
BEA
 Tuxedo®

Administering a BEA
Tuxedo Application at
Run Time
Release 8.1
January 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA
Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

About This Document
What You Need to Know ... xii
e-docs Web Site.. xii
How to Print the Document.. xii
Related Information... xiii
Contact Us!.. xiii
Documentation Conventions ... xiv

1. Starting Up and Shutting Down an Application
The Tasks Involved in Starting Up and Shutting Down an Application........... 1-2
How to Set Your Environment .. 1-3

On Windows... 1-3
On UNIX .. 1-3

How to Create the TUXCONFIG File... 1-4
How to Start tlisten at All Sites ... 1-5

tlisten Command Options... 1-6
How to Manually Propagate the Application-Specific Directories and Files ... 1-7
How to Create a TLOG Device ... 1-8
How to Boot the Application... 1-9

Sequence of tmboot Tasks for a 2-Machine Configuration 1-10
Sequence of tmboot Tasks for Large Applications (Over 50 Machines) . 1-12

How to Shut Down Your Application ... 1-12
Running tmshutdown ... 1-13
Using the IPC Tool When an Application Fails to Shut Down Properly. 1-14

2. Monitoring Your BEA Tuxedo Application
Ways to Monitor Your Application... 2-2
Administering a BEA Tuxedo Application at Run Time iii

System and Application Data That You Can Monitor 2-5
Monitoring System Data... 2-5
Monitoring Dynamic and Static Administrative Data................................ 2-6

Common Startup and Shutdown Problems.. 2-8
Common Startup Problems... 2-8
Common Shutdown Problems.. 2-9

Selecting Appropriate Monitoring Tools... 2-9
Using the BEA Administration Console to Monitor Your Application 2-10

Using the Toolbar to Monitor Activities .. 2-10
Using Command-line Utilities to Monitor Your Application 2-11

Inspecting Your Configuration Using tmadmin 2-11
Generating Reports on Servers and Services Using txrpt 2-12

How a tmadmin Session Works... 2-14
Monitoring Your System Using tmadmin Commands............................. 2-15

Using EventBroker to Monitor Your Application ... 2-15
Using Log Files to Monitor Activity ... 2-16
What Is the Transaction Log (TLOG)? ... 2-18
What Is the User Log (ULOG)? .. 2-18
Detecting Errors Using Logs ... 2-19

Analyzing the Transaction Log (TLOG).. 2-19
Analyzing the User Log (ULOG)... 2-20
Analyzing tlisten Messages in the ULOG.. 2-21

Estimating Service Workload Using the Application Service Log 2-22
Using the MIB to Monitor Your Application .. 2-23

Limiting Your MIB Queries... 2-23
Querying Global and Local Data.. 2-24
Using tmadmcall to Access Information .. 2-25

Querying and Updating the MIB with ud32.. 2-25
Using the Run-time Tracing Utility... 2-26
Managing Errors Using the DBBL and BBLs... 2-27
Using ATMI to Handle System and Application Errors 2-29

Using Configurable Timeout Mechanisms... 2-29
Configuring Redundant Servers to Handle Failures................................. 2-30

Monitoring Multithreaded and Multicontexted Applications.......................... 2-31
How to Retrieve Data About a Multithreaded/Multicontexted Application
iv Administering a BEA Tuxedo Application at Run Time

Using the MIB... 2-32

3. Dynamically Modifying an Application
Dynamic Modification Methods.. 3-1

Tools for Modifying Your Application.. 3-2
Using tmconfig to Make Permanent Changes to Your Configuration 3-5

How tmconfig Works ... 3-6
How Results of a tmconfig Task Are Displayed.. 3-9

How to Run tmconfig .. 3-11
How to Set Environment Variables for tmconfig..................................... 3-11
How to Conduct a tmconfig Walkthrough Session.................................. 3-12
tmconfig Input Buffer Considerations.. 3-14

Making Temporary Modifications to Your Configuration with tmconfig 3-15
How to Add a New Machine ... 3-16
How to Add a Server ... 3-19
How to Activate a Newly Configured Machine .. 3-21
How to Add a New Group... 3-24
How to Change Data-dependent Routing (DDR) for an Application 3-25
How to Change Factory-based Routing (FBR) for an Interface...................... 3-26
How to Change Application-wide Parameters .. 3-28
How to Change an Application Password ... 3-31
Limitations on Dynamic Modification Using tmconfig 3-33

Tasks That Cannot Be Performed on a Running System 3-34
Making Temporary Modifications to Your Configuration with tmadmin 3-35

How to Set Environment Variables for tmadmin..................................... 3-36
How to Suspend Tuxedo ATMI Services or Servers 3-36
How to Resume Tuxedo ATMI Services or Servers 3-37
How to Advertise Services or Servers... 3-38
How to Unadvertise Services or Servers ... 3-38
How to Change Service Parameters for Tuxedo ATMI Servers 3-38
How to Change Interface Parameters for Tuxedo CORBA Servers 3-39
How to Change the AUTOTRAN Timeout Value .. 3-40
How to Suspend Tuxedo CORBA Interfaces.. 3-40
How to Resume Tuxedo CORBA Interfaces... 3-41
Administering a BEA Tuxedo Application at Run Time v

4. Managing the Network in a Distributed Application
Running a Network for a Distributed Application .. 4-1
Compressing Data Over a Network... 4-2

How to Set the Compression Level .. 4-2
Selecting Data Compression Thresholds.. 4-3

Balancing Network Request Loads ... 4-4
How to Use Data-Dependent Routing ... 4-5

Example of Data-dependent Routing with a Horizontally-partitioned
Database .. 4-6

Example of Data-dependent Routing with Rule-based Servers 4-7
How to Change Your Network Configuration .. 4-9

5. About the EventBroker
What Is an Event?.. 5-1
Differences Between Application-defined and System-defined Events............ 5-2
What Is the EventBroker?.. 5-3
How the EventBroker Works .. 5-4

Event Notification Methods ... 5-5
Severity Levels of System Events .. 5-6

What Are the Benefits of Brokered Events?.. 5-6

6. Subscribing to Events
Process of Using the EventBroker... 6-1
How to Configure EventBroker Servers.. 6-2
How to Set the Polling Interval ... 6-3
Subscribing, Posting, and Unsubscribing to Events with the ATMI and the

EVENT_MIB ... 6-3
Identifying Event Categories Using eventexpr and filter 6-4
Accessing the EventBroker .. 6-5

How to Select a Notification Method .. 6-6
How to Cancel a Subscription to an Event .. 6-8
How to Use the EventBroker with Transactions ... 6-8

How Transactions Work with the EventBroker ... 6-9

7. Migrating Your Application
What Is Migration? .. 7-1
vi Administering a BEA Tuxedo Application at Run Time

Performing a Master Migration.. 7-2
Migrating a Server Group .. 7-3
Migrating Machines ... 7-4
Performing a Scheduled Migration .. 7-4

Migration Options ... 7-6
How to Switch the Master and Backup Machines... 7-7

Examples of Switching MASTER and BACKUP Machines..................... 7-7
How to Migrate Server Groups ... 7-8

How to Migrate a Server Group When the Alternate Machine Is Accessible
from the Primary Machine .. 7-9

How to Migrate a Server Group When the Alternate Machine Is Not
Accessible from the Primary Machine.. 7-10

Examples of Migrating a Server Group ... 7-10
How to Migrate Server Groups from One Machine to Another...................... 7-12

How to Migrate Machines When the Alternate Machine Is Accessible from
the Primary Machine ... 7-12

How to Migrate Machines When the Alternate Machine Is Not Accessible
from the Primary Machine .. 7-13

Examples of Migrating a Machine ... 7-14
How to Cancel a Migration ... 7-15

Example of a Migration Cancellation .. 7-15
How to Migrate Transaction Logs to a Backup Machine................................ 7-16

8. Tuning a BEA Tuxedo ATMI Application
When to Use MSSQ Sets... 8-2
How to Enable Load Balancing... 8-3
How to Measure Service Performance Time... 8-4
How to Assign Priorities to Interfaces or Services.. 8-4

Example of Using Priorities ... 8-5
Using the PRIO Parameter to Enhance Performance................................. 8-5

Bundling Services into Servers ... 8-6
When to Bundle Services ... 8-6

Enhancing Overall System Performance... 8-7
Service and Interface Caching.. 8-7
Removing Authorization and Auditing Security.. 8-8
Using the Multithreaded Bridge... 8-9
Administering a BEA Tuxedo Application at Run Time vii

Turning Off Multithreaded Processing... 8-10
Turning Off XA Transactions .. 8-10

Determining Your System IPC Requirements... 8-11
Tuning IPC Parameters.. 8-12

Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and
MAXSERVICES Parameters.. 8-13

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
8-13

Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and
DBBLWAIT Parameters ... 8-14

Recommended Values for Tuning-related Parameters............................. 8-14
Measuring System Traffic ... 8-15

Example of Detecting a System Bottleneck ... 8-15
Detecting Bottlenecks on UNIX Platforms .. 8-16
Detecting Bottlenecks on Windows 2000 Platforms................................ 8-18

9. Troubleshooting a BEA Tuxedo Application
Determining Types of Failures .. 9-2

How to Determine the Cause of an Application Failure 9-2
How to Determine the Cause of a BEA Tuxedo System Failure 9-3

How to Broadcast an Unsolicited Message ... 9-4
Maintaining Your System Files ... 9-5

How to Print the Universal Device List (UDL).. 9-5
How to Print VTOC Information ... 9-6
How to Reinitialize a Device.. 9-6
How to Create a Device List .. 9-7
How to Destroy a Device List .. 9-7

Recovery Considerations ... 9-8
Repairing Partitioned Networks .. 9-9

Detecting a Partitioned Network .. 9-9
Restoring a Network Connection ... 9-11

Restoring Failed Machines .. 9-12
How to Restore a Failed MASTER Machine ... 9-12
How to Restore a Failed Nonmaster Machine.. 9-13

How to Replace System Components ... 9-14
How to Replace Application Components .. 9-14
viii Administering a BEA Tuxedo Application at Run Time

Cleaning Up and Restarting Servers Manually ... 9-15
How to Clean Up Resources Associated with Dead Processes................ 9-15
How to Clean Up Other Resources .. 9-16

How to Check the Order in Which BEA Tuxedo CORBA Servers Are Booted
9-16

How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA
Servers.. 9-17

Why Some BEA Tuxedo CORBA Clients Fail to Boot.................................. 9-18
Aborting or Committing Transactions... 9-19

How to Abort a Transaction ... 9-19
How to Commit a Transaction ... 9-19

How to Recover from Failures When Transactions Are Used 9-20
How to Use the IPC Tool When an Application Fails to Shut Down Properly

9-21
Troubleshooting Multithreaded/

Multicontexted Applications .. 9-22
Debugging Multithreaded/Multicontexted Applications 9-22
Limitations of Protected Mode in a Multithreaded Application 9-22
Administering a BEA Tuxedo Application at Run Time ix

x Administering a BEA Tuxedo Application at Run Time

About This Document

This document explains how to administer the BEA Tuxedo® system, for either a
data-dependent Tuxedo ATMI environment or an object-oriented Tuxedo CORBA
environment.

This document covers the following topics:

Chapter 1, “Starting Up and Shutting Down an Application,” describes how to
start up and shut down BEA Tuxedo applications.

Chapter 2, “Monitoring Your BEA Tuxedo Application,” describes how to
monitor the resources, activities, and potential problems in your configuration.

Chapter 3, “Dynamically Modifying an Application,” explains how to make
changes to your configuration without shutting it down.

Chapter 4, “Managing the Network in a Distributed Application,” describes how
to manage your network environment in order to support a distributed BEA
Tuxedo application.

 Chapter 5, “About the EventBroker,” provides an overview of the EventBroker,
a tool that provides asynchronous routing of application events among the
processes running in a BEA Tuxedo application.

Chapter 6, “Subscribing to Events,” describes how to configure EventBroker
servers.

Chapter 7, “Migrating Your Application,” describes how to migrate BEA
Tuxedo servers to a configured backup or alternate machine.

Chapter 8, “Tuning a BEA Tuxedo ATMI Application,” describes how to ensure
the smooth performance of your application in a Tuxedo ATMI environment.

Chapter 9, “Troubleshooting a BEA Tuxedo Application,” describes how to
perform various troubleshooting procedures within the BEA Tuxedo system.
Administering a BEA Tuxedo Application at Run Time xi

What You Need to Know

This document is intended mainly for administrators who configure operational
parameters that support mission-critical BEA Tuxedo systems. It assumes a familiarity
with the BEA Tuxedo platform.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the
PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA Tuxedo documentation Home page, click
the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
xii Administering a BEA Tuxedo Application at Run Time

Related Information

The following documents provide related information about BEA Tuxedo software.

Installing the BEA Tuxedo System—paper copy distributed with the CD

BEA Tuxedo Release Notes—paper copy distributed with the CD

Setting Up a BEA Tuxedo Application—available through the BEA Tuxedo
Online Documentation CD, this guide describes how to set up and administer the
BEA Tuxedo system.

Using the BEA Tuxedo Domains Component—available through the BEA
Tuxedo Online Documentation CD, this guide describes how to configure and
manage BEA Tuxedo domains.

Scaling, Distributing, and Tuning CORBA Applications—available through the
BEA Tuxedo Online Documentation CD, this guide describes how to tune and
scale CORBA applications that run in the BEA Tuxedo CORBA environment.

For more information about configuring and administering BEA Tuxedo ATMI and
BEA Tuxedo CORBA environments, refer to the CORBA Bibliography at
http://edocs.bea.com/.

Contact Us!

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail
at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA Tuxedo
documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA Tuxedo 8.0 release.
Administering a BEA Tuxedo Application at Run Time xiii

If you have any questions about this version of BEA Tuxedo, or if you have problems
installing and running BEA Tuxedo, contact BEA Customer Support through BEA
WebSupport at www.bea.com. You can also contact Customer Support by using the
contact information provided on the Customer Support Card, which is included in the
product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xiv Administering a BEA Tuxedo Application at Run Time

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Administering a BEA Tuxedo Application at Run Time xv

... Indicates one of the following in a command line:
That an argument can be repeated several times in a command line
That the statement omits additional optional arguments
That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xvi Administering a BEA Tuxedo Application at Run Time

CHAPTER
1 Starting Up and
Shutting Down an
Application

This topic includes the following sections:

The Tasks Involved in Starting Up and Shutting Down an Application

How to Set Your Environment

How to Create the TUXCONFIG File

How to Manually Propagate the Application-Specific Directories and Files

How to Create a TLOG Device

How to Boot the Application

How to Shut Down Your Application
Administering a BEA Tuxedo Application at Run Time 1-1

1 Starting Up and Shutting Down an Application
The Tasks Involved in Starting Up and
Shutting Down an Application

The following flowchart illustrates the tasks required to start up and shut down your
BEA Tuxedo application.

Click on each of the following tasks for instructions on completing that task.

Figure 1-1 Startup and Shutdown Tasks
1-2 Administering a BEA Tuxedo Application at Run Time

How to Set Your Environment
How to Set Your Environment

Being able to access the BEA Tuxedo executables and data libraries is essential to the
job of managing a BEA Tuxedo application. For example, the commands needed to
start up or shut down an application are located in %TUXDIR%\bin on a Windows 2000
host machine, and in $TUXDIR/bin on a UNIX host machine.

On Windows

On a Windows 2000 host machine, enter the following commands at the command
prompt to set up your environment:

set TUXCONFIG=path_name_of_TUXCONFIG_file
set TUXDIR=path_name_of_BEA_Tuxedo_system_root_directory
set APPDIR=path_name_of_BEA_Tuxedo_application_root_directory
set PATH=%APPDIR%;%TUXDIR%\bin;%PATH%

Replace the substitutable strings (italicized) with the absolute pathnames appropriate
for your installation.

Windows 2000 accesses the required dynamically loadable library files through its
PATH variable setting. Specifically, Windows 2000 searches for dynamically loadable
library files in the following order:

1. The directory from which the BEA Tuxedo application was loaded
2. The current directory
3. The Windows system directory (for example, C:\Win2000\System32)
4. The Windows directory (for example, C:\Win2000)
5. The directories listed in the PATH environment variable

On UNIX

On a UNIX host machine, set and export the following environment variables to set up
your environment:

TUXCONFIG=path_name_of_TUXCONFIG_file
TUXDIR=path_name_of_BEA_Tuxedo_system_root_directory
Administering a BEA Tuxedo Application at Run Time 1-3

1 Starting Up and Shutting Down an Application
APPDIR=path_name_of_BEA_Tuxedo_application_root_directory
PATH=$APPDIR:$TUXDIR/bin:/bin:$PATH
LD_LIBRARY_PATH=$APPDIR:$TUXDIR/lib:/lib:/usr/lib:$LD_LIBRARY_PATH
export TUXCONFIG TUXDIR APPDIR PATH LD_LIBRARY_PATH

Replace the substitutable strings (italicized) with the absolute pathnames appropriate
for your installation.

Note: The application administrator defines the TUXCONFIG, TUXDIR, and APPDIR
environment variables in the MACHINES section of the UBBCONFIG file or the
T_MACHINE class of the TM_MIB for each machine in an application. See the
UBBCONFIG(5) or TM_MIB(5) reference page for a description of these
environment variables.

How to Create the TUXCONFIG File

Each BEA Tuxedo domain is controlled by a configuration file in which
installation-dependent parameters are defined. The text version of the configuration
file is referred to as UBBCONFIG.The binary version of the UBBCONFIG file is referred
to as TUXCONFIG. As with UBBCONFIG, the TUXCONFIG file may be given any name;
the actual name is the device or system filename specified in the TUXCONFIG
environment variable.

Note: For information about the configuration file, refer to UBBCONFIG(5) in File
Formats, Data Descriptions, MIBs, and System Processes Reference.

The tmloadcf(1) command converts the text configuration file to a binary file called
TUXCONFIG and writes the new file to the location given in the TUXCONFIG variable.
Run the command as follows:

$ tmloadcf [-n] [-y] [-c] [-b blocks] {UBBCONFIG_file | - }

On This Platform . . . Make This change . . .

HP-UX on the HP 9000 Use SHLIB_PATH instead of LD_LIBRARY_PATH

AIX on the RS/6000 Use LIBPATH instead of LD_LIBRARY_PATH
1-4 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#365105
../rf5/rf5.htm#1980515
${DOCROOT}/rf5/rf5.htm
../rfcm/rfcmd.htm#9061611

How to Start tlisten at All Sites
Note: You must be logged in on the MASTER machine and have the effective user ID
of the configuration file owner.

The options shown here perform the following functions:

-n performs a syntax check only; reports errors

-y overwrites the existing TUXCONFIG file without asking

-c calculates minimum interprocess communication (IPC) resources of the
configuration

-b limits the size of the TUXCONFIG file

The -c and -n options do not load the TUXCONFIG file. IPC resources are platform
specific. If you use the -c option, check the data sheet for your platform in the BEA
Tuxedo Installation Guide to judge whether you must make changes. If you do want to
change IPC resources, check the administration documentation for your platform. If
the -n option checks for syntax errors in the configuration file, correct the errors before
you proceed. (For UBBCONFIG_file, substitute the fully qualified name of your
configuration file.)

The -b option takes an argument that limits the number of blocks used to store the
TUXCONFIG file. Use it if you are installing TUXCONFIG on a raw disk device that has
not been initialized. The option is not recommended if TUXCONFIG is stored in a regular
UNIX system file.

How to Start tlisten at All Sites

For a networked application, a listener process must be running on each machine. A
networked application is an application that runs on more than one machine, as
established by the MODEL MP parameter in the RESOURCES section of the application’s
UBBCONFIG file.

Note: You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant
environment variables before starting tlisten.
Administering a BEA Tuxedo Application at Run Time 1-5

1 Starting Up and Shutting Down an Application
The port on which the process is listening must be the same as the port specified for
NLSADDR in the NETWORK section of the configuration file. On each machine, use the
tlisten(1) command, as follows:

tlisten [-d device] -l nlsaddr [-u {uid-# | uid-name}] [-z bits] [-Z bits]

Example: tlisten -l //machine1:6500

tlisten Command Options

-d device—the full pathname of the network device. For BEA Tuxedo release
6.4 or later, this option is not required. For earlier versions of the BEA Tuxedo
system (up to release 6.3), some network providers (for example, TCP/IP)
require this information.

-l nlsaddr—network address at which the process listens for connections.
TCP/IP addresses may be specified in the following forms:

"//hostname:port_number"

"//#.#.#.#:port_number"

In the first example, tlisten finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local machine,
and the local name resolution facilities must unambiguously resolve hostname
to the address of the local machine.

In the second example, the #.#.#.# is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decimal
number represents the IP address of the local machine. In both of the above
formats, port_number is the TCP port number at which the tlisten process
listens for incoming requests. port_number can either be a number between 0
and 65535 or a name. If port_number is a name, then it must be found in the
network services database on your local machine. The address can also be
specified in hexadecimal format when preceded by the characters 0x. Each
character after the initial 0x is a number between 0 and 9 or a letter between A
and F (case insensitive). The hexadecimal format is useful for arbitrary binary
network addresses such as IPX/SPX or TCP/IP. The address can also be
specified as an arbitrary string.The value should be the same as that specified for
the NLSADDR parameter in the NETWORK section of the configuration file.
1-6 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#7864811

How to Manually Propagate the Application-Specific Directories and Files
tmloadcf(1) prints an error if nlsaddr is missing from any entry—except the
entry for the MASTER LMID, for which it will print a warning. However, if
nlsaddr is missing from the MASTER LMID entry, tmadmin(1) cannot be run in
administrator mode on remote machines; it is limited to read-only operations.
This also means that a backup site is unable to reboot the MASTER site after
failure.

-u uid-# or uid-name—used to run the tlisten process as the indicated user.
This option is required if the tlisten(1) command is run by root on a remote
machine.

-z [bits]—specifies the minimum level of encryption required when
establishing a network link between a BEA Tuxedo system administrative
process and tlisten. Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. If this minimum level of encryption
cannot be met, link establishment fails. The default is zero.

-Z [bits]—specifies the maximum level of encryption allowed when
establishing a network link between a BEA Tuxedo system administrative
process and tlisten. Zero (0) means no encryption, while 56 and 128 specify
the length (in bits) of the encryption key. The default is 128. The -z and -Z
options are available only if either the International or U.S. and Canada BEA
Tuxedo Security license is installed.

How to Manually Propagate the
Application-Specific Directories and Files

TUXCONFIG is propagated automatically to all machines in your configuration by the
BEA Tuxedo system when you run tmboot(1). There are, however, other files that
you need to propagate manually. Following is a list of the files and directories that you
need to create for a networked application. First, install the BEA Tuxedo system on the
machine.

Note: The tlisten process must be started on each machine of a networked BEA
Tuxedo application before the application is booted. Refer to the tlisten(1)
reference page.
Administering a BEA Tuxedo Application at Run Time 1-7

../rfcm/rfcmd.htm#9061611
../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#7864811
../rfcm/rfcmd.htm#5173411
../rfcm/rfcmd.htm#7864811

1 Starting Up and Shutting Down an Application
You must define TUXDIR, TUXCONFIG, APPDIR, and other relevant environment
variables before starting tlisten.

Table 1-1 Directories and Files to Propagate

How to Create a TLOG Device

To create distributed transaction processing, you must have created a global
transaction log (TLOG) on each participating machine. To define a TLOG, complete the
following steps.

1. You must first set several parameters in the MACHINES section of the configuration
file: TLOGDEVICE, TLOGOFFSET, TLOGNAME, and TLOGSIZE.

2. You must also create a universal device list entry (UDL) for the TLOGDEVICE on
each participating machine. (You can do this task before or after loading
TUXCONFIG, but you must do so before booting the system.) To create an entry in
the UDL for the TLOG device, invoke tmadmin -c on the MASTER machine with
the application inactive. (The -c option invokes tmadmin in configuration mode.)

3. Enter the command:

Directory/File Description

APPDIR You must create the directory named in the APPDIR variable on each node. It is easier
if this directory has the same pathname on all nodes.

Executables You must build one set of application servers for each platform, and manually
propagate the appropriate set to all machines running on each platform (that is, the BEA
Tuxedo system does not do this automatically). Store the executables in APPDIR, or in
a directory specified in a PATH variable in ENVFILES in the MACHINES section of
your configuration file.

Field tables
VIEW tables

If FML or VIEWS buffer types are used, field tables and VIEW description files must be
manually propagated to the machines where they are used, and then recompiled. Use
mkfldhdr, mkfldhdr32(1) to make a header file out of a field table file; use
viewc, viewc32(1) to compile a VIEW file. The FML field tables and VIEW
description files should be available through the environment variables FLDTBLDIR,
FIELDTBLS, VIEWDIR, and VIEWFILES, or their 32-bit equivalents.
1-8 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#763451321
../rfcm/rfcmd.htm#3273011

How to Boot the Application
crdl -z config -b blocks

where -z config specifies the full pathname for the device on which the UDL
should be created (that is, where the TLOG will reside) and -b blocks specifies
the number of blocks to be allocated on the device. The value of config should
match the value of the TLOGDEVICE parameter in the MACHINES section. The
blocks must be larger than the TLOGSIZE. If -z is not specified, the value of
config defaults to the value of the variable FSCONFIG (which points to the
application’s databases).

4. Repeat steps 1 and 2 on each machine in your application that will use global
transactions.

If the TLOGDEVICE is mirrored between two machines, step 4 is not required on the
paired machine. To be recoverable, the TLOG should reside on a device that can be
mirrored. Because the TLOG is too small (typically, 100 pages) to warrant the allocation
of a whole disk partition, the TLOG is commonly stored on the same raw disk slice as
the BEA Tuxedo /Q database.

How to Boot the Application
Once all prerequisites have been completed successfully, you can bring up the
application using tmboot. Only the administrator who created the TUXCONFIG file can
execute tmboot(1).

The application is generally booted from the machine designated as MASTER in the
RESOURCES section of the configuration file or the BACKUP acting as the MASTER. The
-b option allows some deviation from this rule. For tmboot to find executables, BEA
Tuxedo system processes such as the Bulletin Board Liason (BBL) must be located in
$TUXDIR/bin. Application servers should be in the directory defined by the APPDIR
variable, as specified in the configuration file.

When booting application servers, tmboot uses the CLOPT, SEQUENCE, SRVGRP,
SRVID, and MIN parameters from the configuration file. Application servers are booted
in the order specified by the SEQUENCE parameter, if SEQUENCE is used. If SEQUENCE
is not specified, servers are booted in the order in which they appear in the
configuration file. The command line should look something like the following:

$ tmboot [-g grpname] [-o sequence] [-S] [-A] [-y]

Table 1-2 tmboot Options
Administering a BEA Tuxedo Application at Run Time 1-9

../rfcm/rfcmd.htm#5173411

1 Starting Up and Shutting Down an Application
Note: For a complete list of tmboot options, see the tmboot(1) reference page.

Sequence of tmboot Tasks for a 2-Machine Configuration

To boot the entire configuration, enter the following command:

prompt> tmboot -y

tmboot performs the following tasks:

This Option Performs This Function

-g grpname Boots all TMS and application servers in groups using this grpname parameter.

-o sequence Boots all servers in the order shown in the SEQUENCE parameter.

-s server-name Boots an individual server.

-S Boots all servers listed in the SERVERS section.

-A Boots all administrative servers for machines listed in the MACHINES section. This
option ensures that the DBBL, BBL, and BRIDGE processes are started in the proper
order.

 -y Provides an automatic “yes” response to the prompt that asks whether all administrative
and application servers should be booted. This prompt is displayed only if no options
that limit the scope of the command (-g grpname, for example) are specified.
1-10 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#5173411

How to Boot the Application
Figure 1-2 Default Boot Sequence for a Small Application
Administering a BEA Tuxedo Application at Run Time 1-11

1 Starting Up and Shutting Down an Application
Sequence of tmboot Tasks for Large Applications (Over
50 Machines)

For relatively large applications (that is, those consisting of over 50 machines),
tmboot boots entire machines in a single step rather than performing all the steps used
to boot two machines in the default sequence. Following is the optimized sequence of
tasks.

Figure 1-3 Boot Sequence for a Large Application

Note: The boot sequence is much faster for large applications because the number of
system messages is far smaller. This method generally reduces boot time by
50%. In a configuration running on a slow network, boot time can be improved
by booting machines with higher speed connections to the MASTER machine
first.

How to Shut Down Your Application

Use the tmshutdown(1) command to shut down all or part of a BEA Tuxedo
application. The rules for running this command are similar to those for running
tmboot(1); tmshutdown is the inverse of tmboot.

