
BEATuxedo ®

ATMI COBOL Function
Reference

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

ATMI COBOL Function Reference iii

Contents

About This Document
What You Need to Know .vii

e-docs Web Site .vii

How to Print the Document . viii

Related Information . viii

Contact Us! . viii

Documentation Conventions . ix

Section 3(cbl) - COBOL Functions
Introduction to the COBOL Application-Transaction Monitor Interface 7

FINIT, FINIT32(3cbl) .40

FVFTOS, FVFTOS32(3cbl) .41

FVSTOF(3cbl) .43

TPABORT(3cbl) .45

TPACALL(3cbl) .46

TPADVERTISE(3cbl) .50

TPBEGIN(3cbl). .52

TPBROADCAST(3cbl). .54

TPCALL(3cbl). .57

TPCANCEL(3cbl) .62

TPCHKAUTH(3cbl) .63

TPCHKUNSOL(3cbl) .64

iv ATMI COBOL Function Reference

TPCLOSE(3cbl) . 66

TPCOMMIT(3cbl) . 67

TPCONNECT(3cbl) . 70

TPDEQUEUE(3cbl) . 73

TPDISCON(3cbl) . 83

TPENQUEUE(3cbl) . 85

TPFORWAR(3cbl) . 96

TPGBLKTIME(3cbl) . 98

TPGETCTXT(3cbl) . 100

TPGETLEV(3cbl). 101

TPGETRPLY(3cbl). 102

TPGETUNSOL(3cbl) . 107

TPGPRIO(3cbl) . 108

TPINITIALIZE(3cbl) . 109

TPKEYCLOSE(3cbl) . 117

TPKEYGETINFO(3cbl) . 118

TPKEYOPEN(3cbl) . 121

TPKEYSETINFO(3cbl) . 124

TPNOTIFY(3cbl) . 126

TPOPEN(3cbl) . 128

TPPOST(3cbl) . 130

TPRECV(3cbl) . 134

TPRESUME(3cbl) . 139

TPRETURN(3cbl) . 140

TPSBLKTIME(3cbl) . 144

TPSCMT(3cbl) . 146

TPSEND(3cbl) . 149

TPSETCTXT(3cbl). 152

ATMI COBOL Function Reference v

TPSETUNSOL(3cbl) . 154

TPSPRIO(3cbl) . 156

TPSUBSCRIBE(3cbl) . 157

TPSUSPEND(3cbl) . 163

TPSVCSTART(3cbl). 165

TPSVRDONE(3cbl) . 168

TPSVRINIT(3cbl) . 169

TPTERM(3cbl) . 170

TPUNADVERTISE(3cbl) . 172

TPUNSUBSCRIBE(3cbl) . 173

TXBEGIN(3cbl) . 176

TXCLOSE(3cbl) . 177

TXCOMMIT(3cbl) . 179

TXINFORM(3cbl) . 181

TXOPEN(3cbl) . 182

TXROLLBACK(3cbl) . 184

TXSETCOMMITRET(3cbl) . 186

TXSETTRANCTL(3cbl) . 187

TXSETTIMEOUT(3cbl) . 189

USERLOG(3cbl) . 190

vi ATMI COBOL Function Reference

ATMI COBOL Function Reference vii

About This Document

This document provides reference information on COBOL bindings used in the BEA Tuxedo
ATMI environment. The reference pages are arranged in alphabetical order by function name.

What You Need to Know
This document is intended for the following audiences:

administrators who are interested in configuring and managing applications in a BEA
Tuxedo environment

application developers who are interested in programming applications in a BEA Tuxedo
environment

This document assumes a familiarity with the BEA Tuxedo platform and COBOL programming.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

http://e-docs.bea.com

viii ATMI COBOL Function Reference

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
Related documents are listed in the See Also section of each reference page.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

ATMI COBOL Function Reference ix

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

x ATMI COBOL Function Reference

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

ATMI COBOL Function Reference 1

Section 3(cbl) - COBOL Functions

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

Introduction to the COBOL
Application-Transaction Monitor Interface

Provides an introduction to the COBOL ATMI

FINIT, FINIT32(3cbl) Initializes fielded buffer

FVFTOS, FVFTOS32(3cbl) Copies from fielded buffer to COBOL structure

FVSTOF(3cbl) Copies from C structure to fielded buffer

TPABORT(3cbl) Abort current BEA Tuxedo ATMI transaction

TPACALL(3cbl) Routine to send a message to a service asynchronously

TPADVERTISE(3cbl) Routine for advertising service names

TPBEGIN(3cbl) Routine to begin a BEA Tuxedo ATMI transaction

TPBROADCAST(3cbl) Broadcasts notification by name

TPCALL(3cbl) Routine to send a message to a service synchronously

TPCANCEL(3cbl) Cancels a communication handle for an outstanding reply

TPCHKAUTH(3cbl) Checks if authentication required to join a BEA Tuxedo ATMI
application

2 ATMI COBOL Function Reference

TPCHKUNSOL(3cbl) Checks for unsolicited message

TPCLOSE(3cbl) Closes the BEA Tuxedo ATMI resource manager

TPCOMMIT(3cbl) Commits current BEA Tuxedo ATMI transaction

TPCONNECT(3cbl) Establishes a conversational connection

TPDEQUEUE(3cbl) Routine to dequeue a message from a queue

TPDISCON(3cbl) Takes down a conversational connection

TPENQUEUE(3cbl) Routine to enqueue a message

TPFORWAR(3cbl) Forwards a BEA Tuxedo ATMI service request to another
routine

TPGBLKTIME(3cbl) Routine for retrieving a previously set, per second, blocktime
value

TPGETCTXT(3cbl) Retrieves a context identifier for the current application
association

TPGETLEV(3cbl) Checks if a BEA Tuxedo ATMI transaction is in progress

TPGETRPLY(3cbl) Gets reply from asynchronous message

TPGETUNSOL(3cbl) Gets unsolicited message

TPGPRIO(3cbl) Gets service request priority

TPINITIALIZE(3cbl) Joins a BEA Tuxedo ATMI application

TPKEYCLOSE(3cbl) Closes a previously opened key handle

TPKEYGETINFO(3cbl) Gets information associated with a key handle

TPKEYOPEN(3cbl) Opens a key handle for digital signature generation, message
encryption, or message decryption

TPKEYSETINFO(3cbl) Sets optional attribute parameters associated with a key handle

TPNOTIFY(3cbl) Sends notification by client identifier

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

ATMI COBOL Function Reference 3

TPOPEN(3cbl) Opens the BEA Tuxedo ATMI resource manager

TPPOST(3cbl) Posts an event

TPRECV(3cbl) Receives a message in a conversational connection

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

4 ATMI COBOL Function Reference

TPRESUME(3cbl) Resumes a global transaction

TPRETURN(3cbl) Returns from a BEA Tuxedo ATMI service routine

TPSBLKTIME(3cbl) Routine for setting the blocktime value, in seconds, of a potential
blocking API.

TPSCMT(3cbl) Sets when TPCOMMIT should return

TPSEND(3cbl) Routine to send a message in a conversational connection

TPSETCTXT(3cbl) Sets a context identifier for the current application association

TPSETUNSOL(3cbl) Sets method for handling unsolicited messages

TPSPRIO(3cbl) Sets service request priority

TPSUBSCRIBE(3cbl) Subscribes to an event

TPSUSPEND(3cbl) Suspends a global transaction

TPSVCSTART(3cbl) Starts a BEA Tuxedo ATMI service

TPSVRDONE(3cbl) Routine to terminate a BEA Tuxedo ATMI server

TPSVRINIT(3cbl) Routine to initialize a BEA Tuxedo ATMI server

TPTERM(3cbl) Leaves an application

TPUNADVERTISE(3cbl) Routine for unadvertising service names

TPUNSUBSCRIBE(3cbl) Unsubscribes to an event

TXBEGIN(3cbl) Begins a global transaction

TXCLOSE(3cbl) Closes a set of resource managers

TXCOMMIT(3cbl) Commits a transaction

TXINFORM(3cbl) Returns global transaction information

TXOPEN(3cbl) Opens a set of resource managers

TXROLLBACK(3cbl) Rolls back a transaction

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

ATMI COBOL Function Reference 5

TXSETCOMMITRET(3cbl) Sets commit_return characteristic

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

6 ATMI COBOL Function Reference

TXSETTRANCTL(3cbl) Sets transaction_control characteristic

TXSETTIMEOUT(3cbl) Sets transaction_timeout characteristic

USERLOG(3cbl) Writes a message to the BEA Tuxedo ATMI central event log

Table 1 BEA Tuxedo ATMI COBOL Functions

Name Description

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 7

Introduction to the COBOL Application-Transaction Monitor
Interface
Description

The Application-Transaction Monitor Interface (ATMI) provides the interface between the
COBOL application and the transaction processing system. This interface is known as ATMI and
these pages specify its COBOL language binding. It provides routines to open and close
resources, manage transactions, manage record types, and invoke request/response and
conversational service calls.

Communication Paradigms
The routines described in the ATMI reference pages imply a particular model of communication.
This model is expressed in terms of how client and server programs can communicate using
request and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated data.
Request/response services can receive exactly one request (upon entering the service routine) and
send at most one reply (upon returning from the service routine). Conversational services, on the
other hand, are invoked by connection requests along with a means of referring to the open
connection (that is, a handle used in calling subsequent connection routines). Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down.

Note that a program can initiate both request/response and conversational communication, but
cannot accept both request/response and conversational service requests. The following sections
describe the two communication paradigms in greater detail.

Note: In various parts of the BEA Tuxedo ATMI documentation we refer to threads. Because
the BEA Tuxedo system does not support multithreading in COBOL, COBOL
programmers may assume that the term thread refers to an entire process or context,
depending on the circumstances. For example:

A multithreaded/multicontexted C client with three threads associated with three
contexts maps to a multicontexted COBOL client with three contexts.

A multithreaded/single-context C client with three threads associated with a single
context maps to a non-threaded, single-context COBOL client.

8 ATMI COBOL Function Reference

BEA Tuxedo Request/
Response Paradigm for Client/Server

With regard to request/response communication, a client is defined as a program that can send
requests and receive replies. By definition, clients cannot receive requests nor send replies. A
client can send any number of requests, and can wait for the replies synchronously or receive
(some limited number of) the replies at its convenience. In certain cases, a client can send a
request that has no reply. TPINITIALIZE() and TPTERM() allow a client to join and leave a BEA
Tuxedo ATMI application.

A request/response server is a program that can receive one (and only one) service request at a
time and send at most one reply to that request. While a server is working on a particular request,
it can act like a client by initiating request/response or conversational requests and receiving their
replies. In such a capacity, a server is called a requester. Note that both client and server programs
can be requesters (in fact, a client can be nothing but a requester).

A request/response server can forward a request to another request/response server. Here, the
server passes along the request it received to another server and does not expect a reply. It is the
responsibility of the last server in the chain to send the reply to the original requester. Use of the
forwarding routine ensures that the original requester ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA Tuxedo ATMI
applications. In a server, the application writer can concentrate on the work performed by the
service rather than communications details such as receiving requests and sending replies.
Because many of the communication details are handled by the BEA Tuxedo system, the
application must adhere to certain conventions when writing a service routine. At the time a
server finishes its service routine, it can send a reply using TPRETURN() or forward the request
using TPFORWAR(). A service is not allowed to perform any other work nor is it allowed to
communicate with any other program after this point. Thus, a service performed by a server is
started when a request is received and ended when either a reply is sent or the request is
forwarded.

Concerning request and reply messages, there is an inherent difference between the two: a request
has no associated context before it is sent, but a reply does. For example, when sending a request,
the caller must supply addressing information, whereas a reply is always returned to the program
that originated the request, that is, addressing context is maintained for a reply and the sender of
the reply can exert no control over its destination. The differences between the two message types
manifest themselves in the parameters and descriptions of the routines described in TPCALL().

When a request message is sent, it is sent at a particular priority. The priority affects how a request
is dequeued: when a server dequeues requests, it dequeues the one with the highest priority. To

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 9

prevent starvation, the oldest request is dequeued every so often regardless of priority. By default,
a request’s priority is associated with the service name to which the request is being sent. Service
names can be given priorities at configuration time (see UBBCONFIG(5)). A default priority is
used if none is defined. In addition, the priority can be set at run time using a routine (TPSPRIO())
described in TPCALL(). By doing so, the caller can override the configuration or default priority
when the message is sent.

BEA Tuxedo System Conversational Paradigm for Client/Server
With regard to conversational communication, a client is defined as a program that can initiate a
conversation but cannot accept a connection request.

A conversational server is a program that can receive connection requests. Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down. The conversation is half-duplex in nature such that one side of the
connection has control and can send data until it gives up control to the other side. While the
connection is established, the server is “reserved” such that no other program can establish a
connection with the server.

As with a request/response server, the conversational server can act as a requester by initiating
other requests or connections with other servers. Unlike a request/response server, a
conversational server can not forward a request to another server. Thus, a conversational service
performed by a server is started when a request is received and ended when the final reply is sent
via TPRETURN().

Once the connection is established, the communications handle implies any context needed
regarding addressing information for the participants. Messages can be sent and received as
needed by the application. There is no inherent difference between the request and reply
messages and no notion of priority of messages.

BEA Tuxedo System Queued Message Model
The BEA Tuxedo ATMI queued message model allows for enqueuing a request message to stable
storage for subsequent processing without waiting for its completion, and optionally getting a
reply via a queued response message. The ATMI functions that queue messages and dequeue
responses are TPENQUEUE() and TPDEQUEUE(). They can be called from any type of BEA
Tuxedo ATMI application processes: client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Persistent messages are
enqueued and dequeued within transactions to ensure reliable one-time-only processing.

../rf5/rf5.htm#365105

10 ATMI COBOL Function Reference

ATMI Transactions
The BEA Tuxedo system supports two sets of mutually exclusive functions for defining and
managing transactions: the BEA Tuxedo system’s ATMI transaction demarcation functions (the
names of which include the prefix TP) and X/Open’s TX Interface functions (the names of which
include the prefix TX_). Because X/Open used ATMI’s transaction demarcation functions as the
base for the TX Interface, the syntax and semantics of the TX Interface are quite similar to those
of the ATMI. This section is an overview of ATMI transaction concepts. The next section
introduces additional concepts about the TX Interface.

In the BEA Tuxedo system, a transaction is used to define a single logical unit of work that either
wholly succeeds or has no effect whatsoever. A transaction allows work performed in many
processes, possibly at different sites, to be treated as an atomic unit of work. The initiator of a
transaction normally uses TPBEGIN() and either TPCOMMIT() or TPABORT() to delineate the
operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing TPSUSPEND().
Another process may take over the role of the initiator of a suspended transaction by issuing
TPRESUME(). As a transaction initiator, a program must call one of the following: TPSUSPEND(),
TPCOMMIT(), or TPABORT(). Thus, one program can start a transaction that another may finish.

If a program calling a service is in transaction mode, then the called service routine is also placed
in transaction mode on behalf of the same transaction. Otherwise, whether the service is invoked
in transaction mode or not depends on options specified for the service in the configuration file.
A service that is not invoked in transaction mode can define multiple transactions between the
time it is invoked and the time it ends. On the other hand, a service routine invoked in transaction
mode can participate in only one transaction, and work on that transaction is completed upon
termination of the service routine. Note that a connection cannot be upgraded to transaction
mode: if TPBEGIN() is called while a conversation exists, the conversation remains outside of the
transaction (as if TPCONNECT() had been called with the TPNOTRAN setting).

A service routine joining a transaction that was started by another program is called a participant.
A transaction can have several participants. A service can be invoked to do work on the same
transaction more than once. Only the initiator of a transaction (that is, a program calling either
TPBEGIN() or TPRESUME()) can call TPCOMMIT() or TPABORT(). Participants influence the
outcome of a transaction by using TPRETURN() or TPFORWAR(). These two calls signify the end
of a service routine and indicate that the routine has finished its part of the transaction.

TX Transactions
Transactions defined by the TX Interface are practically identical with those defined by the ATMI
functions. An application writer may use either set of functions when writing clients and service

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 11

routines. In fact, the BEA Tuxedo system does not require all client and server programs within
a single application to use one set of functions or the other. However, the two function sets may
not be used together within a single program (that is, a program cannot call TPBEGIN() and later
call TXCOMMIT()).

The TX Interface has two calls for opening and closing resource managers in a portable manner,
TXOPEN() and TXCLOSE(), respectively. Transactions are started with TXBEGIN() and
completed with either TXCOMMIT() or TXROLLBACK(). TXINFORM() is used to retrieve
transaction information, and there are three calls to set options for transactions:
TXSETCOMMITRET(), TXSETTRANCTL(), and TXSETTIMEOUT(). The TX Interface has no
equivalents to ATMI’s TPSUSPEND() and TPRESUME().

In addition to the semantics and rules defined for ATMI transactions, the TX Interface has some
additional semantics that are worth introducing here. First, service routine writers wanting to use
the TX Interface must supply their own TPSVRINIT() routine that calls TXOPEN(). The default
BEA Tuxedo system-supplied TPSVRINIT() calls TPOPEN(). The same rule applies for
TPSVRDONE(): if the TX Interface is being used, then service routine writers must supply their
own TPSVRDONE() that calls TXCLOSE().

Second, the TX Interface has two additional semantics not found in ATMI. These are chained and
unchained transactions, and transaction characteristics.

Chained and Unchained Transactions
The TX Interface supports chained and unchained modes of transaction execution. By default,
clients and service routines execute in the unchained mode; when an active transaction is
completed, a new transaction does not begin until TXBEGIN() is called.

In the chained mode, a new transaction starts implicitly when the current transaction completes.
That is, when TXCOMMIT() or TXROLLBACK() is called, the BEA Tuxedo system coordinates the
completion of the current transaction and initiates a new transaction before returning control to
the caller. (Certain failure conditions may prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling TXSETTRANCTL().
Transitions between the chained and unchained mode affect the behavior of the next TXCOMMIT()
or TXROLLBACK() call. The call to TXSETTRANCTL() does not put the caller into or take it out of
transaction mode.

Since TXCLOSE() cannot be called when the caller is in transaction mode, a caller executing in
chained mode must switch to unchained mode and complete the current transaction before calling
TXCLOSE().

12 ATMI COBOL Function Reference

Transaction Characteristics
A client or a service routine may call TXINFORM() to obtain the current values of their transaction
characteristics and to determine whether they are executing in transaction mode.

The state of an application program includes several transaction characteristics. The caller
specifies these by calling TXSET* functions. When a client or a service routine sets the value of
a characteristic, it remains in effect until the caller specifies a different value. When the caller
obtains the value of a characteristic via TXINFORM(), it does not change the value.

Timeouts
There are three types of timeouts in the BEA Tuxedo ATMI system: one is associated with the
duration of a transaction from start to finish. A second is associated with the maximum length of
time a blocking call will remain blocked before the caller regains control. The third is a service
timeout and occurs when a call exceeds the number of seconds specified in the SVCTIMEOUT
parameter in the SERVICES section of the configuration file.

The first kind of timeout is specified when a transaction is started with TPBEGIN() (see
TPBEGIN() for details). The second kind of timeout can occur when using the BEA Tuxedo
ATMI communication routines defined in TPCALL(). Callers of these routines typically block
when awaiting a reply that has yet to arrive, although they can also block trying to send data (for
example, if request queues are full). The maximum amount of time a caller remains blocked is
determined by a BEA Tuxedo ATMI configuration file parameter. (See the BLOCKTIME
parameter in UBBCONFIG(5) for details.)

Blocking timeouts are performed by default when the caller is not in transaction mode. When a
client or server is in transaction mode, it is subject to the timeout value with which the transaction
was started and is not subject to the blocking timeout value specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in transaction mode
become invalid. That is, if a program is waiting for a particular asynchronous reply for a request
sent in transaction mode and a transaction timeout occurs, the handle for that reply becomes
invalid. Similarly, if a transaction timeout occurs, an event is generated on the connection handle
associated with the transaction and that handle becomes invalid. On the other hand, if a blocking
timeout occurs, the handle is still valid and the waiting program can reissue the call to await the
reply.

The service timeout mechanism provides a way for the system to kill processes that may be frozen
by some unknown or unexpected system error. When a service timeout occurs in a
request/response service, the BEA Tuxedo system kills the server process that is executing the

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 13

frozen service and returns error code TPESVCERR. If a service timeout occurs in a conversational
service, the TPEV_SVCERR event is returned.

If a transaction has timed out, the only valid communications before the transaction is aborted are
calls to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

Dynamic Service Advertisements
By default, a server’s services are advertised when it is booted and unadvertised when it is shut
down. If a server needs to control the set of services that it offers at run time, it can do so by
calling TPADVERTISE() and TPUNADVERTISE(). These routines affect only the services offered
by the calling server unless that server belongs to a multiple server, single queue (MSSQ) set.
Because all servers in an MSSQ set must offer the same set of services, these routines also affect
the advertisements of all servers sharing the caller’s MSSQ set.

Typed Records
In order to send data to another application program, the sending application program first places
the data in a record. The ATMI interface supports the notion of a typed record. A typed record
is really a pair of COBOL records. The data record is defined in static storage and contains
application data to be passed to another application program. An auxiliary type record
accompanies the data record and it identifies to the BEA Tuxedo system the interpretation and
translation rules of the data record as it passes across heterogeneous machine boundaries. The
auxiliary type record contains the data record’s type, its optional subtype, and its optional length.
Some record types require further specification via a subtype (for example, a particular record
layout) and those of variable length require a length to be specified.

The application programmer may choose one of the six supported typed records. Note, the BEA
Tuxedo system provides a method for adding user-specific typed records. For details, refer to the
“Introduction to the C Language Application-Transaction Monitor Interface” in the BEA Tuxedo
ATMI C Function Reference. REC-TYPE in TPTYPE-REC selects which record type the application
wishes to send or receive. SUB-TYPE in TPTYPE-REC must also be given when further
classification is required (for example, a view record). When sending, LEN in TPTYPE-REC
indicates the number of bytes to be sent and when receiving the number of bytes to move into the
user’s record. The following are the supported REC-TYPEs.

CARRAY
The CARRAY record type allows an arbitrary number of characters which may contain
LOW-VALUE characters anywhere in the record. When sending data, LEN must contain the
number of bytes to be transferred.

14 ATMI COBOL Function Reference

STRING
The STRING record type allows an arbitrary number of characters which may not contain
LOW-VALUE characters within the record but may be at the end of the record. When
sending data, LEN must contain the number of bytes to be transferred.

VIEW
This record type describes a COBOL record that was generated using the viewc()
compiler. When using a VIEW, SUB-TYPE must contain the name of the view. When
sending a VIEW type, LEN must contain the number of bytes to be transferred or set
NO-LENGTH which will send the length of the view.

Two of the above record types have synonyms: X_OCTET is a synonym for CARRAY, and
X_COMMON is a synonym for VIEW. X_COMMON supports a subset of the data types supported by
VIEW: longs (PIC S9(9) COMP-5), shorts (PIC S9(4) COMP-5), and characters (PIC
X(n)). X_COMMON should be used when both C and COBOL programs are communicating.

In all three cases, after a successful transfer, LEN contains the number of bytes transferred. When
receiving data, LEN must contain the maximum number of bytes the data area contains. After a
successful call, LEN contains the number of bytes moved into the data area. If the size of the
incoming message is larger than the size specified in LEN, only LEN amount of data is moved into
the data area; the remaining data is discarded.

Buffer Type Switch
The BEA Tuxedo system provides a method for adding user specific record types. For details, see
the “Buffer Type Switch” section in Introduction to the C Language Application-to-Transaction
Monitor Interface.

Single or Multiple Application Context per Process
The BEA Tuxedo system allows client programs to create an association with one or more
applications per process. If TPINITIALIZE() is called with the TP-MULTI-CONTEXTS setting of
CONTEXTS-FLAG in TPINFDEF-REC, then multiple client contexts are allowed. If
TPINITIALIZE() is called implicitly or the CONTEXTS-FLAG is not set to TP-MULTI-CONTEXTS,
then only a single application association is allowed.

In single-context mode, if TPINITIALIZE() is called more than once (that is, if it is called after
the client has already joined the application), no action is taken and success is returned.

In multi-context mode, each call to TPINITIALIZE() creates a new application association. The
program can obtain a handle representing this application association by calling TPGETCTXT()
and it can call TPSETCTXT() to set its context.

../rf3c/rf3c.htm#899771
../rf3c/rf3c.htm#899771

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 15

Once an application has chosen single-context mode, all calls to TPINITIALIZE() must specify
single-context mode until all application associations are terminated. Similarly, once an
application has chosen multi-context mode, all calls to TPINITIALIZE() must specify
multi-context mode until all application associations are terminated.

Server programs can be associated with only a single application and cannot act as clients.

Note: In addition to allowing multiple application contexts per process, the BEA Tuxedo
system allows multiple application threads per process. Multithreading is supported,
however, only in the C language interface.

The following state table shows the transitions that may occur, within a client process, among the
following states: the uninitialized state, the initialized in single-context mode state, and the
initialized in multi-context mode state.

Table 2 Per-Process Context Modes

Function States

Uninitialized
S0

Initialized Single-context
Mode

S1

Initialized Multi-context
Mode S2

TPINITIALIZE()
without
TP-MULTI-CONTEXTS

S1 S1 S2 (error)

TPINITIALIZE() with
TP-MULTI-CONTEXTS

S2 S1 (error) S2

Implicit
TPINITIALIZE()

S1 S1 S2 (error)

TPTERM() - not last
association

S2

TPTERM() - last
association

S0 S0

TPTERM() - no
association

S0

16 ATMI COBOL Function Reference

Unsolicited Notification
There are two methods for sending messages to application clients outside the boundaries of the
client/server interaction defined above. The first is the broadcast mechanism supported by
TPBROADCAST(). This function allows application clients, servers, and administrators to
broadcast typed record messages to a set of clients selected on the basis of the names assigned to
them. The names assigned to clients are determined in part by the application (specifically, by the
information passed in the TPINFDEF-REC data structure at TPINITIALIZE time) and in part by
the system (based on the processor through which the client accesses the application).

The second is the notification of a particular client as identified from an earlier or current service
request. Each service request contains a unique client identifier that identifies the originating
client for the service request. Calls to the TPCALL() and TPFORWAR() functions from within a
service routine do not change the originating client for that chain of service requests. Client
identifiers can be saved and passed between application servers. The TPNOTIFY() function is
used to notify clients identified in this manner.

COBOL Language ATMI Return Codes and Other Definitions
The following return code and setting definitions are used by the ATMI routines:

*

* TPSTATUS.cbl

*

05 TP-STATUS PIC S9(9) COMP-5.

 88 TPOK VALUE 0.

 88 TPEABORT VALUE 1.

 88 TPEBADDESC VALUE 2.

 88 TPEBLOCK VALUE 3.

 88 TPEINVAL VALUE 4.

 88 TPELIMIT VALUE 5.

 88 TPENOENT VALUE 6.

 88 TPEOS VALUE 7.

 88 TPEPERM VALUE 8.

 88 TPEPROTO VALUE 9.

 88 TPESVCERR VALUE 10.

 88 TPESVCFAIL VALUE 11.

 88 TPESYSTEM VALUE 12.

 88 TPETIME VALUE 13.

 88 TPETRAN VALUE 14.

 88 TPEGOTSIG VALUE 15.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 17

 88 TPERMERR VALUE 16.

 88 TPEITYPE VALUE 17.

 88 TPEOTYPE VALUE 18.

 88 TPERELEASE VALUE 19.

 88 TPEHAZARD VALUE 20.

 88 TPEHEURISTIC VALUE 21.

 88 TPEEVENT VALUE 22.

 88 TPEMATCH VALUE 23.

 88 TPEDIAGNOSTIC VALUE 24.

 88 TPEMIB VALUE 25.

 88 TPEMAXVAL VALUE 26.

05 TPEVENT PIC S9(9) COMP-5.

 88 TPEV-NOEVENT VALUE 0.

 88 TPEV-DISCONIMM VALUE 1.

 88 TPEV-SENDONLY VALUE 2.

 88 TPEV-SVCERR VALUE 3.

 88 TPEV-SVCFAIL VALUE 4.

 88 TPEV-SVCSUCC VALUE 5.

05 TPSVCTIMOUT PIC S9(9) COMP-5.

 88 TPED-NOEVENT VALUE 0.

 88 TPEV-SVCTIMEOUT VALUE 1.

 88 TPEV-TERM VALUE 2.

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The TPTYPE COBOL structure is used whenever sending or receiving application data. REC-TYPE
indicates the type of data record that is to be sent. SUB-TYPE indicates the name of the view if a
VIEW REC-TYPE is specified. LEN indicates the amount of data to send and the amount received.

*

* TPTYPE.cbl

*

05 REC-TYPE PIC X(8).

 88 X-OCTET VALUE "X_OCTET".

 88 X-COMMON VALUE "X_COMMON".

05 SUB-TYPE PIC X(16).

05 LEN PIC S9(9) COMP-5.

 88 NO-LENGTH VALUE 0.

05 TPTYPE-STATUS PIC S9(9) COMP-5.

18 ATMI COBOL Function Reference

 88 TPTYPEOK VALUE 0.

 88 TPTRUNCATE VALUE 1.

The TPSVCDEF data structure is used by functions to pass settings to and from the BEA Tuxedo
system:

*

* TPSVCDEF.cbl

*

05 COMM-HANDLE PIC S9(9) COMP-5.

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPTRAN VALUE 0.

 88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.

 88 TPREPLY VALUE 0.

 88 TPNOREPLY VALUE 1.

05 TPACK-FLAG PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.

 88 TPNOACK VALUE 0.

 88 TPACK VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

05 TPGETANY-FLAG PIC S9(9) COMP-5.

 88 TPGETHANDLE VALUE 0.

 88 TPGETANY VALUE 1.

05 TPSENDRECV-FLAG PIC S9(9) COMP-5.

 88 TPSENDONLY VALUE 0.

 88 TPRECVONLY VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.

 88 TPCHANGE VALUE 0.

 88 TPNOCHANGE VALUE 1.

05 TPSERVICETYPE-FLAG PIC S9(9) COMP-5.

 88 TPREQRSP VALUE IS 0.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 19

 88 TPCONV VALUE IS 1.

*

05 APPKEY PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.

05 SERVICE-NAME PIC X(15).

The TPINFDEF data structure is used by TPINITIALIZE() to join the application:

*

* TPINFDEF.cbl

*

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.

 88 TPU-SIG VALUE 1.

 88 TPU-DIP VALUE 2.

 88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.

 88 TPSA-FASTPATH VALUE 1.

 88 TPSA-PROTECTED VALUE 2.

05 CONTEXTS-FLAG PIC S9(9) COMP-5.

 88 TP-SINGLE-CONTEXT VALUE 0.

 88 TP-MULTI-CONTEXTS VALUE 1.

05 DATALEN PIC S9(9) COMP-5.

The TPCONTEXTDEF data structure is used by TPGETCTXT() and TPSETCTXT() to manipulate
program contexts:

 *

 * TPCONTEXTDEF.cbl

 *

 05 CONTEXT PIC S9(9) COMP-5.

The TPQUEDEF data structure is used to pass and retrieve information associated with enqueuing
the message:

*

* TPQUEDEF.cbl

20 ATMI COBOL Function Reference

*

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPNOBLOCK VALUE 0.

