUP21,GROUP22:GROUP3;GROUP4,
GROUP5"

Figure 6-3 shows an example of adding multiple groups to multiple instances.

This example is similar to the previous example — except that GROUP11, GROUP12, and GROUP13
are all associated with the first RAC instance of the first RAC configuration, and GROUP21 and
GROUP22 are both associated with the second RAC instance.

If the first service call in a transaction in this configuration goes to GROUP12, then it would be
possible to send other service calls in this transaction to GROUP11, GROUP12, or GROUP13, but not
to GROUP21 or GROUP22.

If a transactional service call is made to a service that is not advertised in any permitted groups
but is available in one or more prohibited groups, the result is:

the call fails

tapering is set to TPENOENT

tperrordetail is set to the new value TPED_GROUP_FORBIDDEN

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-10 Using Tuxedo with Oracle Real Application Clusters (RAC)

Figure 6-3 Multiple Oracle RAC Instances with Multiple Groups

For each RAC configuration defined as part of the TUXRACGROUPS environment variable, Tuxedo
determines which RAC group(s) in that configuration participate in a particular transaction when
that transaction is started.

Example 4: Routing Transactional/Non-transactional Requests
TUXRACGROUPS="GROUP1A,GROUP2A;GROUP1B,GROUP2B"

Figure 6-4 shows an example of routing transactional and non-transactional requests in an Oracle
RAC configuration.

GROUP1A and GROUP2A are in RAC instance 1 and GROUP1B and GROUP2B are in RAC instance 2.

Data dependent routing for transactional services offered in RAC groups is likely to achieve the
desired result only if:

each RAC configuration instance offers a service instance that can process each data value.

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-11

Since all but one of the instances in a RAC configuration are disallowed in a particular
transaction, each data value must be specified for a service in each RAC instance.
Otherwise, that data value will not be processed by any service in the RAC configuration
for some transactions.

different RAC service instances process different data values.

If all data values are processed by the same set of service instances, then there is no need
to use data dependent routing.

When routing occurs, any groups that are not permitted for the current transaction are ignored.
The routing decision only considers:

groups associated with the allowable RAC instance.

groups not associated with a RAC configuration.

If routing is performed for a non-transactional request, all groups can participate. The service is
routed to the first group matching the data value listed in the UBBCONFIG file *ROUTING section
RANGES field.

If routing is performed for a mixture of transactional and non-transactional requests, some
applications may not require non-transaction request load balancing. You can vary the RAC
instances listed first in your application for different data values so that non-transactional requests
are balanced accordingly among services offered by different RAC instances.

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-12 Using Tuxedo with Oracle Real Application Clusters (RAC)

Figure 6-4 Routing Transactional/Non-Transactional Requests

The *SERVICES and *ROUTING sections of the UBBCONFIG file for this configuration might look
as follows:

Listing 6-2 UBBCONFIG File *SERVICES and *ROUTING Sections Example

*SERVICES

DEPOSIT SRVGRP=GROUP1A ROUTING=MYROUTE

DEPOSIT SRVGRP=GROUP2A ROUTING=MYROUTE

DEPOSIT SRVGRP=GROUP1B ROUTING=MYROUTE

DEPOSIT SRVGRP=GROUP2B ROUTING=MYROUTE

*ROUTING

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-13

MYROUTE FIELD=”BRANCH_ID”

RANGES=”1-5:GROUP1A, 1-5:GROUP1B, 6-10:GROUP2B, 6-10:GROUP2A, *:*”

BUFTYPE=”FML32”

Requests with a BRANCH_ID of 1 through 5 must be handled by GROUP1A or GROUP1B. Requests
with a BRANCH_ID of 6 through 10 must be handled by GROUP2A or GROUP2B.

Note: The RANGES value should duplicate each routing data value. It should specify a service
associated with each RAC configuration instance in the RANGES field.

For transactional requests, the first half, branches 1-5 map to GROUP1A and branches 6-10 map
to GROUP2A; the other half branches 1-5 map to GROUP1B and branches 6-10 map to GROUP2B.

For non-transactional requests, branches 1-5 map to GROUP1A, and branches 6-10 map to
GROUP2B because these are the first groups specified that match the respective routing ranges.

Requests with an invalid BRANCH_ID are mapped to any permitted group.

Configuring Transaction Recovery
TMS_rac_refresh(1), XARETRYDURATIONSECONDS, and XARETRYINTERVAL specifically
handle transaction recovery issues.

TMS_rac_refresh(1)is called when an Oracle RAC group fails over to an alternate group.
TMS_rac_refresh(1) should not be executed manually from the command line; the proper way
to invoke TMS_rac_refresh(1) is to use Oracle Fast Application Notification (FAN).

Note: For more details on configuring Oracle FAN, refer to Oracle 10g documentation.

The XARETRYDURATIONSECONDS and XARETRYINTERVAL environment variables are used to retry
transaction recovery operations (xa_recover()) as required by Oracle RAC.

XARETRYDURATIONSECONDS

Specifies the time interval during which the Tuxedo Transaction Manager Server (TMS)
retries xa_recover() operations when TMS_rac_refresh(1) is called. If it is not set or
set to 0, then xa_recover() is performed once only.

The default value for XARETRYDURATIONSECONDS is 0.

Note: For Oracle 10.1, it is recommended that XARETRYDURATIONSECONDS is set to 120.

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-14 Using Tuxedo with Oracle Real Application Clusters (RAC)

XARETRYINTERVAL

Specifies the interval in seconds that xa_recover() operations are retried during the
XARETRYDURATIONSECONDS interval. The XARETRYINTERVAL value is relevant only if
XARETRYDURATIONSECONDS is set to a value greater than 0.

The default value for XARETRYINTERVAL is 30.

Configuring Oracle 10g Fast Application Notification (FAN)
A key process in configuring Tuxedo for Oracle RAC is setting up Oracle FAN to invoke
TMS_rac_refresh(1) with the appropriate group parameter on group failover. (More group
parameter and group failover information is provided in Configuring Transaction Propagation.)

More information regarding Oracle FAN can be found in the Workload Management with Oracle
Real Application Clusters (PDF) White Paper.

Oracle FAN Script Example
The following is an example of an Oracle FAN script.

Listing 6-3 Oracle FAN Script Example

//This File should be placed at ORA_CRS_HOME/racg/usrco//

------------------------------calout.sh-------------------------

#! /bin/ksh

#parse the event

AWK=awk

NOTIFY_EVENTTYPE=$1 # Event type is handled differently

for ARGS in $*

do

PROPERTY=`echo $ARGS|$AWK -F"=" '{print $1}'`

VALUE=`echo $ARGS|$AWK -F"=" '{print $2}'`

case ${PROPERTY} in

VERSION|version)NOTIFY_VERSION=$VALUE;;

SERVICE|service)NOTIFY_SERVICE=$VALUE;;

DATABASE|database)NOTIFY_DATABASE=$VALUE;;

Conf igur ing Tuxedo fo r O rac le RAC

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-15

INSTANCE|instance)NOTIFY_INSTANCE=$VALUE;;

HOST|host) NOTIFY_HOST=$VALUE ;;

STATUS|status) NOTIFY_STATUS=$VALUE;;

REASON|reason) NOTIFY_REASON=$VALUE;;

CARD|card) NOTIFY_CARDINALITY=$VALUE ;;

TIMESTAMP|timestamp) NOTIFY_LOGDATE=$VALUE;; # catch

event

??:??:??) NOTIFY_LOGTIME=$PROPERTY;; # catch event time

(hh24:mi:ss)

esac

done

#Set the REFRESH_DIR environment variable.

. /home/oracle/callout.env

#Make a log to record events.

FAN_LOGFILE=/home/oracle/app/products/10.1.0.3.0/db_1/calloutlog/`hostname

`_upti

me.log

touch ${FAN_LOGFILE}

echo ${1} >>${FAN_LOGFILE}

#invoke the TMS_rac_refresh command.

if [${NOTIFY_EVENTTYPE} = "INSTANCE" -a ${NOTIFY_STATUS} = "down"]

then

${REFRESH_DIR}/rac_refresh >> ${FAN_LOGFILE} 2>&1

fi

-----------------------------callout.sh end-----------------------------

-----------------------------callout.env----------------------------------

#! /bin/ksh

#TUXEDO and Oracle RAC server are not one the same machine.

export REFRESH_DIR=/tmp

-----------------------------callout.env end------------------------------

-----------------------------rac_refresh----------------------------------

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-16 Using Tuxedo with Oracle Real Application Clusters (RAC)

#! /bin/ksh

#If TUXEDO and Oracle RAC server on different machine

. /home/oracle/callout.env

rsh -l ${LOGNAME} ${TUX_MASTER_MACHINE} ${REFRESH_DIR}/rac_refresh

>/tmp/run1.log 2>&1

rsh -l ${LOGNAME} ${TUX_NONMASTER_MACHINE}

${REFRESH_DIR}/rac_refresh >/tmp/run1.log 2>&1

#If TUXEDO and Oracle RAC server are on same machine

#set up environment variable

#export APPDIR=/tmp

#export ORACLE_HOME=/home/oracle/Ora10g

#export TUXDIR=/nfs/users/libo/r902/BJ/bld

#export PATH=.:${PATH}:${TUXDIR}/bin

#. $TUXDIR/tux.env

#export TUXCONFIG=${APPDIR} /tuxconfig

#invoke TMS_rac_refresh

#TMS_rac_refresh RACDBGRP1

#TMS_rac_refresh RACDBGRP3

-----------------------------rac_refresh end-----------------------------

Configuring Transaction Recovery for Oracle 10gR2
For Oracle 10gR2, it is much simpler to configure transaction recovery. The database services
specified in the OPENINFO string for each group associated with Oracle RAC should be declared
in Oracle as DTP services.

For example, in Listing 6-1, GROUP1 accessed Oracle via service ORA1SITE1 and GROUP2
accessed Oracle via service ORA1SITE2. In Oracle 10gR2, service ORA1SITE1 should be
declared with DTP=TRUE, with preferred instance SITE1, and with available instance SITE2.
Service ORA1SITE2 should be declared with DTP=TRUE, with perferred instance SITE2, and with
available instance SITE1. A similar process should be followed for groups GROUP3, GROUP4, and
GROUP5.

See A l so

Using Tuxedo with Oracle Real Application Clusters (RAC) 6-17

By declaring different perferred instances, the application will be able to get the benefit of load
balancing during normal operation when both instances are available.

The setting of the TUXRACGROUPS enviornment variable will ensure that different instances of the
RAC configuration are not combinined in the same transaction in order to obtain optimal
performance. If one of the RAC instances goes down, Oracle will transfer the DTP service to the
non-preferred instance while maintaining transactional integrity.

When using Oracle 10gR2 DTP services, it is not necessary and is not recommended to configure
Oracle FAN, use TMS_rac_refresh(1) or set the XARETRYDURATIONSECONDS or
XARETRYINTERVAL environment variables.

Specifying Environment Variables in the UBBCONFIG File
Although the Tuxedo Oracle RAC environment variables can be initiated at the operating system
command line, it is highly recommended that you use the ENVFILE parameter specified in the
*MACHINES section of the UBBCONFIG file to initiate these environment variables.

Apply the following syntax considerations when setting the environment variables for Oracle
RAC.

When Tuxedo environment variables are set using ENVFILE, which is the preferred
method, quotation marks are not permitted around the environment variable value.

If environment variables are set at the command line, quotation marks are required if
environment variable values contain characters that could be interpreted as special by the
command line interpreter. An example of a special character is a semicolon.

Ensure that the Tuxedo Oracle RAC environment variables are set consistently on all nodes
in a RAC configuration.

See Also
buildtms(1)

UBBCONFIG(5)

“About Transactions” on page 4-1

“Configuring Your ATMI Application to Use Transactions” on page 5-1

“Writing Global Transactions” on page 9-1

Oracle Database 10g, Oracle Real Application Clusters Home Page

../rfcm/rfcmd.htm#6361611
../rf5/rf5.htm#365105
../pgc/pgglob.htm#115955
http://www.oracle.com/technology/products/database/clustering/index.html

Using Tuxedo w i th Orac le Rea l App l i cat ion C luste rs (RAC)

6-18 Using Tuxedo with Oracle Real Application Clusters (RAC)

Oracle Application Server 10g Adapters for Tuxedo

Best Practices for Using XA with RAC

http://www.oracle.com/technology/products/integration/adapters/pdf/DS_OracleAS%20Adapter_Tuxedo.pdf
http://www.oracle.com/technology/products/database/clustering/pdf/bestpracticesforxaandrac.pdf

Setting Up a BEA Tuxedo Application 7-1

C H A P T E R 7

Managing The Tuxedo Service
Metadata Repository

This topic includes the following sections:

Tuxedo Service Metadata Repository

Creating The Tuxedo Service Metadata Repository

Configuring The Tuxedo Service Metadata Repository Server

Accessing The Tuxedo Service Metadata Repository File

Tuxedo Service Metadata Repository
The Tuxedo service metadata repository contains BEA Tuxedo service definitions that allow
Tuxedo clients to access BEA Tuxedo service parameter information. It provides Tuxedo
application developers and administrators the ability to store and retrieve detailed service
parameter information on any or all Tuxedo application services.

The Tuxedo service metadata repository is designed to process interactive queries by developers
and administrators during application development or modification. It is not designed to process
high volumes of automated queries during the application production phase.

Five utilities are used in conjunction with the Tuxedo service metadata repository

TMMETADATA(5): Tuxedo service metadata repository server. It provides one service,
.TMMETAREPOS, which uses an FML32 input and output buffer format described in
METAREPOS(5)

Note: The .TMMETAREPOS buffer format is similar to MIB(5).

../rf5/rf5.htm#5606415
../rf5/rf5.htm#8915915
../rf5/rf5.htm#8244015

7-2 Setting Up a BEA Tuxedo Application

tmloadrepos(1): creates or updates the binary metadata repository file and loads it with
service parameter information.

tmunloadrepos(1): displays service information from the Tuxedo service metadata
repository. Output can be optionally specified as plain text format, WSDL format, or C
pseudocode

tpgetrepos(3c): programmatically uses FML32 buffers to output service information
from the Tuxedo service metadata repository

tpsetrepos(3c): programmatically uses FML32 buffers to add, delete, or update service
parameter information to the metadata repository file

JOLT Repository Similarities and Differences
BEA Jolt also provides a service repository that allows applications to manually enter Tuxedo
service information, including service names, input and output buffer types, parameter names,
parameter data types, the number of times each parameter is expected, and whether each
parameter is for input, output, or both. All of which seem very similar to the Tuxedo service
metadata repository. However, there are also some distinct difference as noted in the following
table:

Table 7-1 JOLT Repository Similarities and Differences

Jolt Repository Tuxedo Service Metadata
Repository

Function

Designed for JAVA client
communication with Tuxedo
servers

Designed for Web service based
communication with Tuxedo
servers

GUI interface Yes No

Uses plain text repository input file Yes (via bulkloader) Yes (via tmloadrepos)

Service and Parameter keywords and
values

Yes Yes (but more than Jolt
Repository to provide the user
with more detailed service
information)

Repository file format Plain text
Binary (service indexed
for quick access)

../rfcm/rfcmd.htm#899111
../rfcm/rfcmd.htm#350151
../rf3c/rf3c.htm#304783
../rf3c/rf3c.htm#632823

Creat ing The Tuxedo Serv ice Metadata Repos i to r y

Setting Up a BEA Tuxedo Application 7-3

MIB(5) Similarities and Differences
Programmatic access to the Tuxedo System Metadata Repository is accomplished through the
use of a FML32 buffer format that is very similar to the Tuxedo MIB format. However, there are
also some distinct difference as noted in the following table:

Creating The Tuxedo Service Metadata Repository
The metadata repository file contains all the service parameter information that is accessed in the
Tuxedo service metadata repository. The tmloadrepos command is used to create a metadata
repository file. Metadata repository file service parameter information is input directly from the

Access method Administration utility, direct
editing

Administration utility,
programming API, system
service

Unload output format Plain text
Plain text, WDSL, and
C-pseudocode

Inter operability Cannot read Tuxedo service
metadata repository file

Can read, but not modify,
existing Jolt Repository file.
Cannot create a Jolt Repository
file.