When the entire application is shut down, tmshutdown removes the interprocess
communication (IPC) resources associated with the BEA Tuxedo system. The options
used by tmboot for partial booting (-A, -g, -I, -S, -s, -l, -M, -B) are supported in
tmshutdown. The -b option (allowing tmboot to be used from a non-MASTER machine)
is not supported for tmshutdown; you must enter the tmshutdown command from the
MASTER (or BACKUP MASTER) machine.
1-12 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#5331611
../rfcm/rfcmd.htm#5173411

How to Shut Down Your Application
To migrate servers, use the -R option. This option shuts down the servers without
removing bulletin board entries for them. If a machine is partitioned, run tmshutdown
with the -P LMID option on the partitioned machine to shut down the servers on that
machine.

tmshutdown does not shut down the administrative server BBL on a machine to which
clients are attached. You can use the -c option to override this feature. You need this
option for occasions when you must bring down a machine immediately and you
cannot contact the clients.

You can use the -w delay option to force a hard shutdown after delay seconds. This
option suspends all servers immediately so that additional work cannot be queued. The
value of delay should allow time for requests already queued to be serviced. After
delay seconds, a SIGKILL signal is sent to the servers. This option enables the
administrator to shut down servers that are looping or blocked in application code.

Running tmshutdown

Only the administrator who has written the TUXCONFIG file can execute
tmshutdown(1). The application can be shut down only from the machine designated
as MASTER in the configuration file. When the BACKUP acts as MASTER, it is considered
to be the MASTER for shutdown purposes. (The only exception to this rule is a
partitioned machine. By using the -p option, an administrator can run the tmshutdown
command from a partitioned machine to shut down the application at that site.)

The order in which application servers are shut down is the reverse of the order
specified by the SEQUENCE parameter for them, or the reverse order in which they are
listed in the configuration file. If some servers have SEQUENCE numbers and others do
not, the unnumbered servers are the first to be shut down, followed by the application
servers with SEQUENCE numbers (in reverse order). Finally, administrative servers are
shut down.

When an application is shut down, all the IPC resources allocated by the BEA Tuxedo
system are removed; tmshutdown does not remove IPC resources allocated by the
DBMS.
Administering a BEA Tuxedo Application at Run Time 1-13

../rfcm/rfcmd.htm#5331611

1 Starting Up and Shutting Down an Application
Using the IPC Tool When an Application Fails to Shut
Down Properly

IPC resources are operating system resources, such as message queues, shared
memory, and semaphores. When a BEA Tuxedo application shuts down properly with
the tmshutdown command, all IPC resources used by the BEA Tuxedo application are
removed from the system. In some cases, however, an application may fail to shut
down properly and stray IPC resources may remain on the system. When this happens,
it may not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invokes
the system IPCS command and scan for all IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets
of IPC resources; some may belong to a particular BEA Tuxedo application; and others
to applications unrelated to the BEA Tuxedo system. It is important to be able to
distinguish among these sets of resources; unintentional removal of IPC resources can
severely damage an application.

The BEA Tuxedo IPC tool (that is, the tmipcrm(1) command) enables you to remove
IPC resources allocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove IPC resources, tmipcrm(1), resides in TUXDIR/bin. This
command reads the binary configuration file (TUXCONFIG), and attaches to the bulletin
board using the information in this file. tmipcrm works only on the local server
machine; it does not clean up IPC resources on remote machines in a BEA Tuxedo
configuration.

To run this command, enter it as follows on the command line:

tmipcrm [-y] [-n] [TUXCONFIG_file]

The IPC tool lists all IPC resources used by the BEA Tuxedo system and gives you the
option of removing them.

Note: This command will not work unless you have set the TUXCONFIG environment
variable correctly or specified the appropriate TUXCONFIG file on the
command line.

To remove /Q IPC resources, use the qmadmin(1) ipcrm command.
1-14 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2215211
../rfcm/rfcmd.htm#2215211
../rfcm/rfcmd.htm#9270011

CHAPTER
2 Monitoring Your BEA
Tuxedo Application

This topic includes the following sections:

Ways to Monitor Your Application

Selecting Appropriate Monitoring Tools

Using the BEA Administration Console to Monitor Your Application

Using Command-line Utilities to Monitor Your Application

Using EventBroker to Monitor Your Application

Using Log Files to Monitor Activity

Using the MIB to Monitor Your Application

Using the Run-time Tracing Utility

Managing Errors Using the DBBL and BBLs

Using ATMI to Handle System and Application Errors

Monitoring Multithreaded and Multicontexted Applications
Administering a BEA Tuxedo Application at Run Time 2-1

2 Monitoring Your BEA Tuxedo Application
Ways to Monitor Your Application

As an administrator, you must ensure that once an application is up and running, it
continues to meet the performance, availability, and security requirements set by your
company. To perform this task, you need to monitor the resources (such as shared
memory), activities (such as transactions), and potential problems (such as security
breaches) in your configuration, and take any necessary corrective actions.

To help you meet this responsibility, the BEA Tuxedo system provides several
methods for monitoring system and application events, and dynamically reconfiguring
your system to improve performance. The following facilities offer an excellent view
of how your system is working:

BEA Tuxedo Administration Console

command-line utilities

log files

the ATMI

the MIB

run-time tracing facility

These tools help make your application capable of responding quickly and efficiently
to changing business needs or failure conditions. They also assit you in managing your
application’s performance and security.
2-2 Administering a BEA Tuxedo Application at Run Time

Ways to Monitor Your Application
Figure 2-1 Monitoring Tools
Administering a BEA Tuxedo Application at Run Time 2-3

2 Monitoring Your BEA Tuxedo Application
The BEA Tuxedo system offers the following tools to monitor your application:

BEA Administration Console—a Web-based graphical user interface you can use
to observe the behavior of the application, and to dynamically configure its
operation. You can display and change configuration information, determine the
state of each component of the system, and obtain statistical information about
items such as executed requests, and queued requests.

Command-line utilities—a set of commands (for example, tmboot(1),
tmadmin(1), and tmshutdown(1)) you can use to activate, deactivate,
configure, and manage your application.

EventBroker—a mechanism that informs administrators of system faults and
exceptional happenings such as network failures. When an event is posted by
clients or servers, the EventBroker matches the name of the posted event to a list
of subscribers for that event, and takes appropriate action, determined by each
subscription.

Log files—a set of files that make up a repository for error and warning
messages, debugging messages, and informational messages helpful in tracking
and resolving problems in the system.

MIB—an interface to a set of procedures for accessing and modifying
information in the MIBs. Using the MIB, you can write programs that enable
you to monitor your run-time application.

Run-time tracing facility—software that tracks the execution of an application,
thus providing information that is helpful in resolving system problems.

See Also

“System and Application Data That You Can Monitor” on page 2-5

“Selecting Appropriate Monitoring Tools” on page 2-9

“Using the BEA Administration Console to Monitor Your Application” on page
2-10

“Benefits of Using the BEA Tuxedo Administration Console” on page 4-4 in
Introducing BEA Tuxedo ATMI

“Using Command-line Utilities to Monitor Your Application” on page 2-11
2-4 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#5173411
../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#5331611
../int/intman.htm#969922

System and Application Data That You Can Monitor
“Using EventBroker to Monitor Your Application” on page 2-15

“Using Log Files to Monitor Activity” on page 2-16

“Using ATMI to Handle System and Application Errors” on page 2-29

“Using the MIB to Monitor Your Application” on page 2-23

“Managing Operations Using the MIB” on page 4-14 in Introducing BEA Tuxedo
ATMI

“Using the Run-time Tracing Utility” on page 2-26

tmshutdown(1) in the BEA Tuxedo Command Reference

“BEA Tuxedo Management Tools” on page 4-1 in Introducing BEA Tuxedo
ATMI

System and Application Data That You Can
Monitor

The BEA Tuxedo system enables you to monitor system and application data.

Monitoring System Data

To help you monitor a running system, your BEA Tuxedo system maintains parameter
settings and generates statistics for the following system components:

Clients

Conversations

Groups

Message queues

Networks
Administering a BEA Tuxedo Application at Run Time 2-5

../int/intman.htm#392601
../rfcm/rfcmd.htm#5331611
../int/intman.htm#544294

2 Monitoring Your BEA Tuxedo Application
Servers

Services

CORBA Interfaces

Transactions

You can access these components using the MIB or tmadmin. You can set up your
system so that it can use the statistics in the bulletin board to make decisions and to
modify system components dynamically, without your intervention. With proper
configuration, your system can perform the following tasks (when bulletin board
statistics indicate that they are required):

Turn on load balancing

Start a new copy of a server

Shut down servers that are not being used

By monitoring the administrative data for your system, you can prevent and resolve
problems that threaten the performance, availability, and security of your application.

Where the System Data Resides

To ensure that you have the information necessary to monitor your system, the BEA
Tuxedo system provides the following three data repositories:

Bulletin board—a segment of shared memory (on each machine in your
network) to which your system writes statistics about the components and
activities of your configuration

Log files—files to which your system writes messages

UBBCONFIG—a text file in which you define the parameters of your system and
application

Monitoring Dynamic and Static Administrative Data

You can monitor two types of administrative data that are available on every running
BEA Tuxedo system: static and dynamic.
2-6 Administering a BEA Tuxedo Application at Run Time

System and Application Data That You Can Monitor
What Is Static Data?

Static data about your configuration consists of configuration settings that you assign
when you first configure your system and application. These settings are never
changed without intervention (either in realtime or through a program you have
provided). Examples include system-wide parameters (such as the number of
machines used) and the amount of interprocess communication (IPC) resources (such
as shared memory) allocated to your system on your local machine. Static data is kept
in the UBBCONFIG file and in the bulletin board.

Checking Static Data

At times you may need to check static data about your configuration. For example, you
may want to add a large number of machines without exceeding the maximum number
of machines allowed in your configuration (or allowed in the machine tables of the
bulletin board). You can look up the maximum number of machines allowed by
checking the current values of the system-wide parameters for your configuration (one
of which is MAXMACHINES).

You may be able to improve the performance of your application by tuning your
system. To determine whether tuning is required, you need to check the amount of
local IPC resources currently available.

What Is Dynamic Data?

Dynamic data about your configuration consists of information that changes in
realtime, that is, while an application is running. For example, the load (the number of
requests sent to a server) and the state of various configuration components (such as
servers) change frequently. Dynamic data is kept in the bulletin board.

Checking Dynamic Data

Dynamic configuration data is useful in resolving many administrative problems, as
demonstrated by two examples.

In the first example, suppose your throughput is suffering and you want to know
whether you have enough servers running to accommodate the number of clients
currently connected. Check the number of running servers and connected clients, and
the load on one or more servers. These numbers help you determine whether adding
more servers will improve performance.
Administering a BEA Tuxedo Application at Run Time 2-7

2 Monitoring Your BEA Tuxedo Application
In the second example, suppose you receive multiple complaints about slow response
from users when making particular requests of your application. By checking load
statistics, you can determine whether increasing the value of the BLOCKTIME parameter
would improve response time.

Common Startup and Shutdown Problems

When evaluating whether your BEA Tuxedo system is operating normally, you might
want to consider the following list of common startup and shutdown problems, and
monitor your system periodically.

Common Startup Problems

Application server failed or dumped core during initialization

Application server file not found or not executable

Automatic migration of server group

Default boot sequence may not be optimal

Environment variable not set or not set properly

IPCKEY is already in use

Invalid network address

Met upper bound limits specified in the UBBCONFIG file

Network port is in use already

Reached limit on system resources

Server boot dependency

TLOG file is not created
2-8 Administering a BEA Tuxedo Application at Run Time

Selecting Appropriate Monitoring Tools
Common Shutdown Problems

Clients still attached

Dead servers

Shutdown sequence

Selecting Appropriate Monitoring Tools

To monitor a running application, you need to keep track of the dynamic aspects of
your configuration and sometimes check the static data. In other words, you need to be
able to watch the bulletin board on an ongoing basis and consult the UBBCONFIG file
when necessary. The method you choose depends on the following factors:

Your BEA Tuxedo system administration experience: If you have a lot of
experience as an administrator, as well as shell programming expertise, you may
prefer to write programs that automate your most frequently run commands.

Your operating system experience: If you are inexperienced, you may be more
comfortable using the BEA Administration Console.

Which information you want to view: If you decide to monitor your application
by examining the RESOURCES section of the UBBCONFIG file through the
tmadmin command, you will have access to only the current values.

The following table describes how to use each monitoring method.

Use This Method... By...

BEA Administration Console Using a graphical interface.

Command-line utilities, such
as txrpt and tmadmin

Entering commands after a prompt.

EventBroker Subscribing to BEA Tuxedo system events, such as servers
dying, and network failures.
Administering a BEA Tuxedo Application at Run Time 2-9

2 Monitoring Your BEA Tuxedo Application
Using the BEA Administration Console to
Monitor Your Application

The BEA Administration Console is a graphical user interface to the MIB that enables
you to tune and modify your application. It is accessed through the World Wide Web
and used through a Web browser. Any administrator with a supported browser can
monitor a BEA Tuxedo application.

Using the Toolbar to Monitor Activities

The toolbar is a row of 12 buttons that allow you to run tools for frequently performed
administrative and monitoring functions. All buttons are labeled with both icons and
names. The following buttons are available for monitoring:

Logfile—displays the ULOG file from a particular machine in the active
domain.

Event Tool—helps you monitor system events. When you click the Event Tool
button, a window displays four options: subscribe—to request notification of
specified system events, unsubscribe—to reject further notification of specified
system events, snapshot—to create a record of the data currently held by the

Log files (for example, ULOG,
TLOG)

Viewing the ULOG with any text editor; checking the ULOG
for tlisten messages; and converting the TLOG (a binary
file) to a text file by running tmadmin dumptlog which
downloads a TLOG to a text file.

MIB Writing programs that monitor your run-time application.

Run-time tracing utility Specifying a tracing expression that contains a category, a
filtering expression, and an action, and enabling the
TMTRACE environment variable. For more information, see
“Using the Run-time Tracing Utility” on page 2-26.

Use This Method... By...
2-10 Administering a BEA Tuxedo Application at Run Time

Using Command-line Utilities to Monitor Your Application
Event Tool, and select format—to choose parameters for the information being
collected by the Event Tool.

Stats—to display a graphical representation of BEA Tuxedo system activity.

Search—to look for a particular object class or object in the Tree.

See Also

“Management Operations Using the BEA Tuxedo Administration Console” on
page 4-4 in Introducing BEA Tuxedo ATMI

Using Command-line Utilities to Monitor
Your Application

To monitor your application through the command-line interface, use the tmadmin(1)
or txrpt(1) command.

Inspecting Your Configuration Using tmadmin

The tmadmin command is an interpreter for 53 commands that enable you to view and
modify a bulletin board and its associated entities. Using the tmadmin commands, you
can monitor statistical information in the system such as the state of services, the
number of requests executed, the number of queued requests, and so on.

Using the tmadmin commands, you can also dynamically modify your BEA Tuxedo
system. You can, for example, perform the following types of changes while your
system is running:

Suspend and resume services

Advertise and unadvertise services

Change service parameters
Administering a BEA Tuxedo Application at Run Time 2-11

../int/intman.htm#384541
../int/intman.htm#384541
../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#1017911

2 Monitoring Your BEA Tuxedo Application
Change the AUTOTRAN timeout value

Whenever you start a tmadmin session, you can choose the following operating modes
for that session: the default operating mode, read-only mode, or configuration mode:

In default operating mode, you can view and change bulletin board data during a
tmadmin session, if you have administrator privileges (that is, if your effective
UID and GID are those of the administrator).

In read-only mode, you can view the data in the bulletin board, but you cannot
make any changes. The advantage of working in read-only mode is that your
administrator process is not tied up by tmadmin; the tmadmin process attaches
to the bulletin board as a client, leaving your administrator slot available for
other work.

In configuration mode, you can view the data in the bulletin board and, if you
are the BEA Tuxedo application administrator, you can make changes. You can
start a tmadmin session in configuration mode on any machine, including an
inactive machine. On most inactive machines, configuration mode is required in
order to run tmadmin. (The only inactive machine on which you can start a
tmadmin session without requesting configuration mode is the MASTER
machine.)

Note: You can also generate a report of the BEA Tuxedo version and license
numbers.

Generating Reports on Servers and Services Using txrpt

The txrpt command analyzes the standard error output of a BEA Tuxedo server and
provides a summary of service processing time within the server. The report shows the
number of times each service was dispatched and the average amount of time it took
for each service to process a request during the specified period. txrpt takes its input
from the standard input or from a standard error file redirected as input. To create
standard error files, have your servers invoked with the -r option from the
servopts(5) selection; you can name the file by specifying it with the -e servopts
option. Multiple files can be concatenated into a single input stream for txrpt.

Over time, information about service X and server Y (on which service X resides) is
accumulated in a file. txrpt processes the file and provides you with a report about
the service access and timing characteristics of the server.
2-12 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#7588415

Using Command-line Utilities to Monitor Your Application
See Also

“Ways to Monitor Your Application” on page 2-2

“How a tmadmin Session Works” on page 2-14

“Monitoring Your System Using tmadmin Commands” on page 2-15

“Managing Operations Using Command-Line Utilities” on page 4-10 in
Introducing BEA Tuxedo ATMI
Administering a BEA Tuxedo Application at Run Time 2-13

../int/intman.htm#497981

2 Monitoring Your BEA Tuxedo Application
How a tmadmin Session Works

The tmadmin command is an interpreter for 53 commands that enable you to view and
modify a bulletin board and its associated entities. The following illustration shows
you how a typical tmadmin session works.

Figure 2-2 Typical tmadmin Session
2-14 Administering a BEA Tuxedo Application at Run Time

Using EventBroker to Monitor Your Application
Monitoring Your System Using tmadmin Commands

Following is a list of run-time system functions that you can monitor with tmadmin
commands:

Number of servers installed in a service

Appropriate load distribution

If a particular service is doing any work

Inactive clients

If distribution of work is flowing smoothly through the system

If a client is tying up a connection and preventing a server from doing any work
for another client

Stability of network

If you must manually commit or abort a transaction

Sufficient operating system resources (such as shared memory and semaphores)
on a local machine

See Also

tmadmin(1) in the BEA Tuxedo Command Reference

Using EventBroker to Monitor Your
Application

The BEA Tuxedo EventBroker monitors a running application for events (for example,
a state change in a MIB object, such as the transition of a client from active to inactive).
When the EventBroker detects an event, it reports or posts the event, and then notifies
relevant subscribers that the event has occurred. You can be informed automatically
Administering a BEA Tuxedo Application at Run Time 2-15

../rfcm/rfcmd.htm#2554911

2 Monitoring Your BEA Tuxedo Application
when events occur in the MIB by receiving FML data buffers representing MIB objects.
To post the event and report it to subscribers, the EventBroker uses the tppost(3c)
function. Both administrators and application processes can subscribe to events.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred, and some event-specific fields that identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

The name of the affected machine, as specified in the T_MACHINE class, with
all the attributes of that machine

Some event attributes identifying the event as machine partitioned

To use the EventBroker, you simply subscribe to system events.

See Also

“Managing Events Using EventBroker” on page 4-17 in Introducing BEA
Tuxedo ATMI

Using Log Files to Monitor Activity

To help you identify error conditions quickly and accurately, the BEA Tuxedo system
provides the following log files:

Transaction log (TLOG)—a binary file that is not normally read by you (the
administrator), but that is used by the Transaction Manager Server (TMS). A
TLOG is created only on machines involved in BEA Tuxedo global transactions.

User log (ULOG)—a log of messages generated by the BEA Tuxedo system
while your application is running.

These logs are maintained and updated constantly while your application is running.
2-16 Administering a BEA Tuxedo Application at Run Time

../rf3c/rf3c.htm#4209713
../int/intman.htm#679361

Using Log Files to Monitor Activity
See Also

“What Is the Transaction Log (TLOG)?” on page 2-18

“Ways to Monitor Your Application” on page 2-2

“Detecting Errors Using Logs” on page 2-19

“Estimating Service Workload Using the Application Service Log” on page 2-22
Administering a BEA Tuxedo Application at Run Time 2-17

2 Monitoring Your BEA Tuxedo Application
What Is the Transaction Log (TLOG)?

The transaction log (TLOG) keeps track of global transactions during the commit phase.
At the end of the first phase of a 2-phase commit protocol, the participants in a global
transaction issue a reply to the question of whether to commit or roll back the
transaction. This reply is recorded in the TLOG.

The TLOG file is used only by the Transaction Manager Server (TMS) that coordinates
global transactions. It is not read by the administrator. The location and size of the
TLOG are specified by four parameters that you set in the MACHINES section of the
UBBCONFIG file.

You must create a TLOG on each machine that participates in global transactions.

See Also

“Detecting Errors Using Logs” on page 2-19

What Is the User Log (ULOG)?

The user log (ULOG) is a file to which all messages generated by the BEA Tuxedo
system—error messages, warning messages, information messages, and debugging
messages—are written. Application clients and servers can also write to the user log.
A new log is created every day and there can be a different log on each machine.
However, a ULOG can be shared by multiple machines when a remote file system is
being used.

The ULOG provides an administrator with a record of system events from which the
causes of most BEA Tuxedo system and application failures can be determined. You
can view the ULOG, a text file, with any text editor. The ULOG also contains messages
generated by the tlisten process. The tlisten process provides remote service
connections for other machines in an application. Each machine, including the master
machine, should have a tlisten process running on it.
2-18 Administering a BEA Tuxedo Application at Run Time

Detecting Errors Using Logs
Detecting Errors Using Logs

The BEA Tuxedo log files can help you detect failures in both your application and
your system by:

“Analyzing the Transaction Log (TLOG)” on page 2-19

“Analyzing the User Log (ULOG)” on page 2-20

“Analyzing tlisten Messages in the ULOG” on page 2-21

Analyzing the Transaction Log (TLOG)

The TLOG is a binary file that contains only messages about global transactions that are
in the process of being committed. To view the TLOG, you must first convert it to text
format so that it is readable. The BEA Tuxedo system provides two tmadmin
operations to do this:

dumptlog (dl) downloads (or dumps) the TLOG (a binary file) to a text file.

loadtlog uploads (or loads) an text version of the TLOG into an existing TLOG (a
binary file).

The dumptlog and loadtlog commands are also useful when you need to move the
TLOG between machines as part of a server group migration or machine migration.

Detecting Transaction Errors

Use the MIB T_TRANSACTION class to obtain the runtime transaction attributes within
the system. The tmadmin command printtrans (pt) can also be used to display this
information. Information about each group in the transaction is printed only if
tmadmin is running in verbose mode as set by a previous verbose (v) command.

Any serious errors during the transaction commit process, such as a failure while
writing the TLOG, is written to the USERLOG.
Administering a BEA Tuxedo Application at Run Time 2-19

2 Monitoring Your BEA Tuxedo Application
Analyzing the User Log (ULOG)

On each active machine in an application, the BEA Tuxedo system maintains a log file
that contains BEA Tuxedo system error messages, warning messages, debugging
messages, or other helpful information. This file is called the user log or ULOG. The
ULOG simplifies the job of finding errors returned by the BEA Tuxedo ATMI, and
provides a central repository in which the BEA Tuxedo system and applications can
store error information.

You can use the information in the ULOG to identify the cause of system or application
failures. Multiple messages about a given problem can be placed in the user log.
Generally, earlier messages provide more useful diagnostic information than later
messages.

ULOG Message Example

In the following example, message 358 from the LIBTUX_CAT catalog identifies the
cause of the trouble reported in subsequent messages, namely, that there are not
enough UNIX system semaphores to boot the application.

Listing 2-1 Sample ULOG Messages

151550.gumby!BBL.28041.1.0: LIBTUX_CAT:262: std main starting
151550.gumby!BBL.28041.1.0: LIBTUX_CAT:358: reached UNIX limit on semaphore ids
151550.gumby!BBL.28041.1.0: LIBTUX_CAT:248: fatal: system init function ...
151550.gumby!BBL.28040.1.0: CMDTUX_CAT:825: Process BBL at SITE1 failed ...
151550.gumby!BBL.28040.1.0: WARNING: No BBL available on site SITE1.
 Will not attempt to boot server processes on that site.

Note: System Messages contains complete descriptions of user log messages and
recommendations for any actions that should be taken to resolve the problems
indicated.
2-20 Administering a BEA Tuxedo Application at Run Time

Detecting Errors Using Logs
Analyzing tlisten Messages in the ULOG

Part of the ULOG records error messages to the tlisten process. You can view
tlisten messages using any text editor. Each machine, including the MASTER
machine contains a separate tlisten process. Though separate tlisten logs are
maintained in the ULOG on each machine, they can be shared across remote file
systems.

The ULOG records tlisten process failures. tlisten is used, during the boot process,
by tmboot and, while an application is running, by tmadmin. tlisten messages are
created as soon as the tlisten process is booted. Whenever a tlisten process failure
occurs, a message is recorded in the ULOG.

Note: Application administrators are responsible for analyzing the tlisten
messages in the ULOG, but programmers may also find it useful to check these
messages.

The BEA Tuxedo System Messages CMDTUX Catalog contains the following
information about tlisten messages:

Descriptions of all messages

Recommended actions that you (or a programmer) can take to resolve the error
conditions reported in these messages

tlisten Message Example

Consider the following example of a tlisten message in the ULOG:

121449.gumby!simpserv.27190.1.0: LIBTUX_CAT:262: std main starting

A ULOG message consists of a tag and text. The tag consists of the following:

A 6-digit string (hhmmss) representing the time of day (in terms of hour, minute,
and second).

The name of the machine (as returned, on UNIX systems, by the uname -n
command).

The name and process identifier of the process that is logging the message. (This
process ID can optionally include a transaction ID.) Also included is a thread ID
(1) and a context ID (0).
Administering a BEA Tuxedo Application at Run Time 2-21

2 Monitoring Your BEA Tuxedo Application
Note: Placeholders are printed in the thread_ID and context_ID field of
entries for single-threaded and single-contexted applications. (Whether an
application is multithreaded is not apparent until more than one thread is
used.)

The text consists of the following:

The name of the message catalog

The message number

The BEA Tuxedo system message

Note: You can find this message in the BEA Tuxedo System Messages LIBTUX
Catalog.

See Also

“How to Create a TLOG Device” on page 1-8

“How to Boot the Application” on page 1-9

“BEA Tuxedo Transaction Management Server” on page 3-12 in Introducing
BEA Tuxedo ATMI

“Using Transactions” on page 1-18 in Tutorials for Developing BEA Tuxedo
ATMI Applications

Estimating Service Workload Using the
Application Service Log

A BEA Tuxedo application server can generate a log of the service requests it handles.
The log is displayed on the server’s standard output (stdout). Each record contains a
service name, start time, and end time.
2-22 Administering a BEA Tuxedo Application at Run Time

../int/intarch.htm#870401
../tutor/tutov.htm#756961

Using the MIB to Monitor Your Application
You can request such a log when a server is activated. The txrpt facility produces a
summary of the time spent by the server, thus giving you a way to analyze the log
output. Using this data, you can estimate the relative workload generated by each
service, which will help you set workload parameters appropriately for the
corresponding services in the MIB.

Using the MIB to Monitor Your Application

There are essentially two operations you can perform using the MIB: you can get
information from the MIB (a get operation) or you can update information in the MIB
(a set operation) at any time using a set of ATMI functions (for example,
tpalloc(3c), tprealloc(3c), tpcall(3c), tpacall(3c), tpgetrply(3c),
tpenqueue(3c), and tpdequeue(3c)).

When you query the MIB with a get operation, the MIB responds to your reply with
a number of matches, and indicates how many more objects match your request. The
MIB returns a handle (that is, the cursor) that you can use to get the remaining objects.
The operation you use to get the next set of objects is called getnext. The third
operation occurs when queries span multiple buffers.

Limiting Your MIB Queries

When you query the MIB, which is a virtual database, you are selecting a set of records
from the database table. You can control the size of the database table in two ways: by
controlling the number of objects about which you want information, or by controlling
the amount of information about each object. Using key fields and filters, you can limit
the scope of your request to data that is meaningful for your needs. The more limits
you specify, the less information is requested from the application, and the faster the
data is provided to you.
Administering a BEA Tuxedo Application at Run Time 2-23

../rf3c/rf3c.htm#9599213
../rf3c/rf3c.htm#4430313
../rf3c/rf3c.htm#8077913
../rf3c/rf3c.htm#3813413
../rf3c/rf3c.htm#2914213
../rf3c/rf3c.htm#6539913
../rf3c/rf3c.htm#7427413

2 Monitoring Your BEA Tuxedo Application
Querying Global and Local Data

Data in the MIB is stored in a number of different places. Some data is replicated on
more than one machine in a distributed application. Other data is not replicated, but is
local to particular machines based on the nature of the data or the object represented.

What Is Global Data?

Global data is information about application components such as servers that is
replicated on every machine in an application. Most of the data about a server, for
example, such as information about its configuration and state, is replicated globally
throughout an application, specifically in every bulletin board. A BEA Tuxedo
application can access this information from anywhere.

For example, from any machine in an application called Customer Orders, the
administrator can find out that server B6 belongs to Group 1, runs on machine
CustOrdA, and is active.

