
BEA
 Tuxedo®

ATMI FML Function
Reference
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA
WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server
and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA Tuxedo ATMI FML Function Reference

Part Number Date Software Version

N/A January 2003 BEA Tuxedo Release 8.1

Contents

About This Document
What You Need to Know ... vii
e-docs Web Site.. vii
How to Print the Document... viii
Related Information... viii
Contact Us!.. viii
Documentation Conventions ... ix

Section 3fml - FML Functions
Introduction to FML Functions ... 1-6
CFadd, CFadd32(3fml).. 1-12
CFchg, CFchg32(3fml).. 1-14
CFfind, CFfind32(3fml) .. 1-16
CFfindocc, CFfindocc32(3fml) ... 1-18
CFget, CFget32(3fml) ... 1-20
CFgetalloc, CFgetalloc32(3fml).. 1-22
F_error, F_error32(3fml)... 1-24
F32to16, F16to32(3fml) .. 1-25
Fadd, Fadd32(3fml)... 1-27
Fadds, Fadds32(3fml).. 1-29
Falloc, Falloc32(3fml)... 1-31
Fappend, Fappend32(3fml) ... 1-32
Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml) .. 1-34
Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml) .. 1-37
Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml) .. 1-40
Fchg, Fchg32(3fml)... 1-42
Fchgs, Fchgs32(3fml).. 1-45
BEA Tuxedo ATMI FML Function Reference iii

Fchksum, Fchksum32(3fml).. 1-47
Fcmp, Fcmp32(3fml)... 1-48
Fconcat, Fconcat32(3fml).. 1-50
Fcpy, Fcpy32(3fml) ... 1-52
Fdel, Fdel32(3fml)... 1-54
Fdelall, Fdelall32(3fml)... 1-56
Fdelete, Fdelete32(3fml) ... 1-58
Fextread, Fextread32(3fml) ... 1-60
Ffind, Ffind32(3fml).. 1-63
Ffindlast, Ffindlast32(3fml)... 1-65
Ffindocc, Ffindocc32(3fml)... 1-67
Ffinds, Ffinds32(3fml)... 1-69
Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32(3fml).. 1-71
Ffprint, Ffprint32(3fml)... 1-73
Ffree, Ffree32(3fml) .. 1-75
Fget, Fget32(3fml)... 1-77
Fgetalloc, Fgetalloc32(3fml) ... 1-79
Fgetlast, Fgetlast32(3fml).. 1-81
Fgets, Fgets32(3fml).. 1-83
Fgetsa, Fgetsa32(3fml) .. 1-85
Fidnm_unload, Fidnm_unload32(3fml) .. 1-87
Fidxused, Fidxused32(3fml).. 1-88
Fielded, Fielded32(3fml) ... 1-89
Findex, Findex32(3fml)... 1-90
Finit, Finit32(3fml) .. 1-92
Fjoin, Fjoin32(3fml) .. 1-93
Fldid, Fldid32(3fml) .. 1-95
Fldno, Fldno32(3fml) .. 1-96
Fldtype, Fldtype32(3fml)... 1-97
Flen, Flen32(3fml)... 1-98
Fmbpack32(3fml) .. 1-100
Fmbunpack32(3fml) .. 1-102
Fmkfldid, Fmkfldid32(3fml) ... 1-104
Fmove, Fmove32(3fml)... 1-105
Fname, Fname32(3fml) ... 1-107
iv BEA Tuxedo ATMI FML Function Reference

Fneeded, Fneeded32(3fml).. 1-108
Fnext, Fnext32(3fml)... 1-109
Fnmid_unload, Fnmid_unload32(3fml) .. 1-111
Fnum, Fnum32(3fml) .. 1-112
Foccur, Foccur32(3fml)... 1-113
Fojoin, Fojoin32(3fml) .. 1-114
Fpres, Fpres32(3fml) ... 1-116
Fprint, Fprint32(3fml) ... 1-117
Fproj, Fproj32(3fml).. 1-119
Fprojcpy, Fprojcpy32(3fml) .. 1-121
Fread, Fread32(3fml)... 1-123
Frealloc, Frealloc32(3fml)... 1-125
Frstrindex, Frstrindex32(3fml) .. 1-127
Fsizeof, Fsizeof32(3fml) ... 1-129
Fstrerror, Fstrerror32(3fml)... 1-130
Ftypcvt, Ftypcvt32(3fml) .. 1-131
Ftype, Ftype32(3fml)... 1-133
Funindex, Funindex32(3fml)... 1-134
Funused, Funused32(3fml).. 1-136
Fupdate, Fupdate32(3fml) ... 1-137
Fused, Fused32(3fml).. 1-139
Fvall, Fvall32(3fml) .. 1-140
Fvals, Fvals32(3fml).. 1-142
Fvftos, Fvftos32(3fml) .. 1-144
Fvneeded, Fvneeded32(3fml).. 1-146
Fvnull, Fvnull32(3fml) .. 1-147
Fvopt, Fvopt32(3fml) .. 1-149
Fvrefresh, Fvrefresh32(3fml) .. 1-151
Fvselinit, Fvselinit32(3fml)... 1-152
Fvsinit, Fvsinit32(3fml)... 1-154
Fvstof, Fvstof32(3fml) .. 1-156
Fvstot, Fvttos(3fml)... 1-158
Fwrite, Fwrite32(3fml) .. 1-164
tpconvfmb32(3fml).. 1-166
BEA Tuxedo ATMI FML Function Reference v

vi BEA Tuxedo ATMI FML Function Reference

About This Document

This document provides reference information on Field Manipulation Language
(FML) functions used in the BEA Tuxedo ATMI environment. FML is a set of C
functions for defining and manipulating fielded buffers. The reference pages are
arranged in alphabetical order by function name.

What You Need to Know

This document is intended for the following audiences:

Administrators who are interested in configuring and managing applications in a
BEA Tuxedo environment

Application developers who are interested in programming applications in a
BEA Tuxedo environment

This document assumes a familiarity with the BEA Tuxedo platform and C
programming.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.
BEA Tuxedo ATMI FML Function Reference vii

http://e-docs.bea.com

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Related Information

Related documents are listed in the See Also section of each reference page.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.1 release.
viii BEA Tuxedo ATMI FML Function Reference

http://www.adobe.com
mailto:docsupport@bea.com

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
BEA Tuxedo ATMI FML Function Reference ix

http://www.bea.com

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
x BEA Tuxedo ATMI FML Function Reference

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA Tuxedo ATMI FML Function Reference xi

xii BEA Tuxedo ATMI FML Function Reference

Section 3fml - FML
Functions

Table 1 BEA Tuxedo ATMI FML Functions

Name Description

Introduction to FML Functions Provides an introduction to the FML functions

CFadd, CFadd32(3fml) Converts and adds field

CFchg, CFchg32(3fml) Converts and changes field

CFfind, CFfind32(3fml) Finds, converts, and returns pointer

CFfindocc, CFfindocc32(3fml) Finds occurrence of converted value

CFget, CFget32(3fml) Gets field and converts

CFgetalloc, CFgetalloc32(3fml) Gets field, allocates space, and converts

F_error, F_error32(3fml) Prints error message for last error

F32to16, F16to32(3fml) Converts 16-bit FML to/from 32-bit FML buffer

Fadd, Fadd32(3fml) Adds new field occurrence

Fadds, Fadds32(3fml) Converts value from type FLD_STRING and adds to buffer

Falloc, Falloc32(3fml) Allocates and initializes fielded buffer

Fappend, Fappend32(3fml) Appends new field occurrence

Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml)

Compiles expression, returns evaluation tree
BEA Tuxedo ATMI FML Function Reference 1

Section 3fml - FML Functions
Fboolev, Fboolev32, Fvboolev,
Fvboolev32(3fml)

Evaluates buffer against tree

Fboolpr, Fboolpr32, Fvboolpr,
Fvboolpr32(3fml)

Prints Boolean expression as parsed

Fchg, Fchg32(3fml) Changes field occurrence value

Fchgs, Fchgs32(3fml) Changes field occurrence - caller presents string

Fchksum, Fchksum32(3fml) Computes checksum for fielded buffer

Fcmp, Fcmp32(3fml) Compares two fielded buffers

Fconcat, Fconcat32(3fml) Concatenates source to destination buffer

Fcpy, Fcpy32(3fml) Copies source to destination buffer

Fdel, Fdel32(3fml) Deletes field occurrence from buffer

Fdelall, Fdelall32(3fml) Deletes all field occurrences from buffer

Fdelete, Fdelete32(3fml) Deletes list of fields from buffer

Fextread, Fextread32(3fml) Builds fielded buffer from printed format

Ffind, Ffind32(3fml) Finds field occurrence in buffer

Ffindlast, Ffindlast32(3fml) Finds last occurrence of field in buffer

Ffindocc, Ffindocc32(3fml) Finds occurrence of field value

Ffinds, Ffinds32(3fml) Returns ptr to string representation

Ffloatev, Ffloatev32, Fvfloatev,
Fvfloatev32(3fml)

Returns value of expression as a double

Ffprint, Ffprint32(3fml) Prints fielded buffer to specified stream

Ffree, Ffree32(3fml) Frees space allocated for fielded buffer

Fget, Fget32(3fml) Gets copy and length of field occurrence

Fgetalloc, Fgetalloc32(3fml) Allocates space and gets copy of field occurrence

Table 1 BEA Tuxedo ATMI FML Functions (Continued)

Name Description
2 BEA Tuxedo ATMI FML Function Reference

Fgetlast, Fgetlast32(3fml) Gets copy of last occurrence

Fgets, Fgets32(3fml) Gets value converted to string

Fgetsa, Fgetsa32(3fml) Uses malloc() to allocate space and gets converted value

Fidnm_unload, Fidnm_unload32(3fml) Recovers space from id->nm mapping tables

Fidxused, Fidxused32(3fml) Returns amount of space used

Fielded, Fielded32(3fml) Returns true if buffer is fielded

Findex, Findex32(3fml) Indexes a fielded buffer

Finit, Finit32(3fml) Initializes fielded buffer

Fjoin, Fjoin32(3fml) Joins source into destination buffer

Fldid, Fldid32(3fml) Maps field name to field identifier

Fldno, Fldno32(3fml) Maps field identifier to field number

Fldtype, Fldtype32(3fml) Maps field identifier to field type

Flen, Flen32(3fml) Returns len of field occurrence in buffer

Fmbpack32(3fml) Prepares encoding name and multibyte data information

Fmbunpack32(3fml) Extracts encoding name and multibyte data information

Fmkfldid, Fmkfldid32(3fml) Makes a field identifier

Fmove, Fmove32(3fml) Moves fielded buffer to destination

Fname, Fname32(3fml) Maps field identifier to field name

Fneeded, Fneeded32(3fml) Computes size needed for buffer

Fnext, Fnext32(3fml) Gets next field occurrence

Fnmid_unload, Fnmid_unload32(3fml) Recovers space from nm->id mapping tables

Fnum, Fnum32(3fml) Returns count of all occurrences in buffer

Foccur, Foccur32(3fml) Returns count of field occurrences in buffer

Table 1 BEA Tuxedo ATMI FML Functions (Continued)

Name Description
BEA Tuxedo ATMI FML Function Reference 3

Section 3fml - FML Functions
Fojoin, Fojoin32(3fml) Outer join of source into destination buffer

Fpres, Fpres32(3fml) True if field occurrence is present in buffer

Fprint, Fprint32(3fml) Prints buffer to standard output

Fproj, Fproj32(3fml) Provides projection on buffer

Fprojcpy, Fprojcpy32(3fml) Provides projection and copy on buffer

Fread, Fread32(3fml) Reads fielded buffer

Frealloc, Frealloc32(3fml) Reallocates fielded buffer

Frstrindex, Frstrindex32(3fml) Restores index in a buffer

Fsizeof, Fsizeof32(3fml) Returns size of fielded buffer

Fstrerror, Fstrerror32(3fml) Gets error message string for FML error

Ftypcvt, Ftypcvt32(3fml) Converts from one field type to another

Ftype, Ftype32(3fml) Returns pointer to type of field

Funindex, Funindex32(3fml) Discards fielded buffer's index

Funused, Funused32(3fml) Returns number of unused bytes in fielded buffer

Fupdate, Fupdate32(3fml) Updates destination buffer with source

Fused, Fused32(3fml) Returns number of used bytes in fielded buffer

Fvall, Fvall32(3fml) Returns long value of field occurrence

Fvals, Fvals32(3fml) Returns string value of field occurrence

Fvftos, Fvftos32(3fml) Copies from fielded buffer to C structure

Fvneeded, Fvneeded32(3fml) Computes size needed for view buffer

Fvnull, Fvnull32(3fml) Checks if a structure element is NULL

Fvopt, Fvopt32(3fml) Changes flag options of a mapping entry

Fvrefresh, Fvrefresh32(3fml) Copies from C structure to fielded buffer

Table 1 BEA Tuxedo ATMI FML Functions (Continued)

Name Description
4 BEA Tuxedo ATMI FML Function Reference

Fvselinit, Fvselinit32(3fml) Initializes structure element to NULL

Fvsinit, Fvsinit32(3fml) Initializes C structure to NULL

Fvstof, Fvstof32(3fml) Copies from C structure to fielded buffer

Fvstot, Fvttos(3fml) Converts C structure to/from target record type

Fwrite, Fwrite32(3fml) Writes fielded buffer

tpconvfmb32(3fml) Converts multibyte characters from source encoding to
target encoding

Table 1 BEA Tuxedo ATMI FML Functions (Continued)

Name Description
BEA Tuxedo ATMI FML Function Reference 5

Section 3fml - FML Functions
Introduction to FML Functions

Synopsis “#include <fml.h>”
“#include <fml32.h>”

Description FML is a set of C language functions for defining and manipulating storage structures
called fielded buffers, that contain attribute-value pairs called fields. The attribute is
the field’s identifier, and the associated value represents the field’s data content.

Fielded buffers provide an excellent structure for communicating parameterized data
between cooperating processes, by providing named access to a set of related fields.
Programs that need to communicate with other processes can use the FML software to
provide access to fields without concerning themselves with the structures containing
them.

FML also provides a facility called VIEWS that allows you to map fielded buffers to C
structures (and the reverse as well). VIEWS lets you perform lengthy manipulations of
data in structures rather than in fielded buffers; applications will run faster if data is
transferred to structures for manipulation. VIEWS allows the data independence of
fielded buffers to be combined with the efficiency and simplicity of classic record
structures.

FML16 and
FML32

There are two “sizes” of FML. The original FML interface is based on 16-bit values
for the length of fields and containing information identifying fields. In this
introduction, it will be referred to as FML16. FML16 is limited to 8191 unique fields,
individual field lengths of up to 64K bytes, and a total fielded buffer size of 64K. The
definitions, types, and function prototypes for this interface are in fml.h which must
be included in an application program using the FML16 interface; and functions live
in -lfml. A second interface, FML32, uses 32-bit values for the field lengths and
identifiers. It allows for about 30 million fields, and field and buffer lengths of about
2 billion bytes. The definitions, types, and function prototypes for FML32 are in
fml32.h; and functions live in -lfml32. All definitions, types, and function names for
FML32 have a “32” suffix (for example, MAXFBLEN32, FLDID32, Fchg32). Also the
environment variables are suffixed with “32” (for example, FLDTBLDIR32,
FIELDTBLS32, VIEWFILES32, and VIEWDIR32).

FML Buffers A fielded buffer is composed of field identifier and field value pairs for fixed length
fields (for example, long, short), and field identifier, field length, and field value
triples for varying length fields.
6 BEA Tuxedo ATMI FML Function Reference

Introduction to FML Functions
A field identifier is a tag for an individual data item in a fielded buffer. The field
identifier consists of the name of field number and the type of the data in the field. The
field number must be in the range 1 to 8191 inclusive for FML16, and the type
definition for a field identifier is FLDID. The field number must be in the range 1 to
33,554,431 inclusive for FML32, and the type definition for a field identifier is
FLDID32. The BEA Tuxedo ATMI system conforms to the following conventions for
field numbers:

Applications should avoid using the reserved field numbers, although the BEA Tuxedo
ATMI system does not strictly enforce applications from using them.

The field types can be any of the standard C language types: short, long, float,
double, and char. The following types are also supported: string (a series of
characters ending with a NULL character), carray (a character array), mbstring (a
multibyte character array—available in BEA Tuxedo release 8.1 or later), ptr (a
pointer to a buffer), fml32 (an embedded FML32 buffer), and view32 (an embedded
VIEW32 buffer). (The ptr, fml32, and view32 types are supported only for the
FML32 interface.) In fml.h, the supported field types are defined as FLD_SHORT,
FLD_LONG, FLD_FLOAT, FLD_DOUBLE, FLD_CHAR, FLD_STRING, and FLD_CARRAY. In
fml32.h, the supported field types are defined as FLD_SHORT, FLD_LONG, FLD_FLOAT,
FLD_DOUBLE, FLD_CHAR, FLD_STRING, FLD_CARRAY, FLD_MBSTRING, FLD_PTR,
FLD_FML32, and FLD_VIEW32.

For FML16, a fielded buffer pointer is of type FBFR *, a field length has the type
FLDLEN, and the number of occurrences of a field has the type FLDOCC. For FML32, a
fielded buffer pointer is of type FBFR32 *, a field length has the type FLDLEN32, and
the number of occurrences of a field has the type FLDOCC32.

Fields are referred to by their field identifier in the FML interface. However, it is
normally easier for an application programmer to remember a field name. There are
two approaches to mapping field names to field identifiers.

FML16 Field Numbers FML32 Field Numbers

Reserved Available Reserved Available

1-100 101-8191 1-10,000,
30,000,001-33,554,431

10,001-30,000,000
BEA Tuxedo ATMI FML Function Reference 7

Section 3fml - FML Functions
Field name/identifier mappings can be made available to FML programs at run time
through field table files, described in field_tables(5). The FML16 interface uses
the environment variable FLDTBLDIR to specify a list of directories where field tables
can be found, and FIELDTBLS to specify a list of the files in the table directories that
are to be used. The FML32 interface uses FLDTBLDIR32 and FIELDTBLS32. Within
applications programs, the FML functions Fldid() and Fldid32() provide for a
run-time translation of a field name to its field identifier and Fname() and Fname32()
translate a field identifier to its field name.

Compile-time field name/identifier mappings are provided by the use field header files
containing macro definitions for the field names. mkfldhdr() and mkfldhdr32() are
provided to make header files out of field table files (see mkfldhdr, mkfldhdr32(1)
for details). These header files are #include’d in C programs, and provide another
way to map field names to field identifiers at compile-time.

Any field in a fielded buffer can occur more than once. Many FML functions take an
argument that specifies which occurrence of a field is to be retrieved or modified. If a
field occurs more than once, the first occurrence is numbered 0, and additional
occurrences are numbered sequentially. The set of all occurrences make up a logical
sequence, but no overhead is associated with the occurrence number (that is, it is not
stored in the fielded buffer). If another occurrence of a field is added, it is added at the
end of the set and is referred to as the next higher occurrence. When an occurrence
other than the highest is deleted, all higher occurrences of the field are shifted down by
one (for example, occurrence 6 becomes occurrence 5, 5 becomes 4, etc.).

When a fielded buffer has many fields, access is expedited in FML by the use of an
internal index. The user is normally unaware of the existence of this index. However,
when you store a fielded buffer on disk, or transmit a fielded buffer between processes
or between computers, you can save disk space and/or transmittal time by first
discarding the index using Funindex() or Funindex32(), and then reconstructing
the index later with Findex() or Findex32().

FML16
Conversion to

FML32

Existing FML16 applications that are written correctly can easily be changed to use the
FML32 interface. All variables used in the calls to the FML functions must use the
proper typedefs (FLDID, FLDLEN, and FLDOCC). Any call to tpalloc() for an FML
typed buffer should use the FMLTYPE definition instead of “FML”. The application
source code can be changed to use the 32-bit functions simply by changing the include
of fml.h to inclusion of fml32.h followed by fml1632.h. The fml1632.h contains
macros that convert all of the 16-bit type definitions to 32-bit type definitions, and
16-bit functions and macros to 32-bit functions and macros.
8 BEA Tuxedo ATMI FML Function Reference

../rf5/rf5.htm#9583015
../rfcm/rfcmd.htm#763451321

Introduction to FML Functions
VIEWS VIEWS is a part of the Field Manipulation Language that allows the exchange of data
between fielded buffers and C structures in a C language program, by specifying
mappings of fields to members of C structures. If extensive manipulations of fielded
buffer information are to be done, transferring the data to C structures will improve
performance. Information in a fielded buffer can be extracted from the fields in a buffer
and placed in a C structure using VIEWS functions, manipulated, and the updated values
returned to the buffer, again using VIEWS functions.

Typed buffers is a feature of the ATMI environment that grew out of the FML idea of
a fielded buffer. Two of the standard buffer types delivered with the ATMI
environment are FML typed buffers and VIEW typed buffers. An additional difference
of VIEW buffers is that they can be totally unrelated to an FML fielded buffer. The
buffer types FML32 and VIEW32 can also be used.

A view description is created and stored in a source viewfile, as described in
viewfile(5). The view description maps fields in fielded buffers to members in C
structures. The source view descriptions are compiled, using viewc() or viewc32(),
creating a view object file and can then be used to map data transferred between fielded
buffers and C structures in a C program (see viewc, viewc32(1) for details). The
view compiler also creates C header files that can be included in applications programs
to define the structures described in view descriptions. A view disassembler,
viewdis() or viewdis32(), is provided to translate object view descriptions into
readable form (that is, back into source view descriptions); the output of the
disassembler can be reinput to the view compiler (see viewdis, viewdis32(1) for
details).