 88 TPBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPNOTRAN VALUE 0.

 88 TPTRAN VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPNOTIME VALUE 0.

 88 TPTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

05 TPNOCHANGE-FLAG PIC S9(9) COMP-5.

 88 TPNOCHANGE VALUE 0.

 88 TPCHANGE VALUE 1.

05 TPQUE-ORDER-FLAG PIC S9(9) COMP-5.

 88 TPQDEFAULT VALUE 0.

 88 TPQTOP VALUE 1.

 88 TPQBEFOREMSGID VALUE 2.

05 TPQUE-TIME-FLAG PIC S9(9) COMP-5.

 88 TPQNOTIME VALUE 0.

 88 TPQTIME-ABS VALUE 1.

 88 TPQTIME-REL VALUE 2.

05 TPQUE-PRIORITY-FLAG PIC S9(9) COMP-5.

 88 TPQNOPRIORITY VALUE 0.

 88 TPQPRIORITY VALUE 1.

05 TPQUE-CORRID-FLAG PIC S9(9) COMP-5.

 88 TPQNOCORRID VALUE 0.

 88 TPQCORRID VALUE 1.

05 TPQUE-REPLYQ-FLAG PIC S9(9) COMP-5.

 88 TPQNOREPLYQ VALUE 0.

 88 TPQREPLYQ VALUE 1.

05 TPQUE-FAILQ-FLAG PIC S9(9) COMP-5.

 88 TPQNOFAILUREQ VALUE 0.

 88 TPQFAILUREQ VALUE 1.

05 TPQUE-MSGID-FLAG PIC S9(9) COMP-5.

 88 TPQNOMSGID VALUE 0.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 21

 88 TPQMSGID VALUE 1.

05 TPQUE-GETBY-FLAG PIC S9(9) COMP-5.

 88 TPQGETNEXT VALUE 0.

 88 TPQGETBYMSGIDOLD VALUE 1.

 88 TPQGETBYCORRIDOLD VALUE 2.

 88 TPQGETBYMSGID VALUE 3.

 88 TPQGETBYCORRID VALUE 4.

05 TPQUE-WAIT-FLAG PIC S9(9) COMP-5.

 88 TPQNOWAIT VALUE 0.

 88 TPQWAIT VALUE 1.

05 TPQUE-DELIVERY-FLAG PIC S9(9) COMP-5.

 88 TPQNODELIVERYQOS VALUE 0.

 88 TPQDELIVERYQOS VALUE 1.

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.

 88 TPQQOSDELIVERYDEFAULTPERSIST VALUE 0.

 88 TPQQOSDELIVERYPERSISTENT VALUE 1.

 88 TPQQOSDELIVERYNONPERSISTENT VALUE 2.

05 TPQUE-REPLY-FLAG PIC S9(9) COMP-5.

 88 TPQNOREPLYQOS VALUE 0.

 88 TPQREPLYQOS VALUE 1.

05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

 88 TPQQOSREPLYDEFAULTPERSIST VALUE 0.

 88 TPQQOSREPLYPERSISTENT VALUE 1.

 88 TPQQOSREPLYNONPERSISTENT VALUE 2.

05 TPQUE-EXPTIME-FLAG PIC S9(9) COMP-5.

 88 TPQNOEXPTIME VALUE 0.

 88 TPQEXPTIME-ABS VALUE 1.

 88 TPQEXPTIME-REL VALUE 2.

 88 TPQEXPTIME-NONE VALUE 3.

05 TPQUE-PEEK-FLAG PIC S9(9) COMP-5.

 88 TPQNOPEEK VALUE 0.

 88 TPQPEEK VALUE 1.

05 DIAGNOSTIC PIC S9(9) COMP-5.

 88 QMEINVAL VALUE -1.

 88 QMEBADRMID VALUE -2.

 88 QMENOTOPEN VALUE -3.

 88 QMETRAN VALUE -4.

 88 QMEBADMSGID VALUE -5.

22 ATMI COBOL Function Reference

 88 QMESYSTEM VALUE -6.

 88 QMEOS VALUE -7.

 88 QMEABORTED VALUE -8.

 88 QMEPROTO VALUE -9.

 88 QMEBADQUEUE VALUE -10.

 88 QMENOMSG VALUE -11.

 88 QMEINUSE VALUE -12.

 88 QMENOSPACE VALUE -13.

 88 QMERELEASE VALUE -14.

 88 QMEINVHANDLE VALUE -15.

 88 QMESHARE VALUE -16.

05 DEQ-TIME PIC S9(9) COMP-5.

05 EXP-TIME PIC S9(9) COMP-5.

05 PRIORITY PIC S9(9) COMP-5.

05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 QNAME PIC X(15).

05 QSPACE-NAME PIC X(15).

05 REPLYQUEUE PIC X(15).

05 FAILUREQUEUE PIC X(15).

05 CLIENTID OCCURS4 TIMES PIC S9(9) COMP-5.

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

05 APPKEY PIC S9(9) COMP-5.

The TPSVCRET data structure is used by TPRETURN() to indicate the status of the transaction:

*

* TPSVCRET.cbl

*

05 TP-RETURN-VAL PIC S9(9) COMP-5.

 88 TPSUCCESS VALUE 0.

 88 TPFAIL VALUE 1.

 88 TPEXIT VALUE 2.

05 APPL-CODE PIC S9(9) COMP-5.

The TPTRXDEF data structure is used by TPBEGIN() to set transaction timeouts, and by
TPSUSPEND() and TPRESUME() to get and set, respectively, transaction identifiers:

*

* TPTRXDEF.cbl

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 23

*

05 T-OUT PIC S9(9) COMP-5 VALUE IS 0.

05 TRANID OCCURS 6 TIMES PIC S9(9) COMP-5.

The TPCMTDEF data structure is used by TPSCMT() to set the commit level characteristics:

*

* TPCMTDEF.cbl

*

05 CMT-FLAG PIC S9(9) COMP-5.

 88 TP-CMT-LOGGED VALUE 1.

 88 TP-CMT-COMPLETE VALUE 2.

05 PREV-CMT-FLAG PIC S9(9) COMP-5.

 88 PREV-TP-CMT-LOGGED VALUE 1.

 88 PREV-TP-CMT-COMPLETE VALUE 2.

The TPAUTDEF data structure is used by TPCHKAUTH() to check if authentication is required:

* TPAUTDEF.cbl

*

05 AUTH-FLAG PIC S9(9) COMP-5.

 88 TPNOAUTH VALUE 0.

 88 TPSYSAUTH VALUE 1.

 88 TPAPPAUTH VALUE 2.

The TPPRIDEF data structure is used by TPSPRIO() and TPGPRIO() to manipulate message
priorities:

*

* TPPRIDEF.cbl

*

05 PRIORITY PIC S9(9) COMP-5.

05 PRIO-FLAG PIC S9(9) COMP-5.

 88 TPABSOLUTE VALUE 0.

 88 TPRELATIVE VALUE 1.

The TPTRXLEV data structure is used by TPGETLEV() to receive transaction level setting:

*

* TPTRXLEV.cbl

*

05 TPTRXLEV-FLAG PIC S9(9) COMP-5.

24 ATMI COBOL Function Reference

 88 TP-NOT-IN-TRAN VALUE 0.

 88 TP-IN-TRAN VALUE 1.

The TPBCTDEF data structure is used by TPNOTIFY() and TPBROADCAST() to send notifications:

*

* TPBCTDEF.cbl

*

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

05 LMID PIC X(30).

05 USERNAME PIC X(30).

05 CLTNAME PIC X(30).

The FML-INFO data structure is used by FINIT(), FVSTOF(), and FVFTOS() to deal with FML
buffers:

*

* FMLINFO.cbl

*

05 FML-STATUS PIC S9(9) COMP-5.

 88 FOK VALUE 0.

 88 FALIGNERR VALUE 1.

 88 FNOTFLD VALUE 2.

 88 FNOSPACE VALUE 3.

 88 FNOTPRES VALUE 4.

 88 FBADFLD VALUE 5.

 88 FTYPERR VALUE 6.

 88 FEUNIX VALUE 7.

 88 FBADNAME VALUE 8.

 88 FMALLOC VALUE 9.

 88 FSYNTAX VALUE 10.

 88 FFTOPEN VALUE 11.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 25

 88 FFTSYNTAX VALUE 12.

 88 FEINVAL VALUE 13.

 88 FBADTBL VALUE 14.

 88 FBADVIEW VALUE 15.

 88 FVFSYNTAX VALUE 16.

 88 FVFOPEN VALUE 17.

 88 FBADACM VALUE 18.

 88 FNOCNAME VALUE 19.

 88 FEBADOP VALUE 20.

*

05 FML-LENGTH PIC S9(9) COMP-5.

*

05 FML-MODE PIC S9(9) COMP-5.

 88 FUPDATE VALUE 1.

 88 FCONCAT VALUE 2.

 88 FJOIN VALUE 3.

 88 FOJOIN VALUE 4.

*

05 VIEWNAME PIC X(33).

The TPEVTDEF data structure is used by TPPOST(), TPSUBSCRIBE(), and TPUNSUBSCRIBE() to
handle event postings and subscriptions:

*

* TPEVTDEF.cbl

*

05 TPBLOCK-FLAG PIC S9(9) COMP-5.

 88 TPBLOCK VALUE 0.

 88 TPNOBLOCK VALUE 1.

05 TPTRAN-FLAG PIC S9(9) COMP-5.

 88 TPTRAN VALUE 0.

 88 TPNOTRAN VALUE 1.

05 TPREPLY-FLAG PIC S9(9) COMP-5.

 88 TPREPLY VALUE 0.

 88 TPNOREPLY VALUE 1.

05 TPTIME-FLAG PIC S9(9) COMP-5.

 88 TPTIME VALUE 0.

 88 TPNOTIME VALUE 1.

05 TPSIGRSTRT-FLAG PIC S9(9) COMP-5.

26 ATMI COBOL Function Reference

 88 TPNOSIGRSTRT VALUE 0.

 88 TPSIGRSTRT VALUE 1.

05 TPEV-METHOD-FLAG PIC S9(9) COMP-5.

 88 TPEVNOTIFY VALUE 0.

 88 TPEVSERVICE VALUE 1.

 88 TPEVQUEUE VALUE 2.

05 TPEV-PERSIST-FLAG PIC S9(9) COMP-5.

 88 TPEVNOPERSIST VALUE 0.

 88 TPEVPERSIST VALUE 1.

05 TPEV-TRAN-FLAG PIC S9(9) COMP-5.

 88 TPEVNOTRAN VALUE 0.

 88 TPEVTRAN VALUE 1.

*

05 EVENT-COUNT PIC S9(9) COMP-5.

05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.

05 NAME-1 PIC X(31).

05 NAME-2 PIC X(31).

05 EVENT-NAME PIC X(31).

05 EVENT-EXPR PIC X(255).

05 EVENT-FILTER PIC X(255).

The TPKEYDEF data structure is used by TPKEYCLOSE(), TPKEYGETINFO(), TPKEYOPEN(), and
TPKEYSETINFO()to manage public-private keys for performing message-based digital signature
and encryption operations:

*

* TPKEYDEF.cbl

*

05 KEY-HANDLE PIC S9(9) COMP-5.

05 PRINCIPAL-NAME PIC X(512).

05 LOCATION PIC X(1024).

05 IDENTITY-PROOF PIC X(2048).

05 PROOF-LEN PIC S9(9) COMP-5.

05 CRYPTO-PROVIDER PIC X(128).

05 SIGNATURE-FLAG PIC S9(9) COMP-5.

 88 TPKEY-NOSIGNATURE VALUE 0.

 88 TPKEY-SIGNATURE VALUE 1.

05 DECRYPT-FLAG PIC S9(9) COMP-5.

 88 TPKEY-NODECRYPT VALUE 0.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 27

 88 TPKEY-DECRYPT VALUE 1.

05 ENCRYPT-FLAG PIC S9(9) COMP-5.

 88 TPKEY-NOENCRYPT VALUE 0.

 88 TPKEY-ENCRYPT VALUE 1.

05 AUTOSIGN-FLAG PIC S9(9) COMP-5.

 88 TPKEY-NOAUTOSIGN VALUE 0.

 88 TPKEY-AUTOSIGN VALUE 1.

05 AUTOENCRYPT-FLAG PIC S9(9) COMP-5.

 88 TPKEY-NOAUTOENCRYPT VALUE 0.

 88 TPKEY-AUTOENCRYPT VALUE 1.

05 ATTRIBUTE-NAME PIC X(64).

05 ATTRIBUTE-VALUE-LEN PIC S9(9) COMP-5.

COBOL Language TX Return Codes and Other Definitions
The following return code and setting definitions are used by the TX routines:

*

* TXSTATUS.cbl

*

05 TX-STATUS PIC S9(9) COMP-5.

 88 TX-NOT-SUPPORTED VALUE 1.

* Normal execution

 88 TX-OK VALUE 0.

* Normal execution

 88 TX-OUTSIDE VALUE -1.

* Application is in an RM local transaction

 88 TX-ROLLBACK VALUE -2.

* Transaction was rolled back

 88 TX-MIXED VALUE -3.

* Transaction was partially committed and partially

* rolled back

 88 TX-HAZARD VALUE -4.

* Transaction may have been partially committed and

* partially rolled back

 88 TX-PROTOCOL-ERROR VALUE -5.

* Routine invoked in an improper context

 88 TX-ERROR VALUE -6.

* Transient error

28 ATMI COBOL Function Reference

 88 TX-FAIL VALUE -7.

* Fatal error

 88 TX-EINVAL VALUE -8.

* Invalid arguments were given

 88 TX-COMMITTED VALUE -9.

* The transaction was heuristically committed

 88 TX-NO-BEGIN VALUE -100.

* Transaction committed plus new transaction could not

* be started

 88 TX-ROLLBACK-NO-BEGIN VALUE -102.

* Transaction rollback plus new transaction could not

* be started

 88 TX-MIXED-NO-BEGIN VALUE -103.

* Mixed plus new transaction could not be started

 88 TX-HAZARD-NO-BEGIN VALUE -104.

* Hazard plus new transaction could not be started

 88 TX-COMMITTED-NO-BEGIN VALUE -109.

* Heuristically committed plus transaction could not

* be started

The TXINFDEF record defines a data structure where the result of the TXINFORM() call will be
stored:

*

* TXINFDEF.cbl

*

05 XID-REC.

* XID record

10 FORMAT-ID PIC S9(9) COMP-5.

* A value of -1 in FORMAT-ID means that the XID is NULL

10 GTRID-LENGTH PIC S9(9) COMP-5.

10 BRANCH-LENGTH PIC S9(9) COMP-5.

10 XID-DATA PIC X(128).

05 TRANSACTION-MODE PIC S9(9) COMP-5.

* Transaction mode settings

 88 TX-NOT-IN-TRAN VALUE 0.

 88 TX-IN-TRAN VALUE 1.

05 COMMIT-RETURN PIC S9(9) COMP-5.

* Commit_return settings

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 29

 88 TX-COMMIT-COMPLETED VALUE 0.

 88 TX-COMMIT-DECISION-LOGGED VALUE 1.

05 TRANSACTION-CONTROL PIC S9(9) COMP-5.

* Transaction_control settings

 88 TX-UNCHAINED VALUE 0.

 88 TX-CHAINED VALUE 1.

05 TRANSACTION-TIMEOUT PIC S9(9) COMP-5.

* Transaction_timeout value

 88 NO-TIMEOUT VALUE 0.

05 TRANSACTION-STATE PIC S9(9) COMP-5.

* Transaction_state information

 88 TX-ACTIVE VALUE 0.

 88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.

 88 TX-ROLLBACK-ONLY VALUE 2.

ATMI State Transitions
The BEA Tuxedo system keeps track of the state for each program and verifies that legal state
transitions occur for the various function calls and options. The state information includes the
program type (request/response server, conversational server, or client), the initialization state
(uninitialized or initialized), the resource management state (closed or open), the transaction state
of the program, and the state of all asynchronous request/response and connection handles. When
an illegal state transition is attempted, the called function fails, setting TPSTATUS-REC to
TPEPROTO(). The legal states and transitions for this information are described in the following
tables.

The table below indicates which functions may be called by request/response servers,
conversational servers, and clients. Note that TPSVRINIT() and TPSVRDONE() are not included
in this table because they are not called by applications (that is, they are application-supplied
functions that are invoked by the BEA Tuxedo system).

Table 3 Available Functions

Function Process Type

Request/Response
Server

Conversational
Server

Client

TPABORT() Y Y Y

TPACALL() Y Y Y

30 ATMI COBOL Function Reference

TPADVERTISE() Y Y N

TPBEGIN() Y Y Y

TPBROADCAST() Y Y Y

TPCALL() Y Y Y

TPCANCEL() Y Y Y

TPCHKAUTH() Y Y Y

TPCHKUNSOL() N N Y

TPCLOSE() Y Y Y

TPCOMMIT() Y Y Y

TPCONNECT() Y Y Y

TPDEQUE() Y Y Y

TPDISCON() Y Y Y

TPENQUEUE() Y Y Y

TPFORWAR() Y N N

TPGBLKTIME() Y Y Y

TPGETCTXT() Y Y Y

TPGETLEV() Y Y Y

TPGETRPLY() Y Y Y

TPGPRIO() Y Y Y

TPINITIALIZE() N N Y

TPNOTIFY() Y Y Y

Table 3 Available Functions

Function Process Type

Request/Response
Server

Conversational
Server

Client

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 31

The remaining state tables are for both clients and servers, unless otherwise noted. Keep in mind
that because some functions cannot be called by both clients and servers (for example,
TPINITIALIZE()), certain state transitions shown below may not be possible for both program
types. The above table should be consulted to determine whether the program in question is
allowed to call a particular function.

TPOPEN() Y Y Y

TPPOST() Y Y Y

TPRECV() Y Y Y

TPRESUME() Y Y Y

TPRETURN() Y Y N

TPSBLKTIME() Y Y Y

TPSCMT() Y Y Y

TPSEND() Y Y Y

TPSETCTXT() N N Y

TPSETUNSOL() N N Y

TPSPRIO() Y Y Y

TPSUBSCRIBE() Y Y Y

TPSUSPEND() Y Y Y

TPTERM() N N Y

TPUNADVERTISE() Y Y N

TPUNSUBSCRIBE() Y Y Y

Table 3 Available Functions

Function Process Type

Request/Response
Server

Conversational
Server

Client

32 ATMI COBOL Function Reference

The following state table indicates whether or not a client program has been initialized and
registered with the transaction manager. Note that this table assumes the use of
TPINITIALIZE(), which is optional in single-context mode. That is, a single-context client may
implicitly join an application by issuing one of many ATMI functions (for example, TPACALL()
or TPCALL()). A client must use TPINITIALIZE() when one of the following is true:

Application authentication is required. (See TPINITIALIZE() and the description of the
SECURITY keyword in UBBCONFIG(5) for details.)

The client wants to access an XA-compliant resource manager directly. (See
TPINITIALIZE(3cbl) for details.)

The client wants to create multiple application associations.

A server is placed in the initialized state by the BEA Tuxedo dispatcher before its TPSVRINIT()
function is invoked, and it is placed in the uninitialized state by the BEA Tuxedo dispatcher after
its TPSVRDONE() function has returned. Note that in all of the state tables shown below, an error
return from a function causes the program to remain in the same state, unless otherwise noted.

Table 4 Initialization States

Function States

Uninitialized
I0

Initialized
I1

TPCHKAUTH() I0 I1

TPGETCTXT() I0 I1

TPINITIALIZE() I1 I1

TPSETCTXT()
set to a non-NULL
context

I1 I1

TPSETCTXT() with
TPNULLCONTEXT set

I0 I0

TPSETUNSOL() I0 I1

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 33

The remaining state tables assume a precondition of state I (regardless of whether a process
arrived in this state via TPINITIALIZE(), TPSETCTXT(), or the BEA Tuxedo service
dispatcher).

The following table indicates the state of a client or server with respect to whether or not a
resource manager associated with the process has been initialized:

TPTERM() I0 I0

All other ATMI
functions

I1

Table 5 Resource Management States

Function States

Closed
R0

Open
R1

TPOPEN() R1 R1

TPCLOSE() R0 R0

TPBEGIN() R1

TPCOMMIT() R1

TPABORT() R1

TPSUSPEND() R1

TPRESUME() R1

Table 4 Initialization States

Function States

Uninitialized
I0

Initialized
I1

34 ATMI COBOL Function Reference

The following state table indicates the state of a process with respect to whether or not the process
is associated with a transaction. For servers, transitions to states T1 and T2 assume a precondition
of state R1 (for example, TPOPEN() has been called with no subsequent call to TPCLOSE() or
TPTERM()).

TPSVCSTART() with
TPTRAN

R1

All other ATMI
functions

R0 R1

Table 6 Transaction State of Application Association

Function State

Not in Transaction
T0

Initiator
T1

Participant
T2

TPBEGIN()

TPABORT() T0

TPCOMMIT() T0

SPSUSPEND() T0

TPRESUME() T0

TPSVCSTART() with TPTRAN T2

TPSVCSTART()
(not in transaction mode)

T0

TPRETURN() T0 T0

TPFORWAR() T0 T0

Table 5 Resource Management States

Function States

Closed
R0

Open
R1

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 35

The following state table indicates the state of a single request handle returned by TPACALL():

TPCLOSE() R0

TPTERM() I0 T0

All other ATMI functions T0 T1 T2

Table 7 Asynchronous Request Descriptor States

Function States

No Descriptor
A0

Valid Descriptor
A1

TPACALL() A1

TPGETRPLY() A0

TPCANCEL() A0
a

TPABORT() A0 A0
b

TPCOMMIT() A0 A0
b

TPSUSPEND() A0 Ac

TPRETURN() A0 A0

TPFORWAR() A0 A0

TPTERM() I0 I0

All other ATMI
functions

A0 A1

Table 6 Transaction State of Application Association

Function State

Not in Transaction
T0

Initiator
T1

Participant
T2

36 ATMI COBOL Function Reference

Note: a This state change occurs only if the descriptor is not associated with the caller’s
transaction.
b This state change occurs only if the descriptor is associated with the caller’s transaction.
c If the descriptor is associated with the caller’s transaction, then TPSUSPEND() returns a
protocol error.

The following state table indicates the state of a connection descriptor returned by TPCONNECT()
or provided by a service invocation in the TPSVCINFO structure. For primitives that do not take a
connection descriptor, the state changes apply to all connection descriptors, unless otherwise
noted.

The states are as follows:

C0 - No handle
C1 - TPCONNECT handle send-only
C2 - TPCONNECT handle receive-only
C3 - TPSVCDEF handle send-only
C4 - TPSVCDEF handle receive-only

Table 8 Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4

TPCONNECT() with TPSENDONLY C1
a

TPCONNECT() with TPRECVONLY C2
a

TPSVCSTART() with flag TPSENDONLY C3
b

TPSVCSTART() with flag TPRECVONLY C4
b

TPRECV()/no event C2 C4

TPRECV()/TPEV_SENDONLY C1 C3

TPRECV()/TPEV_DISCONIMM C0 C0

TPRECV()/TPEV_SVCERR C0

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 37

Note: a If the program is in transaction mode and TPNOTRAN is not specified, the connection is
in transaction mode.
b If the TPTRAN flag is set, the connection is in transaction mode.
c If the connection is not in transaction mode, no state change.
d If the connection is in transaction mode, then TPSUSPEND() returns a protocol error.

TPRECV()/TPEV_SVCFAIL C0

TPRECV()/TPEV_SVCSUCC C0

TPSEND()/no event C1 C3

TPSEND() with flag TPRECVONLY C2 C4

TPSEND()/TPEV_DISCONIMM C0 C0

TPSEND()/TPEV_SVCERR C0

TPSEND()/TPEV_SVCFAIL C0

TPTERM() (client only) C0 C0

TPCOMMIT() (originator only) C0 C0
c C0 c

TPSUSPEND() (originator only) C0 C0
d C0

d

TPABORT() (originator only) C0 C0
 c C0

c

TPDISCON() C0 C0

TPRETURN() (CONV server) C0 C0 C0 C0

TPFORWAR() (CONV server) C0 C0 C0 C0

All other ATMI functions C0 C1 C2 C3 C4

Table 8 Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4

38 ATMI COBOL Function Reference

TX State Transitions
BEA Tuxedo ensures that a process calls the TX functions in a legal sequence. When an illegal
state transition is attempted (that is, a call from a state with a blank transition entry), the called
function returns TX_PROTOCOL_ERROR. The legal states and transitions for the TX functions are
shown in the table below. Calls that return failure do not make state transitions, except where
described by specific state table entries. Any BEA Tuxedo client or server is allowed to use the
TX functions.

The states are defined below:

S0
No RMs have been opened or initialized. A process cannot start a global transaction until
it has successfully called TXOPEN().

S1
A process has opened its RM but is not in a transaction. Its transaction_control
characteristic is TX-UNCHAINED.

S2
A process has opened its RM but is not in a transaction. Its transaction_control
characteristic is TX-CHAINED.

S3
A process has opened its RM and is in a transaction. Its transaction_control
characteristic is TX-UNCHAINED.

S4
A process has opened its RM and is in a transaction. Its transaction_control
characteristic is TX-CHAINED.

Table 9 TX State Transitions

Function States

S0 S1 S2 S3 S4

TXBEGIN() S3 S4

TXCLOSE() S0 S0 S0

TXCOMMIT() -> TX_SET1 S1 S4

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 39

TX_SET1 denotes any of the following: TX_OK, TX_ROLLBACK, TX_MIXED, TX_HAZARD, or
TX_COMMITTED. TX_ROLLBACK is not returned by tx_rollback() and TX_COMMITTED is
not returned by tx_commit().

TX_SET2 denotes any of the following: TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or TX_COMMITTED_NO_BEGIN.
TX_ROLLBACK_NO_BEGIN is not returned by tx_rollback() and
TX_COMMITTED_NO_BEGIN is not returned by tx_commit().

If TX_FAIL is returned on any call, the application process is in an undefined state with
respect to the above table.

When tx_info() returns either TX_ROLLBACK_ONLY or TX_TIMEOUT_ROLLBACK_ONLY in
the transaction state information, the transaction is marked rollback-only and is rolled back,
regardless of whether the application program calls tx_commit() or tx_rollback().

TXCOMMIT() -> TX_SET2 S2

TXINFORM() S1 S2 S3 S4

TXOPEN() S1 S1 S2 S3 S4

TXROLLBACK() -> TX_SET1 S1 S4

TXROLLBACK() -> TX_SET2 S2

TXSETCOMMITRET() S1 S2 S3 S4

TXSETTRANCTL()
 control = TX-CHAINED

S2 S2 S4 S4

TXSETRRANCTL()
 control = TX-UNCHAINED

S1 S1 S3 S3

TXSETTIMEOUT() S1 S2 S3 S4

Table 9 TX State Transitions

Function States

S0 S1 S2 S3 S4

40 ATMI COBOL Function Reference

See Also
buffer(3c), TPINITIALIZE(3cbl), TPADVERTISE(3cbl), TPBEGIN(3cbl),
TPCALL(3cbl), TPCONNECT(3cbl), TPGETCTXT(3cbl), TPKEYCLOSE(3cbl),
TPKEYGETINFO(3cbl), TPKEYOPEN(3cbl), TPKEYSETINFO(3cbl), TPOPEN(3cbl),
TPSETCTXT(3cbl), TPSVCSTART(3cbl), tuxtypes(5), typesw(5)

FINIT, FINIT32(3cbl)

Name
FINIT(), FINIT32() - initialize fielded buffer

Synopsis
01 FML-BUFFER.
 05 FML-ALIGN PIC S9(9) USAGE IS COMP.
 05 FML-DATA PIC X(applen).

01 FML-REC
 COPY FMLINFO.

CALL "FINIT" USING FML-BUFFER FML-REC.

CALL "FINIT32" USING FML-BUFFER FML-REC.

Description

FINIT() can be called to initialize a fielded buffer. FML-BUFFER is the record to be used for the
fielded buffer; it should be aligned on a 4-byte boundary to work with both FML16 and FML32.
This can be accomplished by defining two record elements as shown in the synopsis above.
FML-LENGTH IN FML-REC is the length of the record. The internal structure is set up for a fielded
buffer with no fields; the application program should not interpret the record, other than to pass
it to FINIT(), FVFTOS(), or FVSTOF(), or an ATMI call that takes a typed record (in this case,
the type is “FML” and there is no subtype).

FINIT32() is used with 32-bit FML.

Return Values

Upon successful completion, FINIT() sets FML-STATUS in FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

../rf3c/rf3c.htm#6817413
../rf5/rf5.htm#7807115
../rf5/rf5.htm#2183415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 41

Errors

Under the following conditions, FINIT() fails and sets FML-STATUS in FML-REC to:

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOSPACE]
“no space in fielded buffer”
The buffer size specified is too small for a fielded buffer.

Example

The correct was to reinitialize a buffer to have no fields is: Finit(frfr,
(FLDLEN)Fsizeof(fbfr));

See Also

Introduction to FML Functions

FVFTOS, FVFTOS32(3cbl)

Name
FVFTOS(), FVFTOS32() - copy from fielded buffer to COBOL structure

Synopsis
01 DATA-REC.

COPY User data.

01 FML-BUFFER.

 05 FML-ALIGN PIC S9(9) USAGE IS COMP.

 05 FML-DATA PIC X(applen).

01 FML-REC COPY FMLINFO.

CALL "FVFTOS" USING FML-BUFFER DATA-REC FML-REC.

CALL "FVFTOS32" USING FML-BUFFER DATA-REC FML-REC.

../rf3fml/rf3fml.htm#867141

42 ATMI COBOL Function Reference

Description
The FVFTOS() function transfers data from a fielded buffer to a COBOL record. FML-BUFFER is
a pointer to a fielded buffer initialized with FINIT(). DATA-REC is a pointer to a C structure.
VIEWNAME IN FML-REC is the name of the view describing the COBOL record.

Fields are copied from the fielded buffer into the structure based on the element descriptions in
VIEWNAME. If a field in the fielded buffer has no corresponding element in the COBOL record, it
is ignored. If an element specified in the COBOL record has no corresponding field in the fielded
buffer, a NULL value is copied into the element. The NULL value used is definable for each
element in the view description.

To store multiple occurrences in the COBOL record, the record element should be defined with
OCCURS. If the buffer has fewer occurrences of the field than there are occurrences of the element,
the extra element slots are assigned NULL values. On the other hand, if the buffer has more
occurrences of the field than there are occurrences of the element, the surplus occurrences are
ignored.

FVFTOS32() is used for views defined with view32() typed buffers for larger views with more
fields.

Return Values
Upon successful completion, FVFTOS32() sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors
Under the following conditions, FVFTOS() fails and sets FML-STATUS to:

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD]
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT().

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 43

[FBADACM]
“ACM contains negative value”
An Associated Count Member should not be a negative value while transferring data from
a COBOL record to a fielded buffer.

[FBADVIEW]
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by VIEWDIR or
VIEWFILES.

See Also
Introduction to FML Functions, viewfile(5)

FVSTOF(3cbl)

Name
FVSTOF() - copy from C structure to fielded buffer

Synopsis
01 DATA-REC.

 COPY User data.

01 FML-BUFFER.

 05 FML-ALIGN PIC S9(9) USAGE IS COMP.

 05 FML-DATA PIC X(applen).

01 FML-REC

 COPY FMLINFO.

CALL "FVSTOF" USING FML-BUFFER DATA-REC FML-REC.

CALL "FVSTOF32" USING FML-BUFFER DATA-REC FML-REC.