What Is Local Data?

Other information is not replicated globally, but is local to an entity, such as statistics
for a server. An example of a local attribute is TA_TOTREQC, which defines the number
of times services have been processed in a specified server. This statistic is stored with
the server on its host machine. When the server accepts and processes a service
request, the counter is incremented. Because this kind of information is managed
locally, replicating it would inhibit your system’s performance.

There are also classes in the MIB that are exclusively local, such as clients. When a
client logs in, the BEA Tuxedo system creates an entry for it in the bulletin board, and
records all tracking information about the client in that entry. The MIB can determine
the state of the client at anytime by checking this entry.
2-24 Administering a BEA Tuxedo Application at Run Time

Querying and Updating the MIB with ud32
Using tmadmcall to Access Information

The BEA Tuxedo system provides a programming interface that offers direct access to
the MIB while your application is not running. This interface, the tpadmcall function,
gives the application direct access to the data upon which the MIB is based.
tpadmcall allows you access to a subset of information that is local to your process.

Use tpadmcall when you need to query the system or make administrative changes
while your system is not running. tpadmcall queries the TUXCONFIG file on behalf of
your request. Data buffers that you put in, and data buffers that you receive (containing
your queries and the replies to them) are exactly the same.

See Also

“Managing Operations Using the MIB” on page 4-14 in Introducing BEA Tuxedo
ATMI

MIB(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Querying and Updating the MIB with ud32” on page 2-25

Querying and Updating the MIB with ud32

ud32 is a client program delivered with the BEA Tuxedo system that reads input
consisting of text representation of FML buffers. You can use ud32 for ad hoc queries
and updates to the MIB. It creates an FML32 buffer, makes a service call with the
buffer, receives a reply (also in an FML32 buffer) from the service call, and displays the
results on screen or in a file in text format.

ud32 builds an FML32-type buffer with the FML fields and values that you represent in
text format, makes a service call to the identified service in the buffer, and waits for
the reply. The reply then comes back in FML32 format as a report. Now, because the
MIB is FML32-based, ud32 becomes the scripting tool for the MIB.
Administering a BEA Tuxedo Application at Run Time 2-25

../int/intman.htm#392601
../rf5/rf5.htm#8244015

2 Monitoring Your BEA Tuxedo Application
For example, suppose you write a small file that contains the following text:

service name=.tmib and ta_operation=get, TACLASSES=T_SERVER

When you type this file into ud32, you receive an FML output buffer listing all the data
in the system about the servers.

Using the Run-time Tracing Utility

The BEA Tuxedo system provides a run-time tracing facility that enables you to track
the execution of distributed business applications. The system has a set of built-in trace
points that mark calls to functions in different categories, such as ATMI functions
issued by the application or XA functions issued by the BEA Tuxedo system to an
X/Open compliant resource manager.

To enable tracing, you must specify a tracing expression that contains a category, a
filtering expression, and an action. The category indicates the type of function (such as
ATMI) to be traced. The filtering expression specifies which particular functions
trigger an action. The action indicates the response to the specified functions by the
BEA Tuxedo system. The system may, for example, write a record in the ULOG,
execute a system command, or terminate a trace process. A client process can also
propagate the tracing facility with its requests. This capability is called dyeing; the
trace dye colors all services that are called by the client.

There are two ways to specify a tracing expression: by setting the TMTRACE
environment variable, or by specifying the expression in a server environment.

For a simple tracing expression, define TMTRACE=on in the environment of the
client. This expression enables tracing of ATMI functions on the client and on
any server that performs a service on behalf of that client. The trace records are
written to the ULOG file.

You can also specify a tracing expression in the environment of a server. For
example, you might enter the following: TMTRACE=atmi:/tpservice/ulog. If
you export this setting within the environment of the server, a record will be
generated in the ULOG file each time a service is invoked on that server.
2-26 Administering a BEA Tuxedo Application at Run Time

Managing Errors Using the DBBL and BBLs
You can activate or deactivate the tracing option using the changetrace command of
tmadmin. This command enables you to overwrite the tracing expression on active
client or server processes. Administrators can enable global tracing for all clients and
servers, or for a particular machine, group, or server.

See Also

“Ways to Monitor Your Application” on page 2-2

tmtrace(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference

Managing Errors Using the DBBL and BBLs

The BEA Tuxedo system uses the following two administrative servers to distribute
the information on the bulletin board to all active machines in the application:

DBBL—the Distinguished Bulletin Board Liaison server propagates global
changes to the MIB and maintains the static part of the MIB. Specifically, the
DBBL:

Resides (only one DBBL per application) on the MASTER machine and
provides periodic status requests to all BBLs

Coordinates bulletin board updates, the state of different machines, and
queries with the BBLs

Coordinates migration of servers

Can be migrated to other machines for fault resiliency

BBL—the Bulletin Board Liaison server maintains the bulletin board on its host
machine, coordinating changes to the local MIB, and verifying the integrity of
application programs active on its machine. Specifically, the bulletin board:

Resides on each BEA Tuxedo machine in an application, carries out requests
from the DBBL, and administers timeouts for service requests, replies to
requesters, and transactions
Administering a BEA Tuxedo Application at Run Time 2-27

../rf5/rf5.htm#3160115

2 Monitoring Your BEA Tuxedo Application
Detects server failures, initiates user-defined recovery, and automatically
restarts servers

Detects client failures

Cleans up client and server entries, and conversations on the bulletin board

Detects and recovers DBBL failures (if it is the BBL residing on the MASTER
machine)

Figure 2-3 Diagnosis and Repair Using the DBBL and BBLs

Both servers have a role in managing faults. The DBBL coordinates the state of other
active machines in the application. Each BBL communicates state changes in the MIB,
and sometimes sends a message to the DBBL indicating all is OK on its host machine.
2-28 Administering a BEA Tuxedo Application at Run Time

Using ATMI to Handle System and Application Errors
The BEA Tuxedo run-time system records events, along with system errors, warnings,
and tracing events, in the user log (ULOG). Programmers can use the ULOG to debug
their applications or notify administrators of special conditions or states found (for
example, an authorization failure).

Using ATMI to Handle System and
Application Errors

Using ATMI, a programmer controls some of the more global aspects of
communications. ATMI provides functions for handling both application and
system-related errors. When a service routine encounters an application error, such as
an invalid account number, the client knows the service performed its task but could
not fulfill its request because of an application error.

With a system failure, such as a server crashing while performing a request, the client
knows the service routine did not perform its task because of an underlying system
error. The BEA Tuxedo system notifies programs of system errors that occur as it
monitors the application’s behavior and its own behavior.

Using Configurable Timeout Mechanisms

At times, a service may get stuck in an infinite loop while processing a request. The
client waits, but no reply is forthcoming. To protect a client from endless waiting, the
BEA Tuxedo system has two types of configurable timeout mechanisms: blocking
timeouts and transaction timeouts. For more information about these timeout
mechanisms, refer to Specifying Domains Transaction and Blocking Timeouts in
Using the BEA Tuxedo Domains Component.

A blocking timeout is a mechanism that ensures a blocked program waits no longer
than the specified timeout value for something to occur. Once a timeout is detected, the
waiting program is alerted with a system error informing it that a blocking timeout has
occurred. The blocking timeout defines the duration of service requests, or how long
Administering a BEA Tuxedo Application at Run Time 2-29

../add/addom.htm#688271

2 Monitoring Your BEA Tuxedo Application
the application is willing to wait for a reply to a service request. The timeout value is
a global value defined in the BLOCKTIME field of the RESOURCES section of the
TUXCONFIG file.

A transaction timeout is another type of timeout that can occur because active
transactions tend to be resource-intensive. A transaction timeout defines the duration
of a transaction, which may involve several service requests. The timeout value is
defined when the transaction is started (with tpbegin(3c)). Transaction timeouts are
useful when maximizing resources. For example, if database locks are held while a
transaction progresses, an application programmer may want to limit the amount of
time that the application’s transaction resources are held up. A transaction timeout
always overrides a blocking timeout.

There are two UBBCONFIG file transaction timeout parameters:

TRANTIME which is specified in the SERVICES section of the UBBCONFIG and
controls the timeout value for a specific AUTOTRAN service.

MAXTRANTIME which is specified in the RESOURCES section of the UBBCONFIG
and is used by the administrator to place a maximum upper bound on the
timeout value of a transaction started via tpbegin(3c) or via an AUTOTRAN
service invocation.

For more information about these transaction timeout parameters, refer to
UBBCONFIG(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Configuring Redundant Servers to Handle Failures

You can handle some failure situations by configuring an application with redundant
servers and the automatic restart capability. Redundant servers provide high
availability, and can be used to handle large amounts of work, server failures, or
machine failures. The BEA Tuxedo system continually checks the status of active
servers, and when it detects the failure of a restartable server, the system automatically
creates a new instance of that server.

By configuring servers with the automatic restart property, you can handle individual
server failures.You can also specify the number of restarts that the system will provide.
This capability can prevent a recurring application error by limiting the number of
times a server is restarted.
2-30 Administering a BEA Tuxedo Application at Run Time

../rf3c/rf3c.htm#9429613
../rf3c/rf3c.htm#9429613
../rf5/rf5.htm#365105

Monitoring Multithreaded and Multicontexted Applications
The BEA Tuxedo system frequently checks the availability of each active machine. A
machine is marked as partitioned when it cannot be reached by the system. If this
occurs, a system event is generated. A partition can occur due to a network failure,
machine failure, or severe performance degradation.

See Also

“BEA Tuxedo System Administration and Server Processes” on page 3-1 in
Introducing BEA Tuxedo ATMI

“System and Application Data That You Can Monitor” on page 2-5

“Monitoring Dynamic and Static Administrative Data” on page 2-6

Monitoring Multithreaded and
Multicontexted Applications

While monitoring a multithreaded application, keep in mind that individual
threads are not visible to an administrator.

You can get MIB statistical reports for various aspects of your multithreaded
and/or multicontexted application by running the tmadmin(1) command
interpreter. Here are a few examples of the information you can request for a
multithreaded application:

Count of client contexts per client process and a separate entry for each
client context (obtained by running the tmadmin pclt command).

Count of dispatched services per server process and, optionally, information
about each context (obtained by running tmadmin/psr, optionally in verbose
mode).

When the BBL checks clients, it verifies that a process is alive. If a process has
died, the BBL detects the process death. If an individual thread within a process
has died, however, the death of the thread is not detected by the BBL.
Administering a BEA Tuxedo Application at Run Time 2-31

../int/intarch.htm#383893
../rfcm/rfcmd.htm#2554911

2 Monitoring Your BEA Tuxedo Application
Therefore application programmers should keep in mind the possibility that
individual threads within a process may die. If one thread dies and a signal is
issued, the whole process to which the thread belongs usually dies, and that
death is detected by the BBL.

If a thread dies as the result of an erroneous call to a thread exit function,
however, no signal is generated. If this type of death occurs before the thread
calls tpterm(), then the BBL cannot detect the death and does not deallocate
the registry table slot for the context associated with the dead thread. (It would
not be proper for the BBL to deallocate this registry table slot even if it could
detect the death of the thread because, in some application models, another
thread might subsequently choose to associate itself with that context.)

There is no solution for this limitation so it is important for programmers to keep
it in mind and design their applications accordingly.

How to Retrieve Data About a
Multithreaded/Multicontexted Application Using the
MIB

Note: The information presented here applies to all multithreaded and/or
multicontexted applications, regardless of which administrative tools are
being used. The functionality is discussed from the point of view of an
administrator using MIB calls, but is the same for an administrator using an
interface to the MIB, whether that interface is tmadmin(1) or the BEA
Administration Console.

You can obtain information about a multithreaded or multicontexted application by:

Issuing calls to the MIB

Issuing selected tmadmin commands

Information is available in the following locations:

The client section of the bulletin board registry provides an entry for each
context. (An entry is created automatically by the BEA Tuxedo system whenever
a new context is created through a call to tpinit() in TPMULTICONTEXTS
mode.)
2-32 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2554911

Monitoring Multithreaded and Multicontexted Applications
The T_SERVERCTXT class of the TM_MIB provides multiple instances of 14 fields
if multiple server dispatch threads are active simultaneously. Specifically, the
T_SERVERCTXT section includes an instance of each of the following fields for
each active sever dispatch thread:

TA_CONTEXTID (key field)

TA_SRVGRP (key field)

TA_SRVID (key field)
TA_CLTLMID

TA_CLTPID

TA_CLTREPLY

TA_CMTRET

TA_CURCONV

TA_CURREQ

TA_CURRSERVICE

TA_LASTGRP

TA_SVCTIMEOUT

TA_TIMELEFT

TA_TRANLEV

For example, if 12 server dispatch threads are active simultaneously, then the
T_SERVERCTXT class of the MIB for this application will include 12 occurrences
of the TA_CONTEXTID field, 12 occurrences of the TA_SRVGRP field, and so on.

When multiple instances of T_SERVER class fields contain multiple values for
different contexts of a multicontexted server, a “dummy” value is specified in
the T_SERVER class field and the T_SERVERCTXT field contains an actual value
for each context.

See Also

tmadmin(1) in the BEA Tuxedo Command Reference

TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference
Administering a BEA Tuxedo Application at Run Time 2-33

../rfcm/rfcmd.htm#2554911
../rf5/rf5.htm#1980515

2 Monitoring Your BEA Tuxedo Application
“Programming a Multithreaded and Multicontexted ATMI Application” on page
10-1 in Programming BEA Tuxedo ATMI Applications Using C
2-34 Administering a BEA Tuxedo Application at Run Time

../pgc/pgthr.htm#8371710
../pgc/pgthr.htm#8371710

CHAPTER
3 Dynamically Modifying
an Application

This topic includes the following sections:

Dynamic Modification Methods

Using tmconfig to Make Permanent Changes to Your Configuration

How to Run tmconfig

Making Temporary Modifications to Your Configuration with tmconfig

Limitations on Dynamic Modification Using tmconfig

Making Temporary Modifications to Your Configuration with tmadmin

Dynamic Modification Methods

As an administrator, you must ensure that once an application is up and running, it
continues to meet the performance, availability, and security requirements set by your
company. The BEA Tuxedo system allows you to make changes to your configuration
without shutting it down. Without inconveniencing your users, you can do the
following:

Modify existing entries in your configuration file, that is, make changes to
TUXCONFIG.
Administering a BEA Tuxedo Application at Run Time 3-1

3 Dynamically Modifying an Application
Add components to your application by adding entries for them to your
configuration file.

Make temporary changes to an application by advertising, unadvertising,
suspending, or resuming services, and changing service parameters (such as
LOAD and PRIORITY).

Note: To modify the configuration file for a running application, you must do one of
the following:

Shut down your application first (and reboot it after revising the
configuration file).

Run the tmconfig(1) command (described on the tmconfig,
wtmconfig(1) reference page), which allows you to modify your
configuration file dynamically.

Thus, you can adjust your system to reflect either current or expected conditions by
making either permanent or temporary changes to an application. Temporary changes
are reflected in the bulletin board only. Permanent changes are made by modifying the
TUXCONFIG file. Because TUXCONFIG is a binary file, however, you cannot edit it
through a simple text editor.

Tools for Modifying Your Application

To help you dynamically modify your application, the BEA Tuxedo system provides
the following three methods: the BEA Administration Console, command-line
utilities, and the Management Information Base (MIB) API. These tools help you
respond quickly and efficiently to the need for changes in your application resulting
from changing business needs or failure conditions. Use them to keep your application
performing fast, well, and securely.
3-2 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2468411
../rfcm/rfcmd.htm#2468411

Dynamic Modification Methods
Figure 3-1 Dynamic Modification Tools

BEA Administration Console—a Web-based graphical user interface (GUI) you
can use to dynamically configure your application. You can display and change
configuration information, determine the state of each component of the system,
and obtain statistical information about items such as executed requests and
queued requests.

Command-line utilities—most of the functionality needed for dynamic
modification is provided by two commands: tmadmin and tmconfig. tmadmin
is a shell-level command with over 70 subcommands for performing various
administrative tasks, including dynamic system modification. tmconfig is a
shell-level command that you can use to add and modify configuration entries
while your system is running.

MIB API—a Management Information Base API that enables you to write your
own programs to monitor your system and make dynamic changes to your
system.

You always have the choice of these three tools for any administrative task. For
dynamic modification or reconfiguration, however, we recommend the BEA
Administration Console for its ease of use. Full descriptions of all the features in the
Administration Console are available through the Help utility provided with the GUI.
Administering a BEA Tuxedo Application at Run Time 3-3

3 Dynamically Modifying an Application
If you prefer to work on the command line, however, simply run the tmadmin or
tmconfig command.

Note: For lists of configuration parameters and reconfiguration restrictions, see
tmconfig, wtmconfig(1) in the BEA Tuxedo Command Reference and
TM_MIB(5) in File Formats, Data Descriptions, MIBs, and System Processes
Reference.

See Also

“Using tmconfig to Make Permanent Changes to Your Configuration” on page
3-5

“Management Operations Using the BEA Tuxedo Administration Console” on
page 4-4 in Introducing BEA Tuxedo ATMI

“Managing Operations Using the MIB” on page 4-14 in Introducing BEA Tuxedo
ATMI

APPQ_MIB(5), DM_MIB(5), MIB(5), and TM_MIB(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference
3-4 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2468411
../rf5/rf5.htm#1980515
../int/intman.htm#384541
../int/intman.htm#384541
../int/intman.htm#392601
../rf5/rf5.htm#3813815
../rf5/rf5.htm#8973015
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515

Using tmconfig to Make Permanent Changes to Your Configuration
Using tmconfig to Make Permanent Changes
to Your Configuration

The tmconfig command enables you to browse and modify your configuration file
(TUXCONFIG on the MASTER machine) and its associated entities, and to add new
components (such as machines and servers) to your application while it is running.
When you modify your configuration file (TUXCONFIG on the MASTER machine),
tmconfig enables you to perform the following tasks:

Update the TUXCONFIG file on all machines that are currently booted in the
application.

Propagate the TUXCONFIG file automatically to new machines as they are booted.

Note: The tmconfig command runs as a BEA Tuxedo system client.

Because tmconfig runs as a BEA Tuxedo client, it is characterized by the following
conditions:

tmconfig fails if it cannot allocate a TPINIT typed buffer.

The username associated with the client is the login name of the user.
(tmconfig fails if the user’s login name cannot be determined.)

For a secure application (that is, an application for which the SECURITY
parameter has been set in the configuration file), tmconfig prompts for the
application password. If the application password is not provided, tmconfig
fails.

If tmconfig cannot register as a client, an error message containing tperrno is
displayed and tmconfig exits. If this happens, check the user log to determine
the cause. The most likely causes for this type of failure are:

The TUXCONFIG environment variable was not set correctly.

The system was not booted on the machine on which tmconfig is being run.

tmconfig ignores all unsolicited messages.

The client name for the tmconfig process that is displayed in the output from
printclient (a tmadmin command) is tpsysadm.
Administering a BEA Tuxedo Application at Run Time 3-5

3 Dynamically Modifying an Application
How tmconfig Works

When you type tmconfig on a command line, you are launching the display of a series
of menus and prompts through which you can request an operation such as the display
or modification of a configuration file record. tmconfig collects your menu choices,
performs the requested operation, and prompts you (by displaying another set of menu
choices) to request another operation. It repeatedly offers to perform operations (by
repeatedly displaying the menus) until you exit the session by selecting QUIT from a
menu.

The following listing shows the menus and prompts that are displayed once you launch
a tmconfig command session.

Note: The lines in the listing are numbered in this example for your convenience;
during an actual tmconfig session, these numbers are not displayed.

Listing 3-1 Menus and Prompts Displayed in a tmconfig Session

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5
6 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
7 6) CLEAR BUFFER 7) QUIT [1]:
8 Enter editor to add/modify fields [n]?
9 Perform operation [y]?

As shown, you are asked to answer four questions:

In which section of the configuration file do you want to view, add, or modify a
record?

For the section of the configuration file you have just specified, which operation
do you want to perform?

Do you want to enter a text editor now to add or modify fields for the record?

Do you want tmconfig to perform the requested operation now?
3-6 Administering a BEA Tuxedo Application at Run Time

Using tmconfig to Make Permanent Changes to Your Configuration
How to Select a Section of the Configuration File

When you start a tmconfig session, the following menu is displayed Each item is a
section of TUXCONFIG, the configuration file for the application.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

Note: For details about these sections (including a list of configurable parameters for
each section), see TM_MIB(5) in the File Formats, Data Descriptions, MIBs,
and System Processes Reference. TM_MIB includes the names of fields that are
displayed during a tmconfig command session, the range of values for each
field, the key fields for each section, and any restrictions or updates to the
fields in each section.

To select a section, enter the appropriate number after the menu prompt. For
example, to select the MACHINES section, enter 2, as follows.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2

The default section is the RESOURCES section, in which parameters that apply to
your entire application are defined. To accept the default selection (which is
displayed within square brackets), simply press the Enter key.

10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

How to Select a tmconfig Task

A menu of tasks that tmconfig can perform is displayed after you select a section of
the configuration file.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

To select an operation, enter the appropriate number at the menu prompt. For example,
to select the CLEAR BUFFER section, enter 6, as follows.

6) CLEAR BUFFER 7) QUIT [1]: 6

The following table defines each task.
Administering a BEA Tuxedo Application at Run Time 3-7

../rf5/rf5.htm#1980515

3 Dynamically Modifying an Application
Table 3-1 tmconfig tasks

This Menu
Item

Called Performs the Following Activities

1 FIRST Displays the first record from the specified section. No key fields are
needed. If any are in the input buffer, they are ignored.
Using the FIRST operation can reduce the amount of typing that is
needed. When adding a new record to a section, instead of typing all the
required field names and values, use the FIRST operation to retrieve an
existing record for the UBBCONFIG section. Then, select the ADD
operation and use the text editor to modify the parameter values in the
newly created record.

2 NEXT Displays the next record from the specified section, based on the key
fields in the input buffer.

3 RETRIEVE Displays the requested record (specified with the appropriate key fields)
from the specified section.

4 ADD Adds the indicated record to the specified section. For any optional fields
that are not specified, the defaults specified in TM_MIB(5) are used. (All
defaults and validations used by tmloadcf(1) are enforced.) The
current values for all fields are returned in the output buffer. This
operation can be done only by the BEA Tuxedo application
administrator.

5 UPDATE Updates the record specified in the input buffer in the selected section.
Any fields not specified in the input buffer remain unchanged. (All
defaults and validations used by tmloadcf(1) are enforced.) The
current values for all fields are returned in the input buffer. This operation
can be done only by the BEA Tuxedo application administrator.

6 CLEAR BUFFER Clears the input buffer. (All fields are deleted.) After this operation,
tmconfig immediately prompts for the specified section again.

7 QUIT Exits tmconfig gracefully: the client is terminated. You can also exit
tmconfig at any time by entering q at any prompt.
3-8 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#1980515
../rfcm/rfcmd.htm#9061611
../rfcm/rfcmd.htm#9061611

Using tmconfig to Make Permanent Changes to Your Configuration
How Results of a tmconfig Task Are Displayed

After tmconfig completes a task, the results—a return value and the contents of the
output buffer—are displayed on the screen.

If the operation was successful but no update was done, the following message is
displayed:

Return value TAOK

The message in the TA_STATUS field is:

Operation completed successfully.

If the operation was successful and an update was done, the following message
is displayed:

Return value TAUPDATED

The message in the TA_STATUS field is:

Update completed successfully.

If the operation failed, an error message is displayed:

If there is a problem with permissions or a BEA Tuxedo system
communications error (rather than with the configuration parameters), one of
the following return values is displayed: TAEPERM, TAEOS, TAESYSTEM, or
TAETIME.

If there is a problem with a configuration parameter of the running
application, the name of that parameter is displayed as the value of the
TA_BADFLDNAME file, and the problem is indicated in the value of the
TA_STATUS field in the output buffer. If this type of problem occurs, one of
the following return values is displayed: TAERANGE, TAEINCONSIS,
TAECONFIG, TAEDUPLICATE, TAENOTFOUND, TAEREQUIRED, TAESIZE,
TAEUPDATE, or TAENOSPACE.

tmconfig Error Message Conditions

The following list describes the conditions indicated by both sets of error messages.

TAEPERM
The UPDATE or ADD operation was selected but tmconfig is not being run by
the BEA Tuxedo application administrator.
Administering a BEA Tuxedo Application at Run Time 3-9

3 Dynamically Modifying an Application
 TAESYSTEM
A BEA Tuxedo system error has occurred. The exact nature of the error is
recorded in the user log. See userlog(3c) in the BEA Tuxedo ATMI C
Function Reference.

TAEOS
An operating system error has occurred. The exact nature of the error is
written to the user log.

TAETIME
A blocking timeout has occurred. The output buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by retrieving the record that was being updated.

TAERANGE
A field value is either out of range or invalid.

TAEINCONSIS
For example, an existing RQADDR value or one SRVGRP/SERVERNAME entry
may be specified for a different SRVGRP/SERVERNAME entry.

TAECONFIG
An error occurred while the TUXCONFIG file was being read.

TAEDUPLICATE
The operation attempted to add a duplicate record.

TAENOTFOUND
The record specified for the operation was not found.

TAEREQUIRED
A field value is required but is not present.

TAESIZE
A value for a string field is too long.

TAEUPDATE
The operation attempted to do an update that is not allowed.

TAENOSPACE
The operation attempted to do an update but there was not enough space in
the TUXCONFIG file and/or the bulletin board.
3-10 Administering a BEA Tuxedo Application at Run Time

../rf3c/rf3c.htm#7980613

How to Run tmconfig
How to Run tmconfig

To run tmconfig properly, you must set the required environmental variables. Also,
if you have not run tmconfig, we recommend that you walk through a generic
tmconfig session, during which you modify entries in your configuration file.

How to Set Environment Variables for tmconfig

Before you can start a tmconfig session, you must set the required environment
variables and permissions. For your convenience, you may also want to select a text
editor other than the default editor.

Complete the following procedure to set up your working environment properly before
running tmconfig.

1. Log in as the BEA Tuxedo application administrator if you want to add entries to
TUXCONFIG, or modify existing entries. (You do not need to log in as the
administrator if you only want to view existing configuration file entries without
changing or adding to them.)

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

The value of TUXCONFIG must be the full pathname of the binary
configuration file on the machine on which tmconfig is being run.

The value of TUXDIR must be the full pathname of the root directory for the
BEA Tuxedo system binary files. (tmconfig must be able to extract field
names and identifiers from $TUXDIR/udataobj/tpadmin.)

3. You may also set the EDITOR environment variable; this step is optional. The
value of EDITOR must be the name of the text editor you want to use when
changing parameter values; the default is ed (a UNIX system command-line
editor).

Note: Many full-screen editors do not function properly unless the TERM
environment variable is also set.
Administering a BEA Tuxedo Application at Run Time 3-11

3 Dynamically Modifying an Application
How to Conduct a tmconfig Walkthrough Session

The following procedure leads you through a sample tmconfig session.

1. Enter tmconfig after a shell prompt.

$ tmconfig

Note: You can end a session at any time by entering q (short for quit) after the
Section menu prompt.

A menu of sections in the TUXCONFIG file is displayed.

Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:

2. Select the section that you want to change by entering the appropriate menu
number, such as 2 for the MACHINES section. The default choice is the
RESOURCES section, represented by [1] at the end of the list of sections shown in
Step 1. If you specify a section (instead of accepting the default), that section
becomes the new default choice and remains so until you specify another section.

A menu of possible operations is displayed.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

Each operation listed here is available to be performed on one record at a time of
one section of the configuration file. The names of most operations (FIRST and
NEXT) are self-explanatory. When you select FIRST, you are asking to have the
first record (in the specified section of the configuration file) displayed on the
screen. When you select NEXT, you are asking to have the contents of the buffer
replaced by the second record in the specified section, and to have the new
buffer contents displayed on the screen. By repeatedly choosing NEXT, you can
view all the records in a given section of the configuration file in the order in
which they are listed.

3. Select the operation that you want to have performed.

The default choice is the FIRST operation, represented by [1] at the end of the
list of operations shown in step 2.
3-12 Administering a BEA Tuxedo Application at Run Time

How to Run tmconfig
A prompt is displayed, asking whether you want to enter a text editor to start
making changes to the TUXCONFIG section you specified in step 2.

Enter editor to add/modify fields [n]?

4. Select y or n (for yes or no, respectively). The default choice (shown at the end of
the prompt) is n.

If you select yes (y), the specified editor is invoked and you can start adding or
changing fields. The format of each field is:

field_name<tabs>field_value

where the name and value of the field are separated by one or more tabs.

In most cases, the field name is the same as the corresponding KEYWORD in the
UBBCONFIG file, prefixed with TA_.

