
BEA
 Tuxedo®

Introducing
BEA Tuxedo ATMI
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document
 What You Need to Know ... vii
e-docs Web Site... viii
How to Print the Document... viii
Related Information... viii
Contact Us!.. ix
Documentation Conventions ...x

1. BEA Tuxedo System Fundamentals
What Is the BEA Tuxedo System?.. 1-1

Architectural Features .. 1-2
Administrative Features ... 1-3
Programming Features ... 1-3

Anatomy of the Client/Server Model .. 1-4
Characteristics of Client/Server Architecture .. 1-4
Differences Between 2-Tier and 3-Tier Client/Server Architectures......... 1-6
Client/Server Variations to Suit Your Needs ... 1-8

How the BEA Tuxedo System Fits into the Client/Server Model..................... 1-8
What Is a BEA Tuxedo Client? ... 1-10
What Is a BEA Tuxedo Server? .. 1-11
Application Processing Services Provided by the BEA Tuxedo System........ 1-11
Administrative Services Provided by the BEA Tuxedo System 1-12

2. BEA Tuxedo ATMI Architecture
Basic Architecture of the BEA Tuxedo ATMI Environment............................ 2-2
What You Can Do Using the ATMI.. 2-4
What Are the BEA Tuxedo ATMI Messaging Paradigms? 2-9
Introducing BEA Tuxedo ATMI iii

Request/Response Communication .. 2-10
Conversational Communication ... 2-12
Message Queuing Communication... 2-13
Publish-and-Subscribe Communication ... 2-14
Unsolicited Communication... 2-15

What Are Nested and Forwarded Requests? ... 2-17
Nested Requests.. 2-18
Forwarded Requests ... 2-19

How Does BEA Tuxedo Process Messages?... 2-21
Benefits of Service Request Processing ... 2-23

What Are Typed Buffers?.. 2-23
Characteristics of Buffer Types.. 2-24

What Is Data Compression? .. 2-25
What Is Data-Dependent Routing?.. 2-25

Uses of Data-Dependent Routing... 2-26
Example of Data-Dependent Routing with a Horizontally Partitioned

Database .. 2-27
Example of Data-Dependent Routing with Rule-Based Servers.............. 2-28
Example of Data-Dependent Routing with a Distributed Application..... 2-29

What Are Encoding and Decoding of Data? ... 2-31
What Is Data Encryption?.. 2-31
What Is Data Marshalling? .. 2-32
What Is Load Balancing? .. 2-33
What Is Message Prioritization?.. 2-35
What Is Meant by Naming?... 2-36

Naming Services... 2-36
Naming Events ... 2-37

3. BEA Tuxedo System Administration and Server Processes
BEA Tuxedo ATMI Infrastructure .. 3-2

Tuxedo Domain .. 3-2
Tuxedo Configuration File ... 3-4
Tuxedo Master Machine... 3-4
Tuxedo TUXCONFIG Environment Variable ... 3-5
Tuxedo TUXDIR Environment Variable ... 3-5
iv Introducing BEA Tuxedo ATMI

Tuxedo Bulletin Board ... 3-5
BEA Tuxedo Administration Processes .. 3-6

What Is the Role of the Bulletin Board? .. 3-7
What Is the Role of the Bulletin Board Liaison? 3-7
What Is the Distinguished Bulletin Board Liaison (DBBL)? 3-8

BEA Tuxedo Workstation Servers .. 3-9
What is the Role of the Workstation Listener? .. 3-10
What is the Role of the Workstation Handler? .. 3-11

BEA Tuxedo Authentication Server.. 3-11
BEA Tuxedo Transaction Management Server... 3-12

Coordinating Operations .. 3-13
Tracking Participants with a Transaction Log ... 3-13

BEA Tuxedo Message Queuing Servers ... 3-14
What is the Role of the TMQUEUE Server? ... 3-14
What is the Role of the TMQFORWARD Server?.................................. 3-15

BEA Tuxedo Publish-and-Subscribe Servers.. 3-16
BEA Tuxedo Domains (Multiple-Domain) Servers.. 3-18

What is the Role of the DMADM Server?... 3-20
What is the Role of the GWADM Server?... 3-20
What is the Role of the Domain Gateway Servers? 3-20

System Services Available to Different Types of BEA Tuxedo Configurations
3-22

4. BEA Tuxedo Management Tools
BEA Tuxedo Tool Architecture .. 4-1

Tool Interfaces with the MIB ... 4-3
MIB Interfaces with Other System Components 4-3

Management Operations Using the BEA Tuxedo Administration Console...... 4-4
Benefits of Using the BEA Tuxedo Administration Console 4-4
Browser Requirements ... 4-5
Limitations ... 4-6

Exploring the Main Menu of the BEA Tuxedo Administration Console.......... 4-6
Understanding the Tree View .. 4-8
Using the Configuration Tool .. 4-8
Using the Toolbar... 4-9
Introducing BEA Tuxedo ATMI v

Managing Operations Using Command-Line Utilities.................................... 4-10
Configuring Your Application Using Command-Line Utilities............... 4-11
Operating Your Application Using Command-Line Utilities 4-12
Administering Your Application Queues Using Command-Line Utilities

4-12
Administering Your Domains Application Using Command-Line Utilities...

4-13
Managing Operations Using the MIB ... 4-14

AdminAPI... 4-15
Types of MIB Users ... 4-16
Classes, Attributes, and States in the MIB ... 4-17

Managing Events Using EventBroker ... 4-17
Differences Between Application-Defined and System-Defined Events. 4-18
Preparing an Application for Event Monitoring....................................... 4-18
Subscribing to Events ... 4-19
vi Introducing BEA Tuxedo ATMI

About This Document

This document provides a general introduction to the BEA Tuxedo
Application-to-Transaction Monitor Interface (ATMI) programming environment.

This document covers the following topics:

Chapter 1, “BEA Tuxedo System Fundamentals,” provides an overview of the
BEA Tuxedo programming environment.

Chapter 2, “BEA Tuxedo ATMI Architecture,” describes the basic architectural
elements of a BEA Tuxedo ATMI environment, including external interfaces to
the environment, the ATMI layer, the MIB, system services, and the ATMI
environment’s interface with standards-compliant resource managers.

Chapter 3, “BEA Tuxedo System Administration and Server
Processes,”describes the core BEA Tuxedo system administration and server
processes that together form the infrastructure for ATMI applications built on
the BEA Tuxedo system.

Chapter 4, “BEA Tuxedo Management Tools,” describes the BEA Tuxedo
administration processes available to users for managing Tuxedo applications.

 What You Need to Know

This document is intended for programmers who want to familiarize themselves with
the BEA Tuxedo programming environment and create distributed ATMI applications
using the BEA Tuxedo system.
Introducing BEA Tuxedo ATMI vii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Related Information

The following BEA Tuxedo documents contain information that is relevant to
Introducing BEA Tuxedo ATMI:

BEA Tuxedo Product Overview

BEA Tuxedo Interoperability
viii Introducing BEA Tuxedo ATMI

http://e-docs.bea.com
http://www.adobe.com

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

For more information about ATMI, transaction processing, and configuring and
administering the BEA Tuxedo ATMI environment, see Bibliography

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.1 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by
using the contact information provided on the Customer Support Card, which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
Introducing BEA Tuxedo ATMI ix

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
x Introducing BEA Tuxedo ATMI

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Introducing BEA Tuxedo ATMI xi

xii Introducing BEA Tuxedo ATMI

CHAPTER
1 BEA Tuxedo System
Fundamentals

The following sections provide an overview of the BEA Tuxedo programming
environment:

What Is the BEA Tuxedo System?

Anatomy of the Client/Server Model

How the BEA Tuxedo System Fits into the Client/Server Model

What Is a BEA Tuxedo Client?

What Is a BEA Tuxedo Server?

Application Processing Services Provided by the BEA Tuxedo System

Administrative Services Provided by the BEA Tuxedo System

What Is the BEA Tuxedo System?

The BEA Tuxedo system is a middleware product that distributes applications across
multiple platforms, databases, and operating systems using message-based
communications and, if desired, distributed transaction processing.
Introducing BEA Tuxedo ATMI 1-1

1 BEA Tuxedo System Fundamentals
Middleware is used with client/server applications to distribute processing among
multiple servers, manage distributed transactions, and integrate multiple database
platforms. Middleware systems are sometimes known as online transaction processing
(OLTP) systems.

The BEA Tuxedo system is a mature product based on over 20 years of development
from a diverse group of technology companies including AT&T, UNIX System
Laboratories (USL), Novell, and BEA Systems, Inc. It is both a development platform
and an execution platform. The BEA Tuxedo system serves as an extension to the
operating system.

The BEA Tuxedo system provides the following:

An industry standard for the creation and central administration of distributed
online transaction applications in a heterogeneous client/server environment.

Ease of use for application developers, who do not need to know all the details
about server locations, routing, or platforms used. In a BEA Tuxedo application,
these aspects of a program are transparent.

The fundamental underpinnings for creating, managing, and maintaining reliable,
high performance, easily managed distributed systems.

Architectural Features

The BEA Tuxedo system offers many features to accommodate the architectural
aspects of an ATMI application:

Distributed services—allow transparent access to application and/or system
services located on different hardware platforms.

Fast, connectionless communications—clients connect to a bulletin board rather
than to servers, thus improving system performance.

Server transparency—the directory of services on the bulletin board maps
service names to servers; clients do not need to be aware of server identity.

Scalability—application designers can quickly scale their Tuxedo applications to
match varying system load demands because services and servers can be
replicated and distributed easily. Designers can set thresholds programmatically
to enable the BEA Tuxedo system to spawn new servers or to shut down servers
automatically.
1-2 Introducing BEA Tuxedo ATMI

What Is the BEA Tuxedo System?
Administrative Features

The BEA Tuxedo system offers many features to accommodate the administrative
aspects of an ATMI application:

Password security and access control security—password security allows
application designers to control access by requiring passwords at initialization
time (authentication). Further control is available through authorization, a means
of restricting access to certain application services to clients that have been
given explicit permission and that have authenticated identities.

Application-specific and system events notification—the BEA Tuxedo system
provides details about application and system events, such as servers
unexpectedly terminating and networks failing. When an event is posted by
clients or servers, the Tuxedo publish-and-subscribe component looks up all the
subscribers to that event and takes appropriate actions, as determined by each
subscription.

Management information base (MIB)—an administrative interface that enables
administrators to monitor, configure, and tune their applications through their
own programs. It is an implementation-independent management database
defined as a set of Field Manipulation Language (FML) attributes, which allows
administrators to query or change information.

Web-based administration—a graphical user interface, available through the
World Wide Web, for the configuration and control of BEA Tuxedo applications.

Programming Features

The BEA Tuxedo system offers many features to accommodate the programming
aspects of an ATMI application:

Communication techniques—the application programming interface (API) for
the BEA Tuxedo system is a superset of X/Open’s XATMI interface called the
Application-to-Transaction Monitor Interface, or ATMI. The Tuxedo ATMI is a
rich set of communication techniques for writing distributed applications.

Distributed Transaction Processing (DTP)—allows work being done throughout
a distributed application to be atomically completed, an essential characteristic
of any OLTP system.
Introducing BEA Tuxedo ATMI 1-3

1 BEA Tuxedo System Fundamentals
Typed buffers—provide transparent handling of application data across
heterogeneous platforms.

X/Open XA compliance—the BEA Tuxedo system conforms to the X/Open
interface standard for transaction database systems (called resource managers).
As a result, application designers can mix and match databases within an
application while maintaining data integrity.

X/Open TX compliance—the BEA Tuxedo system conforms to the X/Open
interface standard for transaction demarcation. BEA Tuxedo also offers its own
ATMI interface for transaction demarcation.

Anatomy of the Client/Server Model

In client/server architecture, clients—programs that represent users who need
services—and servers—programs that provide services—are separate logical objects
that communicate over a network to perform tasks together. A client makes a request
for a service and receives a reply to that request. A server receives and processes a
request, and sends back the required response.

Characteristics of Client/Server Architecture

The client/server architecture has the following characteristics:

Asymmetrical protocols—a many-to-one relationship between clients and a
server. Clients always initiate a dialog by requesting a service. Servers wait
passively for requests from clients.

Encapsulation of services—the server is a specialist: when given a message
requesting a service, it determines how to get the job done. Servers can be
upgraded without affecting clients as long as the published message interface
used by both is unchanged.

Integrity—the code and data for a server are centrally maintained, which results
in inexpensive maintenance and the protection of shared data integrity. At the
same time, clients remain personal and independent.
1-4 Introducing BEA Tuxedo ATMI

Anatomy of the Client/Server Model
Location transparency—the server is a process that can reside on the same
machine as a client process or on a different machine across a network.
Client/server software usually hides the location of a server from clients by
redirecting service requests. Clients should not have to be aware of the location
of servers.

Namespace transparency—clients should be able to use the same naming
conventions (and namespace) to locate any server on the network.

Message-based exchanges—clients and servers are loosely-coupled processes
that can exchange service requests and replies using messages.

Modular, extensible design—the modular design of a client/server application
enables that application to be fault-tolerant. In a fault-tolerant system, failures
may occur without causing a shutdown of the entire application. In a
fault-tolerant client/server application, one or more servers may fail without
stopping the whole system as long as the services offered on the failed servers
are available on servers that are still active. Another advantage of modularity is
that a client/server application can respond automatically to increasing or
decreasing system loads by adding or shutting down one or more services or
servers.

Platform independence—the ideal client/server software is independent of
hardware or operating system platforms, allowing the mixing of client and server
platforms. Clients and servers can be deployed on different hardware using
different operating systems, optimizing the type of work each performs.

Reusable code—service programs can be used on multiple servers.

Scalability—client/server systems can be scaled horizontally or vertically.
Horizontal scaling means adding or removing client workstations with only a
slight performance impact. Vertical scaling means migrating to a larger and
faster server machine or adding server machines.
Introducing BEA Tuxedo ATMI 1-5

1 BEA Tuxedo System Fundamentals
Separation of client/server functionality—client/server is a relationship between
processes running on the same or separate machines. A server process is a
provider of services. A client is a consumer of services. Client/server provides a
clean separation of functions.

Shared resources—one server can provide services for many clients at the same
time, and regulate their access to shared resources.

Differences Between 2-Tier and 3-Tier Client/Server
Architectures

Every client/server application contains three functional units:

Presentation logic or user interface (for example, ATM machines)

Business logic (for example, software that enables a customer to request an
account balance)

Data (for example, records of customer accounts)

These functional units can be part of the client program or part of the one or more
server programs in your application. Which of the many possible variations you choose
depends on how you split the application and which middleware you use to
communicate between the tiers, as illustrated in the following figure.
1-6 Introducing BEA Tuxedo ATMI

Anatomy of the Client/Server Model
Figure 1-1 2-Tier and 3-Tier Client/Server Models

In 2-tier client/server applications, the business logic is buried inside the user interface
on the client or within the database on the server in the form of stored procedures.
Alternatively, the business logic can be divided between the client and server. File
servers and database servers with stored procedures are examples of 2-tier architecture.

