
BEATuxedo ®

Using the CORBA Name
Service

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using the CORBA Name Service iii

Contents

About This Document
What You Need to Know .vii

e-docs Web Site . viii

How to Print the Document . viii

Related Information . viii

Contact Us! . viii

Documentation Conventions . ix

Overview of the CORBA Name Service
The CORBA Name Service . 1-1

Understanding the CORBA Name Service . 1-4

CORBA Name Service Reference
CORBA Name Service Commands . 2-2

Capabilities and Limitations of the CORBA Name Service . 2-12

Getting the Initial Reference to the NameService Environmental Object 2-13

The CosNaming Data Structures Used by the CORBA Name Service 2-14

The NamingContext Object . 2-14

CosNaming::NamingContext::new_context() . 2-21

The NamingContextExt Object . 2-25

The BindingIterator Object . 2-30

Exceptions Raised by the CORBA Name Service. 2-34

iv Using the CORBA Name Service

Managing a BEA Tuxedo Namespace
Installing the CORBA Name Service . 3-2

Starting the Server Process for the CORBA Name Service . 3-2

Making the Namespace Persistent. 3-3

Compressing the Persistent Storage File . 3-4

Removing Orphan NamingContext Objects . 3-5

Federating the Namespace . 3-5

Inbound Federation . 3-6

Outbound Federation . 3-7

Federation Across BEA Tuxedo Domains . 3-7

Managing Binding Iterators . 3-8

Using the CORBA Name Service in Secure BEA Tuxedo Applications 3-8

Using the CORBA Name Service Sample Application
How the Name Service Sample Application Works . 4-1

Building and Running the Name Service Sample Application . 4-3

Step 1: Copy the Files for the Name Service Sample Application into a Work Directory
4-3

CORBA C++ Client and Server Version of the Name Service Sample Application
4-4

Step 2: Change the Protection Attribute on the Files for the Name Service Sample
Application . 4-5

Step 3: Verify the Settings of the Environment Variables . 4-6

Step 4: Execute the runme Command . 4-7

Developing an Application That Uses the CORBA Name Service
Development Steps . 5-2

Step 1: Obtain the OMG IDL for the CosNaming Interfaces . 5-2

Using the CORBA Name Service v

Step 2: Include the Declarations and Prototypes for the CosNaming Interfaces. 5-6

Step 3: Connect to the BEA Tuxedo Namespace . 5-6

Step 4: Bind an Object to the BEA Tuxedo Namespace . 5-8

Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace 5-9

Index

vi Using the CORBA Name Service

Using the CORBA Name Service vii

About This Document

This document provides information on using the BEA Tuxedo® CORBA Name Service.

This document includes the following topics:

Chapter 1, “Overview of the CORBA Name Service,” introduces the features and concepts
of the BEA Tuxedo CORBA Name Service.

Chapter 2, “CORBA Name Service Reference,” describes the commands and application
programming interfaces (APIs) of the BEA Tuxedo CORBA Name Service.

Chapter 3, “Managing a BEA Tuxedo Namespace,” describes the administration tasks
associated with the BEA Tuxedo CORBA Name Service.

Chapter 5, “Developing an Application That Uses the CORBA Name Service,” explains
how to develop a BEA Tuxedo application that uses a namespace for storing references to
objects.

Chapter 4, “Using the CORBA Name Service Sample Application,” describes how to build
and run the CORBA Name Service sample application.

What You Need to Know
This document is intended for programmers who are developing applications with the BEA
Tuxedo product and want to use the name service feature.

viii Using the CORBA Name Service

e-docs Web Site
The BEA Tuxedo product documentation is available on the BEA System, Inc. corporate Web
site. From the BEA Home page, click the Product Documentation button or go directly to the
“e-docs” Product Documentation page at http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF Files button, and select
the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information
For more information about CORBA, BEA Tuxedo, distributed object computing, transaction
processing, C++ programming, see the CORBA Bibliography in the BEA Tuxedo online
documentation.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSUPPORT at
www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Using the CORBA Name Service ix

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

x Using the CORBA Name Service

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Using the CORBA Name Service 1-1

C H A P T E R 1

Overview of the CORBA Name Service

This topic includes the following sections:

The CORBA Name Service

Understanding the CORBA Name Service

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The CORBA Name Service
The BEA Tuxedo Name Service (referred to throughout this document as the CORBA Name
Service) allows BEA Tuxedo CORBA server applications to advertise object references using
logical names. BEA Tuxedo CORBA client applications can then locate an object by asking the
CORBA Name Service to look up the name.

The CORBA Name Service provides:

1-2 Using the CORBA Name Service

An implementation of the Object Management Group (OMG) Interoperable Name Service
(INS) specification.

Application programming interfaces (APIs) for mapping object references into an
hierarchical naming structure (referred to as a namespace).

Commands for displaying bindings and for binding and unbinding naming context objects
and application objects into the namespace.

The CORBA Name Service is a layered product. The CORBA Name Service is installed as part
of the BEA Tuxedo product. For a complete description of the supported platforms and the
installation procedure, see Installing the BEA Tuxedo System.

When using the CORBA Name Service:

1. BEA Tuxedo CORBA server applications bind a name to one of its application objects or a
naming context object within a namespace.

2. BEA Tuxedo CORBA client applications can then use the namespace to resolve a name and
obtain an object reference to the application object or the naming context object.

Figure 1-1 presents an overview of the CORBA Name Service.

The CORBA Name Serv ice

Using the CORBA Name Service 1-3

Figure 1-1 CORBA Name Service

 CORBA
Server Application

 CORBA
Client Application

<name_1, objref_1>
<name_2, objref_2>
<name_3, objref_3>

.

.

.
<name_x, objref_x>

Namespace

1. bind(name, objref)

2. resolve(name)

3. Resolve returns an
object reference

4. Invoke methods on
objects

1-4 Using the CORBA Name Service

Understanding the CORBA Name Service
Figure 1-2 shows how a namespace might be used to store objects that make up an order entry
application.

Figure 1-2 A BEA Tuxedo Namespace

The illustrated application organizes its namespace by geographic region, then by department. To
implement the namespace using the objects in the CORBA Name Service, each shadowed box
would be implemented by a NamingContext object. A NamingContext object contains a list
of CosNaming::Name data structures that have been bound to application objects or to other
NamingContext objects. NamingContext objects are traversed to locate a particular name. For
example, the logical name California.Manufacturing.Order can be used to locate the
Order object.

A CosNaming::Name data structure is not simply a string of alphanumeric characters; it is a
sequence of one or more CosNaming::NameComponent data structures. Each
CosNaming::NameComponent data structure contains two strings, id and kind. The CORBA

New Jersey

New Hampshire

California

Manufacturing

Sales

Inventory

Orders

Customers

Billing

PK Boutique

Rose House

Order
Object

...
...

...

...

......

Unders tand ing the CORBA Name Serv ice

Using the CORBA Name Service 1-5

Name Service does not interpret or manage these strings, except to ensure that each ID is unique
within a given NamingContext object.

BEA Tuxedo CORBA server applications use the bind() method of the NamingContext object
to bind a name to an application object contained in the server application. BEA Tuxedo CORBA
client applications use the resolve method of a NamingContext object to locate an object using
a binding.

The CORBA Name Service also provides a BindingIterator object and a NamingContextExt
object. The BindingIterator object allows a client application to obtain a specified number of
bindings in each call. The NamingContextExt object provides methods to use Uniform Resource
Locators (URL) and stringified names.

For a complete description of the objects in the CORBA Name Service and their interfaces, see
Chapter 2, “CORBA Name Service Reference.”

1-6 Using the CORBA Name Service

Using the CORBA Name Service 2-1

C H A P T E R 2

CORBA Name Service Reference

This topic includes the following sections:

CORBA Name Service Commands

Capabilities and Limitations of the CORBA Name Service

Getting the Initial Reference to the NameService Environmental Object

The CosNaming Data Structures Used by the CORBA Name Service

The NamingContext Object

The NamingContextExt Object

The BindingIterator Object

Exceptions Raised by the CORBA Name Service

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

2-2 Using the CORBA Name Service

CORBA Name Service Commands
The CORBA Name Service provides the following commands to manage the server process for
the CORBA Name Service, bind and unbind objects to names in the namespace, and display the
contents of the namespace:

cns

cnsbind

cnsls

cnsunbind

The following sections describe these commands.

CORBA Name Serv ice Commands

Using the CORBA Name Service 2-3

cns
Synopsis

Controls the server process for the CORBA Name Service.

Syntax
cns CLOPT="[-A] [servopts options] --

 [-b bucketcount]

 [-c]

 [-d]

 [-f filename]

 [-M maxiterators]

 [-p [persiststoragefilename]]"

Description
The server process for the CORBA Name Service provides a CORBA CosNaming compliant
name service. You need to define the server process for the CORBA Name Service and its options
in the UBBCONFIG file for your BEA Tuxedo application as you do any other server process used
by your BEA Tuxedo application. Enter the cns command-line options after the double dash (--)
in the CLOPT parameter of the UBBCONFIG file. The command-line options are as follows:

-b bucketcount

Specifies the hash table bucket count used internally by the server process to locate
naming contexts in-memory. Each naming context has its own hash table. If your BEA
Tuxedo application uses a small number of bindings in each naming context, use a small
bucket count (for example, 4 or 5). If your BEA Tuxedo application uses a large number
of bindings (for example, 1,000) in each naming context, use a larger number such as 50
for the bucket count.

-c

Compresses the persistent storage file when the server process for the CORBA Name
Service starts. Over time the persistent storage file can grow in size as naming context and
application objects are added and removed from the namespace. Compression reduces the
size of the persistent storage file to a minimum. Dangling bindings are removed during
compression. Dangling bindings are left in the namespace after the object the binding is
associated with is deleted from the namespace. The -p command-line option must be
specified when specifying the -c command-line option.

-d

Directs the server process for the CORBA Name Service to delete orphan contexts when
the server process starts. An orphan context is a context that is not bound to any other

2-4 Using the CORBA Name Service

context. It may never have been bound or it may have been bound to a context and the
binding was destroyed either explicitly or as a side-effect of a rebind. The -p
command-line option must be specified when specifying the -d command-line option.