Note: For details about valid input, see “tmconfig Input Buffer Considerations”
on page 3-14. For descriptions of the field names associated with each
section of the UBBCONFIG file, see TM_MIB(5) in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

When you finish editing the input buffer, tmconfig reads it. If any errors are
found, a syntax error is displayed and tmconfig prompts you to decide whether
to correct the problem.

Enter editor to correct?

5. Select n or y.

If you decide not to correct the problem (by entering n), the input buffer contains
no fields; otherwise, the editor is executed again.

When you finish editing the input buffer, a prompt is displayed, asking whether
you want to have the operation you specified (in step 3) performed now.

Perform operation [y]?

6. Select n or y. The default choice (shown at the end of the prompt) is y.

If you select no, the menu of sections is displayed again. Return to step 2.

If you select yes, tmconfig executes the requested operation and displays
the following confirmation message.

Return value TAOK

The results of the operation are displayed on the screen.
Administering a BEA Tuxedo Application at Run Time 3-13

../rf5/rf5.htm#1980515

3 Dynamically Modifying an Application
You have completed an operation on one section of TUXCONFIG; you may
now start another operation on the same section or on another section. To
allow you to start a new operation, tmconfig displays, again, the menu of
the TUXCONFIG sections displayed in step 1.

Note: All output buffer fields are available in the input buffer unless the input
buffer is cleared.

7. Continue your tmconfig session by requesting more operations, or quit the
session.

To continue requesting operations, return to step 2.

To end your tmconfig session, select QUIT from the menu of operations (as
shown in step 3).

8. After you end your tmconfig session, you can make a backup copy, in text
format, of your newly modified TUXCONFIG file. In the following example, the
administrator chooses the default response to the offer of a backup (yes) and
overrides the default name of the backup file (UBBCONFIG) by specifying another
name (backup).

Unload TUXCONFIG file into ASCII backup [y]?
Backup filename [UBBCONFIG]? backup
Configuration backed up in backup

tmconfig Input Buffer Considerations

The following considerations apply to the input buffer used with tmconfig:

If the value that you are typing into a field extends beyond one line, you may
continue it on the next line if you insert one or more tabs at the beginning of the
second line. (The tab characters are dropped when your input is read into
TUXCONFIG.)

A line that contains only a single newline character is ignored.

If more than one line is provided for a particular field, the first occurrence is
used and other occurrences are ignored.
3-14 Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmconfig
To enter an unprintable character as part of the value of a field, or to enter a tab
as the first character in a field, enter a backslash, followed by the two-character
hexadecimal representation of the desired character. (For a mapping of ASCII to
hexadecimal characters, see ASCII(5) in a UNIX system reference manual.)
Here are a few examples:

To insert a blank space, type:
\20

To insert a backslash, type:
\\

Making Temporary Modifications to Your
Configuration with tmconfig

Many aspects of your configuration can be changed dynamically. This section
provides instructions for performing the tasks cited in the following list:

“How to Add a New Machine” on page 3-16

“How to Add a Server” on page 3-19

“How to Activate a Newly Configured Machine” on page 3-21

“How to Add a New Group” on page 3-24

“How to Change Data-dependent Routing (DDR) for an Application” on page
3-25

“How to Change Factory-based Routing (FBR) for an Interface” on page 3-26

“How to Change Application-wide Parameters” on page 3-28

“How to Change an Application Password” on page 3-31
Administering a BEA Tuxedo Application at Run Time 3-15

3 Dynamically Modifying an Application
How to Add a New Machine

1. Enter tmconfig.

2. To specify the MACHINES section of the configuration file, enter 2 after the
prompt following the list of sections. (Refer to lines 2-4 in the following sample
listing.)

3. Press the Enter key to accept the default operation to be performed. The default is
1) FIRST, an operation that displays the first record in the designated section. In
this case, the first record is for the first machine appearing in the MACHINES
section. (Refer to line 6.)

4. Press the Enter key to accept the default choices regarding whether to enter the
text editor (no) and whether to have the specified operation performed (yes). As
requested, the first record in the MACHINES section is now displayed, which is the
record for a machine named SITE1 in the following sample listing. (Refer to lines
10-35 in the following listing.)

5. Select the MACHINES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 36-38.)

6. Select the ADD operation by entering 4 after the menu of operations. (Refer to
lines 39-40.)

7. Enter the text editor by entering y at the prompt. (Refer to line 41.)

8. Change pathnames as appropriate and specify new values for four key fields:

TA_TLOGSIZE (refer to lines 50-51)

TA_PMID (refer to lines 52-53)

TA_LMID (refer to lines 54-55)

TA_TYPE (refer to lines 56-57)

9. Write (that is, save) your input and quit the editor. (Refer to lines 58-60.)

10. Direct tmconfig to perform the operation (add the machine) by entering y at the
prompt. (Refer to line 61.)
3-16 Administering a BEA Tuxedo Application at Run Time

How to Add a New Machine
The following sample listing illustrates a tmconfig session in which a machine is
being added.

Listing 3-2 Adding a Machine

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6 6) CLEAR BUFFER 7) QUIT [1]:
7 Enter editor to add/modify fields [n]?
8 Perform operation [y]?
9 Return value TAOK
10 Buffer contents:
11 TA_OPERATION 4
12 TA_SECTION 1
13 TA_OCCURS 1
14 TA_PERM 432
15 TA_MAXACCESSERS 40
16 TA_MAXGTT 20
17 TA_MAXCONV 10
18 TA_MAXWSCLIENTS 0
19 TA_TLOGSIZE 100
20 TA_UID 4196
21 TA_GID 601
22 TA_TLOGOFFSET 0
23 TA_TUXOFFSET 0
24 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
25 TA_PMID mchn1
26 TA_LMID SITE1
27 TA_TUXCONFIG /home/apps/bank/TUXCONFIG
28 TA_TUXDIR /home/tuxroot
29 TA_STATE ACTIVE
30 TA_APPDIR /home/apps/bank
31 TA_TYPE 3B2
32 TA_TLOGDEVICE /home/apps/bank/TLOG
33 TA_TLOGNAME TLOG
34 TA_ULOGPFX /home/apps/bank/ULOG
35 TA_ENVFILE /home/apps/bank/ENVFILE
36 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
37 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
38 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
39 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
40 6) CLEAR BUFFER 7) QUIT [1]: 4
41 Enter editor to add/modify fields [n]? y
42 491
Administering a BEA Tuxedo Application at Run Time 3-17

3 Dynamically Modifying an Application
43 g/home/s//usr/p
44 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
45 TA_TUXDIR /usr/tuxroot
46 TA_APPDIR /usr/apps/bank
47 TA_TLOGDEVICE /usr/apps/bank/TLOG
48 TA_ULOGPFX /usr/apps/bank/ULOG
49 TA_ENVFILE /usr/apps/bank/ENVFILE
50 /100/s//150/p
51 TA_TLOGSIZE 150
52 /mchn1/s//mchn2/p
53 TA_PMID mchn2
54 /SITE1/s//SITE3/p
55 TA_LMID SITE3
56 /3B2/s//SPARC/p
57 TA_TYPE SPARC
58 w
59 412
60 q
61 Perform operation [y]?
62 Return value TAUPDATED
63 Buffer contents:
64 TA_OPERATION 2
65 TA_SECTION 1
66 TA_OCCURS 1
67 TA_PERM 432
68 TA_MAXACCESSERS 40
69 TA_MAXGTT 20
70 TA_MAXCONV 10
71 TA_MAXWSCLIENTS 0
72 TA_TLOGSIZE 150
73 TA_UID 4196
74 TA_GID 601
75 TA_TLOGOFFSET 0
76 TA_TUXOFFSET 0
77 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
78 TA_PMID mchn2
79 TA_LMID SITE3
80 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
81 TA_TUXDIR /usr/tuxroot
82 TA_STATE NEW
83 TA_APPDIR /usr/apps/bank
84 TA_TYPE SPARC
85 TA_TLOGDEVICE /usr/apps/bank/TLOG
86 TA_TLOGNAME TLOG
87 TA_ULOGPFX /usr/apps/bank/ULOG
88 TA_ENVFILE /usr/apps/bank/ENVFILE
3-18 Administering a BEA Tuxedo Application at Run Time

How to Add a Server
How to Add a Server

1. Enter tmconfig.

2. To specify the SERVERS section of the configuration file, enter 4 after the menu of
sections. (Refer to line 3 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refer to line 5 in the following sample listing.)

4. Press the Enter key to accept the default section: SERVERS. (Refer to lines 7-9 in
the following sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to
lines 10-11 in the listing.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new values for three key fields:

TA_SERVERNAME (refer to line 15)

TA_SRVGRP (refer to line 16)

TA_SRVID (refer to line 17)

8. Write (that is, save) your input and quit the editor. (Refer to lines 19-21.)

9. Direct tmconfig to perform the operation (add the server) by entering y at the
prompt. (Refer to line 22.)

The following sample listing illustrates a tmconfig session in which a server is being
added.

Listing 3-3 Adding a Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 4
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [4]: 6
6 Buffer cleared
7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
Administering a BEA Tuxedo Application at Run Time 3-19

3 Dynamically Modifying an Application
8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [4]:
10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
11 6) CLEAR BUFFER 7) QUIT [6]: 4
12 Enter editor to add/modify fields [n]? y
13 1
14 c
15 TA_SERVERNAME XFER
16 TA_SRVGRP BANKB1
17 TA_SRVID 5
18 .
19 w
20 28
21 q
22 Perform operation [y]?
23 Return value TAOK
24 Buffer contents:
25 TA_OPERATION 3
26 TA_SECTION 3
27 TA_OCCURS 1
28 TA_SRVID 5
29 TA_SEQUENCE 0
30 TA_MIN 1
31 TA_MAX 1
32 TA_RQPERM 432
33 TA_RPPERM 432
34 TA_MAXGEN 5
35 TA_GRACE 86400
36 TA_STATUS LIBTUX_CAT:1137: Operation completed successfully
37 TA_SYSTEM_ACCESS FASTPATH
38 TA_ENVFILE
39 TA_SRVGRP BANKB1
40 TA_SERVERNAME XFER
41 TA_CLOPT -A
42 TA_CONV N
43 TA_RQADDR
44 TA_REPLYQ Y
45 TA_RCMD
46 TA_RESTART Y
3-20 Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine
How to Activate a Newly Configured
Machine

1. Enter tmconfig.

2. To specify the MACHINES section of the configuration file, enter 2 after the menu
of sections. (Refer to lines 1-3 in the following sample listing.)

3. In order to select the appropriate record in the MACHINES section, you need to
toggle through the list of machine records. To view the first machine record,
select the FIRST operation by pressing the Enter key after the menu of
operations. (Refer to lines 4-5 in the following sample listing.) If you do not want
the first machine record, select the NEXT operation to view the next machine
record by entering 2 after the menu of operations.

4. Press the Enter key to accept the default choices regarding whether to enter the
text editor (no) and whether to have the specified operation performed (yes). The
requested record in the MACHINES section is now displayed, which is the record
for a machine named SITE3 in the following sample listing. (Refer to lines 9-34
in the following listing.)

5. Select the MACHINES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 35-37.)

6. Select the UPDATE operation by entering 5 after the menu of operations. (Refer to
lines 38-39.)

7. Enter the text editor by entering y at the prompt. (Refer to line 40.)

8. Change the value of the TA_STATE field from NEW to ACTIVE. (Refer to lines
42-45.)

9. Write (that is, save) your input and quit the editor. (Refer to lines 46-48.)

10. Direct tmconfig to perform the operation (activate the newly configured
machine) by entering y at the prompt. (Refer to line 49.)
Administering a BEA Tuxedo Application at Run Time 3-21

3 Dynamically Modifying an Application
11. tmconfig displays the revised record for the specified machine so that you can
review your change and, if necessary, edit it.

12. If the revised entry is acceptable, select 7 after the menu of operations to end the
tmconfig session.

The following sample listing illustrates a tmconfig session in which a server is being
activated.

Listing 3-4 Activating a New Server

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 2
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:
6 Enter editor to add/modify fields [n]?
7 Perform operation [y]?
8 Return value TAOK
9 Buffer contents:
10 TA_OPERATION 4
11 TA_SECTION 1
12 TA_OCCURS 1
13 TA_PERM 432
14 TA_MAXACCESSERS 40
15 TA_MAXGTT 20
16 TA_MAXCONV 10
17 TA_MAXWSCLIENTS 0
18 TA_TLOGSIZE 150
19 TA_UID 4196
20 TA_GID 601
21 TA_TLOGOFFSET 0
22 TA_TUXOFFSET 0
23 TA_STATUS LIBTUX_CAT:1175: Operation completed successfully
24 TA_PMID mchn2
25 TA_LMID SITE3
26 TA_TUXCONFIG /usr/apps/bank/TUXCONFIG
27 TA_TUXDIR /usr/tuxroot
28 TA_STATE NEW
29 TA_APPDIR /usr/apps/bank
30 TA_TYPE SPARC
31 TA_TLOGDEVICE /usr/apps/bank/TLOG
32 TA_TLOGNAME TLOG
33 TA_ULOGPFX /usr/apps/bank/ULOG
34 TA_ENVFILE /usr/apps/bank/ENVFILE
35 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3-22 Administering a BEA Tuxedo Application at Run Time

How to Activate a Newly Configured Machine
36 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
37 10) NETGROUPS 11) NETMAPS 12) INTERFACES [2]:
38 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
39 6) CLEAR BUFFER 7) QUIT [1]: 5
40 Enter editor to add/modify fields [n]? y
41 491
42 /TA_STATE
43 TA_STATE NEW
44 s/NEW/ACTIVE
45 TA_STATE ACTIVE
46 w
47 412
48 q
49 Perform operation [y]?
50 Return value TAUPDATED
51 Buffer contents:
52 .
53 .
54 .
Administering a BEA Tuxedo Application at Run Time 3-23

3 Dynamically Modifying an Application
How to Add a New Group

1. Enter tmconfig.

2. To specify the GROUPS section of the configuration file, enter 3 after the prompt
following the list of sections. (Refer to lines 1-3 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refer to line 5 in the following sample listing.)

4. Accept the default section, GROUPS, by pressing the Enter key. (Refer to lines 7-9
in the following sample listing.)

5. Request the ADD operation by entering 4 after the menu of operations. (Refer to
lines 10-11 in the listing.)

6. Enter the text editor by entering y at the prompt. (Refer to line 12.)

7. Specify new values for three key fields:

TA_LMID (refer to line 15)

TA_SRVGRP (refer to line 16)

TA_GRPNO (refer to line 17)

The following sample listing illustrates a tmconfig session in which a group is being
added.

Listing 3-5 Adding a Group

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]: 3
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [4]: 6
6 Buffer cleared
7 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
8 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
9 10) NETGROUPS 11) NETMAPS 12) INTERFACES [3]:
10 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
11 6) CLEAR BUFFER 7) QUIT [6]: 4
12 Enter editor to add/modify fields [n]? y
3-24 Administering a BEA Tuxedo Application at Run Time

How to Change Data-dependent Routing (DDR) for an Application
13 1
14 c
15 TA_LMID SITE3
16 TA_SRVGRP GROUP3
17 TA_GRPNO 3
18 .
19 w
20 42
21 q
22 Perform operation [y]?
23 Return value TAUPDATED
24 Buffer contents:
25 TA_OPERATION 2
26 TA_SECTION 2
27 TA_OCCURS 1
28 TA_GRPNO 3
29 TA_TMSCOUNT 0
30 TA_STATUS LIBTUX_CAT:1136: Update completed successfully
31 TA_LMID SITE3
32 TA_SRVGRP GROUP3
33 TA_TMSNAME
34 TA_OPENINFO
35 TA_CLOSEINFO

How to Change Data-dependent Routing
(DDR) for an Application

To change the data-dependent routing for an application, complete the following steps:

1. Enter tmconfig.

2. To specify the ROUTING section of the configuration file, enter 7 after the prompt
following the list of sections.

3. Toggle through the list of entries for the ROUTING section by selecting the FIRST
and NEXT operations, which display the first and subsequent entries, respectively.
Select the entry for which you want to change the DDR.

4. Select 5)UPDATE from the menu of operations.
Administering a BEA Tuxedo Application at Run Time 3-25

3 Dynamically Modifying an Application
5. Enter the text editor by entering y at the prompt.

Do you want to edit(n)? y

6. Change the values of relevant fields to the values shown in the “Sample Value”
column of the following table.

Note: For details, see tmconfig, wtmconfig(1) in the BEA Tuxedo Command
Reference.

How to Change Factory-based Routing (FBR)
for an Interface

Note: For detailed information about factory-based routing for a distributed BEA
Tuxedo CORBA application, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

To change the factory-based routing for a CORBA interface, complete the following
steps:

1. Start a tmconfig session.

2. Select the ROUTING section of the configuration file (choice #7 on the menu of
configuration file sections).

Field Sample Value Meaning

TA_ROUTINGNAME account_routing Name of the routing section

TA_BUFTYPE FML Buffer type

TA_FIELD account_ID Name of the routing field

TA_RANGES 1-10:group1,*:* The routing criteria being used. If, as shown here, the value of
account_ID is between 1 and 10 (inclusive), requests are
sent to the servers in group 1. Otherwise, requests are sent to
any other server in the configuration.
3-26 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2468411

How to Change Factory-based Routing (FBR) for an Interface
3. Using the FIRST and NEXT operations, select the entry for which you want to
change the FBR.

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

6. Change the relevant fields to values such as those shown in the middle column in
the following table:

:

The value of the TA_RANGES field is the routing criterion. For example, assume that our
modest student enrollment before the update allowed for a routing criterion of student
IDs between 100001–100005 to ORA_GRP1, and 100006–100010 to ORA_GRP2. In the
change shown in the preceding table, if the value of student_id is between 100001–
100050 (inclusive), requests are sent to the servers in ORA_GRP1. Other requests are
sent to ORA_GRP2.

Note: Dynamic changes that you make to a routing parameter with tmconfig take
effect on subsequent invocations and do not affect outstanding invocations.

You can also dynamically change the TA_FACTORYROUTING assignment in the
INTERFACES section. For example:

1. Start a tmconfig session.

2. Select the INTERFACES section of the configuration file (choice #12 on the menu
of configuration file sections).

Field Sample Value Meaning

TA_ROUTINGNAME STU_ID Name of the routing section.

TA_FIELD student_id The value of this field is subject to the
criterion (specified in the TA_RANGES
field); that is, the value of this field
determines the routing result.

TA_RANGES 100001-100050:ORA_GRP1,
100051-*:ORA_GRP2

The routing criterion being used.
Administering a BEA Tuxedo Application at Run Time 3-27

3 Dynamically Modifying an Application
3. Using the FIRST and NEXT operations, select the interface entry for which you
want to change the FBR. For example, if you defined a new factory-based routing
criterion named CAMPUS in the ROUTING section, you could reassign a Registrar
interface to this criterion.

4. Select the UPDATE operation.

5. Enter y (for yes) when prompted to say whether you want to start editing.

Do you want to edit(n)? y

How to Change Application-wide
Parameters

Some run-time parameters are relevant to all the components (machines, servers, and
so on) of your configuration. These parameters are listed in the RESOURCES section of
the configuration file.

An easy way to familiarize yourself with the parameters in the RESOURCES section is
to display the first entry in that section. To do so, complete the following procedure.

1. Enter tmconfig.

2. Select the RESOURCES section, which is the default, by pressing the Enter key
after the list of sections. (Refer to lines 1-3 in the following sample listing.)

3. Request the FIRST operation, which is the default, by pressing the Enter key after
the menu of operations. (Refer to lines 4-5.)

4. When asked whether you want to edit, accept the default (n) by pressing the
Enter key.

Do you want to edit(n)?

5. When asked whether you want the specified operation (FIRST) to be performed,
accept the default (y) by pressing the Enter key.

Perform operation [y]?
3-28 Administering a BEA Tuxedo Application at Run Time

How to Change Application-wide Parameters
The following sample listing shows a tmconfig session in which the first entry in the
RESOURCES section is displayed.

Listing 3-6 Displaying the First Entry in the RESOURCES Section

1 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
2 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
3 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
4 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
5 6) CLEAR BUFFER 7) QUIT [1]:
6 Enter editor to add/modify fields [n]?
7 Perform operation [y]?
8 Return value TAOK
9 Buffer contents:
10 TA_OPERATION 1
11 TA_SECTION 0
12 TA_STATUS Operation completed successfully
13 TA_OCCURS 1
14 TA_PERM 432
15 TA_BBLQUERY 30
16 TA_BLOCKTIME 6
17 TA_DBBLWAIT 2
18 TA_GID 10
19 TA_IPCKEY 80997
20 TA_LICMAXUSERS 1000000
21 TA_MAXACCESSERS 100
22 TA_MAXBUFSTYPE 32
23 TA_MAXBUFTYPE 16
24 TA_MAXCONV 10
25 TA_MAXDRT 0
26 TA_MAXGROUPS 100
27 TA_MAXGTT 25
28 TA_MAXMACHINES 256
29 TA_MAXQUEUES 36
30 TA_MAXRFT 0
31 TA_MAXRTDATA 8
32 TA_MAXSERVERS 36
33 TA_MAXSERVICES 100
34 TA_MIBMASK 0
35 TA_SANITYSCAN 12
36 TA_SCANUNIT 10
37 TA_UID 5469
38 TA_MAXACLGROUPS 16384
39 TA_MAXNETGROUPS 8
40 TA_MAXINTERFACES 150
41 TA_MAXOBJECTS 1000
Administering a BEA Tuxedo Application at Run Time 3-29

3 Dynamically Modifying an Application
42 TA_SIGNATURE_AHEAD 3600
43 TA_SIGNATURE_BEHIND 604800
44 TA_MAXTRANTIME 0
45 TA_STATE ACTIVE
46 TA_AUTHSVC
47 TA_CMTRET COMPLETE
48 TA_DOMAINID
49 TA_LDBAL Y
50 TA_LICEXPIRE 2003-09-15
51 TA_LICSERIAL 1234567890
52 TA_MASTER SITE1
53 TA_MODEL SHM
54 TA_NOTIFY DIPIN
55 TA_OPTIONS
56 TA_SECURITY NONE
57 TA_SYSTEM_ACCESS FASTPATH
58 TA_USIGNAL SIGUSR2
59 TA_PREFERENCES
60 TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,
61 EVENTS,WEBGUI,WSCOMPRESSION,TDOMCOMPRESSION
62 TA_SIGNATURE_REQUIRED
63 TA_ENCRYPTION_REQUIRED
64 TA_SEC_PRINCIPAL_NAME
65 TA_SEC_PRINCIPAL_LOCATION
66 TA_SEC_PRINCIPAL_PASSVAR
3-30 Administering a BEA Tuxedo Application at Run Time

How to Change an Application Password
How to Change an Application Password

1. Enter tmconfig.

2. Select the RESOURCES section, which is the default, by pressing the Enter key
following the list of sections. (Refer to lines 2-4 in the following sample listing.)

3. Request the CLEAR BUFFER operation by entering 6 after the menu of operations.
(Refer to line 6.)

4. Select the RESOURCES section again, by pressing the Enter key after the menu of
sections. (Refer to lines 8-10.)

5. Select the UPDATE operation by entering 5 after the menu of operations. (Refer to
lines 11-12.)

6. Enter the text editor by entering y at the prompt. (Refer to line 13.)

7. Enter (in the buffer):

TA_PASSWORD new_password

8. Write (that is, save) your input and quit the editor. (Refer to lines 18-20.)

The following sample listing shows a tmconfig session in which an application
password is changed to neptune.

Listing 3-7 Changing an Application Password

1 $ tmconfig
2 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
3 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
4 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
5 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6 6) CLEAR BUFFER 7) QUIT [4]: 6
7 Buffer cleared
8 Section: 1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS
9 5)SERVICES 6) NETWORK 7) ROUTING q) QUIT 9) WSL
10 10) NETGROUPS 11) NETMAPS 12) INTERFACES [1]:
11 Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
12 6) CLEAR BUFFER 7) QUIT [6]: 5
13 Enter editor to add/modify fields [n]? y
14 1
Administering a BEA Tuxedo Application at Run Time 3-31

3 Dynamically Modifying an Application
15 c
16 TA_PASSWORD neptune
17 .
18 w
19 49
20 q
21 Perform operation [y]?
22 Return value TAUPDATED
23 Buffer contents:
24 TA_OPERATION 1
25 TA_SECTION 0
26 TA_STATUS Operation completed successfully
27 TA_OCCURS 1
28 TA_PERM 432
29 TA_BBLQUERY 30
30 TA_BLOCKTIME 6
31 TA_DBBLWAIT 2
32 TA_GID 10
33 TA_IPCKEY 80997
34 TA_LICMAXUSERS 1000000
35 TA_MAXACCESSERS 100
36 TA_MAXBUFSTYPE 32
37 TA_MAXBUFTYPE 16
38 TA_MAXCONV 10
39 TA_MAXDRT 0
40 TA_MAXGROUPS 100
41 TA_MAXGTT 25
42 TA_MAXMACHINES 256
43 TA_MAXQUEUES 36
44 TA_MAXRFT 0
45 TA_MAXRTDATA 8
46 TA_MAXSERVERS 36
47 TA_MAXSERVICES 100
48 TA_MIBMASK 0
49 TA_SANITYSCAN 12
50 TA_SCANUNIT 10
51 TA_UID 5469
52 TA_MAXACLGROUPS 16384
53 TA_MAXNETGROUPS 8
54 TA_MAXINTERFACES 150
55 TA_MAXOBJECTS 1000
56 TA_PASSWORD neptune
57 TA_STATE ACTIVE
58 TA_AUTHSVC
59 TA_CMTRET COMPLETE
60 TA_DOMAINID
61 TA_LDBAL Y
62 TA_LICEXPIRE 1998-09-15
63 TA_LICSERIAL 1234567890
3-32 Administering a BEA Tuxedo Application at Run Time

Limitations on Dynamic Modification Using tmconfig
64 TA_MASTER SITE1
65 TA_MODEL SHM
66 TA_NOTIFY DIPIN
67 TA_OPTIONS
68 TA_SECURITY NONE
69 TA_SYSTEM_ACCESS FASTPATH
70 TA_USIGNAL SIGUSR2
71 TA_PREFERENCES
72 TA_COMPONENTS TRANSACTIONS,QUEUE,TDOMAINS,TxRPC,EVENTS,WEBGUI,
73 WSCOMPRESSION,TDOMCOMPRESSION

Limitations on Dynamic Modification Using
tmconfig

Keep in mind the following restrictions when modifying your application dynamically
using tmconfig. Be careful about setting parameters that cannot be changed easily.

Associated with each section is a set of key fields that are used to identify the
record upon which operations are performed. (For details, see tmconfig,
wtmconfig(1) in the BEA Tuxedo Command Reference.) Key field values
cannot be changed while an application is running. Normally, it is sufficient to
add a new entry, with a new key field, and use it instead of the old entry. When
this is done, only the new entry is used; the old entry in the configuration is not
booted by the administrator.

Generally speaking, you cannot update a parameter while the configuration
component with which it is associated is booted. For example, you cannot
change an entry in the MACHINES section while the machine associated with that
entry is booted. Specifically:

If any server in a group is booted, you cannot change the entry for that
group.

If a server is booted, you cannot change its name, type (conversational or
not), or parameters related to its message queue. (You can change other
server parameters at any time but your changes do not take effect until the
next time the server is booted.)
Administering a BEA Tuxedo Application at Run Time 3-33

../rfcm/rfcmd.htm#2468411
../rfcm/rfcmd.htm#2468411

3 Dynamically Modifying an Application
You can change a SERVICES entry at any time, but your changes do not take
effect until the next time the service is advertised.

Updates to the RESOURCES section are restricted by the following conditions:
the UID, GID, PERM, MAXACCESSERS, MAXGTT, and MAXCONV parameters
cannot be updated in the RESOURCES section but can be updated on a
per-machine basis; and the IPCKEY, MASTER, MODEL, OPTIONS, USIGNAL,
MAXSERVERS, MAXSERVICES, MAXBUFTYPE, and MAXBUFSTYPE parameters
cannot be changed dynamically.

Carefully track the section of the configuration file in which you are working;
tmconfig does not warn against performing an operation in the incorrect
section. For example, if you try to update the ENVFILE parameter (in the
MACHINES section) while you are working in the RESOURCES section, the
operation appears to succeed (that is, tmconfig returns TAOK), but the change
does not appear in your unloaded UBBCONFIG file. You can be sure an update is
done only when the TAUPDATED status message is displayed.

In a multiple-machine configuration, always perform the following tasks:

Specify a backup for the MASTER machine, along with the MIGRATE option (even
if a need for application server migration is not anticipated).

For MAXSERVERS, MAXSERVICES, and other parameters that define maximum
limits, assign settings that are high enough to allow for sufficient growth. If your
application is initially deployed on only one machine, but is expected to grow to
a multiple-machine configuration, use the MP model, specifying the LAN option
and a network entry for the initial machine.

