
BEA
 Tuxedo®

Using the CORBA
Notification Service
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document
What You Need to Know ..x
e-docs Web Site...x
How to Print the Document...x
Related Information... xi
Contact Us!.. xi
Documentation Conventions .. xii

1. Overview
Introduction ... 1-1
Functional Overview ... 1-2
Product Components ... 1-4

2. CORBA Notification Service API Reference
Introduction ... 2-1

Quality of Service... 2-2
Obtaining the Channel Factory .. 2-3
Using Transactions... 2-4
Structured Event Fields, Types, and Filters ... 2-5
Designing Events.. 2-7
Creating FML Field Table Files for Events ... 2-8
Interoperability with BEA Tuxedo Applications 2-10
Parameters Used When Creating Subscriptions....................................... 2-12

BEA Simple Events API ... 2-17
TOBJ_SimpleEvents::Channel Interface ... 2-18

Channel::subscribe .. 2-20
Channel::unsubscribe .. 2-22
Using the CORBA Notification Service iii

Channel::push_structured_event ... 2-23
Channel::exists .. 2-24

TOBJ_SimpleEvents::ChannelFactory Interface 2-25
Channel_Factory::find_channel .. 2-26

CosNotification Service API ... 2-27
Overview of Supported CosNotification Service Classes 2-27
Detailed Descriptions of CosNotification Service Classes 2-31

CosNotifyFilter::Filter::add_constraints ... 2-32
CosNotifyFilter::Filter::destroy... 2-34
CosNotifyFilter::FilterFactory::create_filter 2-35
CosNotifyChannelAdmin::StructuredProxyPushSupplier::

connect_structured_push_consumer .. 2-37
CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos.. 2-39
CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

2-41
CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter2-43
CosNotifyChannelAdmin::StructuredProxyPushSupplier::

disconnect_structured_push_supplier .. 2-44
CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType 2-45
CosNotifyChannelAdmin::StructuredProxyPushConsumer::

connect_structured_push_supplier... 2-46
CosNotifyChannelAdmin::StructuredProxyPushConsumer::

push_structured_event ... 2-47
CosNotifyChannelAdmin::StructuredProxyPushConsumer::

disconnect_structured_push_consumer 2-49
CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType

2-50
CosNotifyChannelAdmin::ConsumerAdmin::

obtain_notification_push_supplier... 2-51
CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier... 2-53
CosNotifyChannelAdmin::SupplierAdmin::

obtain_notification_push_consumer .. 2-55
CosNotifyChannelAdmin::EventChannel::

ConsumerAdmin default_consumer_admin 2-58
CosNotifyChannelAdmin::EventChannel::

ConsumerAdmin default_supplier_admin 2-59
iv Using the CORBA Notification Service

CosNotifyChannelAdmin::EventChannel::default_filter_factory 2-60
CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

2-62
CosNotifyComm::StructuredPushConsumer::push_structured_event......

2-64
CosNotifyComm::StructuredPushConsumer::

disconnect_structured_push_consumer 2-65
CosNotifyComm::StructuredPushConsumer::Offer_change............ 2-66

Exception Minor Codes.. 2-66

3. Using the BEA Simple Events API
Development Process .. 3-1
Designing Events... 3-2
Step 1: Writing an Application to Post Events.. 3-2

Getting the Event Channel ... 3-3
Creating and Posting Events .. 3-4

Step 2: Writing an Application to Subscribe to Events..................................... 3-6
Implementing the CosNotifyComm::StructuredPushConsumer Interface. 3-7
Getting the Event Channel ... 3-10
Creating a Callback Object .. 3-11
Creating a Subscription .. 3-12

Step 3: Compiling and Running Notification Service Applications 3-17
Generating the Client Stub and Skeleton Files... 3-17
Building and Running Applications... 3-18

4. Using the CosNotification Service API
Development Process .. 4-1
Designing Events... 4-2
Step 1: Writing an Application to Post Events.. 4-2

Getting the Event Channel ... 4-3
Creating and Posting Events .. 4-4

Step 2: Writing an Application to Subscribe to Events..................................... 4-7
Implementing the CosNotifyComm::StructuredPushConsumer Interface. 4-8
Getting the Event Channel, ConsumerAdmin Object, and Filter Factory

Object .. 4-12
Creating a Callback Object .. 4-14
Using the CORBA Notification Service v

Creating a Subscription .. 4-16
Step 3: Compiling and Running Notification Service Applications................ 4-19

Generating the Client Stub and Skeleton Files... 4-20
Compiling and Linking the Application Code ... 4-21

5. Building the Introductory Sample Application
Overview ... 5-1
Building and Running the Introductory Sample Application 5-4

Verifying the Settings of the Environment Variables 5-5
Copying the Files for the Introductory Sample Application into a Work

Directory.. 5-6
Changing the Protection Attribute on the Files for the Introductory Sample

Application .. 5-10
Setting Up the Environment ... 5-11
Building the Introductory Sample Application .. 5-11
Starting the Introductory Sample Application.. 5-12
Using the Introductory Sample Application... 5-13
Shutting Down the System and Cleaning Up the Directory..................... 5-15

6. Building the Advanced Sample Application
Overview ... 6-1
Building and Running the Advanced Sample Application................................ 6-6

Verifying the Settings of the Environment Variables 6-7
Copying the Files for the Advanced Sample Application into a Work

Directory.. 6-9
Changing the Protection Attribute on the Files for the Advanced Sample

Application .. 6-13
Setting Up the Environment ... 6-14
Building the Advanced Sample Application .. 6-14
Starting the Advanced Sample Application ... 6-15
Using the Advanced Sample Application... 6-17
Shutting Down the System and Cleaning Up the Directory..................... 6-20

7. CORBA Notification Service Administration
Introduction ... 7-2
Configuring the Notification Service .. 7-2
vi Using the CORBA Notification Service

Configuring Data Filters.. 7-3
Setting the Host and Port ... 7-5
Creating a Transaction Log ... 7-7
Creating Event Queues .. 7-7

Determining Space Parameters for Transient and Persistent Subscriptions
7-8

Creating a Device on Disk for the Queue Space...................................... 7-11
Configuring a Queue Space.. 7-11
Creating the Queues ... 7-12
Setting IPC Parameters on Microsoft Windows 7-14

Creating the UBBCONFIG File and the TUXCONFIG File 7-17
Managing the Notification Service.. 7-23

Synchronizing Databases ... 7-24
Purging the System of Dead Subscriptions .. 7-24
Monitoring Queue Utilization .. 7-25
Purging the Queues of Unwanted Events... 7-26
Managing the Error Queue... 7-26

Notification Service Administration Utility and Commands 7-27
ntsadmin Utility.. 7-27

ntsadmin .. 7-28
ntsadmin Commands .. 7-29
Using the ntsadmin Utility ... 7-32

Notification Servers... 7-34
TMNTS ... 7-35
TMNTSFWD_T.. 7-36
TMNTSFWD_P.. 7-37

Index
Using the CORBA Notification Service vii

viii Using the CORBA Notification Service

About This Document

This document describes using the CORBA Notification Service in the BEA Tuxedo®
product. This document defines concepts associated with using the Notification
Service and describes the development process for CORBA applications. In addition,
instructions for building and running the Notification sample applications and
descriptions of the Notification Service application programming interface (API) and
administrative tasks and tools are included in this document.

This document includes the following topics:

Chapter 1, “Overview,” provides a basic description of the Notification Service
and its components.

Chapter 2, “CORBA Notification Service API Reference,” describes the
application programming interfaces supported by the Notification Service
software.

Chapter 3, “Using the BEA Simple Events API,” describes how to develop
Notification Service applications using the BEA Simple Events API in C++ and
Java.

Chapter 4, “Using the CosNotification Service API,” describes how to develop
Notification Service applications using the CosNotification API in C++ and
Java.

Chapter 5, “Building the Introductory Sample Application,” provides an
overview of the Introductory sample application and describes how to build and
run it.

Chapter 6, “Building the Advanced Sample Application,” provides an overview
of the Advanced sample application and describes how to build and run it.

Chapter 7, “CORBA Notification Service Administration,” describes the
administrative tasks and tools provided with the Notification Service software.
Using the CORBA Notification Service ix

What You Need to Know

This document is intended for system administrators and programmers who design,
develop, configure, and manage Notification Service applications.

e-docs Web Site

The BEA Tuxedo product documentation is available on the BEA Systems, Inc.
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF Files button, and select the document you want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.
x Using the CORBA Notification Service

Related Information

For more information about CORBA, BEA Tuxedo, distributed object computing,
transaction processing, C++ programming, see the BEA Tuxedo CORBA Bibliography
in the BEA Tuxedo online documentation.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
Using the CORBA Notification Service xi

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
xii Using the CORBA Notification Service

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using the CORBA Notification Service xiii

xiv Using the CORBA Notification Service

CHAPTER
1 Overview

This topic includes the following sections:

Introduction

Functional Overview

Product Components

Introduction

The Notification Service provides an event service for the BEA Tuxedo CORBA
environment. It is not meant to be a standalone product, but rather a layered product
on BEA Tuxedo.

The Notification Service offers similar capabilities to those of the BEA Tuxedo
EventBroker, but with a programming model and interface that is natural for CORBA
users. A side effect of this approach is that the majority of the CORBA-based
Notification Service is not supported since it is either incompatible with, or provides
capabilities well beyond that of the BEA Tuxedo EventBroker.

The Notification Service is a BEA Tuxedo subsystem that receives event posting
messages, filters them, and distributes them to subscribers. A poster is a BEA Tuxedo
CORBA application that detects when an event of interest has occurred and reports
(posts) it to the Notification Service. A subscriber is a BEA Tuxedo CORBA
application that requests that some notification action be taken when an event of
interest is posted.
Using the CORBA Notification Service 1-1

1 Overview
The concept of an “anonymous” service—the Notification Service—that receives and
distributes messages provides another client-server communication paradigm to BEA
Tuxedo CORBA environment. Instead of a one-to-one relationship between a
requester and a provider, an arbitrary number of posters can post a message for an
arbitrary number of subscribers. The posters simply post events, without knowing who
receives the information or what is done about it. The subscribers can receive whatever
information they are interested in from the Notification Service, without knowing who
posted it, and subscribers can be notified and take action in a variety of ways.

Typically, Notification Service applications are designed to handle exception events.
The application designer has to decide what events in the application need to be
monitored. In a banking application, for example, an event might be posted for an
unusually large withdrawal transaction; but it would not be particularly useful to post
an event for every withdrawal transaction. And not all users would need to subscribe
to that event; perhaps just the branch manager, would need to be notified.

The programming model for the Notification Service is based on the CORBA
programming model. There are two sets of interfaces: one is a minimal subset of the
CORBA-based Notification Service interface (referred to in this document as the
CosNotification Service interface), and the other is the BEA Simple Events interface
(a BEA proprietary interface) designed to be easy to use. Both interfaces pass standard,
structured events, as defined by the CORBA-based Notification Service specification.

The two interfaces are compatible with each other; that is, events posted using the
CosNotification Service interface can be subscribed to by the BEA Simple Events
interface and vice versa.

Functional Overview

The Notification Service system comprises three basic components (see Figure 1-1):

The event poster, or supplier.

The supplier is the producer of events. It creates events and posts them to the
Notification Service.

The Notification Service, also known as the event channel.

The Notification Service processes events.
1-2 Using the CORBA Notification Service

Functional Overview
The event subscriber, or consumer.

The consumer is the recipient of the events. It connects to the Notification
Service and subscribes to some set of events.

When the Notification Service receives an event that matches a consumer’s
subscription, it attempts to deliver the event to that consumer. There can be many
suppliers and consumers. Logically, there is only one Notification Service, even
though the Notification Service can be replicated.

Figure 1-1 Notification Service Model

According to the CORBA-based Notification Service specification, event posters
always use the push model. Thus, event posters push events to the Notification Service
by invoking an operation. The Notification Service takes responsibility for filtering
and delivering the event. There is no direct association between event posters and
event subscribers. At any point in time there may be zero, one, or many event posters
or event subscribers.

Also, according to the CORBA-based Notification Service specification, subscribers
can select one of two event delivery models, push or pull. Only the push model is
supported in this release of BEA Tuxedo. Thus, the Notification Service pushes events
to the consumer by invoking an operation on the consumer. Depending on the Quality
of Service (QoS) of the matching subscription, the event might be stored durably,
pending delivery to the consumer.

Event
Poster

Event
SubscriberNotification

Service
push push

Subscribe
Using the CORBA Notification Service 1-3

1 Overview
Product Components

The BEA Tuxedo CORBA Notification Service supports the following:

A BEA Simple Events application programming interface (API) for ease-of-use.

A minimal set of operations defined by the CosNotification Service API.

Two Qualities of Service (QoS) for subscriptions: transient and persistent.

For transient subscriptions, the Notification Service makes only one attempt to
deliver the event to a subscriber. If that attempt fails, the event is discarded and
if the Notification Service determines that the subscriber is shutdown or
otherwise not available, the subscription is cancelled.

For persistent subscriptions, if the first delivery attempt fails, the Notification
Service holds the event and keeps attempting to deliver the subscription until the
configurable retry limit is reached. After the retry limit is reached, the
Notification Service moves the event to an error queue, where it is held for
disposition by the system administrator. The system administrator either removes
the event from the error queue, which in effect discards it, or moves it back to
the pending queue so that further attempts to deliver it can be made.

Using the UBBCONFIG file for initial configuration of the system, event queues,
and server processes.

Using the BEA Tuxedo style FML field tables. Through the use of FML field
tables, the Notification Service can support:

Event data filtering between event posters and event subscribers.

Interoperability with BEA Tuxedo EventBroker such that events posted by
the Notification Service can be consumed by the Tuxedo EventBroker and
vice versa.

Using the following BEA Tuxedo Notification Service servers to process events:

TMNTS

TMNTSFWD_P

TMNTSFWD_T

Using the following BEA Tuxedo system servers to process events:
1-4 Using the CORBA Notification Service

Product Components
TMSYSEVT

TMUSREVT

TMQUEUE

TMQFORWARD

Using the BEA Tuxedo ntsadmin administrative utility to manage event queues.

Using the BEA Tuxedo qmadmin administrative utility to configure and manage
event queues.

Using the BEA Tuxedo tmadmin administrative utility to configure and manage
transaction logs.
Using the CORBA Notification Service 1-5

1 Overview
1-6 Using the CORBA Notification Service

CHAPTER
2 CORBA Notification
Service API Reference

This topic includes the following sections:

Introduction

BEA Simple Events API

CosNotification Service API

Introduction

The BEA Tuxedo CORBA Notification Service supports two application
programming interfaces. One is based on the CORBA-based Notification Service as
defined by the CORBAservices: Common Object Services Specification. This interface
is referred to in this document as the CosNotification Service interface. The other
interface, called the BEA Simple Events interface, is a BEA proprietary interface
designed as an easier to use alternative.

Both interfaces pass structured events as defined by the CORBA-based Notification
Service specification and are compatible with each other; that is, events posted using
the CosNotification Service interface can be subscribed to by the BEA Simple Events
interface and vice versa.

Before using the Notification Service APIs, consider the following topics:

Quality of Service
Using the CORBA Notification Service 2-1

2 CORBA Notification Service API Reference
Obtaining the Channel Factory

Using Transactions

Structured Event Fields, Types, and Filters

Creating FML Field Table Files for Events

Interoperability with BEA Tuxedo Applications

Quality of Service

To determine the persistence of the subscription and whether or not events delivery is
retried following a failed delivery, subscribers specify a Quality of Service (QoS).
There are two Quality of Service settings: persistent and transient Quality of Service
(QoS). The QoS is a property of the subscription.

Persistent Subscriptions

Persistent subscriptions provide strong guarantees about event delivery and the
permanence of the subscription. Persistent subscriptions do come with a cost, however,
as they consume more system resources (for example, disk space, CPU cycles, and so
on), and require more administration (such as managing queues and detecting dead
subscribers).

Persistent subscriptions exhibit the following properties:

The subscription is in effect until an unsubscribe operation is performed. This
means that a subscriber application can be shut down and its subscription can
still be active. In this case, events are stored for the subscriber and, when the
subscriber restarts, are delivered to the subscriber without it having to recreate
the subscription.

If an event cannot be delivered, event delivery is retried until the administrative
retry limit is exceeded.When the event retry limit has been exceeded, the event
is moved from the pending queue to an error queue. An administrator can move
events from the error queue back to the pending queue, where delivery attempts
will restart.
2-2 Using the CORBA Notification Service

Introduction
If an event is successfully delivered to a subscriber, but the Notification Service
for some reason does not receive the “successful delivery” return message, the
Notification Service may deliver the same event more than once.

Transient Subscriptions

Transient subscriptions provide the best performance with the least overhead and
exhibit the following properties:

One attempt is made to deliver the event to each matching subscription. If that
attempt fails, the event is lost.

The subscription is in effect until a failed event delivery is detected. On detection of a
failed delivery, the subscription is terminated. Normally, the Notification Service, for
performance reasons, does not check whether it successfully delivered an event to a
transient subscriber. However, occasionally, when the Notification Service delivers an
event to a transient subscriber, it checks whether or not the event was successfully
delivered. If it was not successfully delivered and the CORBA::TRANSIENT exception
is not returned, the Notification Service assumes that the subscription has gone away
and cancels the subscription. If the Notification Service receives the
CORBA::TRANSIENT exception when an attempt to deliver fails, it assumes that the
subscriber is busy and discards the event, but it does not cancel the subscription.

The automatic cancellation of dead transient subscriptions provides a cleanup
mechanism for transient subscribers that forget to unsubscribe. Note, however, that the
Notification Service checks for successful delivery the first time it sends an event to a
subscriber, but does not perform it again until five minutes have elapsed and it delivers
another event. Therefore, the interval between checks is at least five minutes, but will
be longer if there is no event to deliver when five minutes have elapsed. The minimum
interval of five minutes is fixed and cannot be changed. Therefore, event delivery
failure is not necessarily detected on the first failed delivery attempt. It is only detected
when the Notification Service checks.

Obtaining the Channel Factory

The Channel Factory is used by event poster applications and subscriber applications
to find the event channel. The event channel is then used to post events and to
subscribe, or create subscriptions, and unsubscribe, or cancel subscriptions.
Using the CORBA Notification Service 2-3

2 CORBA Notification Service API Reference
Notification Service applications use the Bootstrap object to obtain an object reference
to the event channel factory. This is done by using the
Tobj_Bootstrap::resolve_initial_references operation. The Bootstrap
object supports two service IDs for Notification Service applications,
NotificationService and Tobj_SimpleEventsService. The
NotificationService object is used in applications that use the CosNotification
Service API. The Tobj_SimpleEventsService object is used in applications that use
the BEA SimpleEvents API.

Note: Release 8.0 of BEA Tuxedo CORBA continues to include the BEA client
environmental objects provided in previous releases of BEA WebLogic
Enterprise for use with the Tuxedo 8.0 CORBA clients. BEA Tuxedo 8.0
clients should continue to use these environmental objects to resolve initial
references bootstrapping, security and transaction objects. In release 8.0 of
BEA Tuxedo CORBA, support has been added for using the OMG
Interoperable Naming Service (INS) to resolve initial references to
bootstrapping, security, and transaction objects. For information on INS, see
the CORBA Programming Reference.

Using Transactions

The behavior regarding transactions is the same for the BEA SimpleEvents API and
the CosNotification Service API. The only operation that supports transactional
behavior is push_structured_event, which is supported by the
CosNotifyChannelAdmin::StructuredProxyPushConsumer and
Tobj_SimpleEvents::Channel interfaces. All other operations can be used in the
context of a transaction, but work the same regardless of whether they are executed in
a transaction or not.

The behavior when posting an event is tied to the QoS of the subscription. If an event
is posted in the context of a transaction, and the event delivery QoS of the subscription
is persistent, the delivery will be affected by the outcome of the transaction; that is, if

Service ID Object Type

NotificationService CosNotifyChannelAdmin::EventChannelFactory

Tobj_SimpleEventsService Tobj_SimpleEvents::ChannelFactory
2-4 Using the CORBA Notification Service

Introduction
the transaction is committed, the Notification Service attempts to deliver the event to
subscribers as it normally would. If the transaction is rolled back, then the Notification
Service does not attempt to deliver the event.

If an event is posted in the context of a transaction, and the event delivery QoS of the
subscriber’s subscription is transient, one attempt will be made to deliver the event,
regardless of the transaction outcome. That is, the transaction has no effect on whether
the event is delivered or not, and one attempt will be made to deliver the event.

Note: There is no transaction context associated with event delivery. However, in the
case of persistent subscriptions, once the poster’s transaction commits, the
Notification Service guarantees that the event will be delivered to the
subscriber or put on the error queue to await administrative action.

Structured Event Fields, Types, and Filters

All events that are either pushed by posters to the Notification Service, or delivered to
subscribers, are COS Structured Events; that is, they conform to the definition of
Structured Events as specified by the CORBA-based Notification Service—a service
which extends the CORBAservices Event Service (see Figure 2-1). If the events are to
be filtered based on content (versus filtering on domain and type), or if the events are
going to be subscribed to by BEA Tuxedo applications, then additional restrictions
apply. The restrictions apply to data types and filtering based on event content. These
restrictions are explained below.
Using the CORBA Notification Service 2-5

2 CORBA Notification Service API Reference
Figure 2-1 Structured Event

The Fixed Header section consists of three fields that can be used when you
create structured events: fixed_header.event_type.domain_name and
fixed_header.event_type.type_name, and fixed_header.event_type.event_name.
When an event is posted all three of the these fields are passed in the
Notification Service. However, when subscriptions are created, only the first two
fields, domain_name and type_name, are used to filter events. These fields are
defined in the subscription as regular expressions. The event_name field cannot
be used in subscriptions.

The Variable Header consists of a single name/value (NV) pair, namely Priority.
Priority can take a value in the range 1-100 (versus a range of –32767 to 32767
as specified in CORBA Notification Service specification). Priority is used
internally to the system to prioritize the processing of events. The highest
priority is 100. There is no guarantee that higher priority events will, in fact, be
given priority over lower priority events. The support provided for the Variable
Header differs from that specified in the CORBA Notification Service
specification in two ways: first, there is a single field supported (Priority) versus
the five fields listed in the specification; and second, user-defined fields are
supported, but no action is taken in response to their content. The user-defined
fields are merely passed through.

The Filterable Body consists of zero or more NV pairs. The values in these pairs
are limited to the following types: any, long, unsigned long, short,
unsigned short, octet, char, float, double, string, boolean, void, and
null. These fields can be used in filter expressions.

domain_name

type_name

event_name

priority 1 - 100

remainder_of_body

name value

name value

name value

...

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body
Fields

Remaining Body
2-6 Using the CORBA Notification Service

Introduction
The Remaining Body consists of a single ANY. The value is limited to the
following types: any, long, unsigned long, short, unsigned short, octet,
char, float, double, string, boolean, void, and null. This field cannot be
used in a filter expression.

Designing Events

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensure that your Notification Service will be able to handle
your needs now and allow for future growth.

The Notification Service supports five levels of event design: (1) domain name, (2)
type name, (3) priority, (4) filterable data, and (5) remainder of body. When designing
an event, you must specify a domain name and a type name; priority and filterable data
are optional. The domain name you choose can relate to your business. Hospitals, for
example, are in the health care business, so for a Notification Service application for a
hospital you might choose “HEALTHCARE” as a domain name. You might want to
categorize the events by the type of insurance provider, so you may choose “HMO” or
“UNINSURED” as the type name. You may want to further define the events by the
entity responsible for payment, so you might choose to use the filterable data to
identify the entity as “billing” for a specific “HMO_Account” or a specific or
“Patient_Account.” Listing 2-1 shows an example of this type of event design.

Listing 2-1 Event Design

domain_name = “HEALTHCARE”
type_name = “HMO”
#Filterable data name/value pairs.
filterable_data.name = “billing”
filterable_data.value = 4498
filterable_data.name = “patient_account”
filterable_data.value = 37621
Using the CORBA Notification Service 2-7

2 CORBA Notification Service API Reference
Obviously, the more specific and precise you are in designing the events that you want
your Notification Service application to post and receive, the fewer will be the events
the Notification Service will have to process. This has a direct impact on system
resources and configuration requirements. Therefore, a lot of thought should be given
to event design.

Creating FML Field Table Files for Events

You must create Field Manipulation Language (FML) field table files for events only
if one of the following capabilities is required; otherwise FML tables are not required.

Event data filtering (in addition to domain and type fields) between BEA Tuxedo
event posters and subscribers

Interoperability between the BEA Tuxedo Notification Service and the BEA
Tuxedo EventBroker

A structured event’s filterable_data field contains a list of name/value (NV) pairs.
An event’s data is typically stored in this list. The field names in the FML field table
files must match the name in the structured event. The field type can be any allowable
FML type (long, short, double, float, char, string) except carray. The value
in the structured event must be the same type as defined in the field table. Table 2-1
shows the CORBA Any Types supported by BEA Tuxedo, and which ones can be used
for data filtering and BEA Tuxedo interoperability.

Table 2-1 Supported CORBA Any Types

CORBA Any
Types

Supported for Data Filtering and Tuxedo Interoperability

short Yes

long Yes

unsigned
short

No

unsigned
long

No

float Yes
2-8 Using the CORBA Notification Service

Introduction
Listing 2-2 shows an example of an FML field table file. The *base 2000 is the base
number for the fields. The first entry has a field name of billing, a field number of 1
relative to the base, and a field type of long.

double Yes

char Yes

boolean No

octet No

string Yes

void No

null No

any No

Table 2-1 Supported CORBA Any Types (Continued)

CORBA Any
Types

Supported for Data Filtering and Tuxedo Interoperability
Using the CORBA Notification Service 2-9

2 CORBA Notification Service API Reference
Listing 2-2 Data Filtering FML Field Table File

*base 2000

#Field Name Field # Field Type Flags Comments
#----------- ------- ---------- ------ --------
billing 1 long - -
stock_name 2 string - -
price_per_share 3 double - -
number_of_shares 5 long - -

The following guidelines and restrictions apply to BEA Tuxedo FML field table files:

The FML filename cannot exceed 15 characters in length.

Because BEA Tuxedo uses FML32, the base number plus the field number is
restricted to be between 101 and 33,554,431, inclusive.

When FML is used with other software that also uses fields, additional
restrictions may be imposed on field numbers.

For information on how to create and configure FML field table files, see
field_tables in the BEA Tuxedo Command Reference and the Programming BEA
Tuxedo ATMI Applications Using FML.

Interoperability with BEA Tuxedo Applications

Applications that use the BEA Tuxedo CORBA Notification Service are interoperable
with BEA Tuxedo applications that use the BEA Tuxedo EventBroker. An application
using the BEA Tuxedo Notification Service can post events that are delivered to BEA
Tuxedo EventBroker subscribers, and can receive events that have been posted by
BEA Tuxedo EventBroker.

To achieve this interoperability, it is necessary to understand the mapping between
CosNotification Structured Events and the BEA Tuxedo FML buffer so that the
contents of the FML field tables can be coordinated by BEA Tuxedo. There are two
cases to consider: posting events that are to be received by BEA Tuxedo applications
via BEA Tuxedo EventBroker; and receiving events that have been posted to the
Notification Service Event Channel by BEA Tuxedo applications.
2-10 Using the CORBA Notification Service

Introduction
Posting Events

For a BEA Tuxedo application to subscribe to events posted by a BEA Tuxedo
application, you must understand how a BEA Tuxedo structured event is mapped to
FML32 and the event name at posting time. The mapping is as follows:

The domain_name and type_name are assembled into a string in the form
domain_name.type_name to form the event name. This is the event name
(eventname parameter) used on the tppost operation.

Each name/value (NV) pair in the Filterable Body and the variable header
portion of the structured event is mapped to an FML32 field of the same name if
the field is also defined in FML. If you set the domain to “TMEVT”, then the
event name equals the type name.

Receiving Events

BEA Tuxedo system events and user events can be received by BEA Tuxedo
applications. System events are generated by the BEA Tuxedo system—not by
applications. User events are generated by BEA Tuxedo applications. For a listing of
System events see EVENTS in the BEA Tuxedo Command Reference. System events and
user events are mapped in CosNotification Structured Events as follows:

Structured Event Fields Value

domain_name Always set to “TMEVT”

type_name Empty string

event_name Empty string

Variable Header (Priority) Empty sequence

Filterable Body Fields Same as FML field name

Note: Filterable body fields consist of name/value pair,
where the name portion is the same as the FML
field name.

Remainder of Body Always set to void
Using the CORBA Notification Service 2-11

2 CORBA Notification Service API Reference
The BEA Tuxedo system detects and posts certain predefined events related to system
warnings and failures. For example, system-generated events report on configuration
changes, state changes, connection failures, and machine partitioning.

In order for a BEA Tuxedo application to receive events posted by a BEA Tuxedo
application, it is necessary to understand how a FML buffer containing a BEA Tuxedo
event is used to fabricate a BEA Tuxedo structured event. It is also necessary to know
how the domain_name and type_name are related to the BEA Tuxedo event name.
There are two cases to consider: system events and user events.

Note that BEA Tuxedo uses a leading dot (".") in the event name to distinguish
system-generated events from application-defined events. An example of a system
event is .SysNetworkDropped. An example of a user event is eventsdropped. To
subscribe to these events, the Notification Service subscriber application must define
the subscription as follows:

System event

domain_name =“TMEVT”
type_name=“.SysNetworkDropped”

User event

domain_name =“TMEVT”
type_name=“eventsdropped”

When the events are received, the Notification Service subscriber application
parses each event as follows:

domain_name=”TMEVT”
type_name=””
event_name=””
variable_header=empty
Filterable_data=(content of the FML buffer)

Parameters Used When Creating Subscriptions

When you create subscriptions, you can specify the following parameters. These
parameters support the BEA Simple Events API and the CosNotification Service API.
2-12 Using the CORBA Notification Service

Introduction
subscription_name
Specifies a name that identifies the subscription to the Notification Service
and the subscriber. Applications should use names that are meaningful to a
system administrator since this is the primary way that an administrator
associates an application with a subscription and the events that are delivered
to the subscriber via the subscription. This parameter is optional (that is, an
empty string can be passed in). More than one subscription can use the same
name.

The subscription_name must not exceed 128 characters in length.

domain_type
Same parameter as the domain_type field in the Fixed Header portion of a
structured event, as defined by the CORBA-based Notification Service
specification. This field is a string that is used to identify a particular vertical
industry domain in which the event type is defined, for example,
“Telecommunications”, “Finance”, and “Health Care”. Because this
parameter is a regular expression, you can also use it to set domain patterns
on which to filter. For example, to subscribe to all domains that begin with
the letter F, set the domain to “F.*”. For information on how to construct
regular expressions, see the recomp command in the BEA Tuxedo ATMI C
Function Reference.

type_name
Same parameter as the type_name field in the Fixed Header portion of a
structure event, as defined in the CORBA-based Notification Service
specification. It is a string that categorizes the type of event, uniquely within
the domain, for example, Comm_alarm, StockQuote, and VitalSigns.
Because this parameter is a regular expression, you can also use it to set event
type patterns on which to filter. For example, to subscribe to all event types
that begin with the letter F, you would set the type to “F.*”. For information
on how to construct regular expressions, see the recomp command in the BEA
Tuxedo ATMI C Function Reference.

data_filter
Specifies the values of the fields of filterable data and variable headers on
which you want to filter. For example, a subscription to news stories may
have a domain of “News”, a type of “Sports”, and a data_filter of “Scores >
20”.

This parameter defines the data that the subscription must match in Boolean
expressions. The following data types are supported: short, long, char,
Using the CORBA Notification Service 2-13

2 CORBA Notification Service API Reference
float, double, and string. Table 2-2 lists the Boolean expression
operators that are supported.

To use data filtering, you must set up an FML table, include filters in the subscription,
filter the data, and post the event. Listing 2-3 shows an example of these tasks.

Table 2-2 Boolean Expression Operators

Expression Operators

unary +, -, !, ~

multiplicative *, /, %

additive +, -

relational < , >, <=, >=, ==, !=

equality and matching ==, !=, %%, !%

exclusive OR ^

logical AND &&

logical OR ||
2-14 Using the CORBA Notification Service

Introduction
Listing 2-3 Data Filtering Requirements

//Setting up the FML Table

Field table file.