Description
FVSTOF() transfers data from a C structure to a fielded buffer. FML-BUFFER is a record containing
the fielded buffer. DATA-REC is the COBOL record. VIEWNAME IN FML-REC is the name of the
view describing the COBOL record. FML-MODE IN FML-REC specifies the manner in which the
transfer is made. FML-MODE has four possible values:

../rf3fml/rf3fml.htm#867141
../rf5/rf5.htm#9766715

44 ATMI COBOL Function Reference

FUPDATE

FOJOIN

FJOIN

FCONCAT

The action of these modes are the same as that described in Fupdate, Fupdate32(3fml),
Fojoin, Fojoin32(3fml), Fjoin, Fjoin32(3fml), and Fconcat, Fconcat32(3fml).
One can even think of FVSTOF() as the same as these functions, except that where they specify
a source buffer, FVSTOF() specifies a COBOL record. Bear in mind that FUPDATE does not move
record elements that have NULL values.

FVSTOF32() is used for views defined with view32() typed buffers for larger views with more
fields.

Return Values
Upon successful completion, FVSTOF32() sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors
Under the following conditions, FVSTOF() fails and sets FML-STATUS to:

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD]
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT().

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACM]
“ACM contains negative value”
An Associated Count Member should not be a negative value while transferring data from
a COBOL record to a fielded buffer.

[FBADVIEW]
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by VIEWDIR or
VIEWFILES.

../rf3fml/rf3fml.htm#690431323
../rf3fml/rf3fml.htm#178641323
../rf3fml/rf3fml.htm#928241323
../rf3fml/rf3fml.htm#847061323

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 45

See Also
Introduction to FML Functions, viewfile(5)

TPABORT(3cbl)

Name
TPABORT() - abort current BEA Tuxedo ATMI transaction

Synopsis
01 TPTRXDEF-REC.

 COPY TPTRXDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Description
TPABORT() signifies the abnormal end of a transaction. When this call returns, all changes made
to resources during the transaction are undone. Like TPCOMMIT(), this routine can be called only
by the initiator of a transaction. Participants (that is, service routines) can express their desire to
have a transaction aborted by calling TPRETURN() with TPFAIL().

If TPABORT() is called while communication handles exist for outstanding replies, then upon
return from the routine, the transaction is aborted and those communications handles associated
with the caller’s transaction are no longer valid. Communications handles not associated with the
caller’s transaction remain valid.

For each open connection to a conversational server in transaction mode, TPABORT() will send a
TPEV-DISCONIMM event to the server, whether or not the server has control of a connection.
Connections opened before TPBEGIN() or with the TPNOTRAN setting (that is, not in transaction
mode) are not affected.

The TPABORT() argument, TPTRXDEF-REC, is reserved for future use.

Return Values
Upon successful completion, TPABORT() sets TP-STATUS to [TPOK].

../rf3fml/rf3fml.htm#867141
../rf5/rf5.htm#9766715

46 ATMI COBOL Function Reference

Errors
Under the following conditions, TPABORT() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given. The caller’s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEPROTO]
TPABORT() was called in an improper context (for example, by a participant).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using TPBEGIN(), TPCOMMIT() and TPABORT() to delineate a BEA Tuxedo ATMI
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either TPCOMMIT() or TPABORT.

See Also
TPBEGIN(3cbl), TPCOMMIT(3cbl), TPGETLEV(3cbl)

TPACALL(3cbl)

Name
TPACALL() - routine to send a message to a service asynchronously

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 47

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPACALL() sends a request message to the service named by SERVICE-NAME IN TPSVCDEF-REC.
The request is sent out at the priority defined for SERVICE-NAME unless overridden by a previous
call to TPSPRIO(). DATA-REC is a message to be sent and LEN IN TPTYPE-REC specifies the
amount of data in DATA-REC that should be sent. Note that if DATA-REC is a record of a type that
does not require a length to be specified, then LEN is ignored (and may be 0). If REC-TYPE IN
TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and a request is sent with no data portion.
If REC-TYPE is STRING and LEN is 0, then the request is sent with no data portion. The REC-TYPE
and SUB-TYPE of DATA-REC must match one of the REC-TYPE and SUB-TYPEs recognized by
SERVICE-NAME. Note that for each request sent while in transaction mode, a corresponding reply
must ultimately be received.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If SERVICE-NAME
belongs to a server that does not support transactions, then this setting must be used when
the caller is in transaction mode. A caller in transaction mode that uses this setting is still
subject to the transaction timeout (and no other). If a service fails that was invoked with
this setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be
set.

48 ATMI COBOL Function Reference

TPTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. This setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY
Informs TPACALL() that a reply is not expected. When TPNOREPLY is set, the routine
returns [TPOK] on success and sets COMM-HANDLE IN TPSVCDEF-REC to 0, an invalid
communications handle. When the caller is in transaction mode, this setting cannot be
used when TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPREPLY
Informs TPACALL() that a reply is expected. When TPREPLY is set, the routine returns
[TPOK] on success and sets COMM-HANDLE to a valid communications handle. When the
caller is in transaction mode, this setting must be used when TPTRAN is also set. Either
TPNOREPLY or TPREPLY must be set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 49

Return Values
Upon successful completion, TPACALL() sets TP-STATUS to [TPOK]. In addition, if TPREPLY was
set in TPSVCDEF-REC, then TPCALL() returns a valid communications handle in COMM-HANDLE
that can be used to receive the reply of the request sent.

Errors
Under the following conditions, TPACALL() fails and sets TP-STATUS to (unless otherwise noted,
failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPENOENT]
Cannot send to SERVICE-NAME because it does not exist or is not a request/response
service (that is, it is a conversational service).

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and subtypes that
SERVICE-NAME accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

[TPETRAN]
SERVICE-NAME belongs to a server that does not support transactions and TPTRAN was set.

[TPETIME]
This error code indicates that either a timeout has occurred or TPACALL() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

50 ATMI COBOL Function Reference

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPACALL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPCALL(3cbl), TPCANCEL(3cbl), TPGETRPLY(3cbl), TPGPRIO(3cbl), TPSPRIO(3cbl)

TPADVERTISE(3cbl)

Name
TPADVERTISE() - routine for advertising service names

Synopsis
01 SVC-NAME PIC X(15).

01 PROGRAM-NAME PIC X(32).

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPADVERTISE" USING SVC-NAME PROGRAM-NAME TPSTATUS-REC.

Description
TPADVERTISE() allows a server to advertise the services that it offers. By default, a server’s
services are advertised when it is booted and unadvertised when it is shut down.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 51

All servers belonging to a multiple server, single queue (MSSQ) set must offer the same set of
services. These routines enforce this rule by affecting the advertisements of all servers sharing an
MSSQ set.

TPADVERTISE() advertises SVC-NAME for the server (or the set of servers sharing the caller’s
MSSQ set). SVC-NAME should be 15 characters or less, but cannot be SPACES. (See SERVICES
section of UBBCONFIG(5).) Longer names are truncated to 15 characters. Users should make sure
that truncated names do not match other service names. PROGRAM-NAME is the name of a BEA
Tuxedo ATMI service program. This program will be invoked whenever a request for SVC-NAME
is received by the server. PROGRAM-NAME cannot be SPACES.

If SVC-NAME is already advertised for the server and PROGRAM-NAME matches its current program,
then TPADVERTISE() returns success (this includes truncated names that match already
advertised names). However, if SVC-NAME is already advertised for the server but PROGRAM-NAME
does not match its current program, then an error is returned (this can happen if truncated names
match already advertised names).

Return Values
TPADVERTISE() Upon successful completion, TPADVERTISE() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPADVERTISE() fails and sets TP-STATUS to:

[TPEINVAL]
Either SVC-NAME or PROGRAM-NAME is SPACES, or PROGRAM-NAME is not a name of a valid
program.

[TPELIMIT]
SVC-NAME cannot be advertised because of space limitations. (See MAXSERVICES in the
RESOURCES section of UBBCONFIG(5))

[TPEMATCH]
SVC-NAME is already advertised for the server but with a program other than
PROGRAM-NAME. Although TPADVERTISE() fails, SVC-NAME remains advertised with its
current program (that is, PROGRAM-NAME does not replace the current program).

[TPEPROTO]
TPADVERTISE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

../rf5/rf5.htm#365105
../rf5/rf5.htm#365105

52 ATMI COBOL Function Reference

[TPEOS]
An operating system error has occurred.

Portability
On AIX on the RS6000, any services provided in the first COBOL object file are not available in
the symbol table; their names must be specified using the -s option on the buildserver
command so that they can be advertised at run time using TPADVERTISE().

See Also
TPUNADVERTISE(3cbl)

TPBEGIN(3cbl)

Name
TPBEGIN() - routine to begin a BEA Tuxedo ATMI transaction

Synopsis
01 TPTRXDEF-REC.

 COPY TPTRXDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

Description
A transaction in the BEA Tuxedo system is used to define a single logical unit of work that either
wholly succeeds or has no effect whatsoever. A transaction allows work being performed in many
processes, at possibly different sites, to be treated as an atomic unit of work. The initiator of a
transaction uses TPBEGIN() and either TPCOMMIT() or TPABORT() to delineate the operations
within a transaction. Once TPBEGIN() is called, communication with any other program can
place the latter (of necessity, a server) in “transaction mode” (that is, the server’s work becomes
part of the transaction). Threads of control that join a transaction are called participants. A
transaction always has one initiator and can have several participants. Only the initiator of a
transaction can call TPCOMMIT() or TPABORT(). Participants can influence the outcome of a
transaction by the settings in TPSVCDEF-REC they use when they call TPRETURN(). Once in

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 53

transaction mode, any service requests made to servers are processed on behalf of the transaction
(unless the requester explicitly specifies otherwise).

Note that if a program starts a transaction while it has any open connections that it initiated to
conversational servers, these connections will not be upgraded to transaction mode. It is as if the
TPNOTRAN setting had been specified on the TPCONNECT() call.

T-OUT specifies that the transaction should be allowed at least T-OUT seconds before timing out.
Once a transaction times out it must be aborted. If T-OUT is 0, then the transaction is given the
maximum number of seconds allowed by the system before timing out (that is, the timeout value
equals the maximum value for an unsigned long as defined by the system).

Return Values
Upon successful completion, TPBEGIN() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPBEGIN() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred starting the
transaction.

[TPEPROTO]
TPBEGIN() was called in an improper context (for example, the caller is already in
transaction mode).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using TPBEGIN(), TPCOMMIT() and TPABORT() to delineate a BEA Tuxedo ATMI
transaction, it is important to remember that only the work done by a resource manager that meets
the XA0 interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either TPCOMMIT() or TPABORT(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a

../rfcm/rfcmd.htm#6083611

54 ATMI COBOL Function Reference

server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
transaction.

See Also
TPABORT(3cbl), TPCOMMIT(3cbl), TPGETLEV(3cbl), TPSCMT(3cbl)

TPBROADCAST(3cbl)

Name
TPBROADCAST() - broadcast notification by name

Synopsis
01 TPBCTDEF-REC.

 COPY TPBCTDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPBROADCAST() allows a client or server to send unsolicited messages to registered clients within
the system. The target client set consists of those clients matching identifiers passed to
TPBROADCAST(). Wildcards can be used in specifying identifiers.

LMID, USRNAME and CLTNAME, all in TPBCTDEF-REC, are logical identifiers used to select the
target client set. A SPACES value for any logical identifiers constitutes a wildcard for that
argument. A wildcard argument matches all client identifiers for that field. Each identifier must
meet the size restrictions defined for the system to be considered valid, that is, each identifier
must be between 0 and 30 characters in length.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 55

The data portion of the request is identified by DATA-REC and LEN in TPTYPE-REC specifies how
much of DATA-REC to send. Note that if DATA-REC is a record of a type that does not require a
length to be specified, then LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is
SPACES, in which case DATA-REC and LEN are ignored and a request is sent with no data portion.

The following is a list of valid settings in TPBCTDEF-REC.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
If a blocking condition exists, the caller blocks until the condition subsides or a timeout
occurs (either transaction or blocking timeout). Either TPNOBLOCK or TPBLOCK must be
set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Upon successful return from TPBROADCAST(), the message has been delivered
to the system for forwarding to the selected clients. TPBROADCAST() does not wait for the
message to be delivered to each selected client. Either TPNOSIGRSTRTor TPSIGRSTRT
must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values
Upon successful completion, TPBROADCAST() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPBROADCAST() sends no broadcast messages to application
clients and sets TP-STATUS to:

56 ATMI COBOL Function Reference

[TPEINVAL]
Invalid arguments were given. Note that use of an illegal LMID will cause TPBROADCAST()
to fail and return TPEINVAL(). However, non-existent user or client names will simply
successfully broadcast to no one.

[TPETIME]
A blocking timeout occurred. (A blocking timeout can occur only if both TPBLOCK and
TPTIME are specified.)

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPBROADCAST() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in TPNOTIFY() are supported on native site UNIX-based processors. In
addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as the routine TPSETUNSOL()
are supported on UNIX and MS-DOS workstation processors.

Usage
Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates a log message that it is switching notification
for the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See UBBCONFIG(5) description of the RESOURCES NOTIFY parameter for a detailed discussion
of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

A native client must be running as an application administrator.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 57

A Workstation client is not required to be running as the application administrator.

The ID for the application administrator is identified in the configuration file for the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG() due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and TPINITIALIZE(3cbl) for more information on notification method
selection.

See Also
TPINITIALIZE(3cbl), TPNOTIFY(3cbl), TPTERM(3cbl), UBBCONFIG(5)

TPCALL(3cbl)

Name
TPCALL() - routine to send a message to a service synchronously

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 ITPTYPE-REC.

 COPY TPTYPE.

01 IDATA-REC.

 COPY User data.

01 OTPTYPE-REC.

 COPY TPTYPE.

01 ODATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCALL" USING TPSVCDEF-REC ITPTYPE-REC IDATA-REC OTPTYPE-REC

ODATA-REC TPSTATUS-REC.

../rf5/rf5.htm#365105
../rf5/rf5.htm#365105

58 ATMI COBOL Function Reference

Description
TPCALL() sends a request and synchronously awaits its reply. A call to this routine is the same
as calling TPACALL() immediately followed by TPGETRPLY(). TPCALL() sends a request to the
request/response service named by SERVICE-NAME in TPSVCDEF-REC. The request is sent out at
the priority defined for SERVICE-NAME unless overridden by a previous call to TPSPRIO(). The
data portion of a request is specified by IDATA-REC and LEN in ITPTYPE-REC specifies how much
of IDATA-REC to send. Note that if IDATA-REC is a record of a type that does not require a length
to be specified, then LEN in ITPTYPE-REC is ignored (and may be 0). If REC-TYPE in
ITPTYPE-REC is SPACES, IDATA-REC and LEN in ITPTYPE-REC are ignored and a request is sent
with no data portion. If REC-TYPE in ITPTYPE-REC is STRING and LEN in ITPTYPE-REC is 0, then
the request is sent with no data portion. The REC-TYPE in ITPTYPE-REC and SUB-TYPE in
ITPTYPE-REC must match one of the REC-TYPEs and SUB-TYPEs recognized by SERVICE-NAME.

ODATA-REC specifies where a reply is read into, and, on input LEN in OTPTYPE-REC indicates the
maximum number of bytes that should be moved into ODATA-REC. If the same record is to be used
for both sending and receiving, ODATA-REC should be REDEFINED to IDATA-REC. Upon
successful return from TPCALL(), LEN in OTPTYPE-REC contains the actual number of bytes
moved into ODATA-REC. REC-TYPE and SUB-TYPE in OTPTYPE-REC contain the replies type and
subtype respectively. If the reply is larger than ODATA-REC, then ODATA-REC will contain only as
many bytes as will fit in the record. The remainder of the reply is discarded and TPCALL() sets
TPTRUNCATE().

If LEN in OTPTYPE-REC is 0 upon successful return, then the reply has no data portion and
ODATA-REC was not modified. It is an error for LEN in OTPTYPE-REC to be 0 on input.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If the SERVICE-NAME
belongs to a server that does not support transactions then this setting must be used when
the caller is in transaction mode. A caller in transaction mode that sets this to true is still
subject to the transaction timeout (and no other). If a service fails that was invoked with
this setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be
set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. The setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 59

TPNOCHANGE
When this setting is used, the type of ODATA-REC is not allowed to change. That is, the
type and subtype of the replied record must match REC-TYPE IN OTPTYPE-REC and
SUB-TYPE IN OTPTYPE-REC, respectively, so long as the receiver recognizes the
incoming record type. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record is allowed to differ from those specified in
REC-TYPE IN OTPTYPE-REC and SUB-TYPE IN OTPTYPE-REC, respectively, so long as
the receiver recognizes the incoming record type. Either TPNOCHANGE or TPCHANGE must
be set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Note that this setting applies only to the send
portion of TPCALL(): the routine may block waiting for the reply. Either TPNOBLOCK or
TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

60 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPCALL() sets TP-STATUS to [TPOK]. When TP-STATUS is set to
TPOK or TPESVCFAIL, APPL-RETURN-CODE IN TPSTATUS-REC contains an application-defined
value that was sent as part of TPRETURN().

If the size of the incoming message was larger then the size specified in LEN on input,
TPTRUNCATE() is set and only LEN amount of data was moved to ODATA-REC, the remaining data
is discarded.

Errors
Under the following conditions, TPCALL() fails and sets TP-STATUS to (unless otherwise noted,
failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, SERVICE-NAME is SPACES or settings in
TPSVCDEF-REC are invalid).

[TPENOENT]
Cannot send to SERVICE-NAME because it does not exist or is not a request/response
service (that is, it is a conversational service).

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and subtypes that
SERVICE-NAME accepts.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE was
set and the REC-TYPE and SUB-TYPE in ODATA-REC do not match the type and subtype of
the reply sent by the service. Neither ODATA-REC nor LEN in OTPTYPE-REC are changed.
If the service request was made on behalf of the caller’s current transaction, then the
transaction is marked abort-only since the reply is discarded.

[TPETRAN]
SERVICE-NAME belongs to a server that does not support transactions and TPTRAN was set.

[TPETIME]
This error code indicates that either a timeout has occurred or TPCALL() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 61

only if both TPBLOCK and TPTIME are specified.) In either case, no changes are made to
ODATA-REC or OTPTYPE-REC.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]
The service routine sending the caller’s reply called TPRETURN() with TPFAIL(). This is
an application-level failure. The contents of the service’s reply, if one was sent, is
available in ODATA-REC. If the service request was made on behalf of the caller’s current
transaction, then the transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the transaction is aborted
are calls to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPESVCERR]
An error was encountered either in invoking a service routine or during its completion in
TPRETURN() (for example, bad arguments were passed). No reply data is returned when
this error occurs (that is, neither ODATA-REC nor OTPTYPE-REC are changed). If the service
request was made on behalf of the caller’s transaction (that is, TPNOTRAN was not set), then
the transaction is marked abort-only. Note that regardless of whether the transaction has
timed out, the only valid communications before the transaction is aborted are calls to
TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPEBLOCK]
A blocking condition was found on the send portion of TPCALL() and TPNOBLOCK was
specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPCALL() was called improperly.

62 ATMI COBOL Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl), TPFORWAR(3cbl), TPGPRIO(3cbl), TPRETURN(3cbl), TPSPRIO(3cbl)

TPCANCEL(3cbl)

Name
TPCANCEL() - cancel a communication handle for an outstanding reply

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCANCEL" USING TPSVCDEF-REC TPSTATUS-REC.

Description
TPCANCEL() cancels a communication handle, COMM-HANDLE IN TPSVCDEF-REC, returned by
TPACALL(). It is an error to attempt to cancel a communication handle associated with a
transaction.

Upon success, COMM-HANDLE is no longer valid and any reply received on behalf of COMM-HANDLE
will be silently discarded.

Return Values
Upon successful completion, TPCANCEL() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPCANCEL() fails and sets TP-STATUS to:

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 63

[TPEBADDESC]
COMM-HANDLE is an invalid communication handle.

[TPETRAN]
COMM-HANDLE is associated with the caller’s transaction. COMM-HANDLE remains valid and
the caller’s current transaction is not affected.

[TPEPROTO]
TPCANCEL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl)

TPCHKAUTH(3cbl)

Name
TPCHKAUTH()—check if authentication required to join a BEA Tuxedo ATMI application

Synopsis
01 TPAUTDEF-REC.

 COPY TPAUTDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

 CALL "TPCHKAUTH" USING TPAUTDEF-REC TPSTATUS-REC.

Description
TPCHKAUTH() checks if authentication is required by the application configuration. This is
typically used by application clients prior to calling TPINITIALIZE() to determine if a password
should be obtained from the user.

64 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPCHKAUTH() sets TP-STATUS to [TPOK] and sets one of the
following values in TPAUTDEF-REC.

TPNOAUTH
Indicates that no authentication is required.

TPSYSAUTH
Indicates that only system authentication is required.

TPAPPAUTH
Indicates that both system and application specific authentication are required.

Errors
Under the following conditions, TPCHKAUTH() fails and sets TP-STATUS to:

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in TPCHKAUTH() are supported on UNIX system and MS-DOS
operating systems.

See Also
TPINITIALIZE(3cbl)

TPCHKUNSOL(3cbl)

Name
TPCHKUNSOL() - check for unsolicited message

Synopsis
01 MSG-NUM PIC S9(9) COMP-5.

01 TPSTATUS-REC.

 COPY TPSTATUS.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 65

CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

Description
TPCHKUNSOL() is used by a client to trigger checking for unsolicited messages. Calls to this
routine in a client using signal-based notification do nothing and return immediately. Calls to this
routine can result in calls to an application-defined unsolicited message handling routine by the
BEA Tuxedo ATMI libraries.

Return Values
Upon successful completion, TPCHKUNSOL() sets TP-STATUS to [TPOK] and returns the number
of unsolicited messages dispatched in MSG-NUM.

Errors
Under the following conditions, TPCHKUNSOL() fails and sets TP-STATUS to:

[TPEPROTO]
TPCHKUNSOL() was called in an improper context (for example, from within a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in TPNOTIFY() are supported on native site UNIX-based processors. In
addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as the routine TPSETUNSOL()
are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates a log message that it is switching notification
for the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See UBBCONFIG(5) description of the RESOURCES NOTIFY parameter for a detailed discussion
of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

../rf5/rf5.htm#365105

66 ATMI COBOL Function Reference

A native client must be running as an application administrator.

A Workstation client is not required to be running as the application administrator.

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG() due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and TPINITIALIZE(3cbl) for more information on notification method
selection.

See Also
TPBROADCAST(3cbl), TPINITIALIZE(3cbl), TPNOTIFY(3cbl), TPSETUNSOL(3cbl)

TPCLOSE(3cbl)

Name
TPCLOSE() - close the BEA Tuxedo ATMI resource manager

Synopsis
01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCLOSE" USING TPSTATUS-REC.

Description
TPCLOSE() tears down the association between the caller and the resource manager to which it
is linked. Since resource managers differ in their close semantics, the specific information
needed to close a particular resource manager is placed in a configuration file.

If a resource manager is already closed (that is, TPCLOSE() is called more than once), no action
is taken and success is returned.

Return Values
Upon successful completion, TPCLOSE() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPCLOSE() fails and sets TP-STATUS to:

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 67

[TPERMERR]
A resource manager failed to close correctly. More information concerning the reason a
resource manager failed to close can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
TPCLOSE() was called in an improper context (for example, while the caller is in
transaction mode).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPOPEN(3cbl)

TPCOMMIT(3cbl)

Name
TPCOMMIT() - commit current BEA Tuxedo ATMI transaction

Synopsis
01 TPTRXDEF-REC.

 COPY TPTRXDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC

Description
TPCOMMIT() signifies the end of a transaction, using a two-phase commit protocol to coordinate
participants. TPCOMMIT() can be called only by the initiator of a transaction. If any of the
participants cannot commit the transaction (for example, they call TPRETURN() with TPFAIL()),
then the entire transaction is aborted and TPCOMMIT() fails. That is, all of the work involved in

68 ATMI COBOL Function Reference

the transaction is undone. If all participants agree to commit their portion of the transaction, then
this decision is logged to stable storage and all participants are asked to commit their work.

Depending on the setting of the TP-COMMIT-CONTROL characteristic (see TPSCMT()),
TPCOMMIT() can return successfully either after the commit decision has been logged or after the
two-phase commit protocol has completed. If TPCOMMIT() returns after the commit decision has
been logged but before the second phase has completed (TP-CMT-LOGGED), then all participants
have agreed to commit the work they did on behalf of the transaction and should fulfill their
promise to commit the transaction during the second phase. However, because TPCOMMIT() is
returning before the second phase has completed, there is a hazard that one or more of the
participants can heuristically complete their portion of the transaction (in a manner that is not
consistent with the commit decision) even though the routine has returned success.

If the TP-COMMIT-CONTROL characteristic is set such that TPCOMMIT() returns after the
two-phase commit protocol has completed (TP-CMT-COMPLETE), then its return value reflects the
exact status of the transaction (that is, whether the transaction heuristically completed or not).

Note that if only a single resource manager is involved in a transaction, then a one-phase commit
is performed (that is, the resource manager is not asked whether or not it can commit; it is simply
told to commit). In this case, the TP-COMMIT-CONTROL characteristic has no bearing and
TPCOMMIT() will return heuristic outcomes if present.

If TPCOMMIT() is called while communication handles exist for outstanding replies, then upon
return from TPCOMMIT(), the transaction is aborted and those handles associated with the caller’s
transaction are no longer valid. Communication handles not associated with the caller’s
transaction remain valid.

TPCOMMIT() must be called after all connections associated with the caller’s transaction are
closed (otherwise [TPEABORT] is returned, the transaction is aborted and these connections are
disconnected in a disorderly fashion with a TPEV-DISCONIMM event). Connections opened before
TPBEGIN() or with the TPNOTRAN setting (that is, connections not in transaction mode) are not
affected by calls to TPCOMMIT() or TPABORT().

Currently, TPCOMMIT()’s argument, TPTRXDEF-REC, is reserved for future use.

Return Values
Upon successful completion, TPCOMMIT() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPCOMMT() fails and sets TP-STATUS to:

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 69

[TPEINVAL]
TPTRXDEF-REC is not equal to 0. The caller’s transaction is not affected.

[TPETIME]
The transaction has timed out and its status is unknown: it may have been either
committed or aborted. If a transaction has timed out and its status is known to be aborted,
than TPEABORT is returned.

[TPEABORT]
The transaction could not commit because either the work performed by the initiator or by
one or more of its participants could not commit. This error is also returned if TPCOMMIT()
is called with outstanding replies or open conversational connections.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEPROTO]
TPCOMMIT() was called in an improper context (for example, by a participant).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using TPBEGIN(), TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo ATMI
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either TPCOMMIT() or TPABORT(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a
server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
transaction.

../rfcm/rfcmd.htm#6083611

70 ATMI COBOL Function Reference

See Also
TPABORT(3cbl), TPBEGIN(3cbl), TPCONNECT(3cbl), TPGETLEV(3cbl), TPRETURN(3cbl),
TPSCMT(3cbl)

TPCONNECT(3cbl)

Name
TPCONNECT() - establish a conversational connection

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPCONNECT() allows a program to set up a half-duplex connection to a conversational service,
SERVICE-NAME in TPSVCDEF-REC. The name must be one of the conversational service names
posted by a conversational server.

As part of setting up a connection, the caller can pass application-defined data to the receiving
service routine. If the caller chooses to pass data, then DATA-REC contains the data and LEN in
TPTYPE-REC specifies how much of the record to send. Note that if DATA-REC is a record of a
type that does not require a length to be specified, then LEN is ignored (and may be 0). If
REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored (no application data is
passed to the conversational service). REC-TYPE and SUB-TYPE in TPTYPE-REC must match one
of the types and subtypes recognized by SERVICE-NAME.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 71

Because the conversational service receives DATA-REC and LEN upon successful return from
TPSVCSTART(), the service does not call TPRECV() to get the data sent by TPCONNECT().

The following is a list of valid settings in TPSVCDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is not performed on behalf of the caller’s transaction. If SERVICE-NAME
belongs to a server that does not support transactions, then this setting must be used when
the caller is in transaction mode. A caller in transaction mode that uses this setting is still
subject to the transaction timeout (and no other). If a service fails that was invoked with
this setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be
set.

TPTRAN
If the caller is in transaction mode and this setting is used, then when SERVICE-NAME is
invoked, it is performed on behalf of the caller’s transaction. This setting is ignored if the
caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only send data and
the called service can only receive data (that is, the caller initially has control of the
connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only receive data and
the called service can only send data (that is, the service being called initially has control
of the connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking condition exists (for
example, the data buffers through which the message is sent are full). Either TPNOBLOCK
or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program. Either TPNOTIME
or TPTIME must be set.

72 ATMI COBOL Function Reference

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted call is reissued. Either
TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
When TPNOSIGRSTRT is specified and a signal interrupts a system call, the call fails and
TP-STATUS is set to TPGOTSIG(). Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values
Upon successful completion, TPCONNECT() sets TP-STATUS to [TPOK] and returns a
communications handle in COMM-HANDLE in TPSVCDEF-REC that is used to refer to the connection
in subsequent calls.

Errors
Under the following conditions, TPCONNECT() fails and sets TP-STATUS to (unless otherwise
noted, failure does not affect the caller’s transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPENOENT]
Can not initiate a connection to SERVICE-NAME because it does not exist or is not a
conversational service.

[TPEITYPE]
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and subtypes that
SERVICE-NAME accepts.

[TPELIMIT]
The connection was not sent because the maximum number of outstanding connections
has been reached.

[TPETRAN]
SERVICE-NAME belongs to a program that does not support transactions and TPNOTRAN
was not set.

[TPETIME]
This error code indicates that either a timeout has occurred or TPCONNECT() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 73

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPCONNECT() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPDISCON(3cbl), TPRECV(3cbl), TPSEND(3cbl)

TPDEQUEUE(3cbl)

Name
TPDEQUEUE() - routine to dequeue a message from a queue

Synopsis
01 TPQUEDEF-REC.

 COPY TPQUEDEF.

74 ATMI COBOL Function Reference

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY STATDEF.

CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPDEQUEUE() takes a message for processing from the queue named by QNAME in the
QSPACE-NAME queue space.

By default, the message at the top of the queue is dequeued. The order of messages on the queue
is defined when the queue is created. The application can request a particular message for
dequeuing by specifying its message identifier using MSGID or correlation identifier using
CORRID. TPQUEDEF-REC settings can also be used to indicate that the application wants to wait
for a message, in the case when a message is not currently available. It is possible to use the
TPQUEDEF-REC structure to look at a message without removing it from the queue or changing
its relative position on the queue. See the section below describing this record.

DATA-REC specifies where a dequeued message is to be read into, and, on input LEN indicates the
maximum number of bytes that should be moved into DATA-REC. Upon successful return, LEN
contains the actual number of bytes moved into DATA-REC. REC-TYPE and SUB-TYPE contain the
replies type and subtype respectively. If the reply is larger than DATA-REC, then DATA-REC will
contain only as many bytes as will fit in the record. The remainder of the reply is discarded and
TPDEQUEUE() fails returning [TPTRUNCATE].

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

The message is dequeued in transaction mode if the caller is in transaction mode and TPTRAN is
set. This has the effect that if TPDEQUEUE returns successfully and the caller’s transaction is
committed successfully, then the message is removed from the queue. If the caller’s transaction
is rolled back either explicitly or as the result of a transaction timeout or some communication
error, then the message will be left on the queue (that is, the removal of the message from the

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 75

queue is also rolled back). It is not possible to enqueue and dequeue the same message within the
same transaction.