The object files are used at run time to manipulate the VIEW structures using the
VIEWFILES and VIEWDIR environment variables. VIEWFILES should contain a
comma-separated list of object viewfiles for the application. Files given as full
pathnames are used as is; files listed as relative pathnames are searched for through the
list of directories specified by the VIEWDIR variable (as described later in this section).
VIEWDIR specifies a colon-separated list of directories to be used to find view object
files with relative filenames. For VIEW32 structures, VIEWFILES32 and VIEWDIR32 are
used.

In addition to the data types supported by most FML functions, VIEWS supports type
int in source view descriptions. When the view description is compiled the view
compiler automatically converts any int types to either short or long types, depending
on your machine.
BEA Tuxedo ATMI FML Function Reference 9

../rf5/rf5.htm#9766715
../rfcm/rfcmd.htm#3273011
../rfcm/rfcmd.htm#4795511

Section 3fml - FML Functions
A decimal data type is also supported in VIEWS. It is defined as a field of type dec_t,
and the size of the packed decimal value is given as the total number of bytes and the
bytes to the right of the decimal point. While this field is not supported directly in
FML, conversion of this field is automatic to/from any other field type supported in
FML. Packed decimals exist in the COBOL environment as two decimal digits packed
into one byte with the low-order half byte used to store the sign. In the C environment,
the data type is defined by the dec_t type definition, which contains the decimal
exponent, sign, digits, and the packed decimal value.

An FML buffer can be converted to a view using Fvftos() or Fvftos32(). A view
can be converted to a fielded buffer using Fvstof() or Fvstof32(). When
transferring data between fielded buffers and structures, the source data is
automatically converted to the type of the destination data. Multiple field occurrences
are supported; they are treated as an array in the structure. NULL values are used to
indicate empty members in a structure, and can be specified by the user for each
structure member in a viewfile. If the user does not specify a NULL value for a
member, default NULL values are used. It is also possible to inhibit the transfer of data
between a C structure member and a field in a fielded buffer, even though a mapping
exists between them.

A VIEW can also be converted to and from a target record format. The default target
format is IBM System/370 COBOL records. The Fvstot() function takes care of
converting byte ordering, floating point and decimal format, and character sets (ASCII
to EBCDIC), and Fvttos() converts back to the native format. 32-bit versions of
these functions also exist. The Fcodeset() function can be used to specify alternate
ASCII/EBCDIC transaction tables.

Error Handling Most of the FML functions have one or more error returns. An error condition is
indicated by an otherwise impossible returned value. This is usually -1 on error, or 0
for a bad field identifier (BADFLDID) or address. The error type is also made available
in the external integer Ferror for FML16 and Ferror32 for FML32. Ferror and
Ferror32 are not cleared on successful calls, so they should be tested only after an
error has been indicated.

The F_error and F_error32 functions are provided to produce a message on the
standard error output. They take one parameter, a string; print the argument string
appended with a colon and a blank; and then print an error message followed by a
newline character. The error message displayed is the one defined for the error number
currently in Ferror or Ferror32, which is set when errors occur.

Fstrerror() can be used to retrieve from a message catalog the text of an error
message; it returns a pointer that can be used to as an argument to userlog(3c).
10 BEA Tuxedo ATMI FML Function Reference

../rf3c/rf3c.htm#7980613

Introduction to FML Functions
The error codes that can be produced by an FML function are described on each FML
reference page.

See Also CFadd, CFadd32(3fml), CFchg, CFchg32(3fml), CFfind, CFfind32(3fml),
CFfindocc, CFfindocc32(3fml), CFget, CFget32(3fml), CFgetalloc,
CFgetalloc32(3fml), F_error, F_error32(3fml), Fadd, Fadd32(3fml),
Fadds, Fadds32(3fml), Falloc, Falloc32(3fml), Fboolco, Fboolco32,
Fvboolco, Fvboolco32(3fml), Fboolev, Fboolev32, Fvboolev,
Fvboolev32(3fml), Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml),
Fchg, Fchg32(3fml), Fchgs, Fchgs32(3fml), Fchksum, Fchksum32(3fml),
Fcmp, Fcmp32(3fml), Fconcat, Fconcat32(3fml), Fcpy, Fcpy32(3fml),
Fdel, Fdel32(3fml), Fdelall, Fdelall32(3fml), Fdelete,
Fdelete32(3fml), Fextread, Fextread32(3fml), Ffind, Ffind32(3fml),
Ffindlast, Ffindlast32(3fml), Ffindocc, Ffindocc32(3fml), Ffinds,
Ffinds32(3fml), Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32(3fml),
Ffprint, Ffprint32(3fml), Ffree, Ffree32(3fml), Fget, Fget32(3fml),
Fgetalloc, Fgetalloc32(3fml), Fgetlast, Fgetlast32(3fml), Fgets,
Fgets32(3fml), Fgetsa, Fgetsa32(3fml), Fidnm_unload,
Fidnm_unload32(3fml), Fidxused, Fidxused32(3fml), Fielded,
Fielded32(3fml), Findex, Findex32(3fml), Finit, Finit32(3fml), Fjoin,
Fjoin32(3fml), Fldid, Fldid32(3fml), Fldno, Fldno32(3fml), Fldtype,
Fldtype32(3fml), Flen, Flen32(3fml), Fmkfldid, Fmkfldid32(3fml),
Fmove, Fmove32(3fml), Fname, Fname32(3fml), Fneeded, Fneeded32(3fml),
Fnext, Fnext32(3fml), Fnmid_unload, Fnmid_unload32(3fml), Fnum,
Fnum32(3fml), Foccur, Foccur32(3fml), Fojoin, Fojoin32(3fml), Fpres,
Fpres32(3fml), Fprint, Fprint32(3fml), Fproj, Fproj32(3fml),
Fprojcpy, Fprojcpy32(3fml), Fread, Fread32(3fml), Frealloc,
Frealloc32(3fml), Frstrindex, Frstrindex32(3fml), Fsizeof,
Fsizeof32(3fml), Fstrerror, Fstrerror32(3fml), Ftypcvt,
Ftypcvt32(3fml), Ftype, Ftype32(3fml), Funindex, Funindex32(3fml),
Funused, Funused32(3fml), Fupdate, Fupdate32(3fml), Fused,
Fused32(3fml), Fvall, Fvall32(3fml), Fvals, Fvals32(3fml), Fvftos,
Fvftos32(3fml), Fneeded, Fneeded32(3fml), Fvnull, Fvnull32(3fml),
Fvopt, Fvopt32(3fml), Fvselinit, Fvselinit32(3fml), Fvsinit,
Fvsinit32(3fml), Fvstof, Fvstof32(3fml), Fwrite, Fwrite32(3fml),
field_tables(5), viewfile(5)

Programming a BEA Tuxedo ATMI Application Using FML
BEA Tuxedo ATMI FML Function Reference 11

../rf5/rf5.htm#9583015
../rf5/rf5.htm#9766715

Section 3fml - FML Functions
CFadd, CFadd32(3fml)

Name CFadd(), CFadd32() - convert and add field

Synopsis #include <stdio.h>
#include "fml.h"
int CFadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int
type)
#include fml32.h>
int
CFadd32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32 len,
int type)

Description CFadd() acts like Fadd() but first converts the value from the user-specified type to
the type of the fieldid for which the field is added to the fielded buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to the value
to be added. len is the length of the value to be added; it is required only if type is
FLD_CARRAY. type is the data type of the field in value.

Before the field is added to the buffer, the type of the data item is converted from the
type supplied by the user to the type specified in fieldid. If the source type is
FLD_CARRAY (arbitrary character array), the len argument should be set to the length
of the array; the length is ignored in all other cases. The value for the field to be
converted and added must first be put in a variable, value, since C does not permit
constructs such as 12345L.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFadd() or CFadd32() is being used, Ferror is set to FEBADOP.

CFadd32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFadd() or CFadd32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFadd() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
12 BEA Tuxedo ATMI FML Function Reference

CFadd, CFadd32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL value parameter was specified).

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer, but there is not enough
space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, Fadd, Fadd32(3fml)
BEA Tuxedo ATMI FML Function Reference 13

Section 3fml - FML Functions
CFchg, CFchg32(3fml)

Name CFchg(), CFchg32() - convert and change field

Synopsis #include <stdio.h>
#include "fml.h"
int CFchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value,
 FLDLEN len, int type)
#include "fml32.h"
int CFchg32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc,
 char *value,
FLDLEN32 len, int type)

Description CFchg() acts like Fchg() but first converts the value from the user-specified type
to the type of the fieldid for which the field is changed in the fielded buffer. fbfr is
a pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence number
of the field. value is a pointer to a new value. len is the length of the value to be
changed; it is required only if type is FLD_CARRAY. type is the data type of value.

If a field occurrence is specified that does not exist, then NULL values are added for
the missing occurrences until the desired value can be added (for example, changing
field occurrence 4 for a field that does not exist in a buffer will cause 3 NULL values
to be added followed by the specified field value).

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFchg() or CFchg32() is being used, Ferror is set to FEBADOP.

CFchg32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFchg() or CFchg32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFchg() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
14 BEA Tuxedo ATMI FML Function Reference

CFchg, CFchg32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL value parameter was specified).

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, CFadd, CFadd32(3fml), Fchg, Fchg32(3fml)
BEA Tuxedo ATMI FML Function Reference 15

Section 3fml - FML Functions
CFfind, CFfind32(3fml)

Name CFfind(), CFfind32() - find, convert, and return pointer

Synopsis #include <stdio.h>
#include "fml.h"
char * CFfind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len,
 int type)
#include "fml32.h"
char *
CFfind32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32 *len,

int type)

Description CFfind() finds a specified field in a buffer, converts it and returns a pointer to the
converted value. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc
is the occurrence number of the field. len is used on output and is a pointer to the
length of the converted value. type is the data type the user wants the field to be
converted to.

Like Ffind(), the pointer returned by the function should be considered read-only.
The validity of the pointer returned by CFfind() is guaranteed only until the next
buffer operation, even if that operation is non-destructive, since the converted value is
retained in a single private buffer. This differs from the value returned by Ffins(),
which is guaranteed until the next modification of the buffer. Unlike Ffind(),
CFfind() aligns the converted value for immediate use by the caller.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFfind() or CFfind32()is being used, Ferror is set to FEBADOP.

CFfind32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFfind() or CFfind32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values In the “Synopsis” section above the return value to CFfind() is described as a
character pointer data type (char ** in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFfind() fails and sets Ferror to:
16 BEA Tuxedo ATMI FML Function Reference

CFfind, CFfind32(3fml)
[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, Ffind, Ffind32(3fml)
BEA Tuxedo ATMI FML Function Reference 17

Section 3fml - FML Functions
CFfindocc, CFfindocc32(3fml)

Name CFfindocc(), CFfindocc32() - find occurrence of converted value

Synopsis #include <stdio.h>
#include "fml.h"
FLDOCC
CFfindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len, int
 type)
#include "fml32.h"
FLDOCC32
CFfindocc32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
 len, int type)

Description CFfindocc() acts like Ffindocc() but first converts the value from the
user-specified type to the type of fieldid. CFfindocc() looks for an occurrence of
the specified field in the buffer that matches a user-supplied value, length and type.
CFfindocc() returns the occurrence number of the first field that matches. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to the value
being sought. len is the length of the value to be compared to input value if type is
FLD_CARRAY. type is the data type of the field in value.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFfindocc() or CFfindocc32() is being used, Ferror is set to FEBADOP.

CFfindocc32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFfindocc() or
CFfindocc32() while running in any context state, including TPINVALIDCONTEXT.

Return Values If the field value is not found or if other errors are detected, -1 is returned and
CFfindocc() sets Ferror to indicate the error condition.

Errors Under the following conditions, CFfindocc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
18 BEA Tuxedo ATMI FML Function Reference

CFfindocc, CFfindocc32(3fml)
[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL value parameter was specified).

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, Ffindocc, Ffindocc32(3fml)
BEA Tuxedo ATMI FML Function Reference 19

Section 3fml - FML Functions
CFget, CFget32(3fml)

Name CFget(), CFget32() - get field and convert

Synopsis #include <stdio.h>
#include "fml.h"
int
CFget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf, FLDLEN *len,
 int type)
#include "fml32.h"
int
CFget32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *buf,
 FLDLEN32 *len, int type)

Description CFget() is the conversion analog of Fget(). The main difference is that it copies a
converted value to the user-supplied buffer. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. buf is a pointer
to private data area. On input, len is a pointer to the length of the private data area. On
return, len is a pointer to the length of the returned value. If the len parameter is
NULL on input, it is assumed that the buffer is big enough to contain the field value
and the length of the value is not returned. If the buf parameter is NULL, the field
value is not returned. type is the data type the user wants the returned value converted
to.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFget() or CFget32() is being used, Ferror is set to FEBADOP.

CFget32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFget() or CFget32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFget() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
20 BEA Tuxedo ATMI FML Function Reference

CFget, CFget32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.

[FNOSPACE]
"no space in fielded buffer"
The size of the data area, as specified in len, is not large enough to hold the
field value.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, Fget, Fget32(3fml)
BEA Tuxedo ATMI FML Function Reference 21

Section 3fml - FML Functions
CFgetalloc, CFgetalloc32(3fml)

Name CFgetalloc(), CFgetalloc32() - get field, allocate space, convert

Synopsis #include <stdio.h>
#include "fml.h"
char *
CFgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, int type, FLDLEN
 *extralen)
#include "fml32.h"
char *
CFgetalloc32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, int type,
 FLDLEN32 *extralen)

Description CFgetalloc() gets a specified field from a buffer, allocates space, converts the field
to the type specified by the user and returns a pointer to its location. fbfr is a pointer
to a fielded buffer. fieldid is a field identifier. oc is the occurrence number of the
field. type is the data type the user wants the field to be converted to. On call,
extralen is a pointer to the length of additional space that may be allocated to receive
the value; on return, it is a pointer actual amount of space used. If extralen is NULL,
then no additional space is allocated and the actual length is not returned. The user is
responsible for freeing the returned (converted) value.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is encountered
when CFgetalloc() or CFgetalloc32() is being used, Ferror is set to FEBADOP.

CFgetalloc32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to CFgetalloc() or
CFgetalloc32() while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, CFgetalloc() returns a pointer to the converted value. On error, the
function returns NULL and sets Ferror to indicate the error condition.

Errors Under the following conditions, CFgetalloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
22 BEA Tuxedo ATMI FML Function Reference

CFgetalloc, CFgetalloc32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, Fgetalloc, Fgetalloc32(3fml)
BEA Tuxedo ATMI FML Function Reference 23

Section 3fml - FML Functions
F_error, F_error32(3fml)

Name F_error(), F_error32() - print error message for last error

Synopsis #include stdio.h>
#include "fml.h"
extern int Ferror;
void
F_error(char *msg)
#include "fml32.h"
extern int Ferror32;
void
F_error32(char *msg)

Description The function F_error() works like perror() for UNIX system errors; that is, it
produces a message on the standard error output (file descriptor 2), describing the last
error encountered during a call to a system or library function. The argument string msg
is printed first, then a colon and a blank, then the message and a newline. If msg is a
NULL pointer or points to a NULL string, the colon is not printed. To be of most use,
the argument string should include the name of the program that incurred the error. The
error number is taken from the external variable Ferror, which is set when errors
occur but not cleared when non-erroneous calls are made. In the MS-DOS and OS/2
environments, Ferror is redefined to FMLerror.

To immediately print an error message, F_error() should be called on an error return
from another FML function. When the error message is FEUNIX. Uunix_err() is
called.

F_error32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to F_error() or
F_error32() while running in any context state, including TPINVALIDCONTEXT.

Return Values F_error() is declared a void and as such does not have return values.

See Also Introduction to FML Functions

perror(3), Uunix_err(3) in a UNIX system reference manual
24 BEA Tuxedo ATMI FML Function Reference

F32to16, F16to32(3fml)
F32to16, F16to32(3fml)

Name F32to16(), F16to32() - convert 16-bit FML to/from 32-bit FML buffer

Synopsis #include <stdio.h>
#include "fml.h"
#include "fml32.h"
int
F32to16(FBFR *dest, FBFR32 *src)
int
F16to32(FBFR32 *dest, FBFR *src)

Description F32to16() converts a 32-bit FML buffer to a 16-bit FML buffer. It does this by
converting the buffer on a field-by-field basis and then creating the index for the
fielded buffer. A field is converted by generating a FLDID from a FLDID32, and
copying the field value (and field length for string, carray, and mbstring fields). dest
and src are pointers to the destination and source fielded buffers respectively. The
source buffer is not changed.

These functions can fail for lack of space; they can be reissued after allocating enough
additional space to complete the operation.

F16to32() converts a 16-bit FML buffer to a 32-bit FML buffer. It lives in the fml32
library or shared object and sets Ferror32 on error.

F32to16() lives in the FML library or shared object and sets Ferror on error. Note
that both fml.h and fml32.h must be included to use these functions; fml1632.h
may not be included in the same file.

F32to16() fails with FBADFLD for the following field types: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. F16to32() has no impact when
performed on these field types.

A thread in a multithreaded application may issue a call to F32to16() or F16to32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, F32to16()fails and sets Ferror to:
BEA Tuxedo ATMI FML Function Reference 25

Section 3fml - FML Functions
[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be copied to the destination fielded buffer but there is not
enough space remaining in the buffer. This error is also returned if a 32-bit
FML field is too long to fit into a 16-bit FML field. When this error is returned,
the destination buffer will contain no fields.

[FBADFLD]
"invalid field number or type"
This error occurs only for the F32to16() function. The source buffer has a
field identifier for which the field type is not one of the eight types supported
by 16-bit FML, or the field number is greater than 8191.

See Also Introduction to FML Functions
26 BEA Tuxedo ATMI FML Function Reference

Fadd, Fadd32(3fml)
Fadd, Fadd32(3fml)

Name Fadd(), Fadd32() - add new field occurrence

Synopsis #include stdio.h>
#include "fml.h"
int Fadd(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
int Fadd32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
len)

Description Fadd() adds the specified field value to the given buffer. fbfr is a pointer to a fielded
buffer. fieldid is a field identifier. value is a pointer to a new value; the pointer’s
type must be the same fieldid type as the value to be added. len is the length of the
value to be added; it is required only if type is FLD_CARRAY or FLD_MBSTRING.

The value to be added is contained in the location pointed to by the value parameter.
If one or more occurrences of the field already exist, then the value is added as a new
occurrence of the field, and is assigned an occurrence number 1 greater than the current
highest occurrence (to add a specific occurrence, Fchg() must be used).

In the “Synopsis” section above the value argument to Fadd() is described as a
character pointer data type (char * in C). Technically, this describes only one
particular kind of value passable to Fadd(). In fact, the type of the value argument
should be a pointer to an object of the same type as the type of the fielded-buffer
representation of the field being added. For example, if the field is stored in the buffer
as type FLD_LONG, then value should be of type pointer-to-long (long * in C).
Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Fadd() assumes that the
object pointed to by value has the same type as the stored type of the field being added.

For values of type FLD_PTR, Fadd32() stores the pointer value. The buffer pointed to
by a FLD_PTR field must be allocated using the tpalloc() call. For values of type
FLD_FML32, Fadd32() stores the entire FLD_FML32 field value, except the index. For
values of type FLD_VIEW32, Fadd() stores a pointer to a structure of type FVIEWFLD,
which contains vflags (a flags field, currently unused and set to 0), vname (a character
array containing the viewname), and data (a pointer to the view data stored as a C
structure). The application provides the vname and data to Fadd32().
BEA Tuxedo ATMI FML Function Reference 27

Section 3fml - FML Functions
For values of type FLD_MBSTRING, the value is the packed output argument of the
Fmbpack32() function, and the len argument is the length of the value in the size
output argument of Fmbpack32().

For values of type FLD_CARRAY, the len argument is the length of the value. For all
types other than FLD_CARRAY or FLD_MBSTRING, the length of the object referenced by
value is inferred from its type (for example, a value of type FLD_FLOAT is of length
sizeof(float)), and the contents of len are ignored.

Fadd32 is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fadd() or Fadd32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fadd() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid. (For example,
specifying a NULL value parameter to Fadd().)

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

See Also Introduction to FML Functions, CFadd, CFadd32(3fml), Fadds, Fadds32(3fml),
Fchg, Fchg32(3fml)
28 BEA Tuxedo ATMI FML Function Reference

Fadds, Fadds32(3fml)
Fadds, Fadds32(3fml)

Name Fadds(), Fadds32() - convert value from type FLD_STRING and add to buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fadds(FBFR *fbfr, FLDID fieldid, char *value)
#include "fml32.h"
int
Fadds32(FBFR32 *fbfr, FLDID32 fieldid, char *value)

Description Fadds() has been provided to handle the case of conversion from a user type of
FLD_STRING to the field type of fieldid and add it to the fielded buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. value is a pointer to the value
to be added.

This function calls CFadd() providing a type of FLD_STRING, and a len of 0.

Fadds32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fadds() or Fadds32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fadds() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.
BEA Tuxedo ATMI FML Function Reference 29

Section 3fml - FML Functions
[FTYPERR]
"invalid field type"
A field type is specified which is not valid.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying a NULL value parameter to Fadds())

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed during conversion of
carray (or mbstring) to string.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, CFchg, CFchg32(3fml), CFfind,
CFfind32(3fml), CFget, CFget32(3fml), Falloc, Falloc32(3fml), Fchgs,
Fchgs32(3fml), Ffinds, Ffinds32(3fml), Fgets, Fgets32(3fml), Fgetsa,
Fgetsa32(3fml)
30 BEA Tuxedo ATMI FML Function Reference

Falloc, Falloc32(3fml)
Falloc, Falloc32(3fml)

Name Falloc(), Falloc32() - allocate and initialize fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
FBFR *
Falloc(FLDOCC F, FLDLEN V)
#include "fml32.h"
FBFR32 *
Falloc32(FLDOCC32 F, FLDLEN32 V)

Description Falloc() dynamically allocates space using malloc() for a fielded buffer and calls
Finit() to initialize it. The parameters are the number of fields, F, and the number of
bytes of value space, V, for all fields that are to be stored in the buffer.