In 3-tier client/server applications, the business logic resides in the middle tier,
separate from the data and user interface. In this way, processes can be managed and
deployed separately from the user interface and the database. Also, 3-tier systems can
integrate data from multiple sources.
Introducing BEA Tuxedo ATMI 1-7

1 BEA Tuxedo System Fundamentals
Client/Server Variations to Suit Your Needs

Client/server architecture can accommodate the needs of each of the following
situations:

Small shops and laptops—the client, the middleware software, and most of the
business services operate on the same machine. BEA recommends this approach
for one-person businesses such as a dentist’s office, a home office, and a
business traveler who frequently works on a laptop computer.

Small businesses and corporate departments—a LAN-based single-server
application is required. Users of this type of application include small
businesses, such as a medical practice with several doctors, a multi-department
corporation, or a bank with several branch offices. In this type of application,
multiple clients talk to a local server. Administration is simple: security is
implemented at the machine level and failures are detected easily.

Large enterprises—multiple servers that offer diverse functionality are required.
Multiple servers can reside on corporate networks, intranets, and the Internet, all
of which are highly scalable. Servers can be partitioned by function, resources,
or databases, and can be replicated for increased fault tolerance or enhanced
performance. This model provides a great amount of power and flexibility. How
well you architect your application is critical to this client/server model. You
may need to partition work among servers, or design servers to delegate work to
other servers.

How the BEA Tuxedo System Fits into the
Client/Server Model

The BEA Tuxedo system fits into the middle of the client/server model. In a BEA
Tuxedo application, clients log in and request services offered by an application. The
BEA Tuxedo system offers these services through a transparent bulletin board. The
bulletin board provides a global directory advertising service.
1-8 Introducing BEA Tuxedo ATMI

How the BEA Tuxedo System Fits into the Client/Server Model
For example, in the following sample banking application, the bulletin board
advertises deposit, withdrawal, and inquiry services. The BEA Tuxedo system then
finds a server at the appropriate branch or district office that can provide the requested
services.

Figure 1-2 Clients and Servers in a Sample Banking Application

The sample banking application shows the primary building blocks of a BEA Tuxedo
application:

Clients—programs that collect input from users, send requests through the BEA
Tuxedo system to servers, and deliver server replies to users.

Servers—programs that encapsulate the business logic into a set of services that
define the application.

Middleware—comprises all the distributed software needed to support
interactions between clients and servers. It is the medium that enables a client to
obtain a service from a server. Middleware includes (1) API functions used by
the client—to issue requests and receive replies—and the server—to issue
replies—and (2) messaging paradigms used to transmit client requests and server
Introducing BEA Tuxedo ATMI 1-9

1 BEA Tuxedo System Fundamentals
responses over a network. Middleware does not include the client user interface,
the application logic, or the services provided by the servers.

In the sample BEA Tuxedo banking application, clients (cash machines and tellers)
make requests, and servers (at branch and district offices) provide services and
responses. For example, a customer may use a cash machine to find out how much
money is available in his personal checking account. The cash machine (a client) calls
the server to get the balance. The server receives the request, retrieves the balance, and
sends the information to the cash machine.

What Is a BEA Tuxedo Client?

A client is a program that collects a request from a user and passes that request to a
server capable of fulfilling it. It can reside on a PC or workstation as part of the front
end of an application. It can also be embedded in software that reads a communication
device such as an ATM machine from which data is collected and formatted before
being processed by BEA Tuxedo servers.

To be a client, a program must be able to invoke the BEA Tuxedo libraries of functions
and procedures known collectively as the Application-to-Transaction-Monitor
Interface, or ATMI. The ATMI is supported in several language bindings.

A client joins a Tuxedo application by calling the ATMI client initialization routine.
Once it has joined an application, a client can define transaction boundaries and call
ATMI functions that enable it to communicate with other programs in the application.
The client leaves the application by issuing an ATMI termination function. By joining
an application only when necessary and leaving it once the appropriate task is
complete, a client frees BEA Tuxedo system resources for use by other clients and
servers.

When building a distributed application, you must determine how information is
gathered and presented to your business for processing. You have complete control
over where and when to call ATMI functions, depending upon your business logic and
rules. Your program can join one BEA Tuxedo application, perform some tasks and
leave, and then join a different BEA Tuxedo application to perform another task. If you
are using a multicontexted application, your client can perform tasks in more than one
application without leaving any of them.
1-10 Introducing BEA Tuxedo ATMI

What Is a BEA Tuxedo Server?
What Is a BEA Tuxedo Server?

A BEA Tuxedo server is a process that oversees a set of services, dispatching them
automatically for clients that request them. A service, in turn, is a function within a
server program that performs a particular task needed by a business. A bank, for
example, might have one service that accepts deposits and another that reports account
balances. A server at this bank might receive requests from clients for both services.
The server is responsible for dispatching each request to the appropriate service.

Service functions implement business logic through calls to database interfaces such
as SQL and, possibly, calls to the ATMI to access additional services, queues, and
other resources. The servers on which these services reside then reply to the clients or
send the client requests to a new service.

Application Processing Services Provided by
the BEA Tuxedo System

The BEA Tuxedo system provides services that enable application developers to
implement the following functionality in their applications:

Data compression

Data-dependent routing

Data encoding

Data encryption

Data marshalling

Load balancing

Message prioritization

Service and event naming
Introducing BEA Tuxedo ATMI 1-11

1 BEA Tuxedo System Fundamentals
For descriptions of the Tuxedo application processing services, see “BEA Tuxedo
ATMI Architecture” on page 2-1.

Administrative Services Provided by the BEA
Tuxedo System

The BEA Tuxedo system provides services that enable application administrators to
perform the following administrative tasks:

Startup and shutdown of an application

Centralized application configuration

Distributed application management

Dynamic application reconfiguration

Workstation management

Security management

Transaction management

Message queuing management

Event management

For descriptions of the Tuxedo system administration processes that provide the
administrative services, see “BEA Tuxedo System Administration and Server
Processes” on page 3-1 and “BEA Tuxedo Management Tools” on page 4-1. For
detailed instructions on using the administrative services, see Setting Up a BEA
Tuxedo Application and Administering a BEA Tuxedo Application at Run Time.
1-12 Introducing BEA Tuxedo ATMI

CHAPTER
2 BEA Tuxedo ATMI
Architecture

The following sections describe the basic architectural elements of a BEA Tuxedo
ATMI environment:

Basic Architecture of the BEA Tuxedo ATMI Environment

What You Can Do Using the ATMI

What Are the BEA Tuxedo ATMI Messaging Paradigms?

What Are Nested and Forwarded Requests?

How Does BEA Tuxedo Process Messages?

What Are Typed Buffers?

What Is Data Compression?

What Is Data-Dependent Routing?

What Are Encoding and Decoding of Data?

What Is Data Encryption?

What Is Data Marshalling?

What Is Load Balancing?

What Is Message Prioritization?

What Is Meant by Naming?
Introducing BEA Tuxedo ATMI 2-1

2 BEA Tuxedo ATMI Architecture
Basic Architecture of the BEA Tuxedo ATMI
Environment

The following figure illustrates the basic architectural elements of a BEA Tuxedo
ATMI environment: external interfaces to the environment, the ATMI layer, the MIB,
BEA Tuxedo system services, and the environment’s interface with
standards-compliant resource managers.

Figure 2-1 The BEA Tuxedo ATMI Basic Architecture

As shown in this illustration, the BEA Tuxedo ATMI environment contains the
following components:
2-2 Introducing BEA Tuxedo ATMI

Basic Architecture of the BEA Tuxedo ATMI Environment
Architectural Part Description

External interface layer This layer consists of interfaces between the user and the
environment. It includes both tools for application development
and administration, such as the BEA Tuxedo Administration
Console. The Administration Console can interact with standard
management consoles. Thus a user can manage a BEA Tuxedo
ATMI environment and a network configuration from one
console. In addition, application architects and developers can
build their own administrative tools or application- or
market-specific tools on top of the MIB.

ATMI—Application-to-
Transaction Monitor
Interface

The interface between an application and the BEA Tuxedo ATMI
environment. The ATMI and the BEA Tuxedo environment
implement the X/Open DTP model of transaction processing. An
abstract environment, the ATMI supports location transparency
and hides implementation details. As a result, programmers are
free to configure and deploy BEA Tuxedo applications to
multiple platforms without modifying the application code.

Messaging paradigms Different models of transferring messages between a client and a
server. The BEA Tuxedo ATMI messaging paradigms include
request/response, conversations, queuing, publish-and-subscribe,
and unsolicited notification.

MIB—Management
Information Base

The MIB is an interface that enables users to program and
administer a BEA Tuxedo ATMI environment easily. MIB
operations enable users to perform all management tasks
(monitoring, configuring, tuning, and so on). The MIB allows
users to perform one task to one object at a time or to build
toolkits with which to batch tasks and/or objects. For information
about the MIB and the MIB interface, see “BEA Tuxedo
Management Tools” on page 4-1.
Introducing BEA Tuxedo ATMI 2-3

2 BEA Tuxedo ATMI Architecture
What You Can Do Using the ATMI

The Application-to-Transaction Monitor Interface (ATMI), the BEA Tuxedo API, is
an interface for communications, transactions, and management of data buffers that
works in all environments supported by the BEA Tuxedo system. It provides the
connection between application programs and the BEA Tuxedo system. The ATMI is
a simple interface for a comprehensive set of capabilities. It implements the X/Open
DTP model of transaction processing.

BEA Tuxedo Services
(application processing
services and
administrative services)

Services and/or capabilities provided by the BEA Tuxedo ATMI
environment infrastructure for developing and administering
applications.
The application processing services available to BEA Tuxedo
developers include data compression, data-dependent routing,
data encoding, data encryption, data marshalling, load balancing,
message prioritization, and service and event naming. These
services are described in the discussions that follow.
The administrative services available to BEA Tuxedo
administrators include startup and shutdown of an application,
centralized application configuration, distributed application
management, dynamic application reconfiguration, workstation
management, security management, transaction management,
message queuing management, and event management.
The system administration processes that provide the
administrative services are described in “BEA Tuxedo System
Administration and Server Processes” on page 3-1 and “BEA
Tuxedo Management Tools” on page 4-1.

Resource Manager A software product in which data is stored and available for
retrieval through application-based queries. The resource
manager (RM) interacts with the BEA Tuxedo ATMI
environment and implements the XA standard interfaces. The
most common example of a resource manager is a database.
Resource managers provide transaction capabilities and
permanence of actions; they are the entities accessed and
controlled within a global (distributed) transaction.

Architectural Part Description (Continued)
2-4 Introducing BEA Tuxedo ATMI

What You Can Do Using the ATMI
Figure 2-2 Using the ATMI

The ATMI library offers you a variety of functions (routines, verbs) for defining and
controlling global transactions in a BEA Tuxedo ATMI application. Global
transactions enable you to manage exclusive units of work spanning multiple programs
and resource managers in your distributed application. All work in a single transaction
is treated as a logical unit, so that if any one program cannot complete its task
successfully, no work is performed by programs in the transaction.

The ATMI functions knit together distributed programs by enabling them to send and
receive data. All ATMI functions send or receive data in typed buffers.

The following table presents a list of ATMI functions for C and COBOL bindings, and
the tasks they perform. The functions are grouped by task.
Introducing BEA Tuxedo ATMI 2-5

2 BEA Tuxedo ATMI Architecture
Table 2-1 Using the ATMI Functions

For a task related
to . . .

Use this C
function . . .

Or this COBOL
function . . . To . . .

Client membership tpchkauth(3c) TPCHKAUTH(3cbl) Check whether
authentication is required

tpinit(3c) TPINITIALIZE(3cbl) Have a client join an
application

tpterm(3c) TPTERM(3cbl) Have a client leave an
application

Buffer management tpalloc(3c) N/A Create a message buffer

tprealloc(3c) N/A Resize a message buffer

tpfree(3c) N/A Free a message buffer

tptypes(3c) N/A Get a message type and
subtype

Message priority tpgprio(3c) TPGPRIO(3cbl) Get the priority of the last
request

tpsprio(3c) TPSPRIO(3cbl) Set the priority of the next
request

Request/response
communications

tpcall(3c) TPCALL(3cbl) Initiate a synchronous
request/response to a service

tpacall(3c) TPACALL(3cbl) Initiate an asynchronous
request (fanout)

tpgetrply(3c) TPGETRPLY(3cbl) Receive an asynchronous
response

tpcancel(3c) TPCANCEL(3cbl) Cancel an asynchronous
request
2-6 Introducing BEA Tuxedo ATMI

../rf3c/rf3c.htm#2805013
../rf3cbl/rf3cbl.htm#4243313
../rf3c/rf3c.htm#4545013
../rf3cbl/rf3cbl.htm#6624213
../rf3c/rf3c.htm#2222313
../rf3cbl/rf3cbl.htm#9427213
../rf3c/rf3c.htm#9599213
../rf3c/rf3c.htm#4430313
../rf3c/rf3c.htm#7463113
../rf3c/rf3c.htm#9257013
../rf3c/rf3c.htm#7739613
../rf3cbl/rf3cbl.htm#7109713
../rf3c/rf3c.htm#9787513
../rf3cbl/rf3cbl.htm#5130013
../rf3c/rf3c.htm#8077913
../rf3cbl/rf3cbl.htm#1080613
../rf3c/rf3c.htm#3813413
../rf3cbl/rf3cbl.htm#5793413
../rf3c/rf3c.htm#2914213
../rf3cbl/rf3cbl.htm#7927813
../rf3c/rf3c.htm#3842313
../rf3cbl/rf3cbl.htm#9672613

What You Can Do Using the ATMI
Conversational
communications

tpconnect(3c) TPCONNECT(3cbl) Begin a conversation with a
service

tpdiscon(3c) TPDISCON(3cbl) Abnormally terminate a
conversation

tpsend(3c) TPSEND(3cbl) Send a message in a
conversation

tprecv(3c) TPRECV(3cbl) Receive a message in a
conversation

Message queuing
communications

tpenqueue(3c) TPENQUEUE(3cbl) Enqueue a message to a
message queue

tpdequeue(3c) TPDEQUEUE(3cbl) Dequeue a message from a
message queue

Publish-and-subscribe
communications

tpnotify(3c) TPNOTIFY(3cbl) Send an unsolicited message
to a client

tpbroadcast(3c) TPBROADCAST(3cbl) Send messages to several
clients

tpsetunsol(3c) TPSETUNSOL(3cbl) Set unsolicited message
call-back

tpchkunsol(3c) TPCHKUNSOL(3cbl) Check the arrival of
unsolicited messages

N/A TPGETUNSOL(3cbl) Get an unsolicited message

tppost(3c) TPPOST(3cbl) Post an event message

tpsubscribe(3c) TPSUBSCRIBE(3cbl) Subscribe to event messages

tpunsubscribe(3c) TPUNSUBSCRIBE(3cbl) Unsubscribe to event
messages

Table 2-1 Using the ATMI Functions (Continued)

For a task related
to . . .