The message is not dequeued in transaction mode if either the caller is not in transaction mode,
or TPNOTRAN is set. When not in transaction mode, if a communication error or a timeout occurs,
the application will not know whether or not the message was successfully dequeued and the
message may be lost.

The following is a list of valid settings in TPQUEDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is not dequeued
within the caller’s transaction. A caller in transaction mode that sets this to true is still
subject to the transaction timeout (and no other). If message dequeuing fails that was
invoked with this setting, the caller’s transaction is not affected. Either TPNOTRAN or
TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message is dequeued within
the same transaction as the caller. The setting is ignored if the caller is not in transaction
mode. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If TPNOBLOCK is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and TP-STATUS is set to TPEBLOCK. If TPNOBLOCK is set and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, TP-STATUS is set to TPEDIAGNOSTIC, and the DIAGNOSTIC
field of the TPQUEDEF record is set to QMESHARE. In the latter case, the other application,
which is based on a BEA product other than the BEA Tuxedo system, opened the queue
for exclusive read and/or write using the Queuing Services API (QSAPI). Either
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout). This blocking
condition does not include blocking on the queue itself if the TPQWAIT setting is specified.
Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

76 ATMI COBOL Function Reference

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That is, the type
and subtype of the dequeued message must match REC-TYPE IN TPTYPE-REC and
SUB-TYPE IN TPTYPE-REC, respectively, so long as the receiver recognizes the incoming
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the dequeued message is allowed to differ from those specified
in REC-TYPE IN TPTYPE-REC and SUB-TYPE IN TPTYPE-REC, respectively, so long as
the receiver recognizes the incoming record type. Either TPNOCHANGE or TPCHANGE must
be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

If TPDEQUEUE() returns successfully, the application can retrieve additional information about
the message using the TPQUEDEF-REC structure. The information may include the message
identifier for the dequeued message; a correlation identifier that should accompany any reply or
failure message so that the originator can correlate the message with the original request; the
quality of service the message was delivered with; the quality of service any replies to the
message should be delivered with; the name of a reply queue if a reply is desired; and the name
of the failure queue on which the application can queue information regarding failure to dequeue
the message. These are described below.

Control Structure
TPQUEDEF-REC is used by the application program to pass and retrieve information associated
with dequeuing the message. The settings in TPQUEDEF-REC are used to indicate what other
elements in the structure are valid.

On input to TPDEQUEUE(), the following elements may be set in the TPQUEDEF-REC:

05 MSGID PIC X(32).

05 CORRID PIC X(32).

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 77

The following is a list of valid settings in TPQUEDEF-REC controlling input information for
TPDEQUEUE().

TPQGETNEXT

Setting this value requests that the next message on the queue be dequeued, using the
default queue order. One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or
TPQGETBYCORRID.

TPQGETBYMSGID

Setting this value requests that the message identified by MSGID be dequeued. The
message identifier may be acquired by a prior call to TPENQUEUE(). Note that the message
identifier changes if the message has moved from one queue to another. Note also that the
entire 32 bytes of the message identifier value are significant, so the value identified by
MSGID must be completely initialized (for example, padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or TPQGETBYCORRID.

TPQGETBYCORRID

Setting this value requests that the message identified by CORRID be dequeued. The
correlation identifier is specified by the application when enqueuing the message with
TPENQUEUE(). Note that the entire 32 bytes of the correlation identifier value are
significant, so the value identified by CORRID must be completely initialized (for example,
padded with spaces).

One of the following must be set: TPQGETNEXT, TPQGETBYMSGID, or TPQGETBYCORRID.

TPQWAIT
Setting this value indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. Set TPQNOWAIT to not wait
until a message is available. If TPQWAIT is set in conjunction with TPQGETBYMSGID or
TPQGETBYCORRID, it indicates that an error should not be returned if no message with the
specified message identifier or correlation identifier is present in the queue. Instead, the
process should wait until a message meeting the criteria is available. The process is still
subject to the caller’s transaction timeout, or, when not in transaction mode, the process
is still subject to the timeout specified on the TMQUEUE process by the -t option.

If a message matching the desired criteria is not immediately available and the configured
action resources are exhausted, TPDEQUEUE fails, TP-STATUS is set to TPEDIAGNOSTIC,
and DIAGNOSTIC is set to QMESYSTEM.

Note that each TPDEQUEUE() request specifying the TPQWAIT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If one is not available, the TPDEQUEUE() request
fails. The number of available queue manager actions are specified when a queue space is

78 ATMI COBOL Function Reference

created or modified. When a waiting dequeue request completes, the associated action
object associated is made available for another request.

TPQPEEK
If TPQPEEK is set, the specified message is read but not removed from the queue. The
TPNOTRAN flag must be set. It is not possible to read messages enqueued or dequeued
within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific
selection criteria (such as message identifier and correlation identifier) that are looking for
the message currently being non-destructively dequeued.

On output from TPDEQUEUE(), the following elements may be set in TPQUEDEF-REC:

05 PRIORITY PIC S9(9) COMP-5.

05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.

05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

05 REPLYQUEUE PIC X(15).

05 FAILUREQUEUE PIC X(15).

05 DIAGNOSTIC PIC S9(9) COMP-5.

05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

05 APPKEY PIC S9(9) COMP-5.

The following is a list of valid settings in TPQUEDEF-REC controlling output information from
TPDEQUEUE(). For any of these settings, if the setting is true when TPDEQUEUE() is called, the
associated element in the record is populated with the value provided when the message was
queued, and the setting remains true. If the value is not available (that is, no value was provided
when the message was queued) or the setting is not true when TPDEQUEUE() is called,
TPDEQUEUE() completes with the setting not true.

TPQPRIORITY
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with an explicit priority, then the priority is stored in PRIORITY. The priority is in the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with a lower number). If
TPQNOPRIORITY is set, the priority is not available.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 79

Note that if no priority was explicitly specified when the message was queued, the priority
for the message is 50.

TPQMSGID

If this value is set and the call to TPDEQUEUE() is successful, the message identifier is
stored in MSGID. The entire 32 bytes of the message identifier value are significant. If
TPQNOMSGID is set, the message identifier is not available.

TPQCORRID

If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a correlation identifier, then the correlation identifier is stored in CORRID. The entire
32 bytes of the correlation identifier value are significant. Any BEA Tuxedo /Q provided
reply to a message has the correlation identifier of the original message. If TPQNOCORRID
is set, the correlation identifier is not available.

TPQDELIVERYQOS

If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a delivery quality of service, then the flag—TPQQOSDELIVERYDEFAULTPERSIST,
TPQQOSDELIVERYPERSISTENT, or TPQQOSDELIVERYNONPERSISTENT—specified by
TPQUEQOS-DELIVERY-FLAG indicates the delivery quality of service. If
TPQNODELIVERYQOS is set, the delivery quality of service is not available.

Note that if no delivery quality of service was explicitly specified when the message was
queued, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

TPQREPLYQOS

If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a reply quality of service, then the flag—TPQQOSREPLYDEFAULTPERSIST,
TPQQOSREPLYPERSISTENT, or TPQQOSREPLYNONPERSISTENT—specified by
TPQUEQOS-REPLY-FLAG indicates the reply quality of service. If TPQNOREPLYQOS is set,
the reply quality of service is not available.

Note that if no reply quality of service was explicitly specified when the message was
queued, the default delivery policy of the REPLYQUEUE queue dictates the delivery quality
of service for any reply. The default delivery policy is determined when the reply to a
message is enqueued. That is, if the default delivery policy of the reply queue is modified
between the time that the original message is enqueued and the reply to the message is
enqueued, the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a reply queue, then the name of the reply queue is stored in REPLYQUEUE. Any reply

80 ATMI COBOL Function Reference

to the message should go to the named reply queue within the same queue space as the
request message. If TPQNOREPLYQ is set, the reply queue is not available.

TPQFAILUREQ
If this value is set, the call to TPDEQUEUE() is successful, and the message was queued
with a failure queue, then the name of the failure queue is stored in FAILUREQUEUE. Any
failure message should go to the named failure queue within the same queue space as the
request message. If TPQNOFAILUREQ is set, the failure queue is not available.

The remaining settings in TPQUEDEF-REC are set to the following values when TPDEQUEUE() is
called: TPQNOTOP, TPQNOBEFOREMSGID, TPQNOTIME_ABS, TPQNOTIME_REL,
TPQNOEXPTIME_ABS, TPQNOEXPTIME_REL, and TPQNOEXPTIME_NONE.

If the call to TPDEQUEUE() fails and TP-STATUS is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in DIAGNOSTIC. The possible values are defined below in the
DIAGNOSTICS section.

Additionally on output, if the call to TPDEQUEUE() is successful, APPKEY is set to the application
authentication key, CLIENTID is set to the identifier for the client originating the request, and
APPL-RETURN-CODE is set to the user-return code value that was set when the message was
enqueued.

Return Values
Upon successful completion, TPDEQUEUE() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPDEQUEUE() fails and sets TP-STATUS to the following values
(unless otherwise noted, failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, QSPACE-NAME is SPACES or settings in
TPQUEDEF-REC are invalid).

[TPENOENT]
Cannot access the QSPACE-NAME because it is not available (that is, the associated
TMQUEUE(5) server is not available), or cannot start a global transaction due to the lack of
entries in the Global Transaction Table (GTT).

[TPEOTYPE]
Either the REC-TYPE and SUB-TYPE of the dequeued message are not known to the caller;
or, TPNOCHANGE was set and the REC-TYPE and SUB-TYPE do not match the type and
subtype of the dequeued message. Neither DATA-REC nor TPTYPE-REC are changed.

../rf5/rf5.htm#5695415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 81

When the call is made in transaction mode and this error occurs, the transaction is marked
abort-only, and the message remains on the queue.

[TPTRUNCATE]
The size of the incoming message is larger than the size specified in LEN. Only LEN
amount of data was moved to DATA-REC, the remaining data is discarded.

[TPETIME]
This error code indicates that either a timeout has occurred or TPDEQUEUE() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.) In either case, no changes are made to
DATA-REC or TPTYPE-REC.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was set.

[TPEPROTO]
TPDEQUEUE() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue.

82 ATMI COBOL Function Reference

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via TPQUEDEF-REC.

Diagnostics
The following diagnostic values are returned during the dequeuing of a message.

[QMEINVAL]
An invalid setting was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with TPNOTRAN set and an error
occurred trying to start a transaction in which to dequeue the message. This diagnostic is
not returned by a queue manager from BEA Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.

[QMESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid, deleted, or reserved queue name was specified.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 83

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by a queue manager from
BEA Tuxedo release 7.1 or later.

[QMESHARE]
When dequeuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product
other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

See Also
qmadmin(1), TPENQUEUE(3cbl), TMQUEUE(5)

TPDISCON(3cbl)

Name
TPDISCON() - take down a conversational connection

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

Description
TPDISCON() immediately tears down the connection specified by COMM-HANDLE in
TPSVCDEF-REC, the communications handle, and generates a TPEV-DISCONIMM event on the
other end of the connection.

../rfcm/rfcmd.htm#9270011
../rf5/rf5.htm#5695415

84 ATMI COBOL Function Reference

TPDISCON() can only be called by the initiator of the conversation. TPDISCON() can not be
called within a conversational service on the communications handle with which it was invoked.
Rather, a conversational service must use TPRETURN() to signify that it has completed its part of
the conversation. Similarly, even though a program communicating with a conversational service
can issue TPDISCON(), the preferred way is to let the service tear down the connection in
TPRETURN(); doing so ensures correct results. If the initiator of the connection is a server, then
TPRETURN() can also be used to cause an orderly disconnection. If the initiator of the connection
is in a transaction, then TPCOMMIT() or TPABORT() can be used to cause an orderly
disconnection.

TPDISCON() causes the connection to be torn down immediately (that is, abortive rather than
orderly). Any data that has not yet reached its destination may be lost. TPDISCON() can be issued
even when the program on the other end of the connection is participating in the caller’s
transaction. In this case, the transaction is aborted. Also, the caller does not need to have control
of the connection when TPDISCON() is called.

Return Values
Upon successful completion, TPDISCON() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPDISCON() fails and sets TP-STATUS to:

[TPEBADDESC]
COMM-HANDLE is invalid or is the communications handle with which a conversational
service was invoked.

[TPETIME]
This error code indicates that either a timeout has occurred or TPDISCON() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. (Note that
calling TPDISCON() on a connection in the caller’s transaction would have resulted in the
transaction being marked abort-only, even if TPDISCON() had succeeded.)

If the caller is not in transaction mode, a blocking timeout has occurred. (A blocking
timeout can occur only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with TPETIME until the transaction has been aborted. The exception is a request that does

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 85

not block, expects no reply, and is not sent on behalf of the caller’s transaction (that is,
TPACALL() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEPROTO]
TPDISCON() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file. The communications handle is no longer valid.

[TPEOS]
An operating system error has occurred. The communications handle is no longer valid.

See Also
TPABORT(3cbl), TPCOMMIT(3cbl), TPCONNECT(3cbl), TPRECV(3cbl), TPRETURN(3cbl),
TPSEND(3cbl)

TPENQUEUE(3cbl)

Name
TPENQUEUE() - routine to enqueue a message

Synopsis
01 TPQUEDEF-REC.

 COPY TPQUEDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

86 ATMI COBOL Function Reference

CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPENQUEUE() stores a message on the queue named by QNAME in the QSPACE-NAME queue space.
A queue space is a collection of queues, one of which must be QNAME.

When the message is intended for a BEA Tuxedo ATMI server, the QNAME matches the name of
a service provided by the server. The system-provided server, TMQFORWARD(5), provides a
default mechanism for dequeuing messages from the queue and forwarding them to servers that
provide a service matching the queue name. If the originator expects a reply, then the reply to the
forwarded service request is stored on the originator’s queue unless otherwise specified. The
originator will dequeue the reply message at a subsequent time. Queues can also be used for a
reliable message transfer mechanism between any pair of BEA Tuxedo ATMI processes (clients
and/or servers). In this case, the queue name does not match a service name but some agreed upon
name for transferring the message.

The data portion of a message is specified by DATA-REC and LEN in TPTYPE-REC specifies how
much of DATA-REC to enqueue. Note that if DATA-REC is a record of a type that does not require
a length to be specified, then LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is
SPACES, DATA-REC and LEN are ignored and a message is enqueued with no data portion. The
REC-TYPE and SUB-TYPE, both in TPTYPE-REC, must match one of the REC-TYPEs and
SUB-TYPEs recognized by QSPACE-NAME.

The message is queued at the priority defined for QSPACE-NAME unless overridden by a previous
call to TPSPRIO().

If the caller is within a transaction and TPTRAN is set, the message is queued in transaction mode.
This has the effect that if TPENQUEUE() returns successfully and the caller’s transaction is
committed successfully, then the message is guaranteed to be available subsequent to the
transaction completing. If the caller’s transaction is rolled back either explicitly or as the result
of a transaction timeout or some communication error, then the message will be removed from
the queue (that is, the placing of the message on the queue is also rolled back). It is not possible
to enqueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction mode, or
TPNOTRAN is set. Once TPENQUEUE() returns successfully, the submitted message is guaranteed
to be in the queue. When not in transaction mode, if a communication error or a timeout occurs,
the application will not know whether or not the message was successfully stored on the queue.

../rf5/rf5.htm#9209715

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 87

The order in which messages are placed on the queue is controlled by the application via
TPQUEDEF-REC as described below; the default queue ordering is set when the queue is created.

The following is a list of valid settings in TPQUEDEF-REC.

TPNOTRAN
If the caller is in transaction mode and this setting is used, the message is not enqueued
within the caller’s transaction. A caller in transaction mode that sets this to true is still
subject to the transaction timeout (and no other). If message enqueuing fails that was
invoked with this setting, the caller’s transaction is not affected. Either TPNOTRAN or
TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, the message is enqueued within
the same transaction as the caller. The setting is ignored if the caller is not in transaction
mode. Either TPNOTRAN or TPTRAN must be set.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If TPNOBLOCK is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and TP-STATUS is set to TPEBLOCK. If TPNOBLOCK is set and a
blocking condition exists because the target queue is opened exclusively by another
application, the call fails, TP-STATUS is set to TPEDIAGNOSTIC, and the DIAGNOSTIC
field of the TPQUEDEF record is set to QMESHARE. In the latter case, the other application,
which is based on a BEA product other than the BEA Tuxedo system, opened the queue
for exclusive read and/or write using the Queuing Services API (QSAPI). Either
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is set and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK
or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

88 ATMI COBOL Function Reference

TPSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is reissued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

Additional information about queuing the message can be specified via TPQUEDEF-REC. This
information includes values to override the default queue ordering placing the message at the top
of the queue or before an enqueued message; an absolute or relative time after which a queued
message is made available; an absolute or relative time when a message expires and is removed
from the queue; the quality of service for delivering the message; the quality of service that any
replies to the message should use; a correlation identifier that aids in correlating a reply or failure
message with the queued message; the name of a queue to which a reply should be enqueued; and
the name of a queue to which any failure message should be enqueued.

Control Parameter
TPQUEDEF-REC is used by the application program to pass and retrieve information associated
with enqueuing the message. Settings are used to indicate what elements in the record are valid.

On input to TPENQUEUE(), the following elements may be set in TPQUEDEF-REC:

05 DEQ-TIME PIC S9(9) COMP-5.

05 PRIORITY PIC S9(9) COMP-5.

05 MSGID PIC X(32).

05 CORRID PIC X(32).

05 TPQUEQOS-DELIVERY-FLAG PIC S9(9) COMP-5.

05 TPQUEQOS-REPLY-FLAG PIC S9(9) COMP-5.

05 EXP-TIME PIC S9(9) COMP-5.

05 REPLYQUEUE PIC X(15).

05 FAILUREQUEUE PIC X(15).

05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The following values indicate what values are set in the TPQUEDEF-REC.

TPQTOP

Setting this value indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering. Set TPQDEFAULT to use
default queue ordering. TPQTOP, TPQBEFOREMSGID, or TPQDEFAULT must be set.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 89

TPQBEFOREMSGID

Setting this value indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by MSGID. This request may not be granted
depending on whether or not the queue was configured to allow overriding the queue
ordering. Set TPQDEFAULT to use default queue ordering. TPQTOP, TPQBEFOREMSGID, or
TPQDEFAULT must be set.

Note that the entire 32 bytes of the message identifier value are significant, so the value
identified by MSGID must be completely initialized (for example, padded with spaces).

TPQTIME-ABS
If this value is set, the message is made available after the time specified by DEQ-TIME.
DEQ-TIME is an absolute time value as generated by time(2) or mktime(3C) (the number
of seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970). Set
TPQNOTIME if neither an absolute nor relative time value is set. TPQTIME-ABS,
TPQTIME-REL, or TPQNOTIME must be set. The absolute time is determined by the clock
on the machine where the queue manager process resides.

TPQTIME-REL
If this value is set, the message is made available after a time relative to the completion of
the enqueuing operation. DEQ-TIME specifies the number of seconds to delay after the
enqueuing completes before the submitted message should be available. Set TPQNOTIME
if neither an absolute nor relative time value is set. TPQTIME-ABS, TPQTIME-REL, or
TPQNOTIME must be set.

TPQPRIORITY
If this value is set, the priority at which the message should be enqueued is stored in
PRIORITY. The priority must be in the range 1 to 100, inclusive. The higher the number,
the higher the priority (that is, a message with a higher number is dequeued before a
message with a lower number). For queues not ordered by priority, this value is
informational. If TPQNOPRIORITY is set, the priority for the message is 50 by default.

TPQCORRID
If this value is set, the correlation identifier value specified in CORRID is available when a
message is dequeued with TPDEQUEUE(). This identifier accompanies any reply or failure
message that is queued so that an application can correlate a reply with a particular
request. Set TPQNOCORRID if a correlation identifier is not available.

Note that the entire 32 bytes of the correlation identifier value are significant, so the value
specified in CORRID must be completely initialized (for example, padded with spaces).

90 ATMI COBOL Function Reference

TPQREPLYQ
If this value is set, a reply queue named in REPLYQUEUE is associated with the queued
message. Any reply to the message is queued to the named queue within the same queue
space as the request message. Set TPQNOREPLYQ if a reply queue name is not available.

TPQFAILUREQ
If this value is set, a failure queue named in FAILUREQUEUE is associated with the queued
message. If (1) the enqueued message is processed by TMQFORWARD(), (2) TMQFORWARD
was started with the -d option, and (3) the service fails and returns a non-NULL reply, a
failure message consisting of the reply and its associated APPL-RETURN-CODE in the
TPSTATUS record is enqueued to the named queue within the same queue space as the
original request message. Set TPQNOFAILUREQ if a failure queue name is not available.

TPQDELIVERYQOS

TPQREPLYQOS
If TPQDELIVERYQOS is set, the flags specified by TPQUEQOS-DELIVERY-FLAG control the
quality of service for message delivery. One of the following mutually exclusive flags
must be set: TPQQOSDELIVERYDEFAULTPERSIST, TPQQOSDELIVERYPERSISTENT, or
TPQQOSDELIVERYNONPERSISTENT. If TPQDELIVERYQOS is not set, TPQNODELIVERYQOS
must be set. When TPQNODELIVERYQOS is set, the default delivery policy of the target
queue dictates the delivery quality of service for the message.

If TPQREPLYQOS is set, the flags specified by TPQUEQOS-REPLY-FLAG control the quality
of service for reply message delivery for any reply. One of the following mutually
exclusive flags must be set: TPQQOSREPLYDEFAULTPERSIST, TPQQOSREPLYPERSISTENT,
or TPQQOSREPLYNONPERSISTENT. The TPQREPLYQOS flag is used when a reply is
returned from messages processed by TMQFORWARD. Applications not using TMQFORWARD
to invoke services may use the TPQREPLYQOS flag as a hint for their own reply mechanism.

If TPQREPLYQOS is not set, TPQNOREPLYQOS must be set. When TPQNOREPLYQOS is set,
the default delivery policy of the REPLYQUEUE queue dictates the delivery quality of
service for any reply. Note that the default delivery policy is determined when the reply
to a message is enqueued. That is, if the default delivery policy of the reply queue is
modified between the time that the original message is enqueued and the reply to the
message is enqueued, the policy used is the one in effect when the reply is finally
enqueued.

The valid TPQUEQOS-DELIVERY-FLAG and TPQUEQOS-REPLY-FLAG flags are:

TPQQOSDELIVERYDEFAULTPERSIST

TPQQOSREPLYDEFAULTPERSIST
These flags specify that the message is to be delivered using the default delivery
policy specified on the target or reply queue.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 91

TPQQOSDELIVERYPERSISTENT

TPQQOSREPLYPERSISTENT
These flags specify that the message is to be delivered in a persistent manner using
the disk-based delivery method. When specified, these flags override the default
delivery policy specified on the target or reply queue.

TPQQOSDELIVERYNONPERSISTENT

TPQQOSREPLYNONPERSISTENT
These flags specify that the message is to be delivered in a non-persistent manner
using the memory-based delivery method; the message is queued in memory until
it is dequeued. When specified, these flags override the default delivery policy
specified on the target or reply queue.
If the caller is transactional, non-persistent messages are enqueued within the
caller’s transaction, however, non-persistent messages are lost if the system is shut
down or crashes or the IPC shared memory for the queue space is removed.

TPQEXPTIME-ABS
If this value is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is specified by the value stored in EXP-TIME. EXP-TIME
must be set to an absolute time generated by time(2) or mktime(3C) (the number of
seconds since 00:00:00 Universal Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If a message expires during a transaction, the expiration does not cause the
transaction to fail. Messages that expire while being enqueued or dequeued within a
transaction are removed from the queue when the transaction ends. There is no
acknowledgment that the message has expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

92 ATMI COBOL Function Reference

TPQEXPTIME-REL
If this value is set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
queue. The relative expiration time is specified by the value stored in EXP-TIME.

If the expiration time is before the message availability time, the message is not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction does cause the transaction to fail. Messages
that expire while being enqueued or dequeued within a transaction are removed from the
queue when the transaction ends. There is no acknowledgment that the message has
expired.

One of the following must be set: TPQEXPTIME-ABS, TPQEXPTIME-REL,
TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQEXPTIME-NONE
Setting this value indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. You can remove a message by
dequeuing it or by deleting it via an administrative interface. One of the following must
be set: TPQEXPTIME-ABS, TPQEXPTIME-REL, TPQEXPTIME-NONE, or TPQNOEXPTIME.

TPQNOEXPTIME
Setting this value specifies that the default expiration time associated with the target queue
applies to the message. One of the following must be set: TPQEXPTIME-ABS,
TPQEXPTIME-REL, TPQEXPTIME-NONE, or TPQNOEXPTIME.

Additionally, APPL-RETURN-CODE can be set with a user-return code. This value is returned to
the application that dequeues the message.

On output from TPENQUEUE(), the following elements may be set in TPQUEDEF-REC:

05 MSGID PIC X(32).

05 DIAGNOSTIC PIC S9(9) COMP-5.

The following is a valid setting in TPQUEDEF-REC controlling output information from
TPENQUEUE(). If this setting is true when TPENQUEUE() is called, the /Q server TMQUEUE(5)
populates the associated element in the record with a message identifier. If this setting is not true
when TPENQUEUE() is called, TMQUEUE() does not populate the associated element in the record
with a message identifier.

../rf5/rf5.htm#5695415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 93

TPQMSGID
If this value is set and the call to TPENQUEUE() is successful, the message identifier is
stored in MSGID. The entire 32 bytes of the message identifier value are significant, so the
value stored in MSGID is completely initialized (for example, padded with NULL
characters). The actual padding character used for initialization varies between releases of
the BEA Tuxedo /Q component. If TPQNOMSGID is set, the message identifier is not
available.

The remaining members of the control structure are not used on input to TPENQUEUE().

If the call to TPENQUEUE() failed and TP-STATUS is set to TPEDIAGNOSTIC, a value indicating
the reason for failure is returned in DIAGNOSTIC. The possible values are defined below in the
DIAGNOSTICS section.

Return Values
Upon successful completion, TPENQUEUE() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPENQUEUE() fails and sets TP-STATUS to the following values
(unless otherwise noted, failure does not affect the caller’s transaction, if one exists).

[TPEINVAL]
Invalid arguments were given (for example, QSPACE-NAME is SPACES or settings in
TPQUEDEF-REC are invalid).

[TPENOENT]
Cannot access the QSPACE-NAME because it is not available (that is, the associated
TMQUEUE(5) server is not available), or cannot start a global transaction due to the lack of
entries in the Global Transaction Table (GTT).

[TPETIME]
This error code indicates that either a timeout has occurred or TPENQUEUE() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not

../rf5/rf5.htm#5695415

94 ATMI COBOL Function Reference

sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was set.

[TPEPROTO]
TPENQUEUE() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]
Enqueuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via TPQUEDEF-REC.

Diagnostic Values
The following diagnostic values are returned during the enqueuing of a message.

[QMEINVAL]
An invalid setting was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 95

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN setting and an error
occurred trying to start a transaction in which to enqueue the message. This diagnostic is
not returned by a queue manager from BEA Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid, deleted, or reserved queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resources is exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated users that may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from a version of
the BEA Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product

96 ATMI COBOL Function Reference

other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

See Also
qmadmin(1), TPDEQUEUE(3cbl), TPSPRIO(3cbl), TMQFORWARD(5), TMQUEUE(5)

TPFORWAR(3cbl)

Name
TPFORWAR() - forward a BEA Tuxedo ATMI service request to another routine

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC

 TPTYPE-REC BY TPTYPE-REC

 DATA-REC BY DATA-REC

 TPSTATUS-REC BY TPSTAUS-REC

Description
TPFORWAR() allows a service routine to forward a client’s request to another service routine for
further processing. Since TPFORWAR() contains an EXIT PROGRAM statement, it should be called
from within the same routine that was invoked to ensure correct return of control to the BEA
Tuxedo ATMI dispatcher (that is, TPFORWAR() should not be invoked in a sub-program of the
service routine since control would not return to the BEA Tuxedo ATMI dispatcher).
TPFORWAR() cannot be called from within a conversational service.

../rfcm/rfcmd.htm#9270011
../rf5/rf5.htm#9209715
../rf5/rf5.htm#5695415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 97

This routine forwards a request to the service named by SERVICE-NAME in TPSVCDEF-REC using
data contained in DATA-REC. A service routine forwarding a request receives no reply. After the
request is forwarded, the service routine returns to the BEA Tuxedo ATMI dispatcher and the
server is free to do other work. Note that because no reply is expected from a forwarded request,
the request may be forwarded without error to any service routine in the same executable as the
service which forwarded the request.

If the service routine is in transaction mode, this routine puts the caller’s portion of the transaction
in a state where it may be completed when the originator of the transaction issues either
TPCOMMIT() or TPABORT(). If a transaction was explicitly started with TPBEGIN() while in a
service routine, the transaction must be ended with either TPCOMMIT() or TPABORT() before
calling TPFORWAR(). Thus, all services in a “forward chain” are either all started in transaction
mode or none are started in transaction mode.

The last server in a forward chain sends a reply back to the originator of the request using
TPRETURN(). In essence, TPFORWAR() transfers to another server the responsibility of sending a
reply back to the awaiting requester.

TPFORWAR() should be called after receiving all replies expected from service requests initiated
by the service routine. Any outstanding replies which are not received will automatically be
dropped by the BEA Tuxedo ATMI dispatcher upon receipt. In addition, the communications
handle for those replies become invalid and the request is not forwarded to SERVICE-NAME.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies the amount of data in
DATA-REC that should be sent. Note that if DATA-REC is a record of a type that does not require a
length to be specified, then LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is
SPACES, DATA-REC and LEN are ignored and a request with zero length data is sent. If REC-TYPE
is STRING and LEN is 0, then the request is sent with no data portion.

Since the service routine writer does not regain control after calling TPFORWAR(), a blocking send
with signal restart is used (that is, TPSIGRSTRT is implied). Currently, settings in TPSVCDEF-REC
are reserved for future use and any specified are ignored.

Return Values
A service routine does not return any value to its caller, the BEA Tuxedo ATMI dispatcher. Thus,
TP-STATUS is not set.

Errors
If any errors occur either in the handling of the parameters passed to the routine or in its
processing, a “failed” message is sent back to the original requester (unless no reply is to be sent).
The existence of outstanding replies or subordinate connections, or the caller’s transaction being

98 ATMI COBOL Function Reference

marked abort-only, qualify as failures which generate failed messages. Failed messages are
detected by the requester with the TPESVCERR() error indication. When such an error occurs, the
caller’s data is not sent. Also, this error causes the caller’s current transaction to be marked
abort-only.

If a transaction timeout occurs, either during the service routine or while the request is being
forwarded, the requester waiting for a reply with either TPCALL() or TPGETRPLY() will get a
TPETIME error return. When a service fails inside a transaction, the transaction times out and is
put into the TX_ROLLBACK_ONLY state. All further ATMI calls for that transaction will fail with
TPETIME. The waiting requester will not receive any data. Service routines, however, are
expected to terminate using either TPRETURN() or TPFORWAR(). A conversational service routine
must use TPRETURN(); it cannot use TPFORWAR().