*base 2000

*Field Name Field # Field Type Flags Comments
----------- ------- --------- ------ ------
StockName 1 string - -
PricePerShare 2 double - -
CustomerId 3 long - -
CustomerName 4 string - -

//Subscription data filtering.
1) "NumberOfShares > 100 && NumberOfShares < 1000"
2) "CustomerId == 3241234"
3) "PricePerShare > 125.00"
4) "StockName == 'BEAS'"
5) "CustomerName %% '.*Jones.*'" // CustomerName contains "Jones"
6) "StockName == 'BEAS' && PricePerShare > 150.00"

//Posting the event.
// C++
CosNotification::StructuredEvent ev;
...
ev.filterable_data[0].name = CORBA::string_dup("StockName");
ev.filterable_data[0].value <<= "BEAS";
ev.filterable_data[1].name = CORBA::string_dup("PricePerShare");
ev.filterable_data[1].value <<= CORBA::Double(175.00);
ev.filterable_data[2].name = CORBA::string_dup("CustomerId");
ev.filterable_data[2].value <<= CORBA::Long(1234567);
ev.filterable_data[3].name = CORBA::string_dup("CustomerName");
ev.filterable_data[3].value <<= "Jane Jones";

// Java
StructuredEvent ev;
...
ev.filterable_data[0].name = "StockName";
ev.filterable_data[0].value.insert_string("BEAS");
ev.filterable_data[1].name = "PricePerShare";
ev.filterable_data[1].value.insert_double(175.00);
ev.filterable_data[2].name = "CustomerId";
ev.filterable_data[2].value.insert_long(1234567);
ev.filterable_data[3].name = "CustomerName";
ev.filterable_data[3].value.insert_string("Jane Jones");
Using the CORBA Notification Service 2-15

2 CORBA Notification Service API Reference
For more information about filter grammar, see “Creating FML Field Table
Files for Events” on page 2-8 and the section “Boolean Expression of fielded
Buffers” in Programming BEA Tuxedo ATMI Applications Using FML.

push_consumer
Identifies the callback object that will be used by the Notification Service to
deliver a structured event. Subscriber applications must implement the
CosNotifyComm::StructuredPushConsumer interface so that the Notification
Service can call it to deliver events.

Note: You can use either transient or persistent object references for the callback
objects. Both QoS and application run times should be taken into
consideration when deciding which type of object reference to use. For
information to assist you in deciding which type of object reference to use,
refer to Table 2-3.

qos (quality of service)
Specifies the desired quality of service of the subscription. It can take one of
two values: transient or persistent.

Table 2-3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

If the subscription ... Then ...

Will have a transient QoS
and will start and shut
down once.

You should use a transient object reference. It this case, BEA Systems, Inc.
recommends the subscriber application unsubscribe on shutdown so as to release
system resources, however, this is not a requirement.

Will have a persistent QoS
and will start and shut
down once.

You should use a transient object reference.

Will have a persistent Qos
and will start and shut
down multiple times.

You must use a persistent object reference and store the host and port so the same
host and port is used each time the subscriber shuts down and restarts. In this case,
use of the bidirectional IIOP feature is not recommended.

Note: If a joint client/server is used, it must be remote (outside the BEA Tuxedo
domain) because persistent object references are not supported inside the
domain.

Will have a transient QoS
and will start and shut
down multiple times.

You can use a persistent object reference; however, BEA Systems, Inc. does not
recommend this configuration unless you can guarantee that no events for this
subscriber will be posted while the subscriber is shut down.
2-16 Using the CORBA Notification Service

BEA Simple Events API
For transient subscriptions, the Notification Service makes only one attempt
to deliver the event to a subscriber. If that attempt fails, the event is discarded
and, if the Notification Service does not receive the CORBA::TRANSIENT
exception, it concludes that the subscriber is shutdown or otherwise not
available and cancels the subscription. If the Notification Service receives the
CORBA::TRANSIENT exception when an attempt to deliver fails, it assumes
that the subscriber is busy and discards the event, but it does not cancel the
subscription.

For persistent subscriptions, if the first delivery attempt fails, the Notification
Service holds the event in the pending queue and keeps attempting to deliver
the subscription until the configurable retry limit is reached. When the retry
limit is reached, the Notification Service moves the event on an error queue
where it is held for disposition by the system administrator. The system
administrator either removes the event from the error queue, which in effect
discards it, or moves it back to the pending queue so that further attempts to
deliver it can be made.

Note: For persistent subscriptions, the Notification Service always does a
two-way invoke on callback objects to deliver events. If a joint
client/server does not activate a callback object (the event receiver) before
it calls orb->run and then the Notification Service invokes on the callback
object, as far as the POA is concerned, the callback object does not exist.
In this case CORBA::OBJECT_NOT_EXIST exception is returned. If the
Notification Service receives a CORBA::OBJECT_NOT_EXIST exception, it
drops the subscription and the event; otherwise, the subscription is retained
and the event is retried.

BEA Simple Events API

Simplicity and ease-of-use are the defining characteristics of the BEA Simple Events
application programming interface (API). Its capabilities are similar to those of the
BEA Tuxedo EventBroker.

The BEA Simple Events API consists of the following interfaces (see Figure 2-2):

Tobj_SimpleEvents::Channel

Tobj_SimpleEvents::ChannelFactory
Using the CORBA Notification Service 2-17

2 CORBA Notification Service API Reference
CosNotifyComm::StructuredPushConsumer

Figure 2-2 BEA Simple Events Interfaces

The Tobj_SimpleEvents::Channel and the
Tobj_SimpleEvents::ChannelFactory interfaces are implemented by the
Notification Service and are described below.

The CosNotifyComm::StructuredPushConsumer interface is implemented by the
subscribers. For a description of this interface, see
“CosNotifyComm::StructuredPushConsumer::push_structured_event” on page 2-64.

Note: The CosNotification Service classes referred to in this section are fully
described in the CosNotification Service IDL files, which are located in the
tuxdir/include directory.

Note: If you use class operations that are not supported, the CORBA::NO_IMPLEMENT
exception is raised.

TOBJ_SimpleEvents::Channel Interface

The Channel interface is used:

By subscribers to subscribe and unsubscribe to events and to determine if a
subscription exists

By posters to post events to the Notification Service

Channel
Factory

Interface

Channel
Interface

Push
Consumer

Class

Implemented in the
Subscriber's Callback

Object
2-18 Using the CORBA Notification Service

BEA Simple Events API
This interface provides these operations:
subscribe()

unsubscribe()

exists()

push_structured_event()

The CORBA IDL for this interface:

module Tobj_SimpleEvents
 {
 typedef long SubscriptionID;
 typedef string RegularExpression;
 typedef string FilterExpression;

 const SubscriptionType TRANSIENT_SUBSCRIPTION = 0;
 const SubscriptionType PERSISTENT_SUBSCRIPTION = 1;

interface Channel
 {
 void push_structured_event(
 in CosNotification::StructuredEvent event);

 SubscriptionID subscribe (
 in string subscription_name,
 in RegularExpression domain,
 in RegularExpression type,
 in FilterExpression data_filter,
 in CosNotification::QoSProperties qos,
 in CosNotifyComm::StructuredPushConsumer push_consumer);

 boolean exists(in SubscriptionID id);

 void unsubscribe(in SubscriptionID id);
 };
 };

These operations are described in the following section.
Using the CORBA Notification Service 2-19

2 CORBA Notification Service API Reference
Channel::subscribe

CORBA IDL SubscriptionID subscribe (
 in string subscription_name,
 in RegularExpression domain,
 in RegularExpression type,
 in FilterExpression data_filter,
 // The filter expression must length 1 and the name must
 // be TRANSIENT_SUBSCRIPTION or PERSISTENT_SUBSCRIPTION.
 in CosNotification::QoSProperties qos,
 in CosNotifyComm::StructuredPushConsumer push_consumer
);

Parameters For a description of the parameters supported by this operation, see “Parameters Used
When Creating Subscriptions” on page 2-12.

Exceptions CORBA::BAD_PARAM
Indicates one of the following problems:
Tobj_Events::SUB_INVALID_FILTER_EXPRESSION
Tobj_Events::SUB_UNSUPPORTED_QOS_VALUE

CORBA::IMP_LIMIT
Indicates one of the following problems:
Tobj_Events::SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events::SUB_EMPTY_DOMAIN
Tobj_Events::SUB_EMPTY_TYPE
Tobj_Events::SUB_DOMAIN_AND_TYPE_TOO_LONG
Tobj_Events::SUB_FILTER_TOO_LONG
Tobj_Events::SUB_NAME_TO_LONG
Tobj_Events::TRANSIENT_ONLY_CONFIGURATION

CORBA::INV_OBJREF
Indicates the following problem:
Tobj_Events::SUB_NIL_CALLBACK_REF

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Use this operation to subscribe to events. This operation is called by a subscriber
application on the Notification Service to create a subscription to a particular event.
The subscription name, domain name, type name, data filter, quality of service, and the
object reference of the subscriber’s callback object are passed in. The callback object
implements the CosNotifyComm::StructuredPushConsumer IDL interface.

Note: For subscribers that shut down and restart, you must write the
subscription_id to persistent storage.
2-20 Using the CORBA Notification Service

BEA Simple Events API
To use data filtering or subscribe to BEA Tuxedo system events or events posted by a
BEA Tuxedo application, see the sections “Creating FML Field Table Files for
Events” on page 2-8 and “Interoperability with BEA Tuxedo Applications” on
page 2-10.

Return Value Returns a unique subscription identifier. The effect of this operation is not
instantaneous. There can be a delay between returning from this operation and the
actual start of event delivery. The length of the delay period may be significant
depending on your configuration. For more information on factors impacting this delay
period, see “Synchronizing Databases” on page 7-24.

Note: Notification Service applications that start and shut down only once can use
the subscription_id to determine if their subscription has been cancelled
automatically or by the system administrator.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 3-12.

C++ code example:

subscription_id = channel->subscribe(
 subscription_name,
 "News", // domain
 “Sports”, // type
 "", // No data filter.
 qos,
 news_consumer.in()
);

Java code example:

int subscription_id = channel.subscribe(
 subscription_name,
 "News", // domain
 “Sports”, // type
 "", // no data filter
 qos,
 news_consumer_impl
);
Using the CORBA Notification Service 2-21

2 CORBA Notification Service API Reference
Channel::unsubscribe

CORBA IDL void unsubscribe(in SubscriptionID id);

Parameter subscription_id
The subscription identifier.

Exceptions CORBA::BAD_PARAM
Indicates the following problem:
Tobj_Events::INVALID_SUBSCRIPTION_ID

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used to unsubscribe. Subscriber applications use this operation to terminate
subscriptions. On return from this operation, no further events can be delivered. There
is one input parameter: SubscriptionID, which you got when you subscribed.

Note: This operation is not instantaneous. After returning from this operation, a
subscriber may continue to receive events for a period of time. The period of
time may be significant depending on your configuration. For more
information on factors impacting this period of time, see “Synchronizing
Databases” on page 7-24.

Examples C++ code example:

channel->unsubscribe(subscription_id);

Java code example:

channel.unsubscribe(subscription_id);
2-22 Using the CORBA Notification Service

BEA Simple Events API
Channel::push_structured_event

CORBA IDL void push_structured_event(
 in CosNotification::StructuredEvent notification
);

Parameter notification
This parameter contains the structured event as defined by the
CosNotification Service specification.

Exceptions CORBA_IMP_LIMIT
Indicates one of the following problems with the subscription:
Tobj_Events::POST_UNSUPPORTED_VALUE_IN_ANY
Tobj_Events::POST_UNSUPPORTED_PRIORITY_VALUE
Tobj_Events::POST_DOMAIN_CONTAINS_SEPARATOR
Tobj_Events::POST_TYPE_CONTAINS_SEPARATOR
Tobj_Events::POST_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events::POST_EMPTY_DOMAIN
Tobj_Events::POST_EMPTY_TYPE
Tobj_Events::POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used by the poster application to post an event to the Notification Service.

Note: This operation has transactional behavior when used in the context of a
transaction. For more information, see the section “Using Transactions” on
page 2-4.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 3-4.

C++ code example:

channel->push_structured_event(notification);

Java code example:

channel.push_structured_event(notification);
Using the CORBA Notification Service 2-23

2 CORBA Notification Service API Reference
Channel::exists

CORBA IDL boolean exists(in SubscriptionID subscription_id);

Parameter subscription_id
The subscription identifier.

Exceptions CORBA::BAD_PARAM
Indicates the following problem:
Tobj_Events::INVALID_SUBSCRIPTION_ID

If the subscription_id is for a subscription created using the
CosNotification Service API, this exception is always returned.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used by subscriber applications to determine if a subscription exists. Since the system
administrator can delete subscriptions manually and the Notification Service can
delete transient subscriptions automatically, a subscriber application might want to use
this operation so that it can recreate the subscription, if necessary. The
subscription_id used in this operation is the same one that you got when you
subscribed.

Return Value Returns Boolean True of the subscription exists and False if it does not.

Examples C++ code example:

if channel->exists (subscription_id) {
 // The subscription is still valid.
} else {
 // The subscription no longer exists.

}

Java code example:

if channel.exists (subscription_id) {
 // The subscription is still valid.
} else {
 // The subscription no longer exists.

}

2-24 Using the CORBA Notification Service

BEA Simple Events API
TOBJ_SimpleEvents::ChannelFactory Interface

The ChannelFactory interface is used to find event channels. This interface provides
a single operation: find_channel.

The CORBA IDL for this interface:

module Tobj_SimpleEvents
{
 typedef long ChannelID;

interface ChannelFactory
{
 Channel find_channel(
 in ChannelID channel_id // Must be DEFAULT_CHANNEL
);
 };
};
Using the CORBA Notification Service 2-25

2 CORBA Notification Service API Reference
Channel_Factory::find_channel

CORBA IDL Channel find_channel(
 in ChannelID channel_id);

Parameter In this release of BEA Tuxedo, there can only be one event channel; therefore, the
ChannelID that is passed in must be set to
Tobj_SimpleEvents::DEFAULT_CHANNEL (for C++) or
Tobj_SimpleEvents.DEFAULT_CHANNEL.Value (for Java).

Exceptions CORBA::BAD_PARAM
Indicates the following problem:
Tobj_Events::INVALID_CHANNEL_ID

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used by poster applications and subscriber applications. This operation is used to find
the event channel so that it can be used by the poster to post events and by the
subscriber to subscribe and unsubscribe to events.

Return Value Returns the default event channel’s object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel” on page 3-3.

C++ code example:

channel_factory->find_channel(
 Tobj_SimpleEvents::DEFAULT_CHANNEL);

Java code example:

channel_factory.find_channel(DEFAULT_CHANNEL.value);
2-26 Using the CORBA Notification Service

CosNotification Service API
CosNotification Service API

This section contains a discussion of the operations defined by the CosNotification
Service that are implemented by the BEA Tuxedo CORBA Notification Service. These
operations are only a subset of the complete set of operations. This subset is a
functionally complete API that can be used as an alternative to the BEA Simple Events
API.

This API is more complex then the BEA Simple Events API. There are two reasons for
this. First, the CosNotification Service API is more complex. Second, the BEA Tuxedo
implementation of the CosNotification Service API places additional restrictions on
the operations that are supported. Because this complexity offers no advantages in
terms of performance or flexibility, BEA Systems, Inc. recommends that you use the
BEA Simple Events API whenever possible.

The CosNotification API is provided for those who require that a standard API be used
whenever possible for purposes of portability. In regard to functionality, this API
provides no benefits beyond those offered by the Simple Events API. Applications that
are developed using this API will be mostly, but not completely, portable. The reason
for this is that not enough of the CosNotification Service API is supported to facilitate
portability. For example, the filtering grammar required by the CORBA-based
Notification Service is based on the COS Trader grammar. Since BEA Tuxedo does
not support this grammar, but supports an alternative grammar based on the BEA
Tuxedo EventBroker grammar, any application that requires filtering will not be
portable. The same is true for QoS, that is, the CosNotification Service API does not
support the CORBA-based Notification Service standard qualities of service, but it
does support alternative qualities of service.

Overview of Supported CosNotification Service Classes

Figure 2-3 shows the CosNotification Service classes implemented, in full or in part,
in this release of BEA Tuxedo and their relationships.
Using the CORBA Notification Service 2-27

2 CORBA Notification Service API Reference
Figure 2-3 Implemented CosNotification Service Classes

The operations supported by each class are summarized below. For more detailed
descriptions, see “Detailed Descriptions of CosNotification Service Classes” on
page 2-31.

CosNotifyChannelAdmin::EventChannelFactory Class

This class is used by the event poster and subscriber applications. It supports the
get_channel_factory operation which is used to get the channel factory when
posting, subscribing, and unsubscribing to events.

CosNotifyChannelAdmin::EventChannel Class

This class is used by event poster and subscriber applications. It supports three
operations:

default_consumer_admin—used by event subscriber applications to get
the consumer admin object.

default_supplier_admin—used by event poster applications to get the
supplier admin object.

Event
Channel

Factory Class

Event
Channel

Class

Filter Class

Filter
Factory
Class

Proxy Push
Supplier

Class

Proxy Push
Consumer

Class

Consumer
Admin Class

Supplier
Admin Class

Push
Consumer

Class

Implemented in the
Subscriber's Callback

Object
2-28 Using the CORBA Notification Service

CosNotification Service API
default_filter_factory—used by event subscriber applications to get
the filter factory object.

CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. It supports the
obtain_notification_push_consumer operation. Poster applications use this
operation to create proxy push consumer objects which in turn are used to post
events to the Notification Service.

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

This class is used by event poster applications. It supports the following
operations:

connect_structured_push_supplier—used by event poster applications
to connect the proxy push supplier to the Notification Service event channel.

push_structured_event—used by event poster applications to post the
event to the Notification Service event channel.

disconnect_structured_push_consumer—used by event poster
applications to disconnect the proxy push supplier from the Notification
Service event channel.

CosNotifyFilter::FilterFactory Class

This class is used by event subscriber applications to create a filter object. It
supports the create_filter operation. The filter object provides all data
filtering including domain, type, and filterable data.

CosNotifyFilter::Filter Class

This class is used by event subscriber applications. It supports the following
operations:

add_contraints operation—used to set the filter’s domain, type, and data
filter.

destroy operation—used to destroy the filter object.

CosNotifyChannelAdmin::ConsumerAdmin Class

This class is used by event subscriber applications. It supports the following
operations:
Using the CORBA Notification Service 2-29

2 CORBA Notification Service API Reference
obtain_notification_push_supplier—used by event subscriber
applications to create proxy push supplier objects which in turn are used to
deliver events to the subscriber’s callback object.

get_proxy_supplier—used by event subscriber applications to retrieve the
object reference for the proxy push supplier object. This operation is only
used when the subscriber application shuts down then restarts and cancels the
subscription. This is because subscribers need to discard the object reference
from the first run and get it back again for the next run. Subscribers cannot
reuse object references from one run to the next.

CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

This class is used by event subscriber applications. It supports the following
operations:

connect_structured_push_consumer—used by event subscriber
applications to connect the subscriber to the proxy push supplier.

set_qos—used by event subscriber applications to set the quality of service
for subscriptions.

add_filter—used by event subscriber applications to add the filter object
to the subscription.

get_filter—used by event subscriber applications when performing
unsubscribe operations to get the filter associated with the subscription. This
operation is only used when the subscriber application shuts down then
restarts.

disconnect_structured_push_supplier—used by event subscriber
applications to unsubscribe.

CosNotifyComm::StructuredPushConsumer

This interface is implemented by event subscriber applications. It supports the
push_structured_event operation. The Notification Service invokes this
operation to deliver events to the subscriber.
2-30 Using the CORBA Notification Service

CosNotification Service API
Detailed Descriptions of CosNotification Service Classes

This section describes the CosNotification Service classes that this release of BEA
Tuxedo implements. These classes are fully described in the CosNotification Service
IDL files, which are located in the tuxdir/include directory.

Note: If you use class operations that are not supported, the CORBA::NO_IMPLEMENT
exception is raised.

CosNotifyFilter::Filter Class

This class is used by event subscriber applications. The OMG IDL for this class is as
follows:

Module CosNotifyFilter
{
interface Filter {
 ConstraintInfoSeq add_constraints (
 in ConstraintExpSeq constraint)
 raises (InvalidConstraint);

 void destroy();
 };
}; //CosNotifyFilter
Using the CORBA Notification Service 2-31

2 CORBA Notification Service API Reference
CosNotifyFilter::Filter::add_constraints

Synopsis Sets the domain, type, and data filter parameters on the filter object.

OMG IDL ConstraintInfoSeq add_constraints (
 in ConstraintExpSeq constraint)
 raises (InvalidConstraint);

Exceptions CosNotifyFilter::InvalidConstraint
Never raised.

CORBA::BAD_PARAM
Indicates the following problem:
Tobj_Events::SUB_INVALID_FILTER_EXPRESSION.

CORBA_IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_ADD_CONS_ON_TIMED_OUT_FILTER
Tobj_Notification::SUB_MULTIPLE_CALLS_TO_ADD_CONS
Tobj_Notification::SUB_MULTIPLE_CONSTRAINTS_IN_LIST
Tobj_Notification::SUB_MULTIPLE_TYPES_IN_CONSTRAINT
Tobj_Notification::SUB_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events::SUB_DOMAIN_BEGINS_WITH_SYSEV
Tobj_Events::SUB_EMPTY_DOMAIN
Tobj_Events::SUB_EMPTY_TYPE
Tobj_Events::SUB_FILTER_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used when subscribing. This operation is used in subscriber applications to define the
kind of event to which you want to subscribe. You set the domain, type, and data filter
parameters on the filter object. For a description of these parameters, see “Parameters
Used When Creating Subscriptions” on page 2-12.

Note: The BEA Tuxedo implementation of the add_constraints operation (1) can
only be called once, (2) must be called before the filter is added to the proxy
object, and (3) must consist of only a single constraint that has a single event
type.

Return Value Returns an empty list, which we recommend that the caller ignores.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.
2-32 Using the CORBA Notification Service

CosNotification Service API
C++ code example:

// set the filtering parameters
// (domain = "News", type, and no data filter)
CosNotifyFilter::ConstraintExpSeq constraints;
constraints.length(1);
constraints[0].event_types.length(1);
constraints[0].event_types[0].domain_name =
 CORBA::string_dup("News");
constraints[0].event_types[0].type_name =
 CORBA::string_dup (“Sports”);
// no data filter
constraints[0].constraint_expr = CORBA::string_dup("");
CosNotifyFilter::ConstraintInfoSeq_var
add_constraints_results = // ignore this returned value
 filter->add_constraints(constraints);

Java code example:

// set the filtering parameters
// (domain = "News", type, and no data filter).
ConstraintExp constraints[] = new ConstraintExp[1];
constraints[0] = new ConstraintExp();
constraints[0].event_types = new EventType[1];
constraints[0].event_types[0] = new EventType();
constraints[0].event_types[0].domain_name = "News";
constraints[0].event_types[0].type_name = “Sports”;
constraints[0].constraint_expr = ""; // No data filter.
ConstraintInfo add_constraints_results[] =
 filter.add_constraints(constraints); //Ignore this return value.
Using the CORBA Notification Service 2-33

2 CORBA Notification Service API Reference
CosNotifyFilter::Filter::destroy

Synopsis Destroys the filter object.

OMG IDL void destroy();

Exceptions CORBA::BAD_PARAM
Indicates the following problem:
Tobj_Events::SUB_INVALID_FILTER_EXPRESSION.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used when unsubscribing. This operation is used in subscriber applications to destroy
the target filter object.

Note: Do not destroy the filter object until you are ready to cancel the corresponding
subscription.

CosNotifyFilter::FilterFactory Class

This class is used by event subscriber applications. The OMG IDL for this class is as
follows:

Module CosNotifyFilter
{
interface FilterFactory {
 Filter create_filter (
 in string constraint_grammar)
 raises (InvalidGrammar);
 destroy();
 };
}; //CosNotifyFilter
2-34 Using the CORBA Notification Service

CosNotification Service API
CosNotifyFilter::FilterFactory::create_filter

Synopsis Determines which events are delivered to a subscription.

OMG IDL Filter create_filter (
 in string constraint_grammar)
 raises (InvalidGrammar);

Exceptions CosNotifyFilter::InvalidGrammar
Indicates the constraint_grammar is not supported.

Description Used in the subscriber application to create a new filter object. This filter is used to
determine which events are delivered to a subscription. The subscriber must set up the
filter and add it to the proxy within five minutes; otherwise, the filter will be destroyed.
The filter grammar must be set to Tobj_Notification::Constraint_grammar;
otherwise, the InvalidGrammar exception is raised.

Return Value Returns the new filter’s object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

filter_factory->create_filter(
 Tobj_Notification::CONSTRAINT_GRAMMAR
);

Java code example:

filter_factory.create_filter(CONSTRAINT_GRAMMAR.value);
Using the CORBA Notification Service 2-35

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

This class is used by event subscriber applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface StructuredProxyPushSupplier :
 ProxySupplier,
 CosNotifyComm::StructuredPushSupplier {

 void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);
 };
 // The following operations are inherited.
 void set_qos(in QoSProperties qos)
 raises (UnsupportedQoS);
 FilterID add_filter (in Filter new_filter);
 Filter get_filter(in FilterID filter)
 raises (FilterNotFound);
 void disconnect_structured_push_supplier();
 readonly attribute ProxyType MyType;
 };
}; //CosNotifyChannelAdmin
2-36 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushSupplier::
connect_structured_push_consumer

Synopsis Completes a subscription.

OMG IDL void connect_structured_push_consumer (
 in CosNotifyComm::StructuredPushConsumer push_consumer)
 raises(CosEventChannelAdmin::AlreadyConnected,
 CosEventChannelAdmin::TypeError);

Exceptions CosEventChannelAdmin::TypeError
Never raised.

CORBA::INV_OREF
Tobj_Events::SUB_NIL_CALLBACK_REF

CORBA::IMP_LIMIT
Indicates one of the following problems:
Tobj_Events::SUB_DOMAIN_AND_TYPE_TOO_LONG
Tobj_Events::SUB_NAME_TO_LONG
Tobj_Events::TRANSIENT_ONLY_CONFIGURATION
Tobj_Notification::SUBSCRIPTION_DOESNT_EXIST.

CORBA::OBJECT_NOT_EXIST
The proxy does not exist.

CosEventChannelAdmin::AlreadyConnected
Indicates that the connect_structured_push_consumer operation has
already been invoked.

Note: For exception definitions and corresponding minor codes, see “Exception
Minor Codes” on page 2-66.

Description Use this operation when subscribing. This operation is used in subscriber applications
to subscribe to events. The push_consumer parameter identifies the subscriber’s
callback object.

Once the connect_structured_push_consumer has been called, the Notification
Service will proceed to send events to the subscriber by invoking the callback object’s
push_structured_event operation. If the connect_structured_push_consumer
has already been called, the AlreadyConnected exception is raised.

Note: You must call set_qos and add_filter before calling
connect_structured_push_consumer.
Using the CORBA Notification Service 2-37

2 CORBA Notification Service API Reference
Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

subscription->connect_structured_push_consumer(
 news_consumer.in()
);

Java code example:

subscription.connect_structured_push_consumer(
 news_consumer_impl
);
2-38 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos

Synopsis Sets the QoS for the subscription.

OMG IDL void set_qos(in QoSProperties qos)
 raises (UnsupportedQoS);

Exceptions UnsupportedQoS
Never raised.

ORBA::IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_MULTIPLE_CALLS_TO_SET_QOS
Tobj_Notification::SUB_CANT_SET_QOS_AFTER_CONNECT
Tobj_Notification::SUBSCRIPTION_DOESNT_EXIST
Tobj_Notification::SUB_UNSUPPORTED_QOS_VALUE

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used when subscribing. This operation is used in subscriber applications to set the QoS
for the subscription. It takes as an input parameter a sequence of name-value pairs
which encapsulates quality-of-service property settings that the subscriber is
requesting.

There are two components of the QoS: the subscription type and the subscription
name. The subscription type is set by constructing a name-value pair where the name
is Tobj_Notification::SUBSCRIPTION_TYPE and the value is either
Tobj_Notification::PERSISTENT_SUBSCRIPTION, or
Tobj_Notification::TRANSIENT_SUBSCRIPTION. For more information and
additional usage details, see “Quality of Service” on page 2-2.

The subscription name is set by constructing a name-value pair, where the name is
Tobj_Notification::SUBSCRIPTION_NAME, and the value is a user-defined string.

For more information on this parameter, see “Parameters Used When Creating
Subscriptions” on page 2-12.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotification::QoSProperties qos;
qos.length(2);
Using the CORBA Notification Service 2-39

2 CORBA Notification Service API Reference
qos[0].name =
 CORBA::string_dup(Tobj_Notification::SUBSCRIPTION_NAME);
qos[0].value <<= “MySubsription”;
qos[1].name =
 CORBA::string_dup(Tobj_Notification::SUBSCRIPTION_TYPE);
qos[1].value <<=
 Tobj_Notification::TRANSIENT_SUBSCRIPTION;

subscription->set_qos(qos);

Java code example:

Property qos[] = new Property[2];
qos[0] = new Property();
qos[0].name = SUBSCRIPTION_NAME.value;
qos[0].value = orb.create_any();
qos[0].value.insert_string(“MySubsription”);
qos[1] = new Property();
qos[1].name = SUBSCRIPTION_TYPE.value;
qos[1].value = orb.create_any();
qos[1].value.insert_short(TRANSIENT_SUBSCRIPTION.value);

subscription.set_qos(qos);
2-40 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter

Synopsis Sets the filter object on the subscriber’s callback object.

OMG IDL add_filter(
 in Filter new_filter
);

Exceptions CORBA::IMP_LIMIT
Indicates one of the following problems:
Tobj_Notification::SUB_MULTIPLE_CALLS_TO_SET_FILTER
Tobj_Notification::SUB_ADD_FILTER_AFTER_CONNECT
Tobj_Notification::SUB_NIL_FILTER_REF
Tobj_Notification::SUB_NO_CUSTOM_FILTERS

CORBA::OBJECT_NOT_EXIST
Indicates that the subscription does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used when subscribing. This operation is used in subscriber applications to set the
filter object to the subscriber’s callback object. If the application using this operation
will be shut down and restarted, the filter_id should be written to persistent storage.

Note: This operation: (1) cannot be called after the subscriber callback object is
connected (see connect_structured_push_consumer above), (2) cannot
be called more than once, and (3) when it is called, the filter constraint
expression must already be present in the filter (see
CosNotifyFilter::Filter add_constraints).

Note: Only filters created by the event channel’s default filter factory can be added.

Return Value Returns a filter_id.
Using the CORBA Notification Service 2-41

2 CORBA Notification Service API Reference
Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotifyFilter::FilterID filter_id =
 subscription->add_filter(filter.in());

Java code example:

int filter_id = subscription.add_filter(filter);
2-42 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter

Synopsis Gets an object reference to the filter currently associated with the subscriber’s callback
object.

OMG IDL Filter get_filter(in FilterID filter)
 raises (FilterNotFound);

Exceptions CosNotifyChannelAdmin::FilterNotFound
The filter could not be found.

Description Used when a restartable subscriber wants to unsubscribe. This operation is used in
subscriber applications to get an object reference to the filter currently associated with
the subscriber’s callback object. The FilterID that is passed in must be valid for the
subscriber’s StructuredProxyPushSupplier object. If the FilterID is not valid for any
proxy object associated with the event channel, then a FilterNotFound exception is
thrown. The operation is only used by subscribers that shut down and restart.

Restrictions The following usage restrictions and guidelines apply to this operation:

a. Filter object references that are returned from this operation cannot be used in
comparison operations.

b. Filter object references returned by this operation can be used by the
CosNotifyFilter::Filter::destroy operations but are of little use since
they cannot be modified or added to proxy objects.

Return Value Returns a filter object reference to the filter currently associated with the subscriber’s
callback object.

Examples C++ code example:

CosNotify::Filter_var filter =
 subscription->get_filter(filter_id());

Java code example:

Filter filter = subscription.get_filter(filter_id());
Using the CORBA Notification Service 2-43

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::StructuredProxyPushSupplier::
disconnect_structured_push_supplier

Synopsis Used to unsubscribe.

OMG IDL void disconnect_structured_push_supplier();

Exceptions CORBA::OBJECT_NOT_EXIST
Indicates that the subscription to be disconnected does not exist.

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Description Used by subscriber applications when unsubscribing. This operation is used in
subscriber applications to terminate a connection between the Notification Service and
the subscriber’s callback object.