-f filename

Specifies a file into which the server process for the CORBA Name Service writes the
Interoperable Object Reference (IOR) of the root of the namespace.

-M maxiterators

Defines the maximum number of binding iterators that can be outstanding at any one time.

Binding iterators are created when a client application uses the
CosNaming::NamingContext::list()method. The client application should use the
CosNaming::BindingIterator::destroy()method to delete a binding iterator when
the client application is done using the binding iterator.

If a client application does not specifically delete binding iterators, the server process for
the CORBA Name Service deletes the binding iterators when the number reaches the
value specified in the -M command-line option. Once the maximum number of binding
iterators is reached, any attempt to create a new binding iterator causes the server process
for the CORBA Name Service to destroy a binding iterator currently in use by the client
application.

Binding iterators are deleted using a least-recently-used algorithm. The default value is
20. A value of 0 indicates that there is no maximum number of binding iterators (meaning
binding interators are never destroyed by the server process for the CORBA Name Service
and the associated memory is not released). If a value of 0 is specified, the client
application must explicitly use the CosNaming::BindingIterator::destroy()
method to delete outstanding binding iterators.

-p [persistentstoragefilename]

Directs the server process for the CORBA Name Service to save a copy of the current
namespace to persistent storage using the specified file. If a filename is not specified, the
value of the CNS_PERSIST_FILE environment variable is used. If the
CNS_PERSIST_FILE environment variable is not set, the following files are used:

Windows

%APPDIR%\cnspersist.dat

CORBA Name Serv ice Commands

Using the CORBA Name Service 2-5

UNIX

$APPDIR/cnspersist.dat

The persistent storage file is read when the server process for the CORBA Name Service
starts. The persistent storage file is added to as changes are made to the namespace. If you
want to create a new namespace, the existing persistent storage file must be deleted or a
new one must be created on the server process for the CORBA Name Service.

2-6 Using the CORBA Name Service

cnsbind
Synopsis

Binds application objects and naming context objects into the namespace.

Note: The cnsbind command interacts with the CosNaming interfaces. The server process for
the CORBA Name Service must be running to use this command.

Syntax
cnsbind

 [-C]

 [-f root_context_filename]

 [-h]

 [-N]

 [-o ior_filename]

 [-r]

 [-T TObjAddr]

 bind_name

Description
The cnsbind command binds new application and naming context objects into the namespace
using the CORBA CosNaming interfaces. This command facilitates the creation of a federated
namespace. If an exception is returned when the cnsbind command is invoked, the command
exits and an appropriate message is displayed.

The command-line options for the cnsbind command are as follows:

-C

Specifies that the cnsbind command creates a context using the bind_name for the name
and the ior_filename specified for the -o command-line option. The -C
command-line option is used to federate a naming context object from one namespace into
the specified namespace.

-f root_context_filename

Specifies the file containing the IOR of the server process for the CORBA Name Service
with which the command interacts to modify the contents of the namespace. If this
command-line option is not specified, the command uses the
Tobj_Bootstrap::resolve_initial_references() method with the NameService
environmental object to locate the server process for the CORBA Name Service in the
specified BEA Tuxedo domain. The host and port in the IOR must match the value of
TOBJADDR. This command-line option overrides the setting for the TOBJADDR

CORBA Name Serv ice Commands

Using the CORBA Name Service 2-7

environment variable. If the command-line option is not specified, the TOBJADDR
environment variable is used.

-h

Prints the command syntax.

-N

Creates a new context and binds the new context into the namespace using the specified
name. The -o command-line option is not needed with the -N command-line option
because the cnsbind command is creating a new context. If the -o command-line option
is used with the -N command-line option, the information from the -o command-line
option is ignored.

-o ior_filename

Specifies a file that contains the IOR of the object to be bound into the namespace
specified via the -f command-line option. If the -C command-line option is specified, an
object of type ncontext is created otherwise a object of type nobject is created.

-r

Creates a binding for an application or naming context object even if the name already has
a binding. The default behavior of the cnsbind command without the -r command-line
option is to raise the AlreadyBound exception in the case where a binding for the
specified object already exists. If an AlreadyBound or any other exception is returned
when the cnsbind command is invoked, the command exits and an “Error, already
bound” message is displayed.

-T TObjAddr
Specifies the host and port for a BEA Tuxedo domain. Before connecting to a server
process for the CORBA Name Service, the cnsbind command must log into the BEA
Tuxedo domain in which the server process is running. This command-line option
overrides the setting for the TOBJADDR environment variable. If the command-line option
is not specified, the value of the TOBJADDR environment variable is used. If the
command-line option is not specified and TOBJADDR is not set, the program will run as a
native client and load the TGIOP protocol.

The valid format for the TObjAddr specification is //hostname:port_number.

bind_name

Specifies the name to be bound to the application object or name context object added to
the namespace relative to either the root naming context retrieved from the
Tobj_Bootstrap::resolve_initial_references method, or the naming context
identified by the stringified IOR obtained from the -f command-line option. The
bind_name string should conform to the name string form specified in the Object
Management Group (OMG) Interoperable Name Service (INS) specification.

2-8 Using the CORBA Name Service

Examples
The following example illustrates binding an application object:

cnsbind -o ./app_obj_ior.txt MyContext/AppObject1

The following example illustrates binding a naming context object:

cnsbind -N MyContext/CtxObject1

The following example illustrates binding a federation point to another namespace:

cnsbind -C -o ./remote_ior.txt MyContext/RemoteNSCtx1

CORBA Name Serv ice Commands

Using the CORBA Name Service 2-9

cnsls
Synopsis

Displays the contents of the namespace.

Note: The cnsls command interacts with the CosNaming interfaces. The server process for the
CORBA Name Service must be running to use this command.

Syntax
cnsls

 [-f root_context_filename]

 [-h]

 [-s]

 [-R]

 [-T TobjAddr]

 [resolve_name]

Description
The cnsls command displays the contents of the namespace using the CORBA CosNaming
interfaces. If non-printing characters are used as part of a NameComponent data structure, the
behavior of the cnsls command is undefined. If an exception is returned when the cnsls
command is invoked, the command exits and an appropriate message is displayed.

The command-line options for the cnsls command are as follows:

-f root_context_filename

Specifies the file containing the IOR of the server process for the CORBA Name Service
with which the command interacts to modify the contents of the namespace. If this
command-line option is not specified, the command uses the
Tobj_Bootstrap::resolve_initial_references() method with the NameService
environmental object to locate the server process for the CORBA Name Service in the
specified BEA Tuxedo domain. The host and port in the IOR must match the value of
TObjAddr. This command-line option overrides the setting for the TOBJADDR
environment variable. If the command-line option is not specified, the value of the
TOBJADDR environment variable is used.

-h

Prints the command syntax.

-s

Displays the stringified IOR for the namespace name specified in resolve_name
command-line option.

2-10 Using the CORBA Name Service

-R

Recursively displays namespace bindings beginning at resolve_name. This
command-line option may cause the cnsls command to cross federation boundaries with
no indication when such a boundary is cross. Also, if cycles exist in the namespace
information, this command-line option can cause the cnsls command to enter a loop.

-T TObjAddr
Specifies the host and port for a BEA Tuxedo domain. Before connecting to a server
process for the CORBA Name Service, the cnsls command must log into the BEA
Tuxedo domain in which the server process is running. This command-line option
overrides the setting for the TOBJADDR environment variable. If the command-line option
is not specified, the TOBJADDR environment variable is used.

resolve_name

Specifies the name to resolve in the name service relative to either the root naming context
retrieved via the Tobj_Bootstrap::resolve_initial_references() method or the
naming context identified by the stringified IOR obtained from the -f command-line
option. The resolve_name string should conform to the name string form specified in the
OMG INS specification. The backslash (\) character is used to delimit name components
and the period (.) character separates the id and kind fields.

If this command-line option is not specified, the root context is resolved.

Example
cnsls -R MyContext.kind/AnotherContext

[context] MyContext.kind/AnotherContext

 [object] Obj1

 [object] Obj2

 [context] Ctx1

 [object] AnotherObject

CORBA Name Serv ice Commands

Using the CORBA Name Service 2-11

cnsunbind
Synopsis

Removes bindings from the namespace.

Syntax
cnsunbind

 [-D]

 [-f root_context_filename]

 [-h]

 [-T TObjAddr]

 bind_name

Description
The cnsubind command removes bindings from the namespace. If an exception is returned when
the cnsunbind command is invoked, the command exits and an appropriate message is
displayed.

The cnsunbind command-line options are as follows:

-D

Destroys the naming context bound to the bind_name after removing the binding.
Specifying the -D command-line option when deleting a context prevents the context
from being orphaned if it is not part of another binding. This command-line option should
be used with care because it can cause dangling bindings (for example, if the binding was
bound to multiple naming context objects at the same time).

-f root_context_filename

Specifies the file containing the IOR of the server process for the CORBA Name Service
with which the command interacts to modify the contents of the namespace. If this
command-line option is not specified, the command uses the
Tobj_Bootstrap::resolve_initial_references() method with the NameService
environmental object to locate the server process for the specified BEA Tuxedo domain.

-h

Prints the command syntax.

-T TObjAddr
Specifies the host and port for a BEA Tuxedo domain. Before connecting to a server
process for the CORBA Name Service, the cnsbind command must log into the BEA
Tuxedo domain in which the server process is running. This command-line option

2-12 Using the CORBA Name Service

overrides the setting for the TOBJADDR environment variable. If the command-line option
is not specified, the TOBJADDR environment variable is used.

bind_name

Specifies the name of the binding to be removed from the namespace relative to either the
root naming context retrieved via the
Tobj_Bootstrap::resolve_initial_references() method or the naming context
identified by the stringified IOR obtained from the -f command-line option. The
bind_name string should conform to the name string form specified in the OMG INS
specification.