If a service routine returns without using either TPRETURN() or TPFORWAR() or TPFORWAR() is
called from a conversational server, the server will print a warning message in a log file and return
a service error to the original requester. All open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replies will be marked stale. If the
server was in transaction mode at the time of failure, the transaction is marked abort-only. Note
also that if either TPRETURN() or TPFORWAR() are used outside of a service routine (for example,
in clients, or in TPSVRINIT() or TPSVRDONE()), then these routines simply return having no
effect.

See Also
TPCONNECT(3cbl), TPRETURN(3cbl)

TPGBLKTIME(3cbl)

Name
TPGBLKTIME() - retrieves the blocktime value previously set by TPSBLKTIME

Synopsis
01 TPBLKDEF-REC.

COPY TPBLKDEF.

01 TPSTATUS-REC.

COPY TPSTATUS.

CALL “TPGBLKTIME” USING TPBLKDEF-REC TPSTATUS-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 99

Description
TPGBLKTIME() retrieves a previously set, per second, blocktime value and places this value in
BLKTIME in TBLKDEF-REC. If TPGBLKTIME() specifies a blocktime flag value, and no such flag
value has been set, the return value is 0. A blocktime flag value less than 0 produces an error.

The following is a list of valid TPBLKDEF-REC flag values:
TPBLK-NEXT

This value retrieves the per second blocktime value for the previously set TPSBLKTIME()
using a TBLKNEXT value.

TPBLK-ALL

This value retrieves the per second blocktime value for the previously set TPSBLKTIME()
using a TBLKALL value.

If TPGBLKTIME() does not specify a TPBLK-NEXT or TPBLK-ALL blocktime flag value, it returns
the applicable blocktime value for the next blocking API set due to a previous TPSBLKTIME()
call with the TPBLK-NEXT or TPBLK-ALL flag blocktime value, or a system-wide default
blocktime value.

Note: When a workstation client calls TPGBLKTIME() without a TPBLK-NEXT or TPBLK-ALL
blocktime flag value, the system-wide default blocktime value cannot be returned. A 0
value is returned instead.

Return Values
Upon successful completion, TPGBLKTIME() sets TP-STATUS to [TPOK] and returns the
previously set blocktime, if any, in BLKTIME in TBLKDEF-REC. A BLKTIME 0 value indicates that
there are no previously set input blocktime values.

Errors
Under the following conditions, TPGBLKTIME fails and sets TP-STATUS to one of the following
values. The failure does not affect transaction timeout values

[TPEINVAL]
Invalid arguments were given. For example, a value other than TPBLK-NEXT or
TPBLK-ALL was specified in TPBLKDEF-REC.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

100 ATMI COBOL Function Reference

See Also
TPCALL(3cbl), TPCONNECT(3cbl), TPRECV(3cbl), TPSBLKTIME(3cbl), UBBCONFIG(5)

TPGETCTXT(3cbl)

Name
TPGETCTXT() - retrieves a context identifier for the current application association

Synopsis
01 TPCONTEXTDEF-REC.

 COPY TPCONTEXTDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

Description
TPGETCTXT() retrieves an identifier that represents the current application context and places
that identifier in CONTEXT in TPCONTEXTDEF-REC. Typically, a COBOL application:

1. Calls TPINITIALIZE() with the TP-MULTI-CONTEXTS flag set.

2. Calls TPGETCTXT() and saves the TPCONTEXTDEF-REC.

3. Calls TPINITIALIZE(), again with the TP-MULTI-CONTEXTS flag.

4. Calls TPGETCTXT() again and saves the returned context.

5. Calls TPSETCTXT() to switch back to the first context.

TPGETCTXT() may be called in single-context applications as well as in multi-context
applications.

Return Values
Upon successful completion, TPGETCTXT sets TP-STATUS to [TPOK] and places the program’s
context identifier in CONTEXT in TPCONTEXTDEF-REC. CONTEXT is set to the current context ID,
which may be represented by either:

An actual context ID

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 101

TPNULLCONTEXT, indicating that this program is not currently associated with a context

Note: TPINVALIDCONTEXT cannot be returned in COBOL programs because this value is
possible only in multithreaded programs.

Errors
Upon failure, TPGETCTXT sets TP-STATUS to one of the following values.

[TPEINVAL]
Invalid arguments have been given.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error has been written
to a log file.

[TPEOS]
An operating system error has occurred.

See Also
Introduction to the COBOL Application-Transaction Monitor Interface, TPSETCTXT(3cbl)

TPGETLEV(3cbl)

Name
TPGETLEV() - check if a BEA Tuxedo ATMI transaction is in progress

Synopsis
01 TPTRXLEV-REC.

 COPY TPTRXLEV.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

Description
TPGETLEV() returns to the caller the current transaction level. Currently, the only levels defined
are TP-NOT-IN-TRAN and TP-IN-TRAN.

102 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPGETLEV() sets TP-STATUS to [TPOK] and sets values in
TPTRXLEV-REC to either a TP-NOT-IN-TRAN to indicate that no transaction is in progress, or
TP-IN-TRAN to indicate that a transaction is in progress.

Errors
Under the following conditions, TPGETLEV() fails and sets TP-STATUS to:

[TPEPROTO]
TPGETLEV() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using TPBEGIN(), TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo ATMI
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either TPCOMMIT() or TPABORT(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a
server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
transaction.

See Also
TPABORT(3cbl), TPBEGIN(3cbl), TPCOMMIT(3cbl), TPSCMT(3cbl)

TPGETRPLY(3cbl)

Name
TPGETRPLY() - get reply from asynchronous message

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

../rfcm/rfcmd.htm#6083611

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 103

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPGETRPLY() returns a reply from a previously sent request. TPGETRPLY() either returns a reply
for a particular request, or it returns any reply that is available. Both options are described below.

DATA-REC specifies where the reply is to be read into and, on input, LEN in TPTYPE-REC indicates
the maximum number of bytes that should be moved into DATA-REC. Also, REC-TYPE in
TPTYPE-REC must be specified. Upon successful return from TPGETRPLY(), LEN contains the
actual number of bytes moved into DATA-REC, REC-TYPE and SUB-TYPE, both in TPTYPE-REC,
contain the data’s type and subtype, respectively. If the reply is larger than DATA-REC, then
DATA-REC will contain only as many bytes as will fit in the record. The remainder of the reply is
discarded and TPGETRPLY() sets TPTRUNCATE().

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

The following is a list of valid settings in TPSVCDEF-REC.

TPGETANY
This setting signifies that TPGETRPLY() should ignore the communications handle
indicated by COMM-HANDLE in TPSVCDEF-REC, return any reply available and set
COMM-HANDLE to the communications handle for the reply returned. If no replies exist,
TPGETRPLY() can wait for one to arrive. Either TPGETANY or TPGETHANDLE must be set.

TPGETHANDLE
This setting signifies that TPGETRPLY() should use the communications handle identified
by COMM-HANDLE and return a reply available for that COMM-HANDLE. If no replies exist,
TPGETRPLY() can wait for one to arrive. Either TPGETANY or TPGETHANDLE must be set.

104 ATMI COBOL Function Reference

TPNOCHANGE
When this value is set, the type of DATA-REC is not allowed to change. That is, the type
and subtype of the reply record must match REC-TYPE and SUB-TYPE, respectively. Either
TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the reply record differs from REC-TYPE and SUB-TYPE,
respectively, so long as the receiver recognizes the incoming record type. Either
TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK
TPGETRPLY() does not wait for the reply to arrive. If the reply is available, then
TPGETRPLY() gets the reply and returns. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and no data is available, the caller blocks until the reply
arrives or a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK or
TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely for its reply and wants
to be immune to blocking timeouts. Transaction timeouts may still occur. Either
TPNOTIME or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

Except as noted below, COMM-HANDLE is no longer valid after its reply is received.

Return Values
Upon successful completion, TPGETRPLY() sets TP-STATUS to [TPOK]. When TP-STATUS is set
to TPOK() or TPESVCFAIL(), APPL-RETURN-CODE in TPSTATUS-REC contains an
application-defined value that was sent as part of TPRETURN(). If the size of the incoming

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 105

message was larger then the size specified in LEN on input, TPTRUNCATE() is set and only LEN
amount of data was moved to DATA-REC, the remaining data is discarded.

Errors
Under the following conditions, TPGETRPLY() fails and sets TP-STATUS as indicated below.
Note that if TPGETHANDLE is set, then COMM-HANDLE is invalidated unless otherwise stated. If
TPGETANY is set, then COMM-HANDLE identifies the communications handle for the reply on which
the failure occurred; if an error occurred before a reply could be retrieved, then COMM-HANDLE is
0. Also, the failure does not affect the caller’s transaction, if one exists, unless otherwise stated.

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid).

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE was
set and the REC-TYPE and SUB-TYPE do not match the type and subtype of the reply sent
by the service. Neither DATA-REC nor TPTYPE-REC are changed. If the reply was to be
received on behalf of the caller’s current transaction, then the transaction is marked
abort-only since the reply is discarded.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
This error code indicates that either a timeout has occurred or TPGETRPLY() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.) In either case, no changes are made to
DATA-REC or TPTYPE-REC. If TPGETHANDLE was set, COMM-HANDLE remains valid unless
the caller is in transaction mode.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were

106 ATMI COBOL Function Reference

equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]

The service routine sending the caller’s reply called TPRETURN() with TPFAIL(). This is
an application-level failure. The contents of the service’s reply, if one was sent, is
available in DATA-REC. APPL-RETURN-CODE contains an application-defined value that
was sent as part of TPRETURN(). If the reply was received on behalf of the caller’s
transaction, then the transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the transaction is aborted
are calls to TPACALL() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPESVCERR]
An error was encountered by a service routine during its completion in TPRETURN() or
TPFORWAR() (for example, bad arguments were passed). No reply data is returned when
this error occurs (that is, neither DATA-REC nor TPTYPE-REC are changed). If the reply was
received on behalf of the caller’s transaction, then the transaction is marked abort-only.
Note that regardless of whether the transaction has timed out, the only valid
communications before the transaction is aborted are calls to TPACALL() with
TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. COMM-HANDLE remains valid.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPGETRPLY() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl), TPCANCEL(3cbl), TPRETURN(3cbl)

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 107

TPGETUNSOL(3cbl)

Name
TPGETUNSOL() - get unsolicited message

Synopsis
01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPGETUNSOL() gets unsolicited messages that were sent via TPBROADCAST() or TPNOTIFY().
This routine may only be called from an unsolicited message handler.

Upon successful return, LEN IN TPTYPE_REC contains the actual number of bytes moved into
DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the data’s type and subtype,
respectively. If the message is larger than DATA-REC, then DATA-REC will contain only as many
bytes as will fit in the record. The remainder of the message is discarded and sets TPTRUNCATE().
If LEN is 0, upon successful completion, then the message has no data portion and DATA-REC was
not modified.

It is an error for LEN to be 0 on input.

Return Values
Upon successful completion, TPGETUNSOL() sets TP-STATUS to [TPOK]. If the size of the
incoming message was larger then the size specified in LEN on input, TPTRUNCATE() is set and
only LEN amount of data was moved to DATA-REC, the remaining data is discarded.

Errors
Under the following conditions, TPGETUNSOL() fails and sets TP-STATUS to:

108 ATMI COBOL Function Reference

[TPEINVAL]
Invalid arguments were given.

[TPEPROTO]
TPGETUNSOL() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPSETUNSOL(3cbl)

TPGPRIO(3cbl)

Name
TPGPRIO() - get service request priority

Synopsis
01 TPPRIDEF-REC.

 COPY TPPRIDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description
TPGPRIO() returns the priority for the last request sent or received. Priorities can range from 1 to
100, inclusive, with 100 being the highest priority. TPGPRIO() may be called after TPCALL() or
TPACALL(), (also TPENQUEUE() or TPDEQUEUE(), assuming the queued management facility is
installed), and the priority returned is for the request sent. Also, TPGPRIO() may be called within
a service routine to find out at what priority the invoked service was sent. TPGPRIO() may be
called any number of times and will return the same value until the next request is sent.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 109

Since the conversation primitives are not associated with priorities, issuing TPSEND() or
TPRECV() has no effect on the priority returned by TPGPRIO(). Also, there is no priority
associated with a conversational service routine unless a TPCALL() or TPACALL() is done within
that service.

Return Values
Upon successful completion, TPGPRIO() sets TP-STATUS to [TPOK] and returns a request’s
priority in PRIORITY in TPPRIDEF-REC.

Errors
Under the following conditions, TPGPRIO() fails and sets TP-STATUS to:

[TPENOENT]
TPGPRIO() was called and no requests (via TPCALL() or TPACALL()) have been sent, or
it is called within a conversational service for which no requests have been sent.

[TPEPROTO]
TPGPRIO() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl), TPCALL(3cbl), TPDEQUEUE(3cbl), TPENQUEUE(3cbl), TPSPRIO(3cbl)

TPINITIALIZE(3cbl)

Name
TPINITIALIZE() - joins a BEA Tuxedo ATMI application

Synopsis
01 TPINFDEF-REC.

 COPY TPINFDEF.

01 USER-DATA-REC PIC X(any-length).

110 ATMI COBOL Function Reference

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPINITIALIZE" TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

Description
TPINITIALIZE() allows a client to join a BEA Tuxedo ATMI application. Before a client can
use any of the BEA Tuxedo communication or transaction routines, it must first join a BEA
Tuxedo ATMI application. TPINITIALIZE() has two modes of operation: single-context mode
and multi-context mode, which will be discussed in greater detail below. Because calling
TPINITIALIE() is optional when in single-context mode, a single-context client may also join
an application by calling many ATMI routines (for example, TPACALL() or TPCALL()) which
transparently call TPINITIALIZE() with default values for the members of TPINFDEF-REC. A
client may want to call TPINITIALIZE() directly so that it can set the parameters described
below. In addition, TPINITIALIZE() must be used when multi-context mode is required or when
application authentication is required (see the description of the SECURITY keyword in
UBBCONFIG(5)). After TPINITIALIZE() successfully returns, the client can initiate service
requests and define transactions.

In single-context mode, if TPINITIALIZE() is called more than once (that is, after the client has
already joined the application), no action is taken and success is returned.

Description of the TPINFDEF-REC Record
The TPINFDEF-REC record includes the following members.

05 USRNAME PIC X(30).

05 CLTNAME PIC X(30).

05 PASSWD PIC X(30).

05 GRPNAME PIC X(30).

05 NOTIFICATION-FLAG PIC S9(9) COMP-5.

 88 TPU-SIG VALUE 1.

 88 TPU-DIP VALUE 2.

 88 TPU-IGN VALUE 3.

05 ACCESS-FLAG PIC S9(9) COMP-5.

 88 TPSA-FASTPATH VALUE 1.

 88 TPSA-PROTECTED VALUE 2.

05 CONTEXTS-FLAG PIC S9(9) COMP-5.

 88 TP-SINGLE-CONTEXT VALUE 0.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 111

 88 TP-MULTI-CONTEXTS VALUE 1.

05 DATALEN PIC S9(9) COMP-5.

USRNAME is a name representing the caller. CLTNAME is a client name whose semantics are
application defined. The value sysclient is reserved by the system for the CLTNAME field. The
USRNAME and CLTNAME fields are associated with the client at TPINITIALIZE() time and are used
for both broadcast notification and administrative statistics retrieval. PASSWD is an application
password in unencrypted format that is used for validation against the application password. The
PASSWD is significant up to 30 characters. GRPNAME is used to associate the client with a resource
manager group name. If GRPNAME is SPACES, then the client is not associated with a resource
manager and is in the default client group.

Single-context Mode Versus Multi-context Mode
TPINITIALIZE() has two modes of operation: single-context mode and multi-context mode. In
single-context mode, a process may join at most one application at any one time. Single-context
mode is specified by calling TPINITIALIZE() with the TP-SINGLE-CONTEXT setting of
CONTEXTS-FLAG or by calling another function that invokes TPINITIALIZE() implicitly.

In single-context mode, if TPINITIALIZE() is called more than once (that is, after the client has
already joined the application), no action is taken and success is returned.

Multi-context mode is entered by calling TPINITIALIZE() with the TP-MULTI-CONTEXTS
setting of CONTEXTS-FLAG. In multi-context mode, each call to TPINITIALIZE() results in the
creation of a separate application association.

An application association is a context that associates a process and a BEA Tuxedo application.
A client may have associations with multiple BEA Tuxedo applications, and may also have
multiple associations with the same application. All of a client’s associations must be made to
applications running the same release of the BEA Tuxedo system, and either all associations must
be native clients or all associations must be Workstation clients.

For native clients, the value of the TUXCONFIG environment variable is used to identify the
application to which the new association will be made. For Workstation clients, the value of the
WSNADDR or WSENVFILE environment variable is used to identify the application to which the new
association will be made. The context for the current COBOL process is set to the new
association.

In multi-context mode the application can get a handle for the current context, by calling
TPGETCTXT(), and pass that handle as a parameter to TPSETCTXT(), thus setting the context in
which a particular COBOL process will operate.

112 ATMI COBOL Function Reference

Mixing single-context mode and multi-context mode is not allowed. Once an application has
chosen one of these modes, calling TPINITIALIZE() in the other mode is not allowed unless
TPTERM() is first called for all application associations.

TPINFDEF-REC Record Descriptions
The settings of TPINFDEF-REC are used to indicate both the client specific notification
mechanism and the mode of system access. These settings may override the application default;
however, in the event that they cannot, TPINITIALIZE() will print a warning in a log file, ignore
the setting and return the application default setting in TPINFDEF-REC upon return from
TPINITIALIZE(). For client notification, the possible settings are as follows:

TPU-SIG
Select unsolicited notification by signals. This setting is not allowed in conjunction with
the TP-MULTI-CONTEXTS setting of CONTEXTS-FLAG.

TPU-DIP
Select unsolicited notification by dip-in.

TPU-IGN
Ignore unsolicited notification.

Only one of the above can be used at a time. If the client does not select a notification method,
then the application default method will be set upon return from TPINITIALIZE().

For setting the mode of system access, the possible settings are as follows:

TPSA-FASTPATH
Set system access to fastpath.

TPSA-PROTECTED
Set system access to protected.

Only one of the above can be used at a time. If the client does not select a notification method or
a system access mode, then the application default method(s) will be set upon return from
TPINITIALIZE(). See UBBCONFIG(5) for details on both client notification methods and system
access modes.

DATALEN is the length of the application specific data that will be sent to the service. A SPACES
value for USRNAME and CLTNAME is allowed for applications not making use of the application
authentication feature of the BEA Tuxedo system. Currently, GRPNAME must be SPACES. Clients
using this option will get defined in the BEA Tuxedo system with the following: default values
for USRNAME, CLTNAME, and GRPNAME; default settings; and no application data.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 113

Return Values
Upon successful completion, TPINITIALIZE() sets TP-STATUS to [TPOK]. Upon failure,
TPINITIALIZE() leaves the calling process in its original context, returns -1, and sets
TP-STATUS to indicate the error condition.

Errors
Upon failure, TPINITIALIZE() sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were specified.

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permission to do so or
because it has not supplied the correct application password. Permission may be denied
based on an invalid application password, failure to pass application specific
authentication or use of restricted names.

[TPEPROTO]
TPINITIALIZE() was called improperly. For example: (a) the caller is a server; (b) the
TP-MULTI-CONTEXTS setting was specified in single-context mode; or (c) the
TP-MULTI-CONTEXTS setting was not specified in multi-context mode.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in TPINITIALIZE() are supported on UNIX system and MS-DOS
operating systems. However, signal-based notification is not supported on MS-DOS. If it is
selected at TPINITIALIZE() time, then a USERLOG() message is generated and the method is
automatically set to dip-in.

114 ATMI COBOL Function Reference

Environment Variables

TUXCONFIG
Is used within TPINITIALIZE() when invoked by a non-workstation native client. It
indicates the application to which the client should connect. Note that this environment
variable is referenced only when TPINITIALIZE() is called. Subsequent calls make use
of the application context.

WSENVFILE
Is used within TPINITIALIZE() when invoked by a Workstation client. It indicates a file
containing environment variable settings that should be set in the caller’s environment.
See compilation(5) for more details on environment variable settings necessary for
Workstation clients. Note that this file is processed only when TPINITIALIZE() is called
and not before.

WSNADDR
Is used within TPINITIALIZE() when invoked by a Workstation client. It indicates the
network address(es) of the workstation listener that is to be contacted for access to the
application. This variable is required for Workstation clients and is ignored for native
clients.

TCP/IP addresses may be specified in the following forms:

"//host.name:port_number"
"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). hostname must be the local machine, and the local
name resolution facilities must unambiguously resolve hostname to the address of the
local machine.

In the second example, the "#.#.#.#" is in dotted-decimal format. In dotted- decimal
format, each # should be a number from 0 to 255. This dotted-decimal number represents
the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which the domain
process will listen for incoming requests. port_number can either be a number between
0 and 65535 or a name. If port_number is a name, then it must be found in the network
services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the characters
“0x”. Each character after the initial “0x” is a number between 0 and 9 or a letter between
A and F (case insensitive). The hexadecimal format is useful for arbitrary binary network
addresses such as IPX/SPX or TCP/IP.

../rf5/rf5.htm#4968815

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 115

The address can also be specified as an arbitrary string. The value should be the same as
that specified for the NLSADDR parameter in the NETWORKS section of the configuration
file.

More than one address can be specified if desired by specifying a comma-separated list of
pathnames for WSNADDR. Addresses are tried in order until a connection is established.
Any member of an address list can be specified as a parenthesized grouping of
pipe-separated network addresses. For example:

 WSNADDR="(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050"

For users running under Windows, the address string looks like the following:

set WSNADDR=(//m1.acme.com:3050^|//m2.acme.com:3050),//m3.acme.com:3050

Because the pipe symbol (|) is considered a special character in Windows, it must be
preceded by a carat (^)—an escape character in the Windows environment—when it is
specified on the command line. However, if WSNADDR is defined in an envfile, the BEA
Tuxedo system gets the values defined by WSNADDR through the tuxgetenv(3c)
function. In this context, the pipe symbol (|) is not considered a special character, so you
do not need to escape it with a carat (^).

The BEA Tuxedo system randomly selects one of the parenthesized addresses. This
strategy distributes the load randomly across a set of listener processes. Addresses are
tried in order until a connection is established. Use the value specified in the application
configuration file for the workstation listener to be called. If the value begins with the
characters “0x”, it is interpreted as a string of hex-digits, otherwise it is interpreted as
ASCII characters.

WSFADDR

Used within TPINITIALIZE() when invoked by a Workstation client. It specifies the
network address used by the Workstation client when connecting to the workstation
listener or workstation handler. This variable, along with the WSFRANGE variable,
determines the range of TCP/IP ports to which a Workstation client will attempt to bind
before making an outbound connection. This address must be a TCP/IP address. The port
portion of the TCP/IP address represents the base address from which a range of TCP/IP
ports can be bound by the Workstation client. The WSFRANGE variable specifies the size of
the range. For example, if this address is //mymachine.bea.com:30000 and WSFRANGE
is 200, then all native processes attempting to make outbound connections from this LMID
will bind a port on mymachine.bea.com between 30000 and 30200. If not set, this
variable defaults to the empty string, which implies the operating system chooses a local
port randomly.

../rf3c/rf3c.htm#6921713

116 ATMI COBOL Function Reference

WSFRANGE

Used within TPINITIALIZE()when invoked by a Workstation client. It specifies the
range of TCP/IP ports to which a Workstation client process will attempt to bind before
making an outbound connection. The WSFADDR parameter specifies the base address of the
range. For example, if the WSFADDR parameter is set to //mymachine.bea.com:30000
and WSFRANGE is set to 200, then all native processes attempting to make outbound
connections from this LMID will bind a port on mymachine.bea.com between 30000 and
30200. The valid range is 1-65535. The default is 1.

WSDEVICE
Is used within TPINITIALIZE() when invoked by a Workstation client. It indicates the
device name to be used to access the network. This variable is used by Workstation clients
and ignored for native clients. Note that certain supported transport level network
interfaces do not require a device name; for example, sockets and NetBIOS. Workstation
clients supported by such interfaces need not specify WSDEVICE.

WSTYPE
Is used within TPINITIALIZE() when invoked by a Workstation client to negotiate
encode/decode responsibilities with the native site. This variable is optional for
Workstation clients and ignored for native clients.

WSRPLYMAX
Is used by TPINITIALIZE() to set the maximum amount of core memory that should be
used for buffering application replies before they are dumped to file. The default value for
this parameter varies with each instantiation. The instantiation specific programmer’s
guide should be consulted for further information.

TMMINENCRYPTBITS
Is used to establish the minimum level of encryption required to connect to the BEA
Tuxedo system. “0” means no encryption, while “56” and “128” specify the encryption
key length (in bits). If this minimum level of encryption cannot be met, link establishment
will fail. The default is “0”

TMMAXENCRYPTBITS
Is used to negotiate the level of encryption up to this level when connecting to the BEA
Tuxedo system. “0” means no encryption, while “56” and “128” specify the encryption
length (in bits). The default value is “128.”

Warning
Signal-based notification is not allowed in multi-context mode. In addition, clients that select
signal-based notification may not be able to receive signals from the system due to signal
restrictions. When clients cannot receive signals, the system generates a log message that it is

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 117

switching notification for the selected client to dip-in and the client is notified then and thereafter
via dip-in notification. See the description of the NOTIFY parameter in the RESOURCES section of
UBBCONFIG(5) for a detailed discussion of notification methods.

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

A native client must be running as an application administrator

A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified in the configuration file for the application.

If signal-based notification is selected for a client, then certain ATMI calls may fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified.

See Also
TPGETCTXT(3cbl), TPSETCTXT(3cbl), TPTERM(3cbl)

TPKEYCLOSE(3cbl)

Name
TPKEYCLOSE() - close a previously opened key handle

Synopsis
01 TPKEYDEF-REC.

 COPY TPKEYDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPKEYCLOSE" USING TPKEYDEF-REC TPSTATUS-REC.

Description
TPKEYCLOSE() releases a previously opened key handle and all resources associated with it. Any
sensitive information, such as the principal’s private key, is erased from memory.

The calling process must supply KEY-HANDLE in TPKEYDEF-REC. KEY-HANDLE is a key identifier
returned by a previous call to TPKEYOPEN().

../rf5/rf5.htm#365105

118 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPKEYCLOSE() sets TP-STATUS in TPSTATUS-REC to [TPOK].

Errors
Upon failure, TPKEYCLOSE() sets TP-STATUS in TPSTATUS-REC to one of the following values.

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE in TPKEYDEF-REC is not set
correctly.

 [TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also
TPKEYGETINFO(3cbl), TPKEYOPEN(3cbl), TPKEYSETINFO(3cbl)

TPKEYGETINFO(3cbl)

Name
TPKEYGETINFO() - get information associated with a key handle

Synopsis
01 TPKEYDEF-REC.

 COPY TPKEYDEF.

01 ATTVALUE-REC.

 COPY user data

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPKEYGETINFO" USING TPKEYDEF-REC ATTVALUE-REC TPSTATUS-REC.

Description
TPKEYGETINFO() reports information about a key handle. A key handle represents a specific
principal’s key and the information associated with it.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 119

The calling process must supply KEY-HANDLE in TPKEYDEF-REC, which is a key identifier
returned by a previous call to TPKEYOPEN().

The attribute for which information is desired is identified by ATTRIBUTE-NAME in
TPKEYDEF-REC. The attribute name may be padded with SPACES or LOW-VALUES. Some
attributes are specific to a cryptographic service provider, but the following core set of attributes
should be supported by all providers.

Attribute Value

PRINCIPAL The name identifying the principal associated with the key (key
handle), represented as a NULL-terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA is identified in the following table.

PKENCRYPT_BITS The key length of the public key algorithm (RSA modulus size). The
value must be within the range of 512 to 2048 bits, inclusive.

SIGNATURE_ALG An ASN.1 DER object identifier of the digital signature algorithm
used by the key for digital signature.

The object identifiers for RSA and DSA are identified in the following
table.

SIGNATURE_BITS The key length of the digital signature algorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG An ASN.1 DER object identifier of the symmetric key algorithm used
by the key for bulk data encryption.

The object identifiers for DES, 3DES, and RC2 are identified in the
following table.

ENCRYPT_BITS The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 bits, inclusive.

When an algorithm with a fixed key length is set in ENCRYPT_ALG,
the ENCRYPT_BITS value is automatically set to the fixed key length.
For example, if ENCRYPT_ALG is set to DES, the ENCRYPT_BITS
value is automatically set to 56.

120 ATMI COBOL Function Reference

The ASN.1 DER algorithm object identifiers supported by the default public key implementation
are given in the following table.

The information associated with the specified attribute will be stored in user-defined
ATTVALUE-REC, padded at the end with SPACES. The maximum amount of data that can be stored
at this location is specified by the caller in ATTRIBUTE-VALUE-LEN in TPKEYDEF-REC.

After TPKEYGETINFO() completes, ATTRIBUTE-VALUE-LEN is set to the size of the data actually
returned (not including padding values). If the number of bytes that need to be returned exceeds
ATTRIBUTE-VALUE-LEN, TPKEYGETINFO() fails (with the TPELIMIT error code) and sets
ATTRIBUTE-VALUE-LEN to the required amount of space.

DIGEST_ALG An ASN.1 DER object identifier of the message digest algorithm used
by the key for digital signature.

The object identifiers for MD5 and SHA-1 are identified in the
following table.

PROVIDER The name of the cryptographic service provider.

VERSION The version number of the cryptographic service provider’s software.

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05 } MD5

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a } SHA1

{ 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x0c } DSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x07 } DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07 } 3DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02 } RC2

Attribute Value

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 121

Return Values
Upon successful completion, TPKEYGETINFO() sets TP-STATUS in TPSTATUS-REC to [TPOK].

Errors
Upon failure, TPKEYGETINFO() sets TP-STATUS in TPSTATUS-REC to one of the following
values:

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE is not a valid key.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient space was provided to hold the requested attribute value.

[TPENOENT]
The requested attribute is not associated with this key.

See Also
TPKEYCLOSE(3cbl), TPKEYOPEN(3cbl), TPKEYSETINFO(3cbl)

TPKEYOPEN(3cbl)

Name
TPKEYOPEN() - open a key handle for digital signature generation, message encryption, or
message decryption

Synopsis
01 TPKEYDEF-REC.

 COPY TPKEYDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPKEYOPEN" USING TPKEYDEF-REC TPSTATUS-REC.

122 ATMI COBOL Function Reference

Description
TPKEYOPEN() makes a key handle available to the calling process. A key handle represents a
specific principal’s key and the information associated with it.

A key may be used for one or more of the following purposes:

Automatically generating a digital signature, which protects a message’s content and
proves that a specific principal originated the message. (A principal may be a person or a
process.) This type of key is a private key and is available only to the key’s owner.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-SIGNATURE and
TPKEY-AUTOSIGN settings returns a handle to the principal’s public key and enables
signature generation in AUTOSIGN mode. The public key software generates and attaches
the digital signature to the message just before the message is sent.

Verifying a digital signature, which proves that a message’s content remains unaltered and
that a specific principal originated the message.

Signature verification does not require a call to TPKEYOPEN(); the verifying process uses
the public key specified in the digital certificate accompanying the digitally signed
message to verify the signature.

Automatically encrypting a message destined for a specific principal. This type of key is
available to any process with access to the principal's public key and digital certificate.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-ENCRYPT and
TPKEY-AUTOENCRYPT settings returns a handle to the principal’s public key (via the
principal’s digital certificate) and enables encryption in AUTOENCRYPT mode. The public
key software encrypts the message and attaches an encryption envelope to the message just
before the message is sent; the encryption envelope enables the receiving process to
decrypt the message.