Falloc32() is used for larger buffers with more fields.

A thread in a multithreaded application may issue a call to Falloc() or Falloc32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Falloc() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
number of fields is less than 0, V is 0 or total size is greater than 65534).

See Also Introduction to FML Functions, Ffree, Ffree32(3fml), Fielded,
Fielded32(3fml), Finit, Finit32(3fml), Fneeded, Fneeded32(3fml),
Frealloc, Frealloc32(3fml), Fsizeof, Fsizeof32(3fml), Funused,
Funused32(3fml)

malloc(3) in a UNIX system reference manual
BEA Tuxedo ATMI FML Function Reference 31

Section 3fml - FML Functions
Fappend, Fappend32(3fml)

Name Fappend(), Fappend32() - append new field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fappend(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
int
Fappend32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32 len)

Description Fappend() adds the specified field value to the end of the given buffer. Fappend() is
useful in building large buffers in that it does not maintain the internal structures and
ordering necessary for general purpose FML access. The side effect of this
optimization is that a call to Fappend() may be followed only by additional calls to
Fappend(), calls to the FML indexing routines Findex() and Funindex(), or calls
to Free(), Fused(), Funused() and Fsizeof(). Calls to other FML routines made
before calling Findex() or Funindex() will result in an error with Ferror set to
FNOTFLD.

fbfr is a pointer to a fielded buffer. fieldid is a field identifier. value is a pointer
to a new value; the pointer’s type must be the same fieldid type as the value to be
added. len is the length of the value to be added; it is required only if type is
FLD_CARRAY or FLD_MBSTRING.

The value to be added is contained in the location pointed to by the value parameter.
If one or more occurrences of the field already exist, then the value is added as a new
occurrence of the field, and is assigned an occurrence number 1 greater than the current
highest occurrence (to add a specific occurrence, Fchg() must be used).

In the “Synopsis” section above the value argument to Fappend() is described as a
character pointer data type (char * in C). Technically, this describes only one
particular kind of value passable to Fappend(). In fact, the type of the value
argument should be a pointer to an object of the same type as the type of the
fielded-buffer representation of the field being added. For example, if the field is stored
in the buffer as type FLD_LONG, then value should be of type pointer-to-long (long *
in C). Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Fappend() assumes that
the object pointed to by value has the same type as the stored type of the field being
added.
32 BEA Tuxedo ATMI FML Function Reference

Fappend, Fappend32(3fml)
For values of type FLD_MBSTRING, the value is the packed output argument of the
Fmbpack32() function, and the len argument is the length of the value in the size
output argument of Fmbpack32().

For values of type FLD_CARRAY, the len argument is the length of the value. For all
types other than FLD_CARRAY or FLD_MBSTRING, the length of the object referenced by
value is inferred from its type (for example, a value of type FLD_FLOAT is of length
sizeof(float)), and the contents of len are ignored.

Fappend32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fappend() or
Fappend32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fappend() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid. (for example,
specifying a NULL value parameter to Fappend()).

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

See Also Introduction to FML Functions, Fadd, Fadd32(3fml), Ffree, Ffree32(3fml),
Findex, Findex32(3fml), Fsizeof, Fsizeof32(3fml), Funindex,
Funindex32(3fml), Funused, Funused32(3fml), Fused, Fused32(3fml)
BEA Tuxedo ATMI FML Function Reference 33

Section 3fml - FML Functions
Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml)

Name Fboolco(), Fboolco32(), Fvboolco(), Fvboolco32() - compile expression,
return evaluation tree

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fboolco(char *expression)
char *
Fvboolco(char *expression, char *viewname)
#include "fml32.h"
char *
Fboolco32(char *expression)
char *
Fvboolco32(char *expression, char *viewname)

Description Fboolco() compiles a Boolean expression, pointed to by expression, and returns a
pointer to the evaluation tree. The expressions recognized are close to the expressions
recognized in C. A description of the grammar can be found in the Programming a
BEA Tuxedo ATMI Application Using FML.

The evaluation tree produced by Fboolco() is used by the other Boolean functions
listed under “See Also;” this avoids having to recompile the expression.

Fboolco32() is used with 32-bit FML.

Fvboolco() and Fvboolco32() provide the same functionality for views. The
viewname parameter indicates the view from which the field offsets are taken.

This function fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is
encountered, Ferror is set to FEBADOP.

These functions are not supported on Workstation platforms.

A thread in a multithreaded application may issue a call to any of the functions
documented here—Fboolco(), Fboolco32(), Fvboolco(), or Fvboolco32()—
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.
34 BEA Tuxedo ATMI FML Function Reference

Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml)
Errors Under the following conditions, Fboolco() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression by Fboolco() other than an
unrecognized field name.

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables or viewfiles.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
expression is NULL).

[FBADVIEW]
"cannot find or get view"
viewname was not found in the files specified by VIEWDIR or VIEWFILES.

[FVFOPEN]
"cannot find or open viewfile"
While trying to find viewname, the program failed to find one of the files
specified by VIEWDIR or VIEWFILES.

[EUNIX]
"operating system error"
While trying to find viewname, the program failed to open one of the files
specified by VIEWDIR or VIEWFILES for reading.

[FVFSYNTAX]
"bad viewfile"
While trying to find viewname, one of the files specified by VIEWDIR or
VIEWFILES was corrupted or not a viewfile.

[FMALLOC]
"malloc failed"
While trying to find viewname, malloc() failed while allocating space to hold
the view information.
BEA Tuxedo ATMI FML Function Reference 35

Section 3fml - FML Functions
[FEBADOP]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, and FLD_VIEW32) is
specified.

Example #include "stdio.h"
#include "fml.h"
extern char *Fboolco(\|);
char *tree;
...
if((tree=Fboolco("FIRSTNAME %% 'J.*n' & SEX = 'M'")) == NULL)
 F_error("pgm_name");

This example compiles a Boolean expression that checks if the FIRSTNAME field is in
the buffer, begins with 'J' and ends with 'n' (for example, John, Jean, Jurgen, etc.) and
the SEX field equal to 'M'.

The first and second characters of the tree array form the least significant byte and the
most significant byte, respectively, of an unsigned 16-bit quantity that gives the length,
in bytes, of the entire array. This value is useful for copying or otherwise manipulating
the array.

See Also Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml), Fboolpr, Fboolpr32,
Fvboolpr, Fvboolpr32(3fml), Fldid, Fldid32(3fml)
36 BEA Tuxedo ATMI FML Function Reference

Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml)
Fboolev, Fboolev32, Fvboolev,
Fvboolev32(3fml)

Name Fboolev(), Fboolev32(), Fvboolev(), Fvboolev32() - evaluate buffer against
tree

Synopsis #include stdio.h>
#include "fml.h"
int
Fboolev(FBFR *fbfr, char *tree)
int
Fvboolev(char *cstruct, char *tree, char *viewname)
#include "fml32.h"
int
Fboolev32(FBFR32 *fbfr, char *tree)
int
Fvboolev32(char *cstruct, char *tree, char *viewname)

Description Fboolev() takes a pointer to a fielded buffer, fbfr, and a pointer to the evaluation
tree returned from Fboolco(), tree, and returns true (1) if the fielded buffer matches
the specified Boolean conditions and false (0) if it does not. This function does not
change either the fielded buffer or evaluation tree. The evaluation tree is one
previously compiled by Fboolco().

Fboolev32() is used with 32-bit FML.

Fvboolev() and Fvboolev32() provide the same functionality for views. The
viewname parameter indicates the view from which the field offsets are taken, and
should be the same view specified for Fvboolco() or Fvboolco32().

These functions are not supported on Workstation platforms.

A thread in a multithreaded application may issue a call to any of the functions
documented here—Fboolev(), Fboolev32(), Fvboolev(), or Fvboolev32()—
while running in any context state, including TPINVALIDCONTEXT.

Return Values Fboolev() returns 1 if the expression in the buffer matches the evaluation tree. It
returns 0 if the expression fails to match the evaluation tree. This function returns -1
on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fboolev() fails and sets Ferror to:
BEA Tuxedo ATMI FML Function Reference 37

Section 3fml - FML Functions
[FALIGNERR]
"fielded buffer not aligned"
The fbfr buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The fbfr buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying a NULL tree parameter).

[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression other than an unrecognized
field name.

[FBADVIEW]
"cannot find or get view"
viewname was not found in the files specified by VIEWDIR or VIEWFILES.

[FVFOPEN]
"cannot find or open viewfile"
While trying to find viewname, the program failed to find one of the files
specified by VIEWDIR or VIEWFILES.

[EUNIX]
"operating system error"
While trying to find viewname, the program failed to open one of the files
specified by VIEWDIR or VIEWFILES for reading.

[FVFSYNTAX]
"bad viewfile"
While trying to find viewname, one of the files specified by VIEWDIR or
VIEWFILES was corrupted or not a viewfile.
38 BEA Tuxedo ATMI FML Function Reference

Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml)
[FMALLOC]
"malloc failed"
While trying to find viewname, malloc() failed while allocating space to hold
the view information.

Example Using the evaluation tree compiled in the example for Fboolco():

#include stdio.h>
#include "fml.h"
#include "fld.tbl.h"
FBFR *fbfr;
...
Fchg(fbfr,FIRSTNAME,0,"John",0);
Fchg(fbfr,SEX,0,"M",0);
if(Fboolev(fbfr,tree) > 0)
 fprintf(stderr,"Buffer selected\\\\n");
else
 fprintf(stderr,"Buffer not selected\\\\n");

would print Buffer selected.

See Also Introduction to FML Functions, Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml), Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml)
BEA Tuxedo ATMI FML Function Reference 39

Section 3fml - FML Functions
Fboolpr, Fboolpr32, Fvboolpr,
Fvboolpr32(3fml)

NAME Fboolpr(), Fboolpr32(), Fvboolpr(), Fvboolpr32() - print Boolean expression
as parsed

Synopsis #include <stdio.h>
#include "fml.h"
void
Fboolpr(char *tree, FILE *iop)
int
Fvboolpr(char *tree, FILE *iop, char *viewname)
#include "fml32.h"
void
Fboolpr32(char *tree, FILE *iop)
int
Fvboolpr32(char *tree, FILE *iop, char *viewname)

Description Fboolpr() prints a compiled expression to the specified output stream. The
evaluation tree, tree, is one previously created with Fboolco(). iop is a pointer of
type FILE to the output stream. The output is fully parenthesized, as it was parsed (as
indicated by the evaluation tree). The function is useful for debugging.

Fboolpr32() is used with 32-bit FML.

Fvboolpr() and Fvboolpr32() provide the same functionality for views. The
viewname parameter indicates the view from which the field offsets are taken, and
should be the same view specified for Fvboolco() or Fvboolco32().

These functions are not supported on Workstation platforms.

A thread in a multithreaded application may issue a call to any of the functions
documented here—Fboolpr(), Fboolpr32(), Fvboolpr(), or Fvboolpr32()—
while running in any context state, including TPINVALIDCONTEXT.

Return Values Fboolpr() is declared as returning a void, so there are no return values. Fvboolpr()
returns -1 if the viewname is not valid.

Errors Under the following conditions, Fvboolpr() fails and sets Ferror to:
40 BEA Tuxedo ATMI FML Function Reference

Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml)
[FBADVIEW]
"cannot find or get view"
viewname was not found in the files specified by VIEWDIR or VIEWFILES.

[FVFOPEN]
"cannot find or open viewfile"
While trying to find viewname, the program failed to find one of the files
specified by VIEWDIR or VIEWFILES.

[EUNIX]
"operating system error"
While trying to find viewname, the program failed to open one of the files
specified by VIEWDIR or VIEWFILES for reading.

[FVFSYNTAX]
"bad viewfile"
While trying to find viewname, one of the files specified by VIEWDIR or
VIEWFILES was corrupted or not a viewfile.

[FMALLOC]
"malloc failed"
While trying to find viewname, malloc() failed while allocating space to hold
the view information.

Portability This function is not supported using the BEA Tuxedo System Workstation DLL for
Windows.

See Also Introduction to FML Functions, Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml)
BEA Tuxedo ATMI FML Function Reference 41

Section 3fml - FML Functions
Fchg, Fchg32(3fml)

Name Fchg(), Fchg32() - change field occurrence value

Synopsis #include <stdio.h>
#include "fml.h"
int
Fchg(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value, FLDLEN len)
#include "fml32.h"
int
Fchg32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *value,
 FLDLEN32 len)

Description Fchg() changes the value of a field in the buffer. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. value is a
pointer to a new value, its type must be the same type as the value to be changed (see
below). len is the length of the value to be changed; it is required only if field type is
FLD_CARRAY or FLD_MBSTRING.

If an occurrence of -1 is specified, then the field value is added as a new occurrence to
the buffer. If the specified field occurrence is found, then the field value is modified to
the value specified. If a field occurrence is specified that does not exist, then NULL
values are added for the missing occurrences until the desired occurrence can be added
(for example, changing field occurrence 4 for a field that does not exist on a buffer will
cause 3 NULL values to be added followed by the specified field value). NULL values
consist of the NULL string (1 byte in length) for string and character values, 0 for long
and short fields, 0.0 for float and double values, and a zero-length string for a character
array. The new or modified value is contained in value and its length is given in len
if it is a character array (ignored in other cases). If value is NULL, then the field
occurrence is deleted. A value to be deleted that is not found, is considered an error.

In the “Synopsis” section above the value argument to Fchg() is described as a
character pointer data type (char * in C). Technically, this describes only one particular
kind of value passable to Fchg(). In fact, the type of the value argument should be a
pointer to an object of the same type as the type of the fielded-buffer representation of
the field being changed. For example, if the field is stored in the buffer as type
FLD_LONG, then value should be of type pointer-to-long (long * in C). Similarly, if
the field is stored as FLD_SHORT, then value should be of type pointer-to-short (short
* in C). The important thing is that Fchg() assumes that the object pointed to by value
has the same type as the stored type of the field being changed.
42 BEA Tuxedo ATMI FML Function Reference

Fchg, Fchg32(3fml)
For values of type FLD_PTR, Fchg32() stores the pointer value. The buffer pointed to
by a FLD_PTR field must be allocated using the tpalloc() call. For values of type
FLD_FML32, Fchg32() stores the entire FLD_FML32 field value, except the index. For
values of type FLD_VIEW32, Fchg() stores a pointer to a structure of type FVIEWFLD,
which contains vflags (a flags field, currently unused and set to 0), vname (a character
array containing the viewname), and data (a pointer to the view data stored as a C
structure). The application provides the vname and data to Fchg32().

For values of type FLD_MBSTRING, the value is the packed output argument of the
Fmbpack32() function, and the len argument is the length of the value in the size
output argument of Fmbpack32().

For values of type FLD_CARRAY, the len argument is the length of the value. For all
types other than FLD_CARRAY or FLD_MBSTRING, the length of the object referenced by
value is inferred from its type (for example, a value of type FLD_FLOAT is of length
sizeof(float)), and the contents of len are ignored.

Fchg32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fchg() or Fchg32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fchg() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested for deletion but the specified field and/or
occurrence was not found in the fielded buffer.

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a fielded buffer but there is not
enough space remaining in the buffer.
BEA Tuxedo ATMI FML Function Reference 43

Section 3fml - FML Functions
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, CFchg, CFchg32(3fml), Fadd, Fadd32(3fml),
Fcmp, Fcmp32(3fml), Fdel, Fdel32(3fml)
44 BEA Tuxedo ATMI FML Function Reference

Fchgs, Fchgs32(3fml)
Fchgs, Fchgs32(3fml)

Name Fchgs(), Fchgs32() - change field occurrence - caller presents string

Synopsis #include <stdio.h>
#include "fml.h"
int
Fchgs(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *value)
#include "fml32.h"
int
Fchgs32(FBFR32 *fbfr, FLDID32 fieldid, int oc, char *value)

Description Fchgs(), is provided to handle the case of conversion from a user type of
FLD_STRING. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is
the occurrence number of the field. value is a pointer to the string to be added. The
function calls its non-string-function counterpart, CFchg(), providing a type of
FLD_STRING, and a len of 0 to convert from a string to the field type of fieldid.

Fchgs32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fchgs() or Fchgs32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fchgs() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a fielded buffer but there is not
enough space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.
BEA Tuxedo ATMI FML Function Reference 45

Section 3fml - FML Functions
[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, CFchg, CFchg32(3fml), Fchg, Fchg32(3fml)
46 BEA Tuxedo ATMI FML Function Reference

Fchksum, Fchksum32(3fml)
Fchksum, Fchksum32(3fml)

Name Fchksum(), Fchksum32() - compute checksum for fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
long
Fchksum(FBFR *fbfr)
#include "fml32.h"
long
Fchksum32(FBFR32 *fbfr)

Description For extra-reliable I/O, a checksum may be calculated using Fchksum() and stored in
a fielded buffer being written out. fbfr is a pointer to a fielded buffer. The stored
checksum may be inspected by the receiving process to verify that the entire buffer
was received.

For values of type FLD_PTR, the name of the pointer field (rather than the pointer or
the data referenced by the pointer) is included in the checksum calculation.

Fchksum32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fchksum() or
Fchksum32() while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, Fchksum() returns the checksum. This function returns -1 on error and
sets Ferror to indicate the error condition.

Errors Under the following conditions, Fchksum() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fread, Fread32(3fml), Fwrite,
Fwrite32(3fml)
BEA Tuxedo ATMI FML Function Reference 47

Section 3fml - FML Functions
Fcmp, Fcmp32(3fml)

Name Fcmp(), Fcmp32() - compare two fielded buffers

Synopsis #include <stdio.h>
#include "fml.h"
int
Fcmp(FBFR *fbfr1, FBFR *fbfr2)
#include "fml32.h"
int
Fcmp32(FBFR32 *fbfr1, FBFR32 *fbfr2)

Description Fcmp() compares the field identifiers and then the field values of two FML buffers.
fbfr1 and fbfr2 are pointers to the fielded buffers to be compared.

For values of type FLD_PTR, two pointer fields are considered equal if the pointer
values (addresses) are equal. For values of type FLD_FML32, two fields are considered
equal if all field occurrences and values are equal. For values of type FLD_VIEW32, two
fields are considered equal if the viewnames are the same, and if all structure member
occurrences and values are equal.

Fcmp32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fcmp() or Fcmp32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values The function returns a 0 if the two buffers are identical. It returns a -1 on any of the
following conditions:

The fieldid of a fbfr1 field is less than the fieldid of the corresponding
field of fbfr2.

The value of a field in fbfr1 is less than the value of the corresponding field of
fbfr2.

fbfr1 has fewer fields or field occurrences than fbfr2.

Fcmp() returns a 1 if any of the reverse set of conditions is true, for example, the
fieldid of a fbfr1 field is greater than the fieldid of the corresponding field of fbfr2.
The actual sizes of the buffers (that is, the sizes passed to Falloc()) are not
considered; only the data in the buffers. This function returns -2 on error and sets
Ferror to indicate the error condition.
48 BEA Tuxedo ATMI FML Function Reference

Fcmp, Fcmp32(3fml)
Errors Under the following conditions, Fcmp() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fadd, Fadd32(3fml), Fchg, Fchg32(3fml)
BEA Tuxedo ATMI FML Function Reference 49

Section 3fml - FML Functions
Fconcat, Fconcat32(3fml)

Name Fconcat(), Fconcat32() - concatenate source to destination buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fconcat(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fconcat32(FBFR32 *dest, FBFR32 *src)

Description Fconcat() adds fields from the source buffer to the fields that already exist in the
destination buffer. dest and src are pointers to the destination and source fielded
buffers, respectively. Occurrences in the destination buffer, if any, are maintained and
new occurrences from the source buffer are added with greater occurrence numbers for
the field.

Fconcat32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fconcat() or
Fconcat32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fconcat() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source or the destination buffer is not a fielded buffer or has not been
initialized by Finit().
50 BEA Tuxedo ATMI FML Function Reference

Fconcat, Fconcat32(3fml)
[FNOSPACE]
"no space in fielded buffer"
A field value is to be added in a fielded buffer but there is not enough space
remaining in the buffer.

See Also Introduction to FML Functions, Fjoin, Fjoin32(3fml), Fupdate,
Fupdate32(3fml)
BEA Tuxedo ATMI FML Function Reference 51

Section 3fml - FML Functions
Fcpy, Fcpy32(3fml)

Name Fcpy(), Fcpy32() - copy source to destination buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fcpy(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fcpy32(FBFR32 *dest, FBFR32 *src)

Description Fcpy() is used to copy the contents of one fielded buffer to another fielded buffer.
dest and src are pointers to the destination and source fielded buffers respectively.
Fcpy() expects the destination to be a fielded buffer, and thus can check that it is large
enough to accommodate the data from the source buffer.

For values of type FLD_PTR, Fcpy32() copies the buffer pointer. The application
programmer must manage the reallocation and freeing of buffers when the associated
pointer is copied.

Fcpy32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fcpy() or Fcpy32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fcpy() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source or the destination buffer is not a fielded buffer or has not been
initialized by Finit().
52 BEA Tuxedo ATMI FML Function Reference

Fcpy, Fcpy32(3fml)
[FNOSPACE]
"no space in fielded buffer"
The destination buffer is not large enough to hold the source buffer.