Set the parameters in the MACHINES section carefully because updating them
requires shutting down the machine (and switching the MASTER to the backup in
the case of the MASTER machine).

Tasks That Cannot Be Performed on a Running System

Most elements of the BEA Tuxedo system can be changed dynamically, through either
manual intervention or automatic processes. For example, new servers can be
spawned, new machines can be added, timeout parameters can be changed, and so on.
A few parameters, however, cannot be changed while a system is operational:
3-34 Administering a BEA Tuxedo Application at Run Time

Making Temporary Modifications to Your Configuration with tmadmin
Any parameter that affects the size of the bulletin board is not dynamic. Most of
these parameters begin with the string MAX, such as MAXGTT, which defines the
maximum number of in-flight transactions allowed within the BEA Tuxedo
system at any time.

The name of a machine being used in a running application is not dynamic. New
machines (that is, machines with new names) can be added, but an existing
machine name cannot be changed.

Once server executables are assigned to run on both master and backup
machines, the assignment of the master and backup cannot be changed.

Note: You can configure new copies of a server executable to run on additional
machines, but you cannot change existing servers with unique identifiers.

Making Temporary Modifications to Your
Configuration with tmadmin

When you use the tmconfig command to update the TUXCONFIG file and any bulletin
board entries associated with it, the changes you make are permanent; they persist after
the system is shut down and rebooted.

In some situations, however you may want to make temporary changes to a running
application. For example, you may want to:

Suspend Tuxedo ATMI services or servers

Resume Tuxedo ATMI services or servers

Advertise services or servers

Unadvertise services or servers

Change ATMI service parameters

Change CORBA interface parameters

Change the timeout value
Administering a BEA Tuxedo Application at Run Time 3-35

3 Dynamically Modifying an Application
Suspend CORBA interfaces

Resume CORBA interfaces

You can perform these tasks with the tmadmin command, as specified in the
procedures provided in this section.

How to Set Environment Variables for tmadmin

Before you can start a tmadmin session, you must set your environment variables and
any required permissions. For your convenience, you may also want to select a text
editor other than the default editor.

Complete the following procedure to set up your working environment properly before
running tmadmin.

1. Log in as the BEA Tuxedo application administrator if you want to add entries to
TUXCONFIG, or to modify existing entries. This step is not required if you only want
to view existing configuration file entries without changing or adding to them.

2. Assign values to two mandatory environment variables: TUXCONFIG and TUXDIR.

The value of TUXCONFIG must be the full path name of the binary
configuration file on the machine on which tmconfig is being run.

The value of TUXDIR must be the root directory for the BEA Tuxedo system
binary files. (tmconfig must be able to extract field names and identifiers
from $TUXDIR/udataobj/tpadmin.)

How to Suspend Tuxedo ATMI Services or
Servers

To suspend a Tuxedo ATMI server or a service, enter the tmadmin and susp (short for
suspend) commands, as follows:

$ tmadmin
> susp
3-36 Administering a BEA Tuxedo Application at Run Time

How to Resume Tuxedo ATMI Services or Servers
The suspend command marks one of the following as inactive:

One service

All services of a particular queue

All services of a particular group ID or server ID combination

After you suspend a service or a server, any requests for it that remain on the queue are
handled, but no new service requests are routed to the suspended server. If a group ID
or server ID combination is specified and it is part of an MSSQ set, all servers in that
MSSQ set become inactive for the services specified.

How to Resume Tuxedo ATMI Services or
Servers

To have a Tuxedo ATMI server or a service resume, enter the tmadmin and resume
(or res) commands, as follows:

$ tmadmin
> res

The resume command undoes the effect of the suspend command; it marks as active
for the queue one of the following:

One service

All services of a particular queue

All services of a particular group ID/server ID combination

If, in this state, the group ID or the server ID is part of an MSSQ set, all servers in that
MSSQ set become active for the services specified.
Administering a BEA Tuxedo Application at Run Time 3-37

3 Dynamically Modifying an Application
How to Advertise Services or Servers

To advertise a service or server, enter the following commands:

$ tmadmin
> adv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Although a service must be suspended before it may be unadvertised, you do not need
to unsuspend a service before readvertising it. If you simply advertise a service that
was unadvertised earlier, and is currently suspended, the service is unsuspended.

How to Unadvertise Services or Servers

To unadvertise a service or server, you must suspend it by entering the following
commands:

$ tmadmin
> unadv [{[-q queue_name] | [-g grpid] [-i srvid]}] service

Unadvertising a service has more drastic results than suspending it. When you
unadvertise a service, the service table entry for it is deallocated and the cleared space
in the service table becomes available to other services.

How to Change Service Parameters for
Tuxedo ATMI Servers

The tmadmin command allows you to change, dynamically, the values of service
parameters for a specific group ID/server ID combination or for a specific queue.
3-38 Administering a BEA Tuxedo Application at Run Time

How to Change Interface Parameters for Tuxedo CORBA Servers
The following table lists the tmadmin commands available for changing service
parameters defined in this way.

The -s option must be specified, either on the tmadmin default command line or on
the tmadmin chl, chp, or chtt command line. Because it is possible to set the -s
option on the default command line, the -s option is considered optional on the chl,
chp, and chtt command lines.

How to Change Interface Parameters for
Tuxedo CORBA Servers

The tmadmin command allows you to change, dynamically, the values of interface
parameters for a specific group ID/server ID combination or for a specific queue.

The following table lists the tmadmin commands available for changing interface
parameters defined in this way.

To Change... Enter the Following Commands...

Load value (LOAD) $tmadmin
>chl -s service_name

Dequeueing priority (PRIO) $tmadmin
>chp -s service_name

Transaction timeout value $tmadmin
>chtt -s service_name

To Change... Enter the Following Commands...

Load value (LOAD) $tmadmin
>chl -I interface_name

Dequeueing priority (PRIO) $tmadmin
>chp -I interface_name
Administering a BEA Tuxedo Application at Run Time 3-39

3 Dynamically Modifying an Application
The -I option must be specified, either on the tmadmin default command line or on
the tmadmin chl, chp, or chtt command line. Because it is possible to set the -I
option on the default command line, the -I option is considered optional on the chl,
chp, and chtt command lines.

How to Change the AUTOTRAN Timeout
Value

To change the transaction timeout (TRANTIME) for an interface or service with the
AUTOTRAN flag set, run the changetrantime (chtt) command, as follows:

$ tmadmin
chtt [-m machine] {-q qaddress [-g groupname] [-i srvid]
 [-s service] | -g groupname -i srvid -s service |
 -I interface [-g groupname]} newtlim

You cannot change transaction timeouts begun by application clients using
tpbegin() or tx_set_transaction_timeout().

How to Suspend Tuxedo CORBA Interfaces

Note: The execution of the suspend commands has minimal impact on the BEA
Tuxedo system resources when compared with the resources gained by
suspending a server.

To suspend an interface, enter the suspend (or susp) command. For example:

Transaction timeout value $tmadmin
>chtt -I interface_name

To Change... Enter the Following Commands...
3-40 Administering a BEA Tuxedo Application at Run Time

How to Resume Tuxedo CORBA Interfaces
tmadmin
>susp -i IDL:beasys.com/Simple:1.0

If an interface is suspended, a client will not be able to invoke a method on that
interface until the interface is resumed.

How to Resume Tuxedo CORBA Interfaces

Note: The execution of the resume command has minimal impact on the BEA
Tuxedo system resources when compared with the resources gained by
suspending a server.

To resume an interface, enter the resume (or res) command. For example:

tmadmin
>res -i IDL:beasys.com/Simple:1.0

If a suspended interface is resumed, clients will be able to invoke methods on that
interface.
Administering a BEA Tuxedo Application at Run Time 3-41

3 Dynamically Modifying an Application
3-42 Administering a BEA Tuxedo Application at Run Time

CHAPTER
4 Managing the Network
in a Distributed
Application

This topic includes the following sections:

Running a Network for a Distributed Application

Compressing Data Over a Network

Balancing Network Request Loads

How to Use Data-Dependent Routing

How to Change Your Network Configuration

Running a Network for a Distributed
Application

Most of the work associated with running the network for a distributed application is
done in the configuration or setup phase. Once you have defined the network and
booted the application, the software automatically runs the network for you.

This topic describes how the BEA Tuxedo system moves data through a network, and
explains how to set the configuration file parameters that control network operations.
Administering a BEA Tuxedo Application at Run Time 4-1

4 Managing the Network in a Distributed Application
Compressing Data Over a Network

The BEA Tuxedo system allows you to compress data being sent from one application
process to another. Data compression is useful in most applications and is vital in
supporting large configurations. You can use data compression when the sender and
receiver of a message are on the same machine (local data compression), or when the
sender and receiver of a message are on different machines (remote data compression).
Both forms of compression provide advantages:

Because messages are sent over interprocess communication (IPC) queues, the
advantage of local data compression is that it results in lower utilization of IPC
resources.

Because messages are sent over a network, the advantage of remote data
compression is that it results in lower utilization of network bandwidth.

How to Set the Compression Level

If you decide to use data compression, you must set the CMPLIMIT parameter in the
MACHINES section of the configuration file, as follows:

CMPLIMIT=string_value1[,string_value2]

The strings that make up the value of this parameter specify the threshold message size
for messages bound to remote processes (string_value1) and local processes
(string_value2). Only the first string is required. The default for both strings is the
value of the MAXLONG parameter.

In addition, you have the option of setting the TMCMPPRFM parameter to establish an
appropriate balance between compression and CPU performance. Higher and slower
compression results in more efficient network bandwidth; lower but faster
compression yields less CPU utilization.
4-2 Administering a BEA Tuxedo Application at Run Time

Compressing Data Over a Network
To specify the desired level of compression, complete the following procedure.

1. Set the compression threshold using the CMPLIMIT parameter in the UBBCONFIG
configuration file.

2. (Optional step) Set the TMCMPPRFM environment variable. The value of
TMCMPPRFM must be a single digit between 1 and 9; the default is 1.

A value of 1 specifies the lowest level of compression with the fastest
performance; 9 represents the highest level of compression with the slowest
performance. The lower the number, the more quickly the compression routine is
executed.

For more information on setting the TMCMPPRFM variable, refer to tuxenv(5) in the
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Selecting Data Compression Thresholds

You can designate a compression threshold for messages: any messages larger than the
threshold you specify are compressed. To designate a compression threshold, set the
CMPLIMIT parameter. For instructions, see “How to Set the Compression Level” on
page 4-2.

When choosing data compression thresholds, keep in mind the following criteria:

Consider using remote data compression if your sites are running BEA Tuxedo
release 4.2.1 or later. Your setting depends on the speed of your network. You
may want to assign different settings, for example, to an Ethernet network
(which is a high-speed network) and an X.25 network (which is a low-speed
network).

For a high-speed network, consider setting remote data compression to the
lowest limit for file transfers generated by the BEA Tuxedo system. (See the
note about file transfers provided later in this list.) In other words, compress
only messages that are large enough to be candidates for file transfer on
either the sending site or the receiving site. Note that each machine in an
application may have a different limit. If this is the case, choose the lowest
limit possible for each machine.

For a low-speed network, consider setting remote data compression to zero
on all machines; that is, compress all application and system messages.
Administering a BEA Tuxedo Application at Run Time 4-3

../rf5/rf5.htm#9873115

4 Managing the Network in a Distributed Application
Consider using local data compression for sites running BEA Tuxedo release
4.2.1 or later, even if they are interoperating with pre-release 4.2.1 sites. This
results in lower utilization of IPC resources. This setting also enables you to
avoid file transfers in many situations that might otherwise require a transfer
and, when file transfers cannot be avoided, this setting greatly reduces the size
of the files used. For more information, refer to “Message Queues and
Messages” on page -4 in Installing the BEA Tuxedo System.

For local data compression, you can assign a different threshold to each machine
in an application. If this is the case, always choose the lowest limit possible for
each machine.

Note: For high-traffic applications that involve a large volume of timeouts and
discarding of messages due to IPC queue blocking, you may want to lower
the demand of the application on the IPC queuing subsystem by having
local compression done at all times.

Because compression depends on the type of data being transmitted, we strongly
recommend that you try different settings in your environment to determine which one
yields the best results.

See Also

DMCONFIG(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

tuxenv(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“What Is Data Compression?” on page 2-25 in Introducing BEA Tuxedo ATMI

Balancing Network Request Loads

If load balancing is turned on (that is, if LDBAL is set to Y in the RESOURCES section of
the application configuration file), the BEA Tuxedo system attempts to balance
requests across the network. Because load information is not updated globally, each
site has a unique view of the load at remote sites.
4-4 Administering a BEA Tuxedo Application at Run Time

../install/insappd.htm#916181
../install/insappd.htm#916181
../rf5/rf5.htm#2885315
../rf5/rf5.htm#9873115
../int/intatm.htm#316031

How to Use Data-Dependent Routing
Use the NETLOAD parameter in the MACHINES section of the configuration file (or the
TMNETLOAD environment variable) to force more requests to be sent to local queues.
The value of this parameter is a number that is added to the load for remote queues, so
the remote queues appear to have more work than they do. As a result, even if load
balancing is turned on, local requests are sent to local queues more often than to remote
queues.

As an example, assume servers A and B offer a service with load factor 50. Server A
is running on the same machine as the calling client (local), and server B is running on
a different machine (remote). If NETLOAD is set to 100, approximately three requests
will be sent to A for every one sent to B.

Another mechanism that affects load balancing is local idle server preference.
Requests are always sent to a server on the same machine as the client, assuming that
the server offers the desired service and is idle. This decision overrides any load
balancing considerations, because the local server is known to be available
immediately.

See Also

“What Is Load Balancing?” on page 2-33 in Introducing BEA Tuxedo ATMI

How to Use Data-Dependent Routing

Data-dependent routing is useful when clients issue service requests to:

Horizontally-partitioned databases

Rule-based servers

A horizontally-partitioned database is an information repository that is divided into
segments, each of which is used to store a different category of information. This
arrangement is similar to a library in which each shelf of a bookcase holds books for a
different category (for example, biography, fiction, and so on).
Administering a BEA Tuxedo Application at Run Time 4-5

../int/intatm.htm#769121

4 Managing the Network in a Distributed Application
A rule-based server is a server that determines whether service requests meet certain,
application-specific criteria before forwarding them to service routines. Rule-based
servers are useful when you want to handle requests that are almost identical by taking
slightly different actions for business reasons.

Note: For detailed information about factory-based routing for a distributed BEA
Tuxedo CORBA application, refer to the Scaling, Distributing, and Tuning
CORBA Applications guide.

Example of Data-dependent Routing with a
Horizontally-partitioned Database

Suppose two clients in a banking application issue requests for the current balance in
two accounts: Account 3 and Account 17. If data-dependent routing is being used in
the application, then the BEA Tuxedo system performs the following actions:

1. Gets the account numbers for the two service requests (3 and 17).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle which range of data. (In this example, server 1 handles all requests
for Accounts 1 through 10, and server 2 handles all requests for Accounts 11
through 20.)

3. Sends each request to the appropriate server. Specifically, the system forwards
the request about Account 3 to server 1, and the request about Account 17 to
server 2.

The following figure illustrates this process.
4-6 Administering a BEA Tuxedo Application at Run Time

How to Use Data-Dependent Routing
Figure 4-1 Data-dependent Routing with a Horizontally-partitioned Database

Example of Data-dependent Routing with Rule-based
Servers

A banking application includes the following rules:

Customers can withdraw up to $500 without entering a special password.

Customers must enter a special password to withdraw more than $500.

Two clients issue withdrawal requests: one for $100 and one for $800. If
data-dependent routing is enabled to support the withdrawal rules, then the BEA
Tuxedo system performs the following actions:

1. Gets the amount specified for withdrawal in the two service requests ($100 and
$800).

2. Checks the routing tables on the BEA Tuxedo bulletin board that show which
servers handle requests for the amount being requested. (In this example, server 1
handles all requests to withdraw amounts up to $500; server 2 handles all
requests to withdraw amount over $500.)
Administering a BEA Tuxedo Application at Run Time 4-7

4 Managing the Network in a Distributed Application
3. Sends each request to the appropriate server. Specifically, the system forwards
the request for $100 to server 1 and the request for $800 to server 2.

The following figure illustrates this process.

Figure 4-2 Data-dependent Routing with Rule-Based Servers

See Also

“What Is Data-Dependent Routing?” on page 2-25 in Introducing BEA Tuxedo
ATMI

Chapter 7, “Distributing ATMI Applications Across a Network,”in Setting Up a
BEA Tuxedo Application

Chapter 8, “Creating the Configuration File for a Distributed ATMI
Application,”in Setting Up a BEA Tuxedo Application

Chapter 9, “Setting Up the Network for a Distributed Application,” in Setting Up
a BEA Tuxedo Application

Scaling, Distributing, and Tuning CORBA Applications
4-8 Administering a BEA Tuxedo Application at Run Time

../int/intatm.htm#165571
../ads/addist.htm#856716
../ads/adsdis.htm#403787
../ads/adsdis.htm#403787
../ads/adsnet.htm#815708

How to Change Your Network Configuration
How to Change Your Network Configuration

To change configuration parameters while your application is running, run the
tmconfig(1) command. This command is a shell-level interface to the BEA Tuxedo
System Management Information Base (MIB).

Using tmconfig, you can browse and modify the TUXCONFIG file without bringing
down your system. For example, you can add new components, such as machines and
servers, while your application is running.

See Also

“Operating Your Application Using Command-Line Utilities” on page 4-12 in
Introducing BEA Tuxedo ATMI

tmconfig, wtmconfig(1) in the BEA Tuxedo Command Reference

MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

TM_MIB(5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

“Administering Link-Level Encryption” on page 2-36 in Using Security in
CORBA Applications

“Administering Public Key Security” on page 2-43 in Using Security in CORBA
Applications
Administering a BEA Tuxedo Application at Run Time 4-9

../int/intman.htm#403472
../rfcm/rfcmd.htm#2468411
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../sec/secadm.htm#279871
../sec/secadm.htm#275251

4 Managing the Network in a Distributed Application
4-10 Administering a BEA Tuxedo Application at Run Time

CHAPTER
5 About the EventBroker

This topic includes the following sections:

What Is an Event?

Differences Between Application-defined and System-defined Events

What Is the EventBroker?

How the EventBroker Works

What Are the Benefits of Brokered Events?

What Is an Event?

An event is a state change or other occurrence in a running application (such as a
network connection being dropped) that may require intervention by an operator, an
administrator, or the software. The BEA Tuxedo system reports two types of events:

System-defined events—which are situations (primarily failures) defined by the
BEA Tuxedo system, such as the exceeding of certain system capacity limits,
server terminations, security violations, and network failures.

Application-defined events—which are situations defined by a customer
application, such as the ones listed in the following table.

In an application for this
type of business . . .

An occurrence of this situation may be defined as
an “event” . . .

Stock brokerage A stock is traded at or above a specified price.
Administering a BEA Tuxedo Application at Run Time 5-1

5 About the EventBroker
Application events are occurrences of application-defined events, and system events
are occurrences of system-defined events. Both application and system events are
received and distributed by the BEA Tuxedo EventBroker component.

Differences Between Application-defined
and System-defined Events

Application-defined events are defined by application designers and are therefore
application specific. Any of the events defined for an application may be tracked by
the client and server processes running in the application.

System-defined events are defined by the BEA Tuxedo system code and are generally
associated with objects defined in TM_MIB(5). A complete list of system-defined
events is published on the EVENTS(5) reference page. Any of these events may be
tracked by users of the BEA Tuxedo system.

The BEA Tuxedo EventBroker posts both application-defined and system-defined
events, and an application can subscribe to events of both types. The two types of
events can be distinguished by their names: the names of system-defined events begin
with a dot (.); the names of application-specific events cannot begin with a dot (.).

Banking A withdrawal or deposit above a specified amount is made.

The cash available in an ATM machine drops below a
specified amount.

Manufacturing An item is out of stock.

In an application for this
type of business . . .

An occurrence of this situation may be defined as
an “event” . . .
5-2 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#1980515
../rf5/rf5.htm#1605515

What Is the EventBroker?
What Is the EventBroker?

The BEA Tuxedo EventBroker is a tool that provides asynchronous routing of
application events among the processes running in a BEA Tuxedo application. It also
distributes system events to whichever application processes want to receive them.

The EventBroker performs the following tasks:

Monitors events and notifies subscribers when events are posted via
tppost(3c).

Keeps an administrator informed of changes in an application.

Provides a system-wide summary of events.

Provides a tool through which an event can trigger a variety of notification
activities.

Provides a filtering capability, providing additional conditions to the posted
event’s buffer.

Note: For a sample application that you can copy and run as a demo, see “Tutorial
for bankapp, a Full C Application” on page 3-1 in Tutorials for Developing
BEA Tuxedo ATMI Applications.

The EventBroker recognizes over 100 meaningful state transitions to a MIB object as
system events. A posting for a system event includes the current MIB representation
of the object on which the event occurred and some event-specific fields that identify
the event that occurred. For example, if a machine is partitioned, an event is posted
with the following:

The name of the affected machine, as specified in the T_MACHINE class, with
all the attributes of that machine

Some event attributes that identify the event as machine partitioned

You can use the EventBroker simply by subscribing to system events. Then, instead of
having to query for MIB records, you can be informed automatically when events
occur in the MIB by receiving FML data buffers representing MIB objects.
Administering a BEA Tuxedo Application at Run Time 5-3

../rf3c/rf3c.htm#4209713
../tutor/tutba.htm#248431
../tutor/tutba.htm#248431

5 About the EventBroker
How the EventBroker Works

The BEA Tuxedo EventBroker is a tool through which an arbitrary number of
suppliers of event notifications can post messages for an arbitrary number of
subscribers. The suppliers of such notifications may be application or system
processes operating as clients or servers. The subscribers of such notifications may be
administrators or application processes operating as clients or servers.

Client and server processes using the EventBroker communicate with one another
based on a set of subscriptions. Each process sends one or more subscription requests
to the EventBroker, identifying the event types that the process wants to receive. The
EventBroker, in turn, acts like a newspaper delivery person who delivers newspapers
only to customers who have paid for a subscription. For these reasons, the paradigm
on which the EventBroker is based is described as publish-and-subscribe
communication.

Event suppliers (either clients or servers) notify the EventBroker of events as they
occur. We refer to this type of notification as posting an event. Once an event supplier
posts an event, the EventBroker matches the posted event with the subscribers that
have subscribed for that event type. Subscribers may be administrators or application
processes. When the EventBroker finds a match, it takes the action specified for each
subscription; subscribers are notified and any other actions specified by subscribers are
initiated.

The following diagram shows how the EventBroker handles event subscriptions and
postings.

Figure 5-1 Posting and Subscribing to an Event

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of client and server processes through calls to the
T_EVENT_COMMAND class of the EVENT_MIB(5). You can also invoke the
tpsubscribe(3c) function to subscribe, programmatically, to an event by using the
EventBroker.
5-4 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#2718115
../rf3c/rf3c.htm#9514013

How the EventBroker Works
Event Notification Methods

The EventBroker subscription specifies one of the notification methods shown in the
following diagram.

Figure 5-2 Supported Notification Methods

Notify a client—the EventBroker keeps track of a client’s interest in particular
events and notifies the client, without being prompted, when such an event
occurs. For this reason, this method is called unsolicited notification.

Invoke a service—if a subscriber wants event notifications to be passed to
service calls, the subscriber process should invoke the tpsubscribe() function
to provide the name of the service to be called.

Enqueue message to stable-storage queues—for subscriptions with requests to
send event notifications to stable-storage queues, the EventBroker will obtain a
queue space, queue name, and correlation identifier. A subscriber specifies a
queue name when subscribing to an event. The correlation identifier can be used
to differentiate among multiple subscriptions for the same event expression and
filter rule, that are destined for the same queue.

Execute a command—when an event is posted, the buffer associated with it is
transformed into a system command that is then executed. For example, the
buffer may be changed to a system command that sends an e-mail message. This
process must be executed through the MIB.
Administering a BEA Tuxedo Application at Run Time 5-5

5 About the EventBroker
Write messages to the user log—when events are detected and matched by the
EventBroker, the specified messages are written to the user log, or ULOG. This
process must be executed through the MIB.

Severity Levels of System Events

The EventBroker assigns one of three levels of severity to system events such as server
terminations or network failure.

What Are the Benefits of Brokered Events?

Anonymous communication—the Event Broker enables BEA Tuxedo programs
to subscribe to events in which they are interested and it keeps track of all
subscriptions. Therefore, a subscriber to one event does not need to know which
programs subscribe to the same event, and a poster of an event does not need to
know which other programs subscribe to that event. This anonymity allows
subscribers to come and go without synchronizing with posters.

Decoupling of exception conditions—a publish-and-subscribe communication
model allows the software detecting an exception condition to be decoupled
from the software handling the exception condition.

The level of
severity is . . . When the EventBroker is informed of . . .

ERROR An abnormal occurrence, such as a server being terminated or a
network connection being dropped.

INFO (short for
“Information”)

A state change resulting from a process or a change in the
configuration.

WARN (short for
“Warning”)

The fact that a client has not been allowed to join the application
because it failed authentication. A configuration change that
threatens the performance of the application has occurred.
5-6 Administering a BEA Tuxedo Application at Run Time

What Are the Benefits of Brokered Events?
Tight integration with the BEA Tuxedo system—the EventBroker retains
functionality such as message buffers, messaging paradigms, distributed
transactions, and ACL permission checks for event postings.

Variety of notification methods—when a client or server subscribes to a system
event (such as the termination of a server) or an application event (such as an
ATM machine running out of money), it specifies an action that the EventBroker
should take when it is notified that the target event has occurred.

If the subscriber is a BEA Tuxedo client, it can do one of the following at the
time it subscribes:

Request unsolicited notification

Name a service routine that should be invoked

Name an application queue in which the EventBroker should store the data
for later processing

If the subscriber is a BEA Tuxedo server, it can do one of the following at the
time it subscribes:

Specify a service request

Name an application queue in which the EventBroker should store the data

See Also

“Subscribing to Events” on page 6-1

“Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT_MIB” on page 6-3 in Introducing BEA Tuxedo ATMI

EVENT_MIB(5) in the File Formats, Data Descriptions, MIBs, and System
Processes Reference

tpsubscribe(3c) in the BEA Tuxedo ATMI C Function Reference

tpunsubscribe(3c) in the BEA Tuxedo ATMI C Function Reference
Administering a BEA Tuxedo Application at Run Time 5-7

../rf5/rf5.htm#2718115
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013

5 About the EventBroker
5-8 Administering a BEA Tuxedo Application at Run Time

CHAPTER
6 Subscribing to Events

This topic includes the following sections:

Process of Using the EventBroker

How to Configure EventBroker Servers

How to Set the Polling Interval

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the
EVENT_MIB

How to Select a Notification Method

How to Cancel a Subscription to an Event

How to Use the EventBroker with Transactions

Process of Using the EventBroker

Use of the EventBroker requires the completion of several preparatory steps. The
following flowchart lists these steps and indicates whether each step should be
performed by an application administrator or programmer.
Administering a BEA Tuxedo Application at Run Time 6-1

6 Subscribing to Events
For instructions on any of these tasks, click on the appropriate box in the flowchart.

Note: A good way to learn how the EventBroker works is by running bankapp, the
sample application delivered with the BEA Tuxedo system. To find out how
to copy bankapp and run it as a demo, see “Tutorial for bankapp, a Full C
Application” on page 3-1 in Tutorials for Developing BEA Tuxedo ATMI
Applications.

How to Configure EventBroker Servers

A client accesses the EventBroker through either of two servers provided by the BEA
Tuxedo system: TMUSREVT(5), which handles application events, and TMSYSEVT(5),
which handles system events. Both servers process events and trigger the sending of
notification to subscribers.

To set up the BEA Tuxedo EventBroker on your system, you must configure either or
both of these servers in the SERVERS section of the UBBCONFIG file, as shown in the
following example.

 *SERVERS
 TMSYSEVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
 CLOPT="-A --"
 TMSYSEVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y GRACE=900 MAXGEN=5
 CLOPT="-A -- -S -p 90"

 TMUSREVT SRVGRP=ADMIN1 SRVID=100 RESTART=Y
 MAXGEN=5 GRACE=3600
 CLOPT="-A --"
6-2 Administering a BEA Tuxedo Application at Run Time

../tutor/tutba.htm#248431
../tutor/tutba.htm#248431
../rf5/rf5.htm#5119715
../rf5/rf5.htm#9901015

How to Set the Polling Interval
 TMUSREVT SRVGRP=ADMIN2 SRVID=100 RESTART=Y
 MAXGEN=5 GRACE=3600
 CLOPT="-A -- -S -p 120"

We recommend that you assign the principal server to the MASTER site, even though
either server can reside anywhere on your network.

Note: You can reduce the network traffic caused by event postings and notifications
by assigning secondary servers to other machines in your network.