Table 7-1 JOLT Repository Similarities and Differences

Table 7-2 MIB(5) Similarities and Differences

MIB(5) METAREPOS(5)

Input/out buffers FML32 FML32

Generic MIB fields Yes Yes, but with some limitations.
See METAREPOS(5)

Authentic MIB class entities Many
No authentic MIB class entities,
but uses similar type

Service entry .TMIB in BBL
.TMMETAREPOS in
TMMETADA server

../rf5/rf5.htm#8915915

7-4 Setting Up a BEA Tuxedo Application

computer console (standard input) if a repository input file is not specified or from a specified
plain text repository input file. For example:

tmloadrepos -i/usr/tuxedo/repository_input_file/usr/tuxedo/

service_metatdata_repository

The Tuxedo Service Metadata Repository Input File
The repository_input_file contains service parameter keywords and their associated values.
Keywords are divided into two categories: service-level and parameter-level.

Note: Keyword abbreviations are also supported. Both keywords and abbreviations are case
sensitive. For more information on keywords, abbreviations, and values, see Using
Service-Level Keywords and Values and Using Parameter-Level Keywords and Values.

No more than one keyword/value combination can be specified per line. The maximum line
character length is 1024 bytes. String parameter values do not need to be set off with quotation
marks.

The repository_input file uses the following syntax: <keyword><=value> and has the
following input conventions:

“(” and “)”
When a parameter must define a sub-parameter, a line consisting of a single left
parenthesis '('and a line consisting of a single right parenthesis ') ' denotes the beginning
and end of the embedded sub-parameter portion of the parameter. The left and right
parentheses can be used recursively.

\ and “\”
You can include blank lines in the repository_input file as needed for readability. A
new line is preceded by a \ character. To use an actual '\' character it must be written as '\\'.

#

Lines starting with a '#' are interpreted as comment lines. Unlike comments specified via
the svcdescription or paramdescription keywords, comments are not stored in the
binary repository_file or output by tmunloadrepos.

The repository_input file can consist of zero or more service parameter definitions. Each
service definition starts with a line beginning with the <service> keyword followed by zero or
more lines beginning with one of the other service-level keywords, followed by parameter-level
keywords. A particular service-level keyword may not be repeated for a particular service.

Creat ing The Tuxedo Serv ice Metadata Repos i to r y

Setting Up a BEA Tuxedo Application 7-5

Using Service-Level Keywords and Values
A service definition must begin with the keyword service<=NAME> or the abbreviation
sv<=NAME>. Services using CARRAY, STRING, or XML buffer types can have only one parameter
per service. The Tuxedo service metadata repository service-level keywords are as follows:

Table 1 Service-Level Keyword, Abbreviations, and Values

Service-Level
Keyword

Keyword
Abbreviation Value

service sv Any Tuxedo service name

Note: This key valued can only be once per Metadata
Repository instance. It cannot be duplicated within the
same Metadata Repository.

tuxservice tsv Actual Tuxedo service name

Note: The difference between the service and
tuxservice keywords is:
• service represents the service entry stored in the

Metadata Repository.
• tuxservice represents the actual Tuxedo service

name. Two or more service definitions can have
the same value as tuxservice.

When used together, these two keywords make it possible
to have multiple service definitions for one Tuxedo
service. By default, tuxservice has the same value as
service

servicetype st Service invocation type. Legal values are:

service - the service is a synchronous
oneway - the service will not send response to the client
queue - the service is a /Q related application

export ex Y (default) or N. In the Jolt repository, this keyword is
used to determine service availability to the Jolt client.

In the Tuxedo repository, this keyword does not have any
meaning, but is nevertheless accepted to maintain
compatibility with existing Jolt bulk loader files.

7-6 Setting Up a BEA Tuxedo Application

inbuf bt Select one of these buffer types: FML, FML32, VIEW,
VIEW32, STRING, CARRAY, XML, X_OCTET,
X_COMMON, X_C_TYPE, MBSTRING or an application
defined buffer type. Note: "inbuf" value of each service
definition cannot be NULL.

outbuf BT Select one of these buffer types: FML, FML32, VIEW,
VIEW32, STRING, CARRAY, XML, X_OCTET,
X_COMMON, X_C_TYPE, MBSTRING or an application
defined buffer type.

Note: The "outbuf" value of each service definition
cannot be NULL for a "service" typed service
or a "queue" typed service.

inview vn View name for input parameters (Optional)

Note: This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.)

outview VN View name for output parameters (Optional)

Note: This keyword is mandatory only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.

svcdescripti
on

sd Any string value. A new-line break can be used to
improve readability if the string is too long.

sendqspace sqs Send queue space name. Optional for a "queue" typed
service.

sendqueue sqn Send queue name. Optional for a "queue" typed service.

rplyqueue rqn Reply queue name. Optional for a "queue" typed
service.

errqueue eqn Error queue name. Optional for a "queue" typed service.

rcvqspace RQS Receive queue space name. Optional for a "queue"
typed service.

Table 1 Service-Level Keyword, Abbreviations, and Values (Continued)

Service-Level
Keyword

Keyword
Abbreviation Value

Creat ing The Tuxedo Serv ice Metadata Repos i to r y

Setting Up a BEA Tuxedo Application 7-7

Using Parameter-Level Keywords and Values
A parameter begins with the keyword <param><=NAME> or the abbreviation <pn><=NAME>
followed by a listing of parameter keywords. It ends with another <param> or <service>
keyword, or when end-of-file is encountered. The parameters can be listed in any order after
<param><=NAME>.

Note: A particular service can specify multiple occurrences of the <param> keyword. That is
to say, more than one parameter can exist for a particular service. For example, a
parameter with an FML or VIEW buffer.

The Tuxedo service metadata repository parameter-level keywords are as follows:

rcvqueue RQN Receive queue name. Optional for a "queue" typed
service.

version vs This parameter is exclusive to the Tuxedo service
metadata repository and accommodates any string value
used by the application.

BEA Tuxedo does not interpret this parameter.

attributes att This parameter is exclusive to the Tuxedo service
metadata repository and accommodates any string value
used by the application.

BEA Tuxedo does not interpret this parameter.

fieldtbls ftb This parameter is optional and specifies a
comma-separated list of field tables where the FML or
FML32 fields used by this service can be found. The
fieldtbls parameter is intended for reference use by
application developers.

Table 1 Service-Level Keyword, Abbreviations, and Values (Continued)

Service-Level
Keyword

Keyword
Abbreviation Value

7-8 Setting Up a BEA Tuxedo Application

Table 2 Parameter-Level Keyword, Abbreviations, and Values

Parameter-Level
Keyword

Metadata Repository
Abbreviation Value

param pn Any parameter name

type pt byte, short, integer, float, double, string,
carray, dec_t, xml, ptr, fml32, view32,
mbstring.

Note: The parameter type must be consistent with its
service buffer type. For example, an FML16
buffer only allow parameters with the following
type: byte (char), short, integer, long,
float, double, string, carray. All other
type parameters are not permitted. See following
buffer type/parameter type matching table.

subtype pst A view name for a view32 typed parameter

access pa in, out, inout, noaccess.

in - indicates a parameter that is used for input only.
out - indicates a parameter that is used for output only.
inout - indicates a parameter that is used for both input
and output.
noacesss - indicates a parameter that must be provided
on input but which is not referenced in the server, such as
an obsolete parameter or a parameter that must be
provided as a filler field in a view.

The set of parameters expected on input is those specified
with in, inout, or noaccess access

The set of parameters returned on output is those specified
with either out or inout access.

count po Maximum number of occurrences (default is 1). The value
for unlimited occurrences is 0. The value range is [0,
32767].

In the Jolt repository, this parameter is used only by the
Repository Editor to format test screens. In the Tuxedo
repository, this parameter is stored for display and is also
used by tmunloadrepos(1)pseudocode generation
options.

../rfcm/rfcmd.htm#350151

Creat ing The Tuxedo Serv ice Metadata Repos i to r y

Setting Up a BEA Tuxedo Application 7-9

paramdescrip
tion

pd Any string value. A new-line break can be used to
improve readability if the string is too long.

size pl This optional parameter indicates the number of bytes
allocated for the parameter. It is used in pseudo code
generation for non-numeric parameters and can be used
for programmer reference purposes.

The following parameter types expect this value:
carray, string, xml, mbstring.

requiredcoun
t

ro Minimum number of times that the parameter must be
specified.The value range is [0, 32767].

fldnum fno This optional parameter indicates the field number of the
parameter if it is a FML/FML32 field.

Note: Users are not encouraged to provide this
information if they have already defined
fieldtbl files by indicating field table
directories using environment FLDTBLDIR(32)
and indicating field table files using environment
FIELDTBLS(32)or fieldtbl service-level
keyword.

vfbname vfb This parameter is optional for view structure members. It
is used to indicate the field name in the fielded buffer.
Please reference viewfile(5)

vflag vfl This parameter is optional for view structure members.
Legal values are combination of the following options:
'C', 'F', 'L', 'N', 'P', 'S'. Please reference
viewfile(5).

vnull vnu This parameter is optional for view structure members. It
indicates the view member default null value.

Table 2 Parameter-Level Keyword, Abbreviations, and Values (Continued)

Parameter-Level
Keyword

Metadata Repository
Abbreviation Value

../rf5/rf5.htm#9766715
../rf5/rf5.htm#9766715

7-10 Setting Up a BEA Tuxedo Application

Parameter Occurrences
As a generally applied Tuxedo rule, only FML/FML32, VIEW/VIEW32, X_COMMON, and X_C_TYPE
typed buffers can specify multiple parameters (due to their information structure). All other typed
buffers have only one parameter with the corresponding parameter type. For example, a CARRAY
type buffer has only one CARRAY typed parameter to describe the necessary information that it
contains. You must follow this rule to define application services.

(Indicates the beginning of the description of the
parameters contained in an embedded FML32 or VIEW32
buffer field.

It contains no associated value and is specified separately
on a line by itself. It is valid only if a previous type
keyword has been specified for this parameter with a
FML32 or VIEW32 value.

A closing right parenthesis ')' ends the embedded
parameter description.

) Ends an embedded FML32 or VIEW32 parameter
definition of that began with an opening matching left
parenthesis '('.

It contains no associated value and is specified separately
on a line by itself. It is valid only if a previous only if there
is a previous matching '(' keyword.

In addition, the maximum embedded level depends on the
upper limit of embedded FML32 nesting level (18 at
present).

Table 2 Parameter-Level Keyword, Abbreviations, and Values (Continued)

Parameter-Level
Keyword

Metadata Repository
Abbreviation Value

Table 3 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table I

byte

(char)

short integer long float double string

CARRAY

FML X X X X X X X

Creat ing The Tuxedo Serv ice Metadata Repos i to r y

Setting Up a BEA Tuxedo Application 7-11

byte

(char)

short integer long float double string

FML32 X X X X X X X

STRING X

VIEW X X X X X X X

VIEW32 X X X X X X X

X_COMMON X X X

X_C_TYPE X X X X X X X

XML X

X_OCTET

MBSTRING

Table 3 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table I (Continued)

Table 4 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table II

carray dec_t xml ptr fml32 view32 string

CARRAY X

FML X

FML32 X X X X X

STRING

VIEW X X

VIEW32 X X

X_COMMON

X_C_TYPE

XML X

7-12 Setting Up a BEA Tuxedo Application

Configuring The Tuxedo Service Metadata Repository Server
To configure the Tuxedo service metadata repository you must:

add TMMETADATA to the *SERVERS section of the UBBCONFIG(5).

run tmloadcf(1) on the UBBCONFIG file.

use tmloadrepos(1) to create and enter service parameter information into the metadata
repository file.

boot the server.

Once the Tuxedo metadata server is running, the.TMMETAREPOS service is automatically
activated. .TMMETAREPOS is a Tuxedo system service and cannot be modified.

All requests made to the server are responded to on a first-come-first-served basis.

Configuring Multiple Tuxedo Service Metadata
Repository Servers
Setting up multiple TMMETADATA servers on a particular Tuxedo node requires adherence to two
crucial configuration rules:

Each TMMETADATA server must be configured to access the same metadata repository file or
an exact copy of the file to provide consistent request results. Therefore, it is strongly
recommended that a stable version of the metadata repository is made available for
multiple TMMETADATA server access.

Permission settings must be consistently applied (either read only or read/write) for
multiple TMMETADATA servers on a particular node.

carray dec_t xml ptr fml32 view32 string

X_OCTET X

MBSTRING X X

Table 4 Service Buffer Type (SMALL CAPS)/Service Parameter Type (lower case) Matching Table II (Continued)

../rf5/rf5.htm#365105
../rfcm/rfcmd.htm#9061611

Access ing The Tuxedo Se rv i ce Metadata Repos i to r y F i l e

Setting Up a BEA Tuxedo Application 7-13

Accessing The Tuxedo Service Metadata Repository File
The Tuxedo service metadata repository facilitates native and remote client access in order to
view, update, add, or delete service metadata repository parameter information.

For native clients exclusively, tpgetrepos(3c), and tpsetrepos(3c)are used for Tuxedo
service metadata repository access.

tpgetrepos(3c) and tpsetrepos(3c) can access the Tuxedo service metadata repository
whether the server is booted or not.

For remote and native clients, TMMETADATA(5) can be used.

See Also
TMMETADATA(5), METAREPOS(5), tmloadrepos(1), tmunloadrepos(1), tpgetrepos(3c),
tpsetrepos(3c)

../rf5/rf5.htm#5606415
../rf5/rf5.htm#8915915
../rfcm/rfcmd.htm#899111
../rfcm/rfcmd.htm#350151
../rf3c/rf3c.htm#304783
../rf3c/rf3c.htm#632823

7-14 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 8-1

C H A P T E R 8

Managing CORBA Interface
Repositories

This topic, which is specific to BEA Tuxedo CORBA environments, includes the following
sections:

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All BEA Tuxedo
CORBA Java client and BEA Tuxedo CORBA Java client ORB text references,
associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Administration Considerations

Using Administration Commands to Manage Interface Repositories

Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

An Interface Repository contains the interface descriptions of the CORBA objects that are
implemented within the BEA Tuxedo domain. Administration of the Interface Repository is done
using tools specific to BEA Tuxedo CORBA servers. These tools allow you to create an Interface
Repository, populate it with definitions specified in Object Management Group Interface
Definition Language (OMG IDL), and then delete interfaces. You may need to configure the
system to include an Interface Repository server by adding entries in the application’s
UBBCONFIG file.

8-2 Setting Up a BEA Tuxedo Application

For related programming information, see the CORBA Programming Reference.

Admin is t rat i on Cons ide rat i ons

Setting Up a BEA Tuxedo Application 8-3

Administration Considerations
As an administrator, you need to determine whether an Interface Repository is required. Not all
systems require it. If an Interface Repository is required, you need to create and populate a
repository database. The repository database is created and populated using the idl2ir
command.

If an Interface Repository is required, you need to answer the following questions:

How many Interface Repository servers will be required?

Will the Interface Repository database(s) be replicated?

Will there be shared access to the Interface Repository database(s)?

What procedures will be followed for updating the Interface Repository?

You can configure the system to have one or more Interface Repository servers. At least one
Interface Repository server needs to be configured if any of the clients use Dynamic Invocation
Interface (DII) .

There are two reasons to have more than one server: performance and fault tolerance. From a
performance point of view, the number of Interface Repository servers is a function of the number
of DII clients. From a fault tolerance point of view, the number of Interface Repository servers
needed is determined by the configuration of the system, and the degree of failure protection
required.

In systems with more then one Interface Repository server, you must decide whether to have
replicated databases, shared databases, or a combination of the two. There are advantages and
disadvantages to each configuration. Replicated Interface Repository databases allow for local
file access that can potentially increase performance.

The main problem with replicated databases is updating them. All the databases must be identical
and this requires the starting and stopping of Interface Repository servers. Having the Interface
Repository database mounted and shared eliminates this problem, but this has performance
implications and introduces a single point of failure. A combination of the two alternatives is also
possible.

Using Administration Commands to Manage Interface
Repositories

Use the following commands to manage the Interface Respository for a BEA Tuxedo domain:

8-4 Setting Up a BEA Tuxedo Application

idl2ir

ir2idl

irdel

Prerequisites
Before executing a command, you must ensure the bin directory is in your defined path, as
follows:

On Windows:

set path=%TUXDIR%\bin;%path%

On UNIX:

For c shell (csh): set path = ($TUXDIR/bin $path)

For Bourne (sh) or Korn (ksh): PATH=$TUXDIR/bin:$PATH
 export PATH

To set environment variables:

On Windows:

set var=value

On UNIX:

For c shell:

setenv var value

Using Admin is t ra t i on Commands to Manage In te r face Repos i to r i es

Setting Up a BEA Tuxedo Application 8-5

For Bourne and Korn (sh/ksh):

var=value

export var

Creating and Populating an Interface Respository
Use the idl2ir command to create an Interface Repository and load interface definitions into it.
If no repository file exists, the command creates it. If the repository file does exists, the command
loads the specified interface definitions into it. The format of the command is as follows:

idl2ir [options] definition-filename-list

For a detailed description of this command, see the File Formats, Data Descriptions, MIBs, and
System Processes Reference in the BEA Tuxedo online documentation.