See Also Introduction to FML Functions, Fmove, Fmove32(3fml)
BEA Tuxedo ATMI FML Function Reference 53

Section 3fml - FML Functions
Fdel, Fdel32(3fml)

Name Fdel(), Fdel32() - delete field occurrence from buffer

Synopsis #include stdio.h>
#include "fml.h"
int
Fdel(FBFR *fbfr, FLDID fieldid, FLDOCC oc)
#include "fml32.h"
int
Fdel32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fdel() deletes the specified field occurrence from the buffer. fbfr is a pointer to a
fielded buffer. fieldid is a field identifier. oc is the occurrence number of the field.

Note that when multiple occurrences of a field exist in the fielded buffer and a field
occurrence is deleted that is not the last occurrence, also higher occurrences in the
buffer are shifted down by one. To maintain the same occurrence number for all
occurrences, use Fchg() to set the field occurrence value to a NULL value.

For values of type FLD_PTR, Fdel32() deletes the FLD_PTR field occurrence without
changing the referenced buffer or freeing the pointer. The data buffer is treated as an
opaque pointer.

Fdel32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fdel() or Fdel32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdel() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
54 BEA Tuxedo ATMI FML Function Reference

Fdel, Fdel32(3fml)
[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fadd, Fadd32(3fml), Fchg, Fchg32(3fml),
Fdelall, Fdelall32(3fml), Fdelete, Fdelete32(3fml)
BEA Tuxedo ATMI FML Function Reference 55

Section 3fml - FML Functions
Fdelall, Fdelall32(3fml)

Name Fdelall(), Fdelall32() - delete all field occurrences from buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fdelall(FBFR *fbfr, FLDID fieldid)
#include "fml32.h"
int
Fdelall32(FBFR32 *fbfr, FLDID32 fieldid)

Description Fdelall() deletes all occurrences of the specified field in the buffer. fbfr is a pointer
to a fielded buffer. fieldid is a field identifier. If no occurrences of the field are
found, it is considered an error.

For values of type FLD_PTR, Fdelall32() deletes the FLD_PTR field occurrence
without changing the referenced buffer or freeing the pointer. The data buffer is treated
as an opaque pointer.

Fdelall32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fdelall() or
Fdelall32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdelall() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field is requested but the specified field was not found in the fielded buffer.
56 BEA Tuxedo ATMI FML Function Reference

Fdelall, Fdelall32(3fml)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fdel, Fdel32(3fml), Fdelete,
Fdelete32(3fml)
BEA Tuxedo ATMI FML Function Reference 57

Section 3fml - FML Functions
Fdelete, Fdelete32(3fml)

Name Fdelete(), Fdelete32() - delete list of fields from buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Fdelete(FBFR *fbfr, FLDID *fieldid)
#include "fml32.h"
int
Fdelete32(FBFR32 *fbfr, FLDID32 *fieldid)

Description Fdelete() deletes all occurrences of all fields listed in the array of field identifiers,
fieldid[]. The last entry in the array must be BADFLDID. fbfr is a pointer to a
fielded buffer. fieldid is a pointer to an array of field identifiers. This is a more
efficient way of deleting several fields from a buffer instead of using several
Fdelall() calls. The update is done in-place. The array of field identifiers may be
rearranged by Fdelete() (they are sorted, if not already, in numeric order).

For values of type FLD_PTR, Fdelete32() deletes the FLD_PTR field occurrence
without changing the referenced buffer or freeing the pointer. The data buffer is treated
as an opaque pointer.

Fdelete() returns success even if no fields are deleted from the fielded buffer.

Fdelete32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fdelete() or
Fdelete32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fdelete() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
58 BEA Tuxedo ATMI FML Function Reference

Fdelete, Fdelete32(3fml)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fdel, Fdel32(3fml), Fdelall,
Fdelall32(3fml)
BEA Tuxedo ATMI FML Function Reference 59

Section 3fml - FML Functions
Fextread, Fextread32(3fml)

Name Fextread(), Fextread32() - build fielded buffer from printed format

Synopsis #include <stdio.h>
#include "fml.h"
int
Fextread(FBFR *fbfr, FILE *iop)
#include "fml32.h"
int
Fextread32(FBFR32 *fbfr, FILE *iop)

Description Fextread() may be used to construct a fielded buffer from its printed format (that is,
from the output of Fprint()). The parameters are a pointer to a fielded buffer, fbfr,
and a pointer to a file stream, iop. The input file format is basically the same as the
output format of Fprint(), that is:

[flag] fldname or fldid tab> fldval (or fldname, if flag is ``='')

The optional flags and their meanings are as follows:

+
Occurrence 0 of the field in the fielded buffer should be changed to the value
provided.

 -
Occurrence 0 of the field named should be deleted from the fielded buffer. The
tab character is required; any field value is ignored.

=
In this case, the last field on the input line is the name of a field in the fielded
buffer. The value of occurrence 0 of that field should be assigned to occurrence
0 of the first field named on the input line.

The line is treated as a comment and is ignored.

If no flag is specified, a new occurrence of the field named by fldname with value
fldval is added to the fielded buffer. A trailing newline (-) must be provided after
each completed input buffer.
60 BEA Tuxedo ATMI FML Function Reference

Fextread, Fextread32(3fml)
For values of type FLD_FML32 and FLD_VIEW32, Fextread32() generates nested
FML32 buffers and VIEW32 fields, respectively. This function ignores the FLD_PTR
field type. No error is returned if a value of type FLD_PTR is supplied to the function.

Fextread32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fextread() or
Fextread32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fextread() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

[FEUNIX]
"UNIX system call error"
A UNIX system call error occurred. The external integer errno should have
been set to indicate the error by the system call, and the external integer
Uunixerr (values defined in Uunix.h) is set to the system call that returned
the error.

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables.

[FSYNTAX]
"bad syntax in format"
A syntax error was found in the external buffer format. Possible errors are: an
BEA Tuxedo ATMI FML Function Reference 61

Section 3fml - FML Functions
unexpected end-of-file indicator, input lines not in the form fieldid or name
tab> value two control characters, field values greater than 1000 characters,
or an invalid hex escape sequence.

[FNOTPRES]
"field not present"
A field to be deleted is not found in the fielded buffer.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FEINVAL]
"invalid parameter"
The value of iop is NULL.

Portability This function is not supported using the BEA Tuxedo System Workstation DLL for
Windows.

See Also Introduction to FML Functions, Fprint, Fprint32(3fml)
62 BEA Tuxedo ATMI FML Function Reference

Ffind, Ffind32(3fml)
Ffind, Ffind32(3fml)

Name Ffind(), Ffind32() - find field occurrence in buffer

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffind(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *len)
#include "fml32.h"
char *
Ffind32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32 *len)

Description Ffind() finds the value of the specified field occurrence in the buffer. fbfr is a
pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence number
of the field. If the field is found, its length is set into *len, and its location is returned
as the value of the function. If the value of len is NULL, then the field length is not
returned. Ffind() is useful for gaining read-only access to a field. In no case should
the value returned by Ffind() be used to modify the buffer.

In general, because proper alignment within a buffer is not guaranteed, the locations in
which the values of types FLD_LONG, FLD_FLOAT, FLD_DOUBLE, FLD_PTR,
FLD_FML32, and FLD_VIEW32 are stored prevents these values from being used
directly as their stored type. Such values must be copied first to a suitably aligned
memory location. Accessing such fields through the conversion function CFfind()
does guarantee the proper alignment of the found converted value. Buffer modification
should be done only by the Fadd() or Fchg() function. The values returned by
Ffind() and Ffindlast() are valid only so long as the buffer remains unmodified.

Ffind32() does not check for occurrences of the specified field in embedded buffers
as provided by the FLD_FML32 and FLD_VIEW32 field types.

For a specified fieldid of type FLD_MBSTRING, the value returned by Ffind32()
may be analyzed using the Fmbunpack(32) function.

Ffind32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ffind() or Ffind32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values In the “Synopsis” section above the return value to Ffind() is described as a character
pointer data type (char * in C). Actually, the pointer returned points to an object that
has the same type as the stored type of the field.
BEA Tuxedo ATMI FML Function Reference 63

Section 3fml - FML Functions
This function returns a pointer to NULL on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Ffind() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Ffindlast, Ffindlast32(3fml), Ffindocc,
Ffindocc32(3fml), Ffinds, Ffinds32(3fml)
64 BEA Tuxedo ATMI FML Function Reference

Ffindlast, Ffindlast32(3fml)
Ffindlast, Ffindlast32(3fml)

Name Ffindlast(), Ffindlast32() - find last occurrence of field in buffer

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffindlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, FLDLEN *len)
#include "fml32.h"
char *
Ffindlast32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 *oc, FLDLEN32
*len)

Description Ffindlast() finds the last occurrence of a field in a buffer. fbfr is a pointer to a
fielded buffer. fieldid is a field identifier. oc is a pointer to an integer that is used to
receive the occurrence number of the field. len is the length of the value. If there are
no occurrences of the field in the buffer, NULL is returned. Generally, Ffindlast()
acts like Ffind(). The major difference is that with Ffindlast the user does not
supply a field occurrence. Instead, both the value and occurrence number of the last
occurrence of the field are returned. In order to return the occurrence number of the
last field, the occurrence argument, oc, to Ffindlast() is a pointer-to-integer, and
not an integer, as it is to Ffind(). If oc is specified to be NULL, the occurrence
number of the last occurrence is not returned. If the value of len is NULL, then the
field length is not returned.

In general, because proper alignment within a buffer is not guaranteed, the locations in
which the values of types FLD_LONG, FLD_FLOAT, FLD_DOUBLE, FLD_PTR,
FLD_FML32, and FLD_VIEW32 are stored prevents these values from being used
directly as their stored type. Such values must be copied first to a suitably aligned
memory location. Accessing such fields through the conversion function CFfind()
does guarantee the proper alignment of the found converted value. Buffer modification
should be done only by the Fadd() or Fchg() function. The values returned by
Ffind()and Ffindlast() are valid only so long as the buffer remains unmodified.

Ffindlast32() does not check for occurrences of the specified field in embedded
buffers as provided by the FLD_FML32 and FLD_VIEW32 field types.

For a specified fieldid of type FLD_MBSTRING, the value returned by
Ffindlast32() may be analyzed using the Fmbunpack(32) function.

Ffindlast32() is used with 32-bit FML.
BEA Tuxedo ATMI FML Function Reference 65

Section 3fml - FML Functions
A thread in a multithreaded application may issue a call to Ffindlast() or
Ffindlast32() while running in any context state, including TPINVALIDCONTEXT.

Return Values In the “Synopsis” section above the return value to Ffindlast() is described as a
character pointer data type (char * in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffindlast() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field is requested but the specified field was not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, CFfind, CFfind32(3fml), Fadd, Fadd32(3fml),
Fchg, Fchg32(3fml), Ffind, Ffind32(3fml), Ffindocc, Ffindocc32(3fml),
Ffinds, Ffinds32(3fml)
66 BEA Tuxedo ATMI FML Function Reference

Ffindocc, Ffindocc32(3fml)
Ffindocc, Ffindocc32(3fml)

Name Ffindocc(), Ffindocc32() - find occurrence of field value

Synopsis #include <stdio.h>
#include "fml.h"
FLDOCC
Ffindocc(FBFR *fbfr, FLDID fieldid, char *value, FLDLEN len)
#include "fml32.h"
FLDOCC32
Ffindocc32(FBFR32 *fbfr, FLDID32 fieldid, char *value, FLDLEN32
len)

Description Ffindocc() looks at occurrences of the specified field in the buffer and returns the
occurrence number of the first field occurrence that matches the user-specified field
value. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. The value to
be found is contained in the location pointed to by the value parameter. len is the
length of the value if its type is FLD_CARRAY or FLD_MBSTRING. If fieldid is field
type FLD_STRING and if len is not 0, pattern matching is done on the string. The
pattern match supported is the same as the patterns described in regcmp(3) (in UNIX
reference manuals). In addition, the alternation of regular expressions is supported (for
example, ''A|B'' matches with ''A'' or ''B''). The pattern must match the entire field value
(that is, the pattern ''value'' is implicitly treated as ''^value$''). The version of
Ffindocc() provided for use in the MS-DOS and OS/2 environments does not
support the regcmp() pattern matching for FLD_STRING fields; it uses strcmp() (in
UNIX reference manuals).

In the “Synopsis” section above the value argument to Ffindocc() is described as a
character pointer data type (char * in C). Technically, this describes only one
particular kind of value passable to Ffindocc(). In fact, the type of the value
argument should be a pointer to an object of the same type as the type of the
fielded-buffer representation of the field being found. For example, if the field is stored
in the buffer as type FLD_LONG, then value should be of type pointer-to-long (long *
in C). Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Ffindocc() assumes that
the object pointed to by value has the same type as the stored type of the field being
found.
BEA Tuxedo ATMI FML Function Reference 67

Section 3fml - FML Functions
For values of type FLD_PTR, Ffindocc32() finds the occurrence of a field that
matches a specified pointer value. For values of type FLD_FML32, two fields are
considered equal if all field occurrences and values are equal. For values of type
FLD_VIEW32, two fields are considered equal if the viewnames are the same, and if all
structure member occurrences and values are equal.

For values of type FLD_MBSTRING, the value is the packed output argument of the
Fmbpack32() function, and the len argument is the length of the value in the size
output argument of Fmbpack32().

Ffindocc32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ffindocc() or
Ffindocc32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffindocc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field value is requested but the specified field and/or value was not found in
the fielded buffer.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
passing a NULL value parameter to Ffindocc() or specifying an invalid string
pattern).

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Ffind, Ffind32(3fml), Ffindlast,
Ffindlast32(3fml), Ffinds, Ffinds32(3fml), regcmp(3) in a UNIX system
reference manual
68 BEA Tuxedo ATMI FML Function Reference

Ffinds, Ffinds32(3fml)
Ffinds, Ffinds32(3fml)

Name Ffinds(), Ffinds32() - return ptr to string representation

Synopsis #include <stdio.h>
#include "fml.h"
char *
Ffinds(FBFR *fbfr, FLDID fieldid, FLDOCC oc)
#include "fml32.h"
char *
Ffinds32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Ffinds() is provided to handle the case of conversion to a user type of FLD_STRING.
fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence
number of the field. The specified field occurrence is found and converted from its type
in the buffer to a NULL-terminated string. Basically, this macro calls its conversion
function counterpart, CFfind(), providing a utype of FLD_STRING, and a ulen of 0.
The duration of the validity of the pointer returned by Ffinds() is the same as that
described for CFfind().

Ffinds32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ffinds() or Ffinds32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffinds() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.
BEA Tuxedo ATMI FML Function Reference 69

Section 3fml - FML Functions
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field type is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc()failed while converting carray
(or mbstring) to string.

See Also Introduction to FML Functions, CFfind, CFfind32(3fml), Ffind,
Ffind32(3fml)
70 BEA Tuxedo ATMI FML Function Reference

Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32(3fml)
Ffloatev, Ffloatev32, Fvfloatev,
Fvfloatev32(3fml)

Name Ffloatev(), Ffloatev32(), Fvfloatev(), Fvfloatev32() - return value of
expression as a double

Synopsis #include <stdio.h>
#include "fml.h"
double
Ffloatev(FBFR *fbfr, char *tree)
double
Fvfloatev(char *cstruct, char *tree, char *viewname)
#include "fml32.h"
double
Ffloatev32(FBFR32 *fbfr, char *tree)
double
Fvfloatev32(char *cstruct, char *tree, char *viewname)

Description Ffloatev() takes a pointer to a fielded buffer, fbfr, and a pointer to the evaluation
tree returned from Fboolco(), tree, and returns the value of the (arithmetic)
expression, represented by the tree, as a double. This function does not change either
the fielded buffer or the evaluation tree.

Ffloatev32() is used with 32-bit FML.

Fvfloatev() and Fvfloatev32() provide the same functionality for views. The
viewname parameter indicates the view from which the field offsets are taken, and
should be the same view specified for Fvboolco() or Fvboolco32().

These functions are not supported on Workstation platforms.

A thread in a multithreaded application may issue a call to any of the functions
documented here—Ffloatev(), Ffloatev32(), Fvfloatev(), or
Fvfloatev32()—while running in any context state, including TPINVALIDCONTEXT.

Return Values On success Ffloatev() returns the value of an expression as a double.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffloatev() fails and sets Ferror to:
BEA Tuxedo ATMI FML Function Reference 71

Section 3fml - FML Functions
[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

[FSYNTAX]
"bad syntax in Boolean expression"
A syntax error was found in a Boolean expression tree.

[FBADVIEW]
"cannot find or get view"
viewname was not found in the files specified by VIEWDIR or VIEWFILES.

[FVFOPEN]
"cannot find or open viewfile"
While trying to find viewname, the program failed to find one of the files
specified by VIEWDIR or VIEWFILES.

[EUNIX]
"operating system error"
While trying to find viewname, the program failed to open one of the files
specified by VIEWDIR or VIEWFILES for reading.

[FVFSYNTAX]
"bad viewfile"
While trying to find viewname, one of the files specified by VIEWDIR or
VIEWFILES was corrupted or not a viewfile.

[FMALLOC]
"malloc failed"
While trying to find viewname, malloc() failed while allocating space to hold
the view information.

See Also Introduction to FML Functions, Fboolco, Fboolco32, Fvboolco,
Fvboolco32(3fml), Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml)
72 BEA Tuxedo ATMI FML Function Reference

Ffprint, Ffprint32(3fml)
Ffprint, Ffprint32(3fml)

Name Ffprint(), Ffprint32() - print fielded buffer to specified stream

Synopsis #include <stdio.h>
#include "fml.h"
int
Ffprint(FBFR *fbfr, FILE *iop)
#include "fml32.h"
int
Ffprint32(FBFR32 *fbfr, FILE *iop)

Description Ffprint() is similar to Fprint(), except the text is printed to a specified output
stream. fbfr is a pointer to a fielded buffer. iop is a pointer of type FILE that points
to the output stream.

For each field in the buffer, the output prints the field name and field value separated
by a tab. Fname() is used to determine the field name; if the field name cannot be
determined, then the field identifier is printed. Non-printable characters in string and
character array field values are represented by a backslash followed by their
two-character hexadecimal value. A newline is printed following the output of the
printed buffer.

For values of type FLD_PTR, Ffprint32() prints the field name or field identifier and
the pointer value in hexadecimal. Although this function prints pointer information,
the Fextread32() function ignores the FLD_PTR field type.

For values of type FLD_FML32, Ffprint32() recursively prints the FML32 buffer,
with leading tabs added for each level of nesting. For values of type FLD_VIEW32,
Ffprint32() prints the VIEW32 field name and structure member name/value pairs.

Ffprint32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ffprint() or
Ffprint32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffprint() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
BEA Tuxedo ATMI FML Function Reference 73

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

Portability This function is not supported using the BEA Tuxedo System Workstation DLL for
Windows.

See Also Introduction to FML Functions, Fprint, Fprint32(3fml)
74 BEA Tuxedo ATMI FML Function Reference

Ffree, Ffree32(3fml)
Ffree, Ffree32(3fml)

Name Ffree(), Ffree32() - free space allocated for fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Ffree(FBFR *fbfr)
#include "fml32.h"
int
Ffree32(FBFR32 *fbfr)

Description Ffree() is used to recover space allocated to its argument fielded buffer. fbfr is a
pointer to a fielded buffer. The fielded buffer is invalidated, that is, it is made
non-fielded, and then freed. Ffree32() does not free the memory area referenced by
a pointer in a FLD_PTR field.

Ffree() is recommended as opposed to free() (in UNIX system reference manuals),
because Ffree()invalidates a fielded buffer whereas free() does not. It is important
to invalidate fielded buffers because malloc() (in UNIX system reference manuals)
reuses memory that has been freed without clearing it. Thus, if free() were used, it
would be possible for malloc() to return a piece of memory that looks like a valid
fielded buffer but is not.

Ffree32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ffree() or Ffree32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ffree() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
BEA Tuxedo ATMI FML Function Reference 75

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Falloc, Falloc32(3fml), Frealloc,
Frealloc32(3fml)

free(3), malloc(3) in a UNIX system reference manual
76 BEA Tuxedo ATMI FML Function Reference

Fget, Fget32(3fml)
Fget, Fget32(3fml)

Name Fget(), Fget32() - get copy and length of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fget(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *loc, FLDLEN
 *maxlen)
#include "fml32.h"
int
Fget32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *loc,
 FLDLEN32 *maxlen)

Description Fget() should be used to retrieve a field from a fielded buffer when the value is to be
modified. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. The caller provides Fget() with a pointer to a private
data area, loc, as well as the length of the data area, *maxlen, and the length of the
field is returned in *maxlen. If maxlen is NULL when the function is called, then it is
assumed that the data area for the field value loc is big enough to contain the field
value and the length of the value is not returned. If loc is NULL, the value is not
retrieved. Thus, the function call can be used to determine the existence of the field.

In the “Synopsis” section above the value argument to Fget() is described as a
character pointer data type (char * in C). Technically, this describes only one
particular kind of value passable to Fget(). In fact, the type of the value argument
should be a pointer to an object of the same type as the type of the fielded-buffer
representation of the field being retrieved. For example, if the field is stored in the
buffer as type FLD_LONG, then value should be of type pointer-to-long (long * in C).
Similarly, if the field is stored as FLD_SHORT, then value should be of type
pointer-to-short (short * in C). The important thing is that Fget() assumes that the
object pointed to by value has the same type as the stored type of the field being
retrieved.