Use this C
function . . .

Or this COBOL
function . . . To . . .
Introducing BEA Tuxedo ATMI 2-7

../rf3c/rf3c.htm#4234013
../rf3cbl/rf3cbl.htm#1877413
../rf3c/rf3c.htm#6775213
../rf3cbl/rf3cbl.htm#1627113
../rf3c/rf3c.htm#2803913
../rf3cbl/rf3cbl.htm#1246413
../rf3c/rf3c.htm#3052013
../rf3cbl/rf3cbl.htm#5525413
../rf3c/rf3c.htm#6539913
../rf3cbl/rf3cbl.htm#6766813
../rf3c/rf3c.htm#7427413
../rf3cbl/rf3cbl.htm#3407613
../rf3c/rf3c.htm#2346913
../rf3cbl/rf3cbl.htm#7339913
../rf3c/rf3c.htm#9304513
../rf3cbl/rf3cbl.htm#7260813
../rf3c/rf3c.htm#7156613
../rf3cbl/rf3cbl.htm#2303213
../rf3c/rf3c.htm#7669813
../rf3cbl/rf3cbl.htm#1718713
../rf3cbl/rf3cbl.htm#1125513
../rf3c/rf3c.htm#4209713
../rf3cbl/rf3cbl.htm#3564013
../rf3c/rf3c.htm#9514013
../rf3cbl/rf3cbl.htm#2001213
../rf3c/rf3c.htm#9307013
../rf3cbl/rf3cbl.htm#9445913

2 BEA Tuxedo ATMI Architecture
Note: The use of the BEA Tuxedo ATMI transaction management functions is
optional. Because BEA Tuxedo also supports the X/Open TX transaction
management functions, you may want to use those functions for transaction
management.

Transaction
management (see note
at end of table)

tpbegin(3c) TPBEGIN(3cbl) Begin a transaction

tpcommit(3c) TPCOMMIT(3cbl) Commit the current
transaction

tpabort(3c) TPABORT(3cbl) Roll back the current
transaction

tpgetlev(3c) TPGETLEV(3cbl) Check whether in transaction
mode

tpsuspend(3c) TPSUSPEND(3cbl) Suspend the current
transaction

tpresume(3c) TPRESUME(3cbl) Resume a transaction

Service entry and
return

tpsvrinit(3c) TPSVRINIT(3cbl) Initialize a server

tpsvrdone(3c) TPSVRDONE(3cbl) Terminate a server

tpservice(3c) N/A Prototype for a service entry
point

N/A TPSVCSTART(3cbl) Get service information

tpreturn(3c) TPRETURN(3cbl) End a service function

tpforward(3c) TPFORWAR(3cbl) Forward request

Dynamic
advertisement

tpadvertise(3c) TPADVERTISE(3cbl) Advertise a service name

tpunadvertise(3c) TPUNADVERTISE(3cbl) Unadvertise a service name

Resource
management

tpopen(3c) TPOPEN(3cbl) Open a resource manager

tpclose(3c) TPCLOSE(3cbl) Close a resource manager

Table 2-1 Using the ATMI Functions (Continued)

For a task related
to . . .

Use this C
function . . .

Or this COBOL
function . . . To . . .
2-8 Introducing BEA Tuxedo ATMI

../rf3c/rf3c.htm#9429613
../rf3cbl/rf3cbl.htm#8009713
../rf3c/rf3c.htm#4723113
../rf3cbl/rf3cbl.htm#5551513
../rf3c/rf3c.htm#9493813
../rf3cbl/rf3cbl.htm#1435313
../rf3c/rf3c.htm#2352613
../rf3cbl/rf3cbl.htm#4711413
../rf3c/rf3c.htm#8768513
../rf3cbl/rf3cbl.htm#6537913
../rf3c/rf3c.htm#9988713
../rf3cbl/rf3cbl.htm#4622613
../rf3c/rf3c.htm#3380713
../rf3cbl/rf3cbl.htm#6296013
../rf3c/rf3c.htm#8373213
../rf3cbl/rf3cbl.htm#1433913
../rf3c/rf3c.htm#4271913
../rf3cbl/rf3cbl.htm#6995813
../rf3c/rf3c.htm#1975913
../rf3cbl/rf3cbl.htm#5757813
../rf3c/rf3c.htm#3074013
../rf3cbl/rf3cbl.htm#3877113
../rf3c/rf3c.htm#4594013
../rf3cbl/rf3cbl.htm#2008113
../rf3c/rf3c.htm#5592613
../rf3cbl/rf3cbl.htm#7696813
../rf3c/rf3c.htm#1039613
../rf3cbl/rf3cbl.htm#8733613
../rf3c/rf3c.htm#6099213
../rf3cbl/rf3cbl.htm#5568813

What Are the BEA Tuxedo ATMI Messaging Paradigms?
See Also

“Using ATMI to Handle System and Application Errors” on page 2-29 in
Administering a BEA Tuxedo Application at Run Time

What Are the BEA Tuxedo ATMI Messaging
Paradigms?

Besides managing an application’s server processes and managing transactions, BEA
Tuxedo ATMI also manages client/server communications, that is, allows clients (and
servers) to invoke an application service using any of the messaging paradigms
identified in the following table.

BEA Tuxedo ATMI
Messaging Paradigm

Description

Request/response
communication

A simple type of dialogue involving a single client request
and a single response from the called request/response
server. Request/response transactions usually involve
people and thus require immediate attention; they run in
high-priority mode.

Conversational communication A state-preserving connection—context kept from
message to message—between a client and the called
conversational server. Conversational transactions also
usually involve people and thus require immediate
attention; they run in high-priority mode.

Message queuing
communication

Time-independent communication among clients and
servers. Queued transactions can run as high-priority or
low priority messages. The BEA Tuxedo system includes
its own bundled version of recoverable queues called /Q.
Introducing BEA Tuxedo ATMI 2-9

../ada/admon.htm#962121

2 BEA Tuxedo ATMI Architecture
Request/Response Communication

To implement request/response communication between ATMI clients and servers, the
BEA Tuxedo system uses interprocess communication (IPC) message queues. Queues
are the key to connectionless communication. Each server is assigned an IPC message
queue called a request queue, and each client is assigned a reply queue. Therefore,
rather than establishing and maintaining a connection with a server, a client application
can send requests to the server by putting those requests on the server’s queue, and then
check and retrieve messages from the server by pulling messages from its own reply
queue.

The request/response model is used for both synchronous and asynchronous service
requests.

Synchronous Messaging

In a synchronous call, a client sends a request to a server, which performs the requested
action while the client waits. The server then sends the reply to the client, which
receives the reply.

Publish-and-subscribe
communication

Asynchronous routing of events among the clients and
servers in a BEA Tuxedo ATMI application.
Publish-and-subscribe transactions usually run as
high-priority messages. The BEA Tuxedo system has a
transactional publish-and-subscribe system called
EventBroker.

Unsolicited notification
messaging

Communication from any client or server to any clients
that were not requested or expected by those clients.
Unsolicited notifications are handled by EventBroker.

BEA Tuxedo ATMI
Messaging Paradigm

Description
2-10 Introducing BEA Tuxedo ATMI

What Are the BEA Tuxedo ATMI Messaging Paradigms?
Figure 2-3 Synchronous Request/Response Communication

Asynchronous Messaging

In an asynchronous call, the BEA Tuxedo client does not wait for a service request it
has submitted to finish before undertaking other tasks. Instead, after issuing a request,
the client performs additional tasks (which may include issuing more requests). When
a reply to the first request is available, the client retrieves it.

Figure 2-4 Asynchronous Request/Response Communication
Introducing BEA Tuxedo ATMI 2-11

2 BEA Tuxedo ATMI Architecture
Conversational Communication

Conversational communication is the BEA Tuxedo system implementation of a
human-like paradigm for exchanging messages between ATMI clients and servers. In
this form of communication, a virtual connection is maintained between the client and
server. Just as in a conversation between two people, a number of messages pass back
and forth between the two entities until a conclusion is reached. Over the course of the
communication, both sides “remember” the point (or state) of the conversation so that
relatively long operations, such as ad hoc queries, reports, and file transfers, can be
supported. By default, conversational servers are available, but more can be spawned
automatically if needed.

The BEA Tuxedo system provides an API that can be used to create conversations in
applications; specifically, to connect clients to servers, to send and receive messages,
and to end the conversation.

Figure 2-5 Conversational Communication

Conversations can be nested but performance may be degraded as a result of doing so.
Conversations may contain either transactions or service requests as appropriate.
Although a conversational service can make service calls and establish conversations,
those service calls and conversations cannot be forwarded. A conversation can be
within the scope of—and controlled by—a transaction.
2-12 Introducing BEA Tuxedo ATMI

What Are the BEA Tuxedo ATMI Messaging Paradigms?
Message Queuing Communication

The BEA Tuxedo system offers a queue-based architecture known as /Q for ATMI
applications that require persistent storage of data. The /Q component allows any client
or server to store messages or service requests in queues and guarantees that any stored
request is sent through the transaction protocol to ensure safe storage.

BEA Tuxedo system queues can be ordered as last in, first out (LIFO) or first in, first
out (FIFO), or on the basis of time or priority. A collection of queues is administered
and referred to as a single entity known as a queue space.

Figure 2-6 Queue-Based Messaging

Application queues are appropriate if you must communicate in a time-independent
fashion. Time-independence is a characteristic of programs that operate independently
from one another and do not need to synchronize their communications
simultaneously. Time-independent programs synchronize by leaving messages for
each other in application queues. Messages can be dequeued in any of several ordering
schemes, such as FIFO order, priority order, or time-based order. BEA Tuxedo client
and server programs can enqueue messages and dequeue messages from queues. More
than one client and server can access the same queue.

To use an application queue, your program must name the queue to be accessed and
the queue space in which it resides. Your application can use more than one queue
space and each space can contain more than one message queue.

Because application queues reside on a disk, the availability of stored messages is
guaranteed even after machine failures. To determine when the use of application
queues is appropriate, you need to determine when time-independent synchronization
occurs in your business, for example, in filling orders. Orders can be enqueued to disk
Introducing BEA Tuxedo ATMI 2-13

2 BEA Tuxedo ATMI Architecture
and depending on specific order criteria, such as items or shipment location, placed in
different queue spaces. Within each queue space, you can determine additional criteria,
such as cost, state, and so on.

Publish-and-Subscribe Communication

The BEA Tuxedo publish-and-subscribe component, known as EventBroker, provides
a communication paradigm in which an arbitrary number of suppliers can post
messages for an arbitrary number of subscribers. ATMI client and server processes
using EventBroker communicate with one another based on a set of subscriptions.
EventBroker acts like a newspaper delivery person who delivers newspapers only to
customers who have paid for a subscription.

Figure 2-7 Posting and Subscribing to an Event

Event generators (either clients or servers) inform EventBroker of changes and
problems as they occur. This process is called posting an event. EventBroker then
matches the name of the event to an event name associated with a list of subscribers,
and notifies each subscriber on the list of the event.

Types of Events Reported

The BEA Tuxedo system supports two different types of event reports:

Application-defined event reports—allow application programs to post events
when certain criteria are met. A banking application, for example, might post an
event for withdrawals over a certain limit.

System event reports—provide details about BEA Tuxedo system events, such
as server and network failures. When an event is posted by clients or servers,
EventBroker matches the posted event’s name to subscriber’s of the same events
and takes appropriate action determined by each subscription.
2-14 Introducing BEA Tuxedo ATMI

What Are the BEA Tuxedo ATMI Messaging Paradigms?
How Events Are Reported

A process registers a subscription with EventBroker, indicating interest in a particular
event. Subsequently, whenever EventBroker is notified by another process that the
specified event has occurred, EventBroker reports the occurrence to any process that
has subscribed for this event.

Figure 2-8 Event-based Messaging

EventBroker uses several mechanisms for publishing (that is, issuing notices of)
events:

Disk-based queuing

Asynchronous service calls

User log entries

Unsolicited messages

System commands

Unsolicited Communication

The BEA Tuxedo system offers a powerful communication paradigm called
unsolicited notification. When unsolicited notification occurs, an ATMI client receives
a message that it has never requested. This capability, which is managed by
Introducing BEA Tuxedo ATMI 2-15

2 BEA Tuxedo ATMI Architecture
EventBroker, makes it possible for application clients to receive notification of
application-specific events as they occur, without having to request notification
explicitly in real time.

Unsolicited messages can be sent to client processes by name (tpbroadcast) or by an
identifier received with a previously processed message (tpnotify). Messages sent
via tpbroadcast can originate either in a service or in another client. You can target
a narrow or wide audience. You can send a message with or without guaranteed
delivery to an individual client through point-to-point notification (tpnotify), or you
can send information to a group of clients (tpbroadcast). For example, a server may
alert a single client that the account about which the client is inquiring has been closed.
Or, a server may send a message to all the clients on a machine to remind the users that
the machine will be shut down for maintenance at a specific time.

Figure 2-9 Unsolicited Notification Messaging

Any process that wants to be notified about a particular event (such as a machine being
shut down for maintenance) can register a request, with the system, to be notified
automatically. Once registered, a client or server is informed whenever the specified
event occurs. This type of automatic communication about an event is called
unsolicited notification.

Because there is no limit to the number of clients and servers that may generate events
and receive unsolicited notification about such events, the task of managing this
category of communication can become complex.
2-16 Introducing BEA Tuxedo ATMI

What Are Nested and Forwarded Requests?
See Also

“Using the Request/Response Model (Synchronous Calls)” on page 1-7 in
Tutorials for Developing BEA Tuxedo ATMI Applications

“Using Conversational Communication” on page 1-11 in Tutorials for
Developing BEA Tuxedo ATMI Applications

“BEA Tuxedo Message Queuing Servers” on page 3-14

“Administering Your Application Queues Using Command-Line Utilities” on
page 4-12

“Using Queue-based Communication” on page 1-15 in Tutorials for Developing
BEA Tuxedo ATMI Applications

“BEA Tuxedo Publish-and-Subscribe Servers” on page 3-16

“Managing Events Using EventBroker” on page 4-17

“Using Event-based Communication” on page 1-14 in Tutorials for Developing
BEA Tuxedo ATMI Applications

“Using Unsolicited Notification” on page 1-13 in Tutorials for Developing BEA
Tuxedo ATMI Applications

What Are Nested and Forwarded Requests?