Note: If you want changes to be visible, you must restart the Interface Repository servers.

Displaying or Extracting the Content of an Interface Repository
Use the ir2idl command to display the content of an Interface Repository. You can also extract
the OMG IDL statements of one or more interfaces to a file. The format of the command is as
follows:

ir2idl [options] [interface-name]

For a detailed description of this command, see the File Formats, Data Descriptions, MIBs, and
System Processes Reference in the BEA Tuxedo online documentation.

Deleting an Object from an Interface Repository
Use the irdel command to delete the specified object from the Interface Repository. Only
interfaces not referenced from another interface can be deleted. By default, the repository file is
repository.ifr. The format of the command is as follows:

irdel [-f repository-name] [-i id] object-name

For a detailed description of this command, see the File Formats, Data Descriptions, MIBs, and
System Processes Reference in the BEA Tuxedo online documentation.

Note: If you want changes to be visible, you must restart the Interface Repository servers.

8-6 Setting Up a BEA Tuxedo Application

Configuring the UBBCONFIG File to Start One or More Interface
Repository Servers

For each application that uses one or more Interface Repositories, you must start one or more of
the Interface Repository servers provided by Tuxedo CORBA. The server name is
TMIFRSVR.You can add one or more entries for TMIFRSVR to the SERVERS section of the
application’s UBBCONFIG file.

By default, the TMIFRSVR server uses the Interface Repository file repository.ifr in the first
pathname specified in the APPDIR environment variable. You can override this default setting by
specifying the -f filename option on the command-line options (CLOPT) parameter.

The following example shows a SERVERS section from a sample UBBCONFIG file. Instead of using
the default file repository.ifr in the default directory ($APPDIR) where the application
resides, the example specifies an alternate file and location, /usr/repoman/myrepo.ifr.

Note: Other server entries are shown in the following sample to emphasize that the order in
which servers are started for BEA Tuxedo CORBA applications is critical. A BEA
Tuxedo CORBA application will not boot if the order is changed.

For more information, see the section “Required Order in Which to Boot CORBA C++
Servers” on page 3-63 in Chapter 3, “Creating the Configuration File.”

Notice that the TMIFRSVR Interface Repository server is the fifth server started.

*SERVERS

 # Start the BEA Tuxedo System Event Broker
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

 # Start the NameManager (master)
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

 # Start the NameManager (slave)
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

Conf igur ing the UBBCONF IG F i l e to S tar t One o r More In te r face Repos i to r y Se rve rs

Setting Up a BEA Tuxedo Application 8-7

 # Start the FactoryFinder (-F)
 TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

 # Start the interface repository server
 TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5
 RESTART=Y
 MAXGEN=5
 GRACE=3600
 CLOPT="-A -- -f /usr/repoman/myrepo.ifr"

For a description of the TMIFRSVR -f filename parameter, refer to the File Formats, Data
Descriptions, MIBs, and System Processes Reference. In addition to the CLOPT -f filename
parameter, the TMIFRSVR parameter can contain other parameters (those that are not specific to
the BEA Tuxedo system) in the SERVERS section of an application’s UBBCONFIG configuration
file.

See the section “How to Create the SERVERS Section of the Configuration File” on page 3-56
in Chapter 3, “Creating the Configuration File,” for details about parameters such as SRVGRP,
SRVID, RESTART, MAXGEN, and GRACE.

8-8 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 9-1

C H A P T E R 9

Distributing ATMI Applications Across a
Network

This topic includes the following sections:

What Is a Distributed ATMI Application?

Why Distribute an ATMI Application Across a Network?

Note: For detailed information about distributing BEA Tuxedo CORBA applications across a
network, refer to the Scaling, Distributing, and Tuning CORBA Applications guide.

What Is a Distributed ATMI Application?
A distributed application consists of one or more local or remote clients that communicate with
one or more servers on several machines linked through a network. With this type of application,
business operations can be conducted from any geographical location. For example, a corporation
may distribute the following types of operations across a large region, or even across international
boundaries:

Forecasting sales

Ordering supplies

Manufacturing, shipping, and billing for goods

Updating corporate databases

State of the art telecommunications and data networks are making distributed operations of this
sort increasingly common. Applications developed to implement this type of strategy allow
businesses to reduce costs and enhance their offerings of services to customers around the world.

9-2 Setting Up a BEA Tuxedo Application

The BEA Tuxedo system supports this type of architecture by simplifying the task of managing
a distributed application. Whether an application comprises only one computer or thousands of
computers working together over a network, all the elements of that application, including clients,
servers, and the networks that connect them, are managed through a single BEA Tuxedo
configuration file.

What I s a D is t r ibu ted ATMI App l i cat i on?

Setting Up a BEA Tuxedo Application 9-3

Example of a Distributed Application
The following diagram illustrates the basic parts of an application distributed across three
machines.

Figure 9-1 Sample of a Distributed Application

9-4 Setting Up a BEA Tuxedo Application

Implementing a Distributed Application
A distributed application is implemented on a network defined in the NETWORK (and optionally
NETGROUPS) section(s) of the configuration file. It frequently uses data-dependent routing,
defined in the ROUTING section of the configuration file. A critical part of the design of a
distributed application is the arrangement between server groups, processes, transaction manager
servers (TMSs), and resource managers (RMs).

To set up a distributed application over a network, the application administrator must work with
the network administrator. In most instances, the application administrator writes the
configuration file for a distributed application (defining parameters in the RESOURCES,
MACHINES, GROUPS, SERVICES, and ROUTING sections), and the network administrator or MIS
representative writes or contributes to the networking sections.

See Also
“Creating the Configuration File for a Distributed ATMI Application” on page 10-1

“Setting Up the Network for a Distributed Application” on page 11-1

“Managing the Network in a Distributed Application” on page 4-1in Administering a BEA
Tuxedo Application at Run Time

Scaling, Distributing, and Tuning CORBA Applications

../ada/adrnet.htm#404474

Why D is t r ibute an ATMI App l i cat ion Across a Ne twork?

Setting Up a BEA Tuxedo Application 9-5

Why Distribute an ATMI Application Across a Network?
Distributed applications provide several important benefits. Early business applications were
developed to run on one large mainframe computer. Because all computing was performed on a
single machine, a failure could bring down an entire system. With the increasing popularity of
distributed applications, this threat of system failure is declining.

Another advantage is that by distributing an application, you can group parts of an application
logically and position these logical groups in the most effective locations. By creating groups of
servers, for example, you can partition a large application into separate, business-specific
components of manageable size and optimal location.

A distributed application allows you to do the following:

Perform data-dependent partitioning

Manage multiple resources

Enlarge the client and/or server model

Obtain transparent access to BEA Tuxedo system services

Establish multiple server groups

Use multiple computers simultaneously to do the work of one application, providing better
throughput and response time

Provide for replicated resources for increased availability

9-6 Setting Up a BEA Tuxedo Application

Features of a Distributed Application
Coordination of autonomous actions—autonomous actions are actions that involve
multiple server groups and/or multiple resource manager interfaces. The BEA Tuxedo
system enables you to coordinate autonomous actions among separate applications as a
single logical unit of work.

Resilience—when one of many machines fails, the remaining machines continue to
operate. Similarly, when one server in a server group fails, the remaining servers continue
the work.

Scalability—application load or capacity can be increased by:

– Placing more servers in a group.

– Adding machines to an application and redistributing groups across machines.

– Replicating a server group that resides on one machine, on other machines, and using
load balancing.

– Segmenting a database using data-dependent routing for groups that meet specific
criteria.

See Also
“How to Create the Configuration File for a Multiple-machine (Distributed) Application”
on page 3-3.

“What Is Load Balancing?” in Introducing BEA Tuxedo ATMI

“What Is Data-Dependent Routing?” in Introducing BEA Tuxedo ATMI

Scaling, Distributing, and Tuning CORBA Applications

../int/intatm.htm#769121
../int/intatm.htm#165571

Setting Up a BEA Tuxedo Application 10-1

C H A P T E R 10

Creating the Configuration File for a
Distributed ATMI Application

This section includes the following topics:

Configuration File Requirements for a Distributed BEA Tuxedo ATMI Application

Creating the RESOURCES Section

Creating the MACHINES Section

Creating the GROUPS Section

Creating the SERVICES Section

Creating the ROUTING Section

Example Configuration File for a Distributed Application

Modifying the Domain Gateway Configuration File to Support Routing

Note: For detailed information about creating a configuration file for a distributed BEA Tuxedo
CORBA application, refer to the Scaling, Distributing, and Tuning CORBA Applications
guide.

Configuration File Requirements for a Distributed BEA Tuxedo
ATMI Application

A distributed BEA Tuxedo ATMI application consists of one or more local or remote clients that
communicate with one or more servers residing on several machines linked through a network,
all of which are administered as a single entity in one BEA Tuxedo configuration file. To set up

10-2 Setting Up a BEA Tuxedo Application

a distributed configuration, you must create a configuration file that includes the following
sections:

RESOURCES section

MACHINES section

GROUPS section

NETGROUPS section (optional)

NETWORK section

SERVICES section

ROUTING section (if data-dependent routing is used)

If your configuration spans multiple domains and uses data-dependent routing, you must also
modify the domain gateway configuration file (DMCONFIG) to support routing functionality.

Creat ing the RESOURCES Sect ion

Setting Up a BEA Tuxedo Application 10-3

Creating the RESOURCES Section
In the RESOURCES section you define governing parameters for system-wide resources, such as
the maximum number of servers allowed in the application. All parameter settings in this section
apply to the entire application.

Note: The parameters described in the tables in this topic are used only for distributed
applications. For a description of the basic parameters that are available for any kind of
BEATuxedo application, see UBBCONFIG(5) in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Table 10-1 RESOURCES Section Parameters

Parameter Description

BBLQUERY (Optional) BBLQUERY sets a multiplier of the basic SCANUNIT between
status checks by the DBBL of all BBLs. The DBBL checks to
ensure that all BBLs have reported in within the BBLQUERY
cycle. If a BBL has not been heard from, the DBBL sends a
message to that BBL asking for status. If no reply is received,
the BBL is partitioned.

The value of BBLQUERY must be greater than 0. If this parameter
is not specified, the default is set so that (SCANUNIT *
BBLQUERY) is approximately 300 seconds.

BLOCKTIME (Optional) BLOCKTIME sets a multiplier of the basic SCANUNIT after
which a blocking call (for example, receiving a reply) times out.

The value of BLOCKTIME must be greater than 0. If this
parameter is not specified, the default is set so that (SCANUNIT *
BLOCKTIME) is approximately 60 seconds.

DBBLWAIT (Optional) DBBLWAIT sets a multiplier of the basic SCANUNIT for the
maximum amount of wall time a DBBL should wait for replies
from all its BBLs before timing out. Every time the DBBL
forwards a request to its BBLs, it waits for all of them to reply
with a positive acknowledgment before replying to the requester.
This option can be used for detecting dead or insane BBLs in a
timely manner.

The value of DBBLWAIT must be greater than 0. If this parameter
is not specified, the default is set so that (SCANUNIT *
DBBLWAIT) is the greater of SCANUNIT or 20 seconds.

../rf5/rf5.htm#365105

10-4 Setting Up a BEA Tuxedo Application

IPCKEY (Required) IPCKEY specifies the numeric key for the bulletin board. In a
single-processor environment, this key names the bulletin board.
In a multiprocessor environment, this key names the message
queue of the DBBL. This key is also used as a basis for deriving
the names of resources other than this well-known address, such
as the names for bulletin boards throughout a multiprocessor.

The value of IPCKEY must be greater than 32,768 and less than
262,143.

MASTER (Required) MASTER (string_value1[,string_value2]) specifies
the LMID of the machine on which the master copy of
TUXCONFIG is located. Also, if the application is run in MP
mode, MASTER indicates the machine on which the DBBL is run.
string_value2 names an alternate LMID location used during
process relocation and booting. If the primary location is not
available, the DBBL is booted at the alternate location and the
alternate TUXCONFIG file found there is used.

The value of both string_value1 and string_value2
must be LMIDs of machines defined in the MACHINES section.
Each string may contain up to 30 characters.

MAXGROUPS (Optional) MAXGROUPS specifies the maximum number of configured server
groups to be accommodated in the group table of the bulletin
board.

The value of MAXGROUPS must be greater than or equal to 100
and less than 32,768. The default is 100.

MAXSERVERS
(Optional)

MAXSERVERS specifies the maximum number of servers to be
accommodated in the server table of the bulletin board.

The value of MAXSERVERS must be greater than 0 and less than
8192. The default is 50.

MAXSERVICES
(Optional)

MAXSERVICES specifies the maximum number of services to be
accommodated in the services table of the bulletin board.

The value of MAXSERVICES must be greater than 0 and less than
32,768. The default is 100.

Table 10-1 RESOURCES Section Parameters (Continued)

Parameter Description

Creat ing the MACHINES Sect ion

Setting Up a BEA Tuxedo Application 10-5

Creating the MACHINES Section
In the MACHINES section you assign logical names to all the physical machines in your
configuration (including all the processing elements in multiprocessor machines) and define
other parameters for individual machines. The following table describes the parameters available
for defining machine names and other machine-specific parameters for each machine that
participates in a distributed application.

SANITYSCAN
(Optional)

SANITYSCAN sets a multiplier of the basic SCANUNIT between
sanity checks of the system.

The value of SCANUNIT must be greater than 0. The default is set
so that (SCANUNIT * SANITYSCAN) is approximately 120
seconds.

Sanity checks are performed on servers as well as on the bulletin
board data structure itself.

SCANUNIT (Optional) SCANUNIT sets the time interval (in seconds) between scans by
the bulletin board liaison for timed-out transactions and blocking
calls within service requests. This value is used as the basic unit
of scanning by the BBL. It affects the granularity with which
transaction timeout values can be specified on tpbegin(3c) and
the blocking timeout value specified with the BLOCKTIME
parameter. The SANITYSCAN, BBLQUERY, DBBLWAIT, and
BLOCKTIME parameters are multipliers of this unit for other
timed operations within the system.

The value of SCANUNIT must be a multiple of 2 or 5 greater than
0 and less than or equal to 60 seconds. The default is 10 seconds.

Table 10-1 RESOURCES Section Parameters (Continued)

Parameter Description

10-6 Setting Up a BEA Tuxedo Application

Table 10-2 MACHINES Section Parameters

Parameter Description

ENVFILE (Optional) ENVFILE specifies a file that defines the environment with which
all clients and servers on the machine are to be executed.

Lines must be in the form ident=value where ident contains
only underscores and/or alphanumeric characters, and begins with
an underscore or a letter of the alphabet.

If the value of ENVFILE is an invalid filename, no values are
added to the environment.

MAXACCESSERS
(Optional)

MAXACCESSERS specifies the maximum number of processes
that can access the bulletin board on this processor at any one
time. When calculating the appropriate number, you are not
required to count system administration processes, such as the
BBL and tmadmin, but you must count all application servers
and clients, and TMS servers.

The value of MAXACCESSERS must be greater than 0 and less
than 32,768. The default is the value specified in the RESOURCES
section.

MAXCONV (Optional) MAXCONV specifies the maximum number of simultaneous
conversations allowed for processes on a particular machine.

The value of MAXCONV must be greater than 0 and less than
32,768. The maximum number of simultaneous conversations per
server is 64. The default is the value specified in the RESOURCES
section.

MAXWSCLIENTS
(Optional)

MAXWSCLIENTS specifies the number of accesser entries on this
processor to be reserved for Workstation clients only. This
parameter is used only when the BEA Tuxedo System
Workstation component is used. This number takes a portion of
the total accesser slots specified with MAXACCESSERS. The
appropriate setting of this parameter helps conserve IPC resources
because Workstation client access to the system is multiplexed
through a BEA Tuxedo system-supplied surrogate, the
workstation handler.

The value of MAXWSCLIENTS must be greater than or equal to 0,
and less than 32,768; it may not be greater than the value of
MAXACCESSERS. (Assigning a value to MAXWSCLIENTS that is
higher than the value of MAXACCESSERS is an error.) The default
is 0.

Creat ing the GROUPS Sect ion

Setting Up a BEA Tuxedo Application 10-7

Creating the GROUPS Section
In the GROUPS section you identify each server group in your application so that the BEA Tuxedo
system can route requests to the member servers of specific groups.