Decrypting a message intended for a specific principal. This type of key is a private key
and is available only to the key’s owner.

Calling TPKEYOPEN() with the principal’s name and the TPKEY-DECRYPT setting returns a
handle to the principal’s private key and digital certificate.

The key handle returned by TPKEYOPEN() is stored in KEY-HANDLE in TPKEYDEF-REC.

The calling process must supply PRINCIPAL-NAME in TPKEYDEF-REC, which specifies the key
owner’s identity. This name may be padded at the end with SPACES or LOW-VALUES. If
PRINCIPAL-NAME is all SPACES or LOW-VALUES, a default identity is assumed. The default
identity may be based on the current login session, the current operating system account, or
another attribute such as a local hardware device.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 123

The calling process may have to supply LOCATION in TPKEYDEF-REC, which specifies the
location of a key owner’s identity. If the underlying provider does not require a location field, this
field may be populated with SPACES or LOW-VALUES.

To authenticate the identity of PRINCIPAL-NAME, proof material such as a password or pass
phrase may be required. If required, the proof material should be stored in IDENTITY-PROOF in
TPKEYDEF-REC. Otherwise, this field may be populated with SPACES or LOW-VALUES.

The length of the proof material (in bytes) is specified by PROOF-LEN in TPKEYDEF-REC. If
PROOF-LEN is 0,IDENTITY-PROOF is assumed to be a character string padded at the end with
SPACES or LOW-VALUES, in which case trailing SPACES or LOW-VALUES are not considered part
of the proof material.

There may be a choice of cryptographic service providers, based on the local machine’s
configuration and operating environment. If you need to choose one, set CRYPTO-PROVIDER in
TPKEYDEF-REC to the name of the required provider. Otherwise, set this field to SPACES or
LOW-VALUES, and a default provider will be assumed.

The type of key access required for a key’s mode of operation is determined by specifying one or
more of the following settings in TPKEYDEF-REC.

TPKEY-SIGNATURE:
This private key is available to generate digital signatures.

TPKEY-AUTOSIGN:
Whenever this process transmits a message, the public key software uses the signer’s
private key to generate a digital signature and then attaches the digital signature to the
message.

TPKEY-ENCRYPT:
This public key is available to identify the recipient of an encrypted message.

TPKEY-AUTOENCRYPT:
Whenever this process transmits a message, the public key software encrypts the message,
uses the recipient’s public key to generate an encryption envelope, and then attaches the
encryption envelope to the message.

TPKEY-DECRYPT:
This private key is available for decryption.

Various combinations of these settings are allowed. If a key is used only for encryption
(TPKEY-ENCRYPT and TPKEY-AUTOENCRYPT), IDENTITY-PROOF is not required.

124 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPKEYOPEN() sets TP-STATUS in TPSTATUS-REC to [TPOK]. In
addition, KEY-HANDLE in TPKEYDEF-REC is set to a value that represents this key, for use by other
functions such as TPKEYGETINFO().

Errors
Upon failure, TPKEYOPEN() sets TP-STATUS in TPSTATUS-REC to one of the following values:

[TPEINVAL]
Invalid arguments were given. For example, the settings (flag) values are not set correctly.

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key for this principal, given the proof information and current environment.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also
TPKEYCLOSE(3cbl), TPKEYGETINFO(3cbl), TPKEYSETINFO(3cbl)

TPKEYSETINFO(3cbl)

Name
TPKEYSETINFO() - set optional parameters associated with a key handle

Synopsis
01 TPKEYDEF-REC.

 COPY TPKEYDEF.

01 ATTVALUE-REC.

 COPY user data

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPKEYSETINFO" USING TPKEYDEF-REC ATTVALUE-REC TPSTATUS-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 125

Description
TPKEYSETINFO() sets an optional attribute parameter for a key handle. A key handle represents
a specific principal’s key and the information associated with it.

The key for which information is to be modified is identified by KEY-HANDLE in TPKEYDEF-REC.
KEY-HANDLE is a key identifier returned by a previous call to TPKEYOPEN().

The attribute for which information is to be modified is identified by ATTRIBUTE-NAME in
TPKEYDEF-REC. The attribute name may be padded with SPACES or LOW-VALUES. Some
attributes may be specific to a certain cryptographic service provider, but the core set of attributes
presented on the TPKEYGETINFO(3cbl) reference page should be supported by all providers.

The information in user-defined ATTVALUE-REC is to be associated with ATTRIBUTE-NAME. Upon
successful completion of TPKEYSETINFO(), the information in ATTVALUE-REC is stored or
processed in a manner defined by the cryptographic service provider. If the data content of
ATTVALUE-REC is self-describing, ATTRIBUTE-VALUE-LEN in TPKEYDEF-REC is ignored (and
may be 0). Otherwise, ATTRIBUTE-VALUE-LEN must contain the length of data in
ATTVALUE-REC.

Return Values
Upon successful completion, TPKEYSETINFO() sets TP-STATUS in TPSTATUS-REC to [TPOK].

Errors
Upon failure, TPKEYSETINFO() sets TP-STATUS in TPSTATUS-REC to one of the following
values:

[TPEINVAL]
Invalid arguments were given. For example, KEY-HANDLE is not set correctly.

[TPESYSTEM]
An error occurred. Consult the system error log file for more details.

[TPELIMIT]
The attribute value provided is too large.

[TPENOENT]
The requested attribute is not recognized by the key’s cryptographic service provider.

See Also
TPKEYCLOSE(3cbl), TPKEYGETINFO(3cbl), TPKEYOPEN(3cbl)

126 ATMI COBOL Function Reference

TPNOTIFY(3cbl)

Name
TPNOTIFY() - send notification by client identifier

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPNOTIFY() allows a server to send an unsolicited message to an individual client.

CLIENTID in TPSVCDEF-REC contains a client identifier saved from the TPSVCDEF-REC of a
previous or current service invocation.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies how much of DATA-REC
should be sent. If DATA-REC is a record of type that does not require a length to be specified, then
LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and LEN are
ignored and a request is sent with no data portion.

Upon successful return from TPNOTIFY(), the message has been delivered to the system for
forwarding to the identified client. If TPACK() was set, then a successful return means the
message has been received by the client. Furthermore, if the client has registered an unsolicited
message handler, the handler will have been called.

The following is a list of valid settings in TPSVCDEF-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 127

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
If a blocking condition exists in sending the notification, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPACK
This setting signifies that the caller will block waiting for an acknowledgment from the
client. Either TPNOACK() or TPACK() must be set.

TPNOACK
This setting signifies that the caller will not block waiting for an acknowledgment from
the client. Either TPNOACK() or TPACK() must be set.

Return Values
Upon successful completion, TPNOTIFY() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPNOTIFY() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

128 ATMI COBOL Function Reference

[TPENOENT]
The target client does not exist and TPACK() was set.

[TPETIME]
A blocking timeout occurred. A blocking timeout can occur under either of the following
circumstances: (a)TPBLOCK and TPTIME are specified, or (b) TPACK and TPTIME are
specified (in which case no acknowledgment is received).

[TPEBLOCK]
A blocking condition was found on sending the notification and TPNOBLOCK was
specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPNOTIFY() was called in an improper context (for example, within a client).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

[TPERELEASE]
When TPACK() is specified and the target is a client from a prior release of the BEA
Tuxedo system that does not support the acknowledgment protocol.

See Also
TPBROADCAST(3cbl), TPCHKUNSOL(3cbl), TPINITIALIZE(3cbl), TPSETUNSOL(3cbl),
TPTERM(3cbl)

TPOPEN(3cbl)

Name
TPOPEN() - open the BEA Tuxedo ATMI resource manager

Synopsis
01 TPSTATUS-REC.
 COPY TPSTATUS.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 129

CALL "TPOPEN" USING TPSTATUS-REC.

Description
TPOPEN() opens the resource manager to which the caller is linked. At most one resource
manager can be linked to the caller. This routine is used in place of resource manager-specific
open() calls and allows a service routine to be free of calls that may hinder portability. Since
resource managers differ in their initialization semantics, the specific information needed to open
a particular resource manager is placed in a configuration file.

If a resource manager is already open (that is, TPOPEN() is called more than once), no action is
taken and success is returned.

Return Values
Upon successful completion, TPOPEN() sets TP-STATUS to [TPOK]. More information concerning
the reason a resource manager failed to open can be gotten by interrogating the resource manager
in its own specific manner. Note that any calls to determine the exact nature of a resource
manager’s error hinder portability.

Errors

Under the following conditions, TPOPEN() fails and sets TP-STATUS to:

[TPERMERR]
A resource manager failed to open correctly. More information concerning the reason a
resource manager failed to open can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
TPOPEN() was called in an improper context (for example, by a client that has not joined
a BEA Tuxedo ATMI server group).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also

TPCLOSE(3cbl)

130 ATMI COBOL Function Reference

TPPOST(3cbl)

Name
TPPOST() - post an event

Synopsis
01 TPEVTDEF-REC.

 COPY TPEVTDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPPOST" USING TPEVTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
The caller uses TPPOST() to post an event and any accompanying data. The event is named by
EVENT-NAME in TPEVTDEF-REC and DATA-REC contains the data to be posted. The posted event
and its data are dispatched by the BEA Tuxedo EventBroker to all subscribers whose
subscriptions successfully evaluate against EVENT-NAME and whose optional filter rules
successfully evaluate against DATA-REC.

EVENT-NAME must be 31 characters or less, but cannot be SPACES. EVENT-NAME’s first character
cannot be a dot (“.”) as this character is reserved as the starting character for all events defined
by the BEA Tuxedo system itself.

DATA-REC is the typed record to be posted and LEN in TPTYPE-REC specifies the amount of data
in DATA-REC that should be posted with the event. Note that if DATA-REC is a record of a type that
does not require a length to be specified, then LEN is ignored (and may be 0). If DATA-REC is a
record of a type that does require a length to be specified, then LEN must not be 0 (if it is 0, no
data will be posted). If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and
the event is posted with no data.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 131

When TPPOST() is used within a transaction, the transaction boundary can be extended to include
those servers and/or stable-storage message queues notified by the EventBroker. When a
transactional posting is made, some of the recipients of the event posting are notified on behalf
of the poster’s transaction (for example, servers and queues), while some are not (for example,
clients).

If the poster is within a transaction and TPTRAN is set, the posted event goes to the EventBroker
in transaction mode such that it dispatches the event as part of the poster’s transaction. The broker
dispatches transactional event notifications only to those service routine and stable-storage queue
subscriptions that had TPEVTRAN set in TPEVTDEF-REC when the subscription was made. Client
notifications, and those service routine and stable-storage queue subscriptions that had
TPEVNOTRAN set in TPEVTDEF-REC when the subscription was made, are also dispatched by the
EventBroker but not as part of the posting process’ transaction.

The following is a list of valid settings in TPEVTDEF-REC:

TPNOTRAN
If the caller is in transaction mode and this setting is used, then the event posting is not
made on behalf of the caller’s transaction. A caller in transaction mode that uses this
setting is still subject to the transaction timeout (and no other). If the event posting fails,
the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be set.

TPTRAN
If the caller is in transaction mode and this setting is used, then the event posting is made
on behalf of the caller’s transaction. This setting is ignored if the caller is not in transaction
mode. Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY
Informs TPPOST() not to wait for the EventBroker to process all subscriptions for
EVENT-NAME before returning. When TPNOREPLY is set, EVENT-COUNT in TPEVTDEF-REC
is set to zero regardless of whether TPPOST() returns successfully or not. When the caller
is in transaction mode, this setting cannot be used when TPTRAN is also set. Either
TPNOREPLY or TPREPLY must be set.

TPREPLY
Informs TPPOST() to wait for all subscriptions to be processed before returning. When
TPREPLY is set, the routine returns [TPOK] on success and sets EVENT-COUNT in
TPEVTDEF-REC to the number of event notifications dispatched by the EventBroker on
behalf of EVENT-NAME. When the caller is in transaction mode, this setting must be used
when TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

132 ATMI COBOL Function Reference

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition occurs, the call
fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either TPNOSIGRSTRT or
TPSIGRSTRT must be set.

Return Values
Upon successful completion, TPPOST() sets TP-STATUS to [TPOK]. In addition, EVENT-COUNT
contains the number of event notifications dispatched by the EventBroker on behalf of
EVENT-NAME (that is, postings for those subscriptions whose event expression evaluated
successfully against EVENT-NAME and whose filter rule evaluated successfully against
DATA-REC). Upon return where TP-STATUS is set to [TPESVCFAIL], EVENT-COUNT contains the
number of non-transactional event notifications dispatched by the EventBroker on behalf of
EVENT-NAME.

Errors
Under the following conditions, TPPOST() fails and sets TP-STATUS to one of the following
values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, EVENT-NAME is SPACES).

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 133

[TPENOENT]
Cannot access the BEA Tuxedo User EventBroker.

[TPETRAN]
The caller is in transaction mode, TPTRAN was set, and TPPOST() contacted an
EventBroker that does not support transaction propagation (that is, TMUSREVT(5) is not
running in a BEA Tuxedo ATMI group that supports transactions).

[TPETIME]
This error code indicates that either a timeout has occurred or TPPOST() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When TPPOST() fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]
The EventBroker encountered an error posting a transactional event to either a service
routine or to a stable storage queue on behalf of the caller’s transaction. The caller’s
current transaction is marked abort-only. When this error is returned, EVENT-COUNT
contains the number of non-transactional event notifications dispatched by the
EventBroker on behalf of EVENT-NAME; transactional postings are not counted since their
effects will be aborted upon completion of the transaction. Note that so long as the
transaction has not timed out, further communication may be performed before aborting
the transaction and that any work performed on behalf of the caller’s transaction will be
aborted upon transaction completion (that is, for subsequent communication to have any
lasting effect, it should be done with TPNOTRAN set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

../rf5/rf5.htm#5119715

134 ATMI COBOL Function Reference

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPPOST() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also

TPSUBSCRIBE(3cbl), TPUNSUBSCRIBE(3cbl), EVENTS(5), TMSYSEVT(5), TMUSREVT(5)

TPRECV(3cbl)

Name
TPRECV() - receive a message in a conversational connection

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPRECV() is used to receive data sent across an open connection from another program.
COMM-HANDLE, specifies on which open connection to receive data. COMM-HANDLE is a

../rf5/rf5.htm#1605515
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 135

communications handle returned from either TPCONNECT() or TPSVCSTART(). DATA-REC
specifies where the message is read into, and, on input, LEN indicates the maximum number of
bytes that should be moved into DATA-REC.

Upon successful and for several event types, LEN contains the actual number of bytes moved into
DATA-REC. REC-TYPE and SUB-TYPE contain the data’s type and subtype, respectively. If the
message is larger than DATA-REC, then DATA-REC will contain only as many bytes as will fit in
the record. The remainder of the reply is discarded and TPRECV() sets TPTRUNCATE.

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

TPRECV() can be issued only by the program that does not have control of the connection.

The following is a list of valid settings in TPSVCDEF-REC.

TPNOCHANGE
When this setting is used, the type of DATA-REC is not allowed to change. That is, the type
and subtype of the message received must match REC-TYPE and SUB-TYPE, respectively.
Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE
The type and/or subtype of the message received is allowed to differ from those specified
in REC-TYPE and SUB-TYPE, respectively, so long as the receiver recognizes the incoming
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK
TPRECV() does wait for data to arrive. If data is already available to receive, then
TPRECV() gets the data and returns. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and no data is available to receive, the caller blocks until data
arrives. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program. Either TPNOTIME
or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

136 ATMI COBOL Function Reference

TPSIGRSTRT
If a signal interrupts the underlying receive system call, then the call is reissued. Either
TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

If an event exists for the communications handle, COMM-HANDLE, then TPRECV() will
return setting TP-STATUS to TPEEVENT(). The event type is returned in TPEVENT(). Data
can be received along with the TPEV-SVCSUCC, TPEV-SVCFAIL, and TPEV-SENDONLY
events. Valid events for TPRECV() are as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of
the conversation has issued an immediate disconnect on the connection via TPDISCON(),
or an error occurred when the originator issued TPRETURN() or TPCOMMIT() with the
connection still open. This event is also returned to the originator or subordinate when a
connection is broken due to a communications error (for example, a server, machine, or
network failure). Because this is an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. If the two programs were participating in
the same transaction, then the transaction is marked abort-only. COMM-HANDLE is no longer
valid.

TPEV-SENDONLY
The program on the other end of the connection has relinquished control of the
connection. The recipient of this event is allowed to send data but cannot receive any data
until it relinquishes control.

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued TPRETURN(). TPRETURN() encountered an errors that
precluded the service from returning successfully. For example, bad arguments may have
been passed to TPRETURN() or TPRETURN() may have been called while the service had
open connections to other subordinates. Due to the nature of this event, any
application-defined data or return code are not available. The connection has been torn
down and COMM-HANDLE is no longer valid. If this event occurred as part of the recipient’s
transaction, then the transaction is marked as abort-only.

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished unsuccessfully as defined by the
application (that is, it called TPRETURN() with TPFAIL() or TPEXIT()). If the

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 137

subordinate service was in control of this connection when TPRETURN() was called, then
it can pass an application-defined return value and a record back to the originator of the
connection. As part of ending the service routine, the server has torn down the connection.
Thus, COMM-HANDLE is no longer valid. If this event occurred as part of the recipient’s
transaction, then the transaction is marked abort-only.

TPEV-SVCSUCC
Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished successfully as defined by the
application (that is, it called TPRETURN() with TPSUCCESS()). As part of ending the
service routine, the server has torn down the connection. Thus, COMM-HANDLE is no longer
valid. If the recipient is in transaction mode, then it can either commit (if it is also the
initiator) or abort the transaction causing the work done by the server (if also in transaction
mode) to either commit or abort.

Return Values
Upon successful completion, TPRECV() sets TP-STATUS to [TPOK]. When TP-STATUS is set to
[TPEEVENT] and TPEVENT() is either TPEV-SVCSUCC or TPEV-SVCFAIL, APPL-RETURN-CODE
contains an application-defined value that was sent as part of TPRETURN(). If the size of the
incoming message was larger then the size specified in LEN on input, TPTRUNCATE() is set and
only LEN amount of data was moved to DATA-REC, the remaining data is discarded.

Errors
Under the following conditions, TPRECV() fails and sets TP-STATUS to (unless otherwise noted,
failure does not affect the caller’s transaction, if one exists):

[TPEINVAL]
Invalid arguments were given (for example, settings in TPSVCDEF-REC are invalid.

[TPEOTYPE]
Either the type of subtype of the incoming message are not known to the caller, or
TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the type and subtype of
the incoming message. If the conversation is part of the caller’s transaction, then the
transaction is marked abort-only since the incoming message is discarded.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
This error code indicates that either a timeout has occurred or TPRECV() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

138 ATMI COBOL Function Reference

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.) In either case, no changes are made to
DATAREC.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When an ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEEVENT]
An event occurred and its type is available in TPEVENT().

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPRECV() was called in an improper context (for example, the connection was established
such that the calling program can only send data).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Usage
A server can pass an application-defined return value and typed record when calling
TPRETURN(). The return value is available in APPL-RETURN-CODE and the record is available in
DATA-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 139

See Also
TPCONNECT(3cbl), TPDISCON(3cbl), TPSEND(3cbl)

TPRESUME(3cbl)

Name
TPRESUME() - resume a global transaction

Synopsis
01 TPTRXDEF-REC.

 COPY TPTRXDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPRESUME" USING TPTRXDEF-REC TPSTATUS-REC.

Description
TPRESUME() is used to resume work on behalf of a previously suspended transaction. Once the
caller resumes work on a transaction, it must either suspend it with TPSUSPEND(), or complete it
with one of TPCOMMIT() or TPABORT() at a later time.

The caller must ensure that its linked resource managers have been opened (via TPOPEN()) before
it can resume work on any transaction.

TPRESUME() places the caller in transaction mode on behalf of the global transaction identifier
contained in TRANID().

Return Value
Upon successful completion, TPRESUME() sets [TPOK].

Errors
Under the following conditions, TPRESUME() fails and sets TP-STATUS to:

[TPEINVAL]
Either TRANID() contains a non-existent transaction identifier (including previously
completed or timed-out transactions), or it contains a transaction identifier that the caller
is not allowed to resume. The caller’s state with respect to the transaction is not changed.

140 ATMI COBOL Function Reference

[TPEMATCH]
TRANID() contains a transaction identifier that another program has already resumed. The
caller’s state with respect to the transaction is not changed.

[TPETRAN]
The BEA Tuxedo system is unable to resume the global transaction because the caller is
currently participating in work outside any global transaction with one or more resource
managers. All such work must be completed before a global transaction can be resumed.
The caller’s state with respect to the local transaction is unchanged.

[TPEPROTO]
TPRESUME() was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notes
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See TPOPEN() for details.)

A program resuming a suspended transaction must reside on the same logical machine (LMID) as
the program that suspended the transaction. For a Workstation client, the workstation handler
(WSH) to which it is connected must reside on the same logical machine as the handler for the
Workstation client that suspended the transaction.

See Also
TPABORT(3cbl), TPCOMMIT(3cbl), TPOPEN(3cbl), TPSUSPEND(3cbl)

TPRETURN(3cbl)

Name
TPRETURN() - returns from a BEA Tuxedo ATMI service routine

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 141

Synopsis
01 TPSVCRET-REC.

 COPY TPSVCRET.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC

 TPTYPE-REC BY TPTYPE-REC

 DATA-REC BY DATA-REC T

 PSTATUS-REC BY TPSTATUS-REC.

Description
TPRETURN() indicates that a service routine has completed. Since TPRETURN() contains an EXIT
PROGRAM statement, it should be called from within the same routine that was invoked to ensure
correct return of control to the BEA Tuxedo ATMI dispatcher (that is, TPRETURN() should not
be invoked in a sub-program of the service routine since control would not return to the BEA
Tuxedo ATMI dispatcher).

TPRETURN() is used to send a service’s reply message. If the service receiving the reply is waiting
in either TPCALL(), TPGETRPLY(), or TPRECV(), then after a successful call to TPRETURN(), the
reply is available in the receiver’s record.

For conversational services, TPRETURN() also tears down the connection. That is the service
routine cannot call TPDISCON() directly. To ensure correct results, the program that connected
to the conversation service should not call TPDISCON(); rather, it should wait for notification that
the conversational service has completed (that is, it should wait for one of the events, like
TPEV-SVCSUCC or TPEV-SVCFAIL. sent by TPRETURN()).

If a service routine was in transaction mode, TPRETURN() places the service’s portion of the
transaction in a state from which it may be either committed or aborted when the transaction is
completed. A service may be invoked multiple times as part of the same transaction so it is not

142 ATMI COBOL Function Reference

necessarily fully committed nor aborted until either TPCOMMIT() or TPABORT() is called by the
originator of the transaction.

TPRETURN() should be called after receiving all replies expected from request/response service
requests initiated by the service routine. Otherwise, depending on the nature of the service, either
a [TPESVCERR] status or a TPEV-SVCERR event will be returned to the program that initiated
communications with the service routine. Any outstanding replies which are not received will
automatically be dropped by the BEA Tuxedo ATMI dispatcher upon receipt. In addition, the
communications handle for those replies become invalid.

TPRETURN() should also be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, either a [TPESVCERR] status or a TPEV-SVCERR
event will be returned to the program that initiated communications with the service routine.
Also, an immediate disconnect event (that is, TPEV-DISCONIMM) is sent over all open
connections to subordinates.

Concerning control of a connection, if the service routine does not have control over the
connection with which it was invoked when it issued TPRETURN(), then two outcomes are
possible. First, if the service routine calls TPRETURN() with TP-RETURN-VAL IN TPSVCRET-REC
set to TPFAIL() and REC-TYPE IN TPTYPE-REC set to SPACES (that is, no data is sent), then a
TPEV-SVCFAIL event is sent to the originator of this conversation. Second, if any other invocation
of TPRETURN() is used, a TPEV-SVCERR event is sent to the originator.

Since a conversational service has only one open connection which it did not initiate, the server
knows over which communications handle the data (and any event) should be sent. For this
reason, a communication handle is not passed to TPRETURN().

The following is a description of the TPRETURN() arguments. TP-RETURN-VAL can be set to one
of the following.

TPSUCCESS
The service has terminated successfully. If data is present, then it will be sent (barring any
failures processing the return). If the caller is in transaction mode, then TPRETURN()
places the caller’s portion of the transaction in a state such that it can be committed when
the transaction ultimately commits. Note that a call to TPRETURN() does not necessarily
finalize an entire transaction. Also, even though the caller indicates success, if there are
any outstanding replies or open connections, if any work done within the service caused
its transaction to be marked abort-only, then a failed message is sent (that is, the recipient
of the reply receives a TPESVCERR() indication or a TPEV-SVCERR event). Note that if a
transaction becomes abort-only while in the service routine for any reason, then
TP-RETURN-VAL should be set to TPFAIL(). If TPSUCCESS() is specified for a
conversational service, a TPEV-SVCSUCC event is generated.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 143

TPFAIL
The service has terminated unsuccessfully from an application standpoint. An error will
be reported to the program receiving the reply. That is, the call to get the reply will fail
and the recipient receives a [TPSVCERR] indication or a TPEV-SVCERR event. If the caller
is in transaction mode, then TPRETURN() marks the transaction as abort-only (note that
the transaction may already be marked abort-only). Barring any failures in processing the
return, the caller’s data is sent, if present. One reason for not sending the caller’s data is
when a transaction timeout has occurred. In this case, the program waiting for the reply
will receive an error of [TPETIME].

TPEXIT
This value is the same as TPFAIL(), with respect to completing the service, but the server
will exit after the transaction is marked as abort-only and the reply is sent back to the
requester. If the server is restartable, then the server will automatically be restarted.

If TP-RETURN-VAL is not set to one of these three values, then it defaults to TPFAIL().

An application-defined return code, APPL-CODE in TPSVCRET-REC, may be sent to the program
receiving the service reply. This code is sent regardless of the setting of TP-RETURN-VAL as long
as a reply can be successfully sent (that is, as long as the receiving call returns success or
[TPESVCFAIL], or receives one of the events TPEV-SVCSUCC or TPEV-SVCFAIL). The value of
APPL-CODE is available in the receiver in the variable, APPL-RETURN-CODE in TPSTATUS-REC.

DATA-REC is a record to be sent and LEN specifies the amount of DATA-REC that should be sent.
Note that if DATA-REC is a record of type and subtype that does not require a length to be
specified, then LEN is ignored (and may be 0). If REC-TYPE is SPACES, DATA-REC and LEN are
ignored. In this case, if a reply is expected by the program that invokes the service, then a reply
is sent with no data portion. If no reply is expected, then TPRETURN() ignores any data passed to
it and returns sending no reply. If REC-TYPE is STRING and LEN is 0, then the request is sent with
no data portion.

If the service is conversational, there are several cases in which the application return code and
the data portion are not transmitted:

If the connection has been terminated when the call is made (that is, the caller has received
TPEV-DISCONIMM on the connection), then this call simply ends the service routine and
rolls back the current transaction, if one exists. In this case, the caller’s data record cannot
be transmitted.

If the caller does not have control of the connection, either TPEV-SVCERR or
TPEV-SVCFAIL is sent to the originator of the connection as described above. Regardless
of which event the originator receives, no data record is transmitted. If the originator

144 ATMI COBOL Function Reference

receives the TPEV_SVCFAIL event, however, the return code is available in the originator’s
APPL-RETURN-CODE in TPSTATUS-REC.

Return Values
Because TPRETURN() contains an EXIT PROGRAM statement, no value is returned to the caller,
nor does control return to the service routine. If a service routine returns without using
TPRETURN() (that is, it uses an EXIT PROGRAM statement directly or just simply “falls out of the
service routine”), the server will return a service error to the service requester. In addition, all
open connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be dropped. If the server was in transaction mode at the time of failure,
the transaction is marked abort-only. Note also that if TPRETURN() is used outside of a service
routine (that is, by routines that are not services), then it returns having no effect.

Errors
Errors encountered either in handling arguments or in processing cause TP-STATUS to be set to
[TPESVCERR] for a program receiving the service’s outcome via either TPCALL() or
TPGETRPLY(), and cause the event, TPEV-SVCERR, to be sent over the conversation to a program
using TPSEND() or TPRECV().

See Also
TPCALL(3cbl), TPCONNECT(3cbl), TPFORWAR(3cbl)

TPSBLKTIME(3cbl)

Name
TPSBLKTIME() - routine for setting blocktime in seconds for the next service call or for all service calls

Synopsis
01 TPBLKDEF-REC.

COPY TPBLKDEF.

01 TPSTATUS-REC.

COPY TPSTATUS.

CALL “TPSBLKTIME” USING TPBLKDEF-REC TPSTATUS-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 145

Description
TPSBLKTIME() is used to set the blocktime value, in seconds, of a potential blocking API. A
potential blocking API is defined as any system API that can use the flag TBNOBLOCK as a value.
It does not have any effect on transaction timeout values.

BLKTIME in TPBLKDEF-REC sets blocking time in seconds. The blocktime range is 0 to 32767. A
0 blocktime value indicates that any previously set blocking time flag value is cancelled, and the
blocking time set with a different blocktime flag value prevails. If TPSBLKTIME() is not called,
the BLOCKTIME value in the *SERVICES section or the default *RESOURCES section of the
UBBCONFIG file is used.

Note: Blocking timeouts set with TPSBLKTIME() take precedence over the BLOCKTIME
parameter set in the SERVICES and RESOURCES section of the UBBCONFIG file. The
precedence for blocktime checking is as follows:
TPSBLKTIME(TPBLK-NEXT), TPSBLKTIME(TPBLK-ALL), *SERVICES, *RESOURCES

Exactly one of the following values must be in TPBLKDEF-REC:

TPBLK-NEXT

Sets the blocktime value, in seconds, for the next potential blocking API.
Any API that is called containing the TPNOBLOCK flag is not effected by TPSBLKTIME
(TPBLK-NEXT)and continues to be non-blocking.

A TPBLK-NEXT blocktime value overrides a TPBLK-ALL blocktime value for those API
calls that immediately follow it.

TPSBLKTIME(TPBLK-NEXT) operates on a per-thread basis. Therefore, it is not necessary
for applications to use any mutex around the TPSBLKTIME(TPBLK-NEXT) call and the
subsequent API call which it affects.

TPBLK-ALL

This flag sets the blocktime value, in seconds, for the all subsequent potential blocking
APIs until the next TPSBLKTIME() is called within that context. Any API that is called
containing the TPNOBLOCK flag is not effected by TPSBLKTIME(TPBLK-ALL) and
continues to be non-blocking.

TPSBLKTIME(TPBLK-ALL) operates on a per-context basis. Therefore, it is necessary to
call TPSBLKTIME(TPBLK-ALL) in only one thread of context that is used in multiple
threads.

TPSBLKTIME(TPBLK-ALL) will not affect any context that follows after TPTERM(3cbl)
is called.

146 ATMI COBOL Function Reference

Notes: In order to perform blocking time values that are not affected by thread timing
dependencies, it is best that TPSBLKTIME(TPBLK-ALL) is called in a multi-threaded
context immediately after TPINITIALIZE(3cbl) using the TP-MULT-ICONTEXTS flag
and before the return value of TPGETCTXT(3cbl) is made available to other threads.