Nested and forwarded service requests allow BEA Tuxedo services to act as ATMI
clients and call other services.
Introducing BEA Tuxedo ATMI 2-17

../tutor/tutov.htm#661391
../tutor/tutov.htm#210091
../tutor/tutov.htm#501741
../tutor/tutov.htm#539381
../tutor/tutov.htm#777281

2 BEA Tuxedo ATMI Architecture
Nested Requests

Nesting is limited to two levels, which works particularly well in a 3-tier client/server
architecture, that is, a system that comprises a presentation logic layer, a business logic
layer, and a database layer. In such a system, the presentation layer is used to formulate
a request for a particular business function that involves one or more queries to a
database. Because nesting is limited to two levels, it does not degrade performance.

Figure 2-10 Nested Service Requests

Benefit of Nested Requests

One benefit of using nested requests is that doing so enables you to keep your code
small and reusable, such that each piece performs a limited task. However, if the
services in your system are distributed across several servers, nested requests can lead
to poor performance. While a nested request is being processed, the original service
(that is, the service that issued the nested request) must wait for a response before
2-18 Introducing BEA Tuxedo ATMI

What Are Nested and Forwarded Requests?
continuing. Until a response is received, the original service cannot process another
request. As a result, messages can get backed up in the request queue for the server on
which this service resides.

Example of a Nested Service Request

A customer uses a cash machine to transfer money from his or her savings account to
her checking account. A BEA Tuxedo application performs the work necessary to
transfer the money. First, on behalf of the customer, the client issues a request for a
service called TRANSFER, and the request is placed on a queue for a server that provides
that service. Next, the TRANSFER service requests two other services, WITHDRAW and
DEPOSIT, which are processed by a second server. The WITHDRAW and DEPOSIT
services return responses to the TRANSFER service. Finally, TRANSFER sends a response
to the client’s response queue. When the client retrieves the response from the queue,
the system displays a message on the screen of the cash machine, notifying the
customer that the transfer is complete.

Forwarded Requests

One alternative to nesting service requests is called request forwarding. Instead of
processing a client’s request, a service can pass the request to another service. The
second service, also, can either process the request or pass it to another service.
Introducing BEA Tuxedo ATMI 2-19

2 BEA Tuxedo ATMI Architecture
Figure 2-11 Forwarded Service Requests

There is no limit to the number of times a request can be forwarded. Because a service
that forwards a request does not need to wait for a reply from the service receiving the
request, forwarding, unlike nesting requests, does not block servers. Forwarding,
however, is not supported by the X/Open protocol X/ATMI, which may be a problem
in some applications.

See Also

“Using Nested Calls” on page 1-9 in Tutorials for Developing BEA Tuxedo
ATMI Applications

“Using Forwarded Calls” on page 1-10 in Tutorials for Developing BEA Tuxedo
ATMI Applications
2-20 Introducing BEA Tuxedo ATMI

../tutor/tutov.htm#208891
../tutor/tutov.htm#498431

How Does BEA Tuxedo Process Messages?
How Does BEA Tuxedo Process Messages?

All communication within the BEA Tuxedo ATMI environment is accomplished by
transferring messages. The BEA Tuxedo system passes service request messages
between ATMI clients and servers through operating system (OS) interprocess
communications (IPC) message queues. System messages and data are passed between
OS-supported, memory-based queues of clients and servers in buffers. In the BEA
Tuxedo ATMI environment, messages are packaged in typed buffers, buffers that
contain both message data and data identifying the types of message data being sent.

Figure 2-12 Processing a Request

A client uses an ATMI function to request a service by name. A naming facility is used
to check the MIB to determine whether the specified service is currently available.
Introducing BEA Tuxedo ATMI 2-21

2 BEA Tuxedo ATMI Architecture
The BEA Tuxedo system uses data-dependent routing, which is an automatic routing
option to map messages that meet specific criteria (message value) to a specific server.
If messages use data-dependent routing, the system uses the data in the buffer for the
routing algorithm. This algorithm provides a method of selecting a group of servers
that can process the service request.

To avoid burdening a few servers with many requests while leaving other servers that
advertise the same services idle, the BEA Tuxedo system maintains a set of metrics in
the MIB that help it distribute service requests evenly across all servers. This practice
is called load balancing.

A local service request may be prepared for a selected server and enqueued on that
server’s queue with a predefined priority. This practice is called service prioritization.
Once the service request is on the server, the run-time system retrieves the message in
priority order. The message is dispatched to the appropriate service and processed.
Then the results are returned to the client queue.

BEA Tuxedo system-provided software offers features that an application can
automatically and routinely use during message processing. These features include
data encoding and decoding, data compression and decompression, transactional
context setting, and security processing, to name a few. In addition, the BEA Tuxedo
system software invokes application business logic by dispatching a service function
and passing it to the appropriately preprocessed buffer.

The service routine is executed and returns a reply (also a typed buffer). The run-time
system prepares the reply for the client by encoding the message automatically: it
packages the data in such a way that it can be transmitted between machines on which
different types of byte ordering are used, allowing data to cross network and platform
boundaries. The system then sends the message to the client. This process is called
data encoding. The run-time system on the client retrieves the reply message, decodes
it if necessary, and delivers the Field Manipulation Language (FML) buffers (or
buffers of another message buffer type) to package the application data. Type
validation, encoding, routing, and load balancing are performed as required. Service
requests can be performed synchronously or asynchronously.

Remote requests travel through the local bridge to the remote machine, where the
remote bridge simply acts as a client and the request is processed as if the client and
server were on the same machine. The bridge provides standard data
encoding/decoding and uses standard network transports to communicate. Bridges
look like ordinary local servers to clients and servers.
2-22 Introducing BEA Tuxedo ATMI

What Are Typed Buffers?
Benefits of Service Request Processing

The benefits of service request processing include:

Connectionless processing—this processing, coupled with direct client/server
communication, reduces the overhead associated with establishing a connection.

Reduced network traffic—service requests invoke potentially complex services
on remote machines, sending only the minimum data required and receiving
minimal results.

See Also

“What Are the BEA Tuxedo ATMI Messaging Paradigms?” on page 2-9

“What Are Typed Buffers?” on page 2-23

What Are Typed Buffers?

All ATMI functions send or receive data using typed buffers. The BEA Tuxedo system
handles translations and data conversions between dissimilar machines. By using
buffers, BEA Tuxedo programs avoid the need to translate data that crosses different
platforms with different data representations.

A buffer is a memory area that serves as a logical container for data. When a buffer
contains no metadata (that is, no information about itself), it is an untyped buffer. When
a buffer includes metadata such as information that can be stored in it (for example, a
type and subtype, or string names that characterize a buffer), it is a typed buffer.

Typed buffers can be transmitted over any network, on any operating system, with any
protocol supported by the BEA Tuxedo system. They can also be used on platforms
with different data representations. As a result, the use of typed buffers facilitates the
tasks of translation and data conversion between dissimilar machines.

The BEA Tuxedo system supports five sorts of typed buffers:
Introducing BEA Tuxedo ATMI 2-23

2 BEA Tuxedo ATMI Architecture
STRING

VIEW

CARRAY

FML

XML

MBSTRING (new in BEA Tuxedo 8.1)

You assign buffer types in the ENVFILE parameter defined in the MACHINES section of
the Tuxedo (UBBCONFIG) configuration file. Assigning or overriding them in the
ENVFILE parameter in the SERVERS section of the Tuxedo configuration file can make
them unavailable to processes that require them.

Definitions of the various types of message buffers are provided in the description of
tm_typesw in tuxtypes(5) in the BEA Tuxedo File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Characteristics of Buffer Types

When you use ATMI communication functions, your application must first use
tpalloc to get a buffer from the system, specifying its size, type, and optionally
subtype. The BEA Tuxedo system recognizes and processes the buffer type, so that
your data is transmitted over any type of network, protocol, and operating system
supported by the BEA Tuxedo system. For descriptions of the different types of BEA
Tuxedo buffers, see “Managing Typed Buffers” in Programming a BEA Tuxedo ATMI
Application Using C.

See Also

tuxtypes(5), typesw(5), and UBBCONFIG(5) in BEA Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference.
2-24 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#7807115
../rf5/rf5.htm#7807115
../rf5/rf5.htm#2183415
../rf5/rf5.htm#365105

What Is Data Compression?
What Is Data Compression?

Data compression is the process of shrinking an application buffer so that it can be
transmitted more quickly across a network or to a remote domain. By setting a
maximum size for an application buffer, you can make sure that compression is
triggered automatically for application buffers that match or exceed a specified size.
When the buffer arrives at its destination, its data is decompressed, that is, restored to
its original size.

Data compression, performed before files are shipped between machines, improves
network performance. The process of compression enhances security slightly because
it involves scrambling the data.

Note: Data compression also occurs frequently during encryption.

Figure 2-13 Data Compression

What Is Data-Dependent Routing?

The BEA Tuxedo system uses an operation called data-dependent routing to enable a
client to send requests for the same service to multiple copies of that service. Which
copy of the service eventually accepts and processes the request is determined by the
data in the request message. Once an administrator has set up data-dependent routing
for an application, client requests can be routed automatically to servers based on the
data in the requests.
Introducing BEA Tuxedo ATMI 2-25

2 BEA Tuxedo ATMI Architecture
When an application includes multiple copies of the same service, each copy is
assigned a unique purpose, just as the first volume of a multivolume encyclopedia
contains entries that begin with the letter “A.” A list of all copies of the service, along
with identifying information about the purpose of each, is kept in a set of routing tables
in the BEA Tuxedo bulletin board (the dynamic part of the MIB). When the system
receives a client request, it finds an identifying string in the request message and
searches the routing tables in the bulletin board for the same string. On the basis of this
match, the system identifies the appropriate server to which it can forward the client
request.

Note: The bulletin board routing tables can be modified as necessary.

Uses of Data-Dependent Routing

Data-dependent routing is useful when clients issue service requests to:

Horizontally partitioned databases

Rule-based servers

Distributed applications

A horizontally partitioned database is an information repository that has been divided
into segments, each of which is used to store a different category of information. This
arrangement is similar to a library in which each shelf of a bookcase holds books for a
different category (for example, biography, fiction, and so on).

A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handle requests that are almost identical by taking
slightly different actions for business reasons.

A distributed application consists of one or more local or remote clients that
communicate with one or more servers on several machines linked through a network.
A client (or server acting as a client) issues a request for a particular service. The
address of the request is determined by data (carried in the same buffer that conveys
the request), identifying the server that can fulfill the request. More than one server
may be able to do so. The BEA Tuxedo system selects a server to receive the request
by matching the data to the routing criteria provided in the bulletin board.
2-26 Introducing BEA Tuxedo ATMI

What Is Data-Dependent Routing?
Example of Data-Dependent Routing with a Horizontally
Partitioned Database

Suppose two clients in a banking application issue requests for the current balance in
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the BEA Tuxexdo bulletin board that show which
servers handle which range of data. (In this example, server 1 handles all requests
for Accounts 1 through 10; server 2 handles all requests for Accounts 11 through
20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about Account 17 to
server 2.

The following figure illustrates this process.

Figure 2-14 Data-Dependent Routing with a Horizontally Partitioned Database
Introducing BEA Tuxedo ATMI 2-27

2 BEA Tuxedo ATMI Architecture
Example of Data-Dependent Routing with Rule-Based
Servers

A banking application includes the following rules:

Customers can withdraw up to $500 without entering a special password.

Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, the BEA Tuxedo
system performs the following actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle request for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.
2-28 Introducing BEA Tuxedo ATMI

What Is Data-Dependent Routing?
Figure 2-15 Data-Dependent Routing with Rule-Based Servers

Example of Data-Dependent Routing with a Distributed
Application

The following diagram shows how client requests are routed to servers in a distributed
application. In this example, a banking application called bankapp uses
data-dependent routing. bankapp has three server groups (BANK1, BANK2, and BANK3)
and two routing criteria (Account ID and Branch ID). The services WITHDRAW,
DEPOSIT, and INQUIRY are routed using the Account_ID field; the services OPEN and
CLOSE are routed using the Branch_ID field.
Introducing BEA Tuxedo ATMI 2-29

2 BEA Tuxedo ATMI Architecture
Figure 2-16 Sample Banking Application Using Routing Criteria

In the preceding figure, requests are routed as indicated in the following table.

Withdrawals, Deposits, Inquiries, and Openings or
Closings of the Following Accounts . . .

Are Routed to . . .

Numbers 10000–49999 for branches 1–4 Bank1

Numbers 50000–79999 for branches 5–7 Bank2

Numbers 80000–109999 for branches 8–10 Bank3
2-30 Introducing BEA Tuxedo ATMI

What Are Encoding and Decoding of Data?
What Are Encoding and Decoding of Data?

Encoding and decoding enable messages with different data representations (for
example, byte ordering or character sets) to be transferred between machines. The
BEA Tuxedo system encodes and decodes data to a machine-independent
representation for transmission to other machines involved in a BEA Tuxedo
application.

The BEA Tuxedo system employs, by default, the External Data Representation
(XDR) algorithm, which can be customized by replacing the BEA Tuxedo system
functions with user-written functions. Encoding and decoding are used only between
machines and only when a remote machine uses a data representation other than the
one used on the local machine. Encoding and decoding allow machines with different
data architectures to operate within a heterogeneous BEA Tuxedo system.
Programmers can manage data in representations natural to their own environments.

The BEA Tuxedo system uses buffer types to determine the type of fields contained in
a message, and to perform the mapping required for coding tasks. This mapping is not
performed by unstructured buffer types such as X_OCTET and CARRAY. Thus,
developers using X_OCTET and CARRAY buffers are free to deploy in mixed-machine
environments.

What Is Data Encryption?

Encryption is the act of converting a message into a coded format that is unintelligible
to all users except the user for which the message is intended. When an encrypted
message arrives at its destination, it is decrypted, that is, converted back to its original
format.
Introducing BEA Tuxedo ATMI 2-31

2 BEA Tuxedo ATMI Architecture
Figure 2-17 Data Encryption

Encryption does not increase the number of bits in the data, but it adds processing time
to the task of sending a message. Because data is compressed during encryption,
however, lost processing time may be bought back, since less data is being sent across
the network. When data is compressed, there is also a moderate boost to security,
because the data is somewhat scrambled during compression.

What Is Data Marshalling?

Data marshalling is a method of handling information through the language-based
TxRPC (X/Open-TxRPC) offered by the BEA Tuxedo system. TxRPC is a set of
protocols for remote procedure calls (RPCs) that supports global transactions. Though
a TxRPC call looks like a local procedure call, when a C function is called, the
arguments passed to the function are packaged so they can be sent to a server that
performs the work of the called function. This argument packaging is called
marshalling. A function’s arguments are marshalled or packaged in a way that allows
them to cross network and platform boundaries, and then unmarshalled at their
destination before being passed to the invoked remote procedure, ready for use.

This process is transparent to the client (the calling program) and the server (the remote
procedure). The marshalling and unmarshalling routines are generated automatically
by the BEA Tuxedo Interface Definition Language (IDL) compiler. An IDL compiler
takes a description of a set of RPCs and generates routines, called stubs, for the client
and server programs. These stubs contain marshalling and unmarshalling logic, as well
as the communication logic that allows a client and server to exchange marshalled
data.
2-32 Introducing BEA Tuxedo ATMI

What Is Load Balancing?
Figure 2-18 Data Marshalling

What Is Load Balancing?