The GROUPS section is populated with the number of server groups required for the application.
Server groups can all reside on the same site (SHM mode) or, in a distributed application, they can
reside on different sites (MP mode).

Parameters in the GROUPS section implement two important aspects of distributed transaction
processing:

They associate a group of servers with a particular LMID and a particular instance of a
resource manager.

By allowing a second LMID to be associated with the server group, they name an alternate
machine to which a group of servers can be migrated if the MIGRATE option is specified.

The following table describes the parameters in the GROUPS section.

Table 10-3 GROUPS Section Parameters

Parameter Description

ENVFILE ENVFILE specifies a file that defines the environment with which
all servers in the group are executed.

Lines must be in the form ident=value where ident contains
only underscores and/or alphanumeric characters.

If the value of ENVFILE is an invalid filename, no values are
added to the environment.

GRPNO (Required) GRPNO associates a number with a particular server group.

The number must be greater than 0 and less than 30,000. It must
be unique among entries in the GROUPS section.

LMID (Required) LMID identifies the machine on which the server group being
defined runs. A second LMID value can be specified (separated
from the first by a comma) for an alternate machine to which this
server group can be migrated if the MIGRATE option has been
specified. Servers in the group can be migrated if RESTART=Y to
migrate is specified in the GROUPS section.

The values of LMID must be the values assigned to the LMID
parameter in the MACHINES section.

10-8 Setting Up a BEA Tuxedo Application

Creating the SERVICES Section
The SERVICES section contains parameters that determine how application services are handled.
Every line of every entry in this section is associated with a service by its identifier name.

You must identify the service provided by each server group in the SERVICES section. Because
the same service can be link edited with more than one server, the SRVGRP parameter is provided
to tie the parameters for an instance of a service to a particular group of servers.

The following table describes the parameters in the SERVICES section that are available for
defining distributed applications.

Table 10-4 SERVICES Section Parameters

Parameter Description

LOAD (Optional) LOAD specifies the size of the load imposed by SVCNM on the
system.

The value of LOAD must be a number between 1 and 32,767,
inclusive. A higher number indicates a greater load. The default is
50.

PRIO (Optional) PRIO specifies the dequeuing priority of SVCNM.

The value of PRIO must be greater than 0 and less than or equal
to 100, with 100 being the highest priority. The default is 50.

ROUTING (optional) ROUTING specifies the name of the routing criteria used for this
service when data-dependent routing is being performed. If this
parameter is not specified, data-dependent routing is not
performed for this service.

The value of ROUTING may contain up to 15 characters. If
multiple entries exist for the same service name but with different
SRVGRP parameters, the ROUTING parameter must be the same
for all entries.

Creat ing the SERVICES Sec t i on

Setting Up a BEA Tuxedo Application 10-9

If your application includes transaction processing, you may also want to set three other
parameters in the SERVICES section: AUTOTRAN, ROUTING, and TRANTIME. These parameters are
described in “Configuring Your ATMI Application to Use Transactions” on page 5-1.

SRVGRP (Optional) SRVGRP specifies the host server group for the service that is
specified by SVCNM and controlled by the parameters set in this
section.

By setting SRVGRP, you can assign different parameter settings to
the same service when it is offered by different server groups. For
example, suppose your application provides two server groups,
GROUP1 and GROUP2, that offer a service called WITHDRAW. By
setting SRVGRP you can assign different load factors to each copy
of the service, as follows:
WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP1
WITHDRAW ROUTING=123 LOAD=60 SRVGRP=GROUP2

The value of SRVGRP may contain up to 30 characters.

SVCTIMEOUT
(Optional)

SVCTIMEOUT specifies the amount of time, in seconds, that is
allowed for processing of the indicated service. A timed-out
service causes the server processing the service request to be
terminated with a SIGKILL signal.

The value of SVCTIMEOUT must be greater than or equal to 0. A
value of 0 indicates that the service will not be timed out. The
default is 0.

Table 10-4 SERVICES Section Parameters

Parameter Description

10-10 Setting Up a BEA Tuxedo Application

The following listing shows a sample of the SERVICES section.

*SERVICES

WITHDRAW ROUTING=ACCOUNT_ID

DEPOSIT ROUTING=ACCOUNT_ID

OPEN_ACCT ROUTING=BRANCH_ID

Creating the ROUTING Section
In the ROUTING section you specify the criteria to be used when data-dependent routing is
performed. If a service is listed in multiple entries, each with a different SRVGRP parameter, the
ROUTING section must be set with the same value in all entries. Otherwise, routing cannot be done
consistently for that service. Because a service can be routed on one field only, the value of that
field must be the same in all entries for the same service.

You can add a ROUTING section to the configuration file to show mappings between data ranges
and groups. The information in this section enables the system to send a request to a server in a
specific group. Each ROUTING section item contains an identifier that is used in the SERVICES
section.

Lines within the ROUTING section have the following form.

CRITERION_NAME required_parameters

where CRITERION_NAME is the name of the routing entry specified in the SERVICES section for
data-dependent routing. The value of CRITERION_NAME must be a string with a maximum of 15
characters.

Example Conf igu rat ion F i l e f o r a D is t r ibu ted Appl i cat ion

Setting Up a BEA Tuxedo Application 10-11

The following table describes the parameters in the ROUTING section.

See Also
“How to Create the Configuration File for a Multiple-machine (Distributed) Application”
on page 3-3

UBBCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Scaling, Distributing, and Tuning CORBA Applications

Example Configuration File for a Distributed Application
The following excerpt from a sample UBBCONFIG file shows the GROUPS, SERVICES, and
ROUTING sections, which support data-dependent routing in a BEA Tuxedo application.

*GROUPS

BANKB1 GRPNO=1

BANKB2 GRPNO=2

BANKB3 GRPNO=3

#

*SERVICES

Table 10-5 ROUTING Section Parameters

Parameter Description

RANGES Ranges and associated server groups for the routing field.

FIELD Name of the routing field, which is assumed to be one of the
following: an FML buffer, an XML element or element attribute, a
view field name identified in an FML field table (using the
FLDTBLDIR and FIELDTBLS environment variables), or an FML
view table (using the VIEWDIR and VIEWFILES environment
variables). This information is used to obtain the associated field
value for data-dependent routing when sending a message.

BUFTYPE A list of types and subtypes of data buffers for which this routing
entry is valid.

The value of this parameter may contain up to 256 characters with
a maximum of 32 type/subtype combinations.

../rf5/rf5.htm#365105

10-12 Setting Up a BEA Tuxedo Application

WITHDRAW ROUTING=BY_ACCOUNT_ID

DEPOSIT ROUTING=BY_ACCOUNT_ID

INQUIRY ROUTING=BY_ACCOUNT_ID

OPEN_ACCT ROUTING=BY_BRANCH_ID

CLOSE_ACCT ROUTING=BY_BRANCH_ID

#

*ROUTING

BY_ACCOUNT_ID FIELD=ACCOUNT_ID BUFTYPE=”FML”

 RANGES=”MIN - 9999:*,

 10000-49999:BANKB1,

 50000-79999:BANKB2,

 80000-109999:BANKB3,

 :”

BY_BRANCH_ID FIELD=BRANCH_ID BUFTYPE=”FML”

 RANGES=”MIN - 0:*,

 1-4:BANKB1,

 5-7:BANKB2,

 8-10:BANKB3,

 :”

Modifying the Domain Gateway Configuration File to Support
Routing

All domain gateway configuration information is stored in a binary file called BDMCONFIG. This
file is created by first writing a text configuration file called DMCONFIG and then compiling it into
a binary version called BDMCONFIG. The compiled BDMCONFIG file can be updated while the
system is running by using the dmadmin(1) command. Although the BEA Tuxedo
documentation refers to these configuration files as DMCONFIG and BDMCONFIG, you can give
these files any names.

You must have one BDMCONFIG file for each BEA Tuxedo application to which you want to add
Domains functionality. System access to the BDMCONFIG file is provided through the Domains
administrative server, DMADM(5). When a gateway group is booted, the gateway administrative
server, GWADM(5), requests from the DMADM server a copy of the configuration required by that
group. The GWADM server and the DMADM server also ensure that run-time changes to the
configuration are reflected in the corresponding domain gateway groups.

Note: For more information about the DMCONFIG file, refer to DMCONFIG(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

../rf5/rf5.htm#2885315

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Setting Up a BEA Tuxedo Application 10-13

Description of ROUTING Section Parameters in DMCONFIG
The DM_ROUTING section provides information for data-dependent routing of service requests
using FML, XML, VIEW, X_C_TYPE, and X_COMMON typed buffers. Lines within the DM_ROUTING
section have the following form.

CRITERION_NAME required_parameters

where CRITERION_NAME is the name of the routing entry specified in the SERVICES section. The
value of CRITERION_NAME must be a string with a maximum of 15 characters.

10-14 Setting Up a BEA Tuxedo Application

The following table describes the parameters in the DM_ROUTING section.

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Setting Up a BEA Tuxedo Application 10-15

10-16 Setting Up a BEA Tuxedo Application

Parameter Description

FIELD (Optional) Specifies the name of the routing field, which is assumed to be
one of the following: an FML buffer, an XML element or element
attribute, a view field name identified in an FML field table
(using the FLDTBLDIR and FIELDTBLS environment
variables), or an FML view table (using the VIEWDIR and
VIEWFILES environment variables). This information is used to
obtain the associated field value for data-dependent routing
when sending a message.

If a field in an FML32 buffer is used for routing, it must have a
field number less than or equal to 8191.

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Setting Up a BEA Tuxedo Application 10-17

RANGES (Optional) Specifies the ranges and associated remote domain names
(RACCESSPOINT) for the routing field. The value of RANGES
must be a string enclosed in double quotes. The enclosed string,
in turn, must consist of a comma-separated ordered list of
range/RACCESSPOINT pairs.

The value of range may be either a single value (a signed
numeric value or a character string enclosed in single quotes), or
a range of the form lower - upper (where lower and upper
are both signed numeric values or character strings in single
quotes).

The value of lower must be less than or equal to upper. A
single quote embedded in a character string value, as in
“O’Brien,” for example, must be preceded by two back slashes:
“O\\’Brien”.

Use MIN to indicate the minimum value for the data type of the
associated FIELD. For strings and carrays, it is the null string;
for character fields, it is 0; for numeric values, it is the minimum
numeric value that can be stored in the field.

Use MAX to indicate the maximum value for the data type of the
associated FIELD. For strings and carrays, it is effectively an
unlimited string of octal-255 characters; for a character field, it
is a single octal-255 character; for numeric values, it is the
maximum numeric value that can be stored in the field. Thus,
MIN - -5 is all numbers less than or equal to -5, and 6 - MAX
is all numbers greater than or equal to 6.

The metacharacter * (wildcard) in the position of a range
indicates any values not covered by other ranges previously seen
in the entry. Only one wildcard range is allowed per entry and it
should be listed last (ranges following it are ignored).

Parameter Description

10-18 Setting Up a BEA Tuxedo Application

Routing Field Description
The value in the routing field can be any data type supported in FML or VIEW; it may be a numeric
range or a string range. The following rules apply to string range values for string, carray, and
character field types:

They must be enclosed by single quotation marks and cannot be preceded by a plus or
minus sign.

A short or long integer value must be a string of digits, optionally preceded by a plus or
minus sign.

Floating point numbers must be written in the form required by the C compiler or atof():
a plus or minus sign, followed by a string of digits (optionally containing a decimal point),
then an optional e or E followed by an optional sign or space, followed by an integer.

When a field value matches a range, the associated RACCESSPOINT value specifies the
remote domain to which the request should be routed. An RACCESSPOINT value of *
indicates that the request may be sent to any remote domain known by the gateway group.
Within a range/RACCESSPOINT pair, the range must be separated from the
RACCESSPOINT by a: (colon).

BUFTYPE (Optional) BUFTYPE provides a list of types and subtypes of data buffers
for which this routing entry is valid. Valid types are FML, VIEW,
X_C_TYPE, and X_COMMON. No subtype can be specified for
type FML, and subtypes are required for the other types (* is not
allowed). Duplicate type/subtype pairs cannot be specified for
the same routing criteria name; more than one routing entry can
have the same criteria name as long as the type/subtype pairs are
unique.

If multiple buffer types are specified for a single routing entry,
the data types of the routing field for each buffer type must be
the same. If the field value is not set (for FML buffers), or does
not match any specific range, and a wildcard range has not been
specified, an error is returned to the application process that
requested the execution of the remote service.

Parameter Description

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Setting Up a BEA Tuxedo Application 10-19

Example of a 5-Site Domain Configuration Using Routing
The following sample configuration file defines a two-domain application distributed across five
sites. The five sites include a Central Bank Office and four bank branches. Three of the branches
belong to a BEA Tuxedo domain. The fourth branch belongs to another TP domain, and OSI-TP
is used to communicate with that domain.

The example shows the BEA Tuxedo system domain gateway configuration file from the Central
Bank point of view. In the DM_TDOMAIN section, this example shows a mirrored gateway for b01.

Listing 10-1 Domains Configuration File for Five Sites

TUXEDO DOMAIN CONFIGURATION FILE FOR THE CENTRAL BANK
#
#
*DM_LOCAL
local_domain_name Gateway_Group_name domain_type domain_ID log_device
[audit log] [blocktime]
[log name] [log offset] [log size]
[maxaccesspoint] [maxraptran] [maxtran]
[maxdatalen] [security]
[tuxconfig] [tuxoffset]

#
#
DEFAULT: SECURITY = NONE
c01 GWGRP = bankg1
 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C01"
c02 GWGRP = bankg2
 TYPE = OSITP
 ACCESSPOINTID = "BA.CENTRAL01"
 DMTLOGDEV = "/usr/apps/bank/DMTLOG"
 DMTLOGNAME = "DMTLG_C02"
 NWDEVICE = "OSITP"
 URCH = "ABCD"
#
*DM_REMOTE
#remote_domain_name domain_type domain_ID
#
b01 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.BANK01"
b02 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.BANK02"

10-20 Setting Up a BEA Tuxedo Application

b03 TYPE = TDOMAIN
 ACCESSPOINTID = "BA.BANK03"
b04 TYPE = OSITP
 ACCESSPOINTID = "BA.BANK04"
 URCH = "ABCD"
#
*DM_TDOMAIN
#
local_or_remote_domain_name network_address [nwdevice]
#
Local network addresses
c01 NWADDR = "//newyork.acme.com:65432" NWDEVICE ="/dev/tcp"
c02 NWADDR = "//192.76.7.47:65433" NWDEVICE ="/dev/tcp"
Remote network addresses: second b01 specifies a mirrored gateway
b01 NWADDR = "//192.11.109.5:1025" NWDEVICE = "/dev/tcp"
b01 NWADDR = "//194.12.110.5:1025" NWDEVICE = "/dev/tcp"
b02 NWADDR = "//dallas.acme.com:65432" NWDEVICE = "/dev/tcp"
b03 NWADDR = "//192.11.109.156:4244" NWDEVICE = "/dev/tcp"
#
*DM_OSITP
#
#local_or_remote_domain_name apt aeq
[aet] [acn] [apid] [aeid]
[profile]
#
c02 APT = "BA.CENTRAL01"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.3},{1}"
 ACN = "XATMI"
b04 APT = "BA.BANK04"
 AEQ = "TUXEDO.R.4.2.1"
 AET = "{1.3.15.0.4},{1}"
 ACN = "XATMI"
*DM_EXPORT
#service_name [Local_Domain_name] [access_control] [exported_svcname]
[inbuftype] [outbuftype]
#
open_act ACL = branch
close_act ACL = branch
credit
debit
balance
loan LACCESSPOINT = c02 ACL = loans
*DM_IMPORT
#service_name [Remote_domain_name] [local_domain_name]
[remote_svcname] [routing] [conv]
[trantime] [inbuftype] [outbuftype]
#
tlr_add LACCESSPOINT = c01 ROUTING = ACCOUNT

Modi f y ing the Domain Gateway Conf igurat ion F i l e t o Suppor t Rout ing

Setting Up a BEA Tuxedo Application 10-21

tlr_bal LACCESSPOINT = c01 ROUTING = ACCOUNT
tlr_add RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU002"
tlr_bal RACCESSPOINT = b04 LACCESSPOINT = c02 RNAME ="TPSU003"
*DM_ROUTING
routing_criteria field typed_buffer ranges
#
ACCOUNT FIELD = branchid BUFTYPE ="VIEW:account"
 RANGES ="MIN - 1000:b01, 1001-3000:b02, *:b03"
*DM_ACCESS_CONTROL
#acl_name Remote_domain_list
#
branch ACLIST = b01, b02, b03
loans ACLIST = b04

See Also
“Understanding the Domains Configuration File” on page 1-15 in Using the BEA Tuxedo
Domains Component

“Setting Up a Domains Configuration” on page 2-27 in Using the BEA Tuxedo Domains
Component

Scaling, Distributing, and Tuning CORBA Applications

../add/addom.htm#154981
../add/addomc.htm#464541

10-22 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 11-1

C H A P T E R 11

Setting Up the Network for a
Distributed Application

This topic includes the following sections:

Configuring the Network for a Distributed Application

How Data Moves Over a Network

How Data Moves Over Parallel Networks

Example of a Network Configuration for a Simple Distributed Application

How Failover and Failback Work in Scheduling Network Data

Example Configuration of Multiple Netgroups

Configuring the Network for a Distributed Application
A distributed application is an application that runs on multiple computers, each of which
supports an installation of the BEA Tuxedo system. These computers are connected and can
communicate with each other through a network that includes hardware, software, access
methods, and communication protocols. The BEA Tuxedo system encodes, routes, and decodes
messages, and uses the network to ship those messages between machines. The system performs
these tasks automatically.