Note: This operation does not stop event delivery instantaneously. After returning
from this operation, a subscriber may continue to receive events for a period
of time.

Examples C++ code example:

subscription->disconnect_structured_push_supplier();

Java code example:

subscription.disconnect_structured_push_supplier();
2-44 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType

Synopsis Always returns CosNotifyChannelAdmin::PUSH_STRUCTURED proxy.

OMG IDL readonly attribute ProxyType MyType

Description Always returns CosNotifyChannelAdmin::PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

This class is used by event posting applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface StructuredProxyPushConsumer :
 ProxyConsumer,
 CosNotifyComm::StructuredPushConsumer {

 void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);
 // The following operations are inherited.
 readonly attribute MyType;
 void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);
 void disconnect_structured_push_consumer();
 };
}; \\StructuredProxyPushConsumer
Using the CORBA Notification Service 2-45

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::StructuredProxyPushConsumer::
connect_structured_push_supplier

Synopsis Prepares the Notification Service to receive an event.

OMG IDL void connect_structured_push_supplier (
 in CosNotifyComm::StructuredPushSupplier push_supplier)
 raises(CosEventChannelAdmin::AlreadyConnected);

Exception CosEventChannelAdmin::AlreadyConnected
Never raised.

Description Used by poster applications when posting events. You must call this operation to
prepare the Notification Service to receive an event and you must pass in a NIL when
you use this operation. The sequence of usage is as follows:

1. Make a proxy.

2. Use this operation to connect to the Notification Service and pass in a NIL.

3. Post events.

4. Before exiting the poster program, disconnect.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

proxy_push_consumer->connect_structured_push_supplier(
 CosNotifyComm::StructuredPushSupplier::_nil()
);

Java code example:

proxy_push_consumer.connect_structured_push_supplier(null);
2-46 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushConsumer::
push_structured_event

Synopsis Posts events to the event channel.

OMG IDL void push_structured_event(
 in CosNotification::StructuredEvent notification)
 raises(CosEventComm::Disconnected);

Exceptions CosEventComm::Disconnected
Never raised.

CORBA::IMP_LIMIT
Indicates one of the following problems:
Tobj_Events::POST_UNSUPPORTED_VALUE_IN_ANY
Tobj_Events::POST_UNSUPPORTED_PRIORITY_VALUE
Tobj_Events::POST_DOMAIN_CONTAINS_SEPARATOR
Tobj_Events::POST_TYPE_CONTAINS_SEPARATOR
Tobj_Events::POST_SYSTEM_EVENTS_UNSUPPORTED
Tobj_Events::POST_EMPTY_DOMAIN
Tobj_Events::POST_EMPTY_TYPE
Tobj_Events::POST_DOMAIN_AND_TYPE_TOO_LONG

Note: For more information on exceptions and corresponding minor codes, see
“Exception Minor Codes” on page 2-66.

Descriptions Used when posting events. This operation is used in poster applications to post events
to the event channel.

Note: This operation differs from the standard CORBA definition in the following
ways:

a. The Priority in the variable header section of the event, if specified, must be
short value in the range of 1 to 100.

b. If event filterable data filtering (versus filtering on domain and type only) is
required, or if events are to be received by a BEA Tuxedo subscriber, then
additional restrictions apply. See “Structured Event Fields, Types, and Filters”
on page 2-5 and “Interoperability with BEA Tuxedo Applications” on
page 2-10.

Note: This operation has transactional behavior when used in the context of a
transaction. For more information, see “Using Transactions” on page 2-4.
Using the CORBA Notification Service 2-47

2 CORBA Notification Service API Reference
Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

proxy_push_consumer->push_structured_event(notification);

Java code example:

proxy_push_consumer.push_structured_event(notification);
2-48 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::StructuredProxyPushConsumer::
disconnect_structured_push_consumer

Synopsis Stops posting events.

OMG IDL void disconnect_structured_push_consumer();

Descriptions Used when posting events. This operation is used by poster applications to stop posting
events. It takes no input parameters and returns no values. The recommended usage
sequence is as follows:

1. Make a proxy.

2. Connect and disconnect on every run of the poster application.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

proxy_push_consumer->disconnect_structured_push_consumer();

Java code example:

proxy_push_consumer.disconnect_structured_push_consumer();
Using the CORBA Notification Service 2-49

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType

Synopsis Always returns CosNotifyChannelAmdmin::PUSH_STRUCTURED proxy.

OMG IDL readonly attribute ProxyType MyType

Description Always returns CosNotifyChannelAmdmin::PUSH_STRUCTURED proxy.

CosNotifyChannelAdmin::ConsumerAdmin Class

This class is used by event subscriber applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface ConsumerAdmin :

 CosNotification::QoSAdmin,
 CosNotifyComm::NotifySubscribe,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::ConsumerAdmin {

 ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded)

 ProxySupplier get_proxy_supplier (
 in ProxyID proxy_id)
 raises (ProxyNotFound);

 };
}; //CosNotifyChannelAdmin
2-50 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::ConsumerAdmin::
obtain_notification_push_supplier

Synopsis Creates proxy push supplier objects.

OMG IDL ProxySupplier obtain_notification_push_supplier (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded)

Exceptions CosNotifyChannelAdmin::AdminLimitExceeded
Never raised.

CORBA::IMP_LIMIT
Indicates the following problem:
Tobj_Notification::SUB_UNSUPPORTED_CLIENT_TYPE

Description Used when subscribing. This operation is used in subscriber applications to create
proxy push supplier objects. Only structured events are supported (that is, ANY_EVENT
and SEQUENCE_EVENT ClientTypes are not supported). Therefore, the ClientType
input parameter must be set to CosNotifyComm::STRUCTURED_EVENT. If you shut
down and restart the subscriber and subscription survives more than one run of your
program, the ProxyID returned by this operation should be durably stored. The
subscriber must narrow the proxy supplier to
CosNotifyChannelAdmin::StructuredProxyPushSupplier. All required
operations must be completed in five minutes.

Note: Notification Service applications that start and shut down only once can use
the proxy_id to determine if their subscription has been cancelled
automatically or by the system administrator.

Return Value This operation returns the new proxy’s object reference. The new proxy_id is also
returned through the proxy_id out parameter.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating a Subscription” on page 4-16.

C++ code example:

CosNotifyChannelAdmin::ProxySupplier_var generic_proxy =
 consumer_admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 proxy_id
);
Using the CORBA Notification Service 2-51

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::StructuredProxyPushSupplier_var proxy =
 CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(
 generic_proxy.in ()
);

Java code example:

ProxySupplier generic_proxy =
 consumer_admin.obtain_notification_push_supplier(
 ClientType.STRUCTURED_EVENT,
 proxy_id
);

 StructuredProxyPushSupplier proxy =
 StructuredProxyPushSupplierHelper.narrow(
 generic_proxy
);
2-52 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier

Synopsis Returns the proxy push supplier object created using the consumer admin object
obtain_notification_push_supplier operation.

OMG IDL ProxySupplier get_proxy_supplier (
 in ProxyID proxy_id)
 raises (ProxyNotFound);

Exceptions CosNotifyChannelAdmin::ProxyNotFound
Indicates that the ProxyID could not be found.

Descriptions Used when unsubscribing. This operation is used in subscriber applications to return
the proxy push supplier object created using the consumer admin object
obtain_notification_push_supplier operation. The ProxyID input parameter
uniquely identifies the proxy object. Callers should be aware that the proxy object can
be destroyed either due to an error in delivering a transient subscription or through an
ntsadmin administrative command. When a proxy object is destroyed, the ProxyID
associated with it is invalidated. If the ProxyID is invalid, a ProxyNotFound
exception is raised. The subscriber must narrow the proxy supplier to
CosNotifyChannelAdmin::StructuredProxyPushSupplier.

Return Value Returns the object reference for the existing proxy.

Examples C++ code example:

CosNotifyChannelAdmin::ProxySupplier_var generic_proxy =
 m_consumer_admin->get_proxy_supplier(
 m_subscription_info.news_proxy_id()
);

CosNotifyChannelAdmin::StructuredProxyPushSupplier_var proxy =
 CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(
 generic_proxy.in()
);

Java code example:

ProxySupplier generic_subscription =
 m_consumer_admin.get_proxy_supplier(
 m_subscription_info.news_proxy_id()
);

StructuredProxyPushSupplier subscription =
 StructuredProxyPushSupplierHelper.narrow(
 generic_proxy);
Using the CORBA Notification Service 2-53

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::SupplierAdmin Class

This class is used by event poster applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface SupplierAdmin :
 CosNotification::QoSAdmin,
 CosNotifyComm::NotifyPublish,
 CosNotifyFilter::FilterAdmin,
 CosEventChannelAdmin::SupplierAdmin {

 ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);
 };
}; //SupplierAdmin
2-54 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::SupplierAdmin::
obtain_notification_push_consumer

Synopsis Creates proxy push consumer objects.

OMG IDL ProxyConsumer obtain_notification_push_consumer (
 in ClientType ctype,
 out ProxyID proxy_id)
 raises (AdminLimitExceeded);

Exceptions CosNotifyChannelAdmin::AdminLimitExceeded
Never raised.

CORBA::IMP_LIMIT
Indicates the following problem:
Tobj_Notification::SUB_UNSUPPORTED_CLIENT_TYPE

Description Used when posting events. This operation is used in poster applications to create proxy
push consumer objects. ClientType must be set to
“CosNotifyChannelAdmin::STRUCTURED_EVENT”. The ProxyID returned should
be ignored. The Proxy Consumer must be narrowed the proxy supplier to
CosNotifyChannelAdmin::StructuredProxyPushConsumer.

Note: Notification Service applications that start and shut down only once can use
the proxy_id to determine if their subscription has been cancelled
automatically or by the system administrator.

Return Value This operation returns the new proxy’s object reference. The new proxy_id is also
returned through the proxy_id out parameter.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

CosNotifyChannelAdmin::ProxyConsumer_var generic_proxy_consumer =
 supplier_admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 proxy_id
);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 proxy_push_consumer =
 CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(
 generic_proxy_consumer
);
Using the CORBA Notification Service 2-55

2 CORBA Notification Service API Reference
Java code example:

supplier_admin.obtain_notification_push_consumer(
 ClientType.STRUCTURED_EVENT, proxy_id);
2-56 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::EventChannel Class

This class is used by event poster applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface EventChannel :
 CosNotification::QoSAdmin,
 CosNotification::AdminPropertiesAdmin,
 CosEventChannelAdmin::EventChannel {

 readonly attribute ConsumerAdmin default_consumer_admin;
 readonly attribute SupplierAdmin default_supplier_admin;
 readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;
 };
}; //CosNotifyChannelAdmin
Using the CORBA Notification Service 2-57

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_consumer_admin

Synopsis Gets the ConsumerAdmin object.

OMG IDL readonly attribute ConsumerAdmin default_consumer_admin;

Description Used when subscribing and unsubscribing. This operation is used in subscriber
applications to get the ConsumerAdmin object.

Return Value Returns the object reference to the ConsumerAdmin object.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:

channel->default_consumer_admin();

Java code example:

Note: channel.default_consumer_admin();
2-58 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::EventChannel::
ConsumerAdmin default_supplier_admin

Synopsis Gets the SupplierAdmin object.

OMG IDL readonly attribute SupplierAdmin default_supplier_admin;

Description Used when posting events. This operation is used in event poster applications to get
the SupplierAdmin object.

Return Value SupplierAdmin object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Creating and Posting Events” on page 4-4.

C++ code example:

channel->default_supplier_admin();

Java code example:

channel.default_supplier_admin();
Using the CORBA Notification Service 2-59

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::EventChannel::default_filter_factory

Synopsis Gets the default FilterFactory object.

OMG IDL readonly attribute CosNotifyFilter::FilterFactory
 default_filter_factory;

Description Used when subscribing. This operation is used in subscriber applications to get the
default FilterFactory object.

Return Value Default FilterFactory object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel, ConsumerAdmin Object, and Filter Factory
Object” on page 4-12.

C++ code example:

channel->default_filter_factory();

Java code example:

channel.default_filter_factory();
2-60 Using the CORBA Notification Service

CosNotification Service API
CosNotifyChannelAdmin::EventChannelFactory Class

This class is used by event poster applications. The OMG IDL for this class is as
follows:

Module CosNotifyChannelAdmin
{
 interface EventChannelFactory {
 EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);
 };
}; //CosNotifyChannelAdmin
Using the CORBA Notification Service 2-61

2 CORBA Notification Service API Reference
CosNotifyChannelAdmin::EventChannelFactory::get_event_channel

Synopsis Gets the EventChannel object.

OMG IDL EventChannel get_event_channel (in ChannelID id)
 raises (ChannelNotFound);

Exceptions CosNotifyChannelAdmin::ChannelNotFound
Indicates the channel cannot be found.

Description Used when subscribing, unsubscribing, and posting events. This operation is used in
applications to get the EventChannel object. When subscribing, the EventChannel
object is used to get the filter factory object and the ConsumerAdmin object. When
unsubscribing, the EventChannel object is used to get the ConsumerAdmin
object.When posting an event, the EventChannel object is used to get the
SupplierAdmin object. The ChannelID parameter that is passed in must be set to
Tobj_Notification::DEFAULT_CHANNEL; otherwise, the ChannelNotFound
exception is raised.

Return Value Returns the default event channel’s object reference.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Getting the Event Channel” on page 4-3 and “Getting the Event Channel,
ConsumerAdmin Object, and Filter Factory Object” on page 4-12.

C++ code example:

channel_factory->get_event_channel(
 Tobj_Notification::DEFAULT_CHANNEL);

Java code example:

channel_factory.get_event_channel(DEFAULT_CHANNEL.value);
2-62 Using the CORBA Notification Service

CosNotification Service API
CosNotifyComm::StructuredPushConsumer Interface

This interface is used by event subscriber applications for event delivery. You must
implement this interface so that the Notification Service can invoke on it to deliver
events to subscribers. It has three methods which you have to implement.

The OMG IDL for this class is as follows:

Module CosNotifyComm
{
 interface StructuredPushConsumer : NotifyPublish {

 void push_structured_event(
 in CosNotification::StructuredEvent event)
 raises(CosEventComm::Disconnected);
 void disconnect_structured_push_consumer:
 //The following operations are inherited.
 void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);
 };
}; //CosNotifyComm
Using the CORBA Notification Service 2-63

2 CORBA Notification Service API Reference
CosNotifyComm::StructuredPushConsumer::push_structured_event

Synopsis Delivers a structured event.

OMG IDL void push_structured_event(
 in CosNotification::StructuredEvent event)
 raises(CosEventComm::Disconnected);

Exceptions CosEventComm::Disconnected
The subscriber should never raise this exception.

Description Used when subscribing. This operation is implemented by the subscriber’s callback
object and is invoked by the Notification Service each time a structured event is
delivered. This operation contains a single input parameter, which is a structured event.

Note: This operation will not be called in a transaction. Also, when this operation is
called, it must return quickly because the Notification Service might not start
delivering events to other subscribers until this operation returns.

Examples Note: Code examples shown here are abbreviated. For complete code examples, see
“Implementing the CosNotifyComm::StructuredPushConsumer Interface” on
page 4-8.

C++ code example:

virtual void push_structured_event(
 const CosNotification::StructuredEvent& notification);
 {
 // Process the event.
 }

Java code example:

public void push_structured_event(StructuredEvent notification)
 {
 // Process the event.
 }
2-64 Using the CORBA Notification Service

CosNotification Service API
CosNotifyComm::StructuredPushConsumer::
disconnect_structured_push_consumer

Synopsis Never invoked.

OMG IDL void disconnect_structured_push_consumer;

Description This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

Examples C++ code example:

virtual void push_structured_event(
 const CosNotification::StructuredEvent& notification);
 {
 throw new CORBA::NO_IMPLEMENT();
 }

Java code example:

public void disconnect_structured_push_consumer()
 {
 throw new CORBA::NO_IMPLEMENT();
 }
Using the CORBA Notification Service 2-65

2 CORBA Notification Service API Reference
CosNotifyComm::StructuredPushConsumer::Offer_change

Synopsis Never invoked.

OMG IDL void offer_change(
 in CosNotification::EventTypeSeq added,
 in CosNotification::EventTypeSeq removed)
 raises (InvalidEventType);

Exceptions CosNotifyComm::InvalidEventType
The subscriber should never raise this exception.

Description This operation is never invoked. The subscriber application must provide a
stubbed-out version of this operation.

Examples C++ code example:

virtual void offer_change(
 const CosNotification::EventTypeSeq& added,
 const CosNotification::EventTypeSeq& removed)
 {
 throw CORBA::NO_IMPLEMENT();
 }

Java code example:

public void offer_change(EventType[] added, EventType[] removed)
{
 throw new NO_IMPLEMENT();
}

Exception Minor Codes

This section provides information about the Notification Service exception symbols
and minor codes. The minor codes are in the Tobj_Events.idl and
Tobj_Notification.idl files. These files are located in the tuxdir\include
directory (for Microsoft Windows systems) and tuxdir/include directory (for
UNIX systems).

Table 2-4 and Table 2-5 list the exception symbols and corresponding minor codes for
the Tobj_Events and Tobj_Notification exceptions respectively. CORBA system
events have a minor code field and those minor codes are also defined in these tables.
2-66 Using the CORBA Notification Service

CosNotification Service API
Note: The exception symbols are organized within the tables by the higher-level
exceptions (CORBA::IMP_LIMIT, CORBA::CORBA::BAD_PARAM,
CORBA::BAD_INV_ORDER, CORBA::INV_OBHJREF, and
CORBA::OBJECT_NOT_EXIST) and listed in alphabetical order.

Table 2-4 Tobj_Events Exception Minor Codes

Exception Symbols Definitions Minor Codes
(Hexadecimal)

CORBA::IMP_LIMIT Exceptions

Tobj_Events::
POST_DOMAIN_AND_TYPE_TOO_LONG

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
specified a domain name and type
name whose combined length was
greater than 31 characters.

5455580D

Tobj_Events::
POST_DOMAIN_CONTAINS_SEPARATOR

 This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
specified a domain name that
contained the "." character.

54555802

Tobj_Events::POST_EMPTY_DOMAIN

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
specified an empty domain name.

5455580B
Using the CORBA Notification Service 2-67

2 CORBA Notification Service API Reference
Tobj_Events::POST_EMPTY_TYPE

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
specified an empty type name.

5455580C

Tobj_Events::
POST_SYSTEM_EVENTS_UNSUPPORTED

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user tried
to post a BEA Tuxedo system event;
that is, the domain name is
"TMEVT" and the type name starts
with the "." character.

54555804

Tobj_Events::
POST_TYPE_CONTAINS_SEPARATOR

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
specified a type name that contained
the "." character.

54555803

Tobj_Events::
POST_UNSUPPORTED_PRIORITY_VALUE

This is exception is raised by:
Tobj_SimpleEvents::
Channel::push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user
added a "Priority" field in the
variable header. However, the user
did not set the field's value to a
"short" in the range of 1–100.

54555801

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
2-68 Using the CORBA Notification Service

CosNotification Service API
Tobj_Events::
POST_UNSUPPORTED_VALUE_IN_ANY

This exception is raised by:
Tobj_SimpleEvents::
Channel::push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When posting an event, the user put
an unsupported type (for example, a
structure, union, sequence, etc.) into
one of the "anys" in the structured
event field. The unsupported type is
in the variable header's value field,
the filterable data's value field, or the
remainder_of_body field.

54555800

Tobj_Events::
SUB_DOMAIN_AND_TYPE_TOO_LONG

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
connect_structured_push_consumer

When subscribing, the user specified
a domain name and type name
whose combined length is greater
than 255 characters.

54555809

Tobj_Events::
SUB_DOMAIN_BEGINS_WITH_SYSEV

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyFilter::Filter::
add_constraints

When subscribing, the user specified
a domain name that begins with the
"." character.

54555805

Tobj_Events::SUB_EMPTY_DOMAIN

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyFilter::Filter::
add_constraints

The user specified an empty domain
name when subscribing.

54555807

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Using the CORBA Notification Service 2-69

2 CORBA Notification Service API Reference
Tobj_Events::SUB_EMPTY_TYPE

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyFilter::Filter::
add_constraints

The user specified an empty type
name when subscribing.

54555808

Tobj_Events::SUB_FILTER_TOO_LONG

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyFilter::Filter::
add_constraints

The user specified a data filter
expression longer than 255
characters.

5455580A

Tobj_Events::SUB_NAME_TO_LONG

This exception is raised by:
Tobj_SimpleEvents::Channel::
push_structured_event

CosNotifyChannelAdmin::
StructuredProxyPushConsumer::
push_structured_event

When subscribing, the user specified
a subscription name longer than 127
characters.

5455580E

Tobj_Events::
TRANSIENT_ONLY_CONFIGURATION

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
connect_structured_push_consumer

The user tried to create a persistent
subscription, but the system was
configured to support transient
subscriptions only.

54555806

CORBA::BAD_PARAM Exceptions

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
2-70 Using the CORBA Notification Service

CosNotification Service API
Tobj_Events::INVALID_CHANNEL_ID

This exception is raised by:
Tobj_SimpleEvents::ChannelFactory
::find_channel

When looking up the channel using
the Simple Events API, the user
specified an invalid channel ID, that
is, a channel ID that is not
Tobj_SimpleEvents::
DEFAULT_CHANNEL.

54555813

Tobj_Events::
INVALID_SUBSCRIPTION_ID

This exception is raised by:
Tobj_SimpleEvents::Channel::
unsubscribe

CosNotifyChannelAdmin::
ConsumerAdmin::get_proxy_
supplier

Tobj_SimpleEvents::
Channel::exists

When unsubscribing using the
Simple Events API, the user
specified an invalid subscription ID,
that is, a non-existent or a
CosNotification subscription ID.
When looking up a subscription
using the CosNotification Service
API, the user specified an invalid
subscription ID, that is, a
non-existent or a Simple Events API
subscription ID.
When calling the exists operation
using the BEA Simple Events API,
the user passed in a CosNotification
subscription_id.

54555812

Tobj_Events::
SUB_INVALID_FILTER_EXPRESSION

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyFilter::Filter::
add_constraints

When subscribing, the user specified
an invalid data filter expression.
This either means that there is a
syntax error in the expression or that
one of the field names in the
expression is not defined as an FML
field.
Check that you have correctly
created FML field tables that contain
all fields that you want to data filter
on, and check that the UBBCONFIG
file is properly configured so that the
field table files can be found.

54555810

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Using the CORBA Notification Service 2-71

2 CORBA Notification Service API Reference
Tobj_Events::
SUB_UNSUPPORTED_QOS_VALUE

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
set_qos

54555811
When subscribing, the user specified an invalid subscription
quality of service.
 For the Simple Events API, this means that the quality of
service specified did not meet one of the following
requirements:

The sequence must be of length one.
The name must be Tobj_SimpleEvents::
SUBSCRIPTION_TYPE.
The value must be either Tobj_SimpleEvents::
TRANSIENT_SUBSCRIPTION or
Tobj_SimpleEvents::
PERSISTENT_SUBSCRIPTION.

For the CosNotification Service API, this means that the
quality of service specified did not meet one of the following
requirements:

The quality of service must contain a name/value pair
where the name is Tobj_Notification::
SUBSCRIPTION_TYPE and the value is
Tobj_Notification::
TRANSIENT_SUBSCRIPTION or
Tobj_Notification::
PERSISTENT_SUBSCRIPTION.
The quality of service may contain a name/value pair
where the name is
Tobj_Notification::SUBSCRIPTION_NAME
and the value is a string containing the subscription’s
administrative name.

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
2-72 Using the CORBA Notification Service

CosNotification Service API
CORBA::INV_OBHJREF

Tobj_Events::
SUB_NIL_CALLBACK_REF

This exception is raised by:
Tobj_SimpleEvents::Channel::
subscribe

CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
connect_structured_push_consumer

When subscribing, the user specified
a NIL object reference for the
callback object which receives
events.

54555830

Table 2-5 Tobj_Notification Exception Minor Codes

Exception Symbols Definitions Minor Codes
(Hexadecimal)

CORBA::IMP_LIMIT Exceptions

Tobj_Notification::
SUB_ADD_CONS_ON_TIMED_OUT_FILTER

This exception is raised by:
CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber waited
more than five minutes after creating
a filter to call add_constraints
on the filter. This means that the filter
has been destroyed (timed out) and
the subscriber must create a new
filter.

54555858

Tobj_Notification::
SUB_ADD_CONS_TO_ADDED_FILTER

This exception is raised by:
CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber called
add_constraints on a filter that
had already been added to a proxy.

5455585E

Table 2-4 Tobj_Events Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Using the CORBA Notification Service 2-73

2 CORBA Notification Service API Reference
Tobj_Notification::
SUB_ADDED_TIMED_OUT_FILTER

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
add_filter

After creating a filter and calling
"add_constraints" on it, a
CosNotification subscriber waited
more than five minutes to call
add_filter to add the filter to the
proxy. This means that the filter has
been destroyed (timed out) and that
the subscriber must create a new
filter.

5455585D

Tobj_Notification::
SUB_ADD_FILTER_AFTER_CONNECT

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
add_filter

A CosNotification subscriber called
add_filter after connecting to the
proxy.

54555852

Tobj_Notification::
SUB_CANT_SET_QOS_AFTER_CONNECT

This exception is raised by:
CosNotifyChannelAdmin::Structured
ProxyPushSupplier::set_qos

A CosNotification subscriber called
set_qos after connecting to the
proxy.

54555856

Tobj_Notification::
SUB_MULTIPLE_CALLS_TO_ADD_CONS

This exception is raised by:
CosNotifyFilter::Filter::
add_constraints

A CosNotification subscriber called
add_constraints more than once
on a filter.

54555859

Tobj_Notification::
SUB_MULTIPLE_CALLS_TO_SET_FILTER

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
add_filter

A CosNotification subscriber called
add_filter more than once on a
proxy.

54555851

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
2-74 Using the CORBA Notification Service

CosNotification Service API
Tobj_Notification::
SUB_MULTIPLE_CALLS_TO_SET_QOS

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
set_qos

A CosNotification subscriber called
set_qos more than once on a proxy.

54555855

Tobj_Notification::
SUB_MULTIPLE_CONSTRAINTS_IN_LIST

This exception is raised by:
CosNotifyFilter::Filter::
add_constraints

When a CosNotification subscriber
called add_constraints on a
filter, the subscriber passed in a list of
constraints that had more than one
item; that is, the subscriber was trying
to send in a list of data filters instead
of one data filter.

5455585A

Tobj_Notification::
SUB_MULTIPLE_TYPES_IN_CONSTRAINT

This exception is raised by:
CosNotifyFilter::Filter::
add_constraints

When a CosNotification subscriber
called add_constraints on a
filter, the subscriber passed on a
constraint that had more than one
domain/type set; that is, the
subscriber was trying to send in a list
of desired event types instead of one
event type.

5455585B

Tobj_Notification::
SUB_NIL_FILTER_REF

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
add_filter

A CosNotification subscriber passed
a NIL filter object reference into
add_filter.

54555853

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Using the CORBA Notification Service 2-75

2 CORBA Notification Service API Reference
Tobj_Notification::
SUB_NO_CUSTOM_FILTERS

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
add_filter

A CosNotification subscriber passed
a filter object that was not created by
the default filter factory into
add_filter. For example, a
CosNotification subscriber
implemented the
CosNotifyFilter::Filter
interface to do some kind of "custom"
filtering and passed one of those filter
objects into add_filter.

54555854

Tobj_Notification::
SUB_SET_FILTER_NOT_CALLED

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
connect_structured_push_
consumer

A CosNotification subscriber did not
call add_filter to the proxy
before connecting to the proxy.

54555850

Tobj_Notification::
SUB_SET_QOS_NOT_CALLED

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
connect_structured_push_
consumer

A CosNotification subscriber did not
call add_filter to the proxy
before connecting to the proxy.

54555857

Tobj_Notification::
SUB_SYSTEM_EVENTS_UNSUPPORTED

This exception is raised by:
CosNotifyChannelAdmin::
StructuredProxyPushSupplier::
set_qos

A CosNotification subscriber passed
in a domain name of "TMEVT" and a
type name that begins with "."; that
is, the CosNotification subscriber was
trying to subscribe to Tuxedo system
events. This is not supported. It is
only supported by the Simple Events
API.

5455585C

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
2-76 Using the CORBA Notification Service

CosNotification Service API
Tobj_Notification::
SUB_UNSUPPORTED_CLIENT_TYPE

This is exception raised by:
ConsumerAdmin::
obtain_notification_push_
supplier

SupplierAdmin::
obtain_notification_push_
consumer

When creating a proxy, a
CosNotification subscriber or poster
passed in a client type other than
CosNotifyChannelAdmin::ST
RUCTURED_EVENT.

5455585F

CORBA::OBJECT_NOT_EXIST Exception

Tobj_Notification::
SUBSCRIPTION_DOESNT_EXIST

This exception is raised by:
StructuredProxyPushSupplier::
add_filter

StructuredProxyPushSupplier::
set_qos

StructuredProxyPushSupplier::
connect_structured_push_
consumer

StructuredProxyPushSupplier::
disconnect_structured_push_
supplier

Note: connect_structured_push_
consumer can raise this exception since
a user can create the proxy, then use the
ntsadmin utility to delete the
subscription, and then call
connect_structured_push_
consumer on the proxy.

A CosNotification subscriber called a
method on a proxy that had already
been destroyed. The proxy has been
destroyed by one of the following
actions:

The CosNotification subscriber
disconnected the proxy.
The CosNotification subscriber
waited more than five minutes
from creating the proxy to
connecting it; that is, it took
longer than five minutes to
complete the subscription.
The administrator used the
ntsadmin utility to destroy the
subscription.

54555880

Table 2-5 Tobj_Notification Exception Minor Codes (Continued)

Exception Symbols Definitions Minor Codes
(Hexadecimal)
Using the CORBA Notification Service 2-77

2 CORBA Notification Service API Reference
2-78 Using the CORBA Notification Service

CHAPTER
3 Using the BEA Simple
Events API

This chapter describes the development steps required to create Notification Service
applications using the BEA Simple Events API and the C++ and Java programming
languages.

This topic includes the following sections:

Development Process

Step 1: Writing an Application to Post Events

Step 2: Writing an Application to Subscribe to Events

Step 3: Compiling and Running Notification Service Applications

Development Process

Table 3-1 outlines the development process for creating Notification Service
applications.

Table 3-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events
Using the CORBA Notification Service 3-1

3 Using the BEA Simple Events API
These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensure that your Notification Service will be able to handle
your needs now and allow for future growth. For a discussion of event design, see
“Designing Events” on page 2-7.

Step 1: Writing an Application to Post Events

The following types of CORBA applications can post events:

Note: BEA Tuxedo 8.0 supports Java clients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebLogic Enterprise product, however, that
support was removed when BEA WebLogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

C++ clients, joint client/servers and servers.

Java clients and joint client/servers.

Foreign ORB clients.

3 Writing an application that subscribes to events

4 Compiling a Notification Service application

Table 3-1 Development Process (Continued)

Step Description
3-2 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events
To post events, an application must, at a minimum, implement the following functions:

Get the event channel factory object reference and use it to get the event
channel.

Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must first get the event channel.

This development step is illustrated in Listing 3-1. Listing 3-1 is based on the
Notification Service sample applications that use the BEA Simple Events API.

To get the event channel factory object reference, the
resolve_initial_references method is invoked on the Bootstrap object using the
"Tobj_SimpleEventsService" environmental object. The object reference is used
to get the channel factory, which is in turn is used to get the event channel. Listing 3-1
and Listing 3-2 show code examples in C++ and Java.

Listing 3-1 Getting the Event Channel (C++)

// Get the Simple Events channel factory object reference.
CORBA::Object_var channel_factory_oref =
 bootstrap.resolve_initial_references(
 "Tobj_SimpleEventsService");

Tobj_SimpleEvents::ChannelFactory_var channel_factory =
 Tobj_SimpleEvents::ChannelFactory::_narrow(
 channel_factory_oref.in());

// Use the channel factory to get the default channel.
Tobj_SimpleEvents::Channel_var channel =
 channel_factory->find_channel(
 Tobj_SimpleEvents::DEFAULT_CHANNEL);
Using the CORBA Notification Service 3-3

3 Using the BEA Simple Events API
Listing 3-2 Getting the Event Channel (Java)

// Get the Simple Event channel factory object reference.
org.omg.CORBA.Object channel_factory_oref =
 bootstrap.resolve_initial_references(
 "Tobj_SimpleEventsService");

// Use the channel factory to get the default channel.
ChannelFactory channel_factory =
 ChannelFactoryHelper.narrow(channel_factory_oref);

Channel channel =
 channel_factory.find_channel(DEFAULT_CHANNEL.value);

Creating and Posting Events

Before an event can be posted, it must be created. The following listings are based on
the Notification Service sample applications.