Examples
The following example illustrates removing a binding from the namespace:

cnsunbind MyContext/CtxObject1

The following example illustrates removing a binding from the namespace and destroying the
object to which it was bound:

cnsunbind -D MyContext/CtxObject1

Capabilities and Limitations of the CORBA Name Service
The CORBA Name Service has the following capabilities and limitations:

A NULL character must only be used to terminate the id and kind strings (empty strings
are considered valid).

Wide characters are not supported.

The CORBA Name Service imposes no limit on the length of the strings in a name
component.

The CORBA Name Service imposes no maximum on the number of components in a
name. Zero length names are illegal.

The CORBA Name Service imposes no limit on the number of bindings in a context.

The CORBA Name Service imposes no limit on the number of bindings
(implementation-wide).

The CORBA Name Service imposes no limit on the number of contexts.

The CORBA Name Service deletes orphaned naming contexts and dangling bindings when
starting the server process for the CORBA Name Service.

Get t ing the In i t ia l Re fe rence to the NameServ ice Env i ronmenta l Ob jec t

Using the CORBA Name Service 2-13

The CORBA Name Service deletes orphaned naming contexts when starting the server
process for the CORBA Name Service.

The CORBA Name Service offers the option of cleaning up binding iterator objects based
on a least-recently-used algorithm. For more information, see “Managing Binding
Iterators” on page 3-8.

The CORBA Name Service does not throw the CannotProceed exception.

Getting the Initial Reference to the NameService
Environmental Object

A NameService environmental object is available for connecting to the root of the namespace.
When using the NameService environmental object, the Object Request Broker (ORB) locates
the root of the namespace. Use the Bootstrap object or the CORBA Interoperable Naming Service
(INS) bootstrapping mechanism to get an initial reference to the NameService environmental
object. Use the BEA proprietary mechanism if you are using the BEA client ORB. Use the
CORBA INS mechanism is you are using a client ORB from another vendor.

For more information on connecting to the namespace, see “Step 3: Connect to the BEA Tuxedo
Namespace.” For more information about bootstrapping the BEA Tuxedo domain see Chapter 4,
“CORBA Bootstrapping Programming Reference,” in the CORBA Programming Reference in
the BEA Tuxedo online documentation.

2-14 Using the CORBA Name Service

The CosNaming Data Structures Used by the CORBA Name
Service

The CORBA Name Service uses the following CosNaming data structures:

CosNaming::BindingList

CosNaming::BindingType

CosNaming::Istring

CosNaming::Name

CosNaming::NameComponent

The NamingContext Object
The NamingContext object is used to contain and manipulate a list of names that are bound to
Object Request Broker (ORB) objects or to other NamingContext objects. BEA Tuxedo
CORBA client applications use this interface to resolve or list all the names within that context.
BEA Tuxedo CORBA server applications use this object to bind names to application objects or
naming context objects. Listing 2-1 shows the OMG IDL for the NamingContext object.

Listing 2-1 OMG IDL for the NamingContext Object

module CosNaming {

interface NamingContext {

void bind(in Name, in Object obj)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name, in Object obj)

raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)

raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context

NamingContext bind_new_context(in Name n)

The NamingContex t Ob jec t

Using the CORBA Name Service 2-15

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void destroy()

raises(NotEmpty);

void list(in unsigned long how_many,

out BindingList bl,

out BindingIterator bi);

}

}

2-16 Using the CORBA Name Service

CosNaming::NamingContext::bind()
Synopsis

Attempts to bind the specified object to the specified name by resolving the context associated
with the first NameComponent data structure and then binding the object to the new context.

C++ Mapping
void bind(in Name n, in Object obj);

Parameters
n

A Name data structure, initialized with the desired name of the object.
obj

The object to bind to the supplied name.

Exceptions
AlreadyBound

The Name on a bind() or a bind_context() method has already been bound to another
object within the naming context.

InvalidName

The specified Name has zero name components or one of the first name components did
not resolve to a naming context.

NotFound

The Name or one of its components, could not be found.

Description
Naming contexts bound with bind do not participate in name resolution when compound names
are passed to be resolved.

Return Value
None.

The NamingContex t Ob jec t

Using the CORBA Name Service 2-17

CosNaming::NamingContext::bind_context()
Synopsis

This method is similar to the bind() method, except that the supplied Name is associated with a
NamingContext object.

C++ Mapping
void bind_context(in Name n, in NamingContext nc);

Parameters
n

A Name data structure initialized with the desired name for the naming context. The first
NameComponent data structure in the sequence must resolve to a naming context.

nc

The NamingContext object to be bound to the supplied name.

Exceptions
AlreadyBound

The Name on a bind() or a bind_context() method has already been bound to another
object within the naming context.

InvalidName

The specified Name has zero name components or one of the first name components did
not resolve to a naming context.

NotFound

The Name or one of its components, could not be found.

BAD_PARAM

Indicates the call attempted to bind a NULL context.

Description
Naming contexts bound with bind_context() participate in name resolution when compound
names are passed to be resolved.

Return Value
None.

2-18 Using the CORBA Name Service

CosNaming::NamingContext::bind_new_context()
Synopsis

Creates a new context and binds it to the specified Name within this context.

C++ Mapping
NamingContext bind_new_context(in Name n);

Parameter
n

A Name data structure, initialized with the desired name for the newly created
NamingContext object.

Exceptions
AlreadyBound

The Name on a bind() or a bind_context() method has already been bound to another
object within the naming context.

InvalidName

The specified Name has zero name components or one of the first name components did
not resolve to a naming context.

NotFound

The Name or one of its components could not be found.

Description
This method combines the CosNaming::NamingContext::new_context() and CosNam-
ing::NamingContext::bind_context() methods into a single method.

Return Value
Returns a reference to a new NamingContext object.

The NamingContex t Ob jec t

Using the CORBA Name Service 2-19

CosNaming::NamingContext::destroy()
Synopsis

Deletes a NamingContext object. Any subsequent attempt to invoke methods on the Naming-
Context object raises a CORBA::NO_IMPLEMENT exception.

C++ Mapping
void destroy();

Parameter

None.

Exceptions

NotEmpty
If the NamingContext object contains bindings, the method raises NotEmpty.

Description
Before using this method, all name objects that have been bound to the NamingContext object
should be unbound using the
CosNaming::NamingContext::unbind() method.

Return Value
None.

2-20 Using the CORBA Name Service

CosNaming::NamingContext::list()
Synopsis

Returns all of the bindings contained by this naming context.

C++ Mapping
void list(in unsigned_long how_many,

out BindingList bl,
out BindingIterator bi);

Parameters
how_many

The maximum number of bindings to be returned in the list.

bl
A list of returned bindings where each element is a binding containing a Name representing
a single NameComponent object. Each Name is a simple name, that is, a name sequence of
length 1. The number of bindings in the list does not exceed the value of how_many.

bi

A reference to a BindingIterator object for use in traversing the rest of the bindings.

Exceptions
InvalidName

The specified Name has zero name components or one of the first name components did
not resolve to a naming context.

NotFound

The Name or one of its components could not be found.

Description
This method returns a sequence of name bindings. If more name bindings exist than can fit in the
bl list, a BindingIterator object is returned. The BindingIterator object can be used to get
the next set of bindings. The BindingList (C++) object can return less than the requested
number of bindings if it is at the end of the list. If bi returns a NULL reference, then bl contains
all of the bindings.

Return Value
None.

The NamingContex t Ob jec t

Using the CORBA Name Service 2-21

CosNaming::NamingContext::new_context()
Synopsis

Creates a new naming context. The newly created context is initially not bound to any Name.

C++ Mapping
NamingContext new_context();

Parameter

None.

Exceptions

None.

Description
Use the CosNaming::NamingContext::bind_context() method to bind the new naming
context to a Name.

Return Value
Returns a reference to a new naming context.

2-22 Using the CORBA Name Service

CosNaming::NamingContext::rebind()
Synopsis

This method is similar to the bind() method. The difference is that the rebind method does not
raise the AlreadyBound exception. If the specified Name has already been bound to another
object, that binding is replaced by the new binding.

C++ Mapping
void rebind(in Name n, in Object obj);

Parameters
n

A Name data structure, initialized with the desired name for the object.

obj
The object to be named.

Exceptions
InvalidName

The specified Name data structure has zero name components or one of the first name
components did not resolve to a naming context.

NotFound

The Name or one of its components, could not be found. If this exception is raised because
the binding already exists or the binding is of the wrong type, the rest_of_name member
of the exception has a length of 1.

Description
Naming contexts bound with the rebind()method do not participate in name resolution when
compound names are passed to be resolved.

Return Value
None.

The NamingContex t Ob jec t

Using the CORBA Name Service 2-23

CosNaming::NamingContext::rebind_context()
Synopsis

This method is similar to the bind_context() method. The difference is that the
rebind_context method does not raise the AlreadyBound exception. If the specified Name
has already been bound to another object, that binding is replaced by the new binding.

C++ Mapping
void rebind_context(in Name n, in NamingContext nc);

Parameters
n

A Name data structure, initialized with the desired name for the object.
nc

The NamingContext object to be rebound.

Exceptions
InvalidName

The specified Name data structure has zero name components or one of the first name
components did not resolve to a naming context.

NotFound

The component of a name does not identify a binding or the type of binding is incorrect
for the operation being performed. If this exception is raised because a binding already
exists or it is of the wrong type, the rest_of_name member of the exception has a length
of 1.

Description
Naming contexts bound with the rebind_context method do not participate in name resolu-
tion when compound names are passed to be resolved.

Return Value
None.

2-24 Using the CORBA Name Service

CosNaming::NamingContext::resolve()
Synopsis

Attempts to resolve the specified Name.

C++ Mapping
Object resolve(in Name n);

Parameters
n

A Name data structure, initialized with the desired name for the object.

Exceptions
InvalidName

The specified Name data structure has zero name components or one of the first name
components did not resolve to a naming context.

NotFound

The component of a name does not identify a binding or the type of binding is incorrect
for the operation being performed.

Description
The specified Name must exactly match the name used to bind the object. The CORBA Name
Service does not return the type of the object. Client applications are responsible for narrowing
the object to the appropriate type.