Load balancing is a technique used by the BEA Tuxedo system for distributing service
requests evenly among servers that offer the same service. Load balancing avoids
overburdening some servers while leaving others idle or infrequently used. Before
sending a request to a service routine, the BEA Tuxedo system identifies all servers
capable of handling the request and selects the one most appropriate for maintaining a
balanced load across all the servers in the configuration.

Load refers to a number assigned to a service request based on the amount of time
required to execute that service. Loads are assigned to services so that the BEA Tuxedo
system can understand the relationship between requests. To keep track of the amount
of work, or total load, being performed by each server in a configuration, the
administrator assigns a load factor to every service and service request. A load factor
is a number indicating the amount of time needed to execute a service or a request. On
the basis of these numbers, statistics are generated for each server and maintained on
Introducing BEA Tuxedo ATMI 2-33

2 BEA Tuxedo ATMI Architecture
the bulletin board on each machine. Each bulletin board keeps track of the cumulative
load associated with each server, so that when all servers are busy, the BEA Tuxedo
system can select the one with the lightest load.

You can control whether a load-balancing algorithm is used on the system as a whole.
Such as algorithm should be used only when necessary, that is, only when a service is
offered by servers that use more than one queue. Services offered by only one server,
or by multiple servers in a Multiple Server, Single Queue (MSSQ) do not need load
balancing. The LDBAL parameter for these services should be set to N. In other cases,
you may want to set LDBAL to Y.

To determine how to assign load factors (in the SERVICES section of UBBCONFIG), run
an application for a long period of time and note the average time it takes to perform
each service. Assign a LOAD value of 50 (LOAD=50) to any service that takes roughly
the average amount of time. Any service taking longer than average should have a
LOAD>50; any service taking less than the average should have a LOAD<50.

Figure 2-19 Load Balancing
2-34 Introducing BEA Tuxedo ATMI

What Is Message Prioritization?
What Is Message Prioritization?

Priorities determine the order in which service requests are dequeued by a server.
Priority is assigned by a client to individual services and can range from 1 to100, where
100 represents the highest priority.

All services are assigned a starting priority of 50. A server’s starting priority can be
changed during application configuration. After you have defined your set of services,
you can assign the appropriate priorities to them. For example, your business may
require that some services have a relatively high priority of 70, which means those
services are dequeued before those with the lower priority of 50. In the following
illustration, a server offers services A (with a priority of 50), B (with a priority of 50),
and C (with a priority of 70).

Figure 2-20 Prioritization of Messages

A request for service C is always dequeued before a request for A or B due to the higher
priority of C. Requests for A and B have equal priority. This feature is useful in
applications in which not all requests are equally urgent or important.

A “starvation prevention” mechanism prevents low-priority messages from waiting
endlessly on the queue. Every tenth message is dequeued in first in, first out (FIFO)
order regardless of priority; the first through the ninth messages are dequeued in order
of priority.
Introducing BEA Tuxedo ATMI 2-35

2 BEA Tuxedo ATMI Architecture
What Is Meant by Naming?

The BEA Tuxedo system uses three naming devices: service names, message queue
names, and event names. Names can be any words or alphanumeric strings, as long as
they do not begin with a period (.). Because administrative servers use the BEA
Tuxedo system infrastructure, system and application resources must be clearly
distinguished.

Naming Services

When services are named, an application component can locate another component
through a name. Names can be simple words (such as “deposit”) or alphanumeric
strings (such as “deposit2”). Names should be selected on the basis of the scope of the
application and a map that contains the global picture of the relationships among
application components. These maps or services are like the pages in a telephone book
for application components.

When a BEA Tuxedo system server is activated, the bulletin board advertises the
names of its services. Service names are associated with a server’s physical address so
that requests can be routed to that server. Names that programmers use in their
applications are completely location transparent. When a client program asks for a
service by name, the BEA Tuxedo system consults its name registry in the bulletin
board. The name registry provides the information necessary to convert the string
name (for example, TICKET) to a machine name and the physical address of a server
that advertises that service. The BEA Tuxedo system then sends the request to the
appropriate server.
2-36 Introducing BEA Tuxedo ATMI

What Is Meant by Naming?
Figure 2-21 Locating a Service by Name

Naming Events

The BEA Tuxedo system offers a publish-and-subscribe mechanism: clients and
servers can dynamically register or unregister a standing request to receive alerts (or
messages) when a particular event occurs. Other clients and servers post user-defined
or system events as they occur in the application. When a client or server no longer
needs to be notified about a particular event, the relevant subscription can be cancelled.

See Also

“Publish-and-Subscribe Communication” on page 2-14
Introducing BEA Tuxedo ATMI 2-37

2 BEA Tuxedo ATMI Architecture
2-38 Introducing BEA Tuxedo ATMI

CHAPTER
3 BEA Tuxedo System
Administration and
Server Processes

The following sections describe the core BEA Tuxedo system administration and
server processes that together form the infrastructure for ATMI applications built on
the BEA Tuxedo system:

BEA Tuxedo ATMI Infrastructure

BEA Tuxedo Administration Processes

BEA Tuxedo Workstation Servers

BEA Tuxedo Authentication Server

BEA Tuxedo Transaction Management Server

BEA Tuxedo Message Queuing Servers

BEA Tuxedo Publish-and-Subscribe Servers

BEA Tuxedo Domains (Multiple-Domain) Servers

System Services Available to Different Types of BEA Tuxedo Configurations
Introducing BEA Tuxedo ATMI 3-1

3 BEA Tuxedo System Administration and Server Processes
BEA Tuxedo ATMI Infrastructure

The following categories of BEA Tuxedo system processes provide an infrastructure
for the efficient routing, dispatching, and management of application service requests,
application queues, and event postings and notifications for ATMI applications:

BEA Tuxedo administration processes

BEA Tuxedo Workstation server processes

BEA Tuxedo authentication server process

BEA Tuxedo transaction management server process

BEA Tuxedo message queuing server processes

BEA Tuxedo publish-and-subscribe server processes

BEA Tuxedo Domains (multiple-domain) server processes

Before exploring these categories of BEA Tuxedo system processes, you should have
a good understanding of the following important BEA Tuxedo terms and concepts.

Tuxedo Domain

A BEA Tuxedo domain, also known as a BEA Tuxedo application, is a set of Tuxedo
system, client, and server processes administered as a single unit from a single Tuxedo
configuration file. A Tuxedo domain consists of many system processes, one or more
application client processes, one or more application server processes, and one or more
computer machines connected over a network.

The following figure presents a high-level view of a BEA Tuxedo domain.
3-2 Introducing BEA Tuxedo ATMI

BEA Tuxedo ATMI Infrastructure
Figure 3-1 High-Level View of a BEA Tuxedo Domain

In BEA Tuxedo terminology, a domain is the same as an application—a business
application; both terms are used as synonyms throughout the BEA Tuxedo user
documentation. Examples of business applications currently running on Tuxedo are
airline and hotel reservation systems, credit authorization systems, stock-brokerage
systems, banking systems, and automatic teller machines.

The application processes running on the client side of a Tuxedo client/server
application are usually referred to as application clients or simply clients. The
application processes running on the server side of a Tuxedo client/server application
are usually referred to as application servers.

Note: Often, the term domain, or application, is intended to mean the server-side
software of a BEA Tuxedo client/server application.

Server Server

Native
Client Server

Server

Native
ClientServer

Bridge Bridge

Server

WSH

Workstation
Client

WSH

Workstation
Client

BEA Tuxedo Server Machine 2BEA Tuxedo Server Machine 1

Network
Connection

BEA Tuxedo Domain
Introducing BEA Tuxedo ATMI 3-3

3 BEA Tuxedo System Administration and Server Processes
Tuxedo Configuration File

Each BEA Tuxedo domain is controlled by a configuration file in which
installation-dependent parameters are defined. The text version of the configuration
file is referred to as UBBCONFIG, although the configuration file may have any name,
as long as the content of the file conforms to the format described on reference page
UBBCONFIG(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference. Typical configuration filenames begin with the string ubb,
followed by a mnemonic string, such as simple in the filename ubbsimple.

The UBBCONFIG file for a Tuxedo domain contains all the information necessary to
boot the application, such as lists of its resources, machines, groups, servers, available
services, and so on. It consists of nine sections, five of which are required for all
configurations: RESOURCES, MACHINES, GROUPS, SERVERS, and SERVICES.

The binary version of the UBBCONFIG file is referred to as TUXCONFIG. As with
UBBCONFIG, the TUXCONFIG file may be given any name; the actual name is the device
or system filename specified in the TUXCONFIG environment variable.

Tuxedo Master Machine

The master machine, or master node, for a BEA Tuxedo domain is a server machine
containing the domain’s UBBCONFIG file, and is designated as the master machine in
the RESOURCES section of the UBBCONFIG file. Starting, stopping, and administering
the one or more server machines in a Tuxedo domain is done through the master
machine.

The master machine for a Tuxedo domain also contains the master copy of the
TUXCONFIG file. Copies of the TUXCONFIG file are propagated to every other server
machine—referred to as non-master machines—in a Tuxedo domain whenever the
Tuxedo system is booted on the master machine.

In a multiple-machine domain running different releases of the BEA Tuxedo system
software, the master machine must run the highest release of the Tuxedo system
software in the domain.
3-4 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#365105

BEA Tuxedo ATMI Infrastructure
Tuxedo TUXCONFIG Environment Variable

The TUXCONFIG environment variable defines the location on the master machine
where the tmloadcf(1) command loads the binary TUXCONFIG file. It must be set to
an absolute pathname ending with the device or system filename where TUXCONFIG is
to be loaded.

The TUXCONFIG pathname value is designated in the MACHINES section of the
UBBCONFIG file. It is specified for the master machine and for every other server
machine in the Tuxedo domain. When copies of the binary TUXCONFIG file are
propagated to non-master machines during system boot, the copies are stored on the
non-master machines in accordance to the TUXCONFIG pathname values.

Tuxedo TUXDIR Environment Variable

The TUXDIR environment variable defines the installation directory of the BEA
Tuxedo system software on the master machine. It must be set to an absolute pathname
ending with the name of the installation directory.

The TUXDIR pathname value is designated in the MACHINES section of the UBBCONFIG
file. It is specified for the master machine and for every other server machine in the
Tuxedo domain.

Tuxedo Bulletin Board

The BEA Tuxedo system uses the TUXCONFIG file to set up a bulletin board (BB) on
each server machine in a Tuxedo domain. When a Tuxedo server process becomes
active, it advertises the names of its services in the bulletin board. Some information
in the bulletin board is global and is replicated on every server machine in the Tuxedo
domain (for example, the names and locations of all servers offering a particular
service). Other information is local and is visible only on the local bulletin board (for
example, the actual number and type of client requests currently waiting on a local
server request queue).
Introducing BEA Tuxedo ATMI 3-5

3 BEA Tuxedo System Administration and Server Processes
The bulletin board provides location and namespace transparency within a Tuxedo
domain. Location transparency means that Tuxedo client and server processes do not
have to be aware of the location of a resource within the Tuxedo domain. Namespace
transparency means that Tuxedo client and server processes can use the same naming
conventions (and namespace) to locate any resource in the Tuxedo domain.

See Also

“How to Create a Configuration File” on page 3-2 in Setting Up a BEA Tuxedo
Application

“Creating the Configuration File for a Distributed ATMI Application” on page
8-1 in Setting Up a BEA Tuxedo Application

BEA Tuxedo Administration Processes

The BEA Tuxedo administration processes automate most of the management tasks
for a distributed application, including:

Starting up and shutting down an application

Dynamically reconfiguring an application

This discussion focuses only on the administration processes that set up and manage
the bulletin board in a BEA Tuxedo single-machine or multiple-machine application
(domain):

Single-machine application—one or more local or remote application clients
communicating with one or more application servers that reside on the same
server machine and belong to a Tuxedo domain.

Multiple-machine application—one or more local or remote application clients
communicating with one or more application servers that reside on multiple
server machines and belong to a Tuxedo domain. BEA Tuxedo Bridge processes
send and receive service requests between the server machines, and route
requests to locally running system or application server processes.
3-6 Introducing BEA Tuxedo ATMI

../ads/adfig.htm#922311
../ads/adsdis.htm#403787
../ads/adsdis.htm#403787

BEA Tuxedo Administration Processes
For a description of the administration processes used to start up, shut down, and
dynamically reconfigure a Tuxedo application, see “BEA Tuxedo Management Tools”
on page 4-1.

What Is the Role of the Bulletin Board?

The bulletin board (BB) is a memory segment in which all the application
configuration and dynamic processing information is held at run time for a BEA
Tuxedo application. It provides the following functionality:

Assigns service requests to specific servers. When a service is called, the
bulletin board looks up servers that offer the requested service. Based on this
information, and any data-dependent routing criteria, the bulletin board places
the request data on the request queue of a valid server.

Maintains dynamic information about the state of an application, such as how
many requests are waiting on a given server’s queue and how many requests
have been processed.

Provides server location transparency, allowing an application to be developed
independently of deployment. Therefore, development and deployment costs are
minimized.

Supports service name aliases, allowing multiple names to be assigned to the
same service. This capability is useful for constructing interpreters, such as
gateways.

Each server machine in a Tuxedo application contains a bulletin board.

What Is the Role of the Bulletin Board Liaison?

The Bulletin Board Liaison (BBL) is a BEA Tuxedo administration process running
on each server machine in a Tuxedo application that coordinates changes to the local
bulletin board and verifies the sanity of the software programs that are active on the
local machine. There is one and only one BBL running on each server machine—
including the master machine—in a Tuxedo domain.
Introducing BEA Tuxedo ATMI 3-7

3 BEA Tuxedo System Administration and Server Processes
Figure 3-2 Bulletin Board and Bulletin Board Liaison

What Is the Distinguished Bulletin Board Liaison (DBBL)?

The Distinguished Bulletin Board Liaison (DBBL) is the BEA Tuxedo administration
process that makes it possible to distribute an application across multiple server
machines. The DBBL ensures that the Bulletin Board Liaison (BBL) server on each
server machine is alive and functioning correctly. The DBBL runs on the master
machine of an application and communicates directly with all administration facilities.

The DBBL ensures that configuration and service addressing information is replicated
to the bulletin board on each server machine in the configuration. Servers located on
remote machines are accessed through the Bridge process running on the local
machine. Servers on the local machine are accessed directly. All local communications
are performed through high performance operating system message queues. Remote
communications are performed in two phases. First, service requests are forwarded to
a remote machine through the (local) Bridge. Second, when a request reaches the
remote machine, operating system messages are used to send the request to the
appropriate server process.
3-8 Introducing BEA Tuxedo ATMI

BEA Tuxedo Workstation Servers
Note: A Tuxedo single-machine application may or may not have a DBBL process
running, depending on the value of the MODEL parameter in the RESOURCES
section of the UBBCONFIG file. If MODEL=SHM, no DBBL process is running; if
MODEL=MP, a DBBL process and a Bridge process are running. The advantage
of having a DBBL is that it periodically checks the health of the BBL and
restarts it if it terminates. The disadvantage is that two additional system
processes are running: the DBBL and the Bridge.