For a specified fieldid of type FLD_MBSTRING, the value returned by Fget32() may
be analyzed using the Fmbunpack(32) function.

Fget32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fget() or Fget32() while
running in any context state, including TPINVALIDCONTEXT.
BEA Tuxedo ATMI FML Function Reference 77

Section 3fml - FML Functions
Return Values When Fget32() is used with the FLD_VIEW32 field type, a pointer to the FVIEWFLD
structure is returned. This function returns -1 on error and sets Ferror to indicate the
error condition.

Errors Under the following conditions, Fget() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of the data area, as specified in maxlen, is not large enough to hold the
field value.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, CFget, CFget32(3fml), Fgetalloc,
Fgetalloc32(3fml), Fgetlast, Fgetlast32(3fml), Fgets, Fgets32(3fml),
Fgetsa, Fgetsa32(3fml)
78 BEA Tuxedo ATMI FML Function Reference

Fgetalloc, Fgetalloc32(3fml)
Fgetalloc, Fgetalloc32(3fml)

Name Fgetalloc(), Fgetalloc32() - allocate space and get copy of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fgetalloc(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extralen)
#include "fml32.h"
char *
Fgetalloc32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
 *extralen)

Description Like Fget(), Fgetalloc() finds and makes a copy of a buffer field, but it acquires
space for the field via a call to malloc() (in UNIX system programmer’s reference
manuals). fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field. The last argument to Fgetalloc(), extralen,
provides an extra amount of space to be acquired in addition to the field value size. It
can be used if the retrieved value is to be expanded before reinsertion into the
fielded-buffer. If extralen is NULL, then no additional space is allocated and the
actual length is not returned. It is the caller’s responsibility to free() space acquired
by Fgetalloc(). The buffer will be aligned properly for any field type.

For a specified fieldid of type FLD_MBSTRING, the value returned by
Fgetalloc32() may be analyzed using the Fmbunpack(32) function.

Fgetalloc32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fgetalloc() or
Fgetalloc32() while running in any context state, including TPINVALIDCONTEXT.

Return Values In the “Synopsis” section above the return value to Fgetalloc() is described as a
character pointer data type (char * in C). Actually, the pointer returned points to an
object that has the same type as the stored type of the field. When Fgetalloc32() is
used with the FLD_VIEW32 field type, a pointer to the FVIEWFLD structure is returned.
This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgetalloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
BEA Tuxedo ATMI FML Function Reference 79

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FMALLOC]
“malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, CFget, CFget32(3fml), Fget, Fget32(3fml),
Fgetlast, Fgetlast32(3fml), Fgets, Fgets32(3fml), Fgetsa,
Fgetsa32(3fml)

free(3), malloc(3) in a UNIX system reference manual
80 BEA Tuxedo ATMI FML Function Reference

Fgetlast, Fgetlast32(3fml)
Fgetlast, Fgetlast32(3fml)

Name Fgetlast(), Fgetlast32() - get copy of last occurrence

Synopsis #include <stdio.h>
#include "fml.h"
int
Fgetlast(FBFR *fbfr, FLDID fieldid, FLDOCC *oc, char *value, FLDLEN
 *maxlen)
#include "fml32.h"
int
Fgetlast32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 *oc, char
 *value, FLDLEN32 *maxlen)

Description Fgetlast() is used to retrieve both the value and occurrence number of the last
occurrence of the field identified by fieldid. fbfr is a pointer to a fielded buffer. In
order to return the occurrence number of the last field, the occurrence argument, oc, is
a pointer-to-integer, not an integer.

The caller provides Fgetlast() with a pointer to a private buffer, loc, as well as the
length of the buffer, *maxlen, and the length of the field is returned in *maxlen. If
maxlen is NULL when the function is called, then it is assumed that the buffer for the
field value is big enough to contain the field value and the length of the value is not
returned. If loc is NULL, the value is not returned. If oc is NULL, the occurrence is
not returned.

In the “Synopsis” section above the value argument to Fgetlast() is described as a
character pointer data type (char * in C). Technically, this describes only one
particular kind of value passable to Fgetlast(). In fact, the type of the value
argument should be a pointer to an object of the same type as the type of the
fielded-buffer representation of the field being retrieved. For example, if the field is
stored in the buffer as type FLD_LONG, then value should be of type pointer-to-long
(long * in C). Similarly, if the field is stored as FLD_SHORT, then value should be of
type pointer-to-short (short * in C). The important thing is that Fgetlast()assumes
that the object pointed to by value has the same type as the stored type of the field being
retrieved.

For a specified fieldid of type FLD_MBSTRING, the value returned by Fgetlast32()
may be analyzed using the Fmbunpack(32) function.

Fgetlast32() is used with 32-bit FML.
BEA Tuxedo ATMI FML Function Reference 81

Section 3fml - FML Functions
A thread in a multithreaded application may issue a call to Fgetlast() or
Fgetlast32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgetlast() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of the data area, as specified in maxlen, is not large enough to hold the
field value.

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fget, Fget32(3fml), Fgetalloc,
Fgetalloc32(3fml), Fgets, Fgets32(3fml), Fgetsa, Fgetsa32(3fml)
82 BEA Tuxedo ATMI FML Function Reference

Fgets, Fgets32(3fml)
Fgets, Fgets32(3fml)

Name Fgets(), Fgets32() - get value converted to string

Synopsis #include <stdio.h>
#include "fml.h"
int
Fgets(FBFR *fbfr, FLDID fieldid, FLDOCC oc, char *buf)
#include "fml32.h"
int
Fgets32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, char *buf)

Description Fgets() retrieves a field occurrence from the fielded buffer first converting the value
to a user type of FLD_STRING. fbfr is a pointer to a fielded buffer. fieldid is a field
identifier. oc is the occurrence number of the field. The caller of Fgets() provides
buf, a pointer to a private buffer, which is used for the retrieved field value. It is
assumed that buf is large enough to hold the value. Basically, Fgets() calls CFget()
with an assumed utype of FLD_STRING, and a ulen of 0.

Fgets32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fgets() or Fgets32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgets() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.
BEA Tuxedo ATMI FML Function Reference 83

Section 3fml - FML Functions
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, CFget, CFget32(3fml), Fget, Fget32(3fml),
Fgetalloc, Fgetalloc32(3fml), Fgetlast, Fgetlast32(3fml), Fgetsa,
Fgetsa32(3fml)
84 BEA Tuxedo ATMI FML Function Reference

Fgetsa, Fgetsa32(3fml)
Fgetsa, Fgetsa32(3fml)

Name Fgetsa(), Fgetsa32() - use malloc() to allocate space and get converted value

Synopsis #include <stdio.h>
#include "fml.h"
char *
Fgetsa(FBFR *fbfr, FLDID fieldid, FLDOCC oc, FLDLEN *extra)
#include "fml32.h"
char *
Fgetsa32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc, FLDLEN32
 *extra)

Description Fgetsa() is a macro that calls CFgetalloc(). fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field. The function
uses malloc() (in UNIX system programmer’s reference manuals) to allocate space
for the retrieved field value that has been converted to a string. If extra is not NULL,
it specifies the extra space to allocate in addition to the field value size; the total size
is returned in extra.

It is the responsibility of the user to free() (in UNIX system reference manuals) the
space malloc()’d.

Fgetsa32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fgetsa() or Fgetsa32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, the function returns a pointer to the allocated buffer.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fgetsa() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
BEA Tuxedo ATMI FML Function Reference 85

Section 3fml - FML Functions
[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, CFget, CFget32(3fml), Fget, Fget32(3fml),
Fgetlast, Fgetlast32(3fml), Fgets, Fgets32(3fml)

free(3), malloc(3) in a UNIX system reference manual
86 BEA Tuxedo ATMI FML Function Reference

Fidnm_unload, Fidnm_unload32(3fml)
Fidnm_unload, Fidnm_unload32(3fml)

Name Fidnm_unload(), Fidnm_unload32() - recover space from id->nm mapping tables

Synopsis #include <stdio.h>
#include "fml.h"
void
Fidnm_unload(void);
#include "fml32.h"
void
Fidnm_unload32(void);

Description Fidnm_unload() recovers space allocated by Fname() for field identifier to field
name mapping tables.

Fidnm_unload32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fidnm_unload() or
Fidnm_unload32() while running in any context state, including
TPINVALIDCONTEXT.

Return Values This function is declared as a void and so does not return anything.

See Also Introduction to FML Functions, Fname, Fname32(3fml), Fnmid_unload,
Fnmid_unload32(3fml)
BEA Tuxedo ATMI FML Function Reference 87

Section 3fml - FML Functions
Fidxused, Fidxused32(3fml)

Name Fidxused(), Fidxused32() - return amount of space used

Synopsis #include <stdio.h>
#include "fml.h"
long
Fidxused(FBFR *fbfr)
#include "fml32.h"
long
Fidxused32(FBFR32 *fbfr)

Description Fidxused() indicates the current amount of space used by the buffer’s index. fbfr is
a pointer to a fielded buffer.

Fidxused32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fidxused() or
Fidxused32() while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, the function returns the amount of space in the buffer used by the index.
This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fidxused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Findex, Findex32(3fml), Frstrindex,
Frstrindex32(3fml), Funused, Funused32(3fml), Fused, Fused32(3fml)
88 BEA Tuxedo ATMI FML Function Reference

Fielded, Fielded32(3fml)
Fielded, Fielded32(3fml)

Name Fielded(), Fielded32() - return true if buffer is fielded

Synopsis #include stdio.h>
#include "fml.h"
int
Fielded(FBFR *fbfr)
#include "fml32.h"
int
Fielded32(FBFR32 *fbfr)

Description Fielded() is used to test whether the specified buffer is fielded. fbfr is a pointer to
a fielded buffer.

Fielded32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fielded() or
Fielded32() while running in any context state, including TPINVALIDCONTEXT.

Return Values Fielded() returns true if the buffer is fielded. It returns false if the buffer is not
fielded and does not set Ferror in this case.

See Also Introduction to FML Functions, Finit, Finit32(3fml), Fneeded,
Fneeded32(3fml), Fsizeof, Fsizeof32(3fml)
BEA Tuxedo ATMI FML Function Reference 89

Section 3fml - FML Functions
Findex, Findex32(3fml)

Name Findex(), Findex32() - index a fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Findex(FBFR *fbfr, FLDOCC intvl)
#include "fml32.h"
int
Findex32(FBFR32 *fbfr, FLDOCC32 intvl)

Description The function Findex() is called explicitly to index a fielded buffer. fbfr is a pointer
to a fielded buffer. The second parameter, intvl, gives the indexing interval, that is,
the ideal separation of indexed fields. If this argument has value 0, then the buffer’s
current indexing value is used. If the current value itself is 0, the value FSTDXINTVL
(defaults to 16) is used. Using an indexing value of 1 will ensure that every field in the
buffer is indexed. The size of the index interval and the amount of space allocated to a
buffer’s index are inversely proportional: the smaller the interval, the more fields are
indexed and thus the larger the amount of space used for indexing.

Findex32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Findex() or Findex32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Findex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
90 BEA Tuxedo ATMI FML Function Reference

Findex, Findex32(3fml)
[FNOSPACE]
"no space in fielded buffer"
An ENTRY is to be added to the index but there is not enough space remaining
in the buffer.

See Also Introduction to FML Functions, Fidxused, Fidxused32(3fml), Frstrindex,
Frstrindex32(3fml), Funindex, Funindex32(3fml)
BEA Tuxedo ATMI FML Function Reference 91

Section 3fml - FML Functions
Finit, Finit32(3fml)

Name Finit(), Finit32() - initialize fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"
int
Finit(FBFR *fbfr, FLDLEN buflen)
#include "fml32.h"
int
Finit32(FBFR32 *fbfr, FLDLEN32 buflen)

Description Finit() can be called to initialize a fielded buffer statically. fbfr is a pointer to a
fielded buffer. buflen is the length of the buffer. The function takes the buffer pointer
and buffer length, and sets up the internal structure for a buffer with no fields. Finit()
can also be used to reinitialize a previously used buffer.

Finit32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Finit() or Finit32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Finit() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer pointer is NULL.

[FNOSPACE]
"no space in fielded buffer"
The buffer size specified is too small for a fielded buffer.

Example The correct way to reinitialize a buffer to have no fields is: Finit(fbfr,
(FLDLEN)Fsizeof(fbfr));

See Also Introduction to FML Functions, Falloc, Falloc32(3fml), Fneeded,
Fneeded32(3fml), Frealloc, Frealloc32(3fml)
92 BEA Tuxedo ATMI FML Function Reference

Fjoin, Fjoin32(3fml)
Fjoin, Fjoin32(3fml)

Name Fjoin(), Fjoin32() - join source into destination buffer

Synopsis #include stdio.h>
#include "fml.h"
int
Fjoin(FBFR *dest, FBFR *src)
#include "fml32.h"
int
Fjoin32(FBFR32 *dest, FBFR32 *src)

Description Fjoin() is used to join two fielded buffers based on matching fieldid/occurrence.
dest and src are pointers to the destination and source fielded buffers respectively.
For fields that match on fieldid/occurrence, the field value is updated in the destination
buffer with the value in the source buffer. Fields in the destination buffer that have no
corresponding fieldid/occurrence in the source buffer are deleted. If joining buffers
results in the removal of a FLD_PTR field, the memory area referenced by the pointer
is not modified or freed.

This function may fail due to lack of space if the new values are larger than the old; in
this case, the destination buffer is modified. If this happens, however, the destination
buffer may be reallocated using Frealloc() and repeated calls to the Fjoin()
function. Even if the destination buffer has been partially updated, the correct results
are obtained by repeating the Fjoin() function.

Fjoin32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fjoin() or Fjoin32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fjoin() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.
BEA Tuxedo ATMI FML Function Reference 93

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

Example In the following example:

FBFR *src, *dest; ... if(Fjoin(dest,src) 0) F_error("pgm_name");

if dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the
resultant dest will have source field value A and source field value C.

See Also Introduction to FML Functions, Fconcat, Fconcat32(3fml), Fojoin,
Fojoin32(3fml), Fproj, Fproj32(3fml), Fprojcpy, Fprojcpy32(3fml),
Frealloc, Frealloc32(3fml)
94 BEA Tuxedo ATMI FML Function Reference

Fldid, Fldid32(3fml)
Fldid, Fldid32(3fml)

Name Fldid(), Fldid32() - map field name to field identifier

Synopsis #include <stdio.h>
#include "fml.h"

FLDID
Fldid(char *name)

#include "fml32.h"

FLDID32
Fldid32(char *name)

Description Fldid() provides a run-time translation of a field name to its field identifier and
returns a FLDID corresponding to its field name parameter. The first invocation causes
space to be dynamically allocated for the field tables and the tables to be loaded. To
recover data space used by the field tables loaded by Fldid(), the user may unload
the files by a call to the Fnmid_unload() function.

Fldid32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fldid() or Fldid32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns BADFLDID on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fldid() fails and sets Ferror to:

[FBADNAME]
"unknown field name"
A field name is specified which cannot be found in the field tables.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, Fldno, Fldno32(3fml), Fname, Fname32(3fml),
Fnmid_unload, Fnmid_unload32(3fml)

malloc(3) in a UNIX system reference manual
BEA Tuxedo ATMI FML Function Reference 95

Section 3fml - FML Functions
Fldno, Fldno32(3fml)

Name Fldno(), Fldno32() - map field identifier to field number

#include <stdio.h>
#include "fml.h"

int
Fldno(FLDID fieldid)

#include "fml32.h"

long
Fldno32(FLDID32 fieldid)

Description Fldno() accepts a field identifier, fieldid, as a parameter and returns the field
number contained in the identifier.

Fldno32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fldno() or Fldno32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns the field number and does not return an error.

See Also Introduction to FML Functions, Fldid, Fldid32(3fml), Fldtype,
Fldtype32(3fml)
96 BEA Tuxedo ATMI FML Function Reference

Fldtype, Fldtype32(3fml)
Fldtype, Fldtype32(3fml)

Name Fldtype(), Fldtype32() - map field identifier to field type

Synopsis #include <stdio.h>
#include "fml.h"

int
Fldtype(FLDID fieldid)

#include "fml32.h"

int
Fldtype32(FLDID32 fieldid)

Description Fldtype() accepts a field identifier, fieldid, and returns the field type contained in
the identifier (an integer), as defined in fml.h.

Fldtype32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fldtype() or
Fldtype32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns the field type.

See Also Introduction to FML Functions, Fldid, Fldid32(3fml), Fldno, Fldno32(3fml)
BEA Tuxedo ATMI FML Function Reference 97

Section 3fml - FML Functions
Flen, Flen32(3fml)

Name Flen(), Flen32() - return len of field occurrence in buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Flen(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

long
Flen32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Flen() finds the value of the specified field occurrence in the buffer and returns its
length. fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the
occurrence number of the field.

For values of type FLD_PTR, Flen32() returns a fixed length for a pointer field based
on sizeof(char*). For values of type FLD_FML32, Flen32() returns the value of
Fused32() for the length of the nested buffer. For values of type FLD_VIEW32,
Flen32() returns the length of the view data plus the length of the viewname.

For values of type FLD_MBSTRING, Flen32() returns the length of the packed output
created by the Fmbpack32() function.

Flen32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Flen() or Flen32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values On success, Flen() returns the field length.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Flen() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
98 BEA Tuxedo ATMI FML Function Reference

Flen, Flen32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOTPRES]
"field not present"
A field occurrence is requested but the specified field and/or occurrence was
not found in the fielded buffer.

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fnum, Fnum32(3fml), Fpres, Fpres32(3fml)
BEA Tuxedo ATMI FML Function Reference 99

Section 3fml - FML Functions
Fmbpack32(3fml)

Name Fmbpack32() - prepare encoding name and multibyte data information

Synopsis #include "fml32.h"

int
Fmbpack32 (char *enc,void *ind,FLDLEN32 indlen,void
*packed,FLDLEN32 *size,long flags)

Description Fmbpack32() prepares the encoding name and multibyte data information for an
FLD_MBSTRING field input to an FML32 typed buffer. Fmbpack32() is used before the
FLD_MBSTRING field is added to an FML32 buffer via FML32 APIs.

enc, if not NULL, is a NULL-terminated ASCII string containing the code-set
encoding name for the ind code-set multibyte data. If enc is NULL and the flags
argument is 0, the encoding name that is to be included in the packed output is
obtained from the process TPMBENC environment variable. If the flags argument is
FBUFENC, enc is ignored.

ind is the code-set multibyte data.

indlen is the number of bytes in ind.

packed is a pointer to an output for Fmbpack32(). It is used as an input value to
FML32 APIs that include FLD_MBSTRING fields in an FML32 buffer. The packed area
must be aligned on a FLDLEN32(TM32U) boundary.

size, on input, is the size of memory pointed to by packed. If the size is not large
enough to handle the result of Fmbpack32(), FNOSPACE is returned and size is reset
to the number of bytes that packed should be. After successful execution of
Fmbpack32(), size is reset to the actual number of bytes used.

flags is 0 or FBUFENC. If flags is set to FBUFENC, Fmbpack32() ignores the enc
argument and includes FBUFENC with the input data to packed. Without the inclusion
of an encoding name, the packed output forces the FML32 API processing the
FLD_MBSTRING field to get the encoding name from the FML32 buffer. Therefore,
usage of FBUFENC also requires the application developer to use tpsetmbenc() to set
the encoding name for the FML32 buffer.

Return Values On success, Fmbpack32() returns a positive value. On error, Fmbpack32() returns -1
and sets Ferror32 to indicate the error condition.
100 BEA Tuxedo ATMI FML Function Reference

Fmbpack32(3fml)
Errors Under the following conditions, Fmbpack32() fails and sets Ferror32 to:

[FEINVAL]
ind, packed, or size is NULL. enc or indlen is not valid.

[FNOSPACE]
The size of packed is not sufficient to handle the result of Fmbpack32().

See Also Fmbunpack32(3fml), tpconvfmb32(3fml), tpsetmbenc(3c),
tuxgetmbenc(3c), tuxsetmbenc(3c)
BEA Tuxedo ATMI FML Function Reference 101

../rf3c/rf3c.htm#2922713
../rf3c/rf3c.htm#9681513
../rf3c/rf3c.htm#3008013

Section 3fml - FML Functions
Fmbunpack32(3fml)

Name Fmbunpack32() - extract encoding name and multibyte data information

Synopsis #include "fml32.h"

int
Fmbunpack32 (void *packed,FLDLEN32 ilen,char *enc,void
*outd,FLDLEN32 *olen,long flags)

Description Fmbunpack32() extracts the encoding name and multibyte data information from an
FLD_MBSTRING field in an FML32 typed buffer. Fmbunpack32() is used after the
FLD_MBSTRING field is extracted from an FML32 buffer via FML32 APIs
(Ffind32(), Fget32(), ...).

packed is a pointer to the FLD_MBSTRING field data output from an FML32 API.

ilen is the number of bytes for packed.

enc is a NULL-terminated ASCII string in packed containing the encoding name
when the code-set encoding name for the FLD_MBSTRING field is part of the packed
information. If the FLD_MBSTRING field was created by Fmbpack32() with flag
FBUFENC, enc is set to NULL. For the latter case, the application developer must use
tpgetmbenc() on the FML32 buffer to get the encoding name for the FLD_MBSTRING
field.

outd contains the multibyte data extracted from packed upon successful completion
of Fmbunpack32().

olen, on input, is the size of memory pointed to by outd. If the size is not large enough
to handle the result of Fmbunpack32(), FNOSPACE is returned and olen is reset to the
number of bytes that outd should be. After successful execution of Fmbunpack32(),
olen is reset to the actual number of bytes used.

flags is currently not used and should be set to 0.