How to Set the Polling Interval

Periodically, the secondary server polls the primary server to obtain the current
subscription list, which includes filtering and notification rules. By default, polling is
done every 30 seconds. If necessary, however, you can specify a different interval.

You can configure the polling interval (represented in seconds) with the -p
command-line option in TMUSREVT(5) or TMSYSEVT(5) entries in the configuration
file, as follows:

-p poll_seconds

It may appear that event messages are lost while subscriptions are being added and
secondary servers are being updated.

Subscribing, Posting, and Unsubscribing to
Events with the ATMI and the EVENT_MIB

As the administrator for your BEA Tuxedo application, you can enter subscription
requests on behalf of a client or server process through calls to the T_EVENT_COMMAND
class of the EVENT_MIB(5). You can also use invoke the tpsubscribe(3c) function
to subscribe, programmatically, to an event.
Administering a BEA Tuxedo Application at Run Time 6-3

../rf5/rf5.htm#5119715
../rf5/rf5.htm#9901015
../rf5/rf5.htm#2718115
../rf3c/rf3c.htm#9514013

6 Subscribing to Events
The following figure shows how clients and servers use the EventBroker to subscribe
to events, to post events, and to unsubscribe to events.

Figure 6-1 Subscribing to an Event

Identifying Event Categories Using eventexpr and filter

Clients or servers can subscribe to events by calling tpsubscribe(3c). The
tpsubscribe() function takes one required argument: eventexpr. The value of
eventexpr can be a wildcard string that identifies the set of event names about which
the user wants to be notified. Wildcard strings are described on the tpsubscribe(3c)
reference page in the BEA Tuxedo ATMI C Function Reference.

As an example, a user on a UNIX system platform who wants to be notified of all
events related to the category of networking can specify the following value of
eventexpr:

\.SysNetwork.*

The backslash preceding the period (.) indicates that the period is literal. (Without the
preceding backslash, the period (.) would match any character except the end-of-line
character.) The combination .* at the end of \.SysNetwork.* matches zero or more
occurrences of any character except the end-of-line character.

In addition, clients or servers can filter event data by specifying the optional filter
argument when calling tpsubscribe(). The value of filter is a string containing a
Boolean filter rule that must be evaluated successfully before the EventBroker posts
the event.

As an example, a user who wants to be notified only about system events having a
severity level of ERROR can specify the following value of filter:

”TA_EVENT_SEVERITY=’ERROR’”
6-4 Administering a BEA Tuxedo Application at Run Time

../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9514013

Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
When an event name is posted that evaluates successfully against eventexpr, the
EventBroker tests the posted data against the filter rule associated with eventexpr. If
the data passes the filter rule or if there is no filter rule for the event, the subscriber
receives a notification along with any data posted with the event.

Accessing the EventBroker

Your application can access the EventBroker through either the ATMI or the
EVENT_MIB(5). The following table describes both methods.

Method Function Purpose

ATMI tppost(3c) Notifies the EventBroker, or posts an event and any
accompanying data. The event is named by the eventname
argument and the data argument, if not NULL, points to the data.
The posted event and data are dispatched by the BEA Tuxedo
EventBroker to all subscribers with subscriptions that
successfully evaluate against eventname and optional filter
rules that successfully evaluate against data.

tpsubscribe(3c) Subscribes to an event or a set of events named by eventexpr.
Subscriptions are maintained by the BEA Tuxedo EventBroker,
and are used to notify subscribers when events are posted via
tppost(). Each subscription specifies one of the following
notification methods: client notification, service calls, message
enqueuing to stable-storage queues, executing of commands, and
writing to the user log. Notification methods are determined by
the subscriber’s process type (that is, whether the process is a
client or a server) and the arguments passed to tpsubscribe().

tpunsubscribe(3c) Removes an event subscription or a set of event subscriptions
from the BEA Tuxedo EventBroker’s list of active subscriptions.
subscription is an event subscription handle returned by
tpsubscribe(). Setting subscription to the wildcard
value, -1, directs tpunsubscribe to unsubscribe to all
nonpersistent subscriptions previously made by the calling
process. Nonpersistent subscriptions are those made without the
TPEVPERSIST bit setting in the ctl->flags parameter of
tpsubscribe(). Persistent subscriptions can be deleted only
by using the handle returned by tpsubscribe().
Administering a BEA Tuxedo Application at Run Time 6-5

../rf3c/rf3c.htm#4209713
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013
../rf5/rf5.htm#2718115

6 Subscribing to Events
Note: tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) are C functions.
Equivalent routines (TPPOST(3cbl), TPSUBSCRIBE(3cbl), and
TPUNSUBSCRIBE(3cbl)) are provided for COBOL programmers. See the
BEA Tuxedo ATMI C Function Reference and the BEA Tuxedo ATMI COBOL
Function Reference for details.

How to Select a Notification Method
The EventBroker supports a variety of methods for notifying subscribers of events, as
shown in the following diagram.

Figure 6-2 Notification Methods Supported by the EventBroker

EVENT_MIB(5) N/A The EVENT_MIB is a management information base (MIB) that
stores subscription information and filtering rules. In your own
application, you cannot define new events for the BEA Tuxedo
EventBroker using EVENT_MIB, but you can customize the
EventBroker to track events and notify subscribers of occurrences
of special interest to the application.
You can use the EVENT_MIB to subscribe to an event, or to
modify or cancel a subscription.

Method Function Purpose
6-6 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#2718115
../rf3c/rf3c.htm#4209713
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013
../rf3cbl/rf3cbl.htm#3564013
../rf3cbl/rf3cbl.htm#2001213
../rf3cbl/rf3cbl.htm#9445913

How to Select a Notification Method
Whichever notification method you choose, the procedure for implementing it is the
same: in your call to tpsubscribe(), specify an argument that refers to a structure of
type TPEVCTL.

If the value of the argument is NULL, the EventBroker sends an unsolicited message
to the subscriber. Two of these methods, having the notification sent to a service and
having it sent to a queue in stable storage, cannot be requested directly by a client.
Instead, a client must invoke a service routine to subscribe on its behalf.

For each subscription, you can select any of the following notification methods. The
EventBroker can:

Notify the client—the EventBroker keeps track of events in which the client is
interested and sends unsolicited notifications to the client when they occur. Some
events are anonymously posted. A client can join an application, regardless of
whether any other clients have subscribed, and post events to the EventBroker.
The EventBroker matches these events against its database of subscriptions and
sends an unsolicited notification to the appropriate clients. (See the definition of
the T_EVENT_CLIENT class in the EVENT_MIB(5) entry in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.)

Invoke a service—if a subscriber wants event notifications to be sent to service
calls, then the ctl parameter must point to a valid TPEVCTL structure. (See the
definition of the T_EVENT_SERVICE class in the EVENT_MIB(5) entry in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.)

Enqueue messages to stable-storage queues—for subscriptions to stable-storage
queues, a queue space, queue name, and correlation identifier are specified, in
addition to values for eventexpr and filter, so that matching can be
performed. The correlation identifier can be used to differentiate among several
subscriptions characterized by the same event expression and filter rule, and
destined for the same queue. (See the definition of the T_EVENT_QUEUE class in
the EVENT_MIB(5) entry in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.)

Execute commands—using the T_EVENT_COMMAND class of the EVENT_MIB,
subscribers can invoke an executable process. When a match is found, the data is
used as the name of the executable process and any required options. (See the
definition of the T_EVENT_COMMAND class in the EVENT_MIB(5) entry in the File
Formats, Data Descriptions, MIBs, and System Processes Reference.)

Write messages to the user log (ULOG)—using the T_EVENT_USERLOG class of
the EVENT_MIB, subscribers can write system USERLOG messages. When events
Administering a BEA Tuxedo Application at Run Time 6-7

../rf5/rf5.htm#2718115
../rf5/rf5.htm#2718115
../rf5/rf5.htm#2718115
../rf5/rf5.htm#2718115

6 Subscribing to Events
are detected and matched, they are written to the USERLOG. (See the definition of
the T_EVENT_USERLOG class in the EVENT_MIB(5) entry in the File Formats,
Data Descriptions, MIBs, and System Processes Reference.)

How to Cancel a Subscription to an Event

When a client leaves an application by calling tpterm(3c), all of its subscriptions are
canceled unless the subscription is specified as persistent. (If persistent, the
subscription continues to receive postings even after a client performs a tpterm().) If
the client later rejoins the application and wants to renew those subscriptions, it must
subscribe again.

A well-behaved client unsubscribes before calling tpterm(). This is accomplished by
issuing a tpunsubscribe(3c) call before leaving an application.

How to Use the EventBroker with
Transactions

Special handling is needed to use the EventBroker with transactions.

Before you can use the EventBroker with transactions, you must configure the
NULL_TMS parameter with the TMUSREVT(5) server for the server groups in
which the EventBroker is running.

The advantage of posting an event in a transaction is that all of the work,
including work not related to the posting, is guaranteed to be complete if the
transaction is successful. If any work performed within the transaction fails, it is
guaranteed that all the work done within the transaction will be rolled back. The
disadvantage is that the poster takes a risk that something may cause the
transaction to be aborted, and the posting will be lost.
6-8 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#2718115
../rf3c/rf3c.htm#2222313
../rf3c/rf3c.htm#9307013
../rf5/rf5.htm#5119715

How to Use the EventBroker with Transactions
To specify that a subscription is part of a transaction, use the TPEVTRAN flag
with tpsubscribe(3c). If the subscription is made transactionally, the action
taken in response to an event will be part of the caller’s transaction.

Note: This method can be used only for subscriptions that cause a BEA Tuxedo
service to be invoked, or that cause a record to be enqueued on a permanent
queue.

How Transactions Work with the EventBroker

If both a poster and a subscriber agree to link their transactions, they create a form of
voting. The poster makes an assertion that something is true and infects the message
with this transaction. (In other words, the message that leaves the originating process
is marked as being associated with the transaction.) The transaction goes to the
EventBroker.

The EventBroker’s actions, such as calling the service or putting a message in the
queue for the subscriber, are also part of the same transaction. If a service routine that
is running encounters an error, it can fail the transaction, rolling back everything,
including all other transactional subscriptions and the poster’s original transaction,
which might have invoked other services and performed other database work. The
poster makes an assertion (“I’m about to do this”), provides data, and links the data to
its transaction.

A number of anonymous subscribers, that is, subscribers about which the poster knows
nothing, are invoked transactionally. If any subscriber fails to link its work with the
poster’s work, the whole transaction is rolled back. All transactional subscribers must
agree to link their work with the poster’s work, or all the work is rolled back. If a poster
has not allowed the posting to participate in its transaction, the EventBroker starts a
separate transaction, and gathers all the transactional subscriptions into that
transaction. If any of these transactions fail, all the work done on behalf of the
transactional subscriptions is rolled back, but the poster’s transaction is not rolled
back. This process is controlled by the TPEVTRAN flag.

Example of Using the EventBroker with Transactions

A stock trade is about to be completed by a brokerage application. A number of
database records have been updated by various services during the trade transaction. A
posting states that the trade is about to happen.
Administering a BEA Tuxedo Application at Run Time 6-9

../rf3c/rf3c.htm#9514013

6 Subscribing to Events
An application responsible for maintaining an audit trail of such trades has subscribed
to this event. Specifically, the application has requested the placement of a record in a
specified queue whenever an event of this type is posted. A service routine responsible
for determining whether trades can be performed, also subscribes to this type of event;
it, too, is notified whenever such a trade is proposed.

If all goes well, the trade is completed and an audit trail is made.

If an error occurs in the queue and no audit trail can be made, the entire stock trade is
rolled back. Similarly, if the service routine fails, the transaction is rolled back. If all
is successful, the trade is made and the transaction is committed.

See Also

“What Is the EventBroker?” on page 5-3

“Managing Events Using EventBroker” on page 4-17 in Introducing BEA
Tuxedo ATMI

“Managing Events Using EventBroker” on page 4-17 in Introducing BEA
Tuxedo ATMI

“Using Event-based Communication” on page 1-14 in Tutorials for Developing
BEA Tuxedo ATMI Applications

tppost(3c), tpsubscribe(3c), and tpunsubscribe(3c) in the BEA Tuxedo
ATMI C Function Reference

TPPOST(3cbl), TPSUBSCRIBE(3cbl), and TPUNSUBSCRIBE(3cbl) in the BEA
Tuxedo ATMI COBOL Function Reference

EVENT_MIB(5), EVENTS(5), TMSYSEVT(5), and TMUSREVT(5) in the File
Formats, Data Descriptions, MIBs, and System Processes Reference
6-10 Administering a BEA Tuxedo Application at Run Time

../int/intman.htm#679361
../int/intman.htm#679361
../tutor/tutov.htm#539381
../rf3c/rf3c.htm#4209713
../rf3c/rf3c.htm#9514013
../rf3c/rf3c.htm#9307013
../rf3cbl/rf3cbl.htm#3564013
../rf3cbl/rf3cbl.htm#2001213
../rf3cbl/rf3cbl.htm#9445913
../rf5/rf5.htm#2718115
../rf5/rf5.htm#1605515
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715

CHAPTER
7 Migrating Your
Application

This topic includes the following sections:

What Is Migration?

Migration Options

How to Switch the Master and Backup Machines

How to Migrate Server Groups

How to Migrate Server Groups from One Machine to Another

How to Cancel a Migration

How to Migrate Transaction Logs to a Backup Machine

What Is Migration?

Under normal circumstances, an administrator performs daily administrative tasks on
the configured MASTER machine. The DBBL on the MASTER machine monitors other
machines in a configuration, handles configuration updates, and broadcasts dynamic
changes to the TMIB. If the MASTER machine fails, for example, due to a machine crash,
database corruptions, BEA Tuxedo system problems, network partitioning, or
application faults, the application does not stop running. Clients can still join the
Administering a BEA Tuxedo Application at Run Time 7-1

7 Migrating Your Application
application, servers can still service requests, and naming is still available on each local
machine. However, until the MASTER machine is restored, servers cannot be activated
or deactivated, and an administrator cannot dynamically reconfigure the system.

Similarly, application servers are configured to run on specific machines to service
client requests. However, if a machine fails or must be brought down to be serviced,
the servers on that machine become unavailable. In each case, you can migrate the
servers to a configured BACKUP or alternate machine.

An administrator who performs a migration in preparation for shutting down a
machine for service or upgrading, does not face the problems inherent in a machine
failure. Therefore an administrator in this situation has a relatively high degree of
control over migration activities.

Performing a Master Migration
A master migration is the process of moving the DBBL from the configured MASTER
machine to the configured BACKUP machine so that servers can continue to be serviced
while the configured MASTER machine is down. To start a migration, an administrator
requests that the configured BACKUP assume the role of acting MASTER, and the
configured MASTER, the role of acting BACKUP. The acting MASTER then performs all
administrative functions: it begins monitoring other machines in the configuration and
accepts any dynamic reconfiguration changes.

In the following illustration, Machine 2, the configured BACKUP machine, assumes the
role of MASTER, while Machine 1, the configured MASTER, assumes the role of acting
BACKUP. When the configured MASTER is available again, it can be reactivated from the
acting MASTER (that is, the configured BACKUP). The configured MASTER then regains
control as acting MASTER.
7-2 Administering a BEA Tuxedo Application at Run Time

What Is Migration?
Migrating a Server Group

For each group of servers, an administrator specifies a primary machine and an
alternate machine. The process of migrating a server group involves activating the
server group on the alternate machine.

In the following illustration, GroupA is assigned to Machine 1 (that is, Machine 1 is
configured as the primary machine); Machine 2 is configured as the alternate machine
for GroupA. After migration, GroupA is activated on Machine 2, which means that all
servers in this group and the services associated with them, are available on Machine
2 (the acting primary).
Administering a BEA Tuxedo Application at Run Time 7-3

7 Migrating Your Application
Migrating Machines

While it is sometimes useful to migrate only a single server group, it is more often
necessary to migrate an entire machine. This type of migration may be necessary, for
example, when a computer fails. Migrating a machine involves migrating each of the
server groups running on the machine. An alternate machine must be configured for
each server group.

Performing a Scheduled Migration

In a controlled situation, such as when a computer needs to be offline for a while, or
needs to be upgraded, an administrator can preserve information about the current
configuration for servers and services, and use that information when activating
servers on alternate machines. Such use of configuration information is possible
because server entries are retained on a primary machine, even after the servers are
deactivated and become unavailable in response to a request for a migration.
7-4 Administering a BEA Tuxedo Application at Run Time

What Is Migration?
You can migrate an entire server group or an entire machine. Migration of an entire
machine is possible when the same machine is configured as the alternate for all the
server groups on a primary machine. When that is not the case (that is, when different
alternate machines are configured for different server groups on a primary machine),
then the servers must be migrated by group, rather than by machine.

In the following illustration, Machine 1 is the configured MASTER and the primary
machine for GroupB; Machine 2 is the configured BACKUP. Server GroupB is
configured with Machine 1 as its primary machine and Machine 3 as its alternate. If
Machine 1 is taken down, Machine 2 becomes the acting MASTER, and Server GroupB
is deactivated, migrated to its alternate (Machine 3), and reactivated.

After deactivating all the servers in a group, you can migrate the group from the acting
primary to the acting alternate. You do not need to specify which servers are running,
which services are currently advertised, or which, if any, dynamic configuration
changes are being made. The configured alternate machine obtains this information
from the configuration information for the servers that is available on the configured
primary machine, when the servers are deactivated. If data-dependant routing is being
used and will continue to be used on the alternate machine, services are routed on the
basis of the target group name, instead of the target machine name.
Administering a BEA Tuxedo Application at Run Time 7-5

7 Migrating Your Application
Whether you need to migrate an entire application or only portions of it, be sure to
make the necessary changes with minimal service disruption. The integrity of all
machines, networks, databases, and other components of your application must remain
intact. The BEA Tuxedo system provides a way to migrate an application while
preserving the integrity of all its components.

Migration Options

The BEA Tuxedo system allows you to migrate:

A MASTER machine to a BACKUP machine, and vice-versa

A server group from its primary machine to its alternate machine

All server groups on a primary machine to an alternate machine

A transaction log

You can also cancel a migration.

By migrating a combination of the application components listed here, and using the
system utilities for recovering a partitioned network, you can migrate entire machines.
7-6 Administering a BEA Tuxedo Application at Run Time

How to Switch the Master and Backup Machines
How to Switch the Master and Backup
Machines

When a MASTER machine must be shut down for maintenance, or is no longer
accessible due to an unanticipated problem (such as a partitioned network), then you
must transfer the work of the MASTER to a configured BACKUP machine.

Note: Before you can migrate the MASTER, both the MASTER and BACKUP machines
must be running the same release of the BEA Tuxedo system software.

This type of switching is done by migrating the DBBL from the MASTER to the BACKUP.
To migrate the DBBL, enter the following command:

tmadmin master

In most cases, you need to migrate application servers to alternate sites, or restore the
MASTER machine. For more detail about the tmadmin command, see the tmadmin(1)
reference page in the File Formats, Data Descriptions, MIBs, and System Processes
Reference.

Examples of Switching MASTER and BACKUP Machines

The following two sample tmadmin sessions show how to switch MASTER and BACKUP
machines regardless of whether the MASTER machine is accessible from the BACKUP
machine. In the first example, the MASTER machine is accessible, so the DBBL process
is migrated from the MASTER to the BACKUP.
Administering a BEA Tuxedo Application at Run Time 7-7

../rfcm/rfcmd.htm#2554911

7 Migrating Your Application
Listing 7-1 Switching MASTER and BACKUP When MASTER Is Accessible
from BACKUP

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
> master
are you sure? [y,n] y
Migrating active DBBL from SITE1 to SITE2, please wait...
DBBL has been migrated from SITE1 to SITE2
> q

In the second example, because the MASTER machine is not accessible from the BACKUP
machine, the DBBL process is created on the BACKUP machine.

Listing 7-2 Switching MASTER and BACKUP When MASTER Is Not
Accessible from BACKUP

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved.
TMADMIN_CATT:199: Cannot become administrator. Limited set of commands available.
> master
are you sure? [y,n] y
Creating new DBBL on SITE2, please wait... New DBBL created on SITE2
> q

How to Migrate Server Groups

1. Configure an alternate location in the LMID parameter (for the server group being
migrated) in the GROUPS section of the UBBCONFIG file. Servers in the group must
specify RESTART=Y and the MIGRATE option must be specified in the RESOURCES
section of the UBBCONFIG file.
7-8 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups
2. If you are planning to migrate a group of servers, shut down each server in the
group by issuing the following command:

tmshutdown -R -g groupname

3. Start a tmadmin session by entering the following command:

tmadmin

4. At the tmadmin prompt, enter one of the following commands:

To migrate all the servers in a single group, enter:

migrategroup(migg)

This command takes the name of a single server group as an argument.

To migrate all the server groups on a machine (as specified by an LMID),
enter:

migratemach(migm)

5. If transactions are being logged for a server being migrated as part of a group,
you may need to move the TLOG to the BACKUP machine, load it, and “warm start”
it.

How to Migrate a Server Group When the Alternate
Machine Is Accessible from the Primary Machine

To migrate a server group when the alternate machine is accessible from the primary
machine, complete the following procedure.

1. Shut down the MASTER machine by entering the following command:

tmshutdown -R -g groupname

2. On the primary machine, start a tmadmin session by entering the following
command:

tmadmin

3. Migrate the appropriate group by entering the following command:

migrategroup groupname
Administering a BEA Tuxedo Application at Run Time 7-9

7 Migrating Your Application
4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate a Server Group When the Alternate
Machine Is Not Accessible from the Primary Machine

To migrate a server group when the alternate machine is not accessible from the
primary machine, switch the MASTER and BACKUP machines, if necessary.

1. On the alternate machine, start a tmadmin session by entering the following
command:

tmadmin

2. Request cleanup and restart of any servers on the primary machine that require
these operations by entering the following command:

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command:

migrate groupname

4. Boot the newly migrated server group by entering the following command:

boot -g groupname

Examples of Migrating a Server Group

The following two sample sessions show how you can migrate a server group,
regardless of whether the alternate machine is accessible from the primary machine. In
the first example, the alternate machine is accessible from the primary machine.
7-10 Administering a BEA Tuxedo Application at Run Time

How to Migrate Server Groups
Listing 7-3 Migrating a Group When the Alternate Machine Is Accessible from
the Primary Machine

$ tmshutdown -R -g GROUP1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown succeeded
1 process stopped.
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migg GROUP1
migg successfully completed
> q

In the second example, the alternate machine is not accessible from the primary
machine.

Listing 7-4 Migrating a Group When the Alternate Machine Is Not Accessible
from the Primary Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migg GROUP1
migg successfully completed.
> boot -g GROUP2
Booting server processes ...
exec simpserv -A :
on SITE2 -> process id=22699 ... Started.
1 process started.
> q
Administering a BEA Tuxedo Application at Run Time 7-11

7 Migrating Your Application
How to Migrate Server Groups from One
Machine to Another

1. Use the LMID parameter to name the processor on which the server group(s) have
been running. The alternate location must be the same for all server groups on the
LMID.

2. In the RESOURCES section of the UBBCONFIG file, set the following parameters:

Set RESTART=Y for each server on the machine indicated by the LMID.

Specify the MIGRATE options.

3. Shut down all server groups and mark the servers in the groups as restartable by
entering the following command:

tmshutdown -R

4. Use the tmadmin(1) migratemach (migm) command to migrate all server
groups from one machine to another when the primary machine must be shut
down for maintenance or when the primary machine is no longer accessible. (The
command takes one logical machine identifier as an argument.)

How to Migrate Machines When the Alternate Machine Is
Accessible from the Primary Machine

To migrate a machine when the alternate machine is accessible from the primary
machine, complete the following procedure.

1. Shut down the MASTER machine by entering the following command on that
machine:

tmshutdown -R -1 primary_machine

2. On the MASTER machine, start a tmadmin session by entering the following
command:

tmadmin
7-12 Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#2554911

How to Migrate Server Groups from One Machine to Another
3. At the tmadmin prompt, migrate the appropriate machine by entering the
following command:

migratemach primary_machine

4. If necessary, migrate the transaction log.

5. If necessary, migrate the application data.

How to Migrate Machines When the Alternate Machine Is
Not Accessible from the Primary Machine

To migrate a machine when the alternate machine is not accessible from the primary
machine, switch the MASTER and BACKUP machines, if necessary.

1. On the alternate machine, start a tmadmin session by entering the following
command:

tmadmin

2. Request cleanup and restart of the primary machine that require these operations
by entering the following command:

pclean primary_machine

3. Transfer the appropriate server group to a configured alternate machine by
entering the following command:

migratemach primary_machine

4. Boot the newly migrated server group by entering the following command:

boot -l alternate_machine
Administering a BEA Tuxedo Application at Run Time 7-13

7 Migrating Your Application
Examples of Migrating a Machine

The following sample session shows how to migrate machines. In the first example,
the alternate machine is accessible from the primary machine.

Listing 7-5 Migrating a Machine When the Alternate Machine Is Accessible
from the Primary Machine

$ tmshutdown -R -l SITE1
Shutting down server processes...
Server ID = 1 Group ID = GROUP1 machine = SITE1: shutdown
succeeded 1 process stopped.
$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> migm SITE1
migm successfully completed
> q

In the second example, the alternate machine is not accessible from the primary
machine.

Listing 7-6 Migrating a Machine When the Alternate Machine Is Not Accessible
from the Primary Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
>pclean SITE1
Cleaning the DBBL.
Pausing 10 seconds waiting for system to stabilize.
3 SITE1 servers removed from bulletin board
> migm SITE1
migm successfully completed.
> boot -l SITE2
Booting server processes ...
exec simpserv -A :
on SITE2 -- process id=22782 ... Started.
1 process started.
>q
7-14 Administering a BEA Tuxedo Application at Run Time

How to Cancel a Migration
How to Cancel a Migration

If you decide, after deactivating a server group or machine, that you do not want to
continue, you can cancel the migration before reactivating the server group or
machine. All the information in the name server for the deactivated servers and
services is deleted.

To cancel a migration after a shutdown but before issuing the migrate command,
enter one of the following commands.

Example of a Migration Cancellation

The following sample tmadmin session shows how a server group and a machine can
be migrated between their respective primary and alternate machines.

To Cancel . . . Enter This Command . . . As a Result . . .

Server migration tmadmin migrategroup -cancel

or
tmadmin migg -cancel

Server entries are deleted
from the bulletin board.
You must reboot the
servers once the migration
procedure is canceled.

Machine
migration

tmadmin migratemach -cancel
or
tmadmin migm -cancel

The migration is stopped.
Administering a BEA Tuxedo Application at Run Time 7-15

7 Migrating Your Application
Listing 7-7 Canceling a Server Group Migration for GROUP1

$tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (DEAD MIGRATING)
> psr -g GROUP1
TMADMIN_CAT:121: No such server
migg -cancel GROUP1
>boot -g GROUP1
Booting server processes...
exec simpserv -A:
on SITE1 ->process id_27636 ... Started. 1 process started.
> psr -g GROUP1

a.out Name Queue Name Grp Name ID RqDone Ld Done Current Service
---------- ---------- -------- -- ------ ------- ---------------
simpserv 00001.00001 GROUP1 1 - - (-)
> q

How to Migrate Transaction Logs to a
Backup Machine

To migrate a transaction log to a BACKUP machine, complete the following procedure.

1. Start a tmadmin session by entering the following command:

tmadmin

2. Shut down the servers in all the groups that write to the log, to prevent them from
writing further entries.
7-16 Administering a BEA Tuxedo Application at Run Time

How to Migrate Transaction Logs to a Backup Machine
3. Dump the TLOG into a text file by running the following command:

dumptlog [-z config] [-o offset] [-n filename] [-g groupname]

Note: The TLOG is specified by the config and offset arguments. The value of
offset defaults to 0; name defaults to TLOG. If the -g option is chosen,
only those records coordinated by the TMS from groupname are dumped.

4. Copy filename to the BACKUP machine.

5. Read the file into the existing TLOG for the specified machine by entering the
following command:

loadtlog -m machine filename

6. Force a warm start of the TLOG by entering the following command:

logstart machine

The system reads the information in the TLOG and uses it to create an entry in the
transaction table in shared memory.

7. Migrate the servers to the BACKUP machine.
Administering a BEA Tuxedo Application at Run Time 7-17

7 Migrating Your Application
7-18 Administering a BEA Tuxedo Application at Run Time

CHAPTER
8 Tuning a BEA Tuxedo
ATMI Application

This topic includes the following sections:

When to Use MSSQ Sets

How to Enable Load Balancing

How to Measure Service Performance Time

How to Assign Priorities to Interfaces or Services

Bundling Services into Servers

Enhancing Overall System Performance

Determining Your System IPC Requirements

Tuning IPC Parameters

Measuring System Traffic

Note: For detailed information about tuning your applications in the BEA Tuxedo
CORBA environment, refer to the Scaling, Distributing, and Tuning CORBA
Applications guide.
Administering a BEA Tuxedo Application at Run Time 8-1

8 Tuning a BEA Tuxedo ATMI Application
When to Use MSSQ Sets

Note: Multiple Servers, Single Queue (MSSQ) sets are not supported in BEA
Tuxedo CORBA servers.