Listing 3-3 and Listing 3-4 show how this is implemented in C++ and Java
respectively. To report news to the events channel, this application executes the
following steps:

1. Creates an event and sets the domain name and type name. In the code samples, the
domain name is set to “News” and the event type is set to “Sports”.

2. Adds a field to the event’s filterable data to contain the story, sets the name of the
added field to “Story”, and the value of the field to a string containing the story.

3. Uses the push_structured_event operation to post the event to the
Notification Service.

Listing 3-3 Creating and Posting the Event (C++)

// Create an event.
CosNotification::StructuredEvent notification;

// Set the domain to "News".
notification.header.fixed_header.event_type.domain_name =
 CORBA::string_dup("News");
3-4 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events
// Set the type to the news category.
notification.header.fixed_header.event_type.type_name =
 CORBA::string_dup(“Sports”);

// Add one field, which will contain the story, to the
// event's filterable data. Set the field's name to
// "Story" and value to a string containing the story.
notification.filterable_data.length(1);
notification.filterable_data[0].name =
 CORBA::string_dup("Story");
notification.filterable_data[0].value <<= “John Smith wins again”;

// Post the event.

// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

channel->push_structured_event(notification);

Listing 3-4 Creating and Posting the Event (Java)

// Create an event.
StructuredEvent notification = new StructuredEvent();
// Create the sub structures for the header.
notification.header = new EventHeader();
notification.header.fixed_header = new FixedEventHeader();
 notification.header.fixed_header.event_type = new EventType();

// Set the domain to "News".
notification.header.fixed_header.event_type.domain_name = "News";

// Set the type to the news category.
notification.header.fixed_header.event_type.type_name = “Sports”;

// Set the event name to an empty string since this sample
// doesn't use it.
 notification.header.fixed_header.event_name = "";
// Empty the variable header since this sample doesn't use it.
 notification.header.variable_header = new Property[0];

// Add one field, which will contain the story, to the
// event's filterable data. Set the field's name to
// "Story" and value to a string containing the story.
notification.filterable_data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].name = "Story";
Using the CORBA Notification Service 3-5

3 Using the BEA Simple Events API
notification.filterable_data[0].value = orb.create_any();
notification.filterable_data[0].value.insert_string(John Smith
wins again”);

// Set the remainder of body to a new (empty) any since this
// sample doesn't use the remainder of body.
notification.remainder_of_body = orb.create_any();

//Post the event.
channel.push_structured_event(notification);

Step 2: Writing an Application to Subscribe
to Events

The following types of CORBA applications can subscribe to events:

Note: BEA Tuxedo 8.0 supports Java clients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebLogic Enterprise product, however, that
support was removed when BEA WebLogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

C++ joint client/servers and servers.

Java joint client/servers.

Foreign ORB clients.

To subscribe to events, an application must, at a minimum, implement the following
functions:

Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

Get the event channel factory object reference and use it to get the event
channel.

Define and create a subscription that includes the callback object reference.
3-6 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Create a callback object that implements the
CosNotifyComm::StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the callback object to
push the event to the subscriber application.

The CosNotifyComm::StructuredPushConsumer interface also defines the operations
offer_change and disconnect_structured_push_consumer. The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA::NO_IMPLEMENT.

Listing 3-5 and Listing 3-6 show how this interface is implemented in C++.

Listing 3-5 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h

#include "CosNotifyComm_s.h"

// For the servant class to receive news events,
// it must implement the CosNotifyComm::StructuredPushConsumer
// idl interface.

class NewsConsumer_i : public
POA_CosNotifyComm::StructuredPushConsumer

{
 public:

 // This method will be called when a news event occurs.

 virtual void push_structured_event(
 const CosNotification::StructuredEvent& notification
);
Using the CORBA Notification Service 3-7

3 Using the BEA Simple Events API
 // OMG's CosNotifyComm::StructuredPushConsumer idl
 // interface defines the methods "offer_change" and
 // "disconnect_structured_push_consumer". Since the
 // Notification Service never invokes these methods, just
 // have them throw a CORBA::NO_IMPLEMENT exception

 virtual void offer_change(
 const CosNotification::EventTypeSeq& added,
 const CosNotification::EventTypeSeq& removed)
 {
 throw CORBA::NO_IMPLEMENT();
 }

 virtual void disconnect_structured_push_consumer()
 {
 throw CORBA::NO_IMPLEMENT();
 }
};
#endif

Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.cpp)

#include "NewsConsumer_i.h"
#include <iostream.h>

//---
// Subscriber.cpp creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i
// object. When a news event occurs (this happens when a user
// runs the Reporter application and reports a news story), this
// method will be invoked:

void NewsConsumer_i::push_structured_event(
 const CosNotification::StructuredEvent& notification)
 {
// Extract the story from the first field in the event's
// filterable data.
char* story;
notification.filterable_data[0].value >>= story;

// For coding simplicity, assume "story" is not "null".

// Print out the event.
cout
 << "---"
3-8 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
 << endl
 << "Category : "
 << notification.header.fixed_header.
 event_type.type_name.in()
 << endl
 << "Story : "
 << story
 << endl;
...
}

Listing 3-7 shows how this interface is implemented in Java.

Listing 3-7 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

import org.omg.CosNotification.*;
import org.omg.CosNotifyComm.*;
import org.omg.CORBA.*;
//---

// The servant class to receive news events.
// It must implement the CosNotifyComm::StructuredPushConsumer idl
// interface.

public class NewsConsumer_i extends
 _StructuredPushConsumerImplBase
{
// Subscriber.java creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i object.
// When a news event occurs (this happens when a user runs the
// Reporter application and reports a news story), this method will
// be invoked:

public void push_structured_event(StructuredEvent notification)
{
 // For coding simplicity, assume that:
 // notification.header.fixed_header.event_type.domain_name is
 // "News"
 // notification.header.fixed_header.event_type.type_name is the
 // news category
 // notification.filterable_data.length is 1
 // notification.filterable_data[0].name is "Story"
 // notification.filterable_data[0].value contains the story (as
 // a string).
Using the CORBA Notification Service 3-9

3 Using the BEA Simple Events API
 // Extract the story from the first field in the event's
 // filterable data.
 // For coding simplicity, do not handle errors indicating that the
 // field does not contain a string.
 String story =
 notification.filterable_data[0].value.extract_string();
 // Print out the event.
 System.out.println("---");
 System.out.println("Category : " +
 notification.header.fixed_header.event_type.type_name);

 System.out.println(
 "Story : " + story);

 // At this point, the main has called the "wait_for_shutdown"
 // method on the shutdown object. That method blocks until
 // the "shutdown" method on the shutdown manager is called.
 // Call "shutdown" on the shutdown manager. This will cause
 // "wait_for_shutdown" to return. Afterwards, the main will
 // shutdown the application.
 m_shutdown_manager.shutdown();
 }
// OMG's CosNotifyComm::StructuredPushConsumer idl
// interface defines the methods "offer_change" and
// "disconnect_structured_push_consumer". Since the
// notification service never invokes these methods, just
// have them throw a CORBA::NO_IMPLEMENT exception

 public void disconnect_structured_push_consumer()
 {
 throw new NO_IMPLEMENT();
 }

 public void offer_change(EventType[] added, EventType[] removed)
 {
 throw new NO_IMPLEMENT();
 }
}

Getting the Event Channel

This step is the same for event posters and event subscribers. For a discussion of this
step, see “Implementing the CosNotifyComm::StructuredPushConsumer Interface” on
page 3-7.
3-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Creating a Callback Object

To receive events, the application must also be a server; that is, the application must
implement a callback object that can be invoked (called back) when an event occurs
that matches the subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to a BEA Tuxedo CORBA joint client/server. BEA
Tuxedo CORBA servers can also subscribe to events.

1. Create a callback object. Callback objects can be implemented using either the
BEAWrapper Callback API or the CORBA Portable Object Adaptor (POA).

2. Create the servant.

3. Create an object reference to the callback servant.

For a complete description of the BEAWrapper Callbacks object and its methods, see
the Joint Client/Servers chapter in the CORBA Programming Reference.

Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For a discussion of how to implement a callback object using
the POA, see Using CORBA Server-to-Server Communication.

Listing 3-8 and Listing 3-9 show how to use the BEAWrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
NewsConsumber_i servant is created and the start_transient method is used to
create a transient object reference.

Listing 3-8 Sample Code for Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks.

BEAWrapper::Callbacks wrapper(orb.in());

NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;

CORBA::Object_var news_consumer_oref =
 wrapper.start_transient(
 news_consumer_impl,
Using the CORBA Notification Service 3-11

3 Using the BEA Simple Events API
 CosNotifyComm::_tc_StructuredPushConsumer->id()
);

CosNotifyComm::StructuredPushConsumer_var
 news_consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow(
 news_consumer_oref.in()
);

Listing 3-9 Sample Code for Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.java)

// Create a callback wrapper object since this client needs to
// support callbacks.

Callbacks callbacks = new Callbacks(orb);

// Instantiate the servant that receives the events.
NewsConsumer_i news_consumer_impl =
 new NewsConsumer_i;

// Create a transient object reference to the callback servant.
callbacks.start_transient(
 news_consumer_impl,
 news_consumer_impl._ids()[0]
);

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification
Service. You can create either a transient subscription or a persistent subscription.

Listing 3-10 and Listing 3-11, which are from the Introductory sample application,
show how to create a transient subscription in C++ and Java respectively.

The following steps must be performed:

1. Set the subscription’s quality of service (QoS) to either transient or persistent.

2. Determine the subscription_name (optional), domain_name, type_name, and
data_filter (optional).
3-12 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
3. Create the subscription. The subscription sets the domain_name, type_name, and
data_filter (optional), the Quality of Service (QoS), and supplies the object
reference to the subscriber’s callback object to the Notification Service.

Listing 3-10 Creating a Transient Subscription (C++)

// Set the quality of service to TRANSIENT.
CosNotification::QoSProperties qos;
qos.length(1);
qos[0].name =
 CORBA::string_dup(Tobj_SimpleEvents::SUBSCRIPTION_TYPE);
qos[0].value <<=
 Tobj_SimpleEvents::TRANSIENT_SUBSCRIPTION;

// Set the type to the news category.
const char* type = “Sports”;
// Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
Tobj_SimpleEvents::SubscriptionID subscription_id =
 channel->subscribe(
 subscription_name,
 "News", // domain
 “Sports”, // type
 "Age > 30", // Data filter.
 qos,
 news_consumer.in()
);

Listing 3-11 Creating a Transient Subscription (Java)

// Set the quality of service to TRANSIENT.
Property qos[] = new Property[1];
qos[0] = new Property();
qos[0].name = SUBSCRIPTION_TYPE.value;
qos[0].value = orb.create_any();
qos[0].value.insert_short(TRANSIENT_SUBSCRIPTION.value);

// Set the type to the news category.
String type = "Sports”;

// Create the subscription. Set the domain to "News" and
// the data filter to age greater than 30.
int subscription_id = channel.subscribe(
Using the CORBA Notification Service 3-13

3 Using the BEA Simple Events API
 subscription_name,
 "News", // domain
 “Sports”, // type
 "Age > 30", // data filter.
 qos,
 news_consumer_impl
);

Note: When you use data filtering, you must also perform some configuration tasks.
For a discussion of data filtering configuration requirements, see “Configuring
Data Filters” on page 7-3.

Listing 3-12 and Listing 3-13, which show code in the Advanced sample application
in C++ and Java, illustrates the coding steps required to create a persistent subscription
to the Notification Service. The steps required to create a persistent subscription are
the same as those required to create a transient subscription, as described previously.

Note: While the code examples shown here assume that the news_consumer
callback object has a persistent object reference, you can also create persistent
subscriptions with transient callback object references. For a discussion of
transient versus persistent callback object references, see Table 2-3.
3-14 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)

CosNotification::QoSProperties qos;
qos.length(1);
qos[0].name =
 CORBA::string_dup(Tobj_SimpleEvents::SUBSCRIPTION_TYPE);
qos[0].value <<= Tobj_SimpleEvents::PERSISTENT_SUBSCRIPTION;

CosNotifyComm::StructuredPushConsumer_var
 news_consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow(
 news_consumer_oref.in()
);

Tobj_SimpleEvents::SubscriptionID sub_id =
 channel->subscribe(
 subscription_info.subscription_name(),
 "News", // domain
 “Sports”, // type
 “”, // No data filter.
 qos,
 news_consumer.in()
)
);

Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)

Property qos[] = new Property[1];
qos[0] = new Property();
qos[0].name = SUBSCRIPTION_TYPE.value;
qos[0].value = orb.create_any();
qos[0].value.insert_short(PERSISTENT_SUBSCRIPTION.value);

int sub_id =
 channel.subscribe(
 subscription_info.subscription_name(),
 "News", // domain
 “Sports”, // type
 “”, // No data filter.
 qos,
 m_news_consumer_impl
)
);//
Using the CORBA Notification Service 3-15

3 Using the BEA Simple Events API
Threading Considerations for C++ Joint Client/Server Applications

A joint client/server application may first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application turns complete control of the thread to the Object Request Broker (ORB)
by making the following invocation:

orb -> run();

If a method in the server portion of a joint client/server application invokes
ORB::shutdown(), all server activity stops and control is returned to the statement
after ORB::run() is invoked in the server portion of the joint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since a client application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of the joint client/server application. This sharing is accomplished by
occasionally checking with the ORB to see if the joint client/server application has
server application work to perform. Use the following code to perform the check with
the ORB:

if (orb->work_pending()) orb->perform_work();

After the ORB completes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

You should be aware that the ORB cannot service callbacks while the joint
client/server application is blocking on a request. If a joint client/server application
invokes an object in another BEA Tuxedo CORBA server application, the ORB blocks
while it waits for the response. While the ORB is blocking, it cannot service any
callbacks, so the callbacks are queued until the request is completed.
3-16 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
Step 3: Compiling and Running Notification
Service Applications

The final step in the development of a Notification Service application is to compile,
build, and run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.

3. Build the application.

4. Run the application.

Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the idl command for
each of the Notification IDL files that your application uses. Table 3-2 shows the idl
commands used for each type of subscriber.

The following is an example of an idl command:

>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 3-2 idl Command Requirements

Language BEA Tuxedo CORBA Joint
Client/Server

BEA Tuxedo CORBA Server

C++ idl -P idl

Java idltojava Not supported in BEA Tuxedo 8.0 and
later
Using the CORBA Notification Service 3-17

3 Using the BEA Simple Events API
Table 3-3 lists the IDL files required by each type of Notification Service application
that uses the BEA Simple Events Interface.

Building and Running Applications

The build procedure differs depending on the type of Notification Service application
you are building. Table 3-4 provides an overview of the commands and types of files
used to build each type of the Notification Service application.

Table 3-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can be a client, a joint client/server, or
a server). (Stubs are required for all files.)

CosEventComm.idl
CosNotification.idl
CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Subscriber (can be a server or a joint client/server).
(Stubs are required for all files. Skeleton is required
for the CosNotifyComm.idl file.)

CosEventComm.idl
CosNotification.idl
CosNotifyComm.idl
Tobj_Events.idl
Tobj_SimpleEvents.idl

Table 3-4 Application Build Requirements

Application Type Client Joint Client/Server Server

C++ Events Poster Use the
buildobjclient
command to compile the
application files and the
IDL stubs.

Use the buildobjclient
command with the -P option
to compile the application
files and the IDL stubs.

Use the
buildobjserver
command to compile the
application files and the
IDL client stubs.

C++ Events
Subscriber

Not applicable. Use the buildobjclient
command with the -P option
to compile the application
files, the IDL stubs, the IDL
skeletons, and link with the
BEAWrapper library.

Use the
buildobjserver
command to compile the
application files, the IDL
stubs, and the IDL
skeletons.
3-18 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
Listing 3-14 shows the commands used for a C++ poster application (Reporter.cpp)
on a Microsoft Windows system. To form a C++ executable, the idl command is run
on the required IDL file and the buildobjclient command compiles the C++ client
application file and the IDL stubs.

Listing 3-14 C++ Reporter Application Build and Run Commands (Microsoft
Windows)

Run the idl command.
idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\Tobj_Events.idl \
C:\tuxdir\include\Tobj_SimpleEvents.idl

Run the buildobjclient command.
buildobjclient -v -o subscriber.exe -f " \
 -DWIN32 \
 Reporter.cpp \
 CosEventComm_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 Tobj_Events_c.cpp \
 Tobj_SimpleEvents_c.cpp \
 "

Run the application.
is_reporter

Java Events Poster Use the javac
command to compile the
application files and the
IDL stubs.

Use the javac command to
compile the application files
and the IDL files.

Not supported in BEA
Tuxedo 8.0 and later.

Java Events
Subscriber

Not applicable. Use the javac command to
compile the application files,
the IDL files, and the IDL
skeletons.

Not supported in BEA
Tuxedo 8.0 and later.

Table 3-4 Application Build Requirements (Continued)

Application Type Client Joint Client/Server Server
Using the CORBA Notification Service 3-19

3 Using the BEA Simple Events API
Listing 3-15 and Listing 3-16 show the commands used for a C++ subscriber
application (Subscriber.cpp) on Microsoft Windows and UNIX respectively. To
form a C++ executable, the buildobjclient command, with the -P option, compiles
the joint client/server application files (Subscriber.cpp and
NewsConsumer_i.cpp), the IDL stubs, and the IDL skeleton
(CosNotifyComm_s.cpp).

Listing 3-15 C++ Subscriber Application Build and Run Commands (Microsoft
Windows)

Run the idl command.
idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\Tobj_Events.idl \
C:\tuxdir\include\Tobj_SimpleEvents.idl

Run the buildobjclient command.
buildobjclient -v -P -o subscriber.exe -f " \
 -DWIN32 \
 Subscriber.cpp \
 NewsConsumer_i.cpp \
 CosEventComm_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 CosNotifyComm_s.cpp \
 Tobj_Events_c.cpp \
 Tobj_SimpleEvents_c.cpp \
c:\tuxdir\lib\libbeawrapper.lib \
"

Run the application.
is_subscriber

Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
3-20 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl

Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f " \
 Subscriber.cpp \
 NewsConsumer_i.cpp \
 CosEventComm_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 CosNotifyComm_s.cpp \
 Tobj_Events_c.cpp \
 Tobj_SimpleEvents_c.cpp \
 -lbeawrapper \
"

Run the application.
is_subscriber

Listing 3-17 shows an example of the commands used to link, build, and run remote
Java poster applications.

Listing 3-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava command.
idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
 C:\tuxdir\include\CosNotification.idl C:\tuxdir\include\CosNotifyComm.idl \
 C:\tuxdir\include\Tobj_Events.idl C:\tuxdir\include\Tobj_SimpleEvents.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java

Combine the java .class files into the java archive (JAR) file.
jar cf reporter.jar Reporter.class org\omg\CosEventComm \
 org\omg\CosNotification org\omg\CosNotifyComm \
 com\beasys\Tobj_Events com\beasys\Tobj_SimpleEvents

Run the reporter application.
java -DTOBJADDR=//BEANIE:2359 -classpath \
 reporter.jar;C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter
Using the CORBA Notification Service 3-21

3 Using the BEA Simple Events API
Listing 3-18 shows an example of the commands used to link, build, and run remote
Java subscriber applications.

Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava command.
idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
 C:\tuxdir\include\CosNotification.idl C:\tuxdir\include\CosNotifyComm.idl \
 C:\tuxdir\include\Tobj_Events.idl C:\tuxdir\include\Tobj_SimpleEvents.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\
 C:\tuxdir\udataobj\java\jdk\wleclient.jar Subscriber.java

Combine the java .class files into the java archive (JAR) file.
jar cf subscriber.jar Subscriber.class NewsConsumer_i.class \
 org\omg\CosEventComm org\omg\CosNotification org\omg\CosNotifyComm \
 com\beasys\Tobj_Events com\beasys\Tobj_SimpleEvents

Run the subscriber application.
java -DTOBJADDR=//BEANIE:2359 -classpath \
 subscriber.jar;C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\
 C:\tuxdir\udataobj\java\jdk\wleclient.jar Subscriber

Note: The java command line in Listing 3-18 is for an application that either sets
the port in the application code or prompts the user to set the port. You can also
set the port in the java command line. The following is an example of a java
command line that sets the port number:

java -DTOBJADDR=//BEANIE:2359 \
-Dorg.omg.corba.ORBPort=portnumber -classpath...
3-22 Using the CORBA Notification Service

CHAPTER
4 Using the
CosNotification Service
API

This chapter describes the development steps required to create Notification Service
applications using the CosNotification Service API and the C++ and Java
programming languages.

This topic includes the following sections:

Development Process

Step 1: Writing an Application to Post Events

Step 2: Writing an Application to Subscribe to Events

Step 3: Compiling and Running Notification Service Applications

Development Process

Table 4-1 outlines the development process for creating Notification Service
applications.
Using the CORBA Notification Service 4-1

4 Using the CosNotification Service API
These steps are explained in detail in subsequent topics.

Designing Events

The design of events is basic to any notification service. The design impacts not only
the volume of information that is delivered to matching subscriptions, but the
efficiency and performance of the Notification Service as well. Therefore, careful
planning should be done to ensure that your Notification Service will be able to handle
your needs now and allow for future growth. For a discussion of event design, see
“Designing Events” on page 2-7.

Step 1: Writing an Application to Post Events

The following types of CORBA applications can post events:

Note: BEA Tuxedo 8.0 supports Java clients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebLogic Enterprise product, however, that
support was removed when BEA WebLogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

Table 4-1 Development Process

Step Description

1 Designing events

2 Writing an application that posts events

3 Writing an application that subscribes to events

4 Compiling a Notification Service application
4-2 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events
C++ clients, joint client/servers and servers.

Java clients and joint client/servers.

Foreign ORB clients.

To post events, an application must, at a minimum, implement the following functions:

Get the event channel factory object reference and use it to get the event
channel.

Create and post events.

The following sections describe each of these functions.

Getting the Event Channel

Before the client application can post an event, it must get the event channel.

This development step is illustrated in Listing 4-1. Listing 4-1 is code from the
Reporter.cpp file in the Introductory sample application that uses the
CosNotification Service API.

To get the event channel factory object reference, the
resolve_initial_references method is invoked on the Bootstrap object using the
"NotificationService" environmental object. The object reference is used to get
the channel factory, which is, in turn, is used to get the event channel. Listing 4-1 and
Listing 4-2 show code examples in C++ and Java.

Listing 4-1 Getting the Event Channel (Reporter.cpp)

// Get the CosNotification channel factory object reference.
CORBA::Object_var channel_factory_oref =
 bootstrap.resolve_initial_references(
 "NotificationService");

CosNotifyChannelAdmin::EventChannelFactory_var
 channel_factory =
 CosNotifyChannelAdmin::EventChannelFactory::_narrow(
 channel_factory_oref.in());
Using the CORBA Notification Service 4-3

4 Using the CosNotification Service API
// use the channel factory to get the default channel
CosNotifyChannelAdmin::EventChannel_var channel =
 channel_factory->get_event_channel(
 Tobj_Notification::DEFAULT_CHANNEL);

Listing 4-2 Getting the Event Channel (Reporter.java)

import org.omg.CosNotification.*;//Some of the CosNotification API.
import org.omg.CosNotifyChannelAdmin.*;import // The rest of the
 // CosNotification API.
com.beasys.Tobj_Notification.*; // Proprietary constants needed
 // when using the CosNotification API.
import com.beasys.Tobj.*;
import com.beasys.*;
import org.omg.CORBA.*;

import java.io.*;
// get the CosNotification channel factory object reference
org.omg.CORBA.Object channel_factory_oref =
 bootstrap.resolve_initial_references("NotificationService");

EventChannelFactory channel_factory =
 EventChannelFactoryHelper.narrow(channel_factory_oref);

// use the channel factory to get the default channel
EventChannel channel =
 channel_factory.get_event_channel(DEFAULT_CHANNEL.value);

Creating and Posting Events

To post events, you must get the SupplierAdmin object, use it to create a proxy, create
the event, and then post the event to the proxy.

Listing 4-3 and Listing 4-4 show how this is implemented in C++ and Java
respectively.
4-4 Using the CORBA Notification Service

Step 1: Writing an Application to Post Events
Listing 4-3 Creating and Posting the Event (Reporter.cpp)

// Since we are a supplier (that is, we post events),
// get the SupplierAdmin object
CosNotifyChannelAdmin::SupplierAdmin_var supplier_admin =
 channel->default_supplier_admin();

// Use the supplier admin to create a proxy. Events are posted
// to the proxy (unlike the simple events interface where events
// are posted to the channel).
CosNotifyChannelAdmin::ProxyID proxy_id;
CosNotifyChannelAdmin::ProxyConsumer_var generic_proxy_consumer =
 supplier_admin->obtain_notification_push_consumer(
 CosNotifyChannelAdmin::STRUCTURED_EVENT, proxy_id);

CosNotifyChannelAdmin::StructuredProxyPushConsumer_var
 proxy_push_consumer =
 CosNotifyChannelAdmin::StructuredProxyPushConsumer::_narrow(
 generic_proxy_consumer);

// Connect to the proxy so that we can post events.
proxy_push_consumer->connect_structured_push_supplier(
 CosNotifyComm::StructuredPushSupplier::_nil());

...
// create an event
 CosNotification::StructuredEvent notification;

// set the domain to "News"
notification.header.fixed_header.event_type.domain_name =
 CORBA::string_dup("News");

// set the type to the news category
notification.header.fixed_header.event_type.type_name =
 CORBA::string_dup(“Sports”);

// add one field, which will contain the story, to the
// event's filterable data. set the field's name to
// "Story" and value to a string containing the story
notification.filterable_data.length(1);
notification.filterable_data[0].name =
 CORBA::string_dup("Story");
notification.filterable_data[0].value <<= “John Smith wins again”;

// post the event
// Subscribers who subscribed to events whose domain is
// "News" and whose type matches the news category will
// receive this event

proxy_push_consumer->push_structured_event(notification);
Using the CORBA Notification Service 4-5

4 Using the CosNotification Service API
...
// Disconnect.
proxy_push_consumer->disconnect_structured_push_consumer();

Listing 4-4 Creating and Posting the Event (Reporter.java)

// since we're a supplier (that is, we post events)
// get the supplier admin object
SupplierAdmin supplier_admin =
 channel.default_supplier_admin();

// use the supplier admin to create a proxy. Events are posted
// to the proxy (unlike the simple events interface where events
// are posted to the channel).
IntHolder proxy_id = new IntHolder();
 ProxyConsumer generic_proxy_consumer =
 supplier_admin.obtain_notification_push_consumer(
 ClientType.STRUCTURED_EVENT, proxy_id);

m_proxy_push_consumer =
 StructuredProxyPushConsumerHelper.narrow(
 generic_proxy_consumer);

// Connect to the proxy so that we can post events.
m_proxy_push_consumer.connect_structured_push_supplier(null);

...
// create an event
StructuredEvent notification = new StructuredEvent();
notification.header = new EventHeader();

// create the sub structures for the header
notification.header.fixed_header = new FixedEventHeader();
notification.header.fixed_header.event_type = new EventType();

// set the domain to "News"
notification.header.fixed_header.event_type.domain_name = "News";

// set the type to the news category
notification.header.fixed_header.event_type.type_name = “Sports”;

// set the event name to an empty string since this sample
// doesn't use it
notification.header.fixed_header.event_name = "";

// empty the variable header since this sample doesn't use it
notification.header.variable_header = new Property[0];
4-6 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
// add one field, which will contain the story, to the
// event's filterable data. set the field's name to
// "Story" and value to a string containing the story
notification.filterable_data = new Property[1];
notification.filterable_data[0] = new Property();
notification.filterable_data[0].name = "Story";
notification.filterable_data[0].value = orb.create_any();
notification.filterable_data[0].value.insert_string(“John Smith
wins again”);

// set the remainder of body to a new (empty) any since this
// sample doesn't use the remainder of body
notification.remainder_of_body = orb.create_any();

m_proxy_push_consumer.push_structured_event(notification);

...
// disconnect
proxy_push_consumer.disconnect_structured_push_consumer();

Step 2: Writing an Application to Subscribe
to Events

The following types of CORBA applications can subscribe to events:

Note: BEA Tuxedo 8.0 supports Java clients and joint client servers, but it does not
support Java servers. Support for Java servers was previously included in
versions 5.0 and 5.1 of the BEA WebLogic Enterprise product, however, that
support was removed when BEA WebLogic Enterprise was merged with the
BEA Tuxedo in release 8.0.

C++ joint client/servers and servers.

Java joint client/servers.

Foreign ORB clients that support callbacks.

To subscribe to events, an application must, at a minimum, support the following
functions:
Using the CORBA Notification Service 4-7

4 Using the CosNotification Service API
Implement a CosNotifyComm OMG IDL interface that supports the
push_structured_event operation.

Get the event channel factory object reference and use it to get the event
channel.

Define and create a subscription that includes the callback object reference.

Create a callback object that implements the
CosNotifyComm::StructuredPushConsumer interface.

Implementing the
CosNotifyComm::StructuredPushConsumer Interface

In order for the callback servant object to receive events, it must implement the
CosNotifyComm::StructuredPushConsumer interface that supports the
push_structured_event operation. When an event occurs that has a matching
subscription, the Notification Service invokes this operation on the servant callback
object in the subscriber application to deliver the event to the subscriber application.

The CosNotifyComm::StructuredPushConsumer interface also defines the operations
offer_change and disconnect_structured_push_consumer. The Notification
Service never invokes these operations, so you should implement stubbed out versions
that throw CORBA::NO_IMPLEMENT.

Listing 4-5 and Listing 4-6 show how this interface is implemented in C++.

Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.h)

#ifndef _news_consumer_i_h
#define _news_consumer_i_h

#include "CosNotifyComm_s.h"

// For the servant class to receive news events,
// it must implement the CosNotifyComm::StructuredPushConsumer
// idl interface

class NewsConsumer_i : public
POA_CosNotifyComm::StructuredPushConsumer
4-8 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
{
 public:

 // this method will be called when a news event occurs

 virtual void push_structured_event(
 const CosNotification::StructuredEvent& notification
);

 // OMG's CosNotifyComm::StructuredPushConsumer idl
 // interface defines the methods "offer_change" and
 // "disconnect_structured_push_consumer". Since the
 // Notification Service never invokes these methods, just
 // have them throw a CORBA::NO_IMPLEMENT exception

 virtual void offer_change(
 const CosNotification::EventTypeSeq& added,
 const CosNotification::EventTypeSeq& removed)
 {
 throw CORBA::NO_IMPLEMENT();
 }

 virtual void disconnect_structured_push_consumer()
 {
 throw CORBA::NO_IMPLEMENT();
 }
};
#endif
Using the CORBA Notification Service 4-9

4 Using the CosNotification Service API
Listing 4-6 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.cpp)

#include "NewsConsumer_i.h"
#include <iostream.h>

//---
// Subscriber.cpp creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i
// object. When a news event occurs (this happens when a user
// runs the Reporter application and reports a news story), this
// method will be invoked:

void NewsConsumer_i::push_structured_event(
 const CosNotification::StructuredEvent& notification)
 {
// extract the story from the first field in the event's
// filterable data
char* story;
notification.filterable_data[0].value >>= story;

// for coding simplicity, assume "story" is not "null"

// print out the event
cout
 << "---"
 << endl
 << "Category : "
 << notification.header.fixed_header.
 event_type.type_name.in()
 << endl
 << "Story : "
 << story
 << endl;
...
}

4-10 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Listing 4-7 shows how this interface is implemented in Java.