See Also

“Distributing ATMI Applications Across a Network” on page 7-1 in Setting Up
a BEA Tuxedo Application

“Setting Up the Network for a Distributed Application” on page 9-1 in Setting
Up a BEA Tuxedo Application

“Managing the Network in a Distributed Application” on page 4-1 in
Administering a BEA Tuxedo Application at Run Time

BEA Tuxedo Workstation Servers

The BEA Tuxedo Workstation server processes allow Workstation clients—remote
ATMI clients—to reside on a remote machine that does not have a full BEA Tuxedo
server-side installation, that is, a machine that does not support BEA Tuxedo
administration servers or a bulletin board. All communication between a Workstation
client and the BEA Tuxedo server application takes place over the network.

Workstation clients need enough of the BEA Tuxedo system software to package the
information associated with a request. They can then send that information to a pair of
Workstation Listener (WSL) and Workstation Handler (WSH) server processes
running in a BEA Tuxedo application that supports all the BEA Tuxedo system
software, including ATMI functions and networking software. The following figure
shows how the WSL and WSH processes connect Workstation clients to the BEA
Tuxedo server application.
Introducing BEA Tuxedo ATMI 3-9

../ads/addist.htm#856716
../ads/adsnet.htm#815708
../ada/adrnet.htm#404474

3 BEA Tuxedo System Administration and Server Processes
Figure 3-3 Handling Workstation Clients

What is the Role of the Workstation Listener?

The Workstation Listener (WSL) is a BEA Tuxedo listening process, running on a
BEA Tuxedo server machine, that accepts connection requests from Workstation
clients and assigns connections to a Workstation Handler also running on the server
machine. It also manages the pool of Workstation Handler processes, starting and
stopping them in response to load demands.

An administrator can define several WSLs in a Tuxedo domain to distribute and
balance the workstation communication load across multiple server machines.

Windows Workstation

UNIX Workstation
3-10 Introducing BEA Tuxedo ATMI

BEA Tuxedo Authentication Server
What is the Role of the Workstation Handler?

The Workstation Handler (WSH) is a BEA Tuxedo gateway process, running on the
BEA Tuxedo server machine, that handles communications between Workstation
clients and the BEA Tuxedo server application. A WSH process resides within the
administrative domain of the application and is registered in the local BEA Tuxedo
bulletin board as a client.

Each WSH process can manage multiple Workstation clients. A WSH multiplexes all
requests and replies with a particular Workstation client over a single connection.

See Also

Using the BEA Tuxedo ATMI Workstation Component

“Administering Security” in Using Security in ATMI Applications

UBBCONFIG(5), WS_MIB(5), and WSL(5)in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

BEA Tuxedo Authentication Server

The BEA Tuxedo authentication server, named AUTHSRV, allows system
administrators to configure the additional security needed to authenticate and authorize
Workstation clients. AUTHSVR provides a single service, which verifies whether the
user has the correct authentication level.

Administrators can configure BEA Tuxedo applications with incremental levels of
authentication and authorization. Administrators can configure an application so that
all servers except AUTHSVR have restricted access to shared resources, such as shared
memory and message queues.

Application designers can replace AUTHSVR with an authentication server that
implements logic specific to their application. For example, a company may want to
develop a custom authentication server so that it can use the popular Kerberos
mechanism for authentication.
Introducing BEA Tuxedo ATMI 3-11

../rf5/rf5.htm#365105
../rf5/rf5.htm#5102915
../rf5/rf5.htm#5282715

3 BEA Tuxedo System Administration and Server Processes
See Also

“Administering Security” in Using Security in ATMI Applications

AUTHSVR(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

BEA Tuxedo Transaction Management
Server

The BEA Tuxedo transaction management server, named TMS, is responsible for
coordinating global transactions, on behalf of BEA Tuxedo ATMI applications, from
their point of origin—typically on the client—across one or more server machines, and
then back to the originating client. TMS tracks transaction participants and supervises a
two-phase commit protocol, ensuring that transaction commit and rollback are
properly handled at each site.

Figure 3-4 Transaction Manager Servers at Work
3-12 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#6445615

BEA Tuxedo Transaction Management Server
Coordinating Operations

To coordinate all the performed operations and all the modules affected by a
transaction, TMS directs the actions of one or more resource managers, such as
relational databases, hierarchical databases, filesystems, document stores, message
queues, and other back-end services. Together, TMS and the resource managers
maintain the atomicity of a transaction, but it is TMS that actually manages the
two-phase commit protocol and the recovery (if needed) for the transaction.

Tracking Participants with a Transaction Log

In the transaction log (TLOG), TMS logs a global transaction only after receiving all
“yes” replies from the global transaction participants at the end of the first phase of a
two-phase commit. A TLOG record indicates that a global transaction should be
committed; no TLOG record indicates that the transaction should be rolled back. Each
server machine in a Tuxedo domain should have its own TLOG.
Introducing BEA Tuxedo ATMI 3-13

3 BEA Tuxedo System Administration and Server Processes
See Also

“Configuring Your ATMI Application to Use Transactions” on page 5-1 in
Setting Up a BEA Tuxedo Application

“Using Transactions” on page 1-18 in Tutorials for Developing BEA Tuxedo
ATMI Applications

TM_MIB(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System
Processes Reference

BEA Tuxedo Message Queuing Servers

The BEA Tuxedo message queuing servers provide for time-independent
communication among clients and servers in a BEA Tuxedo ATMI application. They
make it possible for an application, within a global transaction, to store client and
server generated messages to stable storage for processing later. A client or server
process involved in message queuing communications decides when it wants to
retrieve a message off its queue.

The BEA Tuxedo message queuing servers consist of a “message queue manager”
server named TMQUEUE and a “message forwarding” server named TMQFORWARD.

What is the Role of the TMQUEUE Server?

The TMQUEUE server stores (enqueues) and retrieves (dequeues) messages on behalf of
clients and servers. The following figure shows how TMQUEUE works.
3-14 Introducing BEA Tuxedo ATMI

../ads/adtran.htm#278935
../tutor/tutov.htm#756961
../rf5/rf5.htm#1980515

BEA Tuxedo Message Queuing Servers
Figure 3-5 Queuing Messages Using TMQUEUE

What is the Role of the TMQFORWARD Server?

The TMQFORWARD server dequeues messages and forwards them to the appropriate
servers for processing. TMQFORWARD is needed only if queued messages require a
service call. For example, a queue may be used (on a BEA Tuxedo client or server) for
interprocess communication in which one process places the message on the queue and
another removes it. The following figure shows how TMQFORWARD works.

Figure 3-6 Storing and Forwarding Messages Using TMQFORWARD
Introducing BEA Tuxedo ATMI 3-15

3 BEA Tuxedo System Administration and Server Processes
See Also

“Administering Your Application Queues Using Command-Line Utilities” on
page 4-12

Using the ATMI /Q Component

tpenqueue(3c)and tpdequeue(3c)in BEA Tuxedo ATMI C Function
Reference

APPQ_MIB(5), TMQUEUE(5), TMQFORWARD(5), and UBBCONFIG(5)in BEA
Tuxedo File Formats, Data Descriptions, MIBs, and System Processes Reference

BEA Tuxedo Publish-and-Subscribe Servers

The BEA Tuxedo publish-and-subscribe servers provides asynchronous routing of
application and system events among the processes running in a BEA Tuxedo ATMI
application. An event is a state change or other occurrence in an application program
or the BEA Tuxedo system that may be of interest to an administrator, an operator, or
the software. Examples of events are “a stock traded at or above a specified price” or
“a network failure occurred.”

The BEA Tuxedo publish-and-subscribe servers consist of an “application event”
server named TMUSREVT and a “system event” server named TMSYSEVT. The
TMUSREVT server handles application events on behalf of clients and servers, and the
TMSYSEVT server handles system events on behalf of clients and servers. The following
figure shows how TMUSREVT and TMSYSEVT work.
3-16 Introducing BEA Tuxedo ATMI

../rf3c/rf3c.htm#6539913
../rf3c/rf3c.htm#7427413
../rf5/rf5.htm#3813815
../rf5/rf5.htm#5695415
../rf5/rf5.htm#9209715
../rf5/rf5.htm#365105

BEA Tuxedo Publish-and-Subscribe Servers
Figure 3-7 Handling Events Using TMUSREVT and TMSYSEVT

See Also

“Managing Events Using EventBroker” on page 4-17

“About the EventBroker” in Administering a BEA Tuxedo Application at Run
Time

tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c)in BEA Tuxedo
ATMI C Function Reference

EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), and UBBCONFIG(5)
in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference
Introducing BEA Tuxedo ATMI 3-17

../rf3c/rf3c.htm#4209713
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013
../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715
../rf5/rf5.htm#365105

3 BEA Tuxedo System Administration and Server Processes
BEA Tuxedo Domains (Multiple-Domain)
Servers

The BEA Tuxedo Domains (multiple-domain) server processes extend the BEA
Tuxedo system client/server model to provide transaction interoperability across
transaction processing (TP) domains. This extension preserves the model and the
ATMI interface by making access to services on the remote domain (or accepting
service requests from a remote domain) transparent to both the application
programmer and the end-user.

The BEA Tuxedo Domains server processes consist of a “Domains administrative”
server named DMADM, a “gateway administrative” server named GWADM, and one of
several types of “domain gateway” servers—for example, the TDomain gateway
server, implemented by the GWTDOMAIN process. The following figure shows how
DMADM, GWADM, and GWTDOMAIN work.

Figure 3-8 Interdomain Communication Using the TDomain Gateway Group

BEA Tuxedo Application (Local Domain)

BEA Tuxedo Application
(Remote Domain 1)

BEA Tuxedo Application
(Remote Domain 2)
3-18 Introducing BEA Tuxedo ATMI

BEA Tuxedo Domains (Multiple-Domain) Servers
Here is another figure demonstrating the connectivity in a Domains configuration.

Figure 3-9 Domains Configuration
Introducing BEA Tuxedo ATMI 3-19

3 BEA Tuxedo System Administration and Server Processes
What is the Role of the DMADM Server?

The DMADM server provides a registration service for gateway groups. This service is
requested by GWADM servers as part of their initialization procedure. The registration
service downloads the configuration information required by the requesting gateway
group. The DMADM server maintains a list of registered gateway groups, and propagates
to these groups any changes made to the Domains configuration file (BDMCONFIG).

How multiple domains are connected and which services they make accessible to one
another are defined in Domains configuration files, the text and binary versions of
which are known as DMCONFIG and BDMCONFIG, respectively. Each BEA Tuxedo
domain involved in a Domains configuration requires its own Domains configuration
file.

What is the Role of the GWADM Server?

The GWADM server registers with the DMADM server to obtain the configuration
information used by the corresponding gateway group. GWADM accepts requests from
DMADM for run-time statistics or changes in the run-time options of the specified
gateway group.

What is the Role of the Domain Gateway Servers?

Domain gateways are highly asynchronous, multitasking server processes that handle
outgoing and incoming service requests to or from remote domains. They make access
to services across domains transparent to both the application programmer and the
application user.

As shown in the following figure, the BEA Tuxedo system supports several types of
domain gateways, to allow a BEA Tuxedo application to communicate with other BEA
Tuxedo applications or with applications running on other TP systems.
3-20 Introducing BEA Tuxedo ATMI

BEA Tuxedo Domains (Multiple-Domain) Servers
Figure 3-10 Domain Gateway Types

See Also

“Administering Your Domains Application Using Command-Line Utilities” on
page 4-13

Using the BEA Tuxedo Domains Component

DMADM(5), DMCONFIG(5), DMCONFIG for GWTOPEND(5), GWADM(5),
GWTDOMAIN(5), and UBBCONFIG(5) in BEA Tuxedo File Formats, Data
Descriptions, MIBs, and System Processes Reference

BEA eLink Documentation at
http://e-docs.bea.com/elink/mainfram/mainfram.htm
Introducing BEA Tuxedo ATMI 3-21

../rf5/rf5.htm#3454515
../rf5/rf5.htm#2885315
../rf5/rf5.htm#5798315
../rf5/rf5.htm#2497915
../rf5/rf5.htm#1239015
../rf5/rf5.htm#365105

3 BEA Tuxedo System Administration and Server Processes
System Services Available to Different Types
of BEA Tuxedo Configurations

The following table lists the BEA Tuxedo system services available for a BEA Tuxedo
single-machine, multiple-machine (distributed), and Domains application. The
single-machine and multiple-machine applications are BEA Tuxedo domain
configurations. The Domains application is a BEA Tuxedo Domains configuration
consisting of two or more BEA Tuxedo domains communicating with one another via
TDomain (GWTDOMAIN) gateways.

Table 3-1 Capabilities Available in Different Types of BEA Tuxedo Configurations

Available Capability Single-Machine
Application

Multiple-Machine
Application

Domains
Application

ATMI X X X

Messaging paradigms X X X

Administration parts:
UBBCONFIG, TUXCONFIG,
Bulletin Board (BB),
Bulletin Board Liaison (BBL),
Distinguished Bulletin Board
Liaison (DBBL),
ULOG, TLOG,
Bridges
Administrative processes:
tmloadcf, tmunloadcf,
tmboot, tmadmin, ...
For an overview of BEA Tuxedo
administrative processes, see
“Managing Operations Using
Command-Line Utilities” on page
4-10.

X
X
X

See Note at end of table
X

X
X

X
X
X

X
X
X

X
X

X
X
X

X
X
X

X
X

3-22 Introducing BEA Tuxedo ATMI

System Services Available to Different Types of BEA Tuxedo Configurations
Note: A Tuxedo single-machine application may or may not have a DBBL process
running, depending on the value of the MODEL parameter in the RESOURCES
section of the UBBCONFIG file. If MODEL=SHM, no DBBL process is running; if
MODEL=MP, a DBBL process and a Bridge process are running. The advantage
of having a DBBL is that it periodically checks the health of the BBL and
restarts it if it terminates. The disadvantage is that two additional system
processes are running: the DBBL and the Bridge.

Domains parts:
DMCONFIG, BDMCONFIG,
DMADM, GWADM, GWTDOMAIN,
DMTLOG
Domains administrative processes:
dmloadcf, dmunloadcf,
dmadmin

For an overview of the BEA Tuxedo
Domains administrative processes,
see “Administering Your Domains
Application Using Command-Line
Utilities” on page 4-13.