To configure the networking functionality required to support a distributed application, include
the following entries in the configuration file.

11-2 Setting Up a BEA Tuxedo Application

In This
Section . . .

Set This Parameter . .
.

To . . .

RESOURCES MODEL (Required) MP. This parameter enables all other networking parameters. It is
used only for networked machines. SHM is used for a
single-machine configuration, even if the machine is a
multiprocessor.

OPTIONS (Required) LAN (Local Area Network) to indicate that communication will
take place between separate machines, rather than between
separate processes on the same machine.

MAXNETGROUPS
(Optional)

Designate a limit on the number of NETGROUPS that can be
defined. The default is 8; the upper limit, 8192.

Conf igur ing the Network fo r a D is t r ibu ted Appl i cat ion

Setting Up a BEA Tuxedo Application 11-3

MACHINES TYPE=string
(Optional)

Determine whether encoding is required when messages are
exchanged by two machines. The TYPE parameter specifies the
data representation being used on each machine being defined. If
a message is being sent from a machine on which one type of
data representation is being used to a machine on which a
different type of data representation is being used, the message
to be sent must be encoded before transmission and decoded
upon arrival.

If the machines in question both use the same type of data
representation, however, the system skips the
encoding/decoding process.

Example 1
LMID_1 TYPE = “abc”
LMID_2 TYPE = “abc”

Encoding is not used in this case.

Example 2
LMID_1 TYPE = “HP”
LMID_2 TYPE = “SUN”

Encoding is used in this case.

You do not need to set this parameter if the same type of data
representation is used on all machines that will exchange
messages. The parameter must be set only for a machine on
which a different type is used. For example, if you have nine
SPARC machines and one HP machine, you must specify
TYPE=string only for the HP. For the SPARC machines, the
default null string identifies them as the same type.

In This
Section . . .

Set This Parameter . .
.

To . . .

11-4 Setting Up a BEA Tuxedo Application

CMPLIMIT=remote
[, local] (Optional)

Specify the compression threshold, that is, the minimum byte
size for a message to be compressed before being sent to a
remote and/or local destination. The value of both remote and
local is a number between 0 and MAXLONG. If CMPLIMIT is
set to only one value, it is assumed that the specified value is the
remote argument and that messages sent to local destinations
are never compressed.

For example, if you set CMPLIMIT=1024, than any message
greater than 1024 bytes bound for a remote location is
compressed.

Compression thresholds can also be specified with the variable
TMCMPLIMIT. See the discussion, in tuxenv(5), about the
variable TMCMPPRFM, which sets the degree of compression in a
range of 1 to 9.

NETLOAD=number
(Optional)

Add an application-specific number to the value of LOAD for a
remote service. The result is used by the system to evaluate
whether a request should be processed locally or sent to a remote
machine. A higher NETLOAD results in less traffic being sent to
a remote machine.

NETGROUPS
(Optional)

NETGROUP
(Required)

Specify the name assigned by the application to a particular
group of machines. The name may contain up to 30 characters.
One group, consisting of all the machines on the network, must
be named DEFAULTNET.

NETGRPNO=number
(Required)

Specify a number by which the system can identify a group of
machines. The value can be any number between 1 and 8192. For
DEFAULTNET, the value of NETGRPNO must be 0.

NETPRIO=number
(Optional)

Assign a priority to a NETGROUP. This parameter helps the
system determine which network connection to use. The number
must be between 0 and 8192. Assign a higher priority to your
faster circuits; give your lowest priority to DEFAULTNET.

In This
Section . . .

Set This Parameter . .
.

To . . .

How Data Moves Over a Network

Setting Up a BEA Tuxedo Application 11-5

How Data Moves Over a Network
In a distributed application, data is sent across the network as follows:

At the sending end—the BRIDGE sends a message to destination_machine by writing
the message to a virtual circuit and delegating, to the operating system, responsibility for
sending it. The operating system retains a copy of every pending message. If a network
error occurs, however, pending messages are lost.

At the receiving end—the BRIDGE process listens on a particular network address for
incoming messages.

NETWORK
(Optional)

LMID (Required) Map the specified machine to one of the entries in the
MACHINES section.

NADDR=string
(Required)

Specify the listening address for the BRIDGE process on this
LMID. There are four valid formats for specifying this network
address. See the NETWORK section of UBBCONFIG(5) for details.

NLSADDR=string
(Required)

Specify the network address for the tlisten process on this
LMID. Valid formats are the same as the valid formats for
NADDR.

NETGROUP=string
(Optional)

Specify a NETWORK group name. The value of string must be
a group name specified in the NETGROUPS section. The default
is DEFAULTNET.

In This
Section . . .

Set This Parameter . .
.

To . . .

11-6 Setting Up a BEA Tuxedo Application

How Data Moves Over Parallel Networks
In a distributed application there are several advantages to using parallel data circuits for sending
data across the network:

By listening at more than one address, the BRIDGE achieves higher availability.

By sending data simultaneously on parallel data circuits, the BRIDGE can achieve a higher
throughput, if the network was the limiting factor before.

When you configure parallel data circuits, the software does not necessarily fail to deliver
a message if the original destination circuit is busy. The system attempts to schedule traffic
over the circuit with the highest network group number (NETGRPNO). If this circuit is busy,
the traffic is automatically scheduled over the circuit with the next (that is, the second
highest) network group number. When all circuits are busy, data is queued until a circuit is
available.

Before making a decision to use parallel data circuits, however, you should determine whether it
will be important, in your application, for messages to be kept in sequence. The system
guarantees that conversational messages are kept in the correct sequence by binding the
conversation connection to one particular data circuit.

If your application will require all messages to be kept in sequence, you must program the
application to keep track of the sequence for nonconversational messages. If you are using this
approach, you may not want to configure parallel data circuits.

The following figure describes how data flows when one machine tries to contact another. The
figure is based on a sample scenario involving two machines: machine A and machine B. First,
the BRIDGE identifies the network groups that are common to both machines: the
MAGENTA_GROUP, the GREEN_GROUP, and the DEFAULTNET.

Data flows in parallel on network groups with the same priority (that is, groups for which the
same value is assigned to the NETPRIO parameter). Network groups with different priorities are
used for failover.

How Data Moves Over Para l l e l Ne tworks

Setting Up a BEA Tuxedo Application 11-7

Figure 11-1 Flow of Data over the BRIDGE

11-8 Setting Up a BEA Tuxedo Application

Example of a Network Configuration for a Simple Distributed
Application

The following example shows how to configure a simple network:

The following configuration file excerpt shows a NETWORK
section for a 2-site configuration.

*NETWORK
 SITE1 NADDR="//mach1:80952”
 NLSADDR="//mach1:serve"
#
 SITE2 NADDR="//mach386:80952"
 NLSADDR="//mach386:serve"

How Failover and Failback Work in Scheduling Network Data
Data flows over the highest available priority circuit. If all network groups have the same
priority, data travels over all networks simultaneously. If all circuits at the current priority fail,
data is sent over the next lower priority circuit. This process is called failover. When failover
occurs, the failed connections are retried periodically.

When higher priority network connections are reestablished, failback occurs and no further data
is scheduled for the lower priority connection. The lower priority connection is disconnected in
an orderly fashion.

If attempts to connect to all network addresses have been made and have failed, new attempts to
connect are made the next time application or system data needs to be sent between machines.

Example Configuration of Multiple Netgroups
The hypothetical First State Bank has a network of five machines (A-E). These machines are
configured in four network groups and each machine is used in two or three groups.

Note: The hardware and system software prerequisites for configuring multiple network groups
(NETGROUPS) are beyond the scope of this document. For example, machines are
frequently required to belong to more than one physical network. Each TCP/IP symbolic
address must be identified in the /etc/hosts file or in the DNS (Domain Name
Services).

Example Conf igurat i on o f Mul t ip le Ne tgroups

Setting Up a BEA Tuxedo Application 11-9

In the following example, it is assumed that in addresses written in the form
//A_CORPORATE:5345, the string A_CORPORATE is specified in the /etc/hosts file or
in DNS.

The four groups in the First State Bank network include:

DEFAULTNET (the default network, which is the corporate WAN)

MAGENTA_GROUP (a LAN)

BLUE_GROUP (a LAN)

GREEN_GROUP (a private LAN that provides high-speed, fiber, point-to-point links between
member machines)

All machines belong to DEFAULTNET (the corporate WAN). In addition, each machine is
associated with either the MAGENTA_GROUP or the BLUE_GROUP. Finally, some machines in the
MAGENTA_GROUP also belong to the GREEN_GROUP. The following diagram illustrates group
assignments for the network.

Figure 11-2 Example Network Groups

In this example, machines A and B have addresses for the following:

DEFAULTNET (the corporate WAN)

MAGENTA_GROUP (LAN)

GREEN_GROUP (LAN)

Machine C has addresses for the following:

DEFAULTNET (the corporate WAN)

11-10 Setting Up a BEA Tuxedo Application

MAGENTA_GROUP (LAN)

Machines D and E have addresses for the following:

DEFAULTNET (the corporate WAN)

BLUE_GROUP (LAN)

Because the local area networks are not routed to all locations, machine D (in the BLUE_GROUP
LAN) may contact machine A (in the GREEN_GROUP LAN) only by using the single address they
have in common: the corporate WAN network address.

Configuration File for the Sample Network
To set up the configuration described in the preceding section, the First State Bank administrator
defines each group in the NETGROUPS and NETWORK sections of the UBBCONFIG file as follows:

*NETGROUPS

DEFAULTNET NETGRPNO = 0 NETPRIO = 100 #default

BLUE_GROUP NETGRPNO = 9 NETPRIO = 200

MAGENTA_GROUP NETGRPNO = 125 NETPRIO = 200

GREEN_GROUP NETGRPNO = 13 NETPRIO = 300

*NETWORK

A NETGROUP=DEFAULTNET NADDR="//A_CORPORATE:5723”

A NETGROUP=MAGENTA_GROUP NADDR="//A_MAGENTA:5724"

A NETGROUP=GREEN_GROUP NADDR="//A_GREEN:5725"

B NETGROUP=DEFAULTNET NADDR="//B_CORPORATE:5723"

B NETGROUP=MAGENTA_GROUP NADDR="//B_MAGENTA:5724"

B NETGROUP=GREEN_GROUP NADDR="//B_GREEN:5725"

C NETGROUP=DEFAULTNET NADDR="//C_CORPORATE:5723"

C NETGROUP=MAGENTA_GROUP NADDR="//C_MAGENTA:5724"

D NETGROUP=DEFAULTNET NADDR="//D_CORPORATE:5723"

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

E NETGROUP=DEFAULTNET NADDR="//E_CORPORATE:5723"

E NETGROUP=BLUE_GROUP NADDR="//E_BLUE:5726"

Example Conf igurat i on o f Mul t ip le Ne tgroups

Setting Up a BEA Tuxedo Application 11-11

Assigning Priorities for Each Network Group
Assigning priorities appropriately for each NETGROUP enables you to maximize the capability of
network BRIDGE processes. When determining NETGROUP priorities, keep in mind the following
considerations:

Data flows over only the highest available priority circuit.

If all network groups have the same priority, data travels over all circuits simultaneously.

If all circuits at the current priority fail, data is sent over the next lower priority circuit.

When a higher priority circuit becomes available, data flows over it.

All unavailable higher priority circuits are retried periodically.

After connections to all network addresses have been tried and have failed, connections are
tried again the next time data needs to be sent between machines.

The default value of NETPRIO is 100.

Example Assignment of Priorities to Network Groups
The following diagram shows how the First State Bank administrator assigns priorities to the
available network groups.

11-12 Setting Up a BEA Tuxedo Application

Figure 11-3 Assigning Priorities to Network Groups

The following priorities are assigned:

BLUE_GROUP=200

DEFAULTNET=100

GREEN_GROUP=300

MAGENTA_GROUP=200

Example NETGROUP and NETWORK Sections
The lowest priority among network groups is reserved for the default network group, that is, the
group that is not used unless all others are unavailable. Therefore, if you want to limit the use of
a particular network, such as a satellite link for which per-minute fees are incurred, designate that
network as the default network group.

You can assign a network priority to the default network group by setting the NETPRIO parameter
for DEFAULTNET just as you do for any other group. If you do not specify a priority for
DEFAULTNET, a default of 100 is used, as shown in the following example:

*NETGROUP

DEFAULTNET NETGRPNO = 0 NETPRIO = 100

For DEFAULTNET, the value of the network group number (NETGRPNO) must be zero; any other
number is invalid. The value of NETGRPNO must be unique for each entry.

Example Conf igurat i on o f Mul t ip le Ne tgroups

Setting Up a BEA Tuxedo Application 11-13

On the other hand, the same value of NETPRIO may be assigned to multiple network groups. For
example, in the First State Bank configuration file, the same network priority (NETPRIO=200) is
assigned to both the MAGENTA_GROUP and the GREEN_GROUP.

Each network address (NETWORK) is associated by default with the DEFAULTNET network group.
This parameter may be specified explicitly for either of two reasons: to maintain uniformity
among entries, or to associate the network address being defined with a second network group.

*NETWORK

D NETGROUP=BLUE_GROUP NADDR="//D_BLUE:5726"

11-14 Setting Up a BEA Tuxedo Application

Setting Up a BEA Tuxedo Application 12-1

C H A P T E R 12

About Workstation Clients

This topic includes the following sections:

What Is the Workstation Component?

Sample Application with Four Workstation Clients

How the Workstation Client Connects to an Application

What Is the Workstation Component?
The Workstation component of the BEA Tuxedo system allows application clients to reside on a
machine that does not have a full server-side installation, that is, a machine that does not support
any administration or application servers. All communication between the client and the
application servers takes place over the network.

A Workstation client process can run on a Windows XP or UNIX platform. The client has access
to the ATMI. The networking behind requests is transparent to the user. The Workstation client
registers with the system through a Workstation handler (WSH) and has access to the same
capabilities as a native client.

All communication between a Workstation client and application server is done through a
Workstation handler (WSH) process.

Workstation clients can perform almost all the same functions that can be performed by network
clients. They can, for example:

Send and receive messages

12-2 Setting Up a BEA Tuxedo Application

Begin, end, or commit transactions

Send and receive unsolicited messages

Take full advantage of any security mechanism offered to BEA Tuxedo clients

Sample Application with Four Workstation Clients
The following figure shows an example of an application with four Workstation clients.

Figure 12-1 Bank Application with Four Workstation Clients

Two workstation clients are running on a UNIX system; another two Workstation clients, on
Windows. All workstation clients initially joined the application through the Workstation listener
(WSL), which delegates subsequent communication to a Workstation handler. This process
differs from the process that occurs when native clients join an application: in the latter case, the
native clients attach directly to the bulletin board upon joining.

Administrative servers and application servers are located on SITE1 and SITE2. Any service
request by a Workstation client to the application is sent over the network to the WSH. This
process forwards the request to the appropriate server, gets a reply from the server, and sends the
reply to the Workstation client.

Sample App l i cat i on wi th Four Workstat ion C l ients

Setting Up a BEA Tuxedo Application 12-3

Note: The term resource manager refers to an implementation of the XA standard interfaces
that provides transaction capabilities and permanence of actions for a BEA Tuxedo
application. The most common example of a resource manager is a database. A resource
manager is accessed and controlled within a global transaction.