Return Value
Returns the object reference for the specified Name.

The NamingContex tEx t Ob jec t

Using the CORBA Name Service 2-25

CosNaming::NamingContext::unbind()
Synopsis

Performs the inverse operation of the bind() method, removing the binding associated with the
specified Name.

C++ Mapping
void unbind(in Name n);

Parameters
n

A Name data structure, initialized with the desired name for the object.

Exceptions
InvalidName

The specified Name data structure has zero name components or one of the first name
components did not resolve to a naming context.

NotFound

The component of a name does not identify a binding or the type of binding is incorrect
for the operation being performed.

Description
This method removes the binding between a name and an object. It does not delete the object.
Use the CosNaming::NamingContext::unbind() method and then the CosNam-
ing::NamingContext::destroy() method to delete the object.

Return Value
None.

The NamingContextExt Object
The NamingContextExt object provides methods to use URLs and stringified names in the
CORBA Name Service. The NamingContextExt object is derived from the NamingContext
object. Note that the root of the CORBA Name Service is a NamingContextExt object (which
means the root is also a NamingContext object). No special operation is needed to obtain a
reference to a NamingContextExt object. Listing 2-2 shows the OMG IDL for the
NamingContextExt object.

2-26 Using the CORBA Name Service

Listing 2-2 OMG IDL for the NamingContextExt Object

module CosNaming {

interface NamingContextExt : NamingContext {

typedef string StringName;

typedef string Address;

typedef string URLString;

StringName to_string(in Name n)

raises(InvalidName);

Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)

raises(NotFound,

CannotProceed,

InvalidName,

AlreadyBound);

}

}

The NamingContex tEx t Ob jec t

Using the CORBA Name Service 2-27

CosNaming::NamingContextExt::resolve_str()
Synopsis

Takes a stringified name, converts it to a Name, and resolves it.

Syntax
object resolve_str(in StringName n);

Parameter
n

The stringified name to be resolved.

Exceptions
InvalidName

The name is invalid. A name of length zero is invalid.

NotFound

The component of the name does not identify a binding or the type of the binding is
incorrect for the operation being performed.

Description
This is a convenience method that performs a resolve in the same manner as the
CosNaming:NamingContext::resolve() method. The method accepts a stringified name as
an argument instead of a Name object. The method returns errors if the stringified name is
invalid or if the method cannot bind it.

Return Value
A reference to the bound name.

2-28 Using the CORBA Name Service

CosNaming::NamingContextExt::to_name()
Synopsis

Takes a stringified name and returns a Name object.

Syntax
Name to_name(in StringName sn);

Parameter
 sn

The stringified name to be resolved to a Name object.

Exceptions
InvalidName

The name is invalid. A name of length zero is invalid.

Description
This method accepts a stringified name and returns a Name object. The method returns errors if
the name is invalid.

Return Value
Returns a Name object.

The NamingContex tEx t Ob jec t

Using the CORBA Name Service 2-29

CosNaming::NamingContextExt::to_string()
Synopsis

Accepts a Name object and returns a stringified name.

Syntax
StringName to_string(in Name n);

Parameter

 n
The Name object to be converted to stringified name

Exceptions
InvalidName

The name is invalid. A name of length zero is invalid.

Description
This method accepts a Name object and returns a stringified name. It returns errors if the name is
invalid.

Return Value
Returns a stringified name.

2-30 Using the CORBA Name Service

CosNaming::NamingContextExt::to_URL()
Synopsis

Combines a URL and a stringified name and returns a URL string.

Syntax
CosNaming::NamingContextExt::to_URL()
URLString to_URL(in Address addr, in StringName sn);

Parameter
addr

A URL. If this parameter is not defined, the local host name is used with the IIOP proto-
col.

sn

The stringified name to be combined with the URL.

Exceptions
InvalidAddress

The URL is invalid.
InvalidName

The name is invalid. A name of length zero is invalid.

Return Value
Returns a URL string that combines the URL and the stringified name.

The BindingIterator Object
The BindingIterator object allows a client application to walk through the unbounded col-
lection of bindings returned by the list method of a
NamingContext object. Using the BindingIterator object, a client application can control
the number of bindings obtained with each call. If a naming context is modified between calls to
the methods of a BindingIterator object, the behavior of further calls to the next_one()
method or the next_n() method is implementation specific.

If a client application creates BindingIterator objects but never calls the destroy method,
the client application can run out of resources. The CORBA Name Service is free to destroy
binding iterators at any time and without warning to the client application. Client applications
should be written to expect the OBJECT_NOT_EXIST exception from calls to a BindingItera-

The B ind ing I te rato r Ob jec t

Using the CORBA Name Service 2-31

tor object and to handle this exception gracefully.

Listing 2-3 shows the OMG IDL for the BindingIterator object.

Listing 2-3 OMG IDL for BindingIterator Object

module CosNaming {

interface BindingIterator {

boolean next_one(out Binding b);

boolean next_n(in unsigned long how_many,

out BindingList b);

void destroy();

};

}

2-32 Using the CORBA Name Service

CosNaming::BindingIterator::destroy()
Synopsis

Destroys the BindingIterator object and releases the memory associated with the object.
Failure to call this method results in increased memory usage.

C++ Mapping
void destroy();

Parameter

None.

Exceptions

None.

Description
If a client application invokes any operation on a BindingIterator object after calling the
destroy method, the operation raises an OBJECT_NOT_EXIST exception.

Return Value
None.

The B ind ing I te rato r Ob jec t

Using the CORBA Name Service 2-33

CosNaming::BindingIterator::next_n()
Synopsis

Returns a BindingList data structure containing the number of requested bindings from the list.
The number of bindings returned may be less than the requested amount if the list is exhausted.

C++ Mapping
boolean next_n(in unsigned_long how_many, out BindingList bl);

Parameter
how_many

The maximum number of bindings to return.
bl

A BindingList data structure containing no more than the requested number of
bindings.

Exceptions
BAD_PARAM

Raised if the how_many parameter has a value of zero.

Return Value
CORBA::FALSE is returned when the list has been exhausted. Otherwise, CORBA::TRUE is
returned.

2-34 Using the CORBA Name Service

CosNaming::BindingIterator::next_one()
Synopsis

Returns the next Binding object in the list.

C++ Mapping
boolean next_one(out Binding b);

Parameter
b

The next Binding object from the list.

Exceptions
None.

Return Value
CORBA::FALSE is returned when the list has been exhausted. Otherwise, CORBA::TRUE is
returned.

Exceptions Raised by the CORBA Name Service
This section describes the exceptions raised by the CORBA Name Service.

Except ions Ra ised by the CORBA Name Serv ice

Using the CORBA Name Service 2-35

AlreadyBound
Syntax

exception AlreadyBound{};

Parameter
None.

Description
This exception is raised when an object is already bound to the supplied name. Only one object
can be bound to a name in a context.

2-36 Using the CORBA Name Service

CannotProceed
Syntax

exception CannotProceed{};

Parameters
NamingContext cxt

The context that the operation may be able to retry from.

Name rest_of_name

The remainder of the non working name.

Description
This exception is raised when an unexpected exception is encountered and the method cannot
proceed in a meaningful way.

Except ions Ra ised by the CORBA Name Serv ice

Using the CORBA Name Service 2-37

InvalidAddress
Syntax

exception InvalidAddress{};

Parameter
None.

Description
This exception is raised if a URL is invalid.

2-38 Using the CORBA Name Service

InvalidName
Syntax

exception InvalidName{};

Parameter
None.

Description

This exception is raised if a Name is invalid. A name length of zero is invalid.

Except ions Ra ised by the CORBA Name Serv ice

Using the CORBA Name Service 2-39

NotEmpty
Syntax

exception NotEmpty{};

Parameter
None.

Description
This exception is raised when the destroy()method is used on a NamingContext object that
contains bindings. A NamingContext object must be empty before it is destroyed.

2-40 Using the CORBA Name Service

NotFound
Syntax

exception NotFound{NotFoundReason why; Name rest_of_name;};

Parameters
why

The context that the operation may be able to retry from.

rest_of_name

The remainder of the non-working name.

Description
This exception is raised when a component of the name does not identify a binding, or if the type
of binding is incorrect for the operation being performed. The why parameter explains the reason
for the error. The rest_of_name parameter identifies the cause of the error. The following
causes can appear:

missing_node—the first name component in the rest_of_name parameter is a binding
that is not bound under that name within its parent context.

not_context—the first name component in the rest_of_name parameter is a binding
with a type of nobject when the type of ncontext was required.

not_object—the first name component in the rest_of_name parameter is a binding
with a type of ncontext when the type of nobject was required.

Using the CORBA Name Service 3-1

C H A P T E R 3

Managing a BEA Tuxedo Namespace

This topic includes the following sections:

Installing the CORBA Name Service

Starting the Server Process for the CORBA Name Service

Making the Namespace Persistent

Compressing the Persistent Storage File

Removing Orphan NamingContext Objects

Federating the Namespace

Managing Binding Iterators

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

3-2 Using the CORBA Name Service

Installing the CORBA Name Service
You install the CORBA Name Service when you install BEA Tuxedo. For complete information
about installing BEA Tuxedo, see Installing the BEA Tuxedo System.

Starting the Server Process for the CORBA Name Service
To start the server process for the CORBA Name Service, you need to define the server process
in the UBBCONFIG file for your BEA Tuxedo CORBA application. Use the cns command to start
the server process for the CORBA Name Service. List the cns command-line options after the
CLOPT parameter in the UBBCONFIG file. Note there can be only one CORBA Name Service
server process running per BEA Tuxedo domain. Listing 3-1 is an example of the UBBCONFIG
entry for the server process for the CORBA Name Service.

Listing 3-1 UBBCONFIG File Entry for the CORBA Name Service

...

#

#Server process for BEA Tuxedo CORBA Name Service

#

cns

SRVGRP = SYS_GRP

SRVID = 6

RESTART = N

CLOPT = "-A -- -f C:\cnsroot.dat -M 0"

For a complete description of the cns command and its options, see Chapter 2, “CORBA Name
Service Reference.” For information about creating a configuration file, see Setting Up a BEA
Tuxedo Application in the BEA Tuxedo online documentation.