X
X
X

X
X

Application processes:
clients, servers, and services X X X

Workstation client management X X X

Security management X X X

Transaction management X X X

Message queuing management X X X

Event management X X

Table 3-1 Capabilities Available in Different Types of BEA Tuxedo Configurations (Continued)

Available Capability Single-Machine
Application

Multiple-Machine
Application

Domains
Application
Introducing BEA Tuxedo ATMI 3-23

3 BEA Tuxedo System Administration and Server Processes
3-24 Introducing BEA Tuxedo ATMI

CHAPTER
4 BEA Tuxedo
Management Tools

The following sections describe the BEA Tuxedo administration processes available
to users for managing Tuxedo applications:

BEA Tuxedo Tool Architecture

Management Operations Using the BEA Tuxedo Administration Console

Exploring the Main Menu of the BEA Tuxedo Administration Console

Managing Operations Using the MIB

Managing Operations Using Command-Line Utilities

Managing Events Using EventBroker

BEA Tuxedo Tool Architecture

As shown in the following figure, the BEA Tuxedo administration processes used to
manage a Tuxedo application encompass a variety of tools constructed around the
BEA Tuxedo management information base (MIB).
Introducing BEA Tuxedo ATMI 4-1

4 BEA Tuxedo Management Tools
Figure 4-1 Tools to Administer Your BEA Tuxedo Application

The BEA Tuxedo MIB contains all the information necessary for the operation of a
Tuxedo application. It contains the TM_MIB, which is common to all applications,
and the following component MIBs, each of which describes a subsystem of the BEA
Tuxedo system:

WS_MIB—used to manage Workstation groups and processes associated with
them

ACL_MIB—used to administer access control lists (ACLs)

APPQ_MIB—used to administer application stable-storage queues

EVENT_MIB—used to control event notification and the subscription request
database

DM_MIB—used to administer a Tuxedo Domains (multiple-domain)
configuration

The MIB reference pages (TM_MIB(5), generic reference page MIB(5), ...) are defined
in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Bulletin
Board TUXCONFIG TLOG ULOG

Command-Line
Utilities MIB API EventBrokerAdministration

Console

Tuxedo Management Information Base
(TM_MIB, WS_MIB, ACL_MIB, APPQ_MIB, EVENT_MIB, DM_MIB)
4-2 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#1980515
../rf5/rf5.htm#8244015

BEA Tuxedo Tool Architecture
Tool Interfaces with the MIB

The BEA Tuxedo administration tools, briefly described in the following list, provide
different types of interfaces to the MIB:

BEA Tuxedo Administration Console—a Web-based GUI application used to
monitor a Tuxedo application and to dynamically configure it.

Command-line utilities—a set of commands used to activate, deactivate,
configure, and manage a Tuxedo application.

BEA Tuxedo MIB application programming interface—a set of functions for
accessing and modifying information in the MIB.

EventBroker—a BEA Tuxedo component that provides asynchronous routing of
application events among the client and server processes running in a Tuxedo
application, and distributes system events—typically faults or exceptional
happenings—to whichever application processes want to receive them.

MIB Interfaces with Other System Components

The MIB accesses the following BEA Tuxedo system components:

TUXCONFIG file—binary version of a Tuxedo application’s configuration
(UBBCONFIG) file. Every server machine in a Tuxedo application stores a copy of
the TUXCONFIG file. The MIB updates the TUXCONFIG file and reads information
from the TUXCONFIG file.

Bulletin board—a memory segment in which all the configuration and dynamic
processing information for a Tuxedo application is held at run time. Every server
machine in a Tuxedo application has a bulletin board. The MIB updates the
bulletin board and reads information from the bulletin board.

ULOG—a user log file in which Tuxedo system and application messages—
error messages, warning messages, information messages, and debugging
messages—are stored. Every server machine in a Tuxedo application should
have a ULOG. The MIB gathers information from the ULOG.
Introducing BEA Tuxedo ATMI 4-3

4 BEA Tuxedo Management Tools
TLOG—a transaction log file in which records of committed global transactions
are stored. Every server machine in a Tuxedo application should have a TLOG.
The MIB gathers information from the TLOG.

Management Operations Using the BEA
Tuxedo Administration Console

Based on Java and Web technology, the BEA Tuxedo Administration Console lets you
operate your BEA Tuxedo applications from virtually anywhere—even from home,
given security authorization. The Administration Console is a Java-based applet that
you can download into your Web browser and use to remotely manage Tuxedo
applications.

The Administration Console simplifies many of the system administration tasks
required for managing multiple-tier systems. It lets you monitor system events,
manage system resources, create and configure administration objects, and view
system statistics.

Benefits of Using the BEA Tuxedo Administration
Console

Authentication—the Administration Console forces users to identify themselves.
It prompts the administrator for a username and password. This information is
communicated in an encrypted fashion between the browser and the server,
where the user’s identity is then verified. Much of the server setup is done
during installation, when server components of the BEA Tuxedo Administration
Console are installed and made available to the Web server.

Context-sensitive help—context-sensitive help is available for all Administration
Console windows and tools. You can request information about any field or area
of a window simply by dragging a question mark icon to that field or any area
and clicking.
4-4 Introducing BEA Tuxedo ATMI

Management Operations Using the BEA Tuxedo Administration Console
Encryption—the data transferred between the server side and the browser is
compressed (56-bit or 128-bit encryption) so that no one can read it. Encryption
makes the system resistant to anyone trying to inject false administrative
protocol messages into the stream.

Firewall readiness—the port on which the BEA Tuxedo Administration Console
server listens and interacts with the browser is well defined and configurable;
you can configure it to match ports that you want to allow through your firewall.
This capability enables you to do Console-based administration through your
firewall, if necessary.

Icons—the icons used in the Administration Console show state (for example,
not active) or represent particular objects in the Tuxedo application, for example,
machines or servers.

Java-capable browser—the Java browser supports the Java virtual machine that
runs the applets and enables communication.

No client-side installation—no installation is required on your machine. Point
your browser to the URL for a machine in your Tuxedo application on which the
Console server components reside, then initiate a download of Java applets. The
applets implement the BEA Tuxedo Administration Console and establish
communication with the server.

Universal secure access—from any Java-capable browser, you can access the
system from anywhere in the world with confidence that security mechanisms
are already in place.

Browser Requirements

Each release of the BEA Tuxedo system supports the currently available browsers. For
information about browsers currently supported by the BEA Tuxedo Administration
Console, see “Starting the BEA Tuxedo Administration Console” on page 7-1 in
Installing the BEA Tuxedo System.
Introducing BEA Tuxedo ATMI 4-5

../install/insadm.htm#664577

4 BEA Tuxedo Management Tools
Limitations

The BEA Tuxedo Administration Console has not been updated to support any new
features introduced after BEA Tuxedo release 7.1.

See Also

BEA Tuxedo Administration Console Online Help

“Exploring the Main Menu of the BEA Tuxedo Administration Console” on
page 4-6

“Ways to Monitor Your Application” in Administering a BEA Tuxedo
Application at Run Time

“Starting the BEA Tuxedo Administration Console” in Installing the BEA
Tuxedo System

Exploring the Main Menu of the BEA Tuxedo
Administration Console

When you first bring up the Web and invoke the BEA Tuxedo Administration Console,
the following main window appears.
4-6 Introducing BEA Tuxedo ATMI

Exploring the Main Menu of the BEA Tuxedo Administration Console
Figure 4-2 Main Menu of the BEA Tuxedo Administration Console

The main window is divided into four major areas:

Menu bar—menus that provide access to all actions.

Toolbar—buttons that provide shortcuts to frequently used action or
administrative tools. The toolbar buttons and some menu items are not fully
displayed unless you are connected to a Tuxedo application.

Tree View—a hierarchical representation of the administrative class objects
(such as servers and clients) in a BEA Tuxedo application.

Configuration Tool—a set of tabbed pages on which you can display, define, and
modify the attributes of objects, such as the name of a machine.
Introducing BEA Tuxedo ATMI 4-7

4 BEA Tuxedo Management Tools
Understanding the Tree View

The Tree View pane appears in the left column of the main GUI window. The tree is a
hierarchical representation of the administrative objects in a single BEA Tuxedo
application. The GUI graphically depicts the relationship between each object and the
others by showing its nesting level and parent objects. You can choose to view a
complete tree (comprising all configurable objects of all types in the Tuxedo
application) or a subset of objects.

After you have set up and activated an application, the Tree is populated with labeled
icons, representing the administrative class objects in your application.

The Tree View contains multiple roots, one root for each administrative object. The
first root consists of the Tuxedo application. The next root displays the object classes
defined in the BEA Tuxedo TM_MIB. Each set of object classes is a part of a Tuxedo
application. The third level represents an instance of an object belonging to an object
class.

For example, suppose your application includes two machines (both at SITE1) named
romeo and juliet. Since both machines are objects, they are listed in the Tree below
the name of the object class to which they belong: Machines. Therefore, they will be
listed as follows:

Machines
 SITE1/romeo
 SITE1/juliet

The name of each object in the Tree View is preceded by an icon. Each machine, for
example, is represented by a computer; each client, by a human figure.

Using the Configuration Tool

The Configuration Tool is a utility that lets you set or change the attributes for a
selected class of BEA Tuxedo system objects. When you select an object in the Tree,
the Configuration Tool Pane for that object is displayed on the right side of the main
window.

The tabbed pages in the Configuration Tool area are electronic forms that display and
solicit information about the attributes of an administrative object. A set of tabbed
pages is provided for each administrative class of objects (such as machines and
4-8 Introducing BEA Tuxedo ATMI

Exploring the Main Menu of the BEA Tuxedo Administration Console
servers). The number of attributes associated with a class varies greatly, depending on
the class. Therefore, anywhere from one to eight folders may be displayed when you
invoke the Configuration Tool by selecting an object in the tree.

When the Configuration Tool area is populated, another row of buttons is displayed
below the tabbed pages. These four buttons allow you to control the configuration
work done in the pages.

Using the Toolbar

The toolbar is a row of 12 buttons that allow you to invoke tools for frequently
performed administrative operations. They are labeled with both icons and names. The
following table describes each button.

Button Description

Stop Interrupts the current operation and returns control to the
administrator (who can then request a new operation).

Refresh Updates the Tree View and configuration tool pane with the
most up-to-date data.

Search Searches for a particular administrative object class or object in
the expanded Tree.

Activate Activates all or part of a Tuxedo application.

Deactivate Deactivates all or part of a Tuxedo application.

Migrate Migrates a server group or machine to another location, or
swaps the master and backup machines.

Log file Displays the ULOG file from a particular machine in the active
Tuxedo application.

Event Displays a window for monitoring system-generated events.

Stats Displays the tabbed pages that allow you to view a graphical
presentation of Tuxedo application activity.
Introducing BEA Tuxedo ATMI 4-9

4 BEA Tuxedo Management Tools
See Also

BEA Tuxedo Administration Console Online Help

“Ways to Monitor Your Application” in Administering a BEA Tuxedo
Application at Run Time

“Starting the BEA Tuxedo Administration Console” in Installing the BEA
Tuxedo System

Managing Operations Using Command-Line
Utilities

BEA Tuxedo provides a set of commands for managing different parts of an
application built on the BEA Tuxedo system. The commands enable you to access
common administrative utilities. These utilities can be used for the following tasks:

Configuring your application using command-line utilities

Operating your application using command-line utilities

Settings Provides the option to set the following default settings for the
Administration Console session:

The location of your BEA Tuxedo online documentation
The method for sorting your data (by state or name)
Your default work mode (view-only or edit mode)

CS Help Invokes context-sensitive help. Click a field or a specific area
of the console to get information about the selected item.

Help Opens the Administration Console Online Help in a separate
Web browser.

Button Description
4-10 Introducing BEA Tuxedo ATMI

Managing Operations Using Command-Line Utilities
Administering your application queues using command-line utilities

Administering your Domains application using command-line utilities

Configuring Your Application Using Command-Line
Utilities

You can configure your application by using command-line utilities. Specifically, you
can use a text editor to create and edit the configuration file (UBBCONFIG) for your
application, and then use the command-line utility named tmloadcf to translate the
text file (UBBCONFIG) to a binary file (TUXCONFIG). You are then ready to boot your
application.

The following list identifies common command-line utilities that you can use to
configure your application:

tmloadcf(1)—a command, run on the master machine, that allows you to
compile your application’s UBBCONFIG file into the binary TUXCONFIG file. The
tmloadcf command loads the binary file to the location defined by the
TUXCONFIG environment variable.

tmunloadcf(1)—a command, run on the master machine, that allows you to
translate the binary TUXCONFIG file back to a text version, so that the
UBBCONFIG and TUXCONFIG files can be synchronized. The tmunloadcf
command prints the text version to standard output.

Note: Dynamically updating the binary TUXCONFIG file does not update the text
UBBCONFIG file.

tpusradd(1), tpusrdel(1), tpusrmod(1)—a set of commands that allow you
to create and manage a user database for authorization purposes.

tpgrpadd(1), tpgrpdel(1), tpgrpmod(1)—a set of commands that allow you
to create and manage user groups by using access control lists to authorize
access to services, queues, and events.

tpacladd(1), tpaclcvt(1), tpacldel(1), and tpaclmod(1)—a set of
commands that allow you to create or manage access control lists for
applications. These commands enable the use of security-related authorization
features.
Introducing BEA Tuxedo ATMI 4-11

4 BEA Tuxedo Management Tools
Operating Your Application Using Command-Line
Utilities

After you have configured your application successfully, you can use the following
command-line utilities to operate your application:

tmboot(1)—a command, run on the master machine, that allows you to
centrally start up your application servers. The tmboot command reads the
TUXCONFIG environment variable to locate your application’s TUXCONFIG file.
The tmboot command loads TUXCONFIG into shared memory to establish the
bulletin board, propagating the changes to the remote server machines in a
multiple-machine domain.

tmadmin(1)—an interactive meta-command, typically run on the master
machine, that enables you to run subcommands to configure, monitor, and tune
your application. You can use the tmadmin command before your application is
booted (in configuration mode) or when your application is running.

tmconfig(1)—another interactive meta-command, typically run on the master
machine, that enables you to run subcommands to configure, monitor, and tune
your application. You can use the tmconfig command only when your
application is running. The tmconfig command is more powerful but less user
friendly than the tmadmin command.

tmshutdown(1)—a command, run on the master machine, that allows you to
centrally shut down your application servers. The tmshutdown command reads
the TUXCONFIG environment variable to locate your application’s TUXCONFIG
file.

Administering Your Application Queues Using
Command-Line Utilities

You use the command-line utility qmadmin(1) to perform all administration functions
for the application queues in your application. Like the tmadmin and tmconfig
commands, qmadmin is an interactive meta-command that enables you to run many
subcommands.
4-12 Introducing BEA Tuxedo ATMI

Managing Operations Using Command-Line Utilities
In a BEA Tuxedo application, you can have multiple application queue devices, and
you can run application queues on multiple server machines. Each machine has its own
queue device, so you can run qmadmin to monitor and manage a particular application
queue device on each server machine.