Return Values On success, Fmbunpack32() returns a positive value. On error, Fmbunpack32()
returns -1 and sets Ferror32 to indicate the error condition.
102 BEA Tuxedo ATMI FML Function Reference

Fmbunpack32(3fml)
Errors Under the following conditions, Fmbunpack32() fails and sets Ferror32 to:

[FEINVAL]
outd, olen, or packed is NULL. packed or ilen is not valid.

[FNOSPACE]
The size of outd is not sufficient to handle the result of Fmbunpack32().

See Also Fmbpack32(3fml), tpconvfmb32(3fml), tpgetmbenc(3c), tuxgetmbenc(3c),
tuxsetmbenc(3c)
BEA Tuxedo ATMI FML Function Reference 103

../rf3c/rf3c.htm#1425213
../rf3c/rf3c.htm#9681513
../rf3c/rf3c.htm#3008013

Section 3fml - FML Functions
Fmkfldid, Fmkfldid32(3fml)

Name Fmkfldid(), Fmkfldid32() - make a field identifier

#include <stdio.h>
#include "fml.h"

FLDID
Fmkfldid(int type, FLDID num)

#include "fml.h"

FLDID32
Fmkfldid32(int type, FLDID32 num)

Description Fmkfldid() allows the creation of a valid field identifier from a valid type (as defined
in fml.h) and a field number. This is useful for writing an application generator that
chooses field numbers sequentially, or for recreating a field identifier.

type is a valid type (an integer; see Fldtype, Fldtype32(3fml)). num is a field
number (it should be an unused field number to avoid confusion with existing fields).

Fmkfldid32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fmkfldid() or
Fmkfldid32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns BADFLDID on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fmkfldid() fails and sets Ferror to:

[FBADFLD]
"unknown field number or type"
A field number is specified which is not valid.

[FTYPERR]
"invalid field type"
A field type is specified which is not valid (as defined in fml.h).

See Also Introduction to FML Functions, Fldtype, Fldtype32(3fml)
104 BEA Tuxedo ATMI FML Function Reference

Fmove, Fmove32(3fml)
Fmove, Fmove32(3fml)

Name Fmove(), Fmove32() - move fielded buffer to destination

Synopsis #include <stdio.h>
#include "fml.h"

int
Fmove(char *dest, FBFR *src)

#include "fml32.h"

int
Fmove32(char *dest, FBFR32 *src)

Description Fmove() should be used when copying from a fielded buffer to any type of buffer.
dest and src are pointers to the destination buffer and the source fielded buffers
respectively.

The difference between Fmove() and Fcpy() is that Fcpy() expects the destination
to be a fielded buffer and thus can make sure it is of sufficient size to accommodate the
data from the source buffer. Fmove() makes no such check, blindly moving
Fsizeof() bytes of data from the source fielded buffer to the target buffer. The
destination buffer must be aligned on a short boundary.

For values of type FLD_PTR, Fmove32() transfers the buffer pointer. The application
programmer must manage the reallocation and freeing of buffers when the associated
pointer is moved.

Fmove32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fmove() or Fmove32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fmove() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The source or destination buffer does not begin on the proper boundary.
BEA Tuxedo ATMI FML Function Reference 105

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
The source buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fcpy, Fcpy32(3fml), Fsizeof,
Fsizeof32(3fml)
106 BEA Tuxedo ATMI FML Function Reference

Fname, Fname32(3fml)
Fname, Fname32(3fml)

Name Fname(), Fname32() - map field identifier to field name

Synopsis #include <stdio.h>
#include "fml.h"

char *
Fname(FLDID fieldid)

#include "fml32.h"

char *
Fname32(FLDID32 fieldid)

Description Fname() provides a run-time translation of a field identifier, fieldid, to its field
name and returns a pointer to a character string containing the name corresponding to
its argument. The first invocation causes space to be dynamically allocated for the field
tables and the tables to be loaded. The table space used by the mapping tables created
by Fname() may be recovered by a call to the function Fidnm_unload().

Fname32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fname() or Fname32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fname() fails and sets Ferror to:

[FBADFLD]
"unknown field number or type"
A field number is specified for which a field name cannot be found or is invalid
(0).

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, Ffprint, Ffprint32(3fml), Fidnm_unload,
Fidnm_unload32(3fml), Fldid, Fldid32(3fml), Fprint, Fprint32(3fml)
BEA Tuxedo ATMI FML Function Reference 107

Section 3fml - FML Functions
Fneeded, Fneeded32(3fml)

Name Fneeded(), Fneeded32() - compute size needed for buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fneeded(FLDOCC F, FLDLEN V)

#include "fml32.h"

long
Fneeded32(FLDOCC32 F, FLDLEN32 V)

Description Fneeded() is used to determine the space that must be allocated for a fielded buffer.
The F argument is the number of fields, and the V argument is the space for all field
values, in bytes.

Fneeded32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fneeded() or
Fneeded32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fneeded() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example, number
of fields is less than 0, V is 0 or total size is greater than 65534).

See Also Introduction to FML Functions, Falloc, Falloc32(3fml), Fielded,
Fielded32(3fml), Finit, Finit32(3fml), Fsizeof, Fsizeof32(3fml),
Funused, Funused32(3fml), Fused, Fused32(3fml)
108 BEA Tuxedo ATMI FML Function Reference

Fnext, Fnext32(3fml)
Fnext, Fnext32(3fml)

Name Fnext(), Fnext32() - get next field occurrence

Synopsis #include <stdio.h>
#include "fml.h"

int
Fnext(FBFR *fbfr, FLDID *fieldid, FLDOCC *oc, char *value, FLDLEN
*len)

#include "fml32.h"

int
Fnext32(FBFR32 *fbfr, FLDID32 *fieldid, FLDOCC32 *oc, char *value,
FLDLEN32 *len)

Description Fnext() finds the next field in the buffer after the specified field occurrence. fbfr is
a pointer to a fielded buffer. fieldid is a pointer to a field identifier. oc is a pointer
to the occurrence number of the field. value is a pointer to the value of the next field.
len is the length of the next value.

The field identifier, FIRSTFLDID, should be specified to get the first field in the buffer
(for example, on the first call to Fnext()). If value is not NULL, the next field value
is copied into value; *len is used to determine if the buffer has enough space
allocated to contain the value. The value’s length is returned in *len. If len is NULL
when the function is called, it is assumed that there is enough space and the new value
length is not returned. If value is NULL, the value is not retrieved and only fieldid
and oc are updated. The *fieldid and *oc parameters are respectively set to the next
found field and occurrence. If no more fields are found, 0 is returned (end of buffer)
and *fieldid, *oc, and *value are left unchanged. Fields are returned in field
identifier order.

Although the type of value is char *, the value returned will be of the same type as the
next field being retrieved.

When the type of the field to be retrieved is FLD_VIEW32, the value parameter points
to a FVIEWFLD structure. The Fnext() function populates the vname and data fields
in the structure.

Fnext32() is used with 32-bit FML.
BEA Tuxedo ATMI FML Function Reference 109

Section 3fml - FML Functions
A thread in a multithreaded application may issue a call to Fnext() or Fnext32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values Fnext() returns 1 when the next occurrence is successfully found. It returns 0 when
the end of the buffer is reached.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fnext() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FNOSPACE]
"no space"
The size of value, as specified in len, is not large enough to hold the field value.

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying NULL for fieldid or oc).

See Also Introduction to FML Functions, Fget, Fget32(3fml), Fnum, Fnum32(3fml)
110 BEA Tuxedo ATMI FML Function Reference

Fnmid_unload, Fnmid_unload32(3fml)
Fnmid_unload, Fnmid_unload32(3fml)

Name Fnmid_unload(), Fnmid_unload32() - recover space from nm->id mapping tables

Synopsis #include <stdio.h>
#include "fml.h"
void Fnmid_unload(void)
#include "fml32.h"
void Fnmid_unload32(void)

Description To recover data space used by the field tables loaded by Fldid(), the user may unload
the files by a call to the Fnmid_unload() function.

Fnmid_unload32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fnmid_unload() or
Fnmid_unload32() while running in any context state, including
TPINVALIDCONTEXT.

Return Values This function is declared as a void and so does not return anything.

See Also Introduction to FML Functions, Fidnm_unload, Fidnm_unload32(3fml), Fldid,
Fldid32(3fml)
BEA Tuxedo ATMI FML Function Reference 111

Section 3fml - FML Functions
Fnum, Fnum32(3fml)

Name Fnum(), Fnum32() - return count of all occurrences in buffer

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Fnum(FBFR *fbfr)

#include "fml32.h"

FLDOCC32
Fnum32(FBFR32 *fbfr)

Description Fnum() returns the number of fields contained in the specified buffer. fbfr is a pointer
to a fielded buffer. The FLD_FML32 and FLD_VIEW32 fields are each counted as a
single field, regardless of the number of fields they contain.

Fnum32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fnum() or Fnum32() while
running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fnum() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Foccur, Foccur32(3fml), Fpres,
Fpres32(3fml)
112 BEA Tuxedo ATMI FML Function Reference

Foccur, Foccur32(3fml)
Foccur, Foccur32(3fml)

Name Foccur(), Foccur32() - return count of field occurrences in buffer

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Foccur(FBFR *fbfr, FLDID fieldid)

#include "fml32.h"

FLDOCC32 Foccur32(FBFR32 *fbfr, FLDID32 fieldid)

Description Foccur() is used to determine the number of occurrences of the field specified by
fieldid in the buffer referenced by fbfr. Occurrences of a field within an embedded
FML32 buffer are not counted, as in the FLD_FML32 field type.

Foccur32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Foccur() or Foccur32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, Foccur() returns the number of occurrences; if none are found, it
returns 0.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Foccur() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fnum, Fnum32(3fml), Fpres, Fpres32(3fml)
BEA Tuxedo ATMI FML Function Reference 113

Section 3fml - FML Functions
Fojoin, Fojoin32(3fml)

Name Fojoin(), Fojoin32() - outer join source into destination buffer

#include <stdio.h>
#include "fml.h"

int
Fojoin(FBFR *dest, FBFR *src)

#include "fml32.h"

int
Fojoin32(FBFR32 *dest, FBFR32 *src)

Description Fojoin() is similar to Fjoin(), but it keeps fields from the destination buffer, dest,
that have no corresponding fieldid/occurrence in the source buffer, src. Fields that
exist in the source buffer that have no corresponding fieldid/occurrence in the
destination buffer are not added to the destination buffer. If joining buffers results in
the removal of a FLD_PTR field, the memory area referenced by the pointer is not
modified or freed.

As with Fjoin(), this function can fail for lack of space; it can be reissued to complete
the operation after more space is allocated.

Fojoin32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fojoin() or Fojoin32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fojoin() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().
114 BEA Tuxedo ATMI FML Function Reference

Fojoin, Fojoin32(3fml)
[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a field buffer but there is not enough
space remaining in the buffer.

Example In the following example,

if(Fojoin(dest,src) 0)
 F_error("pgm_name");

if dest has fields A, B, and two occurrences of C, and src has fields A, C, and D, the
resultant dest will contain the source field value A, the destination field value B, the
source field value C, and the second destination field value C.

See Also Introduction to FML Functions, Fconcat, Fconcat32(3fml), Fjoin,
Fjoin32(3fml), Fproj, Fproj32(3fml)
BEA Tuxedo ATMI FML Function Reference 115

Section 3fml - FML Functions
Fpres, Fpres32(3fml)

Name Fpres(), Fpres32() - true if field occurrence is present in buffer

#include <stdio.h>

#include "fml.h"

int
Fpres(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

int
Fpres32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fpres() is used to detect whether a given occurrence (oc) of a specified field
(fieldid) exists in the buffer referenced by fbfr. Fpres32() does not check for
occurrences of the specified field within an embedded buffer, as in the FLD_FML32
field type.

Fpres32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fpres() or Fpres32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values Fpres() returns true if the specified occurrence exists and false otherwise.

See Also Introduction to FML Functions, Ffind, Ffind32(3fml), Fnum, Fnum32(3fml),
Foccur, Foccur32(3fml)
116 BEA Tuxedo ATMI FML Function Reference

Fprint, Fprint32(3fml)
Fprint, Fprint32(3fml)

Name Fprint(), Fprint32() - print buffer to standard output

Synopsis #include <stdio.h>
#include "fml.h"

int
Fprint(FBFR *fbfr)

#include "fml32.h"

int
Fprint32(FBFR32 *fbfr)

Description Fprint() prints the specified buffer to the standard output. fbfr is a pointer to a
fielded buffer. For each field in the buffer, the output prints the field name and field
value separated by a tab. Fname() is used to determine the field name; if the field name
cannot be determined, then the field identifier is printed. Non-printable characters in
string and character array field values are represented by a backslash followed by their
two-character hexadecimal value. A newline is printed following the output of the
printed buffer.

For values of type FLD_PTR, Fprint32() prints the field name or field identifier and
the pointer value in hexadecimal. Although this function prints pointer information,
the Fextread32() function ignores the FLD_PTR field type.

For values of type FLD_FML32, Fprint32() recursively prints the FML32 buffer, with
leading tabs added for each level of nesting. For values of type FLD_VIEW32,
Fprint32() prints the VIEW32 field name and structure member name/value pairs.

Fprint32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fprint() or Fprint32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fprint() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
BEA Tuxedo ATMI FML Function Reference 117

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed.

See Also Introduction to FML Functions, Fextread, Fextread32(3fml), Ffprint,
Ffprint32(3fml), Fname, Fname32(3fml)
118 BEA Tuxedo ATMI FML Function Reference

Fproj, Fproj32(3fml)
Fproj, Fproj32(3fml)

Name Fproj(), Fproj32() - projection on buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fproj(FBFR *fbfr, FLDID *fieldid)

#include "fml32.h"

int
Fproj32(FBFR32 *fbfr, FLDID32 *fieldid)

Description Fproj() is used to update a buffer so as to keep only the desired fields. fbfr is a
pointer to a fielded buffer. The desired fields are specified in an array of field
identifiers pointed to by fieldid. The last entry in the array must be BADFLDID. The
update is done in place; fields that are not in the result of the projection are deleted
from the fielded buffer. The array of field identifiers may be rearranged. (If they are
not already in numeric order, they are sorted.) If updating buffers results in the removal
of a FLD_PTR field, the memory area referenced by the pointer is not modified or freed.

Fproj32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fproj() or Fproj32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fproj() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

Example #include "fld.tbl.h"
FBFR *fbfr;
FLDID fieldid[20];
BEA Tuxedo ATMI FML Function Reference 119

Section 3fml - FML Functions
...
fieldid[0] = A; /* field ID for field A */
fieldid[1] = D; /* field ID for field D */
fieldid[2] = BADFLDID; /* sentinel value */
...
if(Fproj(fbfr, fieldid) 0)
 F_error("pgm_name");

If the buffer has fields A, B, C, and D, the example results in a buffer that contains only
occurrences of fields A and D. The entries in the array of field identifiers do not need
to be in any specific order, but the last value in the array of field identifiers must be
field identifier 0 (BADFLDID).

See Also Introduction to FML Functions, Fjoin, Fjoin32(3fml), Fojoin,
Fojoin32(3fml), Fprojcpy, Fprojcpy32(3fml)
120 BEA Tuxedo ATMI FML Function Reference

Fprojcpy, Fprojcpy32(3fml)
Fprojcpy, Fprojcpy32(3fml)

Name Fprojcpy(), Fprojcpy32() - projection and copy on buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fprojcpy(FBFR *dest, FBFR *src, FLDID *fieldid)

#include "fml32.h"

int
Fprojcpy32(FBFR32 *dest, FBFR32 *src, FLDID32 *fieldid)

Description Fprojcpy() is similar to Fproj() but the projection is done into a destination buffer
instead of in-place. dest and src are pointers to the destination and source fielded
buffers respectively. fieldid is a pointer to an array of field identifiers. Any fields in
the destination buffer are first deleted and the results of the projection on the source
buffer are put into the destination buffer. The source buffer is not changed. The array
of field identifiers may be rearranged. (If they are not already in numeric order, they
are sorted.) If updating buffers results in the removal of a FLD_PTR field, the memory
area referenced by the pointer is not modified or freed.

This function can fail for lack of space; it can be reissued after allocating enough
additional space to complete the operation.

Fprojcpy32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fprojcpy() or
Fprojcpy32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fprojcpy() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.
BEA Tuxedo ATMI FML Function Reference 121

Section 3fml - FML Functions
[FNOTFLD]
"buffer not fielded"
Either the source buffer or the destination buffer is not a fielded buffer or has
not been initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be copied to the destination fielded buffer but there is not
enough space remaining in the buffer.

See Also Introduction to FML Functions, Fjoin, Fjoin32(3fml), Fojoin,
Fojoin32(3fml), Fproj, Fproj32(3fml)
122 BEA Tuxedo ATMI FML Function Reference

Fread, Fread32(3fml)
Fread, Fread32(3fml)

Name Fread(), Fread32() - read fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fread(FBFR *fbfr, FILE *iop)

#include "fml32.h"

int
Fread32(FBFR32 *fbfr, FILE32 *iop)

Description Fielded buffers may be read from file streams using Fread(). fbfr is a pointer to a
fielded buffer. iop is a pointer of type FILE to the input stream. (See stdio(3S) in a
UNIX system reference manual for a discussion of streams). Fread() reads the fielded
buffer from the stream into fbfr, clearing any data previously stored in the buffer, and
recreates the buffer’s index. Fread32() ignores the FLD_PTR field type. No error is
returned if a value of type FLD_PTR is supplied to the function.

Fread32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fread() or Fread32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fread() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit(). This
error is also returned if the data that is read is not a fielded buffer.
BEA Tuxedo ATMI FML Function Reference 123

Section 3fml - FML Functions
[FNOSPACE]
"no space in fielded buffer"
There is not enough space in the buffer to hold the fielded buffer being read
from the stream.

[FEUNIX]
"UNIX system call error"
The read() system call failed. The external integer errno should have been
set to indicate the error by the system call.

Portability This function is not supported using the BEA Tuxedo System Workstation DLL for
Windows.

See Also Introduction to FML Functions, Findex, Findex32(3fml), Fwrite,
Fwrite32(3fml)

stdio(3S) in a UNIX system reference manual
124 BEA Tuxedo ATMI FML Function Reference

Frealloc, Frealloc32(3fml)
Frealloc, Frealloc32(3fml)

Name Frealloc(), Frealloc32() - reallocate fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

FBFR *
Frealloc(FBFR *fbfr, FLDOCC nf, FLDLEN nv)

#include "fml32.h"

FBFR32 *
Frealloc32(FBFR32 *fbfr, FLDOCC32 nf, FLDLEN32 nv)

Description Frealloc() can be used to reallocate space to enlarge a fielded buffer. fbfr is a
pointer to a fielded buffer. The second and third parameters are the new number of
fields, nf, and the new number of bytes value space, nv. These are not increments.

Frealloc32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Frealloc() or
Frealloc32() while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, Frealloc() returns a pointer to the reallocated FBFR.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Frealloc() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example, number
of fields is less than 0, V is 0 or total size is greater than 65534).
BEA Tuxedo ATMI FML Function Reference 125

Section 3fml - FML Functions
[FMALLOC]
"malloc failed"
The new size is smaller than what is currently in the buffer, or allocation of
space dynamically using realloc() failed.

See Also Introduction to FML Functions, Falloc, Falloc32(3fml), Ffree,
Ffree32(3fml)
126 BEA Tuxedo ATMI FML Function Reference

Frstrindex, Frstrindex32(3fml)
Frstrindex, Frstrindex32(3fml)

Name Frstrindex(), Frstrindex32() - restore index in a buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Frstrindex(FBFR *fbfr, FLDOCC numidx)

#include "fml32.h"

int
Frstrindex32(FBFR32 *fbfr, FLDOCC32 numidx)

Description A fielded buffer that has been unindexed may be reindexed by either calling Findex()
or Frstrindx(). fbfr is a pointer to a fielded buffer. The former performs a total
index calculation on the buffer, and is fairly expensive (requiring a full scan of the
buffer). It should be used when an unindexed buffer has been altered, or the previous
state of the buffer is unknown (for example, when it has been sent from one process to
another without an index). Frstrindex() is much faster, but may only be used if the
buffer has not been altered since its previous unindexing operation. The second
argument to Frstrindx(), numidx, is the return from the Funindex() function.

Frstrindex32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Frstrindex() or
Frstrindex32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Frstrindex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

Example In order to transmit a buffer without its index, something like the following should be
performed:
BEA Tuxedo ATMI FML Function Reference 127

Section 3fml - FML Functions
save = Funindex(fbfr);
num_to_send = Fused(fbfr);
transmit(fbfr,num_to_send); /* A hypothetical function */
Frstrindx(fbfr,save);

These four statements do the following:

1. - /* unindex, saving for Frstrindx */
2. - /* determine number of bytes to send */
3. - /* send fbfr, without index */
4. - /* restore index */

In this case, transmit() is passed a memory pointer and a length. The data to be
transmitted begins at the memory pointer and has num_to_send number of significant
bytes. Once the buffer has been sent, its index may be restored (assuming transmit()
does not alter it in any way) using Frstrindex(). On the receiving end of the
transmission, the process accepting the fielded buffer would index it with Findex(),
as in:

receive(fbfr); /* get fbfr from wherever .. into fbfr */
Findex(fbfr); /* index it */

The receiving process cannot call Frstrindx() because:

1. It did not call Funindex() and so has no idea of what the value of the numidx
argument to Frstrindex() should be.

2. The index itself is not available because it was not sent.

The solution is to call Findex() explicitly. Of course, the user is always free to
transmit the indexed versions of a fielded buffer (that is, send Fsizeof(*fbfr) bytes)
and avoid the cost of Findex() on the receiving side.