Once the server process for the CORBA Name Service is started, you can use the commands
listed in Table 3-1 to display the contents of the namespace and manage objects in the namespace.
For a complete description of the commands and their options, see Chapter 2, “CORBA Name
Service Reference.”

Making the Namespace Pe rs i s tent

Using the CORBA Name Service 3-3

Making the Namespace Persistent
The CORBA Name Service keeps two copies of the information in a namespace. One copy is kept
in-memory. Access to this copy is fast and optimized for name resolution. The other copy is
optionally saved to persistent storage allowing the state and structure of the namespace to be
saved and restored.

The primary goal of making a namespace persistent is to keep a current representation of the
in-memory naming information maintained by the currently running instance of the namespace.
By maintaining a persistent copy of the namespace, the CORBA Name Service can recreate
current naming information in case the server process of the CORBA Name Service is
terminated. A new instance of the server process for the CORBA Name Service can be configured
to read the persistent storage file to recreate the last recorded naming information.

To create a persistence copy of the namespace and store the copy to a file, specify the -p option
of the cns command when starting the server process for the CORBA Name Service. The
CORBA Name Service creates a persistent storage file with the specified location and name.

If the persistent storage file specified by the -p option already exists, the file is opened and
processed. A backup of the persistent storage file is always made prior to the startup of the server
process for the CORBA Name Service. The name of the backup copy of the persistent storage file
is filename.BAK. If you want to reuse the name of the persistent storage file, you must delete or
move the existing file and then restart the server process for the CORBA Name Service.

If the persistent storage file is successfully created, an entry for the file is written to the ULOG file.
The entry indicates the directory location and name of the file, whether or not the file was newly
created, and the mechanism used to determine the name of the file (for example, specified,

Table 3-1 Commands for Managing a BEA Tuxedo Namespace

Command Description

cns Starts the server process for the BEA Tuxedo
namespace.

cnsbind Binds application objects and naming context objects
to the BEA Tuxedo namespace.

cnsls Displays the contents of a BEA Tuxedo namespace.

cnsunbind Removes bindings from a BEA Tuxedo namespace.

3-4 Using the CORBA Name Service

environmental, or default). If an error occurs when creating the persistent storage file, an entry is
written to the ULOG file indicating the type of error that occurred.

Since the server process for the CORBA Name Service recreates the structure of the namespace
from the persistent storage file at startup, the startup time is directly proportional to the size of
the persistent storage file.Very large persistent storage files (on the order of hundreds of
megabytes) can result in the server process for the CORBA Name Service taking several seconds
or even minutes to recreate the namespace at startup.

Compressing the Persistent Storage File
The persistent storage file contains information about all operations affecting the in-memory
copy of the namespace. Over time, the persistent storage file can contain more information than
is necessary to recreate the structure and state of the current namespace. In fact, the persistent
storage file can grow quite large even though the structure of the namespace stays the same size.

The CORBA Name Service allows you to compress the persistent storage file to remove
unneeded information. The -c option of the cns command controls compression of the persistent
storage file. The compression option processes the current information to produce a new
compressed persistent storage file.

When the server process for the CORBA Name Service is started, the compression operation
performs the following:

1. Processes the in-memory structure of the namespace.

2. Overwrites the existing persistent storage file.

3. Deletes all bind and rebind entries which were removed from the namespace by unbind,
rebind, or destroy operations.

4. Removes all dangling bindings. Dangling bindings are bindings left in the namespace after
the object the binding is associated with is deleted from the namespace. Dangling bindings
occur when a CosNaming::NamingContext::destroy() method is performed on a
naming context without the naming context being unbound from its parent context.

The -c option can only be used if the -p option of the cns command is specified. For a complete
description of the -c option of the cns command, see Chapter 2, “CORBA Name Service
Reference.”

Remov ing Orphan NamingContex t Ob jec ts

Using the CORBA Name Service 3-5

Removing Orphan NamingContext Objects
An orphan context is a context that is not bound to any other context. The context may have never
been bound or it may have been bound and the binding was destroyed either explicitly or as the
result of a rebind. In the CORBA Name Service, orphan NamingContext objects are created in
one of the following ways:

Using the CosNaming::NamingContext::new_context method to create a new
NamingContext object but never binding the new NamingContext object to the
namespace.

Using the CosNaming::NamingContext::rebind() or
CosNaming::NamingContext::unbind() methods to unbind the NamingContext
object from their last parent NamingContext object but never destroying the
NamingContext object.

Client applications and other namespaces federated to the NamingContext object can perform
operations on orphan NamingContext objects as long as they maintain the object reference to the
orphan NamingContext object.

The current implementation of the namespace maintains the orphan NamingContext objects in
a special LostandFoundContext object.

Use the -d option of the cns command to delete orphan NamingContext objects from the
namespace. The -d option unbinds and destroys all NamingContext objects identified as
orphaned.

The -d option can only be used if the -p option of the cns command is specified. For a complete
description of the -d option of the cns command, see Chapter 2, “CORBA Name Service
Reference.”

Federating the Namespace
The CORBA Name Service supports the concept of a federated namespace which means
elements of a logical namespace may reside on multiple, disparate, and remote machines. In a
federated namespace, a NamingContext object can be bound to one namespace using an object
reference to a NamingContext object maintained by another namespace. The CORBA Name
Service supports federation with implementations of the CORBA Name Service running on other
machines as well as third-party name services. In order for the CORBA Name Service to federate
with a third-party name service, the third-party name service must support the naming formats
specified in the Object Management Group (OMG) Interoperable Name Service (INS)
specification.

3-6 Using the CORBA Name Service

The following topics explain how to support inbound and outbound federation as well as
federation with third-party name services.

Inbound Federation
Inbound federation is the ability to bind a NamingContext object which exists in a local BEA
Tuxedo namespace into a namespace on a remote name service. Once the namespaces are
federated, the remote name service can perform operations on NamingContext objects in a the
BEA Tuxedo namespace. Inbound federation with a third-party name service is done using the
Internet Inter-Orb Protocol (IIOP). Therefore, the IIOP Listener/Handler for the CORBA Name
Service must be configured to support unoffical IIOP connections.

To enable the unofficial connections on the IIOP Listener/Handler, use the -C parameter of the
ISL command. The -C parameter determines how the IIOP Listener/Handler will behave when
unofficial connections are made to it. To use inbound federation, specify the warn or none values
for the -C parameter. A value of warn causes the IIOP Listener/Handler to log a message to the
user log exception when an unofficial connection is detected; no exception will be raised. A value
of none causes the IIOP Listener/Handler to ignore unofficial connections. For more information
about the ISL command, see the BEA Tuxedo Command Reference in the BEA Tuxedo online
documentation.

Listing 3-2 shows an example of the UBBCONFIG entry for the IIOP Listener/Handler that
supports inbound federation.

Listing 3-2 UBBCONFIG File Entry for an IIOP Listener/Handler That Supports Inbound Federation

Entry to start IIOP Listener/Handler

that supports inbound federation

ISL

SRVGRP = SYS_GRP

SRVID = 5

MIN = 1

MAX = 1

CLOPT = "-A -- -n //blotto:2470 –C none"

Fede ra t ing the Namespace

Using the CORBA Name Service 3-7

Outbound Federation
Outbound federation is the ability to bind a NamingContext object which exists in a remote name
service into the namespace of a CORBA Name Service. Operations can then be performed on this
NamingContext object using the CORBA Name Service. Outbound federation with a third-party
name service is done using IIOP. Therefore, the IIOP Listener/Handler for the CORBA Name
Service must be configured to support outbound federation.

To enable outbound federation on the IIOP Listener/Handler, use the -O parameter of the ISL
command. The -O parameter causes the IIOP Listener to allow outbound IIOP invocations to
objects located in server applications not connected to a IIOP Handler. For more information
about the ISL command, see the BEA Tuxedo Command Reference in the BEA Tuxedo online
documentation.

Listing 3-3 shows an example of the UBBCONFIG entry for the IIOP Listener/Handler that
supports outbound federation.

Listing 3-3 UBBCONFIG File Entry for an IIOP Listener/Handler That Supports Outbound Federation

Entry for IIOP Listener/Handler

that supports outbound federation

ISL

SRVGRP = SYS_GRP

SRVID = 5

MIN = 1

MAX = 1

CLOPT = "-A -- -n //blotto:2470 -O"

Federation Across BEA Tuxedo Domains
Federation across multiple CORBA Name Service server processes running in different BEA
Tuxedo domains requires the use of Domain Gateways to allow for inter-domain communication.
For more information about configuring a domain gateway, see the “Configuring Multiple
Domains (BEA Tuxedo System)” section in the Administration topic.

3-8 Using the CORBA Name Service

Managing Binding Iterators
The OMG INS specification allows the collection of outstanding binding iterators. Since binding
iterators require explicit destruction by client applications, there is the chance that binding
iterators will not be deleted properly.

To minimize the possibility that the CORBA Name Service will run out of resources due to a
large number of unused binding iterators, use the -M option of the cns command to set the
maximum number of binding iterators in the name service. Once the limit has been reached,
requests for new binding iterators may result in the destruction of outstanding binding iterators.
The CORBA Name Service uses a least-recently-used algorithm to select which binding iterators
are deleted.

If the server process for the CORBA Name Service is started with the -M option, the CORBA
Name Service may destroy a binding iterator that is currently being used by a BEA Tuxedo
CORBA application so all BEA Tuxedo applications need to be able to handle the
CORBA::OBJECT_NOT_EXIST system exception when invoking on binding iterators.

Using the CORBA Name Service in Secure BEA Tuxedo
Applications

When using the cnsls, cnsbind, and cnsunbind commands in a secure BEA Tuxedo CORBA
application, you need to obtain the PrincipalAuthenticator object for the BEA Tuxedo domain
and log on to the domain with the appropriate security information.