Administering Your Domains Application Using
Command-Line Utilities

To build a BEA Tuxedo Domains (multiple-domain) application, you integrate your
existing BEA Tuxedo application with other domains. To do so, you must add a
domain gateway group of system servers (DMADM, GWADM, and GWTDOMAIN) to your
UBBCONFIG file. These servers are described in “BEA Tuxedo Domains
(Multiple-Domain) Servers” on page 3-18.

All Domains configuration information for a BEA Tuxedo application involved in a
Domains configuration is stored in a file known as DMCONFIG. Similar to the
UBBCONFIG file, the DMCONFIG file may have any name as long as the content of the
file conforms to the format described on reference page DMCONFIG(5) in BEA Tuxedo
File Formats, Data Descriptions, MIBs, and System Processes Reference. You use a
text editor to create and edit the DMCONFIG file, and then use the command-line utility
named dmloadcf to translate the text file (DMCONFIG) to a binary file (BDMCONFIG).
The BDMCONFIG file must reside on the machine that will run the DMADM server.

Note: The DMADM server may run on any machine (master machine, non-master
machine) in a Tuxedo domain.

The following list identifies the command-line utilities that you can use to configure
and operate the domain gateway group of system servers for a BEA Tuxedo
application involved in a Domains configuration:

dmloadcf(1)—a command, run on the same machine as the DMADM server, that
allows you to compile an application’s DMCONFIG file into the binary BDMCONFIG
file. The dmloadcf command loads the binary file to the location defined by the
BDMCONFIG environment variable.

dmunloadcf(1)—a command, run on the same machine as the DMADM server,
that allows you to translate the binary BDMCONFIG file back to a text version, so
that the DMCONFIG and BDMCONFIG files can be synchronized. The dmunloadcf
command prints the text version to standard output.
Introducing BEA Tuxedo ATMI 4-13

../rf5/rf5.htm#2885315

4 BEA Tuxedo Management Tools
Note: Dynamically updating the binary BDMCONFIG file does not update the text
DMCONFIG file.

dmadmin(1)—an interactive meta-command, typically run on the same machine
as the DMADM server, that enables you to run subcommands to configure, monitor,
and tune domain gateway groups. You can use the dmadmin command before
your application is booted (in configuration mode) or when your application is
running.

See Also

BEA Tuxedo Command Reference.

DMADM(5), DMCONFIG(5), GWADM(5), GWTDOMAIN(5), and UBBCONFIG(5)in
BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Using Command-line Utilities to Monitor Your Application” on page 2-11 in
Administering a BEA Tuxedo Application at Run Time

“BEA Tuxedo Administration Processes” on page 3-6

“BEA Tuxedo Message Queuing Servers” on page 3-14

“BEA Tuxedo Domains (Multiple-Domain) Servers” on page 3-18

Managing Operations Using the MIB

The BEA Tuxedo MIB is used to administer a Tuxedo application. It defines the parts
of an application that are required in every Tuxedo domain. MIB defines a Tuxedo
application as a set of classes (for example, servers, groups, machines, domains), each
of which is made up of objects that are characterized by various attributes (for
example, identity and state).

When a Tuxedo server machine becomes active, it advertises the names of its services
in the bulletin board (BB), which is the run-time (dynamic) representation of the MIB.
(The bulletin board is where global and local state changes to the MIB are posted.) The
4-14 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#3454515
../rf5/rf5.htm#2885315
../rf5/rf5.htm#2497915
../rf5/rf5.htm#1239015
../rf5/rf5.htm#365105
../ada/admon.htm#294931

Managing Operations Using the MIB
Tuxedo system uses the binary TUXCONFIG file on the master machine to construct the
bulletin board, and propagates a copy of the TUXCONFIG to the non-master machines
in the application to set up the bulletin board on those machines. A bulletin board runs
on each server machine in a Tuxedo application.

The following figure presents a high-level view of BEA Tuxedo MIB operation.

Figure 4-3 High-Level View of BEA Tuxedo MIB Operation

AdminAPI

The AdminAPI is an application programming interface for directly accessing and
manipulating system settings in the BEA Tuxedo MIB. You can use the AdminAPI to
automate administrative tasks, such as monitoring log files and dynamically

Machine 2

Machine 3

Tuxedo Domain

* TUXCONFIG File

BB

TUX*

BB

ULOG

TLOG

TUX*

Note:
DBBL and BBLs are not shown.

Machine 1
(Master Machine)

BB

ULOG

TLOG

TUX*

MIB

ULOG

TLOG
Introducing BEA Tuxedo ATMI 4-15

4 BEA Tuxedo Management Tools
reconfiguring an application, thus eliminating the need for human intervention. This
advantage can be crucially important in mission-critical, real-time applications. Using
the MIB programming interface, you can manage operations in the BEA Tuxedo
system easily. Specifically, you can monitor, configure, and tune your application
through your own programs. The MIB can be defined as:

An implementation-independent management database defined as a set of Field
Manipulation Language (FML) attributes.

A programming interface that enables you to query the BEA Tuxedo system
(that is, to obtain information from the system through a get operation) or to
update the BEA Tuxedo system (that is, to change information in the system
through a set operation) at any time using a set of ATMI functions. Examples of
these functions include tpalloc, tprealloc, tpgetrply, tpcall, tpacall,
tpenqueue, and tpdequeue.

Types of MIB Users

The MIB defines three types of users: system (or application) administrators, system
operators, and others. The following table describes each type.

Type of User Characteristics

System (or application)
administrator

Person responsible for keeping an application running
successfully. The administrator is authorized to use all
administrative tools and all MIB administrative capabilities.
The administrator configures, manages, and modifies a running
production application.

System operator Person responsible for monitoring and reacting to the daily
operation of a production application. An operator monitors
statistics about a running application, sometimes reacting to
events and alerts by taking actions such as booting servers or
shutting down machines. An operator does not reconfigure an
application, add servers or machines, or delete machines.

Other People or processes (such as custom programs) that may need
to read the MIB but are not authorized to change the
application.
4-16 Introducing BEA Tuxedo ATMI

Managing Events Using EventBroker
Classes, Attributes, and States in the MIB

Classes are the types of entities such as servers and machines that make up a BEA
Tuxedo application. Attributes are characteristics of the objects in a class: identity,
state, configuration parameters, run-time statistics, and so on. There are a number of
attributes that are common to MIB operations and replies and common to individual
classes. Every class has a state attribute that indicates the state of the object.

Independent of classes is a set of common attributes that are defined in the MIB(5)
reference page. These attributes control the input operations, communicate to the MIB
what the user is trying to do, and/or identify to the programmer some of the
characteristics of the output buffer that are independent of a particular class.

See Also

ACL_MIB(5), APPQ_MIB(5), DM_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5),
and WS_MIB(5)in BEA Tuxedo File Formats, Data Descriptions, MIBs, and
System Processes Reference

Programming a BEA Tuxedo Application Using FML

Managing Events Using EventBroker

An event is a state change or other occurrence in an application program or the BEA
Tuxedo system that may be of interest to an administrator, an operator, or the software.
Examples of events are “a stock traded at or above a specified price” or “a network
failure occurred.”

BEA Tuxedo EventBroker provides asynchronous routing of application and system
events among the processes running in a BEA Tuxedo ATMI application. Application
events are occurrences of application-defined events. System events are occurrences
of system-defined events.
Introducing BEA Tuxedo ATMI 4-17

../rf5/rf5.htm#9125915
../rf5/rf5.htm#3813815
../rf5/rf5.htm#8973015
../rf5/rf5.htm#2718115
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../rf5/rf5.htm#5102915

4 BEA Tuxedo Management Tools
Differences Between Application-Defined and
System-Defined Events

Application-defined events are defined by application designers and are therefore
application specific. Any of the events defined for an application may be tracked by
the client and server processes running in the application.

System-defined events are defined by the BEA Tuxedo system code and are generally
associated with objects defined in TM_MIB(5). A complete list of system-defined
events is published on the EVENTS(5) reference page in BEA Tuxedo File Formats,
Data Descriptions, MIBs, and System Processes Reference. Any of these events may
be tracked by users of the BEA Tuxedo system.

Preparing an Application for Event Monitoring

The following table presents the basic tasks for preparing a BEA Tuxedo application
for event monitoring.

Task Description

1. Decide which events to
monitor

Application programs are written to (a) detect when an event
of interest has occurred and (b) post the event to the
EventBroker through tppost(3c).
Application designers decide which events should be
monitored. For system events, application designers select
system-defined events from the EVENTS(5) reference page.

2. Create an events list A list of the application event subscriptions is made available
to interested users, just as the BEA Tuxedo system provides a
list of system events available to users with EVENTS(5).
System-defined event names begin with a dot (.);
application-defined event names may not begin with a dot (.)
To prepare an application-defined events list, application
designers should consult the EVENTS(5), TMUSREVT(5),
TMSYSEVT(5), and field_tables(5) reference pages.
4-18 Introducing BEA Tuxedo ATMI

../rf5/rf5.htm#1605515
../rf5/rf5.htm#1605515
../rf5/rf5.htm#1605515
../rf5/rf5.htm#1980515
../rf5/rf5.htm#1605515

Managing Events Using EventBroker
Subscribing to Events

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of a client or server process by making calls to tpsubscribe(3c)
using the published list of application-defined or system-defined events.
EVENTS(5)lists the notification message generated by a system event as well as the
event name (used as an argument when tppost(3c) is called). Subscribers can use the
wildcard capability of regular expressions to make a single call to tpsubscribe that
covers a whole category of events.

Each subscription for a system-defined event specifies one of several notification
methods. One such method is placing messages in the ULOG: using the
T_EVENT_USERLOG class of EVENT_MIB, subscribers can write system USERLOG
messages. When events are detected and matched, they are written to the ULOG.

The EventBroker recognizes over 100 meaningful state transitions in a MIB object as
system events. The postings for system events include the current MIB representation
of the object on which the event has occurred.

See Also

“BEA Tuxedo Publish-and-Subscribe Servers” on page 3-16

“About the EventBroker” in Administering a BEA Tuxedo Application at Run
Time

“Subscribing to Events” in Administering a BEA Tuxedo Application at Run
Time

tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c)in BEA Tuxedo
ATMI C Function Reference

EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), and UBBCONFIG(5)
in BEA Tuxedo File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Using Event-based Communication” in Tutorials for Developing BEA Tuxedo
ATMI Applications
Introducing BEA Tuxedo ATMI 4-19

../rf5/rf5.htm#1605515
../rf3c/rf3c.htm#4209713
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013
../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715
../rf5/rf5.htm#365105

4 BEA Tuxedo Management Tools
4-20 Introducing BEA Tuxedo ATMI

	Contents
	About This Document
	1. BEA Tuxedo System Fundamentals
	2. BEA Tuxedo ATMI Architecture
	3. BEA Tuxedo System Administration and Server Processes
	4. BEA Tuxedo Management Tools

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 BEA Tuxedo System Fundamentals
	What Is the BEA Tuxedo System?
	Architectural Features
	Administrative Features
	Programming Features

	Anatomy of the Client/Server Model
	Characteristics of Client/Server Architecture
	Differences Between 2-Tier and 3-Tier Client/Server Architectures
	Client/Server Variations to Suit Your Needs

	How the BEA Tuxedo System Fits into the Client/Server Model
	What Is a BEA Tuxedo Client?
	What Is a BEA Tuxedo Server?
	Application Processing Services Provided by the BEA Tuxedo System
	Administrative Services Provided by the BEA Tuxedo System

	2 BEA Tuxedo ATMI Architecture
	Basic Architecture of the BEA Tuxedo ATMI Environment
	What You Can Do Using the ATMI
	What Are the BEA Tuxedo ATMI Messaging Paradigms?
	Request/Response Communication
	Conversational Communication
	Message Queuing Communication
	Publish-and-Subscribe Communication
	Unsolicited Communication

	What Are Nested and Forwarded Requests?
	Nested Requests
	Forwarded Requests

	How Does BEA Tuxedo Process Messages?
	Benefits of Service Request Processing

	What Are Typed Buffers?
	Characteristics of Buffer Types

	What Is Data Compression?
	What Is Data-Dependent Routing?
	Uses of Data-Dependent Routing
	Example of Data-Dependent Routing with a Horizontally Partitioned Database
	Example of Data-Dependent Routing with Rule-Based Servers
	Example of Data-Dependent Routing with a Distributed Application

	What Are Encoding and Decoding of Data?
	What Is Data Encryption?
	What Is Data Marshalling?
	What Is Load Balancing?
	What Is Message Prioritization?
	What Is Meant by Naming?
	Naming Services
	Naming Events

	3 BEA Tuxedo System Administration and Server Processes
	BEA Tuxedo ATMI Infrastructure
	Tuxedo Domain
	Tuxedo Configuration File
	Tuxedo Master Machine
	Tuxedo TUXCONFIG Environment Variable
	Tuxedo TUXDIR Environment Variable
	Tuxedo Bulletin Board

	BEA Tuxedo Administration Processes
	What Is the Role of the Bulletin Board?
	What Is the Role of the Bulletin Board Liaison?
	What Is the Distinguished Bulletin Board Liaison (DBBL)?

	BEA Tuxedo Workstation Servers
	What is the Role of the Workstation Listener?
	What is the Role of the Workstation Handler?

	BEA Tuxedo Authentication Server
	BEA Tuxedo Transaction Management Server
	Coordinating Operations
	Tracking Participants with a Transaction Log

	BEA Tuxedo Message Queuing Servers
	What is the Role of the TMQUEUE Server?
	What is the Role of the TMQFORWARD Server?

	BEA Tuxedo Publish-and-Subscribe Servers
	BEA Tuxedo Domains (Multiple-Domain) Servers
	What is the Role of the DMADM Server?
	What is the Role of the GWADM Server?
	What is the Role of the Domain Gateway Servers?

	System Services Available to Different Types of BEA Tuxedo Configurations

	4 BEA Tuxedo Management Tools
	BEA Tuxedo Tool Architecture
	Tool Interfaces with the MIB
	MIB Interfaces with Other System Components

	Management Operations Using the BEA Tuxedo Administration Console
	Benefits of Using the BEA Tuxedo Administration Console
	Browser Requirements
	Limitations

	Exploring the Main Menu of the BEA Tuxedo Administration Console
	Understanding the Tree View
	Using the Configuration Tool
	Using the Toolbar

	Managing Operations Using Command-Line Utilities
	Configuring Your Application Using Command-Line Utilities
	Operating Your Application Using Command-Line Utilities
	Administering Your Application Queues Using Command-Line Utilities
	Administering Your Domains Application Using Command-Line Utilities

	Managing Operations Using the MIB
	AdminAPI
	Types of MIB Users
	Classes, Attributes, and States in the MIB

	Managing Events Using EventBroker
	Differences Between Application-Defined and System-Defined Events
	Preparing an Application for Event Monitoring
	Subscribing to Events

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