Listing 4-7 Sample CosNotifyComm::StructuredPushConsumer Interface
Implementation (NewsConsumer_i.java)

import org.omg.CosNotification.*;
import org.omg.CosNotifyComm.*;
import org.omg.CORBA.*;
//---

// The servant class to receive news events.
// It must implement the CosNotifyComm::StructuredPushConsumer idl
// interface.

public class NewsConsumer_i extends
 _StructuredPushConsumerImplBase
{
// Subscriber.java creates a simple events subscription to "News"
// events and has the events delivered to a NewsConsumer_i object.
// When a news event occurs (this happens when a user runs the
// Reporter application and reports a news story), this method will
// be invoked:

public void push_structured_event(StructuredEvent notification)
{
 // For coding simplicity, assume that:
 // notification.header.fixed_header.event_type.domain_name is
 // "News"
 // notification.header.fixed_header.event_type.type_name is
 // the news category
 // notification.filterable_data.length is 1
 // notification.filterable_data[0].name is "Story"
 // notification.filterable_data[0].value contains the story
 // (as a string).

 // Extract the story from the first field in
 // the event's filterable data for coding simplicity, do not
 // handle errors indicating that the field
 // does not contain a string.
 String story =
 notification.filterable_data[0].value.extract_string();

 // Print out the event.
 System.out.println("-------------------------------------");
 System.out.println("Category : " +
 notification.header.fixed_header.event_type.type_name
);
Using the CORBA Notification Service 4-11

4 Using the CosNotification Service API
 System.out.println("Story : " + story
);

 // At this point, the main has called the "wait_for_shutdown"
 // method on the shutdown object. That method blocks until
 // the "shutdown" method on the shutdown manager is called.
 // Call "shutdown" on the shutdown manager. This will cause
 // "wait_for_shutdown" to return. Afterwards, the main will
 // shutdown the application.
 m_shutdown_manager.shutdown();
 }

// OMG's CosNotifyComm::StructuredPushConsumer idl
// interface defines the methods "offer_change" and
// "disconnect_structured_push_consumer". Since the
// notification service never invokes these methods, just
// have them throw a CORBA::NO_IMPLEMENT exception

 public void disconnect_structured_push_consumer()
 {
 throw new NO_IMPLEMENT();
 }

 public void offer_change(EventType[] added, EventType[] removed)
 {
 throw new NO_IMPLEMENT();
 }
}

Getting the Event Channel, ConsumerAdmin Object, and
Filter Factory Object

Before an application can create a subscription, it must get the event channel and the
ConsumerAdmin and Filter Factory objects. Listing 4-8 and Listing 4-9 show how this
is implemented in C++ and Java respectively.

To get the event channel factory object reference, the
resolve_initial_references method is invoked on the Bootstrap object using the
"NotificationService" environmental object. The object reference is used to get
the channel factory, which is, in turn, used to get the event channel. Finally, the event
channel is used to get the ConsumerAdmin object and the FilterFactory object.
4-12 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Listing 4-8 Getting the Event Channel and ConsumerAdmin and Filter Factory
Objects (Subscriber.cpp)

// Get the CosNotification channel factory object reference.
CORBA::Object_var
 channel_factory_oref =
 bootstrap.resolve_initial_references(
 "NotificationService");

CosNotifyChannelAdmin::EventChannelFactory_var
 channel_factory =
 CosNotifyChannelAdmin::EventChannelFactory::_narrow(
 channel_factory_oref.in());

// Use the channel factory to get the default channel.
CosNotifyChannelAdmin::EventChannel_var channel =
 channel_factory->get_event_channel(
 Tobj_Notification::DEFAULT_CHANNEL);

// Use the channel to get the consumer admin and the filter factory.
CosNotifyChannelAdmin::ConsumerAdmin_var consumer_admin =
 channel->default_consumer_admin();

CosNotifyFilter::FilterFactory_var filter_factory =
 channel->default_filter_factory();
Using the CORBA Notification Service 4-13

4 Using the CosNotification Service API
Listing 4-9 Getting the Event Channel (Subscriber.java)

// get the CosNotification channel factory object reference
org.omg.CORBA.Object channel_factory_oref =
 bootstrap.resolve_initial_references("NotificationService");

EventChannelFactory channel_factory =
 EventChannelFactoryHelper.narrow(channel_factory_oref);

// use the channel factory to get the default channel
EventChannel channel =
 channel_factory.get_event_channel(DEFAULT_CHANNEL.value);

// use the channel to get the consumer admin and the filter factory
ConsumerAdmin consumer_admin =
 channel.default_consumer_admin();

FilterFactory filter_factory =
 channel.default_filter_factory();

Creating a Callback Object

To receive events, the application must also be a server; that is, the application must
implement a callback object that can be invoked (called back) when an event occurs
that matches the subscriber’s subscription.

Creating a callback object includes the following steps:

Note: The following steps apply to a joint client/server. BEA Tuxedo CORBA
servers can also subscribe to events.

1. Creating a callback wrapper object. This can be implemented using either the
BEAWrapper Callbacks object or the CORBA Portable Object Adaptor (POA).

2. Creating the servant.

3. Creating an object reference to the callback servant.

For a complete description of the BEAWrapper Callbacks object and its methods, see
the Joint Client/Servers chapter in the CORBA Programming Reference.
4-14 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Note: Using the BEAWrapper Callback object to create a callback object is
discussed below. For a discussion of how to implement a callback object using
the POA, see Using CORBA Server-to-Server Communication.

Listing 4-10 and Listing 4-11 show how to use the BEAWrapper Callbacks object to
create a callback object in C++ and Java respectively. In the code examples, the
NewsConsumber_i servant is created and the start_transient method is used to
create a transient object reference.

Listing 4-10 Sample Code for Creating a Callback Object with Transient Object
Reference (Introductory Application Subscriber.cpp)

// Create a callback wrapper object since this client needs to
// support callbacks
BEAWrapper::Callbacks wrapper(orb.in());

NewsConsumer_i* news_consumer_impl = new NewsConsumer_i;

// Create a transient object reference to this servant.
CORBA::Object_var news_consumer_oref =
 wrapper.start_transient(
 news_consumer_impl,
 CosNotifyComm::_tc_StructuredPushConsumer->id()
);

CosNotifyComm::StructuredPushConsumer_var
 news_consumer =
 CosNotifyComm::StructuredPushConsumer::_narrow(
 news_consumer_oref.in());
Using the CORBA Notification Service 4-15

4 Using the CosNotification Service API
Listing 4-11 Sample Code for Creating a Callback Object With Transient Object
Reference (Introductory Application Subscriber.java)

// Create a callback wrapper object since this client needs to
// support callbacks.

Callbacks callbacks = new Callbacks(orb);

// Instantiate the servant that receives the events.
NewsConsumer_i news_consumer_impl =
 new NewsConsumer_i(shutdown_manager);

// Create a transient object reference to the callback servant.
callbacks.start_transient(
 news_consumer_impl,
 news_consumer_impl._ids()[0]
);

Creating a Subscription

In order for the subscriber to receive events, it must subscribe to the Notification
Service. You can create a transient subscription or a persistent subscription.

To create a subscription, the following steps must be performed:

1. Create a notification proxy push supplier and use it to create a
StructuredProxySupplier object.

2. Set the subscription’s Quality of Service (QoS). You can set the QoS to transient
or persistent.

3. Create a filter object and assign the domain_name, type_name, and
data_filter (optional) to it.

4. Add the filter to the proxy.

5. Connect to the proxy passing in the subscription’s callback object reference.

Listing 4-12 and Listing 4-13, which is code from the Introductory sample application,
show how to create a transient subscription in C++ and Java respectively.
4-16 Using the CORBA Notification Service

Step 2: Writing an Application to Subscribe to Events
Listing 4-12 Creating a Transient Subscription

// Create a new subscription (at this point, it is not complete).
CosNotifyChannelAdmin::ProxyID subscription_id;
CosNotifyChannelAdmin::ProxySupplier_var generic_subscription =
 consumer_admin->obtain_notification_push_supplier(
 CosNotifyChannelAdmin::STRUCTURED_EVENT,
 subscription_id);

CosNotifyChannelAdmin::StructuredProxyPushSupplier_var
 subscription =
 CosNotifyChannelAdmin::StructuredProxyPushSupplier::_narrow(
 generic_subscription);
 s_subscription = subscription.in();

 // Set the quality of service. This sets the subscription name
 // and subscription type (=TRANSIENT).
 CosNotification::QoSProperties qos;
 qos.length(2);
 qos[0].name =
 CORBA::string_dup(Tobj_Notification::SUBSCRIPTION_NAME);
 qos[0].value <<= subscription_name;
 qos[1].name =
 CORBA::string_dup(Tobj_Notification::SUBSCRIPTION_TYPE);
 qos[1].value <<=
 Tobj_Notification::TRANSIENT_SUBSCRIPTION;

 subscription->set_qos(qos);

 // Create a filter (used to specify domain, type and data filter).
 CosNotifyFilter::Filter_var filter =
 filter_factory->create_filter(
 Tobj_Notification::CONSTRAINT_GRAMMAR);
 s_filter = filter.in();

 // Set the filtering parameters.
 // (domain = "News", type = “Sports”, and no data filter)
 CosNotifyFilter::ConstraintExpSeq constraints;
 constraints.length(1);
 constraints[0].event_types.length(1);
 constraints[0].event_types[0].domain_name =
 CORBA::string_dup("News");
 constraints[0].event_types[0].type_name =
 CORBA::string_dup(“Sports”);
 constraints[0].constraint_expr =
 CORBA::string_dup(""); // No data filter.
Using the CORBA Notification Service 4-17

4 Using the CosNotification Service API
 CosNotifyFilter::ConstraintInfoSeq_var
 add_constraints_results = // ignore this returned value
 filter->add_constraints(constraints);

 // Add the filter to the subscription.
 CosNotifyFilter::FilterID filter_id =
 subscription->add_filter(filter.in());

 // Now that we have set the subscription name, type and filtering
 // parameters, complete the subscription by passing in the
 // reference of the callback object to deliver the events to.
 subscription->connect_structured_push_consumer(
 news_consumer.in());

Listing 4-13 Creating a Transient Subscription (Introductory Subscriber.java)

// Create a new subscription (at this point, it is not complete).
IntHolder subscription_id = new IntHolder();
ProxySupplier generic_subscription =
 consumer_admin.obtain_notification_push_supplier(
 ClientType.STRUCTURED_EVENT,
 subscription_id);

StructuredProxyPushSupplier subscription =
 StructuredProxyPushSupplierHelper.narrow(
 generic_subscription);

 // Set the quality of service. This sets the subscription name
 // and subscription type (=TRANSIENT)
 Property qos[] = new Property[2];
 qos[0] = new Property();
 qos[0].name = SUBSCRIPTION_NAME.value;
 qos[0].value = orb.create_any();
 qos[0].value.insert_string(subscription_name);
 qos[1] = new Property();
 qos[1].name = SUBSCRIPTION_TYPE.value;
 qos[1].value = orb.create_any();
 qos[1].value.insert_short(TRANSIENT_SUBSCRIPTION.value);

 subscription.set_qos(qos);

 // Create a filter (used to specify domain, type and data filter).
 Filter filter =
 filter_factory.create_filter(CONSTRAINT_GRAMMAR.value);

 // set the filtering parameters
 // (domain = "News", type = “Sports”, and no data filter)
4-18 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
 ConstraintExp constraints[] = new ConstraintExp[1];
 constraints[0] = new ConstraintExp();
 constraints[0].event_types = new EventType[1];
 constraints[0].event_types[0] = new EventType();
 constraints[0].event_types[0].domain_name = "News";
 constraints[0].event_types[0].type_name = “Sports”;
 constraints[0].constraint_expr = "";

 ConstraintInfo add_constraints_results[] =
 filter.add_constraints(constraints);

 // add the filter to the subscription
 int filter_id = subscription.add_filter(filter);

 // Now that we have set the subscription name, type and
 // filtering parameters, complete the subscription by passing
 // in the reference of the callback object to deliver the
 // events to.
 subscription.connect_structured_push_consumer(
 news_consumer_impl);

Step 3: Compiling and Running Notification
Service Applications

The final step in the development of a Notification Service application is to compile,
build, and run the application. To do this, you need to perform the following steps.

1. Generate the required client stub and skeleton files to define interfaces between the
Notification Service and event poster and subscriber applications. Event poster
applications can be clients, joint client/servers, or servers. Event subscriber
applications can be joint client/servers or servers.

2. Compile the application code and link against the skeleton and client stub files.

3. Build the application.

4. Run the application.
Using the CORBA Notification Service 4-19

4 Using the CosNotification Service API
Generating the Client Stub and Skeleton Files

To generate the client stub and skeleton files, you must execute the idl command for
each of the Notification IDL files that your application uses. Table 4-2 shows the idl
commands used for each type of subscriber.

The following is an example of an idl command:

>idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl

Table 4-3 lists the IDL files required by each type of Notification Service application.

Table 4-2 idl Command Requirements

Language BEA Tuxedo CORBA
Joint Client/Server

BEA Tuxedo CORBA
Server

C++ idl -P idl

Java idltojava Not supported in BEA
Tuxedo 8.0 and later.

Table 4-3 IDL Files Required by Notification Service Applications

Application Type Required OMG IDL Files

Event poster (can be a client, a joint client/server, or
a server)

CosEventChannelAdmin.idl
CosEventComm.idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl

Subscriber (can be joint client/server or a server) CosEventChannelAdmin.idl
CosEventComm.idl
CosNotification.idl
CosNotifyChannelAdmin
CosNotifyComm.idl
CosNotifyFilter
Tobj_Events.idl
Tobj_Notification.idl
4-20 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
Compiling and Linking the Application Code

The compiling and linking procedure differs depending on the type of Notification
Service application you are building. Table 4-4 provides an overview of the commands
and files used to compile each type of application.

Listing 4-14 shows the commands used for a C++ Reporter application
(Reporter.cpp) on a Microsoft Windows system. To form a C++ executable, the idl
command is run on the required IDL file and the buildobjclient command
compiles the C++ client application file and the IDL stubs.

Table 4-4 Application Build Requirements

Application Type Client Joint Client/Server Server

C++ Events Poster Use the
buildobjclient
command to compile the
application files and the
IDL stubs.

Use the buildobjclient
command with the -P option
to compile the application
files and the IDL stubs.

Use the
buildobjserver
command to compile the
application files and the
IDL client stubs.

C++ Events
Subscriber

Not applicable. Use the buildobjclient
command with the -P option
to compile the application
files, the IDL stubs, and the
IDL skeletons.

Use the
buildobjserver
command to compile the
application files, the IDL
stubs, and the IDL
skeletons.

Java Events Poster Use the javac
command to compile the
application files and the
IDL stubs.

Use the javac command to
compile the application files
and the IDL files.

Not supported in BEA
Tuxedo 8.0 and later.

Java Events
Subscriber

Not applicable. Use the javac command to
compile the application files,
the IDL files, and the IDL
skeletons.

Not supported in BEA
Tuxedo 8.0 and later.
Using the CORBA Notification Service 4-21

4 Using the CosNotification Service API
Listing 4-14 C++ Reporter Application Build and Run Commands

Run the idl command.
idl -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosEventChannelAdmin \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\CosNotifyFilter.idl \
C:\tuxdir\include\Tobj_Notification.idl

Run the buildobjclient command.
buildobjclient -v -o is_reporter.exe -f ”\
 -DWIN32 \
 Reporter.cpp \
 CosEventComm_c.cpp \
 CosEventChannelAdmin_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 CosNotifyFilter_c.cpp \
 CosNotifyChannelAdmin_c.cpp \
 Tobj_Events_c.cpp \
 Tobj_Notification_c.cpp ”

Run the application.
is_reporter

Listing 4-15 and Listing 4-16 show the commands used for a C++ Subscriber
application (Subscriber.cpp) on Microsoft Windows and UNIX, respectively. To
form a C++ executable, the buildobjclient command, with the -P option, compiles
the joint client/server application files (Subscriber.cpp and
NewsConsumer_i.cpp), the IDL stubs, the IDL skeleton (for
CosNotifyComm_s.cpp).

Listing 4-15 C++ Subscriber Application Build and Run Commands (Microsoft
Windows)

Run the idl command.
idl -P -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
C:\tuxdir\include\CosEventChannelAdmin \
C:\tuxdir\include\CosNotification.idl \
C:\tuxdir\include\CosNotifyComm.idl \
C:\tuxdir\include\CosNotifyFilter.idl \
4-22 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
C:\tuxdir\include\CosNotifyChannelAdmin \
\C:\tuxdir\include\Tobj_Events.idl \
\C:\tuxdir\include\Tobj_Notification

Run the buildobjclient command.
buildobjclient -v -P -o is_subscriber.exe -f " \
 -DWIN32 \
 Subscriber.cpp \
 NewsConsumer_i.cpp \
 CosEventComm_c.cpp \
 CosEventChannelAdmin_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 CosNotifyComm_s.cpp \
 CosNotifyFilter_c.cpp \
 CosNotifyChannelAdmin_c.cpp \
 Tobj_Events_c.cpp \
 Tobj_Notification_c.cpp \
 C:\tuxdir\lib\libbeawrapper.lib \
 "

Run the application.
is_subscriber

Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)

Run the idl command.
idl -P -I/usr/local/tuxdir/include
/usr/local/tuxdir/include/CosEventChannelAdmin \
/usr/local/tuxdir/include/CosEventComm.idl \
/usr/local/tuxdir/include/CosNotification.idl \
/usr/local/tuxdir/include/CosNotifyComm.idl \
/usr/local/tuxdir/include/CosNotifyFilter.idl \
/usr/local/tuxdir/include/CosNotifyChannelAdmin \
/usr/local/tuxdir/include/Tobj_Events.idl \
/usr/local/tuxdir/include/Tobj_SimpleEvents.idl

Run the buildobjclient command.
buildobjclient -v -P -o subscriber -f " \
 Subscriber.cpp \
 NewsConsumer_i.cpp \
 CosEventComm_c.cpp \
 CosEventChannelAdmin_c.cpp \
 CosNotification_c.cpp \
 CosNotifyComm_c.cpp \
 CosNotifyComm_s.cpp \
Using the CORBA Notification Service 4-23

4 Using the CosNotification Service API
 CosNotifyFilter_c.cpp \
 CosNotifyChannelAdmin_c.cpp \
 Tobj_Events_c.cpp \
 Tobj_SimpleEvents_c.cpp \
 -lbeawrapper \
"
Run the application.
is_subscriber

Listing 4-17 and Listing 4-18 show an example of the commands used to link, build,
and run remote Java Reporter and Subscriber applications.

Listing 4-17 Java Reporter Application Link, Build, and Run Commands

Run the idltojava command.
idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
 C:\tuxdir\include\CosEventChannelAdmin.idl \
 C:\tuxdir\include\CosNotification.idl C:\tuxdir\include\CosNotifyComm.idl \
 C:\tuxdir\include\CosNotifyFilter.idl \
 C:\tuxdir\include\CosNotifyChannelAdmin.idl \
 C:\tuxdir\include\Tobj_Events.idl \
 C:\tuxdir\include\Tobj_Notification.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java

Combine the java .class files into the java archive (JAR) file.
jar cf reporter.jar Reporter.class org\omg\CosEventComm \
 org\omg\CosEventChannelAdmin org\omg\CosNotification org\omg\CosNotifyComm \
 org\omg\CosNotifyFilter org\omg\CosNotifyChannelAdmin com\beasys\Tobj_Events \
 com\beasys\Tobj_Notification

Run the reporter application.
java -DTOBJADDR=//BEANIE:2359 -classpath \
 reporter.jar;C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter
4-24 Using the CORBA Notification Service

Step 3: Compiling and Running Notification Service Applications
Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

Run the idltojava command.
idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \
 C:\tuxdir\include\CosEventChannelAdmin.idl \
 C:\tuxdir\include\CosNotification.idl C:\tuxdir\include\CosNotifyComm.idl \
 C:\tuxdir\include\CosNotifyFilter.idl \
 C:\tuxdir\include\CosNotifyChannelAdmin.idl \
 C:\tuxdir\include\Tobj_Events.idl C:\tuxdir\include\Tobj_Notification.idl

Compile the java files.
javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\
 C:\tuxdir\udataobj\java\jdk\wleclient.jar Subscriber.java

Combine the java .class files into the java archive (JAR) file.
jar cf subscriber.jar Subscriber.class NewsConsumer_i.class \
 org\omg\CosEventComm org\omg\CosEventChannelAdmin org\omg\CosNotification \
 org\omg\CosNotifyComm org\omg\CosNotifyFilter org\omg\CosNotifyChannelAdmin \
 com\beasys\Tobj_Events com\beasys\Tobj_Notification

Run the subscriber application.
java -DTOBJADDR=//BEANIE:2359 -classpath \
 subscriber.jar;C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\
 C:\tuxdir\udataobj\java\jdk\wleclient.jar Subscriber

Note: The java command line in Listing 4-18 is for an application that either sets
the port in the application code or prompts the user to set the port. You can also
set the port in the java command line. The following is an example of a java
command line that sets the port number:

java -DTOBJADDR=//BEANIE:2359 \ -Dorg.omg.corba.ORBPort=portnumber
-classpath...
Using the CORBA Notification Service 4-25

4 Using the CosNotification Service API
4-26 Using the CORBA Notification Service

CHAPTER
5 Building the
Introductory Sample
Application

This topic includes the following sections:

Overview

Building and Running the Introductory Sample Application

Overview

The Introductory sample applications simulate a newsroom environment in which a
news reporter posts a story and a news subscriber consumes the story.

Two implementations of the Introductory sample application are provided: one in the
C++ programming language that uses the BEA Simple Events application
programming interface (API), and another in Java that uses the CosNotification
Service API.

The Introductory sample application consists of the Reporter and Subscriber
applications and the Notification Service. The Reporter application implements a
client application that prompts the user to enter news articles, and then posts the news
articles as events to the BEA Tuxedo CORBA Notification Service. The Subscriber
application implements a joint client/server application that acts as client when it
Using the CORBA Notification Service 5-1

5 Building the Introductory Sample Application
subscribes and unsubscribes for events, and acts as a server when it receives events. To
receive events, the subscriber implements a callback object which is invoked by the
Notification Service when an event needs to be delivered.

The Introductory sample application shows the simplest usage of the Notification
Service. It demonstrates how to use the BEA Simple Events API, the CosNotification
API, transient subscriptions, and transient object references. It does not demonstrate
the use of persistent subscriptions or data filtering. For a sample application that uses
persistent subscriptions and data filtering, see Chapter 6, “Building the Advanced
Sample Application.”

This Introductory sample application provides two executables (see Figure 5-1):

A Reporter application that posts events to the Notification Service. It is a client
without callback capability.

A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber is a joint client/server that acts as a client when it
subscribes to events and acts as a server when it receives events.

Figure 5-1 Introductory Sample Application Components

The event poster, the Reporter application, uses the structured event domain_name,
type_name, and filterable_data fields to construct the event. The domain name
defines the industry. In this application, domain_name is set to “News”. The
type_name defines the kind of event in the industry and it is set to the category of news
story (for example, “Sports”). The application user specifies this value. In the
filterable_data fields, a field named “Story” is added, which contains the text of
the news story being posted. This text is also specified by the application user.

Cloud

Reporter
(Client)

Subscriber
(Joint Client/

Server)

Notification
Service

Push Event

Subscribe

Push Event

BEA Tuxedo Domain

Unsubscribe
5-2 Using the CORBA Notification Service

Overview
The Subscriber application uses the structured event domain_name and type_name
fields to create a subscription to the Notification Service. The subscription defines the
domain_name as a fixed string with the content of “News”. At run time, the Subscriber
application queries the user for the “News Category” and uses the input to define the
type_name field in the subscription. Obviously, the users of both applications, the
reporter and the subscriber, must collaborate on the “News Category” string for the
subscription to match an event, otherwise, no events will be delivered to the subscriber.
The subscription does not do any checking of the filterable_data field, but rather
assumes that the body of the story will be a string, and that the story will be in the first
Named/Value pair in the filterable_data field of a structured event.

To post events, the Reporter application uses the push_structured_event method
to push news events to the Notification Service. For each event, the Reporter
application queries the user for a “News category” (for example, “Sports”) and a story
(a multiple-line text string).

To subscribe to news events, the Subscriber application invokes the Notification
Service to subscribe to news events. For each subscription, the Subscriber application
queries the user for a “News category” (for example, “Sports”). The Subscriber
application also implements a callback object (via the NewsConsumer_i servant class)
which is used to receive and process news events. When the Subscriber subscribes, it
gives the Notification Service a reference to this callback object. When a matching
event occurs; that is, when the Reporter posts an event with a “News category” that
matches the news category of the subscription, the Notification Service invokes the
push_structured_event method on the callback object to deliver the event to the
callback object in the subscriber. This method prints out the event, invokes the
unsubscribe method on the Notification Service to cancel the subscription, and shuts
down the Subscriber. For simplicity, the push_structured_event method assumes
that the domain_name, type_name, length, and name field match and the story is in
the value field.

Note: The “News category” is just a string that the Reporter user and the Subscriber
user agree on. There are no fixed categories in this sample. Therefore, both the
Reporter user and the Subscriber user must type the same string when
prompted for a category (including case and white space).

To run this sample, you must start at least one Reporter application and at least one
Subscriber application; however, you may run multiple Reporters and Subscribers.
Events posted by any Reporter will be delivered to all matching Subscribers (based on
“News category”).
Using the CORBA Notification Service 5-3

5 Building the Introductory Sample Application
Also, be sure to start any subscribers before posting events; otherwise, the events will
be lost.

Building and Running the Introductory
Sample Application

To build and run the Introductory sample application, you must perform these steps:

1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the
correct directory path.

Note: The “JAVA_HOME” environment variable is required for Java applications
only.

2. Copy the files for the Introductory sample application into a work directory.

3. Change the protection attributes on the files to grant write and execute access.

4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure
the nmake file is in your path

5. Set the application environment variables.

6. Build the sample.

7. Boot the system.

8. Run the Subscriber and Reporter applications.

9. Shut down the system.

10. Restore the directory to its original state.

These steps are described in detail in the following sections.
5-4 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
Verifying the Settings of the Environment Variables

Before you build and run the Introductory sample application, you need to ensure that
the TUXDIR environment variable is set on your system. In most cases, this
environment variable is set as part of the installation procedure. However, you need to
check the environment variables to ensure they reflect correct information.

Table 5-1 lists the environment variables required to run the Introductory sample
application.

To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

Table 5-1 Required Environment Variables for the Introductory Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the BEA Tuxedo software. For example:
Windows
TUXDIR=c:\tuxdir

UNIX
TUXDIR=/usr/local/tuxdir

JAVA_HOME (For Java
applications only)

The directory path where you installed the JDK software. For example:
Windows
JAVA_HOME=c:\JDK1.2.2

UNIX
JAVA_HOME=/usr/local/JDK1.2.1
Using the CORBA Notification Service 5-5

5 Building the Introductory Sample Application
4. Click the Environment tab.

The Environment page appears.

5. Check the setting for TUXDIR and JAVA_HOME.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

To change the settings, perform the following steps:

Windows

1. On the Environment page in the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Or

csh> setenv TUXDIR=directorypath

csh> setenv JAVA_HOME=directorypath

Copying the Files for the Introductory Sample
Application into a Work Directory

You need to copy the files for the Introductory sample application and files in the
common directory into a work directory on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

The files are located in the following directories:
5-6 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
Windows

For the C++ Introductory sample:
drive:\tuxdir\samples\corba\notification\introductory_simple_cxx
drive:\tuxdir\samples\corba\notification\common

For the Java Introductory sample:
drive:\tuxdir\samples\corba\notification\introductory_cos_java
drive:\tuxdir\samples\corba\notification\common

UNIX

For the C++ Introductory sample:
/usr/local/tuxdir/samples/corba/notification/
introductory_simple_cxx
/usr/local/tuxdir/samples/corba/notification/common

For the Java Introductory sample:
/usr/local/tuxdir/samples/corba/notification/
introductory_simple_cxx
/usr/local/tuxdir/samples/corba/notification/common

You use the files listed in Table 5-2 and Table 5-4 to build and run the C++
Introductory sample application, which is implemented using the BEA Simple Events
API. You use the files listed in Table 5-3 and Table 5-4 to build and run the Java
Introductory sample application, which is implemented using the CosNotification API.

Table 5-2 Files Located in the introductory_sample_c++ Directory

File Description

Readme.txt Describes the Introductory sample application and
provides instructions for setting up the environment and
building and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

makefile.nt Makefile for Microsoft Windows systems.

makefile.mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makefile.nt and the
makefile.mk files.

Reporter.cpp Code for the reporter.
Using the CORBA Notification Service 5-7

5 Building the Introductory Sample Application
Table 5-4 lists other files that the Introductory sample application uses.

Subscriber.cpp Code for the subscriber.

NewsConsumer_i.h and
NewsConsumer.cpp

The callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

Table 5-3 Files Located in the introductory_cos_java Directory

File Description

Readme.txt Describes the Introductory sample application and
provides instructions for setting up the environment and
building and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

makefile.nt Makefile for Microsoft Windows systems.

makefile.mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makefile.nt and the
makefile.mk files.

Reporter.java Code for the reporter.

Suscriber.java Code for the subscriber.

NewsConsumer_i.java The callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

Table 5-4 Other Files the Introductory Sample Application Uses

File Description

The following files are located in the common directory.

common.nt Makefile symbols for Microsoft Windows systems.

Table 5-2 Files Located in the introductory_sample_c++ Directory (Continued)

File Description
5-8 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
common.mk Makefile symbols for UNIX systems.

introductory.inc Makefile for administrative targets.

ex.h Utilities to print exceptions. (For C++ only.)

client_ex.h Client utilities to handle exceptions. (For C++ only.)

ShutdownManager.java Class to help the main and the servant in the
Notification Service Java samples coordinate
shutting down the server.

Note: This file is needed for the Java application
only.

The following files are located in the \tuxdir\include directory.

CosEventComm.idl The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl The OMG IDL code that declares the
CosNotifyComm module.

Tobj_Events.idl The OMG IDL code that declares the Tobj_Events
module.

Tobj_SimpleEvents.idl The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: This file is needed only for the application
that was developed using BEA Simple
Events API.

The following files are needed only for the application that was developed using
CosNotification Service API.

CosEventChannelAdmin.idl The OMG IDL code that declares the
CosEventChannelAdmin module.

Table 5-4 Other Files the Introductory Sample Application Uses (Continued)

File Description
Using the CORBA Notification Service 5-9

5 Building the Introductory Sample Application
Changing the Protection Attribute on the Files for the
Introductory Sample Application

During the installation of the BEA Tuxedo CORBA software, the sample application
files are marked read-only. Before you can edit or build the files in the Introductory
sample application, you need to change the protection attribute of the files you copied
into your work directory, as follows:

Windows

1. In a DOS window, change (cd) to your work directory.

2. prompt>attrib -r drive:\workdirectory*.*

UNIX

1. Change (cd) to your work directory.

2. prompt>/bin/ksh

3. ksh prompt>chmod u+w /workdirectory/*.*

On UNIX systems, you also need to change the permission of setenv.ksh to give
execute permission to the file, as follows:

ksh prompt>chmod +x setenv.ksh

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL code that declares the
CosNotifyChannelAdmin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Table 5-4 Other Files the Introductory Sample Application Uses (Continued)

File Description
5-10 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
Setting Up the Environment

To set up the environment, enter the following command:

Windows

prompt>.\setenv.cmd

UNIX

ksh prompt>. ./setenv.ksh

Building the Introductory Sample Application

You use the make command to run makefiles, which are provided for Microsoft
Windows and UNIX, to build the sample application. For UNIX, use make. For
Microsoft Windows, use nmake.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (setenv.cmd) has been run. If the
environment variables have not been set, the makefile prints an error message to
the screen and exits.

2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX)
command file. This file defines the makefile symbols used by the samples. These
symbols allow the UNIX and Microsoft Windows makefiles to delegate the build
rules to platform-independent makefiles.

3. Includes the makefile.inc command file. This file builds the is_reporter
and is_subscriber executables, and cleans up the directory of unneeded files
and directories.

4. Includes the introductory.inc command file. This file creates the UBBCONFIG
file and executes the tmloadcf -y ubb command to create the TUXCONFIG file.
This is a platform-independent makefile fragment that defines the administrative
build rules common to the Introductory sample application.
Using the CORBA Notification Service 5-11

5 Building the Introductory Sample Application
Executing the Makefile

Before executing the makefile, you need to check the following:

Ensure that you have the appropriate administrative privileges to build and run
applications.

On Microsoft Windows, verify that nmake is in the path of your machine.

On UNIX, verify that make is in the path of your machine.

To build the Introductory sample application, enter the make command as follows:

Windows

nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Introductory Sample Application

To start the Introductory sample application, enter the following commands:

1. To boot the BEA Tuxedo system:

prompt>tmboot -y

This command starts the following server processes:

TMSUSREVT

A BEA Tuxedo system-provided, EventBroker server that is used by the
Notification Service.