The MSSQ scheme offers additional load balancing in BEA Tuxedo ATMI
environments. One queue is accommodated by several servers offering identical
services at all times. If the server queue to which a request is sent is part of an MSSQ
set, the message is dequeued to the first available server. Thus load balancing is
provided at the individual queue level.

When a server is part of an MSSQ set, it must be configured with its own reply queue.
When the server makes requests to other servers, the replies must be returned to the
original requesting server; they must not be dequeued by other servers in the MSSQ
set.

You can configure MSSQ sets to be dynamic so they automatically spawn and
eliminate servers based upon a queue load.

The following table specifies when it is beneficial to use MSSQ sets.

The following two analogies illustrate when it is beneficial to use MSSQ sets.

You Should Use MSSQ Sets If . . . You Should Not Use MSSQ Sets If . . .

You have between 2 and 12 servers. There are many servers. (A compromise is to use many
MSSQ sets.)

Buffer sizes are not too large, that is, large enough
to exhaust a queue.

Buffer sizes are large enough to exhaust one queue.

All servers offer identical sets of services. Each server offers different services.

Messages are relatively small. Large messages are being passed to the services, causing the
queue to be exhausted. When a queue is exhausted, either
nonblocking sends fail or blocking sends block.

Optimization and consistency of service
turnaround time are paramount.
8-2 Administering a BEA Tuxedo Application at Run Time

How to Enable Load Balancing
A situation analogous to the appropriate use of MSSQ sets can be found in a
bank at which several tellers performing identical services handle a single line of
customers. The next available teller always takes the next person in line. In this
scenario, each teller must be able to perform all customer services. In a BEA
Tuxedo environment, all servers set up to share a single queue must offer an
identical set of services at all times. The advantage of MSSQ sets is that they
offer a second form of load balancing at the individual queue level.

A supermarket at which different cashiers accept different forms of payment
(some accept credit cards, while others accept only cash) is similar to a BEA
Tuxedo application in which MSSQ sets should not be used.

How to Enable Load Balancing

To alleviate the performance degradation resulting from heavy system traffic, you may
want to implement a load balancing algorithm on your entire application. With load
balancing, a load factor is applied to each service within the system, and you can track
the total load on every server. Every service request is sent to the qualified server that
is least loaded.

To implement system-wide load balancing, complete the following procedure.

1. Run your application for an extended period of time.

2. Note the average amount of time it takes for each service to be performed.

3. In the RESOURCES section of the configuration file:

Set LDBAL to Y.

Assign a LOAD value of 50 (LOAD=50) to any service that takes approximately
the average amount of time.

For any service taking longer than the average amount of time, set LOAD>50;
for any service taking less than the average amount of time, set LOAD<50.
Administering a BEA Tuxedo Application at Run Time 8-3

8 Tuning a BEA Tuxedo ATMI Application
Note: This algorithm, although effective, is expensive and should be used only when
necessary, that is, only when a service is offered by servers that use more than
one queue. Services offered by only one server, or by multiple servers, all of
which belong to the same MSSQ (Multiple Server, Single Queue) set, do not
need load balancing.

How to Measure Service Performance Time

You can measure service performance time in either of two ways:

Administratively—in the configuration file, you can arrange to have a log of
services that are performed to be written to standard error. In the SERVICES
section, specify:

servopts -r

To analyze the information in the log, run the txrpt(1) command.

For details about servopts(5) and txrpt(1), see the File Formats, Data
Descriptions, MIBs, and System Processes Reference and BEA Tuxedo Command
Reference, respectively.

Programmatically—insert a call to time() at the beginning and end of a service
routine. Services that take the longest time receive the highest load; those that
take the shortest time receive the lowest load. (For details about time(), see the
documentation for your C language libraries.)

How to Assign Priorities to Interfaces or
Services

Assigning priorities enables you to exert significant control over the flow of data in an
application, provide faster service to the most important requests, and provide slower
service to the less important requests. You can also give priority to specific users—at
all times or in specific circumstances.
8-4 Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#7588415
../rfcm/rfcmd.htm#1017911

How to Assign Priorities to Interfaces or Services
You can assign priorities to BEA Tuxedo services in either of two ways:

Administratively—in the SERVICES section of the configuration file, specify the
PRIO parameter for each service named.

Programmatically—add calls to the tpsprio() function to the appropriate client
and server applications, to allow designated clients and servers to change a
priority dynamically. Only preferred clients should be able to increase the
service priority. In a system on which servers perform service requests, the
server can call tpsprio() to increase the priority of its interface or service calls
so the user does not wait in line for every interface or service request that is
required.

Example of Using Priorities

Server 1 offers Interfaces A, B, and C. Interfaces A and B have a priority of 50;
Interface C, a priority of 70. An interface requested for C is always dequeued before a
request for A or B. Requests for A and B are dequeued equally with respect to one
another. The system dequeues every tenth request in first-in, first-out (FIFO) order to
prevent a message from waiting indefinitely on the queue.

Using the PRIO Parameter to Enhance Performance

The PRIO parameter determines the priority of an interface or a service on a server’s
queue. It should be used cautiously. Once priorities are assigned, it may take longer for
some messages to be dequeued. Depending on the order of messages on the queue (for
example, A, B, and C), some (such as A and B) are dequeued only one in ten times
when there are more than 10 requests for C. This means reduced performance and
potential slow turnaround time for some services.

When you are deciding whether to use the PRIO parameter, keep the following
implications in mind:

Because higher priorities get first preference, a higher priority should usually be
assigned only to an interface or service that is not called frequently.

A message with a lower priority does not remain enqueued indefinitely; every
tenth message is retrieved on a FIFO basis. Before you assign a low priority to
Administering a BEA Tuxedo Application at Run Time 8-5

8 Tuning a BEA Tuxedo ATMI Application
an interface or service you should be sure that response time for that interface or
service is not important.

Bundling Services into Servers

The easiest way to package services into servers is to avoid packaging them at all.
Unfortunately, if you do not package services, the number of servers, message queues,
and semaphores rises beyond an acceptable level. Thus there is a trade-off between no
bundling and too much bundling.

When to Bundle Services

We recommend that you bundle services if you have one of the situations or
requirements described in the following list.

Functional similarity—if multiple services play a similar role in the application,
you can bundle them in the same server. The application can offer all or none of
them at a given time. In the bankapp application, for example, the WITHDRAW,
DEPOSIT, and INQUIRY services are all operations that can be grouped together
in a “bank teller operations” server. Administration of services is simplified
when functionally similar services are bundled.

Similar libraries—less disk space is required if you bundle services that use the
same libraries. For example, if you have three services that use the same 100K
library and three services that use different 100K libraries, bundling the first
three services saves 200K. Functionally equivalent services often use similar
libraries.

Filling the queue—bundle only as many services into a server as the queue can
handle. Each service added to an unfilled MSSQ set may add relatively little to
the size of an executable, and nothing to the number of queues in the system.
Once the queue is filled, however, system performance is degraded and you must
create more executables to compensate.

Do not put two or more services that call each other, that is, call-dependent services,
in the same server. If you do so, the server issues a call to itself, causing a deadlock.
8-6 Administering a BEA Tuxedo Application at Run Time

Enhancing Overall System Performance
Enhancing Overall System Performance

The following performance enhancement controls can be applied to BEA Tuxedo
release 8.0 or later.

Service and Interface Caching

Removing Authorization and Auditing Security

Turning Off Multithreaded Processing

Turning Off XA Transactions

Service and Interface Caching

BEA Tuxedo release 8.0 or later allows you to cache service and interface entries, and
to use the cached copies of the service or interface without locking the bulletin board.
This feature represents a significant performance improvement, especially in systems
with large numbers of clients and only a few services.

The SICACHEENTRIESMAX option has been added to the MACHINCES and SERVERS
sections of the configuration file to allow you to define the maximum number of
service cache entries that any process and/or server can hold.

Since caching may not be useful for every client or every application, the
TMSICACHEENTRIESMAX environment variable has been added to control the cache size.
The default value for TMSICACHEENTRIESMAX is preconfigured so that no
administrative changes are necessary when upgrading from previous releases.
TMSICACHEENTRIESMAX can also control the number of cache entries, since it is not
desirable for clients to grow too large.

Service Caching Limitations

The following limitations apply to the caching feature:

If there are routing criteria on a service, then the service will not be cached.
Administering a BEA Tuxedo Application at Run Time 8-7

8 Tuning a BEA Tuxedo ATMI Application
If there are buffer type restrictions on a service, then the service will not be
cached.

If the group of a service is predetermined (that is, TMS services), then the
service will not be cached.

If the number of service entries is zero, no caching will be done.

Notes: For more information about the SICACHEENTRIESMAX option, refer to the
UBBCONFIG(5)and TM_MIB(5) sections in the File Formats, Data
Descriptions, MIBs, and System Processes Reference.

For more information about the TMSICACHEENTRIESMAX variable, refer to the
tuxenv(5)section in the File Formats, Data Descriptions, MIBs, and System
Processes Reference.

Removing Authorization and Auditing Security

For BEA Tuxedo release 7.1, the AAA (authentication, authorization, and auditing)
security features were added so that implementations using the AAA plug-in functions
would not need to base security on the BEA Tuxedo administrative option. As a result,
the BEA Engine AAA security functions are always called in the main BEA Tuxedo
7.1 code path. Since many applications do not use security, they should not pay the
overhead price of these BEA Engine security calls.

For BEA Tuxedo release 8.0 or later, the NO_AA option has been added to the OPTIONS
parameter in the RESOURCES section of the configuration file. The NO_AA option will
circumvent the calling of the authorization and auditing security functions. Since most
applications need authentication, this feature cannot be turned off.

If the NO_AA option is enabled, the following SECURITY parameters may be affected:

The parameters NONE, APP_PW, and USER_AUTH parameters will continue to work
properly—except that no authorization or auditing will be done.

The ACL and MANDATORY_ACL parameters will continue to work properly, but
will only use the default BEA security mechanism.

Note: For more information about the NO_AA option, refer to the UBBCONFIG(5)and
TM_MIB(5) sections in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.
8-8 Administering a BEA Tuxedo Application at Run Time

Enhancing Overall System Performance
Using the Multithreaded Bridge

Because only one Bridge process is running per host machine in a multiple machine
Tuxedo domain, all traffic from a host machine passes through a single Bridge process
to all other host machines in the domain. The Bridge process supports both
single-threaded and multithreaded execution capabilities. The availability of
multithreaded Bridge processing improves the data throughput potential. To enable
multithreaded Bridge processing, you can configure the BRTHREADS parameter in the
MACHINES section of the UBBCONFIG file.

Setting BRTHREADS=Y configures the Bridge process for multithreaded execution.
Setting BRTHREADS=N or accepting the default N, configures the Bridge process for
single-threaded execution.

Configurations with BRTHREADS=Y on the local machine and BRTHREADS=N on
the remote machine are allowed, but the thoughput between the machines will not be
greater than that for the single-threaded Bridge process.

Other important considerations for using the BRTHREADS parameter include:

Setting BRTHREADS=Y makes sense only if a machine has multiple CPUs;
however, having multiple CPUs id not a prerequisite for setting
BRTHREADS=Y.

If the MODEL parameter in the RESOURCES section of the UBBCONFIG file
is set to SHM, the BRTHREADS parameter has no effect and is ignored.

If BRTHREADS=Y and the Bridge environment contains TMNOTHREADS=Y, the
Bridge starts up in threaded mode and logs a warning message. Basically,
BRTHREADS overrides TMNOTHREADS and the warning message states that the
Bridge is ignoring the TMNOTHREADS setting.

Note: In a Tuxedo multiple-machine domain, setting BRTHREADS=Y has no effect for
a machine that is running an earlier version of Tuxedo.

For more information about the multithreaded Bridge, see the BRTHREADS
paramter in the MACHINES section of the UBBCONFIG(5) in File Formats,
Data Descriptions, MIBs, and System Processes Reference.
Administering a BEA Tuxedo Application at Run Time 8-9

../rf5/rf5.htm#365105

8 Tuning a BEA Tuxedo ATMI Application
Turning Off Multithreaded Processing

BEA Tuxedo has a generalized threading feature. Due to the generality of the
architecture, all ATMI calls must call mutexing functions in order to protect sensitive
state information. Furthermore, the layering of the engine and caching schemes used
in the libraries cause more mutexing. For applications that do not use threads, turning
them off can result in significant performance improvements without making changes
to the application code.

To turn off multithreaded processing use the TMNOTHREADS environment variable.
With this setting, individual processes can turn threads on and off without introducing
a new API or flag in order to do so.

If the TMNOTHREADS=Y, then the calls to the mutexing functions are avoided.

Note: For more information about TMNOTHREADS, refer to the tuxenv(5) section in
File Formats, Data Descriptions, MIBs, and System Processes Reference.

Turning Off XA Transactions

Although not all BEA Tuxedo applications use XA transactions, all processes pay the
cost of transactional semantics by calling internal transactional verbs. To boost
performance for applications that don’t use XA transactions for BEA Tuxedo release
8.0 or later, the NO_XA flag has been has been added to the OPTIONS parameter in the
RESOURCES section of the configuration file.

No XA transactions are allowed when the NO_XA flag is set. It is important to remember
though, that any attempt to configure TMS services in the GROUPS section will fail if
the NO_XA option has been specified.

Note: For more information about the NO_XA option, refer to the UBBCONFIG(5)and
TM_MIB(5) sections in the File Formats, Data Descriptions, MIBs, and
System Processes Reference.
8-10 Administering a BEA Tuxedo Application at Run Time

Determining Your System IPC Requirements
Determining Your System IPC Requirements

The IPC requirements for your system are determined by the values of several system
parameters:

MAXACCESSERS

REPLYQ

RQADDR

MAXSERVERS

MAXSERVICES

MAXGTT

You can use the tmboot -c command to display the minimum IPC requirements of
your configuration.

The following table describes these system parameters.

Table 8-1 Parameters for Tuning IPC Resources

Parameter(s) Description

MAXACCESSSERS Equals the number of semaphores.
Number of message queues is almost equal to MAXACCESSERS +
number of servers with reply queues (number of servers in MSSQ set *
number of MSSQ sets).

MAXSERVERS,
MAXSERVICES,
and MAXGTT

While MAXSERVERS, MAXSERVICES, MAXGTT, and the overall size of
the ROUTING, GROUP, and NETWORK sections affect the size of shared
memory, an attempt to devise formulas that correlate these parameters
can become complex. Instead, simply run tmboot -c or tmloadcf
-c to calculate the minimum IPC resource requirements for your
application.
Administering a BEA Tuxedo Application at Run Time 8-11

8 Tuning a BEA Tuxedo ATMI Application
Tuning IPC Parameters

The following application parameters enable you to enhance the efficiency of your
system:

MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES

MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE

SANITYSCAN, BLOCKTIME, and individual transaction timeouts

BBLQUERY and DBBLWAIT

Queue-related
kernel parameters

Need to be tuned to manage the flow of buffer traffic between clients
and servers. The maximum total size (in bytes) of a queue must be large
enough to handle the largest message in the application. A typical queue
is not more than 75 to 85 percent full. Using a smaller percentage of a
queue is wasteful; using a larger percentage causes message sends to
block too frequently.
Set the maximum size for a message to handle the largest buffer that the
application sends.
The maximum queue length (the largest number of messages that are
allowed to sit on a queue at once) must be adequate for the application’s
operations.
Simulate or run the application to measure the average fullness of a
queue or its average length. This process may require a lot of trial and
error; you may need to estimate values for your tunables before running
the application, and then adjust them after running under performance
analysis.
For a large system, analyze the effects of parameter settings on the size
of the operating system kernel. If they are unacceptable, reduce the
number of application processes or distribute the application across
more machines to reduce MAXACCESSERS.

Table 8-1 Parameters for Tuning IPC Resources (Continued)

Parameter(s) Description
8-12 Administering a BEA Tuxedo Application at Run Time

Tuning IPC Parameters
Setting the MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES Parameters

The MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES parameters
increase semaphore and shared memory costs, so you should carefully weigh these
costs against the expected benefits before using these parameters, and choose the
values that best satisfy the needs of your system. You should take into account any
increased resources your system may require for a potential migration. You should also
allow for variation in the number of clients accessing the system simultaneously.
Defaults may be appropriate for a generous allocation of IPC resources; however, it is
prudent to set these parameters to the lowest appropriate values for the application.

Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE
Parameters

To determine whether the default is adequate for your application, multiply the number
of clients in the system times the percentage of time they are committing a transaction.
If the product of this multiplication is close to 100, you should increase the value of
the MAXGTT parameter. As a result of increasing MAXGTT:

Your system may require a greater number of clients, depending on the speed of
commits.

You should also increase TLOGSIZE accordingly for every machine.

You should set MAXGTT to 0 for applications in which distributed transactions are
not used.

To limit the number of buffer types and subtypes allowed in the application, set the
MAXBUFTYPE and MAXBUFSTYPE parameters, respectively. The current default for
MAXBUFTYPE is 16. If you plan to create eight or more user-defined buffer types, you
should set MAXBUFTYPE to a higher value. Otherwise, you do not need to specify this
parameter; the default value is used.

The current default for MAXBUFSTYPE is 32. You may want to set this parameter to a
higher value if you intend to use many different VIEW subtypes.
Administering a BEA Tuxedo Application at Run Time 8-13

8 Tuning a BEA Tuxedo ATMI Application
Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY,
and DBBLWAIT Parameters

If a system is running on slow processors (for example, due to heavy usage), you can
increase the timing parameters: SANITYCAN, BLOCKTIME, and individual transaction
timeouts.

If networking is slow, you can increase the value of the BLOCKTIME, BBLQUERY, and
DBBLWAIT parameters.

Recommended Values for Tuning-related Parameters

In the following table are recommended values for the parameters available for tuning
an application.

Use These Parameters . . . To . . .

MAXACCESSERS, MAXSERVERS,
MAXINTERFACES, and MAXSERVICES

Set the smallest satisfactory value because of
IPC cost. (Allow for extra clients.)

MAXGTT, MAXBUFTYPE, and
MAXBUFSTYPE

Increase MAXGTT for many clients; set
MAXGTT to 0 for nontransactional
applications.
Use MAXBUFTYPE only if you create eight or
more user-defined buffer types.
Increase the value of MAXBUFSTYPE if you
use many different VIEW subtypes.

BLOCKTIME, TRANTIME, and
SANITYSCAN

Increase the values if the system is slow.

BLOCKTIME, TRANTIME, BBLQUERY, and
DBBLWAIT

Increase the values if networking is slow.
8-14 Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic
Measuring System Traffic

As on any road that supports a lot of traffic, bottlenecks can occur in your system. On
a highway, cars can be counted with a cable strung across the road, that causes a
counter to be incremented each time a car drives over it.

You can use a similar method to measure service traffic. For example, when a server
is started (that is, when tpsvrinit() is invoked), you can initialize a global counter
and record a starting time. Subsequently, each time a particular service is called, the
counter is incremented. When the server is shut down (through the tpsvrdone()
function), the final count and the ending time are recorded. This mechanism allows you
to determine how busy a particular service is over a specified period of time.

In the BEA Tuxedo system, bottlenecks can originate from problematic data flow
patterns. The quickest way to detect bottlenecks is to measure the amount of time
required by relevant services from the client’s point of view.

Example of Detecting a System Bottleneck

Client 1 requires 4 seconds to display the results. Calls to time() determine that the
tpcall to service A is the culprit with a 3.7-second delay. Service A is monitored at
the top and bottom and takes 0.5 seconds. This finding implies that a queue may be
clogged, a situation that can be verified by running the pq command in tmadmin.

On the other hand, suppose service A takes 3.2 seconds. The individual parts of service
A can be bracketed and measured. Perhaps service A issues a tpcall to service B,
which requires 2.8 seconds. Knowing this, you should then be able to isolate queue
time or message send blocking time. Once the relevant amount of time has been
identified, the application can be retuned to handle the traffic.

Using time(), you can measure the duration of the following:

An entire client program

A single client service request

An entire service function

A service function making a service request (if any)
Administering a BEA Tuxedo Application at Run Time 8-15

8 Tuning a BEA Tuxedo ATMI Application
Detecting Bottlenecks on UNIX Platforms

The UNIX system sar(1) command provides valuable performance information that
can be used to find system bottlenecks. You can run sar(1) to do the following:

Sample cumulative activity counters in the operating system at predetermined
intervals

Extract data from a system file
8-16 Administering a BEA Tuxedo Application at Run Time

Measuring System Traffic
The following table describes the sar(1) command options.

Note: Some flavors of the UNIX system do not support the sar(1) command, but
offer equivalent commands, instead. BSD, for example, offers the iostat(1)
command; Sun offers perfmeter(1).

Use This Option... To...

-u Gather CPU utilization numbers, including percentages of time
during which the system: runs in user mode, runs in system mode,
remains idle with some process waiting for block I/O, and
otherwise remains idle.

-b Report buffer activity, including number of data transfers, per
second, between system buffers and disk (or other block devices).

-c Report activity of system calls of all types, as well as specific
system calls, such as fork(2) and exec(2).

-w Monitor system swapping activity, including the number of
transfers for swapins and swapouts.

-q Report average queue lengths while queues are occupied, and the
percentage of time they are occupied.

-m Report message and system semaphore activities, including the
number of primitives per second.

-p Report paging activity, including the number of address translation
page faults, page faults and protection errors, and valid pages
reclaimed for free lists.

-r Report the number of unused memory pages and disk blocks,
including the average number of pages available to user processes
and disk blocks available for process swapping.
Administering a BEA Tuxedo Application at Run Time 8-17

8 Tuning a BEA Tuxedo ATMI Application
Detecting Bottlenecks on Windows 2000 Platforms

On Windows 2000 platforms, you can use the Performance Monitor to collect system
information and detect bottlenecks. To open the Performance Monitor, select the
following options from the Start menu:

Start —> Programs —> Administration Tools —> Performance Monitor

See Also

“Creating the Configuration File for a Distributed ATMI Application” on page
8-1 in Setting Up a BEA Tuxedo Application

“Setting Up the Network for a Distributed Application” on page 9-1 in Setting
Up a BEA Tuxedo Application

“Managing the Network in a Distributed Application” on page 4-1

Scaling, Distributing, and Tuning CORBA Applications
8-18 Administering a BEA Tuxedo Application at Run Time

../ads/adsdis.htm#403787
../ads/adsdis.htm#403787
../ads/adsnet.htm#815708

CHAPTER
9 Troubleshooting a BEA
Tuxedo Application

This topic includes the following sections:

Determining Types of Failures

How to Broadcast an Unsolicited Message

Maintaining Your System Files

Recovery Considerations

Repairing Partitioned Networks

Restoring Failed Machines

How to Replace System Components

How to Replace Application Components

Cleaning Up and Restarting Servers Manually

Aborting or Committing Transactions

How to Recover from Failures When Transactions Are Used

How to Use the IPC Tool When an Application Fails to Shut Down Properly

Troubleshooting Multithreaded/ Multicontexted Applications
Administering a BEA Tuxedo Application at Run Time 9-1

9 Troubleshooting a BEA Tuxedo Application
Determining Types of Failures

The first step in troubleshooting is determining problem areas. In most applications
you must consider six possible sources of trouble:

Application

BEA Tuxedo system

Database management software

Network

Operating system

Hardware

Once you have determined the problem area, you must then work with the appropriate
administrator to resolve the problem. If, for example, you determine that the trouble is
caused by a networking problem, you must work with the network administrator.

How to Determine the Cause of an Application Failure

The following steps will help you detect the source of an application failure.

1. Check any BEA Tuxedo system warnings and error messages in the user log
(ULOG).

2. Select the messages you think most likely reflect the current problem. Note the
catalog name and the number of each of message, so you can look up the
message in System Messages. The manual entry provides:

Details about the error condition indicated by the message

Recommendations for recovery actions

3. Check any application warnings and error messages in the ULOG.
9-2 Administering a BEA Tuxedo Application at Run Time

Determining Types of Failures
4. Check any warnings and errors generated by application servers and clients. Such
messages are usually sent to the standard output and standard error files (named,
by default stdout and stderr, respectively).

The stdout and stderr files are located in the directory defined by the
APPDIR variable.

The stdout and stderr files for your clients and servers may have been
renamed. (You can rename the stdout and stderr files by specifying -e
and -o in the appropriate client and server definitions in your configuration
file. For details, see servopts(5) in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.)

5. Look for any core dumps in the directory defined by the APPDIR.variable. Use a
debugger such as dbx to get a stack trace. If you find core dumps, notify your
application developer.

6. Check your system activity reports (for example, by running the sar(1)
command) to determine why your system is not functioning properly. Consider
the following reasons:

The system may be running out of memory.

The kernel might not be tuned correctly.

How to Determine the Cause of a BEA Tuxedo System
Failure

The following steps will help you detect the source of a system failure.

1. Check any BEA Tuxedo system warnings and error messages in the user log
(ULOG):

TPEOS messages indicate errors in the operating system.

TPESYSTEM messages indicate errors in the BEA Tuxedo system.

2. Select the messages you think most likely reflect the current problem. Note the
catalog name and number of each of message, so you can look up the message in
System Messages. The manual entry provides:
Administering a BEA Tuxedo Application at Run Time 9-3

../rf5/rf5.htm#7588415

9 Troubleshooting a BEA Tuxedo Application
Details about the error condition flagged by the message.

Recommendations for recovery actions.

3. Prepare for debugging in the following ways:

Shut down the suspend service.

Use tmboot -n -s(server) -d1. (This will not boot the server, but prints
the command line used to boot the server by the BEA Tuxedo system.) Use
that command line with a debugger such as dbx.

How to Broadcast an Unsolicited Message

The EventBroker enhances troubleshooting by providing a system-wide summary of
events and a mechanism whereby an event triggers notification. The EventBroker
provides details about BEA Tuxedo system events, such as servers dying and networks
failing, or application events, such as an ATM machine running out of money. A BEA
Tuxedo client that receives unsolicited notification of an event, can name a service
routine to be invoked, or name an application queue in which data should be stored for
later processing. A BEA Tuxedo server that receives unsolicited notification can
specify a service request or name an application queue to store data.

1. To send an unsolicited message, enter the following command:

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]

Note: By default, the message is sent to all clients.

2. You can limit distribution to one of the following recipients:

One machine (-m machine)

One client group (-c client_group)

One user (-u user)

The text may not include more than 80 characters. The system sends the message in a
STRING type buffer, which means the client’s unsolicited message handling function
(specified by tpsetunsol(0)) must be able to handle this type of message. The
tptypes() function may be useful in this case.
9-4 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files
See Also

“Unsolicited Communication” on page 2-15 in Introducing BEA Tuxedo ATMI

“Managing Events Using EventBroker” on page 4-17 in Introducing BEA
Tuxedo ATMI

Maintaining Your System Files

Periodically, you may need to perform the following tasks to maintain your file
system:

Print the Universal Device List

Print VTOC information

Reinitialize a device

Create a device list

Destroy a device list

Note: This file format is used for TUXCONFIG, TLOG, and /Q.

How to Print the Universal Device List (UDL)

To print a UDL, complete the following procedure:

1. Run tmadmin -c.

2. Enter the following command:

lidl
Administering a BEA Tuxedo Application at Run Time 9-5

../int/intatm.htm#834752
../int/intman.htm#679361

9 Troubleshooting a BEA Tuxedo Application
3. To specify the device from which you want to obtain the UDL, you have a choice
of two methods:

Specify the device on the lidl command line:

-z device_name [devindx]

Set the environment variable FSCONFIG to the name of the desired device.

How to Print VTOC Information

To print VTOC information, complete the following procedure.

1. Run tmadmin -c.

2. To get information about all VTOC table entries, enter the following command:

livtoc

3. To specify the device from which you want to obtain the VTOC, you have a
choice of two methods:

Specify the following on the lidl command line:

-z device name [devindx]

Set the environment variable FSCONFIG to the name of the desired device.

How to Reinitialize a Device

To reinitialize a device that is included on a device list, complete the following
procedure.

1. Run tmadmin -c.

2. Enter the following command:

initdl [-z devicename] [-yes] devindx

Note: The value of devindx is the index to the file to be destroyed.
9-6 Administering a BEA Tuxedo Application at Run Time

Maintaining Your System Files
3. You can specify the device by:

Entering its name after the -z option (as shown here), or

Setting the environment variable FSCONFIG to the device name

4. If you include the -yes option on the command line, you are not prompted to
confirm your intention to destroy the file before the file is actually destroyed.

How to Create a Device List

To create a device list, complete the following procedure.