In order for a secure logon to occur, the BEA Tuxedo domain must be configured with a security
level of TOBJ_SYSAUTH or TOBJ_APPAUTH. The username for the cnsls, cnsbind, and
cnsunbind commands is cnsutils. You need to use the tpusradd command to create a user
named cnsutils. Depending on the Security level specified for the BEA Tuxedo domain, the
user password and/or the domain password may be defined in the UBBCONFIG file in the
USER_AUTH and APP_PW environment variables. If these environment variables are not set and
the BEA Tuxedo domain has a security level of TOBJ_SYSAUTH or TOBJ_APPAUTH, the cnsls,
cnsbind, and cnsunbind commands will prompt for a password.

For more information about security levels and defining users in the BEA Tuxedo security
environment, see Using Security in CORBA Applications in the BEA Tuxedo online
documentation.

Using the CORBA Name Service 4-1

C H A P T E R 4

Using the CORBA Name Service Sample
Application

This topic includes the following sections:

How the Name Service Sample Application Works

Building and Running the Name Service Sample Application

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

How the Name Service Sample Application Works
The CORBA Name Service sample application is a modification of the Simpapp sample
application. This sample application provides a CORBA C++ client and server. The Name
Service sample application uses a namespace to store the SimpleFactory object. The server
application creates the SimpleFactory object and binds the object to the namespace. The client
application connects to the namespace, resolves the name of the SimpleFactory object, and then

4-2 Using the CORBA Name Service

invokes methods on the SimpleFactory. Figure 4-1 illustrates how the Name Service sample
application works.

Figure 4-1 The Name Service Sample Application

The Name Service sample application implements the CORBA interfaces listed in Table 4-1:

Listing 4-1 shows the simple.idl file that defines the CORBA interfaces in the Name Service
sample application.

CORBA Client Application

bootstrap resolve_initial_reference(NameService)
resolve (SimpleFactory)
find_Simple
Simple->to_upper
Simple->to_lower

CORBA Server Application

create_object_reference(SimpleFactory)
bootstrap resolve_initial_reference(NameService)
bind (SimpleFactory)

Namespace

SimpleFactory

Table 4-1 CORBA Interfaces for the Name Service Sample Application

Interface Description Operation

SimpleFactory Creates object references to the
Simple object

find_simple()

Simple Converts the case of a string to_upper()

to_lower()

Bui ld ing and Runn ing the Name Serv i ce Sample App l i cat ion

Using the CORBA Name Service 4-3

Listing 4-1 OMG IDL Code for the Name Service Sample Application

#pragma prefix "beasys.com"

interface Simple

{

 //Convert a string to lower case (return a new string)

 string to_lower(in string val);

 //Convert a string to upper case (in place)

 void to_upper(inout string val);

};

interface SimpleFactory

{

 Simple find_simple();

};

Building and Running the Name Service Sample Application
To build and run the Name Service sample application, complete the following steps:

1. Copy the files for the Name Service sample application into a work directory.

2. Change the permissions on the files in the work directory.

3. Verify the locations defined in environment variables.

4. Execute the runme command.

Step 1: Copy the Files for the Name Service Sample
Application into a Work Directory
Copy the files for the Name Service sample application into a work directory on your local
machine. Running the sample application in a work directory allows you to identify the files that
are created when the sample is executed. The following sections detail the directory location and
sources files for the the Name Service sample application.

4-4 Using the CORBA Name Service

CORBA C++ Client and Server Version of the Name Service Sample
Application
The files for the Name Service sample application are located in the following directories:

Windows

drive:\tuxdir\samples\corba\cnssimpapp

UNIX

/usr/local/tuxdir/samples/corba/cnssimpapp

Use the files listed in Table 4-2 to build and run the Name Service sample application.

Table 4-2 Files Included in the Name Service Sample Application

File Description

simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.

simples.cpp The C++ source code for the CORBA server
application in the Name Service sample application.

simplec.cpp The C++ source code for the CORBA client
application in the Name Service sample application.

simple_i.cpp The C++ source code that implements the Simple
and SimpleFactory methods.

simple_i.h The C++ header file that defines the implementation
of the Simple and SimpleFactory methods.

Readme.txt Provides information about building and running the
C++ client and server of the Name Service sample
application.

runme.cmd The Windows command file that builds and runs the
Name Service sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the Name Service sample application.

Bui ld ing and Runn ing the Name Serv i ce Sample App l i cat ion

Using the CORBA Name Service 4-5

Step 2: Change the Protection Attribute on the Files for the
Name Service Sample Application
The files for the sample application are installed with a permission level of read only. Before you
can edit or build the files in the Name Service sample application, you must change the protection
attribute of the files you copied into your work directory, as follows:

Windows

prompt> attrib -r drive:\workdirectory*.*

UNIX

1. prompt> /bin/ksh

2. ksh prompt> chmod u+w /workdirectory/*.*

On UNIX platforms, you also need to change the permission of runme.ksh to allow execute
permission, as follows:

ksh prompt> chmod +x runme.ksh

makefile.mk The makefile for the Name Service sample
application on UNIX operating systems. This file is
used to build the Name Service sample application
manually. See the Readme.txt file for additional
information. The location of the executable UNIX
make command must be defined in the PATH
environment variable.

makefile.nt The makefile for the Name Service sample
application on the Windows operating system. This
makefile can be used directly by the Visual C++
nmake command. This file is used to manually build
the Name Service sample application. See the
Readme.txt file for more information. The
location of the executable Windows nmake
command must be defined in the PATH environment
variable.

Table 4-2 Files Included in the Name Service Sample Application (Continued)

File Description

4-6 Using the CORBA Name Service

Step 3: Verify the Settings of the Environment Variables
Before running the Name Service sample application, you need to verify that certain environment
variables are defined to correct locations. In most cases, these environment variables are set as
part of the installation procedure. Some environment variables are set when you execute the
runme command. You need to check the environment variables to ensure they reflect correct
information.

Table 4-3 lists the environment variables required to run the Name Service sample application.

To verify that the information for the environment variables defined during installation is correct,
complete the following steps:

Table 4-3 Required Environment Variables for the Name Service Sample Application

Environment Variable Description

APPDIR Execution of the runme command sets this environment variable to the absolute path
name of the current directory. Execute the runme command from the directory to
which you copied the sample application files. For example:

Windows
APPDIR=C:\workdirectory\cnssimpapp

UNIX

APPDIR=/usr/workdirectory/cnssimpapp

RESULTSDIR Execution of the runme command sets this environment variable to the results
directory, subordinate to the location defined by the APPDIR environment variable.

Windows
RESULTSDIR=%APPDIR%\results

UNIX
RESULTSDIR=$APPDIR\results

TUXCONFIG Execution of the runme command sets this environment variable to the directory path
and filename of the configuration file.

Windows

TUXCONFIG=%RESULTSDIR%\tuxconfig

UNIX
TUXCONFIG=$RESULTSDIR/tuxconfig

Bui ld ing and Runn ing the Name Serv i ce Sample App l i cat ion

Using the CORBA Name Service 4-7

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings of the environment variables.

UNIX

ksh prompt> printenv TUXDIR

To change the settings, complete the following steps:

Windows

1. On the Environment page in the System Properties window, click the environment variable
you want to change or enter the name of the environment variable in the Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt> export TUXDIR=directorypath

Step 4: Execute the runme Command
The runme command completes the following steps end-to-end:

1. Sets the system environment variables.

2. Loads the UBBCONFIG file.

3. Compiles the code for the client application.

4. Compiles the code for the server application.

4-8 Using the CORBA Name Service

5. Starts the server application using the tmboot command.

6. Starts the client application.

7. Stops the server application using the tmshutdown command.

Note: You can also run the Name Service sample application manually. The steps for manually
running the Name Service sample application are described in the Readme.txt file.

To build and run the Name Service sample application, enter the runme command, as follows:

Windows

prompt> cd workdirectory

prompt> runme

UNIX

ksh prompt> cd workdirectory

ksh prompt> ./runme.ksh

When the Name Service sample application runs successfully from start to finish, this series of
messages is printed:

Testing NameService simpapp

 cleaned up

 prepared

 built

 loaded ubb

 booted

 ran

 shutdown

 saved results

 PASSED

Table 4-4 lists the files in the work directory generated by the runme command.

Bui ld ing and Runn ing the Name Serv i ce Sample App l i cat ion

Using the CORBA Name Service 4-9

Table 4-5 lists files in the results directory generated by the runme command.

Table 4-4 C++ Files Generated by the runme Command

File Description

simple_c.cpp Generated by the idl command, this file contains
the client stubs for the SimpleFactory and
Simple interfaces.

simple_c.h Generated by the idl command, this file contains
the client definitions of the SimpleFactory and
Simple interfaces.

simple_s.cpp Generated by the idl command, this file contains
the server skeletons for the SimpleFactory and
Simple interfaces.

simple_s.h Generated by the idl command, this file contains
the server definition for the SimpleFactory
and Simple interfaces.

.adm/.keybd A file that contains the security encryption key
database. The subdirectory is created by the
tmloadcf command in the runme command.

results A directory created by the runme command,
subordinate to the location defined by the APPDIR
environment variable.

Table 4-5 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the Java client application.

output Contains the output produced when the runme
command executes the Java client application.

4-10 Using the CORBA Name Service

expected_output Contains the output that is expected when the
Java client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Java Name
Service sample application on the Windows
operating system platform.

setenv.ksh Contains the commands to set the environment
variables needed to build and run the Java Name
Service sample application on UNIX operating
system platforms.

stderr Output from commands generated by the
tmboot command, which is executed by the
runme command. If the -noredirect JavaServer
option is specified in the UBBCONFIG file, the
System.err.println method sends the output to
the stderr file instead of to the ULOG file.

stdout Output generated by the tmboot command,
which is executed by the runme command. If
the -noredirect JavaServer option is specified in
the UBBCONFIG file, the System.out.println
method sends the output to the stdout file
instead of to the ULOG file.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

Table 4-5 Files in the results Directory Generated by the runme Command (Continued)

File Description

Bui ld ing and Runn ing the Name Serv i ce Sample App l i cat ion

Using the CORBA Name Service 4-11

ubb The UBBCONFIG file for the Java Name Service
sample application.