TMNTS

A BEA Tuxedo Notification Service server that processes requests for
subscriptions and event postings.
TMNTSFWD_T

A BEA Tuxedo Notification Service server that forwards events to
subscribers that have transient subscriptions.

ISL
5-12 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
The IIOP Listener/Handler process.

2. To start the Subscriber application:

For C++: prompt>is_subscriber
For Java on Microsoft Windows: prompt>java %IC_SUBSCRIBER%
For Java on UNIX: prompt>java $IC_SUBSCRIBER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running setenv.cmd or
setenv.ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: prompt>is_reporter
For Java on Microsoft Windows: prompt>java %IC_REPORTER%
For Java on UNIX: prompt>java $IC_REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running setenv.cmd or
setenv.ksh), and enter the start command that is appropriate for your platform.

Using the Introductory Sample Application

To use the Introductory sample application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post an event. Be sure to
subscribe before you post each event; otherwise, events will be lost.

Note: The Subscriber application shuts down after it receives one event.

Using the Subscriber Application to Subscribe to Events

Perform these steps:

1. When you start the Subscriber application (prompt>is_subscriber), the
following prompts are displayed:

Name? (Enter a name (without spaces).)
Category (or all)? (Enter the category of news you want or "all".)
Using the CORBA Notification Service 5-13

5 Building the Introductory Sample Application
You may type in any string for the news category; that is, there is no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure to specify the same string for the news category.

2. The Subscriber application creates a subscription then prints “Ready” when it is
ready to receive events. After the Subscriber receives one event, it shuts down.

Note: You should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will be lost.

Using the Reporter Application to Post Events

Perform these steps:

1. When you start the Reporter application (prompt> is_reporter), the following
prompts are displayed:
(r) Report news
(e) Exit

Option?

2. Enter r to report news. The following prompt is displayed:

Category?

3. Enter the news category. It must match exactly the category you typed on the
Subscriber application (including white space and case).

After you enter the news category, the following prompt is displayed:
Enter story (terminate with '.')

4. Enter your story. It can span multiple lines. Finish the story by typing a period
only (".") on a line, followed by a carriage return.

Subscribers whose category matches the category of this story will receive, and
print out the story. When a subscriber receives a story, the subscriber
automatically shuts down.

5. To send and receive more news stories, start another subscriber, then report
another story. When you are done reporting news, choose the Exit (e) option.

Note: The Subscriber application shuts down after it receives one event.
Therefore, always use the Subscriber application to subscribe to events
5-14 Using the CORBA Notification Service

Building and Running the Introductory Sample Application
before you use the Reporter application to post an event; otherwise, events
will be lost.

Shutting Down the System and Cleaning Up the
Directory

Perform the following steps:

Note: Make sure the Reporter and Subscriber processes have stopped.

1. To shut down the system, in any window, type:

prompt>tmshutdown -y

2. To restore the directory to its original state, in any window, type:

Windows

prompt>nmake -f makefile.nt clean

UNIX

prompt>make -f makefile.mk clean
Using the CORBA Notification Service 5-15

5 Building the Introductory Sample Application
5-16 Using the CORBA Notification Service

CHAPTER
6 Building the Advanced
Sample Application

This topic includes the following sections:

Overview

Building and Running the Advanced Sample Application

Overview

The Advanced sample application simulates a newsroom environment in which a news
reporter posts a story, a wire service posts the story as an event to the Notification
Service, and a news subscriber consumes the story.

Two implementations of the Advanced sample application are provided: one in the
Java programming language that uses the BEA Simple Events application
programming interface (API), and another in C++ that uses the CosNotification
Service API.

The Advanced sample application consists of the reporter, subscriber, and wire service
applications that use the BEA Tuxedo CORBA Notification Service. The reporter
application implements a client application. This application prompts the user to enter
news articles and calls the WireService server using application specific IDL. The
WireService server, in turn, posts the events. The subscriber implements a joint
client/server application. This application acts as client when it subscribes and
Using the CORBA Notification Service 6-1

6 Building the Advanced Sample Application
unsubscribes for events, and acts as a server when it receives events. To receive events,
the Subscriber implements callback objects which are invoked by the Notification
Service when an event needs to be delivered.

Note: On UNIX systems, you cannot immediately restart the subscriber because the
port takes some time (the actual time depends on the platform) to become
available again. If you restart too soon, you will get a CORBA::OBJ_ADAPTER
exception. If this occurs, just wait and try again. On Solaris systems, the port
can take up to 10 minutes to become available. To see if the port is still in use,
use this command: “Restart -a | grep <the port number>”.

This Advanced sample application demonstrates how to use the BEA Simple Events
API, the CosNotification Service API, transient and persistent subscriptions, and data
filtering.

This Advanced sample provides three executables (see Figure 6-1):

A WireService application that posts events. It is a Notification Service client
and a BEA Tuxedo CORBA server. It implements an OMG IDL interface, which
the Reporter application uses.

A Reporter application that reports news stories by invoking methods on the
WireService. The WireService, in turn, converts the stories into events and posts
them using the Notification Service. The reporter is a pure client.

A Subscriber application that subscribes to the Notification Service and receives
events. The subscriber is a joint client/server that acts as a client when it
subscribes for events, and acts as a server when it receives events.
6-2 Using the CORBA Notification Service

Overview
Figure 6-1 Advanced Sample Application Components

The event poster, the WireService application, uses the structured event
domain_name, type_name, and filterable_data fields to construct three events: a
news event, a subscriber shutdown event, and a subscriber cancel event.

News event

For this event, the domain name is a string and is preset by the application as
“News”. The type name is a string and defined by the Reporter application
user at run time. It is set to the category of news (for example, “Sports”).
Filterable data contains a name/value pair whose name is “Story” and whose
value is a string that contains the body of the news story being posted.

Subscriber Shutdown event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as
“Shutdown”. The filterable data is not used.

Subscriber Cancel event

For this event, the domain name is a string and is preset by the application as
“NewsAdmin”. The type name is a string and is preset by the application as
“Cancel”. The filterable data is not used.

Cloud

Reporter
(Client)

Subscriber
(Joint Client/

Server)

Push Event

Subscribe

Push Event

BEA Tuxedo Domain

WireSevice
Server

Report_news
Shutdown
Cancel

Qspace

Pending
Events

Error
Events

Notification Service

Unsubscribe
Using the CORBA Notification Service 6-3

6 Building the Advanced Sample Application
The Subscriber application uses the structured event domain_name, type_name, and
filterable_data fields to construct two subscriptions: a news subscription that
processes news stories; and a shutdown subscription that processes Cancel and
Shutdown events. At run time, the Subscriber application establishes these two
subscriptions with the Notification Service.

News subscription

The Subscriber application uses the structured event domain_name,
type_name, and filterable_data fields to create a subscription to the
Notification Service. The subscription defines the domain name as a fixed
string with the content of “News”. At run time, the Subscriber application
queries the user for the “News Category” and “Keyword” and uses the inputs
to define the type_name and data_filter fields in the subscription. Obviously,
the users of both applications, the reporter and the subscriber, must
collaborate on the “News Category” and “keyword” strings for the
subscription to match an event, otherwise, no News events will be delivered
to the subscriber. The subscription does not do any checking of the
filterable_data field, but rather assumes that the body of the story will
be a string, and that the story will be in the first Named/Value pair in the
filterable_data field of a structured event.

Shutdown subscription

The Subscriber application uses the structured event domain_name and
type_name, fields to create a subscription to the Notification Service. The
subscription defines the domain_name as a fixed string with the content of
“NewsAdmin”, the type_name as a string of either “Shutdown” or “Cancel”.
The filterable_data field is an empty string.

The Reporter application is responsible for implementing the user interface for
reporting news as well as for producing Shutdown and Cancel events. Rather than use
the Notification Service directly to post events, it calls methods on the WireService
server.

The WireService server uses the Notification Service to post three kinds of events:

 “News” events (used to deliver news to subscribers)

 “Shutdown” events (used to shut down subscribers temporarily)

 “Cancel” events (used to shut down subscribers permanently)

The Notification Service, in turn, delivers the events to the subscribers.
6-4 Using the CORBA Notification Service

Overview
The subscriber uses the Notification Service to create a persistent subscription to news
events. The subscriber implements a persistent callback object (via the
NewsConsumer_i servant class), which is used to receive and process news events.
When the subscriber subscribes, it gives the Notification Service a reference to this
callback object. When a matching event occurs, the Notification Service invokes a
push_structured_event method on this callback object to push the event to the
subscriber. This method prints out the event.

The subscriber also uses the Notification Service to create a transient subscription to
Shutdown and Cancel events. The subscriber implements another callback object (via
the ShutdownConsumer_i servant class), which is used to receive and process these
events.

Whenever the subscriber runs, it prompts the user for a name. The first time this user
runs the subscriber program, the subscriber creates a persistent subscription to News
events. To do this, the subscriber prompts the user for which kind of news stories to
subscribe to and which port number the subscriber should run on. The subscriber runs
on this port, subscribes, then writes the subscription ID, the filter ID (if using the
CosNotification API), and the port number to a file (the name of the file is
<user_name>.pstore). The next time the subscriber runs, the subscriber prompts the
user for a name, opens up the file <user_name>.pstore then reads the subscription
ID, filter ID (if using the CosNotification API) and port number for this user from the
file. This satisfies the requirement that the subscriber runs on the same port number
each time because its news callback object's object reference is persistent.

The Subscriber creates a transient subscription to receive the Shutdown and Cancel
events, therefore, the transient subscription is created and destroyed every time the
subscriber is run and shut down. This subscription ID is not written out to the file
<user_name>.pstore.

When the subscriber receives a Shutdown event, it destroys the shutdown/callback
subscription but leaves the News subscription intact. If News events are posted after
the subscriber is shut down and before it is restarted, then the notification service will
either deliver the events when the subscriber is restarted, or will put the events on the
error queue. (You can use the ntsadmin utility to either delete these events from the
error queue or retry delivering them.)

Whether the event is redelivered or is put on the error queue depends on whether the
subscriber restarts quickly enough. This depends on the retry parameters of the queue.
See advanced.inc (in the notification samples' common directory) for the values of
the queue retry parameters.
Using the CORBA Notification Service 6-5

6 Building the Advanced Sample Application
News events have two parts: a category (for example, headline) and a story (a
multiple-line text string). The Subscriber application prompts the user to input a news
category. Next the subscriber subscribes to news events whose category matches this
string. The Reporter application prompts the user for a news category and a story. Next
the reporter (by invoking a method on the wire service) posts a corresponding news
event. The event will only be delivered to subscribers who subscribed to that category
of news.

Note: The category is a string. The same string must be used by the Reporter user
and the Subscriber user. There are no fixed categories in this sample.
Therefore both users, the Reporter user and the Subscriber user, must type the
same string when prompted for a category (including case and white space).

This sample also uses data filtering. When a user first runs the Subscriber, the user will
be prompted for a “keyword.” Events whose category matches and whose story
contains the keyword will be delivered to the subscriber. For example, if the user enters
a keyword of “none,” data filtering will not be used (thus the user will receive all
events for the chosen news category). If the user enters a keyword “smith”, it translates
to “Story %% ’.*smith.*’”. This keyword specifies that the subscription only
accepts events that have a “Story” field that contains a string, and that the field starts
with any number of characters, has a literal string “smith”, and then ends with any
number of characters.

To run this sample, you need to run at least one Reporter and at least one Subscriber;
however, you may run multiple Reporters and multiple Subscribers. Events posted by
any Reporter will be delivered to all matching Subscribers (based on the category).

Also, be sure to start any subscribers before posting events. Events posted before the
subscribers are started will not be delivered.

Building and Running the Advanced Sample
Application

To build and run the Introductory sample application, you must perform these steps:

1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the
correct directory path.
6-6 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
Note: The “JAVA_HOME” environment variable is required for Java applications
only.

2. Copy the files for the Introductory sample application into a work directory.

3. Change the protection attributes on the files to grant write and execute access.

4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure
the nmake file is in your path

5. Set the application environment variables.

6. Build the sample.

7. Boot the system.

8. Run the Subscriber and Reporter applications.

9. Shut down the system.

10. Restore the directory to its original state.

These steps are described in detail in the following sections.

Verifying the Settings of the Environment Variables

Before you build and run the Advanced sample application, you need to ensure that the
TUXDIR environment variable is set on your system. In most cases, this environment
variable is set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect the correct information.

Table 6-1 lists the environment variables required to run the Callback sample
application.
Using the CORBA Notification Service 6-7

6 Building the Advanced Sample Application
To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the setting for TUXDIR and JAVA_HOME.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

Table 6-1 Required Environment Variables for the Callback Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the BEA Tuxedo software. For example:
Windows
TUXDIR=c:\tuxdir

UNIX
TUXDIR=/usr/local/tuxdir

JAVA_HOME (For Java
applications only)

The directory path where you installed the JDK software. For example:
Windows
JAVA_HOME=c:\JDK1.2

UNIX
JAVA_HOME=/usr/local/JDK1.2
6-8 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
To change the settings, perform the following steps:

Windows

1. On the Environment page in the System Properties window, click the environment
variable you want to change.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Copying the Files for the Advanced Sample Application
into a Work Directory

You need to copy the files for the Advanced sample application into a work directory
on your local machine.

Note: The application directory and the common directory must be copied to the
same parent directory.

The files for the Advanced sample application are located in the following directories:

Windows

For the C++ Advanced sample:
drive:\tuxdir\samples\corba\notification\advanced_cos_cxx
drive:\tuxdir\samples\corba\notification\common

For the Java Advanced sample:
drive:\tuxdir\samples\corba\notification\advanced_simple_java
drive:\tuxdir\samples\corba\notification\common

UNIX

For the C++ Advanced sample:
/usr/local/tuxdir/samples/corba/notification/advanced_cos_cxx
/usr/local/tuxdir/samples/corba/notification/common
Using the CORBA Notification Service 6-9

6 Building the Advanced Sample Application
For the Java Advanced sample:
/usr/local/tuxdir/samples/corba/notification/advanced_simple_java
/usr/local/tuxdir/samples/corba/notification/common

You use the files listed in Table 6-2 and Table 6-4 to build and run the Java Advanced
sample application, which is implemented using the BEA Simple Events API. You use
the files listed in Table 6-3 and Table 6-4 to build and run the C++ Advanced sample
application, which is implemented using the CosNotification API.

Table 6-2 Files Located in the advanced_simple_java Notification Directory

File Description

Readme.txt Describes the Advanced sample application and provides instructions for
setting up the environment and building and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

makefile.nt Makefile for Microsoft Windows systems.

makefile.mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makefile.nt and the makefile.mk
files.

Reporter.java Code for the reporter.

Subscriber.java Code for the subscriber.

NewsConsumer_i.java Callback servant class that subscribers use to receive news events. (For
the Subscriber application.)

ShutdownConsumer_i.java Callback servant classes that subscribers use to receive Shutdown and
Cancel events. (For the Subscriber application.)

WireService.xml Server Description file for the WireService server.

WireService_i.java Implements the WireService interfaces.

WireServiceFactory_i.java Implements the WireService factory interface.

WireServiceServer.java Code for the WireService server.
6-10 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
You use the files listed in Table 6-3 and Table 6-4 to build and run the Advanced
sample application.

Table 6-4 lists other files that the Advanced sample application uses. With the
exception of the IDL files, the files are located in the Notification common directory.

Table 6-3 Files Located in the advanced_cos_c++ Notification Directory

File Description

Readme.txt Describes the Advanced sample application and provides
instructions for setting up the environment and building
and running the application.

setenv.cmd Sets the environment for Microsoft Windows systems.

setenv.ksh Sets the environment for UNIX systems.

makefile.nt Makefile for Microsoft Windows systems.

makefile.mk Makefile for UNIX systems.

makefile.inc Common makefile used by the makefile.nt and the
makefile.mk files.

Reporter.cpp Code for the reporter.

Subscriber.cpp Code for the subscriber.

NewsConsumer_i.h and
NewsConsumer.cpp

Callback servant class that subscribers use to receive
news events. (For the Subscriber application.)

ShutdownConsumer_i.h
and
ShutdownConsumer.cpp

Callback servant classes that subscribers use to receive
Shutdown and Cancel events. (For the Subscriber
application.)

WireServiceServer.cpp Code for the WireService server.

News.icf ICF file for the WireService interfaces.

WireService_i.h and
WireService.cpp

Implements the WireService interfaces.
Using the CORBA Notification Service 6-11

6 Building the Advanced Sample Application
Table 6-4 Other Files That the Advanced Sample Uses

File Description

The following files are located in the common directory.

News.idl IDL definitions for the WireService server.

news_flds FML field definitions used to perform data filtering
and news events.

common.nt Makefile symbols for Microsoft Windows systems.

common.mk Makefile symbols for UNIX systems.

advanced.inc Makefile for administrative targets.

ex.h Utilities to print exceptions (C++ only).

client_ex.h Client utilities to handle exceptions (C++ only).

server_ex.h Server utilities to handle exceptions.

The following files are located in the \tuxdir\include directory.

CosEventComm.idl The OMG IDL code that declares the
CosEventComm module.

CosNotification.idl The OMG IDL code that declares the
CosNotification module.

CosNotifyComm.idl The OMG IDL code that declares the
CosNotifyComm module.

Tobj_Events.idl The OMG IDL code that declares the Tobj_Events
module.

Tobj_SimpleEvents.idl The OMG IDL code that declares the
Tobj_SimpleEvents module.

Note: This file is needed only for the application
that was developed using BEA Simple
Events API.

The following files are needed only for the application that was developed using
CosNotification Service API.
6-12 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
Changing the Protection Attribute on the Files for the
Advanced Sample Application

During the installation of the BEA Tuxedo software, the Advanced sample application
files are marked read-only. Before you can edit or build the files in the Advanced
sample application, you need to change the protection attribute of the files you copied
into your work directory, as follows:

Windows

1. Change (cd) to your work directory

2. prompt>attrib -r drive:\workdirectory*.*

UNIX

1. Change (cd) to your work directory

2. prompt>/bin/ksh

3. ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
setenv.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x setenv.ksh

CosEventChannelAdmin.idl The OMG IDL code that declares the
CosEventChannelAdmin module.

CosNotifyFilter.idl The OMG IDL code that declares the
CosNotifyFilter module.

CosNotifyChannelAdmin.idl The OMG IDL code that declares the
CosNotifyChannelAdmin module.

Tobj_Notification.idl The OMG IDL code that declares the
Tobj_Notification module.

Table 6-4 Other Files That the Advanced Sample Uses (Continued)

File Description
Using the CORBA Notification Service 6-13

6 Building the Advanced Sample Application
Setting Up the Environment

To set up the environment, enter the following command:

Windows

prompt>.\setenv.cmd

UNIX

prompt>. ./setenv.ksh

Building the Advanced Sample Application

You use the make command to run makefiles, which are provided for Microsoft
Windows and UNIX, to build the sample application. For Microsoft Windows, use
nmake. For UNIX, use make.

Makefile Summary

The makefile automates the following steps:

1. Checks that the set environment command (setenv.cmd) has been run. If the
environment variables have not been set, the makefile prints an error message to
the screen and exits.

2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX)
command file. This file defines the makefile symbols used by the samples. These
symbols allow the UNIX and Microsoft Windows makefiles to delegate the build
rules to platform-independent makefiles.

3. Includes the makefile.inc command file. This file builds the is_reporter,
is_subscriber and AS_WIRESERVICE executables, and cleans up the directory
of unnecessary files and directories.

4. Includes the advanced.inc command file. This file executes tmadmin and
qadmin commands to create the transaction log and the queues required by the
persistent subscriptions. It also creates the UBBCONFIG file and executes the
tmloadcf -y ubb command to create the TUXCONFIG file.
6-14 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
Executing the Makefile

Before executing the makefile, you need to check the following:

Ensure that you have the appropriate administrative privileges to build and run
applications.

On Microsoft Windows, make sure nmake is in the path of your machine.

On UNIX, make sure make is in the path of your machine.

To build the Advanced sample application, enter the make command as follows:

Windows

nmake -f makefile.nt

UNIX

make -f makefile.mk

Starting the Advanced Sample Application

To start the Advanced sample application, enter the following commands:

1. To boot the BEA Tuxedo system:

prompt>tmboot -y

This command starts the following server processes:

TMSUSREVT

A BEA Tuxedo system-provided, EventBroker server that is used by the
Notification Service.

TMNTS

A BEA Tuxedo CORBA Notification Service server that processes requests
for subscriptions and event postings.
TMNTSFWD_T

A BEA Tuxedo CORBA Notification Service server that forwards events to
subscribers that have transient subscriptions. This server is required for
transient subscriptions.
Using the CORBA Notification Service 6-15

6 Building the Advanced Sample Application
TMNTSFWD_P

A BEA Tuxedo CORBA Notification Service server that forwards persistent
events to subscribers that have persistent subscriptions. This server is
required for persistent subscriptions.
TMQUEUE

The message queue manager is a BEA Tuxedo system-provided server that
enqueues and dequeues messages on behalf of programs calling
tpenqueue(3) and tpdequeue(3), respectively. This server is required for
persistent subscriptions.
TMQFORWARD

The message forwarding server is a BEA Tuxedo system-provided server that
forwards messages that have been stored using tpenqueue(3c) for later
processing. This server is required for persistent subscriptions.

WIRE_SERVICE_SERVER

A server, specifically built for the Advanced sample application, that receives
events from the Reporter application and posts them to the Notification
Service. This receive and server posts three types of events: News,
Shutdown, and Cancel.

ISL

The IIOP Listener/Handler process.

2. To start the Subscriber application:

For C++: prompt>is_subscriber
For Java on Microsoft Windows: prompt>java %IC_SUBSCRIBER%
For Java on UNIX: prompt>java $IC_SUBSCRIBER

To start another Subscriber, open another window, change (cd) to your work
directory, set the environment variables (by running setenv.cmd or
setenv.ksh), and enter the start command that is appropriate for your platform.

3. To start the Reporter application, open another window and enter the following:

For C++: prompt>is_reporter
For Java on Microsoft Windows: prompt>java %IC_REPORTER%
For Java on UNIX: prompt>java $IC_REPORTER

To start another Reporter, open another window, change (cd) to your work
directory, set the environment variables (by running setenv.cmd or
setenv.ksh), and enter the start command that is appropriate for your platform.
6-16 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
Using the Advanced Sample Application

To use the Advanced sample application, you must use the Subscriber application to
subscribe to an event and the Reporter application to post to an event. Be sure to
subscribe before you post each event; otherwise, events will be lost.

Using the Subscriber Application to Subscribe to Events

Perform the following steps:

1. When you start the Subscriber application (prompt>is_subscriber) for the first
time, the following prompts are displayed:

Name? (Enter a name (without spaces).)
Port (e.g. 2463) (Enter the port number that this subscriber should run on.)
Category (or all) (Enter the category of news you want or "all.")
Keyword (or none) (Enter a keyword that you want all delivered stories to
 contain.)

Note: If the Subscriber application is shut down by a Shutdown event from the
Reporter application (Shutdown events do not cancel persistent subscriptions),
on subsequent startups of the Subscriber application, you will only be
prompted for your name. The Subscriber application retrieves the remaining
information from the <user_name>.pstore file. This guarantees that the
same port number is used, which is required for persistent subscriptions.

If the Subscriber application is shut down by a Cancel event from the Reporter
application (Cancel events cancel all subscriptions including persistent
subscriptions), on subsequent startups of the Subscriber application, you will
be prompted for your name, port number, category, and keyword.

2. You may type in any string for the news category, that is, there is no fixed list of
news categories. However, when you use the Reporter application to post an
event, make sure you specify the same string for the news category.

Similarly, you may type in a string for a keyword. There is no fixed list of
keywords either so when you run the reporter and enter the story, make sure that
the story contains the same string; otherwise, the story will not be delivered to
your subscription.

The first time the Subscriber application is run for your username, category (or
all), and keyword (optional), it creates a news subscription. On subsequent runs,
Using the CORBA Notification Service 6-17

6 Building the Advanced Sample Application
the subscriber reuses this subscription. In all cases, the Subscriber application
prints “Ready” when it is ready to receive events.

The Subscriber application creates a subscription then prints “Ready” when it
is ready to receive events.

Note: You should always use the Subscriber application to subscribe to events
before you use the Reporter application to post events; otherwise, events
will be lost. This is because even though the Subscriber application creates
a persistent subscription to News events, that subscription is not created
until the Subscriber application is started.

Note: You can start multiple subscribers by opening another window and
repeating this procedure.

Using the Reporter Application to Post Events

Perform the following steps:

1. When you start the Reporter application (prompt> is_reporter), the following
prompt is displayed:
(r) Report news
(s) Shutdown subscribers
(c) Cancel Subscribers
(e) Exit

Option?

2. Enter r to report news. The following prompt is displayed:

Category?

3. Enter the news category. It must match exactly the category you typed on the
Subscriber application (including white space and case).

After you enter the news category, the following prompt is displayed:
Enter story (terminate with '.')

4. Enter your story. It can span multiple lines. Finish the story by typing a period
only (".") on a line, followed by a carriage return. If you typed in a keyword
when subscribing, make sure the story contains this string (including white space
and case).

Subscribers whose category and keyword (if specified) matches the category and
a keyword in this story will receive and print out the story.
6-18 Using the CORBA Notification Service

Building and Running the Advanced Sample Application
5. If you choose the “s” option, a Shutdown event will be posted and received by all
the subscribers and the subscribers will shut down. While the subscribers are shut
down, you may post another news story (by using the “r” option again). The
Notification Service will place the news story on the pending queue but the News
event subscription is persistent and, therefore, is still in effect. After you restart
the subscribers, they will receive this second news story (unless a restart delay
caused the event to be moved to the error queue). This is because the subscriber
created a persistent subscription for news stories.

Note: You can use the ntsadmin retryerrevents command to move events
from the error queue back to the pending queue.

6. If you choose the “c” option, a Cancel event will be posted and received by all
the subscribers. The subscribers will cancel their news subscriptions and shut
down. If you try to restart the subscribers, then you will be prompted again for
port, category, and keyword because you are creating a new subscription.

7. When you are finished reporting news, choose the Exit (e) option.

Note: You can start multiple reporters by opening another window and repeating
this procedure. Any news story reported by any reporter will be delivered
to all matching subscribers. Make sure you have exited all reporters before
shutting down the system.
Using the CORBA Notification Service 6-19

6 Building the Advanced Sample Application
Shutting Down the System and Cleaning Up the
Directory

Make sure the Reporter and Subscriber processes have stopped and perform the
following steps:

1. To shut down the system, in any window, type:

prompt>tmshutdown -y

2. To restore the directory to its original state, in any window, type:

Windows

prompt>nmake -f makefile.nt clean

UNIX

prompt>make -f makefile.mk clean
6-20 Using the CORBA Notification Service

CHAPTER
7 CORBA Notification
Service Administration

This topic includes the following sections:

Introduction

Configuring the Notification Service. This section includes the following topics:

Configuring Data Filters

Setting the Host and Port

Creating a Transaction Log

Creating Event Queues

Creating the UBBCONFIG File and the TUXCONFIG File

Managing the Notification Service

Notification Service Administration Utility and Commands

Notification Servers
Using the CORBA Notification Service 7-1

7 CORBA Notification Service Administration
Introduction

The BEA Tuxedo CORBA Notification Service is layered on the BEA Tuxedo
EventBroker and Queuing systems. This means that administering the CORBA
Notification Service requires that you also administer these other BEA Tuxedo
systems. You use the BEA Tuxedo utilities tmadmin, qmadmin, and ntsadmin to
administer the Notification Service.

Notification Service administration is comprised of two related tasks: configuration
and management. Although these areas are discussed separately, they are in fact,
interrelated. Thus, to fully understand configuration, you must also understand
management and vice versa.

Configuring the Notification Service

Before you can run event Notification Service applications, the following
configuration requirements must be satisfied:

If data filtering or BEA Tuxedo ATMI interoperability is to be used, create BEA
Tuxedo ATMI FML field definition files that describe the fields on which to
filter or to interoperate.

If persistent subscriptions are to be used:

If using a a joint client/server, set the host and port number for the callback
object references.

Create a transaction log.

Create queues to hold events.

Create a system configuration file (UBBCONFIG) and a TUXCONFIG file.
7-2 Using the CORBA Notification Service

Configuring Data Filters
Configuring Data Filters

If data filtering or BEA Tuxedo ATMI interoperability is used in subscriber
applications, you must perform the following steps to use data filtering in
subscriptions:

1. Create the BEA Tuxedo ATMI FML field table definition file that describes the
fields on which to filter (see Listing 7-2).

2. In the UBBCONFIG file, specify where the FML field table definition file is located
so that when the application is started, the location of field definition files is
passed to the Notification Service servers (see Listing 7-3).

In Listing 7-1, the code that is shown in bold text shows how the data filtering is
implemented in an event poster application. Only subscriptions that contain the
name/value pair billing and patient_account will receive the event.

Listing 7-1 Sample Data Filtering Using the BEA Simple Events API (C++)

CosNotification::StructuredEvent notif;

notif.header.fixed_header.event_type.domain_name =
 CORBA::string_dup("HEALTHCARE");

notif.header.fixed_header.event_type.type_name =
 CORBA::string_dup("HMO");

// Specify an additional filter, based upon name and value
// for this event.

notif.filterable_data.length(2);
notif.filterable_data[0].name = CORBA::string_dup("billing");
notif.filterable_data[0].value <<= CORBA::Long(1999);
notif.filterable_data[1].name =
 CORBA::string_dup("patient_account");
notif.filterable_data[1].value <<= CORBA::Long(2345);

// Push the structured event onto the channel.
testChannel->push_structured_event(notif);
Using the CORBA Notification Service 7-3

7 CORBA Notification Service Administration
Listing 7-2 shows the FML field table definitions file needed to use data filtering.

Listing 7-2 Data Filtering FML Field Table File

*base 2000

#Field Name Field # Field Type Flags Comments
#----------- ------- ---------- ------ --------
billing 1 long - -
patient_account 2 long - -

Listing 7-3 shows the content of environment variable file (envfile). The envfile
contains the location of the FML field definitions file.

Note: You can name the environment variable file whatever you want, but the name
used must match the name specified for the ENVFILE configuration option n,
the SERVERS section of the UBBCONFIG file.

Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft
Windows)

FLDTBLDIR32=D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_cxx\common
FIELDTBLS32=news_flds

Listing 7-4 shows, in bold text, how the location of the FML field table file is specified
in the UBBCONFIG file for the Advanced samples.

Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

*SERVERS
TMSYSEVT
 SRVGRP = NTS_GRP
 SRVID = 1
TMUSREVT
 SRVGRP = NTS_GRP>>$@
 SRVID = 2
7-4 Using the CORBA Notification Service

Setting the Host and Port
 ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\envfile"
TMNTS
 SRVGRP = NTS_GRP
 SRVID = 3
 ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\envfile"
 CLOPT = "-A -- -s TMNTSQS"
TMNTSFWD_T
 SRVGRP = NTS_GRP
 SRVID = 4
 ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\envfile"
TMNTSFWD_P
 SRVGRP = NTS_GRP
 SRVID = 5
 ENVFILE = "D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\envfile"

Setting the Host and Port

The object references host and port number requirements for the callback object are as
follows:

For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.

You specify the port number from the user range of port numbers, rather than from the
dynamic range. Assigning port numbers from the user range prevents joint
client/server applications from using conflicting ports.

The method you use to set the host and port depends on the programming language you
are using.

Setting Host and Port on C++ Subscriber Applications

For C++ subscriber applications, to specify a particular port for the joint
client/server application to use, include the following on the command line that
starts the process for the joint client/server application:

-ORBport nnnn -IRBid BEA_IIOP
Using the CORBA Notification Service 7-5

7 CORBA Notification Service Administration
where nnnn is the number of the port to be used by the ORB when creating
invocations and listening for invocations on the callback object in the joint
client/server application.

Use this command when you want the object reference for the callback object in
a joint client/server application to be persistent and when you want to stop and
restart the joint client/server application. If this command is not used, the ORB
uses a random port. If a random port is used when the joint client/server
application is stopped and then restarted, invocations to persistent callback
objects in the joint client/server application will fail.

The port number is part of the input to the argv argument of the
CORBA::orb_init member function. When the argv argument is passed, the
ORB reads that information, establishing the port for any object references
created in that process.