Because the application is distributed across two machines in this example, it is running in MP
mode. The Workstation client sends a request to one Workstation handler, the Workstation
handler forwards the request to a BRIDGE process, and the BRIDGE process, in turn, forwards the
request to the correct machine.

12-4 Setting Up a BEA Tuxedo Application

How the Workstation Client Connects to an Application
The following flowchart shows how a Workstation client connects to an application.

The client connects to the WSL process using a known network address. The process for
establishing this connection is initiated when the client calls tpchkauth() or tpinit(). The
WSL returns the address of a WSH to the client, and then notifies the Workstation handler
process of the connection request. The WSC connects to the WSH. All further communication
between the WSC and the application takes place through the WSH.

Setting Up a BEA Tuxedo Application 13-1

C H A P T E R 13

Setting Up Workstation Clients

This topic includes the following sections:

Defining Workstation Clients

Specifying the Maximum Number of Workstation Clients

Defining a Workstation Listener (WSL) as a Server

Detecting Network Failures

Sample Configuration File that Supports Workstation Clients

Defining Workstation Clients
Before a Workstation client can join a BEA Tuxedo application, the application environment
must be prepared to accommodate it. The BEA Tuxedo system provides the variables described
in the following table for setting up your environment. Two (TUXDIR and WSNADDR) are required;
the rest are optional. Defaults are available for all parameters except WSENVFILE.

13-2 Setting Up a BEA Tuxedo Application

To Specify . . . Set This Environment
Variable . . .

The application password. (Useful only for applications in
which security is implemented through password usage.)
Clients that run from scripts can get the application password
from this variable.

APP_PW (Optional)

The maximum number of significant bits of the encryption key
for link-level encryption. Value can be 0 (if no encryption is
used), or 40, 56, or 128 (if the number specified is the number
of significant bits in the encryption key).

TMMAXENCRYPTBITS
(Optional)

The minimum number of significant bits of the encryption key
for link-level encryption. Value can be 0 (if no encryption is
used), or 40, 56, or 128 (if the number specified is the number
of significant bits in the encryption key).

TMMINENCRYPTBITS
(Optional)

The directory in which replies are stored when the WSRPLYMAX
limit has been reached. The default is the working directory.

TMPDIR (Optional)

Specifies the code-set encoding name that the workstation
machine includes in an allocated MBSTRING typed buffer.

TPMBENC has no default value. For a Workstation client using
MBSTRING typed buffers, TPMBENC must be defined on the
workstation machine.

TPMBENC (Optional)

Specifies whether the workstation machine automatically
converts the data in a received MBSTRING buffer to the
encoding defined in TPMBENC. By default, the automatic
conversion is turned off, meaning that the data in the received
MBSTRING buffer is delivered to the Workstation client as
is—no encoding conversion. Setting TPMBACONV to any value,
say Y (yes), turns on the automatic conversion.

TPMBACONV (Optional)

The location of the BEA Tuxedo system software on this
workstation. The client cannot connect unless this environment
variable is set.

TUXDIR (Required)

Specifies whether the workstation machine caches Document
Type Definition (DTD), XML schema, and entity files. By
default, the caching is turned on (Y). Setting
URLENTITYCACHING to N (no) turns off the caching.

URLENTITYCACHING
(Optional)

Def in ing Workstat ion C l ients

Setting Up a BEA Tuxedo Application 13-3

Specifies the directory in which the workstation machine
caches DTD, schema, and entity files. The
URLENTITYCACHEDIR variable specifies the absolute
pathname for the cached files. If URLENTITYCACHEDIR is not
specified, the default directory becomes
URLEntityCachedir, which will be created in the current
working directory of the Workstation client process provided
that the appropriate write permissions are set.

URLENTITYCACHEDIR
(Optional)

The network device to be used. The default is an empty string. WSDEVICE (Optional)

The name of the file in which all environment variables may be
set. There is no default for this variable.

WSENVFILE (Optional)

The network address used by the Workstation client when
connecting to the Workstation listener or Workstation handler.
This variable, along with the WSFRANGE variable, determines
the range of TCP/IP ports to which a Workstation client
attempts to bind before making an outbound connection. This
address must be a TCP/IP address

WSFADDR (Optional)

The range of TCP/IP ports to which a Workstation client
process attempts to bind before making an outbound
connection. The WSFADDR parameter specifies the base address
of the range.

WSFRANGE (Optional)

A list of one or more network addresses of the WSL that the
client wants to contact. This address must match the address of
a WSL process in the application configuration file.

WSNADDR (Required)

The amount of core memory to be used for buffering
application replies. The default is 256,000 bytes.

WSRPLYMAX (Optional)

The machine type. If the value of WSTYPE matches the value of
TYPE in the configuration file for the WSL machine, no
encoding/decoding is performed. The default is the empty
string.

WSTYPE (optiOnal)

To Specify . . . Set This Environment
Variable . . .

13-4 Setting Up a BEA Tuxedo Application

Specifying the Maximum Number of Workstation Clients
To enable Workstation clients to join an application, you must specify the MAXWSCLIENTS
parameter in the MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS is the only parameter that has special significance for the Workstation feature.
MAXWSCLIENTS tells the BEA Tuxedo system at boot time how many accesser slots to reserve
exclusively for Workstation clients. For native clients, each accesser slot requires one semaphore.
However, the Workstation handler process (executing on the native platform on behalf of
Workstation clients) multiplexes Workstation client accesses through a single accesser slot and,
therefore, requires only one semaphore. This capability is an additional benefit of the
Workstation component. By putting more clients on workstations instead of on the native
platform, an application reduces its IPC resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in MAXACCESSERS.
This is important to remember when specifying MAXWSCLIENTS; enough slots must be left to
accommodate native clients as well as servers. If you specify a value for MAXWSCLIENTS greater
than that of MAXACCESSERS, native clients and servers fail at tpinit() time. The following table
describes the MAXWSCLIENTS parameter.

Defining a Workstation Listener (WSL) as a Server
Workstation clients access your application through a WSL process and one or more WSH
processes. The WSL can support multiple Workstation clients. It acts as the single point of
contact for all the Workstation clients connected to your application at the network address
specified on the WSL command line. The listener schedules work for one or more Workstation
handler processes.

A WSH process acts as a surrogate within the administrative domain of your application for
clients on remote workstations. The WSH uses a multiplexing scheme to support multiple
Workstation clients concurrently.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of WSCs that may connect to a
machine.

The syntax is MAXWSCLIENTS=number. The default is 0.

If MAXWSCLIENTS is not specified, WSCs may not connect to the
machine being described.

Def in ing a Worksta t ion L is tener (WSL) as a Server

Setting Up a BEA Tuxedo Application 13-5

To join Workstation clients to an application, you must specify the Workstation listener (WSL)
processes in the SERVERS section of the UBBCONFIG file. Use the same syntax you use to specify
a server.

Passing Information to a WSL Process
To pass information to a WSL process, you can use the command-line option string, CLOPT. The
format of the CLOPT parameter is as follows:

CLOPT="[-A] [servopts_options] -- -n netaddr [-d device]

 [-w WSHname][-t timeout_factor][-T Client_timeout]

[-m minh][-M maxh][-x mpx_factor]

 [-p minwshport][-P maxwshport]

 [-I init_timeout][-c compression_threshold]

 [-k compression_threshold]

 [-z bits][-Z bits][-H external_netaddr]

 [-N network_timeout][-K{client|handler|both|none}]"

The -A option requests that the WSL offer all its services when it is booted. This option is
included by default, but it is shown here to emphasize the distinction between system-supplied
servers and application servers. When application servers are booted, they sometimes offer only
a subset of their available services.

The double-dash (--) marks the beginning of a list of parameters that is passed to the WSL after
it has been booted.

Using Command-line Options Set with CLOPT
You can specify any of the following command-line options in the CLOPT string after the
double-dash string (--).

Note: For a complete list of the CLOPT command-line options, see servopts(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.

../rf5/rf5.htm#7588415

13-6 Setting Up a BEA Tuxedo Application

Use This Command-line
Option . . .

To Specify . . .

-n netaddr

(Required)
The network address used by WSCs to contact the listener.
The WSC must set the appropriate environment variable
(WSNADDR) to the value specified after -n.

[-d device]
(Required for some transport
interfaces)

Specify the network device name.

This is an optional parameter because only some transport
interfaces require it. Sockets, for example, does not require
this parameter.

[-t timeout] The amount of time to allow for a client to connect to the
WSH.

To calculate the total amount of time to allow for this
purpose, the system multiplies the value of timeout by the
value of the SCANUNIT parameter.

The default is 3 in a nonsecure application, and 6 in a secure
application. In this context we refer to an application as
secure if one of the following parameters is set:
• USER_AUTH

• ACL

• MANDATORY_ACL

• APP_PW

[-w name] The name of the WSH process that should be booted for this
listener. The default is WSH, which is the name of the handler
provided. If another handler process is built with the
buildwsh(1) command, that name is specified here.

[-m number] The minimum number of handlers that should be booted and
always available. The default is 0.

[-M number] The maximum number of handlers that can be booted. The
default is the value of MAXWSCLIENTS for the machine
being configured, divided by the multiplexing value
(specified with -x).

[-x number] The maximum number of clients that a WSH can multiplex
at one time. The value must be greater than 0. The default is
10.

Detect ing Ne tw ork Fa i lu res

Setting Up a BEA Tuxedo Application 13-7

See Also
servopts(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Detecting Network Failures
The Workstation component provides two administrative options to WSL that enable you to avoid
hanging indefinitely when a network connection is lost. Specifically, these options allow you to:

Check client connections periodically (keep-alive option)

Limit the amount of time that a client waits for a response from a WSH before dropping the
connection to that WSH (network timeout option)

[-T client_timeout] The amount of time (in minutes) that a client can remain idle
without being disconnected. If a client does not make any
requests within this time period, the WSH disconnects the
client. If this argument is not given or is set to 0, the timeout
is infinite.

[-p minwshport] and [-P
maxwshport]

The range for port numbers available for use by WSHs
associated with this listener server. Port numbers must fall in
the range between 0 and 65535. The default is 2048 for
minwshport and 65535 for maxwshport.

[-z] and [-Z] The range of bits that can be used, on the WSL side, for
link-level encryption: use -z to specify the minimum
number of bits, and -Z to specify the maximum number of
bits.

[-N network_timeout] The minimum amount of time (in seconds) that a
Workstation client is allowed to wait to receive a response
from the WSL/WSH. A value of 0 indicates no network
timeout.

[-K {client | handler |
both | none}]

The viability of a network connection between the
Workstation handler and a Workstation client if no traffic
has occurred over that connection within a specified period
of time.

Use This Command-line
Option . . .

To Specify . . .

../rf5/rf5.htm#7588415

13-8 Setting Up a BEA Tuxedo Application

Using the Keep-alive Option
Keep-alive is a networking operation that periodically checks the viability of a network
connection between the Workstation handler and a Workstation client if no traffic has occurred
over that connection within a specified period of time.

You can request the keep-alive option by adding the -K option to the WSL CLOPT entry in the
SERVERS section of the UBBCONFIG file. The -K option accepts the following arguments: client,
handler, both, or none.

Your entry in the UBBCONFIG file should look like the following:

WSL SRVGRP="WSLGRP" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-A -- -n //ws.beasys.com:5120 -d /dev/tcp -K both"

In the example, -K turns on keep-alive checking on both the Workstation client and the server.

For details about the format of a WSL entry in UBBCONFIG, see WSL(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Use This Option... To...

-K client Generate keep-alive messages from the client machines. If the
keep-alive message is not acknowledged, the client machine
considers the network down. Subsequent ATMI calls fail with a
tperrno of TPESYSTEM.

-K handler Generate keep-alive messages from the handler machine. If the
keep-alive message is not acknowledged, the handler machine
considers the network down. The handler then cleans up the
entry associated with the client that does not respond. This
reduces the possibility that the handler will exhaust the number
of clients that a workstation can multiplex at one time (as
specified by -x) with stale clients.

-K both Generate keep-alive message from both the client and handler
machines. The availability and timeout thresholds for this
component are determined by tunable parameters in the
operating system.

-K none Turn off the keep-alive option. Using this setting has the same
effect as not specifying -K at all.

../rf5/rf5.htm#5282715

Us ing the Keep-a l i ve Opt ion

Setting Up a BEA Tuxedo Application 13-9

Note: Any timeout period that you specify applies to the entire system. If you specify a timeout
with one application in mind, and you later change the amount of time specified, all
applications that use keep-alive are also affected.

Limitations When Using the Keep-alive Option
The keep-alive option is supported only on platforms for which the BEA Tuxedo system uses
sockets:

Tru64 UNIX

HP UX

Windows

You cannot use this option on any other platform. The BEA Tuxedo system lets you specify the
-K option for any server machine, but it will not execute it properly on any platform other than
those previously listed. If you try to perform a keep-alive operation on any other platform, your
attempt fails and a message is written to the userlog (once per process for the WSH). Processing
continues normally.

Note: The keep-alive operation works only for TCP/IP communications.

13-10 Setting Up a BEA Tuxedo Application

Using the Network Timeout Option
Network timeout is an option that lets you decide how long you are willing to wait for an
operation in a Workstation client before your request for that operation is canceled (timed out) on
a network.

You can request the network timeout function through an administrative option to the WSL: -N.
The -N option uses a network timeout to receive data in the Workstation client.

How Network Timeout Works
The network timeout option establishes a waiting period (in seconds) for any BEA Tuxedo
operation in the Workstation client that receives data from the network. If the period is exceeded,
the operation fails and the client is disconnected from the application. A value of 0 (the default)
indicates no timeout.

Note: Setting this value too low may cause too many disconnects.

Each ATMI function returns an error whenever a timeout occurs. When a link times out, the
application is notified. An existing error code is used. (Additional error detail on the specific error
can be retrieved by a call to tperrordetail(3c).) Once a network timeout occurs, the status of
outstanding operations is in doubt: transactions cannot be completed; incoming replies can be
lost, and so on. The only safe action is to terminate the connection to the application by doing the
equivalent of a tpterm(3c) without communicating with the WSH.

By the time the operation returns, the client is no longer part of the BEA Tuxedo application. The
client can rejoin the application in either of two ways:

By calling tpinit(3c)

By using an implicit connection (if security is not configured)

Limitations When Using the Network Timeout Option
Network timeout does not handle network send operations.

If the value of the network timeout is less than the value of the transaction timeout or the
block time, then the client may be disconnected before the processing of the request is
complete.

Network timeout disconnects the Workstation client after timeout even though the
connection may still be viable.

Sample Conf igurat i on F i l e that Suppor ts Works tat i on C l i ents

Setting Up a BEA Tuxedo Application 13-11

Setting the Network Timeout Option
To use the network timeout option in your BEA Tuxedo application, add the -N option to the WSL
CLOPT argument.

Sample Configuration File that Supports Workstation Clients
The following excerpt from a sample configuration file shows how you can add the Workstation
component to the bankapp application. It contains modifications to the MACHINES and SERVERS
sections.

Listing 13-1 Sample UBBCONFIG File Supporting Workstation Clients

*MACHINES

SITE1

 ...

 MAXWSCLIENTS=150

 ...

SITE2

 ...

 MAXWSCLIENTS=0

 ...

*SERVERS

 ...

WSL SRVGRP=”BANKB1" SRVID=500 RESTART=Y

CLOPT=”-A -- -n //ws.beasys.com:5120 -m 5 -M 30 -x 5"

...

Modifying the MACHINES and SERVERS Sections
The following changes are shown in the MACHINES and SERVERS sections:

In the MACHINES section, the default for MAXWSCLIENTS is overridden in the entries for two
sites. For SITE1, the default is raised to 150, while it is lowered to 0 for SITE2, because no
Workstation clients will be connected to that site.

13-12 Setting Up a BEA Tuxedo Application

In the SERVERS section, a WSL process is specified for group BANKB1. The WSL has a
server ID of 500 and it is marked as restartable.

The command-line options show the following:

– The WSL will advertise all of its services (-A).

– The WSL will listen at network address //ws.beasys.com:5120 (-n).

– A minimum of five WSHs will be booted (-m).

– A maximum of 30 WSHs will be booted (-M).

– Each handler will be allowed a maximum of five clients connected at any one time
(-x).