ULOG.date A log file that contains messages generated by
the tmboot command.

Table 4-5 Files in the results Directory Generated by the runme Command (Continued)

File Description

4-12 Using the CORBA Name Service

Using the CORBA Name Service 5-1

C H A P T E R 5

Developing an Application That Uses
the CORBA Name Service

This topic includes the following sections:

Development Steps

Step 1: Obtain the OMG IDL for the CosNaming Interfaces

Step 2: Include the Declarations and Prototypes for the CosNaming Interfaces

Step 3: Connect to the BEA Tuxedo Namespace

Step 4: Bind an Object to the BEA Tuxedo Namespace

Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

5-2 Using the CORBA Name Service

Development Steps
Table 5-1 outlines the process for developing BEA Tuxedo CORBA applications that use the
CORBA Name Service.

Before performing the steps in this topic, you need to start the server process for the CORBA
Name Service. For more information, see “Starting the Server Process for the CORBA Name
Service” on page 3-2.

After performing the development steps in this topic, use the buildobjclient and
buildobjserver commands to compile server and client applications that use the CORBA
Name Service. For more information about the buildobjclient and buildobjserver
commands, see the BEA Tuxedo Command Reference.

Step 1: Obtain the OMG IDL for the CosNaming Interfaces
A BEA Tuxedo CORBA application accesses the CORBA Name Service using the interfaces
defined in CosNaming.idl. This Object Management Group (OMG) Interface Definition
Language (IDL) file defines the interfaces, COSnaming data structures, and exceptions used by
the CORBA Name Service. The CosNaming.idl file is located in the following directory
locations:

Windows

drive:\%TUXDIR%\include\CosNaming.idl

UNIX

/usr/local/$TUXDIR/include/CosNaming.idl

Table 5-1 Development Process

Step Description

1 Obtain the OMG IDL for the CosNaming interfaces.

2 Include the declarations and prototypes for the CosNaming
interfaces.

3 Connect to the BEA Tuxedo namespace.

4 Bind an object to the BEA Tuxedo namespace.

5 Use a name to locate an object in the BEA Tuxedo namespace.

Step 1 : Obta in the OMG IDL fo r the CosNaming In te r faces

Using the CORBA Name Service 5-3

Listing 5-1 shows the OMG IDL for CosNaming.idl. The same OMG IDL file is used by both
CORBA C++ applications.

Listing 5-1 CosNaming.idl

#ifndef _COSNAMING_IDL_

#define _COSNAMING_IDL_

module CosNaming {

#pragma prefix "omg.org/CosNaming"

typedef string Istring;

struct NameComponent {

Istring id;

Istring kind;

};

 typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {

Name binding_name;

BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason { missing_node,

 not_context,

 not_object };

exception NotFound {

NotFoundReason why;

Name rest_of_name;

};

5-4 Using the CORBA Name Service

exception CannotProceed {

NamingContext cxt;

Name rest_of_name;

};

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};

void bind(in Name n, in Object obj)

 raises(NotFound,

 CannotProceed,

InvalidName,

AlreadyBound);

void rebind(in Name n, in Object obj)

raises(NotFound,

CannotProceed,

InvalidName);

void bind_context(in Name n, in NamingContext nc)

raises(NotFound,

CannotProceed,

InvalidName,

AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)

raises(NotFound,

CannotProceed,

InvalidName);

Object resolve (in Name n)

raises(NotFound,

CannotProceed,

InvalidName);

void unbind(in Name n)

raises(NotFound,

Step 1 : Obta in the OMG IDL fo r the CosNaming In te r faces

Using the CORBA Name Service 5-5

CannotProceed,

InvalidName);

NamingContext new_context();

NamingContext bind_new_context(in Name n)

raises(NotFound,

AlreadyBound,

CannotProceed,

InvalidName);

 void destroy() raises(NotEmpty);

void list(in unsigned long how_many,

 out BindingList bl,

 out BindingIterator bi);

};

interface BindingIterator {

boolean next_one(out Binding b);

boolean next_n(in unsigned long how_many,

 out BindingList bl);

void destroy();

};

interface NamingContextExt:NamingContext {

typedef string StringName;

typedef string Address;

typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);

Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)

raises(NotFound,

CannotProceed,

InvalidName,

5-6 Using the CORBA Name Service

AlreadyBound

);

};

};

#pragma ID CosNaming "IDL:omg.org/CosNaming:1.0"

#endif // _COSNAMING_IDL_

Step 2: Include the Declarations and Prototypes for the
CosNaming Interfaces

The declarations and prototypes for the CosNaming interfaces are provided as part of the software
kit for the CORBA Name Service.

For CORBA C++ client applications, include the declarations and prototypes for the
naming interfaces by adding this statement to your BEA Tuxedo CORBA client
application:
#include "CosNaming_c.h"

The include files for a BEA Tuxedo CORBA C++ client application are located in the
$TUXDIR/include directory on UNIX systems and the %TUXDIR%\include directory on
Windows systems.

If you are using a third-party Object Request Broker (ORB), you need to include or import
the CosNaming interfaces in your client source stub programs before compiling.

Step 3: Connect to the BEA Tuxedo Namespace
The Bootstrap object supports a NameService environmental object for connecting to the root of
the namespace. When using the NameService environmental object, the Object Request Broker
(ORB) locates the root of the namespace. The object reference can then be narrowed to
CosNaming::NamingContext or CosNamingContextExt. You need to connect to the BEA
Tuxedo namespace before binding objects into the namespace and resolving names in the
namespace.

Use the Bootstrap object or the CORBA Interoperable Naming Service (INS) bootstrapping
mechanism to get an initial reference to the NameService environmental object. Use the BEA
proprietary mechanism if you are using the BEA client ORB. Use the CORBA INS mechanism
if you are using a client ORB from another vendor. For more information about bootstrapping the

Step 3 : Connect to the BEA Tuxedo Namespace

Using the CORBA Name Service 5-7

BEA Tuxedo domain see Chapter 4, “CORBA Bootstrapping Programming Reference,” in the
CORBA Programming Reference in the BEA Tuxedo online documentation.

Listing 5-2 illustrates C++ code that establishes communication with a BEA Tuxedo namespace.

Listing 5-2 C++ Example of Connecting to a Namespace

...

Tobj_Bootstrap * bootstrap = new Tobj_Bootstrap (v_orb.in(), "");

CORBA::Object_var var_nameservice_oref=

bootstrap.resolve_initial_references("NameService");

root = CosNaming::NamingContext::_narrow (obj);

...

A stringified object reference for the root of the namespace can also be used to connect to a
namespace in a BEA Tuxedo domain. In order to use a stringified object reference, the -f
command-line option must be specified when starting the server process for the CORBA Name
Service. The -f command-line option writes the stringified object reference to the
CNS_ROOT_FILE environment variable or to one of the following locations:

Windows

%APPDIR%\cnsroot.dat

UNIX

$APPDIR/cnsroot.dat

The stringified object reference for the root of the namespace does not change when the server
process for the CORBA Name Service is started and stopped because stringified object reference
is associated with a particular host machine rather than a particular server process. A stringified
object reference that has been retrieved to communicate with one BEA Tuxedo namespace cannot
be used to communicate with another BEA Tuxedo namespace.

Listing 5-3 includes C++ code that establishes communication with a BEA Tuxedo namespace
using a stringified object reference.

Listing 5-3 C++ Example of Using a Stringified Object Reference

...

Tobj_Bootstrap * bootstrap;

5-8 Using the CORBA Name Service

bootstrap = new Tobj_Bootstrap (v_orb.in(), "");

CORBA::Object_var obj = GetRefFromFile ("cnsroot.dat", v_orb);

root = CosNaming::NamingContext::_narrow (obj);

...

If you choose to use a stringified object reference in a BEA Tuxedo CORBA application that also
employs security and transactions, please note the following restrictions:

1. The BEA Tuxedo CORBA application must create a Bootstrap object and connect to the IIOP
Listener/Handler before using the stringified object reference to connect to a BEA Tuxedo
namespace. By calling the Bootstrap object first, the BEA Tuxedo application establishes an
official connection to the IIOP Listener/Handler.

If a BEA Tuxedo application does not first create a Bootstrap object, transactions and
security cannot be used with any object retrieved from the namespace. Transactions and
security require the use of an official connection.

2. If more than one IIOP Listener/Handler is defined in the UBBCONFIG file, the BEA Tuxedo
CORBA application must use the first IIOP Listener/Handler defined in the UBBCONFIG file
by the TOBJADDR environment variable.

The CORBA Name Service creates the stringified object reference for the root of the
namespace, using the default IIOP Listener/Handler’s host and port. The first IIOP
Listener/Handler defined in a UBBCONFIG file is considered the default
IIOPListener/Handler. Using the default IIOP Listener/Handler causes all object references
retrieved by the CORBA Name Service to be official connections. Transactions and
security require the use of official connections.

Step 4: Bind an Object to the BEA Tuxedo Namespace
There are two ways to bind an object to the BEA Tuxedo namespace:

The cnsbind command

The bind() method of the CosNaming::NamingContext object

The cnsbind command can be used to bind application objects or naming context objects to the
BEA Tuxedo namespace. The server process for the CORBA Name Service must be started
before using the cnsbind command. For a complete description of the cnsbind command, see
Chapter 2, “CORBA Name Service Reference.”

Listing 5-4 show the C++ code implementations of the bind() method of the
CosNaming::NamingContext object. The code examples accept two parameters, representing

Step 5 : Use a Name to Locate an Ob jec t in the BEA Tuxedo Namespace

Using the CORBA Name Service 5-9

the id and kind fields for a Name. These parameters initialize a Name for the SimpleFactory
object and bind the SimpleFactory object to the namespace.

Listing 5-4 C++ Example of Binding a Name to the BEA Tuxedo Namespace

...

//Establish the Name used to identify the SimpleFactory object

//in the namespace.