Setting Host and Port on Java Subscriber Applications

For Java subscriber applications, you can pass in properties that set the host and
port. Listing 7-5 illustrates how to do this.

Listing 7-5 Setting Host and Port in Java Subscriber Applications

Properties prop = new Properties();
prop.put("org.omg.CORBA.ORBClass", "com.beasys.CORBA.iiop.ORB");
prop.put("org.omg.CORBA.ORBSingletonClass",
 "Com.beasys.CORBA.idl.ORBSingleton");
prop.put("org.omg.CORBA.ORBPort", nnnn);
ORB orb = ORB.init(args, prop);

Note: You can also set the port in the java command line. Here is an example of
a java command line that sets the port number:

java -DTOBJADDR=//BEANIE:2359 \
-Dorg.omg.corba.ORBPort=portnumber -classpath...
7-6 Using the CORBA Notification Service

Creating a Transaction Log
Creating a Transaction Log

When you use persistent subscriptions, you must configure and boot the BEA Tuxedo
queuing system. The queuing system requires a transaction log. Listing 7-6 shows how
to use the tmadmin utility to create a transaction log.

Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows)

>tmadmin

>crdl -b 100 -z D:\tuxdir\EVENTS_Samples\ADVANCED_Simple_CXX\TLOG
>crlog -m SITE1
>quit
>

Creating Event Queues

When you use persistent events, you must configure and boot the BEA Tuxedo
queuing system. Two event queues must be created:

TMNTSFWD_P

This is the event forwarding queue for persistent subscriptions. Events go to this
queue first and then are forwarded to matching persistent subscriptions. If an
event cannot be delivered on the first attempt, it is held in this queue and
repeated attempts are made to deliver it. If the settable retry limit is reached
before the event can be successfully delivered, the event is moved to the error
queue.

This queue requires the following configuration parameters:

Queuing order (for example, first in, first out).

How to handle out-of-order enqueuing.

Retry limit (how many retries before moving the event to the error queue).
Using the CORBA Notification Service 7-7

7 CORBA Notification Service Administration
Retry time interval.

How full the queue can get before administrative intervention is required.

How low the queue can get after getting full before administrative
intervention is required.

Definition of the administrative intervention command.

TMNTSFWD_E

This is the error queue. This queue receives events from the TMNTSFWD_P queue
that cannot be delivered to subscriptions. This queue requires the same
configuration parameters as the TMNTSFWD_P forwarding queue, however, the
retry limit and retry time interval parameters are irrelevant because this is the
error queue and errors are only removed by administrative intervention.

To configure these queues, perform the following steps:

1. Create a device on disk for the queue space.

2. Configure a queue space.

3. Create the queues.

These steps are described in the following sections.

Determining Space Parameters for Transient and
Persistent Subscriptions

To tune your system for maximum performance, you should determine the optimal
values for the following parameters:

The number of transient forwarding servers (TMNTSFWD_T) and persistent
forwarding servers (TMNTSFWD_P).

IPC queue space (this is used for transient subscriptions).

Size of /Q queues (this is used for persistent subscriptions).
7-8 Using the CORBA Notification Service

Creating Event Queues
IPC Queue Space for Transient Subscriptions

Proceed as follows to determine space parameters for transient subscriptions:

1. Determine how many events may be in the pipeline for transient subscriptions; that
is, how many events may be in the process of being delivered at any given time.
This equals the number of events multiplied by the number of subscribers receiving
them.

2. Determine the size of your events. For purposes of this discussion, we will
assume that they are relatively small—about 300 bytes or less.

3. Determine how many transient forwarding servers you would like to start, most
likely one or two—one per processor on your machine is a good number to start
with.

4. Determine how much IPC queue space you will need to hold your transient
events. The amount of space you need is 1000 bytes multiplied by the number of
events you allow in the pipeline. Divide this number by the number IPC queues
your transient forwarders have. If you use MSSQ sets, then your transient
forwarders share one IPC queue; if you do not, then each forwarder has its own
IPC queue.

For example, if you estimate that there will be 10 events delivered to 50
subscribers in the pipeline, and you start 2 transient forwarders and they do not
share an IPC queue (that is, you do not use MSSQ sets), the amount of IPC
queue space you need is:

10 events * 50 subscribers * 1000 bytes / 2 forwarders = 250,000 bytes

5. Configure the IPC queue size to that number by changing the entries in the
system registry. How you do this is platform-specific.

For Microsoft Windows systems, see “Setting IPC Parameters on Microsoft
Windows” on page 7-14.

For UNIX systems, refer to the system reference manual supplied with the
system.

/Q Queue Size Parameter Persistent Subscriptions

Proceed as follows to determine space parameters for persistent subscriptions:
Using the CORBA Notification Service 7-9

7 CORBA Notification Service Administration
1. Determine how many events may be in the pipeline for persistent subscriptions;
that is, how many events may be in the process of being delivered at any given time.
This equals the number of events multiplied by the number of subscribers receiving
them.

2. Determine the size of your events. For purposes of this discussion, we will
assume that they are relatively small—about 300 bytes or less.

3. Determine the size your /Q queues need to be to hold your persistent events (both
for your pending queue and error queue). Proceed as follows to do this:

a. Determine the size of a disk page. This is platform-specific. For example, on
Microsoft Windows, a disk page is 500 bytes. On UNIX machines, a disk page
could range from 500 to 4000 bytes in size.

b. Determine how many disk pages you will need to store one event rounding up.
For example, if you need 1000 bytes per event and disk pages are 500 bytes,
you will need 2 disk pages per event.

c. Determine how many disk pages you will need for your events. For example, if
you want to allow 500 pending events and 200 error events, and an event takes
up 2 disk pages, you will need 1400 disk pages.

d. Determine how many disk pages you will need for your qspace. This is the
number of disk pages you need for your events plus some pages for qspace
overhead. For example, if you need 1400 disk pages for events, then your
qspace needs approximately 1450 disk pages (50 pages of qspace overhead).

e. Determine how many pages you will need for your qspace device. This is the
number of pages you need for the qspace plus some pages for device overhead.
For example, if you need 1450 disk pages for your qspace, then your device
needs approximately 1500 pages (50 pages of device overhead).

4. When you use qmadmin to create the qspace for your persistent events, the first
phase is to create a device. Use the size computed above in step 3e above
(approximately 1500 pages). Next, specify the size of the qspace. Use the size
computed in step 3d (approximately 1450 pages). Next, specify how many events
can be in the pending queue and how many events can be in the error queue. The
following sections explain how to create and configure qspaces.
7-10 Using the CORBA Notification Service

Creating Event Queues
Creating a Device on Disk for the Queue Space

You use the qmadmin command utility to create a device on disk for the queue space.

Before you create a queue space, you must create an entry for it in the universal device
list (UDL). Listing 7-7 shows an example of the commands.

Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

prompt>qmadmin d:\smith\reg\QUE
qmadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.
Distributed under license by BEA Systems, Inc.
BEA Tuxedo is a registered trademark.
QMCONFIG=d:\smith\reg\QUE

> crdl d:\smith\reg\QUE 0 1100
Created device d:\smith\reg\QUE, offset 0, size 1100
 on d:\smith\reg\QUE

For more information about creating a device on disk, see Using the ATMI /Q
Component.

Configuring a Queue Space

You use the qmdamin qspacecreate command to configure queue spaces. A queue
space makes use of IPC resources; therefore, when you define a queue space you are
allocating a shared memory segment and a semaphore. The easiest way to use the
qspacecreate command is to let it prompt you. Listing 7-8 shows an example queue
space that is configured for the Advanced sample application.

Listing 7-8 Creating Queue Space

> qspacecreate
Queue space name: TMNTSQS
Using the CORBA Notification Service 7-11

7 CORBA Notification Service Administration
IPC Key for queue space: 52359
Size of queue space in disk pages: 1050
Number of queues in queue space: 2
Number of concurrent transactions in queue space: 10
Number of concurrent processes in queue space: 10
Number of messages in queue space: 500
Error queue name: TMNTSFWD_E
Initialize extents (y, n [default=n]): y
Blocking factor [default=16]:

In the queue space created in Listing 7-8, take note of the following size settings:

Number of messages in queue space:500
Setting this parameter to 500 allows room for a total of 500 events in the
pending and error queues.

Size of queue space in disk pages:1050
On Microsoft Windows, each disk page is 500 bytes and each event needs
1000 bytes. In addition, you must allow 2 disk pages per event. Since you
estimate that there will be 500 events in the pending and error queues, then
you must allow 1000 disk pages to store them (500 * 2). Also, you must allow
50 disk pages for qspace overhead, so the qspace size is set to 1050 disk
pages. Finally, the device needs 50 disk pages of overhead too, so the device
size is 1100 disk pages, which you set using the crdl command (see
Listing 7-7).

For more information about creating queue space, see Using the ATMI /Q Component.

Creating the Queues

You must use the qmadmin qcreate command to create each queue that you intend
to use. Before you can create a queue, you first have to open the queue space with the
qmadmin qopen command. If you do not provide a queue space name, qopen will
prompt for it.

Listing 7-9 shows an example of creating the TMNTSFWD_P and TMNTSFWD_E queues
that are created for the Advanced sample application.
7-12 Using the CORBA Notification Service

Creating Event Queues
Listing 7-9 Creating Queues

> qopen
Queue space name: TMNTSQS

> qcreate
Queue name: TMNTSFWD_P
Queue order (priority, time, fifo, lifo): fifo
Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 5
Retry delay in seconds [default=0]: 3
High limit for queue capacity warning (b for bytes used, B for
 blocks used, % for percent used, m for messages [default=100%]):
 80%
Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:
No default queue capacity command
Queue 'TMNTSFWD_P' created

> qcreate
Queue name: TMNTSFWD_E
Queue order (priority, time, fifo, lifo): fifo
Out-of-ordering enqueuing (top, msgid, [default=none]): none
Retries [default=0]: 2
Retry delay in seconds [default=0]: 30
High limit for queue capacity warning (b for bytes used, B for
 blocks used, % for percent used, m for messages [default=100%]):
 80%
Reset (low) limit for queue capacity warning [default=0%]: 0%
Queue capacity command:
No default queue capacity command
Q_CAT:1438: INFO: Create queue - error queue TMNTSFWD_E created
Queue 'TMNTSFWD_E' created

> q

For more information about creating queues, see Using the ATMI /Q Component.
Using the CORBA Notification Service 7-13

7 CORBA Notification Service Administration
Setting IPC Parameters on Microsoft Windows

The BEA Tuxedo software for Microsoft Windows systems provides you with BEA
Tuxedo IPC Helper (TUXIPC), an interprocess communication subsystem, that is
installed with the product. On most machines, IPC Helper runs as installed; however,
you can use the IPC Resources page of the control panel applet to tune the TUXIPC
subsystem and maximize performance.

To display the IPC Resources page of the IPC Control Panel, perform these steps:

1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is
displayed (Figure 7-1).

Figure 7-1 Microsoft Windows Control Panel
7-14 Using the CORBA Notification Service

Creating Event Queues
2. Click the BEA Administration icon. The BEA Administration Control Panel is
displayed (Figure 7-2).

3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the
BEA Administration Control Panel is displayed (Figure 7-2).

Figure 7-2 BEA Tuxedo Software for Microsoft Windows IPC Resources
Control Panel

To define IPC settings for your BEA Tuxedo machine, proceed as follows:

1. In the Current Resource Default box, click the Use Default IPC Settings check box
to clear it.

2. Click the insert box.

3. Enter the name of your machine and press Enter.
Using the CORBA Notification Service 7-15

7 CORBA Notification Service Administration
4. Click the fields next to the IPC resources you want to set, enter the desired
values, and click Apply. Clicking Apply saves the changes in the Registry Table.
You must then stop and then restart the tuxipc.exe service for the changes to
take effect.

5. Click OK to close the Control Panel.

You can view the performance of a running BEA Tuxedo server application on the
Performance Monitor.

To start the Performance Monitor, click
Start—>Programs—>Administration Tools—>Performance Monitor on the taskbar.
The Performance Monitor screen is displayed (Figure 7-3).

Figure 7-3 BEA Tuxedo Software for Microsoft Windows Performance Monitor
7-16 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File
Creating the UBBCONFIG File and the
TUXCONFIG File

For event poster and subscriber applications to communicate with a CORBA object in
the BEA Tuxedo domain, in this case the Notification Service, a UBBCONFIG file is
required for the Notification Service. The UBBCONFIG file must be written as part of
the development of the Notification Service application; otherwise, you will not be
able to build and run the application.

After you write the UBBCONFIG file, you use the tmloadcf command to produce the
TUXCONFIG file, which is used at run time. Therefore, the TUXCONFIG file must exist
before the Notification Service application is started. The TUXCONFIG file is simply a
binary version of the UBBCONFIG file. The following is an example of how to use the
tmloadcf command:

tmloadcf -y ubb

Before writing the UBBCONFIG, you should list the configuration requirements of your
Notification Service application. To list requirements, determine the required servers
and processes to support the subscription. Table 7-1 shows the configuration
requirements for the different types of subscriptions.

If you are using event subscriber applications that use IIOP, you need to configure the
IIOP Listener (ISL) command in the UBBCONFIG file with parameters that enable
outbound IIOP to invoke callback objects that are not connected to an IIOP Handler
(ISH). The -O option (uppercase letter O) of the ISL command enables outbound IIOP.

Table 7-1 Configuration Requirements for Transient and Persistent Subscriptions

To support these types of subscriptions Your UBBCONFIG file must include the following
servers, and processes

Transient subscription TMUSREVT, TMNTS, and TMNTSFWD_T

Persistent subscription TMUSREVT, TMNTS, TMNTSFWD_P, TMQUEUE,
TMQFORWARD
Using the CORBA Notification Service 7-17

7 CORBA Notification Service Administration
Additional parameters allow system administrators to obtain the optimum
configuration for their Notification Service application. For more information about
the ISL command, see Setting Up a BEA Tuxedo Application.

When developing a Notification Service application, the SERVERS section of the
UBBCONFIG file may include the following types of servers:

TMUSREVT

A BEA Tuxedo system-provided server that processes event report message
buffers from tppost(3), and acts as an EventBroker to filter and distribute
them. (Required)

TMNTS

A BEA Tuxedo Notification Service server that processes requests for
subscriptions and event postings. (Required)

TMNTSFWD_T

A BEA Tuxedo Notification Service server that forwards transient events to
subscribers of transient subscriptions. (Required for transient subscriptions)

TMNTSFWD_P

A BEA Tuxedo Notification Service server that forwards persistent events to
subscribers that have persistent subscriptions. Events that cannot be delivered to
subscribers are sent to the error queue. (Required for persistent subscriptions)

TMQUEUE

A BEA Tuxedo server that manages event queues. (Required for persistent
subscriptions)

TMQFORWARD

A BEA Tuxedo server that forwards events to the Notification Service
TMNTSFWD_P server so that they can be forwarded to persistent subscribers.
(Required for persistent subscriptions)

ISL

The BEA Tuxedo IIOP Server Listener/Handler process. (Required if the event
poster or subscriber is remote, that is outside the local domain)
7-18 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File
The UBBCONFIG file shown in Listing 7-10 is from the Notification Service
Introductory sample application. The Introductory sample application supports
transient subscriptions only; it does not support persistent subscriptions or data
filtering.

Listing 7-10 The Introductory Sample UBBCONFIG File

This UBBCONFIG file supports transient subscriptions only; it does
not persistent subscriptions or data filtering.
*RESOURCES
 IPCKEY 52359
 DOMAINID events_intro_simple_cxx
 MASTER SITE1
 MODEL SHM
#---
*MACHINES
 "BEANIE"
 LMID = SITE1
 APPDIR = "D:\tuxdir\EVENTS~1\INTROD~2"
 TUXCONFIG = "D:\tuxdir\EVENTS~1\INTROD~2\tuxconfig"
 TUXDIR = "d:\tuxdir"
 MAXWSCLIENTS = 10
 ULOGPFX = "D:\tuxdir\EVENTS~1\INTROD~2\ULOG"
#--
Since we are using transient events, the group need not be
transactional.
*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
#---
*SERVERS
 DEFAULT:
 CLOPT = "-A"
 TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1
TMUSREVT
 SRVGRP = SYS_GRP
 SRVID = 2
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N -M"
TMFFNAME
 SRVGRP = SYS_GRP
Using the CORBA Notification Service 7-19

7 CORBA Notification Service Administration
 SRVID = 4
 CLOPT = "-A -- -N"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -F"
Start the notification service server.
#
TMNTS
 SRVGRP = SYS_GRP
 SRVID = 6
Start the Notification Service transient event forwarder.
#
TMNTSFWD_T
 SRVGRP = SYS_GRP
 SRVID = 7
Start the ISL with -O since we are using callbacks to clients.
ISL
 SRVGRP = SYS_GRP
 SRVID = 8
 CLOPT = "-A -- -O -n //BEANIE:2359"
#---
*SERVICES

The code example shown in Listing 7-11 is from the Notification Service Advanced
sample application. The Advanced sample application supports transient and persistent
subscriptions and data filtering.

Listing 7-11 The Advanced Sample UBBCONFIG File

This UBBCONFIG file supports transient and persistent
subscriptions and data filtering.
*RESOURCES
 IPCKEY 52363
 DOMAINID events_advanced_simple_cxx
 MASTER SITE1
 MODEL SHM
#---
*MACHINES
 "BEANIE"
 LMID = SITE1
 APPDIR = "D:\tuxdir\EVENTS~1\ADVANC~1"
 TUXCONFIG = "D:\tuxdir\EVENTS~1\ADVANC~1\tuxconfig"
 TUXDIR = "d:\tuxdir"
7-20 Using the CORBA Notification Service

Creating the UBBCONFIG File and the TUXCONFIG File
 MAXWSCLIENTS = 10
 ULOGPFX = "D:\tuxdir\EVENTS~1\ADVANC~1\ULOG"
#
Since we are using persistent events, we need a transaction log.
#
 TLOGDEVICE = "D:\tuxdir\EVENTS~1\ADVANC~1\TLOG"
 TLOGSIZE = 10
#---
*GROUPS
 SYS_GRP
 LMID = SITE1
 GRPNO = 1
Create a null transactional group for the notification service
servers.
#
NTS_GRP
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 TMSCOUNT = 2
Since we are using persistent events, we need a persistent queue
create a queue transactional group for the queue servers.
#
QUE_GRP
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS_QM
 TMSCOUNT = 2
#
Make the queue group manage the QUE space we create.
The name of the queue space specified here as TMNTSQS must match
the name of the queue space you created.
#
 OPENINFO = "TUXEDO/QM:D:\tuxdir\EVENTS~1\ADVANC~1\QUE;TMNTSQS"
#---
*SERVERS
 DEFAULT:
 CLOPT = "-A"
#
Start the queue server.
The name of the queue space specified in the -s option of
CLOPT must match the name of the queue space you created.
#
TMQUEUE
 SRVGRP = QUE_GRP
 SRVID = 1
 CLOPT = "-s TMNTSQS:TMQUEUE -- "
#
Start the queue forwarder, have it forward events to the
Using the CORBA Notification Service 7-21

7 CORBA Notification Service Administration
notification service persistent forwarder.
#
TMQFORWARD
 SRVGRP = QUE_GRP
 SRVID = 2
 CLOPT = "-- -i 2 -q TMNTSFWD_P"
 TMSYSEVT
 SRVGRP = NTS_GRP
 SRVID = 1
#
Start the user EventBroker. Pass in the environment file
so that the user EventBroker can find the "Story" fml field
definition. This allows the user EventBroker to perform
data filtering.
#
TMUSREVT
 SRVGRP = NTS_GRP
 SRVID = 2
 ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 1
 CLOPT = "-A -- -N -M"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -F"
#
Start the notification service server. Pass in the environment
file so that the notification server can perform data filtering.
The -s option must be specified since we are using
persistent events. Note that the -s option specifies the name
of the queue space as TMNTSQS. This name must match the name
of the queue space you created.
#
TMNTS
 SRVGRP = NTS_GRP
 SRVID = 3
 ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
 CLOPT = "-A -- -s TMNTSQS"
#
Start the notification service transient event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#

7-22 Using the CORBA Notification Service

Managing the Notification Service
TMNTSFWD_T
 SRVGRP = NTS_GRP
 SRVID = 4
 ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
#
Start the notification service persistent event forwarder.
Pass in the environment file so that the server can perform
data filtering.
#
TMNTSFWD_P
 SRVGRP = NTS_GRP
 SRVID = 5
 ENVFILE = "D:\tuxdir\EVENTS~1\ADVANC~1\envfile"
#
Start the ISL with -O since we're using callbacks to clients.
#
ISL
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -O -n //BEANIE:2363"
#---
*SERVICES

Managing the Notification Service

After you have deployed the Notification Service application, you may need to
perform the following administrative tasks on an on-going basis:

1. Synchronize databases.

2. Purge the system of dead subscriptions.

3. Monitor queue utilization.

4. Purge the queues of unwanted events.

5. Move or remove events from the error queue.
Using the CORBA Notification Service 7-23

7 CORBA Notification Service Administration
Synchronizing Databases

If you configure more than one EventBroker, then your Notification Service
subscription databases will have to be synchronized. Because the synchronization
process requires time—time that can impact event delivery—and increases network
traffic, you should not configure more than one EventBroker unless the event traffic
warrants it.

When you configure more than one EventBroker, you can configure time required to
synchronize the databases using the -P option on the TMUSREVT server. For more
information on how to set this option, see TMUSREVT(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

Note: The time required to synchronize the databases affects the elapsed time from
when a subscriber subscribes and when it receives events. It also affects the
elapsed time from when a subscriber unsubscribes and when it stops receiving
events.

Purging the System of Dead Subscriptions

A subscription dies in one of two ways: (1) the subscriber creates a persistent
subscription, shuts down without unsubscribing, and then does not restart and
reconnect to the Notification Service, or, (2) the subscriber creates a subscription that
never matches any event. While it is allowable for a subscriber to create a persistent
subscription and then shut down without unsubscribing, it is an error if the subscriber
does not periodically reconnect for the purpose of picking up accumulated events.
Because the Notification Service periodically attempts to deliver events that match
persistent subscriptions, such events accumulate while the subscriber is disconnected,
consume queue space, and waste system resources.

Subscriptions that will never match any events should not be created because they
serve no useful purpose. Also, subscriptions consume system resources because each
posted event must be compared against each subscription.

Using the ntsadmin commands listed in Table 7-2, you can view all subscriptions and
see how many events are currently in the pending queue and in the error queue for each
subscription. You can also remove subscriptions using a ntsadmin command or move
events from the error queue to the pending queue. For a description of the ntsadmin
utility, see “ntsadmin” on page 7-28.
7-24 Using the CORBA Notification Service

Managing the Notification Service
Although there is no way of automatically detecting a dead subscription, the ntsadmin
utility is helpful in determining when and if a subscription is dead.

Monitoring Queue Utilization

Queues are created with a fixed amount of space allocated to them. This space is
consumed as events accumulate in the queues. If the queues become full, subsequent
attempts to enqueue events will fail.

You use qmadmin or ntsadmin to monitor queue utilization (see qmadmin(1) in the
BEA Tuxedo Command Reference).

When the queue space was created to hold the pending events, the maximum number
of events that could be held by the queue space was specified. For example, in the
Advanced sample application, the maximum number of events for the TMNTSQS queue
space was set to 200 (see “Creating Event Queues” on page 7-7). With knowledge of
queue space capacity, you can use the ntsadmin pendevents command to determine
the number of events pending in the event queue. If the event queue is full or nearly
full, you may want to increase the setting for maximum number of events or increase
the number of event queues.

Table 7-2 ntsadmin Commands Summary

Command Usage

subscriptions Lists subscriptions in the subscription database.

rmsubscriptions Removes subscriptions for the subscription database.

pendevents Lists information about events in the pending events
queue. (For persistent subscriptions only.)

rmpendevents Removes events in the pending events queue. (For
persistent subscriptions only.)

errevents Lists events in the event error queue. (For persistent
subscriptions only.)

rmerrevents Removes events in the events error queue. (For
persistent subscriptions only.)
Using the CORBA Notification Service 7-25

7 CORBA Notification Service Administration
Note: Use the threshold command option (cmd) on the qmadmin qcreate command
to generate a warning when a queue is nearing capacity. For information on
this command, see qmadmin(1) in the BEA Tuxedo Command Reference.

Purging the Queues of Unwanted Events

You can purge events from either the pending queue or the error queue by using the
ntsadmin commands rmerrevents and rmpendevents.

Warning: After an event has been removed from the queue there is no way to
recover it. The event is gone and the subscribing application will never
receive the event.

Managing the Error Queue

After a preset number of attempts to deliver an event, the event is moved to the error
queue. Once on the error queue, the administrator must take some action to either
purge the event from the system, or move the event from the error queue back to the
pending queue. Purging of events is discussed in the previous section.

When you move an event from the error queue back to the pending queue, you are
requesting that the system resume delivery attempts of the event. Because failed
attempts to deliver events consume system resources, you should not do this unless you
have some reason to believe that the condition that prevented delivery before has been
corrected. The ntsadmin retryerrevents command is provided specifically to
move events back to the pending queue.
7-26 Using the CORBA Notification Service

Notification Service Administration Utility and Commands
Notification Service Administration Utility
and Commands

This topic includes the following sections:

ntsadmin Utility

ntsadmin Commands

Using the ntsadmin Utility

ntsadmin Utility

This section describes the ntsadmin utility.
Using the CORBA Notification Service 7-27

7 CORBA Notification Service Administration
ntsadmin

Synopsis BEA Tuxedo CORBA Notification Service administration command interpreter.

Syntax ntsadmin

Description The Notification Service includes an administration command interpreter, ntsadmin,
that provides commands to perform the following tasks for CORBA Notification
Service applications:

List subscriptions

Delete subscriptions

Display summary information about structured events on the pending and error
queues

Delete structured events on the pending and error queues

Move structured events from the error queue to the pending queue

Note: When you enter ntsadmin to start the program, if your application only has
transient subscriptions, the commands for persistent subscriptions are
disabled.

Note: The Notification Service must be running before you can use ntsadmin.

You can exit the ntsadmin program by entering a q (for quit) at the command prompt.
You can terminate the output from a command by pressing the Break key; the program
then prompts for a new command.

Output from ntsadmin is paginated according to the pagination command in use (see
the paginate command).

Note: The subscription command has different output depending on the setting of
the verbose command.

Security This utility can only be used by the system administrator.

See Also TMNTS, TMNTSFWD_T, TMNTSFWD_P, qmadmin
7-28 Using the CORBA Notification Service

Notification Service Administration Utility and Commands
ntsadmin Commands

Commands may be entered either by their full name or by an abbreviation (if available,
the abbreviation is listed below in parentheses following the full name), followed by
appropriate arguments. Arguments that appear in square brackets [] are optional;
arguments in curly braces {} indicate a selection from mutually exclusive options.
Each command offers the following options:

The ntsadmin commands are as follows:

subscriptions (sub) [{-i identifier |-n name |-t | -p}]
Lists subscriptions in the subscription database.

Note: The subscription command has different output depending on whether the
verbose mode is on or off (the verbose command is described below).
Listing 7-12 shows examples of subscription output with verbose on and
off.

Option Definition

[-i identifier] If specified, identifies the subscription that matches
identifier.

[-n name] If specified, identifies the subscription(s) with a subscription
name that matches name only. To specify names which match
the empty string (that is, subscriptions with no name), enclose an
empty string between quotes (“”).

Note: This option does not support the wildcard character (*)
so name must match the subscription name exactly.

[-t] If specified, designates subscriptions with a QoS of transient
only.

[–p] If specified, designates subscriptions with a QoS of persistent
only.
Using the CORBA Notification Service 7-29

7 CORBA Notification Service Administration
Listing 7-12 Subscription Command Output with Verbose Mode On and Off

> verbose on
Verbose mode is now on

> sub
 ID: 1000000006
 Name: marcello
 QoS: Transient
 Qspace: <N/A>
 Expression: stock trade\.quote
 Filter: stock_name %% 'BEAS' && price_per_share > 150

 ID: 1000000005
 Name: marcello
 QoS: Persistent
 Qspace: TMNTSQS
 Expression: stock trade\.sell
 Filter:

 ID: 1000000004
 Name: marcello
 QoS: Persistent
 Qspace: TMNTSQS
 Expression: stock trade\.buy
 Filter:

> verbose off
Verbose mode is now off

> sub
ID Name Expression
-- ---- ----------
1000000006 marcello [T] stock trade\.quote
1000000005 marcello [P] stock trade\.sell
1000000004 marcello [P] stock trade\.buy

rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
Removes subscriptions from the subscription database. This command
prompts for confirmation unless –y is used.

This command displays the number of subscriptions removed.

pendevents (pevt) [{-i identifier |-n name}]
Lists information about events in the pending events queue.
7-30 Using the CORBA Notification Service

Notification Service Administration Utility and Commands
rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
Removes events in the pending events queue. If –o is specified, all events that
do not currently have a corresponding subscription in the subscription
database will be removed.

This command prompts for confirmation unless –y is used and displays the
number of events removed.

errevents (eevt) [{-i identifier |-n name}]
Lists events in the events error queue.

rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
Removes events in the events error queue. If –o is specified, all events that do
not currently have a corresponding subscription in the subscription database
will be removed.

This command prompts for confirmation unless –y is used and displays the
number of events removed.

retryerrevents (reteevt) [{-i identifier |-n name}][-y]
Retries the events in the events error queue. This will move the events from
the error queue to the pending queue.

This command prompts for confirmation unless –y is used and displays the
number of events moved from the error queue to the pending queue.

quit (q)
Terminates the session.

echo (e) [{off |on}]
Echoes input command lines when set to on. If no input is given, then the
current setting is toggled and the new setting is printed. The initial setting is
off.

help (h) [{command |all}]
Prints help messages. If command is specified, the abbreviation, arguments
and description for that command are printed. all causes a description of the
commands to be displayed. Omitting all arguments causes the syntax of all
commands to be displayed.

paginate (page) [{off |on}]
Paginates output. If no input is given, the current setting is toggled and the
new setting is printed. The initial setting is on, unless either standard input or
standard output is a non-terminal device. Pagination may only be turned on
when both standard input and standard output are terminal devices. The shell
Using the CORBA Notification Service 7-31

7 CORBA Notification Service Administration
environment variable PAGER may be used to override the default command
used for paging output. The default paging command is the pager indigenous
to the native operating system environment; for example, the command pg is
the default on UNIX operating systems.

verbose (v) [{on | off }]
Produces output in verbose mode. If no option is given then the current setting
will be toggled, and the setting is printed. The initial setting is off.

! shellcommand
Use this command to escape to shell and execute shellcommand.

!!
Use this command to repeat the previous shell command.

#[text]
Use this command to designate the line as a comment.

<CR>
Use this command to repeat the previous command.

Using the ntsadmin Utility

This section provides examples of using the ntsadmin utility.

Listing 7-13 shows an example of using ntsadmin to move events from the error
queue back to the pending queue. The following steps are performed:

1. Look up all subscriptions for marcello.

2. Use the unique subscription_id to display information about events on the
error queue.

3. Move the events from the error queue to the pending queue.

Listing 7-13 Moving Events from the Error Queue to the Pending Queue

D:\smith\reg>ntsadmin
ntsadmin - Copyright (c) 1996-1999 BEA Systems, Inc.
Portions * Copyright 1986-1997 RSA Data Security, Inc.
All Rights Reserved.
Distributed under license by BEA Systems, Inc.
BEA Tuxedo is a registered trademark.
7-32 Using the CORBA Notification Service

Notification Service Administration Utility and Commands
INFO: /Q Qspace - TMNTSQS
INFO: /Q Device - D:\smith\reg\QUE (SITE1)

> subscriptions -n marcello
ID Name Expression
-- ---- ----------
1000000002 marcello [T] stock trade\.quote
1000000001 marcello [P] stock trade\.sell
1000000000 marcello [P] stock trade\.buy

> verbose off
Verbose mode is now off

> eevt -i 1000000003
ID Name Count
-- ---- -----
1000000003 marcello 1
> reteevt -i 1000000003 -y
1 event(s) retried

Listing 7-14 shows an example of using ntsadmin to remove subscriptions and purge
events.

Listing 7-14 Removing a Subscription

> rmsub -n BillJones -y
2 subscription(s) removed
> rmeevt -n marcello -y
1 event(s) removed
> rmpevt -n BillJones -y
No events removed

Listing 7-15 shows how to check events pending for a specific subscription.