Setting Up a BEA Tuxedo Application 14-1

C H A P T E R 14

Managing Remote BEA Tuxedo CORBA
Client Applications

This chapter explains how to configure connections from remote BEA Tuxedo CORBA client
applications to CORBA objects via the standard Internet Inter-ORB Protocol (IIOP). This chapter
is specific to BEA Tuxedo CORBA servers.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.x. All BEA Tuxedo
CORBA Java client and BEA Tuxedo CORBA Java client ORB text references,
associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

CORBA Object Terminology

Remote CORBA Client Overview

Setting Environment Variables for Remote CORBA Clients

Setting the Maximum Number of Remote CORBA Clients

Configuring a Listener for a Remote CORBA Client

Modifying the Configuration File to Support Remote CORBA Clients

14-2 Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers

Using the ISL Command to Configure Outbound IIOP Support

CORBA Object Terminology
The following terms are used in this chapter.

DLL
Dynamic Link Libraries. A DLL is a collection of functions grouped into a load module
that is dynamically linked with an executable program at run time for a Windows
application.

IIOP
Internet Inter-ORB Protocol (IIOP). IIOP is basically TCP/IP with some CORBA-defined
message exchanges that serve as a common backbone protocol.

ISH
IIOP Server Handler. This is a client process running on an application site that acts as a
surrogate on behalf of the remote client.

ISL
IIOP Server Listener. This is a server process running on an application site that listens
for remote clients requesting connection.

Server
A server hosted on a machine in a BEA Tuxedo domain. A BEA Tuxedo CORBA server
is built with the BEA Tuxedo CORBA buildobjserver command. CORBA Servers
implement BEA Tuxedo functionality, such as security, transactions, and object state
management. Servers can make invocations on any server, inside or outside a BEA
Tuxedo domain.

Native Client
A client located within a BEA Tuxedo domain, using the CORBA ORB to make
invocations on objects either inside or outside the BEA Tuxedo domain. A native client’s
host contains the BEA Tuxedo administrative and infrastructure components, such as
tmadmin, FactoryFinder, and ISL/ISH. Native clients use the environmental objects to
access CORBA objects. You build native C++ clients with the buildobjclient
command or native Java clients using the tools provided by the third-party ORB.

CORBA Ob jec t Te rmino logy

Setting Up a BEA Tuxedo Application 14-3

Remote Client
A client not located within a BEA Tuxedo domain. A remote client can use the CORBA
ORB to make invocations on objects either inside or outside the BEA Tuxedo domain. A
remote client’s host does not contain BEA Tuxedo administrative and infrastructure
components, such as tmadmin, FactoryFinder, and ISL/ISH; it does contain supporting
software (the CORBA ORB) that allows remote clients to invoke objects. Remote clients
use the environmental objects to access CORBA objects. You build remote C++ clients
with the buildobjclient command or remote Java clients using the tools provided by
the third-party ORB.

Native Joint Client/server
A process that has two purposes: (1) execute code acting as the starter for some business
actions and (2) execute method code for invocations on objects. A joint client/server
located within a BEA Tuxedo domain. You build native joint C++ client/servers with the
buildobjclient command. Java native joint client/servers are not supported.

Note: The server role of the native joint client/server is considerably less robust than that of
a server. It has none of the BEA Tuxedo CORBA administrative and infrastructure
components, such as tmadmin, FactoryFinder, and ISL/ISH (hence none of BEA
Tuxedo’s scalability and reliability attributes), it does not use the BEA Tuxedo TP
Framework, and it requires more direct interaction between the client and the ORB.

Remote Joint Client/server
A process that has two purposes: (1) execute code acting as the starter for some business
actions and (2) execute method code for invocations on objects. A joint client/server
located outside a BEA Tuxedo domain. The joint client/server does not use the BEA
Tuxedo TP Framework and requires more direct interaction between the Client and the
ORB. You build remote joint C++ client/servers with the buildobjclient command or
remote Java client/servers using the tools provided by the third-party ORB.

Note: A joint client/server is different from a server that acts as a client as part of its server
role. Once the server completes processing of an invocation, it returns to dormancy.
A joint client/server is always in the active mode, executing code not related to a
server role; the server role temporarily interrupts the active client role, but the client
role is always resumed.

Note: The server role of the remote joint client/server is considerably less robust than that
of a server. Neither the client nor the server has any of the BEA Tuxedo
administrative and infrastructure components, such as tmadmin, FactoryFinder, and
ISL/ISH (hence, none of BEA Tuxedo’s scalability and reliability attributes).

14-4 Setting Up a BEA Tuxedo Application

BEA Tuxedo CORBA object
A CORBA object that is implemented using TP Framework and that implements security,
transactions, and object state management. CORBA objects are implemented in BEA
Tuxedo CORBA servers; that is, they are part of a BEA Tuxedo domain and use the BEA
Tuxedo infrastructure.

Callback Object
 A CORBA object supplied as a parameter in a client’s invocation on a target object. The
target object can make invocations on the callback object either during the execution of
the target object or at some later time (even after the invocation on the target object has
been completed). A callback object might be located inside or outside a BEA Tuxedo
domain.

Remote CORBA Client Overview
In this section, the term “remote client” represents a CORBA client application that is deployed
on systems that do not have the full BEA Tuxedo CORBA server software installed. This means
that no administration or application servers are running there and that no bulletin board is
present. All communication between the client and the application takes place over the network.

The types of clients are:

CORBA C++ client

A client process can run on UNIX or Microsoft Windows. The client has access to the CORBA
ORB interface. The networking behind the calls is transparent to the user. The client process
registers with the system and has the same status as a native client.

 The client can do the following:

Invoke methods on remote CORBA objects

Begin, roll back, or commit transactions

Be required to pass application security

Note: A client process communicates with the native domain through the ISH.

Illustration of an Application with Remote CORBA Clients
Figure 14-1 shows an example of an application with remote clients connected. Any request by
a remote client to access the CORBA server application is sent over the network to the ISH. This
process sends the request to the appropriate server and sends the reply back to the remote client.

Remote CORBA C l i ent Overv iew

Setting Up a BEA Tuxedo Application 14-5

Figure 14-1 Bank Application with Remote Clients

14-6 Setting Up a BEA Tuxedo Application

How the Remote Client Connects to an Application
The client connects to the ISL process in the IIOP Listener/Handler using a known network
address. This is initiated when the client calls the Bootstrap object constructor. The ISL process
uses a function that is specific to the operating system to pass the connection directly to the
selected ISH process. To the client application, there is only one connection. The client
application does not know, or need to know, that it is now connected to the ISH process.

Setting Environment Variables for Remote CORBA Clients
For CORBA C++ clients, environment variables can be used to pass information to the system,
as follows:

TUXDIR—the location of the BEA Tuxedo CORBA client software on this remote client. It
must be set for the client to connect.

TOBJADDR—the network address of the ISL that the client wants to contact. This must
match the address of an ISL process as specified in the application configuration file.

Note: The network address that is specified by programmers in the Bootstrap constructor or
in TOBJADDR must exactly match the network address in the server application’s
UBBCONFIG file. The format of the address as well as the capitalization must match.
If the addresses do not match, the call to the Bootstrap constructor will fail with a
seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the ISL
command line option string (in the server application’s UBBCONFIG file), specifying
either //192.12.4.6:3500 or //trixie:3500 in the Bootstrap constructor or in
TOBJADDR will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows systems, see the host system's Network control
panel to determine the capitalization used. Or use the environment variable
COMPUTERNAME. For example:

echo %COMPUTERNAME%

Se t t ing the Max imum Number o f Remote CORBA C l i ents

Setting Up a BEA Tuxedo Application 14-7

Setting the Maximum Number of Remote CORBA Clients
To join remote clients to an application, you must specify the MAXWSCLIENTS parameter in the
MACHINES section of the UBBCONFIG file.

MAXWSCLIENTS tells the BEA Tuxedo system at boot time how many accesser slots to reserve
exclusively for remote clients. For native clients, each accesser slot requires one semaphore.
However, the ISH process (executing on the native platform on behalf of remote clients)
multiplexes remote client accessers through a single accesser slot and, therefore, requires only
one semaphore. This points out an additional benefit of the remote extension. By putting more
clients out on remote systems and taking them off the native platform, an application reduces its
IPC resource requirements.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in MAXACCESSERS.
This is important to remember when specifying MAXWSCLIENTS; enough slots must remain to
accommodate native clients as well as servers. Do not specify a value for MAXWSCLIENTS greater
than MAXACCESSERS. The following table describes the MAXWSCLIENTS parameter.

Parameter Description

MAXWSCLIENTS Specifies the maximum number of remote clients that may connect to
a machine.

The default is 0. If a value is not specified, remote clients may not
connect to the machine being described.

The syntax is MAXWSCLIENTS=number.

14-8 Setting Up a BEA Tuxedo Application

Configuring a Listener for a Remote CORBA Client
Remote clients access your application through the services of an ISL process and one or more
ISH processes. The ISL is specified in one entry as a server supplied by the BEA Tuxedo system.
The ISL can support multiple remote clients and acts as the single point of contact for all the
remote clients connected to your application at the network address specified on the ISL
command line. The listener schedules work for one or more remote handler processes. An ISH
process acts as a surrogate within the administrative domain of your application for remote clients
on remote systems. The ISH uses a multiplexing scheme to support multiple remote clients
concurrently.

To join remote clients to an application, you must list the ISL processes in the SERVERS section
of the UBBCONFIG file. The processes follow the same syntax for listing any server.

Format of the CLOPT Parameter
You use the following ISL command-line options (CLOPT) to pass information to the ISL process
for remote clients. The format of the CLOPT parameter is as follows:

ISL SRVGRP=”identifier”

 SRVID="number"

 CLOPT="[-A] [servopts options] -- -n netaddr

 [-C {detect|warn|none}]

 [-d device]

 [-K {client|handler|both|none}]

 [-m minh]

 [-M maxh]

 [-T client-timeout]

 [-x mpx-factor]

 [-H external-netaddr"

For a detailed description of the CLOPT command line options, see the ISL command in the BEA
Tuxedo Command Reference.

Modifying the Configuration File to Support Remote CORBA
Clients

Listing 14-1 shows a sample UBBCONFIG file to support remote clients, as follows:

Modi f y ing the Conf igura t i on F i l e t o Suppor t Remote CORBA C l i en ts

Setting Up a BEA Tuxedo Application 14-9

The MACHINES section shows the default MAXWSCLIENTS as being overridden for two sites.
For SITE1, the default is raised to 150, while it is lowered to 0 for SITE2, which does not
have remote clients connected to it.

The SERVERS section shows an ISL process listed for group BANKB1. Its server ID is 500
and it is marked as restartable.

The command line options show the following:

– The IIOP Listener/Handler will advertise all of its services (-A).

– The IIOP Listener/Handler will listen at host TRIXIE on port 2500.

– The network provider is /dev/tcp (-d).

– The minimum number of ISH processes to boot is 5 (-m).

– The maximum number of ISH processes to boot is 30 (-M).

– Each handler can have a maximum of 5 clients connected at any one time (-x).

Listing 14-1 Sample UBBCONFIG File Configuration

*MACHINES

SITE1

 ...

 MAXWSCLIENTS=150

 ...

SITE2

 ...

 MAXWSCLIENTS=0

 ...

*SERVERS

 ...

ISL SRVGRP=”BANKB1" SRVID=500 RESTART=Y

 CLOPT=”-A -- -n //TRIXIE:2500 -d /dev/tcp

 -m 5 -M 30 -x 5"

 ..

14-10 Setting Up a BEA Tuxedo Application

Configuring Outbound IIOP for Remote Joint Client/Servers
Support for outbound IIOP provides native clients and servers acting as native clients the ability
to invoke on a remote object reference outside of the BEA Tuxedo domain. This means that calls
can be invoked on remote clients that have registered for callbacks, and objects in remote servers
can be accessed.

Administrators are the only users who interact directly with the outbound IIOP support
components. Administrators are responsible for booting the ISLs with the correct startup
parameters to enable outbound IIOP to objects not located in a connected client. Administrators
may need to adjust the number of ISLs they boot and the various startup parameters to obtain the
best configuration for their installation’s specific workload characteristics.

Administrators have the option of booting the ISLs with the default parameters. However, the
default BEA Tuxedo ISL startup parameters do not enable use of outbound IIOP.

Note: Outbound IIOP is not supported for transactions or security.

Functional Description
Outbound IIOP support is required to support client callbacks. In BEA WebLogic Enterprise
versions 4.0 and 4.1, the ISL/ISH was an inbound half-gateway. Outbound IIOP support adds the
outbound half-gateway to the ISL/ISH. (See Figure 14-2.)

There are three types of outbound IIOP connections available, depending on the version of GIOP
supported by the native server and the remote joint client/server application:

Bidirectional—outbound IIOP reusing the same connection (supported only for BEA
WebLogic Enterprise release 4.2 or later C++ GIOP 1.2 servers, clients, and joint
client/servers)

Asymmetric—outbound IIOP via a second connection (supported for GIOP 1.0, GIOP 1.1,
and GIOP 1.2 servers, clients, and joint client/server applications)

Dual-paired connection—outbound IIOP (supported for GIOP 1.0, GIOP 1.1, and GIOP
1.2 servers, clients, and joint client/server applications)

Note: GIOP 1.2 is supported only by BEA WebLogic Enterprise release 4.2 (and later) and
BEA Tuxedo release 8.0 (and later) C++ clients, servers, and joint client/servers.
BEA WebLogic Enterprise releases 4.0 and 4.1 C++ clients and servers support GIOP
versions 1.0 and 1.1, but not GIOP 1.2. Java clients, servers, and joint client/servers
only support GIOP 1.0.

Conf igur ing Outbound I IOP fo r Remote Jo in t C l i ent /Se rve rs

Setting Up a BEA Tuxedo Application 14-11

Bi-directional and dual-paired connection outbound IIOP provides outbound IIOP to object
references located in joint client/servers connected to an ISH. Asymmetric outbound IIOP
provides outbound IIOP to object references not located in a joint client/server connected to an
ISH, and also allows BEA Tuxedo CORBA clients to invoke on any object reference, not only
object references located in clients currently connected to an ISH.

Each type of outbound IIOP is described in more detail in the following sections.

Figure 14-2 Joint Client/Server IIOP Connections Supported

Bidirectional Outbound IIOP
With bidirectional outbound IIOP, the following operations are executed (see Figure 14-3):

1. A client creates an object reference and invokes on a BEA Tuxedo CORBA server. The client
ORB identifies the connection as being bidirectional using the service context. The service
context travels with the message to the BEA Tuxedo CORBA server.

14-12 Setting Up a BEA Tuxedo Application

2. When unmarshaling the object reference, the BEA Tuxedo CORBA server compares the
host/port in the service context with the host/port in the object reference. If they match, the
ORB adds the ISH client information needed for routing to the ISH. This client information
travels with the object reference whenever it is passed to other BEA Tuxedo CORBA
servers.

3. At some point in time, a BEA Tuxedo CORBA server or native client invokes on the object
reference, and the routing code invokes on the appropriate ISH, given the client
information.

4. The ISH sends the request to the client over the same client connection.

5. The client executes the method and sends the reply back to the ISH via the client
connection.

6. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server.

Figure 14-3 Bidirectional Connection

Asymmetric Outbound IIOP
With asymmetric outbound IIOP, the following operations are executed (see Figure 14-4):

Conf igur ing Outbound I IOP fo r Remote Jo in t C l i ent /Se rve rs

Setting Up a BEA Tuxedo Application 14-13

1. A server gets an object reference from some source. It could be a naming service, a
string_to_object, or it could be passed in through a client, but not located in that client.
Since the object reference is not located in a client connected to an ISH, the outgoing call
cannot be made using the bidirectional method. The BEA Tuxedo CORBA server invokes on
the object reference.

2. On the first invoke, the routing code invokes a service in the ISL and passes in the host/port.

3. The ISL selects an ISH to handle the outbound invoke and returns the ISH information to
the BEA Tuxedo CORBA server.

4. The BEA Tuxedo CORBA server invokes on the ISH.

5. The ISH determines which outgoing connection to use to send the request to the client. If
none is connected, the ISH creates a connection to the host/port.

6. The client executes the method and sends the reply back to the ISH.

7. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server.

Figure 14-4 Asymmetric Outbound IIOP

14-14 Setting Up a BEA Tuxedo Application

Dual-paired Connection Outbound IIOP
With dual-paired connection outbound IIOP, the following operations are executed (see
Figure 14-5):

1. A client creates an object reference and calls the Bootstrap function
(register_callback_port) and passes the object reference.

2. The ISH gets the host/port from the IOR and stores it with the client context.

3. The client invokes on a BEA Tuxedo CORBA server and passes the object reference. From
the register_callback_port call, the ISH creates a service context containing the
host/port. The service context travels with the message to the BEA Tuxedo CORBA server.