See Also Introduction to FML Functions, Findex, Findex32(3fml), Fsizeof,
Fsizeof32(3fml), Funindex, Funindex32(3fml)
128 BEA Tuxedo ATMI FML Function Reference

Fsizeof, Fsizeof32(3fml)
Fsizeof, Fsizeof32(3fml)

Name Fsizeof(), Fsizeof32() - return size of fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fsizeof(FBFR *fbfr)

#include "fml32.h"

long
Fsizeof32(FBFR32 *fbfr)

Description Fsizeof() returns the size of a fielded buffer in bytes. fbfr is a pointer to a fielded
buffer.

Fsizeof32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fsizeof() or
Fsizeof32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fsizeof() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fidxused, Fidxused32(3fml), Fused,
Fused32(3fml), Funused, Funused32(3fml)
BEA Tuxedo ATMI FML Function Reference 129

Section 3fml - FML Functions
Fstrerror, Fstrerror32(3fml)

Name Fstrerror(), Fstrerror32() - get error message string for FML error

Synopsis #include <fml.h>

char *
Fstrerror(int err)

#include <fml32.h>

char *
Fstrerror32(int err)

Description Fstrerror() is used to retrieve the text of an error message from LIBFML_CAT. err
is the error code set in F_error when a FML function call returns a -1 or other failure
value.

The user can use the pointer returned by Fstrerror() as an argument to userlog()
or F_error.

Fstrerror32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fstrerror() or
Fstrerror32() while running in any context state, including TPINVALIDCONTEXT.

Return Values If err is an invalid error code, Fstrerror() returns a NULL. On success, the function
returns a pointer to a string that contains the error message text.

Errors Fstrerror() returns a NULL on error, but does not set F_error.

See Also Introduction to FML Functions, tpstrerror(3c), userlog(3c), F_error,
F_error32(3fml)
130 BEA Tuxedo ATMI FML Function Reference

../rf3c/rf3c.htm#8914013
../rf3c/rf3c.htm#7980613

Ftypcvt, Ftypcvt32(3fml)
Ftypcvt, Ftypcvt32(3fml)

Name Ftypcvt(), Ftypcvt32() - convert from one field type to another

Synopsis #include <stdio.h>
#include "fml.h"

char *
Ftypcvt(FLDLEN *tolen, int totype, char *fromval, int fromtype,
 FLDLEN fromlen)

#include "fml32.h"

char *
Ftypcvt32(FLDLEN32 *tolen, int totype, char *fromval, int fromtype,
 FLDLEN32 fromlen)

Description Ftypcvt() converts the value *fromval, which has type fromtype, and length
fromlen (if fromtype is FLD_CARRAY; otherwise, fromlen is inferred from
fromtype), to a value of type totype. Ftypcvt() returns a pointer to the converted
value, and sets *tolen to the converted length, upon success. Upon failure,
Ftypcvt() returns NULL.

Ftypcvt32() fails if any of the following field types is used: FLD_PTR,
FLD_MBSTRING, FLD_FML32, or FLD_VIEW32. If one of these field types is
encountered, Ferror is set to FEBADOP.

Ftypcvt32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ftypcvt() or
Ftypcvt32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ftypcvt() fails and sets Ferror to:

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) to string.
BEA Tuxedo ATMI FML Function Reference 131

Section 3fml - FML Functions
[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example, a
NULL tolen or fromval parameter was specified).

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
An invalid field type (such as FLD_PTR, FLD_FML32, or FLD_VIEW32) is
specified.

See Also Introduction to FML Functions, CFadd, CFadd32(3fml), CFchg, CFchg32(3fml),
CFfind, CFfind32(3fml), CFget, CFget32(3fml), CFgetalloc,
CFgetalloc32(3fml)
132 BEA Tuxedo ATMI FML Function Reference

Ftype, Ftype32(3fml)
Ftype, Ftype32(3fml)

Name Ftype(), Ftype32() - return pointer to type of field

Synopsis #include <stdio.h>
#include "fml.h"

char *
Ftype(FLDID fieldid)

#include "fml32.h"

char *
Ftype32(FLDID32 fieldid)

Description Ftype() returns a pointer to a string containing the name of the type of a field, given
a field identifier, fieldid. For example, if the FLDID of a field of type short is
supplied to Ftype(), a pointer is returned to the string “short.” This data area is
“read-only.”

Ftype32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Ftype() or Ftype32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values On success, Ftype() returns a pointer to a character string that identifies the field type.

This function returns NULL on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Ftype() fails and sets Ferror to:

[FTYPERR]
"invalid field type"
A field identifier is specified which is not valid.

See Also Introduction to FML Functions, Fldid, Fldid32(3fml), Fldno, Fldno32(3fml)
BEA Tuxedo ATMI FML Function Reference 133

Section 3fml - FML Functions
Funindex, Funindex32(3fml)

Name Funindex(), Funindex32() - discard fielded buffer’s index

Synopsis #include <stdio.h>
#include "fml.h"

FLDOCC
Funindex(FBFR *fbfr)

#include "fml32.h"

FLDOCC32
Funindex32(FBFR32 *fbfr)

Description Funindex() discards a fielded buffer’s index. fbfr is a pointer to a fielded buffer.
When the function returns successfully, the buffer is unindexed. As a result, none of
the buffer’s space is allocated to an index and more space is available to user fields (at
the cost of potentially slower access time). Unindexing a buffer is useful when it is to
be stored on disk or to be transmitted somewhere. In the first case disk space is
conserved, in the second, transmission costs may be reduced.

The number of significant bytes from the buffer start, after a buffer has been unindexed
is determined by the function call: Fused(fbfr)

Funindex32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Funindex() or
Funindex32() while running in any context state, including TPINVALIDCONTEXT.

Return Values Funindex() returns the number of index elements the buffer has before the index is
stripped.

This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Funindex() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.
134 BEA Tuxedo ATMI FML Function Reference

Funindex, Funindex32(3fml)
[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Findex, Findex32(3fml), Frstrindex,
Frstrindex32(3fml), Fsizeof, Fsizeof32(3fml), Funused,
Funused32(3fml)
BEA Tuxedo ATMI FML Function Reference 135

Section 3fml - FML Functions
Funused, Funused32(3fml)

Name Funused(), Funused32() - return number of unused bytes in fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Funused(FBFR *fbfr)

#include "fml32.h"

long
Funused32(FBFR32 *fbfr)

Description Funused() returns the amount of space currently unused in the buffer. Space is unused
if it contains neither user data nor overhead data such as the header and index.

fbfr is a pointer to a fielded buffer.

Funused32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Funused() or
Funused32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Funused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fidxused, Fidxused32(3fml), Fused,
Fused32(3fml)
136 BEA Tuxedo ATMI FML Function Reference

Fupdate, Fupdate32(3fml)
Fupdate, Fupdate32(3fml)

Name Fupdate(), Fupdate32() - update destination buffer with source

Synopsis #include <stdio.h>
#include "fml.h"

int
Fupdate(FBFR *dest, FBFR *src)

#include "fml32.h"

int
Fupdate32(FBFR32 *dest, FBFR32 *src)

Description Fupdate() updates the destination buffer with the field values in the source buffer.
dest and src are pointers to fielded buffers. For fields that match on
fieldid/occurrence, the field value is updated in the destination buffer with the value in
the source buffer. Fields in the destination buffer that have no corresponding field in
the source buffer are left untouched. Fields in the source buffer that have no
corresponding field in the destination buffer are added to the destination buffer.

For values of type FLD_PTR, Fupdate32() stores the pointer value. The buffer pointed
to by a FLD_PTR field must be allocated using the tpalloc() call. For values of type
FLD_FML32, Fupdate32() stores the entire FLD_FML32 field value, except the index.
For values of type FLD_VIEW32, Fupdate32() stores a pointer to a structure of type
FVIEWFLD, which contains vflags (a flags field, currently unused and set to 0), vname
(a character array containing the viewname), and data (a pointer to the view data
stored as a C structure). The application provides the vname and data to
Fupdate32().

Fupdate32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fupdate() or
Fupdate32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fupdate() fails and sets Ferror to:
BEA Tuxedo ATMI FML Function Reference 137

Section 3fml - FML Functions
[FALIGNERR]
"fielded buffer not aligned"
Either the source buffer or the destination buffer does not begin on the proper
boundary.

[FNOTFLD]
"buffer not fielded"
The source or destination buffer is not a fielded buffer or has not been
initialized by Finit().

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in the destination buffer but there is not
enough space remaining in the buffer.

See Also Introduction to FML Functions, Fjoin, Fjoin32(3fml), Fojoin,
Fojoin32(3fml), Fproj, Fproj32(3fml), Fprojcpy, Fprojcpy32(3fml)
138 BEA Tuxedo ATMI FML Function Reference

Fused, Fused32(3fml)
Fused, Fused32(3fml)

Name Fused(), Fused32() - return number of used bytes in fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fused(FBFR *fbfr)

#include "fml32.h"

long
Fused32(FBFR32 *fbfr)

Description Fused() returns the amount of used space in a fielded buffer in bytes, including both
user data and the header (but not the index, which can be dropped at any time). fbfr
is a pointer to a fielded buffer.

Fused32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fused() or Fused32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fused() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

See Also Introduction to FML Functions, Fidxused, Fidxused32(3fml), Funused,
Funused32(3fml)
BEA Tuxedo ATMI FML Function Reference 139

Section 3fml - FML Functions
Fvall, Fvall32(3fml)

Name Fvall(), Fvall32() - return long value of field occurrence

#include <stdio.h>
#include "fml.h"

long
 Fvall(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

long
Fvall32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fvall() works like Ffind() for long and short values, but returns the actual value of
the field as a long, instead of a pointer to the value. fbfr is a pointer to a fielded buffer.
fieldid is a field identifier. oc is the occurrence number of the field.

If the specified field occurrence is not found, then 0 is returned. This function is useful
for passing the value of a field to another function without checking the return value.
This function is valid only for fields of type FLD_LONG or FLD_SHORT.

Fvall32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fvall() or Fvall32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values For fields of types other than FLD_LONG or FLD_SHORT, Fvall() returns 0 and sets
Ferror to FTYPERR.

This function returns 0 on other errors and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvall() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
140 BEA Tuxedo ATMI FML Function Reference

Fvall, Fvall32(3fml)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
Bad fieldid or the field type is not FLD_SHORT or FLD_LONG.

See Also Introduction to FML Functions, Ffind, Ffind32(3fml), Fvals, Fvals32(3fml)
BEA Tuxedo ATMI FML Function Reference 141

Section 3fml - FML Functions
Fvals, Fvals32(3fml)

Name Fvals(), Fvals32() - return string value of field occurrence

Synopsis #include <stdio.h>
#include "fml.h"

char *
Fvals(FBFR *fbfr, FLDID fieldid, FLDOCC oc)

#include "fml32.h"

char *
Fvals32(FBFR32 *fbfr, FLDID32 fieldid, FLDOCC32 oc)

Description Fvals() works like Ffind() for string values but guarantees that a value is returned.
fbfr is a pointer to a fielded buffer. fieldid is a field identifier. oc is the occurrence
number of the field.

If the specified field occurrence is not found, then the NULL string is returned. This
function is useful for passing the value of a field to another function without checking
the return value. This function is valid only for fields of type FLD_STRING; the NULL
string is automatically returned for other field types (that is, no conversion is done).

Fvals32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fvals() or Fvals32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns the NULL string on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fvals() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
142 BEA Tuxedo ATMI FML Function Reference

Fvals, Fvals32(3fml)
[FBADFLD]
"unknown field number or type"
A field identifier is specified which is not valid.

[FTYPERR]
"invalid field type"
Bad fieldid or the field type is not FLD_STRING.

See Also Introduction to FML Functions, CFfind, CFfind32(3fml), Ffind,
Ffind32(3fml), Fvall, Fvall32(3fml)
BEA Tuxedo ATMI FML Function Reference 143

Section 3fml - FML Functions
Fvftos, Fvftos32(3fml)

Name Fvftos(), Fvftos32() - copy from fielded buffer to C structure

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvftos(FBFR *fbfr, char *cstruct, char *view)

#include "fml32.h"

int
Fvftos32(FBFR32 *fbfr, char *cstruct, char *view)

Description The Fvftos() function transfers data from a fielded buffer to a C structure. fbfr is a
pointer to a fielded buffer. cstruct is a pointer to a C structure. view is a pointer to
the name of a compiled view description.

Fields are copied from the fielded buffer into the structure based on the member
descriptions in the view. If a field in the fielded buffer has no corresponding member
in the C structure, it is ignored. If a member specified in the C structure has no
corresponding field in the fielded buffer, a NULL value is copied into the member. The
NULL value used is definable for each member in the view description.

To store multiple occurrences in the C structure, the structure member should be an
array (for example, int zip[4] can store 4 occurrences of zip). If the buffer has fewer
occurrences of the field than there are elements in the array, the extra element slots are
assigned NULL values. On the other hand, if the buffer has more occurrences of the
field than there are elements in the array, the surplus occurrences are ignored.

There are view description options that inhibit mappings even though a mapping entry
exists for a field identifier and a member. These options are initially specified in the
viewfile, but can be changed at run time using Fvopt().

Fvftos32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fvftos() or Fvftos32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvftos() fails and sets Ferror to:
144 BEA Tuxedo ATMI FML Function Reference

Fvftos, Fvftos32(3fml)
[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid, (for example,
specifying a NULL cstruct parameter to Fvftos).

[FBADACM]
"ACM contains negative value"
An Associated Count Member should not be a negative value while transferring
data from a structure to a fielded buffer.

[FBADVIEW]
"cannot find or get view"
The view description specified was NULL or was not found in the files
specified by VIEWDIR or VIEWFILES.

See Also Introduction to FML Functions, Fvopt, Fvopt32(3fml), viewfile(5)
BEA Tuxedo ATMI FML Function Reference 145

../rf5/rf5.htm#9766715

Section 3fml - FML Functions
Fvneeded, Fvneeded32(3fml)

Name Fvneeded(), Fvneeded32() - computes size needed for VIEW buffer

Synopsis #include <stdio.h>
#include "fml.h"

long
Fvneeded(char *subtype)

#include "fml32.h"

long
Fvneeded32(char *subtype)

Description Fvneeded() returns the size of the VIEW C structure. subtype is the name of the VIEW.
You can call Fvneeded() to determine the size of a VIEW buffer to allocate.
Fvneeded32() is used with 32-bit VIEWs.

Return Values Fvneeded() returns the size of the VIEW in number of bytes. This function returns -1
on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvnull() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
The requested VIEW cannot be found in the viewfiles specified by VIEWDIR and
VIEWFILES environment variables.

See Also Introduction to FML Functions, viewfile(5)
146 BEA Tuxedo ATMI FML Function Reference

../rf5/rf5.htm#9766715

Fvnull, Fvnull32(3fml)
Fvnull, Fvnull32(3fml)

Name Fvnull(), Fvnull32() - check if a structure element is NULL

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvnull(char *cstruct, char *cname, FLDOCC oc, char *view)

#include "fml32.h"

int
Fvnull32(char *cstruct, char *cname, FLDOCC32 oc, char *view)

Description Fvnull() is used to determine if an occurrence of a structure element is NULL.
cstruct is a pointer to a C structure. cname is a pointer to the name of an element
within cstruct. oc is the occurrence number of the element. view is a pointer to the
name of a compiled view description.

Options of Fvopt() such as do not affect this function.

Fvnull32() is used for views defined with viewc32 or VIEW32 typed buffers for
larger views with more fields.

A thread in a multithreaded application may issue a call to Fvnull() or Fvnull32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values Fvnull() returns 1, if the specified cname in a C structure is NULL and returns 0 if
not NULL. This function returns -1 on error and sets Ferror to indicate the error
condition.

Errors Under the following conditions, Fvnull() fails and sets Ferror to:

[FBADVIEW]
"cannot find or get view"
The view description specified was not found in the files specified by VIEWDIR
or VIEWFILES.
BEA Tuxedo ATMI FML Function Reference 147

Section 3fml - FML Functions
[FNOCNAME]
"cname not found"
The C structure field name is not found in the view description.

See Also Introduction to FML Functions, Fvopt, Fvopt32(3fml), viewfile(5)
148 BEA Tuxedo ATMI FML Function Reference

../rf5/rf5.htm#9766715

Fvopt, Fvopt32(3fml)
Fvopt, Fvopt32(3fml)

Name Fvopt(), Fvopt32() - change flag options of a mapping entry

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvopt(char *cname, int option, char *view)

#include "fml32.h"

int
Fvopt32(char *cname, int option, char *view)

Description Fvopt() allows users to specify buffer-to-structure mapping options at run time.
cname is a pointer to the name of an element in a view description, view. option
specifies the desired setting for the mapping option. Valid options and their meanings
are:

F_FTOS
One-way mapping from fielded buffer to structure, flag S in the view
description.

F_STOF
One-way mapping from structure to fielded buffer, flag F in the view
description.

F_OFF
No mapping between the fielded buffer and the structure, flag N in the view
description.

F_BOTH
Two-way mapping between the fielded buffer and the structure, flag S, F in the
view description.

Fvopt32() is used for views defined with viewc32 or VIEW32 typed buffers for larger
views with more fields.

A thread in a multithreaded application may issue a call to Fvopt() or Fvopt32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.
BEA Tuxedo ATMI FML Function Reference 149

Section 3fml - FML Functions
Errors Under the following conditions, Fvopt() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example,
specifying a NULL cname or view parameter or specifying an invalid option).

[FBADVIEW]
"cannot find or get view"
The view was not found in the files specified by VIEWDIR and VIEWFILES.

[FNOCNAME]
"cname not found"
The C structure field name is not found in the view description.

See Also Introduction to FML Functions, viewfile(5)
150 BEA Tuxedo ATMI FML Function Reference

../rf5/rf5.htm#9766715

Fvrefresh, Fvrefresh32(3fml)
Fvrefresh, Fvrefresh32(3fml)

Name Fvrefresh(), Fvrefresh32() - copy from C structure to fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

void
Fvrefresh()

#include "fml32.h"

void
Fvrefresh32()

Description Fvrefresh() clears and reinitializes the internal cache of view structure mappings.
This is necessary only when frequently accessed views are updated dynamically.

Fvrefresh32() is used for views defined with viewc32 or VIEW32 typed buffers for
larger views with more fields.

A thread in a multithreaded application may issue a call to Fvrefresh() or
Fvrefresh32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This routine is a void function and does not return a value.

Errors This routine is a void function and no error codes are set.

See Also Introduction to FML Functions
BEA Tuxedo ATMI FML Function Reference 151

Section 3fml - FML Functions
Fvselinit, Fvselinit32(3fml)

Name Fvselinit(), Fvselinit32() - initialize structure element to NULL

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvselinit(char *cstruct, char *cname, char *view)

#include "fml32.h"

int
Fvselinit32(char *cstruct, char *cname, char *view)

Description Fvselinit() initializes an individual element of a C structure to its appropriate
NULL value. cstruct is a pointer to a C structure. cname is a pointer to the name of
an element of cstruct. view is a pointer to the name of a compiled view description.

Fvselinit() sets the associated count member of the element to 0 if the C flag was
used when the view was compiled, and sets the associated length member to the length
of the associated NULL value if the L flag was used in the viewfile.

Fvselinit32() is used for views defined with viewc32 or VIEW32 typed buffers for
larger views with more fields.

A thread in a multithreaded application may issue a call to Fvselinit() or
Fvselinit32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvselinit() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example,
specifying a NULL cstruct parameter invalid Fvselinit).

[FBADVIEW]
"cannot find or get view"
The view description specified was NULL or was not found in the files
specified by VIEWDIR or VIEWFILES.
152 BEA Tuxedo ATMI FML Function Reference

Fvselinit, Fvselinit32(3fml)
[FNOCNAME]
"cname not found"
The C structure field name is not found in the view description.

See Also Introduction to FML Functions, Fvsinit, Fvsinit32(3fml), viewfile(5)
BEA Tuxedo ATMI FML Function Reference 153

../rf5/rf5.htm#9766715

Section 3fml - FML Functions
Fvsinit, Fvsinit32(3fml)

Name Fvsinit(), Fvsinit32() - initialize C structure to NULL

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvsinit(char *cstruct, char *view)

#include "fml32.h"

int
Fvsinit32(char *cstruct, char *view)

Description Fvsinit() initializes all members in a C structure to the NULL values specified in the
view description, view. cstruct is a pointer to a C structure. view is a pointer to a
compiled view description.

Fvsinit() sets the associated count member of an element to 0 if the C flag was used
when the view was compiled, and sets the associated length member to the length of
the associated NULL value if the L flag was used in the viewfile.

Fvsinit32() is used for views defined with viewc32 or VIEW32 typed buffers for
larger views with more fields.

A thread in a multithreaded application may issue a call to Fvsinit() or
Fvsinit32() while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvsinit() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example,
specifying a NULL cstruct parameter invalid Fvsinit()).
154 BEA Tuxedo ATMI FML Function Reference

Fvsinit, Fvsinit32(3fml)
[FBADVIEW]
"cannot find or get view"
The view description specified was NULL or was not found in the files
specified by VIEWDIR or VIEWFILES.