Listing 7-15 Checking for Pending Events

> pevt -n marcello
ID Name Count
-- ---- -----
1000000003 marcello 1
Using the CORBA Notification Service 7-33

7 CORBA Notification Service Administration
Notification Servers

This section provides descriptions of the following servers:

TMTNS

TMNTSFWD_T

TMNTSFWD_P

The Notification Service also uses the following BEA Tuxedo system servers. For
descriptions of these servers, refer to the File Formats, Data Descriptions, MIBs, and
System Processes Reference.

TMSYSEVT(5)

TMUSREVT(5)

TMQFORWARD(5)

TMQUEUE(5)
7-34 Using the CORBA Notification Service

Notification Servers
TMNTS

Synopsis Processes requests for subscriptions and event postings.

Syntax TMNTS SRVGRP=”identifier” SRVID=”number”
 [CLOPT=”[-A] [servopts options]
 [--[-S queuespace]”]

Description TMNTS is a BEA Tuxedo-provided server that processes all requests for subscriptions
and event postings.

Parameter -S queuespace
The name of the queue space to use. This queue space must contain two
queues: TMNTSFWD_P and TMNTSFWD_E. This option is required for persistent
subscriptions only.

Note: If you plan to use subscriptions with a QoS of Persistent, you must create a
queue space, a queue for holding events, and an error queue before the system
is operational. The queue space name must match the queuespace name
specified using the CLOPT -S queuespace parameter for the TMNTS server.
The event queue must be named TMNTSFWD_P. The error queue must be named
TMNTSFWD_E.

It is possible to boot more then one TMNTS server to increase reliability and availability.

The TMNTS server must be part of a transactional group if events will be posted in the
context of a transaction.

Interoperability TMNTS must run on BEA WebLogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

Notes The TMNTS server relies on services provided by the TMUSREVT and TMSYSEVT servers.
Therefore, these servers must be booted before the system is operational. If transient
subscriptions are used, the TMNTSFWD_T server must also be booted before the system
is operational. If persistent subscriptions are used, the TMNTSFWD_P, TMQUEUE, and
TMQFORWARD servers must also be booted before the system is operational.

Example *SERVERS

TMNTS SRVGRP = NTS_GRP SRVID = 3
 CLOPT = "-A -- -s TMNTSQS"

See Also TMSYSEVT(5), TMUSREVT(5), TMQUEUE(5), TMQFORWARD(5), TMNTSFWD_P,
TMNTSFWD_T(5), UBBCONFIG(5)
Using the CORBA Notification Service 7-35

7 CORBA Notification Service Administration
TMNTSFWD_T

Synopsis Forwards events to transient subscribers.

Syntax TMNTSFWD_T SRVGRP=”identifier” SRVID=”number”
 [CLOPT=”[-A][--”]

Description TMNTSFWD_T is a BEA Tuxedo-provided server that forwards events to subscribers
who specified a QoS of Transient. There is no transaction context associated with
event delivery.

Note: It is possible to boot more then one TMNTSFWD_T server to increase reliability
and availability.

Interoperability TMNTS must run on BEA WebLogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

Notes The TMNTSFWD_T server relies on services provided by the TMNTS, TMUSREVT, and
TMSYSEVT servers. Therefore, these servers must be booted before the system is
operational.

Example *SERVERS

TMNTSFWD_T SRVGRP = SYS_GRP SRVID = 7

See Also TMSYSEVT(5), TMUSREVT(5), TMNTS(5), TMNTSFWD_P, UBBCONFIG(5). Also, see
“IPC Queue Space for Transient Subscriptions” on page 7-9.
7-36 Using the CORBA Notification Service

Notification Servers
TMNTSFWD_P

Synopsis Forwards events to persistent subscribers.

Synopsis TMNTSFWD_P SRVGRP=”identifier” SRVID=”number”
 CLOPT=”[-A] [--”]

Description TMNTSFWD_P is a BEA Tuxedo-provided server that forwards events to subscribers
who specified a QoS of persistent. There is no transaction context associated with
event delivery.

It is possible to boot more then one TMNTSFWD_P server to increase reliability and
availability.

Interoperability TMNTS must run on BEA WebLogic Enterprise version 5.0 or later or BEA Tuxedo 8.0
or later.

Notes The TMNTSFWD_P server relies on services provided by the TMNTS, TMUSREVT,
TMSYSEVT, TMQUEUE, and TMQFORWARD servers. Consequently, these servers must be
booted before the system is operational.

This server must be booted in a transactional group.

The number of TMNTSFWD_P servers booted should be the same as the number of
TMQFORWARD servers booted.

Example *SERVERS

TMNTSFWD_P SRVGRP = NTS_GRP SRVID = 5

See Also TMSYSEVT(5), TMUSREVT(5), TMNTS, TMNTSFWD_T, servopts(5), UBBCONFIG(5)
Using the CORBA Notification Service 7-37

7 CORBA Notification Service Administration
7-38 Using the CORBA Notification Service

Index

A
Advanced application process

Advanced sample application 6-15
Advanced sample application

building 6-6
changing protection on files 6-13
setting up the work directory 6-9
source files 6-9, 6-10, 6-11
starting the server application 6-15

B
BEA Administration Control Panel

IPC Resources page 7-14
BEA Tuxedo system servers 1-4
BEAWrapper callback

object 3-11
Boolean expression operators 2-14
Bootstrap Object

service IDs 2-4
building

C++ joint client/server applications 3-
17, 4-19

buildobjclient command 3-19, 4-21

C
C++ joint client/server applications

compiling 3-17, 4-19
threading considerations 3-16

callback object

creating 3-11, 4-14
persistent 7-5
transient 7-5

Callback sample application
environment variables 6-8
JAVA_HOME directory path 6-8
required environment variables 5-5, 6-7

Channel Factory 2-3
client stub files 3-17, 4-20
compiling

C++ joint client/server applications 3-
17, 4-19

ConsumerAdmin object 4-12
copy sample files 5-6
copying sample files 6-9
COS Structured Events 2-5

filterable body 2-6
fixed header 2-6
remaining body 2-7
variable header 2-6

CosNotification Service API
overview 2-27
Push Consumer class 2-64
service classes

descriptions 2-31
model 2-28

customer support contact information xi

D
data filtering 2-14, 6-6
Using the CORBA Notification Service I-1

configuring 7-3
directory location of source files

Advanced sample application 6-9
Introductory sample application 5-7

directory path 5-5, 6-8
documentation, where to find it x

E
environment variables 5-5

Callback sample application 5-5, 6-7
JAVA_HOME 5-5, 6-7
TUXDIR 5-5, 5-6, 6-7, 6-9

error queue 7-26
event channel

finding 2-3
getting 3-3, 4-3

event design 2-7, 3-2, 4-2
event queues

creating 7-7
events

creating and posting 3-4, 4-4
news 6-6
posting 2-11, 3-2
receiving 2-11
subscribing 3-6
system 2-11

example 2-12
user 2-11

example 2-12
exception

CORBA::TRANSIENT 2-3

F
Field Manipulation Language (FML)

buffer 2-10
creating field table files 2-8
field table definition

files 7-3
field table files 2-10

filenames 2-10
FML32 2-10

file protections
Advanced sample application 6-13
Introductory sample application 5-10

FilterFactory object 4-12
FML field table files 2-10
FML field tables 1-4
FML filename 2-10

H
host and port

number requirements 7-5

I
idl command 3-17
IDL files 3-18
Introductory application process

Introductory sample application 5-12
Introductory sample application

building 5-4
changing protection on files 5-10
description 5-1
setting up the work directory 5-6
source files 5-7
starting the server application 5-12

IPC Helper (TUXIPC) 7-14
ISL 7-18

J
JAVA_HOME parameter

Callback sample application 5-5, 6-7

M
makefile

executing 5-12, 6-15
summary 5-11, 6-14
I-2 Using the CORBA Notification Service

N
news events 6-6
Notification servers 1-4, 7-34

TMNTSFWD_P 7-34
TMNTSFWD_T 7-34
TMQFORWARD 7-34
TMQUEUE 7-34
TMSYSEVT 7-34
TMTNS 7-34
TMUSREVT 7-34

Notification Service
application build

requirements 4-21
Bootstrap object 2-4
build requirements 3-18
compiling and running 4-19
configuring 7-2
defined 1-1
event design 2-7
exception symbols 2-66
managing 7-23
minor codes 2-66
product features 1-4
programming model 1-2
TUXCONFIG file 7-17
UBBCONFIG file 7-17

Notification Service system
components 1-2

ntsadmin
commands 7-29
utility

description 7-28
using 7-32

P
Performance Monitor screen 7-16
printing product documentation x

Q
qmadmin command 7-11
Quality of Service (QoS) 2-16

persistent 1-4, 2-2
persistent subscription 1-4, 2-2
setting 2-2
subscription

persistent
properties 2-2

transactions 2-4
transient 1-4, 2-2
transient subscription 1-4

properties 2-3
transient versus persistent 2-16

queue
creating a 7-12
managing error queue 7-26
monitoring space 7-25
purging unwanted events 7-26

queue space
configuring 7-11
creating a device 7-11

R
related information xi
Reporter application 5-2, 6-4

post an event 6-18
retry limit 1-4

S
server applications

starting
Advanced sample application 6-15
Introductory sample application 5-

12
servers 7-34
Setting IPC Parameters 7-14
Simple Events API 2-17

Channel Factory interface 2-25
Using the CORBA Notification Service I-3

Channel interface 2-18
skeleton files 3-17, 4-20
Subscriber application 5-2

news subscription 6-4
shutdown subscription 6-4
subscribe to event 6-17

subscription
cancellation 2-3
checking successful delivery 2-3
cleanup mechanism 2-3
creating 4-16
parameters 2-12

data_filter 2-13
domain_type 2-13
push_consumer 2-16
QoS 2-16
subscription_name 2-13
type_name 2-13

persistent
/Q queue size parameter 7-9
creating 3-12
creating a transaction log 7-7
creating an event queue 7-7
IPC queue space 7-8
properties 2-2

purging dead subscriptions 7-24
retry limit 1-4
synchronizing databases 7-24
transient

creating 3-12, 4-17
IPC queue space 7-8
properties 2-3

viewing with ntsadmin 7-24
support

technical xi

T
TMFFNAME application process

Advanced sample application 6-15
Introductory sample application 5-12

TMNTS 1-4, 7-18, 7-35, 7-36
TMNTSFWD_P 1-4, 7-18, 7-37
TMNTSFWD_T 1-4, 7-18, 7-36
TMQFORWARD 1-4, 7-18
TMQUEUE 1-4, 7-18
TMSUSREVT 1-4, 7-35, 7-36
TMSYSEVT 1-4, 7-35, 7-36
TMSYSEVT application process

Advanced sample application 6-15
Introductory sample application 5-12

TMUSREVT 7-18
transaction log

creating 7-7
transactions

QoS 2-4
TUXCONFIG file

creating 7-17
TUXDIR parameter

Callback sample application 5-5, 6-7, 6-
8

TUXIPC 7-14

U
UBBCONFIG file 1-4

creating 7-17
I-4 Using the CORBA Notification Service

	Contents
	About This Document
	1. Overview
	2. CORBA Notification Service API Reference
	3. Using the BEA Simple Events API
	4. Using the CosNotification Service API
	5. Building the Introductory Sample Application
	6. Building the Advanced Sample Application
	7. CORBA Notification Service Administration
	Index

	1 Overview
	Introduction
	Functional Overview
	Figure 1�1 Notification Service Model

	Product Components

	2 CORBA Notification Service API Reference
	Introduction
	Quality of Service
	Persistent Subscriptions
	Transient Subscriptions

	Obtaining the Channel Factory
	Using Transactions
	Structured Event Fields, Types, and Filters
	Figure 2�1 Structured Event

	Designing Events
	Listing 2-1 Event Design

	Creating FML Field Table Files for Events
	Table 2�1 Supported CORBA Any Types�
	Listing 2-2 Data Filtering FML Field Table File

	Interoperability with BEA Tuxedo Applications
	Posting Events
	Receiving Events

	Parameters Used When Creating Subscriptions
	subscription_name
	domain_type
	type_name
	data_filter
	Table 2�2 Boolean Expression Operators

	Listing 2-3 Data Filtering Requirements
	push_consumer
	Table 2�3 When to Use Transient Versus Persistent Object References for Joint Client/Servers

	qos (quality of service)

	BEA Simple Events API
	Figure 2�2 BEA Simple Events Interfaces
	TOBJ_SimpleEvents::Channel Interface

	Channel::subscribe
	CORBA IDL
	Parameters
	Exceptions
	CORBA::BAD_PARAM
	CORBA::IMP_LIMIT
	CORBA::INV_OBJREF

	Description
	Return Value
	Examples

	Channel::unsubscribe
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Examples

	Channel::push_structured_event
	CORBA IDL
	Parameter
	notification

	Exceptions
	CORBA_IMP_LIMIT

	Description
	Examples

	Channel::exists
	CORBA IDL
	Parameter
	subscription_id

	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	TOBJ_SimpleEvents::ChannelFactory Interface

	Channel_Factory::find_channel
	CORBA IDL
	Parameter
	Exceptions
	CORBA::BAD_PARAM

	Description
	Return Value
	Examples
	CosNotification Service API
	Overview of Supported CosNotification Service Classes
	Figure 2�3 Implemented CosNotification Service Classes

	Detailed Descriptions of CosNotification Service Classes
	CosNotifyFilter::Filter Class

	CosNotifyFilter::Filter::add_constraints
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidConstraint
	CORBA::BAD_PARAM
	CORBA_IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyFilter::Filter::destroy
	Synopsis
	OMG IDL
	Exceptions
	CORBA::BAD_PARAM

	Description
	CosNotifyFilter::FilterFactory Class

	CosNotifyFilter::FilterFactory::create_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyFilter::InvalidGrammar

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::StructuredProxyPushSupplier Class

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: connect_structured_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosEventChannelAdmin::TypeError
	CORBA::INV_OREF
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST
	CosEventChannelAdmin::AlreadyConnected

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::set_qos
	Synopsis
	OMG IDL
	Exceptions
	UnsupportedQoS
	ORBA::IMP_LIMIT

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::add_filter
	Synopsis
	OMG IDL
	Exceptions
	CORBA::IMP_LIMIT
	CORBA::OBJECT_NOT_EXIST

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::get_filter
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::FilterNotFound

	Description
	Restrictions
	a. Filter object references that are returned from this operation cannot be used in comparison op...
	b. Filter object references returned by this operation can be used by the CosNotifyFilter::Filter...

	Return Value
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier:: disconnect_structured_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CORBA::OBJECT_NOT_EXIST

	Description
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushSupplier::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::StructuredProxyPushConsumer Class

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: connect_structured_push_supplier
	Synopsis
	OMG IDL
	Exception
	CosEventChannelAdmin::AlreadyConnected

	Description
	1. Make a proxy.
	2. Use this operation to connect to the Notification Service and pass in a NIL.
	3. Post events.
	4. Before exiting the poster program, disconnect.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected
	CORBA::IMP_LIMIT

	Descriptions
	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Descriptions
	1. Make a proxy.
	2. Connect and disconnect on every run of the poster application.

	Examples

	CosNotifyChannelAdmin::StructuredProxyPushConsumer::MyType
	Synopsis
	OMG IDL
	Description
	CosNotifyChannelAdmin::ConsumerAdmin Class

	CosNotifyChannelAdmin::ConsumerAdmin:: obtain_notification_push_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::ConsumerAdmin::get_proxy_supplier
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ProxyNotFound

	Descriptions
	Return Value
	Examples
	CosNotifyChannelAdmin::SupplierAdmin Class

	CosNotifyChannelAdmin::SupplierAdmin:: obtain_notification_push_consumer
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::AdminLimitExceeded
	CORBA::IMP_LIMIT

	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannel Class

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_consumer_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel:: ConsumerAdmin default_supplier_admin
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples

	CosNotifyChannelAdmin::EventChannel::default_filter_factory
	Synopsis
	OMG IDL
	Description
	Return Value
	Examples
	CosNotifyChannelAdmin::EventChannelFactory Class

	CosNotifyChannelAdmin::EventChannelFactory::get_event_channel
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyChannelAdmin::ChannelNotFound

	Description
	Return Value
	Examples
	CosNotifyComm::StructuredPushConsumer Interface

	CosNotifyComm::StructuredPushConsumer::push_structured_event
	Synopsis
	OMG IDL
	Exceptions
	CosEventComm::Disconnected

	Description
	Examples

	CosNotifyComm::StructuredPushConsumer:: disconnect_structured_push_consumer
	Synopsis
	OMG IDL
	Description
	Examples

	CosNotifyComm::StructuredPushConsumer::Offer_change
	Synopsis
	OMG IDL
	Exceptions
	CosNotifyComm::InvalidEventType

	Description
	Examples
	Exception Minor Codes
	Table 2�4 Tobj_Events Exception Minor Codes�
	Table 2�5 Tobj_Notification Exception Minor Codes�

	3 Using the BEA Simple Events API
	Development Process
	Table 3�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 3-1 Getting the Event Channel (C++)
	Listing 3-2 Getting the Event Channel (Java)

	Creating and Posting Events
	1. Creates an event and sets the domain name and type name. In the code samples, the domain name ...
	2. Adds a field to the event’s filterable data to contain the story, sets the name of the added f...
	3. Uses the push_structured_event operation to post the event to the Notification Service.
	Listing 3-3 Creating and Posting the Event (C++)
	Listing 3-4 Creating and Posting the Event (Java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 3-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 3-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 3-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel
	Creating a Callback Object
	1. Create a callback object. Callback objects can be implemented using either the BEAWrapper Call...
	2. Create the servant.
	3. Create an object reference to the callback servant.
	Listing 3-8 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...
	Listing 3-9 Sample Code for Creating a Callback Object With Transient Object Reference (Introduct...

	Creating a Subscription
	1. Set the subscription’s quality of service (QoS) to either transient or persistent.
	2. Determine the subscription_name (optional), domain_name, type_name, and data_filter (optional).
	3. Create the subscription. The subscription sets the domain_name, type_name, and data_filter (op...
	Listing 3-10 Creating a Transient Subscription (C++)
	Listing 3-11 Creating a Transient Subscription (Java)
	Listing 3-12 Creating a Persistent Subscription (Advanced Subscriber.cpp)
	Listing 3-13 Creating a Persistent Subscription (Advanced Subscriber.java)
	Threading Considerations for C++ Joint Client/Server Applications

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 3�2 idl Command Requirements
	Table 3�3 IDL Files Required by Notification Service Applications

	Building and Running Applications
	Table 3�4 Application Build Requirements�
	Listing 3-14 C++ Reporter Application Build and Run Commands (Microsoft Windows)
	Listing 3-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 3-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 3-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\tuxdir...
	Listing 3-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\ C:\tuxdir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\tu...

	4 Using the CosNotification Service API
	Development Process
	Table 4�1 Development Process�

	Designing Events
	Step 1: Writing an Application to Post Events
	Getting the Event Channel
	Listing 4-1 Getting the Event Channel (Reporter.cpp)
	Listing 4-2 Getting the Event Channel (Reporter.java)

	Creating and Posting Events
	Listing 4-3 Creating and Posting the Event (Reporter.cpp)
	Listing 4-4 Creating and Posting the Event (Reporter.java)

	Step 2: Writing an Application to Subscribe to Events
	Implementing the CosNotifyComm::StructuredPushConsumer Interface
	Listing 4-5 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i.h)
	Listing 4-6 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...
	Listing 4-7 Sample CosNotifyComm::StructuredPushConsumer Interface Implementation (NewsConsumer_i...

	Getting the Event Channel, ConsumerAdmin Object, and Filter Factory Object
	Listing 4-8 Getting the Event Channel and ConsumerAdmin and Filter Factory Objects (Subscriber.cpp)
	Listing 4-9 Getting the Event Channel (Subscriber.java)

	Creating a Callback Object
	1. Creating a callback wrapper object. This can be implemented using either the BEAWrapper Callba...
	2. Creating the servant.
	3. Creating an object reference to the callback servant.
	Listing 4-10 Sample Code for Creating a Callback Object with Transient Object Reference (Introduc...
	Listing 4-11 Sample Code for Creating a Callback Object With Transient Object Reference (Introduc...

	Creating a Subscription
	1. Create a notification proxy push supplier and use it to create a StructuredProxySupplier object.
	2. Set the subscription’s Quality of Service (QoS). You can set the QoS to transient or persistent.
	3. Create a filter object and assign the domain_name, type_name, and data_filter (optional) to it.
	4. Add the filter to the proxy.
	5. Connect to the proxy passing in the subscription’s callback object reference.
	Listing 4-12 Creating a Transient Subscription
	Listing 4-13 Creating a Transient Subscription (Introductory Subscriber.java)

	Step 3: Compiling and Running Notification Service Applications
	1. Generate the required client stub and skeleton files to define interfaces between the Notifica...
	2. Compile the application code and link against the skeleton and client stub files.
	3. Build the application.
	4. Run the application.
	Generating the Client Stub and Skeleton Files
	Table 4�2 idl Command Requirements
	Table 4�3 IDL Files Required by Notification Service Applications

	Compiling and Linking the Application Code
	Table 4�4 Application Build Requirements�
	Listing 4-14 C++ Reporter Application Build and Run Commands
	Listing 4-15 C++ Subscriber Application Build and Run Commands (Microsoft Windows)
	Listing 4-16 C++ Subscriber Application Build and Run Commands (UNIX)
	Listing 4-17 Java Reporter Application Link, Build, and Run Commands
	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar Reporter.java
	# Combine the java .class files into the java archive (JAR) file. jar cf reporter.jar Reporter.cl...
	# Run the reporter application. java -DTOBJADDR=//BEANIE:2359 -classpath \ reporter.jar;C:\tuxdir...
	Listing 4-18 Java Subscriber Application Link, Build, and Run Commands

	# Run the idltojava command. idltojava -IC:\tuxdir\include C:\tuxdir\include\CosEventComm.idl \ C...
	# Compile the java files. javac -classpath C:\tuxdir\udataobj\java\jdk\m3envobj.jar;\ C:\tuxdir\u...
	# Combine the java .class files into the java archive (JAR) file. jar cf subscriber.jar Subscribe...
	# Run the subscriber application. java -DTOBJADDR=//BEANIE:2359 -classpath \ subscriber.jar;C:\tu...

	5 Building the Introductory Sample Application
	Overview
	Figure 5�1 Introductory Sample Application Components

	Building and Running the Introductory Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file i...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 5�1 Required Environment Variables for the Introductory Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Introductory Sample Application into a Work Directory
	Table 5�2 Files Located in the introductory_sample_c++ Directory�
	Table 5�3 Files Located in the introductory_cos_java Directory
	Table 5�4 Other Files the Introductory Sample Application Uses�

	Changing the Protection Attribute on the Files for the Introductory Sample Application
	1. In a DOS window, change (cd) to your work directory.
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory.
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Introductory Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file...
	3. Includes the makefile.inc command file. This file builds the is_reporter and is_subscriber exe...
	4. Includes the introductory.inc command file. This file creates the UBBCONFIG file and executes ...

	Executing the Makefile

	Starting the Introductory Sample Application
	1. To boot the BEA Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Introductory Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber), the following prompts are di...
	2. The Subscriber application creates a subscription then prints “Ready” when it is ready to rece...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompts are displ...
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. To send and receive more news stories, start another subscriber, then report another story. Wh...

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	6 Building the Advanced Sample Application
	Overview
	Figure 6�1 Advanced Sample Application Components

	Building and Running the Advanced Sample Application
	1. Verify that the "TUXDIR" and “JAVA_HOME” environment variables are set to the correct director...
	2. Copy the files for the Introductory sample application into a work directory.
	3. Change the protection attributes on the files to grant write and execute access.
	4. For UNIX, ensure the make file is in your path. For Microsoft Windows, ensure the nmake file i...
	5. Set the application environment variables.
	6. Build the sample.
	7. Boot the system.
	8. Run the Subscriber and Reporter applications.
	9. Shut down the system.
	10. Restore the directory to its original state.
	Verifying the Settings of the Environment Variables
	Table 6�1 Required Environment Variables for the Callback Sample Application
	1. From the Start menu, select Settings.
	2. From the Settings menu, select the Control Panel.
	3. Click the System icon.
	4. Click the Environment tab.
	5. Check the setting for TUXDIR and JAVA_HOME.
	1. On the Environment page in the System Properties window, click the environment variable you wa...
	2. Enter the correct information for the environment variable in the Value field.
	3. Click OK to save the changes.

	Copying the Files for the Advanced Sample Application into a Work Directory
	Table 6�2 Files Located in the advanced_simple_java Notification Directory
	Table 6�3 Files Located in the advanced_cos_c++ Notification Directory
	Table 6�4 Other Files That the Advanced Sample Uses�

	Changing the Protection Attribute on the Files for the Advanced Sample Application
	1. Change (cd) to your work directory
	2. prompt>attrib -r drive:\workdirectory*.*
	1. Change (cd) to your work directory
	2. prompt>/bin/ksh
	3. ksh prompt>chmod u+w /workdirectory/*.*

	Setting Up the Environment
	Building the Advanced Sample Application
	Makefile Summary
	1. Checks that the set environment command (setenv.cmd) has been run. If the environment variable...
	2. Includes the common.nt (for Microsoft Windows) or common.mk (for UNIX) command file. This file...
	3. Includes the makefile.inc command file. This file builds the is_reporter, is_subscriber and AS...
	4. Includes the advanced.inc command file. This file executes tmadmin and qadmin commands to crea...

	Executing the Makefile

	Starting the Advanced Sample Application
	1. To boot the BEA Tuxedo system:
	2. To start the Subscriber application:
	3. To start the Reporter application, open another window and enter the following:

	Using the Advanced Sample Application
	Using the Subscriber Application to Subscribe to Events
	1. When you start the Subscriber application (prompt>is_subscriber) for the first time, the follo...
	2. You may type in any string for the news category, that is, there is no fixed list of news cate...

	Using the Reporter Application to Post Events
	1. When you start the Reporter application (prompt> is_reporter), the following prompt is displayed:
	2. Enter r to report news. The following prompt is displayed:
	3. Enter the news category. It must match exactly the category you typed on the Subscriber applic...
	4. Enter your story. It can span multiple lines. Finish the story by typing a period only (".") o...
	5. If you choose the “s” option, a Shutdown event will be posted and received by all the subscrib...
	6. If you choose the “c” option, a Cancel event will be posted and received by all the subscriber...
	7. When you are finished reporting news, choose the Exit (e) option.

	Shutting Down the System and Cleaning Up the Directory
	1. To shut down the system, in any window, type:
	2. To restore the directory to its original state, in any window, type:

	7 CORBA Notification Service Administration
	Introduction
	Configuring the Notification Service
	Configuring Data Filters
	1. Create the BEA Tuxedo ATMI FML field table definition file that describes the fields on which ...
	2. In the UBBCONFIG file, specify where the FML field table definition file is located so that wh...
	Listing 7-1 Sample Data Filtering Using the BEA Simple Events API (C++)
	Listing 7-2 Data Filtering FML Field Table File
	Listing 7-3 Envfile Specification for Data Filtering (envfile) (Microsoft Windows)
	Listing 7-4 Specifying the FML Field Definitions File in the UBBCONFIG File

	Setting the Host and Port
	Listing 7-5 Setting Host and Port in Java Subscriber Applications

	Creating a Transaction Log
	Listing 7-6 Creating a Transaction Log (createtlog) (Microsoft Windows)

	Creating Event Queues
	1. Create a device on disk for the queue space.
	2. Configure a queue space.
	3. Create the queues.
	Determining Space Parameters for Transient and Persistent Subscriptions
	IPC Queue Space for Transient Subscriptions
	1. Determine how many events may be in the pipeline for transient subscriptions; that is, how man...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine how many transient forwarding servers you would like to start, most likely one or tw...
	4. Determine how much IPC queue space you will need to hold your transient events. The amount of ...
	5. Configure the IPC queue size to that number by changing the entries in the system registry. Ho...

	/Q Queue Size Parameter Persistent Subscriptions
	1. Determine how many events may be in the pipeline for persistent subscriptions; that is, how ma...
	2. Determine the size of your events. For purposes of this discussion, we will assume that they a...
	3. Determine the size your /Q queues need to be to hold your persistent events (both for your pen...
	a. Determine the size of a disk page. This is platform-specific. For example, on Microsoft Window...
	b. Determine how many disk pages you will need to store one event rounding up. For example, if yo...
	c. Determine how many disk pages you will need for your events. For example, if you want to allow...
	d. Determine how many disk pages you will need for your qspace. This is the number of disk pages ...
	e. Determine how many pages you will need for your qspace device. This is the number of pages you...
	4. When you use qmadmin to create the qspace for your persistent events, the first phase is to cr...

	Creating a Device on Disk for the Queue Space
	Listing 7-7 Creating a Device on Disk for Queue Space (UNIX)

	Configuring a Queue Space
	Listing 7-8 Creating Queue Space
	Number of messages in queue space:500
	Size of queue space in disk pages:1050

	Creating the Queues
	Listing 7-9 Creating Queues

	Setting IPC Parameters on Microsoft Windows
	1. Click Start—>Settings—>Control Panel. The Microsoft Windows Control Panel is displayed (Figure...
	Figure 7�1 Microsoft Windows Control Panel
	2. Click the BEA Administration icon. The BEA Administration Control Panel is displayed (Figure�7...
	3. Click on the IPC Resources tab. The IPC Resources Control Panel portion of the BEA Administrat...

	Figure 7�2 BEA Tuxedo Software for Microsoft Windows IPC Resources Control Panel
	1. In the Current Resource Default box, click the Use Default IPC Settings check box to clear it.
	2. Click the insert box.
	3. Enter the name of your machine and press Enter.
	4. Click the fields next to the IPC resources you want to set, enter the desired values, and clic...
	5. Click OK to close the Control Panel.

	Figure 7�3 BEA Tuxedo Software for Microsoft Windows Performance Monitor

	Creating the UBBCONFIG File and the TUXCONFIG File
	Table 7�1 Configuration Requirements for Transient and Persistent Subscriptions
	Listing 7-10 The Introductory Sample UBBCONFIG File
	Listing 7-11 The Advanced Sample UBBCONFIG File

	Managing the Notification Service
	1. Synchronize databases.
	2. Purge the system of dead subscriptions.
	3. Monitor queue utilization.
	4. Purge the queues of unwanted events.
	5. Move or remove events from the error queue.
	Synchronizing Databases
	Purging the System of Dead Subscriptions
	Table 7�2 ntsadmin Commands Summary�

	Monitoring Queue Utilization
	Purging the Queues of Unwanted Events
	Managing the Error Queue

	Notification Service Administration Utility and Commands
	ntsadmin Utility

	ntsadmin
	Synopsis
	Syntax
	Description
	Security
	See Also
	ntsadmin Commands
	subscriptions (sub) [{-i identifier |-n name |-t | -p}]
	Listing 7-12 Subscription Command Output with Verbose Mode On and Off
	rmsubscriptions (rmsub) [{-i identifier |-n name |-t | -p]}[-y]
	pendevents (pevt) [{-i identifier |-n name}]
	rmpendevents (rmpevt) [{-i identifier |-n name |-o}][-y]
	errevents (eevt) [{-i identifier |-n name}]
	rmerrevents (rmeevt) [{-i identifier |-n name |-o}][-y]
	retryerrevents (reteevt) [{-i identifier |-n name}][-y]
	quit (q)
	echo (e) [{off |on}]
	help (h) [{command |all}]
	paginate (page) [{off |on}]
	verbose (v) [{on | off }]
	! shellcommand
	!!
	#[text]
	<CR>

	Using the ntsadmin Utility
	1. Look up all subscriptions for marcello.
	2. Use the unique subscription_id to display information about events on the error queue.
	3. Move the events from the error queue to the pending queue.
	Listing 7-13 Moving Events from the Error Queue to the Pending Queue
	Listing 7-14 Removing a Subscription
	Listing 7-15 Checking for Pending Events

	Notification Servers

	TMNTS
	Synopsis
	Syntax
	Description
	Parameter
	-S queuespace

	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_T
	Synopsis
	Syntax
	Description
	Interoperability
	Notes
	Example
	See Also

	TMNTSFWD_P
	Synopsis
	Synopsis
	Description
	Interoperability
	Notes
	Example
	See Also
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	M
	N
	P
	Q
	R
	S
	T
	U

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