CosNaming::Name_var factory_name = new CosNaming::Name(1);

factory_name->length(1);

factory_name[(CORBA::ULong) 0].id =

(const char * "simple_factory";

factory_name[(CORBA::ULong) 0].kind =

(const char *) "";

//Create an object reference for the SimpleFactory object

s_v_factory_refer = TP::create_object_reference(

_tc_SimpleFactory->id(),

"simple_factory",

CORBA::NVList::_nil()

);

//Get the NameService object reference. See Listing 4-2.

//Place the object reference for SimpleFactory in the namespace

root->bind(factory_name, s_v_fact_ref);

...

Step 5: Use a Name to Locate an Object in the BEA Tuxedo
Namespace

Use the resolve() method of the CosNaming::NamingContext object to locate an object in a
namespace in a BEA Tuxedo domain. Listing 5-5 shows the C++ code that accepts two
parameters, representing the id and kind fields for a Name. The code example then binds to a
naming context, resolves the name, and obtains an object reference for the specified object.

5-10 Using the CORBA Name Service

Listing 5-5 C++ Example of Locating a Name in the BEA Tuxedo Namespace

...

//Establish the Name used to identify the SimpleFactory object

//in the namespace.

CosNaming::Name_var factory_name = new CosNaming::Name(1);

factory_name->length(1);

factory_name[(CORBA::ULong) 0].id =

(const char * "simple_factory";

factory_name[(CORBA::ULong) 0].kind =

(const char *) "";

//Locate the SimpleFactory object in the namespace

CORBA::Object_var v_simple_factory_oref =

root->resolve(*factory_name);

SimpleFactory_var v_simple_factory_ref =

SimpleFactory::_narrow(v_simple_factory_oref.in());

// Use the reference obtained from the BEA Tuxedo CORBA Name Service // to

find the Simple object

Simple_var v_simple = v_simple_factory_ref->find_simple();

...

Using the CORBA Name Service Index-1

Index

A
administration tasks

compressing the persistent storage file 3-4
federating the namespace 3-5
making the namespace persistent 3-3
removing orphan naming context objects 3-5
starting the server process 3-2

AlreadyBound exception
described 2-35

B
BEA Tuxedo CORBA Name Service

capabilities 2-12
commands 2-2
CosNaming data structures 2-14
exceptions 2-34
features 1-1
illustrated 1-2
installing 3-2
limitations 2-12
overview 1-1

binding iterators
defining maximum 2-4

BindingIterator object
described 1-5
methods

destroy 2-32
next_n() 2-33
next_one 2-34

OMG IDL 2-31
overview 2-30

Bootstrap object

connecting to the namespace 5-6
getting initial references 2-13
using the NameService environmental

object 5-6

C
C++ code examples

binding a name to the namespace 5-9
connecting to the namespace 5-7
locating a name 5-10
using a stringified object reference 5-7

cns command
command-line options 2-3
compressing the persistent storage file 3-4
deleting orphan naming context objects 3-5
described 2-3
making the namespace persistent 3-3
syntax 2-3

cnsbind command
binding objects to the namespace 2-6
command-line options 2-6
described 2-6
examples 2-8
syntax 2-6

cnsls command
described 2-9
displaying the contents of the namespace 2-9
example 2-10
syntax 2-9

cnsunbind command
command-line options 2-11
deleting bindings from the namespace 2-11

Index-2 Using the CORBA Name Service

described 2-11
examples 2-12
syntax 2-11

commands
cns 2-3
cnsbind 2-6
cnsls 2-9
cnsunbind 2-11

CORBA Name Service sample application 4-1
CosNaming data structures

BindingList 2-14
BindingType 2-14
Istring 2-14
listed 2-14
Name 2-14
NameComponent 2-14

CosNaming interfaces
compiling the OMG IDL 5-6
directory location of OMG IDL 5-2
obtaining the OMG IDL 5-2

customer support contact information viii

D
dangling bindings

defined 2-3
deleting 2-3, 3-4

directory location of source files
Name Service sample application 4-4
OMG IDL for CosNaming interfaces 5-2

documentation, where to find it viii

E
environment variables

JAVA_HOME 4-6
Name Service sample application 4-6
TUXDIR 4-6

exceptions
AlreadyBound 2-35
InvalidAddtress 2-37
InvalidName 2-38

NotEmpty 2-39
NotFound 2-40

F
federation

inbound 3-6
outbound 3-7
the ISL command 3-6

file protections
Name Service sample application 4-5

I
IIOP Listener/Handler

enabling
inbound federation 3-6
outbound federation 3-7

INS see Interoperable Name Service 2-7
Internet Inter-Orb Protocol (IIOP) 3-6
Interoperable Name Service 2-7
InvalidAddress exception

defined 2-37
InvalidName exception

defined 2-38
ISL command

inbound federations 3-6
outbound federation 3-7

J
JAVA_HOME environment variable

Name Service sample application 4-6

N
name

described 1-4
locating in the namespace 5-9

Name Service sample application
building 4-3
changing protection on files 4-5

Using the CORBA Name Service Index-3

compiling
the C++ client application 4-7
the C++ server application 4-7
the Java client application 4-7

loading the UBBCONFIG file 4-7
required environment variables 4-6
runme command 4-7
source files 4-4

NameService environmental object
connecting to the namespace 5-6
described 2-13
using the Bootstrap object 2-13

namespace
binding an object to 5-8
cnsls command 2-9
cnsunbind command 2-11
connecting

using a stringified object reference 5-7
deleting bindings from 2-11
displaying the contents 2-9
federating 3-5
making persistent 3-3

NamingContext object
described 1-4
methods

bind 2-16
bind_context 2-17
bind_new_context 2-18
destroy 2-19
list 2-20
new_context 2-21
rebind 2-22
rebind_context 2-23
resolve 2-24
unbind 2-25

OMG IDL 2-14
overview 2-14

NamingContextExt object
described 1-5
methods

resolve_str 2-27

to_name 2-28
to_string 2-29
to_URL 2-30

OMG IDL 2-25
overview 2-25

NotEmpty exception
defined 2-39

NotFound exception
defined 2-40

O
OMG IDL

BindingIterator object 2-31
compiling 5-6
filename 5-2
for NamingContext object 2-14
location on the kit 5-2
NamingContextExt object 2-25
Simple interface 4-2
SimpleFactory interface 4-2

orphan contexts
defined 2-3
deleting 2-3

orphan naming context objects
creating 3-5
deleting 3-5

P
persistent storage file

compressing 3-4
creating 3-3

printing product documentation viii
programming tasks

binding objects to the namespace 5-8
compiling the OMG IDL 5-6
connecting to the namespace 5-6
obtaining the OMG IDL 5-2
overview 5-2
using a name to locate an object 5-9

Index-4 Using the CORBA Name Service

R
related information viii
resolve method

overview 1-5
runme command

description 4-7
files generated by 4-8

S
stringified object references

connecting to the namespace 5-7
restrictions for 5-8

support
technical viii

T
tmloadcf command

Name Service sample application 4-7
TOBJADDR environment variable

cnsbind command 2-6, 2-9
use with cnsls command 2-9
use with cnsunbind command 2-11

TUXCONFIG parameter
setenv file 4-6

TUXDIR environment variable
Name Service sample application 4-6

U
UBBCONFIG file 4-7

example
for inbound federation 3-6
for Name Server server process 3-2

Name Service sample application 4-7
ULOG file

persistent storage file 3-3

	Copyright
	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Overview of the CORBA Name Service
	The CORBA Name Service
	Understanding the CORBA Name Service

	CORBA Name Service Reference
	CORBA Name Service Commands
	cns
	cnsbind
	cnsls
	cnsunbind

	Capabilities and Limitations of the CORBA Name Service
	Getting the Initial Reference to the NameService Environmental Object
	The CosNaming Data Structures Used by the CORBA Name Service
	The NamingContext Object
	CosNaming::NamingContext::bind()
	CosNaming::NamingContext::bind_context()
	CosNaming::NamingContext::bind_new_context()
	CosNaming::NamingContext::destroy()
	CosNaming::NamingContext::list()
	CosNaming::NamingContext::new_context()
	CosNaming::NamingContext::rebind()
	CosNaming::NamingContext::rebind_context()
	CosNaming::NamingContext::resolve()
	CosNaming::NamingContext::unbind()

	The NamingContextExt Object
	CosNaming::NamingContextExt::resolve_str()
	CosNaming::NamingContextExt::to_name()
	CosNaming::NamingContextExt::to_string()
	CosNaming::NamingContextExt::to_URL()

	The BindingIterator Object
	CosNaming::BindingIterator::destroy()
	CosNaming::BindingIterator::next_n()
	CosNaming::BindingIterator::next_one()

	Exceptions Raised by the CORBA Name Service
	AlreadyBound
	CannotProceed
	InvalidAddress
	InvalidName
	NotEmpty
	NotFound

	Managing a BEA Tuxedo Namespace
	Installing the CORBA Name Service
	Starting the Server Process for the CORBA Name Service
	Making the Namespace Persistent
	Compressing the Persistent Storage File
	Removing Orphan NamingContext Objects
	Federating the Namespace
	Inbound Federation
	Outbound Federation
	Federation Across BEA Tuxedo Domains

	Managing Binding Iterators
	Using the CORBA Name Service in Secure BEA Tuxedo Applications

	Using the CORBA Name Service Sample Application
	How the Name Service Sample Application Works
	Building and Running the Name Service Sample Application
	Step 1: Copy the Files for the Name Service Sample Application into a Work Directory
	CORBA C++ Client and Server Version of the Name Service Sample Application

	Step 2: Change the Protection Attribute on the Files for the Name Service Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command

	Developing an Application That Uses the CORBA Name Service
	Development Steps
	Step 1: Obtain the OMG IDL for the CosNaming Interfaces
	Step 2: Include the Declarations and Prototypes for the CosNaming Interfaces
	Step 3: Connect to the BEA Tuxedo Namespace
	Step 4: Bind an Object to the BEA Tuxedo Namespace
	Step 5: Use a Name to Locate an Object in the BEA Tuxedo Namespace

	Index