4. When unmarshaling the object reference, the BEA Tuxedo CORBA server compares the
host/port in the service context with the host/port in the object reference. If they match, the
ORB adds the ISH client information to the object reference. This client information travels
with the object reference whenever it is passed to other BEA Tuxedo CORBA servers.

5. At some point in time, a BEA Tuxedo CORBA server or native client invokes on the object
reference. The routing code invokes on the appropriate ISH, passing the client information.

6. The ISH creates a second connection to the client. It sends the request to the client over the
second connection.

7. The client executes the method and sends the reply back to the ISH via the first client
connection.

8. The ISH receives the reply and sends it to the BEA Tuxedo CORBA server. If the client
disconnects from the ISH, the second connection is also disconnected.

Us ing the ISL Command to Conf igure Outbound I IOP Suppor t

Setting Up a BEA Tuxedo Application 14-15

Figure 14-5 Dual-paired Connections Outbound IIOP

How the Routing Code Finds an ISL
The steps to finding an ISL are as follows:

1. A service is advertised in each ISL.

2. The routing code invokes on that service name.

Note: Normal BEA Tuxedo routing is used to find an ISL.

3. An idle ISL on the same machine is always chosen, if available. If not available,
NETLOAD ensures that a local ISL is chosen most often.

Note: Some invokes may be made to ISLs on nonlocal machines.

Using the ISL Command to Configure Outbound IIOP Support
Outbound IIOP support is used when a native C++ or Java client, or a server acting as a native
client, invokes on an object reference that is a remote object reference. The routing code
recognizes that the object reference is from a non-BEA Tuxedo CORBA ORB or from a remote
BEA Tuxedo CORBA joint client/server.

14-16 Setting Up a BEA Tuxedo Application

Types of Object References
There are two kinds of remote object references:

Object references created by BEA Tuxedo CORBA remote joint client/servers outside of
the BEA Tuxedo domain

Object references created by other vendors’ servers.

Both are detected by the routing code and sent to the outbound IIOP support for handling.

User Interface
The user interface to outbound IIOP support is the commandline interface for booting the ISL
process(es). New command-line options to configure the outbound IIOP processing were added
to the ISL command in this release of the BEA Tuxedo software. These options enable support
for asymmetric IIOP to object references not located in clients connected to an ISH.

Us ing the ISL Command to Conf igure Outbound I IOP Suppor t

Setting Up a BEA Tuxedo Application 14-17

The ISL command syntax listed below shows the new options for outbound IIOP support:

ISL SRVGRP="identifier"

 SRVID="number"

 CLOPT="[-A] [servopts options] -- -n netaddr

 [-C {detect|warn|none}]

 [-d device]

 [-K {client|handler|both|none}]

 [-m minh]

 [-M maxh]

 [-T Client-timeout]

 [-x mpx-factor]

 [-H external-netaddr]

#NEW options for outbound IIOP

 [-O]

 [-o outbound-max-connections]

 [-s Server-timeout]

 [-u out-mpx-users] "

For a detailed description of the CLOPT command-line options, see the ISL command in the BEA
Tuxedo Command Reference.

14-18 Setting Up a BEA Tuxedo Application

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Administrative Tasks and Tools
	Tasks an Administrator Performs
	Setup Tasks
	Run-time Tasks
	Differences Between the BEA Tuxedo ATMI and CORBA Environments

	Planning the Design of Your Application
	Tools to Help You Administer Your Application

	About the Configuration File
	What Is the Configuration File?
	Text and Binary Versions of the Configuration File

	Contents of the Configuration File
	CORBA Administrative Requirements and Performance
	Configuring NameManager
	Reliability Requirements
	Managing Factory Entries
	Configuring Multiple NameManagers and FactoryFinders
	Designating a Master NameManager

	Performance Hint

	Creating the Configuration File
	How to Create a Configuration File
	How to Create the Configuration File for a Single-machine Application
	How to Create the Configuration File for a Multiple-machine (Distributed) Application
	How to Create the Configuration File for a Multiple-domain Application
	How to Create the RESOURCES Section of the Configuration File
	Sample RESOURCES Section

	Defining the Application Type
	Characteristics of the MODEL and OPTIONS Parameters
	Example Settings

	Controlling the Number of Buffer Types and Subtypes
	Characteristics of the MAXBUFTYPE and MAXBUFSTYPES Parameters
	Example Settings

	Controlling the Number of Conversations
	Characteristics of the MAXCONV Parameter
	Example Setting

	Defining IPC Limits
	Characteristics of MAXACCESSERS, MAXSERVERS, MAXSERVICES, MAXINTERFACES, and MAXOBJECTS Parameters
	Example Settings

	Enabling Load Balancing
	Characteristics of the LDBAL Parameter
	Example Settings

	Identifying the Master Machine
	Characteristics of the MASTER Parameter
	Example Settings

	Specifying the Maximum Number of Network Groups
	Specifying the Number of Sanity Checks and Blocking Timeouts
	Characteristics of the SCANUNIT, SANITYSCAN, and BLOCKTIME Parameters
	Timeouts for Blocking ATMI Operations
	Example Settings

	Establishing Operating System-level Security
	Characteristics of the UID, GID, and PERM Parameters

	Specifying the Security Level
	Characteristics of the SECURITY and AUTHSVC Parameters

	Defining the Security Attributes of a Server
	Protecting Shared Memory
	Characteristics of the PROTECTED, FASTPATH, and NO_OVERRIDE Parameters
	Example Settings

	Setting the Address of the System Resources for an Application
	Characteristics of the IPCKEY Parameter
	Example Settings

	Specifying How Clients Receive Unsolicited Notification
	Characteristics of the NOTIFY and USIGNAL Parameters

	How to Create the MACHINES Section of the Configuration File
	Sample MACHINES Section
	Sample MACHINES Parameters
	How to Customize the Sample MACHINES Section

	Specifying the Maximum Number of ACL Entries in the Cache
	Defining an Additional Service Request Load
	Reserving the Physical Address and Machine ID
	Characteristics of the Address and the LMID Parameter

	Setting the Number of Lock Spins
	Characteristics of the SPINCOUNT Parameter

	Specifying Machines as Types
	Characteristics of the TYPE Parameter

	Identifying the Location of the Configuration File
	Characteristics of the TUXCONFIG Parameter

	Indicating the Size of the DTP Transaction Log
	Defining the DTP Transaction Log Name
	Specifying Environment Variable Settings
	Characteristics of the ENVFILE Parameter

	Defining the BEA Tuxedo Filesystem Containing the TLOG
	Specifying a Machine’s Maximum Number of Simultaneous Global Transactions
	Defining the Number of Accesser Entries on a Workstation Client
	Defining Space Limits for Messages Transmitted by the BRIDGE
	Indicating the Offset for the DTP Transaction Log
	Defining the Offset for TUXCONFIG
	Characteristics of the TUXOFFSET Parameter

	Identifying the Locations of the System Software and Application Server Software
	Characteristics of the APPDIR and TUXDIR Parameters

	Indicating a Threshold Message Size for Compression
	Example

	Specifying the Pathname for the ULOG
	Characteristics of the ULOGPFX Parameter

	How to Create the GROUPS Section of the Configuration File
	Sample GROUPS Section for ATMI
	Sample GROUPS Section for CORBA

	Specifying a Group Name, Number, and LMID
	Characteristics of the Group Name, Group Number, and LMID

	Indicating a Transaction Manager Server Name and Numbers per Group
	Identifying the Environment File Location for Servers in a Group
	Defining Information Needed When Opening and Closing the Resource Manager
	How to Create the NETWORK Section of the Configuration File
	Sample NETWORK Section

	Specifying a Device Name for the BRIDGE Process
	Assigning a BRIDGE Network Address
	Assigning Encryption Levels
	Example

	Assigning a tlisten Network Address
	How to Create the NETGROUPS Section of the Configuration File
	Sample Network Groups Configuration
	Configuring a Sample UBBCONFIG File with Netgroups

	Assigning a Name to a Network Group
	Assigning a Network Group Number
	Assigning a Priority to the Network Group
	How to Create the SERVERS Section of the Configuration File
	Sample SERVERS Section
	Sample SERVERS Section Parameters

	Specifying a Server as Conversational
	Characteristics of the CONV Parameter

	Setting the Order in Which Servers Are Booted
	Required Order in Which to Boot CORBA C++ Servers

	Characteristics of the SEQUENCE, MIN, and MAX Parameters
	Specifying Server Command-line Options
	Characteristics of the CLOPT Parameter

	Identifying the Location of the Server Environment File
	Characteristics of the Server Environment File

	Defining Server Name, Group, and ID
	Characteristics of the Server Name, SRVGRP, and SRVID Parameters

	Identifying Server Queue Information
	MSSQ Example
	Characteristics of the RQADDR, RQPERM, REPLYQ, and RPPERM Parameters

	Defining Server Restart Information
	Characteristics of the RESTART, RCMD, MAXGEN, and GRACE Parameters

	Defining Server Access to Shared Memory
	Characteristics of the SYSTEM_ACCESS Parameter

	Defining the Server Dispatch Threads
	Setting Security Parameters for ISL Servers
	How to Create the SERVICES Section of the Configuration File
	Sample SERVICES Section

	Specifying Automatic Starts and Timeout Intervals for Transactions
	Specifying a List of Allowable Buffer Types for a Service
	Examples of the BUFTYPE Parameter

	Designating How Much Time to Process a Request
	What Happens When a Timeout Occurs
	How a Service Timeout Is Reported
	How to Control a Service Timeout

	Specifying Nontransactional Service-Level Blocktime
	Enabling Load Balancing
	Characteristics of the LDBAL Parameter

	Defining the Name of the Routing Criteria
	Specifying Service Parameters for Different Server Groups
	Controlling the Flow of Data by Service Priority
	Characteristics of the PRIO Parameter
	Sample SERVICES Section Using Different Priorities

	Indicating Service Processing Time
	How to Create the INTERFACES Section of the Configuration File
	Specifying CORBA Interfaces in the INTERFACES Section
	Specifying FACTORYROUTING Criteria
	University Sample
	Bankapp Sample

	Enabling Load Balancing
	Controlling the Flow of Data by Interface Priority
	Specifying Different Interface Parameters for Different Server Groups

	How to Create the ROUTING Section of the Configuration File
	ROUTING Section Example

	Defining the Routing Buffer Field and Field Type
	Specifying Range Criteria
	Defining Buffer Types
	CORBA Factory-based Routing in the University Production Sample Application
	CORBA Factory-based Routing in the Bankapp Sample Application
	How to Configure the BEA Tuxedo System to Take Advantage of Threads
	How to Compile a Configuration File

	About Transactions
	What Is a Transaction?
	What Are the ACID Properties?
	How a Transaction Succeeds or Fails

	Benefits of Using Transactions
	Example of a Global Transaction
	What Is the BEA Tuxedo Transaction Manager (TM)?
	How the System Tracks Distributed Transaction Processing
	How the System Uses Global Transaction Identifiers (GTRIDs) for Tracking
	How the System Uses a Transaction Log (TLOG) for Tracking

	How the System Uses a Two-Phase Commit to Commit Transactions
	How the System Handles Transaction Infection
	How the ATMI Protects a Transaction’s Integrity Before a Two-Phase Commit
	See Also

	Configuring Your ATMI Application to Use Transactions
	Modifying the UBBCONFIG File to Accommodate ATMI Transactions
	Specifying Global Transaction Parameters in the RESOURCES Section
	Creating a Transaction Log (TLOG) in the MACHINES Section
	Creating the UDL
	Defining Transaction-related Parameters in the MACHINES Section
	Creating the Domains Transaction Log
	See Also

	Defining Resource Managers and the Transaction Manager Server in the GROUPS Section
	Sample of the GROUPS Section
	Description of Transaction Values in the Sample GROUPS Section
	Characteristics of the TMSNAME, TMSCOUNT, OPENINFO, and CLOSEINFO Parameters

	Enabling a Service to Begin a Transaction in the SERVICES Section
	Characteristics of the AUTOTRAN, TRANTIME, and ROUTING Parameters

	Modifying the Domains Configuration File to Support Transactions
	Characteristics of the DMTLOGDEV, DMTLOGNAME, DMTLOGSIZE, MAXRAPTRAN, and MAXTRAN Parameters
	Characteristics of the AUTOTRAN and TRANTIME Parameters

	Example: A Distributed Application with Transactions
	Sample RESOURCES Section
	Sample MACHINES Section
	Sample GROUPS and NETWORK Sections
	Sample SERVERS, SERVICES, and ROUTING Sections
	See Also

	Using Tuxedo with Oracle Real Application Clusters (RAC)
	Overview
	Limitations
	Prerequisites
	Software Requirements

	Configuring Tuxedo for Oracle RAC
	Configuring Transaction Propagation
	TUXRACGROUPS Syntax
	TUXRACGROUPS Examples

	Configuring Transaction Recovery
	Configuring Oracle 10g Fast Application Notification (FAN)
	Configuring Transaction Recovery for Oracle 10gR2
	Specifying Environment Variables in the UBBCONFIG File

	See Also

	Managing The Tuxedo Service Metadata Repository
	Tuxedo Service Metadata Repository
	JOLT Repository Similarities and Differences
	MIB(5) Similarities and Differences

	Creating The Tuxedo Service Metadata Repository
	The Tuxedo Service Metadata Repository Input File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values
	Parameter Occurrences

	Configuring The Tuxedo Service Metadata Repository Server
	Configuring Multiple Tuxedo Service Metadata Repository Servers

	Accessing The Tuxedo Service Metadata Repository File

	Managing CORBA Interface Repositories
	Administration Considerations
	Using Administration Commands to Manage Interface Repositories
	Prerequisites
	Creating and Populating an Interface Respository
	Displaying or Extracting the Content of an Interface Repository
	Deleting an Object from an Interface Repository

	Configuring the UBBCONFIG File to Start One or More Interface Repository Servers

	Distributing ATMI Applications Across a Network
	What Is a Distributed ATMI Application?
	Example of a Distributed Application
	Implementing a Distributed Application

	Why Distribute an ATMI Application Across a Network?
	Features of a Distributed Application

	Creating the Configuration File for a Distributed ATMI Application
	Configuration File Requirements for a Distributed BEA Tuxedo ATMI Application
	Creating the RESOURCES Section
	Creating the MACHINES Section
	Creating the GROUPS Section
	Creating the SERVICES Section
	Creating the ROUTING Section
	Example Configuration File for a Distributed Application
	Modifying the Domain Gateway Configuration File to Support Routing
	Description of ROUTING Section Parameters in DMCONFIG
	Routing Field Description
	Example of a 5-Site Domain Configuration Using Routing

	Setting Up the Network for a Distributed Application
	Configuring the Network for a Distributed Application
	How Data Moves Over a Network
	How Data Moves Over Parallel Networks
	Example of a Network Configuration for a Simple Distributed Application
	How Failover and Failback Work in Scheduling Network Data
	Example Configuration of Multiple Netgroups
	Configuration File for the Sample Network
	Assigning Priorities for Each Network Group
	Example Assignment of Priorities to Network Groups
	Example NETGROUP and NETWORK Sections

	About Workstation Clients
	What Is the Workstation Component?
	Sample Application with Four Workstation Clients
	How the Workstation Client Connects to an Application

	Setting Up Workstation Clients
	Defining Workstation Clients
	Specifying the Maximum Number of Workstation Clients
	Defining a Workstation Listener (WSL) as a Server
	Passing Information to a WSL Process
	Using Command-line Options Set with CLOPT

	Detecting Network Failures
	Using the Keep-alive Option
	Limitations When Using the Keep-alive Option

	Using the Network Timeout Option
	How Network Timeout Works
	Limitations When Using the Network Timeout Option
	Setting the Network Timeout Option

	Sample Configuration File that Supports Workstation Clients
	Modifying the MACHINES and SERVERS Sections

	Managing Remote BEA Tuxedo CORBA Client Applications
	CORBA Object Terminology
	Remote CORBA Client Overview
	Illustration of an Application with Remote CORBA Clients
	How the Remote Client Connects to an Application

	Setting Environment Variables for Remote CORBA Clients
	Setting the Maximum Number of Remote CORBA Clients
	Configuring a Listener for a Remote CORBA Client
	Format of the CLOPT Parameter

	Modifying the Configuration File to Support Remote CORBA Clients
	Configuring Outbound IIOP for Remote Joint Client/Servers
	Functional Description
	Bidirectional Outbound IIOP
	Asymmetric Outbound IIOP
	Dual-paired Connection Outbound IIOP
	How the Routing Code Finds an ISL

	Using the ISL Command to Configure Outbound IIOP Support
	Types of Object References
	User Interface

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