1. Run tmadmin -c.

2. Enter the following command:

crdl [-z devicename] [-b blocks]

The value of devicename [devindx] is the desired device name. (Another
way to assign a name to a new device is by setting the FSCONFIG
environment variable to the desired device name.)

The value of blocks is the number of blocks needed. The default is 1000
blocks.

Note: Because 35 blocks are needed for the administrative overhead associated
with a TLOG, be sure to assign a value higher than 35 when you create a
TLOG.

How to Destroy a Device List

To destroy a device list with index devindx, complete the following procedure.

1. Run tmadmin -c.

2. Enter the following command:

dsdl [-z devicename] [yes] [devindx]

Note: The value of devindx is the index to the file to be destroyed.
Administering a BEA Tuxedo Application at Run Time 9-7

9 Troubleshooting a BEA Tuxedo Application
3. You can specify the device by:

Entering its name after the -z option (as shown here), or

Setting the environment variable FSCONFIG to the device name

4. If you include the yes option on the command line, you are not prompted to
confirm your intention to destroy the file before the file is actually destroyed.

Recovery Considerations

The BEA Tuxedo system requires a certain level of environmental stability to provide
optimum functionality. Although the BEA Tuxedo administrative subsystem offers
unparalleled capabilities of recovering from network, machine, and application
process failures, it is not invulnerable. You should be aware of the following ways in
which a BEA Tuxedo system works.

Application clients and servers that use the FASTPATH model of SYSTEM_ACCESS (the
default) have direct memory access to the BEA Tuxedo shared data structures. Using
the FASTPATH model helps ensure that the BEA Tuxedo system achieves its
outstanding performance. The BEA Tuxedo system uses the IPC (InterProcess
Communication and File System) facilities provided by the operating system.

If an application accidentally uses these facilities to write into the BEA Tuxedo shared
memory or to a BEA Tuxedo file descriptor, or if it mistakenly uses any other BEA
Tuxedo system resource, data may become corrupted, BEA Tuxedo functionality may
be compromised, or an application may be brought down.

It is inappropriate for a user or administrator to directly terminate application clients,
application servers, or BEA Tuxedo administrative processes because these processes
may be executing within a critical section (that is, updating shared information in
shared memory). Interrupting a critical section during a memory update could
potentially cause inconsistent internal data structures. (This is characteristic not only
of the BEA Tuxedo system, but of any system in which shared data is used.) Error
messages in the BEA Tuxedo userlog that refer to locks or semaphores may indicate
that such corruption has occurred.
9-8 Administering a BEA Tuxedo Application at Run Time

Repairing Partitioned Networks
For maximum application availability, you can take advantage of the BEA Tuxedo
system’s facilities for managing redundancy, such as its multiple server, machine, and
domain facilities. Distributing an application’s functionality allows continued
operation if a failure occurs in one area.

Repairing Partitioned Networks

This topic provides instructions for troubleshooting a partition, identifying its cause,
and taking action to recover from it. A network partition exists if one or more machines
cannot access the MASTER machine. As the application administrator, you are
responsible for detecting partitions and recovering from them.

A network partition may be caused by any the following failures:

A network failure—either a transient failure, which corrects itself in minutes, or
a severe failure, which requires you to take the partitioned machine out of the
network

A machine failure on either the MASTER machine or the nonmaster machine

A BRIDGE failure

The procedure you follow to recover from a partitioned network depends on the cause
of the partition.

Detecting a Partitioned Network

You can detect a network partition in one of the following ways:

Check the user log (ULOG) for messages that may shed light on the origin of the
problem.

Gather information about the network, server, and service, by running the
tmadmin commands provided for this purpose.
Administering a BEA Tuxedo Application at Run Time 9-9

9 Troubleshooting a BEA Tuxedo Application
How to Check the ULOG

When problems occur with the network, BEA Tuxedo system administrative servers
start sending messages to the ULOG. If the ULOG is set up over a remote file system, all
messages are written to the same log. In this scenario, you can run the tail(1)
command on one file and check the failure messages displayed on the screen.

If, however, the remote file system is using the network in which the problem has
occurred, the remote file system may no longer be available.

Listing 9-1 Example of a ULOG Error Message

151804.gumby!DBBL.28446: ... : ERROR: BBL partitioned, machine=SITE2

How to Gather Information About the Network, Server, and Service

The following is an example of a tmadmin session in which information is being
collected about a partitioned network, a server, and a service on that network. Three
tmadmin commands are run:

pnw (the printnetwork command)

psr (the printserver command)

psc (the printservice command)
9-10 Administering a BEA Tuxedo Application at Run Time

Repairing Partitioned Networks
Listing 9-2 Example tmadmin Session

$ tmadmin
> pnw SITE2
Could not retrieve status from SITE2

> psr -m SITE1
a.out Name Queue Name Grp Name ID Rq Done Load Done Current Service
BBL 30002.00000 SITE1 0 - - (-)
DBBL 123456 SITE1 0 121 6050 MASTERBB
simpserv 00001.00001 GROUP1 1 - - (-)
BRIDGE 16900672 SITE1 0 - - (DEAD)
>psc -m SITE1
Service Name Routine Name a.out Grp Name ID Machine # Done Status
------------ ------------ -------- -------- -- ------- ------------
ADJUNCTADMIN ADJUNCTADMIN BBL SITE1 0 SITE1 - PART
ADJUNCTBB ADJUNCTBB BBL SITE1 0 SITE1 - PART
TOUPPER TOUPPER simpserv GROUP1 1 SITE1 - PART
BRIDGESVCNM BRIDGESVCNM BRIDGE SITE1 1 SITE1 - PART

Restoring a Network Connection

This topic provides instructions for recovering from transient and severe network
failures.

How to Recover from Transient Network Failures

Because the BRIDGE tries, automatically, to recover from any transient network
failures and reconnect, transient network failures are usually not noticed. If, however,
you need to perform a manual recovery from a transient network failure, complete the
following procedure.

1. On the MASTER machine, start a tmadmin(1) session.

2. Run the reconnect command (rco), specifying the names of nonpartitioned and
partitioned machines:

rco non-partioned_node1 partioned_node2
Administering a BEA Tuxedo Application at Run Time 9-11

../rfcm/rfcmd.htm#2554911

9 Troubleshooting a BEA Tuxedo Application
How to Recover from Severe Network Failures

To recover from severe network failure, complete the following procedure.

1. On the MASTER machine, start a tmadmin session.

2. Run the pclean command, specifying the name of the partitioned machine:

pcl partioned_machine

3. Migrate the application servers or, once the problem has been corrected, reboot
the machine.

Restoring Failed Machines

The procedure you follow to restore a failed machine depends on whether that machine
was the MASTER machine.

How to Restore a Failed MASTER Machine

To restore a failed MASTER machine, complete the following procedure.

1. Make sure that all IPC resources for the BEA Tuxedo processes that are removed.

2. Start a tmadmin session on the ACTING MASTER (SITE2):

tmadmin

3. Boot the BBL on the MASTER (SITE1) by entering the following command:

boot -B SITE1

(The BBL does not boot if you have not executed pclean on SITE1.)

4. Still in tmadmin, start a DBBL running again on the MASTER site (SITE1) by
entering the following:

MASTER

5. If you have migrated application servers and data off the failed machine, boot
them or migrate them back.
9-12 Administering a BEA Tuxedo Application at Run Time

Restoring Failed Machines
How to Restore a Failed Nonmaster Machine

To restore a failed nonmaster machine, complete the following procedure.

1. On the MASTER machine, start a tmadmin session.

2. Run pclean, specifying the partitioned machine on the command line.

3. Fix the machine problem.

4. Restore the failed machine by booting the Bulletin Board Liaison (BBL) for the
machine from the MASTER machine.

5. If you have migrated application servers and data from the failed machine, boot
them or migrate them back.

In the following list, SITE2, a nonmaster machine, is restored.

Listing 9-3 Example of Restoring a Failed Nonmaster Machine

$ tmadmin
tmadmin - Copyright © 1987-1990 AT&T; 1991-1993 USL. All rights reserved

> pclean SITE2
Cleaning the DBBL.

Pausing 10 seconds waiting for system to stabilize.
3 SITE2 servers removed from bulletin board

> boot -B SITE2
Booting admin processes ...

Exec BBL -A :

on SITE2 -> process id=22923 ... Started.
1 process started.
> q
Administering a BEA Tuxedo Application at Run Time 9-13

9 Troubleshooting a BEA Tuxedo Application
How to Replace System Components

To replace BEA Tuxedo system components, complete the following procedure.

1. Install the BEA Tuxedo system software that is being replaced.

2. Shut down those parts of the application that will be affected by the changes:

The BEA Tuxedo system servers may need to be shut down if libraries are
being updated.

Application clients and servers must be shut down and rebuilt if relevant
BEA Tuxedo system header files or static libraries are being replaced.
(Application clients and servers do not need to be rebuilt if the BEA Tuxedo
system message catalogs, system commands, administrative servers, or
shared objects are being replaced.)

3. If relevant BEA Tuxedo system header files and static libraries have been
replaced, rebuild your application clients and servers.

4. Reboot the parts of the application that you shut down.

How to Replace Application Components

To replace components of your application, complete the following procedure.

1. Install the application software. This software may consist of application clients,
application servers, and various administrative files, such as the FML field tables.

2. Shut down the application servers being replaced.

3. If necessary, build the new application servers.

4. Boot the new application servers.
9-14 Administering a BEA Tuxedo Application at Run Time

Cleaning Up and Restarting Servers Manually
Cleaning Up and Restarting Servers
Manually

By default, the BEA Tuxedo system cleans up resources associated with dead
processes (such as queues) and restarts restartable dead servers from the Bulletin
Board (BB) at regular intervals during BBL scans. You may, however, request
cleaning at other times.

How to Clean Up Resources Associated with Dead
Processes

To request an immediate cleanup of resources associated with dead processes,
complete the following procedure.

1. Start a tmadmin session.

2. Enter bbclean machine.

The bbclean command takes one optional argument: the name of the machine to be
cleaned.

If You Specify... Then...

No machine The resources on the default machine are cleaned.

A machine The resources on the specified machine are cleaned.

DBBL The resources on the Distinguished Bulletin Board Liaison
(DBBL) and the bulletin boards at all sites are cleaned.
Administering a BEA Tuxedo Application at Run Time 9-15

9 Troubleshooting a BEA Tuxedo Application
How to Clean Up Other Resources

To clean up other resources, complete the following procedure.

1. Start a tmadmin session.

2. Enter pclean machine.

Note: You must specify a value for machine; it is a required argument.

This command is useful for restoring order to a system after partitioning has occurred
unexpectedly.

How to Check the Order in Which BEA
Tuxedo CORBA Servers Are Booted

If a BEA Tuxedo CORBA application fails to boot, open the application’s UBBCONFIG
file with a text editor and check whether the servers are booted in the correct order in
the SERVERS section. The following is the correct order in which to boot the servers in
a BEA Tuxedo CORBA environment. A BEA Tuxedo CORBA application will not
boot if this order is not adhered to.

If the Specified Machine Is Then

Not partitioned pclean will invoke bbclean.

Partitioned pclean will remove all entries for servers and
services from all nonpartitioned bulletin boards.
9-16 Administering a BEA Tuxedo Application at Run Time

How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA Servers
Boot the servers in the following order:

1. The system EventBroker, TMSYSEVT.

2. The TMFFNAME server with the -N option and the -M option, which starts the
NameManager service (as a MASTER). This service maintains a mapping of
application-supplied names to object references.

3. The TMFFNAME server with the -N option only, to start a slave NameManager
service.

4. The TMFFNAME server with the -F option, to start the FactoryFinder.

5. The application servers that are advertising factories.

For a detailed example, see the section “Required Order in Which to Boot CORBA
C++ Servers” on page 3-73 in Setting Up a BEA Tuxedo Application.

How to Check the Hostname Format and
Capitalization of BEA Tuxedo CORBA Servers

The network address that is specified by programmers in the Bootstrap object
constructor or in TOBJADDR must exactly match the network address in the server
application’s UBBCONFIG file. The format of the address as well as the capitalization
must match. If the addresses do not match, the call to the Bootstrap object constructor
will fail with a seemingly unrelated error message:

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the ISL
command-line option string (in the server application’s UBBCONFIG file), specifying
either //192.12.4.6:3500 or //trixie:3500 in the Bootstrap object constructor or
in TOBJADDR will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the
capitalization used. On Windows 2000 systems, see the host system’s Network control
panel to determine the capitalization used.
Administering a BEA Tuxedo Application at Run Time 9-17

../ads/adfig.htm#189662
../ads/adfig.htm#189662

9 Troubleshooting a BEA Tuxedo Application
Why Some BEA Tuxedo CORBA Clients Fail to
Boot

You may want to perform the following steps on a Windows 2000 server that is
running a BEA Tuxedo CORBA application, if the following problem occurs: some
Internet Inter-ORB Protocol (IIOP) clients boot, but some clients fail to create a
Bootstrap object and return an InvalidDomain message, even though the
//host:port address is correctly specified. (For related information, see the section
“How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA
Servers” on page 9-17.)

1. Start regedt32, the Registry Editor.

2. Go to the HKEY_LOCAL_MACHINE on Local Machine window.

3. Select:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Afd\Parameters

4. Add the following values by using the Edit —> Add Value menu option:
DynamicBacklogGrowthDelta: REG_DWORD : 0xa

EnableDynamicBacklog: REG_DWORD: 0x1

MaximumDynamicBacklog: REG_DWORD: 0x3e8

MinimumDynamicBacklog: REG_DWORD: 0x14

5. Restart the Windows 2000 system for the changes to take effect.

These values replace the static connection queue (that is, the backlog) of five pending
connections with a dynamic connection backlog, that will have at least 20 entries
(minimum 0x14), at most 1000 entries (maximum 0x3e8), and will increase from the
minimum to the maximum by steps of 10 (growth delta 0xa).

These settings only apply to connections that have been received by the system, but are
not accepted by an IIOP Listener. The minimum value of 20 and the delta of 10 are
recommended by Microsoft. The maximum value depends on the machine. However,
Microsoft recommends that the maximum value not exceed 5000 on a Windows 2000
server.
9-18 Administering a BEA Tuxedo Application at Run Time

Aborting or Committing Transactions
Aborting or Committing Transactions

This topic provides instructions for aborting and committing transactions.

How to Abort a Transaction

To abort a transaction, complete the following procedure.

1. Enter the following command:

aborttrans (abort) [-yes] [-g groupname] tranindex

2. To determine the value of tranindex, run the printtrans command (a
tmadmin command).

3. If groupname is specified, a message is sent to the TMS of that group to mark as
“aborted” the transaction for that group. If a group is not specified, a message is
sent, instead, to the coordinating TMS, requesting an abort of the transaction.
You must send abort messages to all groups in the transaction to control the abort.

This command is useful when the coordinating site is partitioned or when the client
terminates before calling a commit or an abort. If the timeout is large, the transaction
remains in the transaction table unless it is aborted.

How to Commit a Transaction

To commit a transaction, complete the following procedure.

1. Enter the following command:

committrans (commit) [-yes] [-g groupname] tranindex

Note: Both groupname and tranindex are required arguments.

The operation fails if the transaction is not precommitted or has been marked aborted.
This message should be sent to all groups to fully commit the transaction.
Administering a BEA Tuxedo Application at Run Time 9-19

9 Troubleshooting a BEA Tuxedo Application
Cautions About Using the committrans Command

Be careful about using the committrans command. The only time you need to run it
is when both of the following conditions apply:

The coordinating TMS has gone down before all groups got the commit
message.

The coordinating TMS will not be able to recover the transaction for some time.

Also, a client may be blocked on tpcommit(), which will be timed out. If you are
going to perform an administrative commit, be sure to inform this client.

How to Recover from Failures When
Transactions Are Used

When the application you are administering includes database transactions, you may
need to apply an after-image journal (AIJ) to a restored database following a disk
corruption failure. Or you may need to coordinate the timing of this recovery activity
with your site’s database administrator (DBA). Typically, the database management
software automatically performs transaction rollback when an error occurs. When the
disk containing database files has become corrupted permanently, however, you or the
DBA may need to step in and perform the rollforward operation.

Assume that a disk containing portions of a database is corrupted at 3:00 P.M. on a
Wednesday. For this example, assume that a shadow volume (that is, you have disk
mirroring) does not exist.

1. Shut down the BEA Tuxedo application. (For instructions, see “Starting Up and
Shutting Down an Application” on page 1-1 in Setting Up a BEA Tuxedo
Application.)

2. Obtain the last full backup of the database and restore the file. For example,
restore the full backup version of the database from last Sunday at 12:01 A.M.

3. Apply the incremental backup files, such as the incrementals from Monday and
Tuesday. For example, assume that this step restores the database up until 11:00
P.M. on Tuesday.
9-20 Administering a BEA Tuxedo Application at Run Time

How to Use the IPC Tool When an Application Fails to Shut Down Properly
4. Apply the AIJ, or transaction journal file, that contains the transactions from
11:15 P.M. on Tuesday up to 2:50 P.M. on Wednesday.

5. Open the database again.

6. Restart the BEA Tuxedo application.

Refer to the documentation for the resource manager (database product) for specific
instructions on the database rollforward process.

How to Use the IPC Tool When an
Application Fails to Shut Down Properly

Inter-process communication (IPC) resources are operating system resources, such as
message queues, shared memory, and semaphores. When a BEA Tuxedo application
shuts down properly with the tmshutdown command, all IPC resources are removed
from the system. In some cases, however, an application may fail to shut down
properly and stray IPC resources may remain on the system. When this happens, it may
not be possible to reboot the application.

One way to address this problem is to remove IPC resources with a script that invokes
the system IPCS command and scan for all IPC resources owned by a particular user
account. However, with this method, it is difficult to distinguish among different sets
of IPC resources; some may belong to the BEA Tuxedo system; some to a particular
BEA Tuxedo application; and others to applications unrelated to the BEA Tuxedo
system. It is important to be able to distinguish among these sets of resources;
unintentional removal of IPC resources can severely damage an application.

The BEA Tuxedo IPC tool (that is, the tmipcrm command) enables you to remove IPC
resources allocated by the BEA Tuxedo system (that is, for core BEA Tuxedo and
Workstation components only) in an active application.

The command to remove IPC resources, tmipcrm, resides in TUXDIR/bin. This
command reads the binary configuration file (TUXCONFIG), and attaches to the bulletin
board using the information in this file. tmipcrm works only on the local server
machine; it does not clean up IPC resources on remote machines in a BEA Tuxedo
configuration.
Administering a BEA Tuxedo Application at Run Time 9-21

9 Troubleshooting a BEA Tuxedo Application
To run this command, enter it as follows on the command line:

tmipcrm [-y] [-n] [TUXCONFIG_file]

The IPC tool lists all IPC resources used by the BEA Tuxedo system and gives you the
option of removing them.

Note: This command will not work unless you have set the TUXCONFIG environment
variable correctly or specified the appropriate TUXCONFIG file on the
command line.

Troubleshooting Multithreaded/
Multicontexted Applications

Debugging Multithreaded/Multicontexted Applications

Multithreaded applications can be much more difficult to debug than single-threaded
applications. As the administrator, you may want to establish a policy governing
whether such multithreaded applications should be created.

Limitations of Protected Mode in a Multithreaded
Application

When running in protected mode, an application attaches to shared memory only when
an ATMI call is being executed. Protected mode is used to guard against problems that
arise when BEA Tuxedo shared memory is accidentally overwritten by stray
application pointers.

If your multithreaded application is running in protected mode, some threads may be
executing application code while others are attached to the BEA Tuxedo Bulletin
Board’s shared memory within a BEA Tuxedo function call. Therefore, as long as at
least one thread is attached to the bulletin board in an ATMI call, the use of protected
9-22 Administering a BEA Tuxedo Application at Run Time

Troubleshooting Multithreaded/ Multicontexted Applications
mode cannot guard against stray application pointers in threads executing application
code, which may overwrite the BEA Tuxedo shared memory. As a result, the
usefulness of protected mode is relatively limited in multithreaded applications.

There is no solution to this limitation. We simply want to warn you that when running
a multithreaded application you cannot rely on protected mode as much as you do
when running a single-threaded application.
Administering a BEA Tuxedo Application at Run Time 9-23

9 Troubleshooting a BEA Tuxedo Application
9-24 Administering a BEA Tuxedo Application at Run Time

	Copyright
	Contents
	About This Document
	1. Starting Up and Shutting Down an Application
	2. Monitoring Your BEA Tuxedo Application
	3. Dynamically Modifying an Application
	4. Managing the Network in a Distributed Application
	5. About the EventBroker
	6. Subscribing to Events
	7. Migrating Your Application
	8. Tuning a BEA Tuxedo ATMI Application
	9. Troubleshooting a BEA Tuxedo Application

	About This Document
	1 Starting Up and Shutting Down an Application
	The Tasks Involved in Starting Up and Shutting Down an Application
	How to Set Your Environment
	On Windows
	On UNIX

	How to Create the TUXCONFIG File
	How to Start tlisten at All Sites
	tlisten Command Options

	How to Manually Propagate the Application-Specific Directories and Files
	How to Create a TLOG Device
	How to Boot the Application
	Sequence of tmboot Tasks for a 2-Machine Configuration
	Sequence of tmboot Tasks for Large Applications (Over 50 Machines)

	How to Shut Down Your Application
	Running tmshutdown
	Using the IPC Tool When an Application Fails to Shut Down Properly

	2 Monitoring Your BEA Tuxedo Application
	Ways to Monitor Your Application
	System and Application Data That You Can Monitor
	Monitoring System Data
	Monitoring Dynamic and Static Administrative Data

	Common Startup and Shutdown Problems
	Common Startup Problems
	Common Shutdown Problems

	Selecting Appropriate Monitoring Tools
	Using the BEA Administration Console to Monitor Your Application
	Using the Toolbar to Monitor Activities

	Using Command-line Utilities to Monitor Your Application
	Inspecting Your Configuration Using tmadmin
	Generating Reports on Servers and Services Using txrpt

	How a tmadmin Session Works
	Monitoring Your System Using tmadmin Commands

	Using EventBroker to Monitor Your Application
	Using Log Files to Monitor Activity
	What Is the Transaction Log (TLOG)?
	What Is the User Log (ULOG)?
	Detecting Errors Using Logs
	Analyzing the Transaction Log (TLOG)
	Analyzing the User Log (ULOG)
	Analyzing tlisten Messages in the ULOG

	Estimating Service Workload Using the Application Service Log
	Using the MIB to Monitor Your Application
	Limiting Your MIB Queries
	Querying Global and Local Data
	Using tmadmcall to Access Information

	Querying and Updating the MIB with ud32
	Using the Run-time Tracing Utility
	Managing Errors Using the DBBL and BBLs
	Using ATMI to Handle System and Application Errors
	Using Configurable Timeout Mechanisms
	Configuring Redundant Servers to Handle Failures

	Monitoring Multithreaded and Multicontexted Applications
	How to Retrieve Data About a Multithreaded/Multicontexted Application Using the MIB

	3 Dynamically Modifying an Application
	Dynamic Modification Methods
	Tools for Modifying Your Application

	Using tmconfig to Make Permanent Changes to Your Configuration
	How tmconfig Works
	How Results of a tmconfig Task Are Displayed

	How to Run tmconfig
	How to Set Environment Variables for tmconfig
	How to Conduct a tmconfig Walkthrough Session
	tmconfig Input Buffer Considerations

	Making Temporary Modifications to Your Configuration with tmconfig
	How to Add a New Machine
	How to Add a Server
	How to Activate a Newly Configured Machine
	How to Add a New Group
	How to Change Data-dependent Routing (DDR) for an Application
	How to Change Factory-based Routing (FBR) for an Interface
	How to Change Application-wide Parameters
	How to Change an Application Password
	Limitations on Dynamic Modification Using tmconfig
	Tasks That Cannot Be Performed on a Running System

	Making Temporary Modifications to Your Configuration with tmadmin
	How to Set Environment Variables for tmadmin

	How to Suspend Tuxedo ATMI Services or Servers
	How to Resume Tuxedo ATMI Services or Servers
	How to Advertise Services or Servers
	How to Unadvertise Services or Servers
	How to Change Service Parameters for Tuxedo ATMI Servers
	How to Change Interface Parameters for Tuxedo CORBA Servers
	How to Change the AUTOTRAN Timeout Value
	How to Suspend Tuxedo CORBA Interfaces
	How to Resume Tuxedo CORBA Interfaces

	4 Managing the Network in a Distributed Application
	Running a Network for a Distributed Application
	Compressing Data Over a Network
	How to Set the Compression Level
	Selecting Data Compression Thresholds

	Balancing Network Request Loads
	How to Use Data-Dependent Routing
	Example of Data-dependent Routing with a Horizontally-partitioned Database
	Example of Data-dependent Routing with Rule-based Servers

	How to Change Your Network Configuration

	5 About the EventBroker
	What Is an Event?
	Differences Between Application-defined and System-defined Events
	What Is the EventBroker?
	How the EventBroker Works
	Event Notification Methods
	Severity Levels of System Events

	What Are the Benefits of Brokered Events?

	6 Subscribing to Events
	Process of Using the EventBroker
	How to Configure EventBroker Servers
	How to Set the Polling Interval
	Subscribing, Posting, and Unsubscribing to Events with the ATMI and the EVENT_MIB
	Identifying Event Categories Using eventexpr and filter
	Accessing the EventBroker

	How to Select a Notification Method
	How to Cancel a Subscription to an Event
	How to Use the EventBroker with Transactions
	How Transactions Work with the EventBroker

	7 Migrating Your Application
	What Is Migration?
	Performing a Master Migration
	Migrating a Server Group
	Migrating Machines
	Performing a Scheduled Migration

	Migration Options
	How to Switch the Master and Backup Machines
	Examples of Switching MASTER and BACKUP Machines

	How to Migrate Server Groups
	How to Migrate a Server Group When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate a Server Group When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Server Group

	How to Migrate Server Groups from One Machine to Another
	How to Migrate Machines When the Alternate Machine Is Accessible from the Primary Machine
	How to Migrate Machines When the Alternate Machine Is Not Accessible from the Primary Machine
	Examples of Migrating a Machine

	How to Cancel a Migration
	Example of a Migration Cancellation

	How to Migrate Transaction Logs to a Backup Machine

	8 Tuning a BEA Tuxedo ATMI Application
	When to Use MSSQ Sets
	How to Enable Load Balancing
	How to Measure Service Performance Time
	How to Assign Priorities to Interfaces or Services
	Example of Using Priorities
	Using the PRIO Parameter to Enhance Performance

	Bundling Services into Servers
	When to Bundle Services

	Enhancing Overall System Performance
	Service and Interface Caching
	Removing Authorization and Auditing Security
	Using the Multithreaded Bridge
	Turning Off Multithreaded Processing
	Turning Off XA Transactions

	Determining Your System IPC Requirements
	Tuning IPC Parameters
	Setting the MAXACCESSERS, MAXSERVERS, MAXINTERFACES, and MAXSERVICES Parameters
	Setting the MAXGTT, MAXBUFTYPE, and MAXBUFSTYPE Parameters
	Tuning with the SANITYSCAN, BLOCKTIME, BBLQUERY, and DBBLWAIT Parameters
	Recommended Values for Tuning-related Parameters

	Measuring System Traffic
	Example of Detecting a System Bottleneck
	Detecting Bottlenecks on UNIX Platforms
	Detecting Bottlenecks on Windows 2000 Platforms

	9 Troubleshooting a BEA Tuxedo Application
	Determining Types of Failures
	How to Determine the Cause of an Application Failure
	How to Determine the Cause of a BEA Tuxedo System Failure

	How to Broadcast an Unsolicited Message
	Maintaining Your System Files
	How to Print the Universal Device List (UDL)
	How to Print VTOC Information
	How to Reinitialize a Device
	How to Create a Device List
	How to Destroy a Device List

	Recovery Considerations
	Repairing Partitioned Networks
	Detecting a Partitioned Network
	Restoring a Network Connection

	Restoring Failed Machines
	How to Restore a Failed MASTER Machine
	How to Restore a Failed Nonmaster Machine

	How to Replace System Components
	How to Replace Application Components
	Cleaning Up and Restarting Servers Manually
	How to Clean Up Resources Associated with Dead Processes
	How to Clean Up Other Resources

	How to Check the Order in Which BEA Tuxedo CORBA Servers Are Booted
	How to Check the Hostname Format and Capitalization of BEA Tuxedo CORBA Servers
	Why Some BEA Tuxedo CORBA Clients Fail to Boot
	Aborting or Committing Transactions
	How to Abort a Transaction
	How to Commit a Transaction

	How to Recover from Failures When Transactions Are Used
	How to Use the IPC Tool When an Application Fails to Shut Down Properly
	Troubleshooting Multithreaded/ Multicontexted Applications
	Debugging Multithreaded/Multicontexted Applications
	Limitations of Protected Mode in a Multithreaded Application

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