When TPSBLKTIME(TPBLK-ALL) is called in a service on a multi-threaded server, it will
affect the currently executed thread only. To set the blocktime for all services, it is best
that you use TPSBLKTIME(TPBLK-ALL) with TPSVRINIT(3cbl).

Return Values
Upon successful completion, TPSBLKTIME() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPSBLKTIME fails and sets TP-STATUS to one of the following
values. The failure does not affect transaction timeout values.

[TPEINVAL]
Invalid arguments were given. For example, a value other than TPBLK-NEXT or
TPBLK-ALL was specified in TPBLKDEF-REC.

[TPERELEASE]

TPSBLKTIME() was called in a client attached to a workstation handler running an earlier
Tuxedo release.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

See Also
TPCALL(3cbl), TPCONNECT(3cbl), TPRECV(3cbl), TPGBLKTIME(3cbl), UBBCONFIG(5)

TPSCMT(3cbl)

Name
TPSCMT() - set when TPCOMMIT should return

Synopsis
01 TPCMTDEF-REC.

 COPY TPCMTDEF.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 147

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSCMT" USING TPCMTDEF-REC TPSTATUS-REC.

Description
TPSCMT() sets the TP-COMMIT-CONTROL characteristic to the value specified in TPCMTDEF-REC.
The TP-COMMIT-CONTROL characteristic affects the way TPCOMMIT() behaves with respect to
returning control to its caller. A program can call TPSCMT() regardless of whether it is in
transaction mode or not. Note that if the caller is participating in a transaction that another
program must commit, then its call to TPSCMT() does not affect that transaction. Rather, it affects
subsequent transactions that the caller will commit.

In most cases, a transaction is committed only when a BEA Tuxedo ATMI program calls
TPCOMMIT(). There is one exception: when a service is dispatched in transaction mode because
the AUTOTRAN variable in the SERVICES section of the UBBCONFIG file is enabled, then the
transaction completes upon calling TPRETURN(). If TPFORWAR() is called, then the transaction
will be completed by the server ultimately calling TPRETURN(). Thus, the setting of the
TP-COMMIT-CONTROL characteristic in the service that calls TPRETURN() determines when
TPCOMMIT() returns control within a server. If TPCOMMIT() returns a heuristic error code, the
server will write a message to a log file.

When a client joins a BEA Tuxedo ATMI application, the initial setting for this characteristic
comes from a configuration file. (See the CMTRET variable in the RESOURCES section of
UBBCONFIG(5).)

The following are the valid settings for TPCMTDEF-REC.

TP-CMT-LOGGED
This setting indicates that TPCOMMIT() should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of TPCOMMIT()
although there is a risk that a transaction participant might decide to heuristically complete
(that is, aborted) its work due to timing delays waiting for the second phase to complete.
If this occurs, there is no way to indicate this situation to the caller since TPCOMMIT() has
already returned (although BEA Tuxedo writes a message to a log file when a resource
manager takes a heuristic decision). Under normal conditions, participants that promise to
commit during the first phase will do so during the second phase. Typically, problems
caused by network or site failures are the sources for heuristic decisions being made
during the second phase.

../rf5/rf5.htm#365105

148 ATMI COBOL Function Reference

TP-CMT-COMPLETE
This setting indicates that TPCOMMIT() should return after the two-phase commit protocol
has finished completely. This setting allows for TPCOMMIT() to return an indication that
a heuristic decision occurred during the second phase of commit.

Return Values
Upon successful completion, TPSCMT() sets TP-STATUS to [TPOK] and returns the previous value
of the TP-COMMIT-CONTROL characteristic.

Errors
Under the following conditions, TPSCMT() fails and sets TP-STATUS to:

[TPEINVAL]
TPCMTDEF-REC is not set to TP-CMT-LOGGED or TP-CMT-COMPLETE.

[TPEPROTO]
TPSCMT() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using TPBEGIN(), TPCOMMIT(), and TPABORT() to delineate a BEA Tuxedo ATMI
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either TPCOMMIT() or TPABORT(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a
server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
transaction.

See Also
TPABORT(3cbl), TPBEGIN(3cbl), TPCOMMIT(3cbl), TPGETLEV(3cbl)

../rfcm/rfcmd.htm#6083611

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 149

TPSEND(3cbl)

Name
TPSEND() - routine to send a message in a conversational connection

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description
TPSEND() is used to send data across an open connection to another program. The caller must
have control of the connection. COMM-HANDLE specifies the open connection to send data over.
COMM-HANDLE is a communications handle returned from either TPCONNECT() or
TPSVCSTART().

DATA-REC contains the data to be sent and LEN specifies how much of the data to send. Note that
if DATA-REC is a record of a type that does not require a length to be specified, then LEN is ignored
(and may be 0). If REC-TYPE is SPACES, DATA-REC and LEN are ignored and a message is sent
with no data (this might be done, for instance, to grant control of the connection without
transmitting any data).

The following is a list of valid settings in TPSVCDEF-REC.

TPRECVONLY
This setting signifies that, after the caller’s data is sent, the caller gives up control of the
connection (that is, the caller cannot issue anymore TPSEND() calls). When the receiver
on the other end of the connection receives the data sent by TPSEND(), it will also receive

150 ATMI COBOL Function Reference

an event (TPEV-SENDONLY) indicating that it has control of the connection (and cannot
issue anymore TPRECV() calls). Either TPRECVONLY or TPSENDONLY must be set.

TPSENDONLY
This setting signifies that the caller wants to remain in control of the connection. Either
TPRECVONLY or TPSENDONLY must be set.

TPNOBLOCK
The data and any events are not sent if a blocking condition exists (for example, the data
buffers through which the message is sent are full). Either TPNOBLOCK or TPBLOCK must
be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program. Either TPNOTIME
or TPTIME must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted call is reissued.
Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

If an event exists for COMM-HANDLE, then TPSEND() will return without sending the caller’s data.
The event type is returned in TPEVENT(). Valid events for TPSEND() are as follows.

TPEV-DISCONIMM
Received by the subordinate of a conversation, this event indicates that the originator of
the conversation has issued an immediate disconnect on the connection via TPDISCON(),
or the originator of the connection issued TPRETURN() with open subordinate
connections. This event is also returned to the originator or subordinate when a connection
is broken due to a communications error (for example, a server, machine, or network
failure).

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 151

TPEV-SVCFAIL
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued TPRETURN() without having control of the conversation. In
addition. TPRETURN() was issued with TPFAIL() set and no data record (that is, the
REC-TYPE passed to TPRETURN() was set to SPACES).

TPEV-SVCERR
Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued TPRETURN() without having control of the conversation. In
addition, TPRETURN() was issued in a manner different from that described for
TPEV-SVCFAIL below.

Because each of these events indicates an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. The communications handle used for the
connection is no longer valid. If the two programs were participating in the same transaction, then
the transaction has been marked abort-only.

Return Values
Upon successful completion, TPSEND() sets TP-STATUS to [TPOK]. If an event exists and no
errors were encountered, TPSEND() sets TP-STATUS to [TPEEVENT]. When TP-STATUS is set to
[TPEEVENT] and TP-EVENT is either TPEV-SVCSUCC or TPEV-SVCFAIL, APPL-RETURN-CODE
contains an application-defined value that was sent as part of TPRETURN().

Errors
Under the following conditions, TPSEND() fails and sets TP-STATUS to (unless otherwise noted,
failure does not affect caller’s transaction, if one exits):

[TPEINVAL]
Invalid arguments were given.

[TPEBADDESC]
COMM-HANDLE contains an invalid communications handle.

[TPETIME]
This error code indicates that either a timeout has occurred or TPSEND() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

152 ATMI COBOL Function Reference

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEEVENT]
An event occurred and its type is available in TPEVENT(). DATA-REC is not sent when this
error occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
TPSEND() was called in an improper context (for example, the connection was established
such that the calling program can only receive data).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPCONNECT(3cbl), TPDISCON(3cbl), TPRECV(3cbl)

TPSETCTXT(3cbl)

Name
TPSETCTXT() - sets a context identifier for the current application association

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 153

Synopsis
01 TPCONTEXTDEF-REC.

 COPY TPCONTEXTDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSETCTXT" USING TPCONTEXTDEF-REC TPSTATUS-REC.

Description
TPSETCTXT() defines the context in which the current program operates. (Multithreaded
COBOL applications are not currently supported.) Subsequent BEA Tuxedo calls reference the
application indicated by CONTEXT in TPCONTEXTDEF-REC. The value of CONTEXT in
TPCONTEXTDEF-REC should have been provided by a previous call to TPGETCTXT(). If the value
of CONTEXT is TPNULLCONTEXT, then the program is disassociated from any BEA Tuxedo
context. TPINVALIDCONTEXT is not a valid input value for CONTEXT in TPCONTEXTDEF-REC.

Return Values
Upon successful completion, TPSETCTXT() sets TP-STATUS to [TPOK].

Upon failure, TPSETCTXT() leaves the calling process in its original context and sets TP-STATUS
to indicate the error condition.

Errors
Upon failure, TPSETCTXT() sets TP-STATUS to one of the following values:

[TPEINVAL]
Invalid arguments have been given.

[TPENOENT]
The value of CONTEXT in TPCONTEXTDEF-REC is not a valid context.

[TPEPROTO]
TPSETCTXT() has been called in an improper context. For example, it has been called in
a process that has not called TPINITIALIZE() or that has called TPINITIALIZE()
without specifying the TP-MULTI-CONTEXTS setting.

154 ATMI COBOL Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error has been written
to a log file.

[TPEOS]
An operating system error has occurred.

See Also
Introduction to the COBOL Application-Transaction Monitor Interface, TPGETCTXT(3cbl)

TPSETUNSOL(3cbl)

Name
TPSETUNSOL() - sets method for handling unsolicited messages

Synopsis
01 CURR-ROUTINE PIC S9(9) COMP-5.

01 PREV-ROUTINE PIC S9(9) COMP-5.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

Description
TPSETUNSOL() allows a client to identify the routine that should be invoked when an unsolicited
message is received by the BEA Tuxedo ATMI libraries. Before the first call to TPSETUNSOL(),
any unsolicited messages received by the BEA Tuxedo ATMI libraries on behalf of the client are
logged and ignored. A call to TPSETUNSOL() with a function number, CURR-ROUTINE, set to 0
has the same effect. The method used by the system for notification and detection is determined
by the application default, which can be overridden on a per-client basis (see
TPINITIALIZE(3cbl)).

The routine number passed, in CURR-ROUTINE, on the call to TPSETUNSOL() selects one of 16
predefined routines. The routine names must be _tm_dispatch1 through _tm_dispatch8 for C
routines that provide unsolicited message handling and TMDISPATCH9 through TMDISPATCH16
for COBOL routines that provide the same message handling. The C functions (_tm_dispatch1

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 155

through _tm_dispatch8) must conform to the parameter definition described in
tpsetunsol(3c). The COBOL routines (TMDISPATCH9 through TMDISPATCH16) must use
TPGETUNSOL() to receive the data.

Processing within the unsolicited message handling routine in a C application is restricted to the
following BEA Tuxedo functions: tpalloc(), tpfree(), tpgetctxt(), tpgetlev(),
tprealloc(), and tptypes().

Processing within the unsolicited message handling routine in a COBOL application is restricted
to the following BEA Tuxedo functions: TPGETLEV() and TPGETCTXT().

Return Values
Upon successful completion, TPSETUNSOL() sets TP-STATUS to [TPOK] and returns the previous
setting for the unsolicited message handling routine (0 in PREV-ROUTINE is a successful return
indicating that no message handling routine had been set previously).

Errors
Under the following conditions, TPSETUNSOL() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given (for example, CURR-ROUTINE is not a valid routine value).

[TPEPROTO]
TPSETUNSOL() was called in an improper context (for example, from within a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in TPNOTIFY() are supported on native site UNIX-based processors. In
addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as the routine TPSETUNSOL()
are supported on UNIX and MS-DOS workstation processors.

TPSETUNSOL() is not supported on Windows, OS/2, and RS6000 due to the way that Dynamic
Link Libraries and Shared Libraries work in these environments; TPEPROTO() will be returned if
called on these platforms. Use the C-language interface tpsetunsol() to set up a handler
function in these environments.

../rf3c/rf3c.htm#7156613

156 ATMI COBOL Function Reference

See Also
TPGETCTXT(3cbl), TPGETUNSOL(3cbl), TPINITIALIZE(3cbl), TPTERM(3cbl)

TPSPRIO(3cbl)

Name
TPSPRIO() - set service request priority

Synopsis
01 TPPRIDEF-REC.

 COPY TPPRIDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description
TPSPRIO() sets the priority for the next request sent or forwarded. The priority set affects only
the next request sent. (Priority can also be set for messages enqueued or dequeued by
TPENQUEUE() or TPDEQUEUE() if the queued management facility is installed.) By default, the
setting of PRIORITY in TPPRIDEF-REC increments or decrements a service’s default priority up
to a maximum of 100 or down to a minimum of 1 depending on its sign, where 100 is the highest
priority. The default priority for a request is determined by the service to which the request is
being sent. This default may be specified administratively (see UBBCONFIG(5)), or accept the
system default of 50. TPSPRIO() has no effect on messages sent via TPCONNECT() or TPSEND().

The following is a list of valid settings in TPPRIDEF-REC.

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of PRIORITY. The
absolute value of PRIORITY must be within the range 1 and 100, inclusive, with 100 being
the highest priority. Any value outside of this range causes a default value to be used.

TPRELATIVE
The priority of the next request should be sent out at the relative value of PRIORITY.

Return Values
Upon successful completion, TPSPRIO() sets TP-STATUS to [TPOK].

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 157

Errors
Under the following conditions, TPSPRIO() fails and sets TP-STATUS to:

[TPEINVAL]
TPPRIDEF-REC settings are invalid.

[TPEPROTO]
TPSPRIO() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl), TPCALL(3cbl), TPDEQUEUE(3cbl), TPENQUEUE(3cbl), TPGPRIO(3cbl)

TPSUBSCRIBE(3cbl)

Name
TPSUBSCRIBE() - subscribe to an event

Synopsis
01 TPEVTDEF-REC.

 COPY TPEVTDEF.

01 TPQUEDEF-REC.

 COPY TPQUEDEF.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSUBSCRIBE" USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC.

Description
The caller uses TPSUBSCRIBE() to subscribe to an event or set of events named by EVENT-EXPR
in TPEVTDEF-REC. Subscriptions are maintained by the BEA Tuxedo EventBroker, TMUSREVT(),

158 ATMI COBOL Function Reference

and are used to notify subscribers when events are posted via TPPOST(). Each subscription
specifies a notification method which can take one of three forms: client notification, service
calls, or message enqueuing to stable-storage queues. Notification methods are determined by the
subscriber’s process type and the setting of the TPEV-METHOD-FLAG in TPEVTDEF-REC.

The event or set of events being subscribed to is named by the regular expression, EVENT-EXPR
in TPEVTDEF-REC, and cannot be SPACES. Regular expressions are of the form specified in
tpsubscribe(3c). For example, if EVENT-EXPR is "\e\e..*", the caller is subscribing to all
system-generated events; if EVENT-EXPR is "\e\e.SysServer.*", the caller is subscribing to
all system-generated events related to servers. If EVENT-EXPR is "[A-Z].*", the caller is
subscribing to all user events starting with A-Z; if EVENT-EXPR is ".*(ERR|err).*", the caller
is subscribing to all user events containing either the substring "ERR" or the substring "err" in the
event name (for example, "account_error" and "ERROR_STATE" events would both qualify).

EVENT-FILTER in TPEVTDEF-REC is a string containing a Boolean filter rule that must be
evaluated successfully before the EventBroker posts the event. Upon receiving an event to be
posted, the EventBroker applies the filter rule, if one exists, to the posted event’s data. If the data
passes the filter rule, the EventBroker invokes the notification method; otherwise, the broker does
not invoke the associated notification method. The caller can subscribe to the same event multiple
times with different filter rules.

Filter rules are specific to the typed records to which they are applied. For FML and view records,
the filter rule is a string that can be passed to each Boolean expression compiler (see Fboolco,
Fboolco32, Fvboolco, Fvboolco32(3fml)) and evaluated against the posted record (see
Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml)). For STRING records, the filter rule
is a regular expression of the form specified in tpsubscribe(3c). All other record types require
customized filter evaluators (see buffer(3c) and typesw(5) for details on adding customized
filter evaluators). If no filter rule is associated with EVENT-EXPR, then EVENT-FILTER must be
SPACES.

If the subscriber is a BEA Tuxedo ATMI client process and TPEVNOTIFY in TPEVTDEF-REC is
set, then the EventBroker sends an unsolicited message to the subscriber when the event to which
it subscribed is posted. That is, when an event name is posted that evaluates successfully against
EVENT-EXPR, the EventBroker tests the posted data against the filter rule associated with
EVENT-EXPR. If the data passes the filter rule or if there is no filter rule for the event, then the
subscriber receives an unsolicited notification along with any data posted with the event. In order
to receive unsolicited notifications, the client must register (via TPSETUNSOL()) an unsolicited
message handling routine. If a BEA Tuxedo ATMI server process calls TPSUBSCRIBE() with
TPEVNOTIFY set, then TPSUBSCRIBE() fails and sets TP-STATUS in TPSTATUS-REC to
[TPEPROTO].

../rf3fml/rf3fml.htm#41003132323
../rf3fml/rf3fml.htm#41003132323
../rf3fml/rf3fml.htm#57954132323
../rf3c/rf3c.htm#6817413
../rf5/rf5.htm#2183415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 159

Clients receiving event notification via unsolicited messages should remove their subscriptions
from the EventBroker’s list of active subscriptions before exiting (see TPUNSUBSCRIBE() for
details). Using TPUNSUBSCRIB()’s wildcard handle, -1, clients can conveniently remove all of
their “non-persistent” subscriptions which include those associated with the unsolicited
notification method (see the description of TPEVPERSIST below for subscriptions and their
associated notification methods that persist after a process exits). If a client exits without
removing its non-persistent subscriptions, then the EventBroker will remove them when it detects
that the client is no longer accessible.

When TPEVNOTIFY is set, TPEVNOTRAN and TPEVNOPERSIST must also be set; otherwise
TPSUBSCRIBE() fails and sets TP-STATUS to [TPEINVAL]. That is, an event subscription for a
client having the unsolicited notification method cannot be transactional nor can it be persistent.

If the subscriber (regardless of process type) sets TPEVSERVICE() in TPEVTDEF-REC, then event
notifications are sent to the BEA Tuxedo ATMI service routine named by NAME-1 in
TPEVTDEF-REC. That is, when an event name is posted that evaluates successfully against
EVENT-EXPR, the EventBroker tests the posted data against the filter rule associated with
EVENT-EXPR. If the data passes the filter rule or if there is no filter rule for the event, then a
service request is sent to NAME-1 along with any data posted with the event. The service name in
NAME-1 can be any valid BEA Tuxedo ATMI service name and it may or may not be active at the
time the subscription is made. Service routines invoked by the EventBroker should return with
no reply data. That is, they should call TPRETURN() with REC-TYPE in TPTYPE-REC set to
SPACES. Any data passed to TPRETURN() will be dropped.

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in transaction
mode, the EventBroker calls the subscribed service routine such that it will be part of the poster’s
transaction. Both the EventBroker, TMUSREVT(), and the subscribed service routine must belong
to server groups that support transactions (see UBBCONFIG(5) for details). If TPEVNOTRAN is set,
then the EventBroker calls the subscribed service routine such that it will not be part of the
poster’s transaction.

If the subscriber (regardless of process type) sets TPEVQUEUE() in TPEVTDEF-REC, then event
notifications are enqueued to the queue space named by NAME-1 in TPEVTDEF-REC and the queue
named by NAME-2 in TPEVTDEF-REC. That is, when an event name is posted that evaluates
successfully against EVENT-EXPR, the EventBroker tests the posted data against the filter rule
associated with EVENT-EXPR. If the data passes the filter rule or if there is no filter rule for the
event, then the EventBroker enqueues a message to the queue space named by NAME-1 and the
queue named by NAME-2 along with any data posted with the event. The queue space and queue
name can be any valid BEA Tuxedo ATMI queue space and queue name, either of which may or
may not exist at the time the subscription is made.

../rf5/rf5.htm#365105

160 ATMI COBOL Function Reference

TPQUEDEF-REC can contain options further directing the EventBroker’s enqueuing of the posted
event. If the caller has no options to specify, then TPQUEDEF-REC should be set to LOW-VALUE.
Otherwise, options can be set as described in the “Control Parameter” subsection of the
TPENQUEUE() reference page (specifically, see the section describing the valid list of settings
controlling input information for TPENQUEUE()).

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in transaction
mode, the EventBroker enqueues the posted event and its data such that it will be part of the
poster’s transaction. The EventBroker, TMUSREVT(), must belong to a server group that supports
transactions (see UBBCONFIG(5) for details). If TPEVNOTRAN is set, then the EventBroker
enqueues the posted event and its data such that it will not be part of the poster’s transaction.

By default, the BEA Tuxedo EventBroker deletes subscriptions when the resource to which it is
posting is not available (for example, the EventBroker cannot access a service routine and/or a
queue space/queue name associated with an event subscription). Setting TPEVPERSIST in
TPEVTDEF-REC indicates that the subscriber wants this subscription to persist across such errors
(usually because the resource will become available again in the future). Persistent subscriptions
are allowed only for TPEVSERVICE() and TPEVQUEUE() notification methods. TPEVPERSIST
cannot be used when TPEVNOTIFY is set; otherwise, the function fails and sets TP-STATUS to
[TPEINVAL]. When TPEVNOPERSIST is used, the EventBroker will remove this subscription if it
encounters an error accessing either the client, the service name, or queue space/queue name
designated in this subscription.

If TPEVPERSIST is used with TPEVTRAN and the resource is not available at the time of event
notification, then the EventBroker will return to the poster such that its transaction must be
aborted. That is, even though the subscription remains intact, the resource’s unavailability will
cause the poster’s transaction to fail.

If the EventBroker’s list of active subscriptions already contains a subscription that matches the
one being requested by TPSUBSCRIBE(), then the function fails setting TP-STATUS to
[TPEMATCH]. For a subscription to match an existing one, both EVENT-EXPR and EVENT-FILTER
must match those of a subscription already in the EventBroker’s active list of subscriptions. In
addition, depending on the notification method, other criteria are used to determine matches.

If TPEVNOTIFY is set, then the caller’s system-defined client identifier (known as a CLIENTID) is
also used to detect matches. That is, TPSUBSCRIBE() fails if EVENT-EXPR, EVENT-FILTER, and
the caller’s CLIENTID match those of a subscription already known to the EventBroker.

If TPEVSERVICE() is set, then TPSUBSCRIBE() fails if EVENT-EXPR, EVENT-FILTER, and the
service name set in NAME-1 match those of a subscription already known to the EventBroker.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 161

If TPEVQUEUE() is set, then EventBroker uses the queue space, queue name, and correlation
identifier, in addition to EVENT-EXPR and EVENT-FILTER, when determining matches. The
correlation identifier can be used to differentiate among several subscriptions for the same event
expression and filter rule, destined for the same queue. Thus, if the caller has set both
TPEVQUEUE() and TPQNOCOORID(), then TPSUBSCRIBE() fails if EVENT-EXPR, EVENT-FILTER,
the queue space name set in NAME-1, and the queue name set in NAME-2 match those of a
subscription (which also does not have a correlation identifier specified) already known to the
EventBroker. Further, if TPQCOORID() is set, then TPSUBSCRIBE() fails if EVENT-EXPR,
EVENT-FILTER, NAME-1, NAME-2, and CORRID in TPQUEDEF-REC match those of a subscription
(which has the same correlation identifier specified) already known to the EventBroker.

The following is a list of settings in TPEVTDEF-REC.

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condition occurs, the
call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either TPNOSIGRSTRT or
TPSIGRSTRT must be set.

162 ATMI COBOL Function Reference

Return Values
Upon successful completion, TPSUBSCRIBE() sets TP-STATUS to [TPOK]. In addition,
TPSUBSCRIBE() sets SUBSCRIPTION-HANDLE in TPEVTDEF-REC to the handle for this
subscription. SUBSCRIPTION-HANDLE can be used when calling TPUNSUBSCRIBE() to remove
this subscription from the EventBroker’s list of active subscriptions. Either the subscriber or any
other process is allowed to use the returned handle to delete this subscription.

Errors
Under the following conditions, TPSUBSCRIBE() fails and sets TP-STATUS to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

[TPEINVAL]
Invalid arguments were given (for example, EVENT-EXPR is SPACES).

[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPELIMIT]
The subscription failed because the EventBroker’s maximum number of subscriptions has
been reached.

[TPEMATCH]
The subscription failed because it matched one already listed with the EventBroker.

[TPEPERM]
The client is not attached as tpsysadm and the subscription action is either a service call
or the enqueuing of a message.

[TPETIME]
This error code indicates that either a timeout has occurred or TPSUBSCRIBE() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 163

sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPSUBSCRIBE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
buffer(3c), tpsubscribe(3c), TPENQUEUE(3cbl), TPPOST(3cbl), TPSETUNSOL(3cbl),
TPUNSUBSCRIBE(3cbl), Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml), Fboolev,
Fboolev32, Fvboolev, Fvboolev32(3fml), EVENTS(5), EVENT_MIB(5), TMSYSEVT(5),
TMUSREVT(5), tuxtypes(5), typesw(5), UBBCONFIG(5)

TPSUSPEND(3cbl)

Name
TPSUSPEND() - suspend a global transaction

Synopsis
01 TPTRXDEF-REC.

 COPY TPTRXDEF.

01 TPSTATUS-REC.

../rf3c/rf3c.htm#6817413
../rf3c/rf3c.htm#9514013
../rf3fml/rf3fml.htm#41003132323
../rf3fml/rf3fml.htm#57954132323
../rf3fml/rf3fml.htm#57954132323
../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715
../rf5/rf5.htm#7807115
../rf5/rf5.htm#2183415
../rf5/rf5.htm#365105

164 ATMI COBOL Function Reference

 COPY TPSTATUS.

CALL "TPSUSPEND" USING TPTRXDEF-REC TPSTATUS-REC.

Description
TPSUSPEND() is used to suspend the transaction active in the caller’s program. A transaction
begun with TPBEGIN() may be suspended with TPSUSPEND(). Either the suspending program or
another program may use TPRESUME() to resume work on a suspended transaction. When
TPSUSPEND() returns, the caller is no longer in transaction mode. However, while a transaction
is suspended, all resources associated with that transaction (such as database locks) remain active.
Like an active transaction, a suspended transaction is susceptible to the transaction timeout value
that was assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of TPSUSPEND() must have been
the initiator of the transaction by explicitly calling TPBEGIN(). TPSUSPEND() may also be called
by a process other than the originator of the transaction (for example, a server that receives a
request in transaction mode). In the latter case, only the caller of TPSUSPEND() may call
TPRESUME() to resume that transaction. This case is allowed so that a process can temporarily
suspend a transaction to begin and do some work in another transaction before completing the
original transaction (for example, to run a transaction to log a failure before rolling back the
original transaction).

TPSUSPEND() populates TRANID with the transaction identifier being suspended.

To ensure success, the caller must have completed all outstanding transactional communication
with servers before issuing TPSUSPEND(). That is, the caller must have received all replies for
requests sent with TPACALL() that were associated with the caller’s transaction. Also, the caller
must have closed all connections with conversational services associated with the caller’s
transaction (that is, TPRECV() must have returned the TPEV-SVCSUCC event). If either rule is
not followed, then TPSUSPEND() fails, the caller’s current transaction is not suspended and all
transactional communication handles remain valid. Communication handles not associated with
the caller’s transaction remain valid regardless of the outcome of TPSUSPEND().

Return Value
Upon successful completion, TPSUSPEND() sets [TPOK].

Errors
Under the following conditions, TPSUSPEND() fails and sets TP-STATUS to:

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 165

[TPEABORT]
The caller’s active transaction has been aborted. All communication handles associated
with the transaction are no longer valid.

[TPEPROTO]
TPSUSPEND() was called in an improper context (for example, the caller is not in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPACALL(3cbl), TPBEGIN(3cbl), TPRECV(3cbl), TPRESUME(3cbl)

TPSVCSTART(3cbl)

Name
TPSVCSTART() - start a BEA Tuxedo ATMI service

Synopsis
01 TPSVCDEF-REC.

 COPY TPSVCDEF.

01 TPTYPE-REC.

 COPY TPTYPE.

01 DATA-REC.

 COPY User data.

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

166 ATMI COBOL Function Reference

Description
TPSVCSTART() is the first BEA Tuxedo ATMI routine to be called when writing a service
routines. In fact, it is an error to issue any other call within a service routine before calling
TPSVCSTART(). TPVCSTART() is used to retrieve the service’s parameters and data. This routine
is used for services that receive requests via TPCALL() or TPACALL() routines as well as by
services that communicate via TPCONNECT(), TPSEND(), and TPRECV() routines.

Service routines processing requests made via either TPCALL(), TPACALL(), or TPFORWAR()
receive at most one incoming message (upon successfully returning from TPSVCSTART) and send
at most one reply (upon exiting the service routine with TPRETURN()).

Conversational services, on the other hand, are invoked by connection requests with at most one
incoming message along with a means of referring to the open connection. Upon successfully
returning from TPSVCSTART(), either the connecting program or the conversational service may
send and receive data as defined by the application. The connection is half-duplex in nature
meaning that one side controls the conversation (that is, it sends data) until it explicitly gives up
control to the other side of the connection.

Concerning transactions, service routines can participate in at most one transaction if invoked in
transaction mode. As far as the service routine writer is concerned, the transaction ends upon
returning from the service routine. If the service routine is not invoked in transaction mode, then
the service routine may originate as many transactions as it wants using TPBEGIN(),
TPCOMMIT(), and TPABORT(). Note that TPRETURN() is not used to complete a transaction.
Thus, it is an error to call TPRETURN() with an outstanding transaction that originated within the
service routine.

DATA-REC specifies where the service’s data is read into, and, on input, LEN in TPTYPE-REC
indicates the maximum number of bytes that should be moved into DATA-REC. Upon successful
return from TPSVCSTART, LEN contains the actual number of bytes moved into DATA-REC.
REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the data’s type and subtype, respectively.
If the message is larger than DATA-REC, then DATA-REC will contain only as many bytes as will
fit in the record. The remainder of the message is discarded and TPSVCSTART() sets
TPTRUNCATE().

If LEN is 0 upon successful return, then the service has no incoming data and DATA-REC was not
modified. It is an error for LEN to be 0 on input.

Upon successful return, SERVICE-NAME in TPSVCDEF-REC is populated with the service name
that the requesting program used to invoke the service.

The following are the possible settings in TPSVCDEF-REC upon return of TPSVCSTART().

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 167

TPREQRSP
The service was invoked with either TPCALL() or TPACALL(). This setting is mutually
exclusive with TPCONV.

TPCONV
The service was invoked with TPCONNECT(). The communications handle for the
conversation is available in COMM-HANDLE in TPSVCDEF-REC. This setting is mutually
exclusive with TPREQRSP.

TPNOTRAN
The service routine is not in transaction mode. This setting is mutually exclusive with
TPTRAN.

TPTRAN
The service routine is in transaction mode. This setting is mutually exclusive with
TPNOTRAN.

TPNOREPLY
The program invoking the service routine is not expecting a reply. This setting is
meaningful only when TPREQRSP is set. This setting is mutually exclusive with TPREPLY.

TPREPLY
The program invoking the service routine is expecting a reply. This setting is meaningful
only when TPREQRSP is set. This setting is mutually exclusive with TPNOREPLY.