See Also Introduction to FML Functions, Fvselinit, Fvselinit32(3fml), viewfile(5)
BEA Tuxedo ATMI FML Function Reference 155

../rf5/rf5.htm#9766715

Section 3fml - FML Functions
Fvstof, Fvstof32(3fml)

Name Fvstof(), Fvstof32() - copy from C structure to fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fvstof(FBFR *fbfr, char *cstruct, int mode, char *view)

#include "fml32.h"

int
Fvstof32(FBFR32 *fbfr, char *cstruct, int mode, char *view)

Description Fvstof() transfers data from a C structure to a fielded buffer. fbfr is a pointer to a
fielded buffer. cstruct is a pointer to a C structure. mode specifies the manner in
which the transfer is made. view is a pointer to a compiled view description. mode has
four possible values:

FUPDATE

FOJOIN

FJOIN

FCONCAT

The action of these modes are the same as that described in Fupdate(), Fojoin(),
Fjoin(), and Fconcat(). One can even think of Fvstof() as the same as these
functions, except that where they specify a source buffer, Fvstof() specifies a C
structure. Bear in mind that FUPDATE does not move structure elements that have
NULL values.

Fvstof32() is used for views defined with viewc32 or VIEW32 typed buffers for
larger views with more fields.

A thread in a multithreaded application may issue a call to Fvstof() or Fvstof32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fvstof() fails and sets Ferror to:
156 BEA Tuxedo ATMI FML Function Reference

Fvstof, Fvstof32(3fml)
[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example,
specifying a NULL cstruct parameter or an invalid mode to Fvstof())

[FNOSPACE]
"no space in fielded buffer"
A field value is to be added or changed in a fielded buffer but there is not
enough space remaining in the buffer.

[FBADACM]
"ACM contains negative value"
An Associated Count Member should not be a negative value while transferring
data from a structure to a fielded buffer.

[FMALLOC]
"malloc failed"
Allocation of space dynamically using malloc() failed when converting from
a carray (or mbstring) or string value.

See Also Introduction to FML Functions, Fconcat, Fconcat32(3fml), Fjoin,
Fjoin32(3fml), Fojoin, Fojoin32(3fml), Fupdate, Fupdate32(3fml),
Fvftos, Fvftos32(3fml)
BEA Tuxedo ATMI FML Function Reference 157

Section 3fml - FML Functions
Fvstot, Fvttos(3fml)

Name Fvstot(), Fvttos() - convert C structure to/from target record type

Synopsis #include <stdio.h>
#include "fml.h"

long
Fvstot(char *cstruct, char *trecord, long treclen, char *viewname)

long
Fvttos(char *cstruct, char *trecord, char *viewname)

#include "fml32.h"

int
Fvstot32(char *cstruct, char *trecord, long treclen, char
*viewname)

int
Fvttos32(char *cstruct, char *trecord, char *viewname)

int Fcodeset(char *translation_table)

Description The Fvstot() function transfers data from a C structure to a target record type. The
Fvttos() function transfers data from a target record to a C structure. trecord is a
pointer to the target record. cstruct is a pointer to a C structure. viewname is a pointer
to the name of a compiled view description. The VIEWDIR and VIEWFILES are used to
find the directory and file containing the compiled view description.

Fvttos32() and Fvstot32() are used with 32-bit VIEWS.

To convert from an FML buffer to a target record, first call Fvftos() to convert the
FML buffer to a C structure, and call Fvstot() to convert to a target record. To
convert from a target record to an FML buffer, first call Fvttos() to convert to a C
structure and then call Fvstof() to convert the structure to an FML buffer.

A thread in a multithreaded application may issue a call to Fvstot() or Fvttos()
while running in any context state, including TPINVALIDCONTEXT.

Default
Conversion-IBM

/370

The default target is IBM/370 COBOL records. The default data conversion is done
based on the following table.
158 BEA Tuxedo ATMI FML Function Reference

Fvstot, Fvttos(3fml)
No filler bytes are provided between fields in the IBM/370 record. The COBOL SYNC
clause should not be specified for any data items that are a part of the structure
corresponding to the view.

An integer field is converted to either a four or two-byte integer depending on the size
of integers on the machine on which the conversion is done.

A string field in the view must be terminated with a NULL when converting to/from
the IBM/370 format.

The data in a carray or mbstring field is passed unchanged; no data translation is
performed.

Packed decimals exist in the IBM/370 environment as two decimal digits packed into
one byte with the low-order half byte used to store the sign. The length of a packed
decimal may be 1 to 16 bytes with storage available for 1 to 31 digits and a sign.

Table 2 Default Data Conversion

Struct Record

float COMP-1

double COMP-2

long S9(9) COMP

short S9(4) COMP

int S9(9) COMP or S9(4) COMP

dec_t(m, n) S9(2*m-(n+1))V9(n)COMP-3

ASCII char EBCDIC char

ASCII string EBCDIC string

carray character array

mbstring multibyte character array
BEA Tuxedo ATMI FML Function Reference 159

Section 3fml - FML Functions
Packed decimals are supported in C structures using the dec_t field type. The dec_t
field has a defined size consisting of two numbers separated by a comma. The number
to the left of the comma is the total number of bytes that the decimal occupies. The
number to the right is the number of digits to the right of the decimal point. The
formula for conversion is:

dec_t(m, n) => S9(2*m-(n+1))V9(n)COMP-3

Decimal values may be converted to and from other data types (for example, int, long,
string, double, and float) using the functions described in decimal().

The following table provides the hex values for default character conversion of ASCII
(on the left) to/from EBCDIC (on the right).

00 00	01 01	02 02	03 03	04 37	05 2d	06 2e	07 2f
08 16	09 05	0a 25	0b 0b	0c 0c	0d 0d	0e 0e	0f 0f
10 10	11 11	12 12	13 13	14 3c	15 3d	16 32	17 26
18 18	19 19	1a 3f	1b 27	1c 1c	1d 1d	1e 1e	1f 1f
20 40	21 5a	22 7f	23 7b	24 5b	25 6c	26 50	27 7d
28 4d	29 5d	2a 5c	2b 4e	2c 6b	2d 60	2e 4b	2f 61
30 f0	31 f1	32 f2	33 f3	34 f4	35 f5	36 f6	37 f7
38 f8	39 f9	3a 7a	3b 5e	3c 4c	3d 7e	3e 6e	3f 6f
40 7c	41 c1	42 c2	43 c3	44 c4	45 c5	46 c6	47 c7
48 c8	49 c9	4a d1	4b d2	4c d3	4d d4	4e d5	4f d6
50 d7	51 d8	52 d9	53 e2	54 e3	55 e4	56 e5	57 e6
58 e7	59 e8	5a e9	5b ad	5c e0	5d bd	5e 5f	5f 6d
60 79	61 81	62 82	63 83	64 84	65 85	66 86	67 87
68 88	69 89	6a 91	6b 92	6c 93	6d 94	6e 95	6f 96
70 97	71 98	72 99	73 a2	74 a3	75 a4	76 a5	77 a6
78 a7	79 a8	7a a9	7b c0	7c 6a	7d d0	7e a1	7f 07
80 20	81 21	82 22	83 23	84 24	85 15	86 06	87 17
88 28	89 29	8a 2a	8b 2b	8c 2c	8d 09	8e 0a	8f 1b
90 30	91 31	92 1a	93 33	94 34	95 35	96 36	97 08
98 38	99 39	9a 3a	9b 3b	9c 04	9d 14	9e 3e	9f e1
a0 41	a1 42	a2 43	a3 44	a4 45	a5 46	a6 47	a7 48
a8 49	a9 51	aa 52	ab 53	ac 54	ad 55	ae 56	af 57
b0 58	b1 59	b2 62	b3 63	b4 64	b5 65	b6 66	b7 67
b8 68	b9 69	ba 70	bb 71	bc 72	bd 73	be 74	bf 75
c0 76	c1 77	c2 78	c3 80	c4 8a	c5 8b	c6 8c	c7 8d
c8 8e	c9 8f	ca 90	cb 9a	cc 9b	cd 9c	ce 9d	cf 9e
d0 9f	d1 a0	d2 aa	d3 ab	d4 ac	d5 4a	d6 ae	d7 af
d8 b0	d9 b1	da b2	db b3	dc b4	dd b5	de b6	df b7
e0 b8	e1 b9	e2 ba	e3 bb	e4 bc	e5 4f	e6 be	e7 bf
e8 ca	e9 cb	ea cc	eb cd	ec ce	ed cf	ee da	ef db
f0 dc	f1 dd	f2 de	f3 df	f4 ea	f5 eb	f6 ec	f7 ed
f8 ee	f9 ef	fa fa	fb fb	fc fc	fd fd	fe fe	ff ff
160 BEA Tuxedo ATMI FML Function Reference

Fvstot, Fvttos(3fml)
An alternate character translation table can be used at run time by calling Fcodeset().
The translation_table must point to 512 bytes of binary data. The first 256 bytes
of data are interpreted as the ASCII to EBCDIC translation table. The second 256 bytes
of data are interpreted as the EBCDIC to ASCII table. Any data after the 512th byte is
ignored. If the pointer is NULL, the default translation is used.

Return Values On success, Fvstot() returns the length of the target record and Fvttos() returns the
length of the C structure.

These functions return -1 on error and set Ferror to indicate the error condition.

Errors Under the following conditions, Fvttos() fails and sets Ferror to:

[FEINVAL]
"invalid argument to function"
One of the arguments to the function invoked was invalid (for example,
specifying a NULL trecord or cstruct parameter to Fvttos()). This error
is also returned if a value is out of range when converting to or from a target
record.

[FBADACM]
"ACM contains negative value"
An Associated Count Member cannot be a negative value.

[FBADVIEW]
"cannot find or get view"
viewname was not found in the files specified by VIEWDIR or VIEWFILES.

[FNOSPACE]
"no space in buffer"
The target record is not large enough to hold the converted structure.

[FVFOPEN]
"cannot find or open viewfile"
While trying to find viewname, the program failed to find one of the files
specified by VIEWDIR or VIEWFILES.

[FEUNIX]
"operating system error"
While trying to find viewname, the program failed to open one of the files
specified by VIEWDIR or VIEWFILES for reading.
BEA Tuxedo ATMI FML Function Reference 161

Section 3fml - FML Functions
[FVFSYNTAX]
"bad viewfile"
While trying to find viewname, one of the files specified by VIEWDIR or
VIEWFILES was corrupted or not a viewfile.

[FMALLOC]
"malloc failed"
While trying to find viewname, malloc() failed while allocating space to hold
the view information.

Example VIEW test.v

VIEW test
#type cname fbname count flag size null
float float1 FLOAT1 1 - - 0.0
double double1 DOUBLE1 1 - - 0.0
long long1 LONG1 1 - - 0
short short1 SHORT1 1 - - 0
int int1 INT1 1 - - 0
dec_t dec1 DEC1 1 - 4,2 0
char char1 CHAR1 1 - - ''
string string1 STRING1 1 - 20 ''
carray carray1 CARRAY1 1 - 20 ''
END

Equivalent COBOL Record

02 OUTPUT-REC.
 05 FLOAT1 USAGE IS COMP-1.
 05 DOUBLE1 USAGE IS COMP-2.
 05 LONG1 PIC S9(9) USAGE IS COMP.
 05 SHORT1 PIC S9(4) USAGE IS COMP.
 05 INT1 PIC S9(9) USAGE IS COMP.
 05 DEC1 PIC S9(5)V9(2) COMP-3.
 05 CHAR1 PIC X(01).
 05 STRING1 PIC X(20).
 05 CARRAY1 PIC X(20).

C Program

#include "test.h"
#include "decimal.h"

main()
{

 struct test s1;
162 BEA Tuxedo ATMI FML Function Reference

Fvstot, Fvttos(3fml)
 char data[100];

 s1.float1 = 1.0;
 s1.double1 = 2.0;
 s1.long1 = 3;
 s1.short1 = 4;
 s1.int1 = 5;
 deccvdbl(6.0,s1.dec1);
 s1.char1 = '7';
 (void) strcpy(s1.string1, "eight");
 (void) strcpy(s1.carray1, "nine");

 if (Fvstot((char *)&s1, data, reclen, "test") == -1) {
 printf("Fvstot failed: %sn", Fstrerror(Ferror));
 exit(0);
 }
 /* transfer to target machine and get response */
 ...

 /* translate back */
 if (Fvttos(data, (char *)&s1, "test") == -1) {
 printf("Fvttos failed: %sn", Fstrerror(Ferror));
 exit(0);
 }

 /* use the structure */

 exit(0);
}

See Also Introduction to FML Functions, Fvftos, Fvftos32(3fml), Fvstof,
Fvstof32(3fml), viewfile(5)

decimal(3) in a UNIX system reference manual
BEA Tuxedo ATMI FML Function Reference 163

../rf5/rf5.htm#9766715

Section 3fml - FML Functions
Fwrite, Fwrite32(3fml)

Name Fwrite(), Fwrite32() - write fielded buffer

Synopsis #include <stdio.h>
#include "fml.h"

int
Fwrite(FBFR *fbfr, FILE *iop)

#include "fml32.h"

int
Fwrite32(FBFR32 *fbfr, FILE *iop)

Description Fielded buffers may be written to streams by Fwrite(). (See stdio(3S) in a UNIX
system reference manual for a discussion of streams). Fwrite() discards a buffer’s
index.

fbfr is a pointer to a fielded buffer. iop is a pointer of type FILE to the output stream.

For the FLD_PTR field type, only the pointer, not the data being pointed to, is written
to the output stream. For the FLD_VIEW32 field type, only the FVIEWFLD structure, not
the data in the VIEW32 buffer, is written to the output stream.

Fwrite32() is used with 32-bit FML.

A thread in a multithreaded application may issue a call to Fwrite() or Fwrite32()
while running in any context state, including TPINVALIDCONTEXT.

Return Values This function returns -1 on error and sets Ferror to indicate the error condition.

Errors Under the following conditions, Fwrite() fails and sets Ferror to:

[FALIGNERR]
"fielded buffer not aligned"
The buffer does not begin on the proper boundary.

[FNOTFLD]
"buffer not fielded"
The buffer is not a fielded buffer or has not been initialized by Finit().
164 BEA Tuxedo ATMI FML Function Reference

Fwrite, Fwrite32(3fml)
[FEUNIX]
"UNIX system call error"
The write system call failed. The external integer errno should have been set
to indicate the error by the system call, and the external integer Uunixerr
(values defined in Uunix.h) is set to the system call that returned the error.

Portability This function is not supported using the BEA Tuxedo System Workstation DLL for
Windows.

See Also Introduction to FML Functions, Findex, Findex32(3fml), Fread,
Fread32(3fml)

stdio(3S) in a UNIX system reference manual
BEA Tuxedo ATMI FML Function Reference 165

Section 3fml - FML Functions
tpconvfmb32(3fml)

Name tpconvfmb32() - convert multibyte characters from source encoding to target encoding

Synopsis #include <atmi.h>
#include "fml32.h"

extern int tperrno;

int
tpconvfmb32 (FBFR32 **bufp, FLDID32 *ids, char *target_encoding,
long flags)

Description tpconvfmb32() converts the multibyte characters in an FLD_MBSTRING field in an
FML32 typed buffer to a named target encoding. Specifically, tpconvfmb32()
compares the source encoding name specified for the FLD_MBSTRING field with the
target encoding name defined in target_encoding; if the encoding names are
different, tpconvfmb32() converts the FLD_MBSTRING field data to the target
encoding.

tpconvfmb32() is an alternative to system-initiated encoding conversion.
System-initiated encoding conversion of FLD_MBSTRING field data is done
automatically when the process TPMBACONV environment variable is set to a
non-NULL value.

bufp is a pointer to an FML32 typed buffer. It is reallocated internally if the size
associated with the pointer is insufficient to handle the converted output data of the
FML32 buffer. bufp must be defined using the tpalloc() function, not the
Falloc() function. If bufp contains FLD_FML32 fields, they are checked recursively
for FLD_MBSTRING fields. If bufp contains FLD_PTR fields, they are skipped.

ids contains a pointer to an array of field ids that are to be converted. If ids is NULL,
all FLD_MBSTRING fields found in bufp are converted to the target encoding if
required. The array, if used, must be terminated with 0 (i.e., BADFLDID).

target_encoding is the target code-set encoding name used to convert the
FLD_MBSTRING fields in the bufp message. If target_encoding is NULL,
tpconvfmb32() uses the encoding name defined in the process TPMBENC environment
variable.

flags is not used by tpconvfmb32(). It is passed to the buffer type switch function
for user-defined conversion functions.
166 BEA Tuxedo ATMI FML Function Reference

tpconvfmb32(3fml)
Return Values On success, tpconvfmb32() returns 0. On error, tpconvfmb32() returns -1 and sets
tperrno to indicate the error condition.

Errors Under the following conditions, tpconvfmb32() fails and sets tperrno to:

[TPEPROTO]
bufp translates to a Tuxedo buffer that does not have a buffer type switch
conversion function.

[TPESYSTEM]
A Tuxedo system error has occurred (e.g., bufp does not correspond to a valid
Tuxedo buffer).

 [TPEINVAL]
target_encoding or bufp is NULL.

[TPEOS]
An operating system error occurred. The external integer Uunixerr (values
defined in Uunix.h) is set to the system call that returned the error.

See Also Fmbpack32(3fml), Fmbunpack32(3fml), tpalloc(3c), tpsetmbenc(3c),
tuxgetmbaconv(3c), tuxgetmbenc(3c), tuxsetmbaconv(3c),
tuxsetmbenc(3c)
BEA Tuxedo ATMI FML Function Reference 167

../rf3c/rf3c.htm#9599213
../rf3c/rf3c.htm#2922713
../rf3c/rf3c.htm#8664413
../rf3c/rf3c.htm#9681513
../rf3c/rf3c.htm#3526313
../rf3c/rf3c.htm#3008013

Section 3fml - FML Functions
168 BEA Tuxedo ATMI FML Function Reference

	Contents
	About This Document
	Section 3fml - FML Functions

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Section 3fml - FML Functions
	Introduction to FML Functions
	CFadd, CFadd32(3fml)
	CFchg, CFchg32(3fml)
	CFfind, CFfind32(3fml)
	CFfindocc, CFfindocc32(3fml)
	CFget, CFget32(3fml)
	CFgetalloc, CFgetalloc32(3fml)
	F_error, F_error32(3fml)
	F32to16, F16to32(3fml)
	Fadd, Fadd32(3fml)
	Fadds, Fadds32(3fml)
	Falloc, Falloc32(3fml)
	Fappend, Fappend32(3fml)
	Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml)
	Fboolev, Fboolev32, Fvboolev, Fvboolev32(3fml)
	Fboolpr, Fboolpr32, Fvboolpr, Fvboolpr32(3fml)
	Fchg, Fchg32(3fml)
	Fchgs, Fchgs32(3fml)
	Fchksum, Fchksum32(3fml)
	Fcmp, Fcmp32(3fml)
	Fconcat, Fconcat32(3fml)
	Fcpy, Fcpy32(3fml)
	Fdel, Fdel32(3fml)
	Fdelall, Fdelall32(3fml)
	Fdelete, Fdelete32(3fml)
	Fextread, Fextread32(3fml)
	Ffind, Ffind32(3fml)
	Ffindlast, Ffindlast32(3fml)
	Ffindocc, Ffindocc32(3fml)
	Ffinds, Ffinds32(3fml)
	Ffloatev, Ffloatev32, Fvfloatev, Fvfloatev32(3fml)
	Ffprint, Ffprint32(3fml)
	Ffree, Ffree32(3fml)
	Fget, Fget32(3fml)
	Fgetalloc, Fgetalloc32(3fml)
	Fgetlast, Fgetlast32(3fml)
	Fgets, Fgets32(3fml)
	Fgetsa, Fgetsa32(3fml)
	Fidnm_unload, Fidnm_unload32(3fml)
	Fidxused, Fidxused32(3fml)
	Fielded, Fielded32(3fml)
	Findex, Findex32(3fml)
	Finit, Finit32(3fml)
	Fjoin, Fjoin32(3fml)
	Fldid, Fldid32(3fml)
	Fldno, Fldno32(3fml)
	Fldtype, Fldtype32(3fml)
	Flen, Flen32(3fml)
	Fmbpack32(3fml)
	Fmbunpack32(3fml)
	Fmkfldid, Fmkfldid32(3fml)
	Fmove, Fmove32(3fml)
	Fname, Fname32(3fml)
	Fneeded, Fneeded32(3fml)
	Fnext, Fnext32(3fml)
	Fnmid_unload, Fnmid_unload32(3fml)
	Fnum, Fnum32(3fml)
	Foccur, Foccur32(3fml)
	Fojoin, Fojoin32(3fml)
	Fpres, Fpres32(3fml)
	Fprint, Fprint32(3fml)
	Fproj, Fproj32(3fml)
	Fprojcpy, Fprojcpy32(3fml)
	Fread, Fread32(3fml)
	Frealloc, Frealloc32(3fml)
	Frstrindex, Frstrindex32(3fml)
	Fsizeof, Fsizeof32(3fml)
	Fstrerror, Fstrerror32(3fml)
	Ftypcvt, Ftypcvt32(3fml)
	Ftype, Ftype32(3fml)
	Funindex, Funindex32(3fml)
	Funused, Funused32(3fml)
	Fupdate, Fupdate32(3fml)
	Fused, Fused32(3fml)
	Fvall, Fvall32(3fml)
	Fvals, Fvals32(3fml)
	Fvftos, Fvftos32(3fml)
	Fvneeded, Fvneeded32(3fml)
	Fvnull, Fvnull32(3fml)
	Fvopt, Fvopt32(3fml)
	Fvrefresh, Fvrefresh32(3fml)
	Fvselinit, Fvselinit32(3fml)
	Fvsinit, Fvsinit32(3fml)
	Fvstof, Fvstof32(3fml)
	Fvstot, Fvttos(3fml)
	Fwrite, Fwrite32(3fml)
	tpconvfmb32(3fml)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