TPSENDONLY
The service is invoked such that it can send data across the connection and the program
on the other end of the connection can only receive data. This setting is meaningful only
when TPCONV is set. This setting is mutually exclusive with TPRECVONLY.

TPRECVONLY
The service is invoked such that it can only receive data from the connection and the
program on the other end of the connection can send data. This setting is meaningful only
when TPCONV is set. This setting is mutually exclusive with TPSENDONLY.

APPKEY in TPSVCDEF-REC is set to the application key assigned to the requesting client program
by the application-defined authentication service. This key value is passed along with any and all
service requests made while within this invocation of the service routine. APPKEY will have a
value of -1 for originating clients that do not pass through the application authentication service.
This includes clients of an earlier release level interoperating with a security application.

168 ATMI COBOL Function Reference

Return Values

Upon successful completion, TPSVCSTART() sets TP-STATUS to [TPOK]. If the size of the
incoming message was larger then the size specified in LEN on input, TPTRUNCATE() is set and
only LEN amount of data was moved to DATA-REC, the remaining data is discarded.

Errors

Under the following conditions, TPSVCSTART() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given.

[TPEPROTO]
TPSVCSTART() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also

buildserver(1), TPBEGIN(3cbl), TPCALL(3cbl), TPCONNECT(3cbl),
TPINITIALIZE(3cbl), TPOPEN(3cbl), TPSVRDONE(3cbl), TPSVRINIT(3cbl)

TPSVRDONE(3cbl)

Name
TPSVRDONE() - BEA Tuxedo ATMI server termination routine

Synopsis
01 TPSTATUS-REC.

 COPY TPSTATUS.

PROCEDURE DIVISION.

* User code

EXIT PROGRAM.

Description
The BEA Tuxedo ATMI server abstraction calls TPSVRDONE() after it has finished processing
service requests but before it exits. When this routine is invoked, the server is still part of the

../rfcm/rfcmd.htm#6083611

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 169

system but its own services have been unadvertised. Thus, BEA Tuxedo ATMI communication
can be performed and transactions can be defined in this routine. However, if TPSVRDONE()
returns with open connections, asynchronous replies pending or while still in transaction mode,
the BEA Tuxedo system will close its connections, ignore any pending replies and roll back the
transaction before the server exits.

If an application does not provide this routine in a server, then the default version provided by the
BEA Tuxedo system is called instead. The default TPSVRDONE() calls TPCLOSE() and
USERLOG() to announce that the server is about to exit.

Usage
If either TPRETURN() or TPFORWAR() are called in TPSVRDONE(), then these routines simply
return having no effect.

See Also
TPCLOSE(3cbl), TPSVRINIT(3cbl)

TPSVRINIT(3cbl)

Name
TPSVRINIT() - BEA Tuxedo ATMI server initialization routine

Synopsis
LINKAGE SECTION.

01 CMD-LINE.

 05 ARGC PIC 9(4) COMP-5.

 05 ARGV.

 10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC.

01 TPSTATUS-REC.

 COPY TPSTATUS.

PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC.

* User code

EXIT PROGRAM

Description
The BEA Tuxedo ATMI server abstraction calls TPSVRINIT() during its initialization. This
routine is called after the program has become a server but before it handles any service requests;

170 ATMI COBOL Function Reference

thus, BEA Tuxedo ATMI communication may be performed and transactions may be defined in
this routine. However, if TPSVRINIT() returns with either open connections or asynchronous
replies pending, or while still in transaction mode, the BEA Tuxedo system closes the
connections, ignores any pending replies, and aborts the transaction before the server exits.

If an application does not provide this routine in a server, then the default version provided by the
BEA Tuxedo system is called, instead. The default TPSVRINIT() calls TPOPEN() and
USERLOG() to announce that the server has started successfully.

Application-specific options can be passed into a server and processed in TPSVRINIT(). (For
details, see servopts(5)). The options are passed through ARGC and ARGV. ARGC contains the
number of arguments that have been passed; ARGV, the content of those arguments, specified in
character format with single spaces separating arguments. getopt() is used in a BEA Tuxedo
system.

If successful, TPSVRINIT() returns [TPOK] in TP-STATUS and the service can start accepting
requests. If an error occurs in TPSVRINIT, the application can cause the server to exit gracefully
(without taking any service requests) by returning any value other than [TPOK] in TP-STATUS.

When TPSVRINIT() returns any value other than [TPOK], the system does not restart the server.
Instead, the administrator must run tmboot to restart the server.

Return Values
When TPRETURN()or TPFORWAR() is used outside a service routine (for example, in a client,
TPSVRINIT(), or TPSVRDONE()), then the routine returns with no effect.

Usage
When called in TPSVRINIT(), the TPRETURN() and TPFORWAR() routines simply return with no
effect.

See Also
TPOPEN(3cbl), TPSVRDONE(3cbl)

TPTERM(3cbl)

Name
TPTERM() - leaves an application

../rf5/rf5.htm#7588415

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 171

Synopsis
01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPTERM" USING TPSTATUS-REC.

Description

TPTERM() removes a client from a BEA Tuxedo ATMI application. If the client is in transaction
mode, then the transaction is rolled back. When TPTERM() returns successfully, the caller can no
longer perform BEA Tuxedo client operations. Any outstanding conversations are immediately
disconnected.

If TPTERM() is called more than once (that is, if it is called after the caller has already left the
application), no action is taken and success is returned.

Multi-contexting Issues

After invoking TPTERM(), a program is placed in the TPNULLCONTEXT context. Most ATMI
functions invoked by a program in the TPNULLCONTEXT context perform an implicit
TPINITIALIZE(). Whether or not the call to TPINITIALIZE() succeeds depends on the usual
determining factors, unrelated to context-specific issues.

Return Values
Upon successful completion, TPTERM() sets TP-STATUS to [TPOK]. Upon success in a
multi-contexted application, the application’s current context is changed to TPNULLCONTEXT. It
is the user’s responsibility to use TPSETCTXT() to change the context subsequently, as desired.

Upon failure, TPTERM() returns -1 and sets TP-STATUS to indicate the error condition.

Errors
Upon failure, TPTERM() sets TP-STATUS to one of the following values:

[TPEPROTO]
TPTERM() was called in an improper context (for example, the caller is a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

172 ATMI COBOL Function Reference

See Also

TPINITIALIZE(3cbl)

TPUNADVERTISE(3cbl)

Name
TPUNADVERTISE() - routine for unadvertising service names

Synopsis
01 SVC-NAME PIC X(15).

01 TPSTATUS-REC.

 COPY TPSTATUS.

CALL "TPUNADVERTISE" USING SVC-NAME TPSTATUS-REC.

Description
TPUNADVERTISE() allows a server to unadvertise a service that it offers. By default, a server’s
services are advertised when it is booted and they are unadvertised when it is shut down.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the same set of
services. These routines enforce this rule by affecting the advertisements of all servers sharing an
MSSQ set.

TPUNADVERTISE() removes SVC-NAME as an advertised service for the server (or the set of
servers sharing the caller’s MSSQ set). SVC-NAME cannot be SPACES. Also, SVC-NAME should be
15 characters or less. (See the SERVICES section of UBBCONFIG(5)). Longer names will be
accepted and truncated to 15 characters. Care should be taken such that truncated names do not
match other service names.

Return Values
Upon successful completion, TPUNADVERTISE() sets TP-STATUS to [TPOK].

Errors
Under the following conditions, TPUNADVERTISE() fails and sets TP-STATUS to:

[TPEINVAL]
Invalid arguments were given (for example SVC-NAME is SPACES).

[TPENOENT]
SVC-NAME is not currently advertised by the server.

../rf5/rf5.htm#365105

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 173

[TPEPROTO]
TPUNADVERTISE() was called in an improper context (for example, by a client).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
TPADVERTISE(3cbl)

TPUNSUBSCRIBE(3cbl)

Name
TPUNSUBSCRIBE() - unsubscribe to an event

Synopsis
01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPUNSUBSCRIBE" USING TPEVTDEF-REC TPSTATUS-REC.

Description
The caller uses TPUNSUBSCRIBE() to remove an event subscription or a set of event subscriptions
from the BEA Tuxedo EventBroker’s list of active subscriptions. SUBSCRIPTION-HANDLE in
TPEVTDEF-REC is an event subscription handle returned by TPSUBSCRIBE(). Setting
SUBSCRIPTION-HANDLE to the wildcard value, -1, directs TPUNSUBSCRIBE() to unsubscribe to
all non-persistent subscriptions previously made by the calling process. Non-persistent
subscriptions are those made with TPEVNOPERSIST set when TPSUBSCRIBE() was called.
Persistent subscriptions can be deleted only by using the handle returned by TPSUBSCRIBE().

Note that the -1 handle removes only those subscriptions made by the calling process and not any
made by previous instantiations of the caller (for example, a server that dies and restarts cannot
use the wildcard to unsubscribe to any subscriptions made by the original server).

The following is a list of valid settings in TPEVTDEF-REC.

174 ATMI COBOL Function Reference

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a condition occurs,
the call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK or TPBLOCK must be
set.

TPBLOCK
When TPBLOCK is specified and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME
This setting signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur. Either TPNOTIME or TPTIME
must be set.

TPTIME
This setting signifies that the caller will receive blocking timeouts if a blocking condition
exists and the blocking time is reached. Either TPNOTIME or TPTIME must be set.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is not
restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either TPNOSIGRSTRT or
TPSIGRSTRT must be set.

Return Values
Upon successful completion, TPUNSUBSCRIBE() sets TP-STATUS to [TPOK]. In addition,
TPUNSUBSCRIBE() sets EVENT-COUNT in TPEVTDEF-REC to the number of subscriptions deleted
(zero or greater) from the EventBroker’s list of active subscriptions. EVENT-COUNT may contain
a number greater than 1 only when the wildcard handle, -1, is used. Also, EVENT-COUNT may
contain a number greater than 0 even when TPUNSUBSCRIBE() completes unsuccessfully (that is,
when the wildcard handle is used, the EventBroker may have successfully removed some
subscriptions before it encountered an error deleting others).

Errors
Under the following conditions, TPUNSUBSCRIBE() fails and sets TP-STATUS to one of the
following values. (Unless otherwise noted, failure does not affect the caller’s transaction, if one
exists.)

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 175

[TPEINVAL]
Invalid arguments were given (for example, SUBSCRIPTION-HANDLE is an invalid
subscription handle).

[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPETIME]
This error code indicates that either a timeout has occurred or TPUNSUBSCRIBE() has
been attempted, in spite of the fact that the current transaction is already marked rollback
only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout can occur
only if both TPBLOCK and TPTIME are specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, TPACALL() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO]
TPUNSUBSCRIBE() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

176 ATMI COBOL Function Reference

See Also
TPPOST(3cbl), TPSUBSCRIBE(3cbl), EVENTS(5), EVENT_MIB(5), TMSYSEVT(5),
TMUSREVT(5)

TXBEGIN(3cbl)

Name
TXBEGIN() - begin a global transaction

Synopsis
01 TX-RETURN-STATUS.

 COPY TXSTATUS.

CALL "TXBEGIN" USING TX-RETURN-STATUS.

Description
TXBEGIN() is used to place the calling thread of control in transaction mode. The calling thread
must first ensure that its linked resource managers have been opened (via TXOPEN()) before it
can start transactions. TXBEGIN fails (with a TX-STATUS value of [TX-PROTOCOL-ERROR]) if the
caller is already in transaction mode or TXOPEN() has not been called.

Once in transaction mode, the calling thread must call TXCOMMIT() or TXROLLBACK() to
complete its current transaction. There are certain cases related to transaction chaining where
TXBEGIN() does not need to be called explicitly to start a transaction. See TXCOMMIT() and
TXROLLBACK() for details. TX-RETURN-STATUS is the record used to return a value.

Optional Set-up
TXSETTIMEOUT()

Return Value
Upon successful completion, TXBEGIN() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXBEGIN() fails and returns one of these negative values:

[TX-OUTSIDE]
The transaction manager is unable to start a global transaction because the calling thread
of control is currently participating in work outside any global transaction with one or

../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 177

more resource managers. All such work must be completed before a global transaction can
be started. The caller’s state with respect to the local transaction is unchanged.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error trying to start a new transaction. When this error is returned, the caller is
not in transaction mode. The exact nature of the error is written to a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. When
this error is returned, the caller is not in transaction mode. The exact nature of the error is
written to a log file.

See Also
TXCOMMIT(3cbl), TXOPEN(3cbl), TXROLLBACK(3cbl), TXSETTIMEOUT(3cbl)

Warnings
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See TXOPEN for details.)

TXCLOSE(3cbl)

Name
TXCLOSE() - close a set of resource managers

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCLOSE" USING TX-RETURN-STATUS.

178 ATMI COBOL Function Reference

Description
TXCLOSE() closes a set of resource managers in a portable manner. It invokes a transaction
manager to read resource manager-specific information in a transaction manager-specific manner
and pass this information to the resource managers linked to the caller.

TXCLOSE() closes all resource managers to which the caller is linked. This function is used in
place of resource-manager-specific “close” calls and allows an application program to be free of
calls which may hinder portability. Since resource managers differ in their termination semantics,
the specific information needed to “close” a particular resource manager must be published by
each resource manager.

TXCLOSE() should be called when an application thread of control no longer wishes to participate
in global transactions. TXCLOSE() fails (returning [TX-PROTOCOL-ERROR]) if the caller is in
transaction mode. That is, no resource managers are closed even though some may not be
participating in the current transaction.

When TXCLOSE() returns success (TX-OK), all resource managers linked to the calling thread are
closed.

TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXCLOSE() returns TX-OK, a non-negative value.

Errors
Under the following conditions, TXCLOSE() fails and returns one of these negative values:

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is in transaction
mode). No resource managers are closed.

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. The exact nature of the error is written to a log file. All resource managers
that could be closed are closed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 179

See Also
TXOPEN(3cbl)

TXCOMMIT(3cbl)

Name
TXCOMMIT() - commit a transaction

Synopsis
DATA DIVISION.

* Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXCOMMIT" USING TX-RETURN-STATUS.

Description
TXCOMMIT() is used to commit the work of the transaction active in the caller’s thread of control.

If the transaction_control characteristic (see TXSETTRANCTL()) is TX-UNCHAINED, then
when TXCOMMIT() returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX-CHAINED, then when TXCOMMIT() returns, the
caller remains in transaction mode on behalf of a new transaction (see the RETURN VALUE and
ERRORS sections below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up
TXSETCOMMITRET()

TXSETTRANCTL()

TXSETTIMEOUT()

Return Value
Upon successful completion, TXCOMMIT() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXCOMMIT() fails and returns one of these negative values:

180 ATMI COBOL Function Reference

[TX-NO-BEGIN]
The current transaction committed successfully; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may occur only
when the transaction_control characteristic is TX-CHAINED.

[TX-ROLLBACK]
The current transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-ROLLBACK-NO-BEGIN]
The transaction could not commit and has been rolled back. In addition, a new transaction
could not be started and the caller is no longer in transaction mode. This return value can
occur only when the transaction_control characteristic is TX-CHAINED.

[TX-MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.

[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-HAZARD]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, a new transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is not in
transaction mode). The caller’s state with respect to transaction mode is not changed.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 181

exact nature of the error is written to a log file. The caller’s state with respect to the
transaction is unknown.

See Also
TXBEGIN(3cbl), TXSETCOMMITRET(3cbl), TXSETTIMEOUT(3cbl), TXSETTRANCTL(3cbl)

TXINFORM(3cbl)

Name
TXINFORM() - return global transaction information

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

01 TX-INFO-AREA.

 COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXINFORM" USING TX-INFO-AREA, TX-RETURN-STATUS.

Description
TXINFORM() returns global transaction information in TX-INFO-AREA. In addition, this function
returns a value indicating whether the caller is currently in transaction mode or not.

TXINFORM() populates the TX-INFO-AREA record with global transaction information. The
contents of the TX-INFO-AREA record are described under INTRO().

If TXINFORM is called in transaction mode, then TX-IN-TRAN is set, XID-REC will be populated
with a current transaction branch identifier and TRANSACTION-STATE will contain the state of the
current transaction. If the caller is not in transaction mode, TX-NOT-IN-TRAN is set and XID-REC
will be populated with the NULL XID (see TXINTRO for details). In addition, regardless of
whether the caller is in transaction mode, COMMIT-RETURN, TRANSACTION-CONTROL, and
TRANSACTION-TIMEOUT contain the current settings of the commit_return and
transaction_control characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the next
transaction is started. Thus, it may not reflect the timeout value for the caller’s current global

182 ATMI COBOL Function Reference

transaction since calls made to TXSETTIMEOUT() after the current transaction was begun may
have changed its value.

TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXINFORM() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXINFORM() fails and returns one of these negative values:

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
TXOPEN(3cbl), TXSETCOMMITRET(3cbl), TXSETTIMEOUT(3cbl), TXSETTRANCTL(3cbl)

Warnings
Within the same global transaction, subsequent calls to TXINFORM are guaranteed to provide an
XID with the same gtrid component, but not necessarily the same bqual component.

TXOPEN(3cbl)

Name
TXOPEN() - open a set of resource managers

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXOPEN" USING TX-RETURN-STATUS.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 183

Description
TXOPEN() opens a set of resource managers in a portable manner. It invokes a transaction
manager to read resource manager-specific information in a transaction manager-specific manner
and pass this information to the resource managers linked to the caller.

TXOPEN() attempts to open all resource managers that have been linked with the application. This
function is used in place of resource manager-specific “open” calls and allows an application
program to be free of calls which may hinder portability. Since resource managers differ in their
initialization semantics, the specific information needed to “open” a particular resource manager
must be published by each resource manager.

If TXOPEN() returns TX-ERROR, then no resource managers are open. If TXOPEN() returns TX-OK,
some or all of the resource managers have been opened. Resource managers that are not open will
return resource manager-specific errors when accessed by the application. TXOPEN() must
successfully return before a thread of control participates in global transactions.

Once TXOPEN() returns success, subsequent calls to TXOPEN (before an intervening call to
TXCLOSE()) are allowed. However, such subsequent calls will return success, and the TM will
not attempt to reopen any RMs.

TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXOPEN() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXOPEN() fails and returns one of these negative values.

[TX-ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. No resource managers are open. The exact nature of the error is written to
a log file.

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file.

See Also
TXCLOSE(3cbl)

184 ATMI COBOL Function Reference

TXROLLBACK(3cbl)

Name
TXROLLBACK() - roll back a transaction

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

PROCEDURE DIVISION.

CALL "TXROLLBACK" USING TX-RETURN-STATUS.

Description
TXROLLBACK() is used to roll back the work of the transaction active in the caller’s thread of
control.

If the transaction_control characteristic (see TXSETTRANCTL()) is TX-UNCHAINED, then
when TXROLLBACK() returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX-CHAINED, then when TXROLLBACK() returns, the
caller remains in transaction mode on behalf of a new transaction (see the RETURN VALUE and
ERRORS sections below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up
TXSETTRANCTL()

TXSETTIMEOUT()

Return Value
Upon successful completion, TXROLLBACK() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXROLLBACK() fails and returns one of these negative values:

[TX-NO-BEGIN]
The current transaction rolled back; however, a new transaction could not be started and
the caller is no longer in transaction mode. This return value may occur only when the
transaction_control characteristic is TX-CHAINED.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 185

[TX-MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX-CHAINED, a new
transaction is started.

[TX-MIXED-NO-BEGIN]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

[TX-HAZARD]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-HAZARD-NO-BEGIN]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, a new transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic is TX-CHAINED.

[TX-COMMITTED]
The work done on behalf of the transaction was heuristically committed. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is started.

[TX-COMMITTED-NO-BEGIN]
The work done on behalf of the transaction was heuristically committed. In addition, a
new transaction could not be started and the caller is no longer in transaction mode. This
return value can occur only when the transaction_control characteristic is
TX-CHAINED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller is not in
transaction mode).

[TX-FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file. The caller’s state with respect to the
transaction is unknown.

186 ATMI COBOL Function Reference

See Also
TXBEGIN(3cbl), TXSETTIMEOUT(3cbl), TXSETTRANCTL(3cbl)

TXSETCOMMITRET(3cbl)

Name
TXSETCOMMITRET() - set commit_return characteristic

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

*

01 TX-INFO-AREA.

 COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETCOMMITRET" USING TX-INFO-AREA TX-RETURN-STATUS.

Description
TXSETCOMMITRET() sets the commit_return characteristic to the value specified in
COMMIT-RETURN. This characteristic affects the way TXCOMMIT() behaves with respect to
returning control to its caller. TXSETCOMMITRET() may be called regardless of whether its caller
is in transaction mode. This setting remains in effect until changed by a subsequent call to
TXSETCOMMITRET().

The initial setting for this characteristic is TX-COMMIT-COMPLETED.

The following are the valid settings for COMMIT-RETURN.

TX-COMMIT-DECISION-LOGGED
This flag indicates that TXCOMMIT() should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of TXCOMMIT().
However, there is a risk that a transaction will have a heuristic outcome, in which case the
caller will not find out about this situation via return codes from TXCOMMIT(). Under
normal conditions, participants that promise to commit during the first phase will do so
during the second phase. In certain unusual circumstances however (for example,

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 187

long-lasting network or node failures) phase 2 completion may not be possible and
heuristic results may occur.

TX-COMMIT-COMPLETED
This flag indicates that TXCOMMIT() should return after the two-phase commit protocol
has finished completely. This setting allows the caller of TXCOMMIT() to see return codes
that indicate that a transaction had or may have had heuristic results.

TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXSETCOMMITRET() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXSETCOMMITRET() does not change the setting of the
commit_return characteristic and returns one of these negative values:

[TX-EINVAL]
COMMIT-RETURN is not one of TX-COMMIT-DECISION-LOGGED or
TX-COMMIT-COMPLETED.

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
TXBEGIN(3cbl), TXCOMMIT(3cbl), TXINFORM(3cbl), TXOPEN(3cbl), TXROLLBACK(3cbl)

TXSETTRANCTL(3cbl)

Name
TXSETTRANCTL() - set transaction_control characteristic

188 ATMI COBOL Function Reference

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

01 TX-INFO-AREA.

 COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

Description
TXSETTRANCTL() sets the transaction_control characteristic to the value specified in
TRANSACTION-CONTROL. This characteristic determines whether TXCOMMIT() and
TXROLLBACK() start a new transaction before returning to their caller. TXSETTRANCTL() may be
called regardless of whether the application program is in transaction mode. This setting remains
in effect until changed by a subsequent call to TXSETTRANCTL().

The initial setting for this characteristic is TX-UNCHAINED.

The following are the valid settings for TRANSACTION-CONTROL.

TX-UNCHAINED
This flag indicates that TXCOMMIT() and TXROLLBACK() should not start a new
transaction before returning to their caller. The caller must issue TXBEGIN() to start a new
transaction.

TX-CHAINED
This flag indicates that TXCOMMIT() and TXROLLBACK() should start a new transaction
before returning to their caller.
TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXSETTRANCTL() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXSETTRANCTL() does not change the setting of the
transaction_control characteristic and returns one of these negative values:

[TX-EINVAL]
TRANSACTION-CONTROL is not one of TX-UNCHAINED or TX-CHAINED.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 189

[TX-PROTOCOL-ERROR]
The function was called in an improper context (for example, the caller has not yet called
TXOPEN()).

[TX-FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
TXBEGIN(3cbl), TXCOMMIT(3cbl), TXOPEN(3cbl), TXROLLBACK(3cbl), TXINFORM(3cbl)

TXSETTIMEOUT(3cbl)

Name
TXSETTIMEOUT() - set transaction_timeout characteristic

Synopsis
DATA DIVISION.

 * Include TX definitions.

01 TX-RETURN-STATUS.

 COPY TXSTATUS.

*

01 TX-INFO-AREA.

 COPY TXINFDEF.

PROCEDURE DIVISION.

CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

Description
TXSETTIMEOUT() sets the transaction_timeout characteristic to the value specified in
TRANSACTION-TIMEOUT. This value specifies the time period in which the transaction must
complete before becoming susceptible to transaction timeout; that is, the interval between the AP
calling TXBEGIN() and TXCOMMIT() or TXROLLBACK(). TXSETTIMEOUT() may be called
regardless of whether its caller is in transaction mode or not. If TXSETTIMEOUT() is called in
transaction mode, the new timeout value does not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

190 ATMI COBOL Function Reference

TRANSACTION-TIMEOUT specifies the number of seconds allowed before the transaction becomes
susceptible to transaction timeout. It may be set to any value up to the maximum value for an
S9(9) COMP-5 as defined by the system. A TRANSACTION-TIMEOUT value of zero disables the
timeout feature.

TX-RETURN-STATUS is the record used to return a value.

Return Value
Upon successful completion, TXSETTIMEOUT() returns TX-OK, a non-negative return value.

Errors
Under the following conditions, TXSETTIMEOUT() does not change the setting of the
transaction_timeout characteristic and returns one of these negative values:

[TX-EINVAL]
The timeout value specified is invalid.

[TX-PROTOCOL-ERROR]
The function was called improperly. For example, it was called before the caller called
TXOPEN().

[TX-FAIL]
The transaction manager encountered an error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
TXBEGIN(3cbl), TXCOMMIT(3cbl), TXINFORM(3cbl), TXOPEN(3cbl), TXROLLBACK(3cbl)

USERLOG(3cbl)

Name
USERLOG() - write a message to the BEA Tuxedo ATMI central event log

Synopsis
01 LOG-REC.

 COPY User data.

01 LOGREC-LEN PIC S9(9) COMP-5.

01 TPSTATUS-REC.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 191

 COPY TPSTATUS.

CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

Description
USERLOG() places LOG-REC into a fixed output file—the BEA Tuxedo ATMI central event log.

The central event log is an ordinary UNIX file whose pathname is composed as follows:

If the shell variable ULOGPFX is set, its value is used as the prefix for the filename. If
ULOGPFX is not set, ULOG is used. The prefix is determined the first time USERLOG() is
called.

Each time USERLOG() is called the date is determined, and the month, day, and year are
concatenated to the prefix as mmddyy to set the name for the file.

The first time a process writes to the user log, it first writes an additional message
indicating the associated BEA Tuxedo version.

The message is then appended to the file. With this scheme, processes that call USERLOG() on
successive days will write into different files.

Messages are appended to the log file with a tag made up of the time (hhmmss), system
name, process name, and process-id of the calling process. The tag is terminated with a
colon (:).

BEA Tuxedo system-generated error messages in the log file are prefixed by a unique
identification string of the form:

catalog>:number>:

This string gives the name of the internationalized catalog containing the message string,
plus the message number. By convention, BEA Tuxedo system-generated error messages
are used only once, so the string uniquely identifies a location in the source code.

If the last character of the format specification is not a newline character, USERLOG()
appends one.

If the first character of the shell variable ULOGDEBUG is 1 or y, the message sent to
USERLOG() is also written to the standard error of the calling process.

USERLOG() is used by the BEA Tuxedo system to record a variety of events.

The USERLOG mechanism is entirely independent of any database transaction logging
mechanism.

192 ATMI COBOL Function Reference

Portability
The USERLOG interface is supported on UNIX and MS-DOS operating systems. The system name
produced as part of the log message is not available on MS-DOS systems; therefore, the value PC
is used as the system name for MS-DOS systems.

Examples
If the variable ULOGPFX is set to /application/logs/log and if the first call to USERLOG()
occurred on 9/7/90, the log file created is named /application/logs/log.090790. If the call:

01 LOG-REC PIC X(15) VALUE “UNKNOWN USER”.

01 LOGREC-LEN PIC S9(9) VALUES IS 13.

CALL “USERLOG” USING LOG-REC LOGREC-LEN TPSTATUS-REC.

is made at 4:22:14pm on the UNIX named logsys by the program whose process ID is
23431, the following line appears in the log file:

162214.logsys!security.23431: UNKNOWN USER

If the message is sent to the central event log while the process is in transaction mode, the user
log entry has additional components in the tag. These components consist of the literal gtrid
followed by three PIC S9(9) COMP-5 hexadecimal values. The values uniquely identify the
global transaction and make up what is referred to as the global transaction identifier. This
identifier is used mainly for administrative purposes, but it does make an appearance in the tag
that prefixes the messages in the central event log. If the foregoing message is written to the
central event log in transaction mode, the resulting log entry will look like this:

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER

If the shell variable ULOGDEBUG has a value of y, the log message is also written to the standard
error of the program named security.

Errors
USERLOG() hangs if the message sent to it is larger than BUFSIZ as defined in stdio.h

Diagnostics
USERLOG() returns values include the inability to open, or write to the current log file. Inability
to write to the standard error, when ULOGDEBUG is set, is not considered an error.

In t roduct ion to the COBOL App l i ca t ion-T ransact ion Mon i to r In te r face

ATMI COBOL Function Reference 193

Notices
It is recommended that applications’ use of USERLOG messages be limited to messages that can
be used to help debug application errors; flooding the log with incidental information can make
it hard to spot actual errors.

194 ATMI COBOL Function Reference

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions
	Introduction to the COBOL Application-Transaction Monitor Interface
	FINIT, FINIT32(3cbl)
	FVFTOS, FVFTOS32(3cbl)
	FVSTOF(3cbl)
	TPABORT(3cbl)
	TPACALL(3cbl)
	TPADVERTISE(3cbl)
	TPBEGIN(3cbl)
	TPBROADCAST(3cbl)
	TPCALL(3cbl)
	TPCANCEL(3cbl)
	TPCHKAUTH(3cbl)
	TPCHKUNSOL(3cbl)
	TPCLOSE(3cbl)
	TPCOMMIT(3cbl)
	TPCONNECT(3cbl)
	TPDEQUEUE(3cbl)
	TPDISCON(3cbl)
	TPENQUEUE(3cbl)
	TPFORWAR(3cbl)
	TPGBLKTIME(3cbl)
	TPGETCTXT(3cbl)
	TPGETLEV(3cbl)
	TPGETRPLY(3cbl)
	TPGETUNSOL(3cbl)
	TPGPRIO(3cbl)
	TPINITIALIZE(3cbl)
	TPKEYCLOSE(3cbl)
	TPKEYGETINFO(3cbl)
	TPKEYOPEN(3cbl)
	TPKEYSETINFO(3cbl)
	TPNOTIFY(3cbl)
	TPOPEN(3cbl)
	TPPOST(3cbl)
	TPRECV(3cbl)
	TPRESUME(3cbl)
	TPRETURN(3cbl)
	TPSBLKTIME(3cbl)
	TPSCMT(3cbl)
	TPSEND(3cbl)
	TPSETCTXT(3cbl)
	TPSETUNSOL(3cbl)
	TPSPRIO(3cbl)
	TPSUBSCRIBE(3cbl)
	TPSUSPEND(3cbl)
	TPSVCSTART(3cbl)
	TPSVRDONE(3cbl)
	TPSVRINIT(3cbl)
	TPTERM(3cbl)
	TPUNADVERTISE(3cbl)
	TPUNSUBSCRIBE(3cbl)
	TXBEGIN(3cbl)
	TXCLOSE(3cbl)
	TXCOMMIT(3cbl)
	TXINFORM(3cbl)
	TXOPEN(3cbl)
	TXROLLBACK(3cbl)
	TXSETCOMMITRET(3cbl)
	TXSETTRANCTL(3cbl)
	TXSETTIMEOUT(3cbl)
	USERLOG(3cbl)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

